VORTEX-INDUCED VIBRATION
OF A 5:1 RECTANGULAR CYLINDER

NEW COMPUTATIONAL AND MATHEMATICAL

MODELLING APPROACHES

Dinh Tung Nguyen, BEng (Hons)

Supervisors: Dr David M. Hargreaves and Dr John S. Owen

Department of Civil Engineering, Faculty of Engineering,

University of Nottingham
Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

May 9, 2017



ABSTRACT

As a the limit-cycle oscillation, vortex-induced vibration (VIV) does not cause catastrophic failure but
it can lead to fatigue in long and slender structures and structural elements, especially for long span
bridges. Assessing this behaviour during the design stage is therefore very important to ensure the safety
and serviceability of a structure. Currently, this task requires very time-consuming wind tunnel or com-
putational simulation since a reliable mathematical model is not available. Moreover, knowledge of the
underlying physical mechanism of the VIV and, particularly, of the turbulence-induced effect on the VIV
is insufficient. Turbulence is normally considered to produce suppressing effects on the VIV; however,
this influence appears to depend on cross sections and a comprehensive explanation is yet to be found.
This issue can be resulted from some limitation that most wind tunnel or computational studies have

used sectional models. The flow field is therefore dominated by 2D flow features.

In this research study, the 5:1 rectangular cylinder is selected as the case study since it is considered
as the generic bride deck geometry. Using the wind tunnel at the University of Nottingham, a series of
wind tunnel tests using a static and elastically supported sectional model is conducted in smooth flow.
This wind tunnel study is complemented by a computational study of a static and dynamic sectional
model; the computational simulations are carried out using the Computational Fluid Dynamics software
OpenFOAM and the High Performance Computer system at the University of Nottingham. A Fluid-
structure-interaction (FSI) solver is built to model the heaving VIV. By comparing the surface pressure
measurement between these two studies, it uncovers the two separate flow mechanisms and associated

flow features, which are both responsible for the VIV.

The series of wind tunnel static and dynamic tests is also repeated in different turbulent flow regimes.
By analysing the forces, moment, surface pressure and structural response, it reveals the mechanism of

the turbulence-induced effect on the aerodynamic characteristics as well as on VIV.

By improving the proposed FSI solver, a novel computational approach is introduced to simulate the

VIV of a flexible 5:1 rectangular cylinder excited at the first bending mode shape. Employing the Proper



Orthogonal Decomposition (POD) technique and comparing against results of the sectional model, some
emerging span-wise flow features are revealed together with their influences on the mechanism of the

bending VIV.

The Hartlen and Currie mathematical model for the VIV is generalised so that it is able to simulate
the VIV response of a 3D flexible structure. Such modifications and improvements are originated from
and assessed by results of the computational simulation of the flexible model. A case study of the Great

Belt East bridge is then carried out to verify this modified model.
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Chapter 1

INTRODUCTION

1.1 BACKGROUND

Long-span bridges are certainly a marvel of civil engineering; the structures featuring tall towers and
slender large spans supported by cables attract a lot of admiration. These very characteristics, however,
highlight the downside of long-span bridges, which is a reduction in stiffness and high susceptibility to
wind loading. Wind-induced oscillation has therefore become a major issue; this well-known phenomenon

was responsible for the collapse of several bridges throughout the world in the last 200 years.

Levy and Salvadori (2002) reported, in 1836, a moderate wind speed caused a serve damage to the
Chain Pier at Brighton, making headlines as one of the first wind-related incidents recorded in the UK.
About 40 years later, the collapse of Tay Rail Bridge in 1879 raised an alarm and exposed the major
weakness of British civil engineering which, based on Martin and Macleod (1995), was the lack of aware-
ness of wind load in bridge design. American engineers, who spent more efforts on wind load on bridge
decks, were still having trouble ensuring the safety and serviceability of bridges. After completion in 1937,
the Golden Gate Bridge was soon stiffened by trusses after it exhibited some large oscillations induced
by the wind. The collapse of the Tacoma Narrows Bridge (Figure 1.1) in 1940, finally, drew attention

to the need of in-depth study and more appropriate design codes for the wind-induced response of bridges.

The collapse of the Tacoma Bridge (Figure 1.2) has produced a lasting impact on civil engineers in
terms of technical, economic and ethical implication in bridge designs. Collings (2008) reported, following
this disaster, the additional stiffening trusses were approved to install to a number of bridges constructed
prior to 1940. Blockley (1980) emphasised the importance of the wind tunnel in the design phase to
ensure the dynamic characteristics of suspension bridges avoiding similar failures in the future. On top of
that, the Tacoma Bridge also inspired researchers to find and understand the failure mechanism, which

laid the foundation for the development of research into bridge aeroelasticity.
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Figure 1.2: Collapse of the Tacoma Bridge (Hodgkinson and Cooper, 2008).
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1.2 OVERVIEW OF BRIDGE AEROELASTICITY

Bridge aeroelasticity is defined as an interaction between the inertia of a bridge deck and the elastic and

aerodynamic forces acting on it. Mathematically, this relationship can be expressed as

M + cx + kx = Fo (U, %(t), x(t)) + Fe(t), (1.1)

where M, ¢ and k are the mass, damping and stiffness of bridge deck; they represent the dynamic char-
acteristics of the system. F, is the aerodynamic forces applied on the bridge deck; these loads depend
on the averaged wind speed, U, and the motion of the system, which is expressed via the displacement,
x(t), and the velocity of motion, %(¢). The final term is the external force, F.(t), which is independent

of the motion of structure; in turbulent flow, this force can arise due to a gust in the oncoming wind.

The aerodynamic forces, F,, are very complicated to understand and quantify due to the nature of
the bridge deck. Unlike a streamlined body, which is characterised by smooth and attached flow condi-
tions, the bridge deck is classified as a bluff body with sharp edges leading to separation of the flow and
continuous variation of pressure on its surface. This unsteady condition around the bridge deck is com-
pletely described by the highly non-linear Navier-Stokes equations. In addition, bridge aeroelasticity is
characterised by the turbulence in the oncoming wind, which appears in Equation 1.1 via F.(¢). Scanlan
(1997) and Haan and Kareem (2007) have found the turbulence in the wind produces significant effects

on the flow condition around the bridge deck and, thus, on the aerodynamic behaviour of the structure.

The wind tunnel is the most well-known and frequently-used approach and has been used frequently to
investigate bridge aeroelasticity. This approach involves the construction of a scaled physical model, which
can be a 3D full aeroelastic model or a 3D sectional model. The former is a small-scale representation of
a real structure with some minor and unimportant details being neglected; on the other hand, the latter
just captures a short section of the structure. They are compared in detail by Walshe (1977). The model
is then subjected to the flow generated in the wind tunnel; pressure tappings and pressure transducers
are commonly used to extract pressure distribution for further analysis. The main disadvantage of this
method is the high cost due to building models and running wind tunnels, particularly for the full
aeroelastic models; the sectional models are thus normally tested. The results from the wind tunnel tests
using sectional models have been showed to be sufficient predicting most behaviours of full-scale bridges.
However, Haan and Kareem (2009) showed that the sectional model was not capable of fully predicting
the response of bridge decks in turbulent wind, due to the finite span-wise length and the dominance of
2D flow features; the use of longer sectional models or even full-aeroelastic models is required to further

investigate this situation.
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Thanks to the advances in computational technology, Computational Fluid Dynamics (CFD) has
been extensively used for modelling bridge aeroelasticity. This method is considerably cheaper than the
use of wind tunnels; however it is very computationally demanding to simulate full aeroelastic bridge
models. Even with the current computational power, the use of CFD has only been developed for 2D
models or short 3D sectional models. In addition, results are very dependent on numerical schemes;
it can yield results which are very different from the wind-tunnel tests. Therefore, simulating the flow
around bridge decks remains as a challenge in terms of computational resources and validation of results.
For this reason, bridge aeroelasticity is still mainly investigated experimentally, using wind tunnels. The
experimental measurements and observations are then used as a benchmark to validate or calibrate the

numerical approach.

1.3 AIMS AND OBJECTIVES OF RESEARCH

The research in bridge aeroelasticity has achieved remarkable findings, which clarified and aided the
understanding of interaction between bridge decks and wind. Due to certain obstacles, the understanding
is still very limited in the case of the responses of bridges in turbulent wind. This complex phenomenon,
characterised by the coherent structure of the fluctuating wind components and the aerodynamic forces,
has recently attracted a lot of attention (Cao, 2015). Published results have shown the effect of turbulence
on the stability of bridge decks and span-wise correlation of forces; none of them, however, have been
able to back up the hypothesis proposed by Scanlan (1997). Based on the wind tunnel tests, he found
that the bridge models appeared to be more stable in turbulent flow, due to the reduction of span-wise
correlation of forces and surface pressure. A similar argument has also been used to explain for the
turbulence-induced stabilising effect on the vortex-induced vibration (VIV) of bridge decks. However,
many researches have showed that turbulence can also produce the destabilising effect on the VIV. Based
on Kareem and Wu (2013), the knowledge of the underlying physical mechanism of this wind-induced

response in both of the smooth and turbulent wind is still very insufficient.

1.3.1 Aims of Research

The hypothesis proposed by Scanlan (1997) has remained a challenge to researchers in bridge aeroelas-
ticity. The current research study aims to test this hypothesis regarding to the VIV of bridge decks by
conducting wind tunnel studies and computational simulations using the convention 3D sectional model
of a 5:1 rectangular cylinder. These studies help gain an in-depth understanding of the VIV mecha-
nism and turbulence-induced effects. Moreover, knowing the limitation of the current research that wind
tunnel and computational models are still 2D in nature, this research study introduces a novel compu-
tational approach to simulate the VIV of a flexible 5:1 rectangular cylinder, which is an analogue of a

full-aeroelastic wind tunnel model or a flexible bridge deck. Selective results are extracted to bring more
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insights into the VIV mechanism and the span-wise flow feature as well as to support the improvement

of mathematical models for VIV.

1.3.2 Objectives and Methodology of Research

To achieve the aims of this research, four objectives have been set:

e The 5:1 rectangular cylinder is chosen for this research study since it is considered as a generic
bridge deck cross section and has been studied in a lot of research. A physical 3D sectional model
will be built and tested in the wind tunnel at the University of Nottingham. A series of static
and dynamic wind tunnel test will be conducted in smooth and turbulent flow having different
turbulence intensities and length scales. The surface pressure distribution as well as the structural

response will be interpreted to investigate the mechanism of VIV and the influence of turbulence.

e The open-source CFD software named OpenFOAM and the High Performance Computer (HPC)
system at the University of Nottingham are used to perform computational simulation of a 3D
static and dynamic sectional model restrained to the heaving mode only in smooth flow. A Fluid
Structure Interaction (FSI) solver will be proposed to model the response of the cylinder. This

computational study will complement wind tunnel results, revealing the mechanism of the VIV.

e A flexible 5:1 rectangular cylinder will be introduced and this proposed FSI solver will be developed
to simulate the bending VIV. The span-wise variation of the surface pressure distribution will be
analysed to reveal the appearance of the span-wise flow features and their effect on the surface

pressure and VIV.

e As one of the most well-known VIV mathematical models, the Hartlen and Currie model will be
selected and studied in detail. A parameter optimisation process is developed to efficiently extract
the model parameters from some key results obtained from wind tunnel and computational studies.
Further improvement will be introduced to generalise this model so that it can model the VIV
response of a 3D flexible structure; such modification will be verified using the computational
results of the 3D flexible 5:1 rectangular cylinder as well as the full-scale measurement of the Great

Belt East bridge.
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1.4 ORGANISATION OF THE THESIS

The current chapter, Chapter 1, introduces some well-known wind-induced incidents of bridges in the
last few decades and the development of research in bridge aeroelasticity which mainly forms the inspira-
tion of this research. The objectives and methodology applied in the research are also mentioned in this

chapter.

In Chapter 2, the author presents an overview of bridge aerodynamics and aeroelasticity. The main
responses will be pointed out and discussed in detail regarding their physical characteristics and relevant
mathematical models. In addition, this chapter will look closely at the influence of the turbulence, par-
ticularly the stabilising effect on the VIV. A number of controversial findings and observations will be
reviewed, showing the limitation of the current research regarding the understanding of the VIV mecha-

nism as well as the turbulence-induced effect. This provides motivation for the present research.

Chapter 3 introduces the background knowledge of CEFD and the finite volume method. The relevant
turbulence models will be selected and reviewed together with the potential and future of CFD in Wind

Engineering, in general, and in bridge aerodynamics and aeroelasticity, in particular.

The methodologies to conduct the computational study and the wind tunnel study are presented in
Chapters 4 and 5 respectively. All relevant aspects to conduct a simulation using the open-source CFD
software OpenFOAM will be introduced in Chapter 4. It is focused on a novel computational approach
to simulate the VIV of a flexible 5:1 rectangular cylinder, which includes the development and integra-
tion of the structural solver and the dynamic mesh algorithm into the OpenFOAM fluid solver. A mesh
sensitivity study is also performed to point out limitations of this approach, subjecting to the scope and
aims of the research. Chapter 5 is devoted to discussing the method to conduct the static and dynamic
wind tunnel tests together with essential techniques to measure velocity, surface pressure, aerodynamic
forces and moment and structural acceleration. Different grids are used to create the turbulence in the
wind tunnel; this grid-generated turbulence will be studied regarding the homogeneous and isotropic

characteristics and the stream-wise decaying process.

In Chapter 6, results from the wind tunnel tests and computational simulations are discussed and
compared to uncover the mechanism of the VIV for the 5:1 rectangular cylinder. By comparing the dis-
tribution and span-wise correlation of the surface pressure measured in the smooth and turbulent flow, it
shows the effect of the turbulence on this mechanism, which will eventually influence the VIV. Moreover,
final sections in this chapter will be devoted to analysis results of the CFD simulation using the flexible

cylinder, concentrating on the span-wise variation of the pressure fluctuation.
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Chapter 7 presents an in-depth study of the Hartlen and Currie model; an optimisation process is
developed to extract model parameters, allowing model outputs to be compared against both of wind
tunnel and computational studies. Also, it is discussed further improvements to generalise this model so

that the response of a 3D flexible structure could be estimated.

In Chapter 8, this research study is summarised with key findings and conclusions, particularly
relating to the hypothesis mentioned in Section 1.3. Limitations as well as potential areas of further

research are discussed and recommended.




Chapter 2

OVERVIEW OF BRIDGE AEROELASTICITY

When a bluff body as opposed to a streamline structure is immersed in a wind field, induced pressure
gradients cause the wind to detach from surfaces of the body, resulting in a surface of velocity discontinuity
and pressure differential which can trigger large structural responses. The wind-induced responses of a

bluff body can be classified into different phenomena as follows:

e Buffeting

Flutter

Vortex-induced vibration

Galloping
e Divergence instabilities

The response of a bluff body is also dependent on the turbulence inherent in the wind. Experimen-
tal and computational literature have shown that the turbulent winds can produce either stabilising or
destabilising effects to the vortex-induced vibration of a bluff body, which are the main behaviours to be

studied in this research.

Prior to classifying and reviewing the aeroelastic phenomena of a bluff body, it is of importance
to present some key concepts of turbulent flow and the aerodynamic aspects of flow separation and

re-attachment.

2.1 OVERVIEW OF TURBULENCE

A fluid parcel in the flow experiences the inertial, viscous and pressure forces, which are responsible for

transportation of energy, momentum and materials throughout the flow. The ratio of the first two forces
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are defined as the Reynolds number, Re, which is also a measure of laminar or turbulence characteristic
of the flow,
UL
Re = —, (2.1)

14

where v is the kinematic viscosity of the fluid, U is the mean speed and L is the characteristic length of
the flow. When the Reynolds number is below a certain critical value, the viscosity dominates, which can
effectively damp out any possible randomness in the flow. Such a flow regime is called laminar (Pope,
2000). At higher Reynolds numbers, the viscous effect decreases; a disturbance in the flow can then
develop, leading to continuous variation of flow properties with time over substantial flow regions. The

behaviour of flow is random and chaotic, which is referred as turbulent flow.

In this section, the physical nature and mechanism of turbulence is discussed via the concept of
energy cascade and Kolmogorov’s hypothesis. In addition, the randomness of turbulence is quantified

and expressed using statistical approaches.

2.1.1 Nature of Turbulence

Turbulence in natural wind is originated from velocity discontinuities which are induced by many sources.
As for the atmospheric boundary layer, the heating or cooling of the Earth’s surface during a day (buoy-
ancy mechanism) or the presence of structures such as high-rise buildings or bridge decks (mechanical
mechanism) can yields instabilities in the atmosphere which can then interact and develop into turbulence

in the wind. Its characteristics are dependent on the length- and time-scale of the generating mechanism.

Flow visualisation reveals turbulent flow can be considered to be composed of many structures of
swirling fluid or turbulence eddies of different sizes. Each eddy is characterised by a length scale [, a

velocity scale u(l), a time scale 7(I) = [/u and a eddy Reynolds number

ul
Reeddy = ; (22)

Kolmogorov theory offers detailed explanation and description of behaviour of eddies of different
length scales at significantly high Reynolds numbers. This is summarised in Figure 2.1 where L is the
characteristic length of the flow while [,, as defined in Section 2.1.2, is the turbulence length scale of the
flow which is considered to be the size of eddies that are dominant and contains the most of energy of
the flow. Therefore, any eddies possessing length scales which are comparable to [, or, strictly speaking,
greater than {g; = [,/6 are belong to the energy containing range. These eddies are generated directly

from the external mechanism; their behaviour and characteristics are thus largely dependent on boundary
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conditions of the flow. In this regime, the inertial force is dominant while the effect of the viscous force
is negligible. The former transfers the energy from large-scale eddies to small-scale eddies via an inviscid
process called the vortex stretching. With the effect of viscosity being ignored, the angular momentum of
a large-scale eddy is conserved. It is then conceived that the eddy rotates more quickly, stretching itself
into a unstable, long and thin cylindrical eddy which ultimately breaks up into smaller and more stable
eddies. This inertia-driven process allows the energy to be transferred from the largest-scale eddies to
smaller and smaller eddies until the eddy Reynolds number equals to 1 where the energy is effectively

dissipated by the molecular viscosity; Richardson (1922) described this process as the energy cascade.

Together with the vortex stretching process, the directional information of the large-scale eddies is
lost due the pressure force. The pressure fluctuation at a point in the flow is mostly contributed by
the velocity fluctuation. The positive pressure fluctuation can be thought as a pool storing energy which
afterwards is released without any preferable directions. The pressure force, therefore, spreads the energy
uniformly to all directions making the flow become isotropic. The eddies having the length scale smaller
than [g; are isotropic and their statistics are in a sense of universal. This regime is called the universal
equilibrium range characterised by a comparable effect of inertial and viscous forces. For the very high
Reynolds-number flow, this regime is separated into the inertial subrange and the dissipation range. In
the former, the isotropic universal eddies mostly experience the inertial force while the viscous effect
is predominant in the latter including eddies having the length scale smaller than [p; = 60n which is

determined by the Kolmogorov scale that

)= (f’)l/{ (2.3)

where ¢ and v are the energy dissipation rate and the kinematic viscosity of the flow respectively. The
Kolmogorov scale 7 also represents the smallest-scale eddies in the flow; accordingly, the velocity scale

u, and the time scale 7, of the smallest-scale eddies are

U, = (EV)1/4, (2.4)

o= ()" (2.5)

Pope (2000) indicated that the rate of energy transfer in the energy cascade is complicated and
dependent on several factors. In the energy containing regime, the transfer rate is non-universal and
significantly influenced by boundary conditions of the flow and the details of energy contents. However,
it is fully established in the inertial subrange where the rate of energy transfer equals to the rate of

energy insertion. The energy dissipation rate € in the dissipation range is also universal and defined by

10
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the velocity scale u, and the length scale [, of the most-energy-containing eddies as

£
ow

£ X

(2.6)

o~

o

However, the conventional Kolmogorov theories (Kolmogorov, 1941) and deduced results are limited
to very high Reynolds numbers. Many experimental studies including George and Hussein (1991) showed
that, even at the Reynolds number of 10000, the anisotropic behaviour maintains during the inertial
subrange and dissipation range. The other oversimplification applied in the Kolmogorov theory is that
the energy is transferred from large-scale eddies to small-scale eddies only. The opposite process which
is named as backscatter has been showed to be responsible to transfer a portion of energy to larger-scale

eddies (Pope, 2000).

Universial equilibrium range Energy containing range
Dissipation range Inertial subrange
n "DI = 60?] IE] = ;affd [0 L

Figure 2.1: Kolmorogov’s ranges of length scale; the length scale increases from left
to right.
2.1.2 Descriptions of Turbulence

Using Reynolds decomposition, the velocity measurement at a point in the turbulent flow is considered

to be a combination of the mean wind speed and the fluctuating components

Ul(z,y,2,t) =U(z,y, 2) + ulz,y, 2,t) + v(z,y, 2, t) + w(z,y, 2, 1), (2.7)

where U, is the wind speed in the z direction. The mean wind speed U is defined as the average of U,

over a selected time interval ¢,

tp

1
U r,Y,z) = ?/Ut T,Y,z, t di. (28)
0

hS]

The main characteristics of the fluctuating velocity components u(t), v(¢) and w(t) are described using

the statistical approach.

11
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Turbulence Intensity

The turbulence intensity is the measure of the level of velocity fluctuation in each direction, which
provides a good indication on the strength of turbulence in the wind. The turbulence intensity in one
direction is defined as the ratio of the standard deviation of the fluctuating velocity component in this

direction and the mean wind speed

I, =%, 2.9
i (2.9)
Oy
I, = 22, 2.10
i (2.10)
Ow
Iy =22, 2.11
T (2.11)

where I, I, and I, are the turbulence intensity and o, o, and o, are the standard deviation of
the fluctuating component in the stream-wise, horizontal and vertical cross-wind direction respectively.

Taking the stream-wise direction as an example

(2.12)

Turbulence Length Scale

The velocity fluctuation in the wind can be considered as a superposition of conceptual eddies trans-
ported by the mean wind speed (Simiu and Scanlan, 1996). An eddy can be considered as a parcel of air
rotating at a frequency f. Applying the travelling wave theory, the wavelength of the eddy, A, can be
defined as A = U/ f; this wavelength parameter is the size measurement of one eddy. The size of eddies
in the wind is very critical; if the size of a structure immersed in the turbulent wind is similar to the size
of eddies in the wind, a dramatic structural response can occur. However, it is impossible to measure
the size of all eddies in the wind; the turbulence length scale, therefore, is used as a measure of average
size of turbulent eddies in the wind that contain most of energy. The size of one eddy is defined in z, y
and z directions; therefore, each fluctuating component is accompanied by three different length scales.

In total, there are 9 turbulent length scales for 3 fluctuating components along three directions,

L* LY L%,
Ly Ly L, (2.13)
Ly Ly L,

12
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where L!, L! and L!  are the turbulent length scale of the component u, v and w respectively along the

direction ¢ where 7 = z, v, 2.

Mathematically, L7 is defined over a distance A,

o0

1

L = ;/puu(Ax)dAx, (2.14)
“0
where

r

1 2
Pun(Dz) = lim — / u(z,y, z, ulr + Ay, y, 2, t] dt. (2.15)

T—oo T

N

Here, the autocorrelation function p,, ., (A, ) is essentially a measure of similarity between u measured
simultaneously at two points separated by a distance A,. In addition, the turbulence length scale can be
determined using Taylor’s hypothesis that the turbulence in the wind is assumed to be ‘frozen’, travelling
at the mean wind speed. Using the idea of frozen turbulence, the turbulence length scale is defined using
the fluctuating velocity component u at a same point at times ¢ and ¢ + 7. The temporal autocorrelation

is defined as

Pun(T) = lim ! /u(t)u(t-i-T)dt. (2.16)

U oo
LY = = | pyu(7)dT. (2.17)
/

Similar definitions apply to the other turbulent length scales.

Wind Spectrum

In turbulent wind, the velocity fluctuation in each direction can be thought as a summation of several

sinusoidal components. The alongwind fluctuating component u(t) can be expressed as

u(t) = | Ansin (27 ft) df, (2.18)
/

where A, and f are the amplitude and frequency of each sinusoidal component. The frequency distri-
bution of the turbulent velocity component u is described by the power spectral density, S, (f, z), whose

integration results in the variance of this component

13
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7t = [ sur.001 (2.19)
0
The wind spectrum is the plot of the non-dimensional power spectral density, R, (f, z) defined as

Ru(f.z) = M, (2.20)

o5 (2)

against the non-dimensional frequency fr,

_fLE()
U() -

Ir (2.21)

There are some specified wind spectra commonly used in engineering bridge aerodynamic analysis;

one of them is the non-dimensional von Kéarmén spectrum which is

AfL

Ru(fz)=—1&
(:2) (1+70.8f2)°/°

(2.22)

As for the design of bridge structure, the Eurocode spectrum is usually applied; this spectrum is given

by

Ru(f,2) = _ 6871 (2.23)

(14 10.2f2)°*

In addition, Davenport (1962a) suggested one of the first wind spectra as

Rulf,z) = 211 (224)
w(fy2) = o —————=. .
31+ )"
For the Davenport’s spectrum, fr, is defined in a slightly different way,
fL
= 2.25
fr U0)’ (2.25)

where L = 1200(m). As can been seen in Equations 2.22 to 2.24, the wind spectrum is expressed as a
function of the non-dimensional frequency; these functions share some common characteristics. Figure
2.2 illustrates the shape of these three selected spectra; the von Kérman and Eurocode spectra are quite

similar while the Davenport spectrum gives the largest energy value at a slightly higher frequency.

2.2 AERODYNAMICS OF FLOW SEPARATION AND REATTACHMENT

Together with the inherent turbulence in the oncoming flow, the flow separation and reattachment are
other sources of excitation which can cause significant fluctuation of the surface pressure around a bluff

body and then may lead to aeroelastic instabilities.

14
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Figure 2.2: Non-dimensional power spectral density functions for the alongwind tur-
bulence component (Dyrbye and Hansen, 1999).

The mechanism of the flow separation is governed by the behaviour of the boundary layer. Consid-
ering a reasonably slender body such as a airfoil at a low angle of attack and a relative high Reynolds
number as shown in Figure 2.3, the viscous effect is negligibly small except for the thin layer of fluid
immediately adjacent to the airfoil. This is known as the boundary layer where a considerable velocity

gradient in the direction normal to the solid boundary may exist.

For most of the streamlined bodies such as the airfoil in this example, the boundary layer is usu-
ally very thin providing that the angle of attack is small and the Reynolds number is sufficiently high.
Acknowledging the assumption of a non-slip boundary, i.e. a zero relative velocity between the fluid
and the solid boundary and a large mainstream velocity, it is evident that significant shearing velocity
gradients exist in this layer. Also, under the same condition, the boundary layer as illustrated in Figures
2.3 and 2.4 is classified as a laminar layer. The fluid remains attached to the surface of the airfoil and the
separation occurs very close to the trailing edge (denoted by the point S in Figure 2.4) leading a narrow

wake region.

The other type of the boundary layer is a turbulent layer; these two types of the boundary layer can
co-exist in some engineering applications such as flow in the pipe or flow around a very thin and flat plate
as shown in Figure 2.5. A thin laminar boundary layer is formed from the leading edge and extends up to

about half of the chord length. Inside this region, the layers of fluid slide smoothly over one another and
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Figure 2.3: Overall flow field around a airfoil at a low angle of attack (Houghton and
Carpenter, 2008).

A

Figure 2.4: Velocity profiles at different chordwise positions along the airfoil
(Houghton and Carpenter, 2008).

there is no fluid mass being interchanged between each layers. Thus, the energy from the mainstream
is transferred throughout the boundary layer purely by the mean of viscosity. Further downstream, the
skin friction slows down the layer of fluid immediately next to the solid boundary (points P1 and P2 in
Figure 2.4). It then increases the thickness of the boundary layer and enhances the dominance of the
viscous effects. A transition occurs and the boundary layer becomes turbulent. The key difference is the
presence of the Reynolds stresses which promote the fluid mass interchange and lead to more energy being
transferred through the boundary layer. This effect divides the boundary layer into two sub regions: the
viscous sub-layer and the buffer layer. The former is adjacent to the solid boundary where the viscosity
again dominates and the fluid speed increases linearly as shown in Figure 2.6. The other conclusions
could be drawn that the turbulent boundary layer contains more energy than the laminar one and the
velocity gradient close to the solid boundary in the turbulent boundary layer is also larger than that of

the laminar one.

For the streamlined bodies, the boundary layer separation, for instance the point S in Figure 2.4, is
initiated by the adverse pressure gradient that the pressure increases with the distance downstream. Fig-

ure 2.7 illustrates the evolution of the velocity profile normal to the solid boundary prior to and beyond
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Tronsition Turbulent

Laminar

Leading edge

Figure 2.5: Development of the boundary layer around a thin flat plate (Houghton
and Carpenter, 2008).

Turbulent

N

10 &

Figure 2.6: Non-dimensional velocity profiles normal to the solid boundary of laminar
and turbulent boundary layers (Houghton and Carpenter, 2008).
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Figure 2.7: Flow separation over a streamlined body (Houghton and Carpenter,
2008).

the separation point S. The slowing-down effect due to the positive pressure gradient and the viscosity
is more pronounced near the solid boundary since the accelerating effect of the mainstream is minimum
there. Eventually, at the point S, the velocity gradient in the direction normal to the solid boundary is
zero; the positive pressure gradient will then initiate the adverse flow next to the surface in the upstream

direction and cause a sudden increase in the boundary layer thickness.

Recalling the noted difference between the laminar and turbulent boundary layers, due to the lower
energy level and the greater extent of low-energy fluid next to the solid boundary, flow separation occurs

earlier for the laminar boundary layer than for the turbulent boundary layer.

After the flow separation, two post-separation behaviours are known to exist (Williams, 1977). In
some cases, especially for the streamlined bodies or bluff bodies with short after-body length in smooth
flow, the original boundary-layer fluid never reattaches to the surface of the body but passes downstream
and creates a wake region of recirculating fluid. The characteristic length scale of the recirculating region
is of the same order as the dimensions of the body. In other cases, such as the bluff bodies with long
after-body length in the smooth flow, the flow always separates at the leading edge. The boundary layer
passes over a region of recirculating fluid and reattaches to the body at some point further downstream.
A bubble of recirculating fluid is trapped underneath the boundary layer; it is convected towards the
trailing edge where another flow separation occurs. This very interaction leads to a very complicated
flow field around a rectangular cylinder with a long after-body length, particularly with the aspect ratio

greater than 5. In addition, a variation in the Reynolds number, the level of turbulence of the incoming
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flow and the angle of attack could alter the post-separation behaviour or the position of the reattachment
point. These aspects including the effect of the Reynolds number and the turbulence will be discussed

further in the next section.

2.3 VORTEX SHEDDING FROM A STATIC BODY

The shear layers separating from the upstream body, which is either a streamlined or bluff body, interact
together to form a recirculating flow pattern which is well known as the von Karman vortex street. It is
characterised by equally-spaced vortices in the wake alternately shed from the separation points on the
body. This regularity of vortex shedding is described by the non-dimensional Strouhal number, St, which
is defined by

St = fsg, (2.26)

where f, is the frequency of the vortex shedding and U is the upstream wind speed. Here B is the char-
acteristic dimension of the body which, as for the circular cylinder, is the diameter. For the rectangular
cylinder, either the depth D or the width B is used. In this research study, the width B is selected for
consistency purposes and to highlight the effect of the after-body length which will be discussed further

in this section.

Similar to the behaviour of the boundary layer as discussed in Section 2.2, the characteristics of the
vortex shedding phenomenon depend on the Reynolds number, the geometry of the body (streamlined

or bluff bodies; aspect ratio) and the turbulence of the incoming flow.

2.3.1 Circular Cylinder

The behaviour of the boundary layer around the circular cylinder is very similar to that around a stream-
lined body, such as the airfoil, except that the boundary layer is inevitably separated at high Reynolds
number due to excessive adverse pressure gradients induced by the curvature of the surface. A general
behaviour of the wake region behind the circular cylinder is summarised in Figure 2.8; the Reynolds-
number limits quoted here are only an approximation. At very low Reynolds numbers, the boundary
layer around the circular cylinder is laminar and the flow remains completely attached to the surface. As
the Reynolds number increases, the laminar boundary layers on the upper and lower surfaces separate at
two points very close to each other and a narrow turbulent wake is formed behind the body. The wake
keeps broadening up to the point that the laminar boundary-layer separation points are well separated
and a pair of symmetrical vortices appear in the wake very close to the cylinder. For the Reynolds

number between 30 and 150, these two vortices stretch downstream and form a laminar von Karmén
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Figure 2.8: Wake and vortex formation behind a circular cylinder at different
Reynolds numbers (Simiu and Scanlan, 1996).

vortex street. If the Reynolds number keeps increasing, a transition where the vortex structure in the
wake becomes turbulent occurs and eventually, the vortex street becomes fully turbulent at the Reynolds
number between 3 x 102 and 2 x 10°. At higher Reynold numbers, the laminar boundary layer under-
goes a turbulent transition; the wake is narrower and clear vortical structure is apparent. At very high

Reynolds number (Re > 3.5x10°), the boundary layer is completely turbulent and the wake region is thin.

A summary of different flow regimes is shown in Figure 2.9 together with the Reynolds-number-
dependence characteristics of the Strouhal number of the circular cylinder. This relationship was esti-
mated from a number of different experiments; the results are presented in the 5% envelops except
for the range of Reynolds number from 2 x 10% to 3 x 10°. In this range, a generic dependence of the
Strouhal-Reynolds number relationship on the surface roughness of the cylinder is shown; the upper curve
is for a smooth cylinder while the lower one is for a rough cylinder. This behaviour is directly related
to the narrowing of the wake region induced by the transition from the laminar boundary layer to the

turbulent boundary layer as the Reynolds number increases. As discussed further in Section 2.2, this
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Figure 2.9: Relationship between the Strouhal number and Reynolds number of a
circular cylinder (Lienhard, 1966).

transition occurs more abruptly in the case of a smooth cylinder, leading a significant step change in
the Strouhal number. This step change becomes less by imposing more roughness to the surface of the

cylinder (Achenbach and Heinecke, 1981).

In the Reynolds number range between 3 x 102 and 2 x 10°, the Strouhal number shows very small
dependence on the Reynolds number; the value of the Strouhal number there is about 0.2. It is corre-
sponding to the flow regime where the boundary layer around the circular cylinder is laminar and the
vortex street is fully turbulent. For the lower range of Reynolds number, from 50 to 3 x 102, a power-law
relationship between the Strouhal and Reynolds number can be observed. However, a number of works
from Williamson (Williamson, 1988a, 1996, 1997) shows, in this range, there is a transition from the
laminar to three-dimensional regime of the cylinder wake and the von Karméan vortex street can be a
too simplified model to represent the vortex structure in the cylinder wake. A relationship between the

Strouhal and Reynolds number in the range of low Reynolds number is shown in Figure 2.10.

Apart from the two discontinuities marked in Figure 2.10, there is another discontinuity occurring
at Re = 65. A number of works have been devoted to find the answer for this issue and to confirm the
existence of a universal Strounal and Reynolds number relationship at low Reynolds numbers. Tritton
(1959) was one of the first researchers reporting this discontinuity; during his experiment, he found two
Strouhal number curves separated near Re = 100. He suggested the mechanism of this effect was due to
a transition between an instability originated in the wake and one originated in the immediate vicinity of
the cylinder. Similar behaviour at Re = 100 was also observed by Gerrard (1978). By analysing the vortex
strength just behind the cylinder and the base pressure coefficients, he confirmed that this discontinuity

in the Strouhal-Reynolds number relationship was related to a shift in the vortex formation induced by
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Figure 2.10: Relationship between the Strouhal number and Reynolds number of a
circular cylinder at low Reynolds number (Williamson, 1992).

the variation of the vorticity diffusion at different Reynolds numbers. At Reynolds numbers lower than
100, the diffusion of the vorticity is dominant allowing a pair of symmetry eddies to form behind and
close to the cylinder. At Reynolds numbers higher than 100, however, the effect of the vorticity diffusion
decreased and the convection effect preceded breaking the stable structure of these symmetry eddies,
which then increases the base pressure and reduces the vortex strength in this region. Later, experiments
conducted by Van Atta and Gharib (1987) also observed similar discontinuity. The spectral analysis
of the oscillation of the cylinder and the velocity fluctuation in the wake showed convincingly that this
discontinuity was due to the vibration of the cylinder. It was also the reason that they observed other
small discontinuities at higher Reynolds numbers which corresponded to other harmonics of the cylinder
oscillation. They also suggested that if the circular cylinder was perfectly rigid, no early discontinuities

in Reynolds number between 40 and 160 could be seen.

Further investigations have been carried out with an attempt to uncover the mechanism of this lami-
nar shedding regime. Eventually, Williamson (1988a) confirmed the existence of the discontinuity of the
Strouhal-Reynolds-number relationship and eliminated the association of the vibration of the cylinder
and the turbulence in the upstream flow to this discontinuity. In fact, this laminar vortex shedding region
is directly related to the phenomenon of oblique shedding and the discontinuity here is due to a transition
from one oblique shedding mode to the other oblique shedding mode. Figure 2.11 represents a generic
transition from one oblique vortex shedding mode to the other oblique vortex shedding mode as the
Reynolds number increases. As can be seen in Figure 2.11a, for the Reynolds number above 64, the visu-

alised vortex structure appears in a ‘chevron’-shaped pattern across most of the span-wise length of the
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cylinder; a single dominant frequency fr, is found in this region. There are two small regions near either
end of the cylinder where the vortex shedding occurs at a lower frequency f.. As the Reynolds number
decreases to below 64, a more complicated vortex configuration is observed in the wake as schematically
sketched in Figure 2.11b. The central portion of the span of the cylinder is occupied by the vortex shed-
ding at the frequency value f,. This region is sandwiched by two regions where the vortices are shed at
a lower frequency fr. Similarly, two small regions of the vortex shedding frequency f. near the ends of
the cylinder exists but they are very difficult to identify from the flow visualisation as shown in Figure
2.12. At the boundary between two neighbouring regions, some interference between two vortices being
shed at different frequencies is observed to occur. If the two vortices on the two sides of the boundary
happen to be in phase, the vortices in the low-frequency region tend to get induced downstream by those
in the high-frequency region, which makes the vortices oblique at an angle to the cylinder. The other
process when two vortices on either sides are out of phase is known as the vortex dislocation. During this
process, a vortex tube breaks at the boundary; the vortex in the low-frequency region will then connect
to some vortex in the high-frequency region which has the same sign and phase. The vortex dislocation
is formed and progressively shifted in the span-wise direction as it moves downstream. This phenomenon

also possesses the periodic characteristics; it repeats itself after a number of vortex shedding cycles.

The presence of the oblique vortex shedding is due to the effect of the end plate. Williamson (1989)
showed that, initially, the vortices in the wake are shed parallel to the cylinder; the effect from the end
plate gradually builds up and imposes a certain oblique angle on the flow which leads to the oblique vortex
shedding mode. By manipulating the end plates, which was to incline their leading edge inwards, certain
control on the flow over the entire span of the cylinder was achieved and the parallel shedding mode
was the final state. Without any imposing mechanism, the parallel shedding mode is found unstable and
is considered as 2D simplified representative of the cylinder wake. A relationship between the Strouhal
number and Reynolds number of the “universal” parallel and oblique vortex shedding was also proposed
by Williamson (1989) as

Stg

to = ——, 2.2
5 cos (2.27)

where Sty is the Strouhal number of the oblique vortex shedding at an oblique angle 6 and St, is the
Strouhal number of the “universal” parallel shedding. By using this equation, a continuous Strouhal-

Reynolds-number relationship has been confirmed for the laminar shedding regime.

The end plate is also the physical cause leading to the transition from one oblique vortex shedding
mode to the other oblique vortex shedding mode. The wake region behind the cylinder is interfered by

the flow over the central span of the cylinder and the flow induced by the end boundary conditions. At
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Reynolds numbers larger than 64, a good synchronisation between these two flow features is achieved
and a stable oblique vortex shedding mode is established. As the Reynolds number decreases, the oblique
vortex shedding frequency reduces upto a point when the frequency over the central span of the cylinder
falls out synchronisation with the one induced by the end plate. Therefore, a transition between two

different oblique vortex shedding modes occurs.

The results plotted in Figure 2.10 also show other two discontinuities in the transition to three-
dimensionality of the wake region. The first occurs at the Reynolds number of 180 marking a reduction
in the Strouhal number while the second is associated with a restoration of the Strouhal number at a
higher Reynolds number of 240 approximately. This unsteadiness in the near wake region involves the
formation of the vortex loop and stream-wise vorticity and has been observed and reported in a number
of studies. Eventually, Williamson (1988b) ruled out the possibility of the secondary Kelvin-Helmholtz
vortices in the shear layer, which only begin to form at Reynolds numbers of around 1000, and con-
cluded that the cause of this unsteady behaviour is the deformation of the primary vortices themselves,
which lead to the formation of the three-dimensional loops and stream-wise vortices. The existence of

the two discontinuities is related to the two different scales of the 3D vortical structure in the wake region.

The visualisation of the so-called mode A and mode B vortex shedding is showed in Figures 2.13 and
2.14. They consist of the primary von Karméan vortices superimposed by the small scale stream-wise
vortices. The von Kérmén vortices in the mode A appears in the wavy fashion and strings of vortex
loops are formed at the same span-wise positions. The span-wise length scale of this vortex shedding
mode is about 3 to 4 cylinder diameters. Regarding the direction of the stream-wise vortices, mode A
vortex shedding is classified to be non-symmetry (Williamson, 1997). Each vortex loop contains a pair of
counter-rotating stream-wise vortices (Figure 2.15a). On the other hand, as for the mode B vortex shed-
ding, the primary von Kéarméan vortices are very uniform in the span-wise direction and the stream-wise

vortices appear in a much finer scale and are in phase between a half cycle (Figure 2.15b).

The differences in the characteristic flow features between mode A and mode B vortex shedding
indicate two distinct associated underlying physical mechanisms. Observing the formation of the mode
A vortex shedding as the flow started to pass the cylinder, Williamson (1996) found this vortex shedding
mode is initiated by the span-wise waviness of the von Karman vortices, which is transferred from one
vortex to the other after half cycle. Therefore, this vortex shedding mode is suggested to be due to an
instability on the von Kédrman vortex core. It agrees with the observation that the length scale of the
stream-wise vortices is approximately equal to the von Karméan vortex core. The fine scaled stream-

wise vortices observed in the mode B vortex shedding, on the other hand, suggests that this mode is
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associated with a small-scale flow feature that is the instability of the braid shear layer, which is the thin
layer of vorticity connecting two von Karmén vortices every half cycle. This could explain the symmetry

and in-line arrangement of the stream-wise vortices as described above (Williamson (1997); Leweke and

Williamson (1998)).
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Figure 2.11: Schematic of a transition in the vortex shedding mode in the wake as
the Reynolds number decreases from (a) Re = 64 to 178 to (b) Re < 64; the flow in
the upward direction (Williamson, 1989).
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Figure 2.12: Visualisation of different vortex shedding modes for the Reynolds num-
bers (a) Re = 85 and (b) Re = 60; the flow in the upward direction (Williamson,
1989).
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Figure 2.13: Evolution of the vortex loop marked with a star in the mode A vortex
shedding at the Reynolds number of around 180 (Williamson, 1988b).
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Figure 2.14: Flow field of the mode B vortex shedding at the Reynolds number of
285 (Williamson, 1988b).

(a) (b)

Figure 2.15: Symmetry of the mode A and mode B vortex shedding (Williamson,
1997).

2.3.2 Rectangular Cylinder

On the contrary to the circular cylinder, the rectangular cylinder with sharp edges is characterised by
the presence of fixed separation points which can be either the leading edge or the trailing edge. Based
on the wind tunnel results, Shiraishi and Matsumoto (1983) reported there are three types of vortex
shedding which is dependent on the geometrical shape factors of the section. This observation was later
confirmed by Nakamura et al. (1991) and Naudascher and Wang (1993). The vortex shedding associated
to the rectangular cylinder is classified into: the leading-edge, impinging leading-edge and trailing edge

vortex shedding. The classification was found mainly to depend on the cross section of the bluff body,
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the width-to-depth (B/D) ratio and the geometrical shape of the leading edge.

The leading-edge vortex shedding occurs with the rectangular cylinder having the B/D ratio of 2 to 3.
With the permanent separation points located at the leading edge, two shear layers are created on the
top and bottom surfaces of the bluff body. A short after-body length will not allow the shear layers
to reattach; instead, they interact quickly downstream forming the regular vortex street, which is the

well-known von Karmaéan vortices.

The trailing-edge vortex shedding occurs on thinner rectangular cylinders with the B/D ratio of 6 to
9. Due to the long after-body length, the shear layers generated from the leading edge have enough time
to diffuse and the flow reattachment can happen as showed in Figure 2.16. The flow separation occurs
again at the trailing edge and vortices are shed into the wake region in the manner of the von Karman

vortex street.

Figure 2.16: Vortex shedding of a B/D = 8 rectangular prism (Ohya et al., 1992).

The impinging leading-edge vortex shedding is normally observed on the rectangular cylinder having
medium B/D ratios (about 4 to 6). This phenomenon involves the impingement of unstable shear layers
caused by the flow separation at the leading edge. When the flow passes the bluff bodies, two cavities are
formed on the top and bottom surfaces; inside these cavities, vortices shed from the leading edge impinge
onto the position close to the trailing edge as illustrated in Figure 2.17. It causes a sudden increase in pres-
sure and velocity around the impingement point; this perturbation then strongly affects the flow around
the leading edge increasing the level of instability of the cavities. Eventually, vortices are released into
the wake behind the body. This vortex shedding phenomenon is very prone for a cross section containing
square trailing edges such as H-shaped sections as investigated by Nakamura and Nakashima (1986). The
presence of the trailing causes a strong impinging shear layer instability on the top and bottom surfaces

of the prism; the interaction of these unstable layers downstream generates the von Karman vortex street.

As can be seen, the classification of the vortex shedding phenomenon of the rectangular cylinder is
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ﬁ Upper cavity ﬁ Vortex shed into the wake
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Figure 2.17: Streamlines around a B/D = 4 rectangular prism adapted from Ohya
et al. (1992).

mainly dependent on the behaviour of the separation bubble on the top and bottom surfaces or the
separated shear layer, which can be affected by a variation in the Reynolds number. Therefore, it is
inevitable that the relationship between the Strouhal and Reynolds number is not universal; instead, it

is affected by the aspect ratio B/D of the cross section.

For the bluff body having a very small aspect ratio or a square cross section, two shear layers never
reattach to the surfaces of the body; they quickly interact downstream generating the von Karmén vortex
street. Therefore, a variation in the Reynolds number poses a minimum effect on the vortical structure

in the wake; the Strouhal number is quite constant for a large range of Reynolds number (Okjima, 1982).

If the bluff body has a large aspect ratio, the reattachment of the separation bubbles can occur and a
more complicated relationship between the Strouhal number and Reynolds number is observed. Okjima
(1982) found a very strong dependence of the Strouhal number on the Reynolds number for the B/D = 2
rectangular cylinder as shown in Figure 2.18. The result shows a transition region where there is a sud-
den discontinuity in the Strouhal-Reynolds-number relationship curve at the Reynolds number of about
450. At the lower Reynolds numbers, the Strouhal number increases with the Reynolds number while,
beyond this region, the Strouhal number is seen not to vary significantly with the Reynolds number. The
sudden reduction of the Strouhal number was explained by the variation of the separated flow on the
top and bottom surfaces of the cylinder. At low Reynolds number, the separated flow from the leading
edge always reattaches to the surface; the flow then separates again at the trailing edge. During the
transition, the separated flow from the leading edge cannot detach completely from the surfaces of the
body; instead, it reattaches to either the top or bottom surfaces during each cycle of the vortex shedding.

Therefore, the reattachment point becomes intermittent. When the Reynolds number keeps increasing,
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Figure 2.18: Variation of Strouhal number, S, against Reynolds number, R, for a
B/D = 2 rectangular prism; both are defined using the dimension D (Okjima, 1982).

the separated flow is found to detach completely from the surfaces, leading to a broader wake accompa-
nied by a decrease of the vortex shedding frequency and the Strouhal number. Similar variation in the
flow features and the Strouhal number against the Reynolds number was also observed for the rectangular
cylinder having the aspect ratio of B/D = 3; the transition, however, does not occur until the Reynolds
number of 10 instead of around 500 as in the case of B/D = 2 rectangular cylinder (Okjima, 1982). A
longer after-body length, thus, tends to prevent the separated flow from detachment and to keep them
attached on the side surfaces. The results obtained by Okjima (1982) also suggest the dependence of the
Strouhal number on the aspect ratio which was later observed by Yu and Kareem (1998) and Shimada
and Ishihara (2002). Their results are summarised in Figure 2.19. This figure collected data from a lot
of studies using a variation of approaches to measure the Strouhal number. The Strouhal number of
the B/D = 2 and 3 rectangular cylinder is found to be multiple values due to the transition in the flow

feature as discussed above.

It is noticed that the Strouhal numbers presented in Figures 2.18 and 2.19 are defined by the depth
D which is the shorter dimension of the cross section. Nakamura et al. (1991) calculated the Strouhal
number using the width B of the cross section and presented the dependence of this Strouhal number on
the aspect ratio as shown in Figure 2.20. At the Reynolds number of 103, a so-called stepwise increase in
the Strouhal number is observed at the aspect ratios of 5 to 6, 8 to 9 and 11 to 12. According to Nakamura
et al. (1991), the Strouhal number of the rectangular cylinder exists in different branches, each of which
has a nearly constant value. As the aspect ratio of the rectangular cylinder gets larger, the Strouhal
number increases in a stepwise manner to a value which is approximately equal to an integer multiple of

0.6. In addition, the points where these branches start are on a straight line passing through the origin.
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Figure 2.19: Variation of Strouhal number against aspect ratios; ®: Shimada and
Ishihara (2002); A: Yu and Kareem (1998); M: (Bruno et al., 2010); the Strouhal
number is defined using the dimension D.

Another numerical study conducted by Ozono et al. (1992) also showed similar stepwise behaviour of the
Strouhal number despite the fact that the limitation of the computational power at that time caused an

offset in the Strouhal number of rectangular cylinders of large aspect ratios (B/D > 5).

For the rectangular cylinders having a unique Strouhal number, spectra of the velocity fluctuations
measured in the wake showed only one sharp dominant frequency component which was correspondent
to the vortex shedding frequency (Nakamura et al., 1991). An analysis of the phase relationship of the
surface pressure fluctuation at the dominant frequency relative to that measured at the leading edge
revealed a simple relationship between the wavelength of the surface pressure fluctuation and the width
of the cylinder. In fact, the wavelength of the surface pressure fluctuation was found to equal to an integer
multiple of the cylinder’s width. And this integer multiplication was identical to what was associated with
each branch of the Strouhal number as shown in Figure 2.20. The flow visualisation latter confirmed that
this integer multiplication essentially represented the number of vortices appearing on the side surface
during one cycle of the vortex shedding. Therefore, the stepwise increase in the Strouhal number of the
rectangular cylinder with long after-body length is associated with different modes of the vortex shedding
involving a sudden change in the flow structure or, in particular, the number of vortices propagating on
the side surface. The Strouhal number of the rectangular cylinder having a long after-body length is

defined as

St = 0.6n, (2.28)

where n is the number of vortices propagating on the side of the cylinder. Regarding the stepwise increase
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Figure 2.20: Variation of Strouhal number, S(c) based on the width ¢ against aspect
ratios ¢/t at the Reynolds number of 103 (Nakamura et al., 1991)

in the Strouhal number, the B/D = 8 rectangular cylinder is taken as an example. The spectrum of the
velocity fluctuation in the wake showed two sharp peaks at distinct frequencies; the higher component
appeared to be sightly less dominant compared to the lower one (Ozono et al., 1992). The analysis of the
phase relationship of the pressure fluctuation at these two dominant frequencies revealed two different
associated vortex structures or two different modes of the vortex shedding. Ozono et al. (1992) further
showed that these two modes of the vortex shedding did not exist together. Instead, after a short transi-
tion period with irregular fluctuations, it appeared that these two modes occurred spontaneously and the
transition between them was intermittent. As showed in Figure 2.21, the first part of the time history of
the lift coefficient (up to 1150 s) is associated with the second mode of the vortex shedding represented
by two vortices on the upper surface of the cylinder (Figure 2.22a). After that the vortex shedding mode
suddenly changes to the third mode with three vortices appearing on the upper surface of the cylinder

(Figure 2.22b).

The physical mechanism of the dependence between the wavelength of the pressure fluctuation on the
side surface and the width of the cylinder was first explained by Nakamura et al. (1991) as a result of the
impinging shear-layer instabilities. As for the rectangular cylinder with long after-body length, the shear
layer separated from the leading edge interacts directly with the trailing edge. This emits a pressure

pulse propagating upstream and controlling the formation of the leading-edge shear layer in the next
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Figure 2.21: Time series of the lift coefficient Cp, for the B/D = 8 rectangular
cylinder (Ozono et al., 1992)

(a)

(b)

Figure 2.22: Streamlines of the flow field around a B/D = 8 rectangular cylinder:
(a) second mode of the vortex shedding, (b) third mode of the vortex shedding (Ozono
et al., 1992)
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cycle of the vortex shedding. After a transition period, a control feedback loop is established generating
a synchronisation between the impingment of the leading-edge shear layer close to the trailing edge and

the formation of the other leading-edge shear layer in the next cycle.

However, Naudascher and Rockwell (1994) and Mills et al. (1995) pointed out that for the rectangular
cylinder with larger aspect ratios (B/D > 6), the aforementioned explanation could not be appropri-
ate because the shear layer did not directly interact with the trailing edge. Instead, it was found that
the leading-edge shear layer rolls up forming a vortex which then propagates downstream. When the
leading-edge vortex approaches the trailing edge, it interacts with another vortex being shed from here.
This interaction creates a pressure pulse travelling upstream to the receptive shear layer generated from
the leading edge on the same side of the cylinder in the next cycle and a feedback loop is achieved as
discussed above (Tan et al. (1998); Mills et al. (2003)). If this synchronisation is strong, a unique mode
of the vortex shedding and the Strouhal number is observed. On the contrary, some rectangular cylinder
with sufficient after-body length experiences a relatively weak feedback loop; a transition to the next
mode of the vortex shedding then occurs intermittently, increasing the number of vortices simultaneously

appearing on the side surface every cycle.

In addition, Mills et al. (2003) suggested that the pressure pulse generating from the trailing edge is
hydrodynamic in nature; therefore, it can be interrupted or weakened by the turbulence in the flow or an
increase in the Reynolds number. In fact, Mills et al. (2003) found that at a higher Reynolds number, the
stepwise increase in the Strouhal number could be observed at a rectangular cylinder having a smaller
aspect ratio, which was similar to the suggestion made by Okjima (1982). An increase in the Reynolds
number promoted a transition from a laminar boundary layer to a turbulent boundary layer. This tran-
sition could shorten the separation bubble and the width of the vortex, weakening the aforementioned

synchronisation and allowing the higher mode of the vortex shedding to occur.

As for the main object in this research study which is the 5:1 rectangular cylinder, the aerodynamic
characteristics of the flow around the cylinder are classified as the impinging shear layer vortex shedding.
However, it was found that the reattachment point of the separation bubble is very close to the trailing
edge and the separated flow from the leading edge of the cylinder does not fully attach to the side surface
of the cylinder. Figure 2.20 indicates that the first stepwise increase in the Strouhal number occurs at
the aspect ratio of B/D = 5. In fact, Stokes and Welsh (1986) found the vortex shedding of the 5:1
rectangular cylinder spontaneously switched between the first and second modes. These findings have
shown the highly unsteady flow field around the cylinder, attracting further investigation from researchers

and make it become the main subject of the study “A Benchmark on the Aerodynamics of a Rectangular
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5:1 Cylinder” (BARC) (Bruno et al., 2010).

Thereafter, understanding the importance of the cylinder’s width, the Strouhal number predicted

in the experimental wind tunnel or computational studies will be defined based on the width B of the

cylinder.
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Figure 2.23: Comparison of the Strouhal number, St., for the rectangular cylinder
having the aspect ratio ¢/t between 6 and 10; o: Re = 490 (Mills et al., 2003) and x:
Re = 1000 (Nakamura et al., 1991); adopted from Mills et al. (2003); Strouhal number
is defined based on the width c.

2.4 VORTEX-INDUCED VIBRATION (VIV)

As discussed in Section 2.3, the presence of a flow around a body can cause flow separation and lead
to the formation of vortices either in the wake region or along the side surfaces, in case of a bluff body
having a long after-body length. This process of vortex shedding alternately varies the pressure on either
side surface of the body, which leads to a force acting on the body in the transverse direction to the
flow forcing the body into an oscillatory state. The resonance effect as well-known in a pure structural
system can be observed if the vortex shedding frequency matches one of its modal natural frequencies.

This oscillation of the body is called the Vortex-induced Vibration (VIV).

The VIV is an Instability-Induced Excitation, where the excitation acting on the structure is caused
by the flow instability due to the presence of the structure. VIV is observed to occur on both the circular
cylinder and the rectangular cylinder; the physical mechanism is however slightly different between ge-
ometries, which will be explained later in this section. Regardless of the geometry, VIV is accompanied

by the lock-in phenomenon.
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Figure 2.24: Lock-in accompanied by (a) a constant vortex shedding frequency and
(b) a rapid increase in the amplitude of oscillation.

2.4.1 Lock-in

The lock-in of the system undergoing VIV is associated with a large increase in the amplitude of struc-
tural oscillation and a constant vortex shedding frequency close to the natural frequency of the body
(Figure 2.24). Outside the lock-in region, the vortex shedding frequency f, varies linearly with the wind

speed U; the proportionality constant is the Strouhal number as expressed in Equation 2.26.

As can be seen from Figure 2.24a, when f, coincides with one of the modal natural frequencies of the
bluff body f,, fs is locked on f, regardless of the wind speed. The lock-in corresponds to an interval
when the bluff body oscillates at f,, irrespective of wind speed, and the amplitude steadily increases. The
amplitude as shown in Figure 2.24b reaches the peak at the upper end of the lock-in before sharply de-
creasing towards the end of the lock-in. When the system reaches the lock-out, the body keeps oscillating

at the natural frequency f, while the vortices are shed at the frequency f, defined by the Strouhal number.

The lock-in phenomenon only occurs over a short range of the wind speed where the vortex shedding
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frequency and one of the modal natural frequencies of the body are similar. The maximum displacement
during the lock-in depends on the mass, damping and the aerodynamic shape of the structure. The prin-
ciple to reduce the amplitude of oscillation of the structure undergoing VIV is to interrupt the formation
of vortices by either to increase the surface roughness of the body or to create a more streamlined body
particularly for the rectangular cylinder. The installation of the splitting plate in the wake region was
also found to effectively suppress VIV; however, as being discussed later in this section, this methodology

is not appropriate for most rectangular cylinders with long after-body length.

The VIV response illustrated in Figure 2.24 is only a brief visualisation of this phenomenon. The
variation of the damping ratio, particularly in the case of the circular cylinder, can yield completely

different behaviour regarding the structural response and the flow feature in the wake region.

2.4.2 Mass-damping Parameters

Before discussing the characteristics of the VIV of the circular and rectangular cylinders, it is essential to
look at one of the most fundamental questions which has been debated over the last 30 years; this question
concerns which mass-damping parameters should be used in order to predict the peak-amplitude response
(Williamson and Govardhan, 2004). The use of the mass-damping parameter was first suggested by Vick-
ery and Watkins (1964) who plotted the peak amplitude during the lock-in of flexible circular cantilevers
against the proposed stability parameter K, = w2m*( where m* = (4m)/(pmD?) is the mass ratio, m is
the mass of the structure per unit length, p is the density of the fluid, D is the characteristic dimension
of the structure (the diameter of the cylinder) and ¢ is the structural damping ratio. Later, Scruton
(1963) introduced a new parameter, proportional to K, for his wind tunnel tests of elastically-mounted
cylinders; this parameter was then named as Scruton number Scr = 2K /7 = mm*(/2. Using results from
different experiments, Skop et al. (1973b) conducted a separate analytical study and proposed a different

combined response parameter which was later termed as Skop-Griffin parameter Sg = 27°St?(m*¢).

The common feature between the three parameters listed above is the presence of the so-called mass-
damping term m*(. The use of this combined term in estimating the VIV peak amplitude of the circular
cylinder has been the primary debating point in literature. According to Sarpkaya (1978) and Sarpkaya
(1979), the dynamic response of the structure in the lock-in is dependent on the mass ratio m* and the
damping ratio ¢ terms individually, as well as on the combined term m*{. The use of the Skop-Griffin

parameter or the combined term m*({ should be limited to the structure having Sg > 1 (Sarpkaya, 1978).

However, Griffin and Ramberg (1982) has showed this proposed limitation is controversial. By con-

ducting two sets of experiments using circular cylinders having similar Skop-Grifffin parameters Sg = 0.5
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to 0.6 and different mass ratios m* = 4.8 and 43, the dependence of the extend of the lock-in on the
mass ratio was found; the lower mass ratio led to a larger lock-in interval. More importantly, the peak
responses in two cases were found to be indistinguishable even though the value of Sg violated the limi-

tation proposed by Sarpkaya (1978).

Later, Williamson and Govardhan (2004) reported significant scatter in the plot of the peak amplitude
during the lock-in against the Skop-Griffin parameter for different VIV systems. However, considering
only the elastically mounted circular cylinder, a good agreement between different sets of experiment
could be seen. This also shows that the applicability in using the mass-damping parameter can be extend

down to Sg = 0.01 rather than the limit proposed by Sarpkaya (1978).

It is obvious that the relationship between combined mass-damping parameter m*( and the peak
amplitude during the lock-in has not been fully uncovered. According to the extensive review conducted
by Williamson and Govardhan (2008), Zdravkovich (1982) and Zdravkovich (1990), the mass-damping
parameter m*( or the Scruton number Scr will be used in the discussion of the VIV of the circular
and rectangular cylinder in the following section, particularly for the application in wind engineering.
However, since the development of the Scruton number was based the circular cylinder, certain modifi-
cation to the definition of the Scruton number must be applied in the case of the rectangular cylinder to
preserve its meaning (Marra et al., 2011). Instead of using only the dimension D as the characteristic
length scale, it is more sensible to apply both of the width B and the depth D to normalise the mass

ratio m* = m/(pBD) and to calculate the Scruton number Scr = (mm()/(pBD).

2.4.3 VIV of a Circular Cylinder

Regarding a freely vibrating circular cylinder, there exist two distinct VIV responses depending on
whether the system has a low or high combined mass-damping parameter m*(. Nevertheless, the onset
reduced wind velocity Ug onset Of the VIV lock-in is identical, which is dependent on the Strouhal number

St as

1

UR,onset = § .

(2.29)

As shown in Figure 2.25, the VIV amplitude response of a system having a high combined mass-
damping parameter includes two branches, which are the initial excitation branch determining the max-
imum response reached and the lower branch. A number of experimental works showed the transition

between these two branches possesses hysteristic characteristics and occurs over a long time period of a

few hundred oscillation cycles. In an attempt to compare against the experimental results produced by
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Feng (1968), Govardhan and Williamson (2000) confirmed the presence of these two response branches;
they also found different modes of vortex structure in the wake associated to each branch. For the ini-
tial branch, analysing the vorticity measured in the wake during one cycle of the structural oscillation
showed the formation of only one vortex during the first half of the period and another one in the final
half of the period but in the opposite rotation (Figures 2.26a and b). This mode of the vortex structure
is called the 2S mode corresponding to two single counter-rotating vortices being formed in every cycle
of the oscillation. When the circular cylinder undergoes the lower branch, distinct vortex structure is
observed; as can be seen in Figure 2.26¢, during a half of the period, a pair of counter-rotating vortices
is shed into the wake, for which it is named the 2P mode. This mode of vortex structure is originated
by the deformation and splitting of the vortex, for example the red vortex on the lower surface as shown
Figure 2.27a by the counter-rotating blue vortex formed from the upper surface. This results in a pair
of a secondary small red vortex next to a primary strong blue vortex being transported downstream
(Figure 2.27b). The same process repeats for the vortex on the upper surface (Figures 2.27c and d). The
secondary vortex is quickly weakened by the primary one, which is probably due to the excessive strain
of the stronger vortex; thus, the 2P mode eventually becomes the 25 mode, creating certain difficulties
in identifying its characteristics in experiments. Moreover, comparing the vorticity plots in Figures 2.26a
and c as the circular cylinder reaches its minimum displacement, it is obvious that there exists a change
in timing of vortex shedding, which is thought to be responsible to the switch from the 2S mode to the
2P mode and the transition from the initial to lower branch. In addition, the vortex shedding frequency
in the high combined-mass-damping system stays close the natural frequency of the structure during the

entire lock-in.

On the other hand, a circular cylinder having a low combined-mass-damping parameter can undergo
three different branches as the wind speed increases, which is the initial branch, the upper branch where
the maximum response during the lock-in occurs and the lower branch. Experimental studies including
Khalak and Williamson (1999) show the transition between the initial and upper branch is hysteresis while
the upper branch switches to the lower branch in an intermittent manner. Each of the three branches
is associated to distinct modes of vortex structure (Govardhan and Williamson, 2000). If the mode 2S
is observed in the initial branch, the mode 2P is present in the other two branches. More importantly,
the transition between the mode 2S and the mode 2P involves a switch in timing of vortex shedding.
Comparison of the vorticity measured in the wake between the initial and upper branches (Figure 2.28a)
clearly shows a 180° phase shift in the timing of vortex shedding, indicating a change in the mode of
vortex structure. On the other hand, the timing of the vortex shedding as well as the mode of vortex
structure in the upper and lower branches is similar, which is shown by similarity in the near-wake vortic-

ity dynamics (Figures 2.28a and b). The frequency response of the low combined-mass-damping structure
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Figure 2.25: Schematic showing two different types of VIV responses of a freely
vibrating circular cylinder (Govardhan and Williamson, 2000).
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Figure 2.26: Vorticity plots of the wake region showing different modes of the vortex
structure: Mode 2S in the initial branch (a,b) and Mode 2P in the lower branch (c)
(Govardhan and Williamson, 2000).
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Figure 2.27: Vorticity plots at every quarter-cycle during one cycle of the oscilla-
tion illustrating the formation of the 2P mode of vortex structure (Govardhan and
Williamson, 2000).

was also found to be different from the high combined-mass-damping one. In fact, the vortex shedding
frequency can be significantly higher than the natural frequency of the structure. For a structure having
a very low mass ratio (m* & 1), the vortex shedding frequency was found to linearly increase during the
upper branch before locked into a value which was nearly double the natural frequency of the cylinder

(Govardhan and Williamson, 2000).

An investigation of a simple elastically-mounted cylinder with a uniform circular cross section has
showed different modes of vortex shedding depending on the amplitude response branches and the com-
bined mass-damping parameters. For a more complex structure having non-uniform circular cross section
or experiencing varied amplitude of response in the span-wise direction, the modes 2S and 2P discussed
above were found to co-exist along the span-wise length of the structure. It is called the hybrid 2S-2P
mode after Techet et al. (1998) observed this effect in their study of a tapered circular cylinder. Also,
by studying a very low mass ratio pivoted circular cylinder freely to move in both the stream-wise and
cross-wind direction, Flemming and Williamson (2003) discovered a new mode of vortex structure named
as the mode 2C which comprises two co-rotating vortices forming in each half of the oscillation cycle.
Further discussion on the behaviour of the circular cylinder was summarised and reviewed in Govardhan

and Williamson (2000), Williamson and Govardhan (2004) and Williamson and Govardhan (2008).
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Figure 2.28: Comparison of the vorticity in the wake: (a) between the intial and the
upper branches and (b) between the initial and lower braches; the black arrows indicate
the direction of the motion of the circular cylinder (Govardhan and Williamson, 2000).

2.4.4 VIV of a Rectangular Cylinder

The rectangular cylinder is considered as a generic geometry for bridge decks or tall buildings; these struc-
tures are characterised by high values of the mass ratio and damping ratio. Therefore, the VIV response
of the rectangular cylinder is normally classified as a high combined-mass-damping type response. The
structural and frequency responses of the VIV of a rectangular cylinder particularly possess all features
described in Figure 2.24. During the lock-in, a single response branch is observed where the amplitude
of the response gradually increases and then rapidly falls down after the peak response is reached and
the vortex shedding frequency is closely equal to the naturally frequency of the structure. Similar to
the circular cylinder, the peak response reached during the VIV lock-in depends on the combined mass-
damping parameter while the range of the lock-in is governed by the mass ratio given that combined

mass-damping parameter is constant.

The rectangular cylinder can undergo the VIV response in two different modes which are the heaving
mode, i.e. crosswind oscillation and the pitching mode, i.e. torsional oscillation; these two modes can be
coupled also. However, the onset velocity of VIV responses for each mode could be different depending

the aspect ratio.
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As discussed in Section 2.3.2, the shear layers created from the permanent separation points at the
leading edge of the cylinder can interact together directly in the wake or with the after-body length. This
formation can be enhanced by the heaving or pitching motion of the cylinder and has a phase relationship

with the oscillation of the cylinder, at which point it is normally referred as the motion-induced shear layer.

For the rectangular cylinder having small aspect ratio (B/D < 1) in either stationary or oscillatory
state, these shear layers interact directly together forming the von Karman vortex street. This flow
feature is responsible for triggering the VIV response of a dynamic cylinder if the frequency of the von
Kéarman vortex street reaches the natural frequency of either the heaving or pitching mode. Therefore,
the onset reduced velocity of the VIV heaving and pitching response for the rectangular cylinder having

B/D <1 is related to the Strouhal number as

1

UR,onset,heaving = UR,onset,pitching = St

(2.30)
It is noticed that the Strouhal number for this type of rectangular cylinder is unique over a certain

range of Reynolds number; therefore, only a single VIV heaving or pitching response can be observed at

the reduced velocity defined in Equation 2.30.

On the contrary, the oscillating rectangular cylinder with a larger aspect ratio, B/D > 1, possesses a
more complex flow structure around the cylinder and harmonics of VIV heaving and pitching responses
can be observed at different reduced velocities. An interaction between the motion-induced shear layer
and the after-body length leads to an instability in the shear layer. It is normally called the impinging-
shear-layer instability, which is the single layer instability in contrast to the von Karman vortex street
which is the double layer instability. This forms the motion-induced vortex which travels down the
surface of the body towards the trailing edge at the velocity measured to be about 60% of approaching
flow (Shiraishi and Matsumoto, 1983). Apart from this main flow feature, it is found that the secondary
vortex can also be shed from the separation point at the trailing edge; this secondary vortex is generally
in phase with the motion-induced vortex created from the leading edge on the same side surface if the
cylinder undergoes the heaving motion and on the opposite side surface if it is in the pitching motion.
This very feature leads to different response characteristics between the heaving and pitching VIV. During
the lock-in, Shiraishi and Matsumoto (1983) found that the motion-induced leading edge vortex arrived
at the trailing edge and coalesced with the secondary vortex there after the elapse of n T, heaving(n > 1)
where T}, heaving is the natural period of the heaving mode of the structure in the heaving motion and the
elapse of (n 4+ 1/2) T, heaving(n > 0) where T pitching 1S the natural period of the pitching mode of the
structure in the pitching motion. This coagulation can be illustrated in Figure 2.29. The onset velocity

for the heaving and pitching VIV could therefore be defined as
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. 11

VIV Heaving: UR,onset,heaving = Hﬁ’ (231)
o 2 1

VIV Pitching: UR,onset,pitching = om — 1%7 (2'32)

where n > 1 is the harmonic of the VIV response which is corresponding to the number of vortices
appearing on one side of the rectangular cylinder during one cycle. From Equation 2.31, the expression
for the Strouhal number of the rectangular cylinder can be deduced to be St = 0.6n as being showed in
Equation 2.28. Later, Nakamura and Nakashima (1986) studied the VIV responses of the rectangular
cylinder having different aspect ratios between 2 and 6 and demonstrated that the impinging-shear-layer
instability as the mechanism of the VIV of the rectangular cylinder. They also observed the first and
second harmonics of the heaving and pitching VIV responses occurring at the onset reduced velocities
given by Equations 2.31 and 2.32. However, for the pitching motion, similar to Shiraishi and Matsumoto
(1983), they did not find the first harmonic for the rectangular cylinder having aspect ratios larger than
4. Also, the VIV response in the pitching mode is affected by varying the centre of the rotation, which
includes a change in the onset reduced velocity and a presence of the other harmonics. Equation 2.32 is

effectively only valid in the case that the centre of the rotation is located at the mid-chord of the cylinder.

Studying the flow pattern around an oscillating rectangular cylinder, Deniz and Staubli (1997) ob-
served the coagulation of the motion-induced vortex shed from the leading edge and the secondary vortex
created from the trailing edge. More importantly, when the fluid and structure system reaches the lock-
out, they found an abrupt increase in the phase shift of the lift force at the excitation frequency and
the motion of the cylinder. This sudden change in the phase corresponds to a variation in the timing of
the secondary vortex formation in the trailing edge, breaking down the synchronisation with the motion-
induced leading-edge vortex. The fact that the phase increases to 180° also indicates the energy flow is
switched; during the lock-in, the energy transfers from the fluid to structure, causing the amplitude of
the response to raise; when the system reaches lock-out, the energy flow is from structure to fluid and
the amplitude of the VIV response rapidly decreased. In addition, during the lock-in, the phase shift
possesses some relationship with the amplitude of the response. Instead of remaining to be constant
as seen in other wind-induced behaviours such as flutter, the phase shift gets larger with an increase
in the amplitude of the response, which indicates that less energy is transferred from the fluid to the
structure. Therefore, the VIV tends to have a finite maximum response during the lock-in, for which this

wind-induced response is classified to be the limit cycle oscillation.
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Figure 2.29: Motion-induced vortex shed from the leading edge (A) and secondary
vortex shed from the trailing edge (b) in the heaving and pitching VIV response (Mat-
sumoto et al., 2008).

Since the impinging-shear-layer instability or the motion-induced vortex is the primary mechanism of
the VIV, placing a splitter plate in the wake region behind the cylinder can not reduce the amplitude
of the response. In fact, it was found that, in this case, the VIV response can be increased. Kotmasu
and Kobayashi (1980) and Matsumoto et al. (2008) confirmed there is an interaction between the afore-
mentioned primary motion-induced vortex and the secondary vortex. By studying the VIV response of
the B/D = 4 rectangular cylinder restrained to the heaving and pitching mode, Matsumoto et al. (2008)
found the secondary vortex produces a mitigating effect on the motion-induced vortex, reducing the
strength of the motion-induced vortex but not to pose any impact on its travel along the side surface of
the cylinder. Therefore, breaking down the formation of the secondary vortex by, for example, placing a
splitter plate in the wake, can effectively increase the VIV response caused by the motion-induced vortex.
In order to reduce the VIV response caused by the impinging shear layer instability, installation of trian-
gular fairings at the leading edge is an effective method to prevent the formation of the motion-induced
leading-edge vortex, which significantly reduces the amplitude of the VIV response during the lock-in.

Also, by increasing the damping of the structure, the amplitude of the response can be suppressed.
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2.5 MATHEMATICAL MODELLING OF VORTEX-INDUCED OSCILLA-
TION

As discussed in Section 2.4, the VIV is classified as the limit cycle oscillation having a certain displace-
ment during the lock-in which cannot produce catastrophic failures. However, the VIV can result in the
fatigue damage and reduction of the structural health and level of comfort for users. The importance of
understanding this wind-induced phenomenon is apparent and a detailed study during the design stage
to carefully predict the VIV response of the structure is essential to ensure safety and serviceability after

the completion of construction.

The prediction of the VIV of astructure can be done by using either wind tunnel or computational
fluid dynamics approach. However, taking into account the need of varying the aerodynamic shape of the
structure and the damping of the structure, the major disadvantage of both methods is time-consuming.
Therefore, a reliable and practical semi-empirical model for the VIV is necessary during the early designing

phase before further investigation using the wind tunnel of computational fluid dynamics can be invested.

The difficulties in modelling the VIV arises from the intrinsic complexity of this behaviour. As identi-
fied by Bishop and Hassan (1964), the interaction between the fluid and the oscillating cylinder is highly
non-linear, especially during the lock-in. Particularly, this non-linearity is also highlighted by the varia-
tion of the phase shift between the lift force and the displacement during the lock-in and by the abrupt

jump to 180° when the system reaches lock-out.

Since 1970s, a number of different semi-empirical models for the VIV of circular and rectangular
cylinders have been proposed; they can be classified into two main groups which are the single- and
two-degree-of-freedom modes. The first group can be further divided into: negative-damping models
(Vickery and Basu (1983); Larsen (1995); Scanlan (1998)) and force-coefficient data models (Sarpkaya
(1978); Iwan and Botelho (1985)). As suggested by its name, the underlying physical mechanism of
the former is the negative-damping type instability created by the decrease in the total damping of the
structure, leading to an energy transfer from the fluid to structure and an increase in the response.
Force-coefficient data models utilise the forced vibration technique measuring the force coefficients, from
which the maximum response during the lock-in can be predicted; however, this technique is complicated
and rarely available in most of wind tunnel facilities. The two-degree-of-freedom model which is also
called as the wake-oscillator or lift-oscillator model can be grouped into two subclasses: those based on
the Bishop-Hassan concept (Bishop and Hassan, 1964) where the wake is considered to be a non-linear

oscillator (Hartlen and Currie (1970); Skop and Griffin (1973a); Dowell (1981); Diana et al. (2006)) and
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those based on the Birkoff (Birkhoff, 1953) concept where the wake is considered to be a plate oscillating
from side to side (Tamura and Matsui, 1979). Despite the difference in the physical mechanism of the
wake, both models include two variables: a structure response variable and an arbitrary fluid dynamic

variable that is associated with the lift coefficient.

2.5.1 Single-degree-of-freedom Models for VIV

Among the single-degree-of-freedom models, the Ehsan and Scanlan model (Ehsan and Scanlan, 1990) has
gained popularity thanks to its ability to model and predict the amplitude of the VIV of the rectangular
cylinder or bridge decks in general, and its simple methodology to estimate the model parameters. The

Ehsan and Scanlan model is given by

m (§ + 2(woy + w2y) = F (y,9,U, ), (2.33)

where m is the mass of the structure per unit length, ¢ is the damping ratio, w, is the circular natural
frequency of the model in the heaving mode, y,  and § is the displacement, velocity and acceleration of
the structure in the heaving mode, U is the mean wind speed and F is the force acting on the structure
in the cross-wind direction. The non-linearity of the VIV is inherent in the expression of the force defined

as

F(y,9,Ut) = %pU2(2D) {Yl(K) (1 - ely;) % + Y2(K)% + %CL(K) sin(wt + 0) | . (2.34)

Here, K = (wD/U) is the reduced frequency during the VIV with w being the corresponding circular
frequency of vibration under the wind and D being the diameter of the circular cylinder or the depth of
the rectangular cylinder. C'p is the lift coefficient of the vortex-shedding component of the force and 6 is
the phase shift of this component against the motion of the cylinder. In this force term, Y;(K), €, Y2(K)

and CL(K) are the model parameters that need to be identified.

As can be seen in Equation 2.34, the total lift force acting on the structure is expressed as an
uncorrelated summation of: (1) the motion-induced lift force as a summation of the aerodynamic damping
component that is in phase with the velocity and the aerodynamic stiffness component that is in phase
with the displacement, and (2) the vortex shedding force; the components are listed in the order as they
appear in Equation 2.34. The first term of the force expression involves the parameter Y; (K) and e which
are correspondent to the linear and non-linear components of the aerodynamic damping respectively. This
is essentially adopted from the van der Pol-type equation, which is also used in many different studies

regarding modelling VIV. Given that ¢ > 0, the limit-cycle-oscillation characteristic of VIV can be
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achieved. According to Ehsan and Scanlan (1990), during lock-in, when large VIV amplitude occurs,
the vortex shedding part of the force becomes negligible compared to the motion-induced component;

therefore the final term in Equation 2.34 can be ignored as

. 1 v>\ ¥ y
F t) = =pU?(2D) [V1(K) (1 — e | & + Yao(K) = | . 2.
(13000 = 50020) (k) (1= ) 04 vali) % (2.35)
In addition, the VIV response of the rectangular cylinder or bridge deck structures is classified as
high combine-mass-damping type. There is not appreciable variation between the natural frequency of

the structure in oscillatory state and the one measured in still air; therefore the aerodynamic stiffness

term can also be neglected

. 1o v\ ¥
F(3:00) = po0*(e0) [vi() (1) 2 (2.36)
Due to the high non-linearity inherent in the force term, an analytical solution to the Ehsan and
Scanlan model is difficult to achieve. However, by applying the method of slowly varying parameters

proposed by van der Pol (1920), an approximate solution of the non-dimensional limit-cycle-oscillation

amplitude S can be found as

Yo 2 B ScrSt
== 1-= . .
g D~ Ve DY (2.37)

Here, y, is the maximum amplitude of the limit cycle oscillation and Scr and St are the Scruton and
Strouhal numbers as defined in Section 2.4.2 and 2.3.2 respectively. It is noticed that Equation 2.37 sug-
gests the maximum amplitude of the VIV response is dependent on the Scruton number rather than the
mass ratio and dampling ratio separately. With this solution, Ehsan and Scanlan (1990) also proposed a
method to extract the model parameters Y7 and € by conducting a single free decay-to-resonance test at
the wind speed corresponding to the maximum response during the lock-in starting from an amplitude
larger than the limit-cycle-oscillation amplitude; this method has later been validated by Marra et al.
(2011). More importantly, Ehsan and Scanlan (1990) emphasised on the requirement of wind tunnel
tests to identify these parameters since the interaction between the fluid and the structure in the VIV
is highly effected by the properties of the system such as the mass ratio and the damping ratio. This is
confirmed by results showed in Figure 2.30, which illustrate the variability of the model parameters with
respect to the damping ratio or the Scruton number. Also, it seems that the relationship between the
model parameters and the damping ratio or the Scruton number is also distinct between cross section
geometries. This point brings up the main disadvantage of the Ehsan and Scanlan model; the model
parameters are highly dependent on the Scruton number; the model parameters identified from a system
of fluid and structure are not able to predict correct VIV responses of the other systems having either a

different aerodynamic cross section or different damping ratio. This disadvantage is also present in most
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of VIV models, limiting their reliability and practicability (Marra et al., 2011) . In addition, another
disadvantage of the Ehsan and Scanlan model is the variability of the model parameters at different wind
velocities, especially the parameter € as shown in Figure 2.31. This limits the capability of the Ehsan
and Scanlan model to predict VIV response at wind velocities that differ from those corresponding to the

maximum response during the lock-in.
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Figure 2.30: Variation of the Ehsan and Scanlan model parameter Y7 and € against
the damping ratio ¢ for: Deer Isle Bridge section (o); Tacoma Narrows Bridge section
(¢) and rectangular cylinder with the 4 : 1 aspect ratio () (Ehsan and Scanlan, 1990).
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(Ehsan and Scanlan, 1990).

In an attempt to improve the Ehsan and Scanlan model, an intensive wind tunnel study has been
conducted by Marra et al. (2015) where the VIV of the 4 : 1 rectangular cylinder were measured at nine
different values of the Scruton number. This allowed the Griffin plot to be achieved; the Griffin plot is
the plot of the maximum amplitude of the structural response during the VIV lock-in with respect to
the Scruton number. The model-parameter identification method proposed by Ehsan and Scanlan (1990)
were used to extract Y7 and e. The dependence of the model parameters on the Scruton number were
confirmed; the Griffin plot predicted using the model parameters identified at one value of the Scruton
number did not agree with the experimental Griffin plot (Figure 2.32). However, for this particular
geometry, a relationship between the model parameters and the Scruton number could be drawn as

shown in Figure 2.33; the parameter Y7 varies linearly while the parameter € increases quadratically with

respect to the Scruton number, which is given by

Y71 (Ser) = a1Ser + a, (2.38)

€(Ser) = e2Ser? + ¢1Ser + ¢, (2.39)

where the coeflicients a,,a1,c,,c; and co are estimated from the best fit curves in Figure 2.33. By

substituting Equations 2.38 and 2.39 into the expression of § in Equation 2.37, the five coefficients in
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Equations 2.38 and 2.39 can be identified by performing three decay-to-resonance tests at three different
values of the Scruton number (Marra et al., 2015). These proposed relationship improved the accuracy
and reliability of the Ehsan and Scanlan model when predicting the maximum response in the VIV lock-
in at any values of the Scruton number or damping ratio especially during the design stage. However,
whether the relationship between the model parameter Y; and € and the Scruton number is independent

of the aerodynamic shape of the cross section and the wind speed is still a question requiring further

investigation.
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Figure 2.32: Comparison between the Griffin plots obtained from the wind tunnel test
and predicted using the model parameters identified for: (a) Scr = 1.9; (b) Ser = 21.7;
(c) Scr = 78.1 (Marra et al., 2015).

60

12000
—&— ldentified parameters

—— Linear fitting

—©— |dentified parameters

50 —— Quadratic fitting

10000

8000

v 6000

4000

2000

40
Se

60 80

Se

Figure 2.33: Variation of the model parameters (a) Y7 and (b) € against the Scruton
number Sc and their corresponding best fit curves (Marra et al., 2015).

2.5.2 Second-degree-of-freedom Models for VIV

As for the second-degree-of-freedom model, the wake-oscillator or lift-oscillator model is considered to be
the most appropriate semi-empirical model of the VIV of the rectangular cylinder or bridge deck cross
section and also the circular cylinder. This model can simulate all characteristics of the VIV including

the limit cycle oscillation, the lock-in, the hysteresis and the response branches (Xu et al., 2015).
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The most noteworthy among the wake oscillator models is the one proposed by Hartlen and Currie
(1970), which was first used to model the VIV of the circular cylinder. This model contains a pair of

equations which are the linear structural equation and non-linear fluid equation as

Structure : T + 200, + . = aQicL, (2.40)

Fluid : cr — aQocy + Qloc'f’ + Q2cp, = ba,. (2.41)

Here, @, ©, and x, are the non-dimensional acceleration, velocity and displacement normalised against
the depth of the rectangular cylinder or the diameter of the circular cylinder D. The derivative is
with respect to the non-dimensional time 7 = 2x f,,t with f, is the natural frequency of the structure.
Qo = fo/fn = St[U/(fnB)] is the non-dimensional velocity; f, is the vortex shedding frequency. ¢y, is the
lift coefficient. a = (pB2L)/(87%StM) (M and L is the mass and span-wise length of the cylinder) and b
are the two interaction parameters representing the coupling between the two equations. Similar to the
Ehsan and Scanlan model, the Rayleigh equation, which is the van der Pol-type equation, is applied into
the fluid equation, modelling a non-linear fluid oscillation and allowing the self-sustain and self-limited
characteristics of the VIV to be simulated. « and «y are the van der Pol coefficient; together with b, they
are the three model parameters of the Hartlen and Currie model that are required to be identified. By
assuming a sinusoidal solution of the structural response x, and the lift coefficient c;, with a phase shift
¢ at the non-dimensional frequency Q = fs/f, with f, being the frequency of the structural response,

the analytical solutions of the system of Equations 2.40 and 2.41 can be derived as

o 4aQ5 (1 - Q) (Q2 — O?) 4 20(Q,0?

Xp = 3v03 8C30B3 +2¢Q(1 — 022 (242)
02 =02 (1 — )" + 4307 (2.43)
0 (1 —Q2)2 4+ 4¢202 — 2ab¢Q2’ ’
tan ¢ = 12_C%2, (2.44)
1 200X,
CLo = Sno a2 (2.45)

Here, X,. and Cp, are the maximum non-dimensional structural response and lift coeflicient respec-
tively. Also, the van der Pol coefficients o and «y are found to relate to the maximum lift coefficient of a

static cylinder C'ro static as

4oy

3 (2.46)

CLo,static =
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However, these above analytical solutions are only an approximation; a number of assumptions, in-
cluding the removal of higher-order sinusoidal terms relating to the lift coefficient, are made during the
derivation. This can lead to a large difference between the analytical solution of the maximum lift coef-

ficient and the one that is directly achieved by integrating Equations 2.40 and 2.41.

It should be noticed that the force term on the right-hand side of Equation 2.41 is taken to be pro-
portional to the velocity of the cylinder, 2. In fact, it is obvious that this force term must be related to
the motion of the cylinder; in the original paper, Hartlen and Currie (1970) proposed an arbitrary linear
relationship based on the velocity of the cylinder, which is called as the velocity coupling. This coupling
scheme has been accepted and used in many researches including Skop et al. (1973b), Landl (1975), and
more recently, Plaschko (2000) and Xu et al. (2015). According to Krenk and Nielsen (1999), the selection
of the velocity coupling scheme based on Hartlen and Currie (1970) did not satisfied the flow of energy
between the fluid and structure equation. They then proposed the displacement coupling, bx,., to enforce
the transfer of energy generated by the damping term in the fluid equation to the structure equation
where this energy is dissipated by the structural damping term. The displacement coupling scheme was
also applied by Williams and Suaris (2006) and Williams et al. (2010) to model the response of an iso-
lated circular cylinder as well as the the wake interference between two circular cylinders. Even though
Williams et al. (2010) showed that this approach is more mathematically suitable for modelling the VIV
response of an isolated circular cylinder, a good agreement between the numerical-integrated solutions
of the response and experiment data could not be drawn. The analytical solutions produced by Krenk
and Nielsen (1999) showed the presence of two response branches but the hysteresis and the frequency
response were not accurately simulated. Also, the lift coefficient showed no peak values during the lock-
in. Later, Facchinetti (2004) proposed the acceleration coupling scheme, b, based on the hypothesis of
the linear inertial effect of the structure. The analytical solutions however showed behaviours which are
more related to the circular cylinder having a low combined-mass-damping parameter, especially when
investigating the relationship between the range of the lock-in and the mass ratio. The displacement
response contained the upper branch; the phase shift of the lift force against the displacement involved
two dramatic increases just after the onset of the lock-in and just before the system reached lock-out.
However, the presence of hysteresis when the lock-in started and terminated requires further clarifica-
tion and explanation. A comparison between three aforementioned coupling schemes was conducted by
Facchinetti (2004); taking into account the high mass-damping characteristics of rectangular cylinders or
bridge deck structures, the velocity coupling scheme did qualitatively and, in some respect, quantitatively

simulate all features of the VIV.

Another issue about the Hartlen and Currie model that has been addressed by Sarpkaya (1979) is
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the lack of fluid-mechanical argument during the derivation, especially the damping term in the fluid
equation. Instead of the Rayleigh equation originally used by Hartlen and Currie (1970), Skop et al.
(1973b) implemented a slight modification to this term together with an addition empirical parameter in
the stiffness term of the fluid equation. A trial-and-error with some guidelines allowed all parameters to
be identified based on the maximum amplitude of the response during the lock-in and the velocity of this
occurrence; a qualitatively good agreement comparing against selected wind tunnel results of the circular
cylinder could be drawn. However, no significant improvement to the original Hartlen and Currie model
was found. Nevertheless, a logarithmic relationship between the model parameters and the structural
parameters such as damping ratio, mass and geometry dimension have been reported and the Griffin
plot was in good agreement with the wind tunnel data. Another attempt to improve the Hartlen and
Currie model was conducted by Landl (1975). By introducing an additional fifth-order non-linear term
into the damping term of the fluid equation and still using the velocity coupling, the upper branch of
the VIV response of the circular cylinder having a low combined mass-damping parameter was simulated
and in a good qualitative agreement with the wind tunnel data extracted from Parkinson et al. (1968).
Some features of the high combined-mass-damping type of VIV responses of the circular cylinder was also
modelled but no wind tunnel data was present to make a comparison. Later, Krenk and Nielsen (1999)
combined both the Rayleigh equation and the van der Pol equation to model the negative damping in
the fluid equation. However, Facchinetti (2004) pointed out that using either the Rayleigh and/or van

der Pol equation does not affect the capability of modelling the limit cycle oscillation.

Using the modified model previously originated by Skop et al. (1973b), Skop and Balasubramanian
(1997) proposed a new twist, that the lift force in the structure equation comprised of two components.
The first component was modelled by the van der Pol-type equation driven by the velocity of the cylin-
der; while the second term was called a stall term (282,)/Q, with § being the stall coefficient. This
implementation allowed the asymptotic and self-limiting structural response to be accurately predicted
at zero structural damping. However, the model parameters were related to the physical and structural
parameters, restraining the practicability of this model. Scanlan (1998) later formulated a new lift force
expression for the equation of motion of bridge decks during the VIV and similarly, he also included a
stall term together with the lift force coefficient. The stall term in this case was proposed to be de-
pendent on the flutter derivative Hy, given that during the lock-in, the heaving motion of the structure
was dominant. The flutter derivative H{ was also assumed to be constant during the lock-in Scanlan
(1998). This flutter-derivative-depending stall term was later implemented by Xu et al. (2015) in an
attempt to generalise the Hartlen and Currie model to simulate the VIV response of the bridge deck
structure. The lift coefficient was represented using the van der Pol-type equation and driven by the

velocity of the structure as being used by Skop and Balasubramanian (1997). In fact, the Hartlen and
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Currie model was first used to model the VIV response of the rectangular cylinder by Callander (1989).
He was able to model the VIV response of the rectangular cylinder standing at an non-zero angle of attack
and restrained to oscillate along the longitudinal direction. A good agreement with experimental data
was achieved although he used all model parameters listed in the original paper by Hartlen and Currie

(1970) and made some assumption about the lift coefficient based the value of the circular cylinder.

2.5.3 Summary of the Mathematical Models of VIV

The need of a reliable semi-empirical model to simulate the VIV of bridge deck structures is apparent
nowadays. A number of incidents related to VIV, including the recent large oscillation of the Volgograd
bridge in Russia with the peak-to-peak amplitude to be measured about 800 mm (Weber et al., 2013),
have highlighted the importance of better understanding of VIV of bridge decks and a more proper VIV

model which can be used in the design stage.

There have been a large numbers of attempts to derive semi-empirical models of the VIV where model
parameters can be identified via wind tunnel tests or computational studies as discussed in Sections
2.5.1 and 2.5.2. Some models have gained their notice and significant improvement has been proposed.
However, up to now, a reliable and practical model of the VIV is not yet to be found. The main
disadvantage of most current VIV models is that the model parameters are not universal; they are
all dependent on physical and structural parameters such as mass and damping ratio and also on the
aerodynamic shape of the cross section. This limits their usability in the initial phase of the design
state where wind tunnel tests or computational simulations need to be conducted to fully understand
the relationship between the maximum VIV response and the Scruton numbers for a given structure.
This process is very time-consuming and, if the Scruton number during this process is different from the
prototype for some reason, no useful information can be extracted. Therefore, a reliable mathematical
model for the VIV with all model parameters to be universal is a more practical mean to handle this task.
The other downside of some models is the lack of physical explanation during the derivation and of the
model parameters themselves. They have been accepted and received further improvement mostly due
to their ability to produce results that include all features of the VIV and qualitatively agree with those
obtained from wind tunnel experiments rather than due to their capacity to help further understand this

phenomenon via relationships between model parameters and other physical and structural parameters.
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2.6 FLUTTER

Flutter is an aeroelastic instability featuring a combination of bending and torsional modes having rela-
tively similar natural frequencies. Each mode can be very stable; however, their combination may produce
very large structural responses because, during flutter, the self-excited forces can cause further movement

of the structure.

According to Simiu and Scanlan (1996), flutter can be classified into four different types of responses
which are: classical flutter, single-degree-of-freedom flutter, stall flutter and panel flutter. The last two
types are less relevant to bridge deck structures and rectangular cylinders. The classical flutter is also
known as the two-degree-of-freedom flutter which was originally found as an instability phenomenon of
thin air foils restrained to both of the vertical translation and rotation. Matsumoto (2004) also observed
this type of flutter in the case of bridge deck structures or rectangular cylinders with the aspect ratio
B/D larger than 12. For the rectangular cylinders having shorter after-body length, i.e. 4 < B/D < 11,
they only experience the classical flutter at very high reduced wind speeds, where the aerodynamics of
the flow field around cylinders shares some similar characteristics as the one around the cylinder with
the aspect ratio B/D > 12 undergoing similar type of flutter responses. Based on Matsumoto (2004),
the primary flutter behaviour which is found to occur with bridge decks of rectangular cylinder having
the aspect ratio B/D from 4 to 11 is the single-degree-of-freedom flutter. This is normally referred to be

the torsional flutter and it is found to be associated to structures exhibiting strongly separated flow.

2.6.1 Mechanism of Classical Flutter

The mechanism of flutter is very complicated due to the interaction between the bending and torsional
modes; Figure 2.34 can help to explain why the combination of two these modes of oscillation can produce
divergent response. Series of images (a) in Figure 2.34 illustrates a structure undergoing a full cycle of
the torsional oscillation. With the assumption that the aerodynamic centre is closer to the trailing edge
than the shear center, which is normally observed for bridge decks or rectangular cylinders having long
after-body length, the aerodynamic force generates a restoring moment; its magnitude gets larger with
an increase in the angular deflection of the structure and its direction possesses a tendency to reduce this
angular deflection throughout every cycle. On the other hand, series (b) represents a full oscillation cycle
when a structure undergoes the bending mode. Due to the vertical motion of the structure, the relative
wind direction changes continuously throughout the cycle. The more the relative angle of attack, the
larger the aerodynamic force acting on the structure. Also, this force is always in the opposite direction
to the motion of the structure; therefore, it acts as the restoring force. Both modes of oscillation are

separately stable; however, if these two modes are allowed to occur together and it assumes that the
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torsional mode is 90° ahead of the bending one as shown in series (c), the response of the structure
becomes divergent. In this case, the aerodynamic force acts on the model in the direction of the bending
motion; therefore, it becomes a destabilising factor, significantly reducing the damping of the bending
mode. However, the moment induced by this aerodynamic force assists the rotation of the structure
in only half of the cycle. Therefore, with respect to both modes, the aerodynamic damping is changed

significantly.

In terms of energy, the flutter can be explained that, due to its movement, the structure can extract
energy from the wind flow; the oscillation energy on the other hand is then dissipated through the
mechanical damping system. The divergent response will occur if the extracted energy is larger than the
dissipated energy or the overall damping of the system is reduced due to additional negative aerodynamic
damping caused by excessive flow separation; this dividing line is characterised by the critical flutter

velocity (Simiu and Scanlan, 1996).

- Relative wind direction
— Aerodynamic crosswind force

Figure 2.34: Flutter mechanism, adopted from Houghton and Carruthers (1976).

2.6.2 Flutter Model

The flutter model of bridge decks was first introduced by Selberg (1961). By borrowing the classical airfoil
flutter theory in aeronautical engineering established by Theoderson (1935), he was able to approximately
determine the flutter onset velocity, with the limitation to streamlined bridge deck sections only. Later,
following the same method, Scanlan’s flutter model (Scanlan and Tomko, 1971) was developed, featuring
a system of equations of motion of bridge decks in the wind and 18 flutter derivatives, which related the
aerodynamic forces to structural responses. The flutter or aerodynamic derivatives can be experimentally

or numerically determined.
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%\ | /7 Elastic axis

Figure 2.35: Bridge deck in the wind field.

Similar to the airfoil theory, the bridge deck has two degrees of freedom which are bending and

torsional modes (Figure 2.35); the equations of motion of the bridge deck in flutter are described as

m(h + 2Chwnh + w?) = L., (2.47)

I(6 4 2Cawad + w?2) = My, (2.48)

where m and [ are the mass and moment of inertia of the bridge deck, h, h and h are the bending
displacement, velocity and acceleration, «, & and & are the angular or torsional displacement, velocity
and acceleration, (j and (, are the heaving and angular damping ratio, wy and w, are the bending and
torsional natural circular frequency. In flutter, wind-induced forces and moment, Ls. and Mg, respec-

tively, are self-excited because they are generated by the movement of bridge deck in the wind.

Scanlan and Tomko (1971) proposed mathematical formulae to relate the aerodynamic force and

moments to the heaving and torsional motion of the bridge deck as

1 h Baé h

Lye = 5pUB (KH1 o+ K+ K?Hja+ K°Hj B) (2.49)
1 ' h

M. = §pU2B2 (KA* + KA © F K250+ K2A2§B> . (2.50)

Scanlan’s model assumes the linear relationship between the aerodynamic forces and moment with
the heaving and angular displacement h and a and their first derivatives. The coefficients of linearity

are the flutter derivatives, H} and A}, which relate the self-excited forces and moments to the bridge
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responses. These flutter derivatives are a function of reduced frequency given by

K=— 2.51
=3 (2:51)

where w is the heaving or torsional angular oscillatory frequency of bridge deck. This very dependence
causes a lot of difficulties to solve the flutter equations of motion. A number of mathematical expressions
were proposed to relate the flutter derivatives of the bridge deck to solutions of an airfoil based on either
Theodorsen’s circulation function in the frequency domain (Theoderson, 1935) or indicial functions in
the time domain (Garrick (1938); Jones (1940)) which were used in a number of studies of the bridge
aeroelasticity (Zhang et al. (2003); Caracoglia and Jones (2003b)). Scanlan (2002) and Caracoglia and
Jones (2003a) pointed out that the flutter derivatives of the bridge deck can be estimated from wind
tunnel tests; providing that the linearity holds true, it was shown that the bridge flutter derivatives
estimated by the use of Theodorsen’s circulation function, indicial functions or wind tunnel experiments
are interchangeable. However, the circulation function as well as the indicial functions were developed
based on the airfoil aerodynamics or the finite wing theory; with the assumption of irrotational potential
flow, these functions effectively defines a two-dimensional system and ignores the third dimension of the
flow field. Therefore, the use of the flutter derivatives calculated from these two methods is limited for
the case of bridge aeroelasticity. On the other hand, if a 3D model is used in the wind tunnel test, the
experimentally measured flutter derivatives inherently include the three dimensional characteristics of the
flow field and yield more accurate identification of the aeroelastic parameters. There are two methods
to measure the flutter derivatives in the wind tunnel: the free-vibration method and the force-vibration

method.

2.6.3 Free-vibration Method of Finding Aerodynamic Derivatives

The main idea of the free-vibration method is that the bridge deck model is immersed in a wind field and
it is allowed to oscillate without any interference except the damping and stiffness of the system; the forces
and moment are calculated based on the pressure distribution. The four pieces of information extracted
from each mode of oscillation (heaving and torsional modes) such as modal frequency, modal damping,
amplitude and phase lag are then used to determine the flutter derivatives. This method was first applied
by Scanlan and Tomko (1971); however, the main limitation of their method is the requirement that the
heaving and torsional modes in coupled oscillations of bridge decks must have the same frequency at each
wind speed. Later on, researchers have focused on developing the free-vibration method, applying further
analysis techniques to eliminate the frequency requirement of coupled oscillations and to simplify the ex-
perimental procedure; the coupled free-vibration method is widely used to obtain the flutter derivatives

directly.
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Considering the aerodynamic self-excited lift force and moment, Iwamoto and Fujino (1995) reported
one major issue with the coupled free-vibration method. Because the oscillation involves two modes, i.e.

two distinct modal frequencies, Equations 2.49 and 2.50 become

1 * h'l * Bay * * hy
Ly *ﬁﬂUzB (KlHuU + KlHlQT + K H{zon + K12H14§
. (2.52)
1 * ha * Baip * * hs
+§pUQB <K2H21U+K2H22U+K22H23Oé2+K22H24B y
1 « h:l . Bai « «
Mse :§pUQB2 <K1A11U+K1A12U+K1A13Oé1+K12 14§

. (2.53)
ha

1 % * BO[Q * * h2
+§PU2B2 (Kz ng T K2A227 + Ky Az + K3 24B> :

Here, there are 16 flutter derivatives; eight of them, Hy; and Aj; (i = 1,...,4), correspond to the
heaving mode while the other eight, H;, and A3, (i = 1,...,4), correspond to the torsional mode. The
first eight flutter derivatives are the function of the non-dimensional heaving reduced frequency

- Bw1

Ky ==, (2.54)

where w; is the oscillatory frequency of the heaving mode. Similarly, the other eight are the function of
the non-dimensional torsional reduced frequency
BOJQ

where ws is the oscillatory frequency of the torsional mode. (hi, he) and (a1, az) are components of the
heaving and torsional modes respectively. With only eight pieces of information available, it is impossible
to completely obtain all sixteen flutter derivatives. Iwamoto and Fujino (1995), therefore, proposed a
solution to reduce the unknown flutter derivatives. Based on observation during the wind tunnel test, it
was found that the coupling effect was very weak at intermediate wind speed (8 ms~!); thus, is was rea-
sonable to drop all terms involving ho, oy and their derivatives. Equations 2.52 and 2.53 were simplified,
containing only eight flutter derivatives, which allowed these authors to extract them successfully. The
results showed a good agreement with other analysis techniques; their method, however, was questionable
about the guidance on how to efficiently reduce the number of flutter derivatives or, in other words, which

flutter derivatives are critical.
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Extracting the flutter derivatives using the free-vibration method, the aerodynamic drag forces and the
lateral movement of bridge decks are normally neglected, which helps reduce the number of unknowns.
This simplification was thought to affect the accuracy of results. However, Chen and Kareem (2008)
pointed out that the bridge deck flutter is not largely influenced by this. The bridge deck is normally
considered to exhibit the hard flutter in which the self-excited lift force and moment are caused by the
heaving and torsional motion of bridge decks respectively. The hard flutter is characterised by a rapid
variation of modal damping with an small increase in wind speed. For this type of flutter, the additional

damping caused by the self-excited drag force has very little effect on the critical flutter velocity.

2.6.4 Forced-vibration Method of Finding Aerodynamic Derivatives

In the forced-vibration method, the bridge deck model is made to undergo a prescribed harmonic motion
of constant amplitude; the forces and moment are measured and controlled by either force sensors or by
pressure integration. This method is preferable since it can be applied to analyse the effect of turbulence
and the amplitude of oscillation as well as the mean wind attack angle can be easily controlled. The
mean wind speed is normally kept constant; by varying the frequency of the prescribed harmonic motion,
it is possible to obtain the flutter derivatives for different reduced wind velocity defined by

U

= —. 2.
Ur B (2.56)

The common question for this method is the dependence of solutions on the prescribed oscillation
amplitude. Noda et al. (2003) conducted an investigation of the effects of oscillation amplitude on the
flutter derivatives of the thin rectangular cylinder with B/D = 13 or 150; these cross sections are very
well-known for their flutter stability at small oscillation amplitude. The results showed the minor ef-
fects of heaving amplitude on flutter derivatives. However, the torsional amplitude produced significant
influences; a large torsional amplitude could produce positive A% at a considerably lower wind speed
(Figure 2.36) causing the flutter instability. These findings indicate that some cross sections with stable
aerodynamic derivatives at a very small amplitude may become unstable followed by a small increase in
initial oscillatory amplitude. To apply this technique to extract the flutter derivatives of bridge decks,
a study of the effect of oscillatory amplitude on the flutter derivatives have to be carried out so that a

proper value of prescribed amplitudes can be selected.

The forced-vibration method involves more complex devices than the free-vibration method, which is
the main reason for its limited application at the moment. Nevertheless, together with other appropriate
analysis techniques, the forced-vibration method is preferable dealing with non-linearity, high wind speed

and non-stationary wind.
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Figure 2.36: Effects of torsional amplitude on flutter derivatives of (a) B/D = 13
and (b) B/D = 150; the solid lines represented the theoretical values (Noda et al.,
2003).
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2.7 BUFFETING

Buffeting is the unsteady loading of structures caused by high intensity and high frequency velocity fluc-
tuations (turbulence) in the oncoming wind. A bridge deck immersed in the turbulent wind experiences
the self-excited forces and moment due to flutter and the buffeting ones due to turbulence; in this case,

the aerodynamic forces and moment acting on the bridge deck has to be written as

Lae = Lse + Lb7 (257)
Dae == Dse + Db; (258)
Mae = se T Mb7 (259)

where L, D and M represent the lift force, drag force and moment. The subscript se stands for self-
excited; b means buffeting and ae is aerodynamic. Equations 2.57 to 2.59 indeed suggest a conventional
aerodynamic analysis technique that the aerodynamic forces and moment acting on an oscillatory model
can be decomposed into self-excited and buffeting components for separated investigation. Haan and
Kareem (2009) compared the buffeting force acting on static cylinder and oscillating cylinders. A max-
imum of 10% difference was observed; however the effect of this difference on responses of bridge deck
was insignificant. Therefore, this conventional technique is shown to be adequate to perform analysis in

the bridge aeroelasticity.

2.7.1 Buffeting Model

Using the quasi-steady theory, Simiu and Scanlan (1996) proposed a buffeting model involving the velocity

fluctuation components v and w defined as

L u / w
2

Dy U /W
2

Mb u rw
2

where Cp, Cp and C); are the lift, drag and moment coeflficients respectively measured on a static
cylinder at the angle of attack 0°. C7, C, and C}, are the first derivatives of lift, drag and moment
coefficients at the angle of attack 0°. This quasi-steady buffeting force theory has proved to be sufficient

in some cases, but, in other cases, corrections were found of importance. The buffeting force coefficients
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Figure 2.37: Frequency-domain analysis of Davenport (1962b); the = axis is In(f).

in Equations 2.60 to 2.62 are specified as fixed or steady-state values which fail to hold if the oncoming

wind includes a large mean wind speed and relatively rapidly time-varying gust velocities.

Davenport (1962b) proposed a method to improve this quasi-steady model and to predict the spec-
trum of structural response based on the wind spectrum and other transfer functions. The process is

summarised in Figure 2.37 and is known as the Davenport wind loading chain.

Based on the buffeting model presented in Equations 2.60, 2.61 and 2.62, the spectrum of the buffeting
lift, S1.(f), drag, Sp(f), and moment, Sy;(f) is calculated as

S Sy , S
[1;](2]2]2 =4C7 U(gf) +(C}, + Cp)? U(er) (2.63)
2
S Su / Sw
WDJ(QQ]Z ~acy 2l v op 2] (2.64)
2
) S , S
[1/)2.42(2)2]2 = 4C3, U(éf) +(C}, + Cp)? U(f) (2.65)
2

where S, (f) and S, (f) is the spectrum of the velocity fluctuating component u and w respectively.
These force and moment spectra are then multiplied by the aerodynamic admittance function | X, (f) |?,
a frequency-dependent transfer function, which is included to account for the unsteady feature of the
aerodynamic forces due to turbulence in the wind. In addition, the correlation of the aerodynamic forces

and the turbulent components is inherent in this function. The value of this function is close to 1 at low
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frequencies (Figure 2.37); it represents that large eddies rotating slowly with the wind have more chance
to engulf structures, producing significant aerodynamic responses. At higher frequencies, this function
sharply decreases to 0, indicating that quickly rotating smaller eddies contribute less effects on structural

responses because they are highly uncorrelated to each other.

The structural admittance function, | X,(f) |2, is also included; it is the characteristic of structures.
This function represents the response of structures over a range of frequencies. The peak response in
Figure 2.37 occurs at the natural frequency of the structure; away from this frequency, the response

becomes less significant.

There is another transfer function that is usually applied to this method is the joint acceptance
function | X;(f) |?>. This function is used to make a transition from a point-like structure to a line-like
structure. Their main difference is that the line-like structure can be excited at a combination of different

structural mode shapes ¢;(y).

Eventually, the spectrum of the structural response of a line-like structure in the span-wise direction

y is evaluated as

n

Sy, ) =Y i) | XeilH) P1 X5a(F) 1P SL(f) | XalF) I, (2.66)

i=1
and is illustrated in Figure 2.37. The spectrum may contain a number of spectral peaks which correspond
to the excitation due to background turbulence in the wind or due to resonance of the structure. The

design application is to move the latter, the peak resonance, further away from the former, the peak gust.

The accuracy of the structural buffeting response estimated from the aforementioned Davenport-based
approach is highly dependent on two following components: the wind spectra and the aerodynamic ad-
mittance function. For the latter component, there are a number of mathematical expressions which
successfully describe this transfer function such as the Sears function. However, the applicability of these
functions is limited to circular cylinders where the potential flow theory is hold; using these expressions
can overestimate the buffeting response of the bridge deck structure. More importantly, the first compo-
nent has received excessive attention recently and it has been pointed the need of better definitions of
the wind spectra or model to represent the wind as observed at full scale and, especially, the interaction

between the wind and the aerodynamic admittance function.

As pointed out by Davenport (1983), the first component, i.e. the wind spectrum, is generally con-

sidered to be the most important; it derives information of the wind speed which will be used to evaluate

67



CHAPTER 2. OVERVIEW OF BRIDGE AEROELASTICITY

either wind loads or wind energy. Up to now, it is still a challenge for wind engineers to produce an
acceptable mathematical model to physically represent the wind field measured at full scale. Gomes and
Vickery (1978) were potentially the first researchers to suggest the importance of separating extreme
wind events from the conventional turbulent wind observed in a neutrally stable atmospheric boundary
layer. The latter is referred as the synoptic wind characterised by its stationary and Gaussianity; it has
been applied in many codes of practice to calculate the wind load on structures. As suggested by its
name, the former is locally strong wind events generated from thunderstorms, tornadoes, downbursts
and gust fronts, which is classified as the non-synoptic wind. A number of later studies determined some
fundamental characteristics (non-stationary and non-Gaussian) as well as the dominance and importance
of the non-synoptic wind so that it has been prompted to include these wind events into wind maps
for further calculation (Twisdale and Vickery (1992); Letchford et al. (2002); Holmes et al. (2008)). It
was found that the lowest layer of the wind field in these extreme wind events is very complicated and
associated with the highest wind speeds and fast spatial and temporal variation in wind speeds and
direction (Kosiba and Wurman (2013); Lambardo et al. (2014)). As pointed out by Kareem and Wu
(2013), these non-synoptic wind events are usually associated to rapid and substantial changes in the
local flow around structures and are likely to be correlated over a large area, which potentially results in
stronger aerodynamic loads. Together with the departure in statistical attributes of the wind field, this
very property further complicates the wind-load assessment and questions the validity of the conventional

analysis framework in calculating wind loads induced by these phenomena.

Moreover, these fundamental differences in physics have raised the need of better quantitative defi-
nition of these events and establishment of analysis and modelling tools to capture these features. The
Gust-front factor (GFF) proposed by Kwon and Kareem (2009) was probably one of well-known approach
and was developed based on the conventional wind loading chain and the gust factor first introduced by
Davenport (1967). The GFF approach is associated with a number of modifying factors to systematically
account for the transient non-synoptic wind and the non-linear wind-structure interaction. Adapting
from the earthquake engineering dealing with transient events, Solari (2014) and Solari et al. (2015) in-
troduced a method named the Thunderstorm Response Spectrum approach. This approach uses several
time histories of non-synoptic wind velocities and, by conducting the velocity decomposition, yields the
spatial-varying and temporal-varying components. These results help to evaluate the spatial and tempo-

ral correlation of the wind field and, thus, to estimate the wind loading on structures.

However, Letchford and Lombardo (2015) pointed out a number of disadvantages of current ap-
proaches to model transient wind loadings; one of them is the dependence on the full-scale measurement

of non-synoptic winds, which is still very limited up to now. In recent years, an increase in observational
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capacities have facilitated further studies, revealing more insights into the characteristics of the synoptic
wind (Lambardo et al. (2014); Gunter and Schroeder (2015)) and promoting the developments of the-
oretical and computational analysis frameworks where these extreme wind events and their associated
wind loads on structure can be modelled (Wang et al. (2016); Nasir and Bitsuamlak (2016); Kareem
et al. (2016); Solari and Rainisio (2016); Le and Caracoglia (2016); Jesson and Sterling (2016)). In
addition, to integrate the non-synoptic wind into the analysis framework to estimate wind loadings on
structures, Holmes (2015) and Letchford and Lombardo (2015) suggested some alterations to the conven-
tional Davenport’s wind loading chain. The wind spectrum needs to be assessed to determine whether it
is a synoptic or non-synoptic driven phenomenon, which will govern the other components (the aerody-
namic admittance function and the structural admittance function) as well as the design criteria. Also,
cross-links or feedback loops should be introduced between the wind spectrum and later components to

effectively model the non-linearity and non-stationary in the wind-structure interaction.

In the next section, Section 2.8, the effect of turbulence in the oncoming wind on the wind-induced

responses, especially flutter and VIV, will be considered.

2.8 TURBULENCE EFFECTS

A bridge deck immersed in turbulent wind simultaneously experiences self-excited forces due to flutter
and vortex shedding and buffeting forces due to turbulence components. In addition, the presence of

turbulence is seen to affect aerodynamic parameters and forces.

Vickery (1966) investigated the influence of turbulence on fluctuating lift and drag forces acting on
a long square cylinder. The large-scale turbulence in the wind was found to have significant impacts on
both the steady and fluctuating forces; this influence was more considerable at small angles of attack.
Also, a turbulence-induced reduction in suction at the downstream face and in the fluctuating lift were
recorded. These sets of results have helped to form an initial hypothesis that the turbulence produces

stabilising effect; this finding was later confirmed by Scanlan (1997).

2.8.1 Effects of Turbulence on Bridge Aerodynamics

As an attempt to understand the turbulence-induced effect on the flutter as well as to uncover its under-
lying mechanism, Haan and Kareem (2007) and Haan and Kareem (2009) conducted a very in-depth wind
tunnel study using the forced-vibration method. A sectional model having the aspect ratio of B/D = 6.7
was built and tested in four different wind conditions having 6% and 12% turbulence intensity I,, and
approximately 1.8D and 4.9D turbulence length scale L. The pressure taps were located on the surfaces

of model to obtain the surface distribution of pressure amplitude and phase. The analysis of results con-
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firmed the turbulence-induced stabilising effect on flutter and suggest an explanation for this mechanism.

The results of the surface pressure amplitude C} and phase ¢ distribution can be seen in Figure
2.38. The basic shallow-peak shape is evident for the pressure amplitude distribution; with an increase
in turbulence intensity, these peaks are shifted to the leading edge. The increase in turbulence length
scale suppresses the peaks; this influence is more pronounced with larger reduced wind speeds. As for
the pressure phase distribution, the turbulence intensity produces more significant effect compared to
the turbulence length scale; the region of rapidly increasing phase shown in Figure 2.39 is brought closer
to the leading edge with an increase in turbulence intensity as illustrated in Figures 2.38c and d. This
upstream shift indicated turbulence increased the curvature of separated shear layer and caused the reat-

tachment point to move closer to the leading edge reducing the size of separation bubble.

The upstream shift was also found to affect the flutter derivatives, especially A% which is known to
be responsible for the flutter instability if it becomes positive. In terms of pressure amplitude and phase,

Haan and Kareem (2009) defined Aj as

1

A = m/?m C, sin (¢) dz*, (2.67)
21

where the pressure amplitude C}; and the pressure phase ¢ were functions of the dimensionless stream-wise

position z*

- T
- B/2

*

(2.68)

The effect of turbulence on the integrand of A3, which was C; sin (v), is plotted in Figure 2.40 where
the shaded regions corresponds to unstable or positive values of A3. The increase in turbulence intensity
was found to shift the basic shape of Cj; sin () upstream, moving it out of the shaded regions and signif-
icantly decreasing the value of A%. This pattern was also observed for Hj; the turbulence, therefore, was
shown to have the stabilising effect on the flutter. Despite supporting the hypothesis of Vickery (1966)
and Scanlan (1997), this aforementioned study contains a number of limitations including the selection
of the forced-vibration method and, particularly, the aerodynamic shape of the cross section. They are
probably the main reason that this study can not explain the flutter behaviour of the Messina Bridge

which was found to be enhanced or destabilised by the turbulence (Diana et al., 2003).

Concentrating on the VIV, Wu and Kareem (2012), Kareem and Wu (2013) and Cao (2015) have
pointed out the insufficiency in both of the quantitative and qualitative understanding of the turbulence-

induced effect on the VIV of the bluff body with a generic aerodynamic cross section and a bridge deck
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Figure 2.38: Plots of pressure amplitude distribution for (a) Uz = 8 and (b) Ur = 20
and plots of pressure phase distribution in smooth flow and small-scale turbulence for
(¢c) Ur =8 and (d) Ug = 20 (Haan and Kareem, 2009).
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Ugr = 8 (Haan and Kareem, 2009).
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cross section. Studies on the latter was found comparatively less than those on the former. Similar to
the aforementioned hypothesis of the turbulence effect, a number of collective studies on the circular
cylinder reviewed by Cao (2015) have led to the conclusion that the turbulence produces a very strong
effect on the VIV, especially during the lock-in, reducing the structural response and, in some cases,
the turbulence is able to completely suppress the VIV phenomenon. However, the wind tunnel study
conducted by Goswami et al. (1993) showed that, the variation of the VIV structural response of a
freely-vibrating circular cylinder in turbulent flow was minimal compared to that measured in smooth
flow. As for the bridge deck cross section including the rectangular cylinder, Kobayashi et al. (1990),
Kobayashi et al. (1992), Kawatani et al. (1993) and Kawatani et al. (1999) conducted a series of wind
tunnel tests investigating the effects of turbulence properties such as turbulence length scale, turbulent
intensity and high and low fluctuating components on the VIV behaviour of two-dimensional rectangular
and hexagonal cylinders having different aspect ratios. It was found that the turbulence suppression effect
was not observed for all cross sections. Later, Wu and Kareem (2012) and Kareem and Wu (2013) also
pointed out this issue and suggested this is due to the difference in the mechanism of the VIV — whether
it is motioned-induced-vortex or von-Karman-vortex driven VIV. Nevertheless, more studies are required
to clarify these inconsistencies and provide a more comprehensive explanation on the mechanism of the
turbulence-induced effect on the bridge aerodynamics in general and on the VIV and the motion-induced

vortex in particular.

2.8.2 Breakdown of Strip Assumption

The turbulence and buffeting analysis began in the 1960s with the application of the strip assumption
proposed by Davenport (1962a). This assumption concerns the size of the structure in comparison with
the size of gusts that, if the structures are sufficiently slender for the secondary span-wise flow and re-
distribution of pressures to be neglected, the pressures on any section of the span are only due to the
wind incident on that section. Davenport stated that the use of the strip assumption can help to describe
the wind loading on structures which, when combined with a given mode shape, leads to the calculation
of the modal structural response. However, he also stressed this method seems reasonable for slender
structures such as thin cables or open lattice trusses but seems to be invalid for structures having large

area normal to the flow such as bridge decks.
In the strip theory, Davenport implied the spatial distribution of the dynamic loading due to gusts
on structures is similar to the spatial distribution of the oncoming gusts; many researchers have focused

on validating this assumption in cases of bridge decks.

After Davenport, many researchers have believed that the turbulence in the oncoming wind, turbulence-

73



CHAPTER 2. OVERVIEW OF BRIDGE AEROELASTICITY

induced pressures and forces are coherent fields that the value at one point is affected by not only this
point itself but also other surrounding points. This spatial influence is normally expressed as correlation
functions or coherence functions. For bridge decks immersed in turbulent wind, this is the key point in
the theory of gust response prediction; the turbulence-induced forces are affected by turbulence at this
point and surrounding it as well. Therefore, it has been strongly believed the spatial coherence of forces

is higher than that of turbulence.

Later, Kimura et al. (1997) used the concept of root coherence to obtain the coherence structure of
buffeting forces and turbulence in the wind. The root coherence spectrum C'O xy between two time series

X(t) and Y () is given by

S
COxy(f) = Sl : (2.69)
Sx (f)Sy(f)
where the cross-spectrum Sxy is defined as
Sxy(f) =2 / pr(T) COS(Q’/TfT) dr. (270)
Here, pxy (7) is the cross-covariance of X (¢) and Y (¢),
pxy(T) = lim 1 / X@®)Y({t+1)dr (2.71)
T—oo T
_r

Sx(f) and Sy (f) in Equation 2.69 are the power spectrum of X (¢) and Y (¢) respectively. They have

the same definition; for instance, the power spectrum of X (¢) is

(oo}

Sx(f)=2 / px (1) cos(2m fr)dr, (2.72)

— 00

where px (7) is the autocovariance of X(t),

X)X (t+7)dr. (2.73)

—s

. 1
px(r) = Jim =

vl

The physical meaning of root coherence is the measure of correlation of two signals in the frequency
domain. By conducting the wind tunnel tests on fixed sectional hexagonal and rectangular cylinders
and using this analysis technique, Kimura et al. (1997) produced plots of root coherence spectrum of
buffeting lift force with different span-wise separation, Ay, and different wind speeds; one set of results
for the rectangular prism is shown in Figure 2.41. The coherence of buffeting lift forces reduces with an

increase in span-wise separation; the main observation is that the buffeting lift force are better correlated
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compared to the transverse fluctuating velocity component w. Jakobsen (1997) and Larose and Mann
(1998), conducting the wind tunnel tests on motionless sectional bridge deck models, also reported the
similar results. Later, Larose (2003) concluded the limits of the strip assumption which are the higher
span-wise correlation of the aerodynamic forces and moment compared to the oncoming wind fluctuation
and neglect of 3D characteristic of gust loading. The energy from a wind gust tends to spread in the
span-wise direction rather than concentrates at the point of impact; the span-wise correlation coefficient

of buffeting forces and moment is therefore higher than the turbulence in the oncoming wind.
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Figure 2.41: Root coherence spectrum of the buffeting lift force on the rectangular
prism at (a) Ay = 10mm and (b) Ay = 50 mm (Kimura et al., 1997).

2.8.3 Turbulence-induced Stabilisation and Span-wise Coherence of Aerody-

namic Forces and Moment

The relationship between turbulence-induced stabilisation and span-wise coherence of aerodynamic forces
and moment were first addressed by Scanlan (1997). By conducting a wind tunnel study on Golden Gate
Bridge, he was able to confirm the stabilising effect of turbulence and observed the significant impact
of less-than-perfect coherence of the self-excited force on aerodynamic damping. Further experimental
results and field observation suggested the self-excited forces do not maintain perfect coherence in the
span-wise direction in the turbulent flow; this coherence loss enhances the flutter stability and increases

the critical flutter velocity.

Recent researchers, however, did not fully agree with the above findings. From Haan and Kareem
(2007), it could be seen that the self-excited forces were found to have near unity coherence over the en-
tire span-wise separation range; for large turbulent length scale, a slight decrease in span-wise coherence
was noticed (Figure 2.42). The buffeting force was found to be less correlated in the span-wise direction

compared to the self-excited forces (Figure 2.43).

(0]



CHAPTER 2. OVERVIEW OF BRIDGE AEROELASTICITY

0:% \\ N

—e— Smooth (se)
0.94 171- <~ Case 6a (se)
—— Case 6b (se)
0.92 4~z Case 12a (se)
—— Case 12b (se)

Correlation Coeff of Lift (U ,=20)

0.90 T T T T

0 0.5 1 1.5 2 2.5
Ay /B

Figure 2.42: Cross correlation coefficient of the self-excited (se) lift force at Ur = 20
(Haan and Kareem, 2007).
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Figure 2.43: Cross correlation coefficient of the buffeting lift force acting on the
oscillating model (B) and on the fixed model (Stat) at Ur = 20 (Haan and Kareem,
2007).

Therefore, the results of Haan and Kareem (2007) confirm the turbulence-induced flutter stabilisation
but do not support the hypothesis of Scanlan (1997) that a decrease in the span-wise correlation of self-
excited forces causes the turbulence-induced increase in the critical flutter velocity. The reduction in the
span-wise correlation of the aerodynamic forces and moment as well as the surface pressure is also the
common argument to explain the decrease of the VIV structural response in turbulence flow. However,
as mentioned in Section 2.8.1, further study is required to bring more insight into the underlying physical
mechanism of this behaviour, which is still rather limited at the moment. The other reason that can lead

to this discrepancy is a limitation inherently included in most of the current studies. Due to a number
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of different obstacles, the models used in either wind tunnel or numerical studies of bridge aerodynamics
and aeroelasticity are considered to be rigid. The influence of the combination of structural mode shapes

on the aerodynamic characteristics of the flow field is therefore not fully captured.

2.9 CONCLUSION OF THE CHAPTER

65 years after the collapse of the Tacoma Narrows Bridge, a lot of lessons in bridge design and con-
struction have been learned and researchers in the bridge aerodynamics and aeroelasticity have achieved
many milestones. Motivated by the need of better understanding of structural responses under wind
loads, these achievements have helped not only to uncover the underlying physical mechanism of these
complicated wind-induced effects but also to provide supports for the development of a number of the-
oretical models, which allows researchers and engineers to predict the wind-induced responses in terms
of structural responses and on-set velocities. Moreover, some of these models have been integrated into

codes of practice forming analysis frameworks to access wind loads and safety of bridge structures.

However, there still have a number of areas in the bridge aerodynamics and aeroelasticity whose
related knowledge is still insufficient. In term of the theoretical modelling, even though its underlying
theory was adopted from the aerospace engineering, the bridge flutter model, which uses the flutter
derivatives to represent the linear dependence between forces and structural responses, has enjoyed nu-
merous successes and is widely accepted to assess the flutter of bridge structures. The theoretical models
of VIV and buffeting, on the other hand, still contain significant disadvantages, which requires further
studies to improve their applicability and usability. For the latter, its limitation is due the assumption
that the wind is stationary and Gaussian; in fact, most wind events, especially the extreme ones, are
non-synoptic, i.e. transient and non-Gaussian. However, the lack of full-scale measurement has caused
obstacles to model these wind events as well as to integrate them into an effective analysis framework.
Also, non-linear structures are insufficiently modelled and addressed. For the former, the VIV, there exist
a number of theoretical models; most of them are capable to capture all characteristics of a VIV lock-in
including its non-linearity; however, the usability and practicability regarding to the need of bridge de-
signers and engineers are still very limited. Most models require extensive wind tunnel or computational
studies to comprehensively define model parameters before it can be applied to fully assess the safety of

a real structure.

The effect of the turbulence on bridge aerodynamics and aeroelasticity has been found to be sur-
prisingly inadequate. As suggested by the hypothesis developed by Scanlan (1997), it is common to
accept that the turbulence produces stabilisation and therefore, the turbulence is not considered to be

a conclusive parameter in bridge design, especially for the VIV. However, a number of wind tunnel and
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numerical studies together with full-scale measurements have showed the opposite effect where the tur-
bulence produces destabilisation. In addition, the argument that the turbulence reduces the span-wise
correlation of aerodynamic forces and surface pressure has not been supported by recent researchers. This
discrepancy can be due to the fact that most studies up to now have utilised rigid sectional models; thus
the aerodynamics of the flow field is dominated by 2D features while the 3D flow feature including some

span-wise fluctuation is overlooked.

As stated in Chapter 1, the aim and objectives of this research project is to conduct wind tunnel tests
and computational simulations using a sectional model in smooth and turbulence flow to uncover the
mechanism of the VIV, particularly for the 5:1 rectangular cylinder. Also, it provides some insight into
the turbulence-induced effect on the VIV as well as its related underlying mechanism. More importantly,
this research study introduces a new approach in the 3D computational modelling using the state-of-the-
art flexible rectangular cylinder to model the bending motion, which is an analogue of a real suspension
bridge deck. Selected results are then extracted and used to improve the Hartlen and Currie model so

that it can be used to predict the VIV of a flexible structure.
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Chapter 3

COMPUTATIONAL FLUID DYNAMICS

In this chapter, key concepts and theories of CFD are introduced; they include the governing equations
and background knowledge of a CFD code as well as different turbulence models that can be applied to
simulate the flow field around structures. In addition, the application of CFD in Wind Engineering, in
general, and in bridge aerodynamics and aeroelasticity, in particularly, will be presented, showing the
potential and future of CFD as not only a designing tool during a feasibility study but also an important
analysis tool for research purposes, in complement with wind tunnel tests, to help bring more insights

into a physical phenomenon.

3.1 NAVIER-STOKES EQUATIONS

Navier-Stokes equations are a very famous set of mathematical equations derived by the French engineer
Claude Navier and the Irish mathematician George Stokes; these equations describe a broad range of fluid
motions. The fundamental ideas behind these equations are the continuity of flow and the conservation

of momentum. The vector form of the Navier-Stokes equations is

Continuity equation

dp
i U= 1
5t +pV-U=0, (3.1)
Momentum equation
U
p(()at—FU-VU)—!—Vp—uVQU—F—O, (3.2)

Here, vector quantities are indicated by the bold font. U is the velocity field of the flow, p is the
pressure and F are the external forces acting on the flow. In case that there are no external forces, i.e.

F = 0 and the fluid is considered to be incompressible, i.e.
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o _

o = - (3.3)

Equations 3.1 and 3.2 can be rewritten in the differential form as

3ui -

0, (3.4)
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where ¢ and j are the tensor notation denoting the components of displacement x and velocity u along
the z, y and z directions. From the left to right, the terms in Equation 3.5 are the transient, inertial,
pressure and viscous terms respectively. The Navier-Stokes equations are highly non-linear; the use of
CFD can produce numerical solutions for these complex equations to an acceptable degree of accuracy

in many situation.

3.2 MAIN COMPONENTS OF COMPUTATIONAL FLUID DYNAMICS

There are different commercial CFD codes that can be used to numerically solve the Navier-Stokes equa-

tions. All of them contain three main components: pre-processor, solver and post-processor.

Pre-processor is where users can define the fluid problem in a form which is suitable for use by the
solver. The flow is enclosed in a region of interest called the computational (or flow) domain which is
built from a lot of smaller and non-overlapping sub-domains called grids (or mesh) of cells (Figure 3.1).
The bluff body or the submerged structure is actually subtracted from the mesh. The structure of the
computational domain depends on the objectives of the user. In addition, users are required to identify
the essential properties of the flow and the body and the boundary conditions of the computational do-

main as well as to select the physical models which are required to be modelled.

The solver is basically a programme written to obtain the numerical solutions of the Navier-Stokes
equations. It uses appropriate discretisation and iteration schemes to compute the parameters of the
flow. Because the governing equations are solved iteratively, residuals which are the difference between
solutions obtained from two successive iterations appear. Solutions are achieved if residuals are smaller

than tolerance values set by users, i.e. the solutions converge.
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Figure 3.1: An example of a 2D computational domain constructed from triangle-,
quadrilateral- and rectangular-shape cells.

In post-processing, users can make the full use of versatile visualisation tools to transform the results
obtained from the solver into graphical presentation. Important properties of flow such as pressure, ve-

locity and vorticity magnitude can be demonstrated by the use of vectors, contours or streamlines.

The principle idea of CFD codes is to discretise the governing equations and to solve them iteratively;

in the next sections, the discretisation and iterative schemes will be discussed in detail.

3.3 DISCRETISATION SCHEME

The discretisation scheme is a process to transform the partial differential Navier-Stokes equations into
algebraic equations so that a computer can produce numerical solutions at discrete points in the domain
at a specified time. There are three major parts in descretising a fluid problem, which are spatial, equation

and temporal discretisation.

3.3.1 Spatial Discretisation

Spatial discretisation deals with the structure of the computational domain; this process divides the
domain into a number of finite control volumes or cells (Figure 3.2). All CFD computational domains
contain many cells where the governing Navier-Stokes equations are solved numerically. The solutions

obtained at one cell are quickly transferred to neighbouring cells via appropriate numerical techniques.

The geometry and structure of the computational domain control the number, size and shape of con-
trol volumes. The mesh is normally classified into three different types: structured, unstructured and
multi-block structured. A structured grid is built based on a coordinate system which is normally the

Cartesian system; therefore it is also named as the Cartesian grid. It is constructed from a number of
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Nodal point

Control volume

Figure 3.2: An example of a control volume.

quadrilaterals (in 2D problems) or hexahedra (in 3D problems) in a regular pattern. In addition, all grid
points or nodal points in a structured grid are placed at the intersection of coordinate lines and have a
fixed number of neighbouring points. The structured grid is advantageous in coding and in accuracy when
the flow is predominantly aligned with the grid lines. With more complicated geometries, the structured
curvilinear or body-fitted grid is preferred. This type of structured grids is based on mapping of the
flow domain onto the computational domain. As for the body-fitted grid, all of the domain boundaries
are coincident with the coordinate lines; thus, the flow along curve boundaries can be resolved correctly.

However, the mesh generation can be very difficult.

To overcome difficulties when modelling complicated geometries, the block-structured grid can be
applied; it is also known as the multi-block grid. Applying this grid generation method, the domain is
divided into different regions or blocks, each of which has a structured mesh. The mesh structure in each
block can be different and defined based on different coordinate systems. These characteristics result
in higher flexibility compared to the ordinary structured grids. n simple example of block-structured
grids is shown in Figures 3.3 and 3.4 where the computational domain consists of 8 separate blocks; the
mesh structure of each block is defined using the Cartesian coordinate system. However, the detailed
mesh structure can be distinguished between them. The block-structured grid combines the advantages
of the traditional structured grid and the body-fitted grid; it is easy to generate and accommodate curve

boundaries (Versteeg and Malalasekera, 2007).
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Figure 3.3: An example of a 2D block-structured grid (Sun et al., 2008).

1111

Figure 3.4: Close-up of the grid shown in Figure 3.3 (Sun et al., 2008).

The other type of computation domains is the unstructured grid which is built from triangles and
quadrilaterals in 2D and triangular prisms and hexaderals in 3D; each cell is considered as a block of the
unstructured grid (Figure 3.5). Therefore, with a large amount of blocks, the unstructured grid is very
capable of modelling complicated geometries. This type of grids does not involve any implicit coordinate
lines; therefore all cells are arranged in an irregular order, making it very difficult to access adjacent cells
or nodes. The irregular pattern allows the grid refinement to be concentrated at the regions of interest;
however, for a simple geometry, the unstructured grid contains more nodes, leading to higher cost in
terms of computational resources and time. In addition, the shape of the control volume varies greatly

throughout the unstructured grid, which requires advanced numerical schemes.
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Figure 3.5: A triangular unstructured grid for a simulation of a airfoil (Versteeg and
Malalasekera, 2007).

3.3.2 Equation Discretisation

Equation discretisation is the process of transforming the partial differential governing equations into
a numerical analogue so that it can be solved by computers. In the fluid problem, the Navier-Stokes
equations can be discretised using the finite difference method, the finite element method or the finite
volume method. As shown in Section 3.3.1, the whole computational domain is separated into a number

of control volumes; hence, the finite volume method is preferable in CFD.

The approach of the finite volume method is that, after the computational domain is divided into
separate control volumes, the governing equations are integrated over a control volume, using the conser-
vation of mass and momentum for each control volume; the general integration result of the Navier-Stokes
equations for a flow variable ¢ is

Op¢

[ v+ /A n- (psU)dA — /A n- (DyVe)dA + /V S,dv, (3.6)

where V' and A are the volume and surface area of the control volume respectively, n is the normal area
vector, I'y is the diffusion coefficient of ¢ and Sy is the source of ¢ in a control volume. The meaning of
each term in Equation 3.6 is listed in Table 3.1. CFD codes contain different discretisation schemes to
appropriately treat the integrated transient, diffusion, convection and source terms. The result is a set
of algebraic equations that can be solved simultaneously to obtain the flow parameters inside the control

volume. The solutions of a control volume are transferred to the adjacent ones, which allows the flow
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Table 3.1: Meaning of terms in Equation 3.6.

Term Meaning

fv %dv Rate of change of ¢ in the control volume with respect to time (transient term)

J4n- (ppU)dA Rate of decrease of phi due to convection into the control volume (convection
term)

[4n:(TyVe)dA Rate of increase of ¢ due to diffusion into the control volume (diffusion term)

[y SedV Rate of creation of ¢ inside the control volume (source term)

to be simulated throughout the computational domain. This process is repeated based on an iteration

approach until convergence is achieved. The flow is then fully modelled throughout the domain.

3.3.3 Temporal Discretisation

Temporal discretisation is applied in a transient simulation which involves a time-dependent or transient
term. This process discretises the time into discrete time steps, which results in a system of equations
in time where unknown variables at the current time step are computed based on the knowledge of pre-

vious time steps or neighbouring nodes. The explicit and implicit methods are the two popular techniques.

In the explicit method, the unknown variable ¢ at the time step t,, + At is calculated using its value
at the previous time step t,,. This method is easy to implement and requires less computational memory
but the size of the time step At is very crucial. It needs to be small enough to maintain the stability
and convergence of the solving process; however, a too small time-step size can lead to very long com-
putational time. As for the implicit method, the unknown variable ¢ of one node at the time step t,, is
computed based on the values of this node at previous time step and of adjacent nodes at the same time
step. This approach implies a very large set of discretised equations which can be solved simultaneously

to model the flow throughout the domain.

To maintain the accuracy, stability and convergence of this numerical solving process, the compu-
tational domain and the time must be discretised properly; the relationship between the process of the
spatial and temporal discretisation is expressed via the Courant number, Co, which is defined as

 UAt

Co = E, (37)

where U is the mean speed of flow and Az is the characteristic cell size which is effectively the average

cell size across the entire computational domain. Ax, thus, is given by
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N|=

N
1
2D domain: Az = lN Z AA;| (3.8)
i=1
N 3
1
3D domain: Az = N ; AV; (3.9)

Here, N is the number of cells in the domain, AA; and AV, are the face area and volume of cell
1 respectively. The characteristic cell size is computed using the area-average-based approach for 2D
domains while, for 3D domains, the volume-average-based approach is applied. If using the characteristic
cell size, the Courant number is considered as an average value of the domain. However, rigorously, each
cell in the domain has its own dimension and flow speed; therefore the Courant number varies from cells to
cells. It is found that Co < 1 at every cell to ensure the stability in solving partial differential equations.
Hence, the small cells concentrating in the regions having the large gradient of flow parameters become
important due to the inversely proportional relationship between Co and Az. Knowing the cell size, the
time-step size At is chosen accordingly to fulfil the requirement that Co < 1, or, in other words, the
distance the fluid travels in one time step has to be smaller than the cell size so that it can be modelled

accurately.

3.4 PRESSURE-VELOCITY COUPLING SCHEME

After the discretisation schemes are selected and applied, the pressure and velocity fields across the en-
tire domain are solved iteratively using the pressure-velocity solver. There are segregated and coupled
pressure-velocity solvers; they differ by the fact that the discretised governing equations are solved sequen-
tially in the segregated solver while the coupled solver simultaneously solves the system of momentum
and continuity equations. This method requires more computational resources and time. In this research
study, the segregated solver is used; the SIMPLE and PISO schemes are two segregated solvers commonly
used in CFD.

The SIMPLE scheme stands for Semi-Implicit Method for Pressure-Linked Equations. This method
solves the governing equations sequentially that the momentum equation is solved first to obtain the
velocity field based on an assumed pressure field or pressure gradient. The result of the velocity field
is substituted into the continuity equation to correct the pressure field, which can be put back in the
momentum equation. This process is repeated until the residuals are smaller than specified tolerances.
In addition, some essential parameters at some monitoring points have to be assessed to ensure their
behaviour is consistent; for example, in a steady-state simulation, the values at these points should tend

towards a fixed value.
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The PISO scheme or the Pressure Implicit with Splitting Operators is originally developed for non-
iterative computation of unsteady (transient) flows. However, it can be adapted for the iterative solution
of steady problems (Versteeg and Malalasekera, 2007). The steady PISO scheme is very similar to the
SIMPLE scheme; each iteration, however, includes a second correction of the pressure field to enhance

the accuracy and convergence.

These two schemes can be developed for the computation of transient problems. The transient SIM-
PLE scheme basically conducts the SIMPLE loop discussed above at each time step until the convergence
is reached. As for the transient PISO scheme, it is originally the non-iterative transient solver that, at
each time step, only one PISO loop is carried out and the twice-corrected pressure and velocity fields are
considered as the correct fields. Due to this non-iterative approach, the accuracy of the transient PISO
scheme largely depends on the temporal discretisation scheme. Versteeg and Malalasekera (2007) has
reported that, with sufficiently small time steps, the non-iterative transient PISO scheme is capable to
yield accurate results. Also because, at one time step, the iteration approach is not required, the PISO
scheme occupies less computational resources and time. Therefore, the PISO scheme is preferable to the

transient SIMPLE scheme to simulate transient problems.

3.5 TURBULENCE MODELLING

Modelling turbulent flow has been seen as the major challenge for all CFD codes; it is due to the nature
of turbulence that contains eddies having a wide range of scales. Turbulent energy is transferred from
large-scale eddies to small-scale eddies where it is dissipated due to viscosity (Section 2.1). To model
the turbulent flow accurately, all of the turbulent eddies must be successfully resolved; therefore, grids
must be fine enough so that the smallest eddies can be simulated. These simulations are known as Direct

Numerical Simulation (DNS).

DNS is capable of resolving directly turbulence in the flow without any turbulence models, using the
unmodified Navier-Stokes equations together with a very fine grid and very small time steps. The results
obtained from DNS are very accurate; Versteeg and Malalasekera (2007) showed that, to successfully
resolve turbulence using DNS, the grid cell requirement is Nee; = Re”* and the computational time is
CPU time = Re®. These requirements make DNS limited to low Reynolds number flow only. Dealing
with high Reynolds number flow, a turbulence model is necessary; Reynolds Averaged Navier-Stokes
(RANS) and Large Eddy Simulation (LES) models are the common and appropriate approaches in this

research study.
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3.6 RANS MODELS

RANS models are widely used to simulate turbulent flows in fluid-structure interaction problems, pro-
ducing reasonable numerical results with acceptable compromise between accuracy and computational
cost (Brusiani et al., 2013). Using the RANS approach, the turbulence in the flow is not resolved directly;
instead, the overall turbulent effects are fully reproduced by the adoption of appropriate turbulence mod-
els, depending on the aims and objectives of simulations (Versteeg and Malalasekera, 2007). Regarding
this computational study, two-equation RANS models are of interest; the k-¢, k-w and SST models are

discussed in detail in this section.

3.6.1 RANS Equations

RANS models apply the time-averaging operation on the governing equations. Similar to Equation 2.7,
the wind speed in the 7 direction, wu;, is decomposed into the mean component #; and the fluctuating

component u} as

where the mean of u} is 0. The notations used in this section are slightly different from Section 2.1 in
order to maintain the consistency with the Navier-Stokes equations defined in Equations 3.4 and 3.5.
The time-averaging operation is performed on the original governing equations; the time-averaged terms

of the momentum equation, as an example, are

Transient term: ? = agfi, (3.11)
Pressure term: gfl = 5851’ (3.12)
Viscous term: ai (ugsz) = aaac] (uSﬁj) , (3.13)
tnestial term: 0 = Lo+, + )] = 5 i)+ 5 (). (3.14)

The same procedure can be applied to the original continuity equation; the RANS equations of an

incompressible flow, thus, are defined as

L =0, (3.15)

— ) DR ). 1
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Using the RANS approach, the modified Navier-Stokes momentum equation includes an additional
term which is the last term in Equation 3.16. It is called the Reynolds stress term representing the
interaction of fluctuating velocity components in the flow. The Reynolds stresses include three normal

stresses which are

Tii = —pu?, (3.17)
Tii = —Pu?v (3.18)
Tk = —,Ouig7 (3.19)
and three shear stresses which are
Tij = Tji = —puju, (3.20)
Tik = Thi = —PUiUy, (3.21)
Tjk = Tkj = —pujuy,. (3.22)

The existence of these Reynolds stresses means there are more unknowns than the number of equations.
Therefore, extra turbulence models and equations need introducing to solve the Reynolds stresses, which

is known as the closure problem.

3.6.2 k- Turbulence Model

The k-¢ turbulence model introduces two additional transportation equations to reproduce the turbulence
characteristic of the flow; one expresses the turbulent kinetic energy, k, and the other is for the rate of

dissipation of turbulent kinetic energy, e, which are given by

k= (WZ+uf +uf), (3.23)

QN
E

(3.24)

™
I

)
=~

where u, uy and u§ are the velocity fluctuating components in the 1, z2 and x5 (or z, y and z) directions
respectively. The turbulence of the flow is described by the k and e transportation equations, which are

derived from the time-averaged Navier-Stokes equations (Versteeg and Malalasekera, 2007)
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where C1. = 1.44, Cy. = 1.92, 03, = 1.00 and 0. = 1.30 are model constants. The variable u; in Equations
3.25 and 3.26 is the eddy, or turbulent, viscosity, representing the diffusion of momentum and energy of
the flow caused by turbulent eddies. It has the same units and the physical meaning as the molecular
(dynamic) viscosity which is also known as the dynamic viscosity of the flow. The eddy viscosity of the
k-e model is defined as
k‘2

e = pC’N?7 (3.27)

where the constant C), is 0.09. The term G}, is the production rate of the turbulent kinetic energy k; it

is given by

Gr = 2p14.5:5Sij- (3.28)

Here, S;; is the mean rate of strain tensor, which is given by

1 /0u; Ou;
[ v J . 3.29
J 2 <8$J + 8.731> ( )
The k- turbulence model is widely used in a lot of industrial applications, showing its reliability,
robustness and affordability. However, this model has some certain downsides, such as it over-predicts

the turbulence near stagnation points and fails to resolve flows containing large strain (for example, flows

around the boundary layers).

3.6.3 k-w Turbulence Model

The k-w turbulence model is capable to accurately resolve flows around the boundary layers by replacing

the dissipation rate of the turbulent kinetic energy ¢ with the dissipation rate per unit kinetic energy w

1 ¢

where the constant C,, is the same as in Equation 3.27. The two transportation equations of this turbu-

lence model are

90



CHAPTER 3. COMPUTATIONAL FLUID DYNAMICS

dpk  Opujk 0 <ut8k:

. it st — -t _ /k A 1
k equation 5 + oz, oz, \ oy 8xj> + G — pfkw, (3.31)
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w equation: ) + pa%Gk — pPw?. (3.32)

where o = 5/9, 8 = 0.075, 8/ = 0.09, o = 2.00, and o,, = 2.00 are the model constants. The eddy

viscosity p; of the k-w turbulence model is

k
e = pa—. (3.33)
w

By using the variable w, it is found to be easier to integrate the w transportation equation through
the boundary layer next to the wall; this feature, therefore, allows the k-w turbulence model to resolve
the flow near wall better than the k- model. These improvements are discussed in detail in Section 3.6.5.
However, the k-w cannot accurately model the flow in the free-stream zone away from the wall due to

the overprediction of the eddy viscosity value.

3.6.4 Shear Stress Transport (SST) k-w Turbulence Model

The SST turbulence model is considered as the combination of the k-¢ and k-w models. The main idea
of this model is to utilise the advantages of each model to overcome the near-wall issue of the k-¢ model

and the issue with the free-stream zone in the k-w model.
A blending function Fj, is applied to the governing equations of the two models,

Filkw] + (1 — Fy)[k-e], (3.34)

where F) returns to 1 in the near-wall region and has a value of 0 in the free-strain zone. The use of this
blending function allows a smooth transition between the k-w model assigned around the boundary layer

and the k- assigned to the free-stream region.

3.6.5 Near-wall Modelling

The near-wall modelling is challenging to any CFD codes and turbulence models due to its complicated
nature as discussed in Section 2.2. The presence of a structure in the flow produces certain disturbance to
the velocity profile. Theoretically, the molecules next to the wall are stationary relative to the wall; the
wall-parallel velocity rapidly increases in the wall-normal direction, leading to large velocity gradients and
thus production of turbulence (Equations 3.28 and 3.29). The boundary layer next to the wall is divided

into two different regions: the outer and inner regions (Figure 3.6). The outer region is relatively far away
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Figure 3.6: General boundary layer structure next to the wall.

from the wall, where the size of eddies is constant and proportional to the distance from the wall. The re-

gion just next to the wall is called the inner region; it is more interesting and requires more effort to model.

The structure of the boundary layer is classified and defined based on two non-dimensional parameters

which are 2zt and u™. 2T is the dimensionless distance from the wall; it is given by

2T = z, (3.35)

where z is the normal distance from the wall and 7,, is the wall shear stress. In this research study, the
2T quantity is used instead of the ordinary y* to keep the consistency with computational simulations.
The dimensionless quantity u™ is

ut = 2. (3.36)

Here, u is the flow velocity at a distance z from the wall while u. is the friction velocity defined based

on the wall shear stress 7, as

ur = )22 (3.37)

In Figure 3.6, the very first layer next to the wall is the viscous sub-layer which is very thin (the

depth is about 0.01 mm) and has the maximum z* value of 5. There are no turbulent fluctuations in
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this region and the flow characteristic is dominated by the viscosity of the flow. The shear stress in this

layer, Tfiow, is constant and equal to the wall shear stress, 7, as

Ju
Tflow = ,u% = Tw- (338)

Equation 3.38 can be integrated resulting in the velocity profile of the flow in this region, which is

Tw
U =—2z, 3.39
. (3.39)
or: ut =zt. (3.40)

The buffer layer is a transition from the viscous sub-layer and the log-law layer. This layer is char-
acterised by the damping of turbulent eddies and a balance between turbulence and viscous effects. The
furthest layer in the inner region is the log-law region, ranging from the 2% of 30 up to 500. The flow
in this layer is dominated by turbulence effects. The shear stress, Tfiow, is varied with distance from the

wall; hence the velocity profile in this layer is expressed as

u=""In Ei".wwz, (3.41)
K 7
+_ 1 +
or: um =—InEz", (3.42)
K

where the von Karman’s constant, x, is equal to 0.4, F is an empirical constant that depends on the
roughness of the wall. Equations 3.39 to 3.42 can be used to accurately describe the behaviour of the
near-wall flow. In terms of the CFD approach, the use of these equations must be accompanied by such
a fine computational domain that there are enough cells inside the viscous sub-layer to resolve the flow.
This requirement can result in a large number of cells, especially for 3D simulations at high Reynolds
numbers. To avoid the need of very thin cells around the wall, the wall-function approach is an alternative

solution.

The wall-function approach differs slightly between each turbulence model. This approach was first
produced and applied together with the k-e model; it is named the standard wall-function approach. For
the k-e turbulence model, the wall-function strategy replaces very thin cells in the wall-normal direction
by coarser ones; the target 2™ value is between 30 to 300, which can ensure the the first cell centroid is
placed far enough from the wall to be in the log-law region. The wall-function approach assumes the wall
shear stress of the near-wall cells is calculated based on the velocity at the near-wall node. The governing

Navier-Stokes equations are not solved directly in the near-wall cells; instead, the wall-function approach
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estimates the mean production and dissipation rates of the turbulent kinetic energy k, which are then
used to solve the discretised transportation equation for k. The standard wall function of the k- model

uses the log-law approach to model the near-wall flow; the wall function can be expressed as

1
ut = p In(Ez"), (3.43)
2
k= —r (3.44)
V CN
3
uT
e=T. (3.45)

The main drawback of this standard wall-function approach is the assumption of uniform flow in the
boundary layer and the estimation of the production and dissipation rate of k. In addition, the standard
wall function is only limited to high-Reynolds-number flows; when modelling the low-Reynolds-number
flows, the log-law approach is invalid. Therefore further modifications are required for either the wall
function or the turbulence model, which leads to the development of the low-Reynolds-number turbulence
models such as the k-w, SST k-w and low Re k-¢ models. These models use the low-Reynolds-number
method to take into account the viscous effect near the wall, which is ignored in the standard wall func-
tion. This modified approach allows the near-wall flow to be fully resolved by directly solving the flow

parameters without any mathematical representation of the velocity profile.

Using the time-averaging method, RANS can be considered as a steady-state model to predict the
time-averaged flow and turbulence properties. RANS can indeed be used as a transient model which
is suitable to model flow where the small scale turbulence is not very significant to the aerodynamic
behaviour of structures. This approach normally refers to unsteady RANS (URANS) simulation. To
verify the suitability of using the RANS model in the bridge aeroelasticity, Sun et al. (2009) conducted
computational simulations using the RANS k-w turbulence model. The numerical results confirmed the
applicability of the RANS turbulence model to investigate the fluid-structure interaction of bridge decks,
especially the VIV and flutter. The simulations also revealed the higher computational efficiency of RANS
compared to LES and its better flow visualisation comparing with the discrete vortex method. On the
other hand, the authors pointed out one of the main disadvantages of the RANS models that the RANS
models limit the turbulence profile to be prescribed via the turbulent intensity and length scale. This
very prescription assumes an isotropic turbulence structure which causes the loss of span-wise vortices in

3D problems.
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3.7 LES MODELS

3.7.1 LES Equations

LES models apply a spatial-decomposition operation on the Navier-Stokes equations. This decomposition
method involves a spatial filtering function and a characteristic filtering width A; eddies of size larger
than A are called as large-scale eddies while the others are called small-scale eddies. In LES models, the
large-scale eddies are of interest; in the flow, they transport mass, energy and momentum, which can
significantly affect the behaviour of the flow and immersed structures. Also, they are problem-dependent,
easily influenced by boundary conditions of the flow. LES models, therefore, directly resolve the large-

scale eddies while the small-scale ones are modelled and assumed to be isotropic.

The filtering function can spatially decompose any flow parameters. Taking the velocity component

U; in the 7 direction as an example, it can discretised as

U, =1u; + U;, (346)

where 1, is the resolved part and u is the unresolved part. The resolved velocity at a point = at a time

t is calculated using the filtering function G(z,z’, A) as

u(x, t) = / Uz, t)G(z,2', A)da'. (3.47)
domain

The selection of A in the filtering function G(z, z’) determines the size of large and small eddies in the
flow. Using the finite volume method, Versteeg and Malalasekera (2007) suggested to use the averaged

grid size as the filtering width as

A = (AzAyAz)3 = AVE, (3.48)

where Az, Ay and Az are the dimension of a cell in the z, y and z direction respectively while AV is the
volume of a cell. Using the cell size as the cut-off width, any eddies which are smaller than the cell size
are not resolved. Instead, they are mathematically modelled and represented by values at the centroid of

the control volume. Applying this spatial discretisation, the filtered governing equations are

ou;

81‘1'

5‘pﬂi o o 8ﬁ 0 5‘171- Emj
ST N A )
J 8301 81‘]‘ 81‘]‘ amj

=0, (3.49)

9 5 (3.50)

95



CHAPTER 3. COMPUTATIONAL FLUID DYNAMICS

where 7,; = p(Wu; — w;u;), which is called as the sub-grid scale (SGS) stress involving the interaction

between the resolved and unresolved eddies. The SGS stress 7;; can be decomposed as

Tij = p(Uity — Witl;) (351)

= p(uiuy — uiuz) + p(uu} + ujng) + pujul.

The decomposed SGS stress includes three distinctive terms which are the Leonard stress, L;;, the
cross stress, C;; and the LES Reynolds stress, R;;, corresponding to the order in Equation 3.51. The
Leonard stress purely contains the information of resolved eddies only, representing effects at the resolved
scale. The cross stress involves both the resolved and unresolved components, showing the interaction of
the modelled eddies with the resolved flow. The final term which is the LES Reynolds stress is caused by
the diffusion of momentum between the SGS eddies. Similar to the Reynolds stress in the RANS models,

this term has to be modelled by SGS turbulence models.

3.7.2 Smagorinsky SGS Turbulence Model

The Smagorinsky SGS turbulence model is commonly used to model the SGS stress; this model defines

Rij as

1
Rij = —2psasSij + 5 Riidij- (3.52)

Here, SZ—]— is the strain rate tensor of the resolved flow, which is given by

=3 (3 52) 0

The final term in Equation 3.52 involved the normal LES Reynolds stress R;; and the function d;;
which is equal to 1 if 4 = j and returns to 0 if ¢ £ j. This term is included to ensure the balance between
the modelled SGS stress and the kinetic energy of the SGS eddies (Versteeg and Malalasekera, 2007) and
is ignored when considering the incompressible fluid. psags is the SGS viscosity which, similarly the eddy
viscosity in RANS models, is required to be modelled. The Smagorinsky model defines psas based on the
an assumption of the balance between the energy production and dissipation of the small-scale eddies,

which leads to the expression as

pscs = pLZ | S|, (3.54)

where | S |= /288 and Ly = CsA. Cy = 0.1 is the Smagorinsky constant. Defining C as a constant

is the main limitation of the standard Smagorinsky SGS model. Versteeg and Malalasekera (2007) showed
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that different values of Cs are obtained when using LES models to solve variety flow problems; these values
range from 0.1 up to 0.25. In addition, for a single LES simulation, the value of C is not likely to remain
constant. In some flow problems, due to the interaction of the flow with immersed structures or confining
walls, the flow includes sub-regions having different flow conditions compared to the others. This effect
can lead to problems for choosing a constant Cs. The other disadvantage is that the Smagorinsky is a
overly diffusive model, where the energy is transferred from the large-scale eddies to the small-scale eddies
only. The backscatter process involving the transportation of energy in the opposite direction (Section
2.1.1) is not accurately modelled. These limitations of the standard Smagorinsky SGS model lead to the

development of more general SGS models.

3.7.3 Dynamic Smagorinsky SGS Turbulence Model

The dynamic SGS model may be considered as a modified Smagorinsky SGS model involving further
mathematical expressions to overcome the limitation of the standard SGS model. One of the well-known
dynamic SGS model is proposed by Germano et al. (1991), which applies an additional filtering function
to locally model the SGS stress 7;; and the Smagorinsky coefficient Cy in space and in time. Using two

filtering functions with different values of the filtering width, the SGS stress is given by

Tij =P (W — alﬂj) . (355)

Compared to Equation 3.51, each filtered term in Equation 3.55 has two bars on top, indicating a

double filtering process. The Smagorinky coefficient Cy is now defined as

1L, M,

Cs = —5 M’LQJ (3.56)
Here, L£;; is the resolved turbulence stress (Germano et al., 1991) which is defined as
Lij = — (Wit — ugti) (3.57)
and, Mij is
M;; = A | S | §ij - A} S| gij- (3.58)

The LES models have been successfully applied to solve the fluid-structure interaction in the turbu-
lent flow due to its capability to capture the turbulence structure in the flow (Sun et al., 2008). The
LES simulation is more computationally demanding compared to the time-averaging RANS models. It is
due to fact that the LES models requires higher grid resolution, particularly at the near-wall region. In

addition, LES simulations typically require smaller time steps to accurately resolve the small-scale eddies.
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Moreover, unlike RANS simulations, to model the turbulence with LES, it requires to provide temporal
and spatial varying inflow conditions. Commercial CFD codes usually contain built-in utilities which can
produce turbulence at inlets for LES simulations; however, the generated turbulence field is reported to
lose certain statistical properties of the wind. In order to generate the turbulence at the inlet of LES sim-
ulations, two different techniques are normally applied, which are the precursor simulation method and
the synthesis turbulence method. The core concept of this latter method is to represent the fluctuating
component of the turbulence by the white noise; however, due to the lack of the temporal and spatial co-
herence characteristics, further mathematical operations are required to generate these desired statistical
properties as well as to match specified Reynolds-stress tensors (Tabor and Baba-Ahmadi, 2010). This
method has been developed and studied in detail by Lund et al. (1998), Klein et al. (2003), di Mare et al.
(2006) and Xie and Castro (2008). Falling in the same category is the Proper Orthogonal Decomposition
(POD) method, which, based on the property of the POD technique, allows the turbulence to be gener-
ated using spatially limited experimental wind speed data (Perret et al., 2008); the POD technique will
be discussed in Section 4.6. A more recent approach to generate the inlet turbulence is the vortex method
or synthetic eddy method (Benhamadouche et al., 2006), where vortices are introduced at the inlet and
transported into the computational domain. The length scale of vortices as well as their distribution
on the inlet are determined based on the statistical properties of the synthesis turbulence (Kornev and
Hassel, 2007). This particular method is focused and favourable at the moment since it requires a shorter
length of the computational domain downstream of the inlet is required to fully develop the turbulence
(Tabor and Baba-Ahmadi, 2010). As suggested by the name, the precursor simulation method involves
an explicit and separate calculation of an equilibrium turbulent flow, which is then stored into a library
and re-introduced at the inlet of the main LES simulation. The library can be generated by performing
a simulation using a short precursor cyclic domain where the flow at the output is input the inlet; the
velocity field on a plane normal to the stream-wise direction is extracted and stored. The library can be
created before or in parallel with the main simulation as proposed by Lund et al. (1998) with a notice
that the velocity data should be extracted in a region in which the turbulent flow is in an equilibrium
and well-known condition. This issue together with the fact that a separate simulation is required are
the main disadvantage of this method when generating the turbulence with specific properties. On the
other hand, the synthetic turbulence method offers better computational efficiency, more flexibility to
generate the inlet turbulence with prescribed parameters and an ease to integrate into a LES simulation.
A comprehensive review and comparison between these methods are presented in a paper by Tabor and

Baba-Ahmadi (2010).

These requirements somehow overshadow the positive aspects of the LES models in a comparison

with the RANS models. Over the past three decades, the RANS models have been a favourable choice
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of industry in a variation of applications, such as design and optimisation processes, because they are
simple, economic and computational affordable. However, with the current development in computer
technology, in the near future, Hanjalic (2005) believed the LES models will be preferable in most of
the industrial application while the RANS models with some innovations will be used for some kinds of

appraisal simulations.

3.8 FLUID STRUCTURE INTERACTION

The fluid-structure-interaction phenomena arises in many aerospace engineering applications including
airfoil oscillations, flutter predictions and a large class of other aeroelastic instability problems. In the
bridge aeroelasticity, the numerical simulation of the fluid-structure interaction (FSI) has been developed
to investigate the vortex-induced vibration and flutter in particular. A FSI problem is characterised by
the coupling of three different fields including the fluid, structure and mesh or dynamic mesh. The first
component, the fluid, is described the well-known Navier-Stokes equations. The dynamic properties of

the second component, the structure, is governed by

Mii, + Cig + Ku, = F(t), (3.59)

where M, C and K are the mass, damping and stiffness matrices. ug is the displacement of the structure
while F'(t) is the force acting on the structure due to pressure and viscosity obtained by solving the Navier-
Stokes equations. The last element is the mesh which can be viewed as a pseudo-structural system with
its own dynamics. A dynamic mesh algorithm has to be implemented to deform or move the mesh to
accommodate the deflection of the structure. An appropriate kinematic description of the continuum
which is either the fluid or structure is then required to accurately determine the relationship between
the mesh and the deforming continuum and to provide an accurate resolution of material interfaces and

mobile boundaries (Donea et al., 2004).

3.8.1 Arbitrary Lagrangian-Eulerian Methods

There are two classical descriptions of motions that are generally used to form the algorithm of continuum

mechanics: the Lagrangian description and Eulerian description (Malvern, 1969).

Lagragian Description

Two domains that are commonly used in the continuum mechanics are the material domain Rx and

the spatial domain R, with their corresponding coordinate systems X and x respectively.
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Applying the Lagragian description in numerical solvers, the grid nodes are permanently attached to
the material nodes. Therefore, individual nodes of the computation domain follows the associated material
particles during their motion. The motion of the material particle relates the material coordinate to the

spatial coordinate, which can be mathematically represented by the one-to-one mapping operation ¢

defined as

(2,6) = p(X, 1) (3.60)
The gradient matrix of ¢ is
ox
64,0 ax Y
X,t) = .61
e X , (3.61)
0o 1

where 0 is a zero vector and the material velocity v is defined as

oz
v(X,t) = gl (3.62)

which can be interpreted as the time variation of the coordinate x holding the material particle X fixed.

Each finite element of a Lagrangian mesh always contains the same material particle. This helps
eliminate the convection effect and facilitates an ability of tracking free surfaces and interfaces between
different materials. Also, the Lagrangian description is preferable to model the problems involving ma-
terials with history-dependent behaviour which is very typical in the structural mechanics. However,
the Lagrangian mesh is unfavourable to simulations involving very sudden and large distortions of the
continuum. A frequent remeshing operation can preserve the quality of the mesh against the excessive

distortion but it is limited by very high computational demand.

FEulerian Description

The disadvantages of the Lagrangian mesh are overcome by using the Eulerian algorithm. In the
Eulerian description, the spatial domain is used as the referential domain instead of the material domain.
In this case, all material quantities at a given mesh node at a coordinate x are correspondent to the
quantities of the material point coincident with the considered node at the considered time ¢. Therefore,
the Eulerian algorithm only involves variables and functions having an instantaneous significance in a

fixed region of space (Donea et al., 2004).
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The basic idea of the Eulerian formulation is that the grid nodes are disassociated from the material
nodes. The mesh is fixed and the continuum moves and deforms with respect to the computational
grid; therefore, the numerical solver must take the convection effect into account. The Eulerian mesh
is very popular in fluid mechanics including examining a physical quantity at a fixed region of space as
time evolves. However, in addition to numerical difficulties to model convection, the application of the

Eulerian algorithm is very limited to moving boundaries and deforming material interfaces.

Arbitrary Lagrangian-Eulerian Description

The brief review of the classical Lagrangian and Eulerian descriptions has emphasised the positives
and negatives of each method. It also highlighted the main differences between them which are the se-
lection of the referential domain, how the mesh is treated and their application. The Lagrangian mesh is
the most suitable to solve problems of structure dynamics while simulations in fluid dynamics are mostly

performed by applying the Eulerian algorithm.

The arbitrary Lagrangian-Eulerian (ALE) description is considered as a generalised algorithm which
combines at best the interesting aspects of the classical mesh descriptions while minimising their down-
sides as far as possible. It was originated by Noh (1964) and later improved by Farhat et al. (1995). The
ALE methods have been implemented in a number of research including Farhat et al. (1998a), Farhat
and Lesoinne (2000), Degand and Farhat (2002), Farhat et al. (2006),Wood et al. (2010) and Habchi
et al. (2013).

In the ALE algorithm, neither the material domain Rx nor the spatial domain R, is taken as the
referential domain. In stead, a new domain is introduced — the referential domain R, together with the
referential coordinate x. This new configuration holds the position of the grid nodes of the computational
domain. Figure 3.7 shows three domains involving in the ALE algorithm as well as three one-to-one map-

ping operations relating the domains together.
The referential domain IR, is mapped into the spatial domain R by the transformation ®. This
mapping operation represents the motion of the grid nodes in the spatial domain and can be mathematical

defined as

(z,1) = ©(x, 1) (3.63)
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The gradient matrix of ® is

00 ox 9
X
X;t) = ; 3.64
9001 X! 300
0 1
where the grid velocity © is given by
ox
o(x,t) = — 3.65
o0xt) = 7 (3.65)

which can be interpreted as the time variation of the spatial coordinate x of the grid node x fixed.

Finally, the transformation ¥ maps the referential domain R, to the material domain Rx and it
describes the motion of the material particle in the referential domain. The inverse of this operation is

defined as

(x, 1) =91 (X,1), (3.66)
whose matrix gradient is
ox

ot ox W
X, t) = . 3.67
el (3.67)

0 1

The velocity w is given by
ox

X t)=-= 3.68
w(X,1) = X (3.68)

thus representing the time variation of the referential coordinate x of the material particle X fixed;

therefore, it can be defined as the particle velocity as being seen from the referential domain.

Figure 3.7 also suggests the interdependence of these three mapping operations as ¢ = ® o ¥~! whose

the derivative yields the relationship between three different velocities as

ox
=9+ —w. 3.69
v=">+ aXw (3.69)
Equation 3.69 can be rewritten as
ox
—v— = — 3.70
c=v—19 8X'w, (3.70)
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Figure 3.7: Interaction of three domains in the ALE description, adopted from Donea
et al. (2004).

which is the convection velocity or the relative velocity between the material and the mesh. These fun-
damental formulations of the ALE description can then be used to derive the Lagrangian and Eulerian
algorithm. In the Lagrangian description, the material domain attaches to the referential domain, i.e.
X = x which implies that the material and the grid velocities are identical based on Equations 3.62
and 3.65. Therefore, the convection velocity ¢ is null. On the other hand, the Eulerian mesh is fixed in
space; thus © = x. Equation 3.65 then implies a null grid velocity and the convection velocity ¢ is simply

coincident with the material velocity.

By introducing the referential domain to hold the position of the grid nodes, the ALE algorithm
allows the mesh to move freely with respect to the material and the spatial domain. Figure 3.8 clearly
illustrates the difference between the original descriptions and the ALE algorithm. The ability of the ALE
algorithm to freely move the mesh is very attractive. It helps eliminate the drawbacks of using either
the Lagrangian or Eulerian description alone. Also, the ALE algorithm is capable to modelling problems
involving excessive distortions of continuum without compromising the mesh quality or demanding some
remeshing procedures. However, the ALE formulation treats the mesh as a dynamic structural system

on its own, which then requires a so-called mesh-update procedure to handle the deformation of the mesh.
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Figure 3.8: Illustration of one-dimensional example of the Lagrangian, Eulerian and
ALE description, adopted from Donea et al. (2004).

With the use the ALE algorithm, the convection effect must be taken into account; therefore, the

conservation of mass and momentum has to be altered as

dp| _ Op B

E x = 8t X+C'Vp— pV v, (371)
ov ov
pat’X—p[atX+(C~V)v}—v~a’+pg, (372)

where p is the density, o is the Cauchy stress tensor and g denotes the body force vector. By comparing
Equations 3.71 and 3.72 against the original conservation mass and momentum in the Eulerian form,
certain differences can be noticed, which includes the appearance of the grid velocity © representing via
the relative velocity between the material and the grid ¢. In addition, all of the time derivatives in both
equations are performed in the referential domain or the computational grid domain rather than in the

spatial domain.
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When the ALE algorithm is used to numerically model the fluid-structure interaction, a number
of continuity boundary conditions must be enforced at the fluid-structure interface, such that no fluid
particles can cross the interface, i.e. n-w =0 or n-v = n - 9. In here, n is the normal vector of the
interface. In addition, at the interface, the fluid and the structure do not detach or overlap during the

motion, which means

V§ = Vs. (3.73)

Here, vy is the fluid velocity. If the fluid is inviscid, the conditions in Equation 3.73 only applies to
the direction normal to the interface. In the problems involving the coupling between the motion of the
structure and the fluid flow, the dynamic condition requires to be fulfilled by setting the stress in the

fluid equal to the stress in the structure at the interface, which is

—pn+2v (n - VS) v="n-0,, (3.74)

where p is the fluid pressure, S is the surface of the interface and v is the kinematic viscosity of the fluid.

If the fluid is inviscid, the second term on the left hand side is ignored.

The use of the ALE algorithm allows the movement of the fluid grid is independent of the fluid motion.
At the interface, the fluid grid is restrained to remain contiguous to the structural grid. This configuration
leads a permanent alignment of nodes at the interface, which facilitates the coupling between the fluid
and structure. The condition is achieved by prescribing the grid velocity of the fluid nodes at the interface

to equal to the material velocity of the adjacent structural nodes. Mathematically, it is expressed as

Displacement: u = usg, (3.75)

Velocity: v = vs. (3.76)

3.8.2 Dynamic Mesh Algorithm

The other component of the fluid-structure-interaction problems is the dynamic mesh which is modelled
to accommodate the moving fluid-structure interfaces. The first method is to re-generate the fluid mesh
at each time step or at least when the structure is advanced. Later, this method is improved into
the so-called mesh adaptation method which have shown advantages in simulating the fluid-structure-
interaction problems in the time domain. This technique not only facilitates displacement of the moving
boundaries but also optimises the computational mesh by relocating grid nodes towards zones of strong

solution gradients predicted by the fluid solver without varying the number of nodes (Donea et al., 2004).
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However, this technique is very computational expensive and cumbersome, especially for 3D problems.
For the second method, the existing mesh is allowed to deform to follow the moving fluid-structure
interface. The mesh is therefore viewed as a pseudo-structural system with its own dynamic properties

which can be expressed by an equation sharing some analogies with Equation 3.59 as

Mi+ Ci+ Ku = K. us, (3.77)

where M, C and K are fictitious mass, damping and stiffness matrices associated with the moving grid.
K is the transformation matrix that converts the displacement us of the structure at the interface into

the action on the moving mesh. In many problems, the quasi-steady form of Equation 3.77 is required

Ku = K u,. (3.78)

In addition, an algorithm is implemented to deform the mesh or at least a portion of the mesh
whilst maintaining the connectivity of the original mesh and the required mesh quality. Shankar and Ide
(1988) have proposed one of the first dynamic mesh update algorithms where the speeds of the interior
grid nodes are calculated by interpolating the speed of the structure and the zero value at the outer
boundaries along a constant coordinate line. Later, the spring analogy algorithm proposed by Batina
(1990) has been widely used to model the interaction between the fluid and structure, particularly for
unstructured grids. This approach is an iterative strategy where the edges of the mesh are modelled to
behave like linear springs connecting the mesh vertices; the stiffness of the springs is inversely propor-
tional to the length of the edges. In addition, the grid nodes on the outer boundaries of the mesh are
held fixed whereas the grid nodes on the structure are fixed relatively to the moving interface. This dy-
namic mesh approach is called the lineal spring-analogy algorithm which has been shown to be successful

subjected to a relatively small amplitude of the moving interface and coarse meshes with simple geometry.

The limitation of the lineal spring-analogy algorithm is due to the fact that the stiffness of linear
springs does not contain information of areas nor angles of the mesh faces. Therefore, it cannot prevent
the mesh vertices from colliding with each other and with the opposite edges, leading to collapse of the
mesh faces. Farhat et al. (1998a) proposed a solution by introducing additional torsional springs on the
mesh vertices. The stiffness of these torsional springs is directly related to the area of the mesh faces
avoiding the vertex colliding and the crossover of the mesh vertices. Later, Degand and Farhat (2002)
fully developed this technique to solve 3D problems. Some preliminary tests showed the superiority of
the torsional spring-analogy algorithm in maintaining the high quality of the mesh. Therefore, it helps
improve the computational performance and the capability of the use of large time-step. However, the

calculation of the torsional stiffness matrix is very demanding due to the complicated mathematics. Thus,
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although the torsional spring-analogy algorithm is very versatile, the lineal one should be selected if the

mesh is geometrically simple and characterised by relatively small deformation.

3.8.3 Coupling Schemes

In Section 3.8.1, the fluid-structure interaction has been defined as a three-field problem involving the
fluid, the structure and the dynamic fluid mesh. These field elements are governed by the Navier-Stokes
equation, Equations 3.59 and 3.77 respectively. The three equations are highly coupled together, which
is represented by Equations 3.73 to 3.76. A monolithic or partitioned procedure is frequently used to

numerically solve the fluid-structure interaction problems.

Momnolithic Scheme

The monolithic scheme is a fully coupled approach; the complete system of the fluid, structural and
dynamic mesh governing equations are treated by the same manner and solved simultaneously. This
scheme is favourable due to its robustness, stability, quick convergence and capability of using a large

time-step (Wood et al., 2010).

However, Farhat et al. (1995) stated that the use of the monolithic scheme to solve the fluid-structure
interaction problem is numerically inefficient and unmanageable regarding software issues. It is mainly
due to the different nature of the three governing equations. While the structural and dynamic mesh
equations can be linear or non-linear, the fluid is governed by the highly non-linear Navier-Stokes equa-
tions. Different numerical schemes are normally used to discretise and solve these equations. By treating
all equations simultaneously, the monolithic approach requires a single numerical scheme to be able to
solve all of them in a single block. This requirement makes the monolithic approach become less modular
and the coding process is very challenging, especially taking into account the fact that the nature of the

fluid-structure interaction problems is implicit rather explicit (Habchi et al., 2013).

Partitioned Scheme

On the contrary, using the partitioned scheme, each governing equation is separately treated, dis-
cretised and numerically solved. The fluid and structure equations can be solved in a staggered or
non-staggered manner; however, the solving processes always occur in four distinct steps. The traditional
partitioned scheme called as Conventional Serial Non-staggered Algorithm is described in Figure 3.9;

there are 4 different steps involving which are
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Figure 3.9: Conventional serial staggered algorithm.

1. Update the fluid mesh based on the new structural boundary,

2. Solve the Navier-Stokes equations and advance the fluid domain with the new boundary conditions,
3. Use the new fluid solutions to calculate the new pressure loads acting on the structure,

4. Solve the structural equation with the new pressure loads and advance the structural domain.

This algorithm earns its popularity for aeroelastic computations in the time domain thanks to its sim-
plicity and capability to easily implement into any commercial CFD software. Well-establish numerical
and discretisation schemes can be integrated to this algorithm without the need to develop a separate set
of schemes. The 4-step block described in Figure 3.9 ensures the solution in each sub-system being trans-
ferred between each other at certain synchronised points in time. However, the good coupling only occurs
around the fluid-structure interface while, further away from the interface, the fluid-structure coupling
is quite loose. Also, this method is only 15¢ order accuracy even though higher order numerical schemes
are applied to solve the governing equations (Piperno et al. (1995); Farhat et al. (1995)). In addition,
this algorithm facilitates a similar time-step to discretise the fluid and structural equations; due to the

high nonlinearity, the former requires a smaller time-step than the latter does (Farhat and Lesoinne, 2000).

To improve the efficiency of this algorithm, the sub-cycling idea has been implemented to the fluid
solver as shown in Figure 3.10. By performing a number of fluid syb-cycles in each block, a bigger time
step size can be applied to solve the structural domain without impairing the stability of the fluid solver.
This technique helps reduce the computational cost since the structure is advanced fewer times and there
is less exchange of information between the fluid and structure subsystems (Farhat and Lesoinne, 2000).
The structure equation is solved using the pressure loads calculated at the last fluid sub-cycle or the
average pressure loads calculated throughout the entire block. Piperno et al. (1995) however pointed out
that the latter is advantageous in preserving the numerically stability of the algorithm. In addition, the
stability limit of the algorithm is dictated by the number of fluid cycles in each block; increasing this

number can improve the efficiency but significantly reduce the overall stability of the algorithm.
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Figure 3.10: Conventional serial staggered algorithm with subcycling.

To improve the order of accuracy of the algorithm, the sub-cycling idea is developed into a full sub-
iteration procedure where at each time step the fluid and structure domain is solved iteratively until the
convergence is reached. This procedure involves a prediction step and a corrector step as illustrated in

Figure 3.11. In the prediction step,

1. The predicted displacement of the structure u’;foedided at the iteration i = 0 is obtained based

on the structure solutions at the final iteration in the previous time step. The fluid mesh is then

updated using this displacement,
2. The fluid equation is solved and the fluid parameters at the iteration 7 is calculated,

3. The pressure loads at the iteration ¢ is calculated and transferred to the structural equation to

. o : dicted
calculate the new structural displacement uso which is then compared against w5 <%,

If the difference is smaller than the pre-defined tolerance, the corrector step is ignored and ugfoedicwd

is taken as the final displacement for the structure after the time step n. Otherwise, the the displacement

predicted

residual between ug o and wug g is calculated and the corrector step is performed as
4. The displacement residual is used to obtain the predicted displacement uﬁﬁedicwd at the iteration
i1,

5. The predicted displacement is then applied to update the fluid mesh,

6. With the new structure boundary condition and grid velocity, the fluid solver is solved again and

the fluid parameter at the iteration 7 + 1 is obtained,

7. The pressure loads are then calculated and transferred to the structural solver to calculate the new
displacement us 1 at the iteration ¢ + 2. The calculation of the displacement residual is performed
and if it is unsatisfied, another corrector step is carried out. Otherwise, u?ﬁedicmd is the final

solution of the structural displacement.

This sub-iteration procedure is presented in detail in papers by Wood et al. (2010) and Habchi et al.
(2013). Here, the convergence of the algorithm is checked using the structural solutions; it can also be
achievable using the flow variables. The sub-iteration procedure allows a bigger time-step size to discre-

tise both the fluid and structural equations without violating the stability limit of the algorithm which is
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Figure 3.11: Sub-iteration procedure.

beneficial in saving of the computational cost and an increase in the order of accuracy and the coupling
between the fluid and structure domain even in the region far away from the interface. Therefore it is
also referred as a strong-coupled algorithm. However, the computational resources associated with the

iteration process can overshadow the advantage of the large time-step.

Farhat et al. (2006) pointed out that the lack of accuracy and numerical stability in the conventional
serial staggered algorithms is not entirely due to the loose aspect of their coupling. More importantly,
these deficiencies are caused by the ability of the fluid time-integrator to preserve its order of accuracy
on moving meshes and the lack of an appropriate structure predictor. The former is priority; if the fluid
time-integrator on moving meshes cannot preserve the order of accuracy established on fixed meshes, the
coupling scheme suffers a reduction in the accuracy eventually, even for a strongly coupled monolithic
scheme. To overcome these disadvantages, the author introduced a second-order accurate predictor to
predict the structural displacement at the time step t"*! using the structural solutions at the previous
time steps. Also, an appropriate fluid time-integrator which is capable to extend to moving meshes with-
out impairing its accuracy was adopted; this time-integrator is presented in detail in a paper by Geuzaine
et al. (2003). The result is a loosely-coupled second-order accurate staggered algorithm which is known
as the Generalised Serial Staggered algorithm. This procedure shows its advantages in keeping the sta-
bility of the conventional serial staggered algorithm over the monolithic schemes without complicating

the computational implementation and increasing the computational cost.

Another modification of the Conventional Serial Staggered Algorithm is proposed by Farhat and
Lesoinne (2000); this improvement is named as the Improved Serial Staggered Algorithm and is illus-
trated in Figure 3.12. Similar to the conventional algorithm, the improved procedure is a sub-iteration-free
method; the key difference is that the structural and fluid computations are offset by a half of the cou-

pling time step. This algorithm is originally developed by Farhat and Lesoinne (2000) with the aim of
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Figure 3.12: Improved serial staggered algorithm.

better modelling the energy exchange between the fluid and structure at the interface. Through some
preliminary validation tests, the author pointed out that the numerical stability of the improved algo-
rithm is less restrictive than the conventional one. A larger coupling time-step which are comparable
to the monolithic schemes can be used. Thus, the sub-cycle or sub-iteration procedures are unnecessary

even though they can be implemented with ease.

The Conventional Serial Staggered Algorithm is also well known to inhibit the inter-field parallelism;
the structure domain cannot be advanced until the fluid subsystem is updated and solved. Advancing the
fluid and structural subsystems simultaneously in a loosely coupling manner is favourable to reduce the
total computational cost. Weeratunga and Pramono (1994) proposed a partitioned algorithm to simulate
aeroelastic problems with the inter-field parallelism implemented as shown in Figure 3.13. This algorithm

is called the Conventional Parallel Staggered algorithm and includes two steps which are

1. The fluid domain is updated using the structural displacement. At the same time, the pressure
solution from the fluid solver is transferred to the structural domain to calculate the new pressure

loads exerting on the structure,

2. The fluid and structural equations are solved and both subsystems are updated simultaneously.

Later, Piperno et al. (1995) emphasised that this parallel algorithm achieved the inter-field parallelism
at the expense of amplified numerical errors in the fluid and structural solvers. It is due to the lack of
feedback loops between the fluid and structural domain within one time step. Therefore this algorithm
is shown to be very prone to the numerical instability; a very small coupling time-step size must be used
to obtain reasonable results. Farhat and Lesoinne (2000) proposed an improvement to this procedure by
introducing an exchange of information between the subsystems at half of the time step. This procedure
is the Improved Parallel Staggered algorithm and is shown in Figure 3.14. In the first half of the time
step, this algorithm is very similar to the conventional parallel algorithm, except that the fluid and the

structural domains are only updated to Z,1/2. In the second half of the time step,
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3. The structural displacement is used to update the fluid mesh while the pressure information is

transferred to the structural sub-system,

4. The fluid domain is advanced from ,,; 1,3 to t,; the structural equation is solved using the pressure

loads calculated at t,,,1/o and the structure is updated from ¢, to t,41.

This method can be interpreted as: the structural solver uses the so-called time-averaged pressure
loads to advance the structure through the whole time-step while the structural solutions obtained at
half of the time step is used to correct the fluid mesh and the fluid solutions. This proposal allows better
feedback between the fluid and structure; thus, a large time-step can be employed without impairing
the numerical stability and accuracy of the algorithm. This is shown to outweigh some disadvantages
including the introduction of one more communication loop between the sub-systems and one more fluid

solution in each time step.
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Figure 3.13: Conventional parallel staggered algorithm.
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Figure 3.14: Improved parallel staggered algorithm.
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3.8.4 Discretisation

In terms of the equation discretisation, the finite volume method is applied to the fluid solver while the
finite element method is implemented to solve the structural equation. This configuration has been shown
to be effective especially when the partitioned coupling schemes are used. However, as for the monolithic
schemes, they require the consistency between the fluid and structure equation; the finite element method

is therefore applied for both equations.

The spatial discretisation of the fluid and structural domains raises a significant concern at the fluid-
structure interface. In general, the fluid and structural meshes can have two independent configurations
of discretisation at the interface. If these configurations are identical, i.e. every grid node on the fluid
mesh is also a structural node, the exchange information between the fluid and structural domain includ-
ing the pressure loads and structural displacement is a trivial process (Farhat et al., 1995). However, in
most realistic problems, the fluid and structural meshes are incompatible mostly because the fluid and
structural problems require different mesh resolutions. For example, for an aeroelastic problem, the fluid
mesh is typically finer than the structural one. This incompatibility is also due to the fact that the fluid
and structure meshes are separately designed and validated, which offers researchers an ability to refine
each mesh independently. In such cases, an extrapolation or interpolation algorithm is needed to allow

information to be transferred across the interface between two non-conforming meshes.

Farhat et al. (1995) programmed the Matcher utility which is a one-step process to match the differ-
ent discretisation of the fluid and structural meshes rather than the fluid and structural solutions. This
algorithm is capable to handling the case where two discrete interfaces are not coincident. The pressure
information is exchanged by linking the structural grid nodes to associated fluid cells. Their pressure
is then used to calculate the pressure loads exerting on the structure. If the structural mesh is coarser
than the fluid one, a number of additional points are introduced on the structural mesh element and the
pressure loads are evaluated using the Gauss quadrature rule. On the other hand, a fluid grid node at
the interface is associated to a corresponding point on the structural element and its displacement is in-
terpolated from the structural solution. This algorithm is classified as the consistent interpolation based
method and has been shown to perform well in aeroelastic problems (Farhat et al. (1995); Piperno et al.
(1995)). However Farhat et al. (1998b) pointed out the lack of conservativity of this algorithm which is
due the non-matching discrete interface, resulting to the non-similarity between the calculated forces ex-
erting on the structure and the forces computed on the fluid interface. In addition, the consistent method
is not mathematically optimum. The interpolation of the fluid displacement at the interface causes an

increase in the discretisation error which degrades the solution of the fluid-structure-interaction problems.
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Farhat et al. (1998b) also stated that the solution for a non-conservative algorithm is to compute
the force on both sides of the interface using the discretisation method and the mesh of the same field,
either the fluid or structure. The authors then proposed the virtual-work based method to calculate the
finite element force exerting on the structural interface using exclusively the discretisation configuration
applied to solve the fluid equation. This technique also enforce the zero momentum and energy of
the interface loads at all time-steps. In addition, the velocity condition in Equation 3.76 was enforced
by introducing a weighting residual multiplier, which is referred as the mortar based method (Farhat
et al., 1998b). The implementation of this modification allows the discretisation error at the interface
to be reduced. Meanwhile, the computational cost associated with solving the discretised Equation 3.76
including the multiplier becomes prohibitive for a 3D problem and a sufficiently fine fluid mesh. Also,
with a very fine fluid mesh compared to a structural mesh, the consistent interpolation method and
the conservative method are equally accurate in term of the interface error. Performing by the authors,
the validation test simulating the transient response of the ARW-2 wing using the fluid mesh that was
four-time finer than the structural one highlighted this drawback. The relative errors of some selected
monitoring variables were very small and could be improved by introducing more Gaussian points in the
consistent method. This result however cannot outweigh the accuracy, reliability and robustness of their

proposed conservative method.

3.9 APPLICATION OF CFD IN BRIDGE AERODYNAMICS AND AEROE-
LASTICITY

CFD has been used widely in many domains ranging from the engine engineering to the aerospace en-
gineering, simulating single-phase problems to multi-phase problems involving chemical reactions. The
use of CFD in the wind engineering has led to the evolving field of research which is named Computa-
tional Wind Engineering (CWE). CWE employs a CFD piece of software to model a wind engineering
phenomenon in complement with wind tunnel tests. By utilising the advantages of each method, it can
become a very effective hybrid tool to design and analyse flow fields and structural responses. Cochran
and Derickson (2011) pointed out some cases where CFD can be used as a stand-alone tool such as
modelling atmospheric problems and studying pedestrian level wind. However, current CFD codes still
create troublesome performing structural analysis under wind loading particularly when studying bluff
bodies such as tall buildings or generic bridge deck cross sections (Holmes, 2015). This issue is caused by
the complexity of the flow field; not only fine mesh resolution but also improvement in turbulence models
should be implemented to better capture these features (Cochran and Derickson, 2011). Nevertheless, the
potential and future of CFD in the Wind Engineering has been showed; together with the development in
computational resources and turbulence modelling, current limitations can be fully addressed, increasing

the confidence level in the CFD methodology.
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Together with the wind tunnel tests, the development of CFD allows researchers to computationally
model the vortex shedding from a rectangular cylinder and its associated structural behaviour. Ohya et al.
(1992) conducted a numerical study applying the finite difference method to solve the two-dimensional
Navier-Stoke equations and analysed the flow field around a rectangular cylinder having square leading
and trailing edges. A similar study was later conducted by Tan et al. (1998) except the fact that the
finite element method was applied. Even though relatively coarse grids were used, results of these two
computational studies are in a good agreement with experimental results such as Nakamura et al. (1991)
and Ozono et al. (1992). The step-wise increase of the Strouhal number with the aspect ratio was cap-
tured and, thanks to the availability of the flow field visualisation and the numerous surface pressure
sampling points, it showed that this Strouhal number variation is related to the synchronisation between
the shear layer created at the leading edge and the vortex shed at the trailing edge and there are more
than one vortices rolling on the surface, depending on the aspect ratio. Later, using the discrete vortex
method, Larsen and Walther (1998) performed a two-dimensional computational simulation studying the
aerodynamics of five generic bridge deck sections. The results produced by the computer code DVM-
FLOW were in good agreement with previous wind tunnel tests suggesting this might be an efficient
tool in bridge design. Using different computational software named Fluent, Owen et al. (2006) carried
out an computational study of VIV of the Kessock Bridge using the RANS SST k-w turbulence model.
The prediction of the VIV lock-in including the on-set wind velocity as well as the maximum structural
response was comparable with the full-scale measurement. Also, the computational results revealed a
significant variation in the surface pressure fluctuating component during the lock-in, which could then
affect the structural response. Similar phenomena were found in wind tunnel tests performed at Nanyang

Technology University in Singapore (Choi et al., 2004).

Another useful application of CFD is its ability to extract aerodynamic parameters such as force
and moment coefficients as well as flutter derivatives. Taking the second Nanjing Bridge in China as an
example, Xiang and Ge (2002) performed a flutter analysis on different designs of cross sections using the
wind tunnel and CFD approaches; the authors showed the flutter on-set velocities predicted by the wind
tunnel were agreed well by the ones obtained from CFD. Later, Sun et al. (2009) conducted a detailed
study where the RANS k-w turbulence model was applied to simulate the wind-induced responses of a
B/D = 4 cross section; using the forced-vibration method, all of 18 flutter derivatives were identified. The
results showed the selected CFD method is potentially suitable for simulating VIV and flutter of bridge
decks; all 18 flutter derivatives and aerostatic parameters are reasonably accurate compared to the wind
tunnel results. Also, this showed the appropriateness of this CFD approach in balancing between the
computational efficiency and accuracy. A later study of Waterson and Baker (2010) also demonstrated

the accuracy and potential of the CFD approach. Their results illustrated an excellent application of
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commercial CFD software to simulate the 2D flutter responses of 5 different bridge deck cross sections,
including the original Tacoma Narrows Bridge. For each bridge deck, the critical flutter velocity predicted
by CFD showed a good agreement with other studies, which suggested CFD is a reliable method that

can be widely applied in the bridge design.

2D CFD modelling has proved its potential and accuracy in analysis and modelling of bridge deck
aerodynamic and aeroelasticity; however, Bai et al. (2013) showed that the 3D CFD modelling will be the
future of this field of research. They conducted CFD simulations using the hybrid RANS-LES approach
to compute the aerodynamic force coefficients and the flutter derivatives of three different bridge deck
sections as shown in Figure 3.15. Section G1 is a streamlined structure while the others are treated
as bluff bodies with sharp edges; particularly, section G3 is famous for its aerodynamic instability as
observed in the Tacoma Narrows incident. The 2D and 3D CFD simulations of each cross section were
conducted and the numerical results were compared against wind tunnel tests. For the lift and moment
coefficients of fixed models, the 3D results showed better agreement in a comparison with experiments.
The forced-vibration method was applied to calculate the flutter derivatives of bridge deck sections. One
set of results for section G1 was shown in Figure 3.16, which, in overall, represented a better agreement
between the 3D CFD and experimental results, particularly, for A% which is a well-known critical param-
eter of flutter. Their comparisons illustrate the 3D CFD method is a more accurate simulation tool to

investigate the aerodynamic stability of bluff bodies.

Inspired by the applicability of the 3D CFD modelling, Zhu and Chen (2013) carried out a numerical
study on the aerodynamic behaviour of a fixed section replicating the Third Nanjing Yangtze River
Bridge in a turbulence-free inflow condition using the LES turbulence model. The results agreed well
with the wind tunnel experiments conducted on the same scaled model. Also, they showed that LES is
efficient in capturing the unsteadiness in the wind and evaluating the aerodynamic behaviour of bridge
decks, particularly when performing 3D simulations. The use of RANS in a 3D simulation implies the
assumption of isotropic turbulence, which will effect the accuracy in modelling the oncoming turbulence
wind and vortices around the model and in the wake region. For this reason, at the current state of
the computational development, LES is becoming a more favourable tool to perform 3D simulations in
a purpose to investigate the flow field and understand the underlying physical mechanism such as the
BARC study promoted by Bruno et al. (2010). On the other hand, RANS has been used mostly in
industrial applications and in the feasibility study stage to select the aerodynamic shape of the bridge
deck cross section. Ding et al. (2016) proposed a integrated CFD-based aerodynamic shape optimisation
strategy. Driven by RANS simulation, this algorithm was shown to be affordable thanks its computational

efficiency and optimisation performance in mitigating the aerodynamic response of bluff bodies.
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(2013).
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3.10 CONCLUSION OF THE CHAPTER

The first part of this chapter was devoted to introduce fundamental knowledge of CFD, the underlying
mathematical background of relevant turbulence models as well as the theory relating to modelling a FSI
problem. It also highlighted the basic difference between RANS and LES models together with assump-

tions or further requirements when applying these models.

The application of CFD in Wind Engineering, in general, and in bridge aerodynamics and aeroelas-
ticity, in particular, has received many successes and, in complement with wind tunnel tests, contributed
significantly to the knowledge in this domain. In addition, CFD has been recognised as an economical
tool in the decision making during the designing phase when the aerodynamic behaviour of a proposed
structure can be tested and observed without the need for physical models and wind tunnel tests. The
CFD approach still contains a number of disadvantages including the inaccuracy in estimating the wind
loading on a bluff body, which is mostly due to the complexity of the flow field to be modelled. Neverthe-
less, the development of computational resources and turbulence models will address and resolve these

issues and the potential and future of CFD will be guaranteed.

LES and RANS have been shown to serve different purposes as performing 3D CFD simulations.
If RANS is mostly used in the feasibility study stage as a part of the aerodynamic shape optimisation
process, LES is a more favourable selection from the research point of view. LES has been shown to
be more advantageous than RANS thanks to the characteristics of LES which is to physically resolve
large eddies in the flow; therefore, it is capable to capture the unsteadiness and vortical structure around
the bluff body and in the wake region. For this typical reason together with considering the aim and
objectives of this research study, LES will be selected and the methodology to perform the computational

study will be presented in Chapter 4.
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Chapter 4

METHODOLOGY: CFD SIMULATION

In this chapter, all aspects relating to setting up CFD simulations are described. Following a short de-
scription of the CFD software package OpenFOAM, the computational domain used in both of static and
dynamic simulations is presented accompanied by all information required by OpenFOAM. A mesh sen-
sitivity study is then demonstrated focusing on the effect of the span-wise discretisation on the Strouhal

number.

The following sections are devoted to introduce a dynamic mesh algorithm together with a structural
solver, which will be shown to be successfully integrated in OpenFOAM. With appropriate settings, they
are capable to modelling the structural response of either a rigid or a flexible 5:1 rectangular cylinder in

the smooth wind.

In this computational study, three different types of simulation were conducted, which were 3D static
simulation, 3D heaving simulation and 3D bending simulation. The first two used the rigid 5:1 rectangular
cylinder which can be considered as the conventional sectional model tested in the wind tunnel. As for
the final one, the flexible 5:1 rectangular cylinder was introduced, which can be excited at some bending
or torsional mode shapes. These two models will be discussed further in later sections. Also, there exist
some differences between the computational domain used in the static simulation and those used in the
dynamic simulation, which includes the heaving and bending simulation; a clear explanation for this

variation will be offered in Section 4.2.

4.1 INTRODUCTION TO OPENFOAM

The computational study of this project is conducted using OpenFOAM v2.2.2; which is a piece of open
source and freely distributed CFD simulation software. OpenFOAM is designed as a C++ library which

is essentially used to create executables, also known as applications. OpenFOAM is delivered with a
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substantial number of pre-compiled applications; they are categorised into solvers, which are designed to
model a specific problem in continuum mechanics, and utilities, which are mainly used to perform simple
pre- and post-processing activities such as mesh generation, data manipulation and algebraic calculations.
Using C++ as its core technology and programming language, OpenFOAM offers users a great flexibility
and potential to modify existing applications or even create their own ones to meet their objectives, with

some pre-requisite knowledge of the underlying physics and programme techniques.

Instead of a normal user interface, OpenFOAM interacts with users via a text-file-based platform
where all settings are stored in text files as dictionary entries under some general syntax rules which help
maintain their consistency and accessibility. A typical OpenFOAM case contains directories and files as
shown in Figure 4.1. The constant directory contains a full description of the computational domain in
the subdirectory polyMesh; also, users are able to define relevant physical properties of the simulated con-
tinuum problem as well as to specify the numerical model in other text files such as transportProperties.
In the system directory, setting parameters for the numerical solver are defined; the discretisation schemes
used in the governing equations of the continuum problem are selected in the fvSchemes file, while solvers
for each governing equations, tolerances and other control parameters are listed in the fvSolution file.
Including in the system directory is also the controlDict file containing run control parameters includ-
ing start time, end time, time-step size and relevant settings used by OpenFOAM utilities to sample data
during processing, which will be stored in the postProcessing directory. Any dictionary entries in the
controlDict file can be defined by static values or, using benefit offering by the #codeStream directive,
C++ code can be included, which is compiled and executed at the start of the processing to deliver the
dictionary entry. The time directories are a series of directories, each of which contains a number of files
storing solutions of the computational problem at this specific time instance. The 0 time directory is
special and is always required since it defines initial conditions for the problem and boundary conditions

of the computational domain.

Similar to other commercial CFD software packages, OpenFOAM offers the possibility of performing
parallel computations using the method of domain decomposition. In this method, the entire computa-
tional domain and all associated fields are divided into a number of partitions; each of which is allocated to
a separate processor to be solved. The domain decomposition is performed using the OpenFOAM utility
decomposePar together with relevant control parameters defined in the decomposeParDict, which is also
found in the system directory. The output of this utility is the appearance of a series of processor[...]
directories; in each of them contains the definition of the allocated computational domain in the subdirec-
tory polyMesh and solutions of the associated field in the time directories. After a case is run in parallel, it

can be reconstructed for further post-processing analysis using the OpenFOAM utility reconstructPar,
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Figure 4.1: Typical file structure of a OpenFOAM case.

which effectively merges the sets of time directories from all processor[...] directories into a single set

of time directories.

Understanding the file structure of a OpenFOAM case, the set-up of the static and dynamic simula-
tions in later sections will be described and discussed based on this unique feature the aforementioned
terminology. First and foremost, the generation of the computational domain used in the computational
study will be presented in the following section, which reveal a disadvantage of OpenFOAM’s utilities in

mesh generation.

4.2 MESH GENERATION

A computational grid or a mesh used in OpenFOAM simulations is called the polyMesh, which is defined
as a mesh of arbitrary polyhedral cells in 3D, bounded by arbitrary polygonal faces. By convention, each
cell can have an unlimited number of faces and each face can contain an unlimited number of edges;
there is no restriction on edges’ alignment either. OpenFOAM is delivered with a number of very strict
mesh specification and validity constraints to ensure good mesh quality; however, they can pose certain
difficulties when using meshes generated by conventional tools. Information about the polyMesh is stored
in a number of separate files in the subdirectory polyMesh under the constant directory, which typically
are points, faces, cells and boundary files. As suggested by the name, the boundary file contains
dictionary entries defining a set of boundary surfaces of the mesh, known as patches and their associated
boundary conditions. A patch can be a group of boundary surfaces which are not physically connected

together.
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Unlike other pieces of commercial CFD software, the mesh in OpenFOAM is 3D by default. Simula-
tions of 1D, 2D and axi-symmetric continuum problems, therefore, are made possible by using one-cell-

thick meshes or by applying appropriate boundary conditions such as empty or wedge.

A polyMesh in OpenFOAM can be created using either of these two OpenFOAM utilities: blockMesh
or snappyHexMesh. The blockMesh utility reads the blockMeshDict located in the constant/polyMesh
directory; this utility effectively decomposes the domain geometry into a set of 3D hexahedral blocks and
the mesh is defined by the number of cells on edges of the block, which can be straight lines, arcs or
splines. The outcome of this process is a 3D structured grid whose mesh data is stored in points, faces,
cells and boundary files in the same directory. By varying the number of cells and cell expansion ratios

on edges, users are able to control the refinement of the mesh around region interested.

The snappyHexMesh mesh generator works in the principle which is more like a mesh morpher. Based
on a background hexahedral mesh and a base level mesh density, this utility conforms the mesh to a
surface of interest by refining the starting mesh and morphing the resulted split-hexahedral mesh to the
surface using dictionary entries stated in the snappyHexMeshDict located in the system directory. The

outcome of this process is a 3D unstructured grid containing hexahedral and split-hexahedral cells.

The mesh generated by these two utilities satisfies all requirements by OpenFOAM; the mesh quality
can be verified using the checkMesh utility, from which users are presented a summary of the mesh and
a number of different quality-control parameters such as mesh skewness and orthogonality. Based on
these results, users can make further decision on where the quality of the mesh is adequate to model the
continuum problem. Regarding this computational study, it involves external aerodynamics simulations,
in which the flow field around and the structural response of a 5:1 rectangular cylinder in the smooth
flow is modelled. Since the fluid is computationally modelled using the Large Eddy Simulation (LES),
the computational grid needs to be checked in terms of the skewness and orthogonality to ensure eddies
in the flow, particularly around the cylinder and in the wake region, to be resolved properly and not to be
substantially damped by additional diffusion resulting from a highly skewed non-orthogonal mesh. Also,
the mesh needs to offer easy accessibility to points and cells so that a dynamic mesh algorithm and a
structural solver can be proposed and implemented to the fluid solver to simulate the structural response.
The mesh generated by the snappyHexMesh is not a viable solution since the accessibility to grid points as
well as the control over the refinement and the consistency in cell sizes is restricted. On the other hand,
the polyMesh generated by the blockMesh utility contains several issues related to the computational
efficiency and accuracy. As a structured grid, the polyMesh can have high cell-density in regions where

it is unnecessary, which effectively reduces the overall efficiency, particularly for a 3D simulation. Also,
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for this study, it becomes apparent that it is impossible to maintain a relatively similar skewness across
the entire computational grid; there exists some regions of significant variation in skewness, which largely
impair the accuracy in solving the fluid. Therefore, a different method to generate the computational

grid was proposed such as

e A 2D Fluent .msh mesh was created using Workbench which is a mesh editor offered by Ansys;
this software gives users more freedom to control over the mesh quality as well as the consistency

across the entire computational grid,

e The OpenFOAM utility fluentMeshToFoam was used to import the .msh mesh file and converted

it into a 3D one-cell thick polyMesh-format mesh.

e A complete 3D mesh was created using the other OpenFOAM utility extrudeMesh. This util-
ity effectively stacks a number of the one-cell thick meshes together in a predefined direction.
These pieces of information together with the width of each one-cell thick mesh is defined in the

extrudeMeshDict file located in the system directory.

4.2.1 Domain Geometry

The domain geometry used in this computational study is illustrated in Figure 4.2; dimensions of the
domain geometry are expressed relative to the width B of the 5:1 rectangular cylinder. For the purposes
of this study, the width of the cylinder was selected to be B = 0.5 m and the depth was D = 0.1m. The
span-wise length of the cylinder as well as the length L of the domain varied between the static simulation

and the dynamic simulation, which will be discussed further in Section 4.2.2.
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Figure 4.2: Domain geometry and boundary conditions of selected patches.

In addition, some key boundary conditions are summarised in Figure 4.2. A zero gradient condition
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for velocity and a constant value of zero gauge pressure were imposed on the outlet. As for the inlet, a
non-zero z-component wind speed and a zero gradient condition for pressure were specified to simulate
smooth flow. The movingWallVelocity was applied on the surface of the model to accurately capture
a zero normal-to-wall velocity component, particularly in the dynamic simulation. The symmetryPlane
boundary condition was used for the two z patches. As for the two y patches, the cyclic boundary
condition was selected in the 3D static and heaving simulations. However, in the 3D bending simulation
where half of the first bending mode shape was modelled, the displacement of one of the y patches
limited the use of the cyclic boundary condition. Instead, the symmetryPlane boundary condition
was employed and the computational domain needed to be corrected to reduce the effect induced by
this boundary condition on the flow field around the region of interest. Further details of the boundary

condition on other patches are explained in later sections.

4.2.2 Computational Grid

As briefly mentioned before, the meshing operation to the domain geometry was conducted using ANSY'S-
Meshing within Workbench. This piece of software gives users more control over the refinement as well as
the consistency throughout the entire domain in terms of cell size, cell density and other quality-control
parameters such as skewness. It is noticed that, in this case, the outcome of the Workbench software
was a 3D one-cell thick Fluent .msh mesh, which will be imported and converted to a 3D mesh using

OpenFOAM utilities.

In Workbench, the domain geometry was constructed from 11 different blocks (Figure 4.3a). By as-
signing different face sizing values to each block and altering their dimensions, good consistency across
the mesh could be achieved and bad cells with high skewness and aspect ratio could be prevented. Values
of the face sizing for each block are summarised in Table 4.1, which effectively controlled the overall cell
size in all blocks. In addition, the cell size in the layer next to four surfaces of the model, i.e. Edges 1
to 4 (Figure 4.3b), was defined using the edge sizing as listed in Table 4.1. A 6-cell thick inflation layer
was imposed around these four edges, with the thickness of cells next to the wall of 1x10~3m and the
growth rate of 1.2. Also, along Edges 5 and 6, there was implemented another 5-cell thick inflation layer,

where the thickness of the first cell layer was 4x1072 m and the growth rate was 1.2.

The results of this meshing process was the domain geometry was discretised as a 3D one-cell thick
hybrid hexahedral grid as shown in Figure 4.4a. The grid contains a 6-cell thick structured grid imposed
around the model (Figure 4.4b), where the thickness of cells next to the model is Az/B =2 x 1072 and
grows by the ratio of 1.2. The constant discretisation in the along-wind direction is Az/B = 2Az/B.

The unstructured grid is used for the remaining part of the z-z plane. Upstream of the model, there
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exists a region of highly constant cell density and cell size, which allows eddies in the flow to be properly
resolved and maintained, particularly in case of the turbulence wind. In addition, the computational grid
was significantly finer around the model and in the wake so that any unsteadiness in these regions such

as shear layers and vortex shedding can be captured and modelled.
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Figure 4.3: Dimensions of (a) the overall computational domain geometry and (b)
the details of the geometry behind the model; unit is metre.

Table 4.1: Summary of the face sizing and edge sizing of the computational grid.

Face/Edge sizing Object Dimension
Block 1 2x107%m
L. Blocks 2 to 8 5x1072m

Face sizing
Block 9 4x107%2m
Blocks 10 and 11 4%x1073m
Edge sizing Edges 1 to 4 2x1073m
Edges 5 to 6 4x1073m
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Figure 4.4: The computational grid in the z-z plane (a) for the entire domain and
(b) zoomed-in around the leading edge.

By using the utility fluentMeshToFoam, this 3D one-cell thick hybrid hexahedral grid was then im-
ported to OpenFOAM. The 3D computational grid was constructed by effectively projecting this one-cell
thick grid along the y direction in a structured manner. This process could be achieved by using the
OpenFOAM utility extrudeMesh and the associated dictionary file extrudeMeshDict, where information
relating to the number of one-cell thick grids, nLayers, and the length of the domain, thickness are
defined. The rigid 5:1 rectangular cylinder or the 3D sectional model has the span-wise length of 3B; this
model will be used in both of the 3D static and heaving simulations. On the other hand, the flexible 5:1
rectangular cylinder or the 3D flexible model was designed as a cantilever having the span-wise length of
5B, which represented a half of the main span and was capable to simulate half of the first bending mode
shape; this model will be used in the 3D bending simulation. The use of the symmetryPlane boundary
condition on the two y patches can produce some suppression effect on the flow field on the mid-span
region; therefore, the span-wise length of the 3D flexible model was extended to 7B including a B long
abutment section which is an analogue of a static section and a B long extension at the mid span, as
shown in Figure 4.5. Due to the current limitation in the computational resources and the need to per-
form dynamic simulations at a number of wind speeds, the computational grid used in static simulations
has finer span-wise discretisation as compared to the ones used in dynamic simulations. Table 4.2 sum-
maries all differences between computational grids used in the three simulations; the effect of variation
in the span-wise discretisation on the fluid solution will be addressed and discussed in Section 4.4. As an

example, Figure 4.6 shows the computational grid used in the 3D heaving simulation.
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Figure 4.5: Schematic diagram of the 3D flexible model; L, = 5B is the half of the
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Figure 4.6: The computational grid used in the 3D heaving simulation.

Table 4.2: Summary of span-wise discretisation Ay/B, number of cells and boundary
conditions of y patches in three different simulations.

Simulations L/B Ay/B Number of layers

Boundary conditions

Number of cells of y patches

3D static simulations 3 0.02 150
3D heaving simulations 3 0.1 30

3D bending simulations 7 0.1 70

10.5 million cyclic

2.1 million cyclic

4.9 million symmetryPlane
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4.3 STATIC SIMULATION

The unsteady flow around the 5:1 rectangular cylinder is governed by the Navier-Stokes equations which
are modelled using a LES approach where the fluid governing equations are spatially filtered by the cell
size in an implicit manner. The sub-grid scale (SGS) viscosity is modelled by the use of the conventional
Smagorinsky SGS model. However, to avoid the overestimation of the Smagorinsky constant and to
account for the effects of convection, diffusion, production and destruction on the SGS velocity scale, an
additional transportation equation is embedded to determine the distribution of the kinetic energy of the

SGS eddies kSGS

d d _ d Oksas 5 g ks
= — . ) S, — C. -8G5 4.1
atpkscs + oz, pksast; oz, (MSGS oz, + 2156585585 — C, A (4.1)

where pusgs = pC’SGSAk}g/G%S7 the constant are set equal to C. = 1.048 and Csgs = 0.094 and A is the
characteristic length scale of the filter which is related to the mesh size and defined as the cubic root of
the cell volume. In addition, to remove the over-dissipation of the kinetic energy in the near-wall region,

a filtered width ¢ according to the van Driest approach is introduced as

yT
6min{A,ky (1 exp_lﬁ>}, (4.2)
Ca

where k = 0.4187 is the von Karman constant, Ca = 0.158 and AT = 26 are the van Driest constants
and y and yT are the normal distance and non-dimensional normal distance to the wall respectively. In
other words, in the near-wall region, the length scale of the filter is not essentially related to the mesh
cell size; the minimum value between A and the one obtained from the damping function in Equation

4.2 is locally adopted.

In a OpenFOAM case, this definition of the fluid problem is implemented via a number of dictionary

files in the constant directory.

4.3.1 constant Directory

The LES simulation was enabled by the dictionary file turbulenceProperties, where the keyword
simulationType was defined as LESModel. Properties and constants relating to the LES simulation were

given by the LESProperties dictionary file; a short summary of this file is:

LESModel Smagorinsky;
delta vanDriest;
vanDriestCoeffs

{
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delta cubeRootVol;

cubeRootVolCoeffs

{

deltaCoeff 1;
¥
Aplus 26;
Cdelta 0.158;

As being indicated by the entry LESModel, the Smagorinsky SGS model was selected to model the
SGS viscosity; it is noticed that in OpenFOAM, this SGS model is improved by the implementation of the
transportation equation as shown in Equation 4.1. Details of this implementation can be found in the fol-
lowing source files: Smagorinsky.H, Smagorinsky.C, GenEddyVisc.H and GenEddyVisc.C located in the
directory $FOAM_SRC\turbulenceModels\incompressible\LES\. The length scale of the implicit filtering
function was calculated using the van Driest approach as indicated by selecting vanDriest for the keyword
delta. All required coeflicients were then defined in the subdictionary vanDriestCoeffs; detailed expla-
nation for this function can be found in $FOAM_SRC\turbulenceModels\incompressible\LES\vanDriestDelta).

1

The fluid was classified as Newtonian and the kinematic viscosity was given by v = 1.5 x 107> m? s~ !, as

defined in the dictionary file transportProperties.

4.3.2 0 Directory

In the 0 directory, three dictionary files defined the boundary conditions including p, U and nuSgs, which
corresponds to pressure, velocity and SGS viscosity. In addition to the boundary conditions of pressure
and velocity stated in Section 4.2.1, a (0,0,0) velocity and a zero gradient condition for pressure was
imposed on the surface of the model. As for the SGS viscosity nuSgs, the boundary condition type
calculated was used on the inlet and on the surface of the model while a zero gradient of SGS viscosity,

zeroGradient, was imposed on the outlet of the computational domain.

The non-zero z-component wind speed u of the static simulation was defined in the dictionary file U
as

internalField uniform (u 0 0);

boundaryField

{

inlet
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type fixedValue;

value unform (u 0 0);

}

where the wind speed of the simulation was given by the value of u. The static simulation was repeated

at three different wind speeds: 1, 2 and 4ms™1!.

4.3.3 system Directory

All subdictionaries and keywords in the fvSchemes dictionary file are summarised as:
ddtSchemes

{

default backward;

}

gradSchemes

{

default celllLimited Gauss linear 1;

}

divSchemes

{

default none;
div(phi,U) Gauss limitedLinearV 1;
div(nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default none;

laplacian(nuEff,U) Gauss linear corrected;
laplacian((1]AC(U)),p) Gauss linear corrected;
laplacian(DKEff,k) Gauss linear corrected;
laplacian(DBEff,B) Gauss linear corrected;
laplacian(DnuTildaEff ,nuTila) Gauss linear corrected;

}

interpolationSchemes

{

default linear;
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}

snGradSchemes

{

default corrected;

The numerical schemes used to discrete the governing equations were defined in the subdictionaries
gradSchemes, divSchemes and laplancianSchemes, which are corresponding to the gradient, diver-
gence and laplacian terms respectively. Based on these entries, it was decided to spatially discretise
the governing equations using the second-order schemes; the limited linear scheme was applied to the
divergence term while the second-order central differencing scheme was used to the laplacian term. As
for the temporal discretisation, the backward difference scheme was selected; based on OpenFOAM’s
development, this scheme is classified as a implicit and second-order accurate scheme. However, due to
the fact that the pressure field and the velocity field are solved in a staggered manner, this time scheme
is essentially semi-implicit only. For this very reason, the solution of the pressure and velocity fields
were selected to be under-relaxed, which was defined in the relaxationFactors subdictionary in the
fvSolution dictionary file. The relaxation factor of the pressure field was 0.3 while the one applied
to the velocity field was equal 0.7. This factor effectively reduces the amount which a solution varies
from one iteration to the next one, which effectively improves the stability of the numerical compu-
tation. Also, to increase the stability of the solution without compromising the efficiency of transient
simulations, the pressure-velocity coupling was achieved by means of the PIMPLE algorithm, which is
merged PISO-SIMPLE solver, which is known as the pimpleFoam solver in OpenFOAM. It performs two
PISO loops, in each of which, the pressure undergoes another correction; this leads to better coupling
between pressure and velocity and allows bigger time-steps and Courant numbers. These settings were
defined in the keywords nCorrectors (controlling numbers of pressure corrections in each PISO loop)
and nOuterCorrectors (controlling numbers of PISO loops) under the subdirectory PIMPLE. Also, due to
the use of unstructured grid which was mostly non orthogonal around the model and in the wake region,
the keyword nNonOrthogonalCorrector was set to equal 1. Other control parameters of solvers applied

to the governing equations are listed in the fvSolution dictionary file as

p

solver GAMG;
tolerance le-6;
relTol 0.1;
smoother GaussSeidel;
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}

nPreSweeps
nPostSweeps
cacheAgglomeration
agglomerator
nCellsInCoarestLevel

mergelLevels

pFinal

{

solver

tolerance

relTol

smoother
nPreSweeps
nPostSweeps
cacheAgglomeration
agglomerator

nCellsInCoarestLevel

mergelevels

}

)

{
solver
preconditioner
tolerance
relTol

}

UFinal

{
solver
preconditioner
tolerance
relTol

on;
faceAreaPair;
10;

1;

GAMG;
le-6;
0.1;
GaussSeidel;
0;
2;
on;
faceAreaPair;
10;

1

PBiCG;
DILU;
le-6;

0.01;

PBiCG;
DILU;

le-6;
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solver PBiCG;
preconditioner DILU;

tolerance le-6;
relTol 0;

omega

solver PBiCG;
preconditioner DILU;

tolerance le-6;
relTol 0;

R

solver PBiCG;
preconditioner DILU;

tolerance le-6;
relTol 0;

}

where the method of geometric-algebraic multi-grid (GAMG) was selected to solve for the pressure field;
with this solver, the pressure field, which used to be the bottleneck in these simulations, could be achieved
in a timely-fashion manner without compromising its accuracy comparing with standard solvers. The
preconditioned bi-conjugate gradient method (PBiCG) was used to obtain the velocity solution. Further

information on these two solvers can be found in the OpenFOAM-2.2.2 manual (OpenFOAM, 2013).

The non-dimensional time-step At* = AtU/B (At is the time-step and U is the upstream wind
speed) was set equal to 2 x 1073; the time-step was defined in the keyword deltaT in the dictionary
file controlDict. The simulating time for simulations was controlled by the keywords startTime and
endTime under the same dictionary file. The entries for these keywords were varied depending on the
wind speed such that each simulation was extended over 80 non-dimensional time to obtain converged

statistics and data in further 120 non-dimensional time was used to perform analysis.

In the controlDict dictionary file, the OpenFOAM function forceCoeffs was enabled in order to

calculate coefficients of the force and moment acting on the model. Also, probes functions were used to
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sample the pressure on the surface of the model and the velocity in wake region at a distance B behind
the model and a distance D/2 above the top surface. This latter point was chosen in a region that would
allow us to sense the presence of vortices being shed from the model. All the on-the-fly sampling processes

in the static simulation mentioned here were conducted at every time-step.

All static simulations were conducted in parallel on the High Performance Computer (HPC) at
the University of Nottingham. Using the simple decomposition method and the OpenFOAM utility
decomposePar, the computational domains in the static simulation was divided into 32 sub-domains hav-
ing relatively similar numbers of cells; the number of sub-domains is defined in the keyword number0fSubdomains
in the dictionary file decomposeParDict. Each sub-domain was assigned to a processor on the HPC; to
minimise the number of faces sharing between two processors, i.e. to maximise the computational speed,
the domain was separated into 8 blocks along the z direction, 2 blocks along the y direction and 2 blocks
along the z direction. Based on the requirement of the physical time, each static simulation took from 1

to 1.5 months to produce adequately reliable data for further analysis.

4.4 MESH SENSITIVITY STUDY

Before discussing methodologies to perform the dynamic simulation, the reader is reminded that there ex-
ists a difference in the computational domain used in the static simulation and in the dynamic simulation.
The former utilises the grid having the span-wise discretisation level of Ay/B = 0.02 while, in both of the
heaving and bending simulation, the span-wise discretisation of the computational domain is 5 times as
coarse, Ay/B = 0.1. As mentioned in Section 4.2.2, this selection was due to the limitation in the com-

putational resources and the need to perform the dynamic simulations across a large range of wind speeds.

It is of importance to study the effect of the span-wise discretisation of the computational domain on
the flow field being modelled by LES; the method and results of this so-called mesh sensitivity study are
presented in this section. It should be noticed that a similar study is normally required to investigate
the discretisation on the z-z plane or at least around the model. However, in this computational study,
the sensitivity study focused on the discretisation level along the span-wise direction, i.e. the y direction,
only. It was because an adequate span-wise discretisation is required to accurately capture the emerging
span-wise flow feature which is expected to observe in the bending simulation. In addition, the cell density
in the x-z plane, particularly cell sizes around the model and in the wake region, is strongly restricted

by the computational resources and the objectives of the computational study.
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4.4.1 Method

The domain geometry used in the static simulation including the length of the domain L = 3B and the
boundary condition of the y patches was applied in this mesh sensitivity study. Using the OpenFOAM
utility extrudeMesh and the dictionary file extrudeMeshDict, four computational grid with different
span-wise discretisation levels were created as shown in Table 4.3; the discretisation level used in Grids

G2 and G4 was applied in the static simulation and the dynamic simulation respectively.

Table 4.3: Computational grids in the mesh sensitivity study.

Grid  Ay/B  Number of layers

Gl 0.01 300
G2 0.02 150
G3 0.04 (0]
G4 0.1 30

The mesh sensitivity study was conducted on a static rectangular cylinder at the wind speed of 1ms™".

The discretisation schemes, the solvers’ settings and the initial conditions were defined similar to those
applied in the static simulation as described in Section 4.3. The Strouhal number, St, was the fluid
parameter selected to assess the mesh sensitivity. This parameter was determined based on the spectral

analysis of the lift force coefficient acting on the model identified by the OpenFOAM utility forceCoeffs

4.4.2 Results

Figure 4.7 shows the variation of the Strouhal number on the normalised cell size in the y direction. The
overall trend is that, using a computational domain having coarse span-wise discretisation, the numerical
solution predicted a smaller value of the Strouhal number. Comparing with results from literature such as
St = 0.555 measured in wind tunnel tests conducted by Schewe (2013), all of these values are acceptable,

particularly for the grid G2, G3 and G4 where the percentage differences are less than 10%.

136



CHAPTER 4. METHODOLOGY: CFD SIMULATION

0.66

0.64

0.62 1

0.6

o 058F i

0.56

0.52

0-5 1 1 1 1 1
0.2 0.25 0.3 0.35 04 0.45 05

(Ay/B)"?

Figure 4.7: Variability of the Strouhal number, St, against the quantity, (Ay/B)/3,
which is proportional to the filtering width.

Based on Roache (1997), a CFD such as static and dynamic simulations presented here is accompanied
by a number of uncertainties; one of them is directly related to the spatial discretisation of the compu-
tational domain. A standard method to estimate uncertainties due to discretisation has been reported
in Celik et al. (2008), where the so-called discretisation error is calculated based on completely solved
solutions obtained from either coarser or finer grids and is expressed via the Grid Convergence Index
(GCI). This method is called the Grid Convergence Method and a detailed description of the underlying
mathematical background is introduced in Roache (1997). In the computational study presented here,
the numerical uncertainties associated with the span-wise discretisation of the computational domains in
the static and dynamic simulations were estimated by using the values of the Strouhal number obtained
from Grids G2, G3 and G4 while the quantities (Ay)'/? was proportional to the filtering width. As a
result, the static simulation was found to have a numerical uncertainty of GCIZ>, = 11% while that in
the dynamic simulation was estimated to be GCIa, .. = 28%.

The Grid Convergence Method shows that the use of coarse span-wise discretisation level in the dy-
namic simulation yielded more than double numerical uncertainties than the static simulation. This
result, together with the prediction of the Strouhal number, highlights some fundamental difference in
the aerodynamic characteristics of the flow field around the cylinder being modelled in the static and dy-
namic simulation, which will need to be considered when analysing computational results. Nevertheless,

compared to an extensive review in BARC (Bruno et al., 2014), the Strouhal number predicted by Grid
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G4 having the same discretisation level as the dynamic simulation in the span-wise direction is within an

acceptable range of both wind tunnel results and numerical results.

Figure 4.8a presents four profiles of the surface pressure distribution predicted from these simulations
in a comparison against the benchmark data obtained from BARC (Bruno et al., 2014). The benchmark
data is calculated from a number of selected computational studies is plotted as boxes in each of which

5t percentiles, the red line is the median and two

the lower and upper ends represent the 25" and 7
whiskers are the envelops of all data. All profiles including the benchmark data are plotted against the
coordinate, s, measured from the stagnation point on the front face and normalised using the depth D.
As for the time-averaged pressure coefficient C), (Figure 4.8a), all four profiles lie within the BARC en-
velops. There is a slight variation in the length of the separation bubble as well as the reattachment point,
which can also be inferred from Figure 4.8b showing the standard deviation of the time-varying pressure
coefficient CZ’,. The pressure fluctuation inside the separation bubble modelled in four simulations is in
a good agreement with each other and with the BARC data; however, the reattachment or the pressure
recovery region shows more scatter between four grids. The overall trend is that a coarse grid predicted

higher pressure fluctuation; results obtained from Grids G3 and G4 were about 5% to 30% larger than

the upper envelope of the BARC data.
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Figure 4.8: The surface distribution of (a) the time-averaged pressure coefficient
Cp and (b) the standard deviation of the time-varying pressure coefficient C;) in a
comparison against BARC data.

Results of the Mesh Convergence Study as well as the analysis of the surface pressure distribution
against the BARC data showed that the use of a coarse grid having the span-wise discretisation level
similar Grid G4 in dynamic simulations led to some alteration in the aerodynamics of the flow field around
the rectangular cylinder and over-prediction of the surface pressure fluctuation in the reattachment region.
Based on the performance of Grid G1, it was suggested that a grid with high cell density not only in
the span-wise direction but also in the z-z plane should be proposed. This issue has been noticed during
the initial stage of the computational study. Recalling the aim and objectives where the VIV of a
flexible rectangular cylinder excited at the first bending model is modelled and considering the available
computational power, using a finer grid will create a substantial bottleneck in this study. The approach
regarding the computation grid as mentioned in Section 4.2.2 will be applied and all issues discussed in
this section will be considered as limitation of the computational study and will be fully addressed in

later discussion.
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4.5 DYNAMIC SIMULATION

In the dynamic simulation, the fluid-structure interaction (FSI) problem was modelled by the use of the
Arbitrary Lagrangian-Eulerian (ALE) algorithm which helps eliminate the disadvantages of the conven-
tional Lagrangian and Eulerian methods in modelling problems involving excessive distortion of contin-
uum (either the fluid or structure) (Donea et al., 2004). The ALE algorithm however introduces the

convection effect due to the motion of the grid nodes which must be embedded into the LES model as

0 )

a(ul @) =0, (4.3)
D i D iy D o 0wy
530+ gty 1= 1) = =5+ 2 (e wsas) (5 + 52 )] (1.4)

where @ is the velocity of the grid nodes. The implementation of the ALE algorithm in a dynamic CFD
simulation involves a coupling between three different solvers: the fluid solver that handles the Navier-
Stokes equations, the structural solver which is responsible for determining the structural deformation or
displacement based on the fluid forces and the dynamic mesh solver or algorithm which deals with moving
the grid nodes to accommodate the displacement or deformation of the structure without impairing the

accuracy of the fluid solver.

4.5.1 Fluid Solver

The unsteady flow field around the dynamic model was solved by the use of the OpenFOAM’s existing
solver pimpleDyMFoam. Similar to the solver pimpleFoam used in the static simulation, by OpenFOAM,
this solver is classified as the transient solver for incompressible and Newtonian fluids in a moving mesh.
The convection effect induced by the relative motion between the fluid and the continuum as described
in Equations 4.3 and 4.4 is calculated by the use of the functions fvc::makeAbsolute(phi,U) and
fvc::makeRelative(phi,U) as well as the inclusion of the correctPhi.H header file to correct for
pressure and velocity across the boundaries. Further details about this solver could be found in the source
file pimpleDyMFoam.C. Control parameters regarding the fluid solver were defined in the dictionary file
fvSolution similar to the one used in the static simulation except some differences as summarised here

pcorr

{

solver GAMG;
tolerance le-6;

relTol 0.1;
smoother GaussSeidel;
nPreSweeps 0;
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nPostSweeps
cacheAgglomeration
agglomerator

nCellsInCoarestLevel

mergelevels
}
p
$pcorr
tolerance
relTol

pFinal

$p
tolerance

relTol

}

2;

on;
faceAreaPair;
10;

1;

le-7;

0.1;

le-7;

and the solver pimpleDyMFoam were defined as

PIMPLE

{
correctPhi
nOuterCorrectors

nCorrectors

nNonOrthogonalCorrectors

All numerical spatial and temporal discretisation schemes used on the fluid governing equations as
stated in the dictionary file fvSchemes were selected to be similar to the static simulation and maintained
their second-order accuracy. In order to accurately model the zero velocity on the surface of the model,

the movingWallVelovity boundary condition was applied with a constant vector as (0 0 0).

The structural solver and the dynamic mesh algorithm is also inherently included in the pimpleDyMFoam
solver. The use of the header file dynamicFvMesh.H provides necessary environment for the the dynamic

mesh solver to be implemented; the process of calculating new positions of the grid nodes and updating
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the whole mesh is performed by the member function mesh.update (). OpenFOAM provides a number of
different dynamic mesh solvers, some of which are capable to simulate a six-degree-of-freedom motion of
a rigid model. The flexibility in modify these source codes is limited; therefore, it is required a separate
set of a structural solver and a dynamic mesh algorithm to simulate both of the heaving motion of a rigid

model and the bending motion of a flexible model.

Based on the dynamic mesh class Foam: :dynamicInkFvMesh, two new OpenFOAM dynamic mesh
classes were developed: Foam: :dynamicHeavingFreeUDFFvMesh and Foam: : dynamicBendingFreeUDFFvMesh,
which were used to simulate the response of a rigid model and a flexible model respectively. Each dynamic
mesh class contains a .H header file and a .C source file which contains C+-+ programmes to solve for
the structural response and to move the grid nodes. Similar to a normal C++ source codes, as can be
seen in Sections A.1.1 and A.1.2, the two source files contain similar constructors where key informa-
tion required by the dynamic simulation is read. They include the key dimension of the computational
domain (explained in Section 4.5.3) as well as the structural parameters such as mass, damping ratio
and natural frequency and the initial structural response (explained in Section 4.5.2), these pieces of
information are stored in the dictionary file dynamicMeshDict located under the constant dictionary.
In Sections 4.5.2 and subsec:CFDSimulation:DynamicSimulation:DynamicMeshAlgorithm following, the
development of the structural solver and the dynamic mesh algorithm are presented. Their integra-
tion into the OpenFOAM existing fluid solver pimpleDyMFoam is discussed using the dynamic mesh class
Foam:dynamicBendingFreeUDFFvMesh as an example. Some alteration regarding the other dynamic mesh

class Foam:dynamicHeavingFreeUDFFvMesh will be then noticed.

4.5.2 Structural Solver

One of the objectives of the dynamic simulation is to model structural responses of a flexible 5:1 rectan-
gular cylinder undergoing the VIV. Some assumptions were introduced to simplify the structural solver.
The dynamic properties of the bridge such as mass, damping ratio and natural frequencies of the bending
modes were prescribed and only the first bending mode was modelled. Due to the limitation of the
computational resources, only a portion was simulated as illustrated in Figure 4.5; L is the length of the
flexible model simulated while L, is half of the main span. In this section, the theory and the numerical
scheme implemented to solve the structural equations are discussed. Some preliminary tests were carried

out in order to validate the structural solver.
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Theory and Numerical Scheme

The single-degree-of-freedom equation of motion of the model is expressed in the spatial and temporal

domain with respect to the coordinate system shown in Figure 4.5 as

mZ(y,t) + cz(y, t) + kz(y,t) = f(y,1), (4.5)

where m, ¢ and k is the mass, damping coefficient and stiffness of the model, f(y,t) is the force acting
on the model, z(y,t), 2(y,t) and Z(y, t) are the displacement, velocity and acceleration in the z direction
of a material point locating the y position at the time ¢ respectively. The displacement z(y,t) can then
be rewritten as a summation of multiplication of the spatial modal function ®;(y) and the time-varying

displacement amplitude Z;(t) of the ¢ mode

N

2t) = Y 2y)E (). (46)

i=1
Here, only the first mode shape is taken into account which is ®(y) = ®,sin [(7y)/(2L,)]; applying
this method, Equation 4.5 is transformed into the generalised equation of motion in the generalised

coordinate system as

MZE(t) + C5(t) + K2(t) = F(t), (4.7)
with

L
M=m | [@(y)]” dy, (4.8)
C = 2w (M, (4.9)

L 2

K =51 [ @) d. (4.10)

0

L
F=f ; (@(y)] dy, (4.11)

where M is the generalised mass, C is the generalised damping, K is the generalised flexural stiffness and
F is the generalised force acting on the model, m and f are the mass and force per unit length respectively,
ET is the multiplication of Young’s modulus and second moment of area. The modal coefficient ®, can

be selected such that M = 1 which yields a simplified generalised equation of motion as

Z(t) 4 2w CE(t) + w2E(t) = F(1). (4.12)

143



CHAPTER 4. METHODOLOGY: CFD SIMULATION

with ( is the damping ratio. Equation 4.12 can then be discretised and solved numerically using the

first-order backward Euler method

5(tn-‘rl) = F(t,) — QWnCZL(tn) + wié(tn)’ (4.13)
F(tny1) = 2(tn) + AtZ(tni1), (4.14)
F(tng1) = 2(tn) + AtZ(tpi1), (4.15)

Here, Z(t,11), Z(tns1) and Z(t,41) are the generalised displacement, velocity and acceleration at the
time step t,11, 2(tn), 2(tn) and Z(¢,) are the generalised displacement, velocity and acceleration at the
time step t,,, F(t,) is the generalised force acting on the bridge at the time step ¢, and At is the time-step

size.
Validation of Structural Solver

In this section, a test case is set up in order to validate the numerical scheme proposed above. A
dynamic study of an object having the mass m = 6kg is performed; this object is suspended by a lin-
ear spring such that the natural frequency of the system is f,, = 1.2Hz. A sinusoidal force with the
maximum amplitude F, = 0.2N and a variable frequency is applied on the object at different damping
conditions. The aim of this study is to predict the dynamic responses including the amplitude and phase
of the oscillation at different frequencies of the applying force wp and different damping ratios . The
dynamic response of the object is predicted by using the first-order backward Euler method as shown
in Equations 4.13 to 4.15. In addition, other numerical schemes such as the improved Euler and the
fourth-order Adam-Bashforth schemes are also implemented; the results obtained from three schemes are

compared together and against the analytical solution.

The analytical response of this system is expressed as

sin ¢ — wp cos ¢

Zanalytical = exp?t {A sin ¢ cos (w1t) + A sin (w1t) | + Asin (wpt — @), (4.16)

W

with 4 = Lo ! , (4.17)
(@2 - w2)? + 457

B = Cwn, (4.18)

w1 = \wz — B, (4.19)

¢ =tan"' [(2Bwp) / (wi —wi)] . (4.20)
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Here, w,, is the natural circular frequency of the system and ¢ is the phase lag between the applying
force and the displacement. The analytical solutions regarding the variation of the normalised amplitude
and phase of the oscillation with respect to the frequency of the applying force and the damping ratio

are illustrated in Figure 4.9.
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Figure 4.9: Variation of the analytical solutions including (a) the normalised ampli-
tude and (b) phase of the oscillation with respect to the normalised frequency of the
applying force f/f, at different values of the damping ratio (.

The numerical results predicted by the use of the backward Euler method are shown in Figure 4.10.
They showed a good agreement with the analytical solutions. Also, the numerical responses predicted
by the use of the improved Euler method or the fourth-order Adam Bashforth method are shown in Fig-
ure 4.11. The overall trend of the variation of the response with respect to the frequency of the applying
force and the damping ratio was observed. However, these two schemes overpredicted the response of
the oscillation at the frequencies close to the natural frequency of the system. These two schemes are
classified as the explicit or semi-explicit scheme; therefore, they cannot accurately model the motion of

a spring-mass-damper system which is essentially an implicit problem.
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Figure 4.10: Variation of (a) the numerical normalised amplitude and (b) phase of
the oscillation solved by the backward Euler method with respect to the normalised
frequency of the applying force f/f, at different values of the damping ratio ¢.
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Figure 4.11: Variation of the numerical normalised amplitude solved by (a) the
Adam-Bashforth method and (b) the improved Euler method with respect to the nor-
malised frequency of the applying force f/f, at different values of the damping ratio

¢.

In conclusion, the proposed numerical structural solver with the use of the backward Euler method
has been validated by a study of the dynamic response of a simple mass-spring-damper system. This
scheme was observed to be capable to model the amplitude and phase of the response due to its ability

to simulate the inherent implicit characteristics of the structural system.
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OpenFOAM Implementation

As was briefly mentioned above, the key structural parameters such as the natural frequency, the
damping ratio, the modal coefficient, the density of the fluid and the viscosity are defined in the dic-
tionary file dynamicMeshDict located in the constant directory. Also, this file contains the structural
response including the displacement, velocity and acceleration measured at the final time instance from
the previous dynamic simulation. The constructors which is from the code line 46 to 103 of the source
code dynamicBendingFreeUDFFvMesh.c as attached in Section A.1.2 read these parameters and store

them in the variable fnb, quib, phiO, rho_, nu_, z_n, zdot_n, zddot n and tn respectively.

The member function Foam::dynamicBendingFreeUDFFvMesh: :update() contains three separate
pieces of codes which are structurally linked together as shown in Figure 4.12. In the first part, the
lift force FL n, drag force FD_n and moment around the centre of gravity M.n at the time step tn are
calculated; these results are then printed into the log files. This part corresponds to the code line 113
to 211 and was adopted from the source file forceCoeffs.C of the OpenFOAM utility forceCoeffs, by
which the six components of forces and moments acting on all mesh faces of the model were calculated.
However, as for the flexible model, forces and moments acting on the abutment section, i.e. the static
section, needed to be removed. This was achieved by the introduction of the scalar field function, which
took the value of 1 for all faces belong to the main span of the model and the value of 0 for all faces

belong to the static section. This process can be seen from the code line 136 to 153.

PART 1
Forces and moment calculation

I

Lift force FL_n
Drag force FD_n
MomentM n

log file

A

Inputting lift force FL._n

A 4
PART 2

Structural solver

v

Displacement z_n
Velocity zdot_n
Acceleration zddot_n

Inputting displacement z_n

v
PART 3

Moving node algorithm

Move grid nodes

Figure 4.12: Flow chart of the member function in the source codes
dynamicBendingFreeUDFFvMesh.C.
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After that, the lift force FL_n was input into the second part, i.e. the structural solver, where the
spatial-dependent lift force was transformed into the generalised lift force F and used to evaluate the gen-
eralised acceleration zddot_n1, velocity zdot_n1 and displacement zdot_n1 of the model at this current
time step t_n. These operations were implemented as shown from the code line 212 to 240. Also, these
results were outputted to the log file and then stored so that they could be recalled in the next time
step as observed from the code line 304 to 310 . The generalised displacement z nl1 was applied in the

third part, i.e. the moving node algorithm, to displace the grid nodes according to the structural response.

As for the rigid model, a similar routine with some alteration was applied. Instead of using the modal
coefficient, the mass of the model was directly prescribed. Also, the scalar field function was ignored
since fluid forces calculating on all mesh faces of the model were accountable to the forces and moment

acting on the model.

4.5.3 Dynamic Mesh Algorithm

In the dynamic simulation, the displacement of the rigid model or the flexible model undergoing the
VIV lock-in is about 10% of the depth of the cross section; therefore, the mesh experiences relatively
small deformation. Also, since the geometry of the mesh is simple, the lineal spring-analogy algorithm
first proposed by Batina (1990) was adopted to model the motion of the grid nodes to accommodate the

displacement of the model but still maintain good cell quality.

In the proposed dynamic mesh algorithm, the computational domain is divided into 9 separate blocks
as shown in Figure 4.13. Blocks 8 and 9 are rigid where all grid nodes are effectively fixed relative to the
model. The other blocks are grouped into a buffer zone where cells are allowed to deform to facilitate the
displacement of the model. As for the algorithm to displace the grid nodes in the buffer zone, the edges
of the mesh are modelled to behave like linear springs connecting mesh vertices; the stiffness of springs
is inversely proportional to the length of the edges. In addition, the grid nodes on the outer boundaries
of the mesh such as the two z patches and two y patches are held fixed whereas the ones on the model

are fixed relatively to the moving boundary.
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Figure 4.13: Illustration of 9 different blocks in the computational domain; dimen-

sions are in metres.

Using the coordinate system and key dimensions of each block as indicated in Figure 4.13, assuming

the displacement of the model at the position y is Z, the grid node at the position (z,,yp, 2p) needs to

be displaced by a distance Az as

Blocks 8 and 9 (Rigid zone):

Blocks 1 and 2 (Buffer zone):
Block 3 (Buffer zone):
Block 3 (Buffer zone):
Block 3 (Buffer zone):

Blocks 1 and 2 (Buffer zone):

Az =17,
D1+D272’

Ar=zZt 2%
z D1 s

X —Bg D1+D2—Z
Az=Z(1-"2L £
: ( By ) D, ’

€T —B3
Ar=27(1-22_—"°
: ( By )’

X 7B3 D3+D4+Z
Az=27(1-"2 L
: ( By ) Dy ’
A2227D3+D4+Zp

D, '

(4.21)

(4.22)
(4.23)
(4.24)
(4.25)

(4.26)

The code line 241 to 303 as shown in Section A.1.2 illustrate the implementation of Equations 4.21

to 4.26 into the member function Foam: :dynamicBendingFreeUDFFvMesh: :update(). The key dimen-

sions as illustrated in Figure 4.13 are pre-defined in the dynamicMeshDict located at the constant

directory as B1, B2, B3, B4, D1, D2, D3 and D4. They are loaded at the start of a dynamic simulation

together with the position of all grid nodes at the time 0, which is stored into the variable zeroPoints_

and remained unchanged throughout the simulation. After all of these calculation, the new position

of all grid nodes are stored in the new variable zeroPoints and the fvMesh class’s member function

fvMesh: :movePoints (zeroPoints) will be applied to relocate the grid nodes (the code line 318).
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Similar implementation can be found in the source code dynamicHeavingFreeUDFFvMesh.C attached
in Section A.1.1. It should be noticed that, as for the rigid model, there was no need to apply the first

bending mode shape to determine the structural response at different span-wise positions.

4.5.4 Coupling Scheme

The use of the pimpleDyMFoam solver together with the two proposed dynamic mesh classes implies that
the conventional serial staggered algorithm was applied to model the coupling between the fluid, structure

and the dynamic mesh. This method was discussed in Section 3.8.3 and is illustrated in Figure 3.9.

A number of reviews have pointed out the loose coupling of this algorithm which is responsible for its
instability and the need of a small time-step. Some improvements have been proposed but they can be
overshadowed by an increase in the computational power. However, based on Farhat et al. (2006), the use
of the second-order numerical schemes in solving the fluid governing equations can preserve the stability
of this scheme without complicating the computational implementation and increasing the computational

cost.

4.5.5 constant Directory

In the dynamic simulation, the constant directory had a similar file structure and keyword’s entries as
those applied in the static simulation except the appearance of the addition dictionary file dynamicMeshDict.
This file contains pieces of information and parameters required by the two new developed dynamic mesh
classes introduced in Sections 4.5.2 and 4.5.3. An example of the dynamicMeshDict used in the bending

simulation is

FoamFile
{
version 2.0;
format ascii;
class dictionary;
object dynamicMeshDict;
}

J/ % ok x k ok k ok k ok k ok k ok k ok k k k k k k k k k k *k k *k *k *k *k * * *x *x *x *x //
dynamicFvMeshLibs ("libdynamicBendingFreeUDFFvMesh.so");

dynamicFvMesh dynamicBendingFreeUDFFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

dynamicBendingFreeUDFFvMeshCoeffs

{
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// Dimensions are in SI units

// Key dimensions of the computational domain

Bl

B2

B3

B4

D1

D2

D3

D4

0.65;
0.35;

2.75;

// Structural parameters of the flexible model

L

LO
fnb
quib
phiO
rho

nu

3;
2.5;
1.2;
0.01;
0.363

1.225

’

’

//Full length of the model

//Half of the main span of the model
//Natural frequency of the bending mode
//Damping ratio

//Modal coefficient

//Fluid density

0.0000146; //Kinematic viscosity of the fluid

// Parameters for the forces and moment calculation

patche
patch
pName

UName

S

1iftDir

dragDir

pitchAxis

CofR

(bridge) ;

bridge;

P;
U;
©
(1
©

(0

0 1);
0 0);
10);

.25 1.5 0);

// Structural response from the previous time-step

z_0
zdot_0
zddot_

t_0

-0.00671367517;

-0.0365478739;

0 0.3622957463;

148.7;

The flexible model was prescribed such that the natural frequency fnb was 1.2 Hz and the damping ratio

quib was 0.01. The model coefficient phi0O was selected to be 0.363 so that the generalised mass was
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calculated to be unit. As discussed in Section 4.2.1, the full length of the flexible model L except the

static section was 3 m or 6B while half of the main span where the flow field was of interest was 2.5 m or 5B.

The final part effectively contains the solutions of the displacement, velocity and acceleration at the
final time instance before a dynamic simulation is terminated. These pieces of information allow a dy-
namic simulation to be restarted. If a dynamic simulation is run for the first time, i.e. t_0 equals to 0,

z_0, zdot_0 and zddot_0 are set to O also.

As for the heaving simulation, similar keywords and entries were used except that, instead of the the
modal coefficient, the mass of the rigid model mass was defined as 6.56. Also, LO was ignored and the

full length of the model L was set to be 1.5.

4.5.6 0 Directory

The boundary conditions as well as the initial conditions for the dynamic simulation were defined using
the same method as described in Section 4.3.2 in the static simulation. However, as was mentioned
in Section 4.2.1, the symmetryPlane boundary condition was applied to the two y patches. Also, the
movingWallVelocity with a constant and uniform zero velocity was implemented on the surface of the
rigid model and the flexible model to accurately capture the zero normal-to-wall velocity component.
For both of the heaving and bending simulation, the wind speed was increased from 0.1 to 2.5ms™".
Due to the lack of the computational resources, it was decided to start each dynamic simulation when
the rigid or flexible model was at its equilibrium positions. This set up could lead to a limitation that

the hysteresis of the fluid and structure system was not properly captured.

4.5.7 system Directory

The discretisation schemes together with the control parameters of the fluid solver were discussed in
Section 4.5.1. The physical time of each dynamic simulation was selected to be similar to that applied in
the static simulation; this was found to be sufficient for the transient period to settle down and for the

fluid and structure solutions to reach the stable oscillatory state.

Since the implemented structural solver is able to produce the forces and moment acting on the model,
the OpenFOAM function forceCoeffs was disabled. The OpenFOAM function probes was still used
to sample the surface pressure around the model as well as the wind velocity in the wake region during
the simulation at every time-step. Due to the oscillation of the model, the probes sampling the surface

pressure must be fixed relatively to the model or locked to the cell next to the model. This was achieved
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by following these steps
e Switching the default entry of the keyword fixedLocation to false,

e Defining the keyword probePoints holding the position of original probes when the model is at its

equilibrium positions,

e Calculating entries for the keyword probeLocations using the #codeStream as following, taking

the bending simulation as an example,

#include "motionProperties";
zBridge $z_0;
phiO $phio;
LO $LO;
probelocations #codeStream
{

codeInclude

#{

#include "pointField.H"

#};

code

#{

pointField probePoints;

scalar zBridge;
scalar phiO;
scalar LO;

dict.lookup("probePoint") >> probePoints;
dict.lookup("zBridge") >> zBridge;
dict.lookup("phiO") >> phiO;
dict.lookup("L") >> L;

dict.lookup("LO") >> LO;

forAll (probePoints, pointI)

{

scalar probePointY = probePoints[pointI].component(1);

scalar scaledFactor = phiO*::sin(constant::mathematical::pi/(2*L0)
*probePointY) ;
scalar probePointDz = zBridge*scaledFactor;

probePoints [pointI].component(2) += probePointDz;
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X
os << probePoints;
#};

};

At first, as indicated in the code line 2 to 4, the dictionary file motionProperites located in the system
directory is merged, where the generalised displacement of the model at the final time instance of the
previous bending simulation zBridge, the modal coefficient phiO and half of the main span LO are
loaded; the last two variables were mentioned in Section 4.5.5. These variables are then transferred into
the #codeStream, where the z coordinates of original probes are corrected by the displacement of the
model at the corresponding y position. This was implemented as shown by the code lines 24 to 27.
Results are then printed out as entries to the keyword probeLocations using the OpenFOAM function
os << probePoints. It should be noticed that this approach was only applicable for sampling the
surface pressure around the model only; also, similar routine could be applied for the heaving simulation

with the structural mode shape being neglected.

Similar to the static simulation, all dynamic simulations were conducted in parallel using the HPC at
the University of Nottingham. Due to different numbers of cells, one heaving simulation was computed
on 32 processors while 64 processors were utilised to perform one bending simulation. The computational
domain used in the heaving simulation was decomposed using the same method as the static simulation.
Using the simple decomposition method, on the other hand, the computational domain in the dynamic
simulation was separated into 64 blocks, 8 blocks in the x direction, 4 blocks in the y direction and 2 blocks
in the z direction. In order to satisfy the requirement of the physical time, each heaving simulation took
1 to 1.5 months to finish, whereas as for each bending simulation, the simulation time was approximately

2 to 2.5 months.

4.6 PROPER ORTHOGONAL DECOMPOSITION

The flow field around and the wake region behind the flexible rectangular cylinder undergoing the bend-
ing VIV is expected to be characterised by the high unsteadiness and the inclusion of some emerging
span-wise flow features. The use of the spectral analysis and related technique is very limited in this
case. Therefore, the method of Proper Orthogonal Decomposition (POD) is applied to offer a quantita-
tive analysis of the surface pressure field around the flexible cylinder as the bending VIV lock-in occurs;
this technique will help to effectively reveal span-wise flow features and their potential contribution to

the VIV mechanism.

154



CHAPTER 4. METHODOLOGY: CFD SIMULATION

In this section, the POD technique is introduced regarding its principles and theoretical background
together with its application in wind engineering. Based on the underlying mathematics, a MATLAB
routine is written to carry out the POD using the pressure field across the entire surface of the cylinder

or around the circumference at one span-wise location as an input.

4.6.1 Overview of POD

The POD is the well-known and most frequently used procedure for modal decomposition and random
multi-variate analysis (Solari et al., 2007); this statistical method has been applied in a number of differ-
ent fields of research including fluid dynamics, structural analysis and bluff-body aeroelasticity. Taking
a random process in both spatial and temporal domains as the input, the POD represents this process
as a linear combination of the orthogonal eigenfunctions of the covariance of the process itself. These
eigenfunctions, which refer as the spatial POD mode shape, is modulated by temporal random variable
or the POD coefficients, which are uncorrelated with each other. No assumption about the linearity is
needed even though the input data for the POD is obtained from a non-linear system. In addition to this
advantage, the POD method gains its popularity thanks to its ability to represent the dominant compo-
nents of the process by the first few most-energetic POD modes and the existence of a link between the
so-called dominant POD modes and the underlying physical mechanisms. Based on these characteristics,
the application of POD can be divided into two purposes. The first one focuses on decomposing the flow
field observed in either experiments, numerical modelling or full scale to gain better insights into the flow
mechanism. As for the second one, it relates to the Reduced Order Modelling which is directly involved
in Computational Fluid Dynamics and Computational Structural Dynamics; the aim is to develop a
reduced model which is simplified and representative and can be applied in practical applications. The

computational study presented here is of the first type.

Solari et al. (2007) presented a literature review showing the development of the POD method and its
implementation and usability in different disciplines such as meteorology, turbulent flows and structural
analysis. As for the bluff-body aerodynamics, the POD technique owes its popularity to the ability to
compress the pressure field data obtained from wind tunnel tests, computation simulations or full-scale
measurements, to produce reduced aerodynamic model and to interpret the dominant mechanism of the
wind loading on structures. The application of POD in this discipline originated from a paper where
Armitt (1968) raised a question about the validity of the orthogonality condition inherent in POD when
associating each POD mode to a unique physical cause. In an attempt to answer this question, a number
of studies were conducted using a square or low-rise building as the test case. By studying the surface
pressure around a square building model, Kareem and Cermak (1984) found that the first POD mode

contributed predominantly to the fluctuating pressure energy and corresponded to the vortex shedding.
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MacDonald et al. (1990) also observed some links between POD modes and the longitudinal and lateral
fluctuating velocity components of the oncoming turbulent flow. Nevertheless, researches at this time
were limited by the number of simultaneous pressure measurements. Bienkiewicz et al. (1995) made a
leap forwards where they measured the pressure simultaneously at 494 taps distributed on the surface
of a low-rise building model in the wind tunnel. This study was later further analysed by Tamura et al.
(1997) focusing on the correlation between the POD decomposed pressure and the oncoming wind and
linking the first and second POD modes to the longitudinal and lateral fluctuating velocity components.
Analysing the wind forces acting on a tall building, Kikuchi et al. (1997) noticed that the along-wind
and cross-wind forces could be represented by very few POD modes while the torque required more POD
modes. Holmes et al. (1997) then returned to the question raised by Armitt (1968) and further addressed
the constraints related to the orthogonality, which could mislead the physical interpretation of POD
modes in some cases. Later Baker (2000) concluded that the fluctuating mechanisms are likely reflected
by the most energetic POD modes; he agreed with Armitt (1968) that no POD modes can be associated

with only one flow mechanism and vice versa.

The use of POD in aeroelasticity was recent and motivated by aerospace engineers to improve and
simplify reduced order models of unsteady aerodynamic flow around airfoils and aircraft wings (Hall,
1994). Understanding its potential and capability, Dowell and Hall (2001) later suggested a wider domain
of applications including the wind-induced responses of bridges and tall buildings. Even though results
are rather limited, the application of POD on analysing aeroelastic phenomena in wind engineering is
getting prominent and yielding encouraging findings. Selected studies conducted by Hemon and Santi
(2002) and Ricciardelli et al. (2002) measured the surface pressure around a vibrating circular and a bridge
deck section respectively and showed that there are systematic variations of the POD mode shapes and
the harmonic content of the POD coefficients as the wind speed increases as well as the appearance of

different patterns associated with different vibration regimes such as VIV, galloping, buffeting and flutter.

4.6.2 Mathematical Background

The underlying mathematical background of the POD method presented in this section can be applied
to both of a vector field data or a scalar field data. In this computational study, the surface pressure

field, i.e. a scalar field data, is of interest.

Taking the 2D unsteady pressure field p(z,y, t) measured on the surface of the model as an input, the

POD method decomposes this data as

N
p(x,y,1) = pla,y) + ' (2,9,1) = plx,y) + Y an(t)dn(,y), (4.27)

n=1
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where p(z,y) is the time-averaged surface pressure field calculated from N time instances as

1 N

The fluctuating component of the surface pressure field p’(x, y,t) is calculated as

p’(x,y,t) :p(xayat) *ﬁ(lﬂ,y), (429)

This component is decomposed into a linear combination of N spatial-dependent POD mode shape
on(x,y) and N temporal-dependent POD coefficients a,(t). The main aim of the POD method is to
extract the most energetic modes which represent most of the fluctuating energy of the unsteady flow;
these modes could then be implemented into the process of Reduced Order Modelling. It should be

noticed that the number of POD modes to be extracted depends on the number of time instances.

The POD method is based on the temporal auto-correlation matrix C' of the fluctuating component

of the pressure field; an element at the " row and j** column is evaluated in the continuous form as

Cli.j) = /Y /X P (2., 8P (2, y, ;) dady. (4.30)

To apply Equation 4.30 into the discrete form, a numerical integration scheme can be used; as an

example, the first-order trapezoidal scheme is implemented as

N, -1 A
. Y
C(Zaj) = Z {Cz,tj,yk +Ctyi,tj,yk+1 7’ (431)
yr=1
Nt Az
with: C; = Y [CY (ki g, yk, ) + O™V (i by, Yk, wk + 1)] 5 (4.32)
xr=0
C™Y(ti ty, yk xr) = P (o Yoo ta) P (Th, Y ). (4.33)

In order to calculate the POD mode shapes and coefficients, the POD precess requires solutions of

the eigenvalue problem

CA=\A, (4.34)

where A = [A'A? ... AN] is the matrix of eigenvectors A” (n = 1...N) and X is the diagonal matrix
whose diagonal elements are their corresponding eigenvalues. The spatial POD mode shape ¢, (z,y) is

then constructed from
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N

¢n(1'>y) = Z p/(mayati)A?' (435)

i=1
Here, A" is the i*!" element of the eigenvector A™. The POD mode shape calculated in Equation 4.35
is normalised using the Euclidean length ||¢,||. In addition, the temporal POD coefficient is calculated

as

a,,,(t):/y/xp’(x,y,t) ¢n (2, y) do dy. (4.36)

If the pressure field data at IV time instances is used as the input for the POD process, there will be
N eigenvalues and hence, there will be N sets of spatial POD mode shapes and temporal coefficients. All
of them can be used to fully reconstruct the 2D unsteady surface pressure field by following Equation
4.27. In order to extract most energetic POD modes to offer more insight in the dominant flow field or to
develop reduced order models, the quantity A,/ Zivnzl Ann can be inspected; this quantity effectively
represents the relative contribution of each mode to the total fluctuating energy. By defining a threshold

such as 5%, the dominant POD modes can be identified for further analysis.

4.6.3 OpenFOAM and MATLAB Implementation

In this section, the underlying mathematics of the POD process described in Section 4.6.2 is implemented
using OpenFOAM utilities and MATLAB. There is a potential bottleneck in the aforementioned POD
process which involves the calculation of the temporal auto-correlation matrix C. The use of Equa-
tions 4.31, 4.32 and 4.33 can create heavy computational burden particularly when dealing large 2D
or 3D field data such as the computational study presented here where 2D unsteady surface pressure
field sampled over 17500 discrete faces will be studied. This computational limitation can be overcome
using the snapshot method first proposed by Sirovich (1987). As being suggested by the name, the
snapshot method requires the fluctuating component of the surface pressure to be written as a matrix
P’ = [P"'P"? ... P"N] with P"" being a vector containing the fluctuating pressure component measured

at all faces on the surface of the model at the time instance n.
OpenFOAM Sampling Utility

The surface pressure around the flexible cylinder was sampled using the OpenFOAM on-the-fly sam-
pling utility defined in a dictionary file named PODPressure located inside the system directory and also
included in the controlDict dictionary using #include "PODPressure". The PODPressure dictionary

file contains the following sub-dictionaries
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PODPressure

{
type surfaces;
functionObjectLibs ("libsampling.so");
enabled true;
outputControl timeStep;
outputInterval  20;
surfaceFormat foamFile;

interpolationScheme cellPoint;

fields
(
p
)3
surfaces
(
bridgeSurface
{
type patchInternalField;
patches (bridge);
interpolate true;
offsetMode normal;
distance 0.0005;
}
)

The pressure was sampled at a distance of 0.0005 m from the surface of the model in the vertical di-
rection to avoid potential numerical instabilities when interpolating the pressure on the wall. The surface
pressure used in the POD process was outputted at a POD time-step which is 20 times bigger than the
one applied for the numerical computation. This avoided creating significantly large amount data which
could lead to large burden in storage yet maintained a good temporal resolution to capture dominant

flow features. A 50s long surface pressure field will be interpreted using the POD method.

Using the surfaceFormat as foamFile, the output of the surface pressure was saved in the postProcessing
directory under the sub-directory PODPressure; the structure of this sub-directory is sketched in Figure

4.14. The surface pressure is stored in the file p which is basically a vector whose each element holds the
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pressure data sampled at a point on the surface of the model at one time instance. The coordinate of the

points is defined in the points file.

PODPressure

Time directories

bridgeSurface

;

points

Figure 4.14: File structure of the directory PODPressure.

MATLAB Script

The use of the aforementioned OpenFOAM sampling utility led to some disadvantages where two

additional MATLAB scripts were created to pre-process the sampled pressure data.

The first one was related to the order of the sampling points. Due to the bending motion of the
flexible model, OpenFOAM is not consistent in the order of sampling, which could result in significant
difference in the pressure vector data sampled at two consecutive POD time-steps. Also, after one run
of a simulation is finished, a series of time directories is created inside the directory PODPressure, which
need to be joined to create a snapshot matrix P’. The MATLAB script PODAnalysis_DataSorting.m as
attached in Section A.2.1 is used to resolve these two issues. This piece of code uses the coordinates of the
sampling point at the first POD time instance as the standard coordinate and sorts the pressure data at
other time instances according to this benchmark. After that, vectors of the surface pressure data at all
time instances are stacked together to form the snapshot matrix. These two processes are achieved by the
code from the lines 136 to 159. The other parts of this code involves file and folder handling and to correct
the z coordinate of the sampling point to where the model is in the equilibrium position for the ease of
further analysis later. The output of this first part of the pre-processing is a list of following files for
each run of a simulation: the rawPressureData file which is a snapshot matrix, xCoor, yCoor and zCoor

holding the coordinates of the standard sampling points and timeID file containing the POD time stamps.

The second disadvantage is due to the fact that each bending simulation at one wind speed requires a
number of runs to produce enough data for the POD analysis. Data from each run needs to be assembled
together before input in the POD method. The MATLAB script PODAnalysis_DataAssembling.m as
attached in Section A.2.2 is created for this purpose. Again, the consistency of the sampling points is

checked between different runs; this is performed by the code from the line 55 to 72. Then the code
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searches for the time instance when a simulation was restarted and joins two snapshot matrices together.
The code from the line 73 to 93 is for these two tasks. The output of this MATLAB script is a complete
snapshot matrix of the fluctuating component of the surface pressure stored in the file pressureData,
the coordinate of all sampling points in the files xCoor, yCoor and zCoor and the complete POD time

stamps timeID.

At this stage, the snapshot matrix P’ holding the pressure data across the entire surface of the model
during a 50 s POD sampling duration is completely constructed and is ready for the POD analysis. Based
on the theory described in Section 4.6.2, a piece of the MATLAB programme was coded as shown in
Section A.2.2. The input of this process is the snapshot matrix pressureData, which is then subtracted
by the temporal-averaged surface pressure meanPressure resulting in the snapshot matrix holding the
fluctuating component of the surface pressure only primePressureData. The outputs of this POD process
are the matrices PODPhi, PODPhi = [PODPhi1 PODPhHi? ... PODth'N]7 and PODCoef, PODCoef =
[PODC’oef1 PODCoef?... PODC’oefN]7 whose corresponding columns PODPhi™ and PODCoef™
are the spatial-dependent mode shape and the temporal-dependent coefficient of the POD mode n.
The POD modes are sorted in the descending order of their fluctuating energy, i.e. their associated
eigenvalues, which are saved in the vector nor_cEValue as the cumulative eigenvalues normalised against
the summation of all eigenvalues. All of these outputs will be saved for further reconstruction and
analysis. It should be noticed that the pressure data storing in the matrix pressureData and inputting
into the POD process can be the pressure on the entire top or bottom surfaces of the model or just at

one span-wise location. The selection is dependent on the purposes of analysis.

4.7 CONCLUSION OF THE CHAPTER

In this Chapter, the methodologies to conduct the static simulation and the dynamic simulation including
the heaving and bending simulations using the piece of the open-source CFD software OpenFOAM have
been presented. This involved proper definitions of all dictionary files in the O, constant and system
directories to control all aspects of an OpenFOAM CFD simulation such as the fluid definition, the
boundary and initial conditions, the solver settings and the discretisation schemes as well as the on-the-

fly sampling processes.

As for the dynamic simulation, a structural solver and a dynamic mesh algorithm have been built
and successfully implemented into the OpenFOAM fluid solver using a serial staggered coupling scheme.
This integration was capable of modelling the heaving motion of a rigid sectional model or, as being the
main aim of this computational study, the bending motion of a flexible model, which is analogue to the

bending motion of bridge deck. This approach can be expanded to model the torsional motion of the
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flexible model also. The flow field around the flexible model is interpreted using the POD process and
written MATLAB scripts in order to extract potential span-wise flow features as well as the mechanism

of the bending VIV lock-in.

A number of limitations of this computational approach were mentioned, which are mostly due to the
limited computational power available. The first one is that the span-wise length of the flexible model
only allowed half of the first bending mode to be simulated; this can cause some restriction or suppression
on the flow field particularly around the mid span. The second one is related to the spatial resolution
of the domain in the span-wise direction. As was pointed out by results of the mesh convergence study,
the use of the span-wise discretisation in the dynamic simulation could lead to under-prediction of the
Strouhal number and some alteration in modelling the flow field, particularly around the reattachment
region. These points are noticed and will be fully addressed in later analysis. The use of a finer grid
not only in the span-wise direction but also in the z-z plane is better; however, such grid would cause

substantial obstacles to achieve the aim and objectives of this computational study.
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Chapter 5

METHODOLOGY: WIND TUNNEL

EXPERIMENTS

5.1 OVERALL METHODOLOGY

The wind tunnel aspect of this project was conducted at the Atmospheric Boundary Layer (ABL) wind
tunnel at the University of Nottingham. This wind tunnel facility is classified as a low-speed open-
circuit wind tunnel and is designed to simulate the ABL and to study a number of related wind en-
gineering problems such as modelling aerodynamics and aeroelasticity of tall buildings and measuring

urban-environment wind behaviour.

The wind tunnel features a 14.5m long working section (Figure 5.1a) and a constant width of 2.4 m.
The main test section and a 2 m-diameter turntable are located at the end of a 11m fetch. To ensure
zero pressure gradient at the turntable, the height of the working section slightly increases from 1.79m
measured right after the contraction to 1.91m after the turntable. The wind tunnel facility includes two
turning parts at the inlet to direct the flow into the working section and one more turning part at the
outlet to direct the flow out of the working section. At the inlet, before getting into the working section,
the flow is passed through a series of honeycombs and fibremesh screens to remove the turning effect
in the flow and to help straighten the flow. Therefore, close to the inlet of the working section, good
homogeneity and uniformity in the flow is achieved together with a very low turbulence intensity of less
then 0.2%. To simulate an ABL, a set of boards of roughness elements, spikes and a fence is set up along
the working section; they are designed based on the guidelines adopted from Irwin (1981) and Simiu and
Scanlan (1996) and has been confirmed to capable of generating an ABL above a suburban terrain at a
scale of 1:400. Due to effects of shear layers created long the top surface of the wind tunnel, the boundary

layer height of the modelled ABL is limited to 1 m.
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Figure 5.1: Selected aspects of the wind tunnel’s hardware: (a) working section, (b)
small turbulence-generating grid and (c) large turbulence-generating grid.

All the wind tunnel tests in this project are considered to be aerodynamic tests and they all were
conducted in the low turbulence section immediately downwind of the contraction. For these tests, two
grids constructed from wide flat bars bolted to T-section struts of the same width in a form of square
mesh grid were used to generate the turbulent flow (Figures 5.1b and 5.1c). One grid was assembled
from 50.8 mm wide members and had a mesh size of 250 mm while 76.2 mm wide members were used to
construct the second one resulting in a mesh size of 500 mm. Detailed dimensions of these two grids are
shown in Figure 5.2; hereafter, the small grid is denoted by Grid A while the large grid is denoted by Grid
B. Further discussion and analysis of the grid-generated turbulence in the wind tunnel will be presented
in Section 5.8. By adjusting the position of the model relative to the grid and by using different grids, a

range of turbulent regimes could be achieved.

The model used in the wind tunnel tests was the 5:1 rectangular sectional model; it was made from
aluminium to reduce the overall mass. The model was 1.6 m long with a 380 mm by 76 mm cross section;
inside the model, there were a number of vertical aluminium plates to stiffen the model, thus avoiding

any distortions related to twisting, buckling or bending due to the wind load or its self-weight. The lid
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(a) Small turbulence-generating grid — Grid A
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Figure 5.2: Details of (a) the small turbulence generating grid — Grid A and (b) the
large turbulence generating grid — Grid B from a downwind viewpoint (dimensions are
in mm).
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of the model was bolted into the side walls; it could be easily removed to access sensors located inside
the void of the model (Figure 5.3a). Two 35 mm diameter holes were incorporated on either side of the
model to provide access for cables of the sensors. In addition, there were two 500 mm diameter acrylic
end-plates attached to the two sides of the model; they helped