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Abstract 

I 

 

Abstract 

As one of the most versatile and reliable in-situ devices, cone penetrometers have been 

extensively used in soil exploration (e.g. soil classification, soil profiling, back-

calculation of soil properties etc.) both experimentally and theoretically over the past 80 

years. To improve its site accessibility, reduce the required sample size with minimal 

boundary effects, or model soil penetration by plant roots or earthworms, cone 

penetrometers with various sizes are often employed both in the field and laboratory. 

Consequently, size-dependent performance may appear, and this is one of the subjects of 

this research. 

A series of cone penetration tests with three sized cone penetrometer (12mm, 6mm, 3mm) 

on the Leighton Buzzard sand with two fractions (E and C) was performed at the 1g 

condition. Evident size effects were observed both in the cone tip resistance and shaft 

friction. To account for the observed size-dependent behaviour, theoretical methods based 

on the cavity expansion theory were developed in addition to the available experimental 

findings. Firstly, a size-dependent ( 50/a d ) quasi-static cavity expansion solution was 

developed by improving the conventional cavity expansion theory incorporating with a 

strain gradient theory of plasticity. A stiffer response is modelled for a smaller cylindrical/ 

spherical cavity with this solution. Based on the analogy of cone penetration and quasi-

static cavity expansion, the developed size-dependent expansion solution for spherical 

cavities was employed to quantify the size effect in the cone tip resistance, and fair good 

agreements were achieved between the theoretical prediction and experimental results. 

Subsequently, the scale effect observed in shaft friction resistance was explained in terms 

of the interface frictional strength and mobilised lateral soil stress. The size-dependent (

50/iR d ) interface frictional strength was discussed based on the available experimental 

data of other researchers, and an improved solution based on the elastic cylindrical cavity 

expansion solution was derived to quantify the size dependency ( 50/D d ) of the mobilised 

lateral stress on the shaft. In the light of above discussions, dominating factors influencing 

the size-dependent behaviours in the cone penetration test are summarised. 

The other objective of the present research was to model the mechanical interaction 

between a growing root tip and the surrounding soil. Two elastic solutions for computing 
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the stress and displacement fields around a displacement-controlled ellipse were 

developed based on the complex variable theory of elasticity and Fourier series method. 

By assuming the axial cross section of a root tip as a half-ellipse, the two-dimensional 

soil response to a short-term growing root tip was discussed with the derived elastic 

solutions. Benefits of radial swelling of the root tip to its axial penetration were 

summarised, and an approximate analytical method to estimate the soil resistance 

mobilised by a short-term root growth was suggested and employed in the present root 

tip-soil interaction analyses. 

In addition, influences of the additional shear stress in the process of static and quasi-

static cavity expansion were analysed with an elastic-perfectly-plastic model. For Tresca 

materials, a non-equal initial stress field was considered in the static stress solution, and 

a quasi-static expansion solution was then derived for a cavity deforming in a hydrostatic 

stress field considering the material compressibility. The static stress solution is capable 

of calculating the stress redistribution around a circular rotating probe, and the large-

strain quasi-static solution may be useful in theoretical predictions of the tip resistance of 

a rotating penetrometer (or pile) which has been often utilised in needle cone penetration 

tests for modelling the root tip elongation. Then the introduced methods in above 

solutions were applied to the static stress analysis of a circular cavity surrounded by the 

Mohr-Coulomb material under a non-equal stress field. Based on the conformal mapping 

function proposed by Detournay and Fairhurst (1987), both a loading and unloading 

analysis were carried out with the derived analytical solution. It can provide a simple 

method to predict the plastic failure zone and calculate the stress redistribution around a 

circular excavation (e.g. tunnel, pipeline) either under loading or unloading. 

Keywords: CPT, quasi-static cavity expansion, size effect, mechanical interaction of root-

soil, two-dimensional cavity analysis 
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Chapter 1  

 Introduction 

1.1 Background 

Supply of water and nutrients and mechanical supports from the soil are vital for nature 

plants, so the growth performance of plants is considerably affected by the soil physical 

environment. Intensive cropping/grazing system and overuse of heavy machinery in 

modern agriculture have degraded the physical conditions of arable soil (Hamza and 

Anderson, 2005; Nawaz et al., 2013). Soil compaction is one major type of degradation 

which has a profound influence on soil sustainability and root function and therefore has 

far-reaching consequences on the agricultural production (Hettiaratchi et al., 1990; Lipiec 

et al., 2012; Tracy et al., 2011). This problem exists worldwide and has been recognised 

for a long time, but it is still not easy to locate and rationalise due mainly to its location 

in the subsoil often without evident marks on the soil surface (Hamza and Anderson, 

2005). Therefore, effective and quick detection and evaluation of the soil compaction 

would be of great interests in practice, and deeper understandings of the root growth 

behaviour under mechanical impedance may provide more solutions for improving and 

using the over-compacted soils during soil management and plant cultivation. 

Among a vast number of in-situ devices, the static cone penetrometer is considered as one 

of the most versatile and reliable tools available for soil exploration (Bengough et al., 

2000; Lunne et al., 1997). It has been widely employed both in the geotechnical 

engineering (Lunne et al., 1997; Robertson and Cabal, 2015; Sanglerat, 1972; 

Schmertmann, 1978) and the agricultural engineering (Sudduth et al., 2004; To and Kay, 

2005; Whalley et al., 2007). In geotechnical practices, as summarised by Lunne et al. 

(1997), CPT is generally employed: (1) to determine sub-surface stratigraphy and identify 

materials; (2) to estimate geotechnical parameters; (3) to provide results for direct 

geotechnical design. The standard soil cone penetrometers used in the agriculture 

engineering field are mainly employed to investigate and evaluate the in-situ topsoil 

conditions (compaction, trafficability, spatial variation etc.) for soil management (ASAE, 
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2004; Bengough et al., 2000). Apart from the standard sized cone penetrometers (>10mm 

as described in Chapter 2), smaller sized penetrometers have also been frequently 

employed in soil explorations (Aydan et al., 2014; Bolton et al., 1999; Kim et al., 2015; 

Monfared, 2014; Tumay et al., 2001). In particular, needle cone penetrometers are 

regarded as the best tool to estimate the soil resistance experienced by root growth 

(Bengough and Mullins, 1990) even with evident overestimations as summarised in Tab. 

1-1. Overall, the cone penetration test provides a versatile and quick tool in various soil 

investigations, but penetrometers in a wide range of sizes are often used for different 

purposes and their performances may vary with the size (Balachowski, 2007; Eid, 1987; 

Lima and Tumay, 1991; Wu and Ladjal, 2014). 

In view of the above concerns, some experimental and theoretical work are carried out in 

this thesis in order to explain the potential size-dependent behaviour and model the root 

tip-soil interaction. A series of 1g cone penetration tests with different sizes were 

performed to physically reveal the potential size effect, and the theoretical analyses are 

conducted mainly based on the newly developed cavity expansion solutions. 

1.2 Brief review of cavity expansion theory in geomaterials 

Cavity expansion theory for geomaterials is concerned with the theoretical study of 

changes in stresses, porewater pressures and displacements caused by the expansion and 

contraction of cylindrical or spherical cavities (Yu, 2000). With different emphases for 

applications in a wide range, cavity solutions can be broadly categorised into three 

classes: static solutions, quasi-static solutions, and dynamic expansion solutions. 

Developments of analytical/semi-analytical solutions and potential applications of 

solutions in each class are briefly introduced as follows. In this study, attentions are 

mainly concentrated on some low-speed penetration problems (e.g. root tip growth, static 

cone penetration test (CPT)), in which potential dynamic effect caused by the cavity 

expansion is usually negligible. Therefore, more attention was deliberately paid to review 

the developments of solutions belonging to the former two classes. 

In general, the stress and deformation fields around a cavity can be obtained by means of 

solving a governing equation system constituted of stress equilibrium equations, 

displacement compatibility conditions, and stress-strain relationships with response to 

given boundary conditions. The complexity of these equations greatly depends on the 

geometry and stress boundary conditions, the concerned deformation level and the 
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adopted constitutive model. Different assumptions are often made in solutions of different 

classes, and below discussions briefly highlight these differences. 

(1) Solutions for static analysis of cavities 

Just as its name implies, neither the dynamic effect nor the kinematic process will be 

considered in the static cavity analysis. In other words, the stress and deformation 

responses of a static problem are solely determined by the involved static boundary 

conditions. In this case, deformation analyses are usually carried out with small-strain 

theories. Due to above simplifying assumptions, analyses of problems in this branch are 

relatively simple comparing with solutions in the other two classes, and analytical 

solutions, therefore, are available for more types of materials and boundary conditions. 

For example, elastic solutions for two-dimensional analysis of cavities with various 

shapes and stress boundary conditions (Muskhelishvili, 1963; Savin, 1970), elastic 

solutions for cavities in a semi-infinity plane (Sagaseta, 1987; Strack, 2002; Verruijt, 

1997), elastic-perfectly-plastic solutions for circular cavities under non-uniform stress 

boundary conditions (Detournay, 1986; Galin, 1946; Tokar, 1990). In the geotechnical 

engineering field, solutions in this class were often employed in the static stability 

analysis of cavities and calculations of the static stress and deformation fields around a 

cavity, such as in the analysis of wellbore stability (Aifantis, 1996; Yu, 2000), prediction 

of deformation around tunnels (Brady, 2004; Detournay and John, 1988), calculation of 

the radial stress distribution around piles (Foray et al., 1998; Turner and Kulhawy, 1994; 

Wernick, 1978). In this study, new static solutions either with the linear elastic or with 

elastic-perfectly-plastic models were developed, and they will be separately presented in 

Chapter 4 - 7. More detailed introductions about developments related to these solutions 

will be given respectively in these chapters. 

(2) Quasi-static cavity solutions 

In a quasi-static cavity expansion analysis, the stress equilibrium conditions at a given 

moment are dealt with as a static problem, but the displacement analysis around the cavity 

is considered to account for the continuous deformation process which was initiated by 

Bishop et al. (1945). Generally, the cavity is assumed to steadily expand or contract in a 

monotonic manner, and the deforming speed is assumed to be sufficiently low which 

allows the dynamic effect to be negligible. To describe the cumulative deformation, a 

large strain analysis is usually necessary, especially when it is applied to predict the limit 
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expansion pressure. So far, available rigorous analytical solutions for quasi-static cavity 

analyses mainly rely on the basic assumptions that the geometry and stress boundary 

conditions are centrally symmetric. In these analytical attempts, two basic methods have 

been widely employed to calculate the large deformation: total strain approach and 

incremental velocity method (Durban and Fleck, 1997; Yu and Carter, 2002). 

In the former approach, the total finite strains are often described with the definition of 

natural strains which shows good performances in applications to the radial symmetric 

problem. The strains and stresses are assumed to depend on the current position of soil 

particles and their initial positions, therefore it may be termed as Lagrangian methods. By 

relating the finite strains to the static stresses based on the compressibility equation, a 

quasi-static solution could be obtained with direct integrations along the deformation 

history. This method was proposed by Chadwick (1959) in an elastic-perfectly-plastic 

analysis with the associated Mohr-Coulomb criterion, and then it was extended to non-

associated Mohr-Coulomb materials by Bigoni and Laudiero (1989); Yu and Houlsby 

(1991) in expansion solutions and by Yu and Houlsby (1995) in a contraction analysis. In 

addition, this method also facilitated developments of some other analytical/semi-

analytical solutions which based on hardening/softening soil models (Cao et al., 2001; 

Chen and Abousleiman, 2012; Collins and Yu, 1996; Mo and Yu, 2016; Papanastasiou 

and Durban, 1997). 

In the second approach (the incremental velocity method), a scale of ‘time’ is usually 

introduced based on the characteristic of self-similarity (Hill, 1950; Yu and Carter, 2002). 

Strains in this method are calculated in a function of the current position (radius) and 

time, so it may be termed as the Eulerian approach. In Hill’s approach, the elastic-plastic 

boundary is regarded as the scale of “time” or progress of the expansion. It provides a 

rigorous method to calculate the steady expansion pressure for cavities expanding from 

zero radius. An approximate solution of the limit expansion pressure was obtained with 

this approach by Carter et al. (1986) for cohesive-frictional soils, and subsequently, a 

rigorous analytical similarity solution was developed by Yu and Carter (2002). In 

addition, the material time derivative can also be transformed to other types based on the 

similarity characteristic, for example, the method of Durban and Fleck (1997), which has 

been both applied in quasi-static (Masri and Durban, 2006b) and dynamic cavity 

expansion analyses (Durban and Masri, 2004; Masri and Durban, 2006a). 
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Apart from above two approaches, large strain deformations also can be described with 

some other methods. For cavities deforming in materials without volume loss, the large 

deformation process can be easily expressed with the condition of equal volume (e.g. 

undrained clay) (Gibson and Anderson, 1961). Furthermore, the soil compressibility can 

also be considered by means of introducing a rigidity index as demonstrated by Vesic 

(1972). Both cylindrical and spherical solutions have been developed with this method 

for cohesive-frictional soils. Subsequently, Baligh (1976) extended Vesic’s solution by 

adopting a curved Mohr-Coulomb criterion. Additionally, Vrakas (2016) stated that the 

large strain expansion process can be approximated with the corresponding small strain 

displacement solution by multiplying a hyperbolic function in a hydrostatic stress 

environment, which made a small strain deformation solution possibly practicable in a 

quasi-static cavity expansion analysis. Moreover, by assuming the medium around the 

cavity composed by an assemblage of thin cylindrical (spherical) shells, some semi-

analytical solutions considering the non-linear property of soils were also frequently used, 

for example, those from Ladanyi (1972); Salgado et al. (1997). 

Quasi-static cavity expansion/contraction theory for geomaterials has wide applications 

in estimating the bearing capacity of shallow and deep foundations (Randolph et al., 1994; 

Vesic, 1972), interpreting in-situ soil testing (e.g. pressuremeter test, cone penetration 

test) (Gibson and Anderson, 1961; Salgado et al., 1997; Yu, 2006), predicting 

deformation around tunnels (Marshall, 2012; Yu and Rowe, 1999). More comprehensive 

review and discussion about the development of quasi-static cavity expansion theory and 

its applications in geotechnical engineering refers to Yu (2000). 

(3) Dynamic cavity expansion solutions 

In dynamic cavity expansion analyses, the target inertia effect has to be taken into account 

due to the high deforming speed of cavitation. Comparing with quasi-static cavity 

expansion solutions, an additional term with regard to the expansion velocity of the cavity 

wall is usually included in dynamic expansion solutions (Katzir and Rubin, 2011; 

Rosenberg and Dekel, 2008). The dynamic cavity expansion was often regarded as self-

similar in analytical/semi-analytical analyses (Crozier and Hunter, 1970; Durban and 

Fleck, 1997; Durban and Masri, 2004; Hunter and Crozier, 1968; Masri and Durban, 

2006a). Consequently, the inertia effect caused by a high-speed expansion can be 

expressed in terms of a conceptual ‘time’ scales (e.g. the instantaneous cavity radius), and 

then solutions can be obtained by solving the equation system consisted of the stress 
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equilibrium equations, constitutive models, and conditions of conservation of matter. The 

dynamic cavity expansion analysis can provide a useful theoretical tool for modelling 

various high-speed expansion problems, such as projectile penetration, underground 

explosion, impact cratering etc.(Ning et al., 2013; Rosenberg and Dekel, 2008; Satapathy, 

2001; Warren and Forrestal, 1998). 

1.3 Differences between cone penetration and root-tip growth 

Apart from the above engineering applications, the cone penetrometer also provides the 

best estimate of the soil resistance to the root growth in soils (Bengough and Mullins, 

1990; Mckenzie et al., 2013). Different to standard penetrometers (>10mm), needle sized 

probes with various shapes and testing methods have been developed in studies of this 

specific topic (Barley et al., 1965; Bengough and Mullins, 1991; Iijima et al., 2003; Misra 

et al., 1986b). However, it was found that the soil resistance measured by a pushing-in 

metal probe is about 2-8 times higher than that experienced by the root tip growth 

(Bengough et al., 2000; Bengough and Mullins, 1990), for example, the direct 

comparisons listed in Tab. 1-1. To account for this discrepancy, potential contributing 

factors are discussed first, and more targeted theoretical and experimental explorations 

will be presented in following chapters of this thesis. 

The flexible root tip can physically adapt to stress and structure variations in the 

surrounding soil by altering the preferential growing direction (tortuous growth path) to 

take advantage of pre-existing pores/cracks or weakening areas in the soil, changing the 

growth sequence (size and shape) to reduce the axial soil resistance, excreting mucilage 

and sloughing off border cells to lubricate the interface as detailed in Section 5.1. 

However, the rigid cone penetrometer measures the average soil resistance in a zone 

around the cone tip with a straight penetration pathway. The metal-soil interface frictional 

resistance is much higher than that between the root tip and surrounding soils (Mckenzie 

et al., 2013). In addition, although the macroscopic spatial variation of soil strength and 

structure can also be detected by the metal cone, it cannot equivalently reflect the changes 

in a scale smaller than its size. If a penetrometer with a comparable size of the root tip is 

used, the microstructure of soil (non-local behaviours) may significantly influence the 

cone tip resistance, which has not been clearly identified as discussed in Chapter 3 and 

Chapter 4. The size-strengthening effect in this dimension level may lead to higher soil 

resistances to the rigid penetrometer, which may partly lead to the concerned discrepancy. 
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Tab. 1-1 Comparison of measured resistances on roots and needle penetrometers 

Reference 

Stolzy and 

Barley 

(1968) 

Whiteley and 

Dexter (1981) 

Misra et al. 

(1986b) 

Bengough and 

Mullins (1991) 

Bengough and 

McKenzie (1997) 
Iijima et al. (2003) 

Soil 
remoulded 

sandy loam 

remoulded cores 

and Undisturbed 

field clods (fine 

sandy loam) 

artificial 

aggregates 

with different 

size (loam) 

undisturbed 

cores of sandy 

loam 

remoulded cores 

of sandy loam 

compacted sandy 

loam soil 

Seed species Pea Pea 
Pea, Cotton, 

Sunflower 
Maize Maize Maize 

Probe diameter 

(mm) 
3 1, 1.25, 1.5, 1.75, 2 1 0.5 and 1 1 0.98 

Probe semi-angle 

(  °) 
30 30 30 30 (5)*** 7.5 15 

Penetration rate 

(mm/min) 
0.17 (1cm/hr) 3 3 4 2 1 

Probe penetration 

depth 

maxium cq  

at 5mm 
4mm 4mm 

when it reaches 

constant value 

Plateaued at 2-

6mm 
10mm-20mm 

Cross-

section 

of the 

root 

Diameter 

(mm) 
1.2-1.3 1.06-1.23 0.44-1.40 

Initial:1.12-1.14 

Final:1.35-1.36 
Around 1.1 

Intact: 1.10-1.16 

Decapped:1.11-1.53 

Distance 

behind 

apex 

3 to 5mm Around 4mm 
1mm and at the 

air gap 
2 to 5 1-6mm 2 to 5 mm 

Resistance ratio = 

(probe / root)* Around 2 2.6-5.3 1.8-3.8 4.5-7.5 2.5-4.8 
Intact: 3.1 

Decapped:1.8 

Number of replicates 2 120 324 14 19 10 
* The point resistance (penetration force/ cross-section area) are compared directly. 
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Detailed reviews and further discussions about above aspects will be given in following 

chapters later. Apart from them, investigations about another two commonly mentioned 

factors, tip shape and penetration speed, probably contributing to the concerned 

discrepancy (Bengough et al., 2000; Bengough and Mullins, 1990) are reviewed as 

follows. 

(1) Shape effect of the tip 

The tip shape determines the mode of soil deformation during penetrations, therefore the 

mobilised soil response, stress distribution and pore pressure dissipation around the tip 

may vary with changes of its shape (Greacen et al., 1968; Levadoux and Baligh, 1986). 

The soil deformed by a blunt penetrometer is more like a spherical compression. 

However, a cutting penetration may occur around a sharp cone instead, and the caused 

soil deformation is more closely approximated by the expansion of a cylindrical cavity. 

Experimental and theoretical analyses showed that changes of the cone tip resistance with 

the tip shape greatly depends on the interface friction/adhesion property (Durgunoglu and 

Mitchell, 1973; Meyerhof, 1961). In general, the tip resistance of a steel penetrometer 

(smooth or semi-rough interface) may decrease with decreases of the apex angle (be 

sharper). For example, a slight decrease was reported by Koolen and Vaandrager (1984) 

with cones of tip angles varying from 180o to 30o on 67 different agricultural fields. Sharp 

decreases were observed by Silvestri and Fahmy (1995) with cones of tip angles from 

180o to 34.7o in penetration tests on artificial clays and no obvious change of tip angles 

from 34.7o to 7.5o was found. In contrast, the end resistance of cones with perfect rough 

surfaces (or experiencing great adhesion forces) may sharply increase with decreases of 

the tip angle when it is smaller than 30o and becomes insensitive to the changes of tip 

angles from 30o-180o since the formation of a front soil cone (Kim et al., 2006; 

Muromachi, 1974). 

A root tip deforms the ahead soil more laterally (Greacen et al., 1968). The induced soil 

deformation is different to that caused by a blunt probe, so penetrometers with sharp tips 

were suggested to model the root tip growth in soil (Bengough and Mullins, 1991; 

Bengough et al., 1997; Whalley et al., 2000). For a more sharp cone, a larger contact area 

it possesses with the same base size and the interface friction applies more close to the 

penetration direction, so the mobilised frictional resistance will take a relatively larger 

proportion of the total resistant. Contrarily, due to the lubricating effect caused by 
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mucilage excretions and the sloughing off of border cells around the root cap, a much 

lower soil frictional resistances is experienced by the root cap than a metal interface 

(Mckenzie et al., 2013). Therefore, to quantify the axial contribution of the interface 

friction is very important when a shape cone penetrometer is utilised to estimate the soil 

resistance encountered by the root elongation. Influencing factors to the soil-structure 

interface friction are summarised in Section 4.2, and frictional properties of the root-soil 

interface are discussed in Section 5.1.1. It needs to point out that much effort has been 

made to reduce the interface frictional resistance between the metal penetrometer and the 

surrounding soil by means of rotating the penetrometer (Bengough et al., 1997; Mckenzie 

et al., 2013; Sadeghi et al., 2014; Waldron and Constantin, 1970), lubricating the interface 

(Tollner and Verma, 1987), or add a sliding soft continuum skin (Sadeghi et al., 2013) 

etc.. The rotating technique was more frequently used. Its penetration mechanism was 

studied by Bengough et al. (1997), and additional influences of the induced shear stress 

on the soil deformation are further analysed in Chapter 6. Penetration mechanisms of the 

other two methods have received less attention. Overall, more effort is required to better 

model the interface frictional behaviour between the root tip and soil, and better 

performance may be acquired with a combination use of these techniques. 

(2) Penetration rate effect 

The specified rate of penetration for performing standard cone penetration tests (CPT) is 

20±5 mm/s (1200±300 mm/min) in geotechnical practices and around 30 mm/s (1800 

mm/min) in agricultural engineering (ASAE, 2003). However, roots elongate typically at 

a rate of 1mm/h (0.0167mm/min) or less (Bengough et al., 2000; Waldron and Constantin, 

1970), therefore slower penetration rates are generally utilised in needle cone penetration 

tests aiming to model the root tip-soil interaction as realistic as possible. Contradictory 

rate effects were reported in tests with variable penetration rates around the speed of root 

tip elongation (Gerard et al., 1972). Almost doubled soil resistance was measured at the 

rate of 0.0029 mm/min (0.175mm/hr) than that with the rate of 1mm/min (60mm/hr) in 

tests conducted by Cockroft et al. (1969). Increases of 25%-36% with a tenfold increase 

in penetration rate, varying with soil matric suctions, were observed by Waldron and 

Constantin (1970) in tests with insertion rates ranging from 0.0035 mm/min to around 1 

mm/min. Little attention has been diverted to explaining this opposite influence in needle 

penetration tests, and it was usually believed that the tip resistance monotonically 

increases with an increasing penetration rate (Bengough et al., 1997; Gerard et al., 1972; 
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Voorhees et al., 1975). However, non-monotonic dependencies of the tip resistance on 

the penetration rate have been recognised in penetration tests over a wider speed range 

(Bemben and Myers, 1974; Kim et al., 2006; Roy et al., 1982). It was extensively studied 

from the geotechnical perspective with emphasis on the inverse strengthening effect with 

a decreasing rate (Chung et al., 2006; Finnie and Randolph, 1994; Jaeger et al., 2010; 

Kim et al., 2008; Lehane et al., 2009; Schneider et al., 2007a; Silva et al., 2006; Suzuki 

and Lehane, 2015). It was generally explained (Chung et al., 2006; Lehane et al., 2009) 

as: (1) while the condition around an advancing penetrometer is undrained (
upv v ), the 

measured tip resistance decreases as the rate of penetration is decreased, which is 

dominated by the viscous effect (strain rate effect); (2) once the penetration rate reduced 

sufficiently for partial consolidation to occur (
pf upv v v  ), the tip resistance increases 

with decreases of the penetration rate due to the local strengthening of soil ahead of the 

penetrometer. Therefore, there are two transition points are usually concerned to 

distinguish the different rate effects, which are the point (
upv ) from undrained to partially 

drained response where the viscous and partial consolidation effects balance out and the 

point (
pfv ) where fully drained conditions are reached with sufficiently slow penetration 

rates. Real values of these two transition points vary with soil type and properties (e.g. 

clay contents, hydraulic properties), penetrometer size, soil stress history, etc. (Chung et 

al., 2006; Jaeger et al., 2010; Kim et al., 2008; Suzuki and Lehane, 2015). Detailed 

summaries of related investigations on the penetration rate effect in CPTs refers to Lunne 

et al. (1997); Suzuki (2015). 

The commonly used penetration rates of needle CPTs for modelling root tip-soil 

interaction are much faster than the usual root growth speed, ranging from 50 to 600 times 

(Mckenzie et al., 2013). These penetration rates may lie in the range of 
pf upv v v   in 

some cases (Bemben and Myers, 1974; Kim et al., 2006), in which the rate effect may 

relatively large, depending on the drainage condition around the advancing cone. In 

addition, the water flow in the close vicinity of roots (rhizosphere) is very different to that 

around a metal probe due to the dynamic water uptake of roots. The hydraulic 

conductively and water retention in this zone are greatly determined by root exudates, 

especially the function of mucilage (Carminati et al., 2010; Carminati and Vetterlein, 

2013; Carminati et al., 2016). Therefore, to better evaluate the rate effect in affecting the 

soil resistance encountered by a growing root tip and an advancing rigid cone, not only 
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the potentially significant rate effect in the needle cone penetration test needs to be 

determined (e.g. small sized piezocone with additional measurement of the pore water 

pressure (Schneider et al., 2007a)), influences of the complex physical and chemical 

interaction of root exudates and soil particles also need to be considered. 

In addition, apart from above aspects, interactions between neighbouring roots, in reality, 

may also affect the soil penetration of an individual root (Bengough and Mullins, 1990). 

1.4 Objectives and outline of the thesis 

Eight chapters are included in this thesis. At first, a brief introduction about the 

background of this research is given in Chapter 1. Afterwards, the main contents are 

presented in chapter 2 to chapter 7. Specifically, to physically shed lights on the potential 

size effect in cone penetration tests, a series of 1g cone penetration tests has been 

conducted. The test design, preparation, implementation and results are presented in 

Chapter 2. To account for the size-dependent cone tip resistance, a strain gradient-

dependent cavity expansion solution is developed in Chapter 3. Explanations for size 

effects observed in the present cone penetration tests (with regards to shaft friction and 

tip resistance respectively) are presented in Chapter 4 based on some available 

experimental findings and the developed theoretical methods. Subsequently, the 

mechanical response of the surrounding soil to a short-term root tip growth is studied in 

Chapter 5. Two elastic solutions for a displacement-controlled elliptical cavity were 

developed based on the complex variable theory of elasticity, and they were employed to 

evaluate the influence of root radial swelling to the axial elongation in theory. 

Considering the common use of rotating penetrometers in estimating the soil resistance 

experienced by a growing root tip, cavity expansion analyses in Tresca materials with an 

additional consideration of the inner shear stress are carried out in Chapter 6. As a 

continuation of the methods described in Chapter 5 and Chapter 6, an analytical solution 

for the two-dimensional elastic-plastic cavity analysis in Mohr-Coulomb materials is 

developed in Chapter 7. A non-equal initial soil stress field can be considered while 

calculating the static stress and strain distributions around a circular cavity both under 

loading and unloading conditions. Finally, a summary of the main findings in the present 

research and some suggestions for related further research are given in Chapter 8. 
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Chapter 2  

 1g laboratory cone penetration tests 

2.1 Introduction 

Since its first application in soil site investigation from the 1930s, cone penetration test 

(CPT) experienced lots of developments in aspects of physical functionality and methods 

of interpretation. To promote its application and standardisation, some specific standards 

were recommended in different areas, for example, standards listed by Lunne et al. (1997) 

for geotechnical engineers and from American Society of Agricultural Engineers (ASAE, 

2004) for practices in the agriculture engineering. Not surprisingly, the specified devices 

and testing procedures in these two areas are more or less different for different purposes. 

To be specific: 

To evaluate the strength and stability of soil or the safety of structures on the soil, deep 

penetrations with various data readings are required in geotechnical practices. The 

standard cone penetrometer in this area is usually composed of a series of cylindrical rods 

(35.7mm in diameter), one side friction sleeve (area 150cm2) close to the cone and a 

conical tip (apex angle of 60o) (Lunne et al., 1997). In addition, in order to provide more 

spaces for sensors or increase ruggedness of the penetrometer, a larger sized standard 

penetrometer of the same shape was also recommended in ASTM-D5778-12 (2012), 

which has a base diameter of 43.7 mm. To acquire more information simultaneously, the 

penetrometer is increasingly equipped with various sensors (such as stress sensors, geo-

environmental sensors, geophone etc.), benefiting from developments in sensor 

technology and data acquisition system. 

For applications in the agricultural engineering, ASAE specified two different sized soil 

cone penetrometers as shown in Fig. 2.1 (ASAE, 2004). They are mainly employed to 

measure the soil resistance to penetration at relatively shallow depths (Bengough et al., 

2000). The designed soil penetrometers also consist of cylindrical shafts with a conical 

tip at the end. These recommended penetrometers are smaller in size, cones are sharper 

(12.83mm in diameter for small cone, 20.27mm large cone, cone tip angle of 30o) than 
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the standard cone penetrometers in geotechnical practices, and the shaft diameter is 

reduced to eliminate the side soil friction. 

15.88 mm

0.625 in.

2
5
.4

 m
m

1
.0

0
 i

n
.

2
5
.4

 m
m

1
.0

0
 i

n
.

1.5 mm

0.06 in.

20.27 mm

0.798 in.

30
o

9.53 mm

0.375 in.

2
5
.4

 m
m

1
.0

0
 i

n
.

2
5
.4

 m
m

1
.0

0
 i

n
.

1.5 mm

0.06 in.

12.83 mm

0.505 in.

30
o

(A) (B)

(A) or (B)

 

Fig. 2.1 Standard soil cone penetrometers from ASAE (2004) 

In addition, various nonstandard penetrometers (circular shaft with a conical tip) have 

also often been developed for some specific applications (Abouzar and Sepideh, 2015; 

Aydan et al., 2014; Bengough et al., 2000; Bolton et al., 1993; Eid, 1987; Kurup et al., 

1994; Ngan-Tillard et al., 2011; Tumay et al., 1998). Among them, small sized cone 

penetrometers have attracted growing interests due to some inherent advantages, such as 

(1) Smaller downward thrust needed, which is energy-saving and can improve its mobility 

and site accessibility in the field (Kurup and Tumay, 1998). It may be beneficial in 

applications in sites with insufficient space for large devices, ground exploration on the 

moon and the Mars etc.; 

(2) Higher sensitivity to variation of the soil stratigraphy (for example, to identify the thin 

hard or weak layer) (Mo, 2014; Schmertmann, 1978); 

(3) Smaller sized sample required in the laboratory tests to get rid of the potential 

boundary effect, and it can effectively reduce the labour, time and cost in sample 

preparation (Eid, 1987) (e.g. in chamber calibration tests), especially for CPT on the 

centrifuge platform. 

Additionally, needle cone penetrometers with a diameter ranging from 1 to 3mm have 

been frequently employed to estimate the soil resistance encountered by the root tip 
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during growth since their geometrical similarity (Bengough et al., 2000). Overall, cone 

penetrometers with different sizes have their own advantages in different applications, 

but their performance may significantly vary in some conditions, especially among small 

sized probes. Considering the wide application and promising prospect of small sized 

cone penetrometers both in the geotechnical and agricultural field, the potential influence 

of size variation in cone penetration tests will be discussed in this study. 

2.2 Review of size-dependent behaviours in end soil resistance 

Soil resistances experienced by a vertically moving object generally consist of end 

resistance and side friction. The end resistance usually is the major concern in cone 

penetration tests, especially for applications in the agricultural engineering. In addition, 

the side friction acting on very small sized probes is not easy to be precisely measured. 

Hence, present tests will be designed with priority to study the size effect in the tip 

resistance, and some existing researches on this topic are reviewed before the test design. 

In general, the bearing mechanism of foundations varies with their physical 

characteristics, mechanical properties of soil, loading types, embedment depth, stress 

environment, water condition etc. (Meyerhof, 1951). Accordingly, possible size-

dependent behaviour in the end bearing resistance may perform differently with 

variations of these factors. For clarity, they are broadly subdivided into three groups based 

on differences in the bearing mechanism (or foundation types), and possible explanations 

of the size effect in each group will be briefly summarised as follows. 

2.2.1 Size effect of the bearing capacity factor in surface footing tests 

For a vertically loaded footing resting on a free surface of uncemented sand deposit, the 

ultimate bearing capacity can be expressed as / 2ult sq N B . Size effects of this kind of 

shallow foundation are usually discussed in terms of the non-dimensional bearing factor 

N . It is found that, in general,  increases with decreases of the transversal 

width/diameter of the foundation. To account for this size effect, a large amount of 

investigations by means of physical model tests (Cerato and Lutenegger, 2007; Kimura 

et al., 1985; Tatsuoka et al., 1991; Toyosawa et al., 2013; Yamaguchi et al., 1976) and 

numerical simulations (Loukidis and Salgado, 2010; Siddiquee et al., 1999; Tejchman 

and Herle, 1999; Yamamoto et al., 2009) has been carried out in the past several decades, 

N
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and two main reasons were generally concluded: the stress-level dependency of sand 

strength and progressive failure phenomenon along the slip lines. Specifically: 

(1) The ultimate bearing capacity of footing foundations usually gets higher with 

increasing sizes of the footing (Cerato and Lutenegger, 2007). In general, the peak friction 

angle of sands decreases with an increasing mean normal effective stress, especially under 

relatively low confining stress levels (Bolton, 1986; Krabbenhoft et al., 2012). Therefore, 

the nonlinear shaped failure envelope has been incorporated into a series of methods to 

account for the size-dependent behaviour of N  (Bolton and Lau, 1989; Hettler and 

Gudehus, 1988; Kutter et al., 1988; Ueno et al., 1998; Zhu et al., 2001). 

(2) The shear strength of soil along the slip line is not simultaneously mobilised with an 

increasing loading, and it is closely related to the strain level. Along the localised strain 

zone (shear band), the induced strain level usually decreases with the increasing distances 

away from the foundation. It means that the mobilised friction angle of soil close to the 

foundation may reduce to a post-peak value (even to the critical state value cv ) when the 

global failure occurs, and only a portion of the soil along the slip line is deforming at its 

peak strength. Physical tests found that a higher strain level would be induced by a wider 

structure (Kimura et al., 1985; Yamaguchi et al., 1976). Therefore, the progressive failure 

phenomenon is often considered as one important reason in explaining the mentioned size 

effect (Conte et al., 2013; De Beer, 1965), and it sometimes is also regarded as the particle 

size effect due to the high dependency of the shear band width with the mean particle size 

(Siddiquee et al., 1999; Tatsuoka et al., 1991). 

Overall, the mobilised soil shear strength greatly depends on the induced stress and strain 

level, and different levels of them are usually produced by different sized footings at 

failure. These dependencies were commonly employed to account for the observed size 

difference of N  individually or in combination. Basically, the mentioned size effect may 

be a consequence of combined effects of these two aspects (Perkins and Madson, 2000; 

Siddiquee et al., 1999; Tatsuoka et al., 1991). A strong evidence supporting this view is 

that the stress level effect caused by variations of the foundation size not only influences 

the friction strength of sands but also impacts the potential or degree of progressive failure 

(Perkins and Madson, 2000). 

2.2.2 Size effect of the end bearing resistance in pile foundations 
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As summarised by Meyerhof (1983) and Chow (1996), the end bearing resistance of piles 

( bq ) statistically reduces with increases of the pile diameter based on relative large 

databases of full-scale pile loading tests, and the finding of Chow (1996) has been directly 

applied in the CPT-based pile design method of ICP-05 (Jardine et al., 2005). Possible 

explanations of this size effect have been discussed by White and Bolton (2005), Borghi 

et al. (2001) etc., and they were summarised as follows: 

(1) Partial mobilisation effect. There are many different criterions to determine the end 

bearing capacity of piles, for example, with reference to a given settlement (
ps ) or to a 

given changing rate of the load-settlement curve. The applied displacement in pile loading 

tests is usually smaller than the required displacement to reach the ‘plunging’ load for 

continued penetration. Before reaching that fully mobilised or steady bearing capacity, 

bq  would be highly correlated to /p ps D  and proportionally increase with it. Therefore, 

if bq  is determined by the load that required to a specific settlement, the level of 

mobilisation of the ultimate soil resistance will be clearly different for different sized 

piles. In other words, a higher level of the soil resistance will be mobilised by a smaller 

pile with the same displacement due to the larger value of /p ps D . 

(2) Partial embedment effect. This effect may become significant in two typical 

conditions: shallowly embedded piles and piles with end bases resting close to an 

interface of two layers with contrasting strengths (local inhomogeneity). Firstly, for 

shallow pile foundations, this effect is mainly due to the difference in the embedment 

ratio of different sized piles within the same embedment depth (Mo, 2014). Secondly, for 

a deep pile foundation, this size effect may be caused by the difference in the sensitivity 

of different sized piles to hard/weak layers around the concerned horizon (Mo et al., 

2016). Some simple methods for estimating the end resistance around a weak/hard layer 

have been proposed and used, for example, methods given by Meyerhof (1983); White 

and Bolton (2005). 

(3) Shaft-based interaction model (Borghi et al., 2001). This model states that the 

downward shaft shear stress leads to an increase of the mean stress on the level of the pile 

base, and the increased mean stress is able to increase the end bearing resistance. Based 

on an assumed friction distribution curve along the shaft, it is found that the contribution 
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of this effect varies with the pile size, which shows that a higher ratio of increase would 

be experienced by a smaller pile. 

(4) Local strength and deformation characteristics around the interface. The interface 

friction strength and localised deformation behaviours (shear band forming, sand particle 

crushing, shear dilation etc.) are, more or less, influenced by the particle size and pile size 

(Jardine et al., 2005). Therefore, these effects may also lead to some size-dependent 

differences in some small sized model tests, but their influences on practical pile 

foundations might not be that evident.Terzaghi, 1943 

Among above factors, White and Bolton (2005) attributed the size-dependent behaviour 

mainly to the partial mobilisation effect and the partial embedment effect through 

reassessing the compiled database of Chow (1996). It was found no trend of bq  varying 

with the pile diameter when these two effects were eliminated, but it is believed that the 

other two reasons may also play important roles in some cases, for example, in small 

sized pile model tests. 

2.2.3 Size effect of tip resistance in continuous penetration tests 

As summarised by Durgunoglu and Mitchell (1973), the penetration resistance ( cq ) 

varies with the relative penetration depth, size of probe, soil friction angle, soil 

compressibility, in-situ stress level, cone angle, cone surface roughness etc.. Among these 

factors, the possible probe size effect is studied with priority in this research. 

Attempting to identify the possible size effect in the cone tip resistance, a large number 

of penetration tests has been carried out both in laboratory conditions (Balachowski, 

2007; Bengough and Mullins, 1990; Bolton et al., 1993; De Beer, 1963; Eid, 1987; Lee, 

1990; Phillips and Valsangkar, 1987; Tollner and Verma, 1987; Wu and Ladjal, 2014) 

and in-situ measurements (Dexter and Tanner, 1973; Kurup and Tumay, 1998; Lima and 

Tumay, 1991; Sudduth et al., 2004; Thomas, 1965). These physical approaches can be 

generally categorised into three groups as: 

(1) Penetration tests with different sized probes at 1g condition (or the same gravity 

condition).  

(2) “Modelling of models” procedure. Model a given prototype diameter (Di) by 

using cones of different diameters (di) at different acceleration levels (ni×g) on the 

centrifuge platform. 
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(3) Prototype probes of different sizes are modelled by using a same sized probe 

running at different acceleration levels (n g) on the centrifuge platform. 
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Fig. 2.2 Illustration of methods exploring size-dependent behaviours in CPT 

Size parameters appearing in cone penetration tests mainly include the probe diameter (

CPTD ), grain size (mean particle size 50d ), penetration depth (H), the surface roughness 

(Ri). In general, their influences on the tip resistance are closely related to the probe 

diameter, such as the CPT/H D  effect and 50/D d  effect. Differences caused by variations 

of CPTD  are all referred as the size effect depending on the probe diameter here. 

Conserved conditions in above physical approaches are different. As a consequence, 

dominant size factors (size effect) may vary among these three physical approaches (e.g. 

(Klinkvort et al., 2013)), and they are discussed in order as follows. 

(1) Size effect observed in 1g penetration tests 

With the same g-level, a same initial stress level at the same depth can be achieved in 

sands of similar states. Therefore, cq  at the same embedment depth (or values at the 

steady state) is usually compared to maintain the initial stress level. At a same initial stress 

level, the size-dependent tip resistance may mainly due to the geometry size effect ( /H D  

effect) in shallow depths and the strain-level dependent behaviour ( 50/D d  effect) in deep 

depths (Eid, 1987; Lee, 1990), but these effects cannot be easily separated in this kind of 

tests. 
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1) In calibration chamber tests 

In geotechnical engineering, calibration chambers are commonly employed to simulate 

the field soil condition in the laboratory (e.g. detailed in the section 2.3.3.1). Different 

sized penetrometers were usually used to evaluate the lateral boundary effect (Parkin and 

Lunne, 1982), but potential influences caused by variations of the penetrometer size were 

seldom excluded. The required diameter ratio of the chamber over the penetrometer (

CPT/B D ) to get rid of the lateral boundary effect may vary with sand density, sand 

compressibility, boundary conditions and so forth. For calibration chamber tests with 

typical dense silica sands, CPT/B D  of value as high as 50-70 may be required 

(Jamiolkowski et al., 2003; Mayne and Kulhawy, 1991; Pournaghiazar et al., 2012; 

Salgado et al., 1998), but no boundary effect would be found in loose sands when 

CPT/B D  becomes as low as 20 (Eid, 1987). Based on some calibration chamber test 

results and field data, Schmertmann (1978) reported that no size effect was found in tests 

with CPTD  in the range of 25.2mm (base area 5cm2) to 50.5mm (20cm2), even perhaps to 

71.4mm (40cm2), as long as the soil particles are very small relative to the cone diameter. 

The experimental findings presented in Tab. 2-1 and Fig. 2.3 indicate that the variation 

of penetrometer size leads to evident size-dependent differences of the tip resistance as 

well as the lateral boundary effect, at least the results from tests on loose sands. 

 

Fig. 2.3 Normalised cone tip resistance vs. relative density (after Eid (1987)) 

Tab. 2-1 Size variation of the cone tip resistance in calibration chamber tests  
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density cq  Boundary CPT/B D  

20 40 60 80 100
0

200

400

600

800

Last, 1984

 

 D
CPT

= 43.7mm

 D
CPT

= 35.7mm

 D
CPT

= 25.2mm

 D
CPT

= 35.7mm

 D
CPT

= 25.2mm

q
c/ 


m

Relative density D
r

Eid, 1987



Chapter 2  1g laboratory cone penetration tests 

20 

Last (1984)* 
Hokksund 

sand 

25.2mm 

35.7mm 
BC1** 

48 

34 

Loose (30%) 

Dense (90%) Greater with 

the smaller 

penetrometer Eid (1987) 

Monterey No. 

0/30 sand 

(d50=0.45mm) 

23.2mm 

35.7mm 

43.7mm 

BC1 

65 

42 

34 

Loose (24%) 

Dense (63%) 

* after Eid (1987). ** defined in Fig. 2.13. 

To exclude the size effect in CPTs is useful to improve the accuracy in quantifying the 

lateral boundary effect in tests within calibration chambers. In general, smaller sized 

samples are required by tests with smaller sized probes, which can effectively reduce the 

labour, time and costs in sample preparation in turn. Additionally, tests with smaller sized 

samples can also facilitate to achieve visualisation of internal soil deformations during 

penetrations, which may give more insight into the soil-structure interaction. For 

example, cone penetration tests by using transparent soil and particle image velocimetry 

(Ni et al., 2010) or the X-ray computed tomography technique (Ngan-Tillard et al., 2005; 

Paniagua et al., 2013). 

2) In-situ cone penetration tests 

Different trends of cq  with varying cone diameters have also been observed in in-situ 

cone penetration tests as summarised by Eid (1987); Lima and Tumay (1991). Field 

experimental evidence indicating significant size effect refer to (Kurup and Tumay, 1998; 

Lima and Tumay, 1991; Sudduth et al., 2004; Sweeney, 1987; Tumay et al., 2001). In 

specific, Sweeney (1987) reported that size effect of cq  exits between a small (22.8mm, 

4.1cm2) sized cone penetrometer and the standard one (35.7mm, 10cm2) on dense sands 

in field tests. Lima and Tumay (1991) also found that a smaller sized penetrometer gives 

a higher value of cq  based on a series of deep-sounding CPTs in fields of sandy, silty and 

clayed soils. Statistical analysis showed that cq  measured with the standard penetrometer 

can be effectively estimated by multiplying a factor of 0.85 with that obtained with a 

12.7mm (1.27cm2) sized cone penetrometer, and no significant variation was found 

between cq  from the standard and 43.7mm (15cm2) sized cone penetrometer. 

Subsequently, Kurup and Tumay (1998) and Tumay et al. (2001) reported that the average 

cq  obtained with a 16.0mm (2cm2) sized penetrometer is about 10% higher than that with 

the standard cone penetrometer in applications to various in-situ sites. In addition, 
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Sudduth et al. (2004) reported that the average cone resistance measured with the ASAE 

standard small cone penetrometer (base diameter 12.8mm) was 30% higher than that with 

the ASAE standard large cone (base diameter 20.3mm) based on a large number of 

shallow cone penetration tests on eight field sites of silty clay loam or silt loam. In sum, 

above findings indicated that stiffer soil responses would be experienced by smaller 

penetrometers. However, a non-significant variation of cq  with different sized cone 

penetrometers has also been reported in some field tests (De Ruiter, 1982; Sanglerat, 

1972; Schmertmann, 1978). Sanglerat (1972) concluded that size effect is negligible for 

penetrometers (piles) of diameters varying from 36 to 110mm in all soils. De Ruiter 

(1982) also suggested that no significant variation in cq  with cone sizes varying from 

25.2 (5cm2) to 43.7mm (15cm2). 

3) Other 1g penetration tests 

Apart from above tests with penetrometers of sizes around the standard ones, some other 

cone penetration tests with a larger range of penetrometer sizes or needle sized cone 

penetrometers have also been performed both by geotechnical and agricultural 

researchers. Different observations about the size effect were also reported (Bengough 

and Mullins, 1990) (e.g. listed in Tab. 2-2). Although no consensus has been generally 

achieved about influences of the concerned size effect, it is believed the size effect (size-

strengthening phenomenon) may be much more significant or likely to perform in needle 

cone penetration tests than tests with the standard sized penetrometers. It may partly 

contribute to the concerned discrepancy (higher soil resistance on needle cone 

penetrometers than that on the root tip) as discussed in the first chapter. 
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Tab. 2-2 Experimental results of size effect in miniature cone penetration tests 

Reference Soil CPTD /mm Penetration rate 
Sample size and Boundary 

condition 

Depth of 

compared cq   
Size effect 

Barley et al. (1965) 
remoulded sandy 

loam 
1, 2, 3 1 cm/hr 

diameter 7.2cm 

height 2cm 

confined radially with closely 

fitting metal rings or 

unconfined 

-- Not significant 

Gooderham 

(1973)* 
-- 1,2 -- -- -- 

Greater cq with 

smaller CPTD  

Muromachi (1974) 

** 

Yodo clay 

(remoulded) 
5.7-50 1.7mm/sec -- -- 

Increase with 

decrease of 

CPTD  

Bradford (1980) undisturbed 3.8,5.1 -- -- -- Not significant 

Whiteley et al. 

(1981) 

remoulded loam at 

20% water content 

1,1.25, 

1.5,1.75,2 
3mm/min 

confined cores of 20mm height 

and 50mm diameter 
4 times of CPTD  Not significant 

Whiteley and 

Dexter (1981) 

remoulded 

(various soil 

textures) 

1, 1.25, 

1.5, 1.75, 2 
3mm/min 

20mm in height, 50mm in 

diameter (and containers of 

25mm and 73mm in diameter) 

Laterally confined 

8mm 

Increase with 

decrease of 

CPTD  

Tollner and Verma 

(1987) 

remoulded sandy 

and silty soils 

9.5, 12.8, 

15.9, 19.1, 

25.4 

8mm/sec polyethylene container 12-15cm 

Increase with 

decrease of 

CPTD  
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Bengough and 

Mullins (1991) 

undisturbed cores 

of sandy loam 
0.5,1 4mm/min 

56mm diameter 

40mm height 

When it reach 

constant value 

Greater cq with 

smaller CPTD  

Ladjal (2013) 

coarse uniform 

quartz sand 

(d50=0.9mm) Both 

loose and dense 

2, 5, 10 3mm/min 

rigid cylindrical mould of 

83mm in diameter and 14mm 

in height 

Average 

5-8 times of 

CPTD  

Increase with 

decrease of 

CPTD  

Wu and Ladjal 

(2014) 

coarse uniform 

quartz sand 

(d50=0.9mm) Both 

loose and dense 

0.5, 0.8, 1, 

1.5 ,2 
3mm/min 

rigid cylindrical mould of 

83mm in diameter and 14mm 

in height 

Depth greater 

than 5 times of 

CPTD  

Increase with 

decrease of 

CPTD  

* It refers to Bengough and Mullins (1990). It showed that the penetration resistance encountered by 1mm sized probe was 35% to 74% greater 

than that of 2mm sized probe. 

** The apex angle of used end cones in this research is 30o, and it is 60o for others. 

*** Notice that various sample boundary conditions have been applied in these tests, and some of the measured cone tip resistances may also be 

influenced by the boundary (lateral and base) effects. 
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(a) Whiteley and Dexter (1981)                  (b) Wu and Ladjal (2014) 

Fig. 2.4 Experimental data with size effect in needle cone penetration tests 

A number of theoretical and empirical methods for interpretations of the standard cone 

penetration test has been established as reviewed in Chapter 4, but it might be 

inappropriate to directly apply them to analyse the miniature cone penetration tests due 

to uncertainties of the penetrometer size effect. Based on this consideration, the possible 

size-dependent behaviours in cone penetration tests with small sized penetrometers were 

studied theoretically and physically in this research. 

(2) Size effect in “Modelling of models” cone penetration tests 

Probe with the same prototype dimension can be modelled by satisfying the required 

similitude conditions in tests of “modelling of models”. However, the grain size cannot 

be easily scaled with the same geometry scaling law in this kind of tests. By plotting the 

normalised tip resistance against the normalised penetration depth (the same stress 

levels), the grain size effect could be evaluated with this method (Balachowski, 2007; 

Bolton et al., 1999; Kim et al., 2015). Mainly based on a series of ‘modelling of model’ 

cone penetration tests conducted on the Cambridge geotechnical centrifuge platform 

(Lee, 1990), Bolton et al. (1993) proposed that this size effect will gradually vanish when 

50/D d  gets larger than 20. In other words, when 50/D d  is larger than 20, negligible size 

effect would be performing to the cone tip resistance, which has also been demonstrated 

by Kim et al. (2015); Phillips and Valsangkar (1987). This provides a useful reference 

value to avoid or eliminate the influence of grain size effect, which is not easy to be 

isolated in other routine tests and has been widely adopted in model test designs. 

(3) Size effect with same sized penetrometer at different g-levels 
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By inserting a same sized probe at different g-levels, penetrations of probes in different 

prototype sizes can be modelled. In this method, the ratio of the model probe size to the 

mean particle size ( 50/D d ) is conserved, but the value of /H D  usually is different at 

depths with a same initial stress level (Lee, 1990). Significant size effects were observed 

in cone penetration tests with coarse sand by Balachowski (2007) when 50/D d  falls to 

17.1, especially in shallow penetration depths, but no evident size effect was found in 

tests of 50/D d =37.5 in the medium dense sand. In addition, the observed size effect 

attenuates with an increase of the stress level due to the increasingly confined dilatancy 

in the sheared zones. 

In the light of above discussions, no consensus about the size effect in cq  has been 

achieved, and the degree of its influences in cone penetration tests may vary with soil 

types, soil state, stress environment, boundary conditions and so forth. As summarised by 

Eid (1987), existing thoughts about this topic can be categorised into three schools. The 

first group suggests that there is no size effect, at least for practical purposes (Sanglerat, 

1972; Schmertmann, 1978). This conclusion was drawn mainly based on tests with 

penetrometers of sizes around the standard one for practical engineering applications. The 

second school states that the size effect exists, but only for shallow penetrations. It usually 

suggests that a depth of penetration of 20 diameters in dense sands, and 10 diameters in 

loose sands is enough to eliminate any size influences (De Beer, 1963; Kerisel, 1964). In 

the third school, the size effect in the tip resistance exists both in shallow depths and deep 

penetrations in some cases, but it varies with the penetration depth, and different dominant 

factors contribute to the size-dependent behaviour (Balachowski, 2007). It is believed that 

the opinion of the third school may more comprehensive, but more effort is needed to 

figure out the working mechanism of the size effects and then to identify/quantify the 

governing factors of these effects at different conditions. 

2.3 Experimental material and apparatuses 

The penetration mechanisms of CPT in sand and in clay are quite different (Yu, 2006), 

so reasons leading to the size-dependent tip resistance may accordingly different between 

them. Previous studies indicate that the size effect is more significant and frequently 

observed in cone penetration tests with sands when the probe size gets comparable with 

the mean grain size (for example 50/D d <20). To more clearly capture the size effect, 
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present cone penetration tests were conducted on sand first. Then in view of above 

discussions, it is known that two typical geometry sizes (DCPT and d50) may play great 

roles in determining these size-dependent behaviours. Hence, both of them were 

discussed in present CPTs. Overall, a series of miniature cone penetration test with 

different sized penetrometers and sands with different particle fractions was designed and 

conducted as introduced below. In addition, considering the wide applications of small 

sized penetrometers in model tests, shallow foundations, and agricultural engineering 

practices (tests on topsoil or needle CPT), present cone penetration tests mainly focused 

on behaviours within shallow penetration depths at the 1g condition. 

2.3.1 Testing material 

Two grades of the widely used Leighton Buzzard sand (Fraction C (Brown et al., 2000; 

Law, 2008; Lee, 1990; Yang et al., 2011), Fraction E (Lee et al., 2001; Marshall, 2009; 

Mo, 2014; Tan, 1990)), supplied by David Ball Ltd U.K., were selected in present tests. 

It is a natural, uncrushed silica sand with rounded/sub-rounded shape of particles, and is 

free from silt, clay or organic matter (Kingston et al., 2008). Fraction C is the 300mm-

600mm sieve fraction and is usually referred to as 25/52. Fraction E is the 90mm-150mm 

sieve fraction and is usually referred to as 100/170. Their basic physical properties are 

listed in Tab. 2-3. 

Tab. 2-3 Basic parameters of used sands 

Sand type 
Median grain size 

Special 

gravity 

Maximum 

void ratio 

Minimum 

void ratio 

Friction 

angle 

d50 / mm Gs emax emin cs  / ° 

Fraction C (FC) 0.51 2.65* 0.805 0.55 32* 

Fraction E (FE) 0.12 2.65†  1.014† 0.613† 32† 

Note:* estimated by Lee (1990).  † estimated from Tan (1990).  φcs is the critical state 

friction angle. 
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Fig. 2.5 Particle size distribution curves 

Particle size distribution curves of the used sands are shown in Fig. 2.5. The maximum 

and minimum densities of Fraction C sand were measured with the methods specified in 

BS 1377-4:1990. The Leighton Buzzard sand has a relatively high ability to resist 

crushing, therefore it is anticipated that no significant particle breakage would take place 

in present 1g shallow cone penetration tests (<3MPa with penetration depths less than 

300mm) (De Beer, 1963). 

2.3.2 Miniature cone penetrometers 

Three sized probes with conical tips were designed and machined as shown in Fig. 2.6. 

All penetrometers have the same apex angle of 60o and are made from stainless steel with 

smooth (polished) surfaces. 
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Fig. 2.6 Cone penetrometers with different diameters 

2.3.2.1 Penetrometer with 12mm diameter 

This penetrometer is designed to be able to measure the tip resistance and sleeve friction 

separately. As shown in Fig. 2.7, it is made up of three parts: ① tip cone, and ② friction 

sleeve, and ③ a long tube shaft. Its geometric shape is consistent with the conventional 

standard cone penetrometer (Lunne et al., 1997), but the key dimensions are reduced with 

the same scale (2.975:1), which include the length of friction sleeve (45mm) and the tube 

diameter (12mm). To ensure the soil resistance will be fully transferred to the given 

sections with strain gauges, two gaps with a width of 0.5mm between each part were set. 

After ensuring the attached strain gauges perform well, all parts were assembled and the 

gaps were sealed with silicone rubber to avoid sands getting in. 

45mm 304mm

60o

Dimension Scale  1:1

Dimension Scale  1:1Profile of three parts
1 2 3

 

Fig. 2.7 Sketch of the 12mm penetrometer 

Four strain gauges were attached to two specific sections as shown in Fig. 2.8, which 

measure the tip resistance and side friction separately. The foil strain gauges ‘FCA-3-

350-23’ supplied by Tokyo Sokki Kenkyujo Co., Ltd (with a gauge length of 3mm; gauge 

resistance of 350±1.0 Ω; temperature compensation for 23×10−6/◦C; the transverse 

sensitivity of 0.2%, and a gauge factor of 2.16±1%) were used. As designed, the pressure 

applying on the cone tip surface would be transferred to the cross-section 1, and this part 

of pressure together with the soil friction acting on the side sleeve would be measured by 

strain gauges attached on the cross-section 2. 

 



Chapter 2  1g laboratory cone penetration tests 

29 

Fig. 2.8 Position of strain gauges 

R3 R4

R2R1

    

R1

R2 R3

R4

Vin

Vout  

Fig. 2.9 Full-bridge circuit to measure the axial strain 

Soil resistances experienced by a vertically moving penetrometer ideally distribute along 

the axial direction. However, sometimes bending may occur due to nonuniformity of the 

sand sample or eccentric load effect from the actuator. Additionally, the strain gauge is 

susceptible to the temperature change. To eliminate potential influences of bending 

strains and compensate the temperature effect, a full-bridge circuit with four active strain-

gauge elements was applied to measure the axial strain as shown in Fig. 2.9.  

 

 

2.3.2.2 Penetrometers of 6mm and 3mm in diameter 

Technically, the tip resistance of small sized penetrometers can also be measured 

separately, for example, to fabricate a cylindrical shaft comprising two detached parts: an 

inner rod with a reduced diameter and a hollow ‘coat’ to bear the side friction (Barley et 

al., 1965; Cockroft et al., 1969; Monfared, 2014). However, it has high and soaring 

demands on the mechanical processing and material strength with increases of the shaft 

length or decreases of the probe diameter. In present tests, penetrations with depths 

around 200-300mm are required, which determines that above ideas are not easy to put 

into practice for penetrometers of 6mm and 3mm in diameter. Therefore, only the total 

load both during the pushing in and pulling out process were measured with a load cell 

mounted on the top of these two probes. The length of 3mm sized penetrometer was set 

as 200mm to reduce the potential influence of deflection as detailed in Fig. 2.10. 

350mm

350mm

200mm

DCPT=6mm

Connector

DCPT=3mm

60o

60o
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Fig. 2.10 Dimensions of penetrometers with 6mm and 3mm in diameter 

To get rid of the shaft friction, penetrometers with reduced shaft in diameter, normally 

70%-80% of the cone, were often employed to measure the cone index in the agricultural 

engineering (ASAE, 2004; Bengough and Mullins, 1990; Sudduth et al., 2004; Whiteley 

and Dexter, 1981), but this method was not adopted here because the side friction cannot 

be ideally avoided with this method in present tests (with relatively deep penetrations on 

the cohesionless dry sand). 

2.3.2.3 Calibration of load cell and strain gauges 

A load cell with a capacity of 2kN provided by Load Cell Shop was installed at the top 

of these penetrometers to measure the total resistance. Before the testing, the load cell is 

calibrated with known weights, and then the strain gauges were calibrated with the load 

cell. The loading range of calibration tests covered the expected maximum resistance 

based on some preliminary penetration tests as given in Fig. 2.11. Fig. 2.11 (b) shows that 

good linear correlations existed between the observed changes of strain gauges and results 

measured by the load cell. 

   

(a) Loading/unloading circles  (b) Correlations of strain gauge outputs and applied loads 

Fig. 2.11 Calibration test for the 12mm sized penetrometer 

2.3.2.4 Surface roughness of the cone penetrometer 

The surface roughness of the 12mm sized penetrometer was measured with a 3D optical 

microscope (Contour GT-I from Bruker Nano Surfaces Division). The arithmetical mean 

roughness (Ra) is taken as the surface roughness index in this research since its wide 
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applications in describing the friction characteristics of the soil-structure interface (Dietz, 

2000; Schneider, 2007).  

   

Fig. 2.12 Definition of ‘Ra’ (after BS-1134-2010) and measured surface texture 

The surface roughness of other two sized penetrometers of similar surface conditions 

(made from similar stainless steels and polished in the same manner) are estimated with 

the measured data which lies in the range of 0.490-0.688 um based on measurements of 

several surface areas. An average Ra with a value of 0.607 um will be used to describe the 

surface roughness of present penetrometers in later interpretations. 

2.3.3 Sample container and loading frame 

2.3.3.1 Calibration chamber 

To calibrate the performance of CPT under simulated field conditions in the laboratory, 

Ron Lilley and Holden first designed, built and commissioned a large flexible-boundary 

calibration chamber in 1969 (Holden, 1971). In following decades, the chamber 

calibration test experienced a rapid development worldwide (Ghionna and Jamiolkowski, 

1991; Mayne and Kulhawy, 1991), and it has been widely accepted and employed by 

geotechnical communities to calibrate and evaluate in-situ testing devices in laboratory 

conditions (Holden, 1991; Houlsby and Hitchman, 1988; Jamiolkowski et al., 2003; 

Parkin and Lunne, 1982). Four typical types of boundary conditions can be achieved with 

common calibration chambers as shown in Fig. 2.13. Other types of boundaries have also 

been attempted, aiming to reduce influences from the boundary effect or more 

realistically simulate the semi-infinite field condition. Noticeably, the one developed and 

calibrated by Foray (1991); Huang and Hsu (2005); Zohrabi et al. (1995) provides a more 

plausible tool to simulate the condition exerted by the infinite soil mass, which 

intermediates between BC1 and BC3 by applying a constant stiffness in the radial 

direction, and it was referred to as BC5 by Huang and Hsu (2005). 
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Fig. 2.13 Boundary conditions of chambers (Ghionna and Jamiolkowski, 1991) 

Most of the previous chamber calibration tests aiming at clarifying the chamber size and 

boundary effect were conducted under the boundary condition of BC1 (Salgado et al., 

1998). However, devices required to attain these boundary requirements are complicated, 

space-consuming and not widely available. Alternatively, containers with rigid walls have 

also been widely used in laboratory penetration tests at 1g condition (Arshad et al., 2014; 

Ni et al., 2010) and particularly on centrifuge platforms (Balachowski, 2007; Bolton and 

Gui, 1993; Kim et al., 2015; Mo, 2014; Phillips and Valsangkar, 1987). To further 

investigate the performance of miniature cone penetrometers within a rigid-walled 

container, the steel container used by Mo (2014) was employed in the present tests. 

For a rigid walled container, Last (1979) reported that no significant side boundary effect 

was found when the diameter ratio of the container to the penetrometer ( CPT/dR B D ) is 

28. Bolton and Gui (1993) suggested a diameter ratio larger than 40 for dense sand to 

avoid the potential side boundary effect. In addition, the ratio 
CPT/s pR S D  (

pS  is the 

distance of penetration location to the closest side wall) has also been frequently used to 

indicate this side boundary effect. Phillips and Valsangkar (1987) found the side 

boundary effect was negligible even when 
CPT/pS D  became 5 in tests with the Fraction 

B Leighton Buzzard sand with a relative density of 97%. Similar results were also 

reported by Lee (1990) (
CPT/pS D =5.2) and Kim et al. (2015) (

CPT/pS D =7) in tests with 

dense sands. Additionally, the side boundary effect attenuates with decreases of sand 

relative density. The employed rigid steel cylindrical chamber is 490mm in diameter and 

500mm in height (Mo, 2014). The smallest diameter ratio is 40.8 for testing with the 

12mm penetrometer (490/12=40.8, 490/6=81.7, 490/3=163.3), so above container size 

BC1:   constv    const.h   

BC2:  = 0v he e     

BC3:  const.v    0he   

BC4:   0ve   const.h   
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requirements for eliminating the side boundary effect can be sufficiently satisfied in 

present tests. 

It is worth noting that the side boundary effect applied by a rigid container may be quite 

different to that by calibration chambers with a flexible side boundary, and different limits 

of CPT/B D  to avoid this effect are required as previously discussed. This difference was 

attributed to the friction mobilised on the rigid side wall which leads to a lower coefficient 

of earth pressure (Parkin and Lunne, 1982) and the reduction of effective stresses near 

the side wall (Kim et al., 2015). Theory of soil arching probably can be used to analyse 

the former phenomenon (Cho et al., 2014; Paik and Salgado, 2003). The second reason 

may be explained that the side rigid wall would inevitably disturb the sand deposition in 

its close region, which may reduce the energy produced during the free falling and, 

consequently, lead the sand in the vicinity of the side wall to be more or less looser than 

those deposited in undisturbed zones. 

490mm

5
0

0
m

m

H

   

Fig. 2.14 The schematic of sand container     Fig. 2.15 Potential base boundary effect 

In addition, the boundary effect from the rigid base may be avoided by ensuring that the 

effective penetration depth does not enter the limit space range specified by Eq.(2.1) and 

Eq. (2.2). 
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    (Lee, 1990)                               (2.1) 
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    (Bolton and Gui, 1993)            (2.2) 

where baseX , mm, is the minimum required distance from the bottom base to the cone tip 

to get rid of the base boundary effect as presented in Fig. 2.15.  
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2.3.3.2 Actuator for driving probes 

Two actuators were utilised in present cone penetration tests. The first one actuator was 

developed and used by Liu (2010) and Mo (2014), which mainly consists of a motor, lead 

screw, and reaction frame as illustrated by Mo (2014). A maximum displacement of 

220mm at any moving speed up to 5mm/s can be achieved by controlling the power supply 

of the motor. A series of cone penetration tests with dense samples of the Fraction C sand 

at a moving speed of approximately 1mm/s was carried out with this actuator. After that, 

to achieve a deeper penetration, a new linear actuator from SKF (CAHB-10, rated load: 

500N, stroke: 300mm) was employed to drive the probe by attaching it to a new loading 

frame as shown in Fig. 2.16. Another series of tests both on the Fraction C sand and the 

Fraction E sand (with different densities) was conducted with the new actuator. A moving 

speed of approximately 1.5 mm/s, which is easy to control with an integer value of voltage 

input, was kept in this series of tests. A bit change of the penetration rate exist between 

these two series of tests, but it, in fact, would not cause any differences in results of the 

present cone penetration tests on dry sands as demonstrated later. 

 

Fig. 2.16 Schematic of the loading frame 

This loading frame is easy to be fixed to the side wall of the container with six lead screws, 

and the initial height of the penetrometers to the sand surface is adjustable by changing 

the position of nuts on the screw rods. A linear sliding-type potentiometer with a length 

range of 300mm is fixed on the loading frame to record displacements of the 

penetrometer. 
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2.3.3.3 Equipment assembly 

In the process of assembling, the key step is to fix the frame horizontally and firmly to 

the container with a designed space between the cone tip and the sand surface, and it is 

of great importance to guarantee the probe moves vertically. Then measuring cables 

should be carefully connected to the data acquisition system (SCXI-1000 from national 

instruments). An acquisition frequency of 0.2s was set to collect the reading of load cell 

and strain gauges. Assembled models are displayed in Fig. 2.17. 

        

Fig. 2.17 Assembled loading frame, container, and penetrometers 

2.4 Sample preparation and testing programme 

2.4.1 Sample preparation 

Air pluviation method is a mainstream approach for dry sand sample preparation in the 

laboratory, especially for large-size samples (Miura and Toki, 1982; Rad and Tumay, 

1987; Schnaid, 1990; Zhao, 2008). It has advantages not only to reconstitute uniform and 

repeatable sand samples with desired densities in a wide range (Rad and Tumay, 1987; 

Schnaid, 1990) but also to simulate the soil fabric similar to that found in natural deposits 

formed by sedimentation (Oda et al., 1978). Therefore, the sand raining deposition 
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technique was adopted in this research for sample preparation, and the pouring equipment 

introduced by Mo (2014) was followed as shown in Fig. 2.18. Dave and Dasaka (2012) 

presented a comprehensive study on a similar travelling sand pluviator and concluded that 

the size of the orifice, the height of fall, and the combination of sieves greatly determine 

the deposited sample density and uniformity. Therefore, different combinations of these 

three factors were repeatedly attempted to achieve a desired initial sand state. Zhao (2008) 

and Mo (2014) found that the flowing rate is the strongest controlling factor in 

determining the sample density, so changing the flow rate was taken as the first option to 

control the sample density. Specifically, the flow rate was mainly controlled by changing 

the number and size of orifices on the plate as shown in Fig. 2.19.  

In tests with the fraction C sand, samples of two relative densities were prepared, which 

are labelled as dense samples ( 90%rD  ) and medium dense samples ( 65%rD  ) 

respectively. Specific plates (in Fig. 2.19) with different sized orifices were placed on the 

position ‘A’ of Fig. 2.18, and a constant height (HC=50cm) of the hopper to the sand 

surface was kept during each preparation. A maximum variation of 6% of the sample 

relative density was produced with present sand pouring methods. In addition, three 

sample states were prepared with the fraction E sand, including dense samples ( 90%rD 

, HC=120mm), medium dense samples ( 65%rD  , HC=40mm), and loose samples (

40%rD  , HC=50mm) with variations within 5%. The employed plate was placed on the 

position ‘B’ of Fig. 2.18, and a 2mm grid-sieve was added on the position ‘C’ while 

preparing samples with the Fraction E sand. It is worth noting that the classification of 

sand states are different with those specified by BS EN ISO 14688-2: 2004, which are 

‘very dense’ in the range of 85% ~100%rD  , ‘dense’ in the range of 65% ~ 85%rD 

, and medium dense in the range of 35% ~ 65%rD  . 

The perforated plate and height of hopper were repeatedly confirmed by pouring the sand 

into a cuboid calibration box (approximately in size of 200mm×200mm×100mm). 

Some replicate penetration tests were also carried out to double check the sand density 

poured in the rigid container as discussed later. In addition, it needs to explain that the 

height and horizontal position were controlled manually and the pourer needs to be 

refilled several times during the whole process of each preparation. These factors might 

reduce the uniformity of samples without precise control, especially while preparing sand 
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samples with high flow rates, for example, in sample preparations with the Fraction C 

sand, and relatively looser samples with the Fraction E sand. To reduce the potential 

influences stemming from these factors, the height was carefully checked during the 

preparation, and the pourer was moved smoothly with a constant speed and frequency, 

spatially. As shown in Fig. 2.18, samples with desired sand relative densities were 

prepared with given preparation methods. The repeatability and uniformity of deposited 

samples will be further discussed later based on duplicate cone penetration tests. The 

concerned size effect in CPT will be evaluated by directly comparing results from 

different samples with the same preparation method, which means small variations of the 

relative density among samples will be omitted. 

 

Fig. 2.18 Schematic of the used sand pourer 
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Fig. 2.19 Orifice diameters of perforated plates and the used grid sieve size 

 

Fig. 2.20 Relative densities of prepared sand samples 

2.4.2 Testing programme 

Aiming to explore the size effect in the cone penetration test, two sets of CPTs were 

conducted on dry sand samples of different relative densities as listed in Tab. 2-5. The 

Leighton Buzzard sand with two ranges of particle distribution and cone penetrometers 

of three sizes were applied in these tests in order to enlarge the range of the size ratio of 

DCPT/d50 as tabulated in Tab. 2-4. For tests with the new actuator, all penetrations were 

only executed in the center point of each sample to avoid any potential influences from 

the side boundary. Additionally, multiple penetration tests were also conducted in dense 

samples of the Fraction C sand with Mo’s (2014) actuator as listed in the three part of 
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Tab. 2-5. This series of tests is mainly used to check the potential side boundary effect 

and penetration rate effect. Multiple penetrations with different sized probes were 

executed after the first penetration at the centre. The penetration position and sequence 

are expressed in Fig. 2.21, and the green and blue circles represent 40 times of diameters 

of 6mm CPT and 3mm CPT respectively. 

Tab. 2-4 Size ratios of CPT diameters over the median particle  

CPT     

Sand 

DCPT/ d50 

12mm CPT 6mm CPT 3mm CPT 

FC: 0.51mm 23.5 11.8 5.9 

FE: 0.12mm 100 50 25 

1
2
0
m

m
1

2
0

m
m

120mm 120mm

1

2

34

5

 

Fig. 2.21 Insertion position layout and testing sequence of multiple penetrations 

Tab. 2-5 Details of sand sample for each test 

Test 

No. 

Relative 

density (%) 

Depth of 

sample (mm) 

Penetrometer 

size 

Testing 

date 
Test ID 

FE-01 63.8 398 6 mm 2015.12.10 FE-6-M 

FE-02 66.4 392 3 mm 2015.12.10 FE-3-M 

FE-03 64.3 398 12 mm 2015.12.10 FE-12-M 

FE-04 65.6 399 6 mm 2015.12.16 FE-6-M* 

FE-05 87.7 378 12 mm 2015.12.14 FE-12-D 

FE-06 87.6 376 6 mm 2015.12.15 FE-6-D 

FE-07 90.1 315 3 mm 2015.12.16 FE-3-D 

FE-08 42.1 414 12 mm 2016.1.25 FE-12-L 

FE-09 43 412 12 mm 2016.1.26 FE-12-L* 

FE-10 41.4 413 6 mm 2016.1.26 FE-6-L 
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Test 

No. 

Relative 

Density (%) 

Depth of 

Sample (mm) 
CPT size Date ID 

FC-01 90.5 386 12 mm 2016.1.19 FC-12-D 

FC-02 90.3 385 12 mm 2016.1.20 FC-12-D* 

FC-03 91.4 385 6 mm 2016.1.20 FC-6-D 

FC-04 92.7 344 3 mm 2016.1.20 FC-3-D 

FC-05 67.2 397 12 mm 2016.1.21 FC-12-M 

FC-06 70.6 395 12 mm 2016.1.21 FC-12-M* 

FC-07 66.3 397 6 mm 2016.1.22 FC-6-M 

FC-08 68.8 395 3 mm 2016.1.22 FC-3-M 

Test 

No. 

Relative 

Density (%) 

Depth of 

Sample (mm) 

Penetration 

sequence 
Date  

M-C-01 93 325 6/6/6 2014.11.25 

Identified 

with test 

number 

M-C-02 92.3 342 12/12/6/6/3 2014.11.30 

M-C-03 92.3 343 3/6/6/3/12 2014.12.01 

M-C-04 92 346 12/12/6/3/3 2014.12.03 

M-C-05 91.3 342 
6mm CPT with 

different speeds 
2014.12.05 

Note: The tests are identified with codes comprising the sand fraction, penetrometer size 

and sand density classification. ‘*’ represents the test for checking sample repeatability. 

2.4.3 Repeatability and uniformity of sample 

As aforementioned, the sand pouring method was repeatedly calibrated with a small sized 

calibration box, and the sand density of each sample was re-examined by weighting the 

deposited sample and measuring its average volume. Considering that the operation in 

controlling the spatial movement of the hopper (height and horizontal position) may exert 

influences on the repeatability and uniformity of samples with the present manually 

controlled sand pouring method, some duplicated samples were prepared and tested with 

the same sized probes as shown in Fig. 2.22 to check these concerns. It is seen that good 

repeatability can be achieved with these employed preparation methods, but a relatively 

big discrepancy of the load reading appeared in duplicate tests with the medium dense 

sample of the Fraction C sand, a maximum value around 10%. This is mainly because of 

the required particle flow rate is very high in this case, which makes it not easy to keep 

the pourer move very evenly as previously mentioned. In the contrary, the preparation of 
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dense Fraction E sand sample is easy to be controlled since the sand flow rate is very slow 

with the present method which has been well calibrated and used in our laboratory, so it 

was not repeated again here. 

   

Fig. 2.22 Tests with duplicated sand samples 

It is believed that the potential spatial variation of sand uniformity may highly depend on 

the operation. Samples with different relative densities were prepared by the same 

procedure, so, technically, it should have similar influences on all deposited samples. 

Hence, the sample uniformity was checked with the dense Fraction C sand as a reference. 

Moreover, to reduce the potential interaction effect of multiple insertions and the 

boundary effect, the 6mm sized probe was chosen. As shown in Fig. 2.23, almost the 

same response was acquired with penetrations in different positions, which demonstrates 

that good uniformity was prepared. In addition, the right graph of Fig. 2.23 indicates that 

the penetration speed in the range of 1mm/s-4mm/s applied a nonsignificant effect on the 

present cone penetration tests with dry sand, which fully covers the applied penetration 

speeds in our tests. Therefore, the penetration rate effect is negligible in analyses of 

present tests. Similar rate effect has also been observed in other cone penetration tests 

with dry or fully drained sand samples in a wider rate range about 1mm/s-20mm/s (Gui 

et al., 1998; Kim et al., 2015). 
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Fig. 2.23 Multiple penetration results for checking sample uniformity and rate effect 
 

   

Fig. 2.24 Tests on the same sample with different insertion points 

Good repeatability and uniformity of sand samples with present preparation methods can 

also be confirmed with results shown in Fig. 2.24. More importantly, Fig. 2.24 displays 

that the results of penetration at the centre point (
CPT/ 20.5pS D  ) closely agree with 

those measured at the subsequent positions of 
CPT/ 10pS D   with the 12mm sized 

penetrometer. It indicates that the side boundary applied negligible influences on the 

readings even while 
CPT/pS D  became as small as 10 in dense samples of our tests. This 

finding is compatible with the aforementioned experimental results from Kim et al. 

(2015); Lee (1990); Phillips and Valsangkar (1987). Therefore, the side boundary effect 

will not be considered in the following results analyses of the present tests. 

2.5 Results of cone penetration tests 

2.5.1 Test readings 

Total soil resistance (Qtotal) imposed on an advancing probe consist of two main parts: the 

pressure on the cone tip (Qtip) and the side friction along the shaft (Qshaft). In 
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interpretations of the cone penetration test, as illustrated in Fig. 2.25, the named cone tip 

resistance (qc) is commonly used, which equals to divide Qtip by the base area (Ab). The 

side friction is usually discussed with two kinds of defined friction resistance. One is the 

measured average sleeve friction (
sf ), and the other one is defined as the average shaft 

friction ( as ), which equals to divide Qshaft  by the surface area of embedded shaft (Ashaft). 

 

Qtotal

H

f sL
s

 f

Q2

Q1

qc

C-S2

C-S1

+

-
Z = 0

Z

Load cell

 

Fig. 2.25 Schematic of load and stress notations 

total 1 shaft CPT shaft
0

H

c b f z c b asQ Q Q q A D d q A A          (2.3) 

sleeve 2 1 CPT
0

s

s

L

s L s sQ Q Q D f d A f      (2.4) 

2 / 4tip CPT cQ D q   (2.5) 

All direct test readings are present in Fig. 2.27 and Fig. 2.28. It shows the head load almost 

linearly increases with the advancing penetration depth, and similar trends have also been 

observed by Arshad et al. (2014); Deeks and White (2006); Durgunoglu and Mitchell 

(1973); Ferguson and Ko (1981); Klinkvort et al. (2013); Mo (2014) (as compared in Fig. 

2.26). Some small unsteady deviations from the approximately linear trend were detected 

in tests on loose samples. This may be mainly caused by the error of unstable operation 

in the preparations of samples with high particle flow rates as previously mentioned. 
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Fig. 2.26 Comparison with similar cone penetration tests with silica sands 

 
  

 

Fig. 2.27 All readings of tests with the 12mm penetrometer 
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Fig. 2.28 Variation of head loads with relative density (both on FC sand and FE sand) 

2.5.2 Estimation of the shaft friction during penetrations 

As aforementioned, the employed 3mm and 6mm sized probes are not capable to directly 

measure the encountered tip resistance. Therefore, it is necessary to separate the shaft 

friction from the recorded total resistance. For this purpose, two independent empirical 

methods are proposed and compared based on the data obtained with the12mm sized 

penetrometer in similar conditions as follows. 

2.5.2.1 Method 1: based on the ratio of Qtip/Qtotal 

Based on the test readings given in Fig. 2.27, it is found that the shaft friction always 

takes a small proportion of the total resistance in all these tests with the 12mm sized 

penetrometer (around 10%). Interestingly, further investigation demonstrates that the 

ratio of Qtip/Qtotal in all these tests regularly stabilises to some values when the penetration 
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depth gets deeper than 10-15DCPT as shown in Fig. 2.29. This trend can be analysed with 

Eq.(2.6) which contains two non-dimensional parameters: /as cq  and / CPTH D  as 

shaft 4 const.as

tip c CPT

Q H

Q q D


    (2.6) 

Analogous trends were also reported by Deeks and White (2006); Klotz (2000); Mo 

(2014) in centrifuge tests with 12mm sized circular piles, but relatively lower ratios of 

Qtip/Qtotal were measured therein, which distributes in a range of 0.6-0.8. Higher values 

were observed by Borghi et al. (2001) in the centrifuge tests (50g) with 12.5mm sized 

flat-ended circular piles in a very compressible sand, which is around 0.99 and 0.9 for 

smooth and rough piles respectively. These discrepancies might be due to their 

differences in the sand type, pile roughness, stress level, and tip shape. 

Equation (2.6) indicates that the ratio of Qshaft/Qtip is inversely proportional to the probe 

size at the same penetration depth, but no direct dependency of the non-dimensional value 

of /as cq  on 
CPTD  was observed. Based on this, an approximate method is proposed to 

estimate the tip resistance of tests with the 6mm and 3mm sized penetrometers with 

available readings of the head load. It is assumed that such a steady state also exists in 

penetration tests with the 3mm and 6mm sized probes, and /as cq  at the same depth does 

not vary with the probe size for tests with similar sand samples. In fact, it implicitly 

assumed that possible differences caused by the probe size have the same contribution 

level to the tip resistance and the average shaft friction at a same initial stress level. 

   

Fig. 2.29 Ratios of the shaft friction to the total resistance 

The exact embedment depth when the steady state is reached is not precisely quantified 
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following estimations. Therefore, the tip resistance at penetration depths less than 10-

15DCPT will be slightly overestimated. Based on above assumptions, the ratio of 

shaft / tipQ Q  with different sized probe has a relationship as: 12mm: 6mm: 3mm = 1:2:4 at 

the same penetration depth. Then the constant ratio of Qtip/Qtotal in tests with the probes 

of 6mm and 3mm in diameter are estimated as calculated in Tab. 2-6. 

Tab. 2-6 Measured and estimated Qtip/Qtotal 

Qtip/Qtotal 

FC sand FE sand 

CPT size 
Dense 

Medium 

dense 
Dense 

Medium 

dense 
Loose 

Measured* 0.898 0.887 0.916 0.896 0.849 12mm 

Estimated 0.815 0.797 0.845 0.812 0.738 6mm 

Estimated 0.688 0.662 0.731 0.683  3mm 

  * averaged values with data from the embedment depth of 180mm to the deepest position. 

Similar ratios were reported by Barley et al. (1965) in needle cone penetration tests in a 

loam topsoil, which was Qtip/Qtotal =13% with a 3mm sized probe and 45% with a probe 

of 1mm diameter. In addition, Aydan et al. (2014) obtained Qtip/Qtotal  50% which 

calculated with an estimated 
, ,/f t f cQ Q  of 2/3 while pressing a 1mm sized probe into soft 

rocks. 

2.5.2.2 Method 2: based on the measured friction during the extraction 

The soil resistance during extraction totally comes from the mobilised shaft friction in 

present tests (no base suction). This reading was often used to estimate the shaft friction 

during penetrations in cases lack of direct measurements. Therefore, resistances during 

both the insertion and extraction process were recorded in implementations of the present 

tests, and a typical loading procedure is presented in Fig. 2.30. Firstly, the probe is pressed 

in continuously with a constant speed. When the actuator reaches its maximum stroke, 

the penetration will be stopped. A noticeable drop in the resistance, approximately 10%, 

immediately appeared while it ceased. A similar phenomenon was also reported by 

Tollner and Verma (1987) and Mo (2014). They interpreted it with a stress relaxation 

concept, and then the creep effect makes a further slow reduction. Subsequently, the probe 

is pulled out with the same speed. 
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Fig. 2.30 Typical load-time curve (FC-12-D) 

Sometimes the shaft friction capacity while pushing in is roughly approximated by 

equalling to the friction measured during the extraction (Ferguson and Ko, 1981; Ladjal, 

2013; White and Lehane, 2004) when the shaft friction just takes a very small portion of 

the whole resistance. However this approximation will lead to more errors when the shaft 

friction takes a relatively large portion because the ratio of maximum tensile to 

compressive shaft capacity, 
, ,/f t f cQ Q , usually is below unity (De Nicola and Randolph, 

1993, 1999; Deeks and White, 2006; Fioravante et al., 2010a; Fleming et al., 2009; 

Lehane et al., 1993). As reviewed by Lehane et al. (2005b), all of the four representative 

CPT-based design methods (Fugro-05, ICP-05, NGI-05,UWA-05) for driven piles in 

sands specified the shaft friction in tension is lower than that in compression under the 

same conditions. To accurately estimate the friction resistance during penetrations, the 

friction characteristics in present penetration tests are studied first based on the CPT 

results obtained with the 12mm sized penetrometer as shown in Fig. 2.31. 
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Fig. 2.31 Friction forces during processes of insertion and extraction 

In Fig. 2.31, it shows that the encountered shaft friction resistance is relatively small. It 

approximately linearly increases with an advancing depth during penetration, but results 

at relatively shallow penetration depths deviated from this trend in some cases, which 

probably resulted from that the loads acquired by the strain gauges on the Cross-section 

1 unreasonably decrease to some small negative values at initial stages. These shifting 

might be caused by a minor load release which took place around the cone tip when the 

sleeve starts bearing resistance. This phenomenon vanished or became negligible when 

the penetration depth gets deeper than 10DCPT. Comparing with the total resistance, this 

fluctuation is very small even at the initial penetration stages. Subsequently, friction 

resistances during the extraction reached a maximum value almost immediately when the 

probe is pulled out. Then it drops rapidly in initial displacements of 5-10mm, especially 

in tests within dense sand samples. 

The maximum tensile shaft capacity, 
,f tQ , and the corresponding maximum compressive 

friction resistance, 
,f cQ , are tabulated in Tab. 2-7. It is found that the ratio of 

, ,/f t f cQ Q  

distributes in a range of 0.62-0.76 in these tests which fairly consists with the range of 

0.52-0.86 that reported by De Nicola and Randolph (1999) in a series of centrifuge tests 
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with closed/open-ended model piles. It is also comparable with values acquired by Deeks 

and White (2006) from centrifuge tests with the same sized model pile. Similarly, 

Schmertmann (1978) recommended the ultimate tension friction can be computed as 2/3 

of the compression friction, and UWA-05 method gave a scale of 0.75 between the 

tension friction and the compression friction (Lehane et al., 2005c). 

Strength and deformation properties in the soil-structure interface are complex. Potential 

reasons explaining the difference of skin friction on piles under compression and tension 

in cohesionless soils were discussed by De Nicola and Randolph (1993), Lehane et al. 

(1993), Randolph (2003), Deeks and White (2006) and others, which mainly include: (1) 

pile expansion under compression or contraction under tension due to Poisson’s ratio 

effect; (2) principal stress rotation resulted from changes of the loading direction; (3) 

difference in total stress field of soil around the loaded pile in either direction. The level 

of influences from these effects may vary with pile compressibility, embedment depth, 

interface dilation characteristics, initial stress environment, soil stiffness and installation 

method etc.. According to the Coulomb failure criterion (Eq.(2.7)), the above difference 

can be mainly ascribed to their direct or indirect influences to the radial effective stress 

field because the frictional coefficient at failure might not significantly vary with the 

change of the loading direction as will be discussed in Chapter 4.  

tanf rf f     (2.7) 

Although extensive evidence confirmed that significant size effect may behave in the 

interface friction strength when the ratio of 50/CPTD d  are relatively small as detailed in 

Chapter 4, no observation indicates that the ratio of 
, ,/f t f cQ Q  varies with the probe size. 

And similar ratios of 
, ,/f t f cQ Q were obtained in tests with different probes as previously 

stated. Therefore, it is hypothesised the same value of 
, ,/f t f cQ Q  exists within tests 

conducted in duplicated sand samples as presented in Tab. 2-7. 

Tab. 2-7 Measured and predicted maximum friction forces 

Sand 

state 

CPT 

size 

Max. friction force 
, ,/f t f cQ Q  CPT 

size 

Max. 

,f tQ / N 

Predicted  

Max. 
,f cQ /N 

,f tQ /N 
,f cQ /N 

FC- 

dense 
12mm 15.5 23.9 0.648 

6mm 9.58 14.75 

3mm 3.78 5.82 

FC- 12mm 9.2 14.7 0.626 6mm 6.25 10.08 
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medium 

dense 
3mm 2.46 3.98 

FE- 

dense 
12mm 16.8 22.1 0.76 

6mm 10.36 13.63 

3mm 3.96 5.21 

FE- 

medium 

dense 

12mm 13.7 21.9 0.625 
6mm 7.66 12.25 

3mm 2.63 4.21 

FE- 

loose 
12mm 7.2 10.5 0.685 6mm 4.31 6.63 

2.5.2.3 Comparison of methods determining the shaft friction 

Based on the data of tests with the 12mm sized penetrometer, above two methods for 

predicting the shaft friction during penetration are compared in Fig. 2.32. It is shown, 

excepting the aforementioned fluctuation at initial penetration depths, the calculated 

friction capacities with both of these two methods agree fairly well with the measured 

values, and the method 1 gives a slightly closer prediction. In addition, the required pull-

out forces are relatively very small in present tests, so the accuracy of data measurement 

might be limited by the resolution of the used load cell at some degrees. Therefore, the 

proposed method 1 will be adopted to estimate the encountered shaft friction with the 

6mm and 3mm sized probes during penetration in following analyses. 
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Fig. 2.32 Measured and predicted shaft friction during penetrations 

2.5.3 Results of tip resistances 

Tip resistances calculated based on above two methods are compared with the measured 

values with the 12mm sized penetrometer as shown in Fig. 2.33. Satisfactory predictions 

can be made by these two methods when the penetration depth gets deeper than 10 DCPT. 

Relatively big gaps appeared at initial penetration depths (as previously explained), but 

the maximum gap value is less than 0.06 MPa. 
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Fig. 2.33 Measured and predicted tip resistance (12mm CPT) 

Then based on the Method 1, the measured (12mm CPT) and calculated tip resistances in 

all tests are summarised in Fig. 2.34, and some preliminary conclusions can be drawn as 

(1) Similar to readings of the total load, the tip resistance grows approximately 

linearly with the advancing penetration depth and is very sensitive to the variation 

of sand relative density. Higher soil resistances were generally experienced in 

denser samples. 

(2)  Tip resistances measured in samples with the Fraction E sand are generally higher 

than those obtained within the Fraction C sand at similar conditions (sand state 

and penetration depth). 

(3) Higher tip resistances were measured by smaller probes in the same sand with 

similar conditions (sand state and penetration depth). 

Further analyses of the experimental results and explanations to above findings will be 

detailed in Chapter 4. 
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Fig. 2.34 Variation of tip resistances with sand relative density 

Different normalisation methods have often been used to analyse the CPT data obtained 

with different experimental techniques, for example, the method given by Bolton and Gui 

(1993) for CPTs executed on the centrifuge, the method given by Jamiolkowski et al. 

(2003) for interpretation of CPT in calibration chambers. Here for simplicity, all tip 

resistances are normalised by the initial vertical stress ( 0/c vq  ) at corresponding depths 

(Durgunoglu and Mitchell, 1975) as shown in Fig. 2.35. It shows that 0/c vq   gradually 

get stable with increasing depths, especially in tests on relatively loose samples or with 

smaller penetrometers. This phenomenon will be discussed in Chapter 4 with the concept 

of relative critical depth. In addition, the normalised tip resistance obtained with the 

smaller probes show more fluctuations with the depth, which may indicate that the smaller 

probe has a higher sensitivity to detect the variation of soil state along the penetration 

profile (Lunne et al., 1997). These slight periodic deviations captured by the smaller 

probes actually represent the influence caused by the error in controlling the pouring 

height during sample preparations, which are not obvious in curves obtained with the 

12mm sized penetrometer in similar sand samples. 
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Fig. 2.35 Variation of the normalised tip resistance with relative density 

2.6 Chapter summary 

To account for the size effect in cone penetration tests, a series of miniature CPTs in 

deposited dry sand samples were carried out. The design, preparation and implementation 

procedures were presented in this chapter. Three different sized cone penetrometers were 

designed, and silica Leighton Buzzard sand with two fractions (C and E) were used to 

prepare the test samples with the air pluviation method. Overall, 23 sand samples with 

different relative densities were prepared, and 41 penetrations were executed. All test 

results and some preliminary analyses were presented in the final section of this chapter. 

These results will be employed to reveal and explain the size dependent behaviours in 

relatively shallow penetrations, which will be further interpreted in next two chapters by 

theoretical approaches and compared with other available experimental findings. 
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Chapter 3  

 Size-dependent large strain cavity expansion 

solutions for sands 

3.1 Introduction 

Cavity expansion theory is a specific theoretical approach to study the evolution of stress 

and deformation fields associated with an expanding cavity. Benefiting from some 

simplifying assumptions on the boundary conditions, constitutive law, and/or 

compatibility equations, a large number of closed-form cavity expansion solutions has 

been obtained by researchers for different applications (Hill, 1950; Savin, 1970; Yu, 

2000). In particular, due to its successful applications in the calculation of pile bearing 

capacity, interpretation of in situ tests (e.g. pressuremeter tests, cone penetration tests), 

prediction of tunnel deformation and wellbore stability analysis etc. (Yu, 2000), analytical 

quasi-static cavity expansion analysis experienced a great deal of developments over the 

last half-century in the geotechnical field (Baligh, 1976; Cao et al., 2002; Carter et al., 

1986; Chadwick, 1959; Collins and Yu, 1996; Gibson and Anderson, 1961; Ladanyi, 

1972; Mo et al., 2014; Salgado et al., 1997; Vesic, 1972; Yu and Carter, 2002; Yu and 

Houlsby, 1991; Yu and Rowe, 1999). Most of them were built in the framework of 

classical continuum theories, and, as a consequence, the real cavity size generally applies 

no effect on the limit expansion pressure which is of great interests in practical 

applications. However, cavity size-dependent behaviour is often reported in tests with 

hollow cylindrical specimens (Elkadi and Van Mier, 2006; Enever and Wubailin, 2001; 

Papamichos and Van Den Hoek, 1995), pile side frictional resistance (Balachowski, 2006; 

Foray et al., 1998; Garnier and König, 1998; Lehane et al., 2005a; Turner and Kulhawy, 

1994; Wernick, 1978), end bearing capacity of shallow and deep foundations (Cerato and 

Lutenegger, 2007; Chow, 1996; De Beer, 1963; Toyosawa et al., 2013) and tip resistance 

of cone penetration tests (Balachowski, 2007; Bolton et al., 1999; Eid, 1987; Lee, 1990; 

Lima and Tumay, 1991; Wu and Ladjal, 2014) (as reviewed in Chapter 2). It is generally 

found that the smaller the structure size is, the stiffer soil response may be experienced. 

Therefore, improvements of the conventional cavity expansion solution to take the size 

effect into account may be of great significance in promoting its practical applications. 
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In fact, increasing interests have been attracted to account for the widespread size effects 

(Aifantis, 1999). By considering higher-order deformation gradients in the constitutive 

models or additional degrees of freedom (Mühlhaus and Aifantis, 1991), different types 

of material internal length scales have been introduced into several branches of high-order 

theories of elasticity and plasticity (Aifantis, 1996, 1999, 2003; Fleck et al., 1994; 

Mindlin, 1964; Nix and Gao, 1998; Zhu et al., 1997). Based on strain gradient elasticity 

theories, the size effect or localisation phenomenon around a cavity (e.g. a thick-walled 

cylinder) was studied by some elastic solutions (Aifantis, 1996; Collin et al., 2009; Eshel 

and Rosenfeld, 1970). Furthermore, the size effect has also been considered in some 

elastic-plastic cavity analyses. For example, by introducing a Laplacian term of the 

effective plastic strain into the yield criterion, Gao (2002, 2003a, 2006) presented several 

analytical solutions both for cylindrical and spherical cavities based on Hencky’s type 

deformation theory. Tsagrakis et al. (2004) developed an analytical solution with a similar 

deformation-type strain gradient theory of plasticity and a numerical solution with a strain 

gradient plasticity of flow version for expanding thick-wall cylinders. They demonstrated 

that a continuous displacement field can be obtained without inclusion of extra boundary 

conditions in the deformation theory based solution (Tsagrakis et al., 2006). 

Unfortunately, these constitutive relations are not very appropriate for describing the 

behaviour of sands, and restrictions on the infinitesimal deformation and/or 

incompressibility of materials further limit their applications in the geotechnical field. 

Accordingly, some attempts were made to extend these solutions for applications to 

granular materials. Ladjal (2013) introduced a second-order strain gradient into the 

Drucker-Prager yield criterion, and two approximate spherical cavity expansion solutions 

with different inclusion methods of the strain gradient term were developed by neglecting 

the elastic strains in the plastic region. Based on a ‘couple-stress’ type strain gradient 

theory, Zhao et al. (2007) presented an elastic-plastic analysis of a pressurised cylinder 

based on a modified Tresca-type criterion, and then Zhao (2011) extended this solution 

to cohesive-frictional materials both for cylindrical and spherical cavities. However, these 

solutions were also established with the small strain assumption which is not appropriate 

for describing the accumulative large deformation in a continuous expansion process. In 

addition, by adopting a different ‘couple-stress’ type of strain gradient elastoplasticity 

theory, Zervos et al. (2008) presented a numerical analysis on the pressurised thick-walled 

cylinder based on the finite element technique. Overall, present size-dependent cavity 

expansion solutions mainly focused on the static analysis or infinitesimal deformation 
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problems. Finite deformation quasi-static cavity expansion solutions with consideration 

of the size effect were seldom studied in the analytical or semi-analytical manner. 

By incorporating a second-order strain gradient term into the conventional Mohr-

Coulomb yielding criterion, size dependent behaviour with respect to the cavity size and 

mean particle diameter are captured for a cylindrical or spherical cavity continuously 

expanding in sands. Rigorous solutions can be obtained by numerically solving the 

established second-order differential governing equation system with a simple iteration 

technique. Additionally, semi-analytical/analytical approximate solutions are also 

developed by neglecting the elastic increments of total strains in the plastic zone. The 

adopted basic assumptions are briefly introduced in the following two sections. 

Subsequently, combined solutions both for cylindrical and spherical cavities are 

presented in Section 3.4 and Section 3.5, and their performances are analysed and 

discussed in Section 3.6. The chapter conclusion is drawn in the final section. 

 3.2 Problem definition and basic assumptions 

A cavity with an initial radius of 0a  is embedded in an infinite medium with an initial 

hydrostatic pressure, 0p . When extra uniform pressures, p , are gradually applied on 

the inner wall, the cavity will expand outwards monotonically from 0a  (initial radius) to 

a  (current radius). It is assumed that the loading speed is slow enough (e.g. quasi-static) 

to allow the potential dynamic effect to be negligible. Governing equations of this 

problem are established based on requirements of geometry compatibility, stress 

equilibrium and the constitutive model as follows. 

According to the fact of axial symmetry of a cylindrical cavity, the plane around a 

cylinder is specified in the cylindrical polar coordinates (r, θ, z), and the plane strain 

assumption with respect to the z-direction is adopted. In addition, the spherical polar 

coordinates (r, θ, φ) are employed to describe the spatial locations of points in the process 

of a spherical cavity expansion. 
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Fig. 3-1 Boundary conditions during cavity expansion under pressures 

(1) Equilibrium condition 

With changes of the stress configuration during a symmetrical expansion, stress 

equilibrium condition in the radial direction as Eq.(3-1) should be always satisfied. 

r
r

r

k r



 


 


 (3-1) 

where   and r  represent the circumferential and radial principal stress components 

respectively. 1k   for a cylindrical cavity, and 2k   for a spherical cavity. 

(2) Compatibility equation 

A combination of small deformation assumption in the elastic region and large strain 

analysis for the plastic deformation is adopted in this solution (Bigoni and Laudiero, 

1989; Chadwick, 1959; Yu and Houlsby, 1991). In large deformation analyses of cavity 

expansion problems, two basic categories as the total strain approach and the incremental 

velocity method were commonly adopted as discussed by Yu and Carter (2002) (also see 

in Section 1.2). Here the former approach is followed. During strictly symmetrical 

expansions, it was found the definition of natural strains (logarithmic strain as given in 

Eq.(3-2 a,b)) suffices to describe the accumulative geometric changes without any 

limitation of deformation degree. 
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0

lnr

dr

dr
e        ,       

0

ln
r

r
e    (3-2 a,b) 

Then, by eliminating r0, the geometric compatibility condition for large deformation can 

be derived as  

( )
[1 ]re dr rde e

e
    (3-3) 

For small deformation analysis (Hughes et al., 1977), the relationships between radial 

strain, tangential strain, and radial displacement can be expressed as 

r

du

dr
e         ,       

u

r
e    (3-4 a,b) 

and the compatibility condition for small strain analysis goes to 

r

rd

dr




e
e e    (3-5) 

(3) Constitutive model of material 

At initial expansion stages, medium around the cavity behaves elastically, obeying the 

generalised Hooke’s law. Once the yield criterion is satisfied, a plastic zone will start 

forming from the inner cavity wall and continuously enlarge outwards with an increasing 

expansion pressure. As previously discussed, size-dependent behaviours were often 

observed in many common applications of the cavity expansion theory when the cavity 

size is in a comparable level of the characteristic material length, so it is necessary to 

incorporate material length scales into the governing equations. Motivated by Aifantis 

(1984, 1987), several types of strain gradient-dependent theory of plasticity have been 

developed with different inclusion methods of high-order strain gradients for different 

materials (Zbib and Aifantis, 1989), for example, they were included in the expression of 

the flow stress (Al Hattamleh et al., 2004; Mühlhaus and Aifantis, 1991), in the plastic 

flow rule (dilatancy condition) (Vardoulakis and Aifantis, 1989) or in the friction and 

dilation properties simultaneously (Vardoulakis and Aifantis, 1991). 

For sands, the friction angle, in general, is significantly strain-dependent. On the contrary, 

the dilation property less depends on the strain level, and a unique dilation angle is usually 

predicted with the same stress level and sand relative density (Bolton, 1986; Chakraborty 

and Salgado, 2010; Schanz and Vermeer, 1996). Therefore, the non-local effect of sands 

will be taken into account by means of including high-order strain gradients into the 

friction strength of the classical Mohr-Coulomb yield criterion. Additionally, Al 
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Hattamleh et al. (2004) stated that the contribution of strain gradients terms higher than 

the second order is minimal. Hence, only a second-order strain gradient is incorporated 

to modify the friction property as given in Eq.(3-6). The yield criterion is expressed in 

terms of principal stresses as 

1 3f     (3-6) 

where 1  and 3 are the major and minor principal stress respectively.   represents the 

modified stress flow number associated with the friction angle   of sands. 

2 2( , ) ( )p p p g pc          (3-7) 

where 
gc  is a phenomenological strain gradient coefficient, and 

p  is the equivalent 

shear plastic strain. 2  is the Laplacian operator. ( )p   represents the homogenous part 

of the strain-dependent friction strength in the conventional theory of plasticity (Salgado 

et al., 1997). In the perfectly-plastic Mohr-Coulomb model, it equals to 

2tan (45 / 2)o    as a constant, and it is adopted to describe the homogeneous 

deformation in this solution. The inhomogeneous evolution of underlying microstructures 

is represented by the included second order strain gradient term. 

3.3 Physical definition of the gradient coefficient 

In the classical continuum mechanics, the stress at one point depends on the local 

deformation history of that point only. To account for the heterogeneity of material or 

long-range interactions of points, the nonlocal mechanics concept is adopted, in which 

stresses at one point will be determined by deformation histories of all points in a 

Representative Volume Element (RVE), V . V  reflects a phenomenal scope of nonlocal 

contributing points, which is defined as a mesoscale index ( 34 / 3gR  in three 

dimensions, and 2

gR for the plane problem). As stated by Mühlhaus and Aifantis 

(1991); Vardoulakis and Aifantis (1991), the average strain 
p  within a symmetric 

neighbourhood of x  can be expressed by Taylor series expansion when the nonlocal 

behaviour becomes dominant. 

1
( )p p i i V

V
x d

V
     (3-8) 
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21
( ) ( ) ( ) ( )

2!
p i i p i p i j p i j kx x x x                 (3-9) 

where i  is a vector along the radial direction and 
i gR  .   is the gradient operator, 

and 
2 ( )     . Substituting Eq.(3-9) into Eq.(3-8) gives 

3 32 2

2

2

0 0

1 1
( ) [ ( ) ( ) ]

3 2! 4

g g

p p i p i j p i j k

g

R R
x x n d x n n d

R

 

    


        (2D) (3-10) 

where 

2

0

0jn d



  ,

2

0

j k ijn n d



   (i from 1 to 2).  

4 52 2

2

3

0 0

43 1
( ) [ ( ) ( ) ]

4 3 2! 15

g g

p p i p i j p i j k

g

R R
x x n d x n n d

R

 

    


        (3D) (3-11) 

where 

2

0

0jn d



  ,

2

0

2

3
j k ijn n d






  (i from 1 to 3). 

A combined expression considering the contribution of the second order strain gradient 

can be summarised as 

2

p p nD pC       (3-12) 

where the coefficients are 2

2 / 8D gC R  and 2

3 /10D gC R  respectively. 

Back to the modified friction strength, by assuming it varies slowly and monotonically 

with 
p  (or ( ) 1p p   ), non-local contributions of neighbouring points to the overall 

macroscopical friction property of sands can be physically related to the internal material 

characteristic length by introducing a new material parameter 
gH  which is defined to 

indicate the rate of variation of the friction property with the nonhomogeneous 

deformation. 

( ) ( )p g p pH          ,  

p p

g

p

d
H

d
 






   (3-13) 

Consequently, 

2

g g nD g gc H C H l    (3-14) 



Chapter 3  Size-dependent large strain cavity expansion solutions for sands 

63 

Dimension analysis shows ‘
gc ’ has a dimension of 

2[ ]L . Physically, 
gH  performs like a 

non-dimensional index ruling the size-strengthening (positive) phenomenon, and ‘
gl ’ is 

an intrinsic material length indicating the statistical contributing area to the local 

deformation. These two microscopic material parameters have not been clearly identified 

or defined yet, especially with experimental methods. Alternatively, in the application to 

sands, the inherent material length (
gl ) is approximately represented by the mean particle 

size (
50gl d ) as suggested by Vardoulakis and Aifantis (1991) based on the analysis of 

shear band spacing in granular materials. For 
gH , it was assumed to mainly vary with 

p  (Aifantis, 1996; Al Hattamleh et al., 2004) or as well as 2

p  (Vardoulakis and 

Aifantis, 1991) in different models. For simplicity, it was often approximately set as a 

constant value with close relations to the elastic shear modulus (Gao, 2002; Ladjal, 2013; 

Tsagrakis et al., 2004; Zbib, 1994). In practice, the elastic soil stiffness is often normalised 

by atm  (atmospheric pressure, 100kPa) (Mitchell and Soga, 2005), which depends on the 

confining pressure level and packing conditions of sand particles. This expression is 

followed to represent 
gH  as in Eq.(3-15), but an additional adjustment coefficient   is 

included to represent the difference between them. 

2

50( / )g atmc G d   (3-15) 

A similar form of 
gH  was suggested by Vardoulakis and Aifantis (1991) in a model with 

modification of the friction property in the yield criterion. / atmG   can be estimated with 

a number of empirical equations (Bui, 2009; Hardin and Black, 1966; Mitchell and Soga, 

2005), which includes relationships based on the cone tip resistance (Baldi et al., 1991; 

Rix and Mayne, 1993; Rix and Stokoe, 1991; Schnaid et al., 2004) as applied in Chapter 

4. For simplicity, 
gc  is assumed as constant for a given expansion problem in this 

solution, and further discussions will be given in the following section of 4.3.2.2. 

3.4 Cavity expansion analysis 

3.4.1 Elastic solutions 

Initially, the surrounding soil deforms purely elastically. According to the generalised 

Hooke’s law, stress-strain relationships in rate version can be expressed as 
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  (3-17) 

‘Standard’ stress boundary conditions for the defined problem are  

r r a
p


      ,    

0r r
p


      ,    

0r
p


    (3-18 a,b,c) 

Then the elastic stress-strain relations can be integrated directly as 

0(1 2 )1
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1 (2 ) 1 (2 )

e
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M k k

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 
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  (3-19) 
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  (3-20) 

where 
21 (2 )

E
M

k


 
. E is Young’s modulus. / 2(1 )G E    represents the shear 

modulus. is the Poisson’s ratio. 

Elastic stress components and the radial displacement can be readily derived based on the 

equilibrium equation (Eq.(3-1)), compatibility equation (Eq.(3-5)) and stress boundary 

conditions (Eq.(3-18 a,b,c)). Here the solution from Yu and Houlsby (1991) are followed. 

1

0 0( )( )e k

r

a
p p p

r
      (3-21) 

1

0 0

1
( )( )e ka

p p p
k r

      (3-22) 

10
0 ( )

2

k

e

p p a
u r r r

kG r


    (3-23) 

3.4.2 Elastic-plastic analysis 

A second-order strain gradient term was introduced into the yield criterion, but this 

additional term would not alter the direction of principal stress in this symmetric 

expansion problem. Therefore, the inequalities given in Eq.(3-24 a,b) are still valid (Gao, 

2003b; Tsagrakis et al., 2006) as they were in conventional elastic-perfectly-plastic 

models. The major and minor principal stress directions remain in the circumferential and 

radial directions respectively (taking tension as positive), which generally provides 
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fundamental basis for analytical cavity expansion analyses in soils (Mo et al., 2014; Yu 

and Houlsby, 1991), 

z r       (Cylindrical)    ,    
r        (Spherical)  (3-24 a,b) 

Hence the modified yield criterion in Eq.(3-6) can be rewritten as 

2

2
[ ( )]

p p

g r

k
c

r r r


 
  

 
  

 
  (3-25) 

No effects will be produced by the strain gradient term when the material just enters the 

plastic flow state ( 2 0
c

p r r



  ), so the modified yield criterion will recover to the 

conventional one as r   at the elastic-plastic boundary ( cr r ). Based on the radial 

stress continuity condition at cr r , the experienced pressure at the elastic-plastic surface 

( cp ) can be directly obtained with previous elastic stress solutions.  

0
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2c y
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
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
  (3-26) 

It is evident that cp  is position-independent, and it can be regarded as an initial threshold 

value (p1y) to differentiate the elastic region and plastic region in calculations. The stress, 

strain and displacement components in the elastic region can be readily obtained by 

directly replacing a  with the radius of the elastic-plastic boundary cr  from the preceding 

elastic solutions. 

In the present strain gradient-dependent theory of plasticity, only the yield criterion is 

modified, and the plastic flow is still determined by the conventional flow rules. The 

plastic strain rates are assumed to be proportional to ‘
p ’, and the plastic flow directions 

are determined with the normality condition with respect to the plastic potential function 

g  (Al Hattamleh et al., 2004). 

p

ij p

ij

g
e 







  (3-27) 

A non-associated flow rule corresponding to the Mohr-Coulomb model is adopted for 

characterising the plastic deformation of sands. As a result, 

p

r pe        ,     p

p
k




e    (3-28 a,b) 
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where (1 sin ) / (1 sin )     .   is the dilation angle of sand. 

When the plastic potential and yield surface become coincident (that is   ), the 

associated flow rule will be recovered, and the relations are identical to those derived with 

the principle of plastic power equivalence by Papanastasiou and Durban (1997). The total 

strain rates can be expressed with combinations of their elastic (Eq.(3-16), Eq.(3-17)) and 

plastic components (Eq.(3-28 a,b)), that is e p

ij ij ije e e  . Then principal strains are 

available by integrating them from the initial phase to the current state as

0(1 2 )1
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 
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  (3-29) 
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 
       

    
  (3-30) 

All governing equations were presented by now. By substituting Eq.(3-29)and Eq.(3-30) 

into the compatibility equations, two typical second-order ordinary differential equation 

systems can be established in terms of variables of r ,  and
p . The equation system 

consists of Eq.(3-1), Eq.(3-3) and Eq.(3-25) is for large deformation analysis, and that 

formed by Eq.(3-1), Eq.(3-5) and Eq.(3-25) suits for small deformation analysis. In the 

elastic-plastic analysis, conventional boundary conditions can be obtained from the stress 

and strain continuity conditions at the elastic-plastic surface as usual. 

c
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p


    ,  
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p p p
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

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c

p r r



   (3-31 a,b,c) 

An extra boundary condition is obtained by assuming the first-order derivative of the 

equivalent shear plastic strain vanishes at the elastic-plastic surface as given in Eq.(3-32) 

(Mühlhaus and Aifantis, 1991; Tsagrakis et al., 2004). 

0

c

p

r r
r









  (3-32) 

3.5 Approximate size-dependent solutions 

Due to the inclusion of the second-order term of the equivalent plastic shear strain in the 

modified yielding criterion, an explicit expression of 
p  in term of the spatial position 

becomes an important prerequisite for deriving an analytical solution of the established 

governing equation system (Gao, 2003a; Tsagrakis et al., 2004). However, it cannot be 
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achieved prior to knowing the plastic stress field in the present flow-type plasticity model 

as shown in Eqs.(3-39) and (3-41). Alternatively, aiming to more straightforwardly 

express responses of the whole governing equation system to the additional Laplacian 

term, it is assumed that the elastic strain increments are negligible compared with plastic 

strain increments. Therefore, Eq.(3-33 a,b) is obtained as 

p

r r pe e         ,     p

p
k

 


e e    (3-33 a,b) 

Integrating them from cr  to r  gives 
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 
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e  e


   (3-34 a,b) 

With this further simplification, explicit expressions of 
p  are derived based on previous 

compatibility conditions as below. 

3.5.1 Approximate finite strain cavity expansion analysis 

Recalling the compatibility condition with finite strain definitions in Eq.(3-3), a simple 

differential equation about 
p  is built as  
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An explicit expression of 
p  in terms of the spatial position is obtained based on the strain 

boundary condition of 0
c

p r r



 . 
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Then the Laplacian term of 
p  becomes 
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           (Spherical polar coordinates) (3-38) 

In this case, the problem can be simply studied with Eq.(3-39) which consists of the yield 

criterion and the equilibrium equation. 
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Based on previous ‘standard’ boundary conditions, the required internal expansion 

pressure is obtained as 
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It is evident that this solution is exactly the same as the conventional elastic-perfectly-

plastic static stress solution (Bigoni and Laudiero, 1989; Chadwick, 1959; Vesic, 1972; 

Yu and Houlsby, 1991) while the strain gradient effect is neglected, that is   . 

Furthermore, movements of the elastic-plastic boundary during a continuous expansion 

can be derived by substituting the logarithm strains into the below compressibility 

equation. 
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Theoretically, the solution neglecting the elastic increment of the total strain in the plastic 

zone would produce relatively less over-prediction to the required expansion pressure 

than that ignoring all the elastic strain in plastic region, and Eq.(3-42) can reduce to the 

later one (Bigoni and Laudiero, 1989; Yu and Houlsby, 1991) by putting the left part of 

Eq.(3-41) to be zero. The approximate limit expansion pressure can be calculated with 

Eq.(3-39) and Eq.(3-42). It is worth emphasising that no non-conventional boundary 

condition is required in this approximate analysis when the Laplacian term is explicitly 

available in term of the spatial position not like the previous rigorous solution, and a 

similar conclusion was also suggested by Tsagrakis et al. (2004). 

3.5.2 Approximate small strain cavity expansion analysis 

In symmetric expansion problems with infinitesimal deformations, the compatibility 

condition of Eq. (3-5) derived based on the small strain definitions is often employed to 

describe the geometric variation. Consequently, the equivalent plastic shear strain and 

corresponding Laplacian term can be obtained respectively as 
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The superscript of s

p  indicates the small strain case. Subsequently, by substituting the 

Laplacian term of s

p  into Eq.(3-39), an analytical stress solution can be derived with the 

previous standard stress boundary conditions. 
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Similarly, the displacement solution of plastic deformation is available as 
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The role of the additional strain gradient in the present size-dependent model can be more 

explicitly expressed in the above analytical solutions. It is shown that the defined material 

length 
gl  was successfully introduced into the stress expressions through 

gc . The stress 

components depend on not only the non-dimensional geometrical quantities of the 

expansion but also on the real cavity size independently. The size effect attenuates with 

increases of the cavity radius, and the present stress solutions can exactly recover to those 

derived from corresponding local theories when the gradient effect vanished (  =0, or 

2

50( / ) 0d a  ). 

3.6 Results analysis and discussion 

The present solutions can be used to calculate the stresses and strains during a quasi-static 

expansion process or in any given static state, both of which are of wide use in practical 

applications. To improve the calculation efficiency, all stress components and material 

stiffness are normalised with respect to the initial confining pressure ( 0p ), and the spatial 

position is normalised with the current cavity radius (a) which can be regarded as a ‘time 

scale’ during the cavity expansion. In a non-dimensional form, the modified friction 

property becomes 

2
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where = /r r a , is the normalised radial position of material points. 

Initially, the cavity expands in a purely elastic stage. The entire elastic stress and 

displacement fields can be analytically calculated with given elastic solutions. Once 

plastic deformations take place, iterations are required to compute the propagation of the 

elastic-plastic boundary under monotonically increasing internal loadings. In short, with 

a trial value of /cr a , the stress and deformation information within the plastic region can 

be obtained by integrating the governing equation system in a given range of [1, /cr a ]. 

Then the one-to-one correspondence between /cr a  and 0/a a  during continuous 

expansions is confirmed with a simple bisection iteration technique. According to the 

significantly different response of the plastic deformation to the increase of /cr a  (as 

illustrated in Fig. 3-2), the calculation is subdivided into two phases. Specifically, in the 

initial expansion phase, /cr a  rises rapidly and monotonically with an increasing cavity 

expansion, but it reaches a plateau soon afterwards, in which the equation system is highly 

sensitive to a small variation of /cr a . Results in the first expansion phase can be 

efficiently computed by assigning increasing values of /cr a , and a high iteration 

accuracy can be guaranteed by controlling the absolute difference between the given 

value of 0/a a  and the back calculated value with a tolerance less than 10-5. Contrarily, 

calculations in the second expansion stage are more tractable by means of assigning 

increasing values of 0/a a  due to the difficulty in estimating an appropriate initial 

iteration interval of /cr a . Above integrations are accomplished with the ode113 solver 

in Matlab (2013a) here. An intensified boundary layer would be arisen by the present 

governing equations due to the inclusion of the strain gradient term (also indicated by 

Eq.(3-46)), so methods based on the boundary layer theory may provide more efficient 

tools for solving this type of problem (Holmes, 2012). It is out of the scope of this research 

and will be attempted in future work.  

By following this calculation procedure, with the initial stress of 0 50kPap   and soil 

properties ( 0/ 350G p  , 
o40  , 

o15  , 0.3  , 50 1mmd   unless redefinition), 

performances of the present size-dependent (abbreviated as SD in following graphs) 

solutions are discussed as below. 
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Fig. 3-2 Propagation of elastic-plastic boundaries with expansions 

3.6.1 Analysis of stress and strain distributions 

When the strain gradient effect vanishes, present solutions should reduce to the 

corresponding elastic perfectly-plastic cavity expansion solution, e.g. the solution of Yu 

and Houlsby (1991). Therefore, this solution is employed as a reference to discuss the 

concerned size-dependent behaviours included in the present solution as follows. 

   

Fig. 3-3 Strain distributions within different expansion degrees 

In a given instant, 
p  dramatically reduces in the close vicinity of the inner cavity and 

becomes slowly-varying in values close to zero while away from this zone. This trend 

intensifies with an increasing expansion level as illustrated in Fig. 3-3. It indicates 

contributions of the additional Laplacian term (first and second order space derivatives 

of 
p ) attenuate with an increasing distance away from the inner cavity wall and vanishes 

at the elastic-plastic boundary as specified by the non-standard boundary condition. This 

characteristic guarantees that the stress continuity conditions at the elastic-plastic 

boundary would always be satisfied as demonstrated in Fig. 3-4. It is shown that greater 
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radial compression pressures are predicted by the size-dependent solutions at the cavity 

wall, and it gradually recovers to the solution of Yu and Houlsby (1991) at positions away 

from the inner boundary as expected. On the contrary, lower values of the stress in the 

circumferential direction are predicted by the size-dependent solutions, which returns to 

the conventional solutions with an increasing distance to the cavity wall as well. In 

addition, solutions based on the large strain and small strain compatibility conditions 

naturally gave similar results at small degrees of expansion as proven in Fig. 3-4. 

   

   

Fig. 3-4 Stress distributions within different expansion degrees 

In a quasi-static expansion process, the elastic and plastic responses are determined both 

by the static stress equilibrium conditions and the accumulative deformation of 

expansions. Comparing with conventional solutions, the plastic stress field in present 

size-dependent solution is altered due to the additional inclusion of strain gradient terms 

in the yield criterion. As a consequence, the deformation characteristics would be 

disturbed more or less, which explains the induced changes of the range of plastic region 

(e.g. Fig. 3-2). The additional Laplacian term in Eq.(3-36) will gradually lose effect with 

a continuously increasing cavity radius, and the conventional yield criterion will be 

recovered with a sufficiently large cavity radius. This feature can be more 
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straightforwardly observed with the approximate explicit expressions of the Laplacian 

term as presented in Fig. 3-5.  

It is shown that the additional term in the yield criterion gradually grows to a peak value 

at small deformation levels (relatively small values of 0/a a ), and then drops to around 

zero with increasingly large cavity radii. These additional influences mainly concentrate 

in a vicinity close to the cavity wall. Furthermore, the criterion deciding the elastic zone 

and plastic zone remains due to the unchanged elastic model and stress continuity 

conditions as given in Eq.(3-26). Therefore, just a small variation of the range of the 

plastic zone is caused, and a steady propagation of the elastic-plastic boundary with cavity 

expansions ( /cr a ) will be reached with similar speeds as the corresponding conventional 

solutions (e.g. Fig. 3-2). This feature essentially determines that a constant radial 

expansion pressure will be predicted in the steady expansion state by conventional elastic-

perfectly-plastic models (Bishop et al., 1945; Hill, 1950; Yu, 2000). 
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Fig. 3-5 Approximate values of the strain gradient term (Eq.(3-37) and Eq.(3-38)) 

In addition, notice that the additional Laplacian term applies different degrees of 

influences on the stress components in different directions (e.g. the speed recover to the 

conventional solutions). In other words, the variable of r  and   has different 

responses to the governing equation system, especially in the intensified zone close to the 

inner boundary. However, the radial pressure-expansion response is more concerned in 

the quasi-static analysis since its wide applications in practices, for example, estimating 

indentation/penetration resistance of cones, predicting the axial bearing capacity of piles, 

back-calculating soil properties etc., so the dependence of radial expansion pressure on 

the additional strain gradient term during quasi-static expansions will be emphasized in 

the following analyses. 
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3.6.2 Strain gradient effects on the radial expansion pressure 

In conventional quasi-static cavity expansion solutions, the instantaneous cavity size 

makes homogenous contributions to the pressure-expansion response. Specifically, the 

deformation history is determined by a/a0. At initial expansion stages, the required 

expansion pressure monotonically rises with increases of a/a0. Then the required 

expansion pressure rapidly reaches a limit value when the steady expansion state is 

reached ( /cr a  became constant), and the real cavity size will no longer apply influence 

during afterwards expansions. However, due to the inclusion of strain gradients in the 

yield criterion, the geometric sizes (a0, a, and 50d ) will all exert individual influences on 

the magnitude of the required internal pressure. Specifically, 0/a a  represents the 

expansion degree (cumulative strain level), /cr a  indicates the cavity deformation state, 

and 50 /d a  determines the contribution of the strain gradient term to the overall response 

together with the defined parameter of 
gH . Influences of these factors in a quasi-static 

expansion process will be discussed by comparing with results calculated with the 

solution of Yu and Houlsby (1991), and parameter analyses of present size-dependent 

solutions and evaluation of the proposed approximate solutions will also be given in this 

section. 

The initial cavity size 0a  is also concerned in quasi-static cavity expansion analyses in 

layered granular soils and was sometimes estimated with the mean particle size (Mo et 

al., 2016). However, providing that the soil particles of the same size 50d  are tightly 

arranged and their centroid positions lie on the vertexes of a series of regular triangles (or 

regular tetrahedrons) in the plane (or three-dimensional) condition, the initial cavity 

radius equals d50/6.46 
50[ (2 3 / 3 1) ]d   (or d50/4.45

50[ ( 6 / 2 1) ]d  ) for the 

cylindrically (or spherically) expanding cavity. Based on this rough estimation, 0a  

changes approximately around this range in following calculations. 

(1) Radial expansion pressure during a continuous expansion 

As presented in Fig. 3-6, by comparing with the conventional elastic perfectly-plastic 

solution, a stiffer initial elastic-plastic response is predicted by the present solution, and 

higher peak values of the required expansion pressure are rapidly reached before entering 

the steady deformation state. The predicted peak value is higher for the cavity expands 
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from a smaller radius since the greater corresponding value of 50 /d a  at peaks. Then the 

internal radial pressure gradually decreases with further expansions and reduces to the 

limit value calculated by the conventional cavity expansion solution in a relatively large 

expansion radius as expected. Overall, a material characteristic length is incorporated in 

the present solution, which determines the magnitude of size effect as well as the defined 

material microscopic parameter 
gH . Before the strain gradient effect vanishes, the 

present size-dependent solution predicts stiffer responses with smaller cavities in the 

continuous expansion process ( 0a a ). 

 

Fig. 3-6 Pressure-expansion curves during continuous expansions with different 0a  

   

Fig. 3-7 Variation of the radial expansion pressure with different   

The incorporated size-dependent hardening effect significantly varies with the normalised 

gradient coefficient 
gc  ( 2

0 50( / )( / )G p d a ) as demonstrated in Fig. 3-6 and Fig. 3-7. 

For a given cavity expanding in a known material, appropriate determination of the value 

of gH  ( 0( / )G p ) may play an important role in quantifying the concerned size effect 

in practical applications. In addition, with given 
gc , performances of present solutions 
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with varying friction and dilation properties of sands are illustrated in Fig. 3-8 

respectively. Parameter analysis shows greater size effects appeared in cases of larger 

dilation angle and smaller friction angle in results of the calculated internal radial 

pressures. However, 
gc  may vary with the dilation and friction properties of sands, so 

dependencies of the size effect on these two parameters should be further confirmed based 

on experimental results. 

   

   

Fig. 3-8 Internal expansion pressure with varying friction and dilation properties 

(2) Limit expansion pressure of a cavity with a given radius 

The instantaneous cavity size ( a ) relates to the required expansion pressure in a non-

dimensional manner in quasi-static solutions based on classical elastic-perfectly-plastic 

models as aforementioned, so the same expansion response will be predicted with the 

same value of 0/a a  no matter reached by increasing a  or decreasing 0a  in these 

solutions. In other words, the constant limit expansion pressure will be reached as long 

as /cr a  gets close to its ultimate value either for cavities expanding from a given initial 

radius (Vesic, 1972; Yu and Houlsby, 1991) or in a self-similar manner (Carter et al., 

1986; Hill, 1950; Yu and Carter, 2002). Contrarily, different performances are predicted 
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by the present solution due to the inclusion of strain gradient terms. The pressure-

expansion response with an increasing a  from a given initial cavity radius has been 

discussed in above section. It showed that peak values of the required internal expansion 

pressure would be reached before the steady expansion state is reached, so results 

obtained in previous continuous pressure-expansion curves are not always the upper 

bound value for a cavity with a given size expands from any initial radius. In addition, it 

is not easy to determine the initial cavity radius in application to interpret in-situ tests. 

Hence the quasi-static expansion response of a cavity with a reversely decreasing 0a  is 

calculated as given in Fig. 3-9, Fig. 3-10 and Fig. 3-11. 

It is shown that the required internal expansion pressure rapidly stabilises when the ratio 

of 0/a a  satisfied the requirement of steady expansions (approximately, 0/ 20a a   and 

a bit quicker for cylindrical expansions). Hence, a limit expansion pressure for a cavity 

expands to a given radius also exists in the present size-dependent solution providing that 

the expansion degree is large enough to maintain the steady deformation happens before 

reaching the final cavity radius. This limit expansion pressure is cavity size-dependent 

(greater for smaller cavities) as shown in Fig. 3-9 and varies with the non-local property 

of 
gH  and the material characteristic length as shown in Fig. 3-10 and Fig. 3-11. 

   

Fig. 3-9 Limit expansion pressure with varying final cavity radii 
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Fig. 3-10 Limit expansion pressure with different strain gradient coefficient 

   

Fig. 3-11 Limit expansion pressure with different d50 

Alternatively, as demonstrated in Fig. 3-2, /cr a  rapidly gets close to the result calculated 

with the conventional solution of Yu and Houlsby (1991) in the steady state. Motivated 

by this finding, their analytical solution (as shown in Eq.(3-47)) is used to compute the 

relative position of the elastic-plastic boundary at the steady expansion stage (that is 

lim( / )cr a ) to reduce the computational cost. Results shown in Fig. 3-9-Fig. 3-11 

demonstrated that this method gives almost the same limit expansion pressure as the 

continuous expansion solution. In this case, no iteration is required in predicting the limit 

expansion pressure, so the calculation procedure can be greatly simplified. 
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In cone penetration tests, it was often observed that higher resistances are often 

experienced by smaller penetrometers (De Beer, 1963; Eid, 1987; Gao, 2006; Lima and 

Tumay, 1991; Wu and Ladjal, 2014), and the ratio of penetrometer diameter (final cavity 

size, e.g. a) over the median particle diameter (d50) was commonly used to estimate if the 

size effect will be performing in these physical tests (Balachowski, 2007; Bolton et al., 

1999). These findings coincide with the size effect predicted with the present solution in 

trend. Based on the analogy between the cone penetration test and the quasi-static cavity 

expansion process (Bishop et al., 1945; Yu, 2006), the present solution may provide a 

theoretical method to quantify those observed size-dependent behaviours (as applied later 

in Chapter 4). Or reversely, the data of cone penetration tests with varying sized 

penetrometers may be applicable to evaluate the introduced non-local property of the 

material (e.g. 
gH ). 

(3) Pressure-expansion responses in small deformation levels 

The radial pressure-expansion curve at initial expansion stages is also of practical use in 

interpretations of tests with small deformations, for example, pressuremeter tests (Hughes 

et al., 1977; Yu, 1990). Size-dependent behaviour at initial expansion stages (stiffer 

response) is also calculated with the present solutions as shown in Fig. 3-12. Naturally, 

almost the same results are given by the small strain solution and the large strain solution 

in small degrees of cavity expansions. Both these two solutions may be useful to describe 

the size-dependent behaviour in expansion problems with small deformations. 
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Fig. 3-12 Comparison of solutions in small deformations 

3.6.3 Evaluation of the approximate size-dependent solutions 

It was discussed by Bigoni and Laudiero (1989) that neglecting all the elastic 

deformations in the plastic region may lead to significant overestimations on the limit 

expansion pressure both in cylindrical and spherical cavity expansion solutions based the 

conventional Mohr-Coulomb criterion. Although part of the elastic strain in the plastic 

region has been considered in the present approximate solution, evident over-predictions 

are still produced with comparisons to the rigorous solutions as shown in Fig. 3-13 and 

Fig. 3-14, especially when the strain gradient effect performs. It is believed that the elastic 

increments of total strains in the plastic zone play an important role in a quasi-static cavity 

expansion analysis, but similar dependencies of the expansion pressure to the strain 

gradient effect performed by the rigorous size-dependent solutions and the approximate 

solutions in trend. Therefore, the analytical/semi-analytical approximate solutions can 

provide a more straightforward understanding of roles of the strain gradient effects in the 

present size-dependent model in spite of those obvious over-predictions. 

   

Fig. 3-13 Pressure-expansion behaviours during continuous finite deformations 
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In addition, Fig. 3-14 shows over-estimations on the required internal expansion pressure 

become more serious while describing the initial pressure-expansion response, and a 

stiffer initial soil strength is predicted while the approximate solutions are employed. 

   

Fig. 3-14 Pressure-expansion response at small deformations 

3.7 Chapter summary 

Combined quasi-static cavity expansion solutions incorporating the size effect both for 

cylindrical and spherical cavities were presented and discussed in this chapter. In these 

solutions, the initial cavity radius, instantaneous cavity size and mean particle size all 

play independent roles in determining the continuous pressure-expansion response which 

cannot be modelled by solutions established within the framework of classical continuum 

mechanics. In addition to the method based on iteration technique, a simple approach to 

calculating the limit expansion pressure was proposed. This solution may be applicable 

to describe the widely observed size-dependent behaviours in cone penetration tests, 

bearing capacities of shallow and deep foundations. Applications to cone penetration tests 

will be presented in the next chapter. 

The classical Mohr-Coulomb yield criterion was modified by incorporating a second-

order strain gradient. Two new material parameters ( gH  and 
gl ) were introduced in this 

model, but they have not been well defined and determined in physical tests until now. 

Therefore, the material characteristic length of sands was estimated by the mean particle 

size d50, and gH  is approximately represented by ( / )atmG   in the development of 

present solutions. To better describe the size-dependent behaviours in cavity expansion 

problem, more experimental effort is needed to quantify these two parameters. 
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Chapter 4  

Analysis and discussion of CPT results 

4.1 Introduction 

Mechanical impedance encountered by an advancing probe in soils generally consists of 

two parts: side friction and tip resistance. In general, they have different bearing 

mechanisms, and the proportion of their contributions to the total resistance varies with 

penetration depth, shape and surface conditions of the probe, soil response etc.. An 

advancing cone penetrometer usually displaces the surrounding soil in an analogous 

manner of a driven pile. Based on this analogy, methods used to estimate the bearing 

capacity of driven piles in sands are also commonly employed to interpret the present 

cone penetration tests, especially in estimations of the shaft friction capacity. 

As suggested by Randolph et al. (1994), methods for estimating the capacity of driven 

piles in sands can be categorised into two broad groups: methods based on sand strength 

and deformation properties (friction angle, density, stiffness etc.) (API, 2000; Randolph 

et al., 1994; Toolan et al., 1990) and methods base on in-situ testing (CPT, standard 

penetration test (SPT), etc.) (Bustamante and Gianeselli, 1982; De Ruiter and Beringen, 

1979; Kolk et al., 2005; Schmertmann, 1978). The tip resistance and side friction are often 

expressed as 

'

0b b vq N      or   b c cq k q  (4.1) 

' '

0 0tanf f v f vK        or   /f cq   (4.2) 

where bq  is the end-bearing resistance of a pile; bN  is a bearing capacity factor; '

0v  is 

the effective vertical stress at depth z; ck  is a factor relating the pile end-bearing 

resistance and the cone resistance. fK  is a lateral earth pressure coefficient representing 

the ratio of the normal effective stress acting on the pile at failure to the in-situ effective 

overburden stress, which may significantly vary with the sand relative density (Alawneh 

et al., 1999; Kraft, 1990).   is a factor relating the cone tip resistance and the local shaft 

friction resistance, and cq  is usually taken as an equivalent average cone resistance over 

a specific range around the pile tip, but the suggested collecting range is not consistent in 
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different design methods (Bustamante and Gianeselli, 1982; De Ruiter and Beringen, 

1979). 

The size effects both in the tip resistance and shaft capacity of cone penetration tests will 

be discussed based on available experimental data and theoretical analyses in this chapter. 

At first, empirical and theoretical methods commonly used to predict these two parts of 

soil resistance are briefly reviewed in the first section as follows. Then possible factors 

contributing the size-dependent behaviours in the shaft friction resistance are discussed, 

and the commonly used theoretical method to estimate changes in the lateral confining 

stress around a probe is improved with an additional consideration of the thickness of 

interface shear band in Section 4.2. Subsequently, the size effect on the cone tip resistance 

observed in the present tests and some other tests is theoretically analysed with the 

previously developed size-dependent spherical cavity expansion solution in the section 

of 4.3. Chapter conclusions are drawn in the final section. 

4.1.1 Empirical methods for estimating the shaft friction 

Specific theoretical methods for estimating the shaft friction of an advancing cone 

penetrometer are relatively scarce. Alternatively, design methods for the driven pile in 

sands will be employed to interpret the shaft frictional behaviour in present tests, which 

mainly depends on the Coulomb law as given in Eq.(4.3). Apart from the methods 

mentioned in Eq.(4.2), methods with combination uses of the CPT data and the intrinsic 

soil properties are increasingly popular for the driven pile design in sands, in particular, 

the method of ICP-05 (Jardine et al., 2005) and UWA-05 (Lehane et al., 2005c). A general 

expression of the shaft resistance for a close-ended pile in these two methods can be 

summarised as 

'( ) tanf hc rd f       (4.3) 

' max ,

c

c
hc

e pile

q h
e

a D




 
   

 

 (4.4) 

4 m
rd

pile

G y

D



   (4.5) 

where hc  is the normal stress acting on the pile surface after installation and 

equalisation, which is estimated by the cone tip resistance with consideration of the 

‘friction degradation effect’. rd  is the change of radial stress during loading, which is 
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often approximately calculated with a cavity expansion analogy as proposed by Boulon 

and Foray (1986). As discussed by Schneider et al. (2007b), parameter ‘ ea ’ is to account 

for reduction of the radial stress behind the pile tip; exponent ‘c ’ accounts for ‘friction 

fatigue’; h H Z   (height above the pile tip), and parameter ‘e’ provides an upper limit 

of ( / ) ch D 
 near the pile tip since the existence of minimum shaft resistance. mG  is 

defined as the operational shear modulus of the sand; y  is the normal displacement of 

sand at the pile interface. Different values of these parameters were recommended by 

methods of ICP-05 and UWA-05 based on different database and emphases (Lehane et 

al., 2005b). 

4.1.2 Theoretical methods for predicting the tip resistance 

Various theories with different merits and limitations have been developed to estimate 

the tip resistance in cone penetration tests (Yu, 2006; Yu and Mitchell, 1998), which are 

primarily based on the bearing capacity theory, cavity expansion theory, steady state 

approach and numerical simulation technique individually or in combination. Most 

commonly, methods based on the bearing capacity theory and the cavity expansion theory 

respectively will be employed to interpret our CPT results, and they are briefly introduced 

as follows. 

(1) Bearing capacity approach 

The bearing capacity theory is believed one of the first method applied in the analysis of 

cone penetration test (Meyerhof, 1951; Terzaghi, 1943). This class of methods are 

relatively easy to be accepted and employed by many engineers who are already familiar 

with the bearing capacity theory. 

The cone resistance is estimated by the static failure load of equilibrium at a 

corresponding penetration depth, and a series of failure surfaces develops with the 

continuous penetration. Two theoretical approaches, limit equilibrium method and slip-

line method, are usually applied to solve this simplified problem. In the limit equilibrium 

methods, the failure load is determined by the global equilibrium condition with a pre-

assumed failure pattern. Therefore assumptions on the failure surface play a key role in 

this approach (Durgunoglu and Mitchell, 1975), and many types of failure patterns have 

been proposed (e.g. Fig. 4-1). In the slip-line approach, in general, a static slip-line 

network would be established based the plastic equilibrium and boundary conditions at 
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first, and then the collapse load can be obtained based on the characteristics of slip lines. 

This method is relatively more rigorous than the former one because it satisfies both the 

equilibrium equations and the yield criterion everywhere within the slip-line network, but 

the velocity field usually cannot be exclusively determined and the stress field outside the 

plastic equilibrium zone is not clearly defined in this method. Furthermore, neither the 

deformation of soil nor further disturbances caused by the continuous penetration to the 

stress and strain distributions can be accounted by this branch of methods (Yu and 

Mitchell, 1998). Overall, these limitations may reduce the accuracy and reliability of 

these methods in predicting the tip resistance of a continuously moving penetrometer. 

Q Q Q

QQ

qf
qf qf

qfqf

 

 

Fig. 4-1 Assumed failure mechanisms for a deep penetration 

(2) Cavity expansion approach 

Bishop, Hill, and Mott (1945) first demonstrated that the cone resistance with a deep 

indentation can be interpreted by an elastic-plastic quasi-static cavity expansion analysis. 

Then the analogy between cavity expansion and cone penetration greatly encouraged the 

development of cavity expansion theory and its applications to more penetration problems 

(Yu, 2000, 2006). In this approach, two key steps generally are required to be followed: 

① obtain the limit expansion pressure based on appropriate cavity expansion solutions, 

(c) (Berezantzev, 1961) 

(Vesic, 1963) 
(a) (Terzaghi, 1943) (b) (De Beer, 1948; 

Meyerhof, 1951) 

(d) (Biarez et al., 1961; 

Hu, 1965) (e) (Durgunoglu and Mitchell, 1973) 
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and ② relate the limit expansion pressure to the tip resistance. Based on more and more 

realistic soil stress-strain models, great progress of the quasi-static elastic-plastic cavity 

expansion solutions (Baligh, 1976; Carter et al., 1986; Collins and Yu, 1996; Salgado et 

al., 1997; Vesic, 1972; Yu and Carter, 2002; Yu and Houlsby, 1991) has been made in 

the geotechnical field (e.g. reviewed in Section 1.2). Meanwhile, various relations 

connecting the cavity expansion pressure (either cylindrical or spherical solution, or in 

combination (Mo, 2014; Yu, 2006)) and the tip resistance have been proposed with 

different methods (e.g. Fig. 4-2). 
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Fig. 4-2 Relations between cavity expansion pressure and end resistance 

Although great simplifications are also assumed, especially in the relating process, this 

approach is widely regarded as one most tractable and reliable theoretical tool to 

interpreting the steady cone penetration problem. The bases or advantages of this method 

(a) (Ladanyi and Johnston, 1974; 

Randolph et al., 1994) 

(b) (Vesic, 1977) 

 

(c) (Yasufuku and Hyde 1995) (d) (Salgado and Prezzi, 2007) 
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can be summarized as: (a) the stress and deformation fields ahead of an advancing cone 

are closely analogous to those described by the quasi-static cavity expansion solution, and 

(b) more realistic strength and deformation characteristics of soils can be taken into 

account by the cavity expansion theory. 

4.2 Analysis on shaft friction 

The Coulomb friction law as given in Eq.(4.3) has been widely employed to evaluate the 

shaft friction, which defines that the interface friction as the product of the experienced 

normal pressure and the mobilised interface friction strength. Specifically, the normal 

pressure acting on the shaft of a pressed-in pile is usually treated as the sum of the initial 

soil pressure at rest, the additional pressure caused by pile extrusion, and the shear-

induced pressure due to interface dilation or contraction under loading (Lehane et al., 

1993). Hence, the embedment depth, installation method, and soil stress history may all 

exert influences on the mobilisation of the confining soil pressure. The interface friction 

strength is predominantly determined by behaviours of soil in the localised shear zone 

formed in the close vicinity of the structure surface (named as interface shear band 

hereafter). In general, it is influenced by the independent or coupling effects caused by 

variations of the particle size, angularity, crushability, relative density of sand, roughness 

and hardness of pile surface and stress level (Frost et al., 2002; Jardine et al., 1993; Uesugi 

and Kishida, 1986a). The shaft friction capacity in our tests will be analysed with this 

method, and possible factors influencing the size-dependent behaviours in the interface 

frictional resistance will be discussed from these two aspects. 

4.2.1 Back analysis of the shaft friction capacity in present tests 

4.2.1.1 Characteristics of the shaft friction during penetrations 

Among the aforementioned design methods for driven piles in sand, the CPT-based 

method (ICP-05) given by Jardine et al. (2005) is used to estimate the shaft friction 

capacity during cone penetrations, in which the local shaft resistance is computed by 

Eq.(4.3) with 

0.38
'

' 0.1300.029 max ,8v
hc di c

a pile

h
A q

P R






 
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 

（ )  (4.6) 
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where 2 1[0.0203 0.00125 (1.216 6) ]m cG q e      , ' 0.5

0( )c a vq P   , 2 ay R  .for 

parameters in Eq. (4.5). 100kPaaP  , is the atmosphere pressure. =1diA  in compression, 

and =0.8diA  in tension. 

Taking tests on the medium dense samples as examples, the measured and predicted shaft 

friction capacities are compared in Fig. 4-3. With interface friction angles of 10o and 20o 

respectively (Klotz and Coop, 2001), the ICP-05 method (Eqs.(4.3),(4.5), and (4.6)) gives 

good estimations for the shaft friction of cone penetrometers during continuous 

penetrations in relatively deep depths, but evident underestimations were made in 

relatively shallow depths. In addition, its accuracy may also vary with sand densities, 

which was also found by Mo (2014). Due to the pile size, typical embedment depths, and 

installation methods in their database for assessing these empirical formulas are more or 

less different to the present miniature cone penetration tests, so direct applications to 

interpretations of the present tests may inevitably lead to above deviations, and more 

discussions will be given later. 

   
 

Fig. 4-3 Comparison of measured and predicted shaft friction capacity 

Size effects have already been considered in above methods in terms of the interface 

friction strength and the lateral confining stress, but evident deviations still exist when 

they were directly applied to interpret the present tests. Therefore, the size-dependent 

shaft resistance in our tests is re-evaluated from these two aspects in the next section. In 
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addition, it is found that the method for calculating of rd  in Eq. (4.5) is greatly 

simplified, which was established based on a simple elastic cavity expansion solution. As 

a consequence, its accuracy strongly depends on the adopted value of mG  and y . 

However, so far, no widely-agreed method for determining these two fundamental 

parameters has been achieved (Schneider, 2007). For example, in aforementioned pile 

design methods (e.g. ICP-05 and UWA-05), the operational shear modulus mG  is 

assumed to be represented by the small strain shear moduli ( 0G ) with different empirical 

formulas. In fact, mG  may be smaller than 0G , which varies with the induced stress level 

and strain level (Fioravante et al., 2010b; Lehane et al., 2005a). In addition, y  was 

estimated with two times of the average roughness of the interface ( 2 ay R  ) by the ICP-

05 method, related to the pile diameter ( / 0.1%piley R  ) by Lehane and White (2005), 

or expressed by the median particle diameter and aR  ( 0.4 0.6

502.5 ay D R  ) by Schneider 

(2007). Therefore, to precisely quantify the change of lateral stress caused by pile 

installation (or probe penetration), more effort is still needed, and some attempts on this 

topic will be made as presented later in Section 4.2.2.2. 

In addition, variations of the shaft friction during a continuous penetration is discussed 

with the averaged   (Eq.(4.2)) as plotted in Fig. 4-4 by following with Klotz and Coop 

(2001).   is the ratio of the average shaft friction resistance ‘ as ’ at a depth of H  over 

the mean initial overburden earth pressure '

0 /2v H . In Fig. 4-4, it shows that  rapidly 

decreases with an increasing depth at initial penetrations and then gradually approaches 

a relatively steady state, and higher values of   were obtained with tests on denser sand 

samples. In addition, the speeds of   approaching to the steady state in tests with the 

Fraction C sand are quicker than those in the Fraction E sand. Changes of   with the 

normalised depth ratio /H D  are similar in values and trends to those observed by Klotz 

and Coop (2001) in centrifuge penetration tests with similar sand relative densities (

16pileD mm , 1.1 ~1.5aR um um , maximum penetration depth is about 375mm, g-level: 

50g~200g, Leighton Buzzard sand with particle sizes within 0.15-0.212mm). The stress 

level in these two series of tests are significantly different, but comparable curves were 

observed. This probably indicates that /H D  plays a relatively dominant role in 


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determining the distribution of   rather than the stress level, at least in relatively shallow 

depths. However, strong dependences of '

, 0/as t v   on the stress level and the pile diameter 

were observed by Lehane et al. (2005a) in centrifuge pile tests under tension loading (

,as t  is the average side friction under tension). Therefore, the role of stress level in 

determining   needs to be figured out with more direct comparisons in future. 

Moreover, the observed trend of   coincides with some given distribution curves of the 

local   along the pile, for example, the curves changing with sand relative density for 

pile design by Toolan et al. (1990), and results from centrifuge pile loading tests with 

different pile surface roughness reported by Fioravante (2002). 

   

Fig. 4-4 Value of ‘  ’ in cone penetration tests with the 12mm penetrometer 

It also can be found from Fig. 4-4 that   obtained with tests in the Fraction E sand are 

always larger than those measured in the Fraction C sand with a similar relative density, 

which indicates that larger shaft frictions were experienced by the probe in the Fraction 

E sand. Based on the Coulomb friction law (Eq.(4.3)), this difference can be attributed to 

two aspects: Firstly, a higher penetration resistance was experienced by the moving 

penetrometer in the Fraction E sand under similar conditions. As a consequence, the 

confining pressure in these cases may be greater due to the induced soil stress level around 

the beneath of foundations closely relates to the experienced soil resistance (De Beer, 

1970; Perkins and Madson, 2000). Secondly, the mobilised interface friction strength 

between the probe and the Fraction E sand may be higher than that with the Faction C 

sand since the difference in sand particle size, and this effect will be elucidated later. 

4.2.1.2 Scale effect of side friction resistance under tension ( ,as t ) 
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Piles, soil nails and anchors are commonly used to resist uplift loads from superstructures, 

for example, transmission towers, mooring systems for ocean surface or submerged 

platforms, tall chimneys etc.(Chattopadhyay and Pise, 1986; Jones et al., 2007; Klinkvort 

et al., 2013). Size-dependent uplift shaft resistance was often observed in 1g model tests 

(Eid, 1987; Hettler, 1982; Turner and Kulhawy, 1994; Wernick, 1978), centrifuge tests 

(Balachowski, 2006; Fioravante, 2002; Foray et al., 1998; Garnier and König, 1998; 

Lehane et al., 2005a) and some full-scale pile tests (Sinnreich, 2011). In general, higher 

values of  would be mobilised by smaller piles or in coarser sands for cases with 

dilative interfaces, and a less pronounced size-strengthening effect or even size-reduction 

phenomenon would perform in loose sands or piles with smooth shafts (Balachowski, 

2006). Similarly, significant size-dependent behaviours may also occur when pulling out 

plant roots due to their very small sizes (10-4~10-1m) (Mickovski et al., 2010). Hence, the 

uplift shaft capacity of probes after penetrations was also measured in present tests as 

illustrated in Section 2.5. 
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Fig. 4-5 Scale effect of the shaft friction under tension 

Size-dependent influences to the shaft friction problems are usually named as the scale 

effect (Balachowski, 2006; Foray et al., 1998; Garnier and König, 1998; Lehane et al., 

2005a), so it is followed in this research. Three typical geometry sizes (median particle 

diameter 50d , pile diameter D  and surface roughness iR ) are often employed to evaluate 

the degree of the scale effect in interface friction problems (Garnier et al., 2007). 

Specifically, the dependence of the interface friction strength on 50/iR d  and the 

,as t
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dependence of rd  on 50/D d  are usually regarded as the main reasons leading to the 

size-dependent behaviours, which are predominantly determined by the sand behaviour 

in the interface shear band and the confining stress level. Therefore, 50/D d  was often 

used to indicate the potential influencing range of the scale effect to the shaft resistance, 

but different minimal values of 50/D d  to get rid of this scale effect were reported, which 

may be 30-50 (Fioravante, 2002), 100 (Garnier and König, 1998), or 200 (Balachowski, 

2006; Foray et al., 1998) in different conditions. 

No base suction would contribute to the uplift capacity in present tests with dry sands, so 

the averaged maximum shaft friction resistances 
, f t  is calculated by dividing the peak 

pull-out force by the embedded shaft area as plotted in Fig. 4-6. It shows that  gets 

larger with a decreasing probe diameter, and higher values of 
, f t  were mobilised in tests 

with the Fraction E sand than those with the Fraction C sand of similar states. 

Subsequently, by normalising  with the value obtained with the corresponding largest 

probe (
max, ( )f t D ), evident scale effect displays in Fig. 4-7, which shows that the scale 

effect becomes more significant with a decreasing D or an increasing d50. The measured 

scale effects in present tests are comparable with those obtained by Lehane et al. (2005a) 

in tests with buried rough piles on the centrifuge platform but a bit smaller. In fact, unlike 

buried piles, the equilibrated stress fields ( '

hc ) after penetration of different sized probes 

are not the same. No systematic change of the scale effect responding to the stress level 

has been found by Lehane et al. (2005a) in their tests. Therefore, the difference in '

hc  

arisen during the penetration process is not isolated here, which is approximately assumed 

to be producing a negligible influence on the normalised result. The shaft roughness in 

present tests is much smaller than that in tests of Lehane et al. (2005a) with piles of fully 

rough interfaces. This may explain why the observed scale effects in present tests are 

relatively smaller than theirs (Garnier and König, 1998). According to these experimental 

findings, potential reasons causing the size-dependent behaviour in shaft friction 

resistance are further discussed in detail as below. 

, f t

, f t
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Fig. 4-6 Average tensile shaft friction resistance 

 

Fig. 4-7 Comparison of scale effect in 
,f t  

4.2.2 Explanations of scale effects in the shaft capacity 

4.2.2.1 Size-dependent interface friction strength 

The interface friction strength often plays an important role in determining the bearing 

capacity and stability of structures placing on or in soils. Therefore, the soil-structure 

interface friction property has been extensively investigated with several kinds of 

laboratory shear testing apparatuses (DeJong and Westgate, 2009; Ho et al., 2011; 

Kishida and Uesugi, 1987; Lings and Dietz, 2004; Paikowsky et al., 1995; Porcino et al., 

2003). The interface friction coefficient, which is defined as the shear-to-normal stress 

ratio, is commonly employed to describe the interface friction strength in practice. In 
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general, it is predominantly determined by the behaviour of materials in the narrow shear 

band around the interface as detailed below. 

 

Fig. 4-8 Peak interface friction angle vs. normalised surface roughness 

(VLB: Leighton Buzzard sand with d50=0.78mm; MGS: medium golden sand with 

d50=0.44mm; MGS: silver fine sand with d50=0.13mm) 

As found in extensive numbers of interface shear tests (Lings and Dietz, 2005; Paikowsky 

et al., 1995; Uesugi and Kishida, 1986a), the surface roughness and median particle size 

have significant influences on the coefficient of interface friction at yield. By expressing 

the maximum interface friction strength versus max 50/R d  ( maxR  is the surface roughness 

in terms of a maximum height within 0.2mm gauge length), three typical influencing 

stages varying with max 50/R d  on the soil-structure friction strength are generally defined 

(Garnier, 2002; Lings and Dietz, 2005; Paikowsky et al., 1995), which were termed as: 

‘smooth’, ‘intermediate’ and ‘rough’ as recompiled in Fig. 4-8. Specifically, (1) when the 

interface is smooth ( max 50/R d is relatively small), the friction strength is low, and no 

dilatancy is expected to happen around the interface; (2) when the interface is rough 

enough ( max 50/R d is relatively large), the interface friction strength approximately 

approaches the sand friction strength, which means the overall interface friction strength 

no longer depends on the surface roughness. It implies the rupture or slippage surface 

forms inside of the deposit with little influence from the interface; (3) for the interface 

with a relative roughness falling in the intermediate zone, the mobilised friction strength, 

in general, proportionally increases with increasing relative roughness in the semi-
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logarithmic scale. Note that two different roughness parameters, maxR  and aR , were often 

used to characterise the surface roughness in the interface friction problem. Although they 

were found to be equally good at unifying the data (Lings and Dietz, 2005), cautions 

should be taken while employing these empirical curves with different surface roughness 

parameters since they usually are in different orders of magnitudes. 

The sand relative density influences the peak friction strength of sands, so it will impact 

the upper bound of the peak friction strength of a rough interface. It applies relatively 

little influence for interfaces lying in other zones although a decreasing density will push 

the trend line downwards slightly. Moreover, a different dependency of the interface 

friction on the confining stress level was reported (Dietz, 2000; Jardine et al., 1993; 

Uesugi and Kishida, 1986b), which may vary with the surface roughness and sand state 

(Dietz, 2000). In general, the interface friction angle slowly reduces with an increasing 

normal stress for a rough surface, and opposite trend may appear in a very smooth surface 

(Dietz, 2000). In addition, the sand type (compressibility, crushability etc.) also plays an 

important role in determining the interface strength (Balachowski, 2006; Uesugi and 

Kishida, 1986a). 

 

Fig. 4-9 Ultimate interface friction angle vs. normalised surface roughness 

In determining the interface friction with large deformations (e.g. pile installation, CPT), 

the ultimate friction angle (or critical state), cs , developed after a post-peak displacement 

was often recommended (Jardine et al., 1993). With a similar concept of the critical state 

friction angle in sands, the ultimate failure of the interface under shearing occurs when 
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the interface’s constituent sand grains became ‘unlocked’ from the rough structure 

surface which allows deformation to proceed without further volume change. Based on 

series of shearing tests on sands with different particle sizes, Jardine et al. (1993) 

summarised that cs  also highly depends on the normalised roughness ( 50/aR d ), is 

independent of the initial sand relative density, and may depend on the effective stress 

level in some cases. Based on the data of shearing tests from Jardine et al. (1993) and 

Dietz (2000), a complication of cs  is given in Fig. 4-9. It shows that the trend of cs  

against 50/aR d  is very similar to that happens to '

p  with varying normalised roughness 

(e.g. Fig. 4-8), and it also can be roughly divided into three roughness ranges. 

Specifically, the ultimate interface shearing friction angle is bonded with an upper limit 

(sand-sand critical state shearing angle cv ) for relatively rough surfaces, and a minimum 

value of cs  may practically exist for the interface with a very low value of 50/aR d . 

Changes of cs  with 50/aR d  are very slight in these two zones, but a significant variation 

performs in the intermediate zone. An approximately exponential correlation between cs  

and 50/aR d  is fitted. The sand-pile interface friction angle is also recommended with 

similar trends in some CPT-based pile design methods (e.g. ICP-05 and UWA-05). 

However, different upper limits were specified since the potential change of the surface 

roughness caused by abrasion during the large-displacement pile installation (Lehane et 

al., 2005b). However, a much lower sensitivity of cs  to the change of 50d  was observed 

by Ho et al. (2011) in large-displacement ring shear tests due to the more significant 

particle breakage around the interface and interface smoothing effect. It was found that 

the ultimate interface friction angle varies in a very narrow range very close to that 

suggested value (e.g. 29°) by CUR (2001). 

Above results can be employed to partly explain the measured results presented in Fig. 

4-4. As defined in Eq.(4.2), tanfK  . Firstly, in tests with the same sand, the same 

value of  remains with the same penetrometer. Therefore, the difference of the 

initial sand relative density might not make any contribution to the difference of   in 

this case. Instead, it is mainly ascribed to changes of fK  caused by variations in the sand 

relative density as hypothesised by Kraft (1990). In addition, as measured, 

3

50/ 5.1 10aR d    between the penetrometer and the Fraction E sand, and 

50/aR d
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3

50/ 1.2 10aR d    with the Fraction C sand. These two values of the normalised 

interface roughness lie in the range of intermediate zone, and the estimated critical state 

friction angle is 19.2o and 14.3o for the Fraction E sand and the Fraction C sand 

respectively based on the fitted curve in Fig. 4-9. A higher interface friction strength may 

be mobilised in tests with the Fraction E sand than those in the Fraction C sand samples. 

This partly explains why higher values of  were obtained in tests on the Fraction E 

sand with comparisons of results measured within the Fraction C sand under similar 

relative densities and penetration depths as shown in Fig. 4-4. 

4.2.2.2 Scale effect on the mobilised lateral stress 

As defined in Eq.(4.3), the radial stress acting on the sand-pile interface at failure consists 

of the radial effective stress '

hc  after equilibrium and the change of radial stress rd  

due to the interface dilation or contraction. '

hc  is determined by the combination of the 

initial stress state of sand and the process of pile installation (or probe penetration). 

Specifically, it depends on the initial stress level, pile installation methods, sand relative 

density, and relative distance to the pile tip ( /h D ) etc. (Lehane et al., 1993; Lehane and 

White, 2005). For the currently concerned steady penetration problem, it can be roughly 

expressed as ( )' '

0, , /hc r vf D h D  . Incorporating with readings of CPTs, these factors 

can be considered with the form of Eq.(4.4) (Schneider et al., 2007b). rd  mainly arises 

from the volume change of the narrow interface along the pile under shearing, and it is 

often theoretically analysed with some elastic expansion/contraction solutions (Boulon 

and Foray, 1986; Sinnreich, 2011; Turner and Kulhawy, 1994; Wernick, 1978). Based on 

the postulation from Boulon and Foray (1986) as given in Eq.(4.7), the direct shear 

interface tests with constant normal stiffness (CNS) (as illustrated in Fig. 4-10) is 

increasingly employed to study the shaft interface friction behaviours (Balachowski, 

2006; Foray et al., 1998; Lehane and White, 2005; Shahrour, 2013). 

4rd m s

pile

y
G k y

D



     (4.7) 

where sk  is defined as the spring stiffness of surrounding soil, and other terms are the 

same as defined in Eq.(4.5). mG  is the operational shear modulus, which may depend on 

the sand packing conditions, confinement conditions (stress or stiffness), and pile 


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installation methods (deformation history) etc. (Mitchell and Soga, 2005). It is often 

estimated by the small-strain modulus 0G  by multiplying an empirical constant less than 

unit due to the plastic deformations produced in this process. Consequently, the empirical 

constant may vary with the produced stress and strain level (Fahey and Carter, 1993; 

Fioravante, 2002; Lehane et al., 2005a). The incremental radial displacement ( y ) 

mainly depends on the pile surface roughness, mean particle size, confinement conditions 

and density of sand in the interface shear band, soil particle mineralogy and angularity, 

Poisson effect of the pile under loading etc. (DeJong and Westgate, 2009; Fioravante, 

2002; Schneider, 2007). 

In Eq.(4.7), it theoretically states that rd  strongly depends on the confining soil 

stiffness and the volume change of the interface shear band and is inversely proportional 

to the pile radius. However, the effect of the median particle size (d50) has not been taken 

into account in this solution, which also plays an important role in affecting the interface 

friction behaviour. Some improvements are made to address this problem as follows. 
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Fig. 4-10 Pile-soil interface model and direct shear interface tests (dilative interface) 

In general, experimental observations reveal that the thickness of the mobilised interface 

shear band ( bw ) along the pile surface distributes in a typical range of 2-15 times of d50. 

It is usually independent of the pile diameter, but varies with the shaft surface roughness, 

sand relative density in the vicinity of the interface, confining conditions, and the sand 
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crushability etc. (Balachowski, 2006; DeJong and Westgate, 2009; Fioravante, 2002; Ho 

et al., 2011; Lehane et al., 2005a; Martinez et al., 2015; Tehrani et al., 2016; Yang et al., 

2010). In fact, y  represents the degree of radial expansion or contraction of the narrow 

interface shear zone, and it may be also independent of the pile diameter (Lehane et al., 

2005a). Following with Turner and Kulhawy (1994), the interface shear band is 

approximately regarded as an elastic, thick-walled cylinder with an inner radius a and an 

out radius b ( bb a w  ). In general, the shear-induced y  is very small with the same 

magnitude of the surface roughness, d50 or less (Schneider, 2007). It is plausible to believe 

most parts of the outside soil mass may remain elastic under such amount of deformations. 

Therefore, the soil mass outside of the inner shear band is regarded as an infinite elastic 

medium subjecting to an incremental radial uniform pressure along its inner boundary. 

Under shear loading, uniform pressures on the internal and external boundaries of the 

inner thick-walled cylinder would be simultaneously mobilised due to dilation or 

contraction of the sand within the interface shear band. By assuming the pile is rigid, the 

inner boundary condition of the thick-walled cylinder is obtained, which restricts the 

radial displacement at the pile surface to be zero (
, 0s pu  ). Then the interface pressure (

sp ) along the outer surface of the interface shear band is derived based on the concept 

from a compound cylinder moulded with prestressing (Ugural and Fenster, 1995), and the 

radial displacement y  is estimated by the shrinkage allowance. Specifically, y  is the 

sum of the induced radial displacement of the inner cylindrical thick-walled shear zone 

and the radial displacement of the outer infinite soil mass under a uniform contacting 

pressure. 
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Fig. 4-11 Stress boundaries around the interface shear band 

Based on the classical elastic cylindrical cavity solution given in Appendix B for plane 

strain problem, the incremental radial stress (
pp ) acting on the pile surface can be 

obtained with the boundary condition at the pile surface (
, 0s pu  ) as 

2

2(1 )

(1 2 )( ) 1
p s sp p p

b a



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
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 
 (4.8) 

Radial displacements of the inner thick-walled shear zone (
, s iu ) and the outer infinite soil 

mass (
,osu ) caused by the mobilised contacting pressure sp  respectively are 
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The induced total radial displacement y  (positive for outwards displacement) is 
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Subsequently, the contacting pressing ( sp ) is obtained as 
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Then stress changes in the radial and circumferential direction respectively are 
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Distributions of the radial stress for cavities in different sizes are given in Fig. 4-12, the 

additional radial stress was assumed to be mobilised by the dilative or contractive 

displacement of the hollow cylindrical interface shear band. Therefore, the compressive 

radial stress is induced from the outer boundary of the shear band and then monotonically 

decreases to the pressure on the pile surface. The gap of r  between these two positions 

decreases with increases of the cavity size, but it would disappear in incompressible soils. 
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Fig. 4-12 Distribution of normalised radial stresses for cavities with different radii 

In fact, the slippage or rupture surface under shearing around the interface would not 

ideally locate on the inner or outer boundary of the interface shear band in general cases. 

Therefore, rd  is neither the induced radial pressure acting on the pile surface nor that 

on the outer boundary of the shear band. Instead, it may equal to the pressure on one ring 

within the thick-walled cylinder of the interface, but the exact position of this conceptual 

ring is not always fixed or clearly known. For simplicity, rd  is approximated with sp  

of the present solution. 
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Fig. 4-13 /rd mG y   vs. 50/D d  (different shear band thickness and Poisson’s ratio) 

Comparing with Eq.(4.7), two additional parameters, Poisson’s ratio of soil and shear 

band thickness, were incorporated by the present solution (Eq. (4.12)), and mG  and y  

still play similar roles in determining rd . In brief, mG  strongly depend on the 

confining stress level and the induced strain level and may reduce with increases of 

/y D  due to a relatively higher stress level and smaller strain level may be induced by 

a smaller pile. y  is mainly caused by the deformation of the interface shear band, which 

may be independent of the pile size (Lehane et al., 2005a), but increases with the 

increasing sand particle size and pile surface roughness (Schneider, 2007). To express 

individual influences of the additional parameters, mG  and y  remain unchanged in 

comparisons shown in Fig. 4-13. It shows that /rd mG y   decreases with increases of 

the shear band thickness ( bw ) due to its inverse dependency on the nominal pile radius 

(b) and decreases of the Poisson’s ratio. In addition, the scale effect also reduces with 

increases of bw , but it slightly intensifies with decreases of the Poisson’s ratio. 

In addition, it is easy to find that the new expression of rd  can exactly reduce to the 

solution given in Eq.(4.7) ( 1 2 /rd mG y a    ) while omitting the thickness of the 

interface shear band for incompressible soil ( 0.5  ). When bw  is taken into account, it 

will reduce to 2 2 /rd mG y b     for incompressible soils. Physically, these two special 

cases can be equivalently regarded as solutions derived with assumptions that rd  is 
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the mobilised radial stress acting on the pile surface and on the position with a nominal 

radius of bb a w   respectively. Moreover, Garnier and König (1998) assumed that the 

shear rupture surface passes through the middle of the interface shear band, which gave 

a nominal pile radius of ( 0.5 )ba+ w . Accordingly, a new solution can be obtained as 

m 2 / ( 0.5 )rd m bG y a+ w    . Performances of above assumptions are also compared in 

Fig. 4-13. It indicates that the inverse dependency of rd  on the pile radius can be 

qualitatively captured by all these solutions, but different levels of the scale effect are 

predicted with them. For incompressible material, the gap between these methods gets 

smaller with increases of 50/D d , so no difference would be produced by them in practical 

pile designs (relatively large sizes). In addition, the scale effect attenuates with increases 

of 50/D d  and almost vanishes when 50/D d  gets close to 200 which coincides with some 

experimental findings (Balachowski, 2006; Foray et al., 1998). In addition, performances 

of these theoretical solutions are further evaluated with the results obtained by Lehane et 

al. (2005a) in tension tests with embedded rough piles in dense sand. In Fig. 4-14, it shows 

that the experimentally observed scale effect was better quantified by the present solution 

with a typical value of the interface shear band thickness while significant over-

predictions were made by Eq.(4.7). More precise predictions can be made by taking into 

account the strain-level dependency of mG . Based on these analyses, it is believed that 

Eq. (4.12) provides a more reliable solution to quantify the potential scale effect in the 

changes of the radial stress than the solution given in Eq.(4.7) without any loss of 

simplicity.  
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Fig. 4-14 Scale effect of  with comparison to experimental results 

To further examine the accuracy of Eq. (4.12), the measured and calculated shaft capacity 

of tests in tension and compression are compared in Fig. 4-15 and Fig. 4-16 respectively. 

The original ICP-05 method was given in Eq.(4.3)-Eq.(4.6), and the modified method is 

achieved only by replacing the expression of rd  in Eq.(4.5) with Eq.(4.12). The 

experimental data was given in Tab. 2-7. All calculations are made with previously given 

parameters ( aR =0.607um, cs =19.2o with FE sand and cs =14.3o with FE sand). The 

interface shear band thickness is set in a typical range of 2-8 times of the mean particle 

size, which approximately varies with the sand relative density and confining stress levels 

(relatively higher in compression than those in tension). Additionally, considering the 

dependency of y  on the particle size (Schneider, 2007), =2 ay R  is set in predictions 

of shaft capacities in the Fraction C sand, and = ay R  for tests in the Fraction E sand. By 

comparing with the measured shaft capacities in present shallow penetration tests with 

miniature smooth-surfaced penetrometers, the modified method gives closer predictions 

than the original formulas which mainly serve for practical designs of large sized piles. 

In addition, by relating y  with 50d , the difference between these two methods gets 

smaller with the increase of 50/D d . For example, the gap of predicted values with these 

two methods is obviously smaller in applications to tests with the Fraction E sand ( 50d

=0.12mm) than those with the Fraction C sand ( 50d =0.51mm). Based on above analyses, 

the modified method may provide more reliable predictions of the experienced shaft 

resistance for applications to small sized model piles. 
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Fig. 4-15 Comparison of uplift shaft capacity 

 

 

Fig. 4-16 Comparison of maximum shaft capacity during penetrations 

In addition, as reported by Balachowski (2006), an opposite scale effect (size-softening 

phenomenon) was found in contractive interfaces (e.g. interface between loose sand and 

smooth plate), and the skin resistance reduces with decreasing 50/D d . In these cases, 

unloading may occur due to contraction of sand in the vicinity around the pile surface 

under shearing. The mobilised radial displacement y  turns negative, and, consequently, 
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rd  becomes negative (stress release). Therefore, the overall radial stress would reduce, 

and the reduction may increase with decreases of 50/D d . Similarly, the opposite scale 

effect observed in a contractive interface probably can be explained with the present 

solution with a negative interface displacement ( y ). 

In the light of above discussions, it is concluded that the interface friction resistance may 

be greatly influenced by the aforementioned two scales, 50/iR d  and 50/D d , within 

certain ranges. Specifically, the interface friction strength significantly varies in 

proportion to changes of  for interfaces lying in the intermediate zone. Size-

dependent responses will be performing in  while  gets less than a limit value 

which may vary in the approximate range of 30 to 200 (Fioravante, 2002; Foray et al., 

1998; Garnier and König, 1998). To avoid influences from these scale effects, ratios of 

 and  should be carefully designed in scaled model tests to simulate the 

field condition as realistic as possible. In addition, apart from these two main aspects, 

other factors may also contribute to the size-dependent performances of the shaft friction 

in some degrees. Among them, the potential stress level effect and /H D  effect are 

emphasised here. Firstly, the Mohr-Coulomb strength envelope is usually approximated 

by a straight best-fitting line in a limited stress range. However, it is known that the 

friction angle of granular material more or less reduces with an increasing normal stress 

(Baligh, 1976; De Beer, 1963). So while the stress level induced by installations of 

different sized piles are significantly different, this effect also needs to be taken into 

account. Additionally, to maintain a same initial stress level, the same embedment depth 

may be required in 1g tests. Then different values of  will be produced with 

different sized piles. These two factors also deserve to be kept in mind to reduce their 

potential additional influences while evaluating the concerned scale effect in shaft 

friction. 

4.3 Size-dependent cone tip resistance and analysis 

As reviewed in Section 2.2, size-dependent behaviours of the end resistance have been 

extensively reported both in shallow and deep penetration tests. Penetration mechanisms 

of the shallow penetration and the deep penetration are significantly different 

(Durgunoglu and Mitchell, 1973; Meyerhof, 1951), so dominating size factors may vary 

with the penetration depth (Balachowski, 2007; De Beer, 1963). As previously concluded 

50/iR d

rd 50/D d

50/iR d 50/D d

/H D
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that the shallow penetration is highly influenced by the relative penetration depth, and the 

deep penetration mechanism is greatly determined by the local deformation 

characteristics. A critical penetration depth ratio ( ( / )crH D ) was often defined in 

theoretical and empirical approaches interpreting the tip resistance of a static 

penetrometer (Durgunoglu and Mitchell, 1975; Kim et al., 2015; Meyerhof, 1983). In 

general, the normalised cone factor (
0/

cq c vN q  ) increases with /H D  almost linearly 

(Durgunoglu and Mitchell, 1975) in relatively shallow depths. While the critical relative 

depth is reached, cq  will be proportional to the increase in depth (Durgunoglu and 

Mitchell, 1973). The critical penetration depth varies with soil properties and 

penetrometer types, but Durgunoglu and Mitchell (1975) concluded that it should be on 

the order of 5-10 for loose sands and 20-25 for dense sands for normal cone 

penetrometers. 

4.3.1 Size effect of the cone tip resistance in present tests 

The tip resistances encountered by different sized probes are compared by conserving the 

initial vertical stress ( 0v ) level which has a significant influence on cq . For the 

uniformly deposited sand samples, the initial vertical stress is assumed to linearly increase 

with the depth, so 0v  can be directly represented by the penetration depth here. All 

results of the tip resistance and the cone factor (
0/qc c vN q  ) in present tests are plotted 

in Fig. 4-17 and Fig. 4-18. 
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Fig. 4-17 cq  and 0/c vq   vs. penetration depth (FC sand samples) 
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Fig. 4-18 cq  and 0/c vq   vs. penetration depth (FE sand samples) 

Evident size differences of the measured tip resistance (and 
qcN ) were observed in results 

of the present 1g shallow penetration tests. At the same penetration depth (the same initial 

stress level), higher sand resistances were generally encountered by a smaller sized probe. 

The size effect seems less noticeable in loose sands as also observed by Balachowski 

(2007), but no obvious attenuation was found in present tests between the data obtained 

with dense samples and with medium dense samples. 

As discussed in Chapter 2, present tests should immune from the side boundary effect. 

Even if the side boundary effect applied, above size-dependent behaviours of the tip 

resistance might not have been amplified. It is because more enhancements may be 

experienced by larger sized probes in that case because cq  would get higher while a 
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greater side boundary effect is applying from a perfectly rigid lateral (Salgado et al., 

1998). Therefore it is believed that the difference in ratios of the chamber size to the cone 

diameter ( CPT/dR B D ) is not the reason leading to the size-dependent differences of the 

tip resistances, and it may apply no additional effect on results of present tests. In addition, 

the rigid base boundary may exert influences in the process of sample preparation and 

test implementation. Similarly, the rigid base may also enhance the soil resistance more 

or less when this boundary effect works. Additional confining effects from the rigid base 

during penetrations may be eliminated by satisfying the requirements specified by Lee 

(1990) and Bolton and Gui (1993) as given in Fig. 2.15, but potential influences caused 

by the rigid base during sample preparations are not easy to be evaluated. Note that 

penetrations deeper than 250mm with the 12mm sized penetrometer in tests with dense 

samples of the Fraction C sand violated the minimum distance requirement from the 

bottom base, so data within this range will not be used in following comparisons. 

4.3.2 Theoretical prediction of the size effect in cone tip resistances 

In order to theoretically account for the observed size effect in the cone tip resistance, the 

classical bearing capacity theory based method from Durgunoglu and Mitchell (1975) and 

the size-dependent cavity expansion solution developed in Chapter 3 will be used to 

predict the tip resistance in present tests. In addition, performances of the later method in 

describing the concerned size effect in cone tip resistances will be further evaluated with 

some other available experimental CPT data. At first, the required strength and stiffness 

properties of sands used in present tests are estimated as follows. 

(1) Sand friction and dilation angles 

Basic sand parameters have been given in Tab. 2-3. The peak friction angle (
p ) and 

dilation angle (
p ) of sands at different states are estimated based on the empirical 

formula proposed by Bolton (1986).  

o

p cs p RB A I       (4.15) 

where 0.5B  , 3A   for triaxial conditions, and 0.8B  , 5A   for plane strain 

conditions.  

100 '
(10 ln ) 1m

R R

atm

p
I D


     ,  for ' 150kPamp   (4.16) 
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5 1R RI D                            ,  for ' 150kPamp   (Bolton, 1987)  (4.17) 

where 100atm  kPa. Dr is the relative density value, in % and 'mp  is the mean effective 

confining stress at failure, in kPa. In shallow foundations, 'mp  was often estimated by 

0( 3 ' )
' (1 sin )

4

c v
m

q
p





   suggested by De Beer (1970), or by ' /10m cp q  suggested 

by Meyerhof in his doctor’s thesis (De Beer, 1963). In deep penetrations, 0' 'm c vp q   

was often used (Bolton et al., 1993; Yu and Houlsby, 1991). According to these 

estimations, it is found that 'mp  remains less than 150kPa in most cases of present tests. 

Therefore, Eq. (4.17) is used to predict the peak friction angle and dilation angle of sands 

in following calculations, and 'mp  is estimated with /10cq . 

Tab. 4-1 Estimated sand shear strength properties 

Sand 

type 
Sand state 

Friction angle Dilation 

angle 

(triaxial) 

p  / ° 

Interface 

friction 

cs  / ° cs  / ° 
Plane strain 

pp  / ° 

Triaxial 

pt  / ° 

Fraction 

C 

Dense 
32 49.5 42.5 21.0 

14.3* 
Medium dense 43.3 38.8 13.5 

Fraction 

E 

Dense 

32 

49.5 42.5 21.0 

19.2* Medium dense 43.3 38.8 13.5 

Loose 37.0 35.0 6.0 

* Interface friction angle at the critical state, estimated from Fig. 4-9 as aforementioned. 

Correlations for estimating parameters in Eq.(4.16) at low confining stresses were also 

suggested by Chakraborty and Salgado (2010) based on triaxial compression and plane-

strain compression test data of Toyoura sand, which gives similar results for present tests. 

It needs to point out that the same shear strength is approximately estimated for the 

Leighton Buzzard sands with different particle fractions in Tab. 2-3, and, as a 

consequence, the same plastic yield strength would be applied to them with the classical 

Coulomb yield criterion. However, the yield stress of the Leighton Buzzard sand may 

vary with the particle size distribution (increase with a decreasing particle size) as found 

by McDowell (2002). Similar grain size-dependent yield behaviours were also observed 

in other silica sands (Nakata et al., 2001; Zhang et al., 2016). Therefore, the yield stress 
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of the Fraction E sand may be a bit higher than that of the Fraction C sand in nature, but 

this potential difference has not been taken into account in present calculations. 

(2) Small strain shear modulus 

The elastic soil stiffness ( 0G ) is generally evaluated from measurements of elastic wave 

velocities or use of local displacement transducers (Mitchell and Soga, 2005). It has been 

long recognised that the void ratio and confining stress level predominantly determine the 

stiffness of sands, and a number of empirical equations has been proposed with the form 

of Eq.(4.18) (Bui, 2009; Hardin and Black, 1966; Mitchell and Soga, 2005). 

0 ( )( )nm

atm atm

G p
AF e

 
  (4.18) 

where ( )F e  is a void ratio function, A  and n  are material constants. mp  is mean 

effective confining stress. 

In specific, 0G  is often measured with resonant column or bender element tests in the 

laboratory (Bui, 2009; Lo Presti, 1987) and various in-situ devices in the field (Fahey et 

al., 2003; Schnaid et al., 2004; Schnaid and Yu, 2007). Among them, many empirical 

equations relating 0G  with the cone tip resistance ( cq ) have been developed (Baldi et al., 

1991; Lunne et al., 1997; Rix and Mayne, 1993; Rix and Stokoe, 1991; Schnaid et al., 

2004). The empirical relationship suggested by Rix and Stokoe (1991) (given in 

Eq.(4.19)) based on several series of field and laboratory test data will be employed to 

estimate the small strain sand stiffness in following calculations. 

0.750

0

( ) 1634( )
'

c
ave

c v

G q

q 

  (Uncemented quartz sands)   (4.19) 

Within this empirical equation, 0G  is determined by the cone tip resistance and initial soil 

stress level. Due to the size differences in the mobilised soil resistance (proportional to 

the confining pressure), the predicted values of 0G  also vary with the penetrometer size 

and sand types even at the same level of 0'v . 

Note that the concerned particle size effect may also influence the small strain stiffness (

0G ). For example, Bui (2009) found that 0G  significantly increase with increases of the 

particle size at the same confining pressure level based on a series resonant column tests 
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with Leighton Buzzard sands. Slight increases of 0G  with increasing particle size were 

also reported by Menq et al. (2003). In contrast, it was observed that 0G  does not depend 

on d50 in the range of 0.1mm to 6mm in resonant column tests with a natural quartz sand 

but significantly decreases with an increasing coefficient of sand uniformity (Wichtmann 

and Triantafyllidis, 2009). Contradictory findings of the dependency of 0G  on the particle 

size were reported, therefore more effort is suggested to shed light on this phenomenon, 

and a better understanding of the particle size effect in cone penetration tests may be 

acquired then. 

4.3.2.1 Estimation with method of Durgunoglu and Mitchell (1975) 

The well-known bearing capacity theory-based method developed by Durgunoglu and 

Mitchell (1975) is briefly introduced before applications to interpret our test results. 

Durgunoglu and Mitchell (1975) studied the wedge penetration problem first to give a 

plane strain solution, and then the axisymmetric geometry of cone penetration was taken 

into account with an empirical shape factor. The cone tip resistance in sands was 

expressed as  

c s q qq gDN    (4.20) 

where s  is sand density. g  is the gravity of earth. D  is the diameter of the 

penetrometer. 
qN  is the bearing capacity factor. 

q  is the shape factor. 

In this method, the continuous penetration was separately analysed as a series of static 

equilibrium problems at different instants. Each failure surface corresponds to a certain 

penetration depth. At initial stages, the failure surface (represented by a logarithmic 

spiral) spreads out and intersects the ground surface before reaching vertical tangency. 

The critical relative depth was determined at the moment when the vertical tangential 

point just matches the ground level as given in Eq.(4.13). So b  , 0 1  , in which 

equalities are taken when relative depths are equal or greater than the critical relative 

depth as depicted in Fig. 4-19. 
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Durgunoglu and Mitchell (1975)) 
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and b  can be determined with Eq.(4.22). 

tan [1 sin sin(2 )] sin cos(2 ) 0b b            (4.22) 

where 
1 180 ( )o

b b       , 
sc90o

b   . For penetrometers with a rough surface, 

a rigid wedge (or cone) will be developed in front of the tip with a base angle of 

o45 / 2 . 

The bearing capacity factor is 
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DK  is the lateral earth pressure coefficient, and it is estimated with (1 sin ) here. 

Iterations are required to determine b  in relative depths less than ( / )crH D . The shape 

factor in Eq.(4.24) was adopted for penetrations of circular cone penetrometers. 

6

1.5
0.6

/ 1.5 / (0.6 tan )
q

D H



 

 
 (4.24) 

The sand resistance is entirely characterised by the sand shear strength and interface 

friction angle in this method, so the calculated cone tip resistance is very sensitive to these 

two parameters. The interface friction angle is taken as estimated in Tab. 2-3. The peak 

friction angle was adopted by Durgunoglu and Mitchell (1973) in their predictions with 

this method, so peak values of the friction angle were also first attempted in following 

calculations. Relatively satisfactory predictions were obtained with ( ) / 2pp pt   to tests 

with dense sand samples, and with 
pp  for medium dense sand samples as shown in Fig. 

4-20. It is shown that results predicted by this method compare well with data obtained 

by the 12mm sized penetrometer in relatively shallow depths, and relatively better 

performances it has in applications to tests on the dense sand samples. Evident 

underestimations were made in relatively deep depths, which is more serious in 

predictions to tests with the medium dense sand samples even the plane strain peak 

friction angle was employed. 
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Fig. 4-20 Comparison of cq  with present tests(experimental data vs. D-M solution) 

In this solution, the normalised cone tip resistance (cone factor 0/c vq  ) strongly depends 

on the value of /H D  regardless of the real cone size as demonstrated in Fig. 4-21. 

Therefore, higher resistances are predicted for tests with smaller sized penetrometers at 

the same penetration depth due to greater values of /H D . However, the observed size 

effect in the cone tip resistance cannot be sufficiently accounted for just with 

consideration of the /H D  effect, in which it was obviously underestimated as shown in 

Fig. 4-20. By considering the stress dependency of the sand friction angle, the size effect 

in shallow penetrations was studied by De Beer (1963) on the basis of another classical 

bearing capacity theory based method from Meyerhof (1951). To put it simply, the same 

value of /H D  would be reached by smaller sized penetrometers in relatively shallower 
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depths where lower initial soil stresses exist. The sand friction angle increases with 

decreases of the confining stress, in particular at low-stress levels. Therefore, a higher 

soil resistance may be experienced by a small penetrometer with the same value of /H D  

as assumed in De Beer’s solution. More pronounced size effect in shallow penetrations 

can be predicted with this method, but a calculation of trial and error must be performed 

since the mutual dependency of the sand friction angle and the penetration resistance. The 

bearing capacity based method is very sensitive to the variation of sand friction angle, so 

this method is not attempted in this research due to lack of precise measurement of the 

sand friction angle under varying confining pressures. In addition, the progressive failure 

mechanism (strain level dependent strength) discussed in the previous section of 2.2.1 

may also play roles in determining this size effect at shallow depths. 

Above discussion reveals that the size difference of cone tip resistances within shallow 

penetrations may be explained by the /H D  effect and the associated stress-dependent 

or strain-dependent internal friction strength of sands. The /H D  effect may dominate 

the change of 0/c vq   in relatively shallow penetrations (e.g. as indicated in Fig. 4-22), 

but better predictions of the size dependency of cone tip resistances in shallow 

penetrations may be achieved with simultaneous considerations of the other two factors 

in bearing capacity theory-based approaches. 

   

Fig. 4-21 cq  and 0/c vq  with parameters used in predictions of dense sand samples 
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Fig. 4-22 0/c vq   vs. normalised penetration depth 
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4.3.2.2 Applications of the size-dependent cavity expansion solution 

As reviewed in Section 4.1.2, due to the analogy between cavity expansion and cone 

penetration, cavity expansion theory has been widely adopted to interpret the cone 

penetration test as a simple theoretical tool in addition to the above bearing capacity 

theory. To account for the observed size effect in cone tip resistances, a size-dependent 

cavity expansion solution for sands was developed in the previous chapter. To relate the 

cavity expansion pressure with the cone tip resistance, the simple relationship given in 

Eq.(4.25) will be employed in following interpretations. 

plimplim

qcqc

DD



sc

 

Fig. 4-23 Schema for transformation of a cavity expansion to a deep cone penetration 

sc lim[1 tan cot ]c cvq p    (4.25) 

where limp  is the required quasi-static expansion pressure of a spherical cavity (Ladanyi 

and Johnston, 1974; Randolph et al., 1994). It is calculated with the limit expansion 

pressure for a cavity expanding to a given radius (i.e. CPT / 2D  (Mo et al., 2016)) in 

following calculations. 

(1) Application to the present tests 

Soil failures caused by a static penetrometer at shallow depths are usually in the type of 

general shear failure. The soil bearing capacity is usually estimated with the assumption 

that the soil is incompressible (Durgunoglu and Mitchell, 1975; Meyerhof, 1951). In 

relatively deep penetrations, local shear failure takes place around the cone tip, and the 

deformation characteristics of the material become of greater importance. The displaced 

soil deforms more analogous to that caused by a cavity expansion, therefore better 

predictions may be made with methods based on the cavity expansion theory in deep 
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penetrations (Yu and Mitchell, 1998). Based on the data availability of present tests, tip 

resistances in two relatively deep depths (180mm and 240mm) are selected (as tabulated 

in Tab. 4-2) for comparisons with the theoretical results. These two depths are deeper 

than the defined critical depth by Eq.(4.21), so deep penetration behaviours are expected. 

Tab. 4-2 Cone tip resistance at given penetration depths 

Test ID 
At 180mm depth 

 
At 240mm depth 

cq  / MPa Size effect* 
cq  / MPa Size effect 

FE-12-D 1.296 1.00  2.031 1.00 

FE-6-D 1.755 1.35  2.509 1.24 

FE-3-D 1.823 1.41    

FE-12-M 0.754 1.00  1.167 1.00 

FE-6-M 0.924 1.23  1.286 1.10 

FE-3-M 1.089 1.45    

FE-12-L 0.356 1.00  0.457 1.00 

FE-6-L 0.398 1.12  0.495 1.08 

FC-12-D 0.806 1.00  1.326 1.00 

FC-6-D 1.155 1.43  1.812 1.37 

FC-3-D 1.427 1.77    

FC-12-M 0.582 1.00  0.765 1.00 

FC-6-M 0.824 1.42  1.187 1.55 

FC-3-M 0.972 1.67    

* The size effect is defined as 12/c xmm c mmq q   for tests with a similar relative density. 

It can be found from Tab. 4-2 that: (1) the defined size effect is more significant in 

relatively shallow penetration depths; (2) the size effect vanishingly decreases with the 

decrease of sand relative density; (3) the defined size effect is greater in tests within the 

Fraction C sand than those within the Fraction E sand. 

As aforementioned, the general size effect consists of grain size effect and geometry size 

effect ( / CPTH D  effect) (Balachowski, 2007). The / CPTH D  effect mainly behaves in 

relatively shallow depths, and it mostly depends on the initial stress level and sand relative 

density (Kim et al., 2015). In relatively deep penetration, soil failure around the cone is 

predominantly determined by the local deformation characteristics (characterised as the 

50/D d  effect). The strain-level dependent difference of sand behaviours between the 

peak state and ultimate state attenuates with decreases of the sand relative density. So the 
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former two trends can be explained with above reasons. The third observation is mainly 

attributed to the grain size effect because the same conditions of penetration depths (initial 

stress levels) and sand relative density are conserved in comparisons. 

As suggested by Collins et al. (1992); Randolph et al. (1994), the friction angle and 

dilation angle in the present cavity expansion theory-based approach are represented by 

the average values between the peak state and the ultimate state, which equal to 

( ) / 2av p cs    , / 2av p   (for triaxial conditions). The sand friction angle and 

sand-penetrometer interface friction angle were given in Tab. 4-1.The penetrometer sizes 

and mean particle sizes were given in Tab. 2-4. The initial soil stress is estimated with 

0 0 0(1 2 ) / 3vp K    and 0 1 sin avK   . The elastic shear modulus is estimated with 

Eq.(4.19). The Poisson’s ratio is set as 0.3 in estimations for tests with the Fraction C 

sand and 0.35 for tests with the Fraction E sand. With above parameters, tip resistances 

calculated with the size-dependent spherical cavity expansion solution are compared with 

the experimental results as shown in Fig. 4-24. 
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Fig. 4-24 Comparison of cone tip resistances (experimental data vs. SD solution) 

As demonstrated in Chapter 3, Yu and Houlsby’s (1991) solution (elastic-perfectly-

plastic quasi-static model) will be recovered by the present size-dependent solution with 

0  . Figure 4-24 shows that this conventional solution can give comparable predictions 

of the tip resistance measured in the present tests, but it fails to capture the observed size 

effect. These size differences can be reflected by the previously developed size-dependent 

cavity expansion solution with suitable gradient coefficients (represented by  ). It is 

found that   may increase with decreases of the sand particle size and reduce with 

decreases of the sand relative density. Better predictions of the size effect can be achieved 

by varying   with the penetrometer size. Taking data in the first graph as an example, 

with 0   for the 12mm sized penetrometer and 8   for the 6mm and 3mm sized 

penetrometer, the predicted tip resistances closely agree with the experimental data. 

Overall, the developed SD solution in Chapter 3 can predict the size effects in tip 

resistances of the present tests as expected. It demonstrated that the introduced parameter 

gH  ( ( / )atmG  ) in the SD solution, describing the non-local behaviours of sands, may 

be strain-level dependent ( 50/D d  effect) and vary with the sand state, and better 

predictions of the size-dependent behaviours can be made by considering these 

dependencies in the theoretical model. Or reversely, the cone penetration test with 

variable penetrometer sizes may provide a simple experimental method to quantify this 

micro-structure-involved material property in the employed phenomenal strain gradient 

plasticity model. 
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(2) Applications to other cone penetration tests 

This approach is also validated by comparing with results of other cone penetration tests 

which studied the concern size effect. Firstly, the results of cone penetration tests in a 

large calibration chamber from Eid (1987) are compared with the present theoretical 

solution as given in Fig. 4-25. As presented in Tab. 2-1, to get rid of the potential 

influences of side boundary effect in their tests, only the data of tests with loose sand 

samples are used. 

 

Fig. 4-25 Comparison with CPT data of Eid (1987) 

In calculations with the present SD spherical solution, the friction angle of the loose sand 

is set as 33o as given by Eid (1987); the sand-penetrometer interface friction angle is set 

as half of the sand-sand friction strength; the elastic shear modulus is estimated with 

Eq.(4.19), and the inputted Poisson ratio is 0.35. It can be found that the observed size 

effects can also be well predicted by the present theoretical solution with values of   

varying from 0 to 5. 

In addition, based on a series of needle penetration tests with penetrometers of sizes 

ranging from 1mm to 2mm, Whiteley and Dexter (1981) proposed an empirical formula 

to describe the size effect in the cone tip resistance as given in Eq.(4.26). ex  with a range 

of 0-0.6 was observed with soil textures ranging from sand to clay, which may be greatly 

affected by the soil structural condition as suggested. 
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where ex  was defined as the effective diameter of the penetrometer. 

 

Fig. 4-26 Comparison with the empirical formula proposed by Whiteley and Dexter 

(1981) 

Size effects predicted by equation (4.26) are calculated with typical values of ex  (0.6, 0.4 

and 0.2 respectively). As given in Fig. 4-26, they are compared with those predicted by 

the size-dependent spherical cavity expansion solution. For penetrometers in this size 

range, it is shown that the empirical relationship given in Eq.(4.26) can be matched by 

the present theoretical model with roughly estimated values of d50 and  . However, it 

needs to be pointed out that a much more significant size effect of the cone tip resistance 

with penetrometers around this size range was reported by Wu and Ladjal (2014). The 

present size-dependent solution is not good at describing such significant size effects, and 

better predictions may be obtained with different inclusion methods of the strain gradient 

term. 

4.4 Discussion and summary 

Influences of the particle size and the penetrometer size in cone penetration tests were 
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dependency of the interface friction strength on the particle size and surface roughness 
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confining stress under shear loading, and good performances were obtained with this 

solution in estimations of the shaft capacity experienced by small sized piles/probes by 

comparing with experimental results. 

Subsequently, the size-dependent cone tip resistances measured in present tests were 

analysed in the section of 4.3. Reasons leading to these size-dependent differences were 

summarised and discussed, and the observed size effect in the cone tip resistance was 

estimated with two theoretical methods. By comparing with experimental results, it was 

found that the method based on the size-dependent spherical cavity expansion solution 

can provide a good theoretical tool to quantify the concerned size effect but more effort 

is still required to more further clarify the roles of the additionally introduced material 

properties (
gH  and 

gl ) in the present model. 

In the light of discussions presented in this chapter, the size-dependent behaviours in the 

cone penetration test were mainly attributed to the following aspects: 

(1) It was found that the sand-structure friction strength may be significantly influenced 

by the normalised surface roughness ( 50/aR d ). Specifically, when sand particles pass 

around the cone tip, an intensified shear zone will be formed in a localised region close 

to the interface (shear band). The strength and deformation behaviours in this narrow zone 

highly depend on the sand particle size and structure surface roughness. For example, in 

the present tests, 50/aR d is about 5.06e-3 and 1.19 e-3 for the penetrometer within the 

Fraction E sand and the Fraction C sand respectively. As discussed in the section of 

4.2.2.1, these two values lie in the intermediate roughness zone, in which the interface 

friction angle greatly changes with the variation of 50/aR d . Based on the results of 

interface shear tests compiled in Fig. 4-9, the estimated critical state interface friction 

angle is 19.2o and 14.3o for tests within the Fraction E sand and Fraction C sand 

respectively ( tan / tan 1.37cs E cs C    ). The higher sand resistances measured in tests 

with the Fraction E sand than those with the Fraction C sand is partly due to this effect. 

(2) When a probe penetrates into sands, rupture surfaces might be formed in the sand at 

failure. The sand strength and deformation (dilatation or contraction) characteristics along 

the slip surface greatly depend on the induced stress level and strain level which are 

closely related to the probe size and particle size (e.g. 50d ). In a relatively shallow 

penetration depth, a rupture surface stemming from below the cone tip to the ground 
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surface will be developed (Durgunoglu and Mitchell, 1975), and the fact of non-uniformly 

distributed friction strength along the developed slip lines (caused by its stress-level or 

strain-level dependency or progressive failure) can be applied to explain the general size 

effect. In addition, the geometry size effect ( / CPTH D  effect) also plays a significant role 

in leading to these size-dependent differences of the cone tip resistance in relatively 

shallow penetrations. For deep penetration problems, the tip penetration is greatly 

determined by the local deformation. The stress-level and strain-level dependent strength 

and deformation features of sands may also contribute to the observed size-dependent 

behaviours when the ratio of 50/CPTD d  is sufficiently small. In addition, the / CPTH D  

effect gradually attenuates with increases of the penetration depth, so the difference of 

the sand response detected by different sized cone tip at relatively deep depths are smaller 

than that in shallow depths. 

(3) The penetrometer size and particle size also exert influences on the mobilised lateral 

confining stress during the insertion and extraction process when the ratio of 50/D d  is 

relatively small as quantified in Eq.(4.12), which may also contribute to the size-

dependent behaviour of the shaft frictional resistance. This size-dependent influence 

closely depends on the structure surface conditions (e.g. roughness, hardness), 

confinement conditions and sand properties in/around the interface shear band. 
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Chapter 5  

 Elastic solutions for expanding ellipses and 

application to root-soil interaction 

5.1 Introduction 

In modern agriculture, soil compaction is becoming more serious than ever before 

because of the intensive cropping/grazing system and overuse of heavy agricultural 

machineries (Hamza and Anderson, 2005; Nawaz et al., 2013). It has even been described 

as the most serious environmental problem caused by conventional agriculture with soil 

erosion (McGarry, 2003). Compaction exerts influences on physical, chemical, and 

biological properties of the soil, and the response of plant growth to these alterations is 

the consequence of a complex interplay (Gregory and Nortcliff, 2013; Tracy et al., 2011). 

Physically, compaction directly applies influences on the soil structure and texture (e.g. 

porosity, pore connectivity), soil strength, aeration condition, hydraulic properties and 

soil fertility (Gregory and Nortcliff, 2013). Light or moderate soil compaction might be 

beneficial for plants growing in some types of soils since it increases root-soil contact, 

especially in coarse-textured soils (Bouwman and Arts, 2000; Sharma et al., 1995). 

However excessive compaction usually deteriorates these physical conditions for the root 

and shoot growth and consequently results in detrimental influences on agriculture 

production (Bengough et al., 2006; Lipiec and Hatano, 2003; Lipiec et al., 2003). 

Therefore, there must be an optimum range of soil compaction for the maximum plant 

growth. This is of great importance for soil management, and a deeper understanding of 

the root-soil mechanical interaction will be of great helpful for seeking this optimum 

range. Among these mentioned physical degradations, the increased mechanical 

impedance is often regarded as a major limitation to root growth (Bengough et al., 2011; 

Whalley et al., 2008). Therefore, mechanical analysis on the soil-root interaction is 

selected as one of the main research objects of this chapter. 

Roots grow by a continuous process of cell division in the apical meristem and cell 

expansion in the region of elongation just behind the apex. Its elongation rate is a 

consequence of the dynamic balance between the generated growth pressure (cell turgor 
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pressure with removal of the cell wall yield pressure) and the external constraints (e.g. 

soil resistance, matric potential) (Bengough et al., 2006; Greacen and Oh, 1972; Hallett 

and Bengough, 2013). Therefore the surrounding soil environment is of great importance 

for root morphological development. Due to the spatial and temporal heterogeneity of soil 

(especially in structure/texture and strength), the interaction models between a growing 

root-tip and the ambient soil mass are complex. According to whether or not pre-existing 

channels (or gaps) appear in the growth pathway, the typical interaction models are 

roughly categorised into two broad groups (Bengough, 2012; Jin et al., 2013) as follows 

(1) Pre-existing channels (or gaps) exist in the growth path of roots. In mechanically 

impeded conditions, roots prefer to exploit pores and cracks existing in the soil to 

effectively evade the higher resistance (Dexter, 1986; Landl et al., 2016). This might be 

one of the main reasons why macropores (60um-300um) volume could be closely related 

to root elongation rate in field soils (Valentine et al., 2012). Specifically, since root 

elongation is relatively insensitive to the radial pressures (Kolb et al., 2012), its axial 

growth along an ideal channel is not likely to be restricted unless it reaches the end of the 

channel or additional axial pressure is applied. When pre-existing pores or cracks are 

much narrower than the nominal root tip diameter, the root tip has to displace the 

surrounding soil particle to enlarge the channel for accommodation. Even so, Whiteley 

and Dexter (1983) found roots were able to elongate more rapidly in the narrower cracks 

than those in undisturbed clods without cracks. In addition, while the crack is oriented at 

an oblique angle to the preferential growth direction (tropistic growth), the likelihood of 

root buckling to cracks is predominantly determined by the gap width, insertion angle, 

physical stresses (e.g. effective soil stress, water stress) of the soil to be penetrated and 

the root growth pressure (Whiteley and Dexter, 1983, 1984; Whiteley et al., 1982). 

Smaller gap width, more perpendicular to the soil surface, lower soil strength of the next 

layer and thicker root diameter all can produce positive contributions to resist root 

buckling at the gap. 

(2) No continuous pores/cracks (comparing with the size of the root tip) appear. In this 

case, the root tip must exert pressure to deform the soil for growth. Benefiting from its 

flexibility, it is able to take advantage of the relatively weak regions existing in the soil 

with a tortuous growth path (Bengough and Mullins, 1990). Though a certain degree of 

bending resistance is also necessary to maintain its ability to deeply penetrate into strong 

layers for seeking more mechanical support, water and nutrients (Jin et al., 2013). 
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In general, the elongation rate of mechanically impeded roots would be inevitably slowed 

(Bengough and Mullins, 1991; Goss, 1977; Schmidt et al., 2013; Taylor and Gardner, 

1963), which is usually accompanied by thickening in width (Abdalla et al., 1969; 

Materechera et al., 1992; Materechera et al., 1991) and shortening in length (Atwell, 

1993; Jin et al., 2013). Although there are species and cultivar differences (Clark et al., 

2003), the penetration ability of root tips to strong soils generally depends on the soil 

strength to be penetrated, the magnitude of generated growth pressure, the lubricating 

effect of root surface caused by mucilage excretion and sloughing off of border cells, the 

mechanical support from root hair anchorage and radial constraints, the bending 

resistance of roots, the growth direction and tip shapes from the physical point of view 

(Atwell, 1993; Bengough et al., 2011; Bengough and Mullins, 1990; Hettiaratchi et al., 

1990). Their influences are briefly summarised in turn in the following part, and, as one 

of the major response, the mechanism and benefits of root swelling are emphasised in 

part of 5.1.2. 

5.1.1 Traits of the root tip that influence root penetration 

(1) Soil strength and root growth pressure 

The root elongation rate ( /dl dt ) in response to soil physical stresses is empirically 

expressed with the modified Lockhart equation (Hallett and Bengough, 2013) as given in 

Eq.(5-1). The root growth pressure ( rootQ ) is usually defined as Eq.(5-2) (Greacen and 

Oh, 1972). 

( / ) ( , ) [ ( , ) ( )]r r s s r r s s s sdl dt l m Q P Y Q Q           (5-1) 

( , )root r r s sQ P Y Q     (5-2) 

where rl is the length of the zone of elongating root tissue, [L] . rm  is the wall 

extensibility of cells, 
1[M LT]

. rP  is the turgor pressure, 
1 2[ML T ] 

. rY is the cell wall 

yield threshold, 
1 2[ML T ] 

. sQ is the root penetration resistance in soil, 
1 2[ML T ] 

. s is 

the soil matric potential, 
1 2[ML T ] 

. 

It is described that the maximum soil resistance the root tip can withstand and is 

determined by the maximum turgor pressures generated and constraining stresses from 

the cell wall. The typical turgor pressures in rapidly growing plant cells range from 

0.1MPa to 1MPa (Cosgrove, 1993; Mirabet et al., 2011), varying with species and 
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growing conditions. There is no consensus on the turgor pressures’ response to the 

mechanical impedance experienced (Tracy et al., 2011), but it is believed that the 

potential changes in rP  might not be central for root growth in stress adaptation (Clark et 

al., 2003). Instead, changes in the orientation of cell expansion might play a crucial role 

in the response to mechanical impedance (Atwell and Newsome, 1990; Croser et al., 

2000; Hettiaratchi et al., 1990). Regulated by the orientation of microfibril (or 

microtubules), the cell wall stiffness differs in directions (Bengough et al., 2006). 

Specifically, when the longitudinal elongation is hampered by the axial soil resistance, 

growth polarity of cells in the root apex will gradually alter to radial expansion in which 

requires less pressure for enlargement (Hettiaratchi et al., 1990). In addition, Eq.(5-1) 

shows that the cell wall extensibility and yield threshold as two aspects of cell wall 

stiffness are both influenced by soil strength and matric potential (Hallett and Bengough, 

2013). This provides more evidence demonstrating the importance of cell wall properties 

in responding to soil physical stresses. 

Furthermore, quantitative measurements of the growth pressure and the encountered soil 

resistance may provide more precise and more practical information for evaluating the 

response of root growth to soil compaction. Several methods were developed to directly 

measure the maximum axial growth pressures of root tips (Clark et al., 1999). However, 

due to the great variation in measuring methods, species (or cultivars) and growing 

conditions, more efforts are necessarily demanded in standardising the measurement and 

establishing a high-quality database, especially in in-situ conditions. Alternatively, cone 

penetrometers have been widely used to estimate the soil resistance that roots may 

encounter and evaluate the degree of soil compaction (Bengough and Mullins, 1991; 

Cockroft et al., 1969; Greacen et al., 1968; Whiteley et al., 1981). However, variations in 

equipment (penetrometer size, tip shape, shaft type etc.) and testing procedure (e.g. 

penetration rate), also exist (Bengough et al., 2000; Bengough and Mullins, 1990), and 

great discrepancy has been found in direct comparisons of the soil resistance encountered 

by a growing root and an advancing penetrometers as detailed in Chapter 1. So more 

effort is needed for improving this promising method for applications on this topic. 

(2) Interface friction properties between root cap and soil 

The root cap provides protection on the apical meristem from abrasion by soil particles. 

By secreting mucilage and sloughing off border cells, the root cap is able to significantly 
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reduce the friction resistance encountered by the root tip while penetrating into soil layers 

(Bengough and McKenzie, 1997; Iijima et al., 2003; Mckenzie et al., 2013). For example, 

Iijima et al. (2003) observed that the penetration resistance of intact root tips of Maize 

(Zea mays L.) increased 68% (
intact decapped decapped( ) /Q Q Q ) due to the removal of root cap. 

The contribution of mucilage to this lubricating effect approximately takes 43% (Iijima 

et al., 2004). In addition, with increasing soil strength, the number of detached border 

cells and quantity of mucilage exudation may increase (Boeuf-Tremblay et al., 1995; 

Iijima et al., 2000). For instance, Iijima et al. (2000) estimated that the number of detached 

border cells is sufficient to cover the shorter elongation zone of an impeded root tip which 

only covers 7% of the surface area of roots growing in loose sand. 

One significant aim of research on this specific topic is to quantify the interface friction 

coefficient ( r ) between a growing root and the soil. As discussed in Chapter 4, the 

interface friction properties are greatly determined by the shear failure mode and the 

location where it takes place. In the close vicinity of the contacting area, variations in 

particle size, angularity, crushability, soil state (relative density of sand, saturation of clay 

etc.), surface adhesion, roughness and hardness of the object and normal stress level 

would result in some changes of r . In particular, the small size, the irregular geometry 

of the root cap and the environment-dependent root exudation make direct and precise 

measurements of the root tip-soil interface friction property more difficult to operate. 

Even so, several attempts have also been made (Barley, 1962; Bengough and Kirby, 1999; 

Mckenzie et al., 2013). The methods from Barley (1962) and Bengough and Kirby (1999) 

are, more or less, akin to the conventional interface friction tests, which measured the slip 

resistance by moving the vertically loaded roots. By moving a 1cm length of excised 

maize roots close to the tip at a speed of 1cm/min, Barley (1962) obtained the average 

values of r  for a root/nylon interface and a root/porous stone interface are 0.20 and 0.31 

respectively. Though the measured r  between hydrated root caps of maize and peas 

with ground glass surfaces by Bengough and Kirby (1999) was in the range of 0.02-0.04 

which is an order of magnitude lower. Presumably, this large discrepancy resulted from 

their main differences in the measured position of roots, failure mode of the root surface, 

moving speed, level of vertical stress and interface conditions. Alternatively, Mckenzie 

et al. (2013) proposed an approximate method to estimate the interface friction coefficient 

directly from readings of penetration tests. r  is defined with Eq.(5-3) which has been 
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widely used both in geotechnical and agricultural fields (Bengough and Mullins, 1991; 

Randolph et al., 1994). 

( )

n
r

n m

Q

A




 





  (5-3) 

(1 tan ) cots n a sQ A c       (5-4) 

where Q  is the soil resistance encountered by roots or penetrometers. n  represents the 

normal stress acting on the surface of the object. m  represents the additional 

contribution of surface adhesion to the normal stress. A  is a defined shape factor, which 

equals to cot s  for a cone tip and / 2a r  for an elliptical half- spheroid tip (Mckenzie 

et al., 2013). s  is the semi-angle of tip cone. a  and r  length parameters of an elliptical 

half-spheroid as shown in Fig. 5.1. 
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Fig. 5.1 Diagram of root and cone penetrometer geometries 

The key of this method is to determine the normal stress n . Mckenzie et al. (2013) 

proposed to use the resistance of a rotating probe ( rotationQ ) 0.986  as the estimate of n  

based on the work from Bengough et al. (1997). With the use of this assumption, they 

calculated the interface friction coefficient of soil-metal (stainless steel and silt loam 

topsoil with a bulk density of 1.2Mgm-3 and water content 223  6 g/kg) ranges from 0.79 

to 0.97. However, the typical value of soil-steel interface friction coefficient under similar 

condition would be less than 0.6 (Stafford and Tanner, 1983; Tsubakihara et al., 1993). 

So an overestimation may be made with this method, which probably results from several 

aspects: (1) underestimation of n . n  is not the same for the case with or without 

javascript:void(0);
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rotation. As noticed by Bengough et al. (1997), the additional influence of rotation-

induced shear stress will contribute to the plastic failure of soil, and this is theoretically 

proven in Chapter 6 of this thesis. It is found that the additional shear stress may lead to 

6% decrease of the required expansion pressure in undrained saturated clay and this 

decrease would rise with an increase of the soil shear stress hold capacity; (2) Eq.(5-3) 

was established on the basis of stress equilibrium along the contact surface by ideally 

assuming the normal stresses acting on the interface are uniform. In the limit equilibrium 

method, the failure pattern is pre-assumed, and it is not able to take the soil stress-strain 

behaviour into account (Yu and Mitchell, 1998). In addition, the size and shape of the 

penetrometer tip and speed also affect the relationship of n  and rotationQ . Therefore, 

certain differences may also be caused because these parameters in tests of Mckenzie et 

al. (2013) are different to those used by Bengough et al. (1997). In fact, this method can 

be readily evaluated by directly comparing the estimated r  with the corresponding data 

from direct interface shear tests. 

This promising method opened up a new way to estimate r  between growing root and 

soil. It estimated the soil-root interface friction coefficient under similar conditions lies 

in the range of 0.21-0.26. However, considering its overestimation of the soil-steel 

friction coefficient, this estimated range is also possibly a bit higher than the real value. 

In addition, assumptions on the shape factor ( A ) which depend on the real size and shape 

of the root cap have a large influence on the calculation of r , so great care should be 

taken in estimating this parameter. 

(3) Longitudinal supports for root penetration 

As the balancing force of penetration pressure, it is no doubt that the obtained reaction 

force partly determines the root axial penetration ability. As illustrated in Fig. 5.2, the 

anchorage of root tips can be generally classified into two typical conditions (Bengough 

et al., 2011), and reaction forces for root elongation mainly come from three sources: 

anchorage effect of root hairs, side friction due to soil-root contact (in particular from the 

maturation zone) and the potential longitudinal reaction force at an adjacent bend. 
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Fig. 5.2 Schematic diagrams illustrating reaction forces for root growth 

Contributions of the anchorage effect from root hairs to root penetration have been 

experimentally confirmed by Bengough et al. (2016) and Haling et al. (2013) in recent 

years. They found that the presence of root hairs, in general, can significantly increase 

the penetration ability of root, and this contribution would be more important in relatively 

loose seed beds. To theoretically estimate the anchorage effect of root hairs, Bengough et 

al. (2011) calculated the stress required to break all the root hairs (by multiplying the 

tensile strength with the cross-sectional area of root hairs). However, the anchorage 

mechanism of root hairs has not been clearly identified. In other words, no solid evidence 

has been presented to directly confirm the real failure mode or the most probable mode 

to happen between root hairs and the surrounding soil. The maximum anchorage effect is 

probably either determined by the tensile strength of root hairs or the shear resistance 

between the anchored zone and surrounding soil or both of them. So confirming the 

failure mode can enable us to better quantify this anchorage effect. 

Apart from above anchorage effect of root hairs, the mobilised side friction resistance 

may also provide reaction forces for facilitating root penetrations. It is known the friction 

forces are greatly determined by the magnitude of confining stresses from the surrounding 

soil. The magnitude of the confining soil stress is positively proportional to the root 

diameter before the surrounding soil reaches a steady plastic deformation stage. 

Therefore, thicker roots could get higher side frictions. Probably, this is another benefit 

of root swelling to the root tip penetration, and this will be further discussed later. 

Lastly, the reaction force from a bend can be easily distinguished, and the mobilised 

magnitude of this force may depend on the distance of the bend to the apex, the bending 

angle, soil strength and possible reverse displacement in the longitudinal direction. 
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(4) Bending resistance and radial support 

The flexibility of roots enables them to take advantage of the pre-existing cracks, pores 

and weakening zones in the soil. However, if they are too flexible they would lose the 

ability to penetrate into strong layers (Jin et al., 2013). Therefore sufficient bending 

resistance is necessary for the root penetration, which mainly depends on the root bending 

stiffness and radial confining stresses. Clark et al. (2008b) demonstrated that good root 

penetration was consistently associated with greater root diameter and bending stiffness. 

Regarding the root tip as a cylinder of a simple material, the bending stiffness is a function 

of the elastic modulus and the area moment of inertia of its cross section. Therefore a 

gradient of 4 should be expected on a log–log plot of bending stiffness against diameter. 

However, a slope being near 3.5 was found in their tests. Two direct conclusions can be 

drawn from this finding: (1) the bending stiffness of root is highly related to root diameter; 

and (2) the elastic modulus of roots may slightly decrease with the increase of the root 

diameter. In addition, with a given diameter, they found the bending stiffness of roots that 

had penetrated into a strong layer is lower than those had not, and it is ascribed to the cell-

wall relaxation which usually happens in impeded roots. Furthermore, the presence of 

radial stresses can facilitate root axial elongation with a significant increase of the axial 

penetration ability (Bengough, 2012; Bizet et al., 2016). The confining soil stresses 

motivated by a thick root is usually higher than those received by a thin one and also 

depends on the strength of surrounding soil as indicated in Fig. 5.3. The results are 

calculated by the widely used cylindrical cavity expansion solution from Yu and Houlsby 

(1991) (initial cavity diameter a0 = 0.5mm; Poisson’s ratio v = 0.35; friction angle 30o; 

dilation angle 5o; soil cohesion 10 kPa; far-field is set zero; two values of the shear 

modulus are used). 
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Fig. 5.3 Radial confining stresses vs. root diameter 

Confining stresses of the surrounding soil to the root not only resists the root tip to deflect 

and also determines the magnitude of the reverse side friction for anchorage. This 

explains, at least partly, that a stronger upper layer or a gradient increase of soil strength 

can considerably increase the percentage of roots that are able to penetrate into deeper 

strong layers (Clark et al., 2008a; Jin et al., 2013). 

(5) Growth model of the root tip 

As one of the most active parts of living plants, the root tip can sense, adapt and even 

change its related growing environment (Carminati et al., 2010; Clark et al., 2003; Jin et 

al., 2013). Although the morphologic development of plant roots are greatly determined 

by their tropistic growth (e.g. gravitropism, chemotropism, hygrotropism), the root tip is 

also able to effectively evade higher soil resistance by altering its growing pathway or 

expansion model. The ability of root tips to take advantages of relatively weak zones has 

been discussed in above parts, therefore the attention will focus on the latter 

characteristics here. The growth model of roots would greatly determine how the root-tip 

to interact with the surrounding medium. Specifically, dynamic changes of the root tip 

(or to put it simply, the sequence of root elongation and radial expansion) determine the 

soil particles moving trajectories, and consequently, determine the required pressure to 

displace these particles. For example, it is known that the required pressure for spherically 

displacing the soil is much higher than that required by a cylindrical expansion (Greacen 

et al., 1968; Hettiaratchi et al., 1990; Yu and Houlsby, 1991). The resistance encountered 

by an advancing root cap of an approximately ellipsoidal shape must lie somewhere 

between those required by a cylindrical expansion and a spherical expansion, and it will 

change with root growth models. Even though many experimental findings demonstrated 

that the deformation pattern around the root tip is closer to a cylindrical expansion 

(Bengough and Mullins, 1991; Cockroft et al., 1969; Greacen et al., 1968), quantitative 

analysis is scarce, and especially developments of relevant theoretical analyses are 

lagging far behind. Several growth models were proposed to explain the above problem 

(Abdalla et al., 1969; Faure, 1994; Kirby and Bengough, 2002; Richards and Greacen, 

1986). For example, Abdalla et al. (1969) proposed an inverse-peristalsis model (detailed 

later). Richards and Greacen (1986) assumed that the roots can elongate by entering an 

existing pore, crack or interaggregate space and then deform the soil like a cylindrical 

cavity expansion. 
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Above discussion deliberately focuses on the physical interactions between the root tip 

and the surrounding soil. In fact, these responses of root growth to the mechanical 

impedance are predominantly regulated by several phytohormones (Ubeda-Tomás et al., 

2012), especially the ethylene, auxin, abscisic acid (ABA) (Okamoto et al., 2008; Tracy 

et al., 2015). In addition, these physical responses may be accompanied by some chemical 

and biological changes and consequently cross influences will further affect the physical 

interactions. 

5.1.2 Root thickening with response to mechanical impedance 

Root swelling behind the apex in response to high soil resistance has been widely 

observed in a number of species (Abdalla et al., 1969; Atwell, 1990; Clark et al., 2008b; 

Iijima et al., 2003; Kirby and Bengough, 2002; Materechera et al., 1992; Materechera et 

al., 1991; Misra and Gibbons, 1996). It is found that a thick root usually has higher 

penetration ability into strong soils than a thin one under similar conditions (Abdalla et 

al., 1969; Hettiaratchi et al., 1990; Kirby and Bengough, 2002; Materechera et al., 1992). 

According to the previously summarised influencing factors on the root penetration, 

possible benefits resulted from root thickening are attributed to: 

(1) higher bending resistance of the root with a greater diameter.  

(2) higher radial stress constraints due to more radial compression, which are beneficial 

to resist root buckling and provide more reaction forces. 

(3) stress relief or loosening of soils ahead of the root tip due to the radial expansion. 

In addition, Materechera et al. (1992) put forward that higher axial growth pressure ( rootQ

) may be exerted by thicker roots based on the experimental finding from Misra et al. 

(1986a) which gave that rootQ  is proportional to 0.94

rootD  ( rootD  is the root diameter). 

However, conflicting results were obtained by Whalley and Dexter (1993) and Clark et 

al. (1999) with similar apparatuses. Clark et al. (1999) concluded that the apparatus used 

to measure rootQ  may apply significant influences on the results, and rootQ  might not 

increase with increases of the root diameter. And Clark and Barraclough (1999) even 

found that the roots of dicotyledons (dicots) did not systematically generate higher rootQ  

than those of monocotyledons (monocots) based on a series tests with young seedlings of 

Maize, wheat, barley, rice, albus lupin, pea and sunflower. Therefore, as suggested, this 

factor is not included here as a general benefit caused by root thickening. 
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Contributions of the first two aspects of above benefits are relatively straightforward and 

have been elucidated in the previous section. Hence, the following study will mainly focus 

on the third benefit to shed some lights on its mechanism. This hypothesis was first 

proposed by Abdalla et al. (1969) to account for the root thickening caused by mechanical 

impedance. They roughly validated this root growth model with a penetration simulator, 

which is capable of radial expansion and axial penetration separately, and an elastic cavity 

expansion solution. Subsequently, Hettiaratchi and Ferguson (1973) advanced these 

validations, and Hettiaratchi et al. (1990) enriched this theory with some new assumptions 

later. Taking these works into consideration, this named inverse-peristalsis root growth 

model is briefly summarised here. 

According to experimental findings, responses of root growth to the mechanical 

impedance were generally divided into three conditions (Abdalla et al., 1969). If the soil 

resistance is lower than the first threshold ( 1thQ  ), the root will grow with normal 

diameters in normal elongation rates. When the encountered resistance of root tips 

exceeds the upper threshold ( 2thQ  ), the root tip thickens without further axial elongation. 

In a stress range of 1 2th soil thQ Q Q   , the root tends to be thicker and then elongates as 

illustrated in Fig. 5.4. Steps of this growth circle were summarised as 

 

Fig. 5.4 Growth steps of impeded roots in the inverse-peristalsis model (after 

Hettiaratchi et al. (1990)) 

ⅰ) The axial elongation of root tip is inhibited due to soil resistance. 

ⅱ ) Enlargement of cells in the elongation zone gradually alters from longitudinal 

elongation to radial expansion. 



Chapter 5  Elastic solutions for expanding ellipses and application to root-soil interaction 

140 

ⅲ) Radial thickening of root aids to relieve the resisting stress field ahead of the root cap. 

ⅳ) When the root tip is able to overcome the soil resistance ahead, the axial elongation 

will resume until the root cap enters a zone of soil would inhibit its axial elongation again. 

In strong soil layers, the growth of root tips is achieved with continuous repeats of this 

growth cycle until it is no longer triggered. As a consequence, the elongation rate will be 

significantly reduced. 

Two basic prerequisites were included in this growth model, which are 

    1) The axially impeded root tip tends to and is able to radially thicken.  

As aforementioned, by altering the orientation of microfibrils, roots can reorient the cell 

growth direction to adapt the stress variation around the root tip (Bengough et al., 2006; 

Hettiaratchi et al., 1990). It confirmed that the root tip has the ability to alter the growth 

orientation. In addition, Kolb et al. (2012) recorded that the radial expansion pressure of 

chick pea (Cicer arietinum L.) seedlings reached approximate 0.30  0.15MPa, which is 

in a comparable level of the turgor pressure, and the root growth is more easy to be 

hampered by the axial resistance other than the radial confinement (Bengough, 2012). 

Moreover, to identify the difference of the encountered soil resistances between the radial 

expansion and the axial elongation, results calculated with cylindrical and spherical cavity 

expansion solutions were often compared (Abdalla et al., 1969; Greacen et al., 1968; 

Hettiaratchi and Ferguson, 1973; Hettiaratchi et al., 1990). As known, two kinds of 

expansion pressures are usually concerned in conventional quasi-static cavity expansion 

solutions, including the pressure of a cavity expanding from the initial radius 0a  to a 

given radius a  and the limit expansion pressure limP  (as discussed in Chapter 3). For 

illustration, the closed-form solution from Yu and Houlsby (1991) (large displacement 

solution with the non-associated Mohr-Coulomb yield criterion) was employed the 

calculated these two kinds of pressures as shown in Fig. 5.5. 
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Fig. 5.5 Cavity pressure-expansion response 

(a0= 0.5mm; v = 0.35;   = 0o; c = 10 kPa; 0p = 0; G = 10MPa) 

It is shown the required expansion pressure rapidly increase with increasing 0/a a  at 

initial expansion stages (roughly 0/ 2a a  ), and a relatively steady expansion state is 

reached afterwards. The process of continuous cavity expansion is analogous to that of 

root enlargement displacing the surrounding soil. For roots growing in an existing pore, 

the initial pressure-expansion response may be more suitable to model the root-soil 

interaction. More commonly, the limit expansion pressure limP  was used to compare the 

aforementioned difference. Numbers of analytical solutions are available to identify this 

difference as summarised by Yu (2000), and the analytical elastic-perfectly-plastic 

solution from Yu and Carter (2002) is employed here. This combined solution was 

established for cohesive-frictional soil with non-associated Mohr-Coulomb yield 

criterion. The convected part of the stress rate is neglected in formulas of Eq.(5-5) and 

Eq.(5-6) for simplicity, and they give the same results as another widely-used cavity 

expansion solution from Carter et al. (1986).  
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where definitions of the above soil properties are re-expressed here. 1k   for the 

cylindrical cavity and 2k   for the spherical cavity. c, φ and  are cohesion force, 

friction angle and dilation angle of soil respectively. E is Young’s modulus, and 

G=E/2(1+ν) stands for the shear modulus of the material.  is Poisson’s ratio. 

 

   

   

Fig. 5.6 Comparison of the limit expansion pressures (spherical /cylindrical solution) 

It is shown that the ratio of limit expansion pressures (spherical/cylindrical) is influenced 

by soil friction angle, dilation property, soil cohesion, Poisson’s ratio and soil stiffness 

(G/p0) in the adopted solution. Within a very broad range of soil properties (Yu and 

Houlsby, 1991), this ratio normally lies in a range of 1.1 (soft clay) to 3 (dense sand, 

would be higher with a greater G/p0), and this range is compatible with that given by 

Nguyen (1977) (1.3 for frictionless cohesive soil to 2.5 for a frictional soil with a high 
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modulus of rigidity as summarised by Hettiaratchi et al. (1990)). It approximately 

demonstrated that the required expansion pressure for a radial expansion is lower than 

that required by an axial elongation, and it was also demonstrated in the punch test with 

a flat-end probe with inflatable rubber sleeve by Hettiaratchi and Ferguson (1973). 

    2) Radial expansion of cells just behind the root apex can facilitate its axial penetration. 

To account for the contributions of radial expansion to axial penetration, some 

investigations have been carried out in the last several decades. A relief effect on the front 

stress field caused by the radial expansion was usually expected (Abdalla et al., 1969; 

Richards and Greacen, 1986; Whalley and Dexter, 1993), and this hypothesis has been 

roughly demonstrated in some experimental investigations (Abdalla et al., 1969; 

Hettiaratchi and Ferguson, 1973) and numerical simulations (Kirby and Bengough, 2002; 

Richards and Greacen, 1986). By using a penetration simulator (a flat-end probe with 

inflatable rubber sleeve), Hettiaratchi and Ferguson (1973) quantified the radial 

enlargement was able to effectively reduce the encountered axial resistance which even 

became lower than the required radial pressure. They contributed this reduction effect due 

to the increase of shear stresses under the punch which brings the underlying material 

closer to failure. Differently, Richards and Greacen (1986) found a tensile strain region 

immediately ahead of the root would always be caused due to the radial expansion based 

on numerical analysis. The confining stresses in the front of the cylindrical ‘root’ were 

relieved and, as a consequently, it facilitates the axial elongation of the root tip. In 

addition, in contrast to these methods focusing on the radial expansion, this problem was 

studied by assuming the root grows as a moving rigid body with a constant shape in the 

soil (Kirby and Bengough, 2002). It was found that thicker roots may experience smaller 

axial resistance than thin roots while the soil-root interface friction presents. Otherwise, 

the stress relief effect caused by thickening would be greatly diminished. However, the 

assumed pattern of surface movement is not similar to the root thickening process (no 

radial change in shape). And different conclusions may be produced with different 

constitutive models or simulation tools. Specifically, due to the moving rigid body has a 

comparable size of soil particle, evident size effect would display by adopting non-local 

constitutive models (e.g. the model adopted in Chapter 3) or different numerical methods 

(e.g. with DEM simulations (Lin and Wu, 2012)). So this method probably is not a good 

approach to account for the size-related root thickening effect. In the light of above 

discussions, the advantage of thickening on relieving the front stress field was more or 
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less agreed, but much more quantitative analyses, both experimentally and theoretically, 

are necessarily needed to describe this process. Hence, a new simple theoretical method 

attempting to approximately address this problem will be given as follow. 

5.2 Elastic analysis of stress and displacement fields around an 

ellipse 

In order to deal with the preceding problem, solutions for an elliptic cavity deforming in 

the linear elastic material will be presented in this section. Considering the shape-shifting 

of the longitudinal cross-section of root tip during growth, both stress-type boundary 

conditions and displacement-type boundary conditions will be considered in developing 

these solutions. 

5.2.1 Definition of coordinate system 

For convenience, the orthogonal curvilinear coordinates presented by Unger (2005, 2010) 

is employed to describe the geometry positions around an ellipse in the physical plane as 

depicted in Fig. 5.7. The orthogonal curvilinear coordinates consist of a series of naturally 

orthogonal oval shape lines, paralleling to the innermost ellipse, and radial lines, 

perpendicular to the innermost cavity, (Lawrence, 1972). 

x

y



(x0,y0)

(x,y)

o
 

 

Fig. 5.7 Stress boundaries and coordinate systems 

Points in the new coordinates system can be expressed as 



Chapter 5  Elastic solutions for expanding ellipses and application to root-soil interaction 

145 

0 cosx x      ,  0 siny y      (5-7) 

where 0 0( , )x y  represents points on the inner ellipse.   shows the distance from the hole 

surface to a particular point along the normal direction.   is the angle that normal to the 

inner elliptic boundary, which is counted anti-clockwise from the positive x-axis 

direction. 

Both the Cartesian coordinates and the paralleled elliptic coordinates, of which have the 

same origin in the centre of the ellipse, are employed. In the Cartesian coordinates, points 

0 0( , )x y on the surface of inner ellipse can be described as 

2 2

0 0

2 2
1

x y

a b
      ( 0 cosx a t  , 0 siny b t  and 0a   , 0b  )  (5-8) 

where ‘ t ’ represents the eccentric angle of an ellipse. ‘a’ and ‘b’ are semi-major axis and 

semiminor axis respectively. Two coordinates can be linked with tan tan
a

t
b

  . So the 

inner ellipse can be described in the curvilinear coordinates as  

2

0 cosx a H   ,  2

0 siny b H     ( 2 2 2 2cos sinH a b   )  (5-9) 

Spatial directions of points in these two coordinate systems are linked now, but how to 

measure the vector length is not clearly defined. To complete the transformation between 

them, the concept of the metric coefficient (Love, 1927; Saada, 1974) is applied. Let us 

refer a region of space to the Cartesian coordinates, and the coordinates of any points in 

this region are 1 2 3( , , )x x x . Then they are transformed to points 1 2 3( , , )y y y  belonging to 

the curvilinear coordinate system by following one-to-one corresponding relations. 

1 1 1 2 3( , , )y f x x x   ,  2 2 1 2 3( , , )y f x x x   ,  3 3 1 2 3( , , )y f x x x   (5-10) 

These relations are single valued and continuously differentiable. Then an arc length in 

the curvilinear coordinates can be expressed as 

2( ) ij i jds g dy dy   (5-11) 

where 
ijg is called ‘metric coefficient’. The scalar factor is defined as 2

i iih g  (no sum). 

The coefficients for each axis direction of the curvilinear coordinate system are readily 

obtained with Eq.(5-7) and Eq. (5-10). 
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With these coefficients, the strain tensor, strain-displacement relations and equilibrium 

equations in the paralleled elliptic coordinate system can be readily established with the 

general relations for orthogonal curvilinear coordinate systems, for example, those 

presented by Saada (1974). 
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 (5-15) 

where 
2 2 3/2( ) /F a b H  . u  and u  are displacement components in the radial and 

tangential directions of the parallel-elliptic coordinates respectively. e , e  and e  

are strain components in the radial, tangential, and axial directions of the parallel-elliptic 

coordinates respectively. In fact, ( )F   represents the radius of curvature of the 

corresponding point at the cavity wall. 

The stress equilibrium equations along the normal and tangential directions with absence 

of the body force for plane strain problem are 

1
0

( ) ( )F F

      

     

  
  
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  (5-16) 

21
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     
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  

   
  (5-17) 

where  ,   and   are stress components in the radial, hoop, and axial directions 

within the parallel-elliptic coordinates respectively.  

5.2.2 Elastic stress and displacement solutions 

In linear elasticity theory, three groups of boundary-value problems are broadly 

categorised, which generally include stress boundary-value problem, displacement 

boundary-value problem, and mixed boundary-value problem. With unremitting efforts 
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for centuries, lots of analytical solutions are available for a wide range of elastic 

boundary-value problems (Love, 1927; Muskhelishvili, 1963; Saada, 1974; Selvadurai, 

2000; Timoshenko and Goodier, 1970). The govern equations to these problems generally 

consist of equilibrium equations, compatibility equations, and constitutive equations. In 

linear elastic materials, the complexity of solving these problems largely depends on the 

concerned geometric boundary conditions and applied stress boundary conditions. Based 

on this, they can be broadly categorised into two groups in term of the types of potentials 

(Chou and Pagano, 2013; Saada, 1974): 

(a) potentials related to displacements (by solving the Navier’s equation), for example, 

the scalar and vector potentials, the Galerkin vectors, and the Neuber-Papkovich 

functions; 

(b) potentials that generate systems of equilibrating stresses, namely, Maxwell’s stress 

functions, the Morera’s stress functions. In particular, when a plane problem with absence 

of body force is under consideration, these two stress potential methods will be 

particularised to the Airy’s stress function. 

Medium around the ellipse is assumed homogeneous and isotropic. With a small amount 

of deformation, the pressure-expansion response is characterised with a linear elastic 

model. By using this simplified model, the number of unknown variables is greatly 

reduced, and it is mainly determined by the boundary conditions. Specifically, if the 

stresses uniformly distribute along the axes directions of a simple rectangular or polar 

coordinates, the elastic problem usually can be reduced to be a one-dimensional problem 

even without need of assumptions on the stress/strain potentials, for example a 

cylindrical/spherical cavity deforms in a uniform stress field (Yu, 2000). Furthermore, 

when the initial stress field becomes not that uniform, some analytical solutions can also 

be obtained within the simple rectangular or polar coordinate system by properly setting 

the forms of stress/strain potentials, for example, the well-known Kirsch formulas. Many 

forms of displacement and stress functions corresponding to different typical types of 

boundary conditions were suggested in many treatises of elasticity theory (Chou and 

Pagano, 2013; Saada, 1974). More generally, when more types of geometry boundaries 

(for example ellipsoid, pyramid, triangles, ellipses, hyperbolas) are considered, the 

complexity of analytical analysis will dramatically increase. General approaches for 

three-dimensional analytical analysis are very rare, but some advanced analytical 

techniques for plane elastic problems were well developed, especially the methods based 
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on the complex variable theory (Muskhelishvili, 1963). Sometimes, suitable curvilinear 

coordinate systems may be adequate to reduce the complexity caused by geometry 

variations in some special cases (Timoshenko and Goodier, 1970), but it is believed that 

the conformal mapping technique is a more powerful and efficient tool in dealing with 

the problem of geometric transformation. And its advantage will be more evident while 

being used in combination with the complex variable theory. Therefore, the complex 

potential method with the conformal mapping technique will be employed in this 

research, and they are briefly introduced as follows. 

5.2.2.1 Kolosov-Muskhelishvili complex potentials 

The complex variable theory provides a powerful theoretical tool in dealing with a broad 

class of two-dimensional boundary-value problems in elasticity (England, 2003). From 

its first systematic use in elasticity by Kolossof as early as 1909, this method experienced 

great developments and improvements in both theory and application, due greatly to a 

group of Russian mathematicians (Muskhelishvili, 1963; Savin, 1970; Sokolnikoff, 

1956). 

As known, stress components can be expressed by means of a stress function (Airy’s 

stress function) in the plane theory of elasticity when no body forces are considered. The 

stress function satisfies the biharmonic equation ( 2 2 0U   ), and it is biharmonic 

mathematically. The real and imaginary parts of an analytic function in complex variable 

theory also satisfy the Laplacian equation ( 2 0U  ), and solutions of the Laplacian 

equation must be biharmonic. Meanwhile, the real and imaginary parts of an analytic 

function satisfy the Cauchy-Riemann condition. Based on these mathematical 

characteristics, it was found that the stress function can be generally represented by two 

analytic functions of one complex variable (as in Eq.(5-18)).  

1 12 ( ) ( ) ( ) ( )U z z z z z z          (5-18) 

This is the well-known Goursat formula (found in 1898)(Sokolnikoff, 1956). The 

derivation process is not repeated here, and two different methods are available in the 

monograph of Muskhelishvili (1963). Based on relationships between the stress function 

and the stress components and the stress-strain relationships, the stress components and 

displacement components (free of body forces) can be represented by the first-order and 

second-order derivatives of these two analytic functions as 
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4Re[ ( )]e e

x y z      (5-19) 

2 2[ '( ) ( )]e e e

y x xyi z z z          (5-20) 

2 ( ) [ (z) '( ) ( )]e e

x yG u iu z z z        (5-21) 

where e

x , e

y  and e

xy  are elastic stress components, and e

xu  and e

yu  are elastic 

displacement components. ( )z  and ( )z  are usually referred to as the Kolosov-

Muskhelishvili complex potentials. z x iy  , z x iy  , 1i   . 1(z) (z)  , 

( ) (z)z   , ( ) ( )z z   . (3 ) / (1 )v v     for plane stress problem; 3 4v    for 

plane strain problem. G  is elastic shear modulus, and v  is Poisson’s ratio. 

Both stress boundary conditions and displacement boundary conditions can be readily 

represented by the Kolosov-Muskhelishvili complex potentials. Therefore, above 

relations can be directly applied to aforementioned three kinds of boundary-value 

problems. Based on the complexity of boundary conditions, different methods are 

required to derive the complex potentials. Three basic methods of solution are generally 

used, which include the series method of solution, the direct method of solution based on 

Cauchy integrals and the method based on stress and displacement continuation as 

summarised by England (2003). Moreover, above formulas also can be established by 

solving the govern equations with representations of displacement variables, which also 

demonstrates that there is no difference between the stress function method and 

displacement function method in this branch of elasticity theory. In addition, formulas 

with consideration of the body force (gravitational or centrifugal type) were given by 

Stevenson (1945), and expressions for an anisotropic medium refer to Savin (1970). 

5.2.2.2 Conformal mapping 

There is a single-valued transformation relation (as shown in Eq.(5-22)) which maps 

points of a region in the physical plane (z-plane) into points of a region in the phase plane 

( -plane). The transformation between these two planes is one-to-one and invertible 

(corresponding inverse transformation 
1( )z  ), and it preserves angles locally. A 

conformal mapping relation will be built when these requirements are completely 

satisfied. More relevant discussions refer to the monograph of Muskhelishvili (1963) and 

England (2003). 

( )z x iy       (5-22) 
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where 
ii e        describing the position vectors in the phase plane as shown in 

Fig. 5.8. 

z = ()

Physical plane Phase plane

x

y
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
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

 

Fig. 5.8 Sketch of conformal mapping 

As emphasised by England (2003), the usefulness of conformal transformations for these 

problems stems not only from the fact that they are a wide class of transformations, but 

also that they enable us to extend the basic complex variable formulation to the 

transformed problems. Hence, this technique is adopted in this research. Focusing on the 

problem of an infinite region with a simple contour inside, the conformal mapping 

technique is able to convert the region with a contour in various shapes in the physical 

plane to the region bounded by the unit circle with origin in the centre of the phase plane. 

Specifically, for the currently concerned cavity problem in an infinite plane, it is 

convenient to map the exterior of the hole in the physical plane onto the exterior region 

of the unit circle in the phase plane. Both of these two regions are infinite, and points at 

infinite are also related by the one-to-one correspondence. The general form of conformal 

mapping function for this problem is 

0

1

'
( ) ' ' n

n
n


    







      (5-23) 

For an infinite plane with an elliptic hole, the conformal mapping function is well known 

as given in Eq.(5-24). As illustrated in Fig. 5.9, Eq.(5-24) is a function to conformally 

map the exterior of an elliptic cavity in the physical plane onto the exterior region of the 

unit circle ‘ ’ in the phase plane. 
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Fig. 5.9 Mapping function for an ellipse 
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where 
2

a b
R


  , 

a b
m

a b





. a  and b  is the semi-major and semi-minor of given 

ellipse respectively. By relating to the previously defined curvilinear coordinates, the 

corresponding positions of points in the phase plane and the physical plane can be linked 

with 

0 cos ( )cos
m

x x R r
r

        (5-25) 

0 sin ( )sin
m

y y R r
r

        (5-26) 

5.2.2.3 Representation of boundary conditions 

Both the stress and displacement boundary conditions can be expressed in terms of the 

Kolosov-Muskhelishvili complex potentials with the formulas from Eq.(5-19) to 

Eq.(5-21). Moreover, for convenience, the stress boundary conditions sometimes are dealt 

with in the form of Eq.(5-27). 

( , ) ( ) '( ) ( )
U U

f x y i z z z z
x y

  
 

    
 

  (5-27) 
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Fig. 5.10 Definition of positive directions 

The mechanical definition of function ( , )f x y  can be found by seeking the resultant 

stress vector applied on the concerned arc in the region occupied by the body. 

Specifically, we define an arbitrary arc AB̂ in the concerned region, and its positive 

direction is set along the direction from point A to point B. The positive normal direction 

oriented to right when looking along the positive advancing direction of AB̂ . The 

concerned region is kept on its left side, which means that tensile stress is taking as 

positive. If the force ( , )n nX ds Y ds  acts on one element ‘ ds ’ of the arc AB̂ (A is a fixed 

point, and B is a movable point) from the side of positive normal, the function ( , )f x y  

can be expressed as 

( , ) ( ) const . ( ) const .n n

AB

f x y i X iY ds i X iY        (5-28) 

where X  and Y  represent components of the resultant stress vector in x-axis and y-axis 

directions respectively. Accordingly, the complex potentials are related to the stress 

boundary conditions.  

Based on the determinacy analysis of these complex potentials within a given stress state 

and/or an admissible displacement field, the general forms of the Kolosov-Muskhelishvili 

for multiple-connected regions and single-connected regions were given by 

Muskhelishvili (1963). For addressing the currently concerned problem, the general 

solutions for an infinite plane with a single hole are followed here, which are 

0( ) ln ( )
2 (1 )

X iY
R     

 


   


  (5-29) 

0

( )
( ) ' ln ( )

2 (1 )

X iY
R


     

 


   


  (5-30) 



Chapter 5  Elastic solutions for expanding ellipses and application to root-soil interaction 

153 

1 2( ) / 4N N     ,  2

1 2' ( ) / 2iN N e       (5-31) 

where 1N  and 2N  represent the principal stresses at infinity (tension for positive).   is 

the angle between 1N  and x-axis direction and takes the x-axis direction to the direction 

of 1N  of anticlockwise rotation as positive. 0 ( )   and 0 ( )   are holomorphic in the 

whole concerned region. 

5.2.2.4 Complex potentials for ellipse with different boundary conditions 

Developments of elastic solutions for an elliptical cavity with different kinds of boundary 

conditions are briefly reviewed before the derivation. Elastic solutions for an infinite plate 

with an elliptical hole were first given by Kolosoff and Inglis (1913) around a century 

ago (Timoshenko and Goodier, 1970). The solution of Inglis (1913) provided a theoretical 

basis for the development of the famous Griffith's energy criterion (1921) in fracture 

mechanics. Stevenson (1945) independently carried out some two-dimensional analyses 

on similar problems in curvilinear coordinate systems later. The elliptic coordinate system 

and the complex variable theory were used in these solutions more or less, and judicious 

selection of the complex potentials is necessarily required and greatly determines the 

accuracy of these methods (Timoshenko and Goodier, 1970). Contrarily, a more powerful 

and general method was developed by deducing the potentials directly from the boundary 

conditions, as elaborated in the monograph of Muskhelishvili (1963). Based on the 

complex variable theory and some more advanced mathematic techniques, this branch of 

methods is not only capable of dealing with problems with complex stress boundary 

conditions but also can be extensively applied in analyses of cavities with various shapes. 

Overall, lots of analytical solutions for elastic analysis of the elliptical cavity problem in 

an infinite or a semi-infinite plane were developed over the past century, and they 

provided important and solid theoretical foundations in many areas, for example, analyses 

of crack propagation, calculation of stress redistribution/concentration (Atroshchenko, 

2010; Maugis, 1992; Savin, 1970; Wu and Chang, 1978; Zhou et al., 2015). 

5.2.2.4.1 An ellipse subjecting to given stress boundary conditions 

The studied stress boundaries are depicted in Fig. 5.11. According to the superposition 

principle in linear elasticity, the concerned stress boundary conditions are studied 

separately for illustration. 
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Fig. 5.11 Stress boundary conditions 

(a) An ellipse with a uniform normal stress applying on the inner boundary 

Taking this case as an example, application of the complex potential method to addressing 

the stress boundary-value problem of an infinite plane with an elliptical hole is illustrated 

by following with Muskhelishvili (1963). 
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Fig. 5.12 Definition of stress boundary condition (case 1) 

As defined in Fig. 5.12, no stress is applied at infinity, so 1 2 0N N  . A uniform 

compression stress in the normal direction is applied on the whole contour ‘L’ (the 

elliptical cavity). Since sin( , )n inX p n x  , sin( , )n inY p n y  , the stress boundary 

condition can be expressed by components as 

( ) ( )n n in y x in zX iY ds p d id p id       (5-32) 

Subsequently, the stress boundary condition can be expressed as 
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2

1

( ) ( )
z

n n in in
z

m
f i X iY ds p z p R 


         (5-33) 

where ‘ ’ is a complex variable on the unit circle in the phase plane, which represents 

the boundary value of ‘ ’. 

Based on the given general forms of complex potentials and properties of the holomorphic 

functions 0 ( )   and 0 ( )  , general expressions for the stress boundary and complex 

potentials of stress-boundary problem for the infinite plane with an elliptic hole were 

established by Muskhelishvili (1963) as 

2 2

0 2 2

'R
[ ] ln

(1 ) 2 2 (1 ) (1 )

m X iY X iY m
f f R

m m

 
 

      

    
      

  
  (5-34) 
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i 
  

  
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   (5-35) 
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2

f m
d

i m


     

   

   
    (5-36) 

There is no stress or rotation at infinity, so ' 0    . The resultant stresses ( X ,Y ) of 

the uniformly applied normal stress on the whole cavity wall is equal to zero because the 

stress boundary at cavity wall is continuous and single-valued. The complex potentials 

were given by Muskhelishvili (1963) as 

1 ( )e inmRp
 


    (5-37) 

2

1 2

1
( )e in inRp mRp m

m


 

  


   


  (5-38) 

(b) An ellipse with non-equal biaxial far-field stresses 

In this case, biaxial compression stresses ( 1P  and 2P ) are applied at infinity (far away 

from the cavity comparing with the cavity size), and the semi-major axis direction of the 

ellipse takes a clockwise angle   to the direction of the principal stress 1P . 

0n nX Y                                                                 (at inner cavity wall)  (5-39) 

1 2( ) / 4P P        ,   2

1 2' ( ) / 2iP P e                 (at infinity)  (5-40) 
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Fig. 5.13 Definition of stress boundary condition (case 2) 

The solution can be found with the same procedure as above. It also can be solved by 

superposing the well-known solution for the problem of ‘a stretched plate weaken by an 

unstressed elliptical hole’ which is widely available in many treatises (Muskhelishvili, 

1963; Savin, 1970; Sokolnikoff, 1956; Timoshenko and Goodier, 1970). The complex 

potentials are 

2

2 1 2 1 2( ) [( )( ) 2( ) ]
4

i
e R m e

P P P P  
 



        (5-41) 

2 22
2 1 2 1 2

2 1 2 2

(1 )[( ) ( ) ]
( ) ( )( )

2 ( )

ii
e i m P P e P P mR e

P P e
m m m


  

 


     

    
 

 (5-42) 

Based on the superposition principle in linear elasticity, the resultant complex potentials 

for the problem defined in Fig. 5.11 are 

1 2( ) ( ) ( )e e e         (5-43) 

1 2( ) ( ) ( )e e e         (5-44) 

5.2.2.4.2 An ellipse deforms with given inner displacements 

1. Inner displacement boundary conditions 

The displacement boundary condition consists of two basic parameters which are the 

magnitude and the direction of movement of each point. The initial ellipse is described 

with known semi-major axis length 0a and semi-minor axis length 0b  as 
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2 2

0 0

2 2

0 0

1
x y

a b
    (5-45) 

It is assumed that the cavity after deformation is still in an elliptic shape, and its axes 

directions coincide with the initial ellipse. So the geometry of the deformed cavity can be 

expressed as 

2 2

1 1

2 2

1 1

1
x y

a b
    (5-46) 

(1) Inner boundary displacements being normal to the initial surface (the first 

displacement-controlled solution) 

In this case, it is assumed that points on the inner ellipse move outwards in the direction 

perpendicular to the initial cavity wall, and the magnitude of boundary displacements is 

determined by the given initial and final position of the cavity. As illustrated in Fig. 5.14, 

apart from the assumed inner displacement boundary condition, non-equal biaxial stresses 

are applied at infinity. For convenience, a combination use of the Cartesian coordinate 

system and the orthogonal curvilinear coordinates defined in Section 5.2.1 is adopted in 

this analysis. 

0 cosx x      ,  0 siny y      (5-47) 

where 0x  and 0y are given in Eq.(5-9). 
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Fig. 5.14 Schematic diagram of the boundary conditions (case 1) 
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The displacement components can be obtained with 

( )cos ( )sin ( )e e i

x yu iu i e              (5-48) 

In the orthogonal parallel-elliptical coordinates, the normal distance ( ( )  ) from the 

initial cavity rim to the ellipse after deformation varies with angle because the deformed 

ellipse circumference does not parallel to the original ellipse. It can be obtained by solving 

Eq.(5-47) and Eq.(5-46). 

2 2

0 1 0 1

2 2 2 2 2 2 2 2 2 2 2 2 2

0 1 0 1 1 1 0 1 0 1 1 1

2 2 2 2

1 1

( cos sin )

( cos sin ) ( sin cos )( )
( )

( sin cos )

x b y a

x b y a a b x b y a a b

a b

 

   
 

 

   
 
       




  

(5-49) 

As given in Eq.(5-21), the relation between the complex potentials and the displacement 

boundary is rewritten as 

( )
2 ( , ) 2 ( ) ( ) '( ) ( )

'( )

e e

x yGg x y G u iu


 
     

 
       (5-50) 

To transform the displacement boundary in Eq.(5-48) which in terms of   to the phase 

plane,   is related to the argument   of the phase plane on the basis of Eq.(5-25) and 

Eq.(5-26). 

2

0

2

0

(1 )
tan tan

(1 )

a m

b m
 





  (5-51) 

All the trigonometric function can be expressed with above tangent function, so Eq.(5-48) 

becomes a function of the variable of argument  . The resultant displacement boundary 

function ( )g   is continuous in the range of 0 2π   along the circumference of the 

unit circle   in the phase plane and satisfies the Dirichlet conditions. Therefore, it is 

convenient to re-express it based on the expansion of Fourier series in terms of   (

ie   ) (Muskhelishvili, 1963; Zhou et al., 2015). The series-type representation is 

1 2 0

1 1

( ) ( ) ( ) e e in n nn
x y n n nn

n n

A
g g ig u iu A e A A A    



   


   

             

( 1,2,3,n    ) (5-52) 
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where 
2

1 2
0

1
[ ( ) ( )]

2

in

nA g ig e d

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

   which are the coefficients of the Fourier series. 

1( )g   is an even function, and 2 ( )g   is an odd function. Consequently, nA  are real 

numbers based on the property of Fourier series. Furthermore, based on the consistency 

requirement of Eq.(5-48) and Eq.(5-52) in parity with respect to the variable of  , it can 

be concluded that the even terms of the Fourier series in Eq.(5-52) should equal to zero. 

So ( )g   can be simplified to 

(2 1) 2 1

2 12 1
1 1

( )
n n

nn
n n

A
g A 



 
  


 

     (5-53) 

 Special case: Points of the cavity deform with the same normal displacements 

In this special case, points on the initial cavity wall move outwards in the normal direction 

with the same distance. In another word, a constant value of   is assumed. So the 

boundary condition becomes  

cos sine e i

x yu iu i e                   ( const.  )  (5-54) 

The same procedure can be followed as above to transform this boundary condition to 

Fourier series, and the same form of representation as Eq.(5-53) can be obtained but with 

different coefficients. 

(2) Inner boundary displacements pointing outwards from the centre of the initial ellipse 

(the second displacement-controlled solution) 

In this case, the points on the initial ellipse move outwards along the radial direction of 

the cylindrical coordinate system. Therefore, a combination use of the Cartesian 

coordinate system and the cylindrical coordinate system is adopted in this analysis. 

Similarly, the coordinate positions can be expressed in terms of the centre angle   as 

0 cosx x l     ,  0 siny y l     (5-55) 

where 
0 cosx ab T  ,  

0 siny ab T   ( 2 2 2 2cos sinT b a   ). l represents the 

distance from one given point to the corresponding point on the inner ellipse along the 

radial axis direction. 
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Fig. 5.15 Schematic diagram of the boundary conditions (case 2) 

Subsequently, the given boundary conditions can be expressed as 

( )cos ( )sin ( )e e i

x yu iu l il l e           (5-56) 

And, similarly 
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0 1 0 1 1 1 0 1 0 1 1 1
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( cos sin )

( cos sin ) ( sin cos )( )
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x b y a

x b y a a b x b y a a b
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

 

  
 
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


 (5-57) 

Then the centre angle is related to the variable   belonging to the phase plane with 

(1 )
tan tan

(1 )

m

m
 





  (5-58) 

Then following the same procedure, the displacement boundary conditions can be 

expressed in the same form as Eq.(5-53) with different coefficients. 

2. Far-field stress boundary conditions 

Biaxial compression stresses ( 1P  and 2P ) are applied at infinity (far away from the cavity 

comparing with the cavity size), and the semi-major axis direction of the ellipse takes a 

clockwise angle   to the direction of the principal stress 1P . 

1 2( ) / 4P P        ,   2

1 2' ( ) / 2iP P e                 (at infinity)  (5-59) 
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3. Derivation of the complex potentials 

To represent the given type of displacement boundary conditions in terms of the complex 

potentials, Eq.(5-21) is rewritten as 

1 2

( )
2 ( , ) 2 ( ) ( ) '( ) ( )

'( )
Gg x y G g ig

 
     

 
       (5-60) 

With this representation and general forms of ( )   and ( )   (Eq.(5-29) and Eq.(5-30)), 

Muskhelishvili (1963) gave the general representations for the complex potentials with 

the displacement-type boundary conditions for the problem of an elliptic hole in an 

infinite plane. 
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  (5-62) 
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Based on these formulas and the given boundary conditions, complex potentials for the 

defined problem can be obtained by using the Cauchy integral method. 
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 (5-67) 

5.2.2.5 Formulas for stress and displacement components 
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By expressing the formulas from Eq.(5-19) to Eq.(5-21) in terms of  , the stress and 

displacement components can be expressed with 

4Re[ ( )]e e

x y       (5-68) 
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Points between the physical plane and the phase plane can be correspondingly related by 

Eq.(5-25) and Eq.(5-26). In addition, based on the mapping function, required functions 

in the above representations are obtained as  
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where 
2     in the phase plane (  is the conjugate complex of  ). 

5.2.3 Results analysis 

For application to the root-tip growth model, elastic solutions with different types of 

boundary conditions have been presented in the above part. The first type of solution 

assumes that a uniform internal pressure is applied on the inner boundary, so the cavity 

deforms in a pressure-controlled manner. The second type of solutions is for 

displacement-controlled ellipses which deform with given boundary displacements. They 

will be validated by comparing with some other available solutions first in this section, 

and their performances will be briefly discussed at the end. 

5.2.3.1 Comparison with solution for pressure-controlled circular cavity 

With the stress boundary conditions defined in Fig. 5.11, the stress and displacement 

fields around a circular cavity also can be obtained with the conventional potential-based 

method. Specifically, the influence of far-field stress boundary conditions can be 

calculated with the Kirsch (1898) equations, and the uniform pressure applied on the 

cavity wall can be easily taken into account by solving the equilibrium equation and 
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compatibility equation. Solutions given by Yu (2000) for this problem are followed as 

shown in Eq.(5-71)- Eq.(5-75). 
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3 3
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u r r

G r r r r
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with 
1 2( ) / 2 ( ) / 2y x xy

P P P  
     , 

1 2( ) / 2 ( ) / 2y x xy
P P   

    . 

In fact, the presented pressure-controlled solution for elliptical cavity has been commonly 

accepted in elasticity theory (Muskhelishvili, 1963; Savin, 1970; Sokolnikoff, 1956; 

Timoshenko and Goodier, 1970). So the comparison with above solution for a circular 

cavity ( 0a b R  ) is just to double-check and validate the employed calculation method. 

It is shown in Fig. 5.16 that the stress and displacement results computed with these two 

solutions are exactly the same in this case. 
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Fig. 5.16 Validation of the pressure-controlled solutions (for a circular cavity) 

5.2.3.2 Validation of solutions for the displacement-controlled ellipse 

(1) Comparison with the solution for a flat cavity 

The first displacement-controlled solution for an ellipse (boundary displacement normal 

to the initial cavity wall) is validated with the solution proposed by Zhou et al. (2015). 

Their solution was designed for a flat elliptic cavity undergoing small displacements in 

the direction parallel to one coordinate axis, and the given final shape of the inner cavity 

is still in an elliptic shape. The boundary condition is defined in Eq.(5-76). In fact, the 

defined moving directions of boundary points in this solution are not exactly the same as 

that in present solution in general cases, but it is anticipated that they could give 

approximately the same results when the ellipse is very flat. As illustrated in Fig. 5.17, 

the normal directions of the inner flat ellipse are almost parallel to the axis direction in a 

large angular scope. 
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Fig. 5.17 Normal directions of points on a flat cavity 
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Taking the elastic modulus as 15MPa and Poisson’s ratio as 0.5, comparisons of these 

two solutions are carried out as shown in Fig. 5.18. With the given geometry parameters, 

the normal direction of the inner flat ellipse just rotated 1o away from the direction of y-

axis even when 0 0.9927x a . Not surprisingly, these two solutions gave almost the same 

results in a wide range as demonstrated in Fig. 5.18. This comparison well corroborated 

our first displacement-controlled solution. 

 

 

Fig. 5.18 Validation of the solution with displacement boundary 
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solution are followed by Yu (2000) as given in Eq.(5-77) to Eq.(5-79). As demonstrated 

in Fig. 5.19, results calculated with these three solutions agree well within the 

aforementioned conditions. 
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Fig. 5.19 Comparison with conventional solution for circular cavity 

5.2.3.2 Stress and displacement fields around ellipses with given stress 

boundaries 

The stress and displacement fields around ellipses with varying axis ratios are calculated 

with the presented solutions as shown in Fig. 5.20 to Fig. 5.24. The individual influence 

of the far-field stresses on the stress and displacement fields around an ellipse were 

elaborated by Maugis (1992), so the present calculations mainly focused on the influence 

of the internal pressure alone and their combination effects respectively. Lengths of the 

displacement vectors are magnified 10 times to more clearly illustrate the displacement 

fields. 
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material properties and stress boundaries were set as: / 1/ 20inp G  , Poisson’s ratio 

0.4  . 

 

   

   

   

Fig. 5.20 Stress fields around ellipses with varying axial ratios 
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.  

 

Fig. 5.21 Displacement fields around ellipses with varying axial ratios 

Subjecting to a uniform internal pressure, the stress and displacement fields are 

axisymmetric while the inner cavity is in a circular shape. However, with increases of the 

axis ratio of the ellipse, the axial symmetry would fade away and stress concentrations 

appear and get intensified around vertices of the major axis instead. Even tensile regions 

will be formed around the vertices of the major axis under uniform compression pressure, 

for example, in the case of an ellipse with / 5 /1a b   (like a tearing crack). Additionally, 

directions of the displacements gradually turn towards the direction of the minor axis with 

increases of the axis ratio ( /a b ), and displacements at vertices of the minor axis are 

always the largest in length. 
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(2) Ellipses with combination effect of the internal pressure and far-field stresses 

With the same amount of internal pressure, redistributions of stress and displacement 

fields caused by the changes of far-field stresses are presented in Fig. 5.22 and Fig. 5.23. 

The results are calculated by taking ellipses of / 5 / 3a b   as example. Stress boundary 

conditions are given in the graphs, and material properties are the same as given above. 
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Fig. 5.22 Stress fields with different far-field stresses 

   

 

Fig. 5.23 Displacement fields with different far-field stresses 
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the influence of far-field stresses on the stress and displacement fields are presented in 
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Fig. 5.24 Stress and displacement fields around an ellipse under oblique far-field 

stresses 
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final), results calculated with these two solutions are presented in Fig.(5-25) and 

Fig.(5-26) respectively ( 20MPaG  , Poisson’s ratio 0.4  ). 

(1) Solution with given displacements normal to the initial ellipse 

   

 

Fig. 5.25 Stress and displacement fields around an ellipse (first D-C solution) 

(2) Solution with given displacements pointing out from the centre (case 2) 
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Fig. 5.26 Stress and displacement fields around an ellipse (second D-C solution) 

The assumed displacement directions of boundary points in the first displacement-

controlled solution are more paralleling to the major axis direction of the ellipse than the 

second solution. This difference leads to significant variations of the surrounding stress 

fields although the initial and final positions of the ellipse were set as the same in these 

two solutions. Specifically, with given displacements normal to the initial ellipse, tensile 

zones concentrated around vertices of the major axis. Medium around the ellipse seems 

to be stretched in the direction paralleling to the minor axis of the ellipse. On the contrary, 

tensile zones emerged from vertices of the minor axis when the boundary points were set 

to move along radial directions. The medium seems to be stretched in the direction 

paralleling to the major axis of the ellipse. In addition, the magnitude and concentration 

degree of the stresses caused by different types of displacement boundary conditions are 
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5.3 Mechanical analysis of root growth models 

As reviewed in Section 5.1, several growth models were proposed to study the mechanical 

interaction problem between the root tip and the surrounding soil, but related theoretical 

analyses are relatively scarce. Based on the preceding elastic solutions, some theoretical 

investigations will be presented in this section in order to provide a simple approximate 

method to study the root tip-soil mechanical interaction during a short-term growth. 

 

Fig. 5.27 Assumptions on the root apex geometry 

As illustrated in Fig. 5.27, the extending part of the root tip is approximately represented 

with a half-spheroid (Mckenzie et al., 2013), and its longitudinal section, therefore, 

becomes in a half-elliptic shape. Analytical three-dimensional analysis on an expanding 

spheroid would be extremely complicated, if possible. Alternatively, the three-

dimensional penetration or bearing problems were usually analysed in the plane strain 

condition which is much easier to be dealt with, and then they can be associated with 

empirical shape factors (De Beer, 1970; Durgunoglu and Mitchell, 1975; Hansen, 1970; 

Lyamin et al., 2007; Vesic, 1973). Similarly, for the present problem, by multiplying a 

shape factor, the real soil resistance encountered by the root tip may also be approximately 

obtained from a reasonable two-dimensional analysis. Accordingly, the mechanical 

interaction of a root tip with the surrounding soil caused by a short-term growth under the 

plane strain condition is approximately modelled with one-half part of an expanding 

ellipse. It is assumed that the longitudinal section of the concerned part of the root tip is 

still in an elliptical shape with an unchanged origin position after a short-term growth. 

With a sufficient small displacement increment, deformations of the displaced soil may 

mainly stay in an elastic stage (or at least in a large extent). In addition, the possible 

influence of stress and strain history is neglected in the current static elastic analysis. 
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Based on these assumptions, the preceding closed-form displacement-controlled 

solutions become capable of calculating the incremental elastic stress and displacement 

fields caused by a short-term root growth as discussed in the following parts. 

5.3.1 Mechanical analysis on axial growth of root tips 

5.3.1.1 Incremental stress and strain fields caused by axial root growth 

Two displacement-controlled elastic solutions have been developed in the above section. 

It showed that assumptions on the displacement vectors (magnitude and direction) played 

key roles in quantifying the produced stress and strain fields. Unfortunately, so far direct 

observation on this information is really rare except the work presented by Vollsnes et al. 

(2010). As shown in Fig. 5.28, they obtained some displacement patterns of sand around 

primary root tips by means of the GeoPIV technique (White et al., 2003). 

 

Fig. 5.28 Sand displacement patterns for KYS maize roots 

grown in (a) medium dense (straight root) and (b) compact sand (curved root). 

Displacement vectors have been magnified 100  in (a) and 200  in (b) for clarity. 

Horizontal bars=2mm. After Vollsnes et al. (2010). 

It is shown that the sand particles displaced by a normally growing root rip move more 

paralleling to the axial direction (e.g. Fig. 5.28 (a)), so the second displacement-controlled 

solution (surface displacements direct outwards from the origin) is used to model the 

interaction of root apex with surrounding soil for roots with dominant axial elongation. 

The half-ellipse has the same size as the front part of the root tip of an approximately 

elliptical longitudinal section, and the caused sand displacements in a short-term growth 

interval (about 5-minute) were approximated from their experimental data. An initial half 

ellipse of 0 2a mm  and 0 0.5b mm  is set, and the semi-axes of the half-ellipse after 

displacement are 1 2.006a mm  and 1 0.503b mm (the maximum elongation length is 

6 m , and maximum radial expansion is 3 m ). The required elastic properties of the 



Chapter 5  Elastic solutions for expanding ellipses and application to root-soil interaction 

176 

used growing sand have not been given, and the calculation was conducted with estimated 

parameters of 10MPaG   and 0.35   (the used growing sand samples are relatively 

loose). 

 

Fig. 5.29 Sand displacement pattern calculated with the second D-C solution 

As shown in Fig. 5.29, idealised sand displacement vectors with a similar magnitude of 

lengths as that observed in the experiments were given by the theoretical calculation. The 

displacement directions were not attempted to be exactly consistent at every point due to 

their great sensitivity and variations to the root surface conditions and anisotropic 

properties of the local soil. By using this model, the incremental stress and strain fields 

around a half-elliptical root tip were calculated as below. 
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Fig. 5.30 Stress and strain fields calculated with the second D-C solution 

With given enlargements of the root tip (maximum elongation: 6 m , maximum radial 

expansion: 3 m ), Figure 5.30 indicates that the soil ahead of the root apex is 

predominantly compressed in the growing direction. Therefore, xe  is compressive 

(negative), and 
ye  is tensile (positive) in this zone. Contrarily, the soil on the sides is 

mainly under tension during the ellipse expansion. The side tensile zones are mainly due 

to the stretching stresses existing between the upper and lower half of the calculated 

ellipse. This loading condition of the side zones is different from those in the real 

penetration problem which is mainly under shear due to the interface friction. However, 

the axial resistance mainly arose from the compression deformation of front soil (Palmer 
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et al., 2009), so the relatively slight influence of the side soil on the axial resistance was 

neglected. 

The largest compressive stress is produced in a narrow vicinity around the root apex, 

which is about 130kPa representing the maximum soil resistance in the present two-

dimensional growth model. To estimate the real soil resistance encountered by a half-

spheroidal root tip, the aforementioned shape factor is required, which varies with the 

probe geometry, soil properties and stress environments (e.g. Eq.(4.24)) (Durgunoglu and 

Mitchell, 1975). Detailed analysis of the shape factors is out of the scope of this research, 

but a rough approximation may be made based on the difference between the elastic 

displacement solutions for spherical (3-D) and cylindrical (2-D) cavities (given in 

Eq.(5-80) (Yu, 2000)). In this greatly simplified approach, the required stress of a sphere 

is 2 times of that by a cylinder with the same wall displacement. Accordingly, the 

estimated resistance in the calculated relatively loose soil for a three-dimensional root tip 

may be around 260kPa. This level of resistance is a bit lower than the typical maximum 

root growth pressure and within the same magnitude of that experimentally measured 

(Clark et al., 1999). So this solution may provide a simple way to estimate of soil 

resistance encountered by axial root elongation. 

10 ( )
2

kin
e

p p a
u r

kG r


    ( 1k   for cylindrical, 2k   for spherical)  (5-80) 

5.3.1.3 Definition of the root growth pressure 

The thrust pushing the root cap into the soil is mainly made of the individual forces 

generated by the elongating cells in the elongation zone just behind the apex. In general, 

the cells in the upper part of the elongation zone gradually get matured with fully 

extension, and continuous fresh supplies advance to its lower part from the meristem zone 

to maintain the normal growth. This driving force is usually regarded as the growth 

pressure generated by a root tip (Hettiaratchi et al., 1990), and it, therefore, can be 

estimated by the resultant force transmitting in the transverse section between the 

elongation zone and the meristem zone. As illustrated in Fig. 5.31, an averaged 

longitudinal stress ( avp ) is defined to quantify this growth pressure.  
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Fig. 5.31 Definition of the average longitudinal stress 

Due to the encountered stresses around the surface root tip are usually non-uniform, avp  

is calculated with Eq.(5-81) (Palmer et al., 2009). 

0

0

10

b n

av x r xi ri

i

p b d d 


     (5-81) 

As usually assumed in the application of cavity expansion theory to penetration problems, 

we took the half part of an expanding ellipse to model the growth of the root tip. In fact, 

it is not the same as the real process of root-soil interaction in which no expansion would 

happen in the upper half. As a consequence, the calculated stress and deformation fields 

on the side soil of an elongation root were inevitably distorted as previously discussed, 

and its relatively slight influence to the axial resistance was neglected. Hence, only the 

soil resistance on the front compression zone is calculated to approximately estimate the 

defined averaged longitudinal stress. Subsequently, the required growth pressure ( rootp ) 

is available by taking the average of the produced compressive stresses in the front soil 

with Eq.(5-82). cb  is the transverse width of the front root tip encountering compression. 

10

/ /
cb n

root x r c xi ri c

i

p d b d b 


      (5-82) 



Chapter 5  Elastic solutions for expanding ellipses and application to root-soil interaction 

180 

 

Fig. 5.32 Calculated growth pressure with the second displacement-controlled solution 

 

Fig. 5.33 Ratio of the width of root experiencing compression to the root diameter 

With an axial elongation length of 5 m ( 0 2a mm , 1 2.005a mm ), the defined growth 

pressures ( rootp ) were calculated with varying root sizes in soils of different strengths as 

shown in Fig. 5.32. The length of the short axis of each ellipse was kept unchanged (

0 1b b ) in these calculations to reduce the number of variables. It showed that the 

required growth pressure for the axial advancement increases with increases of the soil 

strength, but less soil resistance was encountered by relatively thicker roots. The higher 

soil resistance encountered in strong soils has also been widely observed in cone 

penetrations tests (Jamiolkowski et al., 2003; Rix and Stokoe, 1991). The observed size-

dependent behaviour is due mainly to the greater stress concentration happened around 
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the thinner cavities in the present model. Additionally, 0/cb b  (the width ratio of the front 

root surface under compression to the root diameter) slightly increases with the root 

diameter as shown in Fig. 5.33, which may also contribute to the above size-dependent 

differences. This behaviour may partly account for the higher penetration ability of 

thicker roots (Materechera et al., 1992; Materechera et al., 1991). 

5.3.2 Theoretical analysis on root thickening effect 

As reviewed in Section 5.1, several growth models were proposed to study the root-soil 

interaction, especially roots with strong soils. Among them, the inverse-peristalsis root 

growth model proposed by Abdalla et al. (1969) has been widely adopted to explain the 

root swelling phenomenon in response to mechanical impedance. However, no theoretical 

basis was presented for this hypothesis (Kirby and Bengough, 2002) although it has been 

roughly validated in some model tests (Abdalla et al., 1969; Hettiaratchi and Ferguson, 

1973). Hence, we aim to do some further theoretical investigations on this topic. Firstly, 

the tendency of deformation of a uniformly pressurized elliptical cavity is studied based 

on the previously introduced pressure-controlled cavity expansion solution. After that, 

the developed first displacement-controlled solution is employed to quantify the influence 

of the radial thickening on the stress and strain redistributions around the root tip. 

5.3.2.1 Ellipse with a uniform internal pressure 

(1) Deformation tendency of a uniformly pressurised ellipse 

In Fig. 5.6, based on the differences of the required expansion pressures for a cylindrical 

cavity and a spherical cavity, the reason why the root cells still can swell radially when 

the axial elongation is halted was qualitatively explained, but further details about the 

influences associated with the variation of cavity geometry cannot be quantified with that 

method. Alternatively, the preceding pressure-controlled solution is employed to fill up 

this gap. Similar to the above approximate method, a uniform internal pressure is applied 

on the inner cavity wall. Displacements of two representative points of the ellipse 

(vertices) were recorded with the varying ellipticity ( /a b ) as shown in Fig. 5.34. It 

indicates that for a free cavity under uniform internal pressure always tends to be circular 

in deformation. In other words, the displacements at the vertices of the short axis are the 

largest along the whole cavity wall, and, on the contrary, vertices on the long axis have 

the smallest deformation. For a half-elliptical root tip, the longitudinal direction usually 

lies in the major axis direction, therefore radial swelling is more likely to happen if the 
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same amount of constraints from the cell wall and external pressure was received by the 

cavity along the whole inner rim. 

 

Fig. 5.34 Displacements of cavity vertices with changing shapes 

( 500kPainp  , 20MPaG  , 0.4  ) 

(2) Stress and strain fields around a half-ellipse-shaped root tip 

With this pressure-controlled solution, the stress and strain distributions around a half-

ellipse with a typical size of the root tip 2a mm  and 0.5b mm  (Kirby and Bengough, 

2002) are calculated as presented in Fig. 5.35. As previously demonstrated, the ellipse 

tends to be thicker with a uniform internal pressure. A tensile stress/strain region (positive 

for tensile) perpendicular to the axial growth direction appeared just ahead of the root 

apex. This is consistent with the finding of Richards and Greacen (1986), and may partly 

account for the benefit of the radial thickening to the axial elongation. Providing that the 

constraints from microfibrils within cell walls or the stimuli from phytohormones apply 

non-directional influences on the cell expansion, this pressure-type boundary can 

approximately represent the boundary condition of the root tip. It may occur sometimes, 

but it is not always the case since the nature of tropistic growth of roots and anisotropic 

strength of the surrounding soil. Alternatively, with a precise control of the root tip 

geometry and size, more analysis about the root-soil interaction will be carried out in the 

next part by using the previously developed displacement-controlled solution. 
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Fig. 5.35 Stress and strain fields around the root tip with stress-controlled solution  

5.3.2.2 Purely radial thickening with given normal displacements 

When the axial elongation is halted ( 1 2th soil thQ Q Q   ), the roots would tend to grow 

radially as assumed in the inverse-peristalsis root growth model (introduced in Section 

5.1.2). Consequently, movements of the displaced soil would reorient more radially in 

this case. As previously discussed, the assumed boundary condition on the cavity wall in 

the first displacement-controlled solution is more paralleling to the direction of the minor 

axis of an ellipse. Therefore, it is employed to study the concerned root swelling problem. 

In this solution, it assumed that points on the inner ellipse move outwards along the 

normal directions of the initial cavity surface. The root tip is approximately modelled as 

a half-elliptical cavity with a 2mm and b  0.5mm ( rtd = 1mm). Its axial elongation is 

fully impeded by the high soil resistance, then it ideally thickens to another ellipse with a 

larger minor axis length 1b  0.505mm ( 1a  2mm). In this case, the maximum swelling 

happened along the minor axis of the assumed half-ellipse (approximately in the 

elongation zone), and a smooth thickening growth is applied along the root longitudinal 

section. The amplified displacement vectors (100 ) around the root tip are given in Fig. 

5.36. ( 10MPaG  , 0.35  ). 
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Fig. 5.36 Displacement vectors field around a thickening root tip 
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Fig. 5.37 Stress and strain fields around a thickening root tip 

The initial stress field is assumed to be equilibrated before the root thickening. So the 

stress and strain fields shown in Fig. 5.37 are the incremental values calculated with the 

first elastic displacement-controlled solution. It demonstrated that significant stress and 

strain concentration took place in the immediate front of the root apex due to a small 

amount of radial swelling (maximum incremental thickness is 1/ 200 rtd ). In this 

immediate front zone, the soil is mainly subject to tensile stresses and accompanied by 

concentrated tensile strains tending to the transversal direction. As a consequence, it will 

lead to a reduction of the axial resistance due to the release of the radial confining stress, 

and the soil may even be teared, leading to some micro-cracks initiate or grow in the 

immediate vicinity of the root apex. These consequences will effectively facilitate 

subsequent root axial elongation. As aforementioned, similar findings were also found 

with other approximate methods, and they provide a theoretical explanation for the 

hypothesised stress relief effect caused by radial thickening which is one important basis 

of the inverse-peristalsis root growth model proposed by Abdalla et al. (1969). 

5.4 Chapter summary 

Factors influencing the root penetration ability was summarised, and studies on the root 

radial thickening phenomenon with response to the mechanical impendence were 

reviewed in the first section. In the second section, three closed-form elastic solutions for 

ellipses with different types of boundary conditions were presented for later applications 

to model the root tip-soil mechanical interaction. The complex variable theory and 

conformal mapping technique were employed to develop these solutions. For a pressure-

controlled ellipse, the solution of Muskhelishvili (1963) was followed. Solutions for 

displacement-controlled ellipses were derived by means of expressing the displacement 

boundary conditions with the Fourier series method. Subsequently, these solutions were 
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validated with other available analytical solutions in some special cases, and their 

performances were briefly discussed in the end part of this section.  

In Section 5.3, the second displacement-controlled solution (given displacements 

directing outwards from the centre of the ellipse) was employed to estimate the axial soil 

resistance encountered by an elongating root tip in a small growth interval. The calculated 

soil resistance was in the same magnitude of the experimentally measured growth 

pressure of root tips. However the present solution was derived based on the plane strain 

assumption, so reliable shape factors are required to estimate the real soil resistance 

encountered by a three-dimensional root tip growth. Subsequently, the stress-controlled 

solution and the first displacement-controlled the solution (displacement normal to the 

initial cavity surface) were employed to evaluate contributions of the radial thickening to 

the subsequent axial elongation. Evident transverse tensile strain zone immediately ahead 

of the root apex was predicted in both methods. These theoretical findings directly 

supported the hypothesis that root radial thickening has a relief effect on the front soil, 

and tension failure in the transverse direction even may occur, which can further reduce 

the required axial elongation pressure. 
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Chapter 6  

 Static and quasi-static analysis of cavity 

expansion under shear stress in compressible Tresca 

materials 

6.1 Introduction 

Stress and displacement analyses around a cylindrical or spherical cavity deforming in 

static states (Detournay and Fairhurst, 1987; Savin, 1970), in quasi-static processes 

(Bishop et al., 1945; Hill, 1950), or during dynamic expansions (Durban and Masri, 2004; 

Forrestal and Tzou, 1997) have been widely investigated by researchers in many areas 

(as reviewed in Section 1.2). Among them, due to the successful applications in the 

interpretation of in-situ tests (e.g.cone penetration tests, pressuremeter tests), prediction 

of bearing capacity of foundations, estimation of tunnel deformation, and analysis of 

stress redistribution around piles or excavations etc., analytical static and quasi-static 

cavity expansion solutions experienced a great deal of developments and played an 

important role in the geotechnical field (Yu, 2000, 2006). In general, most of them were 

established based on the assumption that a uniform normal stress is applied on the inner 

cavity wall without consideration of the shear stress. However, a great amount of surface 

shear stress may also be applied or generated in some analogous cases, for example, in 

the process of rotary drilling/excavation, accommodation of screw piles, rotary 

penetration tests (Bengough et al., 1997; Bishop et al., 1945; Mckenzie et al., 2013; 

Sadeghi et al., 2014; Whalley et al., 2005; Zhou et al., 2014a). In view of these practical 

problems, by assuming an additional uniform shear stress on the cavity wall, a few 

pioneering studies considering the influence of the inner shear stress on the static stress 

distribution or quasi-static pressure-expansion response have been presented 

(Muskhelishvili, 1963; Parasyuk, 1948; Zhou et al., 2014a). However, some 

imperfections still exist in some cases (elaborated later), which more or less limited their 

applications. Therefore, a complete static stress solution is developed in this chapter, 

which describes an embedded circular cavity under loading of uniform normal pressure 

and shear stress at the inner cavity wall and non-equal biaxial stresses at infinity. 



Chapter 6  Static and quasi-static analysis of cavity expansion under shear stress 

188 

Subsequently, a large deformation displacement analysis is carried out for the cavity 

deforming in a hydrostatic stress environment. Based on them, the continuous quasi-static 

expansion process of a cavity deforming in compressible Tresca materials can be 

modelled without limit of deformation level. 

In a static stress analysis, the governing equation system usually consists of constitutive 

models and equilibrium equations, which fundamentally determines the mathematical 

tractability as well as the boundary conditions, particularly in analytical derivations. For 

a cavity with axisymmetric geometry and stress conditions, it generally can be simplified 

to a one-dimensional equilibrium problem, which greatly facilitates the development of a 

number of analytical elastic, elastic-plastic solutions (Yu, 2000). However for problems 

involving a non-symmetrical geometry and/or stress boundary conditions, more advanced 

mathematical techniques are usually required, such as the complex variable theory 

(Muskhelishvili, 1963; Stevenson, 1945), perturbation methods (Ivlev, 1959; Kuznetsov, 

1972), variational approaches (Kerchman and Erlikhman, 1988) or some other numerical 

techniques (Bradford and Durban, 1998; Huang, 1972). Among them, the complex 

variable theory with conformal mapping technique (Muskhelishvili, 1963) provides a 

very powerful analytical tool for calculating the elastic stress and displacement fields 

around a cavity with various shapes and stress boundaries (it is noteworthy that the 

compatibility condition with small deformation is included in the complex potential-

based method). To be specific, in purely elastic materials, numerous solutions have been 

proposed by using this method (Savin, 1970). For elastic-perfectly plastic materials, Galin 

(1946) creatively proposed an analytical solution for a circular cavity embedded in an 

infinite plate under non-equal biaxial remote stretching loading. Both constant and 

polynomial types of far-field stress conditions were discussed, and the Tresca yield 

criterion was employed to describe the plastic deformation. Although some deficiencies 

existed as found and improved by Tokar (1990) and Ochensberger et al. (2013), it is 

generally believed that this method yields a lot of developments of analytical solutions 

for this specific static cavity problem (Yarushina et al., 2010). For example, Cherepanov 

(1963) extended it to address plane stress problems, Detournay (1986) developed it into 

applications on the Mohr-Coulomb material. In addition, similar to the complex variable 

theory in linear elasticity, a few analytical solutions for hardening material have also been 

derived by means of constructing two unified pseudo-stress functions (Gao et al., 1991; 

Lee and Gong, 1987). 
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Due to additional consideration of the shear stress at the inner cavity wall, the formed 

plastic region cannot be characterised with a biharmonic stress function, which results in 

Galin’s method is not applicable to the present problem. Parasyuk (1948) proposed 

another analytical approach to determine the shape of the formed elastic-plastic boundary 

(hereinafter referred as EP boundary) based on the Cauchy integral method and the 

conformal mapping technique. However, the size of the EP boundary and the elastic stress 

field have not been given in Parasyuk’s paper. To address this problem, by using the 

Laurent decomposition theorem and the Liouville’s theorem, an explicit expression of the 

mapping function and analytical elastic complex potentials are obtained. Furthermore, 

taking into account the material compressibility, a large strain displacement solution for 

a circular cavity continuously expanding in a uniform stress environment is developed, 

and then it is combined with the developed static stress solution for conducting a quasi-

static cavity expansion analysis. Subsequently, the admissible application range of 

present solution and influences of the shear stress on the stress distribution and quasi-

static expansion response are discussed in Section 6.5 and Section 6.6 respectively. 

Finally, conclusions are drawn in the last section. 

6.2 Problem definition 

A sufficiently large and thick plane (in comparison with the cavity size) with a cylindrical 

inner cavity is considered, which allows the plane strain assumption to be adopted in the 

stress and deformation analysis. As illustrated in Fig. 6.1, non-equal biaxial stresses are 

applied at infinity, and normal and shear pressures uniformly act on the inner cavity wall. 

For convenience, both Cartesian coordinates and cylindrical polar coordinates with the 

same origin at the centre of the cavity are utilised. It is worth pointing out that the defined 

remote stress conditions are sufficiently general because we always can set a coordinate 

system with axes parallel to the directions of the principal stresses at infinity. Within the 

cylindrical polar coordinates, the stress equilibrium equations in axes directions are 

1
0r rr

r r r

   



 
  

 
  (6-1) 

21
0r r

r r r

    



 
  

 
  (6-2) 
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Taking tension as positive for normal stresses and rotation in the counterclockwise 

direction to the object as positive for shear stresses, the stress boundary conditions can be 

expressed as 

0
r inr R

p


   ,  
0

r r R
mk


   ( -1 1m  )  (6-3) 
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Fig. 6.1 Stress boundaries and coordinate systems 

A homogenous and isotropic plane is under consideration. The material behaviour is 

described with an elastic-perfectly plastic model. Specifically, the elastic response is 

characterised with the generalised Hooke’s law until the onset of yielding which obeys 

the Tresca yield criterion as Eq.(6-5).  

( )
2 2 24 4r r k        (6-5) 

where k is the yield stress in pure shear loading. 

6.3 Static stress analysis 

6.3.1 Plastic region 

To determine the surrounding plastic stress field, three basic assumptions are adopted as 

suggested by Galin (1946) and Detournay (1986), which include: (1) the inner cavity is 

fully enclosed by a continuous plastic region, and the plastic stress field is statically 
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determined; (2) the plastic zone is formed under monotonic loading, and there is no elastic 

unloading occurring in any cases; (3) the vertical stress component, zz , always remains 

as the intermediate principal stress regardless of other stresses. Firstly, static determinacy 

of the plastic stress field implies that the plastic stresses can be completely determined by 

the inner boundary conditions (Detournay, 1986; Hill, 1950). Then according to the 

axisymmetric nature of the geometry and stress boundaries at the inner cavity wall, it is 

reasonable to assume 

0
p

r







 ,  0

p









 ,  0

p

r







  (6-6) 

Subsequently, the plastic stress components are directly obtained by solving the preceding 

stress equilibrium equation and yield criterion with given stress boundaries, which were 

known as the Mikhlin’s solution (Parasyuk, 1948; Zhou et al., 2014a). 
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Two corresponding solutions exist to describe different failure models, which are the 

active model (when p p

r  ) and the passive model (when p p

r  ) (Detournay, 1986), 

of the surrounding material. Only the loading condition (passive model) is considered in 

this research. According to the elastic solution in Appendix C, the requirement that a 

plastic zone starts forming from the cavity rim under loading can be found as 

2( ) 1 2inp P k m        (6-10) 

6.3.2 Determination of the elastic-plastic interface 

Although the plastic stress components are assumed independent of the centre angle, the 

EP boundary will no longer be in a circular shape because of the non-axisymmetrical far-

field stresses. Several methods have been developed to determine the EP boundary which 

is of critical importance in addressing the present problem. Specifically, Galin (1946) first 

developed an approach to obtain the EP boundary by constructing a biharmonic stress 
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function crossing the elastic-plastic surface based on the stress continuity condition. 

Subsequently, Parasyuk (1948) developed a method (as in Appendix D) for cases with a 

non-biharmonic plastic stress state, and this method was also used by Savin (1970) in 

dealing with Galin’s problem. Cherepanov (1963) introduced Laurent’s theorem to deal 

with the stress continuity conditions at the EP boundary and gave a solution for the Tresca 

material under the plane stress condition. For materials obeying the Mohr-Coulomb 

criterion, Detournay (1986) built an approximate mapping function in the series form for 

describing the EP boundary based on the Schwarz’s reflection principle and Laurent’s 

decomposition theorem. Overall, these methods provided valuable references for further 

exploration of the present problem. Partly based on Parasyuk’s derivation (1948) as 

presented in Appendix D, an explicit expression of the mapping function for predicting 

the EP boundary is firstly derived with Laurent’s decomposition theorem. 

Stress components in the plastic region were given in Eqs. (6-7), (6-8) and (6-9). The 

elastic stresses can be expressed with the Kolosov-Muskhelishvili complex potentials, 

( )  and ( ) , (Muskhelishvili, 1963). Therefore, stress continuity conditions along 

the EP boundary (corresponding to the unit circle   centred at the origin of the phase 

plane) and their boundary values at infinity can be expressed as  

2
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 (6-12) 

where 1i    and   represents points on the unit contour of   in the phase plane, 

hence 1/  . The function of ( )   conformally maps the exterior of the EP boundary 

in the physical plane onto the exterior region of the unit circle in the phase plane. 



Chapter 6  Static and quasi-static analysis of cavity expansion under shear stress 

193 

Boundary conditions in Eq.(6-11)(b) and Eq. (6-12) (b) specified the behaviour of elastic 

complex potentials at infinity as 

2( ) ( )
2

P
O        ,  2( ) ( )O  

      (6-13) 

Given by Parasyuk (1948) (see Appendix D), the mapping function is in the form of 

( ) ( )


   


    (6-14) 

where 
ii e       . / k  . Parameter ‘  ’ determines the size of the EP 

boundary, but it has not been given by Parasyuk (1948). The far-field stress conditions 

bound the behaviour of the right-hand side of Eq.(6-11)(a) at infinity (Chakrabarty, 2006; 

Savin, 1970), therefore continuity condition of the mean stress across the elastic-plastic 

surface is reconstructed as 
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An elliptic EP boundary is predicted based on the prior assumptions, which is a closed 

smooth contour in the physical plane. And equation (6-15) implies that ln[ ( , )]F    

continues analytically on both sides of   in an annulus ( 0      ). Based on the 

Laurent decomposition theorem (Gamelin, 2001), ln[ ( , )]F    can be decomposed as a 

sum of two functions, ( )d   and 
1( )d  

, which are analytic in   ( 1  ) and  (

1  ) respectively. Then by multiplying 
1

2

d

i



  
 on both sides of Eq.(6-15) and 

integrating it along  , it gives 

1( ) ( ) ( )F d       (6-16) 

2( ) ( ) ( ) ( 1 )inF d k m p           (6-17) 

where ( ) ln[ ( ) / ]d k f    and 
1 1( ) ln[ ( ) / ]d k f    . ( )F 

 is analytic 

everywhere within the region of  , and ( )F 
 is analytic everywhere in the region of 
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 . Now the continuity conditions of mean stress across the unit circle   can be 

expressed as ( ) ( )F F   . 

The parameter   can be determined based on the Liouville’s theorem, which states 

( )F 
 and ( )F 

 are identically equal to one and same constant due to the complex 

potentials are bounded at infinity. It is noteworthy that the boundary value of ( )d   and 

1( )d  
 should be studied in the extend complex plane and the variable of   (and  ) 

should be replaced by 1/   (and 1  ) in analysing 
1( )d  

due to it is the reflection of 

( )d  in   (where 1/  ). Therefore, 
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Finally, the undetermined parameter  in the above mapping function is obtained. 
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By now the conformal mapping function is completely confirmed, and a new parameter 

  is included due to the additional consideration of the shear stress, comparing with the 

Galin’s mapping function. It is shown that the non-dimensional size and axes directions 

of the elliptical EP boundary entirely depend on the far-field stress boundary conditions, 

and its size in the physical plane can be expressed with lengths of the semi-major axis, 

(1 )epa    , and the semi-minor axis, (1 )epb    . 
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Fig.6.2 Mapping relations between planes 

6.3.3 Elastic stress analysis 

The determined EP boundary and plastic stresses provide the inner geometry and stress 

boundaries for calculation of the external elastic field. In fact, a typical elastic stress 

boundary value problem is constructed, which is equivalent to an elliptical inner cavity 

embedded in an infinite plane subjecting to non-uniform stresses at the inner cavity wall 

and non-equal biaxial stresses at infinity. Therefore, a two-dimensional stress analysis is 

necessarily required, and the complex potential method given by Muskhelishvili (1963) 

is employed. In view of the stress boundary conditions at the EP boundary given in 

Eq.(6-11) and Eq.(6-12), it is impracticable to directly derive the elastic complex 

potentials with simple algebraic transformations. Alternatively, the inner stress 

boundaries are transformed into Fourier series form. At fist, the elastic complex 

potentials, ( )  and ( ) , in general forms (Muskhelishvili, 1963) are 
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   , which are holomorphic in the whole elastic 

region. / 2P   and 
  , which describe the stress conditions at infinity. X  and Y  

are components of the resultant vector of forces acting on the EP boundary from the 

plastic deformation side. 3 4    for the plane strain problem.   is Poisson’s ratio. 

The complex potentials are first sought with the assumption that both the stress and 

displacement components remain bounded at infinity, which implies that the resultant 

stresses vanish at infinity (Muskhelishvili, 1963). Mathematically, it requires 0    , 

0X Y  . In this case, the complex potentials ( )  and ( )  remain holomorphic in 

the outside region of contour  . In fact, 0 ( )  and 0 ( )  fully satisfy above 

requirements. Hence, the inner stress boundary condition, Eq.(6-11)(a), becomes  
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In Eq.(6-22), an even function of ( )G   is formed, which is a continuous real function in 

terms of the argument   within the interval of 0 2   . It states that n nA A  (real 

numbers) and coefficients of the odd terms in 0 ( ) are infinitesimal. Due to 
n nA A   

and 1   , it is obvious that both sides of the above equation consist of two conjugate 

parts. As a result, 
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Calculation shows 0A  naturally is a small value who applies little influence on the result. 

Hence the requirement of 0 ( )  at infinity, 2

0( ) ( )O     , is basically fulfilled. More 

strictly in mathematical formulation, the terms with coefficients of 0A  are equivalently 

modified at the unit circle as  
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By multiplying both sides with 
1

2

d

i



  
 (here   is a point within ‘  ’), and 

integrating it along the circumference of  , Eq.(6-24) gives 
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Then the general form of ( )  can be recovered by releasing the previous assumption 

in the process of deriving 0 ( ) . The resultant vectors still equal to zero ( 0X Y  ) 

because of the continuous distribution of stresses along the EP boundary. Based on 

Eq.(6-13), the first complex potential goes to 
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Instead of transforming the second stress continuity condition (Eq.(6-12)(a)) into a Fourier 

series, the second complex potential is obtained by directly integrating it along   from 

the   side with the Cauchy integral method. As discussed in Appendix D, all parts in 

Eq.(6-12)(a) are holomorphic in  , therefore it gives 
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where 
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A method based on combination use of the Cauchy integral method and Fourier series 

was presented to solve the encountered stress boundary value problem. More generally, 

it is capable of dealing with similar elastic problems with a various shaped geometry 

boundary and arbitrary stress boundaries. Without any difficulties, the elastic stress field 

can be calculated with Eqs. (6-26), (6-27), (6-29) and (6-30) by separating the real and 

imaginary parts, but explicit expressions for each stress components are very cumbersome 

and, therefore, not attempted in this work. 
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6.4 Quasi-static expansion analysis in hydrostatic far-field stresses 

When a uniform far-field stress environment is considered, the mapping function of the 

elastoplastic interface will reduce to ( )   . The inner pressure during expansion 

can be expressed as  
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where hP
 is the hydrostatic far-field stress. 

Based on Eq.(6-31), providing that the radius ratio ( /cr R ) of the EP boundary to the 

current cavity radius at any expansion moment is known, the quasi-static expansion 

process under a monotonically increasing expansion pressure inp  can be readily 

modelled. In this special case, the displacement field will remain axisymmetric, therefore 

the continuous displacement analysis can be conducted as a one-dimensional problem. A 

small strain theory is adopted in the calculation of the elastic displacement, and a large 

deformation analysis is carried out for determination of the plastic deformation 

(Chadwick, 1959; Yu and Houlsby, 1991). The radial elastic displacement is found as 
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Displacement at the EP boundary should be continuous, and it can be calculated with 

above elastic solution by replacing inp  with 
cr

p  and R  with cr . 
cr

p  is the compression 

pressure at the EP boundary, which is available by substituting the elastic stress solution 

in Appendix C (ignoring the angle-dependent terms) into the yield criterion. 

2 41 ( )
c

h

r

c

R
p k m P

r
     (6-33) 

When 
21 h

inp k m P   , a plastic zone starts forming from the inner cavity wall. Then 

the radial displacement at the EP boundary becomes 

2 41 ( )
2c

c
r cr r

c

kr R
u m Mr

G r
      (

2 41 ( )
2 c

k R
M m

G r
  )  (6-34) 

Due to the plastic volumetric strain rate is zero for Tresca materials, the compressibility 

equation (Yu, 2000) in the plastic region becomes  

1 2
[ ]

2
r r

v

G
 e e  


     (6-35) 

With the initial stress boundary conditions, integrating above equation gives 

1 2
[ 2 ]

2

h

r r

v
P

G
 e e   


      (6-36) 
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With use of the definition of logarithmic strain to characterise the accumulative 

deformation, the radial strain and circumferential strain respectively are 

0

lnr

dr

dr
e      ,   

0

ln
r

r
e    (6-37) 

By substituting the plastic stresses and Eq.(6-37) into Eq.(6-36), it gives 

2 4 2 4

2 4 2 4
0 0

ln[ ] ln

c c

r dr r r m R

r dr r r m R


  
 
   

    (
(1 2 )v k

G



 )  (6-38) 

With use of Eq.(6-34), Eq.(6-38) can be integrated over the interval [r, cr ], leading to 

2 4 2 4

2 2 2 2 4 2 4 2 4 2 4

0 2 2 4 2 4

1
(1 ) ( ) ( )

1

c c

c c c

r r m R
M r r r r m R r r m R

r r m R



 


            
      

  (6-39) 

Letting r R  and 0 0r R , the relation of the radius ratio of /cr R  is finally obtained.  

2 2 20

2 4 2

2 2 4 2

2 2

(1 ) ( ) ( )

( / ) ( / )1
(1 1 ) [( ) ( ) ]

1 1 1

c

c c c c

r R
M

R R

r R r R m r r
m m

R Rm



 


 

          
      

  (6-40) 

So far all stress and deformation information at any expansion stage are available by 

calculating Eq.(6-31) and Eq.(6-40). While regarding the material as incompressible 

solution of Zhou et al. (2014a) can be reduced by Eq.(6-40) as  

2

2 204 [(1 ( ) ]cr RG
m

R k R

 
   

 
    (case with 0.5v  )  (6-41) 

It is well-known a limit ratio of /cr R  exists in the continuous displacement analysis, 

which leads to a limit value of the required expansion pressure. This feature in quasi-

static cavity expansion analysis is of great interest in many practical applications. The 

limit value of /cr R  can be approached by putting 0 /R R    in Eq.(6-40). When the 

inner shear stress vanishes, 0m  , the limit ratio derived by Yu (2000) for a cavity 

expanding from zero radius is recovered as shown in Eq.(6-42), if neglecting the small 

quantities. With further simplification, the well-known limit expansion pressure for a 

cavity in undrained clays without the shear stress found by Gibson and Anderson (1961) 
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can be recovered as well by substituting the limit ‘ /cr R ’ into Eq.(6-31) as shown in 

Eq.(6-43). 

1

2( 1)
2( 1)(1 ) 1

2

cr k

R G




 

    
 

    (case with 0m  )  (6-42) 

limit [1 ln( )] hG
p k P

k
     (6-43) 

6.5 Range of admissible applicability of the static stress solution 

The closed-form two-dimensional stress solution was achieved based on the 

aforementioned three fundamental assumptions. These prior assumptions determine that 

this static stress solution is only rigorously valid within a limited stress range. The 

admissible application range is discussed with references to the methods of Detournay 

(1986) and Yarushina et al. (2010). 

(1) The cavity is fully enclosed by a plastic region 

This restriction is to ensure the cavity is fully encompassed by the plastic region, and the 

limit condition will be approached once the EP boundary touches the cavity wall at its 

vertices on the minor axis direction. That is 

0(1 )epb R      (6-44) 

(2) Intermediate principal stress 

A prior assumption on the principal stresses in the plastic region was applied, which 

requires the major and minor principal stresses distribute within the studied plane. This 

assumption can be completely fulfilled for analyses in incompressible materials. While 

the material compressibility is taken into account, some restrictions will be produced by 

this assumption. It is known that the plastic principal stresses monotonically increase 

from the inner cavity wall to the EP boundary. Therefore, it just needs to ensure that 

values of the out-of-plane stress, zz , at the inner cavity wall and the vertices on major 

axes of the EP boundary always remain as the intermediate principal stress (Yarushina et 

al., 2010). The principal stresses are calculable with 

1/2

2 2

1 ( )
2 2

r r
r

 
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   
 

  
   

 
  (6-45) 
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1/2

2 2

3 ( )
2 2

r r
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 


   
 

  
   

 
  (6-46) 

2 1 3( )       (6-47) 

With Eq.(6-7) Eq.(6-8) and Eq.(6-9), two inequalities are established. 

2 21 1
1 1

1 2 1 2

inp
m m

k 
     

 
  (6-48) 

2 21 1
1 ln( ) 1 ln( )

1 2 1 2
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m m

k 
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  (6-49) 

where 

2 4 2

0 0

2

[ (1 ) / ] [ (1 ) / ]
1

1 1

R R m
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      
  

 
. Furthermore, this restriction 

can be combined into one inequality as 

2 21 1
1 ln( ) 1

1 2 1 2

inp
m m

k 
       

 
  (6-50) 

(3) Requirement for static determinacy of the plastic zone 

A statically determined plastic region is pre-defined before seeking the EP boundary. 

Theoretically, it implies that every point in the plastic region can be connected to the 

cavity rim by two characteristic lines (slip-lines) of different families, and every slip-line 

cuts the EP boundary only once (Hill, 1950). Therefore, a limit condition is reached when 

there is one, and only one, characteristic line being tangent to the elastic-plastic interface 

within one quadrant. 
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Fig.6.3 Direction of principal stresses 
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It is known that directions of the slip-lines take an angle of π/4  with the principal stress 

directions in the Tresca material. When an inner shear stress is applied, the radial and 

tangential directions are no longer the principal stress directions. As shown in Fig.6.3, the 

radial direction of polar coordinates takes a counterclockwise rotation angle to the major 

principal surface when a positive inner shear stress applied. On the contrary, a clockwise 

rotation will be caused by a negative inner shear stress. Here taking the clockwise 

direction of   as positive, the geometry relation in Fig.6.4 requires 

π

4
      (6-51) 

where the sign of negative for 0  , and positive for 0  .  

Angles in above relationship can be uniformly expressed in terms of the variable of  . 
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where ( ) ( / )        , 1( ) ( )      . 
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Fig.6.4 Typical conditions for slip-line intersecting with the EP boundary (positive 

shear stress) 

In addition, to guarantee that only one characteristic line reaches the limit condition 

within the first quadrant, it restricts the equality condition holds only when the function 

( )g  , ( )g       , reaches its extremum (Detournay, 1986). The extremum values 
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of ( )g   lie at the zero points of its derivative. If no shear stress is applied, this restriction 

can be explicitly expressed as ( 2 1)    (Detournay, 1986; Yarushina et al., 2010). 

6.6 Results analysis 

6.6.1 Calculation procedure of the static stress solution 

If the experienced stress conditions lie in the permissible range specified by Eqs. (6-10), 

(6-44), (6-50), (6-51), the present solution can be employed. With all required formulas 

presented, results can be calculated with the following procedure. 

① Calculate the EP boundary with the known mapping function. Then the plastic stress 

field can be obtained directly with Eq.(6-7) Eq.(6-8) and Eq.(6-9). 

② Calculate the coefficients of the established Fourier series, which stay the same values 

in the whole elastic filed. ( 5n   is set in Eq.(6-25) in the following calculation). 

③  To get the elastic stresses at one particular point, a one-to-one corresponding 

relationship between the physical plane and the phase plane is required first, which is 

available with Eq.(6-53). Accordingly, all elastic stresses are calculable with the derived 

elastic complex potentials, Eq.(6-26) and Eq.(6-27). 

cos ( )cosx r


   


    , sin ( )siny r


   


     (6-53) 

6.6.2 Verification for stress solution 

The present closed-form solution is verified with Galin’s solution (1946) first in cases 

without the internal shear stress. Further validation is carried out by comparing it with 

results obtained with the finite element method (FEM). The FEM simulations are 

implemented in Abaqus /Standard 6.12 with the model shown in Fig.6.5. An 8-node 

biquadratic plane strain quadrilateral element is utilised for meshing, and material 

properties are set as 0.4  , 200G k  . 
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Fig.6.5 Boundary conditions in the FEM model 

 

Fig.6.6 Comparison with Galin’s solution 
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Fig.6.7 Comparison of stress components with FEM results 

The problem studied will reduce to the Galin’s (1946) problem when no shear stress is 

present. In this case, it is found that the plastic stress solution and the mapping function 

of the EP boundary are exactly the same as given by Galin’s (1946) solution. Although 

the elastic complex potentials are not in the same form due to the difference in the method 

decomposing the stress continuity conditions, figure 6.6 demonstrated the calculated 

results with them are identical. Furthermore, the calculated stress fields with the present 

solution are perfectly consistent with the FEM simulation results as presented in Fig.6.7. 

Additionally, it is proved that the developed series-form elastic complex potentials have 

good convergence precision and speed. 

6.6.3 Influence of inner shear stress on the admissible application 

range of present solution 

With the defined stress boundary conditions, formed stress fields around the inner cavity 

can be generally categorized into three states, a purely elastic state (zone A), a state when 

the cavity is partially surrounded by plastic regions (for example, zone B), and a state 

when the cavity is fully encompassed by a plastic zone (for example, zone C and zone 

D). The stress field in the purely elastic state can be readily calculated with the solution 

given in Appendix C. For other two states, the distribution and shape of the formed plastic 

zones are various (Yarushina et al., 2010), depending on the stress boundary conditions. 

Some analytical solutions for parts of problems staying in the second state are derived 

based on the perturbation theory (Bykovtsev and Tsvetkov, 1987; Lozhkin, 2001) or 

approximate methods (Leitman and Villaggio, 2009). The present stress solution is 

specifically derived for problems with stress conditions belonging to the Zone C. 
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Fig.6.8 Permissible range of stress boundary conditions ( 0.4  ) 

Fig.6.8 depicts an admissible application range of the present solution (in zone C) which 

is calculated with equations (6-10), (6-44), (6-50) and (6-51). For cases without the inner 

shear stress, the results (black lines) are the same as given by Yarushina et al. (2010). 

With additional consideration of the shear stress, the permissible range of stress 

boundaries changes with the applied quantity and direction of the shear stress. 

Specifically, the stress range of purely elastic deformations shrinks when a shear stress is 

involved no matter it is positive or negative. Additionally, line 2 determined by Eq.(6-44) 

moves left with an increasing level of the shear stress. Line 3 represents the static 

determinacy requirement of the plastic region. For problems without externally applied 

shear stresses, this dividing line is horizontal with a constant value of / ( 2 1)k   . 

However, it becomes curved while a shear stress is applied, which gradually approach to 

/ ( 2 1)k    with increasing /inP p k  . Due to the direction of the applied shear 

stress determines the rotation direction of principal stresses, opposite influences will be 

produced by the shear stress with different directions. Consequently, limit bounds of this 

requirement distribute in oppose sides of the mentioned horizontal line for cases without 

inner shear stress. Finally, line 4 reflects the requirement of intermediate principal stress 

as specified by Eq. (6-50). As an example, a line calculated with 0inp   and 0.4   is 

shown here, and line 4 moves rightwards with an increasing Poisson’s ratio and moves 
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left with decreasing values. It is shown the additional shear stress has little impact on this 

restriction, and it will be released for incompressible materials as previously discussed. 

6.6.4 Influence of the inner shear stress on stress distributions 

Within above permissible stress conditions, stress redistributions caused by different 

levels of stresses applied to the cavity wall are presented in Fig.6.9 and Fig.6.10. It 

illustrates that influences of the additional shear stress mainly concentrate in the plastic 

region, and the shear stress rapidly attenuates from the applied value at the cavity wall to 

the stable level that produced by the remote-field stresses. 

 

 

 

Fig.6.9 Stress distributions changing with the inner shear stress 
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Fig.6.10 Stress distribution changing with internal compression stress 

 

Fig.6.11 Influences of the shear stress on EP boundaries 

As shown in Fig.6.11, the additional shear stress at the inner cavity wall extends the range 

of plastic zone since it increases the principal stresses (as shown in Fig.6.9). But it 
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axis ratio as / (1 ) / (1 )ep epa b     , and the direction of the major axis of the EP 

boundary coincides with the direction of minor principal stress at infinity. Specifically, 

its major axis lies on the defined x-axis direction when 0  , and in the direction of y-

axis when 0  . In addition, the additional shear stress induces continuous rotation of 

the principal stresses, which must cause differences in the deformation or failure mode of 

the surrounding material. 

0 3 6 9 12

-5

-4

-3

-2

-1

0

1

 

 
r 
  ( p

in
= 5k )

 

  ( p

in
= 5k )

 
r  

( p
in
= 5k )

 
r 
  ( p

in
= 3k )

 

  ( p

in
= 3k )

 
r  

( p
in
= 3k )

Distance to cavity wall / R
0

 S
tr

es
s 

/ 
k

 

 

 =90
o


v0

 =1 k   
h0

 = 0.5 k   m = 0.5

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

5inp k

0 00.5  , v hk k  

 

 Inner cavity

   m = 0

   m = 1

 

 

x / R
0

y
 /

 R
0

0 0 , 0.5v hk k  

EP boundary



Chapter 6  Static and quasi-static analysis of cavity expansion under shear stress 

209 

6.6.5 Continuous pressure-expansion response 

In a quasi-static analysis, both the continuous pressure-expansion curve and the limit 

expansion pressure are of great interests to engineers (Yu, 2000). The influence of the 

additionally applied shear stress on these two responses are shown in Fig.6.12 and 

Fig.6.13. It shows that the required normal pressure during a continuous expansion gets 

smaller with an increasing shear stress as well as an evident decline of the limit expansion 

pressure with increases of the applied shear stress. The required limit expansion pressure 

increases with increases of the Poisson’s ratio and the soil shear modulus. With a fully 

mobilised shear stress (e.g. slip interface), a reduction of 6% of the limit expansion 

pressure may be produced within the Tresca material, and this influence would be 

intensified within in materials with higher interface strength.  

 

Fig.6.12 Continuous pressure-expansion curves 
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Fig.6.13 Influences of the shear stress on the limit expansion pressure with varying 

material properties 
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neglected. It demonstrated the necessity of consideration of the mobilised surface shear 

stress in rotary cone penetration tests. In addition, the soil deformation model triggered 

by a rotated probe is increasingly cylindrical, especially for the probe with a sharp cone 

(Bengough et al., 1997). Therefore, the present quasi-static cylindrical cavity expansion 

solution may be more suitable for interpretation of the rotary cone penetration test in 

undrained clay. 

6.7 Chapter summary and conclusion 

A uniform inner shear stress was additionally considered to the classical Galin’s problem 

in this chapter. An explicit mapping function of the EP boundary and closed-form elastic 

complex potentials to the present problem were completely derived partly based on 

Parasyuk’s (1948) work. An analytical approach for confirming the EP boundary was 

developed by utilising Laurent’s decomposition theorem and Liouville’s theorem. With 

known stress and geometry boundary conditions at the EP boundary, a general approach 

to calculating the elastic stress field was developed with the Fourier series method and 

conformal mapping technique. This method can be readily applied to other similar elastic 

stress analyses for problems of different cavity shapes and various stress boundary 

conditions. Good agreements were achieved by the present solution in comparison with 

the Galin’s solution and FEM simulation results. It is found the additional shear stress 

will extend the plastic region, and it has a notable influence on the permissible application 

range of the present solution. With a large value of /inP p k  , the permissible range 

may be roughly judged with / ( 2 1)k    in practical applications, for example, in 

controlled laboratory loading tests and in-situ soil or rock mass. Therefore, the static stress 

solution can be applied to estimate the extent of plastic failure zone and calculate the 

stress fields around some shear stress involved cavity expansion problems.  

In addition, taking the soil compressibility into account, a rigorous large strain 

displacement analysis of plastic deformation was carried out for a cavity deforming in a 

hydrostatic initial stress field. With a combination use of the static stress solution and 

displacement analysis, an analytical quasi-static cavity expansion solution with 

consideration of the interface shear stress was established. It showed that the interface 

shear stress has an evident effect on the continuous pressure-expansion response, and it 

may cause reduction of the limit normal expansion pressure. This solution may be useful 

in some bearing capacity analyses of rotation involved structures in practice. 
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Chapter 7  

 Two-dimensional elastoplastic cavity analysis in 

Mohr-Coulomb material 

7.1 Introduction  

Cavity expansion/contraction solutions have been extensively applied in a variety of 

geotechnical engineering fields (Yu, 2000). Among them, elastic-plastic analyses take up 

a large proportion due to the high tendency of granular materials to plastic yielding under 

pressure, especially for soil. In analytical approaches dealing with the cavity 

expansion/contraction problem, elastic-plastic solutions are often achieved by assuming 

the cavity (cylindrical or spherical) deforms in a hydrostatic stress environment, which 

makes a one-dimensional analysis feasible. However, in fact, the earth pressure at rest 

(e.g. in-situ stress state) is usually non-hydrostatic (Mayne, 2001; Mesri and Hayat, 

1993), which is more realistic to treat it as non-equal, at least between the horizontal 

direction and the vertical direction in engineering practices. For a circular cavity 

deforming in such initial stress conditions, a two-dimensional elastic-plastic analysis is 

necessary. This case widely exists in many stress controlled laboratory tests and, more 

importantly, is increasingly experienced in fast-growing explorations and utilizations of 

the underground space, for example, deep excavation problems, soil-structure interaction 

problems etc. (Detournay and John, 1988; Zhou et al., 2016). As known, static stress 

solutions are able to provide quick and effective methods for calculating stress 

redistributions and predicting plastic failure ranges around the cavity, which is of great 

significance in practice. Therefore, a two-dimensional elastic-plastic stress analysis for a 

circular cavity under loading or unloading condition is carried out in this chapter. 

For the sake of simplicity, it is assumed that the circular cavity is embedded in an infinite 

plane with non-equal biaxial far-field stresses. Depending on the constitutive model of 

material, the loading path, and the applied stress level, several stress states may occur 

around the cavity. Specifically, in a linear elastic material, several classical analytical 

solutions for various stress boundaries were developed, which can be found in many 

treatises (Muskhelishvili, 1963; Timoshenko and Goodier, 1951). Analytical solutions 
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were also available for power-law materials by constructing a complex pseudo-stress 

function (Gao et al., 1991; Lee and Gong, 1987). Although non-linear responses of the 

material were characterised in them, only one stress-strain relation exists in the 

constitutive model, which determines that the stress and strain components therein can be 

uniformly expressed with unified biharmonic stress functions. However, in an elastic-

perfectly plastic material, different constitutive equations are incorporated to describe the 

elastic and plastic behaviour separately. So they cannot be physically modelled with one 

stress function. Alternatively, Galin (1946) first developed an analytical approach for 

calculating the stress field around an expanding circular cavity based on the Tresca yield 

criterion. By assuming the plastic state is statically determined, the formed plastic zone 

was directly obtained by a one-dimensional analysis due to the axisymmetric internal 

boundary conditions. External elastic stresses were expressed by means of the Kolosov-

Muskhelishvili complex potentials (Muskhelishvili, 1963), and the elastic-plastic 

boundary (EP boundary) was described with the conformal mapping technique. Inspired 

by this ingenious approach, a large amount of solutions dealing with similar problems 

within different stress states (Cherepanov, 1963; Leitman and Villaggio, 2009; Parasyuk, 

1948; Tokar, 1990), or in different materials (Detournay, 1986; Detournay and Fairhurst, 

1987; Tokar, 1990) has been proposed. More detailed information about these 

developments is available in recent papers from Yarushina et al. (2010) and Ochensberger 

et al. (2013). 

Within the framework of Galin’s problem, rigorous analytical stress solutions for a cavity 

under loading or unloading conditions in the Tresca material were already available 

(Galin, 1946; Yarushina et al., 2010). However, it is believed that solutions based on the 

Mohr-Coulomb criterion may be more general and applicable for analyses on granular 

materials, and main contributions to this specific problem were largely due to Detournay 

(1986) and Detournay and Fairhurst (1987). As known, the critical step in analytically 

solving this problem is to determine the EP boundary. As demonstrated by Detournay 

(1986), a closed-form expression of mapping function for describing the EP boundary in 

the general case of Mohr-Coulomb material is not readily achievable, if possible. 

Alternatively, an asymptotic form of mapping function was given by Detournay and 

Fairhurst (1987) and successfully employed in an unloading analysis. Based on the 

asymptotic form of mapping function, a combined static solution both for expanding and 

contracting cavities is developed in Section 7.3. The admissible application range of the 
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developed solution is discussed in the last part of Section 7.3, and both the loading and 

unloading solutions are evaluated and validated in Section 7.4. Finally, discussions and 

conclusions about potential applications of the present solution are presented in the end. 

7.2 Problem definition 

In a homogenous and isotropic infinite plate, an embedded circular cavity is subject to 

non-equal-biaxial stresses at infinity and a uniform pressure at the inner cavity wall as 

shown in Fig.7.1. The inner pressure is monotonically loaded or unloaded with a slow 

enough speed which allows the potential dynamic effect to be ignored. It is assumed that 

the medium around the cavity deforms in the manner of plane strain. For convenience, 

both Cartesian coordinates and cylindrical polar coordinates are employed in the stress 

analysis. The stress boundaries applied at the cavity wall and at infinity are expressed in 

Eq.(7-1) and Eq.(7-2) respectively.  

=rr inr a
p    , 

=
=0r r a   (7-1) 

0 0( ) / 2 ( ) / 2y x v hxy
P     

     , 
0 0( ) / 2 ( ) / 2y x h vxy

     
   

 (7-2) 
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Fig.7.1 Stress boundaries and coordinates 

For abbreviation, some functions recurring in the derivation process are expressed first: 

(1 sin ) / (1 sin )pK       ,  2 cos / (1 sin )Y c     
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(1 ) / (1 )p pK K      ,  
[(1 ) ]

1

p

p

p

K P Y
S

K

 



 

where c and φ are cohesion force and friction angle of the Mohr-Coulomb material 

respectively. 

Physical properties of the surrounding material are described with an elastic-perfectly 

plastic model. Specifically, the elastic response is governed by the generalised Hooke’s 

law, and the plastic behaviour is characterised with the Mohr-Coulomb yielding criterion 

as in Eq.(7-3). 

1 3pK Y     (7-3) 

where 1  and 3  are the major and minor principal stress respectively. 

7.3 Stress analysis 

Due to the non-axisymmetrical nature of the defined stress boundaries, the induced stress 

field is inevitably non-axisymmetrical, at least partly. So the stress equilibrium condition 

cannot be solely studied in one direction with a simple coordinate transformation. As first 

proposed by Galin (1946), a two-dimensional elastic-plastic analysis of the plate in a 

specific state can be analytically achieved based on some restrictive assumptions. As 

elaborated by Detournay (1986), the a priori assumptions can be briefly expressed as: (1) 

a plastic zone is developed under pressure, and it is statically determined; (2) the inner 

cavity is fully encircled by the formed plastic zone. 

The first assumption confirmed the necessity of plastic analysis and theoretically 

postulated that the plastic stress state is completely determined by the inner stress 

boundary condition (Detournay, 1986; Hill, 1950). The second assumption is to guarantee 

the elastic field to be bounded internally with a closed simple contour. In this case, 

calculation of the plastic stress field naturally reduces to a one-dimensional static stress 

equilibrium problem, and the elastic field becomes an infinite region bounded by the EP 

boundary, which can be computed with the complex variable theory in elasticity. 

7.3.1 Static plastic stress field 

With a uniform normal pressure on the cavity rim, the statically determined stress 

components in the plastic region do not vary with the central angle, and the equilibrium 

equation in the radial direction can be expressed as 
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0rr

r r

  
 


  (7-4) 

where r  and   are the radial stress and circumferential stress respectively. Taking 

tension as positive, the hoop direction is the major principal stress direction for loading 

cases, and on the contrary, the major principal stress orients in the radial direction for 

unloading cases. It is assumed that the axial stress (out-plane) always remains as the 

intermediate stress, which would be satisfied for most of soils (Yu and Houlsby, 1991). 

By solving the yielding criterion and equilibrium equation with given inner stress 

boundaries, the plastic stress components can be obtained (Yu, 2000) as 

(1/ 1)( )( )
1 1

p K

r in

p p

Y Y r
p

K K a
   

 
  (7-5) 

(1/ 1)1
( )( )

1 1

p K

in

p p

Y Y r
p

K K K a
   

 
  (7-6) 

where r  represents the centre radius of one material point. 
pK K  for loading cases and 

1/ pK K  for unloading cases, which coincides with definitions of the passive model and 

active model described by Detournay (1986) based on the concept from Rankine's theory. 

7.3.2 Elastic-plastic boundary 

Confirming the EP boundary is a vital step in current two-dimensional elastic-plastic 

stress analysis. It determines the outer margin in the calculation of plastic stresses and 

simultaneously provides the inner boundary for calculating the elastic stress field. In 

general, the EP boundary is obtained based on the stress continuity conditions of elastic 

stresses and plastic stresses at the interface. However, the elastic stress field is not 

available prior to confirming its inner stress and geometry boundaries. Alternatively, the 

elastic stresses are expressed with the Kolosov-Muskhelishvili complex potentials with 

an assumed mapping function of the EP boundary. Two typical approaches have been 

successfully applied to establish the mapping function. The first was proposed by Galin 

(1946), which is by constructing a combined biharmonic function across the EP boundary 

on the condition that the plastic stress state is biharmonic just like the elastic stress field. 

However, this method does not generally suit. Hence, the second group of methods based 

on Laurent’s decomposition theory was developed to deal with more general cases 

(Cherepanov, 1963; Detournay, 1986). Mapping functions of the EP boundary in Tresca 
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materials have been well obtained in a closed form, but it has not been achieved for the 

general case of the Mohr-Coulomb material so far. Detournay (1986) first derived an 

approximate mapping function in a truncated series form for predicting the developed 

elastoplastic interface of a cavity either undergoing expansion or in a contracting state. A 

numerical algorithm is required to determine coefficients of the series by seeking roots of 

a non-linear system of equations. Subsequently, Detournay and Fairhurst (1987) 

presented a greatly simplified asymptotic mapping function describing the formed EP 

boundary around an unloading cavity as in Eq.(7-7). Based on the second assumption 

previously introduced, the EP boundary is a smooth continuous contour, whose shape is 

independent of the stress applying on the inner cavity wall. So the form of the conformal 

mapping function would not change with loading directions of the internal boundary 

pressure. Therefore, the asymptotic form of mapping function in Eq.(7-7) is followed here 

in both loading and unloading analyses. The upper signs and lower signs in ‘  ’ and ‘ ’ 

refer to the loading case and the unloading case respectively. 

(1 )

2
( ) (1 ) 

  


    (7-7) 

where 
ii e       , which describes the position vectors in the phase plane. 1i  

. ( )   is a function to conformally map the exterior of the EP boundary in the physical 

plane onto the exterior region of the unit circle in the phase plane. An oval shaped 

elastoplastic interface is predicted by this mapping function, and the mapping function 

for Tresca materials (Galin, 1946) will be recovered when the material friction vanishes. 

a  , and / pS  . In the form of Gaussian hypergeometric function, 

1 1/ 2 2 2 4

2 1[( , );1, ] 1 0( )K F           , and 
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p in

p

Y K pK

Y K P






  
  

   

  (7-8) 

It can be found that the introduced ‘scaling’ factor   equals to the ratio ( /h

epr a ) of the 

elastoplastic interface radius to the cavity radius for a cavity expanding (Yu and Houlsby, 

1991) or contracting (Yu and Rowe, 1999) under a hydrostatic stress environment 

(uniform stress with value of P  at infinity). Therefore, the size of EP boundary under a 

non-uniform stress environment predicted with Eq.(7-7) can be directly related to h

epr , and 
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lengths of its semi-major axis and semi-minor axis are (1 )[ (1 ) ] h

epr   and 

(1 )[ (1 ) ] h

epr   respectively. Conceptually, the EP boundary is flattened by the non-

equal biaxial far-field stresses from a circle shape under corresponding hydrostatic stress 

conditions, and (1 )[ (1 ) ]   and (1 )[ (1 ) ]   are just like two shape factors 

describing the flat ratio of the non-circular EP boundary, which only depends on the 

friction angle and far-field stress obliquity (  ). In essence, the EP boundary deforms in 

a self-similar manner within this state. In addition, for frictionless material, the EP 

boundary becomes an ellipse, and corresponding shape factors are (1 )  and (1 )  

respectively. 

7.3.3 Elastic stress field 

Based on the plastic stress components and Kolosov-Muskhelishvili elastic complex 

potentials, ( )  and ( ) (Muskhelishvili, 1963), continuity conditions of the mean 

stress and the deviatoric stress along the elastoplastic interface can be expressed as 

(1/ 1)
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(7-10) 

where   represents the contour of EP boundary in the physical plane, which corresponds 

to   which is the contour of the unit circle centred at the origin of the reference phase 

plane. ( )   is the conjugate of ( )  .   is the complex variable on the unit circle, and 

1/  . 

The infinity values of these two complex potentials are specified with the far-field stress 

conditions as 

2( ) ( )
2

P
O        ,  2( ) ( )O  

      (7-11) 
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Based on their behaviours at infinity, we extracted the purely holomorphic parts of ( )

, that is 0 ( )  ( 0( ) 0   ), to analyse the mean stress continuity condition along the EP 

boundary as 
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binomial expansion formula, parts of this equation can be expressed as 
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Accordingly, the right part of Eq.(7-12) is easy to be split into two functions which are 

mutual conjugates and analytic in   ( 1  ) and  ( 1  ) respectively. The 

parameter   is determined by the requirement of its zero-order term to be equal to zero. 

Eq.(7-12) gives the inner boundary value of 0 ( ) , hence 0 ( )  can be directly 

obtained with the Cauchy integral method. 
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where 
(1/ 1) 2
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.  

Considering the boundary conditions at infinity, complete expression of the first complex 

potential is finally reached as 

0( ) ( )
2

P
       (7-15) 

The deviatoric stress continuity condition, Eq.(6-12)(a), was not fully satisfied in the 

deduction of Detournay and Fairhurst (1987) for the unloading analysis. As a result, stress 

discontinuity was produced along the EP boundary therein. This was attributed to the 

error that resulted from the approximate nature of the asymptotic mapping function. In 

fact, as long as the position of EP boundary and stresses along it are known, the elastic 

stress field becomes a typical boundary value problem. Therefore, stresses across the 

given EP boundary are necessarily continuous, and the second complex potential, ( ) , 
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is directly explored with the Cauchy integral method. Parts of each side in Eq.(6-12)(a) 

are discussed as 

2 2 2
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where 1( )g   is holomorphic in the whole   and equal to zero at infinity since 

3'( ) ( )O     . 2 ( )g   is holomorphic in the whole   and of value at infinity as 

(1/ 1)
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 on both sides of Eq. (6-12)(a) and then integrating it along the 

unit circle in the phase plane from the side of  , the second complex potential is 

obtained as 

 
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where
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The present derivation of ( )  is more rigorous and straightforward, and its last term 

vanishes when the frictionless material is considered. In fact, its appearance is due to the 

small difference of the employed asymptotic mapping function to the exact one. Finally, 

the elastic stress components are calculable with 

4Re[ ( )]e e

x y       (7-19) 

( )
2 2[ '( ) ( )]

'( )

e e e

y x xyi
 

    
 

        (7-20) 

7.3.4 Permissible range for application 

Two fundamental assumptions were adopted in the above derivation, which determined 

that the solution better serves for the plane under a specified stress state. Firstly, the plastic 

zone is statically determined, which means that points on the cavity rim are connected 
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with the EP boundary with two families of characteristic lines, and each characteristic 

line cuts the EP boundary only once (Hill, 1950). Accordingly, limit conditions will be 

reached when one characteristic line becomes tangent to the elastic-plastic interface as 

given in Eq.(7-21). The second restriction is to ensure the cavity is completely 

encompassed by a connected plastic region, and it can be discussed with the Kirsch 

solution (Detournay, 1986) as in Eq.(7-22).  

(1) Static determinacy of plastic zone 

2
2 ( ) 2

2

( ) ( ) 2

( ) 2( )

i ie ie        


     

  
   

 
  (7-21) 

It is shown that the limit condition of this requirement is a relation between the far-field 

stress obliquity (  ) and the friction angle. To meet this requirement at any point of the 

whole field, this limit condition is only reached at which (   ) is extremum (Detournay, 

1986). By solving Eq.(7-21) at its extremum, upper limits of   from this requirement 

are shown in Fig.7.2. The same results are obtained as those given by Detournay and John 

(1988) for unloading cases as expected. In contrary to the unloading case, the upper limit 

decreases with increases of the friction angle in loading analyses. When the friction angle 

reaches zero, the critical values of  for loading and unloading cases coincide, which is 

2 1  (the same value was obtained by Yarushina et al. (2010) with a different method). 

 

Fig.7.2 Variation of limit far-field stress obliquity with friction angle 
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7.4 Results comparison and analysis 

Thus far, the static elastic-plastic stress solution for the defined problem has been 

obtained, and both a loading and an unloading analysis can be analytically achieved. The 

solution for loading cases is validated by comparing with FEM (finite element method) 

simulation results and Galin’s solution (1946) (as a special case: frictionless material). 

The solution for unloading conditions is compared with Detournay and Fairhurst’s (1987) 

solution and Yarushina et al.’s solution (2010) (as a special case: frictionless material). 

7.4.1 Stress field comparison 

(1) Validation of solution for loading cases 

The FEM simulation is implemented in Abaqus/Standard 6.12 using a quarter model as 

shown in Fig.7.3. An 8-node biquadratic plane strain quadrilateral mesh is utilised for 

meshing. The constitutive model, material properties, and stress conditions are kept the 

same as those in derivations with the analytical solution. The void ratio is set as 0.4, and 

other properties are presented in the figures. All results are presented in non-dimensional 

forms (all stresses are normalised with the cohesion force, and all geometry dimensions 

are normalised with the initial cavity radius). 
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Fig.7.3 FEM model and mesh 
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Fig.7.4 Stress distribution with varying friction angle and inner pressure (loading cases) 

 

Fig.7.5 Stress distribution along different directions (loading case) 

 

Fig.7.6 Comparison with Galin’s solution (1946) (loading case) 

Firstly, stresses calculated with the present solution perfectly agree with the numerical 

simulation results in cases with varying friction angles and stress levels, and the Galin’s 
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that high accuracy with the asymptotic form of mapping function in predicting the 

formation of EP boundary is achieved. The developed complex potentials also provide an 

accurate calculation of the stress field around a circular cavity expanding in the Mohr-

Coulomb material. In addition, it is shown that, under non-equal biaxial remote-field 

stresses, not only the extent of the plastic region is angle-dependent, the stress 

distribution, particularly developments of the tensile stress in the circumferential 

direction, also varies in directions. This information might be of significance in predicting 

the failure zone or the most likely potential area of cracks developing around an internally 

pressurised cavity in engineering practices.  

(2) Validation of solution for unloading cases 

In Detournay and Fairhurst’s (1987) solution, it stated that the elastic stress field and the 

plastic stress field may be discontinuous along the interface. Therefore, the complex 

potentials of elasticity were re-derived in this research. Results computed with these two 

solutions are compared in Fig.7.7. It is shown that they gives almost identical results, and 

the discontinuous phenomenon of stresses along the elastic-plastic interface is not serious 

with given stress boundaries and material properties. However, it is noteworthy that the 

stress discontinuity phenomenon will be amplified if the method of Detournay and 

Fairhurst is directly applied in a loading analysis. In addition, when the friction angle gets 

close to zero, the present solution also shows good agreement with results obtained with 

the unloading-type stress solution given by Yarushina et al. (2010) for Tresca materials. 

In practice, this solution may provide a quick and effective routine to predict the 

plastically failed zone around an unloading cavity. For example, the application in 

predicting the size and shape of failed rock regions around a deep tunnel during 

excavation within non-uniform in-situ stresses (Detournay and John, 1988). 
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Fig.7.7 Comparison with Detournay and Fairhurst’s solution (1987) (unloading case) 

 

Fig.7.8 Comparison with unloading stress solution for frictionless material 
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Fig.7.9 Variation of the EP boundary with the stress level 

   

Fig.7.10 EP boundary varying with the friction angle 

7.5 Discussion and chapter conclusion 

If a kinematic solution of the displacement field is available, the present static solution 

can be directly applied in a quasi-static analysis which of great interest for engineers in 

estimating the identification/penetration resistance or ultimate bearing capacity of 

structures on soil (Yu, 2000). In the present solution, the elastic displacement field is 

already available with the obtained two elastic complex potentials. However, due to the 

non-axisymmetric nature of the plastic deformation zone under non-uniform far-field 
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the governing equation system of the plastic displacement field is hyperbolic. It is known 

the method of characteristic is appropriate in solving this type of equations, such as that 

done by Detournay and Fairhurst (1987) (in the framework of small deformation theory). 

No rigorous analytical large deformation analysis is available so far, of which the 

compatibility equation will be more sophisticated. More importantly, the non-

axisymmetrical displacement of the inner cavity will lead to the present stress solution no 

longer rigorously valid in a continuous deformation process. So a rigorous continuous 

pressure-deformation analysis for general cases under present stress conditions might be 

not possible in an analytical manner. Alternatively, for the purpose of application, an 

approximate method may be achievable based on some available findings. In specific, it 

was found that the obtained EP boundary moves in a self-similar manner in the defined 

state. Its size was directly related to the radius of EP boundary in the corresponding 

hydrostatic stress condition, and its shape can be back-calculated with the known shape 

factors. Detournay and Fairhurst (1987) found the average displacement of the cavity rim 

could be well predicted by the solution for a cavity deforming in the hydrostatic stress 

condition. Zhou et al. (2016) also demonstrated that the radial displacement does not 

significantly vary with the central angle for the cavity within a Tresca material under non-

equal biaxial stress at infinity. Accordingly, by assuming the cavity also deforms in a self-

similar manner during the continuous expansion or contraction (Zhou et al., 2014b), an 

approximate quasi-static expansion/contraction analysis may be obtained with the present 

static stress solution and the average radial displacement calculated with available one-

dimensional displacement solutions (e.g. those presented by Yu (2000)). It may have 

great application potentials, but much attention should be paid to evaluate and quantify 

its accuracy in future works, especially when a large deformation analysis is considered. 

The analytical stress analysis is achieved on the basis of two a priori assumptions which 

make the one-dimensional analysis on the plastic stress field valid and ensure the 

existence of a continuous EP boundary as a simple contour in advance. Meanwhile, these 

two assumptions specified a permissible application range of this solution which depends 

on the far-field stress obliquity (  ) and friction angle. This admissible range should be 

kept in mind in applications with this kind of methods since its accuracy will reduce with 

the increase of  . The present solution is capable of acquiring the information about 

developments of the plastic deformation and stress distribution around a circular cavity 

either under loading or unloading conditions. Detournay and John (1988) presented a 
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good application of the unloading stress solution, which was used to predict the size and 

shape of the failed rock region caused by the excavation of a deeply buried tunnel. In 

loading cases, the major axis of EP boundary distributes along the opposite direction even 

with the same directions of the initial principal stresses. So in analyses (or designs) of 

deeply buried pressure tunnels or pipes (analogy to an expanding cavity), the present 

loading-type stress solution can be used to acquire the same type of information. 
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Chapter 8  

 Conclusions and suggestions 

8.1 Summary and remarks 

(1) Size dependency of cone penetration resistance 

Cone penetrometers of various sizes have been used in soil explorations for different 

purposes, and significant size differences of the cone resistance were often reported as 

reviewed at the beginning of Chapter 2. To account for this size effect, a series of cone 

penetration tests with 3 different sized penetrometers were performed in the Leighton 

Buzzard sand of two size fractions with different relative densities as introduced in 

Chapter 2. Evident size effects in the cone resistance were observed, and they were 

explained in detail in Chapter 4. It was found: 

(a)  The interface friction strength may strongly depend on the normalised surface 

roughness ( 50/aR d ). For interfaces lying in the intermediate rough zone specified 

by Fig. 4-8 or Fig. 4-9, the interface friction angle would be very sensitive to the 

variation of 50/aR d . This may be one main influence of the particle size variation 

to the cone penetration test. 

(b) The mobilised lateral confining pressure in sands depends on the penetrometer 

size and particle size when their ratio ( 50/D d ) is relatively small (e.g<100).  

(c) The relative embedment effect ( /H D ) has a significant contribution to the size 

difference of the cone penetration resistance at relatively shallow depths, and the 

size effect in deep penetrations may be mainly determined by the stress-level 

and/or strain level dependency of the sand strength. 

A size-dependent cavity expansion solution has been developed in Chapter 3 to 

theoretically quantify the observed size effect in the cone penetration resistance. Based 

on the classical elastic-perfectly-plastic cavity expansion solution from Yu and Houlsby 

(1991), a second-order strain gradient was introduced into the Mohr-Coulomb yield 

criterion for sands to take the size effect into account. A second order governing equation 

system was established, and complete solutions were numerically calculated with a 
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simple iteration procedure. Different degrees of the size-dependant pressure-expansion 

response of a cylindrical/spherical cavity can be described by the present solution, and it 

can fully recover to the conventional solution when a relatively large cavity is concerned 

or no size-strengthening effect is performing. It assumed that   is constant in the present 

solution. By comparing with some available experimental data of cone penetration tests, 

it was found this assumption may give satisfactory descriptions of the concerned size 

effect in miniature cone penetration tests (e.g. 50/ 5D d  ). However, for interpretations 

of tests with more significant size effect (e.g. in some needle penetration tests), improved 

solutions with non-constant 
gH  ( ( / )atmG  ) or methods with different inclusions of 

the strain gradient terms may be required. It was found the introduced empirical 

coefficient   may vary with the sand type, relative density, particle size and the 

penetrometer size. Overall, the present size-dependent cavity expansion solution can 

provide a feasible theoretical approach to describe the widely observed size effect in end 

bearing problems, but more effort is required for a better quantitative analysis. Or the 

cone penetration tests with different penetrometer sizes may provide a simple 

experimental way to quantify the non-local property of materials (e.g. 
gH ). 

(2) Size dependency of shaft friction 

Apart from the aforementioned size effect in the tip resistance, the size-dependent 

behaviour may also play a significant role in determining the shaft frictional resistance as 

observed in present tests and reported by other researchers (discussed in Chapter 4). This 

scale effect was mainly studied from two aspects, the interface friction strength and the 

shear-mobilised lateral confining stress, in this research. It was found that the interface 

friction strength greatly depends on the normalised surface roughness ( 50/iR d ) especially 

when it varies in the intermediate roughness zone. An empirical formula in terms of 

50/iR d  for estimating the critical state interface friction angle of silica sands was fitted 

based on some existing experimental data, and it was adopted in interpretations of the 

present penetration tests. Then the commonly used elastic static cavity solution for 

estimating the mobilised lateral stress was improved with a further consideration of the 

thickness of the interface shear band (represented by several times of 50d ). By comparing 

with experimental results, it was found that better quantitative predictions of the lateral 
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stress mobilised by shafts of relatively small sizes can be made by the present solution 

than some other commonly used solutions as shown in Section 4.2.2.2. 

(3) Two-dimensional elastic analysis of root tip-soil interaction 

Based on the complex variable theory, several closed-form elastic solutions for two-

dimensional stress and deformation analyses around an elliptical cavity have been 

presented and validated in Chapter 5. The developed displacement-controlled elastic 

solutions provide a simple approximate way to quantify the root-soil interaction with a 

small growth increment in a two-dimensional manner, and they may also be applicable in 

the study of the burrowing mechanism of earthworm (Ruiz et al., 2016). Both the axial 

growth and radial thickening of a root tip have been theoretically investigated with these 

solutions. It showed that the required axial growth pressure decreases with an increasing 

root diameter, and an evident transverse tensile zone ahead of the root tip will be caused 

by a purely radial swelling, which provides a direct basis in theory for the inverse-

peristalsis root growth model proposed by Abdalla et al. (1969). 

(4) Influences of the shear stress in static and quasi-static cavity expansions 

A static elastoplastic stress solution for a circular cavity within a plane subjected to non-

equal biaxial stresses at infinity and uniform normal and shear stresses at the cavity wall 

was presented in Chapter 6. The plastic response was modelled by the Tresca yield 

criterion, and the Hooke’s law was adopted to describe the elastic behaviour. By 

extending the pioneering work of Parasyuk (1948), an explicit conformal mapping 

function describing the elastic-plastic boundary was obtained based on Laurent’s 

decomposition theorem, and explicit Kolosov-Muskhelishvili elastic complex potentials 

were derived based on the Fourier series method and the Cauchy integral method. 

Admissible application ranges of this solution were presented in Section 6.5, and 

influences of the additional shear stress on the whole stress field were discussed in Section 

6.6. It was found that the permissible application range varies with the applying direction 

of the internal shear stress, and the plastic zone enlarges with the increase of the internal 

shear stress. 

Furthermore, based on the derived static stress solution and a large strain deformation 

analysis, an analytical quasi-static analysis was carried out for a circular cavity 

continuously expanding in a hydrostatic stress environment. It was found that the shear 

stress imposes a certain influence on the pressure-expansion behaviour, and a drop around 
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6% of the limit expansion pressure may be caused when the shear stress holding capacity 

at the internal interface is fully mobilised in this model. This analytical quasi-static 

solution may be applicable in analyses of the rotating penetration/indention problems. 

(5) Two-dimensional elastoplastic stress analysis around a circular cavity under 

loading or unloading 

Static elastic and plastic stress fields around a circular cavity being subject to non-equal 

biaxial far-field stresses were investigated in Chapter 7. A combined analytical stress 

solution for an expanding/contracting cavity in the Mohr-Coulomb material was 

presented. The elastic-plastic boundary in a given static stress state was described with 

the asymptotic form mapping function proposed by Detournay and Fairhurst (1987). 

Accordingly, the statically determined plastic stress field was computed as a one-

dimensional problem, and a two-dimensional stress analysis of the elastic stress field was 

carried out based on the complex variable theory of elasticity. Explicit Kolosov-

Muskhelishvili elastic complex potentials were derived for a cavity either under loading 

or unloading. Calculated results with the present solution in loading cases agreed well 

with the FEM simulation results. By comparing with Detournay and Fairhurst’s (1987) 

solution for unloading conditions, good agreements were also obtained in spite of the 

nonsignificant stress discontinuity exists along the elastic-plastic boundary in their 

solution. In the present elastic-plastic cavity solution, a non-equal initial stress field (e.g. 

in-situ soil stress) can be taken into account, and it is applicable in estimating the plastic 

failure zone and stress distribution around a circular cavity (e.g. tunnel, pipeline) either 

under loading or unloading condition within the given permissible application stress 

ranges. 

8.2 Suggestions for future work 

(1) Only three sizes of cone penetrometers (12mm, 6mm, 3mm) and dry sand samples 

were used in present cone penetration tests. To further study potential influences of the 

size effect in needle cone penetration tests (applications to estimate the soil resistance of 

root-tip growth), tests with smaller sized penetrometers (around 1mm) and more types of 

soils are suggested. In addition, penetration tests with deeper penetration depths or higher 

stress levels are also suggested to more generally quantify the size effect caused by the 

local deformation, and advanced visualisation techniques ( e.g. X-ray scanning, 

transparent soil, GeoPIV) are also recommended in future tests. 
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(2) As previously discussed, the present size-dependent solution probably can be 

improved by using a non-constant gradient coefficient (
gH ) or considering the potential 

influences of strain gradient terms to other inherent material properties simultaneously. 

Some attempts have already been made by following these ideas (e.g. those given in my 

first-year and second-year annual reports to the university, which were not presented in 

the thesis), but more theoretical and experimental effort is needed to properly describe 

the strain-gradient dependent behaviour of soils. In addition, the employed numerical 

method is not always able to high-efficiently solve the developed governing equation 

system which may have a significant boundary layer response (Holmes, 2012). So more 

advanced numerical methods to address this problem will be attempted in the future. 

(3) To model the root tip-soil interaction in an analytical manner, the present theoretical 

analyses were based on the plane strain assumption and a linear elastic model. In fact, a 

three-dimensional analysis with more realistic soil models may give more appropriate 

descriptions of the real process of root-soil interaction. In addition, the complex and 

dynamically varying properties of soil in the rhizosphere and material exchanges between 

the root and the surrounding environment have not been considered in the present physical 

model. More investigations in these aspects may be beneficial for improving the accuracy 

in physically modelling the root tip-soil interaction. 
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Appendix A 

Readings of cone penetration tests with the 12mm penetrometer 

   

   

 

Fig. A- 1 Data with the 12mm sized penetrometer 
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Appendix B 

Elastic solution for hollow cylinder under loading 

As depicted in Fig. B- 1, a hollow cylinder with internal and external radius ‘a’ and ‘b’ 

respectively is subjecting to uniform pressures both on its internal and external surfaces. 

To this topic, elastic solutions (e.g. Lame’s solution) both for plane strain and plane stress 

conditions have been well developed, which are available in a lot of treaties (Timoshenko 

and Goodier, 1951; Ugural and Fenster, 1995; Yu, 2000). With the plane strain 

assumption, the stress and displacement distribution in the circular ring can be calculated 

with 

a
b

p0

pin

 

Fig. B- 1 Thick-walled cylinder subjecting to uniform pressures at boundaries 
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Appendix C 

Purely elastic stress solutions (Yu, 2000) 
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Appendix D 

Re-derivation of mapping function (referring to Parasyuk (1948)) 

To transform the exterior of the EP boundary in the physical plane onto the exterior region 

of the unit circle in the phase plane, a conformal mapping function with the following 

form is introduced (England, 2003). 

0
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Due to symmetric facts of the geometry and stress environment, the mapping function 

( )   has the following features (Detournay, 1986). 

( ) ( )        ,  ( ) ( )      (D- 2) 

As a result, 0  and coefficients of the even order terms are equal to zero, and remaining 

coefficients are real numbers. ( )   can be rewritten as 
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By multiplying both sides of Eq. (6-12)(a) with 
1

2

d

i


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, a Cauchy integral is 

established as 
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The right part of Eq.(D- 4) should be bounded at infinity (Chakrabarty, 2006; Savin, 

1970), hence terms of 1j   in the mapping function should vanish as shown in Eq.(D- 

5). 
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where ( )M   is analytic on the exterior of contour ‘ ’, and ( ) 0M   . Similarly, we 

find 
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where ( )N  is analytic on the exterior of contour ‘ ’, and ( ) 0N   . 

Meanwhile, ( )  is holomorphic in   (including infinity points). Finally, according to 

Harnack’s theorem (Muskhelishvili, 1963), integrating Eq.(D- 4) along   from   side 

gives 

1 1
k


      (D- 7) 

Therefore, the mapping function is with form as Eq.(6-14). 
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