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Abstract

In this thesis the Drift Diffusion enhanced Hodgkin Huxley model is

developed. This model uses the Drift Diffusion equations to model the

bulk solutions both within a neuron and in the surrounding extracellular

media. The Hodgkin Huxley ion channel behaviour is incorporated into the

membrane regions through the use of an altered diffusion coefficient.

Firstly the model is applied to the case of intracellular and extracellular

media separated by a single membrane.

Secondly the model is applied to a cell within a restricted extracellular

space. This takes a slice through a cell and is thereforetermed a double

membrane model, since there are two membrane layers.

Finally the model is used to determine whether there is any charge and

field buildup on a gold surface located 100nm from the cell. The results

from this could then be used in future to model Surface Plasmon Resonance

experiments which may form the basis of novel neuronal activity detectors.
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Chapter 1

Introduction

1.1 Neurons and networks

Neurons are the signalling cells which make up the nervous system [1; 2].

The cell consists of three main structural features, which we now describe

and can be seen in Figure 1.1 .

The first is a dendritic tree. This consists of a set of dendrites which are

filament like structures that extend from the main cell body (soma). The

purpose of the dendrites is to allow the electrochemical signals from other

neurons to propagate to the main cell body.

This cell body is the second key feature and is often referred to as the

soma. The nucleus and many other important organelles are contained

within the soma. The neurotransmitters are produced in the soma. Con-

necting the soma to the axon is the axon hillock. It is this region which

integrates the various inputs to the neuron and triggers an action potential

if the combined stimulus is sufficient.

The axon is the third key structural feature. This is a long fibre down

which the nerve impulses can travel to the synaptic sites of other neurons,

or, in the case of motor neurons, muscles.

When given a sufficient stimulus, typically an increase in membrane

potential of 10-15 mV, an electronic signal is generated in the cell membrane.

The signal is a rapid change in the membrane potential from its negative

resting value to a positive peak. The signal arises because voltage sensitive

ion channels through the membrane open allowing different ion species to

cross the membrane and thereby changing the potential difference across it.

After the impulse has passed the membrane potential returns to rest. This
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1.1 Neurons and networks

Figure 1.1: a) A simplified diagram showing a pair of neurons after the

release of neurotransmitter chemicals, (red dots in figure). Key indicated

features are the soma, which is the main cell body and includes the nucleus.

The genetic material for the cell is located within the nucleus. Dendrites,

which branch off the soma and allow electrochemical signals to be received

from other neurons. The axon is a long protuberance which carries signals

to other neurons. b) At the end of the axon is a synapse, which consists of

a presyanptic ending, a synaptic cleft and a postsynaptic ending. When an

impulse reaches the presynaptic ending, neurotransmitters are relased into

the synaptic cleft. These then diffuse to the postsynaptic ending and can

trigger further impulses.
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1.1 Neurons and networks

signal propagates along the axon until it reaches a synapse. At this point

neurotransmitters are released into the synaptic cleft. These are chemicals

which are capable of triggering a signal in neighbouring neurons [3].

Figure 1.1 shows a simple diagram of two neurons. The key structural

features are highlighted by arrows in the figure. The red dots indicate

neurotransmitter chemicals released from the presynaptic terminal. The

use of neurotransmitters and synapses enables neurons to interact with one

another and so form large complex structures known as networks.

Some neurons also have a myelin sheath which is a fatty substance sur-

rounding the axon. There are gaps in this sheath known as Nodes of Ran-

vier. It is at these nodes where the ion channels are located. A nerve

impulse jumps from node to node in a myelinated fibre.

The unmyelinated fibres have ion channels down the whole length of the

axon and so the impulse travels as a wave. Only unmyelinated fibres will

be considered in this work.

It is easy to determine the physical structure of a neural network using

scanning electron microscopy. A more difficult problem is identifying the

functional structure of the networks. This involves determining the causal

relationships between neurons, or groups of neurons within the network.

This is one of the key outstanding challenges in neuroscience as it enables

some understanding of how behaviours develop.

To investigate the functional connections between neurons, it is neces-

sary to be able to reliably detect neural activity, specifically which neurons

are firing and when. Without good spatial and temporal resolution it be-

comes difficult or impossible to figure out the causal links between neurons

and the order in which they have a tendency to fire. Understanding these

connections between neurons will enable a better understanding of how col-

lective behaviour and neural signalling arises in living organisms.

When looking to detect cell activity it is best to try to monitor the

behaviour of the main cell body, rather than the axons. This is because

the axons spread out and can form quite a complex structure, so it is not

always easy to distinguish to which cell a given axon belongs [4]. The cell

bodies are quite easily located using a camera and microscope so positioning

potential detectors is made somewhat simpler. Building a detector system

that can reliably detect firing events, specifically which neurons fire and

when would help to identify the causal relationships between neurons, or
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1.2 Current detection methods

groups of neurons. This would then provide a much deeper insight into the

functional (as opposed to the physical) structure of the network.

Various models have been made to describe aspects of neuronal be-

haviour and enable simulations to be carried out [5; 6; 7]. These vary

from models of single neurons, to more complex neural networks consisting

of large numbers of cells. The detail used depends on the situation be-

ing simulated. In a large network simulation, often a simpler model of the

individual neurons will be used as more detailed models are computation-

ally more demanding [8]. These models can be used to understand patterns,

learning and plasticity. By using and adapting the Hodgkin Huxley model it

is possible to consider better ways of detecting the action potentials. Using

drift diffusion equations alongside the Hodgkin Huxley model allows the ion

concentration changes and electic field profiles to be simulated. Since it is

likely that either the electric or related magnetic fields might be detectable,

having a way of accurately calculating these fields allows for a detector’s

feasibility to be tested.

Models of neurons can then be used in simulations to ascertain whether

a proposed detector system is potentially viable. It might be prohibitively

expensive or time consuming to build and run the physical experiment, so

some idea of feasibility is useful.

1.2 Current detection methods

Current methods of detecting action potentials can be broadly divided into

two categories, electrical and optical. Within these two categories there are

numerous methods or technologies which have been developed and used to

varying extents.

When considering the effectiveness of detection schemes, it is important

to consider both the resolution and the spatial extent which can be achieved.

Some methods provide a very detailed view of the activity, but for only a

small portion of a network (or even just a single neuron), such as patch

clamping. At the other end of the scale, electroencephalograms provide

a broad picture of brain activity indicating active areas of the brain, but

provide no detail as to which individual neurons are firing. This would be

considered a large spatial extent, low spatial resolution technique.

The same considerations apply on a temporal basis too.

4



1.2 Current detection methods

1.2.1 Electrical Methods

Electrical methods for detecting neuronal activity can be further divided

into intracellular and extracellular methods.

It is not possible to use a simple device such as an Ohmmeter on the

neurons because the conductance of the membrane is a function of the

voltage across the cell membrane. As a result of this, more sophisticated

techniques such as patch clamping were developed.

Intracellular methods are, by their nature, invasive and involve probing

the cell with electrodes. An example of an intracellular electrical recording

technique is patch clamping.

Patch clamping is an older technique originally applied to detect ion

channel currents in frog skeletal muscle [9], but later adapted to probe the

behaviour of neurons [10].

To perform a patch clamp experiment a metal electrode is inserted into

a cell as shown in 1.2. A second reference electrode is used as a ground.

The signal is then sent to an amplifier and analysed.

Using this technique it is possible to record the resting potential of a

cell and also stimulate it to study the response. This is done by injecting

current using the electrode. Unfortunately, patch clamping damages and

eventually kills the cell, so experiments lasting longer than a few hours

cannot be carried out. This means that patch clamping as a technique has

a high temporal resolution, but relatively low temporal extent.

Since only individual neurons can be monitored in this way, patch clamp-

ing also has a limited spatial extent.

A schematic diagram showing the setup for a patch clamp experiment

is shown in Figure 1.2.

There are also electrical methods which work on an extracellular level.

A widely used example being multi electrode arrays (MEAs). Multi elec-

trode arrays are devices with many electrode contacts which can be used

as either stimulating or recording electrodes [11; 12]. This gives them an

advantage over patch clamping in that multiple cells can be analysed over a

larger area of the network. The ability to stimulate in different ways allows

the responses of the network to be examined more clearly using different

stimulation patterns.

Unfortunately, due to the way in which neural networks develop, it is

quite likely that the axons of multiple neurons will connect to an individual

5



1.2 Current detection methods

Figure 1.2: Schematic diagram showing the setup for a patch clamp exper-

iment. A voltage measuring electrode is inserted into the cell. A reference

electrode is used as a ground and the signals are amplified. The bath con-

tains suitable nutrient rich media.
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1.2 Current detection methods

electrode site. This limits to some degree the spatial resolution of the MEAs

as it becomes impossible to distinguish precisely which cell is firing (or when

stimulating, it will only be possible to stimulate several neurons in contact

with the electrode rather than, ideally, a single neuron) [4].

It is for this reason that a detector which can monitor the cell bodies

(easily identifiable using a camera), and give a precise indication of which

cell fires when, is desirable. This means that any proposed detection system

needs to have a good spatial resolution and a large spatial extent, so that it

can monitor a large area of the network and provide accurate information

regarding individual cell firing events.

1.2.2 Optical Methods

It is also possible to use optical methods to monitor the activity within

neural networks. These methods have the advantage that they do not suffer

from electrical artefacts as is the case with electronic methods. Optical

methods are divided into two categories, intrinsic and extrinsic.

Intrisic methods detect neural activity through detection of changes to

the system’s intrinsic optical properties. These could be refractive index

changes, scattering or absorption effects. It is known that during an action

potential there is a small percentage change in the refractive index of the

cell. This change affects the scattering of light in a measurable way [13].

Extrinsic methods involve the external application of voltage sensitive

dyes. These dyes are capable of providing detailed information about activ-

ity within a neural network. They are capable of achieving 20-50 µm spatial

resolution and millisecond temporal resolution [14].

When applied to a neural population, the dyes bind to sites within the

cell membranes in such a manner as to not interfere with their function. The

dyes are then excited using light, at which point they fluoresce. How much

fluorescence occurs is dependent on the behaviour of the membrane. This

therefore enables accurate high temporal resolution monitoring of neural

activity.

Unfortunately, the voltage sensitive dyes are affected by photo bleaching

and are also toxic, so the experiments can only run for a few hours. This is

a much too limited temporal extent.

It is widely reported that calcium plays a key role in neuronal activity. It

is therefore possible to monitor the levels of calcium and use this information

7



1.2 Current detection methods

Figure 1.3: Schematic diagram showing an example of a genetically encoded

calcium indicator of the Forster resonance energy transfer type. Two fluo-

rescent proteins, ECFP and Venus, are connected by calmodulin and M13

linkages. When calcium binds to the calmodulin, the distance between the

fluorescent proteins decreases causing the blue emission from the ECFP to

decrease and the yellow emission from Venus to increase.

to detect activity. This can be achieved by using dyes, or by genetically

encoding calcium indicators (GECI) [15].

There are two basic types of GECI, Forster resonance energy transfer

(FRET) types or single fluorophore types. An example of the FRET type

is Yellow Cameleon 3.60 (YC 3.60) [16].

The structure of YC 3.60 consists of two fluorescent proteins joined by a

linker sequence. The two proteins are the enhanced cyan fluorescent protein

(ECFP) and a circularly permuted Venus protein. These two fluorescent

proteins are linked by calmodulin, which is a calcium binding protein and

M13, which is a calmodulin binding peptide [15; 16]. This structure is shown

schematically in figure 1.3

FRET imaging involves a nonradiative energy transfer from a donor

fluorophore in an excited state, to an acceptor [17]. The acceptor does not

necessarily have to be fluorescent, although in the case of YC 3.60 it is.

Prior to calcium binding, ECFP dominates the fluorescence with its

emissions in the blue (480 nm) part of the spectrum. In the presence of

calcium ions, binding occurs which leads to a reduction in the distance be-
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1.2 Current detection methods

Figure 1.4: Schematic showing an example of a genetically encoded cal-

cium indicator of the single fluorophore type. This whole structure is called

GCaMP which consists of a single circularly permuted enhanced green flu-

orescent protein (EGFP) attached to calmodulin and M13.

tween the two fluorescent proteins. This leads to the Venus protein entering

an excited state and emitting in the yellow part (530 nm) of the spectrum.

This then makes it possible to detect the levels of calcium by monitoring

the ratio between blue and yellow emission [15; 16].

The GCaMP family of proteins are good representatives of the single

fluorophore GECIs [15; 18]. These have a very different structure to the

FRET GECIs discussed earlier.

GCaMPs consist of a single circularly permuted enhanced green fluores-

cent protein (EGFP). This is attached to calmodulin on one side and M13

on the other [19].

In the case of GCaMPs, it is the interactions between calmodulin and

M13 in the presence of calcium that causes a change in the fluorescence of

the fluorophore EGFP.

Both types of GECI provide a long lasting way of monitoring neural

activity as they are less prone to damaging or killing the cells. This gives

them a good temporal extent.

There are many ways of introducing the GECIs into the cell lines, but the

most commonly used methods are viral transduction methods, particularly

involving the use of Lentivirus (LV) as a vector [20].

Other viral vectors can be used and this affects the size of the genome

which can be introduced into the cells.

Because both electric and optical methods have a range of drawbacks, it
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1.3 The Need for Models

is desirable to develop a new detection system which has good spatial and

temporal resolution. Good spatial and temporal extent are also required to

allow activity across the network to be monitored for a long time.

1.3 The Need for Models

A system is needed which can detect neural activity without invasive pen-

etration of cells or potentially toxic chemicals. To do this it is necessary

to develop a model that is able to keep track of the concentration changes

that occur inside and outside the cell, particularly when considering a re-

stricted extracellular space. This enables the electric potential and fields to

be calculated, which is useful as these parameters are often measurable by

different detector technologies, such as BEC microscopes discussed in 1.6 or

diamond N-V centres discussed in Chapter 7. [21; 22]. It is the development

of these models which is the main focus of this thesis.

1.4 Surface Plasmon Resonance

One possible detection system utilises surface plasmon resonance (SPR)

techniques. SPR has found a variety of uses within the biosciences, often

being used to detect biomolecules binding to surfaces and determining var-

ious binding rates. More recently the technology has been used to image

cells [23] and detect neural activity [24]. One of the more common ex-

perimental setups is known as the Kretschmann attenuated total internal

reflection configuration [25]. This offers a good large field of view (high

spatial extent) but its resolution is limited due to the use of a prism which

limits the numerical aperture and magnification.

Surface plasmons are collective electron oscillations that occur along the

interface between a metal and dielectric [26]. Plasmons can be excited in

many metals such as copper, silver and gold [27].

1.4.1 Optical response and the Drude model

A simple model can be used to describe how conduction electrons respond

to optical excitation. This model was proposed by Paul Drude in 1900 and

is therefore referred to as the Drude model [28].
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1.5 Outline

The dielectric function, ε (ω), described by the Drude model takes the

following form [29]:

ε (ω) = ε∞

(
1 −

ω2
p

ω2 + iγ0ω

)
. (1.1)

Here, ε∞ is a background real dielectric function which is constant and

γ0 is a damping term. The damping effects arise due to collisions between

electrons and/or crystal impurities. ωp, the plasmon frequency, represents

the natural oscillation frequency of the electrons in the free electron plasma

[29]. This is given by

ωp =

√
ne2

mε0ε∞
(1.2)

where n is the number density of free electrons with a mass m, e the electron

charge and ε0 is the permittivity of free space.

The conditions for surface plasmon resonance are related to the real and

imaginary parts of the dielectric function Eq.(1.1).

The real part is given by

Re (ε (ω)) = ε∞

(
1 −

ω2
p

ω2 + γ20

)
(1.3)

and the imaginary part by

Im (ε (ω)) =
ε∞ω

2
pγ0

ω (ω2 + γ20)
(1.4)

For surface plasmon resonance the real part of the dielectric constant is

negative and the imaginary part is small. If the concentration of conduction

electrons is effected by the action potential, there is the possibility that the

resonance frequency will be altered. An estimate of this is included in the

conclusion.

For biological purposes gold is a particularly good substrate as it is inert

and, unlike silver, it is not cytotoxic so cells can be grown on it easily.

1.5 Outline

An outline of the rest of the thesis is as follows.

Chapter 2 details the physical phenomena that occur during an action

potential and also gives more background on existing neuronal models. The

11



1.5 Outline

Figure 1.5: Simple schematic of a cell growing on a substrate. The red

arrow indicates the one-dimensional cross section simulated in the model

described in chapters 4 - 6. The blue extracellular media surrounds the cell,

but only the layer between the cell and substrate is shown for clarity. Also

indicated is the potential difference, Vm, between the inside and outside of

the cell.

Hodgkin Huxley (HH) model is given particular attention as the model is

suited to the development of a scheme capable of calculating ion concen-

trations and spatio-temporal electric fields in and around neurons. This

is because the HH model describes explicitly the flow of ions through the

membrane. These ion flows can then be used to calculate the corresponding

changes in ion concentration both inside and outside the cell.

The extension of the Hodgkin Huxley model and the numerical meth-

ods involved in simulating it are discussed in Chapter 3 along with the

drift diffusion and Poisson equations which govern the flow of ions in the

intra/extracellular solutions.

These numerical methods are then used, as discussed in Chapter 4, to

simulate a simple model of a single membrane separating intracellular and

extracellular solutions. In this case, Hodgkin Huxley dynamics control ion

flow through the membrane. The HH dynamics are combined with the drift

diffusion ion transport and Poisson equations modelling the ion flow within

both the intracellular and extracellular media. This gives the Drift Diffusion

enhanced Hodgkin Huxley model (DDHH). Although this model is still very

simplistic, it allows the idea of incorporating the Hodgkin Huxley model

into a drift diffusion framework to be tested. A more realistic and advanced

scenario that extends the single membrane model to a one dimensional slice

through a neuron is discussed in Chapter 5. This means that there are

two membrane layers modelled in the system, which comprises a full slice

12



1.6 Possible Extensions

through the cell. Also included is a restrictive boundary representing the

glass cover slip on which cells are sometimes grown. This is important as it

demonstrates the ability to model a restricted extracellular space. Figure

1.5 shows a schematic of the neuron growing on a substrate and the one

dimensional cross section which is used in the models presented in this

thesis.

A further extension is developed in Chapter 6 which adds an extra layer

to the model representing a gold film. The gold film is included because

there have been attempts to use surface plasmon resonance to detect neural

activity [30; 31]. In these experiments, cells are grown on a gold film which

can sustain the surface plasmons. When stimulated by light, in most cases

a laser, resonant oscillations of the conduction electrons can occur along the

boundary between the gold film and the extracellular media.

The model presented in this thesis could be extended to gain a better

understanding of the SPR experiments. These ideas are discussed in the

concluding chapter.

1.6 Possible Extensions

Other ideas for extensions to the model are also considered in Chapter 7. For

example it should be possible to increase the usability of the model by us-

ing the cable equation to model the 2D propagation of nerve impulses down

an axon (again tracking the intra and extracellular concentration changes).

This 2D information could then be used to calculate the magnetic fields.

If sufficient changes in the magnetic field occur during an action potential

then a range of high resolution magnetic field sensors, (e.g. BEC micro-

scopes, SQUIDs or diamond N-V centres) could be used as detectors of

nerve activity.

A Bose Einstein Condensate (or BEC) microscope [21; 32; 33] could

have the potential to be used as a field sensor with sufficient spatial and

temporal resolution to resolve magnetic field changes associated with neural

activity [34]. A simple schematic of this setup is shown in Figure 1.6.

A condensate is trapped above a current source and used to image the

magnetic field generated by electric currents associated with neuron activity.

This is possible because the condensate is trapped using magnetic fields, so

any variation of these fields can cause a change in the density profile of the

13



1.6 Possible Extensions

Figure 1.6: A simple schematic of a typical BEC microscopy setup [21].

The Bose-Einstein condensate is trapped above a current source. Since

the condensate is trapped magnetically, any changes in the magnetic field

resulting from the current flow alter the atom density profile of the cloud.

This profile can be imaged using a camera and used to reconstruct the

current flows.

cloud. The density profile can be imaged using a camera and so the changes

can be used to reconstruct the current flows.

There would be a few practical issues to overcome before such experi-

ments could take place. These include placing the BEC in a vacuum , within

1µm from the cell to be within effective operational range.

Other possibilities for detecting the magnetic fields produced by ion

transport in neurons and neural networks include superconducting quan-

tum interference devices (SQUIDs) or diamond N-V centres, which are also

capable of detecting magnetic fields with a high sensitivity and spatial res-

olution.
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Chapter 2

Background

2.1 Neurons and Networks

This chapter discusses some of the theoretical tools used in the simulations

presented in chapters 4, 5 and 6. Some background relating to neuronal

modelling is also discussed, with a particular emphasis on the Hodgkin

Huxley model.

In order to understand the behaviour of neurons, a large variety of mod-

els have been developed over the years. These can be classified into two

types: those which try to model the complexities of an individual neuron

accurately, and those which simplify the treatment of individual neurons

in order to make it easier to model large numbers of neurons in neural

networks.

These models will be discussed in the rest of this chapter. Some of

the models discussed will not be suitable for the purposes we require, but

provide good examples of the kind of modelling that is done elsewhere.

2.2 The Hodgkin Huxley Model

One of the most significant models of a neuron is the Hodgkin Huxley Model

[35; 36; 37; 38; 39]. It is still widely regarded as the gold standard to which

other neuron models are compared. Since the publication of the original

papers, many different ion channel types have been discovered, which can

be modelled in a similar way to the channels of the Hodgkin Huxley model

[40]. In the model there is a set of three conductances which allow current to

flow through the membrane. It is then possible to express the total current

15



2.2 The Hodgkin Huxley Model

Figure 2.1: Equivalent circuit for the Hodgkin Huxley model. The mem-

brane is modelled as a leaky capacitor. The three membrane currents

(potassium, sodium and leakage) are controlled by three variable resistors

gK , gNa and gl. The difference between the membrane potential Vm and the

Nernst potential for each ion (VK , VNa and Vl) determines the driving force

of the battery. The membrane current is Im and the membrane capacitance

is cm

across the membrane in terms of a sum of the different ionic currents, the

sodium, potassium and leak currents.

The Hodgkin and Huxley model is often considered in terms of its circuit

equivalent, as shown in figure 2.1. The membrane is modelled as a leaky

capacitor. Voltage dependent currents (modelled as resistors) allow the

membrane potential difference to change.

In a series of experiments Hodgkin and Huxley were able to establish

that the ionic currents depend on the voltage across the membrane. By

taking a series of measurements they were able to calculate the voltage

dependence of the conductances for the three different currents.

2.2.1 Voltage Clamp Experiments

Hodgkin and Huxley performed many experiments using the voltage clamp

technique on the giant axon of a squid [41]. Two electrodes were inserted

into the giant axon. One of which was used in conjunction with another

electrode in the surrounding medium to measure the voltage across the

cell membrane. The other electrode was used to maintain the difference in
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2.2 The Hodgkin Huxley Model

potential across the membrane at a constant level. To do this, current would

have to be injected into or removed from the membrane. By measuring the

current it is possible to calculate the conductance of the membrane.

2.2.2 The Model

The equation that relates the change in potential difference across the mem-

brane to the current through the membrane is as follows:

Cm
∂Vm
∂t

= − (jNa + jK + jl) +
Iext
am

. (2.1)

where Cm is the capacitance per unit area of the membrane and Vm is

the potential difference across the membrane. The current through the

membrane is split into three terms, jNa which is the sodium current density,

jK which is the potassium current density and jl which is the leakage current

density. An additional term Iext represents the externally applied current,

with the constant am being defined as the cross sectional area of the axon.

When Iext = 0 the system is unstimulated.

Each current can be expressed in terms of Ohm’s law using a conduc-

tance and potential difference as a driving force.

The sodium current is given by

jNa = gNa (Vm − VNa) (2.2)

where gNa is a conductance and VNa is the Nernst potential for sodium.

In general terms the Nernst potential is the potential at which a given ion

species is in equilibrium. At this potential there would be no current flow

for that particular ion.

In a simple system containing only one ion species the Nernst potential

would be the equilibrium value of the whole system. In a system consisting

of multiple ionic species, the equilibrium value of the system, known as

the resting potential, is a weighted average of the different ionic Nernst

Potentials.

The Nernst potential representing the equilibrium value that the poten-

tial difference would reach if two different concentrations of sodium were

separated by a membrane can be calculated as follows:

VNa =
kbT

e
ln

(
cNa,out
cNa,in

)
. (2.3)
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2.2 The Hodgkin Huxley Model

In equation (2.3) cNa,out is the concentration of sodium ions outside the cell

and cNa,in is the concentration of sodium ions inside the cell.

Similar equations can be used to calculate the Nernst potential for the

other ionic species. By fitting experimental data from their voltage clamp

experiments, Hodgkin and Huxley were able to deduce the form of the

conductance for sodium. This is described as

gNa = ¯gNam
3h (2.4)

where ¯gNa is the maximum value for the sodium conductance, m and h are

gating variables which determine what proportion of ion channels are open

at any given time. h, m and n take values between 0 and 1, so can be

interpreted as the probability of the gate in question being open. These

gating variables change over time according to a set of gating equations.

dm

dt
= αm (1 −m) − βmm (2.5)

dh

dt
= αh (1 − h) − βhh (2.6)

where the α and β parameters are defined below. The potassium current

can be described in a similar way.

jK = gK (Vm − VK) . (2.7)

with the Nernst potential VK given by

VK =
kbT

e
ln

(
cK,out
cK,in

)
(2.8)

where cK,out is the external potassium concentration and cK,in is the internal

potassium concentration. For potassium the conductance depends on only

one gating variable n

gK = ḡKn
4 (2.9)

This variable also obeys a gating equation similar to m and h.

dn

dt
= αn (1 − n) − βnn (2.10)

The various α and β parameters are functions of the voltage difference across

the membrane.

αm =
(100 (−1000 (Vm − Vrest) + 25))(

exp
(

(−1000(Vm−Vrest)+25)
10

)
− 1
) ; (2.11)
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2.2 The Hodgkin Huxley Model

βm = 4000 exp

(
−1000 (Vm − Vrest)

18

)
(2.12)

αh = 70 exp

(
−1000 (Vm − Vrest)

20

)
(2.13)

βh =
1000

exp
(
−1000(Vm−Vrest)+30

10

)
+ 1

(2.14)

αn =
10 (−1000 (Vm − Vrest) + 10)

exp
(
−1000(Vm−Vrest)+10

10

)
− 1

(2.15)

βn = 125 exp

(
−1000 (Vm − Vrest)

80

)
(2.16)

These α and β parameters were calculated by Hodgkin and Huxley nu-

merically fitting experimental data obtained from the squid giant axon.

These parameters control the rates at which the gating variables can change

and are dependent on the membrane potential.

There is also a leakage current in the Hodgkin Huxley model, which

combines the contributions from various ion species. The leakage current is

jl = gl (Vm − Vl) . (2.17)

The leakage current has a different character to the sodium and potas-

sium currents due to it having a fixed conductance that does not depend

on gating variables.

The quantity Vrest in equations (2.11)-(2.16) is the potential difference

across the membrane in its resting state. This can be calculated using the

Nernst potentials for the different currents, weighted by the conductances,

as follows

Vrest =
gNa,rest
gtot

VNa +
gK,rest
gtot

VK +
gl,rest
gtot

Vl. (2.18)

The variable gtot = gNa,rest + gK,rest + gl,rest is the sum of the three

resting conductances. The resting conductance values, gNa,rest, gK,rest and

gl,rest ,in Equation (2.18) are calculated by setting Vm = Vrest in the α and

β parameters and finding the values of m, n and h that set equations (2.5),

(2.6) and (2.10) to zero.

mrest =
αm,rest

αm,rest + βm,rest
. (2.19)

19



2.3 Results and features of the Hodgkin Huxley model

Figure 2.2: When initialised in the resting state, the neuron remains in the

resting state until stimulated.

where αm,rest and βm,rest are the values of the αm and βm when Vm is equal to

Vrest. Similar formulae give the resting values for the other gating variables.

These resting gate values are used along with the relevant conductance

equations(2.4) and (2.9) for sodium and potassium respectively. Since the

leak conductance is constant gl,rest = gl.

2.3 Results and features of the Hodgkin Hux-

ley model

The nonlinearity present in the defining equations for the Hodgkin Huxley

model allows a rich variety of neuronal behaviours. The behaviour ob-

served depends on the stimulation used. If no stimulation is used and the

membrane is initialised in the resting state Vm = Vrest then the membrane

potential will remain at its resting value. This is shown in Figure 2.2. If

the system is set up so that the membrane is initially in a non resting state,

the potential will evolve to the resting state and then settle down. This is

seen in Figure 2.3

More interesting behaviour occurs if a stimulating current is applied. A

stimulating current depolarises the membrane. If this depolarization is

above a threshold a positive feedback occurs leading to an action poten-

tial [42]. This behaviour is illustrated in Figure 2.4. If the stimulus is below
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2.3 Results and features of the Hodgkin Huxley model

Figure 2.3: When initialised in a non resting state, the Hodgkin Huxley

system evolves according to the gating equations until the resting potential

is restored. The evolution depends on the initial conditions.

Figure 2.4: A typical Hodgkin Huxley action potential. After the stimulus is

applied (left arrow), it depolarises the membrane, the sodium ion channels

open allowing sodium to rush into the cell. This leads to rapid further

depolarisation, which causes the potential difference across the membrane to

become positive. The potassium channels then open (right arrow) allowing

potassium to leave the cell. This begins to restore the cell to its resting

state. However, since the potassium channels are slower, it takes longer

for them to close, causing a brief period of hyperpolarisation known as the

refractory period.
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2.3 Results and features of the Hodgkin Huxley model

Figure 2.5: Top panel: Membrane potential in response to different current

pulse stimuli. Two stimuli (blue and red lines) are subthreshold and do

not trigger an action potential. Other stimuli are above threshold and

ttherefore do trigger an action potential. (black and green lines) Bottom

Panel : current pulses.

threshold, the membrane potential decays back to the resting potential. A

selection of different stimuli are used to illustrate this effect in Figure 2.5.

In Figure 2.5 a variety of current pulses are applied within the Hodgkin

Huxley model. Two of these (the blue and red lines) are not sufficient to

cause the membrane potential to rise above the threshold. This means that

the potential is just slightly deplolarised by the stimulus and then gradually

returns to the resting state.

The stronger stimuli (black and green lines) are sufficient to trigger an

action potential. Note that there is little difference between the shape of the

action potentials, even though the magnitude of the largest current pulse is

twice that of the other threshold stimulus. The larger stimulus does reach

the threshold more quickly and so the action potential is triggered earlier.

The behaviour of the gating variables along with a membrane potential

trace are shown in Figure 2.6. After the stimulus, m rises sharply allowing
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2.3 Results and features of the Hodgkin Huxley model

Figure 2.6: Top panel: Evolution of the Hodgkin Huxley gating variables

during an action potential. h and m gates control the sodium current, the

n gate controls the potassium current. Bottom Panel: Membrane poten-

tial trace allowing the behaviour of the gating variables to be considered

alongside the behaviour of the membrane potential.

movement of sodium ions, even though the h value is decreased. This is

because the sodium currents have a cubic dependance on m but only a

linear dependance on h. The n gate which regulates the potassium current

is slower to respond, but also rises following the stimulus. Due to the

currents depending on different powers of the gating variables, it is useful

to look at the current flows in order to get an idea of what happens during

an action potential.

Figure 2.7 shows the currents in the Hodgkin Huxley model. These are, a

sodium current, a potassium current and a leakage current (attributed to

chloride ions).

After a time of approximately 3ms there is a noticeable drop in the

magnitude of the sodium current (blue curve) which occurs because as the

membrane depolarises and so the membrane potential rapidly tends towards

the Nernst potential for sodium. As a result, the term Vm − VNa in equa-

tion (2.2) becomes very small and reduces the current. It is also noticeable

that there is a significant sodium current during the potassium current (red

curve) phase of the action potential, indicating that both sodium and potas-

sium channels are open during a significant portion of the action potential.

The chloride current (black curve) is considerably smaller in magnitude as
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2.3 Results and features of the Hodgkin Huxley model

Figure 2.7: Ionic currents during a Hodgkin Huxley action potential. No-

tice that the sodium current (blue curve) is slightly faster than the potas-

sium one (red curve). The leakage current is attributed to chloride ions

(black curve). The feature indicated by the arrow is the region in which the

membrane potential tends towards the sodium Nernst potential and so the

sodium current magnitude is reduced.

it is a leakage current. It is a passive current that is not affected by ion

channels, although there is a noticeable peak in the chloride current, which

corresponds to the position where the membrane potential is far from the

equilibrium chloride Nernst potential.

It is also interesting to look at the phase space plots of the various gating

variables against voltage.

Figures 2.8, 2.9, 2.10 show phase space plots of the three gating variables

against membrane potential under a constant applied current. From these

it is clear that the system tends towards a stable limit cycle, which will be

noticeable as repeated firings of action potentials.

One feature of the Hodgkin Huxley model is that as the stimulating

current is increased, the frequency of the action potentials also increases.

This is shown in figure 2.11, in which the constant current is plotted

against the frequency of the action potentials. The steep rise in frequency

indicates the transition from non-spiking sub threshold behaviour to full

active spiking.

Even though the Hodgkin Huxley model is quite complicated with 5
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2.3 Results and features of the Hodgkin Huxley model

Figure 2.8: Plot of the h gate against membrane potential under constant

current stimulation. Two points from the first cycle are indicated as red

dots for clarity.

Figure 2.9: Plot of the m gate against membrane potential under constant

current stimulation. Two points from the first cycle are indicated as red

dots for clarity.

25



2.3 Results and features of the Hodgkin Huxley model

Figure 2.10: Plot of the n gate against membrane potential under constant

current stimulation. Two points from the first cycle are indicated as red

dots for clarity.

Figure 2.11: Frequency of neuron firing events calculated against current

curve for continuously applied current using the Hodgkin Huxley model.

To produce this, a continuous current was applied and the frequency of the

resulting activity was plotted against that current value. This process was

repeated for a range of different applied currents.
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2.4 Simple Neuron Models

defining equations and numerous parameters, it is the best model to use

as it allows the concentration profiles of ions inside and outside the cell to

be modelled. This allows the intra and extracellular media to be modelled

using drift-diffusion equations.

These equations and the computational techniques used to solve them

are discussed in detail in the following chapter. The next section briefly

reviews a few other simple neuron models.

2.4 Simple Neuron Models

There are neuronal models of varying degrees of complexity. Probably the

simplest of these is the integrate and fire model.

The equation describing the change in potential difference across the

membrane, Vm due to a current input I is

cm
dVm
dt

= I (t) . (2.20)

where cm is the capacitance of the membrane. In the integrate and fire

model, the potential difference across the membrane increases when current

is applied. When it reaches a set threshold voltage, Vth, a spike is fired in

the form of a delta function and the voltage is reset to its resting value.

Another simple model is the Leaky Integrate and Fire model (LiF)[43],

as its name suggests this model is created by adding a leak term to the

integrate-and-fire model. It is a spike producing model with a threshold,

which is computationally easier than the more complex Hodgkin Huxley

type models. This makes it a good model to use for networks, where it

is necessary to model large numbers of neurons at any given time. The

defining equation in the leaky integrate and fire model is as follows

τm
dVm
dt

= −Vm +RI. (2.21)

where τm is the membrane time constant, R the resistance and I the input

current. Unlike the Hodgkin Huxley model, the spiking dynamics are not

built into the equation. Instead, once a threshold voltage Vthreshold is reached

the membrane voltage is reset to the resting potential Vrest.

An example of the kind of spiking behaviour produced by the leaky

integrate and fire model is shown in Figure 2.12. It is clear from comparison

with Figure 2.4 that the shape of the spikes produced is very different from
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2.4 Simple Neuron Models

Figure 2.12: Leaky integrate and fire model under a constant current stim-

ulus. The membrane potential, Vm, rises until it reaches a threshold of 15

mV, once this is reached the potential is reset to the resting potential. The

reset is a mathematical artefact introduced to mimic the return to resting

state seen in real neurons

those obtained using the Hodgkin Huxley model. The model can be made

a little more complex by including a refractory period during which further

stimulation is not possible. Although the leaky integrate and fire model

is simple and relatively easy to compute, it doesn’t accurately describe

the range of dynamical behaviours found in neurons. It also has no way

of distinguishing the different types of current, which are used to update

the drift diffusion enhanced Hodgkin Huxley model discussed in the next

chapter.

Another model which is often used is the Fitzhugh Nagumo model [44].

This uses two defining equations and is described as a simplified Hodgkin

Huxley model.
dVm
dt

= Vm − V 3
m

3
− w + Iext. (2.22)

where w(t) is a linear recovery variable which also changes in time according

to:

τ
dw

dt
= Vm + a− bw. (2.23)

and Iext is the externally applied current. The form of equation (2.22) and

equation (2.22) is a result of reducing the four Hodgkin Huxley equations to

a pair of equations. The cubic term in equation (2.22) gives rise to negative
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2.4 Simple Neuron Models

Figure 2.13: An example of the Fitzhugh Nagumo model under stimula-

tion. These spikes look more like the action potentials produced by the

Hodgkin Huxley model, see Figure 2.4. The spiking dynamics arise due

to the equations 2.3 and 2.4, rather than using a logic condition as in the

Leaky Integrate and fire model.

differential resistance, whereby an increase in voltage reduces the current

flow. This to some extent mimics the non-linear membrane conductance in

the Hodgkin Huxley model. The Fitzhugh Nagumo model produces spikes

with more detail than in the Leaky Integrate and Fire model, but it still

doesn’t provide a link to the ionic currents and so is also not suitable for

our purposes.

Figures 2.13 and 2.14 show the two variables in the Fitzhugh Nagumo

model and the spikes caused by a constant current input.
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2.4 Simple Neuron Models

Figure 2.14: An example of the Fitzhugh Nagumo model under stimulation.

This plot shows the recovery variable w.
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Chapter 3

Methods

Although the Hodgkin Huxley model is well established, it is not on its own

sufficient for our purposes. This is because it doesn’t track the evolving

concentration profiles inside and outside the cell. The voltage dependent

membrane currents calculated by the Hodgkin Huxley model can be used

to calculate the changes to concentration profiles using the drift diffusion

equations.

This chapter outlines the equations and tools needed to effectively model

the neuron and its extracellular environment. The model splits the compu-

tational domain into regions which feature particular ionic properties. The

number of these regions depends on the complexity of the situation being

simulated.

In all cases, a 1D slice through the system is taken as indicated in Figure

3.1. It is assumed that the solutions are homogeneous in all planes parallel

to the membrane, which is a reasonable assumption when modelling the cell

body.

3.1 The Drift-Diffusion and Poisson Equa-

tions

The simulations described in this thesis do not attempt to track individual

ion movements, but rather deal with the changes in ion concentration and

electric field over time. For each ion species, i, the flux Ji is calculated at

temperature, T , as follows [45]:

Ji = −Di

(
∂ci
∂x

+
ziF

RT
ci
∂θ

∂x

)
(3.1)
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3.1 The Drift-Diffusion and Poisson Equations

Figure 3.1: Schematic showing the model structure for the single membrane.

A membrane separates regions of extracellular and intracellular space. The

ionic concentrations of the two solutions are indicated. The concentrations

change smoothly through the membrane according to tanh functions. The

rate at which ions are able to move through the membrane depends on the

current state of the gating variables according to the Hodgkin Huxley model

as discussed in Chapter 2
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3.1 The Drift-Diffusion and Poisson Equations

where Di , zi and ci are the diffusion coefficient, charge and concentration

of the ion species i and θ is the potential. In Equation (3.1), R is the gas

constant and F is Faraday’s constant. The first term on the right hand side

of Equation (3.1) corresponds to the diffusion of the ions, whilst the second

term describes the drift effect of the electric field E = − ∂θ
∂x

on the charged

ion species.

The time evolution of the concentration profiles is then found by con-

sidering the conservation of mass

∂ci
∂t

= −∂Ji
∂x

, (3.2)

where t is the time. The concentrations of the different ion species are

coupled through the potential θ (x , t), which must satisfy Poisson’s equation

at all points in the domain, i.e.

ε
∂2θ

∂x2
+
∂ε

∂x

∂θ

∂x
+
∑
i

zici = 0. (3.3)

Equation (3.3) allows a spatially varying permittivity ε (x) to be used [46].

This is necessary as each layer in the model has a different permittivity that

reflects its local structure. The membrane’s permittivity is very different

from that of the saline solutions inside and outside the cell. The permittivity

profile becomes even more complicated when considering additional layers

such as glass and gold.

In the models there are three mobile ion species, sodium, potassium

and chloride. For each ion, the flux (3.1) and conservation of mass (3.2)

equations can be combined to give

∂ci
∂t

=
∂Di

∂x

(
∂ci
∂x

+
ziF

RT
ci
∂θ

∂x

)
+Di

(
∂2ci
∂x2

+
ziF

RT

∂ci
∂x

∂θ

∂x
+
ziF

RT
ci

(
− ρ

εε0
− 1

ε

∂ε

∂x

∂θ

∂x

))
, (3.4)

where Equation (3.3) has been used to eliminate the ∂2θ
∂x2

term and ρ (x, t) =∑
i zici is the local charge density. The local charge density includes con-

tributions from the mobile ion species, sodium, potassium and chloride, as

well as contributions from fixed charges on the protein molecules.
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3.2 The Membrane

3.2 The Membrane

Rather than using boundary conditions at the membrane, a variable dif-

fusion coefficient is used to control the flux through the membrane. This

is sensible because the diffusion coefficient determines the ability for ions

to diffuse through the membrane. It is also simple to implement within

the framework of the drift diffusion equations. This involves matching the

flux expected from the Hodgkin Huxley model to the flux equations in the

initial state, then altering the diffusion coefficient within the membrane in

proportion to the Hodgkin Huxley gating variables. The following discus-

sion outlines the situation for sodium, but a similar procedure was followed

for the other ions.

The initial flux of sodium can be described as follows:

JNa = −zNagNa,init (Vm − VNa)

F
, (3.5)

where zNa is the charge (in units of e) on the sodium ions, gNa is the

membrane conductance for sodium, Vm is the potential difference across the

membrane and VNa is the Nernst potential for sodium given by Equation

(2.3). This flux must also be equivalent to the flux defined by Equation

(3.1). Using this equivalence, a value for the diffusion coefficient in the

membrane can be found

DNa =
zNagNa,init (Vm − VNa)

F
(
∂cNa

∂x
+ zNaF

RT
cNa

∂θ
∂x

) . (3.6)

Initially Vm = 0 and ∂θ
∂x

= 0 and equation (3.6) simplifies to

DNa = −zNagNa,initVNa
F ∂cNa

∂x

. (3.7)

This represents the baseline value for the diffusion coefficient for sodium

given the initial values of the sodium activation and inactivation gates. As

the state of the gates and hence the sodium conductance change, this base-

line diffusion coefficient is multiplied by the multiplicative factor gNa

gNa,init
.

This means that as the sodium gates open the conductance increases, the

membrane diffusion coefficient increases, resulting in a greater flow of sodium

ions through the membrane. A similar process is used to calculate the dif-

fusion coefficient for the remaining ion species.

The value given to the diffusion coefficient within the membrane is there-

fore linked to the number of ion channels open at any given time. An
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3.3 Smoothing with tanh Functions

idealised view of this would be a square function, in which the diffusion co-

efficient drops to its membrane value and remains at that value throughout

the membrane.

Unfortunately this causes issues when trying to solve the equations, due

to discontinuities in the derivatives. To work around this, smoothing func-

tions are used which are continuous in the first and second derivative. These

functions are discussed in the next section.

In order to stimulate the neuron, it is necessary to initiate some flux

of sodium into the cell. This can be done by temporarily increasing the

diffusion coefficient for sodium, thereby allowing more sodium ions into

the cell. Once this happens, the positive feedback effect described in the

Hodgkin Huxley model is induced and if the stimulus is sufficient an action

potential is observed. During stimulation the membrane diffusion coefficient

for sodium becomes

DNa,mem = DNa,mem +DNa,stim, (3.8)

where the additional term DNa,stim causes the extra sodium injection which

can trigger an action potential. This mimics the earliest responses to a stim-

ulating current and provides a realistic way of inducing an action potential.

3.3 Smoothing with tanh Functions

When initialising the models, the ionic concentrations in the intra and ex-

tracellular media are simply the bulk concentrations taken from well known

data sources [2; 41] and indicated on the schematic diagram in Figure 3.1.

Situated between the two (extracellular and intracellular) solutions is a

membrane over which the concentration must change between the values on

either side of the membrane. To implement this a tanh function is used to

define the initial concentration profiles within the membrane region. This

ensures that the derivatives are smooth and continuous across the simulation

space. Other functions were tried including cubic splines and polynomial

fits, but these did not produce continuous first and second derivatives which

integrated well.

Suppose a function is desired that has a value yL at xL and a value yR

at xR, a tanh function is used as follows

y = a+ b tanh

(
x− c

d

)
, (3.9)
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3.3 Smoothing with tanh Functions

Figure 3.2: Concentration profile of sodium through the membrane. The

smooth change from the extracellular values (on the left) to the intracellular

values (on the right) is achieved using tanh functions of the form in Equation

(3.9).

where a = yL+yR
2

, b = yR−yL
2

, c = xL+xR
2

and d is a parameter which con-

trols how quickly the function changes. When using the tanh functions to

describe the transition to the membrane diffusion coefficient, the value of

d controls how rapidly the diffusion coefficient decreases from that of the

intra / extracellular solutions. Small values of d give rise to sharp rapid

transitions, whilst larger values give smoother profiles.

The tanh function allows for the step changes to be smoothed whilst

still providing an easily differentiable gradient.

Applying the tanh function twice enables the diffusion coefficient of the

membrane to be modelled as seen in Figure 3.3

Repeatedly applying Equation (3.9) allows more complex layered struc-

tures to be modelled. This becomes important when considering the gold

and glass layers, as all of these have properties which are considerably dif-

ferent to those of the intracellular or extracellular media.

The physical properties of these boundaries can also be handled using

tanh functions.
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3.4 Discretisation Schemes and the Non Uniform Grid

Figure 3.3: Example diffusion coefficient profile for sodium, calculated using

tanh smoothing functions. The diffusion coefficient profile for the membrane

is similar to a smoothed square well. The region of extremely low diffusion

coefficient corresponds to the membrane.

Figure 3.4: Stencil used in central difference approximations on a uniform

grid. The points are all uniformly spaced a distance h apart. Each site is

labelled with site index i.

3.4 Discretisation Schemes and the Non Uni-

form Grid

In order to self - consistently solve the equations (3.3) and (3.4) it is nec-

essary to use a finite differencing scheme to approximate the derivatives

[47; 48]. A computational stencil for a uniform grid is shown in Figure 3.4.

With this stencil, three finite difference schemes are possible. These are the

forward, backward and central differences. Of these, the most accurate is

the central difference scheme as we shall show. The approximations to the

first and second derivatives can be derived by expressing the values of some

function U at points i -1 and i+1 as a Taylor expansion about i [49; 50]
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3.4 Discretisation Schemes and the Non Uniform Grid

Ui−1 = Ui − h
dU

dx
+
h2

2

d2U

dx2
− h3

6

d3U

dx3
+
h4

24

d4U

dx4
(3.10)

and

Ui+1 = Ui + h
dU

dx
+
h2

2

d2U

dx2
+
h3

6

d3U

dx3
+
h4

24

d4U

dx4
(3.11)

where the higher order terms have been assumed negligible. The first deriva-

tive can be isolated by subtracting Equation (3.10) from Equation (3.11)

and rearranging to obtain

dU

dx
=
Ui+1 − Ui−1

2h
− h2

6

d3U

dx3
. (3.12)

The second term in Equation (3.12) is the truncation error term, which for

the central difference approximation is second order with respect to the grid

separation h.

The forward difference is obtained by rearranging Equation (3.11) for

the first derivative as follows

dU

dx
=
Ui+1 − Ui

h
− h

2

d2U

dx2
− h2

6

d3U

dx3
− h3

24

d4U

dx4
(3.13)

where the leading error term is −h
2
d2U
dx2

and linear in h.

The backward difference can be obtained from equation (3.10) by rear-

ranging as follows

dU

dx
=
Ui − Ui−1

h
+
h

2

d2U

dx2
+
h2

6

d3U

dx3
+
h3

24

d4U

dx4
(3.14)

where the leading error term is h
2
d2U
dx2

and linear in h.

Since the error term is second order with respect to h for the central

difference method it is clear that it gives the most accurate approxima-

tion to the first derivative. For this reason central differences will be used

throughout [51].

To calculate the second derivative, Equation (3.10) is added to Equation

(3.11) and rearranged to give

d2U

dx2
=
Ui+1 + Ui−1 − 2Ui

h2
− h2

24

d4U

dx4
. (3.15)

The truncation error for the second derivative is also second order in h.

Unfortunately many of the changes that occur during an action potential

involve fluxes within a few nanometres of the membrane. This means that
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3.4 Discretisation Schemes and the Non Uniform Grid

Figure 3.5: Stencil used in central difference approximations on a non uni-

form grid. The parameter α determines the degree of non uniformity. The

distance between adjacent points is non uniform.

a small grid spacing is required to enable the concentration profiles to be

well resolved.

This is an issue because the size of the cell is 2 µm and so a fine grid would

involve a very large number of points. Further away from the membrane the

changes in concentration profiles are relatively small and it is not necessary

to have so many points. This means that a non uniform grid can be used.

When defining the non uniform grid it is important to think about the

system being modelled. Regions in the model where one or more properties

undergo a rapid change need to be modelled with a finer grid spacing.

The non uniform grid will be defined in a similar way to the one used

in [52; 53]. Similar methods are also used in [54]. In its simplest form, a

region of constantly spaced grid points with some minimal spacing ∆xmin

is used. This uniform region extends to some switching point Xs, beyond

which the spacing between points increases as follows

xi = xi−1 + γxi−1, (3.16)

where γ is the grid expansion coefficient. For negative i, the grid points are

defined by x−i = −xi.
The use of a non uniform grid means that it is necessary to recalculate

the approximations for the derivatives to take into account the unequal

spacing between points.

The computational stencil used for the non uniform regions is shown in

Figure 3.5. It should be noted here that α is equivalent to 1 + γ or 1 − γ

depending on whether the grid spacing is increasing to the right or the left.

The central difference approximations are derived in a similar way to

those used in the uniform case. First express the values of a function U at

points i -1 and i+1 as a Taylor expansion about i
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3.4 Discretisation Schemes and the Non Uniform Grid

Ui−1 = Ui − h
dU

dx
+
h2

2

d2U

dx2
− h3

6

d3U

dx3
+
h4

24

d4U

dx4
(3.17)

and

Ui+1 = Ui + αh
dU

dx
+ α2h

2

2

d2U

dx2
+ α3h

3

6

d3U

dx3
+ α4h

4

24

d4U

dx4
. (3.18)

Taking a weighted sum of Equation (3.17) and Equation (3.18) allows the

necessary derivatives to be calculated [55].

Ui−1 + AUi+1 = Ui (1 + A) + (−1 + αA)h
dU

dx
+
(
1 + α2A

) h2
2

d2U

dx2

+
(
−1 + α3A

) h3
6

d3U

dx3
+
(
1 + α4A

) h4
24

d4U

dx4
. (3.19)

To isolate the first derivative, A must be set such that the term proportional

to d2U
dx2

is eliminated. In this case A = − 1
α2 . Substituting this value for A

into Equation (3.19) and rearranging for dU
dx

gives

dU

dx
= − α

h (α− 1)
Ui−1 +

1

αh (α + 1)
Ui+1 +

(α2 − 1)

αh (α + 1)
Ui

− αh2

6

d3U

dx3
+
αh3 (1 − α2)

24 (α + 1)

d4U

dx4
(3.20)

where the fourth term in Equation (3.20) is the leading error term in the

first derivative.

A similar procedure allows a finite difference approximation for the sec-

ond derivative to be calculated. This time A must be set such that the term

proportional to dU
dx

is eliminated. Setting A to 1
α

and rearranging for d2U
dx2

gives

d2U

dx2
= − 2

h2 (1 + α)
Ui−1 +

2

αh2 (α + 1)
Ui+1 −

2

αh2
Ui

+
h (1 − α2)

6 (1 + α)

d3U

dx3
− h2 (1 + α3)

24 (1 + α)

d4U

dx4
. (3.21)

The leading error term in Equation (3.21) is only first order in h. This is

a consequence of the non uniform grid, causing imperfect cancellation of

terms.

As expected, setting α = 1 in equations (3.20) and (3.21) yields the

familiar results for the uniform grid, (3.12) and (3.15).

The exact nature of the grid depends on the system being modelled and

will be discussed in more detail in the relevant research chapters.
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3.4 Discretisation Schemes and the Non Uniform Grid

3.4.1 Numerical Errors and computational performance

The leading error terms, also known as the truncation error, associated with

the finite difference approximations on a nonuniform grid are a key source

of error. They are proportional to the minimum grid spacing h.

This implies that we can reduce the error by reducing the minimum grid

spacing, which is of course correct up to a point. Beyond a certain point

the round off errors caused by the precision of the numbers stored in the

computer will become the limiting factor (and can actually lead to dramatic

increases in the error with further reductions in h).

A simple indication of this can be found by calculating the derivative

of a model tanh function (similar to the ones used to set up the initial

concentration profiles) both analytically and numerically. Doing this for a

variety of grid sizes allows the relative error to be determined for various

grids. The function used for these tests is defined as follows:

y = 5 + tanh(ax) (3.22)

for which the first derivative is

dy

dx
= a(1 − tanh2(ax)) (3.23)

.

The parameter a determines the steepness of the tanh function with

larger a values giving rise to steeper functions. This means that large a

values approximate the concentration profile during the early stages of the

simulation, with smaller a values being representative of the later stages.

Figure 3.6 shows that for grid sizes below a certain point, the relative er-

ror starts to increase. This is due to the rounding error becoming significant

and offsetting the reduction in the truncation error term.

These problems are most likely to occur where there are sharp changes in

a quantity such as the tanh functions used to model the initial concentration

profiles.

This could be reduced to an extent by using more digits in calculations,

although this leads to a large increase in computational time. Ultimately it

was found to be unnecessary to increase the numerical precision and suitably

accurate results could be obained using double precision in MATLAB.
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3.5 The Newton Raphson Method

Figure 3.6: Relative error in the first derivative of the tanh function against

minimum grid spacing. As expected the error reduces as the grid spacing

is decreased, but eventually roundoff errors dominate.

There is always a balancing act with numerical simulations trying to

get the best results as quickly as possible. One of the reasons for using the

nonuniform grid was that it provided a good balance of accuracy and speed.

The code for dealing with a single membrane is the fastest as it has the

simplest layered structure. It simulates an action potential (about 5ms of

data) in 32 minutes. Without the nonuniform grid it is unlikely that it

would run in any reasonable time.

3.5 The Newton Raphson Method

The coupled transport and Poisson equations to be solved are

∂cNa
∂t

=
∂DNa

∂x

(
∂cNa
∂x

+
zNaF

RT
cNa

∂θ

∂x

)
+DNa

(
∂2cNa
∂x2

+
zNaF

RT

∂cNa
∂x

∂θ

∂x
+
zNaF

RT
cNa

(
− ρ

εε0
− 1

ε

∂ε

∂x

∂θ

∂x

))
, (3.24)
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3.5 The Newton Raphson Method

∂cK
∂t

=
∂DK

∂x

(
∂cK
∂x

+
zKF

RT
cK
∂θ

∂x

)
+DK

(
∂2cK
∂x2

+
zKF

RT

∂cK
∂x

∂θ

∂x
+
zKF

RT
cK

(
− ρ

εε0
− 1

ε

∂ε

∂x

∂θ

∂x

))
, (3.25)

∂cCl
∂t

=
∂DCl

∂x

(
∂cCl
∂x

+
zClF

RT
cCl

∂θ

∂x

)
+DCl

(
∂2cCl
∂x2

+
zClF

RT

∂cCl
∂x

∂θ

∂x
+
zClF

RT
cCl

(
− ρ

εε0
− 1

ε

∂ε

∂x

∂θ

∂x

))
(3.26)

and

ε
∂2θ

∂x2
+
∂ε

∂x

∂θ

∂x
+
∑
i

zici = 0. (3.27)

These equations must be solved at all grid points so if there are N grid

points, there will be 4N equations to solve. The finite difference formu-

lae, equations (3.20) and (3.21) are used to approximate the values of any

derivatives at all points on the grid.

Initially the Crank - Nicolson method was used, but this proved to have

difficulties due to the wide range of distances between grid points. The

Newton Raphson method has been used in similar electrochemistry work

[52] and used to obtain results relating to ionic solutions separated by an

infinitesimal membrane. It is an iterative method useful for solving systems

of non-linear equations and is described below. First the equations are

written in homogeneous form

f (x) = 0. (3.28)

In the simple case with just one equation in one variable, the iterations are

calculated using the Taylor series about some trial solution x0

f (x) ≈ f (x0) + (x− x0) f
′ (x0) = 0. (3.29)

Rearranging equation (3.29) for x gives the formula for the iterations

x1 = x0 −
f (x0)

f ′ (x0)
. (3.30)

For functions of multiple variables, equation (3.29) is modified as follows

f (x) ≈ f (x0) +
∑
n

(xn − xn,0)
∂f (x0)

∂xn
= 0 (3.31)
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3.5 The Newton Raphson Method

Figure 3.7: Four rows of the Jacobian matrix, showing the elements which

are non zero. Each row corresponds to one of the 4 equations at a grid point

i and is associated with one element in the column vector f.

and defining the difference between the trial solution and iteration result as

un = (xn − xn,0) allows equation (3.31) to be rewritten as∑
n

un
∂f (x0)

∂xn
= −f (x0) . (3.32)

Since there are n equations in n variables equation (3.32) becomes∑
n

un
∂fm (x0)

∂xn
= −f (x0) . (3.33)

Defining a Jacobian matrix with elements given by

Jmn =
∂fm
∂xn

(3.34)

allows equation (3.32) to be written in a matrix form

Ju = −f (x0) . (3.35)

If the equations are ordered correctly, the matrix J in Equation (3.35) has

only 12 non zero diagonals, which makes it somewhat easier to solve. If

there are N grid points, there are 4n equations to solve, three representing

the evolution of the concentration profiles and one describing the evolution

of the potential. Consequently there are 4 rows within the matrix equation

for each point on the grid and the only non zero derivatives in the Jacobian

matrix are those relating to the variables at the point under consideration

and also the adjacent two points.

By arranging the equations as indicated in Figure 3.7 the non zero ele-

ments fall on a set of 12 diagonals.

At the end of each iteration the solution vector u is added to the trial

solution x0. This process is repeated until the desired tolerance is reached,

at which point the final vector x becomes the trial solution for the following
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3.6 Validation

timestep. The potential across the membrane is calculated at the end of

each time step, then used to recalculate the Hodgkin Huxley gating variables

ready for the next time step using equations (2.5), (2.10), and (2.6).

3.6 Validation

Given that this is a numerical piece of work, it is important to consider

whether the results are valid and meaningful. In order to do this, it was

necessary to experiment with various grid spacings and time step sizes to

check that the simulations were converging well. Another useful check was

whether the system reproduced the known neural behaviours accurately.

To be considered valid the model would be expected to fully explain the

following behaviours: action potentials, resting potentials and sub threshold

responses. The results obtained will be compared with known results from

the Hodgkin Huxley model. If the model got stuck in a lcal minima it would

be unlikely to reproduce the expected behaviours outlined above. A more

detailed look at the validity of the results will be given in the discussion

sections of chapters 4, 5 and 6.
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Chapter 4

Single Membrane

In order to model the behaviour of the cell it is necessary to be able to

implement Hodgkin Huxley type behaviour within the membrane. In this

chapter, we describe the implementation in the case of a single membrane.

4.1 Outline of the Single Membrane Model

The system consists of semi infinite extra and intra cellular media separated

by a membrane. The initial ionic composition of the two media is shown in

Figure 4.1. There is a high concentration of sodium outside the cell and a

high concentration of potassium inside the cell. The initial values chosen are

based on those quoted in various sources [2; 41] but adjusted due to certain

minor ions not being considered and to satisfy the need for electroneutrality.

Initially the concentration profiles are smoothly connected through the

membrane using tanh functions as described in section 3.3. The membrane

is a region of space approximately 5 nm thick. Ion movement through

the membrane is controlled by voltage gated ion channels, the effects of

which are modelled by a severely reduced diffusion coefficient within the

membrane.

The Hodgkin Huxley model which describes the ion channels is discussed

in section 2.2. The relation of the Hodgkin Huxley model to the diffusion

coefficient is discussed in more detail in section 3.2. Relating the Hodgkin

Huxley behaviour to the diffusion coefficient allows the drift-diffusion and

Poisson equations to be applied in all three regions of the model. This is

called the drift diffusion enhanced Hodgkin Huxley model.
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4.1 Outline of the Single Membrane Model

Figure 4.1: Schematic diagram of the layers used in the single membrane

model. Within the membrane the concentration profiles smoothly transition

from extracellular values to the intracellular values using tanh functions (see

Figure 4.2).

Figure 4.2: Diffusion coefficient profile showing how tanh curves are used

to make a smoothly evolving diffusion coefficient profile through the mem-

brane. Diffusion coefficients are shown for sodium (blue curve), potassium

(red curve) and chloride (black curve) ions

47



4.1 Outline of the Single Membrane Model

Figure 4.3: Close up of diffusion coefficient profile within the membrane re-

gion. At rest the sodium ion channels are mostly closed and so the diffusion

coefficient is considerably lower than for the other ion species. The blue, red

and black curves correspond to sodium, potassium and chloride ions respec-

tively. It should also be noted that values for the diffusion coefficient are

considerably smaller than those within the intra and extracellular media.

This is because the membrane significantly reduces the ion flow between the

intracellular and extracellular regions. The decrease in the diffusion coeffi-

cient within the membrane can clearly be seen by comparing with Figure

4.2.

Figure 4.2 shows the diffusion coefficient profile for the three different

ion species. All ions have much smaller diffusion coefficients inside the mem-

brane. As ion channels open, the diffusion coefficient within the membrane

increases allowing more of a particular ion type through the membrane.

A close up of the diffusion coefficient profiles inside the membrane shows

the difference in the ion channels initial states, as can be seen in Figure 4.3.

At rest the sodium ion channels are almost completely closed and so the

diffusion coefficient for sodium within the membrane is up to two orders of

magnitude lower than that for potassium or chloride ions.

To solve the equations a non-uniform grid is used, as discussed in section

3.4. This is defined in such a way that there is a region of closely spaced

points, corresponding to the membrane and its immediate surroundings.

This is where the diffusion coefficient gradient and the concentration gra-

dients are highest and also where most of the ion movement occurs in the
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4.2 Single Membrane Results

Figure 4.4: Plot showing how the grid spacing ∆x varies with position. A

small grid spacing is used for the membrane and its surroundings as this

is where the gradients are high and most of the ion movement takes place.

Further away from the membrane the spacing is allowed to increase. The

membrane region is indicated by the dashed lines. The region of fine grid

spacing extends beyond the membrane to allow the bulk of the diffusion

that occurs close to the membrane to be modelled accurately. Axes are

restricted to show a limited portion of space for clarity.

model.

Outside this region the spacing between points is allowed to increase as

there is less ion movement far from the membrane.

Figure 4.4 shows how the grid spacing varies with position. The axes

are restricted to show only the membrane and the region close to it. The

membrane region is indicated by dashed lines, but the region of fine grid

spacing extends beyond this to allow the diffusion close to the membrane to

be modelled accurately. If the full domain was shown, the region of closely

spaced points would not clearly be visible.

4.2 Single Membrane Results

An important test of the validity of the model is whether it exhibits the

behaviours of real neurons. There is a range of behaviours which would

be expected to be reproduced by the model and it is these characteristics

which will be the focus of this section.
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4.2 Single Membrane Results

Figure 4.5: The system evolves to a resting potential. This resting state is

determined by a weighted average of the Nernst potentials for all the ions

with the ability to cross the membrane. The weightings are determined by

the resting conductances for the ions. The initial spike is due to the initial

conditions being an unstable point.

Firstly the case of no stimulation is considered. If there is no stimulation,

the system evolves to a resting potential and remains in that state until

stimulated. The spike in potential within the first 1 ms, shown in Figure 4.5,

is the result of the evolution from the initial state. The system is initialised

in a charge neutral state, so the potential difference across the membrane

is zero. This is an unstable point in the Hodgkin Huxley model as a zero

membrane potential is far from the resting state (discussed in more detail in

section 2.2). This means that the gating equations (Equations (2.5), (2.6)

and (2.10)) cause the ion channels to open and the system evolves through

an action potential. The later part of the graph shows how the system then

evolves to a resting state in which the membrane potential is constant.

The resting state is determined by a weighted average of the Nernst

potentials for each ionic species, as discussed in section 2.2.2. The resting

conductances are used to give the relative weights. If only one ion type was

present, the resting potential would be equal to its Nernst potential.

The timescale is determined by the gating variables and the rate func-

tions associated with the gating equations. These rate functions exhibit a

temperature dependence. The form of these functions was experimentally

determined by Hodgkin and Huxley, as discussed in section 2.2.2.
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4.2 Single Membrane Results

Figure 4.6: Evolution of the system’s membrane potential, Vm, to its resting

potential at T = 310K. After 1.5 ms the system is at rest and undergoes no

further significant change.

The capacitance of the membrane also affects the timescale of the mem-

brane dynamics, this is itself dependent on the permittivity and thickness

of the membrane.

The effect of temperature on the membrane dynamics can be seen clearly

by comparing Figure 4.6, which shows the dynamic return to rest from

a zero membrane potential state at T = 310K, with Figure 4.7, which

shows the same but for T = 279K. The membrane returns to its resting

state much slower at the lower temperature. This is because the chemical

rate constants in the Hodgkin Huxley model take on different values with

different temperatures. This causes the change in the gating variables (and

hence the opening and closing of ion channels) to occur at a different rate

depending on the temperature. The fast rate corresponds with the human

body temperature.

The resting potential is an important feature of neurons and so it is of great

significance that this behaviour is observed in the model. It is, however, the

active behaviour of neurons which is of particular interest. To study this it

is necessary to provide a stimulus to the model.

Stimuli that raise the membrane potential are known as depolarising

stimuli. If a sufficient stimulus is applied, the membrane is sufficiently de-

polarised that a positive feedback effect occurs, giving rise to an action
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4.2 Single Membrane Results

Figure 4.7: Evolution to resting potential at T = 279K. This is much slower

as the system has not reached rest even after 10ms.

potential. This is because the raised membrane potential triggers the open-

ing of sodium ion channels once a threshold is reached. This causes a rapid

rise in membrane potential as sodium enters the cell. The potassium chan-

nels then open allowing potassium to leave the cell, which has the effect of

reducing the membrane potential. It is noticeable that there is a period of

time during which the membrane potential is more negative than the resting

potential. This is known as hyperpolarisation and is due to the fact that

the potassium channels are slower to close and so more potassium ions can

leave the cell.

It is useful to compare the results of the Drift Diffusion Hodgkin Huxley

model with those of the classic Hodgkin Huxley model, as they would be

expected to be in good general agreement.

Figure 4.9 shows a comparison between the Hodgkin Huxley (HH) model

and the drift diffusion enhanced Hodgkin Huxley (DDHH) model during the

evolution towards the resting potential. It can be seen that the two models

are in good qualitative agreement, but there are some small quantitative

differences. These are likely due to the fact that the Hodgkin Huxley model

does not have smoothly evolving concentration profiles through the mem-

brane.

The tanh curves controlling the diffusion coefficient profiles within the

membrane may result in a smaller effective thickness of the membrane as
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4.2 Single Membrane Results

Figure 4.8: An action potential, showing the rapid rise and fall in membrane

potential, Vm, caused by the opening of ion channels. Numbers indicate

key features of the action potential. The resting phase is indicated by

0 both before and after the action potential. The initial depolarisation

is indicated by position 1. This takes the membrane potential above and

beyond the threshold. Point 2 is known as the overshoot, which is where the

potential becomes positive. Position 3 is the peak, the maximum potential

reached. The repolarisation phase is indicated by position 4, where the

potential starts to drop back towards the resting value. The region marked

by point 5 is the hyperpolarising afterpotential. This is a period for which

the membrane potential is more negative than its resting state. The action

potential is discussed in more detail in section 2.2
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4.2 Single Membrane Results

Figure 4.9: The Drift Diffusion Hodgkin Huxley model (red curve) is in

good agreement with the Hodgkin Huxley model. There are some quanti-

tative differences with the dynamics, but these are most likely due to the

smoothing of the tanh functions, which alters the effective width of the

membrane.

indicated in some of the following figures.

Similar quantitative differences are observed when a stimulation is ap-

plied resulting in an action potential, as can be seen in Figure 4.10. The

difference between the Hodgkin Huxley and the Drift Diffusion Hodgkin

Huxley model results appears to be, at least in part, due to the use of the

tanh curves to set up the diffusion coefficient profile of the membrane. By

reducing the value of the parameter d in Equation (3.9), it is seen that

the results more closely approach the Hodgkin Huxley model. This makes

sense, as the reduction in d results in a sharper more rapid transition from

the large diffusion coefficient within the media, to the small heavily restric-

tive diffusion coefficient within the membrane.

To gain a better understanding of what is going on during an action

potential, it is useful to examine the behaviour of the ion channels.

This can be illustrated by plotting the gating variables and the con-

ductances. The gating variables are unitless parameters ranging from 0

to 1, with 0 representing fully closed states and 1 representing fully open

states. Since within any patch of membrane there are a large number of ion

channels, the gating parameters should be viewed as the probability of the

associated gates being open. Figure 4.11 shows how the gating variables
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4.2 Single Membrane Results

Figure 4.10: The Drift Diffusion Hodgkin Huxley model is in good agree-

ment with the Hodgkin Huxley model. There are some differences with the

dynamics, but these are most likely due to the smoothing of the tanh func-

tions. By changing the value of the parameter d in Equation (3.9) which

defines the tanh curves, the results start to more closely agree with the

Hodgkin Huxley model. Here the response to a stimulus at time t = 2.5

ms is shown. The first initial spike after t = 0 ms is due to evolution from

the unstable point used as the initial conditions. The blue curve shows the

results from the Hodgkin Huxley model, the red, black and green curves

show the results of the drift diffusion Hodgkin Huxley model using tanh

curves with different values for the parameter d.
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4.2 Single Membrane Results

Figure 4.11: a) An action potential for reference. b) The h gate. This is

known as the inactivation gate for sodium. It is different to the other two

gates as it is open at rest and closed during periods of depolarisation. h

appears as a linear term in the equation for the sodium conductance. c) The

m gate. This is the sodium activation gate. It opens during depolarisation

and is closed at rest. m appears as a cubic term in the equation for the

sodium conductance. d) The n gate. This is the potassium activation

gate. It is only partially closed at rest, but opens more during periods of

depolarisation. n appears to the fourth power in the equation for potassium

conductance. There is no inactivation gate for potassium.
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4.2 Single Membrane Results

behave during an action potential and the subsequent evolution to rest.

The h gate, shown in Figure 4.11b is the sodium inactivation gate and is

open during the resting phase and closed during depolarisation. Since h is

quite slow to open after the action potential, there is a period during which

subsequent stimulations will not trigger an action potential. This is called

the refractory period. The m gate is the sodium activation gate shown in

Figure 4.11c . This is closed when the membrane is at rest but opens when

depolarised. The potassium activation gate n behaves similarly, except that

it is partially open during rest as shown in Figure 4.11d.

Although there is a clear picture of the behaviour of the gating variables,

the power law relationships which determine the conductances mean it is not

immediately apparent how these variables affect the membrane conductance

for the various ions.

Figure 4.12b shows the variation of the sodium conductance during an ac-

tion potential. Comparing this with the reference action potential (Figure

4.12a) shows the positive feedback effect in action. The initial stimulus

raises the membrane potential, this then causes an increase in the sodium

conductance, which further increases the potential. Looking at the potas-

sium conductance shown in Figure 4.12c, it is clear that the dynamics for

potassium are slower. This means that potassium is able to leave the cell

after the sodium channels have closed, resulting in hyperpolarisation, where

the membrane potential becomes more negative than the resting potential

state.

The chloride conductance is just a constant value which is considerably

smaller than the sodium and potassium conductances and is shown in Figure

4.12d for completeness.

The model is able to respond to further stimuli as can be seen by apply-

ing repeated stimuli. If after an action potential (and subsequent refractory

period) a further stimulus is applied it is possible to ”fire” the neuron mul-

tiple times. This can be seen in Figure 4.13a. The stimuli are applied in

the form of a temporary increase in the membrane diffusion coefficient for

sodium as shown in Figure 4.13b. This behaviour is observed within real

neurons, so is an important test of the model’s validity.

It is also necessary that the model has a threshold, so that stimuli below

the threshold do not trigger an action potential. To test this, the strength

of the stimulus was varied. This was achieved by changing the amount
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4.2 Single Membrane Results

Figure 4.12: a) An action potential shown versus time for reference. b)

Sodium conductance. The sharp rise allows an influx of sodium into the

cell causing depolarisation of the membrane. c) Potassium conductance. d)

Chloride conductance.
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4.2 Single Membrane Results

Figure 4.13: a) Multiple action potentials caused by repeated stimuli. It is

important that the model is able to cope with multiple stimulations, since

real neurons are able to be repatedly stimulated, provided the following

stimulus is after the refractory period. b) Diffusion coefficient stimuli used

to initiate the action potentials.
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4.2 Single Membrane Results

Figure 4.14: a) Responses to the different strength stimuli colour-coded and

shown in b). The weakest two stimuli are below threshold and do not trigger

action potential. There is still a small deviation from the resting state which

is gradually restored. The stronger stimuli do lead to the positive feedback

effect that causes an action potential. It is noticeable that the stronger

stimuli reach the threshold quicker, so the action potential arrives slightly

earlier for the larger stimuli. Stimuli shown in b). The nature of the stimuli

is a step increase in the diffusion coefficient of sodium within the membrane.

The step decrease has minimal effect as by this time the Hodgkin Huxley

gating variables have increased the sodium diffusion coefficient to such a

degree that the initial applied step is negligible.
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4.2 Single Membrane Results

Figure 4.15: a) The resting potential state. b)Diffusion coefficient profile

for sodium, indicates the position of the membrane. Due to the extreme

variation of the diffusion coefficient, the effective thickness of the membrane

is slightly smaller than expected c) Charge density profile when no stimu-

lation is provided. There is some charge build up at the membrane due to

the uneven distribution of different ion types. It is this charge build up that

gives rise to the non zero resting state.

by which the diffusion coefficient within the membrane for sodium was in-

creased during the stimulation period as shown in 4.14b.

Figure 4.14a shows the results of different strength stimuli. The weakest

two of these fail to trigger the positive feedback effect that leads to an action

potential and are therefore sub threshold stimuli. The three larger pulses do

lead to action potentials as they cause sufficient membrane depolarisation

to trigger the positive feedback effect.

The simulations also allow a spatio temporal profile to be calculated

for many of the variables of interest. This is a useful feature of the drift

diffusion Hodgkin Huxley model. Two of these are the charge density and

the electric field.

This information is best displayed in a colour map form, as in Figure 4.15c.
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4.2 Single Membrane Results

In the resting state, the charge density profile is constant in time, as it is

a relatively stable state with minimal redistribution of charge. It appears

that the charge layers are built up inside the membrane as indicated by

the plot of the sodium diffusion coefficient in Figure 4.15b. However, due

to the extreme variation of the diffusion coefficient it is not apparent that

there are still some areas of larger diffusion coefficient within the membrane

region.

This can be clearly seen by plotting the logarithm of the diffusion coef-

ficient. This is shown in Figure 4.16b where the logarithm of the diffusion

coefficient is plotted alongside the charge density profile. This means the

effective thickness of the membrane is smaller due to the use of the tanh

functions to model the diffusion coefficient. The effective thickness of the

membrane coincides with the region indicated by the dashed lines in Figure

4.16b. Examples of work undertaken with an altered tanh function giving a

thicker membrane are shown in chapter 6. We then see that the charge build

up is on the outside of this effective thickness in Figure 4.16c. Figure 4.16a

shows the potential profile with time. Since in this case the resting potential

has been established, there are no changes in the membrane potential over

the time period shown, this makes sense as there are no noticeable changes

in the charge density in Figure 4.16c during this time period.

The electric field is non zero within the membrane, as seen in Figure

4.17c. This is to be expected as there is a potential difference across the

membrane. This field is constant with time during the resting state as it is

a steady state. Comparison with Figure 4.17b shows that the non zero field

region is largely contained within the effective thickness of the membrane.

This makes sense since the potential change is across the membrane.

Similar colour map plots for the stimulated case are shown in Figures

4.18 and 4.19. The axes are restricted so that the changes that occur dur-

ing an action potential are clearly visible as this is the most interesting

behaviour. The redistribution of charge during an action potential can

clearly be seen in Figure 4.18c. It is clear, from comparison with Figure

4.18a, that changes in the charge density occur during the action potential,

it is these charge redistributions that give rise to the action potential. Prior

to the stimulation, there is a build up of positive charge outside the cell,

and a similar build up of negative charge on the inside. This is the same
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4.2 Single Membrane Results

Figure 4.16: a) The resting potential state shown during the period 2.4 ms

to 3.0 ms. This is just a flat horizontal line because by this stage the resting

state has been well established. Compare with Figure 4.18a which shows an

action potential. b) Logarithm of the diffusion coefficient profile for sodium.

The dashed lines indicate the effective position of the membrane i.e. the

region where the diffusion coefficient takes its smallest value. c) Charge

density profile when no stimulation is provided. There is some charge build

up at the membrane due to the uneven distribution of different ion types. It

is this charge build up that gives rise to the non zero resting state. Dashed

lines indicate effective position of the membrane.
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4.2 Single Membrane Results

Figure 4.17: a) The resting potential state shown during the period 2.4 ms

to 3.0 ms. This is just a flat horizontal line because by this stage the resting

state has been well established. Compare with Figure 4.18a which shows an

action potential. b)Logarithm of the diffusion coefficient profile for sodium.

The dashed lines indicate the effective position of the membrane i.e. the

region where the diffusion coefficient takes its smallest value. c) Electric

field profile when no stimulation is provided. Due to the charge build up

and non zero potential difference across the membrane there is an electric

field within the membrane. In the resting state this field does not change

with time. Dashed lines indicate effective position of the membrane.
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4.2 Single Membrane Results

Figure 4.18: a) Close up of an action potential caused by a stimulus at t =

2.5 ms. Used as a reference to correlate change in the charge density profile

in c) with the membrane potential. b) Logarithm of the diffusion coefficient

profile for sodium, indicates the effective position of the membrane. c)

Charge density profile during an action potential. The charge density build

up changes sign during the action potential. This is due to the redistribution

of ions and is what causes the change in membrane potential. Dashed lines

indicate effective position of the membrane, i.e. where the gradient in the

diffusion coefficient is so low as to be effectively zero.
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4.2 Single Membrane Results

Figure 4.19: a) Close up of an action potential caused by a stimulus at t =

2.5 ms. Used as a reference to correlate change in the electric field profile

in c) with the membrane potential. b) Logarithm of the diffusion coefficient

profile for sodium, indicates the effective position of the membrane. c) Elec-

tric field profile during an action potential. The electric field also changes

sign during an action potential. This is to be expected as the membrane

potential changes sign. The electric field changes occur mostly within the

effective region of the membrane. Dashed lines indicate effective position of

the membrane.
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4.2 Single Membrane Results

situation as seen during the resting state. Prior to the stimulation at 2.5 ms

Figures 4.16c and 4.18c are clearly in agreement. Once stimulated the ac-

tion potential occurs and this situation reverses, as a large influx of positive

sodium ions leads to a positive charge inside the cell, causing the outside

to have a negative charge. After the action potential, the system returns to

its original state. This differences are clearly seen when comparing Figure

4.16c with 4.18c following the stimulation at 2.5 ms.

The behaviour of the electric field during an action potential is clearly

shown in Figure 4.19c. As the potential rises, the field within the membrane

increases from its original negative value to a positive one. After the action

potential it then returns back to its resting state. This behaviour is largely

confined to the effective membrane region.

The changes in the charge density and electric field profiles which occur

during an action potential are consistent with the Hodgkin Huxley model.

The membrane acts in a similar manner to a parallel plate capacitor, with

charge either side of the membrane. During the action potential this charge

changes sign as the currents flow through the membrane and a new charge

distribution is reached at the peak of the action potential. This is then

reversed as the system returns to rest.

It is also possible to generate similar colour map plots for the different ion

species involved. This demonstrates one of the key benefits of the DDHH

model, being able to keep track of the ion movements and concentration

profiles. This feature could be of use when modelling systems with more

restricted spatial extent.

Figure 4.20c shows the change, from the initial conditions, in sodium

concentration during an action potential. Using 4.20a as a comparison, it

is clear to see that significant changes occur following the stimulation at

2.5 ms. There is some noticeable change even prior to the action potential,

this is because the ion channels are not completely shut and so sodium

is free to move a little even during the resting phase. During the action

potential, this shift of sodium into the cell becomes more pronounced. An

accompanying decrease in the sodium concentration immediately outside

the cell is also observed. It is also clear to see that there is a delay before

noticeable sodium currents are seen following the stimulation. This is due

to the time taken for the sodium channels to start opening in response to

the stimulation and so is to be expected.
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4.2 Single Membrane Results

Figure 4.20: a) Close up of an action potential caused by a stimulus at t =

2.5 ms. Used as a reference to correlate change in the sodium concentration

profile in c) with the membrane potential. b) Logarithm of the diffusion co-

efficient profile for sodium, indicates the effective position of the membrane.

c) Plot showing the change in sodium concentration relative to the initial

conditions. There is a significant increase in the concentration of sodium on

the intracellular side during an action potential. The positive y direction

(downwards in the Figure) is the intracellular space. Black line from Figure

a) to Figure c) indicates onset of the significant sodium current caused by

the opening of the ion channels. Dashed horizontal lines from Figure b) to

Figure c) indicate effective position of the membrane.
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4.2 Single Membrane Results

Figure 4.21: a) Close up of an action potential. b) Logarithm of the dif-

fusion coefficient profile for sodium, indicates the effective position of the

membrane. c) Plot showing the change in potassium concentration relative

to the initial conditions. There is a significant increase in the concentration

of potassium on the extracellular side during an action potential. The pos-

itive y direction (downwards in the Figure) is the intracellular space. Black

line indicates the onset of the significant potassium current caused by the

opening of the ion channels. Note this is later than the sodium current.

Dashed lines indicate effective position of the membrane.

The initial concentration profiles are smoothly evolving through the

membrane, from the extracellular values to the intracellular values. Due

to the fact that the activation and inactivation gates for sodium are never

fully closed, there is always some ability for sodium to move through the

membrane. This results in a change in the concentration of sodium within

the membrane, as sodium moves into the cell. During an action potential,

the gates open and this flow increases significantly.

Similar behaviour is observed for potassium, as shown in Figure 4.21c.

Figure 4.21a is useful to correlate changes in the potassium concentration

with changes in the membrane potential. In the case of potassium ions
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4.3 Validation of Single Membrane Results

the situation is reversed, potassium shifts from inside the cell to outside

the cell (upwards in Figure 4.21c) , with a noticeable increase during the

action potential. This is not reversed after the action potential because the

change in ionic concentration that occurs during the pulse is not sufficient

to reverse the concentration gradient. It is noticeable that the potassium

concentration undergoes its major change at a later phase of the action

potential than the corresponding change for sodium. This is to be expected

because the potassium gates are slower and don’t start to open until the

membrane potential starts to become more positive (a consequence of the

opening of the sodium channels).

Chloride ions display markedly different behaviour, as seen in Figure

4.22c. Firstly it is noticeable that prior to the action potential the changes

from the initial conditions are much smaller than those seen for sodium and

potassium. This is because the chloride concentration difference between

the intra and extracellular regions is much less than for the other ions. Also

the conductance for chloride ions is considerably smaller.

Even though the chloride conductance is constant with time, there is

some noticeable change in chloride concentration during the action poten-

tial. This is because the reversal of the electric field affects the drift term in

the drift diffusion equations, thereby changing the flux of the chloride ions.

4.3 Validation of Single Membrane Results

One process that was used to help validate the results was convergence tests.

The simulation was run for a variety of grid spacings to see if the results

converged at small enough grid point separation. The results in Figure 4.23

show that as the grid spacing is reduced, the results converge. The quoted

∆x values refer to the minimum grid spacing for a given simulation. Given

that the grids used are non uniform, the actual grid spacing will vary across

the computational domain, as indicated by 4.4 for example. It was also

necessary to do a similar check with the time step, as this could also have a

significant impact on the results. Figure 4.24 shows that changing the time

step has a minimal effect on the results.
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4.3 Validation of Single Membrane Results

Figure 4.22: a) Close up of an action potential. b) Logarithm of diffusion

coefficient profile for sodium, indicates the effective position of the mem-

brane. c) Plot showing the change in chloride concentration relative to the

initial conditions. It is noticeable that the change in chloride concentra-

tion is much lower than for the other ionic species. This is because the

conductance for chloride ions is a constant small value. There is still some

noticeable change in the profile of the chloride ions during the action po-

tential. This is due to the change in the electric field, which alters the drift

term in the drift- diffusion equation. Dashed lines indicate effective position

of the membrane.
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4.3 Validation of Single Membrane Results

Figure 4.23: Testing convergence by varying the grid spacing

Figure 4.24: Testing convergence by varying the time step
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4.4 Single Membrane Conclusions

4.4 Single Membrane Conclusions

The single membrane model is important, in that it allows Hodgkin Huxley

dynamics to be incorporated into a semi-permeable membrane model, simi-

lar to that discussed in [52]. It is the simplest system to be simulated using

the drift diffusion enhanced Hodgkin Huxley model. Important neuronal

behaviours, such as action potentials, resting potential and sub-threshold

responses are exhibited by the model.

In reality of course, taking a slice through a cell means that two mem-

brane layers are required and the internal dimensions of the cell are not

semi infinite. Also when applying the model to deal with detectors, it will

be necessary to have the detector reasonably close, 50-100nm, to the cell.

This will mean the extra cellular space will also be restricted and so the

model must be adapted to reflect that. These adaptations are discussed in

the next chapter.
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Chapter 5

Double Membrane

The single membrane results described in the previous chapter show that it

is possible to incorporate the Hodgkin Huxley behaviour into a drift diffusion

model. Unfortunately the idea of semi-infinite intra and extracellular space

separated by a membrane is not close to reality for a neuron in vitro or in

vivo.

This means it is necessary to extend the model to allow the restriction

of the extracellular space and also account for the fact that the intracellular

space is enclosed by the membrane. This means that in a 1D slice through

the cell there will be two membrane layers.

The ionic diffusion coefficients are of order 1 × 10−9 m2 s−1 and the

maximum simulation time period is tmax = 5 ms. The root mean square

diffusion thickness layer is given by

Xrms =
√

2Dtmax ≈ 3 µm. (5.1)

Since the cell width is 2 µm it was necessary to include the second

membrane.

However due to the very low flow of ions through the membrane no

noticeable interaction effects were expected to be observed.

5.1 Outline

The system modelled is shown schematically in Figure 5.1. The model

consists of an intracellular region separated from two extracellular regions

by membrane layers. The bottom layer is a glass sheet which represents

the coverslip on which the cell is grown in experiments and provides a
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5.1 Outline

Figure 5.1: Schematic showing the layers involved in the double layer model.

At the top is a semi infinite extracellular layer. Beneath this lies the first

membrane layer. This is followed by the intracellular region. The fourth

layer is another membrane layer, which leads to a restricted region of ex-

tracellular space, followed by a layer of glass.
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5.1 Outline

Figure 5.2: Initial sodium concentration profile. Key positions indicated

by numbered points. 1 is the semi infinite extracellular region. The area

indicated by 2 is the first membrane layer. 3 is the intracellular region.

The second membrane region is marked as 4. The restricted intracellular

space is indicated by position 5. The glass layer is at region 6, where the

concentration of all ions is zero. The transition regions are described by

tanh functions.

realistic restriction to the extracellular space. The distance between the

cell membrane and the glass is approximately 100 nm.

Both membranes incorporate ion channels and are affected by the Hodgkin

Huxley gating variables. As with the single membrane results it is impor-

tant that the membrane dynamics are capable of reproducing the range of

neuronal behaviours, action potentials, resting potentials and sub threshold

responses.

The initial concentration profiles are more complex than in the single

membrane case, as they have to incorporate two membrane regions and

the glass region. The profiles are set up in a similar way to the single

membrane case, with the various ion types having bulk concentrations in the

intracellular and extracellular media. To manage the transitions within the

membrane regions, tanh functions are used as discussed in Chapters 3 and

4. A further tanh function is used to bring all ion concentrations rapidly to

zero at the glass interface. This is necessary to enable a physically realistic

initial condition.

Figures 5.2, 5.3 and 5.4 show the initial concentration profiles used in the
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5.1 Outline

Figure 5.3: Initial potassium concentration profile. Key positions indicated

by numbered points. 1 is the semi infinite extracellular region. The area

indicated by 2 is the first membrane layer. 3 is the intracellular region.

The second membrane region is marked as 4. The restricted intracellular

space is indicated by position 5. The glass layer is at region 6, where the

concentration of all ions is zero. The transition regions are described by

tanh functions.
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5.1 Outline

Figure 5.4: Initial chloride concentration profile. Key positions indicated

by numbered points. 1 is the semi infinite extracellular region. The area

indicated by 2 is the first membrane layer. 3 is the intracellular region.

The second membrane region is marked as 4. The restricted intracellular

space is indicated by position 5. The glass layer is at region 6, where the

concentration of all ions is zero. The transition regions are described by

tanh functions.
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5.2 Results

Figure 5.5: Sodium diffusion coefficient profile. There are two membrane

regions as indicated by the arrows on the plot.

simulations . The intracellular region in these figures is between x = −1µm

and x = 1µm . The restriction of the extracellular medium between the cell

and the glass layer is also clearly seen.

Figure 5.5 shows the diffusion coefficient profile for sodium. As with

the single membrane case, the membranes are represented by regions of

extremely low, but non-zero, diffusion coefficient. Since physically the ions

would not diffuse into the glass region, it is appropriate to set the diffusion

coefficients of all ions to zero within the glass. This transition is also handled

using a tanh function. The profiles for the other ions are similar to that of

sodium and so are not reproduced here.

5.2 Results

As with the single membrane simulations, the initial state of the system is

electroneutral everywhere. This means that the system will run through an

unstimulated action potential initially. This occurs for the same reason as in

the single membrane case, a zero difference in potential across the membrane

is not a stable state in the Hodgkin Huxley model. This will then settle to

a resting potential unless otherwise stimulated, usually within 2ms.

Stimulating the cell using a diffusion coefficient step at time t = 2.5 ms

gives rise to an action potential as shown in Figure 5.6. This shows that
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5.2 Results

Figure 5.6: The double membrane model produces action potentials just

like the single membrane model, for comparison see Figure 4.8. The first

spike is due to the system being set up in an unstable initial state. The

second is an action potential triggered by a stimulus applied at 2.5ms. As

with the single membrane case, a stimulus is provided in the form of an

artificially elevated sodium diffusion coefficient within the membrane.

the introduction of a second membrane and the restriction of extracellular

space do not diminish the ability to trigger action potentials within the

model. The first spike in Figure 5.6 is due to the initial condition of zero

potential difference across the membrane, which is not a stable point of the

Hodgkin Huxley model. The resting potential of this particular model is

approximately -43.6mV . This means that in a resting state the interior of

the cell is negatively charged relative to the exterior.

Using the double membrane schematic allows the full width of the cell

to be simulated. Figure 5.7b shows how the potential varies with space

and time. A stimulation is provided at 2.5ms using an increased sodium

diffusion coefficient within the membrane, this results in an action potential

as shown in Figure 5.7a. It is clear that the potential within the cell changes

rapidly as can be seen by the change in colour within the cell from blue to

orange, see Figure 5.7b. The sharp change in potential at x = −1µm and

x = 1µm suggest a large electric field within the membrane. It is also seen

that the action potential spreads across the cell extremely rapidly, such that

sufficiently far from the membrane the potential remains spatially constant

within the cell.
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5.2 Results

Figure 5.7: a) An action potential versus time for reference. b)The potential

profile. The membranes separating the intra and extracellular regions are

too narrow to be visible on the scale of this plot. It can be seen that the

potential inside the cell is almost uniform throughout the width of the cell.

Action potential pulse is clearly seen just after stimulation at 2.5 ms.
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5.2 Results

Figure 5.8: a) An action potential versus time for reference. b) Logarithm

of the diffusion coefficient for sodium. This is used to indicate the effective

region of the membrane in which the diffusion coefficient will have values

dictated by the Hodgkin Huxley model. c) Electric field close to the top

membrane. There is a large electric field within the membrane due to the

change in the potential across it. Dashed lines indicate the effective mem-

brane region. The cell is stimulated at 2.5ms causing an action potential.

This changes the sign of the electric field due to the change in the potential

difference across the membrane. This can be seen as a colour switch from

blue to yellow during the action potential.

The fact that most of the spatial variation in potential occurs within/close

to the membrane is supported by the field profile.

Figures 5.8c and 5.9c show the electric field in the region of the top and

bottom membranes. The field is of a large magnitude within the membrane

but rapidly weakens away from it. This is seen as a colour change from blue

to green in the case of the top membrane, Figure 5.8c, and a colour change

from red to green in the bottom membrane, Figure 5.8c. As expected the

field at each membrane is equal and opposite. Both figures 5.8b and 5.9b

show the logarithm of the diffusion coefficient of Sodium and are used as a

guide to indicate the position of the membrane. Figures 5.8a and 5.9a show
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5.2 Results

Figure 5.9: a) An action potential versus time for reference. b) Logarithm

of the diffusion coefficient for sodium. This is used to indicate the effective

region of the membrane in which the diffusion coefficient will have values

dictated by the Hodgkin Huxley model. c)Electric field close to the bottom

membrane. As with the top membrane shown in Figure 5.8c the electric

field is large within the membrane and features a change in sign during the

action potential. This is indicated by a change in the colour from red to pale

blue during the action potential. The field within the bottom membrane is

opposite that found within the top membrane. Dashed lines indicate the

effective membrane region.
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5.2 Results

Figure 5.10: a) An action potential versus time for reference. b) Logarithm

of the diffusion coefficient for sodium. This is used to indicate the effective

region of the membrane in which the diffusion coefficient will have values

dictated by the Hodgkin Huxley model. c)Charge density close to the top

membrane, indicated by dashed lines. The charge builds up on the faces of

the membrane, indicated by the red and blue bands along the membrane

boundaries. This distribution undergoes a change of sign during an action

potential, indicated by the change in colour during the action potential.

The stimulus is provided at 2.5ms.

the membrane potential profile with time during the course of an action

potential.

During an action potential, the sign of the field briefly reverses as the

charge is redistributed and the membrane potential swaps sign. This occurs

for both membranes and is observed as a brief colour switch during the

action potential in Figures 5.8c and 5.9c. The effective membrane region is

indicated by dashed lines.

Figures 5.10c and 5.11c show the charge density profiles in the region

of the top and bottom membranes. The positions of the membrane are

indicated by the diffusion coefficient profile shown in figures 5.10b and 5.11b,
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5.2 Results

Figure 5.11: a) An action potential versus time for reference. b) Logarithm

of the diffusion coefficient for sodium. This is used to indicate the effective

region of the membrane in which the diffusion coefficient will have values

dictated by the Hodgkin Huxley model. c)Charge density close to the bot-

tom membrane, indicated by dashed lines. The charge builds up on the faces

of the membrane and can be seen as blue and red bands along the dashed

lines. This distribution undergoes a change of sign during an action poten-

tial. This is observed as a change in colour in the colour plot. The stimulus

is provided at 2.5ms. Note that during the resting phases the charge on

the inner faces of the membrane is negative, which is consistent with the

negative membrane potential. There is a brief change of sign during the

action potential.
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5.2 Results

Figure 5.12: Sodium concentration profile close to the bottom membrane

(indicated by dashed lines). A stimulation is provided at 2.5 ms as indicated

by the arrow. Shortly after this point a bulge can be seen indicating the

flow of sodium ions into the cell (from right to left on the figure). This is

seen as a shift to a paler red on the right hand side of the membrane, along

with a corresponding shift to a paler blue on the left side of the membrane

in the figure. It is this flow of ions that causes the increase in membrane

potential towards positive values.

whilst the potential profile is shown by figures 5.10a and 5.11a. The only

significant charge build-ups occur within the regions close to the membranes,

with red and blue bands on the top membrane in Figure 5.10c and blue and

red bands on the bottom membrane as in Figure 5.11c. Whilst the neuron

is at rest, the charge on the inner faces of the membrane is negative (blue

in the figure), whilst the outer faces are positive (red in the figure). This

is to be expected as the resting potential of the cell is negative. During

the action potential there is a brief period in which the interior faces of the

membrane carry a positive charge indicated by a colour change from blue

to yellow. This is what gives rise to the spike in the potential.

Whilst the charge density plots give a good picture of the overall sit-

uation during an action potential, it is also useful to consider the various

different ion species. Figure 5.12c shows the spatio temporal evolution of

the sodium concentration. It is clear that there is only limited movement

during the resting phases, but once the ion channels open, a bulge is seen,

at 2.5ms, which indicates that sodium is entering the cell. This is indicated
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5.2 Results

Figure 5.13: Potassium concentration profile close to the bottom membrane

(indicated by dashed lines). A stimulation is provided at 2.5 ms as indicated

by the arrow. Shortly after this point a bulge can be seen indicating the

flow of potassium ions out of the cell (from left to right on the figure).

This is seen as a shift to paler red on the left side of the membrane and

a corresponding shift to a paler blue on the right of the membrane in the

figure. This flow of positively charged potassium ions out of the cell leads

to the membrane potential being restored to its resting state.

87



5.2 Results

Figure 5.14: Chloride concentration profile close to the bottom membrane

(indicated by dashed lines). The chloride ions do exhibit some interesting

behaviour after a stimulus even though they are not one of the main ions

involved with the triggering of the action potential. There is a noticeable

change in the concentration of chloride ions following the stimulus at 2.5

ms (indicated by arrow). Even though the conductance of chloride ions is

small, the change in the electric field within the membrane during an action

potential causes a subtle shift in the concentration of chloride ions.
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5.2 Results

as a shift to a paler red on the right of the membrane and a corresponding

shift to a paler blue on the left of the membrane in Figure 5.12c. From

this it is clear that the ion channels have the most significant impact on the

movement of sodium. It is this rush of sodium ions into the cell that leads

to the rising phase of the action potential.

Figure 5.13 is similar, but shows the situation for potassium. Once again

the profile is relatively stable during resting phases, but shows changes

during an action potential. Here a bulge is seen just after 2.5 ms which

indicates the potassium leaving the cell. Ion flow is observed as a shift to a

paler blue on the right of the membrane and a corresponding shift to a paler

red on the left of the membrane in Figure 5.13. This is another example of

the voltage gated ion channels in action. The flow of potassium out of the

cell causes the membrane potential to return towards its resting value.

The situation for chloride however is somewhat different as can be seen

in Figure 5.14. For chloride ions the membrane conductance is a fixed value.

There are no voltage gated channels as in the case of sodium or potassium.

This means the main variables controlling the movement of chloride ions

are the chloride concentration gradient and the electric field. There are

still some interesting features in the chloride concentration profile. Shortly

after 2.5 ms there is some indication of a change in the profile. Since the

concentration gradient of the chloride ions across the membrane is relatively

constant in time, the change in concentration profiles must be due to the

electric field altering sign during the action potential.

The glass layer is present to provide this restriction in a realistic manner.

The ability to simulate a neuron in a region of restricted extracellular space

is a necessary step towards modelling the detector technologies which will

provide a way to detect action potentials. These are discussed in the next

chapter.
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Chapter 6

Detectors

The double membrane model can be further adapted to include additional

layers which act as electrodes that can be used to detect action potentials.

Cells can be grown on a thin gold film, which allows the possibility of using

surface plasmon resonance to detect action potentials.

The model layer structure is shown in Figure 6.1 and incorporates a thin

gold film of 50nm thickness. In the gold film, the conduction electrons will

move in response to changes in the electric field at the electrode surface.

This means the concentration of electrons will have to be modelled using

drift diffusion equations. These will take the same form as for the other ionic

species in the previous chapters, but with extra terms to account for the

concentration of electrons. Of course it should be noted that the electrons

will only have a non-zero concentration within the gold layer.

6.1 Gold

In order to model the gold it is necessary to calculate the initial concentra-

tion of conduction electrons and their diffusion coefficient. This will allow

the drift diffusion model to be applied to the gold layer in a similar manner

to the other layers in which ions move.

Gold has a density ρ = 19300 kg m−3 and an atomic weight of 197 g/mol.

If each gold atom contributes 1 conduction electron that means the number

density, n, of conduction electrons is the same as the number density of

atoms [56], i.e.

n =
19300

0.197
Av = 5.9 × 1028 m−3. (6.1)
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6.1 Gold

Figure 6.1: Schematic diagram showing the layer structure for detection of

action potentials. This is the same as the layer structure for the double

membrane but with an extra layer of gold film, (yellow) between the ex-

tracellular media and the glass (grey). The cells are grown on the gold,

but there is a small gap (right hand blue region) in which the extracellular

media is present.
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6.1 Gold

The number density of electrons can be used to calculate the plasmon fre-

quency of the gold using Equation (1.2) with ε∞ = 1.53.

ωp =

√
ne2

mε0ε∞
= 1.107 × 1016 rad s−1. (6.2)

In order to be compatible with the other data, this must be converted into

a molar concentration.

celec =
5.9 × 1028

Av
= 9.8 × 10−4 mol m−3. (6.3)

To calculate the diffusion coefficient it is necessary to first find the mo-

bility and then use the Einstein relation relating mobility to the diffusion

coefficient.

The electron mobility µ is given by µ = eτ/m where τ is the relaxation

time and m is the electron mass.

τ =
m

ne2ρel
= 2.75 × 10−14 s. (6.4)

Using τ to calculate mobility gives µ = 4.84 × 10−3 m2 V−1 s−1.

Using the Einstein relation gives

Delec =
µkbT

q
= 1.25 × 10−4 m2 s−1. (6.5)

This means that the diffusion coefficient for electrons is five orders of

magnitude larger than for the other ionic species. Physically this is because

of the small mass of the electrons. It also means that the electrons can

respond very quickly to changes in the electric field.

The initial concentration profiles and diffusion coefficients are set up

using tanh curves as in the case of the other models. These curves are

set up so that the diffusion coefficient for the ions goes to zero at the gold

surface. This prevents unphysical effects such as ions diffusing into the gold

film or electrons diffusing out of the film and into the extracellular media.

Figure 6.2 shows the initial electron concentration confined to the region

incorporating the gold film. Since the diffusion coefficient of the electrons

outside the gold film is zero, there is no way for them to move into the

solution. The transition to zero shown in Figure 6.2 is an example of the

application of the tanh function being used to provide a continuous diffusion

coefficeient profile.
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6.2 Results

Figure 6.2: Initial concentration of the electrons plotted against spatial

position. Conduction electrons are confined to the gold film layer in the

model. The dashed line indicates the position of the boundary between the

extracellular media and the gold film.

6.2 Results

The first results of the model are those which check whether the gold film

affects the neuron function in any way. For gold to be a viable detector, it

must not inhibit or alter in any significant way, the behaviour of the neu-

rons. This means the full range of behaviours must be exhibited including,

action potentials, resting potentials, refractory periods and sub threshold

responses.

The other major area of interest with this model, is what happens within

the gold film and at the interface between the extracellular media and the

gold.

The resting and stimulated behaviour are observed as expected. Un-

stimulated, the system evolves from its initial electroneutral state to the

equilibrium resting state. A spike is triggered due to the initial zero mem-

brane potential being an unstable point in the Hodgkin Huxley model. Once

at rest the system maintains a constant potential difference across the mem-

brane. This can be seen in Figure 6.3. When a stimulation is applied, again

by raising the diffusion coefficient for sodium within the membrane, an ac-

tion potential occurs. This can be seen in Figure 6.4. This also gives good

agreement with the single and double membrane cases shown in Figures
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6.2 Results

Figure 6.3: Plot of the membrane potential against time. When unstim-

ulated, the nerve relaxes to a resting potential. Since the system is ini-

tialised in a globally electroneutral state, the potential difference across

the membrane is initially zero. Since this zero potential difference is a

non-equilibrium state within the Hodgkin Huxley model the system evolves

through a spike (as if stimulated) before relaxing to rest, with a build up of

charge on either side of the membrane.

Figure 6.4: Plot of the membrane potential against time. A stimulus applied

at t = 2.5 ms causes an action potential to occur, as with the single and

double membrane case. The presence of the gold layer does not prevent

action potentials. For comparison with the single and double membrane

cases consult Figures 4.8 and 5.6
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6.2 Results

Figure 6.5: Top Panel: The effect of different magnitude stimuli on the

membrane potential, Vm. Smaller stimuli are not sufficient to trigger an

action potential, these are then referred to as subthreshold stimuli (blue

and red curves). Larger stimuli do produce an action potential(black and

green curves). Bottom Panel: Stimuli provided are shown. These take

the form of an increase in the diffusion coefficient for sodium within the

membrane.

4.8 and 5.6. By applying a range of stimuli, the transition from sub to

suprathreshold can be observed. The two smaller stimuli represented by

the blue and red curves in Figure 6.5 are not sufficient to cause an action

potential and therefore exhibit a sub threshold response. The two larger

stimuli, indicated by the black and green curves are capable of triggering

an action potential.

It is again useful to look at the charge and electric field profiles close

to the membrane. Figures 6.6a and 6.7a show that the behaviour of the

charge density and electric field is similar to that in the double membrane

situation, for comparison see Figures 5.11c and 5.9c. Charge density and

Electric field undergo a rapid brief change during the action potential (at

and around 2.5ms) and then return to resting values, this is shown by a

colour change from red to blue at the time of the action potential in Figures

6.6a and 6.7a. This is as a result of the ion flow that occurs during an action

potential, with the interior of the cell becoming more positively charged

during the rising phase of the spike. Following the action potential a return
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6.2 Results

Figure 6.6: a)Charge density within the vicinity of the bottom membrane.

The membrane walls are indicated by dashed lines. The application of the

stimulus occurs after 2.5ms as indicated by the arrow. The charge build

up swaps sign during the course of the action potential, shortly after the

application of the stimulus. b) Logarithm of the diffusion coefficient for

sodium plotted against x, shows the effective position of the membrane.
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6.2 Results

Figure 6.7: Electric field close to the bottom membrane. The membrane

walls are indicated as dashed lines. The point of application of the stimulus

is indicated by the arrow. The sign of the electric field is changed during

the action potential as seen shortly after application of the stimulus. b)

Logarithm of the diffusion coefficient for sodium plotted against x, shows

the effective position of the membrane..
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6.2 Results

Figure 6.8: a) Potential profile showing initial spike and relaxation to rest.

This is used to correlate with changes in charge density profile in b. b)

Charge density near gold surface with no stimulation. There is some charge

build up near the gold surface which occurs due to the firing of an initial

spike before the resting state is reached. A yellow/orange band develops,

showing the region of positive charge which is indicated by an arrow. The

dashed line indicates gold surface boundary.

to a stable state is observed.

Of greater importance is whether there is any noticeable signature of ac-

tion potentials at the gold / extracellular interface, as it is the gold layer that

would be used in surface plasmon resonance experiments. For this reason

it is of particular interest whether there is a charge build up and associated

electric field at the gold surface. Figure 6.8b shows the charge density close

to the gold surface when no stimulation is applied. The potential profile

accompanying this is shown in Figure 6.8a There is some small accumu-

lation of approximately 1000 Cm−3 close to the gold surface, triggered by

the initial stabilisation. (The system is initially in an unstable non-resting

state). This accumulation is visible as band of yellow/orange within the

colour plot. The charge accumulations are much lower than those found

close to the membrane, as seen in Figure 6.6. The gap between the cell

membrane and the gold surface is only 100 nm, so small amounts of charge

could build up leading to larger charge densities outside the cell compared

with in the semi infinite model. Figure 6.9b shows the effect of a stimulation

on the charge build up at the gold surface. The stimulation applied at 2.5

ms triggers an action potential, as can be seen in Figure 6.9b . This can

be seen to cause an increase in the magnitude of the charge buildup to ap-

proximately 2000 Cm−3. An increase in the spatial extent is also observed
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6.2 Results

Figure 6.9: a) Potential profile showing an action potential caused by stim-

ulation at 2.5 ms. This is used as a reference to correlate with changes in

the charge density profile in b. b) Charge density near gold surface with

a single stimulation applied at 2.5 ms. The action potential results in a

second additional charge build up, following that triggered by the initial

spike. Arrow 1 indicates the relaxation spike, arrow 2 shows the response

to the stimulus. The thickness of the yellow/orange band increases after the

initial relaxation spike and after the stimulation. The dashed line indicates

gold surface boundary.

as an increase in the thickness of the yellow/orange bands and a transition

to darker orange colours. Similar repeated charge build ups occur when

a series of stimulations are applied. The application of multiple stimuli is

shown in Figure 6.10a, with the clearly linked charge density profiles shown

in Figure 6.10b.

The presence of a charge build up at the gold surface also gives rise to

an electric field. When no stimulation is provided, a small field of approx-

imately 300 Vm−1 builds up at the boundary due to the system returning

to rest from an unstable state. This is indicated in Figure 6.11b as a yellow

band in the colour plot, with corresponding membrane potential profiles

shown in 6.11a. Action potentials triggered by the stimulations can be seen

to cause an increase in the magnitude and extent of the field at the gold

surface. The field response to a single stimulus is shown in Figure 6.12b,

with the stimulus indicated in 6.12b whilst a series of three stimulations are

shown in Figure 6.13b. Each successive stimulus causes an increase in the

extent and strength of the field, indicated by a transition to oranges and

reds and a general widening of the yellow bands.

It is worthwhile considering what effects the charge build up has on the
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6.2 Results

Figure 6.10: a) Potential profile showing three action potentials caused by

stimulation at 2.5 ms, 5.0 ms and 7.5 ms. This is used as a reference to

correlate with changes in the charge density profile in b. b)Charge density

near gold surface with three stimulations at 2.5, 5.0 and 7.5ms. Each ac-

tion potential increases the charge build up on the surface as indicated by

the arrows. Arrow 1 indicates the position of the relaxation spike, whilst

arrows 2, 3 and 4 show the responses to the stimuli. The overall magnitude

of the charge buildup is still considerably smaller than that found on the

membranes. With each successive stimulation the charge build up is seen

as an increase in the thickness of the yellow/orange band and a transition

towards darker orange. The dashed line indicates gold surface boundary.

Figure 6.11: a) Potential profile showing initial spike and relaxation to rest.

This is used to correlate with changes in the field profile in b. b)Field

near gold surface with no stimulation. The electric field also shows signs

of responding to changes occuring at the membrane. The initial relaxation

spike triggers a non zero field at the gold surface, shown as a band of yellow

in the colour plot.
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6.2 Results

Figure 6.12: a) Potential profile showing an action potential caused by

stimulation at 2.5 ms. This is used as a reference to correlate with changes

in the field profile in b. b)Field near gold surface with single stimulation.

The field magnitude and extent increases after an action potential caused by

a stimulus applied at 2.5 ms. Arrow 1 indicates the relaxation spike, arrow

2 shows the response to the stimulus. Both the initial relaxation spike and

the response to the stimulus result in an increase in the strength and spatial

extent of the electric field. This is seen as a thick yellow/orange band in

the colour plot.

plasmon frequency. If it is assumed that the charge density represents a

change in the local number density of electrons, then Equation (6.2) can be

used to calculate the new plasmon frequency.

From Figure 6.10 it can be seen that the maximum charge density is of

the order ∆ρ ≈ 3000 Cm−3, this corresponds to a change in the electron

number density, ∆n of

∆n =
∆ρ

e
≈ 2 × 1022 m−3. (6.6)

This is only a 10−6 fractional change in the number density of electrons.

Substituting n − ∆n into Equation (6.2) and using the original value

of the gold plasmon frequency, we see a small change in the plasmon fre-

quency ∆ωp ≈ 2×10−9 rad s−1. This is unlikely to be easily detectable,

however future work could consider modelling whether there are any sig-

nificant changes of refractive index within the gold, as this is a commonly

used parameter in surface plasmon resonance experiments.

Running the unstimulated scenario to 10 ms allows the longer term rest-

ing behaviour at the gold boundary to be analysed. It seems that without
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6.2 Results

Figure 6.13: a) Potential profile showing three action potentials caused by

stimulation at 2.5 ms, 5.0 ms and 7.5 ms. This is used as a reference to

correlate with changes in the field profile in b. b) Field near gold surface

with three stimulations. The extent and magnitude of the field increases

with each action potential after stimuli applied at 2.5, 5.0 and 7.5 ms. Arrow

1 indicates the position of the relaxation spike, whilst arrows 2, 3 and 4 show

the responses to the stimuli. Each successive stimulus causes the strength

and the spatial extent of the field to increase. This is seen as a widening of

the yellow/orange bands and also some areas of red appearing on the colour

plot.

Figure 6.14: Charge density near gold surface with no stimulation. Run to

10ms we see there is no change compared with the 5ms scenario.
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6.2 Results

Figure 6.15: Field near gold surface with no stimulation. Run to 10ms we

see there is no change compared with the 5ms scenario.

further stimulation there is still some level of charge build up. This could

be due to the continued low level flux of ions through the membrane and is

noticeably less than in the stimulated cases.

This model enables us to determine the field build up associated with

action potentials at the gold surface. As a result of this, the model should

enable further work to be carried out to model whether any surface plasmon

resonance response should be expected in experimental work. This would

entail adding plasmon physics to the Drift Diffusion enhanced Hodgkin Hux-

ley model.
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Chapter 7

Conclusions

The Hodgkin Huxley model can be combined with a set of drift diffusion

equations to produce a series of models enabling a neuron to be simulated.

Adding the drift diffusion equations to the model is useful as it allows the

movement of ions through the ion channels within the Hodgkin Huxley

model to be modelled as diffusion. The state of the ion channels, open or

closed is linked to the diffusion coefficient within the membrane.

It is also a useful addition to the Hodgkin Huxley model, in that it

enables the concentrations of ions to be modelled both intracellularly and

extracellularly. This then allows fields and charge buildups to be calculated.

The layered nature of the models should enable new users to add layers in to

the model in order to simulate various experimental designs and parameters.

The first and most simple of these (outlined in Chapter 4) is the single

membrane model. This simulates two semi infinite regions, one of intracellu-

alar space, the other of extracellular space. These two regions have different

ionic concentrations to approximate those found in real situations. Some

ions which are normally present in small amounts have not been included

so as to simplify the model where possible. It would be relatively straight-

forward to add other ion species, but each species added would increase

the number of equations to be solved, thereby increasing computation time.

The two regions are separated by a thin membrane.

The behaviour of the intra and extracellular regions is governed by the

drift diffusion and Poisson equations. The drift diffusion equations describe

the motion of the ionic species in the presence of an electric field. These

are coupled to the Poisson equation which calculates the potential from a

given charge distribution.
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In order to solve these equations they are discretised using a non uniform

grid to allow a high density of points at the membrane, which is where most

of the detail is required. This prevents there being too many grid points in

the simulation for it to run within a reasonable time. Once discretised the

iterative Newton Raphson method was used to solve the matrix equations

within MATLAB.

The behaviour of the membrane is modelled partially using the drift

diffusion and Poisson equations, but also incorporates the Hodgkin Hux-

ley model. This simulates the opening and closing of ion channels, which

regulate the flow of ions across the membrane.

This is done within the drift diffusion framework by adopting a greatly

lowered diffusion coefficient within the membrane. Although this doesn’t

account for the microscopic level behaviour of individual ion channels open-

ing and closing, it is a good approximation for the probabilistic opening

of the gates as described by the gating variables in the Hodgkin Huxley

model. The membrane diffusion coefficient then changes according to these

gating variables defined within Hodgkin Huxley model. As ion channels

open, the diffusion coefficient becomes larger, to represent the easing of re-

strictions on the flow. During each time step the potential difference across

the membrane is calculated.

The system, when unstimulated, steadily evolves to a resting state known

as the resting potential. This is important as it is one of the key features of

neurons, which indicates that the model is valid. This is further shown by

the response to the stimulations. If a stimulus is not of sufficient size, there

will be a small move away from the resting potential which is gradually

restored. This is the sub threshold behaviour.

Given a sufficient stimulus, a positive feedback effect occurs which trig-

gers the opening of ion channels. This results in a sudden sharp rise in

the potential difference across the membrane known as an action potential.

This is a threshold based effect in that there is a significant change in be-

haviour once the threshold is reached, but further increases in the stimulus

result in only small changes in output (slightly quicker onset of the action

potential). The changes in the electric field and charge density close to the

membrane were also considered and shown to be in line with what should

be expected.
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Although it is reassuring that the model behaves well and as expected, a

semi infinite single membrane model does not represent a realistic physical

situation. For this reason a more complex model was created which models

a 1D slice through a cell.

This model also includes a region to represent the glass substrate upon

which cells are often grown. This allows the model to be tested within the

framework of a restricted extracellular space. As was the case with the single

membrane model, the expected neuron behaviours were observed. Resting

potentials, sub threshold responses and action potentials are all possible

within the model and triggered in the same ways.

The field and charge build ups were also checked on both the membrane

layers involved in the model. Again the behaviour expected was observed,

with charge accumulations on either side of the membranes and significant

electric fields within the membrane layers As expected from the Hodgkin

huxley model, these charge accumulations and fields change signs during an

action potential.

The third model was a development of the double membrane model and

includes a layer to simulate a gold film on the surface of the glass substrate.

This is because cells can and have been grown on a gold surface, it also

demonstrates the ability to introduce different substrate layers within the

model.

The addition of the gold film adds some complications to the model

as there is then another species (the conduction electrons) to include in

the drift diffusion equations. This means the gold model requires more

computational time as the number of elements in the matrices is larger.

The behaviour of the neuron was not affected by the presence of the gold

layer and the usual behaviours (resting potentials, action potentials and sub

threshold responses) were observed. However there were indications of a

field and charge build up at the surface of the gold after action potentials.

Repeat stimulations resulted in an increase in the extent and magnitude of

the charge build up observed but it should be noted that the magnitudes

involved are much smaller than the effects at the membrane.

The fractional change in the plasmon frequency, ωp, is of the order 10−7

which is unlikely to be detectable. However it may be possible to extend

the model to look at changes in the refractive index of the gold film.
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7.1 Suggestions for further work

Another possible benefit to including a gold substrate layer is that it can

in the future be extended to model some Surface Plasmon Resonance (or

SPR) experiments. If the charge and field build ups affect the plasmon be-

haviour, then surface plasmon resonance experiments will be able to detect

neural activity.

The numerical methods developed to solve the model allow for different

layers to be put into the model and their properties to be matched using

tanh curves. This enables smoothly changing concentration and diffusion

coefficient profiles, avoiding the sharp gradient discontinuities that occur

with a step change in parameters. The non-uniform grid used is a key fea-

ture of the model allowing points to be more closely spaced where there are

large parameter changes, but eliminates the need for this close spacing to

be extended to all points in the computational domain.. This is particularly

important for the membrane regions and also transitions between different

media, such as the gold or glass. By restricting the range over which the

parameters change, no unphysical effects are introduced. This is very im-

portant for the interfaces between the media solutions and membrane layers,

but even more so for the gold/media interface.

The key features of this work is that it is a working model that can

be interfaced with other models that require knowledge of electric fields

within the vicinity of a neuron. The model is demonstrated to reproduce

the key features of neurons such as action potentials, resting potentials and

subthreshold behaviour. This means that the model could be used to test

the feasibility of novel detection methods.

7.1 Suggestions for further work

The models developed show a promising way forward in the search for a

more effective detector of neural activity. One way to do this would be to

enhance the gold layer model so that the effects of neural activity on Surface

Plasmons in the gold film can be determined.

Changes in the surface plasmons behaviour can be detected as a change

in the refractive index of the gold film. This would require the surface

plasmon physics to be incorporated into the gold film, so that the response

of the plasmons to the neural activity could be modelled[26]. Different types

of gold nanoparticles can be considered for biosensing applications[57].
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7.1 Suggestions for further work

Figure 7.1: Schematic of the setup used for SPR experiments. Cells are

grown on a gold film above a prism. The cells are immersed in media and

the gold film is illuminated using a laser light source.

A schematic indicating the basics of the SPR experiment is shown in Figure

7.1. The cells are grown on a gold film on top of a prism. They are then

immersed in the nutrient rich media and lasers are used to illuminate the

gold film through the prism.

Since there was a clear field and charge build up at the gold boundary, it

would be interesting to see the plasmon behavior modelled in more detail.

A second extension of the model would be to use the cable equation to

allow the modelling of the propagation of pulses in 2D [41; 58; 59]. The

cable equation is often used in neuron models that deal with propagating

pulses and is defined as follows.

cm
∂Vm
∂t

= −jm +
1

2πari

∂2Vm
∂x2

(7.1)

where ri is the resistance per unit length inside the axon, jm is the current

density, cm is the membrane capacitance per unit area and a is the axon

radius.

Incorporating this into the scheme adopted in this work would require

solving the drift diffusion equations in 2D. This is a much more difficult

computational problem and so a great deal more computing power would

likely be required. This would also enable the concentration changes outside

the cell to be calculated in 2D allowing a realistic picture of the current flows

associated with the action potentials. A 2D model of the current flows would

be sufficient as most of the time cells are grown on a flat surface and so form

networks similar to interconnected wires. A 2D model would be sufficient to
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7.1 Suggestions for further work

Figure 7.2: A BEC in a magnetic trap ready to image a current source. The

condensate forms in the minimum of the trap. Changes in the magnetic field

disturb the density profile of the cloud. This can be imaged using optical

methods and used to build up a picture of the current source.

deal with those, though of course it would eventually be desirable to extend

this to 3D to model more complex neural structures.

From this, a simple application of the Biot-Savart law would enable

the calculation of the magnetic fields from the current data. Of particular

interest then would be the changes in the magnetic field profiles during an

action potential.

If there was to be a sufficiently strong shift in the magnetic field, then

one of a range of magnetic field sensors could be used.

An example of a magnetic field sensor with high spatial and temporal

resolution is the Bose Einstein Condensate microscope [21]. This is a rela-

tively recent technology which has been used to measure the current flow in

wires or thin films. It involves using a cloud of cold atoms in the Bose con-

densed state positioned in a magnetic trap above the current source. The

trap setup is shown in Figure 7.2 and is often referred to as an atom chip.

These use a homogeneous bias field and a current carrying wire to trap the

atom cloud in a potential minima. For a bias field, Bbias and a wire current

I the total magnetic field is given as follows

B =

Bbias

0
0

+
Iµ0

2π (x2 + y2)

−y
x
0

 (7.2)

The trap forms in the minimum of this field. The x and y coordinates of
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7.1 Suggestions for further work

this position are as follows

xtrap = 0 (7.3)

ytrap =
Iµ0

2πBbias

(7.4)

The position of the trap can therefore be changed by adjusting the current

in the wire and the bias field. Variations in the magnetic field, such as

those caused by the currents associated with an action potential result in a

change of the density profile of the cold atom cloud. The structure of the

condensate can be imaged with a camera using optical absorption methods.

By scanning the position of the BEC it is possible to build up a detailed

picture of the currents.

One thing that makes the BEC microscope an interesting proposition

for imaging biological systems is the combination of high sensitivity of ap-

proximately 100 pT and good spatial resolution µm.

Whilst these are not the best values which can be achieved, SQUIDs have

a higher sensitivity and magnetic force microscopy has a better resolution,

they are nevertheless a useful compromise between the two.

The technique has been used to image the current flows within copper

wire and thin metal films [60].

A very rough estimate of the magnetic field, Bneuron can be obtained

from the current density within the Hodgkin Huxley model. From Figure

2.7, we can infer a current density, j ≈ 5 Am−2. For larger mammalian

axons with radius, r = 10µm the Biot Savart law gives

Bneuron =
µ0jπr

2

2πR
≈ 300 pT (7.5)

where R = 1µ m is the distance from the condensate to the cell. Since this

is larger than the 100 pT sensitivity of the BEC there should be a good

possibility of detecting neural activity. It would of course be beneficial to

model the full 2D pulse propagation to get a better picture of the magnetic

fields involved.

Unfortunately, there are also some practical considerations to overcome

when considering the use of BECs with living cells. Principally that Bose

Einstein condensates can only be formed in an ultra high vacuum. This is

unfortunately not a suitable environment for the survival of cells. It could

be possible to build a chamber which can withstand the forces of the ultra

high vacuum and have the cells on one side and the BEC on the other.

110



7.1 Suggestions for further work

This would need a very thin window, of approximately one micron, in order

for the BEC to still be close enough to detect any magnetic field changes.

Having a thin window would require a very careful choice of materials as

the forces due to the change in pressure would be very large.

Other potential magnetic field sensors include SQUIDs and diamond N-

V centres. These are novel quantum devices which provide high resolution

magnetic field sensing.

SQUIDs are extremely sensitive magnetometers which have found a va-

riety of uses, some of which are biological. An array of SQUIDs can be used

in magnetoencephalography to detect neural activity in the brain. Diamond

N-V centres are formed when a nitrogen atom and vacancy substitutes for

a carbon atom in the diamond structure. This is an optical defect which

fluoresces under illumination. This fluorescence can be used to determine

the magnetic sub level and so each unit acts as a magnetometer [22; 61; 62].

Another benefit of diamond N-V centres is that neurons can be grown on

diamond.

If a new detector is developed it could also be tested against artificial

neurons made using p-n nanowires, which behave in a more controlled way

than real neurons, but display similar types of behaviours [63; 64].

The suggestions for further work discussed in this section are all areas

where it is believed that this model could be used to shed some light on the

viability and uses of more novel detection systems. This could be achieved

by combining this work with other models of the systems involved, such as

the Projected Gross-Pitaevskii Equation (PGPE) code used to model the

responses of Bose Einstein Condensates to magnetic fields [65].

If a working 2D cable equation type model could be developed from this

it would be possible to move towards modelling neural networks, although

this is a much more demanding problem.
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