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SUMMARY

The Material Point Method for the analysis of deformable bodies is revisited and originally upgraded to

simulate crack propagation in brittle media. In this setting, phase field modelling is introduced to resolve the

crack path geometry. Following a particle in cell approach, the coupled continuum/ phase-field governing

equations are defined at a set of material points and interpolated at the nodal points of an Eulerian, i.e.

non-evolving, mesh. The accuracy of the simulated crack path is thus de-coupled from the quality of

the underlying finite element mesh and relieved from corresponding mesh-distortion errors. A staggered

incremental procedure is implemented for the solution of the discrete coupled governing equations of the

phase field brittle fracture problem. The proposed method is verified through a series of benchmark tests

while comparisons are made between the proposed scheme, the corresponding finite element implementation

as well as experimental results. Copyright c© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulation of damage pertinent to crack initiation and crack growth is an intriguing and challenging

aspect of Computational Mechanics. Damage modelling has received considerable attention during

the past thirty years as it is relevant to a number of natural and industrial processes, e.g.,

composite material behaviour [1], concrete fracture [2] and ice mechanics [3] amongst many. Within

this setting, damage is being treated either within a continuum (or smeared) phenomenological

framework [4] or through discrete methods where the geometry of the crack is explicitly

approximated, see, e.g., [5]. Thus, discrete methods can provide a better insight on the actual cracked

configuration of a deformable body and form the basis for the study of related phenomena, e.g.,

corrosion [6].

Initial efforts in discrete crack approaches include element deletion method and re-meshing

strategies whereas more sophisticated techniques involve the eXtended Finite Element Method

(XFEM) [7, 8, 9], cohesive element methods [10, 11] and cohesive segments methods [12]. Cohesive

element methods also based on the notion of configurational force [13] are being used to address the

crack initiation and propagation problem with the accuracy of the solution depending on the quality

of the underlying finite element mesh.

In these methods, the evolution of complex crack paths, including merging cracks, needs to be

tracked algorithmically. This increases the complexity of the underlying computational scheme and

also the required computational resources. Variational methods for fracture emerged in an effort

to address such computational issues. Within this set of methods, Bourdin et al. [14] utilized the

mathematical framework of phase-field theory [15] to provide a consistent theoretical framework of

the analysis of crack propagation problems.

Phase field models represent cracks by means of an additional continuous field (phase field) that

smoothly varies from zero (on the crack) to one (away from the crack) (see, e.g., [16]). The evolution

of the additional field is defined on the basis of additional governing equations pertaining to the

mathematics of phase-field theory [17] linked however to a phenomenological framework such as

Griffith’s theory for brittle fracture [18]. The phase field evolution equations are weakly coupled
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PHASE-FIELD MATERIAL POINT METHOD FOR BRITTLE FRACTURE 3

to the standard governing equations (i.e., equilibrium, compatibility and constitutive equations) of

the continuum, effectively introducing a coupled-field problem. This is solved using any standard

discretization procedure such as the Galerkin method [19].

In this setting, the crack path emerges from the direct solution of the coupled field framework.

This renders phase field methods a promising computational tool to tackle fracture mechanics, at

the cost however of introducing additional unknowns, i.e., the phase field. Phase field modelling

has been successfully applied within grid based methods i.e. the finite element method (see, e.g.,

[20, 21, 22]) and its isogeometric variant [23] for the case of quasi-static fracture. Furthermore,

Phase field fracture modelling has been effectively applied to treat dynamic fracture propagation

problems [16, 24].

However, treating crack propagation using a grid based method introduces further challenges

as robustness and accuracy directly depend on mesh quality and corresponding mesh distortion

errors. Avoiding numerical errors due to mesh distortion is not a trivial task in grid based

Lagrangian methods (see, e.g., [13, 25]). Failure to bound such mesh-dependent errors may result in

considerable loss of accuracy especially if large displacements and/or large deformations are taken

into account.

Discrete element methods [26], smooth particle hydrodynamics [27] and peridynamics [28]

can also efficiently deal with problems of fracture mechanics where large deformation take

place. Recently, phase field modelling has been introduced within the context of local maximum-

entropy meshfree approximants to address the problem of fracture in thin-shells [29]. Although

robust, especially when dealing with complex geometrical domains, purely meshless methods are

computationally taxing as a set of additional procedures is required to achieve convergence, i.e.,

high-order integration schemes and neighbour searching [30]. To mitigate such issues, Material

Point Method (MPM) [31] has been introduced as an extension of Particle-In-Cell methods that

efficiently treats history-dependent variables. Combining concepts pertinent to both the Eulerian

and Lagrangian description of classical mechanics [32], MPM has been proven advantageous in the

analysis of large scale problems involving material and geometric non-linearities, especially within
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the context of coupled field problems, e.g., fluid-structure interaction [33] and poro-mechanics [34],

also within a large deformation hydrodynamic setting [35, 36]. Very recently, the method has been

further extended to account for axisymmetric problems further generalizing its remit. In MPM,

the continuum is represented by a set of material points that are moving within a fixed (Eulerian)

computational grid where solution of the governing equations is performed. The grid is used to

evaluate the gradient and divergence terms of each material point. MPM has been found to offer

significant computational advantages when compared to purely meshless methods since it does not

require time-consuming neighbour searching.

With regards to fracture, the fact that material behaviour is monitored at material points that

move within a fixed Eulerian grid implies that the transition from continuous to discontinuous

displacement field can be modelled without the need for remeshing the computational grid and

without the requirement to account for and mitigate mesh-distortion due to crack propagation.

Despite this, few research has been conducted to model the problem of damage modelling and

in particular crack growth utilizing the MPM.

In [37] and also [38] decohesion was treated by introducing a cohesive material constitutive

framework at the material point level. Brittle fracture within an MPM setting was examined for the

first time in [39] although considering only the case of pre-existing, i.e., explicit, crack geometries

by allowing multiple velocity fields to be defined at the background grid. More recently, cohesive

modelling approaches have been introduced in an effort to further generalize the applicability of

the MPM for problems pertinent to arbitrary crack paths [40, 41, 42, 43]. A continuum damage

based approach has been introduced in [44] also demonstrating the advantages of utilizing domain

decomposition methods to accelerate MPM.

The aforementioned approaches demonstrated the merits of MPM in simulating damage in terms

of computational simplicity in particular when considering the case of large deformations and

contact-fracture related problems. Further to the current state-of-the-art, phase field modelling

for brittle fracture is introduced in this work within a material point method setting to address

the general problem of quasi-static crack propagation in brittle materials using the MPM. By
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introducing phase fields at the material point level rather than the nodal points of a fixed Lagrangian

grid, the proposed method succeeds in monitoring crack initiation and growth in an efficient and

robust manner. Numerical investigations demonstrate that compared to the standard phase-field

finite element implementation, the proposed method is advantageous in terms of accuracy. A

staggered strategy is utilized for the solution of the governing coupled equations of the problem.

An implicit rather than explicit phase-field MPM implementation is established due to the quasi-

static nature of the problem under investigation. However, the proposed coupled scheme renders

itself naturally to an explicit solution approach.

This paper is organized as follows. In Section 2 phase field modelling for brittle fracture is

briefly described to facilitate presentation of subsequent derivations. MPM implementation for

brittle fracture which constitutes the core contribution of this work is presented in Section 3.

The numerical procedure implemented for the solution of the resulting coupled field system of

equation is described in Section 4. In Section 5 a set of benchmark problems are examined to verify

the proposed formulation compared to the standard phase field Finite Element implementation.

Validation of the method is also performed with respect to published experimental results.

2. PRELIMINARIES

2.1. Brittle Fracture

The purpose of this work is to introduce a phase-field approximation for brittle fracture within MPM.

Thus, derivations presented herein pertain to Griffith’s theory for brittle fracture [18], although

generalization to the case of ductile fracture can be also considered (see, e.g., [23, 45, 46]).

In Fig. 1(a) an arbitrary deformable medium is shown. The initial configuration C0 ⊂ Rd of the

body at time t0 = 0 has a volume Ω0. The superscript d corresponds to the dimension of the problem,

i.e., d ∈ 1, 2, 3. The boundary of the initial configuration is denoted as ∂Ω0. The medium is subjected

to body forces b = {b1, b2, b3} and tractions t̄ applied on ∂Ωt̄ ∈ ∂Ω. Γ0 corresponds to an initial

crack within the medium at time t0.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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6 E. G. KAKOURIS, S. P. TRIANTAFYLLOU

Under the action of the applied loads, the body undergoes a motion φ, that maps the initial

configuration to the current configuration Ct ⊂ Rd at t > t0 with a volume Ωt. Furthermore, the

initial crack Γ0 evolves to Γt (Γ0 ⊆ Γt), which corresponds to the crack path at time t.

According to Griffith’s theory, the total potential energy Ψpot of an elastic deformable body with

an evolving crack along the path Γ is defined as

Ψpot = Ψel + Ψf =

∫
Ω

ψeldΩ +

∫
Γ

GcdΓ (1)

where Ψel is the elastic strain energy, Ψf is the fracture energy, ψel is the elastic energy density and

Gc is the critical fracture energy density. The critical fracture energy density is a material parameter

corresponding to the energy required to create a unit area of fracture surface [18].

The elastic energy density is readily expressed as a function of the strain field ε according to

equation (2) below

ψel =
1

2
λTr2 [ε] + µTr

[
ε2
]

(2)

where λ and µ are the Lamé constants. Small strains are considered in this work, with the

corresponding strain tensor ε defined as

ε =
1

2

(
∇u+∇uT

)
(3)

where the (∇) stands for the gradient operator.

Considering a spectral decomposition of the strain tensor as (see, e.g., [20, 16]), the elastic energy

density can be established in the following convenient form where the total elastic potential energy

is additively decomposed in parts of purely tensile and purely compressive origin, i.e.,

ψel = ψ+
el + ψ−el (4)

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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PHASE-FIELD MATERIAL POINT METHOD FOR BRITTLE FRACTURE 7

where ψ+
el is the elastic energy density due to tension

ψ+
el =

1

2
λ〈Tr [ε]〉2 + µTr

[(
ε+
)2]

(5)

and ψ−el is the elastic energy density due to compression

ψ−el =
1

2
λ(Tr [ε]− 〈Tr [ε]〉)2

+ µTr
[(
ε−
)2]

(6)

respectively. The 〈.〉 symbol in relations (5) and (6) denotes the Macaulay brackets
(
〈X 〉 = X for

X > 0 and 〈X 〉 = 0 for X ≤ 0
)
. The positive part of the strain tensor ε+ in equation (5) is defined

through the following spectral decomposition

ε+ = PΛ+P T (7)

where P is a matrix whose columns comprise the eigen-vectors of the strain tensor ε and Λ+ is a

diagonal matrix defined as

Λ+ = diag (〈λ1〉, 〈λ2〉, 〈λ3〉) (8)

where λi, i = 1 . . . 3 are the eigen-values of the strain tensor. The negative part of strain tensor is

evaluated as

ε− = ε− ε+ (9)

Substituting equation (4) in relation (1), the expression for the brittle fracture potential energy

assumes the following form

Ψpot =

∫
Ω

ψ+
eldΩ +

∫
Ω

ψ−eldΩ +

∫
Γ

GcdΓ (10)
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8 E. G. KAKOURIS, S. P. TRIANTAFYLLOU

Equation (10) effectively decomposes the total potential energy into purely tensile, compressive and

fracture energy parts, thus constituting an efficient platform for the phase field derivations described

in the following Section.

2.2. Phase-field fracture

As evaluation of the surface crack energy in equation (10) requires prior knowledge of the crack

path Γ, computational fracture mechanics revert to crack tracking algorithms in order to identify

the crack-path during the solution procedure [47]. To avoid such procedures, the phase field method

approximates the path integral of the fracture energy with a volume integral defined over the entire

domain of the deformable medium according to the following expression [14]

∫
Γ

GcdΓ ≈
∫
Ω

GcZcdΩ (11)

where Zc is a crack density functional. Several expressions are provided in the literature for the

definition of Zc involving the case of second-order [14, 48] and fourth-order functionals. The

latter have been found to allow for increased convergence rates [49]. Very recently, an anisotropic

definition for the crack surface functional addressing the case of anisotropic fracture has been

introduced [50]. In this work, the second order definition for crack density functional Zc of equation

(12) [14] is adopted to facilitate verification of the proposed method. However, utilization of higher-

order functionals is a straightforward procedure.

Zc =

[
(c− 1)

2

4l0
+ l0|∇c|2

]
(12)

In equation (12) c(x, t) ∈ [0, 1] is a phase-field defined over the domain Ω. By considering

minimization of the functional with respect to c it can be shown that a value of c = 1 corresponds

to un-cracked regions of the domain Ω, i.e., regions away from the crack Γ. Similarly, values of

c = 0 are retrieved on regions coinciding with the crack-surface Γ. Involving the gradients of the

phase-field on the functional definition introduces a smooth variation of the phase-field from 0 to 1.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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PHASE-FIELD MATERIAL POINT METHOD FOR BRITTLE FRACTURE 9

The width of the region over which this smooth transition takes place is controlled by the length

scale parameter l0 ∈ R (see Fig. 1(b)). The length scale parameter l0 can be considered to correspond

to a domain of degrading material parameters in the vicinity of the crack surface. From a purely

mathematical standpoint, l0 is a regularization parameter with values of l0 → 0 allowing for the

phase field theory to practically converge to Griffith’s theory. In practise, convergence is achieved

by using a finite value for l0. In view of relation (11), the potential energy introduced in equation

(10) assumes the following form

Ψpot =

∫
Ω

ψ+
eldΩ +

∫
Ω

ψ−eldΩ +

∫
Ω

GcZcdΩ (13)

Having established through relation (11) that as a crack propagates within the domain Ω the

value of the crack surface energy integral will be increasing, the corresponding decrease in the

elastic energy due to the degradation of the material properties needs also to be considered in

the vicinity of the crack Γ. This is achieved by introducing a degradation function g(c) that is

superimposed on the positive part of the elastic strain energy density. The degradation function

should be continuously differentiable, monotonically decreasing with properties g(0) = 0, g(1) = 1

and g′(0) = 0 as explained in [51].

To facilitate verification of the proposed procedure, the degradation function introduced in [48]

is utilized herein, i.e.,

g = (1− k)c2 + k (14)

where 0 ≤ k � 1 is a model parameter introduced in [52] to avoid ill-posedness. According to the

arguments provided in [53] as well as the numerical investigations presented in [16] this parameter

can be considered redundant. Results derived from our set of numerical experiments also seem to

agree with the aforementioned. Therefore in this work also k = 0. In view of the aforementioned,

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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10 E. G. KAKOURIS, S. P. TRIANTAFYLLOU

the expression for the elastic potential energy finally assumes the following form

Ψpot =

∫
Ω

gψ+
eldΩ +

∫
Ω

ψ−eldΩ +

∫
Ω

GcZcdΩ (15)

The elastic stress field on the medium is readily derived from the elastic potential [32] through

the following relation

σ = g
∂ψ+

e

∂ε
+
∂ψ−e
∂ε

= gσ+ + σ− (16)

where

σ+ = λ〈Tr [ε]〉I + 2µ
[(
ε+
)]

(17)

and

σ− = λ(Tr [ε]− 〈Tr [ε]〉)I + 2µ
[(
ε−
)]

(18)

respectively, whereas I denotes the 3x3 identity matrix. The damage elastic tangent constitutive

matrix can be analytically derived as

D =
∂σ

∂ε
(19)

using any symbolic programming language.

By superimposing the effect of the degradation parameter on the positive part of the energy

density only, crack-propagation under compressive stresses is a priori avoided. Finally, considering

the Euler-Lagrange equations of both the displacement u and phase field c, the coupled strong form

of the brittle-fracture phase field formulation is established as


∇ · σ + b = ρü, on [Ωt0 ,Ωt](

4l0(1−k)H
Gc + 1

)
c− 4l20∆c = 1, on [Ωt0 ,Ωt]

(20)

where H is the history field defined as the maximum ψ+
el obtained in time space [t0, t]. The history

field H (see, e.g., [48] ) essentially enforces the necessary irreversibility condition pertinent to

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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PHASE-FIELD MATERIAL POINT METHOD FOR BRITTLE FRACTURE 11

the crack propagation problem, i.e., Γ (t) ⊆ Γ (t+ ∆t) and satisfies the following Kuhn-Tucker

conditions for elastic loading and unloading, i.e.,

ψ+
e −H ≤ 0 Ḣ ≥ 0 Ḣ (ψ+

e −H) = 0

The coupled field equations (20) are subject to the following set of boundary and initial conditions



σn = t̄, on [∂Ωt̄0 , ∂Ωt̄]

u = ū, on [∂Ωū0
, ∂Ωū]

u = u0, on Ω0

u̇ = u̇0, on Ω0

ü = ü0, on Ω0

∇c · n = 0, on [∂Ωt0 , ∂Ωt]

c = c0, on Ω0

(21)

where n is the outward unit normal vector of the boundary, ū is the prescribed displacement field

on ∂Ωū boundary, u̇ is the velocity field, ü is the acceleration field and ρ is the mass density.

3. MATERIAL POINT METHOD FOR BRITTLE FRACTURE

3.1. Material Point Method approximation

In MPM, a deformable body is approximated with a set of material points p = 1, 2, . . . , Np, where

Np ∈ Z is the total number of material points. The material point discretization can be defined by

any appropriate tessellation of Ω. Under the action of φ, the initial position vector xp0
of a material

point is mapped to the current position vector xpt at t > 0 (see Fig. 1(b)). Consequently, the current

position of a material point always depends on the initial position and time t. The displacement

vector of the material point is defined as utp = xpt − xp0
∗.

∗Subscript p refers to the material point value.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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12 E. G. KAKOURIS, S. P. TRIANTAFYLLOU

(a) (b)

Figure 1. (a) Deformation process (b) Material point discretization

Through this discretization, the mass density distribution of the deformable body is readily

defined as

ρ (x, t) =

Np∑
p=1

ρpδ (x− xpt) (22)

where ρp = Mp/Ωp is the mass density of the material point, Mp is the material point mass, Ωp is

the material point volume and δ is the Dirac function.

Similarly, the domain volume Ω (x, t) is additively decomposed into the corresponding material

point domain contributions according to the following expression

Ω (x, t) =

Np∑
p=1

Ωpδ (x− xpt) (23)

In this work, the tributary volumes Ωp of each material point are defined according to the

following methodology. An isoparametric descritization of the material domain is first performed

using quadrilateral elements. Material points are then defined at the positions of the Gauss points of

each individual element at their natural coordinate system. The corresponding volumes are then

mapped back to the Cartesian system by means of the isoparametric transformation. Defining

material points at the Gauss points of the corresponding finite element mesh has been chosen to

facilitate comparison against standard finite element implementation.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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3.2. Eulerian Mesh

Integral to the computational scheme of MPM is the definition of a computational grid where the

solution of the governing equations of motion is performed. This grid is termed the Eulerian Mesh

(or Eulerian Grid). The Eulerian Grid is a non-deforming mesh corresponding to the space that the

material points move through (see. Fig. 2). Referring to Fig. 2, the Eulerian Mesh is divided to

active cells, i.e., cells where one or more material points exist at a certain time t and inactive cells

where no material point exists. In this work, the Eulerian grid is constantly updated according to the

topology of the material points, thus reducing the solution space at any time instant.

3.3. Equilibrium discrete equations

The discrete form of MPM is derived through a Galerkin approximation of the strong from defined

in equation (20). In this work only quasi-static problems are considered. The weak form is readily

derived as [32] by weighting the equilibrium equation (20) with an arbitrary set of weighting

functions w and partially integrating over the domain Ω.

∫
Ω

(σ : ∇w) dΩ =

∫
∂Ωt̄

(t̄ ·w) d∂Ωt̄ +

∫
Ω

(b ·w) dΩ (24)

The weighting functions w satisfy the essential boundary conditions of the problem. Substituting

equation (23) into the weak form (24), the following relation is established

Np∑
p=1

(σp : ∇wp)Ωp =

∫
∂Ωt̄

(t̄ ·w) d∂Ωt̄ +

Np∑
p=1

(bp ·wp)Ωp (25)

wherewp, σp and bp are the test function, stress field and body forces evaluated at material point xp.

Relation (25) which essentially collocates the weak equilibrium of the continuum into the material

points derived from the tessellation of the deformable body.

Considering the following Galerking interpolation scheme for the test functions and their spatial

derivatives

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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14 E. G. KAKOURIS, S. P. TRIANTAFYLLOU

wp =

Nn∑
I=1

NI(xp)wI (26)

and

∇wp =

Nn∑
I=1

∇NI(xp)wI (27)

respectively, whereNn is the number of grid nodes,NI(xp) are the interpolation functions evaluated

at the material points and wI are the test function nodal values †.

Both the interpolation functions and the test function nodal values are defined with respect to the

underlying Eulerian mesh as described in Section 3.2. Thus, standard finite element interpolation

functions can be utilized to interpolate material point defined quantities at the nodal points of the

corresponding parent cell. In this work, bi-linear shape functions are used although implementation

of higher order shape functions can also be made in a straight-forward manner, see, e.g., [54].

Substituting (26) and (27) in relation (25) and performing the necessary algebraic manipulation,

the following expression is derived

Nn∑
I=1

wI ·
[
F int
I − F ext

I

]
= 0 (28)

where

F int
I,i =

Np∑
p=1

(σpjk
·Bijk

I (xp))Ωp (29)

F ext
I =

∫
∂Ωt̄

(t̄NI(xp)) d∂Ωt̄ +

Np∑
p=1

bpNI(xp)Ωp (30)

In relation (29), σpjk
denotes the stress components σp = {σpjk

} whereasBI(xp) = {Bijk
I (xp)} is

defined as

Bijk
I (xp) =

1

2

(
∂NI(xp)

∂xj
δik +

∂NI(xp)

∂xk
δij

)
(31)

†Subscript I refers to grid node value.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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PHASE-FIELD MATERIAL POINT METHOD FOR BRITTLE FRACTURE 15

As the test functions in equation (25) are chosen arbitrarily, subject to the essential conditions of the

problem, equation (28) should hold for every set of nodal valueswI . Thus, the following equilibrium

equation is finally established

Ru
I

(uI) = F int
I − F ext

I = 0, I = 1 . . . , Nn (32)

where F int
I is the vector of corresponding internal forces, F ext

I corresponds for the equivalent

vector of external forces evaluated at grid node I and Ru
I

(uI) are the residual nodal values for

the displacement field and uI is the displacement at the grid node I . Equation (32) corresponds to

nodal force equilibrium established at the nodes of the background mesh with the material point to

background node mapping performed through relations (29) and (30) for the internal and external

forces respectively.

Further considering the strain-displacement relation defined in equation (3), the strain

components εp = {εpjk
} in each material point can be expressed as

εpjk
=

Nn∑
I=1

Bijk
I (xp)uI,i (33)

Substituting Eqs. (19) and (33) into Eq. (29) and using Eq. (30), the following compact form is

eventually derived

Kuu = F ext (34)

where Ku is the global stiffness matrix of the structure whose Ku
I,J,i,j component is expressed as

Ku
I,J,i,j =

Np∑
p=1

((
Dplkmn

Bjmn
J (xp)

)
·Bilk

I (xp)

)
Ωp (35)

The term Dplkmn
, accounts for the components of the constitutive matrix Dp evaluated at pth

material point.
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3.4. Phase field discrete equations

The weak form of the phase-field governing equation assumes the following form

∫
Ω

(4l0(1− k)H
Gc

+ 1
)
cq dΩ +

∫
Ω

4l20(∇c : ∇q) dΩ =

∫
Ω

q dΩ (36)

where c is the phase field and q are the corresponding weighting functions for the phase-field. In this

work, the continuous phase field and the corresponding weighting functions introduced in equation

(36) are collocated at material points, resulting in the following discrete form (37)

Np∑
p=1

FpcpqpΩp +

Np∑
p=1

4l20p
(∇cp : ∇qp)Ωp =

Np∑
p=1

qpΩp (37)

where cp and qp are values of the the phase-field and weighting functions respectively at the material

point p. Fp is defined as

Fp =
4l0p(1− kp)Hp

Gcp
+ 1 (38)

where l0p , kp,Hp and Gcp are the length scale parameter, model parameter, history field and critical

fracture energy density of material point xp.

Next, both cp and qp and interpolated at the nodal points of the background mesh. The value of

the test function and its spatial derivatives at the pth material point are expressed as

qp =

Nn∑
I=1

NI(xp)qI (39)

and

∇qp =

Nn∑
I=1

∇NI(xp)qI (40)

respectively, where NI(xp) are the background mesh shape functions pertinent to the phase field

interpolation and qI are nodal values of the corresponding test functions.
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The value of the phase field at the pth material point is written as

cp =

Nn∑
I=1

NI(xp)cI (41)

where cI are the phase field nodal values. Attention is drawn to the fact that the phase-field is a scalar

quantity. It follows from relation (41) that the gradients of the the phase field at the pth material point

are defined accordingly as

∇cp =

Nn∑
I=1

∇NI(xp)cI (42)

Similar shape functions are considered for both the phase-field and the corresponding weighting

functions according to the Galerkin approximation [32]. Furthermore, in this work, the same family

interpolation functions is considered for both the displacement and the phase field for brevity (see

also [48]).

Substituting equations (39) and (40) in relation (37) and re-arranging terms, the following

expression is derived
Nn∑
I=1

qI ·
[

(I)S1 +(I) S2 −(I) S3

]
= 0 (43)

where in equation (43) above

(I)S1 =

Np∑
p=1

FpcpNI(xp)Ωp (44)

while

(I)S2 =

Np∑
p=1

4l20p
(∇cp · ∇NI(xp))Ωp (45)

and

(I)S3 =

Np∑
p=1

NI(xp)Ωp (46)

respectively. Since the choice of the weighting functions is arbitrary, it must hold that

Rc
I(cI) =(I) S1 +(I) S2 −(I) S3 = 0, I = 1 . . . , Nn (47)
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where Rc
I(cI) are the residual nodal values for the phase field. By substituting relations (44) to (46)

into equation (47) results in

Np∑
p=1

FpcpNI(xp)Ωp +

Np∑
p=1

4l20p
(∇cp · ∇NI(xp))Ωp =

Np∑
p=1

NI(xp)Ωp, I = 1 . . . , Nn (48)

Further considering the phase-field interpolation schemes defined in equations (41) and (42), and

substituting in equation (48), the following relation is established

Np∑
p=1

Fp

(
Nn∑
J=1

NJ (xp)cJ

)
NI(xp)Ωp +

Np∑
p=1

4l20p

((
Nn∑
J=1

∇NJ (xp)cJ

)
· ∇NI(xp)

)
Ωp =

Np∑
p=1

NI(xp)Ωp

(49)

Re-arranging and collecting terms, equation (49) gives rise to the following convenient form

Kcc = F c (50)

where Kc is an (Nn ×Nn) coefficient matrix whose Kc
I,J component is defined as

Kc
I,J =

Np∑
p=1

(
FpNJ(xp)NI(xp) + 4l20p

(
∇NJ(xp) · ∇NI(xp)

))
Ωp (51)

while c is the (Nn × 1) vector of unknown nodal phase fields and F c is the (Nn × 1) vector whose

F c
I component is defined as

F c
I =

Np∑
p=1

NI(xp)Ωp (52)

The vector quantity F c will be termed herein as the phase-field forcing term. Similarly to the

MPM displacement based equilibrium equations defined in Section 3.3, equation (50) is established

and solved at the nodal points of the background mesh with the corresponding material point to

background node mapping performed in equations (44) to (46).
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4. NUMERICAL IMPLEMENTATION

4.1. Material Point Method Computational Cycle

The computational cycle of MPM is divided into six main steps (Fig. 3). These are:

(i) Initialisation phase

(ii) Mapping from material points to grid nodes (Fig. 3(a))

(iii) Solving governing equations in grid nodes (Fig. 3(b))

(iv) Mapping from grid nodes to material points (Lagrangian Phase - Fig. 3(c))

(v) Update material point properties (Fig. 3(d))

(vi) Reset the computational grid (Convective Phase)

In the first step the computational grid and material point configuration and properties are defined.

Then the solution phase begins. In this, the displacements, strains and stresses defined at the material

points are interpolated at the nodes of their corresponding background parent cell.

Following, the governing equations are formulated and solved at the background grid in an

updated Lagrangian fashion. Next, the solution is mapped back to the material points. This is

termed the Lagrangian phase of the MPM. Finally, the material point properties are updated and

the computational grid is reset. The latter is termed the MPM Convective Phase.

In the convective phase of the method, the displacements evaluated on the background mesh are

disregarded and the initial background mesh configuration is reused. In the implementation used in

this work, background cells that are found at this stage to contain no material points are considered

inactive, thus reducing the order of the system to be solved at the next cycle. The computational

cycle of material point method is illustrated in Fig. 3. Further information on the numerical scheme

of MPM can be found in [31, 38].

It should be noted that compared to the standard finite element implementation, the implicit

material point method does introduce additional computational costs as a re-factorization of

the stiffness matrix introduced in equation (34) is required when material points move across

background cells. However, this results in a high-fidelity procedure for simulating complex
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(a) (b)

Figure 2. (a) Initial Configuration (b) Deformed Configuration

Figure 3. Computational Cycle (MPM)

phenomena, (see, e.g., [34, 41, 44]) and also provides very accurate estimates for the crack geometry

as will shown in Section 5. In this work, both the displacement field and the phase field which are

defined at material points are mapped at the corresponding parent cell nodes resulting in an updated

MPM Lagrangian phase.

4.2. Phase field Material Point Method solution scheme

The coupled equilibrium and phase field evolution equations can be solved in a so called monolithic

fashion, i.e., simultaneously within each incremental step. However, it has been demonstrated that a

staggered solution approach (see also, [55] for the case of thermo-mechanical coupling) can be

utilized where the phase field equations are solved independently and the resulting phase field

prediction is then used to iteratively solve for the equilibrium equations [48]. In this work, a

staggered solution procedure has been implemented and the corresponding computational scheme

is presented in Algorithm 1.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)

Prepared using nmeauth.cls DOI: 10.1002/nme



PHASE-FIELD MATERIAL POINT METHOD FOR BRITTLE FRACTURE 21

With regards to Algorithm 1, Ep, vp and gp refer to the Young’s modulus, Poisson’s ratio and

degradation function of the pth material point. Pre-existing cracks can be modelled by defining an

initial history field (Hp0
) in all material points around the crack similar to [16]. Alternately, pre-

existing cracks can also be introduced as discrete cracks in the geometry of the structure.

A displacement control incremental analysis procedure is implemented in this work for the

solution of the quasi-static brittle fracture problem, considering a set of Nsteps incremental steps. In

the beginning of each time step h, the active cells of the Eulerian Grid are identified according to

the material point positions and the inactive cells are discarded (Fig. 2). Next, the total number of

grid nodes as well as grid degree of freedom are redefined according to total active grid nodes (Nn)

and total active unconstrained grid degree of freedom (Ndofs). Furthermore, the basis functions

(N(xp)) as well as their derivatives (∇N(xp)) at all material points need to be evaluated at each

time step h. This is one of the main differences between Finite Element Method and Material Point

Method as in the former the number of nodes, degree of freedom, cells (Ncells) as well as basis

functions and their derivatives remain constant during the analysis.

Following, the staggered iterative scheme (k = 1, 2, . . . , Nstaggs) initiates within the current

incremental step. The phase field equations are solved for the current value of the history field H

and the phase field nodal values cI are derived. Using this phase field prediction, updated values for

the degradation function at each material point gp are derived and the displacement field equations

are iteratively solved in the inner iterative loop (j = 1, 2, . . . , Niters). From this, the incremental

displacement field nodal values ∆uI are obtained.

The displacement field equations (32) are solved by incrementally applying the external forces

∆F ext
I to obtain the increments of the displacement field ∆uI . and the following equations are

solved using a Newton-Raphson method (inner iterations j = 1, .., Niters).

δRu
I

(∆uI) = ∆F int
I −∆F ext

I = 0, I = 1 . . . , Nn (53)
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where the symbol ∆ denotes incremental quantities e.g. ∆X = X(h) −X(h−1), whereas the

symbol δ denotes iterative quantities e.g. δX = X(j) −X(j−1).

Convergence of the equilibrium equation iterative procedure is achieved when the Euclidean norm

of the residual force vector introduced in equation (53) assumes a sufficiently small value, i.e.,

when ‖δRu(j)‖ ≤ tolu. Upon convergence, updated values for the history field H are evaluated

and the residual of the phase field equation is established as the difference between the initial

phase field forcing term estimate and the updated one. Outer, phase field iterations terminate

when ‖Rc(k)
(h) ‖ ≤ tolc where tolc is a predefined tolerance. Although robust, the staggered until

convergence scheme is prone to low convergence rates and practically bounds the maximum

allowable incremental displacement step in a displacement controlled analysis. Very recently, a

line-search assisted iterative scheme has been developed to treat such issues and further improve the

convergence speed of the method [56].

5. NUMERICAL EXAMPLES

In this Section the proposed method is compared against the finite element phase field implementation

through a set of representative tests both in terms of accuracy and computational efficiency. In all

cases external loads are directly applied at material points. Kinematical constraints are imposed by

means of the Penalty Method [32]. As these constraints are imposed on the material points rather than

the background grid, the corresponding numerical implementation is presented in Appendix A. This is

contrary to the finite element implementation where essential boundary conditions are imposed directly

on the domain boundary. However, as shown from the actual verification results provided this does not

affect the accuracy of the method. The density of material points utilized as necessitated by the fracture

propagation problem ensures that material points are sufficiently close to the actual domain boundary

where displacement variations can be considered negligible. Several methods have been examined for

direct and accurate implementation of essential boundary conditions in MPM, either directly at material

points, see, e.g., [57] or at the background mesh , see, e.g., [58].
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Data: Define computational grid, material point properties (xp(0)
, Ωp(0)

, Ep, vp, l0p , kp Gcp ,

Hp(0)
, σp(0)

, εp(0)
)

for each time step h = 1, 2, .., Nsteps do
Reset the computational grid: Find active part of Eulerian Grid, Nn, Ndofs, Ncells;

Compute:N(xp(h)
),∇N(xp(h)

),BI(xp(h)
), for all material points. ;

Define: δRu(1) = ∆F ext
(h) ;

for each stagger iteration k = 1, 2, .., Nstaggs do
Compute: F c(k)

(h) (see Eq. (52)). ;

Compute:Kc (see Eq. (51)). ;

Solve:Kcc
(k)
(h) = F

c(k)
(h) ;

Map phase field (c(k)
(h)) from grid nodes to material points. Evaluate: c(k)

p(h)
,∇c(k)

p(h)
, g(k)

p(h)
,

for all material points (see Eq. (41), (42) and (14)). ;

Initialize ∆u(0) = 0 ;

for each inner iteration j = 1, 2, .., Niters do
Compute:Ku (see Eq. (35), for constitutive matrix see Eq. (19)) ;

Solve:Kuδu(j) = δRu(j), with displacement contol. ;

Compute: ∆u(j) = ∆u(j−1) + δu(j) ;

Compute: ∆ε
(j)
p , for all material points (see Eq. (33)). ;

Compute: ε(j)
p(h)

= εp(h−1)
+ ∆ε

(j)
p , for all material points. ;

Compute: σ(j)
p(h)

, for all material points (see Eq. (16)) ;

Compute: ∆F int(j) = {∆F int
I },

∆F int
I =

∑Np

p=1 Ω
(j)
p(h)

(σ
(j)
p(h)
− σp(h−1)

) ·BI(xp(h)
) ;

Compute Residual (Displacement-Field): δRu(j) = ∆F ext
(h) −∆F int(j) ;

Convergence Check (Displacement Field): If ‖δRu(j)‖ ≤ tolu or j ≥ Niters then

”exit” from loop else j = j + 1 go to next inner iteration. ;

end
Compute: ψ+

elp(h)
, for all material points (see Eq. (5))

→ Hp(h)
=

ψ
+
elp(h)

, for ψ+
elp(h)

> Hp(h−1)

Hp(h−1)
, otherwise

;

Compute Residual (Phase-Field):Rc(k)
(h) (see Eq. (47)) according to c(k)

p(h)
,∇c(k)

p(h)
,Hp(h)

;

Convergence Check (Phase Field): If ‖Rc(k)
(h) ‖ ≤ tolc or k ≥ Nstaggs then ”exit” from

loop else k = k + 1 go to next stagger iteration. ;

end
Compute: ∆up(h)

=
∑Nn

I=1NI(xp(h)
)∆u

(j)
I , for all material points. ;

Compute: up(h)
= up(h−1)

+ ∆up(h)
, for all material points. ;

Compute: xp(h)
= xp(h−1)

+ ∆up(h)
, for all material points. ;

end
Algorithm 1: Phase-Field Material Point Method pseudo-code (Stagger Solution Algorithm).
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For the purpose of verification both the Phase Field Material Point Method (PF-MPM) and Phase

Field Finite Element Method (PF-FEM) have been implemented in Fortran code. In all examples

considered herein, the staggered until convergence solution strategy (see also Algorithm 1) was

adopted. The phase field residual tolerance was set at tolc = 1.0e− 6. Simulation parameters, i.e.,

number of incremental steps, convergence tolerance and maximum number of iterations are similar for

both schemes as defined in the corresponding Sections below. All tests were performed in a PC fitted

with an Intel Xeon E5-1620 CPU and 32 GBs of RAM.

5.1. Single-edge notched tension test

In this example a square plate under pure tension is examined and results are compared to the standard

PF-FEM. The geometric configuration, boundary conditions and material parameters considered are

presented in Fig. 4(a).

The square plate consists of 249000 material points. The Eulerian grid is formulated by 67600 (260

x 260) 4-node isoparametric quadrilateral elements with a uniform mesh size equal to h = 0.004

mm. Element size of the background mesh is defined such that h < l0. The overall dimensions of

the Eulerian grid are 1.04 mm x 1.04 mm (xmin = ymin = −0.02 mm , xmax = ymax = 1.02 mm).

Material points are initially located at the Gauss point position of their corresponding parent cells and

plane strain conditions are assumed.

For the PF-FEM case, the corresponding finite Element mesh comprises 62250 four node

quadrilateral plane strain elements with bilinear basis functions. Full integration is considered in each

element with 4 Gauss points.

The material parameters considered are E = 210 kN/mm2, v = 0.30, l0 = 0.0075 mm and Gc =

0.0027 kN/mm for the Young’s modulus, Poisson’s ratio, length scale and fracture energy density

respectively. Zero displacement boundary conditions, i.e., upx
= upy

= 0, are imposed in all material

points (nodes in the PF-FEM case) in the bottom edge of the specimen.

Both in the PF-MPM and PF-FEM implementations, a displacement control nonlinear static analysis

scheme is utilized with a constant displacement increment ∆u = 10−6 mm. Displacement is monitored
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and controlled in the upper edge of the specimen where the vertical displacements of all material

points (nodes in the PF-FEM cases) are kinematically constrained. The kinematic constraint penalty

parameter (see Appendix A) was chosen to be a = 10000000. The solution is implemented within a

stagger solution algorithm with a single prediction step (Nstaggs = 1) and tolu = 10−5.

The load paths derived from both PF-MPM and PF-FEM are presented in Fig. 4(b). The load

paths are practically identical. Results obtained by both solution approaches also agree with the

results provided in [48]. In particular, the critical vertical displacement and critical load obtained

by PF-FEM are ucrPF−FEM
= 0.005626 mm and FcrPF−FEM

= 0.7051 kN respectively. The critical

vertical displacement and critical load obtained by PF-MPM are ucrPF−MPM
= 0.005627 mm and

FcrPF−MPM
= 0.7052 kN respectively.

The results derived and the agreement between the two different approaches is justified by the

fact that due to small displacements (≈ 0.60% of the total length of the plate), material points only

marginally move from the Gauss points of the corresponding Finite Element mesh. The phase field

distribution over the plate domain for both the Finite Element and Material Point Method are presented

in Figs. 5. The observed crack paths derived from both methods are identical.

Analysis time for PF-FEM was approximately 98 hrs whereas for PF-MPM 111 hrs. The increase

in computational time due to the MPM implementation was of the order of 13% corresponding to the

re-factorization of the stiffness matrix when material points move across background cells.

5.2. Single-edge notched shear test

In this case, the response of the square plate considered in Section 5.1 is investigated under pure shear

conditions. The same example has been previously examined in [48] and [16] considering a standard

Finite Element scheme and its isogeometric formulation respectively.

The geometry, boundary conditions and material properties are shown in Fig. 6(a). The discretization

of the Eulerian Grid as well as the number of material points are the same as in the tension experiment

of Section 5.1. Both in the PF-MPM and PF-FEM implementation the simulation is performed with a

constant horizontal displacement increment ∆u = 10−5, mm monitored at the upper edge of the plate.
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(a) (b)

Figure 4. (a) Tension test. Geometry and boundary conditions. (b) Load-Displacement curve. Comparison
between Material Point Method and Finite Element Method (FEM)

The load displacement curve is presented in Fig. 6(b). The results obtained by PF-MPM are

compared to the results from PF-FEM. The latter have been derived considering a 40658 constant strain

triangle finite element mesh and are in perfect agreement with the results reported in [48]. The critical

horizontal displacement and critical load obtained by Finite Element Method are ucrPF−FEM
= 0.0087

mm and FcrPF−FEM
= 0.5310 kN respectively; whereas the critical vertical displacement and critical

load obtained by Material Point Method are ucrPF−MPM
= 0.0089 mm and FcrPF−MPM

= 0.5416 kN

respectively.

Figs. 7 illustrate the phase field of both Finite Element Method and Material Point Method. The two

methods illustrate good agreement in regards of the crack path with minor differences observed in the

post-peak regime. These are attributed to the severe distortion of the triangular finite elements observed

in the FEM-PF case which is however by definition avoided in the MP-PF solution.

In particular, the distortion of the elements along the crack path is presented in Figs. 8(a)-(c). This is

avoided in the material point method as shown in Figs. 8(d)-(f) as the material points naturally follow

the geometry of the crack. The evolution of the hydrostatic stress for the case of the Material Point

implementation is shown in Figs. 9 for several timesteps. Comparing Figs. 7(d)-(f) to Figs. 9 one is

able to verify that the crack is propagates only due to tension as a result of additive decomposition

of the elastic energy introduced in equation (15). The computational times for PF-FEM and PF-MPM

were approximately 23 hrs and 26 hrs respectively resulting in an overhead of approximately 13%.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Phase-Field in single-edge notched tension test with Finite Element Method for (a) u = 0.0056
mm, (b) u = 0.0058 mm and (c) u = 0.0059 mm respectively. Phase-Field in single-edge notched tension
test with Material Point Method for (d) u = 0.0056 mm, (e) u = 0.0058 mm and (f) u = 0.0059 mm

respectively.

5.3. L-Shaped panel test

In this example an L-Shaped concrete panel is examined under cyclic loading. This example has

also been considered in [22] utilizing the phase field finite element scheme. The geometry, boundary

conditions and material properties are presented in Fig. 10(a). Herein, a series of simulations is carried

out to investigate the effect of the length scale parameter (l0), cell spacing of the underlying Eulerian

grid (h) and cell density on the accuracy of the PF-MPM scheme. In all simulations (both in the PF-

MPM and PF-FEM implementation) a constant displacement increment ∆u = 10−3 mm is considered

for 2000 time increments. The load history is shown in Fig. 10(b). The solution is implemented within
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(a) (b)

Figure 6. (a) Shear test. Geometry and boundary conditions. (b) Load-Displacement curve. Comparison
between Material Point Method and Finite Element Method (FEM)

(a) (b) (c)

(d) (e) (f)

Figure 7. Phase-Field in single-edge notched shear test with Finite Element Method for (a) u = 0.009 mm,
(b) u = 0.011 mm and (c) u = 0.0134 mm respectively. Phase-Field in single-edge notched shear test with

Material Point Method for (d) u = 0.0092 mm, (e) u = 0.0117 mm and (f) u = 0.0136 mm respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Distorted Elements in Finite Element Method (a) u = 0.009 mm, (b) u = 0.011 mm and (c)
u = 0.0134 mm respectively. No distortion in Material Point Method for (d) u = 0.0092 mm, (e) u = 0.0117

mm and (f) u = 0.0136 mm respectively.

(a) (b) (c)

Figure 9. Hydrostatic Stress in single-edge notched shear test for (a) u = 0.0092 mm, (b) u = 0.0177 mm
and (c) u = 0.0136 mm respectively. Material Points with cp < 0.08 have been removed.
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(a) (b)

Figure 10. (a) L-Shape panel test. Geometry and boundary conditions. (b) Load History

a stagger solution algorithm for a single prediction step (Nstaggs = 1) and tolu = 10−4. In all cases,

the background grid is formulated using four node quadrilateral elements with bilinear basis functions.

Plane stress conditions are assumed with a thickness th = 100 mm.

Initially, the PF-MPM implementation is compared to a PF-FEM solution considering a length scale

parameter l0 = 2.5 mm while the mesh size is h = 2.5 mm. Each background cell in the Material

Point implementation is populated with 2 x 2 material points while full integration (4 Gauss points per

element) is considered for the Finite Element Method formulation . The corresponding load paths are

shown in Fig. 11(a) where the two methods demonstrate very good agreement. The relative divergence

of the two methods is presented in Fig. 11(b). Overall, the nominal value of the relative divergence

is smaller than 0.1% except from the regions of zero imposed displacement where discrepancies are

observed which are attributed to cut-off and round-off errors. The relative divergence significantly

increases in the final stages of the loading scenario, i.e., on softening regime of the member response.

As in the case of the Shear Test examined in Section 5.2, this pertains to the different kinematics

between the two solution procedures, with the PF-MPM implementation providing a more accurate

representation of the actual crack path. The L2 norm of the divergence is εL2 = 0.3%. The crack

pattern between the experimental results and the proposed method demonstrate good agreement as
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(a) (b)

Figure 11. MPM vs FEM phase field implementation comparison (a) Load paths (b) Relative Error vs
applied displacement. The cell density for the MPM method is 2 x 2, whereas in both cases l0 = 2.5mm and

h = 2.5mm.

(a) (b)

Figure 12. Comparison of crack path between experimental ([59], see also [22]) (a) and simulation data (b).
The red line represents the crack path obtained from simulation. Material Points with cp < 0.08 have been

removed.

presented in Figs. 12(a) and 12(b) respectively. The analysis times for the PF-FEM was approximately

15 hrs whereas for PF-MPM 18 hrs resulting in an increase of 20%.

Next, the sensitivity of the PF-MPM implementation on the cell density is investigated. Two cell

densities are examined, namely 2 x 2 and 4 x 4. In the first case, each active cell contains approximately

2 x 2 = 4 Material Points whereas in the second approximately 4 x 4 = 16 Material Points are used to

represent the deformable domain. The total number of material points utilized in each case is 30204

and 120404 respectively. The grid is formulated by 110 x 110 = 12100 cells with a cell spacing h = 5

mm for all runs. Four cases are considered for the length scale, namely l0 = {10, 5, 2.5, 1} mm.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)

Prepared using nmeauth.cls DOI: 10.1002/nme



32 E. G. KAKOURIS, S. P. TRIANTAFYLLOU

The corresponding load paths are summarized in Figs. 13(a)-(b). Indicative results are presented in

Table I where it can be seen that for the same length scale parameter, the influence of the cell density

on the both the peak load and the corresponding critical displacement is marginal (less than 1%).

To further examine the robustness of the proposed scheme, the sensitivity of the analysis results on

the cell spacing (h) is also investigated. Four cases are considered for the size h of the background

grid, i.e., h = 10 mm, h = 5 mm, h = 2.5 mm and h = 1 mm whereas the cell density is kept constant

at 2 x 2. The corresponding number of cells for cell spacing h = 10 mm, h = 5 mm, h = 2.5 mm

and h = 1 mm are 55 x 55 = 3025, 110 x 110 = 12100, 220 x 220 = 48400 and 510 x 510 = 260100

respectively. The derived results are presented in Table II whereas the corresponding load paths are

shown in Figs. 14.

Contrary to the behaviour identified when varying the cell density, the cell spacing seems to bear a

stronger impact on the structural response. Differences in the measured peak load and corresponding

displacement presented in Table II significantly increase with decreasing values of the length scale

parameter l0. This is expected as the smaller the value of the length scale parameter for a given cell

size, the less the diffusion due to the phase field evolution, thus the more mesh-dependent the crack

path is. When h ≤ l0, the results derived from both the different cell spacings converge; this is in

accordance with the remarks presented in [20] regarding the effect of the the length scale to mesh size

ratio on the accuracy of the results.

The crack paths corresponding to the different length scale parameters are shown in Figs. 15(a)-(d)

and 15(e)-(h) for cell spacing h = 5 mm and h = 2.5 mm respectively. The experimentally observed

crack path [59], see also [22], is shown in Fig. 12(a). The geometry of the crack path is only marginally

affected when h ≤ l0. However, when h > l0 (see. Figs 15(c),(d) and (h)) the crack pattern diverges

from the experimental observation.

In Figs. 16 the evolution of the phase field is shown for l0 = 2.5 mm and h = 2.5 mm. Fig.

16(a) represents the degradation of structure when the critical load is observed. A degradation is also

observed from time steps u = 0.30 mm to u = 1 mm in the region around of the load due to the cyclic

load. In particularly, this region is on tension for load steps 300 until 800.
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Cell spacing 5 mm
Critical vertical displacement [mm] Critical load [kN]

l0 [mm] Cell Density Diff Cell Density Diff
2x2 4x4 [%] 2x2 4x4 [%]

10 0.255 0.254 0.392 12.5692 12.6099 0.323
5 0.264 0.262 0.757 14.0292 14.0343 0.036

2.5 0.286 0.284 0.699 15.9206 15.8939 0.167
1 0.345 0.345 0.000 19.2705 19.2039 0.345

Table I. L-Shape panel test for different cell density

5.3.1. Distortion error: PF-FEM vs PF-MPM To assess the advantages of PF-MPM as compated to

PF-FEM with regards to mesh distortion errors, the L-shaped panel benchmark is re-run considering

a significantly larger critical fracture energy density Gc = 8.9 · 10−1 kN/mm. All the other material

parameters, boundary conditions and solution procedure parameters remain unchanged. The cell

spacing is chosen to be h = 10 mm with cell density 3 x 3 while the length scale parameter is equal to

l0 = 10 mm. A constant displacement increment ∆u = 10−1 mm is considered until complete failure.

The resulting load-displacement diagrams of both schemes are represented in Fig. 17. The critical

vertical displacement and critical load obtained by Finite Element Method are ucrPF−FEM
= 25.6 mm

and FcrPF−FEM
= 1324.12 kN respectively; whereas the critical vertical displacement and critical

load obtained by Material Point Method are ucrPF−MPM
= 25.6 mm and FcrPF−MPM

= 1316.16 kN

respectively. The differences in critical values are less than 0.60%. However, after the critical load

(crack initiation) the PF-FEM equilibrium path significantly diverges from the corresponding PF-MPM

solution.

Both the evolution of phase-field and the deformed configuration of the specimens are shown in Figs.

18 and 19 for the PF-FEM and PF-MPM respectively. From Figs. 18, it is obvious that in PF-FEM the

elements are highly distorted especially after the critical load (see Figs. 18(b) and 18(c)). PF-MPM is

free of mesh-distortion errors thus allowing for a better representation of the actual crack path with

the specimen being able to rotate until complete failure (see Fig. 19(d)). Contrary to PF-MPM, PF-

FEM fails to converge for displacements u > 278 mm. Figs. 19 also represent the active cells in the

corresponding time-steps.
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(a) (b)

Figure 13. Influence of cell density for length scale parameter (a) l0 = 1 mm and l0 = 2.5 mm (b) l0 = 5
mm and l0 = 10 mm. The cell spacing is h = 5 mm.

Cell density 2x2 mm
Critical vertical displacement [mm] Critical load [kN]

l0
[mm]

Cell spacing [mm] Cell spacing [mm]

10 5 2.5 1 10 5 2.5 1
10 0.255 0.254 0.252 0.252 13.323 12.617 12.569 12.455
5 0.270 0.264 0.256 0.256 15.213 14.029 13.783 13.631

2.5 0.310 0.286 0.271 0.266 18.046 15.921 15.216 14.816
1 0.424 0.345 0.320 0.286 25.156 19.271 17.933 16.915

Table II. L-Shape panel test for different cell spacing

(a) (b)

Figure 14. Influence of cell spacing h for length scale parameter (a) l0 = 1 mm and l0 = 2.5 mm (a) l0 = 5
mm and l0 = 10 mm. The cell density is 2 x 2.

5.4. Notched Plate with Hole

In the final example, a notched plate with hole is examined and compared to the experimental

crack path obtained by [22]. The geometry and material parameters are presented in Fig. 20(a). The
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. Phase-Field in L Panel Test for cell spacing h = 5 mm ((a)-(d)) and h = 2.5 mm ((e)-(h))
respectively. Fig.s (a) and (e) are for l0 = 10 mm, (b) and (f) are for l0 = 5 mm,(c) and (g) are for

l0 = 2.5 mm and (d) and (h) are for l0 = 1 mm.

(a) (b) (c) (d)

Figure 16. Phase-Field in L-Panel test for l0 = 2.5 mm and h = 2.5 mm. (a) u = 0.27 mm, (b) u = 0.30
mm, (c) u = 0.45 mm and (d) u = 1.00 mm.

rectangular plate consists of 178236 material points. The Eulerian grid is formulated by 73080 (203 x

360) cells with cell spacing hx ≈ 0.3497 mm and hy = 0.35 mm in x and y direction respectively.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)

Prepared using nmeauth.cls DOI: 10.1002/nme



36 E. G. KAKOURIS, S. P. TRIANTAFYLLOU

Figure 17. MPM vs FEM phase field implementation comparison for h = 10 mm, l0 = 10 mm and Gc =

8.9 · 10−1 kN/mm.

(a) (b) (c)

Figure 18. Phase-Field Finite Element Method in L-Panel test for h = 10 mm, l0 = 10 mm and Gc =

8.9 · 10−1 kN/mm. (a) u = 25.60 mm, (b) u = 90 mm, (c) u = 278 mm.

The dimensions of the grid are 71 mm x 126 mm (xmin = ymin = −3.00 mm , xmax = 68 mm

ymax = 123 mm). The cell spacing is chosen in order to be less or equal than the length scale parameter

l0. Four node cells with bilinear basis functions are used for the grid. The active cells at the beginning of

the analysis are shown in Fig. 20(b). Plane stress conditions are assumed. Material points are randomly

distributed in cells with the cell density varies from 1 to 4 material points per cell.

Zero displacement boundary conditions, i.e., upx
= upy

= 0, are imposed in all material points in

the boundary of the lower pin. Next, the vertical displacements of all material points in the boundary of

upper pin are kinematically constrained to have the same vertical displacement. The penalty parameter
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(a) (b)

(c) (d)

Figure 19. Phase-Field Material Point Method in L-Panel test for h = 10 mm, l0 = 10 mm and Gc =

8.9 · 10−1 kN/mm. (a) u = 25.60 mm, (b) u = 90 mm, (c) u = 278 mm and (d) u = 392 mm.

was chosen to be a = 1000000. Finally, the displacement is monitored and controlled in the boundary

of upper pin.

To investigate the influence of stagger solution algorithm four cases are considered with constant

displacement increment ∆u = 10−2, ∆u = 5 · 10−3 mm, ∆u = 10−3 mm and ∆u = 5 · 10−4 mm.

Table III presents the influence of stagger iterationsNstaggs and displacement increment ∆u on critical

load and its corresponding displacement. In all cases tolu = 10−5.

Increasing the number of stagger iterations, the fidelity of the solution is improved. After the third

stagger iteration the algorithm is converging to a value and additional iterations marginally affect the

results at the cost of increased number of evaluation. As shown in Table III, i.e., ∆u = 10−3 mm and

∆u = 5 · 10−4 mm, when the displacement increment ∆u is sufficiently small then there is no need

for additional stagger iterations.
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(a) (b)

Figure 20. (a) Notched Plate with Hole. Geometry and boundary conditions. (b) Active cells in the beginning
of the analysis.

Critical vertical displacement [mm] Critical load [kN]
∆u [mm] Nstaggs = 1 Nstaggs = 2 Nstaggs = 3 Nstaggs = 1 Nstaggs = 2 Nstaggs = 3

10−2 0.400 0.350 0.330 10.233 9.421 9.103
5 · 10−3 0.355 0.325 0.315 9.501 9.006 8.823

10−3 0.309 0.301 0.298 8.722 8.585 8.534
5 · 10−4 0.302 0.297 0.296 8.595 8.516 8.487

Table III. Influence of Stagger Solution Algorithm

Fig. 21(a) presents the influence of displacement increment ∆u, forNstaggs = 1. For large values of

displacement increment the results are overestimated. However, as long as the displacement increment

is decreased the results are converging. Whereas, Fig. 21(b) represents the influence of stagger

iterations on the results for ∆u = 5 · 10−3 mm. The load-displacement curve is stabilized in third

stagger iteration.

Figs. 22 represent the evolution of phase field in four timesteps u = 0.28 mm, u = 0.35 mm,

u = 0.96 mm and u = 1.20 mm respectively. Whereas, Figs. 23 present the evolution of hydrostatic

stress for the same timesteps. Both Figs. 22 and 23 are referred to the solution obtained by stagger

Nstaggs = 1 iteration with constant displacement increment ∆u = 10−3 mm. the analysis time for

this simulation was approximately 37hrs. The crack paths of both the proposed method and the

experimental data from [22] have good agreement and they are presented in Figs. 24.
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(a) (b)

Figure 21. Load displacement response dependence on (a) Displacement increment size for 1 stagger
iteration (Nstaggs = 1) (b) Number of stager iterations (∆u = 5 · 10−3 mm)

(a) (b) (c) (d)

Figure 22. Phase-Field in Notched Plate with Hole test for (a) u = 0.28 mm, (b) u = 0.35 mm, (c) u = 0.96

mm and (c) u = 1.20 mm respectively. Displacement increment ∆u = 10−3 and Stagger with 1 iteration.

6. CONCLUSIONS

In this work, a Material Point Method (MPM) for the simulation of crack propagation pertinent to

brittle fracture is formulated. The crack geometry and underlying brittle fracture mechanics have been

considered on the basis of a phase-field formulation, appropriately adapted to be introduced within the

MPM framework. Using this approach, the need for algorithmically tracking the crack path is alleviated

thus reducing the underlying computational complexity. The deformable domain is approximated using

a set of material points that are allowed to move within a fixed Eulerian mesh.
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(a) (b) (c) (d)

Figure 23. Hydrostatic stress in Notched Plate with Hole test for (a) u = 0.28 mm, (b) u = 0.35 mm, (c)
u = 0.96 mm and (d) u = 1.20 mm respectively. Displacement increment ∆u = 10−3 and Stagger with 1

iteration. Material Points with cp < 0.08 have been removed.

(a) (b)

Figure 24. Comparison of crack path between experimental [22] (a) and simulation data (b). Material Points
with cp < 0.08 have been removed.

Fusing MPM with phase field modelling results in a coupled system of governing equations, namely

the equilibrium and phase field evolution equations. Coupling is achieved through the definition of

a history field that tracks the evolution of the tensile part of the elastic energy density. The latter is

derived on the basis of a spectral decomposition of the elastic strain tensor.
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The resulting coupled field equations is numerically treated using a staggered solution scheme. In

this, the phase field evolution equations are solved for constant displacement fields and a prediction for

the phase field distribution is derived which is then used to iterate for the updated displacement field

through the equilibrium equations.

A set of benchmark applications is presented to verify the proposed scheme whereas validation

is also performed through experimental data available in the literature. From these, the accuracy of

the method is established both in predicting the equilibrium paths as well as representing the actual

geometry of the crack paths. The method succeeds in providing realistic crack path geometries as

the background mesh is reused within each computational cycle, thus avoiding mesh distortion errors

pertinent to the standard finite element method. However, this comes at an increased computational cost

for the implicit MPM implementation considered in this work, as re-factorization of the underlying

stiffness matrix is required in each computational cycle. In the proposed scheme discontinuities are

naturally created, since material points are naturally separated. This is not the case in the classical

Phase-Field Finite Element Method where Gauss points are always located in Gauss positions.

From the preceding analysis, Phase-Field Material Point Method is established as a promising

computational tool, able to address very challenging tasks in computational mechanics. Due to its

significant advantages in treating dynamics and large displacement problems, the introduced PF-MPM

can be further extended to treat impact-fracture and ductile fracture problems. Furthermore, due to

its particle in cell formulation, the method can be coupled with both mesh-based and particle based

methods within a multiscale setting.

APPENDIX A MATERIAL POINT PENALTY METHOD FOR IMPOSING KINEMATICAL

CONSTRAINTS

In the following, we consider the case of the two dimensional problem shown in Fig. 25. This involves

2 active cells with 6 active grid nodes totalling 12 degrees of freedom for the background Eulerian

grid. Eight material points points are considered. Kinematical constraints need to be imposed on both

displacement components of the material point p, namely up = {upx
, upy
}. As described in Section
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Figure 25. Imposition of constraints with Penalty Method.

3.3, in the material point method the displacement components of a material point are interpolated to

the corresponding nodes of the active cell the material point resides. For the case of material point p

shown in Fig. 25, the interpolation expressions for both the horizontal and vertical components of the

displacement vector are expressed in the following form


upx

= N1(xp)u3 +N2(xp)u5 +N3(xp)u11 +N4(xp)u9

upy
= N1(xp)u4 +N2(xp)u6 +N3(xp)u12 +N4(xp)u10

(54)

Following the standard procedure for the Penalty Method [32], the following matrices are formulated

B =

0 0 N1(xp) 0 N2(xp) 0 0 0 N4(xp) 0 N3(xp) 0

0 0 0 N1(xp) 0 N2(xp) 0 0 0 N4(xp) 0 N3(xp)


(55)

and

V = {upx
, upy
} (56)

where B is an (Nconstr ×Ndofs) coefficient matrix whereas V is an (1×Nconstr) coefficient vector.

Nconstr and Ndofs denotes to the total number of imposed constraints and total number of active

unconstrained degree of freedom of the whole structure. Therefore, the incremental external forces as

well as the incremental internal forces are modified according to equations (57) and (58) below

∆Fext := ∆Fext + αBTVT (57)
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∆Fint := ∆Fint + αBTB∆u (58)

where α is the Penalty Method parameter. If a direct solver is utilized then the global stiffness matrix

of the structure is redefined according to equation (59) below

Ku := Ku + αBTB (59)
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