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PROLOGUE 

This thesis consists of three separate papers, all of them independent and 
self-contained, making contributions in three different topics: money illusion, 
public goods games with altruistic punishment and coordination games 
including exogenous signals. The objective when starting this thesis was not to 
pursue research in one single particular topic, as sometimes is customary. With 
each paper I explored research questions according to what sparked my 
intellectual curiosity at the moment. However, if one is to put all three chapters 
under one single umbrella, in hindsight the overarching topic is the empirical 
and theoretical study of bounded-rationality. This short prologue is not 
intended in any way as a survey of the literature in bounded-rationality or a 
formal introduction to each individual chapter. Instead, it is a short, informal 
essay pointing towards currents of thought that have greatly influenced me and 
my work. 

A famous Leo Tolstoy’s quote says “All happy families are alike; every 
unhappy family is unhappy in its own way”. Without the emotional 
connotation, rational behavior is, in a way, similar to Tolstoy’s happy families. 
Rational behavior’s axioms are well stablished and, some discussions aside, it 
seems straightforward to identify classical rationality. However, deviations 
from it are varied, and there’s no single agreement on what type of behavior is 
referred to when the term bounded-rationality is used.  Anecdotally, this is 
reflected in the Wikipedia entry for “list of cognitive biases”, reporting over 170 
ways in which behavior can be irrational. More formally, Ariel Rubinstein 
presents in his book “Modelling Bounded Rationality” (Rubinstein, 1998) an 
extensive comment from Herbert Simon that highlights how the two of them, 
great scholars in the field, have contrasting views regarding how bounded-
rationality should be modelled and understood. In this prologue I will mention 
three specific lines of research on bounded-rationality. I believe they give some 
structure to the many possible ways in which behavior deviates from rational 
decision making. The implications of the differences between these currents of 
thought have been a key factor influencing the approaches I explore in this 
thesis. 

Following the typology of Gigerenzer et al. (2011),  there are three main 
influential lines of research related to bounded rationality: optimization under 
constraint, the heuristics-and-biases program and the fast-and-frugal 
heuristics approach. 

The first of them, optimization under constraint, is the one that has 
influenced my work the least. Under this line of research, traditional 
optimization methods are still the main tool, but psychological plausibility is 
introduced by way of additional constraints. This approach can sometimes lead 
to a puzzling logic: the more constraints are added, the mathematics for 
optimization can become more difficult. So the more plausible a model tries to 
be by making subjects face more constraints, at the same time it can require 
agents to be capable of doing more complicated calculations. As an example, 
in a Quantal Response Equilibrium model (for example, McKelvey and Palfrey 
(1998)) agents are thought to be boundedly-rational by allowing them to make 
mistakes (include errors) in their choices of strategies. However, they are still 
assumed to make equilibrium calculations based on this errors, which are 
more difficult than if no mistakes were made. It is worth mentioning that one 
way to scape this puzzle is to think of the models as ‘as-if’ approaches, in line 
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with Friedman (1953). In any case, the topics explored in this thesis did not 
lead to implementations of this approach, although they are an important line 
of research in bounded-rationality. 

The second program, the heuristics-and-biases (Kahneman et al., 1982), is 
perhaps the most influential and widely recognized across all of social sciences. 
This approach brought to the spotlight decision making by way of heuristics, 
or simple rules of thumb that are to be used when optimization is out of reach. 
They can be thought of in some cases as akin to ‘cognitive illusions’, or quick 
decisions made by our intuitive reasoning that can lead us to be ‘predictably 
irrational’, borrowing the term from Dan Ariely. In this approach, it is 
normally assumed that heuristics either lead to biased decisions relative to 
traditional rationality, or, as in Payne et al. (1993), that they imply a trade-off 
between the accuracy of a decision and the effort (e.g., time) required to make 
it. 

The heuristics-and-biases program has influenced my research through 
what I believe is a key epistemological insight from this line of thought. 
Sometimes, ground-breaking progress in knowledge can be made by 
understanding how people do not make decisions. As explained by Thaler 
(2015), documenting deviations from traditional rationality and showing that 
the latter could not explain several empirical facts was a key factor in the 
emergence of behavioural economics as a field. Indirectly, similar was the 
motivation for the first chapter of this thesis on Money Illusion. There, I test if 
subjects deviate from behaviour predicted by the notion of Money Illusion. I 
found that such theory cannot account for all the empirical observations from 
my experiments, suggesting that subjects are using different rules of decision 
depending on the environment they are facing. However, one more general 
conclusion that can be drawn from that chapter is that even if understanding 
heuristics as general deviations from rationality has allowed us to make 
incredible progress, it also has limitations. Is not clear how a heuristic works 
under different environments. To explore deviations from a given type of 
behaviour, it is less of an issue, but if one is to further explore in which 
situations, under which conditions and exactly how those deviations take 
place, specifying better what those rules of thumb exactly are becomes the next 
natural step. 

And this is where the last approach, the fast-and-frugal heuristics program 
(Gigerenzer et al., 2002), comes into play. I will not focus on the critiques this 
approach presents towards the heuristics-and-biases program (discussed in 
Gigerenzer et al. (2011)), but on how it pushes it forward. The key point is that 
is focuses on taking heuristics beyond general deviations from rationality, 
endorsing the definition of rules of thumb as computational algorithms. By 
translating rules of decision into algorithms, the researcher necessarily has to 
clearly state the information available, how it is used, when to stop looking for 
more information and how the decision comes about. This algorithmic 
approach makes the decision process inherently quantifiable, fostering 
quantitative tests of its performance across different environments. For this 
thesis, even though no work in the fast-and-frugal tradition is presented, the 
notion of defining behaviour as concrete algorithms impacted the 
methodologies used starting from chapter two. The latter introduces a model 
to explain experimental data in a particular environment: public good games 
with punishment. The focus there is to model individual decision making by 
explicitly specifying an agent’s learning and decision algorithms. 
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The fast-and-frugal heuristics approach has been perhaps the one with the 
most influence on my personal views, highly influencing the research 
presented in this thesis, when it comes to individual decision making. But its 
influence is also related to how it opened the door to the topics explored in the 
third and final chapter. By introducing decision making as well defined 
computational algorithms, it allowed this thesis to progress naturally towards 
the exploration of how those individual decisions interact with each other in 
order to create aggregate patterns. In environments where the interactions 
between agents is crucial to understand particular phenomena, especially 
when there is heterogeneity of behaviour, closed form mathematical solutions 
can become intractable, and aggregate simplifications (such as a 
representative agent) can leave the most interesting issues unexplained. A 
computational approach supports the study of complexity and emergent 
behaviour by way of modelling artificial, interacting agents via simulations. 
The literature in complexity is scattered given how novel its study has been 
compared to other approaches, but a great example of its philosophy and 
methodology applied to economic environments is found in Kirman (2010). 
The motto of complexity is that aggregate patterns cannot be inferred by 
analysing individuals separately and on their own: emergent behaviour cannot 
be grasped without the study of specific interactions among individuals, for 
which computer simulation complements traditional methodologies. The third 
and final chapter of this thesis studies the emergence of behaviour in 
evolutionary games (particularly in coordination games). It focuses on what 
types of individual behaviour can be learned when there is a dynamic feedback 
between system and individuals, both influencing each other. Its study in this 
case is possible thanks to the bridge that the computational tools create 
between micro and macro behaviour. 

In order to close this prologue, it seems customary to make general 
conclusions derived from all three chapters. As mentioned above, given that 
each chapter tackles a different topic, particular conclusions can be found in 
each one of them, so I won’t repeat them here. However, two main lessons, I 
believe, can be drawn from this thesis as a whole. The first is related to 
methodology, as hinted throughout all of these preliminary pages. 
Computational experiments and simulations are an essential aspect of the 
study of human behaviour, complementing traditional methodologies in 
environments where closed form solutions or big scale experiments are out of 
reach. The research conducted for the completion of this thesis has led me to 
the firm belief that their influence in social sciences will only grow over the 
decades, as it has done in other fields (such as physics or meteorology). But 
also, the three chapters have pointed towards the necessity for social sciences 
to foster their trans-disciplinary nature. This thesis started with the study of 
problems particularly relevant for economics, but its development quickly 
required gathering insights from psychology, computer science, philosophy 
and biology. And I am convinced that given the scope of modern times social 
problems such as global warming, ecological sustainability or disease control 
in a highly interconnected planet, no single field can encompass the necessary 
tools to tackle them thoroughly. So both main conclusions would support 
researchers in developing multi-disciplinary scientific toolkits that are not 
necessarily constrained by narrow definitions of individual fields. The nuts-
and-bolts of social science cannot be grasped by one single discipline. 
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TESTING THE NOMINAL PAYOFFS 
DOMINANCE PRINCIPLE: AN 

EXPERIMENT ON MONEY ILLUSION 

ABSTRACT 

Fehr and Tyran (2001) have put forward the relevance of Money Illusion for 
economic theory and practice. Recently however, it has also raised controversy 
about the validity of its experimental design and results (Petersen and Winn, 
2014). This paper puts to the test the predicted effects of money illusion in 
equilibrium selection. We find that framing effects can greatly affect subjects’ 
behavior, but that the direction of such effects are not always as expected. 
Money illusion does matter, but is not clear yet exactly how. 
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1.1 INTRODUCTION 

There has been a long history of different approaches to study Money 
Illusion, term traditionally used to denote any failure in distinguishing 
monetary from real magnitudes (it dates back as far as to David Hume (Howitt, 
2008), including the early work of Leontief (1936) and more recently Shafir et 
al. (1997), Cohen et al. (2005), Dzokoto et al. (2010), Brunnermeier and 
Julliard (2008), Kooreman et al. (2004), Cannon and Cipriani (2006), 
Mussweiler and Englich (2003) and Raghubir et al. (2012)). In the 
experimental economics literature, the work of Fehr and Tyran (2001) has 
been highly influential. The interest of this paper is in the latter approach. 

Fehr and Tyran (2001) developed a novel experimental setup in order to 
investigate speed of convergence after monetary shocks, and their results have 
often been cited as evidence that nominal representations are relevant for 
economic theory and practice (Petersen and Winn, 2014). Their methodology 
and theoretical foundations have been further explained in Fehr and Tyran 
(2005) and Fehr and Tyran (2014), as well as used to explore the effects of the 
strategic environment on speed of convergence (Fehr and Tyran, 2008) and 
the effects of nominal prices as a coordination device for equilibrium selection 
(Fehr and Tyran, 2007). In the above papers by Ernst Fehr and Jean-Robert 
Tyran (FT from now on) 1, money illusion is interpreted as a behavioral rule of 
thumb which involves subjects ‘taking nominal payoffs as a proxy for real 
payoffs’2, which can lead subjects to maximize nominal instead of real payoffs 
under some circumstances. 

This concept of money illusion is closely related to the payoff dominance 
principle, a criterion for choosing between equilibria in games. This principle 
states that if one equilibrium payoff-dominates all others, then rational players 
will play their parts in that equilibrium (Harsanyi and Selten, 1988). The 
concept of money illusion, as put forward by FT, is the first to explicitly 
differentiate between real payoff dominance and nominal payoff dominance 
(Fehr and Tyran, 2007), suggesting the relevance of the latter for discussions 
about equilibrium selection. Hence, the nominal dominance principle is 
relevant not only as a particular instance of money illusion, but also as a 
hypothesis about subjects’ behavior in games with multiple equilibria. 

The objective of this paper is to test the predictive power of the nominal 
dominance principle. The approach for this test is to observe if the hypothesis 
that people behave as nominal maximizers when multiple equilibria are 
available, holds under different scenarios. The interest here is not just to find 
one particular environment where people don’t behave as nominal maximizers 
(that would not be of much interest). The goal is to create an experimental 
environment where players are affected by how payoffs are presented (i.e. in 
real versus nominal terms) and do behave as nominal maximizers. Then, while 
keeping constant all real variables, change strategically irrelevant factors and 
observe if players still behave in the same way. The objective is to create a 
tension between nominal dominance and other salient features of the payoffs, 
trying to induce players to choose strategies contrary to what is hypothesized 
by the nominal dominance principle (i.e. to play actions that do not give the 
highest nominal payoff). 

                                                        
1 This refers to the papers of these authors cited so far. 
2 As defined in Fehr and Tyran (2001), pp. 1239-1240, and Fehr and Tyran (2007), pp. 247. 
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Testing the nominal dominance principle is relevant not only because it is 
the underlying principle behind the concept of money illusion and its potential 
effects as an equilibrium selection mechanism, but also because there is an 
unsettled debate in the experimental literature regarding the effects of nominal 
maximization in the money illusion experiments (Petersen and Winn (2014), 
PW from now on). The questions raised by PW are both related to whether 
subjects indeed behave as nominal maximizers, as well as about the potential 
causes and theoretical accounts for this to happen. Our design, besides testing 
the predictive power of the nominal dominance principle, will also contribute 
towards this debate (explained in more detail section 1.2). 

1.1.1 Methodology 
For our test we conduct an experiment in a symmetric n-player pricing 

game with two stable Pareto-ranked equilibria. An important feature of our 
experiment is that we put forward, a-priori, a hypothesis regarding the effects 
of the nominal dominance principle. We test the predictive power of the 
nominal dominance principle as an equilibrium selection mechanism (as 
suggested by Fehr and Tyran (2007)). The hypothesis to be tested is that 
players converge in the long-run to the equilibrium with the highest nominal 
payoffs. Such convergence is an explicit consequence of money illusion, stated 
as a behavioral hypothesis 3 . Our approach is primarily empirical, testing 
whether the observed effects are in line with the nominal dominance principle 
or not. Theoretical accounts of observed behavior or disentangling its causes is 
not the objective of this paper. 

The conducted experiment relies mainly on treatments changing the way 
payoffs are framed and presented to subjects, without altering the underlying 
incentives structure. This alters only the nominal payoffs or face-values 
observed by subjects, while keeping constant the real ones. These changes 
prove relevant for the nominal dominance principle, since according to it, 
players choose their actions based on nominal payoffs, not entirely on the real 
ones. By implementing different types of payoffs framing (including the ones 
used in previous money illusion literature), we test conditions under which the 
principle might hold or not. 

Is worth clarifying a concept before explaining our treatments. A focal point 
is a solution that people will tend to use not because it is better than others per 
se, but because it seems natural or particularly attractive. It can aid 
coordination specially when there’s a lack of communication by making people 
select a solution that they consider others will also consider natural4. In our 
experiment, when a particular equilibrium is, by design, intended to lure 

                                                        
3 Of course, there might be other consequences or hypothesis to be derived from the theory 

of money illusion, but we are interested in this one given its binary nature: we can evaluate 
whether players converge or not to a particular equilibrium. As explained in section 1.2, we argue 
that difficulties in interpreting money illusion for a particular hypothesis to be tested, is one 
reason that has led previous tests of the effects of money illusion to be contentious. 

4 Schelling (1960) introduced this concept in game theory. In his classical example a group 
of students were presented with the following problem: “tomorrow you have to meet a stranger 
in New York City. Where and when do you meet them?” In this coordination game, any place 
and time in the city could be an equilibrium solution, but the most common answer was “noon 
at the Grand Central Station”. Selecting one of the most common stations in the city was a 
natural expectation of what others would do, allowing coordination without the possibility of 
communication. Mehta et al. (1994) explores and finds evidence consistent with Schelling’s 
arguments in an experimental setting. 
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players into playing it by changing the framing of payoffs, we will refer to it as 
a “focal equilibrium”. For example, a treatment that, as in previous literature, 
alters framing to change which equilibrium has the highest nominal payoffs, 
would make such equilibrium focal under this terminology (since the design is 
intended to lure players into playing based on nominal payoffs). Here, a focal 
equilibrium is not intended to be a formal measure or definition, but only a 
way to refer to which equilibrium the design intends players to coordinate on 
(regardless of which underlying psychological effects might be taking place). 
Notice that actual convergence by subjects might or might not go in the same 
direction. 

Given the above, our design implements three tests. 
Test 1: our first goal is simple. Can we replicate the qualitative results of 

money illusion found in previous literature? In a similar way as in previous 
literature, we compare two treatments for subjects’ convergence. A baseline 
treatment presents real payoffs without any particular intended framing, and 
according to traditional rationality, convergence is expected in the equilibrium 
with highest real payoffs. The second treatment alters the framing and makes 
the inefficient equilibrium the one with the highest nominal payoffs. By 
making the latter the focal equilibrium, we test if we can, as in FT’s 
experiments, make players deviate from efficiency. 

Our results will show that we can qualitatively replicate previous results. 
Our design can make players deviate from efficiency in a way consistent with 
the nominal dominance principle. This is important because it shows that 
whatever the results of following tests, they cannot be attributed to the real 
payoffs structure. Under our implemented game and incentives structure, the 
nominal dominance principle can hold. 

Test 2: given that players did behave as nominal maximizers in the long 
run under Test 1, our second goal is to check if such behavior holds under 
similar scenarios. 

For this test, is important to notice that high nominal payoffs are only one 
potential effect that could make an equilibrium focal. There can be, 
interconnected, other psychological effects taking place. For example, one such 
possible effect could be “salience”, or which action seems more natural for 
players to play. We will refer to “other salient features of the payoffs” as any 
framing effects, different from the nominal ordering of payoffs, that can affect 
players’ decisions5. Put differently, an equilibrium can be made focal without 
making it the one with highest nominal payoffs. 

With this clear, Test 2 creates a tension between payoff dominance and 
other salient features of the payoffs. The implemented treatment makes the 
inefficient equilibrium the focal one, this time, without altering the ordering of 
nominal payoffs. To make it focal, two main framing changes are used: a 
constant is added to all payoffs and the order of the labels on the payoffs matrix 
are inverted. How these changes are intended to induce players into playing 
the inefficient equilibrium is detailed in section 1.4.2, but its effects can be in a 
way related to the Webber-Fechner Law (Robinson, 2010). The latter proposes 
that the just-noticeable difference between two stimuli is proportional to the 

                                                        
5 The range of effects potentially related might be complex, and we do not intend or claim to 

disentangle them. Our interest is to observe potential deviations from the nominal dominance 
principle, without focusing on which particular effect is the cause. 
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magnitude of the stimuli. So by framing payoffs in higher levels, we intend to 
make subjects less prone to notice nominal payoffs differences between both 
equilibria (while being the same in real terms). Given the payoffs structure, 
this could lead subjects to perceive the inefficient equilibrium to be closer in 
payoffs terms to the efficient one. 

In this treatment, payoffs dominance points towards efficiency, while 
focality towards inefficiency. This is a test to observe if the nominal dominance 
principle can hold under a more stringent scenario. If it holds, convergence 
should go towards efficiency. 

Data will show that players in Test 2 do not converge to the equilibrium with 
highest nominal payoffs. This result has two implications. Primarily it shows, 
by way of counterexample, that even in such a controlled environment, the 
prediction of the nominal dominance principle, where subjects maximize 
nominal payoffs in the long-run, does not hold. But it also shows that other 
salient features of the payoffs can, on their own, drive behavior without any 
influence of money illusion. Put differently, since players converge into the 
Pareto-inefficient equilibrium without altering the payoff dominance of both 
equilibria, it means that money illusion is not a necessary condition for this 
behavior. 

Test 3: After observing the above results, our final test puts the nominal 
dominance principle in a scenario where it is, arguably, more likely to hold. A 
potential argument is that players would behave as nominal maximizers only 
if the environment is difficult enough, or if the “veil of money” makes finding 
the optimal equilibrium more difficult (Fehr and Tyran, 2014). Simplifying 
rules of thumb might be more likely used by subjects when the optimal choices 
are not readily identifiable. 

To address this, Test 3 removes the tension between the intended focal 
equilibrium and nominal payoffs dominance (introduced in Test 2), aligning 
both of them towards the Pareto-efficient equilibrium. Payoffs framing is 
changed in a way similar as in Test 1 (altering which equilibrium has higher 
nominal dominance), but here subjects face nominal payoffs that are more 
difficult to convert to real (i.e. their cognitive load is higher).  High cognitive 
load is an effect suggested in the literature that can potentially make subjects 
more prone to suffer from money illusion (Fehr and Tyran, 2014).  

Contrary to our a priori expectation, we find that players do not converge to 
the predicted equilibrium. The hypothesis of nominal dominance as an 
equilibrium selection mechanism, again, does not hold. Since conditions that 
are thought to make players more likely to behave as nominal maximizers are 
introduced by design, this result shows that nominal dominance is not a 
sufficient condition to drive behavior to the predicted equilibrium. 

Finally, with the data collected from the three tests, we explore the notion 
of “lock-in” effects (Fehr and Tyran, 2007), which are considered important 
for having subjects coordinating in an inefficient equilibrium. The argument is 
that given a lack of communication, as well as incentives to avoid deviating 
from the group’s average, initial actions can cause players to stick with those 
decisions (even if they imply long-term welfare losses). By comparing actions 
in the initial periods with convergence at the end of each treatment, our results 
show that such lock-in effects can happen sometimes, but that they are not 
present in all treatments. 
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1.2 MOTIVATION 

This section will explain the core design used in this line of literature of 
money illusion 6 , followed by an overview of the arguments and 
counterarguments that have been published regarding the challenge to this 
framework (i.e. experimental design and interpretation of money illusion 
results). This exchange between FT and PW will be referred to as ‘the debate’. 

1.2.1 The debate: the challenge to and the defense of the theory of 
money illusion 

1.2.1.1 Core of the experimental design in money illusion 

The main feature of the experiments on money illusion conducted by FT is 
that they present subjects with two versions of a big payoff matrix (30 x 30)7. 
In the experiments subjects have to choose a number between 1 and 30, framed 
as firms selecting a price, and their monetary gains depend on both their own 
price and the average of the other subjects in the group. The payoff matrix 
presents the experimental points that players receive for each possible 
combination of own and average price (leading to 900 possible outcomes). The 
first version of the matrix, called the ‘real representation’, is simply the payoff 
matrix showing without alteration the number of experimental points that can 
be obtained for each period of play (although at the end those points have to 
be converted into monetary units as is standard practice). The second version, 
called the ‘nominal representation’, is based on the real matrix but multiplies 
each payoff in it by the column label (average price of the group). Subjects are 
clearly instructed that the amount of points they obtain that can actually be 
exchanged for money has to be calculated (basically dividing each possible 
payoff by the average price). 

Figure (taken from Fehr and Tyran (2005)) is an example of part of one of 
the nominal payoff matrices. Is worth noting that players couldn’t see the 
highlighted slots (best responses) or the equilibrium (circled); those are shown 
just as illustration for the reader. In the example, for subjects to know the real 
payoffs of selecting a price of 27 (row label) when the group average is 13 
(column label), they would have to divide, using pen and paper, 519 by 13 
(which is 39.92). 

                                                        
6 This refers to the papers that use the core features of the design of Fehr and Tyran (2001), 

including Fehr and Tyran (2014), (2008), (2007), (2005) (i.e. what we refer to as FT), but also 
including Petersen and Winn (2014), which started the debate. 

7 Technically. this experimental design, as well as the following debate, specifically refers to 
Fehr and Tyran (2001). However, since the features are at the core of all the other papers using 
the same methodology, they are related to FT and to the whole line of literature.  
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Figure 1.1: Example of part of a nominal payoff matrix. Taken from Fehr and 
Tyran (2005). Subjects’ tables were not marked with the best responses (highlighted 
slots) or the equilibrium (circled). Those are shown for illustration. 

Notice that, formally, this nominal payoff matrix gives players the exact 
same monetary incentives as a real version of it, just that subjects “see” 
different numbers and are required to make additional arithmetic calculations. 
The latter, under standard rationality assumptions should not affect behavior: 
with proper incentives subjects would make the appropriate calculations and 
base their decisions only on the real values, whatever their nominal 
representation (framing) is. Hence, differences in behavior between groups 
treated with the two different kinds of matrices are considered to be the effect 
of money illusion: since the underlying real payoffs are the same, change of 
behavior under the nominal matrix is considered to be a form of bounded 
rationality. 

Using this methodology, FT’s results show that under a nominal 
representation agents converge more slowly towards equilibrium after a 
monetary shock (Fehr and Tyran, 2001). Nominal representations can also 
create coordination failures in pricing games, with agents being ‘locked’ in a 
Pareto-dominated equilibrium (Fehr and Tyran, 2007). In both cases, nominal 
representations led to relevant inefficiencies attributed to money illusion. 

1.2.1.2 The challenge of Petersen and Winn (2014) 
The design above has been challenged by PW. PW’s main critique is that 

there are confounding factors in the design, challenging the interpretation of 
FT’s results as being the effect of money illusion. The following are two 
confounding effects that are considered to affect the interpretation of the 
results: 

1. Switching to a nominal representation increases the cognitive 
load faced by subjects. This means that the key variable at play is 
not necessarily money illusion per se. 
This addresses the issue that it is difficult for players, given the big 
amount of information they receive, to be able to consider all the 
options. Cognitive load refers to the amount of mental effort players 
have to make to process the information in the payoff matrix: with 
900 potential options and making three digit divisions with pen and 
paper, the argument is that players could be overwhelmed by the 
difficulty of the task.  
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2. The nominal representation changes the focal points in the 
payoffs space. 
Changing where the higher nominal payoffs are located in the 
payoffs matrix might introduce new focal points not present under 
the real representation. For PW, the effects of focal points should be 
distinguished from the effects of money illusion. 

PW consider these confounding effects of cognitive load and focal points to 
be a major flaw in the design. If it is either or both of them driving the main 
results of FT, then the conclusion that money illusion is causing them is 
misleading: is not about players using a rule of thumb, but about how they 
process the information in the payoff matrix. To address these issues, PW run 
the same experiment as in Fehr and Tyran (2001) but allow players to use a 
calculator and tools onscreen that make the arithmetic calculations easier (to 
diminish the effect of cognitive load), and also highlight in a different color the 
maximum real payoffs in the matrix in order to keep a constant focal point 
(addressing the second confound). 

The results of PW show that when introducing these controls, the effects 
registered by FT are greatly diminished. Their main conclusion is that players 
do not maximize nominal payoffs as implied by FT’s definition of “using 
nominal values as a proxy for real values”, challenging the validity of the 
nominal dominance principle. However, to support these results and to 
explain how they challenge those of FT, the authors argue that players still 
suffer from some influence of the nominal representation. For this they rely on 
a reinterpretation of money illusion: a ‘first order’ money illusion is defined as 
players maximizing the nominal payoffs, which they find no evidence of. A 
‘second order’ money illusion is defined as players primarily relying on real 
payoffs but taking into account nominal payoffs as well. 

1.2.1.3 The reply by Fehr and Tyran (2014) 

FT respond to this critique in Fehr and Tyran (2014). Their counter-
argument and disagreement with PW’s results is supported by a clarification 
of their initial definition of money illusion. They say that factors such as 
cognitive load and alteration of focal points are precisely part of their 
definition. They argue as follows: 

“If people have difficulty piercing the veil of money, and are thus uncertain 
about their best choice, a rule of thumb of treating (changes in) nominal 
payoffs as a proxy for (changes in) real payoffs may affect their behaviour 
[…]. The very notion of a “proxy” means that the proxy is only used if the 
perfect solution is not available to an individual. In our context, this means 
that subjects are unlikely to simply be nominal income maximizers under the 
nominal frame. Instead, they will probably only use the above rule of thumb 
if they cannot pierce the veil of money – an inability that may result from, 
e.g., cognitive load or biased attention. Thus, the proxy hypothesis always 
presupposes some other sources of bounded rationality. ”8 

According to this clarification, the points addressed by PW shouldn’t be a 
concern to their theory, for both cognitive load and change in focal points 
should be interpreted as “other sources of bounded rationality”, factors that 
should be present for FT’s interpretation of money illusion to hold. In FT’s 

                                                        
8 Fehr and Tyran (2014), p. 3. Italics and bolds our own. 
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view, PW’s results only confirm their original results, validating the 
interpretation of money illusion as a principle of nominal dominance. 

1.2.2 Key points of the debate 
Let us summarize what we consider are the key takeaways of this exchange: 

1. In both FT’s and PW’s definitions, there are particular 
difficulties when interpreting empirically the concept of 
money illusion. The experiments conducted by FT are mainly 
intended to study if nominal representations can lead subjects to 
deviate from traditional rationality9. For this goal, one can stablish 
the behavior predicted by traditional maximization, and if (any) 
deviations from it are observed, one can say that money illusion 
matters. With this in mind, money illusion defined as “a rule of 
thumb using nominal values as a proxy for real” is perfectly fit for 
such purpose. However, if one is to take a next step and predict 
behavior beyond deviations from real payoffs maximization, or 
explore which variables influence subjects suffering from money 
illusion (as PW did), interpreting such definition becomes more 
difficult. Does it lead to maximization of nominal payoffs in the 
long-run, or in a period by period basis? In which environments is 
such rule of thumb more likely to be observed? PW’s concerns are 
interesting questioning of the design, but when trying to disentangle 
the effects of variables such as cognitive load and focal points, such 
questions become relevant. Even more, PW’s conclusions led to 
further interpretation difficulties. They relied on new concepts like 
“second order” money illusion, defining it as players primarily 
relying on real payoffs, but also taking into account the nominal. 
This reinterpretation raises similar questions: How much is 
primarily? Does the theory hint under which circumstances would 
this ‘less severe’ instance of money illusion be observed? FT 
precisely argue that their initial interpretation of money illusion was 
closer to PW’s second order concept than to the strict first order 
definition, hence dismissing PW’s conclusion as a valid challenge to 
their results. 

2. In their test, PW made the subjects’ environment easier. If 
one agrees with FT’s extension, made in their reply, of money 
illusion requiring the presence of “other sources of bounded 
rationality”, then in that case PW’s test is not conclusive in 
challenging the experimental design: PW’s experiments give players 
tools to precisely remove such sources. An adequate challenge would 
require finding no evidence of money illusion without helping 
players with the cognitive load or explicitly giving them a focal point 
(i.e. without making their task easier). We interpret this 
requirement of having “other sources of bounded rationality” as a 
hint from FT for conditions in the environment that would make 
players more likely to behave as nominal payoffs maximizers. 

                                                        
9 The title of Fehr and Tyran (2001) is “Does money illusion matter?”, referring to whether 

money illusion matters in terms of behaviour relative to standard rationality predictions. 
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Taking into account the the points above, this paper will test the effects of 
money illusion in equilibrium selection. Fehr and Tyran (2007) argue that 
their “results suggest that nominal payoff dominance is an equilibrium 
selection principle which drives behaviour in strategic settings”10. We take 
such suggestion and test it explicitly. One advantage of testing money illusion 
as an equilibrium selection device is that it reduces the difficulties when 
interpreting results: one can observe whether players converge to the predicted 
equilibrium (i.e. the one with highest nominal payoffs) or not. This implication 
of money illusion is what we refer to as the ‘nominal dominance principle’. By 
testing the nominal dominance principle as long-run convergence in the 
equilibrium with highest nominal payoffs, we focus on a quantifiable 
qualitative difference (i.e. convergence or not), reducing potential issues of 
degree or how much money illusion was observed. This relates to the first key 
point in the debate. 

Also, our tests are conducted without making the subjects’ task easier (e.g. 
allowing calculators) or subtracting what FT refer to as “other sources of 
bounded rationality”. Even more, in one of our treatments the cognitive load 
of players is increased, which is arguably a way of making those ‘other sources’ 
more prominent. This relates to the second key point of the debate, or the 
environment in which money illusion is more likely to be observed. 

1.3 EXPERIMENTAL DESIGN OVERVIEW 

This section describes the general game used across all three tests. An 
overview of the treatment structure is given as well, leaving more specific 
details of their implementation for the next section, where results will also be 
presented. 

1.3.1 Game structure 
Players have to choose simultaneously, for ! = 30  periods, a price %& ∈

{1,2, … ,35}. Players are randomly matched in groups of	0 = 10, and they know 
that the group remains the same throughout all ! periods. Each treatment has 
three groups. After all players choose their price for the period, they are all 
informed of the median price of the rest of the group, %1&, and their respective 
payoffs earned that round11. The payoffs depend only on %& and %1&, which are 
presented to the players via a 35 x 35 payoff matrix showing each possible 
combination, with own price in the rows and group median in the columns. 
The game is symmetric in the sense that all players receive the same matrix, 
which is common knowledge since the beginning. Deviating from the group’s 
median price is costly, making this a coordination game. In order to avoid 
making the task easier (second key point in the debate), players are not allowed 
calculators, having only pen and paper as in the original experiments of FT12. 

                                                        
10 Fehr and Tyran (2007), p. 263. Italics our own. 

11 The median was used instead of the mean of the group in order to reduce the effects of 
strategic teaching. Since the mean is more sensitive to extreme outcomes, it would’ve been easier 
for some few players to send strong signals to the rest of the group, as happened in our 
experimental pilots. 

12 Players also had a maximum of ten minutes to get used to the matrices and understand the 
task after the instructions were read out loud by the experimenter. Both instructions and payoff 
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In the payoff structure there is a unique best reply for player 2 for every 
given level of %1&. The equilibria of this game are located at the intersection of 
the best reply function with the 45-degree line (due to the game being 
symmetric). The two stable equilibria will each be called the efficient 
equilibrium (which arises for player 2 when she chooses %34 = %& = %1&) and 
the inefficient equilibrium (arising when %&54 = %& = %1& ). Notice that sub-
index ‘ef’ denotes the efficient one, and sub-index ‘inf’ the inefficient. 

1.3.2 Treatments overview 
As outlined in the introduction, three tests are conducted. Figure 1.2 shows 

the connection between the four implemented treatments. The difference 
between them is only the framing of the payoffs matrices given to subjects and 
the arithmetic calculations players would have to do to estimate the real 
payoffs. Starting with the baseline, each treatment is constructed by 
implementing the corresponding change in framing shown in parenthesis, 
indicated by the direction of the arrows. Arrows also relate pairs of treatments 
compared for each test13. 

A key distinction is to be made between Real and Nominal treatments (the 
final letter in the name of each treatment is either R or N, respectively). A 
nominal treatment will always be implemented from its real counterpart. This 
nominal transformation is done by multiplying each possible payoff inside the 
corresponding real matrix by %1& (i.e. by the corresponding column label), as 
in previous literature. Players are accordingly instructed that they should make 
the corresponding calculations to know the real payoffs. By nominal treatment 
or nominal implementation, we refer exclusively to this particular conversion 
of the matrix. 

It will also be useful to clarify here the concepts of payoffs dominance. We 
will refer to a real dominant equilibrium when such equilibrium is the 
Pareto-efficient one (i.e. has the highest real payoffs). A nominal dominant 
equilibrium is the one with the highest nominal payoffs. Notice that in a real 
treatment the real dominant equilibrium is always the nominal dominant one. 
However, in a nominal treatment this is not necessarily the case: the nominal 
dominant equilibrium can be Pareto-inefficient in real terms. 

                                                        
matrices were given printed to subjects, but inputs and feedback on payoffs was done onscreen. 
The game wouldn’t begin until every player in the session would decide to move on. Never in 
any treatment was this time completely used. Players also had two minutes in each period for 
choosing price: when this time was over they received an onscreen reminder to choose, but the 
game wouldn’t move on until they did. Finally, after each period they had one extra minute to 
check the history of all periods’ selected price, group median price and previously obtained 
nominal payoffs. The screenshots of how the experiment was presented to subjects can be found 
in Appendix 1.7.9. 

13 Each treatment was run in one separate session, with all 30 subjects (three groups of ten 
players) at the lab at the same time. All treatments were conducted in the CEDEX lab at the 
University of Nottingham during February of 2014, and all subjects were students recruited 
using the ORSEE system (Greiner, 2003). Subjects earned on average 9.2 GBP pounds and 
treatments lasted no more than one hour, except InvN, which lasted about an hour and twenty 
minutes. The experiment was programmed and conducted with the software z-Tree 
(Fischbacher (2007). 
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Figure 1.2: Treatment Summary 

Test 1 has a simple goal: to replicate qualitatively the effects found in 
previous money illusion literature, where a nominal implementation causes 
players to deviate from real payoffs maximization. Treatments RepR and RepN 
are compared for this, the Rep name being a reminder of the goal of replication. 

Test 2 tests if the effects previously found in the literature (and tested in 
Test 1) still hold under a more stringent scenario. It creates a tension between 
which equilibrium is focal (the inefficient) and which one presents higher 
nominal payoffs (the efficient) 14. This is done by inverting focality (hence the 
Inv name), without altering nominal dominance as done in Test 1.  

 Notice that both treatments compared in Test 2, RepR and InvR, are real 
treatments. This is because the change in framing from RepR to InvR is not 
done via a nominal implementation (further details of this implementation are 
given in next section). The objective is to test if other salient features of the 
payoffs can have similar effects than what has been previously attributed to 
money illusion.  

Finally, Test 3 is considered as a final, less stringent test than the one 
implemented in Test 2, with the objective of making the nominal dominance 
principle more likely to hold. It compares InvR with its nominal counterpart, 
InvN. This nominal implementation defuses the tension created under Test 2, 
also increasing the cognitive load of players. The latter is intended to address 
what FT referred to as “other sources of bounded rationality”, or to implement 

                                                        
14 The reader is reminded that we refer to a “focal equilibrium” as the one which the design 

intends players to focus their actions on. For example, nominal treatments (both here and in 
previous literature) usually change which equilibrium is nominally dominant with the intention 
of luring players into playing that equilibrium. In our terminology, this would make that 
equilibrium the focal one. 
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conditions in the environment that are considered to increase the probabilities 
of players relaying on behavioral rules of thumb such as money illusion. The 
test is considered less stringent because the efficient equilibrium is both focal 
and nominal dominant, and cognitive load is at the highest across treatments15. 

1.4 THREE TESTS: DESIGN AND RESULTS 

The design details of each of the three conducted tests are presented 
sequentially. After each design, results are addressed for that test. 

1.4.1 Test 1: replication of money illusion effects 

1.4.1.1 Test 1: design 

Our first test’s objective is to replicate qualitatively whether under a real 
treatment players converge into %34  (efficient equilibrium), but under the 
nominal they converge on %&54 (inefficient equilibrium), as done in previous 
literature. 

The Rep treatments create a tension between the principle of real payoff 
dominance and the principle of nominal payoff dominance as equilibrium 
selection devices. If we can replicate, the following tests’ results could not be 
attributed to characteristics of the payoffs structure (since it is always kept 
constant).  

RepR is our base treatment. On it, the highest nominal payoff is the same 
as the real (which by definition is true in the real treatments): the real payoff 
for player 2 if %& = %1& = %34 is 634 = 100 and the real payoff if %& = %1& = %&54 
is 6&54 = 61. Under any real treatment, there is no tension between the highest 
real and nominal values. This means that by definition  634 > 6&54, but also 
that  6345 > 69:;5   in the real treatments (supra index n denotes nominal 
payoffs). 

The game payoff matrix for RepR is presented in Appendix 1.7.1. The reader 
is encouraged to check both equilibriums in it: %34 = 1 and %&54 = 31. Under 
RepN (Appendix 1.7.2), the same ordering of real payoffs is maintained. 
However, for RepN the nominal payoffs of converging in %&54 are higher than 
those of converging in %34 (6&545 > 6345 ). This is the main objective of RepN: to 
change which equilibrium is nominal dominant. Test 1 compares the 
convergence under RepR and RepN. 

1.4.1.2 Test 1: results 

Result 1 (Comparing RepR and RepN): Under RepR, most subjects 
converge to the efficient equilibrium, but when a nominal representation is 
implemented, convergence is to the inefficient equilibrium, which is the 

                                                        
15 A high enough cognitive load as a potential condition for players to suffer from money 

illusion is suggested by FT in the debate: “[players] will probably only use the above rule of 
thumb [using nominal payoffs as a proxy for real] if they cannot pierce the veil of money – an 
inability that may result from, e.g., cognitive load or biased attention” (Fehr and Tyran 
(2014), p. 3. Italics and bolds our own). Treatment InvN implements a high cognitive load with 
the expectation that this will increase the chances of players focusing on the nominal dominant 
and focal equilibrium. 
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nominal dominant. So the design and payoffs structure can qualitatively 
replicate previous results in the literature, which are consistent with 
interpreting nominal dominance as an equilibrium selection device. 

 

 

Figure 1.3: Average prices per treatment. RepR and RepN. 

 Figure 1.3 shows the average chosen price for all 30 subjects in each 
treatment for each period. The difference is clear: under RepN players 
converge exactly into the inefficient equilibrium (%&54 = 31) and under RepR 
players converge much closer to the efficient equilibrium (%34 = 1). The effects 
of the nominal representation are clear: as in FT, nominal dominance can act 
as an equilibrium selection device. 

However, one could ask why the convergence for RepR is not complete (the 
average price is 11 > %34 = 1). For this, Figure 1.4 is relevant: it shows the 
average price for each of the three groups in the treatments (remember that 
each treatment had 30 subjects organized in groups of 10). Panel (a) shows 
that two out of the three groups very quickly (before period 5) converge exactly 
into %34 = 1. Only one of the groups ends up converging into %&54 = 31; it is 
the behaviour of this group the one pulling the average up. In panel (b) the 
three groups converge into %&54 = 31, showing the stark change of convergence 
under the nominal implementation. This is considered a qualitative replication 
of FT’s results. 
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Figure 1.4: Average prices per group. RepR and RepN. 

1.4.2 Test 2: tension between nominal dominance and the focal 
equilibrium 

1.4.2.1 Test 2: design 
Test 1 confirms FT’s results: we can lure subjects to converge in the 

nominally dominant but inefficient equilibrium. Now suppose we have a setup 
where both nominal and real dominance point towards the same equilibrium 
(done by comparing two real treatments). Can we lure subjects to an inefficient 
equilibrium by altering the other salient features of payoffs? This is the 
objective of Test 216. 

Notice that in both Rep treatments the nominal dominant is also the focal 
equilibrium. Test 2 alters the payoff matrix framing, from RepR to InvR, in 
order to make %&54  the intended focal equilibrium without altering nominal 
dominance. By creating this tension between the focal and nominal dominant 
equilibrium, the main goal it to test if the nominal dominance principle holds 
under a more stringent situation. If it does, players should converge into the 
nominal dominant equilibrium (efficient). By design, the objective is to try to 
lure players into the inefficient equilibrium, testing if the nominal dominance 
principle is still replicated under different environments17. 

Two changes in the matrix for InvR take place compared to RepR: first, all 
payoffs are ‘scaled up’, meaning that a constant is added to all of them. Second, 

                                                        
16 Levitt and List (2009) identify experimental replication of results at three levels. The first 

and simplest one refers to using an experiments’ own data and check the validity of statistical 
results. The second notion refers to running an experiment following a similar protocol to the 
one intended to be replicated. The third (and most general) consists in testing the hypotheses of 
the original study and pursue replication using a new research design. Our Test 1 can be related 
to the second type of replication, while our Test 2 can be related to the third. 

17 We emphasise again that we will avoid discussions about what formally constitutes a more 
or less salient point in the payoffs space. Although our design is intended to alter salient features 
of the payoffs and the psychological perception of players regarding an equilibrium, we will not 
claim “disentangling” or isolating any particular psychological effect as causing our results. 
Whether the principle holds or not will depend only on the aggregate results of convergence, 
irrespective of whether it was caused by salience or by another unintended psychological effect. 
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we implement a price ‘label switch’: we invert the price labels in the matrix. 
Figure 1.5 shows graphically both changes. 

 

 
 

 

Figure 1.5: Creating InvR from RepR. ‘Scaling’ adds a constant to all payoffs. 
‘Label switch’ inverts the price column labels, but leaves unaltered the rest of the 
payoffs. 

When scaling payoffs by adding a constant to all of the payments in the 
matrix, players are accordingly instructed that they should subtract the 
constant in order to know their exact payment. This implies that the nominal 
values inside the payoff matrix are changed, but this does not create a tension 
between nominal and real dominance. In Figure 1.5, the circled payoffs 
correspond to 6&545  (upper left in each matrix) and 6345  (down right in each 
matrix): notice that adding a constant simply scales the payoffs but keeps the 
same ordering. Whichever payoff is the highest in RepR, it remains the highest 
in InvR. Hence, in this treatment the important fact is that all payoffs keep the 
same nominal ordering. 

The latter is precisely the reason why InvR is still considered a real 
treatment in relation to RepR: because the alteration of the nominal values by 
scaling up the payoffs doesn’t alter the order of any of the payoffs in the 
matrix, even if subjects have to make one extra calculation (subtracting a 
constant)18. Since there is no tension between nominal and real dominance in 
the payoffs of InvR (since there’s no such tension, by definition, in any real 
treatment), if the nominal dominance principle holds, convergence should go 
into the efficient equilibrium, in the same way it did under RepR. 

                                                        
18 Technically, if experimental points are used, all payoffs in an experiment are nominal 

values different to their real monetary counterparts. The exchange rate used in any experiment 
to convert the points is one additional cognitive step (usually neglected), but since the ranking 
of payoffs is unaltered it is supposed, under rationality assumptions, to be irrelevant. Here, 
scaling up the payoffs has the same effect. Hence, given the use of experimental points, if a 
treatment is considered real or nominal depends on which other treatment it is being compared 
to. InvR is a real treatment compared to the baseline RepR. 
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The added constant is 981 as seen in Figure 1.5. The number itself is to some 
extent arbitrary, but it was chosen with the objective that 6&545  becomes a 
stronger focal point. Scaling up the payoffs has three potential main effects that 
are also present when introducing a nominal treatment: first, having higher 
nominal values increases the cognitive load required to browse through the 
information. The reader can have a feeling of this by just browsing the payoff 
matrices for RepR and InvR (Appendix 1.7.1 and 1.7.3, respectively): a matrix 
with two digit numbers is less taxing than a matrix with mainly three and four 
digit numbers. Second, InvR creates a four digit numbers “zone” in the upper 
left part of the matrix where 6&545  is located; experimental pilots and players’ 
annotations after the experiments give anecdotal evidence suggesting that they 
can engage in some kind of local search that ignores other potentially relevant 
information. Finally, noticing a fixed change in a variable is usually more 
difficult when the level of that variable is higher. This can cause players to 
perceive the difference between 634  and 6&54  in InvR as smaller than it is, 
preventing them from playing %34 (the cost of deviating from %1& when playing  
%34  is higher than when playing %&54 . The efficient equilibrium is riskier by 
design). 

The above effects can be in a way related to the Webber-Fechner law 
(Robinson, 2010), which states that the just-noticeable difference between two 
stimuli is proportional to the magnitude to the stimuli. Although the law has 
been widely studied for physical variables such as light, sound or temperature, 
it has also been studied for numerical perception. As an example, Dehaene and 
Marques (2002) find evidence of this law in people evaluating prices under 
different currencies: the standard deviation of estimated prices is proportional 
to their mean. So in our experiment, when the constant is added, subjects 
might perceive the difference in payoffs between both equilibria as smaller 
than it actually is. 

The other change in the matrix, the label switch, can also have psychological 
effects. The names of each action, prices in this case, can have similar effects 
on which equilibrium is perceived as a more natural coordination point19. If a 
framing of higher or lower prices can have a psychological impact in how 
players make their decisions, the label switch can potentially affect which 
prices are chosen20. 

The above are the possible effects that might occur in order to induce a 
change of behaviour leading to convergence on %&54, or put differently, to make 
it the focal equilibrium (compared to the expected and observed convergence 
in  %34 under RepR). However, we will not claim that any or all of such effects 
are formally happening, as this was not the the objective of the design 
(although the design was implemented under the intuition that they might take 
place). The approach here is interested in whether nominal dominance is an 
equilibrium selection device as in the interpretation of money illusion tested, 

                                                        
19 The payoffs of an action can induce focal points, as intended with the scaling up. This can 

be referred to as “payoffs salience”. But the labelling of the action can have also have similar 
effects, which can be thought of as as “label salience”. These terms, “payoffs salience” and “label 
salience”, are taken from Anbarci et al. (2015). The concepts however, although not specifically 
named that way, can be traced back to Schelling (1960).  

20 The label switch can have such effects, although its main purpose in the design is to allow 
comparison of InvR with InvN in Test 3 below. This will be clearer when details for it are given 
below. 
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not on the underlying mechanisms of such process. The test’s objective is to 
refute or not the nominal dominance principle, not to explain or extend it. 

1.4.2.2 Test 2: results 

Result 2 (Comparing RepR and InvR): Under RepR convergence 
goes mostly into the efficient equilibrium (reported above in Result 1). This is 
hypothesised by the payoffs dominance principle (either the nominal or real 
version). If the nominal dominance principle holds, convergence under InvR 
should also go into the efficient equilibrium. However, convergence under 
InvR goes into the inefficient equilibrium for all three groups. In this test, the 
nominal (and also, real) dominance principle does not hold21. 

 

 

Figure 1.6: Average price per treatment. InvR and RepR. 

Figure 1.6 and Figure 1.7 are the evidence for this result. Figure 1.6 shows a 
comparison of the average price for InvR and RepR. As shown before, the 
average price for RepR is very close to the efficient equilibrium, but under InvR 
convergence goes completely into the inefficient equilibrium. When analysing 
both figures, is worth noting that the vertical axis labels are different for both 
treatments; this is due to the label switch in InvR. 

Here, once again is worth observing the convergence of each group, shown 
in Figure 1.7. Convergence for each group under RepR in panel (b) has been 

                                                        
21 Result 2 was hypothesised a priori to be the effect of only adding the constant to InvR (i.e. 

to come only from changes in “payoffs salience”). The label switch was implemented for 
permitting further tests, when comparing InvR with its nominal counterpart, as detailed for Test 
3. The label switch (or the effects of “label salience”) was not hypothesised to have significant 
effects on behaviour. As part of the design from the beginning, another treatment (not reported) 
was run which added the constant to RepR without switching the labels. Surprisingly, only 
adding the constant did not have the same effects as when combined with the label switch. In 
hindsight, one could argue that the framing effect of high-low prices might be affecting players’ 
decisions, or refer to possible mechanisms in which labels can change saliency and induce 
coordination in particular outcomes (e.g. Crawford and Iriberri (2007) on Hide-and-Seek 
games). Such discussion is avoided because it wasn’t part of the initial hypotheses before 
running the experiment. However, the important part is that there are changes with a clear effect 
on behavior under InvR. Fortunately, where these effects come from is irrelevant for our 
conclusions regarding whether the nominal dominance principle holds or not. The objective 
from the beginning was not to separate each particular psychological effect. 
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shown before for test one, but is shown again for convenience of comparison 
for the reader. That way is easy to capture the fact that under InvR all three 
groups converge into the inefficient equilibrium (panel (a)), compared to the 
majority converging into the efficient under RepR. The nominal dominance 
principle, which would predict convergence into the nominal dominant 
equilibrium %34, does not hold. This result is also evidence against the payoff 
dominance principle in its real version: since InvR is a real treatment, real 
dominance does not hold either. 

 

Figure 1.7: Average price per group. InvR and RepR. 

This result’s main implication is that the nominal dominance principle does 
not hold. However, another implication can be drawn that addresses the 
debate explained in the motivation section. In their experiments PW controlled 
for factors that they considered as confounds. Their hypothesis was that 
without them, nominal dominance would not affect behavior. FT answer was 
that those confounds are actually factors that should be present for subjects to 
suffer from money illusion, implying a broader psychological definition of the 
concept. Our approach in this test, instead of controlling for such factors, is to 
induce them directly without any implication from money illusion (since no 
nominal representation was implemented). So regardless of whether focal 
points can be considered as a confound or as part of the effects of money 
illusion, Result 2 shows that money illusion is not necessary to induce 
convergence into the inefficient equilibrium. Those other factors can, on their 
own, drive convergence away from efficiency. 

1.4.3 Test 3: can the nominal dominance principle “get back on its 
feet”? 

1.4.3.1 Test 3: design 

Result 2 above constitutes evidence against the nominal dominance 
principle. The objective of this third, final test, is to create an environment 
where, arguably, the nominal dominance principle is more likely to hold. It is 
a test of whether the principle can hold under less stringent conditions than 
those implemented for Test 2. For Test 3, InvR is compared with its nominal 
counterpart, InvN (i.e. payoffs in InvR are multiplied by the corresponding 
column labels). 
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There are two main effects that are taking place under InvN. They are 
intended to address potential concerns in previous literature (hinted by FT in 
the debate) regarding the conditions under which money illusion is more likely 
to hold. Those concerns consider factors such as cognitive load and focal points 
as “other sources of bounded rationality”, or effects that should go in tandem 
with money illusion in order to observe the expected behavioral effects. The 
design for InvN implements them in order to test if the nominal principle holds 
when they are accounted for. We interpret these effects as conditions in the 
environment that make money illusion more likely to make accurate 
predictions (i.e. convergence into the nominal dominant equilibrium). 

The first such effect implemented under InvN, relative to InvR, is to 
eliminate the tension between the payoff dominant and the focal equilibrium. 
Such tension was by design introduced for InvR in Test 2. The nominal 
implementation for InvN aligns back salience and payoff dominance (both real 
and nominal) into the efficient equilibrium. For the nominal dominance 
principle to “get back on its feet” after the the results of Test 2, convergence 
should go into the efficient equilibrium, which is by design also intended as the 
focal point22.  

The second effect is related to the cognitive load faced by subjects when 
analyzing their payoff matrices. The argument is that a high cognitive load, or 
a difficult environment, can increase the probabilities for players to rely in 
potentially inefficient behavioral rules of thumb such as money illusion.  

To account for this, InvN has higher nominal values than any other 
treatments. Almost all of the payoffs in InvN have four and five-digit numbers 
with a maximum face value of almost 38,000 (the reader can observe this in 
Appendix 1.7.4). This is due to the combined effects of scaling the payoffs and 
the nominal implementation. Compare this with, for example, the maximum 
nominal payoff in the other nominal treatment, RepN: there, the maximum is 
2,000 and most payoffs have between one and three digits. This effect on itself 
makes the amount of information in the matrix more difficult to organise for 
the subjects. It also implies that the arithmetic operations required for a player 
who wants to calculate the real payoffs are more complicated. Besides a four 
or five-digit division, a subsequent subtraction (of the constant 981) is required 
for each payoff calculated. Remember that players, as in all other treatments, 
are not allowed calculators. 

In Test 2, convergence under InvR was to the inefficient equilibrium. If the 
nominal principle holds in this environment, when comparing InvR with InvN, 
convergence should be inverted. In this case, money illusion should reverse the 
inefficiencies introduced under InvR and lead players to converge into the 
efficient equilibrium, which is real and nominal dominant, as well as the 
intended focal equilibrium by design. 

1.4.3.2  Test 3: results 

Result 3 (comparing InvR and InvN): Convergence under InvR went 
to the inefficient equilibrium (as reported above for Test 2). If the nominal 
dominance principle holds under InvN, convergence should go into the 

                                                        
22  Which equilibrium becomes nominally dominant depends on which one is being 

multiplied by the highest group prices (column label). Here, the label switch introduced for InvR 
is key: it allows nominal dominance to go into the efficient equilibrium once payoffs are 
multiplied. This was the main design objective of the label switch. 
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efficient equilibrium (since both nominal and real dominance are aligned 
towards it, and cognitive load is considered to be higher). However, none of 
the three groups converged into it. This test is also evidence contrary to the 
nominal (as well as the real) dominance principle. 

 

Figure 1.8: Average price per treatment. InvR and InvN 

Evidence for Result 3 comes from Figure 1.8 and Figure 1.9. Figure 1.8 
shows a stark difference between InvR and InvN. As shown in Result 2, 
convergence into the inefficient equilibrium is clear under InvR. If the nominal 
dominance principle holds, we should expect convergence towards the 
efficient equilibrium for InvN, since nominal and real dominance are aligned. 
Surprisingly, and contrary to our a priori hypothesis, this is not the case. Even 
if initial decisions under InvN seem on average to be closer to %34 , the trend is 
leading prices away from it. Important is the fact that even if convergence is 
not achieved in the time span of the experiment (T=30), the trend of InvN is 
positive, meaning that even under longer time spans convergence would not 
go towards %34 (assuming no structural changes)23. 

                                                        
23 Technically, the trend is negative due to the inversion of the price label. Notice that in 

Figure 1.8 the vertical axis is indeed inverted. This way of showing the results is done to make 
the graphical comparison easier: for all of our results, the efficient equilibrium is always down 
and the inefficient is always up, regardless of what treatment is being observed. 
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Figure 1.9: Average price per group. InvN and InvR 

Figure 1.9 shows the same patterns disaggregated for each group in both 
InvN and InvR. Panel (a) shows that none of the three groups converge into 
the efficient equilibrium, and they all have a trend moving away from it. The 
average pattern is not an artifact of aggregation. 

This final result is particularly striking because conditions under which 
money illusion is more likely to hold are incorporated: not only cognitive load 
is at the highest (“piercing the veil of money” is the most difficult)24, but also 
the maximization of nominal payoffs is aligned with the maximization of real 
payoff, making the efficient equilibrium the focal one. Our a priori hypothesis 
was that the nominal dominance principle would hold under InvN. However, 
players did not maximize nominal (or even real) payoffs in the long-run 
(potential reasons for this are given in the next section). 

Hence, Result 3, besides showing that the nominal principle does not hold, 
can also be interpreted in a way that addresses some concerns raised in the 
debate, regarding conditions in the environment considered to make money 
illusion more likely to hold. If our implementation of cognitive load and focal 
points are to be considered what FT call “other sources of bounded rationality”, 
they are shown not to be sufficient in order to induce the predictions of the 
nominal dominance principle25. 

                                                        
24 An indication for this is that players spent on average more than twice the time in each 

period to make their price decision in InvN than in the other treatments. 
25 A reader familiar with this literature could argue that in this case money illusion is still 

causing sluggishness of adjustment and inefficiencies compared with the real treatment. This is 
true in the data (players in InvN were the ones earning less money), and such effects are 
mentioned previously in the literature as an important effect of money illusion. However, this is 
precisely the reason for choosing a coordination game for equilibrium selection. The test defines 
specific effects of money illusion on equilibrium convergence. Our results show that a nominal 
framing does cause behavioural effects; we do not claim that it doesn’t affect behaviour at all. 
On that aspect, this result is evidence consistent with nominal representations causing 
behavioural changes, just not the ones tested. 



33 
 

1.5 “LOCK-IN” EFFECTS AND INITIAL DECISIONS 

Our data naturally allows us to explore further another concept that was an 
important motivation for FT for considering money illusion as a coordination 
device. That is the notion of “lock-in” effects. The argument is that even if 
players individually learn after a few periods the real payoffs in the matrix, a 
coordination failure can cause the initial (and perhaps inefficient) decisions to 
have effects in the long-run. With a lack of communication between players 
and if deviating from the average group decision is costly for the individual, 
initial decisions can “lock” players in such initial decisions. Are such lock-in 
effects observed under our implemented treatments? 

One way to answer this question is to observe the initial decisions of players 
and compare them with their decisions on the last periods. If players choose in 
the first period the same prices on which they convergence in the long-run, one 
could argue that this behaviour is consistent with FT’s lock-in effects. Figure 
1.10 shows the frequency of first period prices for each treatment. 

 

Figure 1.10: Frequency of prices chosen in the first period. All treatments. 

First observe the two panels on the left for the Rep treatments. From Result 
1 it is known that under RepR convergence went to the efficient equilibrium, 
while under RepN it went to the inefficient equilibrium. Was the same pattern 
observed since the beginning of the game? Yes, it was. The distribution of 
prices in the first period is clearly shifted when introducing the nominal 
treatment, with players selecting price in a way consistent with money illusion. 
In the replication treatments, it can be argued that there are indeed lock-in 
effects. 

Creating a tension between the nominal dominant and the focal equilibrium 
from RepR to InvR (Test 2), clearly flattens the distribution, preventing the 
peak at %34 and leading to convergence into the inefficient equilibrium. Since 
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the distribution is flatter and doesn’t have a clear peak in InvR, it would be 
difficult to argue whether there are or there aren’t any lock-in effects in this 
treatment. 

The interesting pattern, however, is observed under InvN. The treatment, 
as was expected, induced players into selecting prices in the first period much 
closer to the efficient equilibrium (the distribution is clearly skewed to the 
right), since nominal and real dominance are aligned. But Result 3 showed that 
players in InvN did not converge into the efficient equilibrium, and the trend 
of the all groups was driven away from it. This means that even if players at the 
beginning of the game could be choosing prices based on nominal dominance, 
such decision didn’t stick in the long run. 

What can one make of such results? They show that in the replication 
treatments, the data is consistent with both the implications of money illusion 
and with having initial group decisions that “lock” players in inefficient 
outcomes in the long run. This is in line with the original results found in Fehr 
and Tyran (2007). But once we modify the environment in further tests, such 
effects disappear. Even if players initially choose closer to the nominal and real 
dominant equilibrium, they are slowly driven away from it. Lock-in effects 
don’t happen under InvN. 

What could explain players moving away from their initial decisions? What 
could explain the slow drifting towards %&54 in InvN (Figure 1.9)? The objective 
of the tests conducted are to observe if the hypothesis put forward holds, not 
to give behavioral explanations of the observed outcomes. However, we can 
conjecture about the results. The observed trend towards the inefficient 
equilibrium could be consistent with a period by period best response on the 
part of the players. Perhaps the increased cognitive load triggered in players a 
behavioral rule of thumb according to which, instead of choosing the highest 
nominal payoffs as a potential coordination point, they engage in a short-term, 
period by period maximization of payoffs. 

This conjecture could also be consistent with the way in which the payoff 
structure was designed. The whole experiment was designed with the intention 
of increasing the likelihood of players converging into %&54 under InvR, so the 
dynamics were set that way: best replies would on most parts of the matrix lead 
towards %&5426. A period by period best response behaviour would slowly drift 
the prices towards the inefficient equilibrium, which would be consistent with 
the observed pattern under InvN. 

Why would players under some treatments directly maximise long-run 
payoffs, and under others go for a period by period behaviour? The different 
framings for the payoffs can change the environment faced by the players, and 
under different environments they might use different rules of thumb (this is 
related to the concept of ecological rationality, presented for example in 
Gigerenzer et al. (2011)). But exploring further what rules of thumb subjects 
are actually using is not the objective of this paper. Its objective was to conduct 
tests of particular implications of the theory of money illusion, not to find 
possible alternatives to it. 

                                                        
26 Put differently, the likelihood of falling into the “basin of attraction” of the inefficient 

equilibrium is higher than that for the efficient equilibrium. 
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1.6 CLOSING REMARKS 

1.6.1 Summary 
This paper explored the predictive power of the nominal dominance 

principle, defined as subjects converging on the long-run in the nominal 
dominant equilibrium. Such principle is closely related to the concept of 
money illusion, which involves subjects taking nominal payoffs as a proxy for 
real payoffs. In order to put this principle to the test, we conducted an 
experiment in a pricing, coordination game with two Pareto-ranked equilibria. 
In all three tests the implemented treatments consisted in changing the 
framing of payoffs, while keeping constant the real structure of incentives 
across all of them. The objective was to test changes in convergence towards 
either equilibrium when different framings were introduced. 

Test 1 implemented two treatments that created a tension between real 
payoffs and nominal payoffs. The objective of this test was to try to replicate 
qualitatively results found in previous literature, where agents can converge 
into the equilibrium with highest nominal payoffs, as stated by the nominal 
dominance principle. Under our base treatment, two out of three groups 
converged to the Pareto-efficient equilibrium, as traditional rationality would 
suggest. But under a nominal representation, making the inefficient 
equilibrium the nominal dominant, led to full convergence to it (three out of 
three groups). Previous effects attributed to money illusion were replicated 
under our experimental design. 

Test 2 put such result under a more stringent scenario. We created a 
treatment where both nominal and real dominance pointed towards the same 
efficient equilibrium. Could we lure players into the opposite direction? By 
adding a constant to all payoffs and inverting the order in the payoffs matrix 
labels, we tried to make players perceive the inefficient equilibrium as a more 
natural coordination point. A tension was created between focality and payoffs 
dominance. All three groups were effectively lured into coordinating in the 
inefficient equilibrium. Here, contrary to what was observed in Test 1, the 
nominal (and real) dominance principle did not hold. Even more, if as in 
previous literature, one considers focal points to be a confounding factor of 
Money Illusion, this result shows that such factors can, on their own, have 
similar behavioral effects. 

In order to give the nominal dominance principle a chance to “get back on 
its feet”, we defused the tension created in Test 2. Test 3 aligned back both 
focality and payoff dominance. Even more, conditions considered to make 
subjects more prone to converge into the nominal dominant equilibrium, such 
as cognitive load, were reinforced in the final treatment. Contrary to our 
expectations, none of the groups converged according to the nominal 
dominance principle. Although the framing of payoffs did have behavioral 
effects such as making convergence slower, they were not what would be 
predicted by our tested hypothesis on equilibrium convergence. 

Finally, we tested if “lock-in” effects, an important concept that theoretically 
supports money illusion as a coordination device, took place in our treatments. 
Given a lack of communication between subjects, it might be that even if they 
learn individually how to choose the optimal solution, a coordination failure 
might prevent them from reaching that solution. They might be “locked-in” 
their initial decisions because it is costly to deviate from the group’s median 
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behavior. We compared decisions in the first and final rounds of the game. If 
such effects are taking place, one could expect those decisions to point towards 
the same equilibrium. We showed that such effects indeed took place in Test 1, 
but that they did not happen in Test 3. As with the predictions of the nominal 
dominance principle, lock-in effects were found in some of our treatments, but 
not in others. 

1.6.2 Discussion 
Our results can be related to the ongoing debate in the literature, regarding 

the effects of money illusion, in several ways. On the one hand, our experiment 
supports the idea that payoffs framing is relevant in terms of behavior, and 
that it can divert subjects from maximization of real payoffs. We believe our 
evidence, as well as previous literature, shows that subjects can indeed alter 
their choices when nominal values are introduced. For evidence against perfect 
real payoffs maximization and to highlight the relevance of bounded 
rationality in explaining subjects’ behavior, we believe FT have put forward a 
solid experimental framework to study money illusion, with results that can be 
replicated. We have no doubt about the relevance of payoffs framing in 
affecting subjects’ actions in these experiments. The difficulty lies in 
understanding more precisely how and when such effects take place. 

We also believe that the concerns of PW, highlighting that there could be 
confounding effects such as focality or cognitive load on this line of research, 
are equally important. Leaving aside discussions on whether such effects are 
considered as part of a broader concept of money illusion or not, our results 
show that they can, on their own, drive behavior in similar ways as to what is 
attributed to money illusion. The relevant issue about those confounds is that 
they also have empirical effects even when isolated from money illusion, as 
shown in our experiment. 

In order to conclude, a key message from our data is that there are framing 
effects that can alter subjects’ behavior in several different ways. Sometimes, 
such effects drive behavior in directions consistent with nominal dominance, 
but some other times they don’t. It seems that in order to clarify better such 
effects, we need to understand more about the underlying cognitive processes 
taking place. FT’s experiments have presented an innovative experimental 
framework to study payoffs framings, and have put forward a theoretical basis 
with their interpretation of money illusion. They have laid the ground for 
further exploration. But if several years after FT’s initial results, the concept of 
money illusion is to take the next step into better explaining behavior or 
making predictions beyond falsifying perfect rationality, it needs to be 
reformulated or expanded. 
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1.7 APPENDIX 

1.7.1 RepR payoffs matrix 

 

35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
35 54 55 54 53 53 53 48 43 40 37 32 27 23 16 13 10 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 56 57 56 55 55 55 50 45 42 39 34 29 25 18 15 12 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 58 59 58 57 57 57 52 47 44 41 36 31 27 20 17 14 9 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 56 57 60 59 59 59 54 49 46 43 38 33 29 22 19 16 11 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 54 55 58 61 61 61 56 51 48 45 40 35 31 24 21 18 13 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 52 53 56 59 59 59 58 53 50 47 42 37 33 26 23 20 15 9 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 50 51 54 57 57 57 56 55 52 49 44 39 35 28 25 22 17 11 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 48 49 52 55 55 55 54 53 54 51 46 41 37 30 27 24 19 13 9 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 46 47 50 53 53 53 52 51 52 53 48 43 39 32 29 26 21 15 11 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 44 45 48 51 51 51 50 49 50 51 50 45 41 34 31 28 23 17 13 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 42 43 46 49 49 49 48 47 48 49 48 47 43 36 33 30 25 19 15 11 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 40 41 44 47 47 47 46 45 46 47 46 45 45 38 35 32 27 21 17 13 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0
23 38 39 42 45 45 45 44 43 44 45 44 43 43 40 37 34 29 23 19 15 11 3 0 0 0 0 0 0 0 0 0 0 0 0 0
22 36 37 40 43 43 43 42 41 42 43 42 41 41 38 39 36 31 25 21 17 13 5 2 0 0 0 0 0 0 0 0 0 0 0 0
21 34 35 38 41 41 41 40 39 40 41 40 39 39 36 37 38 33 27 23 19 15 7 4 1 0 0 0 0 0 0 0 0 0 0 0
20 32 33 36 39 39 39 38 37 38 39 38 37 37 34 35 36 35 29 25 21 17 9 6 3 0 0 0 0 0 0 0 0 0 0 0
19 30 31 34 37 37 37 36 35 36 37 36 35 35 32 33 34 33 31 27 23 19 11 8 5 2 0 0 0 0 0 0 0 0 0 0
18 28 29 32 35 35 35 34 33 34 35 34 33 33 30 31 32 31 29 29 25 21 13 10 7 4 1 0 0 0 0 0 0 0 0 0
17 26 27 30 33 33 33 32 31 32 33 32 31 31 28 29 30 29 27 27 27 23 15 12 9 6 3 0 0 0 0 0 0 0 0 0
16 24 25 28 31 31 31 30 29 30 31 30 29 29 26 27 28 27 25 25 25 25 17 14 11 8 5 2 0 0 0 0 0 0 0 0
15 22 23 26 29 29 29 28 27 28 29 28 27 27 24 25 26 25 23 23 23 23 19 16 13 10 7 4 1 0 0 0 0 0 0 0
14 20 21 24 27 27 27 26 25 26 27 26 25 25 22 23 24 23 21 21 21 21 17 18 15 12 9 6 3 0 0 0 0 0 0 0
13 18 19 22 25 25 25 24 23 24 25 24 23 23 20 21 22 21 19 19 19 19 15 16 17 14 11 8 5 2 0 0 0 0 0 0
12 16 17 20 23 23 23 22 21 22 23 22 21 21 18 19 20 19 17 17 17 17 13 14 15 16 13 10 7 4 1 1 0 0 0 0
11 14 15 18 21 21 21 20 19 20 21 20 19 19 16 17 18 17 15 15 15 15 11 12 13 14 15 12 9 6 3 3 0 0 0 0
10 12 13 16 19 19 19 18 17 18 19 18 17 17 14 15 16 15 13 13 13 13 9 10 11 12 13 14 11 8 5 5 0 0 0 0
9 10 11 14 17 17 17 16 15 16 17 16 15 15 12 13 14 13 11 11 11 11 7 8 9 10 11 12 13 10 7 7 0 0 0 0
8 8 9 12 15 15 15 14 13 14 15 14 13 13 10 11 12 11 9 9 9 9 5 6 7 8 9 10 11 12 9 9 0 0 0 0
7 6 7 10 13 13 13 12 11 12 13 12 11 11 8 9 10 9 7 7 7 7 3 4 5 6 7 8 9 10 11 11 0 0 0 0
6 4 5 8 11 11 11 10 9 10 11 10 9 9 6 7 8 7 5 5 5 5 1 2 3 4 5 6 7 8 9 13 0 0 0 0
5 2 3 6 9 9 9 8 7 8 9 8 7 7 4 5 6 5 3 3 3 3 0 0 1 2 3 4 5 6 7 15 0 0 0 0
4 0 1 4 7 7 7 6 5 6 7 6 5 5 2 3 4 3 1 1 1 1 0 0 0 0 1 2 3 4 5 13 0 0 0 0
3 0 0 2 5 5 5 4 3 4 5 4 3 3 0 1 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 11 18 0 0 0
2 0 0 0 3 3 3 2 1 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 0 18 0 0
1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 100 100
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1.7.2 RepN payoffs matrix 

 

35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

35 1890	 1870	 1782	 1696	 1643	 1590	 1392	 1204	 1080	 962	 800	 648	 529	 352	 273	 200	 95	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

34 1960	 1938	 1848	 1760	 1705	 1650	 1450	 1260	 1134	 1014	 850	 696	 575	 396	 315	 240	 133	 18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

33 2030	 2006	 1914	 1824	 1767	 1710	 1508	 1316	 1188	 1066	 900	 744	 621	 440	 357	 280	 171	 54	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

32 1960	 1938	 1980	 1888	 1829	 1770	 1566	 1372	 1242	 1118	 950	 792	 667	 484	 399	 320	 209	 90	 17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

31 1890	 1870	 1914	 1952	 1891	 1830	 1624	 1428	 1296	 1170	 1000	 840	 713	 528	 441	 360	 247	 126	 51	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

30 1820	 1802	 1848	 1888	 1829	 1770	 1682	 1484	 1350	 1222	 1050	 888	 759	 572	 483	 400	 285	 162	 85	 16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

29 1750	 1734	 1782	 1824	 1767	 1710	 1624	 1540	 1404	 1274	 1100	 936	 805	 616	 525	 440	 323	 198	 119	 48	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

28 1680	 1666	 1716	 1760	 1705	 1650	 1566	 1484	 1458	 1326	 1150	 984	 851	 660	 567	 480	 361	 234	 153	 80	 15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

27 1610	 1598	 1650	 1696	 1643	 1590	 1508	 1428	 1404	 1378	 1200	 1032	 897	 704	 609	 520	 399	 270	 187	 112	 45	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

26 1540	 1530	 1584	 1632	 1581	 1530	 1450	 1372	 1350	 1326	 1250	 1080	 943	 748	 651	 560	 437	 306	 221	 144	 75	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

25 1470	 1462	 1518	 1568	 1519	 1470	 1392	 1316	 1296	 1274	 1200	 1128	 989	 792	 693	 600	 475	 342	 255	 176	 105	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

24 1400	 1394	 1452	 1504	 1457	 1410	 1334	 1260	 1242	 1222	 1150	 1080	 1035	 836	 735	 640	 513	 378	 289	 208	 135	 14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

23 1330	 1326	 1386	 1440	 1395	 1350	 1276	 1204	 1188	 1170	 1100	 1032	 989	 880	 777	 680	 551	 414	 323	 240	 165	 42	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

22 1260	 1258	 1320	 1376	 1333	 1290	 1218	 1148	 1134	 1118	 1050	 984	 943	 836	 819	 720	 589	 450	 357	 272	 195	 70	 26	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

21 1190	 1190	 1254	 1312	 1271	 1230	 1160	 1092	 1080	 1066	 1000	 936	 897	 792	 777	 760	 627	 486	 391	 304	 225	 98	 52	 12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

20 1120	 1122	 1188	 1248	 1209	 1170	 1102	 1036	 1026	 1014	 950	 888	 851	 748	 735	 720	 665	 522	 425	 336	 255	 126	 78	 36	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

19 1050	 1054	 1122	 1184	 1147	 1110	 1044	 980	 972	 962	 900	 840	 805	 704	 693	 680	 627	 558	 459	 368	 285	 154	 104	 60	 22	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

18 980	 986	 1056	 1120	 1085	 1050	 986	 924	 918	 910	 850	 792	 759	 660	 651	 640	 589	 522	 493	 400	 315	 182	 130	 84	 44	 10	 0	 0	 0	 0	 0	 0	 0	 0	 0	

17 910	 918	 990	 1056	 1023	 990	 928	 868	 864	 858	 800	 744	 713	 616	 609	 600	 551	 486	 459	 432	 345	 210	 156	 108	 66	 30	 0	 0	 0	 0	 0	 0	 0	 0	 0	

16 840	 850	 924	 992	 961	 930	 870	 812	 810	 806	 750	 696	 667	 572	 567	 560	 513	 450	 425	 400	 375	 238	 182	 132	 88	 50	 18	 0	 0	 0	 0	 0	 0	 0	 0	

15 770	 782	 858	 928	 899	 870	 812	 756	 756	 754	 700	 648	 621	 528	 525	 520	 475	 414	 391	 368	 345	 266	 208	 156	 110	 70	 36	 8	 0	 0	 0	 0	 0	 0	 0	

14 700	 714	 792	 864	 837	 810	 754	 700	 702	 702	 650	 600	 575	 484	 483	 480	 437	 378	 357	 336	 315	 238	 234	 180	 132	 90	 54	 24	 0	 0	 0	 0	 0	 0	 0	

13 630	 646	 726	 800	 775	 750	 696	 644	 648	 650	 600	 552	 529	 440	 441	 440	 399	 342	 323	 304	 285	 210	 208	 204	 154	 110	 72	 40	 14	 0	 0	 0	 0	 0	 0	

12 560	 578	 660	 736	 713	 690	 638	 588	 594	 598	 550	 504	 483	 396	 399	 400	 361	 306	 289	 272	 255	 182	 182	 180	 176	 130	 90	 56	 28	 6	 5	 0	 0	 0	 0	

11 490	 510	 594	 672	 651	 630	 580	 532	 540	 546	 500	 456	 437	 352	 357	 360	 323	 270	 255	 240	 225	 154	 156	 156	 154	 150	 108	 72	 42	 18	 15	 0	 0	 0	 0	

10 420	 442	 528	 608	 589	 570	 522	 476	 486	 494	 450	 408	 391	 308	 315	 320	 285	 234	 221	 208	 195	 126	 130	 132	 132	 130	 126	 88	 56	 30	 25	 0	 0	 0	 0	

9 350	 374	 462	 544	 527	 510	 464	 420	 432	 442	 400	 360	 345	 264	 273	 280	 247	 198	 187	 176	 165	 98	 104	 108	 110	 110	 108	 104	 70	 42	 35	 0	 0	 0	 0	

8 280	 306	 396	 480	 465	 450	 406	 364	 378	 390	 350	 312	 299	 220	 231	 240	 209	 162	 153	 144	 135	 70	 78	 84	 88	 90	 90	 88	 84	 54	 45	 0	 0	 0	 0	

7 210	 238	 330	 416	 403	 390	 348	 308	 324	 338	 300	 264	 253	 176	 189	 200	 171	 126	 119	 112	 105	 42	 52	 60	 66	 70	 72	 72	 70	 66	 55	 0	 0	 0	 0	

6 140	 170	 264	 352	 341	 330	 290	 252	 270	 286	 250	 216	 207	 132	 147	 160	 133	 90	 85	 80	 75	 14	 26	 36	 44	 50	 54	 56	 56	 54	 65	 0	 0	 0	 0	

5 70	 102	 198	 288	 279	 270	 232	 196	 216	 234	 200	 168	 161	 88	 105	 120	 95	 54	 51	 48	 45	 0	 0	 12	 22	 30	 36	 40	 42	 42	 75	 0	 0	 0	 0	

4 0	 34	 132	 224	 217	 210	 174	 140	 162	 182	 150	 120	 115	 44	 63	 80	 57	 18	 17	 16	 15	 0	 0	 0	 0	 10	 18	 24	 28	 30	 65	 0	 0	 0	 0	

3 0	 0	 66	 160	 155	 150	 116	 84	 108	 130	 100	 72	 69	 0	 21	 40	 19	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 8	 14	 18	 55	 72	 0	 0	 0	

2 0	 0	 0	 96	 93	 90	 58	 28	 54	 78	 50	 24	 23	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 6	 45	 0	 54	 0	 0	

1 0	 0	 0	 32	 31	 30	 0	 0	 0	 26	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 35	 0	 0	 200	 100	
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1.7.3 InvR payoffs matrix 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
1 1035	 1036	 1035	 1034	 1034	 1034	 1029	 1024	 1021	 1018	 1013	 1008	 1004	 997	 994	 991	 986	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

2 1037	 1038	 1037	 1036	 1036	 1036	 1031	 1026	 1023	 1020	 1015	 1010	 1006	 999	 996	 993	 988	 982	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

3 1039	 1040	 1039	 1038	 1038	 1038	 1033	 1028	 1025	 1022	 1017	 1012	 1008	 1001	 998	 995	 990	 984	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

4 1037	 1038	 1041	 1040	 1040	 1040	 1035	 1030	 1027	 1024	 1019	 1014	 1010	 1003	 1000	 997	 992	 986	 982	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

5 1035	 1036	 1039	 1042	 1042	 1042	 1037	 1032	 1029	 1026	 1021	 1016	 1012	 1005	 1002	 999	 994	 988	 984	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

6 1033	 1034	 1037	 1040	 1040	 1040	 1039	 1034	 1031	 1028	 1023	 1018	 1014	 1007	 1004	 1001	 996	 990	 986	 982	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

7 1031	 1032	 1035	 1038	 1038	 1038	 1037	 1036	 1033	 1030	 1025	 1020	 1016	 1009	 1006	 1003	 998	 992	 988	 984	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

8 1029	 1030	 1033	 1036	 1036	 1036	 1035	 1034	 1035	 1032	 1027	 1022	 1018	 1011	 1008	 1005	 1000	 994	 990	 986	 982	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

9 1027	 1028	 1031	 1034	 1034	 1034	 1033	 1032	 1033	 1034	 1029	 1024	 1020	 1013	 1010	 1007	 1002	 996	 992	 988	 984	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

10 1025	 1026	 1029	 1032	 1032	 1032	 1031	 1030	 1031	 1032	 1031	 1026	 1022	 1015	 1012	 1009	 1004	 998	 994	 990	 986	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

11 1023	 1024	 1027	 1030	 1030	 1030	 1029	 1028	 1029	 1030	 1029	 1028	 1024	 1017	 1014	 1011	 1006	 1000	 996	 992	 988	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

12 1021	 1022	 1025	 1028	 1028	 1028	 1027	 1026	 1027	 1028	 1027	 1026	 1026	 1019	 1016	 1013	 1008	 1002	 998	 994	 990	 982	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

13 1019	 1020	 1023	 1026	 1026	 1026	 1025	 1024	 1025	 1026	 1025	 1024	 1024	 1021	 1018	 1015	 1010	 1004	 1000	 996	 992	 984	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

14 1017	 1018	 1021	 1024	 1024	 1024	 1023	 1022	 1023	 1024	 1023	 1022	 1022	 1019	 1020	 1017	 1012	 1006	 1002	 998	 994	 986	 983	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

15 1015	 1016	 1019	 1022	 1022	 1022	 1021	 1020	 1021	 1022	 1021	 1020	 1020	 1017	 1018	 1019	 1014	 1008	 1004	 1000	 996	 988	 985	 982	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

16 1013	 1014	 1017	 1020	 1020	 1020	 1019	 1018	 1019	 1020	 1019	 1018	 1018	 1015	 1016	 1017	 1016	 1010	 1006	 1002	 998	 990	 987	 984	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

17 1011	 1012	 1015	 1018	 1018	 1018	 1017	 1016	 1017	 1018	 1017	 1016	 1016	 1013	 1014	 1015	 1014	 1012	 1008	 1004	 1000	 992	 989	 986	 983	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	

18 1009	 1010	 1013	 1016	 1016	 1016	 1015	 1014	 1015	 1016	 1015	 1014	 1014	 1011	 1012	 1013	 1012	 1010	 1010	 1006	 1002	 994	 991	 988	 985	 982	 981	 981	 981	 981	 981	 981	 981	 981	 981	

19 1007	 1008	 1011	 1014	 1014	 1014	 1013	 1012	 1013	 1014	 1013	 1012	 1012	 1009	 1010	 1011	 1010	 1008	 1008	 1008	 1004	 996	 993	 990	 987	 984	 981	 981	 981	 981	 981	 981	 981	 981	 981	

20 1005	 1006	 1009	 1012	 1012	 1012	 1011	 1010	 1011	 1012	 1011	 1010	 1010	 1007	 1008	 1009	 1008	 1006	 1006	 1006	 1006	 998	 995	 992	 989	 986	 983	 981	 981	 981	 981	 981	 981	 981	 981	

21 1003	 1004	 1007	 1010	 1010	 1010	 1009	 1008	 1009	 1010	 1009	 1008	 1008	 1005	 1006	 1007	 1006	 1004	 1004	 1004	 1004	 1000	 997	 994	 991	 988	 985	 982	 981	 981	 981	 981	 981	 981	 981	

22 1001	 1002	 1005	 1008	 1008	 1008	 1007	 1006	 1007	 1008	 1007	 1006	 1006	 1003	 1004	 1005	 1004	 1002	 1002	 1002	 1002	 998	 999	 996	 993	 990	 987	 984	 981	 981	 981	 981	 981	 981	 981	

23 999	 1000	 1003	 1006	 1006	 1006	 1005	 1004	 1005	 1006	 1005	 1004	 1004	 1001	 1002	 1003	 1002	 1000	 1000	 1000	 1000	 996	 997	 998	 995	 992	 989	 986	 983	 981	 981	 981	 981	 981	 981	

24 997	 998	 1001	 1004	 1004	 1004	 1003	 1002	 1003	 1004	 1003	 1002	 1002	 999	 1000	 1001	 1000	 998	 998	 998	 998	 994	 995	 996	 997	 994	 991	 988	 985	 982	 982	 981	 981	 981	 981	

25 995	 996	 999	 1002	 1002	 1002	 1001	 1000	 1001	 1002	 1001	 1000	 1000	 997	 998	 999	 998	 996	 996	 996	 996	 992	 993	 994	 995	 996	 993	 990	 987	 984	 984	 981	 981	 981	 981	

26 993	 994	 997	 1000	 1000	 1000	 999	 998	 999	 1000	 999	 998	 998	 995	 996	 997	 996	 994	 994	 994	 994	 990	 991	 992	 993	 994	 995	 992	 989	 986	 986	 981	 981	 981	 981	

27 991	 992	 995	 998	 998	 998	 997	 996	 997	 998	 997	 996	 996	 993	 994	 995	 994	 992	 992	 992	 992	 988	 989	 990	 991	 992	 993	 994	 991	 988	 988	 981	 981	 981	 981	

28 989	 990	 993	 996	 996	 996	 995	 994	 995	 996	 995	 994	 994	 991	 992	 993	 992	 990	 990	 990	 990	 986	 987	 988	 989	 990	 991	 992	 993	 990	 990	 981	 981	 981	 981	

29 987	 988	 991	 994	 994	 994	 993	 992	 993	 994	 993	 992	 992	 989	 990	 991	 990	 988	 988	 988	 988	 984	 985	 986	 987	 988	 989	 990	 991	 992	 992	 981	 981	 981	 981	

30 985	 986	 989	 992	 992	 992	 991	 990	 991	 992	 991	 990	 990	 987	 988	 989	 988	 986	 986	 986	 986	 982	 983	 984	 985	 986	 987	 988	 989	 990	 994	 981	 981	 981	 981	

31 983	 984	 987	 990	 990	 990	 989	 988	 989	 990	 989	 988	 988	 985	 986	 987	 986	 984	 984	 984	 984	 981	 981	 982	 983	 984	 985	 986	 987	 988	 996	 981	 981	 981	 981	

32 981	 982	 985	 988	 988	 988	 987	 986	 987	 988	 987	 986	 986	 983	 984	 985	 984	 982	 982	 982	 982	 981	 981	 981	 981	 982	 983	 984	 985	 986	 994	 981	 981	 981	 981	

33 981	 981	 983	 986	 986	 986	 985	 984	 985	 986	 985	 984	 984	 981	 982	 983	 982	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 982	 983	 984	 992	 999	 981	 981	 981	

34 981	 981	 981	 984	 984	 984	 983	 982	 983	 984	 983	 982	 982	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 982	 990	 981	 999	 981	 981	

35 981	 981	 981	 982	 982	 982	 981	 981	 981	 982	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 981	 988	 981	 981	 1081	 1081	
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1.7.4 InvN payoffs matrix 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
1 	1,035	 	2,072	 	3,105	 	4,136	 	5,170	 	6,204	 	7,203	 	8,192	 	9,189	 	10,180	 	11,143	 	12,096	 	13,052	 	13,958	 	14,910	 	15,856	 	16,762	 	17,658	 	18,639	 	19,620	 	20,601	 	21,582	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

2 	1,037	 	2,076	 	3,111	 	4,144	 	5,180	 	6,216	 	7,217	 	8,208	 	9,207	 	10,200	 	11,165	 	12,120	 	13,078	 	13,986	 	14,940	 	15,888	 	16,796	 	17,676	 	18,639	 	19,620	 	20,601	 	21,582	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

3 	1,039	 	2,080	 	3,117	 	4,152	 	5,190	 	6,228	 	7,231	 	8,224	 	9,225	 	10,220	 	11,187	 	12,144	 	13,104	 	14,014	 	14,970	 	15,920	 	16,830	 	17,712	 	18,639	 	19,620	 	20,601	 	21,582	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

4 	1,037	 	2,076	 	3,123	 	4,160	 	5,200	 	6,240	 	7,245	 	8,240	 	9,243	 	10,240	 	11,209	 	12,168	 	13,130	 	14,042	 	15,000	 	15,952	 	16,864	 	17,748	 	18,658	 	19,620	 	20,601	 	21,582	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

5 	1,035	 	2,072	 	3,117	 	4,168	 	5,210	 	6,252	 	7,259	 	8,256	 	9,261	 	10,260	 	11,231	 	12,192	 	13,156	 	14,070	 	15,030	 	15,984	 	16,898	 	17,784	 	18,696	 	19,620	 	20,601	 	21,582	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

6 	1,033	 	2,068	 	3,111	 	4,160	 	5,200	 	6,240	 	7,273	 	8,272	 	9,279	 	10,280	 	11,253	 	12,216	 	13,182	 	14,098	 	15,060	 	16,016	 	16,932	 	17,820	 	18,734	 	19,640	 	20,601	 	21,582	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

7 	1,031	 	2,064	 	3,105	 	4,152	 	5,190	 	6,228	 	7,259	 	8,288	 	9,297	 	10,300	 	11,275	 	12,240	 	13,208	 	14,126	 	15,090	 	16,048	 	16,966	 	17,856	 	18,772	 	19,680	 	20,601	 	21,582	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

8 	1,029	 	2,060	 	3,099	 	4,144	 	5,180	 	6,216	 	7,245	 	8,272	 	9,315	 	10,320	 	11,297	 	12,264	 	13,234	 	14,154	 	15,120	 	16,080	 	17,000	 	17,892	 	18,810	 	19,720	 	20,622	 	21,582	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

9 	1,027	 	2,056	 	3,093	 	4,136	 	5,170	 	6,204	 	7,231	 	8,256	 	9,297	 	10,340	 	11,319	 	12,288	 	13,260	 	14,182	 	15,150	 	16,112	 	17,034	 	17,928	 	18,848	 	19,760	 	20,664	 	21,582	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

10 	1,025	 	2,052	 	3,087	 	4,128	 	5,160	 	6,192	 	7,217	 	8,240	 	9,279	 	10,320	 	11,341	 	12,312	 	13,286	 	14,210	 	15,180	 	16,144	 	17,068	 	17,964	 	18,886	 	19,800	 	20,706	 	21,582	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

11 	1,023	 	2,048	 	3,081	 	4,120	 	5,150	 	6,180	 	7,203	 	8,224	 	9,261	 	10,300	 	11,319	 	12,336	 	13,312	 	14,238	 	15,210	 	16,176	 	17,102	 	18,000	 	18,924	 	19,840	 	20,748	 	21,582	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

12 	1,021	 	2,044	 	3,075	 	4,112	 	5,140	 	6,168	 	7,189	 	8,208	 	9,243	 	10,280	 	11,297	 	12,312	 	13,338	 	14,266	 	15,240	 	16,208	 	17,136	 	18,036	 	18,962	 	19,880	 	20,790	 	21,604	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

13 	1,019	 	2,040	 	3,069	 	4,104	 	5,130	 	6,156	 	7,175	 	8,192	 	9,225	 	10,260	 	11,275	 	12,288	 	13,312	 	14,294	 	15,270	 	16,240	 	17,170	 	18,072	 	19,000	 	19,920	 	20,832	 	21,648	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

14 	1,017	 	2,036	 	3,063	 	4,096	 	5,120	 	6,144	 	7,161	 	8,176	 	9,207	 	10,240	 	11,253	 	12,264	 	13,286	 	14,266	 	15,300	 	16,272	 	17,204	 	18,108	 	19,038	 	19,960	 	20,874	 	21,692	 	22,609	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

15 	1,015	 	2,032	 	3,057	 	4,088	 	5,110	 	6,132	 	7,147	 	8,160	 	9,189	 	10,220	 	11,231	 	12,240	 	13,260	 	14,238	 	15,270	 	16,304	 	17,238	 	18,144	 	19,076	 	20,000	 	20,916	 	21,736	 	22,655	 	23,568	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

16 	1,013	 	2,028	 	3,051	 	4,080	 	5,100	 	6,120	 	7,133	 	8,144	 	9,171	 	10,200	 	11,209	 	12,216	 	13,234	 	14,210	 	15,240	 	16,272	 	17,272	 	18,180	 	19,114	 	20,040	 	20,958	 	21,780	 	22,701	 	23,616	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

17 	1,011	 	2,024	 	3,045	 	4,072	 	5,090	 	6,108	 	7,119	 	8,128	 	9,153	 	10,180	 	11,187	 	12,192	 	13,208	 	14,182	 	15,210	 	16,240	 	17,238	 	18,216	 	19,152	 	20,080	 	21,000	 	21,824	 	22,747	 	23,664	 	24,575	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

18 	1,009	 	2,020	 	3,039	 	4,064	 	5,080	 	6,096	 	7,105	 	8,112	 	9,135	 	10,160	 	11,165	 	12,168	 	13,182	 	14,154	 	15,180	 	16,208	 	17,204	 	18,180	 	19,190	 	20,120	 	21,042	 	21,868	 	22,793	 	23,712	 	24,625	 	25,532	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

19 	1,007	 	2,016	 	3,033	 	4,056	 	5,070	 	6,084	 	7,091	 	8,096	 	9,117	 	10,140	 	11,143	 	12,144	 	13,156	 	14,126	 	15,150	 	16,176	 	17,170	 	18,144	 	19,152	 	20,160	 	21,084	 	21,912	 	22,839	 	23,760	 	24,675	 	25,584	 	26,487	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

20 	1,005	 	2,012	 	3,027	 	4,048	 	5,060	 	6,072	 	7,077	 	8,080	 	9,099	 	10,120	 	11,121	 	12,120	 	13,130	 	14,098	 	15,120	 	16,144	 	17,136	 	18,108	 	19,114	 	20,120	 	21,126	 	21,956	 	22,885	 	23,808	 	24,725	 	25,636	 	26,541	 	27,468	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

21 	1,003	 	2,008	 	3,021	 	4,040	 	5,050	 	6,060	 	7,063	 	8,064	 	9,081	 	10,100	 	11,099	 	12,096	 	13,104	 	14,070	 	15,090	 	16,112	 	17,102	 	18,072	 	19,076	 	20,080	 	21,084	 	22,000	 	22,931	 	23,856	 	24,775	 	25,688	 	26,595	 	27,496	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

22 	1,001	 	2,004	 	3,015	 	4,032	 	5,040	 	6,048	 	7,049	 	8,048	 	9,063	 	10,080	 	11,077	 	12,072	 	13,078	 	14,042	 	15,060	 	16,080	 	17,068	 	18,036	 	19,038	 	20,040	 	21,042	 	21,956	 	22,977	 	23,904	 	24,825	 	25,740	 	26,649	 	27,552	 	28,449	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

23 	999	 	2,000	 	3,009	 	4,024	 	5,030	 	6,036	 	7,035	 	8,032	 	9,045	 	10,060	 	11,055	 	12,048	 	13,052	 	14,014	 	15,030	 	16,048	 	17,034	 	18,000	 	19,000	 	20,000	 	21,000	 	21,912	 	22,931	 	23,952	 	24,875	 	25,792	 	26,703	 	27,608	 	28,507	 	29,430	 	30,411	 	31,392	 	32,373	 	33,354	 	34,335	

24 	997	 	1,996	 	3,003	 	4,016	 	5,020	 	6,024	 	7,021	 	8,016	 	9,027	 	10,040	 	11,033	 	12,024	 	13,026	 	13,986	 	15,000	 	16,016	 	17,000	 	17,964	 	18,962	 	19,960	 	20,958	 	21,868	 	22,885	 	23,904	 	24,925	 	25,844	 	26,757	 	27,664	 	28,565	 	29,460	 	30,442	 	31,392	 	32,373	 	33,354	 	34,335	

25 	995	 	1,992	 	2,997	 	4,008	 	5,010	 	6,012	 	7,007	 	8,000	 	9,009	 	10,020	 	11,011	 	12,000	 	13,000	 	13,958	 	14,970	 	15,984	 	16,966	 	17,928	 	18,924	 	19,920	 	20,916	 	21,824	 	22,839	 	23,856	 	24,875	 	25,896	 	26,811	 	27,720	 	28,623	 	29,520	 	30,504	 	31,392	 	32,373	 	33,354	 	34,335	

26 	993	 	1,988	 	2,991	 	4,000	 	5,000	 	6,000	 	6,993	 	7,984	 	8,991	 	10,000	 	10,989	 	11,976	 	12,974	 	13,930	 	14,940	 	15,952	 	16,932	 	17,892	 	18,886	 	19,880	 	20,874	 	21,780	 	22,793	 	23,808	 	24,825	 	25,844	 	26,865	 	27,776	 	28,681	 	29,580	 	30,566	 	31,392	 	32,373	 	33,354	 	34,335	

27 	991	 	1,984	 	2,985	 	3,992	 	4,990	 	5,988	 	6,979	 	7,968	 	8,973	 	9,980	 	10,967	 	11,952	 	12,948	 	13,902	 	14,910	 	15,920	 	16,898	 	17,856	 	18,848	 	19,840	 	20,832	 	21,736	 	22,747	 	23,760	 	24,775	 	25,792	 	26,811	 	27,832	 	28,739	 	29,640	 	30,628	 	31,392	 	32,373	 	33,354	 	34,335	

28 	989	 	1,980	 	2,979	 	3,984	 	4,980	 	5,976	 	6,965	 	7,952	 	8,955	 	9,960	 	10,945	 	11,928	 	12,922	 	13,874	 	14,880	 	15,888	 	16,864	 	17,820	 	18,810	 	19,800	 	20,790	 	21,692	 	22,701	 	23,712	 	24,725	 	25,740	 	26,757	 	27,776	 	28,797	 	29,700	 	30,690	 	31,392	 	32,373	 	33,354	 	34,335	

29 	987	 	1,976	 	2,973	 	3,976	 	4,970	 	5,964	 	6,951	 	7,936	 	8,937	 	9,940	 	10,923	 	11,904	 	12,896	 	13,846	 	14,850	 	15,856	 	16,830	 	17,784	 	18,772	 	19,760	 	20,748	 	21,648	 	22,655	 	23,664	 	24,675	 	25,688	 	26,703	 	27,720	 	28,739	 	29,760	 	30,752	 	31,392	 	32,373	 	33,354	 	34,335	

30 	985	 	1,972	 	2,967	 	3,968	 	4,960	 	5,952	 	6,937	 	7,920	 	8,919	 	9,920	 	10,901	 	11,880	 	12,870	 	13,818	 	14,820	 	15,824	 	16,796	 	17,748	 	18,734	 	19,720	 	20,706	 	21,604	 	22,609	 	23,616	 	24,625	 	25,636	 	26,649	 	27,664	 	28,681	 	29,700	 	30,814	 	31,392	 	32,373	 	33,354	 	34,335	

31 	983	 	1,968	 	2,961	 	3,960	 	4,950	 	5,940	 	6,923	 	7,904	 	8,901	 	9,900	 	10,879	 	11,856	 	12,844	 	13,790	 	14,790	 	15,792	 	16,762	 	17,712	 	18,696	 	19,680	 	20,664	 	21,582	 	22,563	 	23,568	 	24,575	 	25,584	 	26,595	 	27,608	 	28,623	 	29,640	 	30,876	 	31,392	 	32,373	 	33,354	 	34,335	

32 	981	 	1,964	 	2,955	 	3,952	 	4,940	 	5,928	 	6,909	 	7,888	 	8,883	 	9,880	 	10,857	 	11,832	 	12,818	 	13,762	 	14,760	 	15,760	 	16,728	 	17,676	 	18,658	 	19,640	 	20,622	 	21,582	 	22,563	 	23,544	 	24,525	 	25,532	 	26,541	 	27,552	 	28,565	 	29,580	 	30,814	 	31,392	 	32,373	 	33,354	 	34,335	

33 	981	 	1,962	 	2,949	 	3,944	 	4,930	 	5,916	 	6,895	 	7,872	 	8,865	 	9,860	 	10,835	 	11,808	 	12,792	 	13,734	 	14,730	 	15,728	 	16,694	 	17,658	 	18,639	 	19,620	 	20,601	 	21,582	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,496	 	28,507	 	29,520	 	30,752	 	31,968	 	32,373	 	33,354	 	34,335	

34 	981	 	1,962	 	2,943	 	3,936	 	4,920	 	5,904	 	6,881	 	7,856	 	8,847	 	9,840	 	10,813	 	11,784	 	12,766	 	13,734	 	14,715	 	15,696	 	16,677	 	17,658	 	18,639	 	19,620	 	20,601	 	21,582	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,460	 	30,690	 	31,392	 	32,967	 	33,354	 	34,335	

35 	981	 	1,962	 	2,943	 	3,928	 	4,910	 	5,892	 	6,867	 	7,848	 	8,829	 	9,820	 	10,791	 	11,772	 	12,753	 	13,734	 	14,715	 	15,696	 	16,677	 	17,658	 	18,639	 	19,620	 	20,601	 	21,582	 	22,563	 	23,544	 	24,525	 	25,506	 	26,487	 	27,468	 	28,449	 	29,430	 	30,628	 	31,392	 	32,373	 	36,754	 	37,835	

Y
o
u
r
	
S
e
l
e
c
t
e
d
	
P
r
i
c
e

Other	Players'	Median	Price



41 
 

1.7.5 RepR Instructions 
Welcome to the experiment. 
These instructions will be read out loud by the experimenter. Please follow 

when he starts.  
You can earn money in this experiment (up to 15 Pounds). Your income will 

be calculated in points. Those points you earn will be converted into British 
Pounds to be paid at the end of the experiment. 

Please do not communicate with other participants during the 
experiment. Please raise your hand at any time if you have any questions 
regarding the instructions. 

This experiment has 30 periods. All participants are members of a group 
consisting of ten (10) people. None of you know who is in each group, but the 
composition of the group remains the same throughout the experiment. Only 
the decisions in your own group are relevant for your earnings. Decisions by 
other groups are irrelevant for you. 

All group members are in the role of firms. In each period, all firms must 
simultaneously set a price from 1 to 35 (1 and 35 included). How much a 
firm earns depends on the price it chooses and on the median price all other 
firms in the group choose. 

The income table (find a printed copy on your desk) shows your point 
income. All firms have the same tables. Example: Suppose you choose a price 
of 30 and the other firms choose prices of 20 on median. In this case your point 
income is 20 points for that round. Those points you earn will be converted 
into British Pounds according to the following exchange rate: 200 points = 1 
Pound. 

Here is how the experiment proceeds: at the beginning of each period, you 
choose a selling price (a number from 1 to 35). At the end of each period you 
are informed about the actual median price of the other firms and about your 
actual point income. 

Do you have any questions? 
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1.7.6 RepN instructions 
Welcome to the experiment. 
These instructions will be read out loud by the experimenter. Please follow 

when he starts.  
You can earn money in this experiment (up to 15 Pounds). Your income will 

be calculated in points. Those points you earn will be converted into British 
Pounds to be paid at the end of the experiment.  

Please do not communicate with other participants during the 
experiment. Please raise your hand at any time if you have any questions 
regarding the instructions. 

This experiment has 30 periods. All participants are members of a group 
consisting of ten (10) people. None of you know who is in each group, but the 
composition of the group remains the same throughout the experiment. Only 
the decisions in your own group are relevant for your earnings. Decisions by 
other groups are irrelevant for you. 

All group members are in the role of firms. In each period, all firms must 
simultaneously set a price from 1 to 35 (1 and 35 included). How much a 
firm earns depends on the price it chooses and on the median price all other 
firms in the group choose. 

The income table (find a printed copy on your desk) shows your nominal 
point income. All firms have the same tables. Example: Suppose you choose 
a price of 30 and the other firms choose prices with a median of 20. In this case 
your nominal point income is 400 points for that round. 

For the determination of your earnings at the end of the 
experiment, only the real point income is relevant. This holds for all 
firms. To calculate your real point income from your nominal point income, 
you have to divide the nominal point income by the median price of other firms 
(the column label in the income table). Therefore, the nominal and the real 
point income are related as follows:  

Real point income = Nominal point income / Median price of 
other firms 

In the example above, your nominal point income is 400 points, but your 
real point income is 20 points (= 400 points / 20). Those real points you earn 
will be converted into British Pounds according to the following exchange rate: 
200 points = 1 Pound. 

Here is how the experiment proceeds: at the beginning of each period, you 
choose a selling price (a number from 1 to 35). At the end of each period you 
are informed about the actual median price of the other firms and about your 
actual point income. 
Do you have any questions? 
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1.7.7 InvR instructions 
Welcome to the experiment. 
These instructions will be read out loud by the experimenter. Please follow 

when he starts.  
You can earn money in this experiment (up to 15 Pounds). Your income will 

be calculated in points. Those points you earn will be converted into British 
Pounds to be paid at the end of the experiment.  

Please do not communicate with other participants during the 
experiment. Please raise your hand at any time if you have any questions 
regarding the instructions. 

This experiment has 30 periods. All participants are members of a group 
consisting of ten (10) people. None of you know who is in each group, but the 
composition of the group remains the same throughout the experiment. Only 
the decisions in your own group are relevant for your earnings. Decisions by 
other groups are irrelevant for you. 

All group members are in the role of firms. In each period, all firms must 
simultaneously set a price from 1 to 35 (1 and 35 included). How much a 
firm earns depends on the price it chooses and on the median price all other 
firms in the group choose. 

The income table (find a printed copy on your desk) shows your point 
income. All firms have the same tables. Example: Suppose you choose a price 
of 30 and the other firms choose prices with a median of 20. In this case your 
point income is 986 points for that round. 

The earned points will be converted into British Pounds at the end of the 
experiment according to the following rule: in each round you are guaranteed 
a minimum of 981 points, which is the lowest point income given by the income 
table. Only points you make above that number (in each period) will be 
converted according to the following exchange rate: 200 points = 1 Pound. 
Another way to put it is that at the end of the experiment 29,430 points (30 
periods X 981 points) will be subtracted from your point income; then the 
amount of British Pounds will be calculated. 

The experiment proceeds in the following way: at the beginning of each 
period, you choose a selling price (a number from 1 to 35). At the end of each 
period you are informed about the actual median price of the other firms and 
about your point income. 

Do you have any questions?  
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1.7.8 InvN instructions 
Welcome to the experiment. 
These instructions will be read out loud by the experimenter. Please follow 

when he starts.  
You can earn money in this experiment (up to 15 Pounds). Your income will 

be calculated in points. Those points you earn will be converted into British 
Pounds to be paid at the end of the experiment.  

Please do not communicate with other participants during the 
experiment. Please raise your hand at any time if you have any questions 
regarding the instructions. 

This experiment has 30 periods. All participants are members of a group 
consisting of ten (10) people. None of you know who is in each group, but the 
composition of the group remains the same throughout the experiment. Only 
the decisions in your own group are relevant for your earnings. Decisions by 
other groups are irrelevant for you. 

All group members are in the role of firms. In each period, all firms must 
simultaneously set a price from 1 to 35 (1 and 35 included). How much a 
firm earns depends on the price it chooses and on the median price all other 
firms in the group choose. 

The income table (find a printed copy on your desk) shows your nominal 
point income. All firms have the same tables. Example: Suppose you choose 
a price of 30 and the other firms choose prices with a median of 20. In this case 
your nominal point income is 19,720 points for that round. 

For the determination of your earnings at the end of the 
experiment, only the real point income is relevant. This holds for all 
firms. To calculate your real point income from your nominal point income, 
you have to divide the nominal point income by the median price of other firms 
(the column label in the income table). Therefore, the nominal and the real 
point income are related as follows:  

Real point income = Nominal point income / Median price of 
other firms 

In the example above, your nominal point income is 19,720 points, but your 
real point income is 986 points (= 19,720 points / 20). 

The earned real points will be converted into British Pounds at the end of 
the experiment according to the following rule: in each round you are 
guaranteed a minimum of 981 real points, which is the lowest real point 
income given by the income table. Only real points you make above that 
number (in each period) will be converted according to the following exchange 
rate: 200 points = 1 Pound. Another way to put it is that at the end of the 
experiment 29,430 real points (30 periods X 981 real points) will be subtracted 
from your real point income; then your earned British Pounds will be 
calculated. 

The experiment proceeds in the following way: at the beginning of each 
period, you choose a selling price (a number from 1 to 35). At the end of each 
period you are informed about the actual median price of the other firms and 
about your point income. 

Do you have any questions? 
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1.7.9 Experiment screenshots 
Total periods (top left corner) in the experiments was actually 35, as pointed 

in the main text. Screenshots show a different value due to them being taken 
during software test runs. 

1.7.9.1 Beginning of the experiment 
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1.7.9.2 Input screen 
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1.7.9.3 Review of previous rounds (nominal payoffs). From InvN treatment 
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ABSTRACT 

Theoretical models have had difficulties to account, at the same time, for 
the most important stylized facts observed in experiments of the Voluntary 
Contribution Mechanism. A recent approach tackling that gap is Arifovic and 
Ledyard (2012), which implements social preferences in tandem with an 
evolutionary learning algorithm. However, the stylized facts have evolved. The 
model was not built to explain some of the most important findings in the 
public good games recent literature: that altruistic punishment can sustain 
cooperation. This paper extends their model in order to explain such recent 
findings. It focuses on fear of punishment, not punishment itself, as the key 
mechanism to sustain contributions to the public good. Results show that our 
model can replicate both qualitatively and quantitatively the main facts. Data 
generated by our model differs, on average, in less than 5% compared to 
relevant experiments with punishment in the lab. 
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2.1 INTRODUCTION 

Experiments with the Voluntary Contribution Mechanism (VCM)27 have 
been a workhorse of social sciences in order to foster our understanding of 
human cooperation. Data from these ‘n-players prisoner’s dilemma’ 
experiments (when played repeatedly for several rounds) have shown 
consistent patterns. Some authors (e.g. Holt and Laury (2008)) consider that 
there are five main stylized facts to focus on:  i) that average contributions start 
around 50%, declining with time but not reaching zero, ii) that individuals vary 
considerably in their contributions (heterogeneity), iii) that higher values of 
the marginal productivity of the public good lead to increases in average 
contributions, iv) that increases in the size of the group lead to an increase in 
the average rate of contribution, and v) that there’s a ‘restart effect’, so that 
when subjects are told that the game will restart, contributions increase and 
are similar as in first rounds. 

Several authors have developed alternatives to the traditional Nash 
equilibrium approach in order to explain these main stylized facts, since 
traditional profit maximization would predict contributions of exactly zero in 
all periods of the experiments. Such alternatives have included decision errors 
(Anderson et al., 1998)), decision errors with altruism (Goeree et al., 2002), 
evolutionary dynamics (Miller and Andreoni, 1991), cooperative gain seeking 
(Brandts and Schram, 1996) and forward-looking signalling (Isaac et al., 1994), 
among others. Recently, important advances have been made by Fischbacher 
and Gächter (2010), highlighting the role of social preferences, beliefs and 
behavioural heterogeneity in order to explain the decline of contributions. 
However, none of these approaches could explain the main experimental 
findings at the same time (Holt and Laury, 2008). As put forward by 
Fischbacher and Gächter (2010) themselves, “the facts are clear, but the 
explanations are not”28. 

In order to close this gap, Arifovic and Ledyard (2012) (AL from now on) 
have developed IELORP29, a model focused on explaining simultaneously the 
above mentioned patterns. Their model claims to do so by using primarily two 
building blocks. First, agents are endowed with Other Regarding Preferences 
(ORP), so that an agent’s utility depends also on the payoffs of others, 
accounting for social motives. Second, agents learn their equilibrium, long-run 
strategies over time based on an Individual Learning Algorithm (IEL), which 
sets the dynamics towards convergence. AL claim that this model is robust to 
parameter changes, and importantly, that it has been tested in different 
environments and experiments, successfully explaining the data. This makes 
IELORP a strong contender among the many models to explain the stylized 
facts. 

However, even if IELORP captures many of the most interesting earlier 
facts for repeated VCM experiments, it wasn’t built to explain some of the most 

                                                        
27 Arranging players in small groups, experimenters endow each individual with a resource, 

usually tokens representing real money, and each one of them can individually decide whether 
to contribute to a public good or to keep its own endowment. If everyone contributes, the group 
is better off, but if everyone else contributes, an individual can increase its own payoffs by not 
doing so, creating a tension between social and individual motives. 

28 pp. 541 
29 Although the acronym is not the easiest to remember, it will be kept the same in order to 

retain AL’s original convention 
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important recent observations. After the seminal papers of  Fehr and Gächter 
(2000) and Fehr and Gächter (2002), substantial work has been dedicated to 
understanding the effects of altruistic punishment on maintaining 
cooperation. Arguably, the sustainability of contribution levels when different 
types of punishment are available is one of the most important facts on the 
public goods game literature, not only for the economics literature, but for 
social sciences in general: Bowles and Gintis (2013) have most of their main 
stylized facts on human cooperation closely linked to altruistic punishment, on 
which they base several of their evolutionary models. Also, Guala (2012) 
discusses the importance of the experimental evidence on punishment for 
theories of strong reciprocity and its external validity, and Chaudhuri (2011) 
presents a recent literature survey on public goods games experiments which 
emphasizes punishment as one of the key mechanisms to sustain cooperation. 
The stylized facts have evolved. 

This paper’s objective is to model behavior in public goods games and 
account for the sustainability of cooperation when punishment is allowed. We 
test the usefulness of AL’s modelling approach by extending IELORP. Can the 
model be extended to also explain some of the most relevant stylized facts 
found in experiments with punishment? Can it be done while maintaining its 
main assumptions and core building blocks (i.e. learning and other regarding 
preferences)? Our results will give a positive answer to these questions. 

Our model includes punishment as a simple rule of thumb (Gigerenzer et 
al., 2002), based on empirical observations of how subjects assign punishment 
across several experiments30. We will show what we consider to be key stylized 
facts of punishment, including the possibility of it sustaining cooperation, but 
only when the costs of punishing are low enough relative to the impact it has 
on the punished player (Nikiforakis and Normann (2008), Egas and Riedl 
(2008)). To explain those facts, our model focuses on “fear of punishment”, 
not punishment itself, as the main mechanism to sustain contributions 
(Fudenberg and Pathak, 2010). Intuitively, what the model does is to penalise 
strategies (in terms of utility) that are expected to be punished, based on the 
difference of contributions between agents: contributions sufficiently below 
the group’s average, are expected to be punished. This allows the learning 
algorithm (IEL) to reinforce higher contributions, hence sustaining 
cooperation. 

Our methodology is as follows. After introducing formally the linear VCM 
and the IELORP model (section 2.2), we attempt to replicate AL’s model and 
test its previously reported results (section 2.3). Given the computational 
nature of IELORP, this replication is vital before extending the model. For this, 
we independently code the model and test if we can replicate the main findings 
by AL regarding how closely it tracks previous experimental data. At this point, 
we do not fit the model or calibrate any of its parameters, but rather test if we 
find the same results with the same parameter estimated by AL. Then, after 
introducing the punishment facts (section 2.4), we formally present our model 
and defend its methodology (section 2.5). Here is worth mentioning our 
calibration strategy (section 2.6.1). One of the main reasons for using IELORP 
as our starting point for modelling behaviour, is the previously reported 

                                                        
30 A work also using heuristics to explore punishment is Pahl-Wostl and Ebenhöh (2004). 

Although similar in terms of the relevance it gives to empirically based heuristics for modelling 
behaviour, their approach is completely different from ours, theirs not including any kind of 
preferences or learning. 
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stability and out of sample robustness of its parameters. Our model calibrates 
(i.e. fits) to relevant experimental data only new parameters introduced in the 
punishment extension, but keeps the exact same values of AL for all the 
original IELORP parameters. This is a more stringent test than fitting again all 
the parameters, testing further the robustness and out of sample capabilities 
of the model. 

Our results (section 2.6.2) will show that our extended model can replicate 
the main stylized facts of the punishment literature. The quantitative test of 
the model is done by running Monte Carlo simulations. The good fit of the 
model to the experimental data reflects that simulated contribution levels 
differ, on average, less than 5% compared to experiments on the lab. Overall, 
these results show not only that learning and other-regarding preferences 
reflect general behavioural insights that can explain the data on repeated VCM 
experiments, but also that they are compatible with more environment-
specific, simple rules of behaviour, explaining how punishment can prevent 
contributions decline. Our model suggests that boundedly-rational behaviour 
that ignores information and relies on fast and frugal heuristics, can account 
for the most relevant facts observed in the repeated public goods games 
experimental data. 

2.2 IELORP MODEL 

We will start by presenting the IELORP model, introducing first the 
notation used for the VCM, followed by the explanation of the original AL 
model’s two components: social preferences and individual evolutionary 
learning. These two components describe, respectively, the characteristics and 
behaviour of the agents. Their characteristics are given by the assumptions of 
what players care about in their utility functions, in this case, Other Regarding 
Preferences (ORP). The behavioural component is a non-strategic, Individual 
Evolutionary Learning algorithm (IEL). The latter explains how agents, given 
their characteristics and information about the environment, decide their 
contributions. This presentation follows closely that of AL and does not include 
punishment. 

2.2.1 Linear Voluntary Contribution Mechanism 
The VCM’ structure is now widely known in the literature, so the following 

description is only intended as a way to introduce the notation. The core setup 
is as follows. 

! agents (indexed " = 1,2, … , !) have a linear payoff function () = *)(,) −
.)) + 1 , where ,)  is the initial endowment of a private good, .)  is their 
contribution to the production of the public good with .) ∈ [0, ,)] and 1 is the 
amount of public good produced. 1/*) is the agents’ willingness to pay in the 
private good for a unit of the public good. The production function of the public 
good is considered to be linear as 1 = 7 .89

8:; with 7  being the marginal 
product of the public good. The game is given by the ! players, their payoffs () 
and their possible contribution levels .) ∈ [0, ,)] . The focus will be on 
symmetric games where all players have the same *) = 1  and the same 
endowment ,) = , . In this case, if 7 < 1 , notice that each agent "  has a 
dominant strategy in contributing zero (choosing .) = 0 ). If 7 > (1/!) , 
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aggregate payoff is maximized when all agents choose .) = , . Thus, the 
traditional commons dilemma is the tension between the individual (private) 
and public interest that arises when (1/!) < 7 < 1. 

2.2.2 Other Regarding Preferences (ORP) 
Since the influential work of Fehr and Schmidt (1999), there has been an 

extensive literature exploring utility functions that take into account not only 
own payoffs, but also those of other agents. Substantial empirical evidence 
shows that people indeed present this kind of social preferences, and that 
disregarding them by relying only on traditional selfish motivations prevents 
adequate understanding of relevant economics issues such as laws governing 
cooperation and collective action, effects and determinants of material 
incentives, which contracts and property rights arrangements are optimal, and 
important forces shaping social norms and market failures (Fehr and 
Fischbacher, 2002). Following this route, IELORP introduces other regarding 
preferences by endowing some agents (but not all) with components of social 
preference and envy.  

For each player payoffs are given by ()(.) = , − .) + 7∑.8 with an average 
group payoff of ( = ∑()/! = , − . + 7!.  , with . = ∑.)/! . The utility 
function for player "	is given by 

@) . = () . + A)( . − B)max	{0, ( . − 	() . } (1) 

with A) ≥ 0 and B) ≥ 0. 
In equation (1) the first term of the right hand side accounts for the interest 

for personal payoffs, with the second term being the interest for a social 
component (i.e. utility for the group’s average payoffs with a weight of A)). The 
third one represents the agents receiving disutility for being taken advantage 
of (i.e. receiving a payoff below the group average, that happens when ( > ()). 

Notice that heterogeneity is introduced by allowing parameter values (A, B) 
to be different for each ". In IELORP these parameters are assumed exogenous 
(i.e. subjects come to the lab endowed with given preferences that don’t change 
during the experiments). To model this, agents are given particular values 
(A), B))  from a population distribution I(A, B). I(A, B)  is such that for each 
simulated agent, A, B = (0,0) with probability J. With probability (1 − J), A) 
and B)  are drawn independently from K 0, L  and K( 0, M )  respectively, 
where K(N) is the uniform density on the interval D31. The specific values of 
the parameter triplet (J, L, M) are discussed in section 2.6.1. 

It is relevant to know what the possible one-shot Nash equilibrium levels of 
contribution can be. Given the utility function with other regarding 
preferences (equation (1)), the experimental parameters (N,M) and 
heterogeneity across (A, B), only three types of Nash equilibrium behaviour are 
possible: free riding (.) = 0), fully contributing (.) = ,)), and conditionally 
cooperating (.) = . = ( .)) )/!). Is worth noting that in IELORP, free riding, 
altruism or conditional cooperation are considered as ‘behavioural’ types, not 

                                                        
31 Another way to put this is that under the distribution I A, B , with probability J, A, B =

(0,0). Otherwise (with probability (1 − J)), I A, B = K 0, L ×K( 0, M ). 
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inner traits of the agents. An agent with the same “inner” parameters (i.e.	A) 
and B)) can show different equilibrium behaviour for different values of N and 
M. Put differently, the equilibrium strategy of the agent can vary depending on 
the environment (i.e. experimental setup)32. 

The above description of other regarding preferences accounts for the 
characteristics of agents. But we haven’t defined exactly how they make their 
decisions. The model does not assume that decisions are made through 
traditional deductive reasoning. However, the one-shot Nash types of behavior 
are relevant because most learning algorithms would find such solutions given 
enough time. It is not a problem for most algorithms to find the dominant 
strategy of an agent. Technically, free-riding and fully-contributing can be 
defined as dominant strategies, but since conditional cooperation entails a 
strategy that is contingent on others’ contributions, it cannot be defined as 
dominant. However, the same logic applies. So IELORP models agents 
learning such equilibrium strategies inductively. Let us turn now turn to this 
second aspect of the model, specifying their behavior. 

2.2.3 Individual Evolutionary Learning (IEL) 

The next step is to model how the agents choose their strategy .) in each 
period. In many applications of evolutionary algorithms to economics (e.g. 
Andreoni and Miller (1995)), each agent is considered to be one strategy and 
the whole population of strategies jointly implements a behavioral algorithm 
(social learning). However, in other applications, individual learning is 
modelled with each agent having a set of strategies; evolution takes place not 
on the entire population of strategies but on the set belonging to one individual 
(Arifovic and Ledyard, 2011). As explained next, the latter is the approach 
followed by IEL. Let us first explain the learning algorithm in a general form 
for repeated games, and then use it specifically for a public goods game 
environment. 

2.2.3.1 General form of the learning algorithm 

The idea is that the repeated game has a stage game M that is played for P 
rounds. In M = {!, Q, R, S}, ! is the number of agents  (indexed " = 1,2, … , !), 
Q)  is the action space of ", T)(U;, … , U9) is the payoff of " if the joint strategy 
choice is U, and S)(UV) is the information reported to " at the end of each round. 
In the lab, the experimenter controls all of these. In round W each " chooses UV) ∈
Q) and is told information S)(UV) about what happened. Then the next round is 
played. A behavioral model must explain how the sequence of choices for ", 
(U;

) , UX
) , … , UY

) ) is made, given what " knows at each round W. 
IEL has two primary variables: first, a finite set of potential actions for each 

agent " at each round W, ZV) ⊂ Q) . Second, a probability measure \V)  on ZV) . ZV)  
consists of ] alternatives: this free parameter ] can be thought (loosely) as a 
measure of the agent’s processing capacity. In each round W the agent chooses 
randomly an alternative from ZV)  using the probability density \V)  on ZV) , and 
then chooses the action UV) = ^V

) . One way to see it is that a mixed strategy on 
Q) at W is induced by (ZV) , \V)). At the end of each period W the agent is informed 
of S)(UV). The heart of the behavioral model is that at the beginning of next 

                                                        
32 The exact conditions for each type are presented in Appendix 2.8.2. 
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round W + 1 the agent computes a new ZV_;)  and a new \V_;) . The three key 
components of IEL are as follows, starting at the end of round W knowing ZV) , \V)  
and S)(UV): 

1. Experimentation33: this allows agents to try new strategies that perhaps 
might never be tried otherwise. With probability `  and for each a =
1,2, … , ], action 8̂,V

)  is replaced by a new contribution strategy selected at 
random from Q). The distribution used for this replacement is normal 
~!( 8̂,V

) , c) . So not only ]  but also `  and c , constitute the free 
parameters of the learning model. 

2. Replication: a key component of the model is the concept of foregone 
utility, which refers to the payoffs that an action that was not played 
could’ve given to the agent. For example, in a public goods game, say an 
agent contributed 10 tokens to the public good in a particular round. At 
the end of that round, knowing his own contributions and those of the 
group, he can calculate his own payoffs. Those payoffs are observed 
based on the actual decision he made (his actual utility). But having 
observed a particular contribution of the group, he can make a similar 
counterfactual calculation. He may ask “How much would’ve been my 
payoffs, if instead of having contributed 10 tokens, I would’ve 
contributed, say, 15 tokens? What about 20 tokens?”. The utility that he 
would have received for playing those 15 or 20 tokens, represent the 
foregone utilities for those potential contributions (taking as a given the 
group’s contribution). The ‘replication’ part of the algorithm allows 
strategies in the set of potential actions to increase their probability of 
being chosen (by replicating, or replacing other actions with poorer 
performance), based on such foregone utility. 

Formally, let T)( 8̂V
) |S) UV ) be the foregone utility of alternative a at time 

W  given the information S) UV . The key assumption here is that the 
foregone utility T)( 8̂V

) |S) UV ) is a counterfactual valuation function that 
must be specified for each application of the IEL learning model 
(specified for public goods games below). So given T), replication takes 
place as follows: For a = 1, … , ] , 8̂,V_;

)  is chosen as follows. From a 
uniform distribution, pick randomly (with replacement) two members 
of ZV) . Let such two members be ^e,V)  and ^f,V) . Then 

8̂,V_;
) =

^e,V
) ,			"g				T)(^eV

) |S) UV ) ≥ T)(^fV
) |S) UV )

^f,V
) ,			"g				T)(^eV

) |S) UV ) < T)(^fV
) |S) UV )

 

Replication in period W + 1 favors alternatives with many replicates in 
ZV
)  as well as those that, if would’ve been used in W, would’ve paid well. 

Actions that would’ve provided favorable situations given the actual 
contributions of others, will replicate in ZV) . ZV)  will become more 
homogeneous as most alternatives become replicates of the best 
performing ones. 

3. Selection: after experimentation and replication have taken place, 
selection occurs. Simply put, the probability of an agent choosing a 

                                                        
33 This experimentation is similar in spirit to mutation in some biological models which 

randomly introduce changes. 
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particular action to play, depends on the foregone utility of that action 
relative to the foregone utilities of other potential actions. 

Formally, each action ^e,V_;)  has the following probability of being 
chosen: 

\e,V_;
) =

T) ^e,V_;
) S) UV − hV_;

)

(T) 8̂,V_;
) S) UV − hV_;

) )i
8:;

 

for all " = {1,2, … , !} and j = {1,2, … , ]}, where  

hV_;
) = min

mnopqr	
s
{0, T)(^|S)(UV))}.  

If there are negative foregone utilities, what the latter does is to 
normalize all payoffs by adding a constant equal to the lowest payoff in 
the set (in absolute value). 

All that is left to specify after describing how the agent calculates ZV_;)  and  
\V_;
)  starting from ZV)  and \V) , is to specify how the model is initialized. The 

assumption is a very naïve behavior: things begin randomly. Z;)  is randomly 
populated with ] draws from a uniform distribution from Q). Also \e,;) = 1/]	 
for every j. 

2.2.3.2 Application to VCM 
Now the behavioral model is complete by having the two key elements of 

IEL, Z and T(^|S U ). In order to apply it to a VCM environment, one has to 
specify both of them, which is very straightforward. Let Z = [0, ,] . Since 
players receive an endowment , in the traditional VCM, their action space is 
the interval between zero and such endowment. Their decision is how much 
contribution they give out of , to the public good, so .)t[0, ,]. For specifying 
the value function, one requires to specify the information players receive, 
S)(UV). Without punishment, in a public goods game players are informed the 
sum of the group’s contributions, .V = .V

8
8 . Since players know .V)  (own 

contribution), they could calculate u) = vpwvs

9w;
, which is the average of the 

contribution of the other players in the group. So let S) .V = uV
) . 

The functional form of the foregone utility T) is based on the utility function 
in equation (1). Knowing the profits function () = ,) − .) + 7 .89

8:; , T) can 
be expressed as a function of .) and  uV)  as follows: 

T) .) u) = .) 7 − 1 + A) 7 −
1
!

− B∗)
! − 1
!

 

																																							+	 ! − 1 u) 7 + A) 7 −
1
!

+ B∗) + ,(1

+ A)) 

(2) 

where B∗) = B), ( ≥ ()

0, yWℎ{|,"}{
 

So it is this function T)(^|S) .V = u)) the one used for the replication and 
selection procedures. 
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2.2.4 IELORP and previous literature 
How is IELORP different from previous models? One can describe IELORP 

as endowing agents with an equilibrium behavior (free-riding, altruism or 
conditional cooperation) given by the Other Regarding Preferences. Such traits 
will reflect an agent’s behavior in the long-run, but it is the learning 
mechanism what will determine the dynamics for such behavior to be reached. 
Neither of these ideas, however, are novel. 

Other Regarding Preferences are now quite common in the literature (Fehr 
and Schmidt (1999), Bolton and Ockenfels (2000), Charness and Rabin 
(2002)). For key VCM stylized facts (introduced in section 2.1), notice that no 
model that assumes completely selfish behavior could account accurately for 
contribution levels that decline over time but that remain positive. If free-
riding is the only dominant strategy, eventually agents will converge into 
contributing exactly zero to the public good, which is not what experimental 
data shows (e.g. Isaac and Walker (1988)). IELORP underpins the same 
behavioral principles as such previous work. In fact, the implemented utility 
function (equation (1)) can be expressed as linear transformations of the ones 
used by Fehr and Schmidt (1999) or Charness and Rabin (2002). However, the 
differences in the specific functional form, as claimed by AL, are in order to 
explain that behavior changes when the group size is changed (tested in section 
2.3). This is one aspect that differentiates IELORP with respect to previous 
literature. 

Learning mechanisms are not novel either (Roth and Erev (1995), Camerer 
and Ho (1999)). Even more, they have also been used in tandem with Other 
Regarding Preferences in order to explain public goods games (Anderson et al. 
(2004), Cooper and Stockman (2002) and Janssen and Ahn (2006)). An 
important reason to model learning is that the stylized facts for VCM show that 
agents don’t start playing right from the beginning of the game their long-run 
strategies (such as free-riding). Learning presents an explanation on why it 
takes time for people to reach equilibrium, hence making models more 
consistent with the empirical evidence. The claim by AL, however, is that their 
implemented learning algorithm is better at capturing speed of convergence 
towards equilibrium behavior, since the algorithms of the above models are 
not ideal for repeated games with strategy spaces that are a continuum. Also, 
AL claim that IEL’s free parameters don’t need to be recalibrated when tested 
in different games (Arifovic and Ledyard (2011), (2007), (2004)). The latter is 
key, because too many degrees of freedom is unlikely to be desirable for most 
models; if their values need to be calibrated only once, then IEL’s usefulness 
can go beyond fitting data and be tested out of sample. The latter is a strong 
motivation for this work and to test further the usefulness of AL’s modelling 
approach. 

Let us now turn to testing whether IELORP can be replicated, and to check 
if we can independently reproduce its main characteristics. 

2.3 TESTING IELORP PREVIOUS EVIDENCE 

AL’s claim is that IELORP can track several stylized facts in VCM 
experimental data (introduced in section 2.1). For testing the model, in their 
main results they compared their simulated data with experiments conducted 
by Isaac and Walker (1988) (IW from now on). Under the belief that 
replicability is a critical component of the scientific method, particularly in 
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computational models  (Wilensky and Rand, 2007), we use the same IW 
dataset and our own independent implementation of IELORP to verify AL’s 
results34. This implementation consists on coding the model independently 
based on the information given in AL’s paper. We also use their same 
parameter values in order to compare our simulations with IW’s data and 
check if the same qualitative and quantitative results found by AL can be 
replicated.  

2.3.1 Qualitative test 
The experiments conducted by IW had subjects in the lab playing a repeated 

public goods game experiment (for ten rounds) under a partners setting (i.e. 
group composition was not changed). Their main results, which are tied to the 
stylized facts on which AL focused, are related to how average contributions to 
the public good change when group size (N) and marginal productivity (M) are 
altered. Plotting average contributions across groups for each period of the 
game, one should observe (as in the stylized facts in section 2.1) that they start 
around 50% percent of the endowment, and start declining with time without 
reaching zero. And although such negative trend in contributions should be 
observed for different values of N and M, contribution levels should be 
different: group size and marginal productivity affect how much players 
contribute. Figure 2.1 presents these empirical facts in IW data with the solid 
lines (ignore the dashed-lines for now), each data point representing the 
average contribution across subjects in six groups for each period. The design 
is 2x2 (four treatments), group size taking values of N= (4,10), and marginal 
productivity of the public good values M= (0.3,0.75). Endowment is 
normalized to w=10. Figure 2.1 shows that higher M leads to higher 
contributions. For example, with group size equal to four players (left panel), 
contributions across all periods are higher when M=0.75 compared to M=0.3, 
even if for both treatment contributions decline over time. The same holds in 
the right panel for group size equal to ten. 

 

Figure 2.1: Comparison of our independent replication of IELORP (simulations) 
versus experimental data of  Isaac and Walker (1988) (IW). Includes four treatments: 
group size taking values N=4 (left panel) and N=10(right panel), and marginal 
productivity of the public good taking values M= (0.3,0.75). 

So Figure 2.1 shows the above empirical evidence from subjects in the lab, 
but the main goal of this section is to observe if our implementation of IELORP 

                                                        
34 Our implementation of IELORP, as well as all simulations in this paper, were conducted 

using the agent-based-modelling software NetLogo, version 5.2 (Wilensky, 1999).  
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can replicate such findings. For this, simulations were run with our 
independent implementation of the model35. The experimental parameters 
were kept analogous to those in IW (e.g. group size, marginal productivity). 
The model parameters were taken directly from AL’s estimations36. Notice that 
we do not fit the model here, but rather test if we can replicate the qualitative 
patterns of IW’s data by using the parameter values previously estimated by 
AL. These simulations are represented by the dashed lines in Figure 2.1. Each 
data point represents the average contribution per period across 100 simulated 
groups of artificial agents, with each run of the model being analogous to one 
of the 6 groups in IW data (this makes simulated data “smoother”, since it 
presents more observations). Qualitatively, it can be observed that for each 
treatment the simulated data is very similar to the experimental, presenting 
similar trends as well as having similar changes in contributions for the 
different values of N and M. This is considered as evidence that our 
implementation of IELORP replicates qualitatively the main features in IW’s 
data, in a similar fashion as presented by AL. But what about quantitatively? 

2.3.2 Quantitative test 
One of the main measures AL use to test IELORP quantitatively is the 

squared error of how much the simulated differs from the experimental data. 
They estimate that on average, such difference is 3.4%. Let us explain how that 
measure is calculated, showing if our replication presents similar results. 

Let .~)�;Ä (|) denote the average contribution for all simulated agents with 
IELORP across all ten periods on treatment |, for the particular parameter 
combination used (100 simulations). Let .~)�Å (|) be the analogous but only for 
the average of the last three periods, and .ÇÉ;Ä (|)  and .ÇÉÅ (|) be such averages 
from IW data (across the six group observations for each treatment). The 
squared deviations between the simulated data and the experimental data 
were computed. That way the SE (Squared Error) was calculated as 

ÑÖ = [.ÇÉ
;Ä | − .~)�

;Ä | ]X + [.ÇÉ
Å | − .~)�

Å | ]X	
Ü

á:;

 
(3) 

where à is the total number of treatments. For the present case of IW, à =
4. In order to have results that can be compared with experiments having 
different values for à, the SE is normalized. The reported value for the NSE 
(Normalized Squared Error) is 

!ÑÖ =
ÑÖ
2à

 

 

                                                        
35 N artificial agents are created for each simulation, endowing them with Other Regarding 

Preferences parameters as explained in section 2.2.2, and playing for 10 periods. A new draw of 
parameters is done for each different run. 

36 ] = 100, ` = 0.033, c = å
;Ä
= 1, J = 0.48, L = 22, M = 8. Is worth noting that AL calibrated 

parameters P,B and G to best fit IW data. The others, however, corresponding to the learning 
algorithm, were taken directly from previous work (Arifovic and Ledyard, 2011, 2007, 2004), 
appealing to its transferability. 



62 
 

It can be seen that the NSE is a standard measure of the difference between 
the simulated and experimental data. It also takes into account the average of 
the last three rounds in order to take into account the model’s convergence, 
not just the average across all periods. 

In our IELORP replication, NSE=0.43. The values to calculate it such as 
.ÇÉ
;Ä (|), belong to the interval [0,w]. Since we normalized to w=10, they are the 

average contribution for such an endowment. That value of NSE then 
represents an average error between our simulated data and IW’s of 4.3%. The 
small difference of this value with that reported by AL (less than one 
percentage point), can reasonably be attributed to the inherent randomness of 
the simulations. With this, we consider that our implementation replicates 
IELORP’s main features at the qualitative as well as the quantitative level37. 

2.4 PUNISHMENT STYLIZED FACTS 

Since  Fehr and Gächter (2000) and Fehr and Gächter (2002), the public 
goods game literature has highlighted the relevance of punishment as a 
fundamental mechanism to sustain cooperation. Our model is intended to 
capture relevant features of punishment experimental data beyond what was 
initially modeled by AL: the stylized facts have evolved to include punishment. 
This section’s objective is to present four main stylized facts on punishment 
found in lab experiments. This presentation is not intended to survey the 
punishment literature, since other authors have already done so elsewhere 
(see, for example, Chaudhuri (2011)). The stylized facts presented below were 
chosen given what we considered, a priori, were the most relevant ones38. Some 
other important experimental results will be referred to indirectly, but such 
discussion if left for section 2.5.3. 

Before presenting the facts, let us briefly present the traditional punishment 
setup and notation. 

2.4.1 The punishment experimental setup 
A traditional public goods game experiment with punishment works in the 

following way39. After players have decided on their contributions as they 
would if punishment is not allowed (i.e. in the VCM environment presented in 
section 2.2.1), a second stage is added.  In this stage they are informed about 
how much the other individuals in the group contributed. Then, if they want, 
they can decide to buy punishment points (reducing their own income) to 
reduce the income of one or more of the other players. Let *)8  denote the 
amount of punishment points that player "  assigns to reduce the income of 
player a (where ", a = 1, … , !	gy|	a ≠ "), and { denote the effectiveness of each 

                                                        
37 AL highlight other features of the model as well as other experimental setups where it was 

tested. Although we didn’t formally explore those, they are worth mentioning since they further 
motivate our interest in IELORP as the base for our punishment model. They are summarised  
in Appendix 2.8.1. 

38 Thanks to Simon Gächter for discussions on this regard. 
39 This notation follows that of Nikiforakis and Normann (2008), since their data set is the 

one used later for testing the model (section 2.6). 
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punishment point: that is, how much the income of a is reduced for each *)8 
assigned to him. Then the payoffs for " are described by 

() = , − .) + 7 .8
9

8:;

− *)8
8è)

− { *8)
8è)

 

The last two terms on the equation reflect how an agent’s payoffs are 
affected when punishment is introduced: the agent takes the cost of punishing 
others in the group, as well as the cost of being punished by others, the latter 
multiplied by the effectiveness level set by the experimenter. 

2.4.2 Stylized facts 

2.4.2.1 Punishment can sustain cooperation 

This is the most important of the facts. It has been shown that the 
contribution levels in public good games increase significantly compared to 
setups without punishment. Punishment can reverse the decline of 
cooperation. 

The experiment pioneering this fact was Fehr and Gächter (2000). Their 
main treatments consisted on having both partners (group composition never 
changes) and strangers (groups are randomly reshuffled after each round) 
setups, as well as allowing and not allowing punishment. Some groups played 
10 rounds of the public goods game with punishment followed by 10 round of 
no punishment (sequence 1), and others vice-versa (sequence 2). Figure 2.1 
presents average period contributions in their data for the partners setup (data 
is similar for strangers, not presented). The stylized fact of punishment being 
able to sustain cooperation is captured by the slope of contributions: without 
punishment, the slope is negative, meaning that contributions decline over 
time. When punishment is allowed, the slope is positive, meaning that 
contributions don’t decline and cooperation is sustained. Such results have 
been replicated several times in different labs across the world (Chaudhuri, 
2011). 



64 
 

 

Figure 2.2: Average contributions over time (partners setup). Sequence 1 had 
subjects play 10 rounds with punishment allowed, followed by 10 rounds without 

punishment. Sequence 2 reversed that order. Source: Fehr and Gächter (2000) 

2.4.2.2 The levels of contribution depend on the “effectiveness” of 
punishment 

“Effectiveness” is defined as the experimental parameter that determines 
how many tokens (experimental points) are deducted from a punished player 
for each punishment point allocated by a punishing player. For example, if 
player A spends one point punishing player B in a given round, and the 
experimenter deducts two points from player B’s payoffs due to such 
punishment, then the effectiveness is equal to two (ratio two to one). 

Bowles and Gintis (2013) (p. 32) refer to this fact as “social preferences are 
not irrational”. It means that even if people have preferences for social 
outcomes and care about others, as with any other good how much of it is 
consumed is affected by its “price” (i.e. effectiveness). When punishing is 
cheaper, levels of cooperation increase. Egas and Riedl (2008) and Nikiforakis 
and Normann (2008) are two studies showing clearly this fact in public good 
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games. Figure 2.3 shows data from the former, under a strangers setup. 
Treatments here consisted of changing both punishment cost (how many 
tokens is the punisher player deducted in order to assign one token of 
punishment to the punished player) and impact (how much are payoffs of the 
punished player deducted for each token of punishment assigned to him). In 
this case, effectiveness can be defined as the ratio of cost to impact. The data 
shows that contributions declined in all treatments except in the one with 
highest effectiveness, where it actually increased with time. However, notice 
that in all the treatments with a negative slope, higher effectiveness was still 
associated with higher contributions, even if they declined over time. 

 

Figure 2.3: Average contributions in a public goods game. Each treatment T 
changes how much it costs one player to buy one token of punishment as well as 

how much that token deducts the payoffs of the punished player. For example, T31 
means that one has to pay three tokens (cost) in order to deduct one point (impact) 
from another player. In this case, “effectiveness” would be the ratio of 1 to 3 (cost to 

impact ratio). Source: Egas and Riedl (2008) 

Similar patterns can be observed in the data of Nikiforakis and Normann 
(2008), presented in Figure 2.4. Under a partners setup, their treatments 
changed the effectiveness level. The main difference with Egas and Riedl 
(2008) is that punishment cost is always constant at one token. Each treatment 
is labelled from “0” to “4”. For example, in treatment “3”, a player can deduct 
his own payoffs by one token in order to deduct three tokens from another 
player. Data shows clearly that the higher the levels of effectiveness, the higher 
the contribution levels to the public good. 
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Figure 2.4: Average contributions in a public goods game with punishment. Each 
line presents a treatment with different effectiveness levels. For example, treatment 
“3” means that for each token of punishment assigned, the punished player payoffs 
are reduced by 3. Source: Nikiforakis and Normann (2008). 

Summarising, both studies show that when effectiveness is too low, 
contributions decline on average. As effectiveness increases, contributions 
monotonically increase. With high enough effectiveness, cooperation can be 
sustained. 

2.4.2.3 First period contributions remain the same with or without 
punishment and for different levels of effectiveness 

This fact can be observed again in the experiments of Egas and Riedl (2008) 
and Nikiforakis and Normann (2008) (Figure 2.3 and Figure 2.4). The latter’s 
main result is that average contributions are monotonic on all tested 
effectiveness levels; however, such condition holds for every period except the 
first one. In both studies initial average contributions are around half of the 
endowment, and are not statistically different for any effectiveness level, 
including zero (i.e. no punishment). This fact seems to highlight the non-
strategic nature of punishment. The data of Fehr and Gächter (2000) and Fehr 
and Gächter (2002) show the same: with and without punishment, first round 
contributions are not statistically different. 

2.4.2.4 When punishment sustains cooperation, group welfare is increased 
after sufficient rounds 

One important caveat is to be made regarding the studies referenced in this 
section showing that punishment can sustain cooperation. Even if 
contributions levels are higher with punishment, this does not mean that 
group welfare is also necessarily higher. Punishment can lead to inefficiencies: 
the costs of punishing can outweigh the benefits of higher contributions in 
terms of group’s payoffs. This is the case in Fehr and Gächter (2000) and Fehr 
and Gächter (2002), where punishment led to lower average net earnings. In 
both Egas and Riedl (2008) and Nikiforakis and Normann (2008), net 
earnings were higher only in the one treatment with the highest effectiveness. 
In all the other treatments, the social costs of punishment exceeded the 
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benefits of higher contributions to the public good. Is then punishment mostly 
inefficient for group welfare? 

To address this, Gächter et al. (2008) ran treatments with and without 
punishment, but allowing the experiments to last both 10 and 50 rounds under 
a partners setup.  Their objective was to test if group welfare would increase 
after more periods of play were allowed. Figure 2.5 shows the net earnings of 
their experiment. Observing both treatments that allowed 50 rounds with and 
without punishment (P50 and N50), it can be seen that punishment allowed 
higher earnings. Without punishment, earnings were higher during the first 
periods of play (as was observed in previous studies), but once cooperation was 
stablished, punishment was unambiguously beneficial. The explanation is that 
once high levels of contributions are stablished, punishment is rarely needed: 
the credible threat of punishment, not punishment itself, is what sustains 
cooperation. So that the more rounds are played, the more the benefits of 
cooperation will outweigh the costs of punishment. 

 

Figure 2.5: Average net earnings in a public goods game. Treatments included 
both no punishment and punishment setups (‘N’ and ‘P’ respectively), as well as time 

spans of both 10 and 50 rounds. For example, treatment P50 means that 
punishment was allowed and that the game lasted 50 rounds. Numbers in 

parenthesis show average earnings across all periods for each treatment. Source: 
Gächter et al. (2008) 

Given the above facts on punishment, let us now turn to our presentation of 
the model. 

2.5 MODELLING PUNISHMENT 

In this section we present our modelling approach. Our model extends 
IELORP by introducing expectations of punishment: agents include such 
expectation in their counterfactual evaluation of potential actions (foregone 
utility) so that the learning algorithm favors strategies expected not to be 
punished. Our extended model will be referred to as ‘Punishment Heuristics’ 
(PH) from now on. 

Punishment expectations are modeled as a simple rule of thumb, or as a 
‘fast and frugal heuristic’ (Gigerenzer et al., 2011). Before formally introducing 
the model, we show that our punishment expectations are inspired in data 
showing that players in the lab use similar rules of thumb to assign 
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punishment. This is both a motivation for our approach (showing it is plausible 
given the data), but will also give the reader some intuition before formalizing 
the model. After presenting PH, we discuss both how our heuristics approach 
fits IELORP theoretically, as well as other relevant aspects of the model. For 
example, is worth mentioning that the expectation of whether an action would 
be punished or not is the only necessary ingredient in the model to explain the 
stylised facts: this means that such expectation is considered exogenous, since 
it can’t change through experience in the model. This makes it independent 
from actual punishment (i.e. allocation of punishment points): modelling 
punishment decisions is not required for obtaining the presented main results. 
Such independence between the expectations and actual experienced 
punishment might seem strange from a strategic game theoretical point of 
view, but there are empirical reasons that make this a valid approach. Section 
2.5.3 will discuss this and other points, after PH is presented. 

2.5.1 Motivation for punishment as a simple rule of thumb 
How do subjects across experiments decide on which other players to 

punish? Figure 2.6, taken from Hetzer and Sornette (2013) can shed some 
light. The authors used the data from three different experiments (Fehr and 
Gachter (2002), (2000) and Fudenberg and Pathak (2010)) and calculated 
how much, on average, a player in a given group spends in punishing other 
players in relationship with pairwise deviations of contribution levels. Such 
pairwise deviations are defined as the difference between the contribution level 
of the punisher player with the contribution level of the punished one. Figure 
2.6 shows that the more negative the deviations are, the more punishment is 
assigned. This data hints at players assigning punishment when other players 
contribute less than themselves, increasing punishment linearly when such 
contributions are lower. 
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Figure 2.6: Mean expenditure of a given punishing member as a function of the 
deviation between that member’s contribution and that of the punished member 

(for all pairs of subjects within a group). The straight line crossing zero shows the 
average decision rule for punishment: the more negative the deviations, 

punishment increases in a linear way. Error bars indicate the standard error 
around the mean. Data from the experiments of Fehr and Gachter (2002), (2000) 

and Fudenberg and Pathak (2010). Source: Hetzer and Sornette (2013) 

PH will assume that players expect to receive punishment in a similar 
fashion. Our artificial agents will expect to be punished when they contribute 
less than other players in the group. However, instead of using pairwise 
comparisons, they compare their contribution with the group average, which 
simplifies their calculations. Agents will expect that only contributions below 
the group average will be punished, and that the higher the difference with 
respect to that average, the more punishment they will receive40. 

The above rule of thumb is closely related to how different effectiveness 
levels affect punishment and the sustainability of cooperation (stylized fact in 
section 2.4.2.2), vital in our modelling approach. Conclusions from Egas and 
Riedl (2008) can help in understanding the connection, since they find similar 
pairwise deviations for explaining punishment. As a reminder, their 
experiments changed both cost and impact of punishment, implying different 
levels of effectiveness. Their main results (Figure 2.3) showed that for higher 
effectiveness levels, higher contributions were observed. But they have other 
conclusions relevant for motivating PH.  First, their results show that 
“surprisingly, the marginal propensity to increase punishment with 
increasing deviations in contribution is the same for all four punishment 

                                                        
40 Figure 2.6 shows that positive deviations (i.e. contributing more than others) can also be 

punished, although such effect is smaller than for negative deviations. This “anti-social” 
punishment towards co-operators (Herrmann et al., 2008) is neglected in our model. 
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treatments”41. This means that for all effectiveness levels, one less token of 
contribution is associated with the same amount of punishment, meaning that 
a linear effect similar to that in Figure 2.6 (slope for negative differences) can 
be expected for different effectiveness. 

Second, and perhaps more importantly, Egas and Riedl (2008) conclude 
that “the cost and the impact of punishment have a significant effect on the 
threshold of deviation in contribution at which participants start to punish 
free-riders […] One surprising upshot of these results is that the force of 
punishment effectiveness can be pinned down to one single variable: the 
threshold level of free-riding that goes unpunished”42. A key feature of PH will 
be related to the latter results: effectiveness levels affect the threshold at which 
agents start expecting to be punished. In other words, the lower the 
effectiveness levels are, agents will expect to be able to “get away” unpunished 
with lower contributions. 

The above results give us an intuition about how we implement expectations 
of punishment. First, agents expect to be punished when they contribute less 
than their peers (below the group’s average contributions), expecting more 
punishment the lower their contribution. Second, they expect a threshold, 
below the group’s average contribution, for which they will start to be punished 
(i.e. small deviations from the group would not be punished). The key factor is 
that the higher the effectiveness levels, the smaller that threshold is, meaning 
that they expect to be punished easier. Let us now introduce PH formally. 

2.5.2 The model 

Agents’ mechanism to evaluate if a particular action ^V)  would be punished 
depends on an estimated reference point àV) . If the action is lower than the 
reference point, the agent assumes that it would be punished. The reference 
point depends on two components: the last period’s average group 
contribution .V = ∑.V

)/! and a tolerance value P, such that àV_;) = .V − P. How 
the tolerance value is estimated depends on the effectiveness parameter of the 
experiment, {. The latter is controlled by the experimenter, representing how 
many tokens a punished player is deducted from her profits when another 
player has assigned her one punishment token. So P is calculated as 

P =
,
êë

 (4) 

where ê > 1  is the main free parameter of PH. Notice that P is the same for 
every period and every agent43. ê represents how the tolerance T of players 
changes in response to different values of {. 

                                                        
41 pp.875, italics added. 
42 pp.875, their own bolds, italics added. 
43 Here, since we simplify that the reference point is based on .V  (i.e. the whole group’s 

average contribution, instead of the average of the other players in the group), then àV_;) = àV_; 
for all ", giving all agents the same reference point in a given period. The notation is kept as àV_;)  
because it is more general, and the model can easily be changed to allow for heterogeneity. In 
this case, we move forward with the homogeneity assumption as a particular case, testing how 
far can we go with this simpler assumption. 
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A behavioural interpretation of àV)  and equation (4) is straightforward. P 
represents an agent’s belief of how much it can get away with without being 
punished. Higher P means that agents believe lower contributions with respect 
to the group’s average would still go unpunished. How is such tolerance 
estimated? It is entirely based on {. Lower { implies that punishment is less 
effective (more costly), so agents expect that others will punish less44. The key 
feature of Equation (4) is to impose an inverse relationship between { and P. 

Then, if an action is expected to be punished, how much punishment is 
expected? This amount will be denoted by íV). The basic idea is that the farther 
the potential contribution ^V)  is with respect to àV) , the more punishment is 
expected. The latter is modelled by allowing agents to calculate íV) =
à)
V − ^V

) ì, where ì is the second free parameter of PH. Notice that here an 
agent expecting punishment from all the other agents in the group doesn’t care 
about where does the punishment comes from (i.e. from which player). The 
agent simply assumes that for each token of contribution below àV)  it will 
receive a certain amount of punishment ì . Then the amount of tokens 
expected as punishment íV) when evaluating action ^V)  is 

íV
) = (àV

) − ^V
))ì						"g							^V

) < àV
)

0																		yWℎ{|,"}{
 

 

(5) 

Equations (4) and (5) determine íV)  for ^V)  depending on two free 
parameters, ê  and ì  (calibration procedures for these will be explained in 
section 2.6.1.1). The next step is to connect this PH expectation mechanism 
with the IELORP model. 

In IELORP, the foregone utility TV)(^|S) .V = u)) is calculated for every 8̂,V
)  

with a = {1, … , ]}. A similar calculation will apply with punishment, with the 
difference that TV)  will be modified to include íV) , as implied in the following 
equation: 

T) .), íV
) u) = .) 7 − 1 + A) 7 −

1
!

− B∗)
! − 1
!

 

                            +	 ! − 1 u) 7 + A) 7 − ;
9
+ B∗) +

, 1 + A) − {íV
) 

(6) 

The reader will notice that equation (6) is almost identical to equation (2), 
with the only difference that it subtracts at the end the term {íV). This indicates 
that the actions ^V)  that are expected to be punished will be penalized according 
to the calculated íV) multiplied by {. Two points are important to mention here: 
first, notice that in experiments that allow punishment the information 
revealed to subject "  also includes punishment received in last rounds and 
individual contributions of other players. In this case, S) .V  would include 

                                                        
44 Some authors (e.g. Anderson and Putterman (2006)) have referred to this effect as a 

demand for punishment that is decreasing on its price. We reserve from referring to it this way 
because a demand curve at the aggregate level does not imply that the law of demand holds at 
the individual level. Also, a demand interpretation is based on a rational choice model, different 
to the approach here. 
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more information besides u). However, the model assumes that agents ignore 
such information45. Second, the model assumes that the agents don’t have the 
computational capabilities to evaluate how the payoffs including punishment 
decisions would affect the social or inequality component of the utility function 
(equation (1)). One way to think about it is that players evaluate their payoffs 
as if there would be no punishment. Then, after that calculation is made, they 
take any expectation of punishment received as a personal cost, ignoring its 
social impact. This assumption implies that players care about the social 
outcomes when deciding about contributions, but not when evaluating 
received punishment 46 . Notice that from the payoff equation when 
punishment is included, () = , − .) + 7 .89

8:; − *)88è) − { *8)8è) , {íV)  is 
equivalent to an expectation of { *8)8è)  which enters the utility only in the 
“selfish” component of equation (1). 

With a value function that includes their punishment expectations 
(equation (6)) and a way to calculate how much punishment each potential 
action would receive (equation (5)), given a reference point (equation (4)), PH 
is complete. It includes a way for agents to make counterfactual assumptions 
of received punishment which are integrated into the learning mechanism IEL, 
using the same computations (i.e. experimentation, replication and selection) 
for its reinforcement mechanism. 

Before showing results, the next subsection addresses some points worth 
discussing on why this particular modelling approach for extending PH was 
chosen. 

2.5.3 Discussion of modelling strategy 
A first point that is important to address is how an exogenous expectation 

of punishment fits AL modelling strategy. Initial intuitions regarding its 
extension pointed towards allowing agents to update the foregone utility of the 
evaluated contributions based on observed punishment. In IELORP, TV)  is 
evaluated, for each action ^V) , based on observed past contributions 
(particularly on uV)). That way, by observing last round’s group contributions 
and assuming that other agents wouldn’t change their strategy, it is possible to 
calculate exactly how much profits () each ^)V would represent. Why not do the 
same with punishment? The reason is that in experiments without 
punishment, the payoffs are given directly by the experimenter and depend 
only on the known functional form of () (taking group contribution as a given). 
With punishment, such functional form doesn’t allow a direct calculation of 
profits. Observing that action ^;)  has been punished at time W, says nothing 
about whether action ^X)  would be punished or not. The agent observes that 
one action is punished (or not punished), but extrapolating that information 
to other actions would require some additional belief on other players’ 
punishment behaviour. PH endows agents with such belief. In IELORP, the 

                                                        
45 See for example Gigerenzer et al. (2011). In Gigerenzer’s line of research, a fast and frugal 

heuristic is a rule of thumb that allows agents to make smart decisions by ignoring information. 
PH could be thought of in a similar line. 

46 This is consistent with players increasing their contribution levels when only symbolic 
punishment points are allowed (Masclet et al., 2003). This could be interpreted as players taking 
punishment received only as a personal cost, since symbolic punishment doesn’t affect social 
payoffs. 
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naïve expectation that other players play the same contributions as last round 
is enough to allow counterfactual evaluations. For the more complex 
environment with punishment, an additional (and perhaps still naïve) 
expectation of what would be punished is now implemented. 

Let us also address two potential criticisms about PH and the approach 
presented above.  

The first one is that intuitively, it seems unnatural to have an expectation of 
punishment that is independent from actual punishment. This means that 
agents still expect punishment even if none is being allocated at all (i.e. is not 
being modelled). To answer to this point, the experiments conducted by 
Fudenberg and Pathak (2010) are illuminating. Their design has subjects 
playing a traditional repeated public goods game with punishment, with the 
twist that it included treatments for not allowing players to observe 
punishment decisions by others until the end of all periods. That means that 
throughout the game players do not know if their punishment is affecting the 
behaviour of others or if they themselves are being punished. In the words of 
the authors: “Our experiment shows that subjects will engage in costly 
punishment even when it will not be observed until the end of the session, 
which supports the view that agents enjoy punishment. Moreover, players 
continue to cooperate when punishment is unobserved, perhaps because they 
(correctly) anticipate that shirkers will be punished: Fear of punishment can 
be as effective at promoting contributions as punishment itself” (pp. 78, italics 
added). This is consistent with PH: agents expect punishment without any 
requirement for observing it.47 

But suppose now that punishment is indeed modelled. Even if there’s still 
independence in the expectations and allocation of punishment, one could 
argue intuitively that players should learn from observing the punishment 
received. The response to this critique is intuitive as well. Such argument 
would definitely be true in more realistic time spans beyond what is allowed in 
the lab, where enough learning opportunities are given: with time, people will 
learn if their free-riding goes unpunished. However, the model assumes that 
in the time span of the examined public goods games, the player doesn’t have 
a way to reach this result without prior assumptions. For example, imagine a 
player that contributes 10 tokens to the public good when the average was 11 
in the last round. If the player is not punished this round, what inferences 
should be made? Would a contribution of 10 tokens never be punished? What 
would’ve happened if the contribution would’ve been 9 tokens? PH assumes 
that players answer these questions based on given beliefs, derived perhaps 
from the institutional framework of the experiment. At least in the time span 
of the experiments analysed, it is assumed that players stick to them. 

Finally, a simpler point to motivate the modelling strategy without 
including actual punishment (only expectations of it), is that the model is 
simpler that way (an Occam’s razor argument). If adding punishment 

                                                        
47 Of course the claim is not that PH is a general overarching model of behaviour (assuming 

one actually exists). It is instead intended to represent particular rules of thumb under a specific 
environment. In this case, the environment is a repeated public goods game where punishment 
is regarded as “legitimate” according to culturally accepted norms (see for example Ertan et al. 
(2009)), which includes a real threat of punishment. An interpretation of PH could be that 
players expect punishment due to the belief on the institutions implemented (i.e. the 
experimental norms in the lab) instead of the observed punishment. 
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decisions, or allowing agents to use more information in their calculations, or 
allow them to take into account the social costs of punishment, can help to 
explain better the stylized facts, then perhaps the additional complexity might 
be worth it. If not, then until other stylized facts are intended to be explained 
by the researcher, the simplicity argument is relevant. Whether PH can 
successfully account for the stylized facts or not is answered below in section 
2.6. For now, we examine how far we can go in explaining the data using this 
simple model. 

To summarise, IELORP assumes behaviour that is adaptive but also 
includes a simple forward looking component through naïve expectations: the 
assumption that other agents in the group will maintain the same 
contributions observed last period. PH’s core assumption is that agents, when 
punishment is included, add another (perhaps still naïve) expectation 
component related to the reference point. The counterfactual nature of IEL 
makes the inclusion of another naïve expectation strategy fit appropriately into 
AL’s modelling strategy. 

2.6 MODEL CALIBRATION AND MAIN RESULTS 

This section presents the main results from PH. An important objective of 
this paper is to test AL’s modelling approach by extending IELORP to include 
punishment. The test is not a “horse race” comparing different models, but 
rather an attempt to extend IELORP and check the robustness of its 
parameters along with the plausibility to include another sort of information 
into the model (i.e. heuristics). Would the extended model produce data that 
is quantitatively similar to that from lab experiments? Foreshadowing the 
results, they will show that the model can reproduce quite accurately the main 
punishment stylized facts described above, keeping the same parameter 
estimations used by AL (calibrating only the two new parameters included in 
PH). We believe this out-of-sample parameter stability is a strong robustness 
test for the modelling approach, and shows that it is flexible for researchers 
without needing to recalibrate in every data set. This section will first describe 
the calibration of the newly introduced PH’s parameters, followed by the main 
results. We close this chapter discussing stylized facts of section 2.4.2 that are 
not addressed with the main data. 

2.6.1 Parameters and calibration procedure 
PH’s free parameters are eight in total: IEL has as free parameters {], `, c}, 

the ORP distribution of types is determined by {J, L, M}  and finally the 
expectation of punishment has {ê, ì} . Under the belief that eight free 
parameters in a model can give too much degrees of freedom to the researcher, 
the robustness of IELORP parameters across experiments is a way to address 
this issue: its parameters have been tested by AL across domains and data sets 
without recalibration48. So here the approach followed is to test PH using 
exactly the same parameter numbers estimated by AL. Two goals are achieved 
by doing this: the amount of degrees of freedom is reduced to only two (PH’s 

                                                        
48 As mentioned in Appendix 2.8.1. 
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free parameters) and the robustness of those parameter values is tested with 
an extended model out-of-sample.49 

Table 2.1 summarises the values used for the parameters of the model. The 
values of ], `, c, J, L and M  are taken exactly from the estimations of AL. The 
values of PH were calculated as explained next. When using this set of 
parameter values, the model will be referred to as PH*. 

IEL ORP PH 

] = 100 J = 0.48 ê = 3.3 

` = 0.033 L = 22 ì = 14 

c = ,/10 = 2 M = 8  

Table 2.1: Parameter values for PH. IEL and ORP values taken from Arifovic and 
Ledyard (2012). PH values estimated 

2.6.1.1 Estimation of PH parameters (L and K) 

In PH, the parameter ê is a measure of how sensitive is the expectation of 
tolerance (P) with respect to changes in the effectiveness of punishment, {. ì 
represents the amount of punishment players expect for each point their own 
contribution is lower than the group’s average. For example, in a group of N=4,  
ì = 6 represents that an agent expects an average of 2 punishment points from 
each player if its own contribution is one point below his reference point àV) . ì 
and ê are estimated by generating simulated experiments with PH, keeping the 
values for IEL and ORP parameters as given by Table 2.1. Unless specified 
differently, all simulations where conducted with such corresponding values. 

The estimation was conducted using the data of Nikiforakis and Normann 
(2008) (NN from now on)50. In their experiments, the main treatment is the 
variation of {. Each treatment, under a partners setting, takes values of { =
{0,1,2,3,4}. Each one of the five treatments is named according to the value of 
{ : for example, when { = 0 , (i.e. no punishment), the treatment is called 
Treatment 0. NN experiments kept the values of N=4 and M=0.4 constant 
across all treatments, with , = 20. Such values are the same used in all the 
simulations reported here unless specified differently. 

Each run (or trial) simulated ! agents for ten periods by drawing A) and B) 
according to the distribution and parameter values explained in section 2.2.2. 

                                                        
49 The learning parameters have been tested in different environments, so they seem quite 

robust according to AL. For the distribution of types (ORP parameters), AL try both a single 
estimation as well as a recalibration when using different data sets (they claim that a lot of data 
is necessary for having one single distribution of types across games). However, their conclusion 
is that the recalibration keeps almost the same results, which is why we test the PH extension 
while keeping those same parameter values. 

50 As discussed in section 2.4.2, other dataset that captures the stylized fact that cooperation 
changes with effectiveness is that of Egas and Riedl (2008), which uses an stranger setup 
(contrary to NN, which used partners). We chose the experiments of NN mainly for two reasons: 
first, although AL tested IELORP under both partners and strangers setup, they mention that 
further research is still required to conclude about the model under strangers. Second, NN alters 
effectiveness levels while always keeping constant the cost of one punishing token (equal to one). 
On the contrary, Egas and Riedl (2008) change both cost as well as impact, which can introduce 
framing effects not intended to be captured by our adaptive agents. 
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A grid search was conducted for the duplet (ì, ê) selecting the values with 
better fit to NN data51. An initial wide search was conducted.  ì  was given 
values from 0 to 15 in steps of one, and ê was given values in the interval from 
1 to 5 in steps of 1. For each treatment 1, 2, 3 and 4 and each combination of 
(ì, ê), 100 trials were conducted. Then a second narrow search was conducted 
with ì taking values from 12 to 15 in steps of one, and ê with values from 2 to 
4 in steps of 0.1. For the latter search, 100 trials were also run for each 
parameter combination. The best fit was chosen according to a standard 
approach as follows. 

As in section 2.3.2, the SE (Squared Error) was estimated, this time for each 
treatment and parameter combination of ì and ê. Using similar notation, let 
.ïñ
;Ä (|)  denote the average contribution for all simulated agents with PH* 

across all ten periods on treatment | for a particular combination of (ì, ê). Let 
.ïñ
Å (|) be the analogous for the average of the last three periods, and .99;Ä (|)  

and .99Å (|) be the same but for NN experimental data (across the six group 
observations for each treatment in their experiment). The squared deviations 
between the simulated data and the experimental data were computed with the 
objective of finding the minimum of their sum. That way, MSE, the Minimum 
Squared Deviation was calculated as52 

7ÑÖ = 7"ó [.99
;Ä | − .ïñ

;Ä | ]X + [.99
Å | − .ïñ

Å | ]X	
Ü

á:;

 
(7) 

where à is the total number of treatments. For the present case of NN, à =
4 (treatments 1,2,3 and 4)53. As before, the error is normalized, so that the 
reported value of the NMSE (normalized mean squared error) is 

!7ÑÖ =
7ÑÖ
2à

 

The lowest value of NMSE was generated by the parameter values shown in 
Table 2.1. Interpretations of the values for L and K are as follows. A value of 
L=3.3, given equation (4), implies that with an effectiveness of 1, the tolerance 
level is about 6 tokens, so agents expect that only contributions more than 6 
tokens below last round’s average would be punished. For effectiveness equal 
to 2 and 3 the tolerance is, respectively, about 2 and 0.5, showing that the 
higher the effectiveness, agents expect to be punished more easily. On the 
other hand, K=14 represents that even contributions one point below the 
reference point àV)  are expected to be highly punished. 

2.6.2 Simulations and statistical tests 

                                                        
51 This procedure follows AL calibration for IELORP. 
52 This is almost the same as equation (3). However, besides being useful to remind the 

reader of the procedure, here it specifies that this time we focus on finding the minimum SE in 
order to select the parameter values. 

53 Since the results of the model under Treatment 0 (i.e. no punishment) are not affected by 
the parameters L and K, it was not included in the calibration. 
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2.6.2.1 Main results 

The fit of PH* to NN data can be grasped quickly with the value of 
NMSE=0.840. Since  .ïñ;Ä (|) and the other averages for its calculation belong 
to the interval [0,w], they are the average contribution for an endowment of 
, = 20. That way, it corresponds to less than a 5% error in the fit across all the 
four treatments. The model generates data that is on average very close to the 
experimental dataset on the lab (an error of 4.2%). 

But to observe closer the dynamics and patterns of the data and have a 
better idea of how good the performance of the model is, Figure 2.7 shows both 
PH* simulations and NN data across the ten periods of the experiments for 
different levels of effectiveness. Each point of the simulated data is the average 
group contribution across 100 trials (analogous to 100 groups or 100 
observations for each treatment) for each period. NN data consists of six 
observations per period, each one a different group. Due to having fewer 
observations for NN data, the simulations present a “smoother” pattern than 
the experimental data. 

 

Figure 2.7: Experimental vs. simulated data for treatments e=0, e=1, e=2 and e=3. 
Simulations generated with PH* (blacked dashed lines). Experimental data source is 
Nikiforakis and Normann (2008) (NN, red lines). 
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Figure 2.7 shows how close each treatment is replicated by the model54. The 
simulations capture closely both the levels of contribution as well as its 
dynamics, and the figure can easily be related to the stylized facts in section 
2.4.2. The first fact, that punishment can sustain cooperation (or put 
differently, that it can prevent its decline), can be observed for effectiveness 
equal to two (e=2) and higher, since the trend for such treatments is not 
negative. The second fact, that such contributions can be sustained only for 
high enough levels of punishment, is also easily observed and constitutes the 
main empirical focus of NN. As in their experimental data, in PH average 
contributions decrease over time with e=0 and e=1, they are constant with e=2 
and increase with e=3. In the model, this effect comes from the higher 
tolerance levels associated with lower values of the effectiveness parameter. 
The third fact is that first period contributions are not statistically different 
across treatments (i.e. effectiveness levels). Figure 2.7 shows that average 
contributions (for both simulated and experimental data) increase 
monotonically in the effectiveness of punishment in every period, except for 
the first. Graphically this is observed by noticing that all first period data is 
clustered close to ten (half the endowment). In the model this is explained by 
the fact that in the first period agents don’t have experience of a previous 
average contribution, hence they can’t have any reference point. This leaves 
agents expecting the same punishment (or lack thereof) for each potential 
contribution until a reference point is formed in the second period. Analysis of 
the fourth and final stylized fact regarding welfare, is addressed below in 
section 2.6.3. 

2.6.2.2 Statistical tests 

To further test the fit of the model, two-sample Kolmogorov Smirnov (KS) 
tests were conducted. 1,000 runs of PH* were simulated for each treatment, 
calculating for each run the values of .ïñ;Ä (|)  and .ïñÅ (|) . Two tests were 
conducted for each treatment, one for the average contribution of all periods 
and the other for the average of the last three. These results are reported in 
Figure 2.8. As can be seen almost none of the tests can reject the null 
hypothesis that the simulated and experimental data come from the same 
distributions. This is further evidence of the good fit of the model to NN data. 

 

 Combined Kolmogorov Smirnov test (two-sample). 
 Corrected p-value 

Data 
used 

Treatment 
0 

Treatment 
1 

Treatment 
2 

Treatment 
3 

Treatment 
4 

All 
periods 0.669 0.547 0.180 0.383 0.010*** 

Last 3 
periods 0.291 0.320 0.132 0.126 0.200 

Figure 2.8: Kolmogorov-Smirnov tests, using average contributions for all ten 
periods and for the last three. Reported is the corrected p-value of the two sample 
test, under the null hypothesis that both the simulated and experimental data come 
from the same distribution. *** for significance at 1% level. 

                                                        
54 Reference to treatment e=4 (not included in the figure) is done below. 
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Is worth noting that Treatment 4, for the average of all ten periods, is the 
only one for which the KS rejects the null hypothesis of the test at more than 
5% (or 10%) significance level. What is happening in the data? Observing 
Figure 2.9 can help to understand better what the model can replicate (and 
where it has a limitation). Comparing the simulated data for Treatments 3 and 
4 shows that qualitative patterns from NN are still captured by the model. 
Besides the random initialization (i.e. first round behaviour), which is in line 
with the empirical facts, the figure shows that the model replicates higher 
contribution levels, in the final periods, for e=4 compared to e=3. This can be 
observed by comparing both simulated data of PH* in the figure. However, one 
can notice that for e=4 the experimental data is higher than the simulated in 
every period (except the last one). In PH*, the main variable determining the 
contribution levels is the reference point àV)  , which depends on the tolerance 
level (T). If the effectiveness level is high enough, the value of T will be lower 
than one, which happens with  { = 3. Higher effectiveness still lowers the value 
of T, but since the minimum contribution is one token55, with { ≥ 4 the effect  
of P  on which actions are penalized (in terms of foregone utility) becomes 
imperceptible. Hence, with { = 4	, contribution levels slightly increase due to 
the effect of {  in the value function (i.e. by multiplying the amount íV)  in 
equation (6)) but not because the reference point is changing. That is why the 
model has difficulty replicating the higher contribution levels in the data, 
reflected in the p-value of the KS test. 

 

Figure 2.9: Experimental vs. simulated data for Treatment e=3 (simulations) and 
e=4 (simulations and experimental data). Simulations are generated with PH* 
(dashed, black lines). Experimental data source is Nikiforakis and Normann (2008) 
(NN, red line). 

Given the above, another calibration for only treatments 1,2 and 3 
(excluding 4) was also conducted as a robustness check. The obtained average 
fit was virtually identical (NMSE=0.844, compared to 0.840), but more 

                                                        
55  This is to replicate the fact that most experiments allow only discrete changes in 

contribution (e.g. one token). However, technically in PH the experimentation component of the 
learning mechanism can introduce contributions that are not integers. 
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importantly, the parameter values remained exactly the same as those 
reported in Table 2.1 (K=14 and L=3.3). 

To summarise, the main results presented show that PH* generates data 
that has an average error of less than 5% compared to NN experimental data. 
Graphically one can observe the fit for the different levels of effectiveness: the 
model closely tracks both the dynamics and the convergence levels of average 
contributions observed in the data. Such patterns are confirmed for all 
treatments (except for e=4) by the corresponding statistical tests. This fit was 
obtained without recalibrating the six original parameters of IELORP. Such 
values were taken directly from previous calibrations in the literature, 
conducted for different datasets that did not include punishment. The 
parameters that were estimated here were the ones included in our extension 
to allow expectations of punishment. The close fit of the model as well as the 
out of sample robustness of the previously estimated parameters, are evidence 
of both the good performance of the model as well as of the flexibility of AL’s 
modelling approach. 

2.6.3 Further analysis of stylized facts 
As seen above (Figure 2.7), NN data captures our main stylized facts related 

to contribution levels, and they are closely replicated by the model: 
cooperation can be sustained by punishment, but only with high enough 
effectiveness levels. And the higher the effectiveness, the higher the 
contributions levels in all periods, except for the first one. However, there is 
one fact that has not been analyzed so far: that eventually, given enough time, 
punishment will increase group welfare (our fourth stylized fact). Is PH 
consistent with this fact? 

Even without comparing directly simulated net earnings with experimental 
data, one can realize how the model actually does account for this fact. The 
learning algorithm will eventually find those potential contributions not 
expected to be punished, since they represent higher payoffs. Such 
contributions will replicate so that the set of potential actions of each agent 
becomes homogenous. With time, agents will not choose actions expected to 
be punished, except for random mutations. So under any effectiveness level 
that sustains cooperation, given that agents will learn to avoid expected 
punishment, the social benefits of cooperation will unambiguously outweigh 
the costs of punishment. 

To illustrate better this decline in potential punishment, we ask the 
following question: “how many players would be punished every period, if 
every agent punishes others based on the same rule on which they expect to be 
punished?” That is, if agents punish any contributions below the last round’s 
group average minus the tolerance level T. We ran additional simulations 
including such a simple punishment behavior. To keep it simple, we included 
punishment just as a binary decision of either to punish or not. To notice that 
punishment will go to zero, is not necessary to worry about how much 
punishment is given56. 

                                                        
56 Earlier versions of the model included more complicated punishment rules, calibrating 

parameters of when and how much to punish based on the experimental data. However, the final 
model didn’t include those (keeping only fear of punishment) because they required more free 
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Figure 2.10 presents the average number of players that would receive (any) 
punishment under the above rule, across 100 simulations of PH* for each 
treatment. As can be observed, eventually in all treatments the number of 
punished agents converges virtually to zero. The small positive number of 
punished agents is due to some of them randomly trying new alternatives 
(mutation). As expected, the higher the effectiveness level, the longer it takes 
for agents to avoid punishment completely. Intuitively, this is due to agents 
being ‘more tolerant’ towards punishment (higher T) when effectiveness levels 
are lower. Technically, this is because a lower T makes the set of potential 
actions not expected to be punished smaller, hence making the learning 
algorithm to take longer to find them. So the model is consistent with the main 
conclusions of Gächter et al. (2008): once cooperation is established (through 
expectations of punishment, not punishment itself in the model), punishment 
is rarely needed, so with time its costs become negligible. 

 

Figure 2.10: Average number of agents punished for different effectiveness levels 
(across 100 simulations per treatment). Punishment is modeled: an agent punishes 

any other in the group that contributes below the group average minus the 
tolerance level T. 

2.7 CLOSING REMARKS 

Experimental research has spanned a wide range of literature on public 
goods games containing many facts on human behaviour that are at odds with 
traditional game theoretical approaches. Recent models with boundedly 
rational agents have emerged trying to close this gap, but few can claim to have 
done it thoroughly. The model developed by Arifovic and Ledyard (2012) in 
the context of voluntary contribution mechanisms, IELORP, has been claimed 
to predict many of the main stylized facts in this literature, with remarkable 
transferability to other experiments and out-of-sample robustness of its 
parameter values. This makes IELORP a contender in closing that gap. 

                                                        
parameters and complicated the model without actually adding much to the explanation of the 
stylized facts. 
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However, the model wasn’t designed to explain one of the most important 
facts on public good games: that punishment mechanisms can sustain 
cooperation and prevent the tragedy of the commons. We have presented here 
an extension to IELORP that relies on the expectations of punishment, not 
punishment itself, as a way to sustain cooperation in public good games. This 
extension can be seen as contributing to the literature in two significant ways: 
first, it is considered a test to IELORP’s modelling approach. This is not a 
traditional test in the sense of comparing it with different models, but as a 
mean to answer the questions, Is the model flexible for researchers to be 
extended, maintaining its core components of learning and other regarding 
preferences? Would the extension retain the same parameter calibrations used 
in the literature before? The answers to these questions are positive. Results 
presented here show that while keeping exactly the same parameter values 
(calibrating only the new ones included), the model can replicate four main 
stylized facts on the experimental punishment literature, producing data 
quantitatively similar to that of human subjects in the lab. 

Second, the model presents an interesting modelling approach on its own: 
it combines core behavioural principles, such as learning, with ad-hoc rules of 
thumb that are tailored specifically to the environment under study. This is 
presented under the belief that in the toolkit of the social scientist, all 
approaches can be used as long as they give useful insights. 

Is the model presented here useful? One way to think of whether a model is 
useful of not, is to ask whether it presents new questions that could be explored 
empirically57. In this regard, one clear topic addressed by the model is the 
learning time spans of subjects. Empirical evidence has shown that even 
unobserved punishment can deter free-riding. In the model, agents have a 
given expectation of punishment that can’t change, assuming a short time span 
similar to that of short lab experiments. But how long would it take subjects in 
the lab to learn? Once cooperation has been stablished, how long would it take 
players to adapt to new institutional frameworks, such as removing 
punishment (without being explicitly told about the change)? In PH, even after 
removing the punishment expectation, once cooperation is sustained, 
contributions remain high for several periods: the strategy set of agents is 
populated by the equilibrium strategy, and is not until experimentation takes 
place that new strategies can be tried. This can take several rounds depending 
on the model parameters. Would human players sustain cooperation for long, 
or would they quickly revert to free-riding? What factors (e.g. social norms) 
could affect this behaviour? These are considered empirical questions that the 
model hints to be explored as future research. 

Finally, there are theoretically relevant approaches that come to mind after 
working closely with PH. The model highlights both a learning mechanism as 
well as the use of (exogenously given) rules of thumb in order to explain the 
patterns in the data. An interesting question is how these rules of thumb come 
to be used, or which others can be learned adaptively. Making the process of 
trying and developing new rules of thumb explicit, is a modelling approach that 
would make such adaptation process endogenous. Work on such mechanisms 
of inductive learning points in that direction (e.g. Holland et al., 1986). Some 
implementations of similar approaches in economic environments have been 
done in the literature: see for example Kirman (2010) for examples in financial 
and fish markets, Miller (1988) and Zhang (2015) for prisoner’s dilemma, or 

                                                        
57 Here again, thanks to Simon Gächter for pointing this out. 
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Lee-Penagos (2016) for coordination games. Allowing agents to learn and 
adapt different rules of behaviour is suggested as a next step to understand 
better how agents adapt their behaviour in a complex environment as a public 
goods game with punishment in the lab. 
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2.8 APPENDIX 

2.8.1 Additional features of IELORP in public good games 
Besides the main results in the main text, AL tested the model in different 

datasets and treatments from different experimenters in public goods games 
without punishment (not formally explored in our replication). Their overall 
conclusion is that IELORP fits the data very well. The following are other 
environments (besides IW) in which AL claim that the model has been 
successful at predicting out of sample58. 

1. Partners vs strangers: to explore differences between these two 
setups, AL tested IELORP in an strangers setting with the data of 
Andreoni (1995) (remember that IW’s used a partners setup). 
Andreoni also had different experimental parameter values (N=5 
and M=0.5). Without recalibrating any of the parameters, the model 
generated data that differed on average with the experimental one 
in 4.9%. As a caveat, AL present a discussion on IELORP’s 
explanation for the difference between partners and strangers 
setups. Is worth mentioning that although their model fitted the 
data accurately, more data is required to conclude strongly about the 
partners vs. strangers explanation given by the model. 

2. Rank based payoffs: Andreoni (1995) also presented treatments 
where subjects are not paid according to their profits, but on how 
their profits ranked compared to the rest of the group. By modifying 
the value function T)  accordingly and again keeping the same 
parameter values, IELORP differed on average on 4.1% with the 
experimental data. 

3. Experience vs inexperienced: the treatments mentioned 
already, which varied the values of N and M in the data of Isaac and 
Walker (1988), provided previous experience to the players (i.e. 
played some practice rounds). However, some groups didn’t receive 
such experience. Sessions with M=0.3 and N=4 were compared with 
IELORP’s generated data. Average difference was 6.6% without 
recalibration of any parameter. AL conclude that experience of the 
subjects is not something that needs to be controlled for in the 
model. 

4. Restart effect: Introduced by Andreoni (1988). The effect consists 
in that after subjects finish the initially announced periods of the 
experiment, they are informed that they will play additional ones. 
After the announcement, contributions to the public good raise and 
start declining again. IELORP captures this effects by randomly 
populating again the set of available strategies ZV)  (agents “rethink” 
the problem). Croson (1996) replicated Andreoni’s experiments. AL 
used both data sets to test their explanation of the restart effect. 
Although more data is required to confirm it (due to small sample 

                                                        
58 We mention “other” environments because even if the whole IELORP model was firstly 

implemented for the Isaac and Walker (1988) data, the learning component IEL had been 
designed and tested before for different experiments, but not jointly with the ORP component. 
To that degree, the IEL behavioural model was tested out of sample with IELORP. 
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size) IELORP presents similarities with the data that don’t discard 
it as a potential explanation. 

Two additional points are worth mentioning regarding the stability of the 
parameters and their transferability to other domains. 

First, robustness of the above results to changes in the parameter values is 
tested by AL. Their conclusion is that the model doesn’t require re-calibration 
when transferring it to different experiments and conditions for public goods 
games without punishment. Also, when re-calibration was indeed conducted 
(for the ORP parameters) there was only a marginal benefit in the fit to the 
data, a strong point in favor of the model robustness to parameter changes. For 
AL’s main results several ranges for the parameters of both IEL and ORP were 
tested. Their conclusion is that all of the model parameters are robust and 
changes within “reasonable ranges” affect very little the model’s performance. 

Second, and perhaps more interesting, is that the learning model (IEL) was 
initially designed for other kind of repeated games. It was implemented first to 
study Groves-Ledyard mechanisms for public good allocations (Arifovic and 
Ledyard, 2011, 2004) as well as for call markets (Arifovic and Ledyard, 2007). 
Remarkably, AL claim that the IEL model not only has replicated data across 
such domains accurately, but that it has done so using exactly the same 
parameter values (the triplet (], `, c)). The fact that IEL kept those same values 
when extended with ORP is a strong test of the model transferability, and a 
motivation to use it and test it further with our implementation of punishment. 

Finally, is worth referring the reader to AL’s final discussion on the model’s 
shortcomings. An example of those is not including reputation concerns, which 
makes the model not well suited to strategic coordination games that require 
more sophistication. The latter, for example, would require agents that can 
learn strategies beyond one single period of history. 

2.8.2 Conditions for each equilibrium behavior 
In IELORP, in equilibrium each agent will have one of three equilibrium 

behaviors: free riding ( .) = 0),  fully contributing ( .) = ,)  or conditional 
cooperation (.) = .). On which strategy an agent converges will depend both 
on its ORP parameters (A)	^óò	B)) and the experimental parameters (groups 
size (N) and public good marginal productivity (M)). Hence, altruism or 
conditional cooperation are behaviors that arise from other regarding 
preferences, but only when the environment provides the setting for it. The 
conditions, as presented by AL, are as follows: 

.) = 	
0
.
,

	"g	

0 ≥ 	 7 −
1
!

A) + 7 − 1

B)
! − 1
!
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1
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ABSTRACT 

In a coordination game such as the Battle of the Sexes, agents can condition 
their plays on external signals that can, in theory, lead to a Correlated 
Equilibrium that can improve the overall payoffs of the agents.  Here we 
explore whether boundedly rational, adaptive agents can learn to coordinate 
in such an environment.  We find that such agents are able to coordinate, often 
in complex ways, even without an external signal. Furthermore, when a signal 
is present, Correlated Equilibrium are rare.  Thus, even in a world of simple 
learning agents, coordination behavior can take on some surprising forms. 
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3.1 INTRODUCTION 

“If there is intelligent life on other planets, in a majority of them, 
they would have discovered correlated equilibrium before Nash 

equilibrium” 

-Roger Myerson, winner of the Nobel Memorial Prize in 
Economic Sciences59 

 Aumann (1974) introduced the concept of  Correlated Equilibrium (CE), 
which is a generalization of the traditional Nash Equilibrium (NE). Under a 
mixed strategy interpretation of Nash, players randomize their strategies 
independently of each other. In a Correlated Equilibrium such independence 
is not necessary: players have probability distributions based on an exogenous 
signal or randomization device whose distribution is common knowledge. 
Players map their decisions from the outcomes of such a signal to their 
potential actions, making their actions correlated with each other. Mutual best 
responses to the belief that the other players will condition their actions based 
on the signal is considered a correlated equilibrium. 

Notice that the signal (or exogenous randomization device) has no direct 
influence on the payoff matrix of the game, but it can nonetheless affect the 
equilibrium payoffs of the players. This is not possible under NE. The 
definition of CE allows solutions where the signal can both affect or not the 
behaviour of agents. This makes it a more general concept that also includes 
NE, where the signals can play no role whatsoever. Perhaps this is why 
Myerson believes that aliens would have probably learned first to play the CE60. 
However, the presence of the external signal and its effect on equilibrium 
convergence is puzzling. It requires players to be endowed with incredible 
computational powers and to know the other players’ payoffs. Players also have 
to know the signal’s distribution and a specific mapping from signal to actions 
in order to interpret it as a recommendation of what to play. From a normative 
point of view, such assumptions might be adequate. But from a positive or 
descriptive one, it is not clear how (or if) players could actually learn this 
information under less straining rationality assumptions. 

This paper’s objective is to explore, under a canonical coordination game 
(Battle of the Sexes), the effects of an exogenous signal on equilibrium 
selection when perfect rationality assumptions are relaxed. It focuses on the 
behaviour of learning, adaptive, boundedly-rational agents, with an emphasis 
on understanding how they use the signal in order to coordinate. It takes 
Myerson’s idea about the discovery of CE to be easier than NE as a hypothesis 
to be tested. Can boundedly-rational agents learn to use exogenous signals to 
coordinate? If so, how could this happen? Will such agents learn to condition 
their behaviour on the signal as implied under a CE solution, or do they 
converge to a different equilibrium? These are the key questions explored here. 

To tackle this objective, we develop a computational model with artificial 
adaptive agents playing a repeated Battle of the Sexes game. Analyses are made 

                                                        
59  Leyton-Brown and Shoham (2008) (p. 24) or Solan and Vohra (2002) (p. 92). 

Interestingly, this famous quote is often attributed to Myerson, but we couldn’t find the direct 
source. 

60In his quote, the “discovery” of the correlated equilibrium by the extra-terrestrial “players” 
is interpreted as them playing it in real life (i.e. to condition their actions on the exogenous 
signal), versus having their game theorists understand and describe the concept. 
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via Monte Carlo simulations. The model represents each agent as a strategy 
that observes inputs from the environment (such as a rival’s action or an 
exogenous signal) and based on those observations, the agent outputs as an 
action in the game. We use ‘finite automata’, which is a mathematical model of 
discrete inputs and outputs that can represent boundedly rational behaviour. 
Such agents are allowed to adapt and change their behaviour via a learning 
algorithm (a ‘Genetic Algorithm’). The latter simulates social learning at the 
population level by implementing selection and mutation processes that tend 
to reinforce better performing strategies and to eliminate poorer performing 
ones. This constitutes an evolutionary approach that explores what types of 
strategies emerge in the long-run.  

In order to explore the impact of the exogenous signal in coordinating 
behaviour, computational experiments are conducted for two treatments: a 
baseline No-Signal model of the traditional game (without signal), along with 
a main Signal treatment. In the latter, agents are allowed to observe and 
potentially use an exogenous randomization device to coordinate. 

This methodology presents several advantages for answering the above 
questions. First, given the interest of modelling bounded rationality, finite 
automata allow the representation of agents with limited memory and 
processing power. While they can observe the behaviour of the other agents 
they interact with as well as the exogenous signal, they don’t have access to 
others’ payoffs or the distribution of the signal. Hence they can only react to 
the observed inputs from the environment without assuming a priori complete 
information or infinite computational capabilities. Second, the learning 
algorithm implements a computational evolutionary process that allows 
strategies to evolve endogenously; the adaptive behaviour of the agent is given 
by the evolutionary dynamics of the model. This allows a wide range of 
strategies to potentially arise, with emerging behaviour that can potentially be 
difficult to predict beforehand. Such an algorithm can find strategies that were 
not directly specified by the researcher. 

This paper contributes to the literature in its exploration of exogenous 
signals and correlated equilibrium by using adaptive agents. It studies the 
long-run effects of an exogenous randomization device on coordinating 
behaviour. Previous literature has also investigated coordination games by 
using adaptive agents, but this is the first one to allow the implementation of 
an exogenous signal and the exploration of its implications on equilibrium 
selection and evolution of individual strategies. 

The model has the structure of an evolutionary tournament including two 
populations. In each time step, all agents in one population play a repeated 
Battle of the Sexes game against every other agent in the rival population. 
Overall scores are kept, and based on those, agents with better payoffs have a 
higher probability to replicate themselves and replace other agents in their 
own population. They undergo random mutations at the end of each time step, 
and the process is repeated for several thousands times simulating long term 
evolutionary processes. 

Our results show that under both implemented treatments (with and 
without the exogenous signal) the system switches constantly between three 
different types of equilibrium or attractors, and contrary to what was expected 
a priori, it never stabilises on one of them. This type of behaviour is sometimes 
known as ‘punctuated equilibria’, where the system remains in equilibrium for 
long periods of time but then presents sudden transitions into a different 
equilibrium. These three equilibria are i) constantly coordinating in one of the 
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pure Nash solutions of the game, ii) symmetric alternation between the two 
pure Nash solutions (i.e. taking turns between the two coordination points of 
the game) and iii) biased alternation, where agents also take turns between the 
two coordination points, but one of them is played more often than the other. 
To the best of our knowledge, this is the first time that this latter behaviour has 
been documented in coordination experiments, whether computational or in 
the lab. Unexpectedly, we found no treatment differences in terms of payoffs 
and efficiency: both with and without the signal agents learn to coordinate 
quite well. 

A key finding is that agents can indeed learn to condition their actions by 
consistently following the exogenous signal. However, even if such behaviour 
can be learned, the probability of it happening is very low (around 5%). While 
agents sometimes condition their actions based on the signal, they can also 
learn to alternate and coordinate their behaviour by completely ignoring it. 

Hence, consistent with recent experimental literature (discussed below), 
our results cast doubt about CE being an accurate description of common 
coordination behaviour. If our adaptive computational agents can be somehow 
analogous to intelligent life from another planet, they will not learn CE before 
NE. 

Finally, our methodology allowed us to identify interesting behaviour that 
we couldn’t predict a priori. Not only do some strategies learn to use the signal 
while others can coordinate by completely ignoring it, but the same strategy 
can ignore the signal, use it partially, or interpret it in different ways depending 
on the history of the game. 

3.2 BATTLE OF THE SEXES (BOS) GAME 

Figure 3.1 shows the payoff matrix for the traditional Battle of the Sexes 
(BOS) game. This game has two pure Nash strategy equilibria, with both 
players playing A (action profile (A,A)) or both playing B (action profile (B,B)), 
corresponding to the upper-left and down-right corners of the matrix 
respectively. In either case, one player’s expected payoff is 2 and the other’s is 
3. Include now the simplest possible randomization device: both players 
observe the same outcome of a fair coin toss before deciding their actions, with 
a 50% probability of observing H (Heads) and 50% T (Tails).  

  Column 
Player 

  A B 

Row 
Player 

A 2,3 0,0 

B 0,0 3,2 

Figure 3.1: Payoff Matrix in Battle of the Sexes Game 

Traditionally, H or T is interpreted as an exogenous signal or a non-binding 
recommendation for players on what actions to choose. For example, with 
probability 0.5 both players are ‘recommended’ to play A (i.e. the 
recommended action pair is (A,A)) when, say, Heads shows up and (B,B) 
otherwise (when Tails). This is a correlated strategy, which is given by this 
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joint distribution over the set of pure strategy pairs. Notice that in this case, 
the expected payoff for both players is 2.5 (since each outcome AA or BB would 
be played with 50% probability), which differs from the expected payoffs of any 
of the two NE61.  

This correlated strategy is also a CE because no player wishes to depart from 
following the recommendation. For example, when Heads shows up with 
recommendation (A,A) and given that player Column will follow it, player Row 
would decrease its payoffs by not playing what is recommended: if Row decides 
to play B, his payoffs would be zero instead of two. The same is true for player 
Column, whose payoffs would go from three to zero in the analogous situation. 

The CE concept requires each player to assume that the rival will follow the 
recommendation given. It also requires common knowledge of the distribution 
of signal as well as every other agents’ payoff. Here we will relax these 
assumptions. As explained in section 3.4.2, in our model the signal will be 
observed by the agents without any common knowledge assumption, and it is 
the dynamics of the model that will determine if they learn to use it consistently 
to coordinate or not. Also, there will not be any given function mapping the 
signal to particular actions (i.e. no recommendations): whether agents learn to 
give particular meanings to the signal or not will be determined endogenously 
by the evolutionary process of the model. 

The payoffs of the game can be formalized graphically as in Figure 3.2. The 
line ZLö is the boundary of the convex hull, so all payoffs combinations on the 
line or inside of the triangle are feasible with appropriate randomization. The 
maximum attainable payoff for a single player must occur at one of the vertices 
of the convex hull (i.e. when a pair of pure strategies is played). In this case 
those points are A = (2,3) and B = (3,2). In this BOS game, A and B are also the 
two pure Nash equilibria. The line  ZL  forms the set of Pareto optimal 
solutions. Point D = (2.5, 2.5) is the CE discussed earlier. An interesting 
characteristic of this point is that it is not only Pareto efficient, but is also an 
egalitarian equilibrium: a priori, before the coin toss, both players have the 
same expected payoffs62. 

To avoid confusion in the analysis that follows, we need to carefully specify 
what we mean by a CE in our model, or by ‘behavior consistent with CE’. 
Technically, many solution concepts, including pure Nash, are also a CE. 
However, the interest here is to focus on CE that requires agents conditioning 
their actions on the signal. So for a CE, we will require agents to condition on 
the fair coin toss without ignoring it. At the aggregate level this implies payoffs 
close to the egalitarian equilibrium; at the individual level, as in the correlated 

                                                        
61 Although this paper will not allow the possibility of mixed strategies, is worth noting that 

these expected payoffs cannot be obtained by players randomizing on their own (i.e. without the 
signal). The coin toss in this case allows payoffs that cannot be obtained under a mixed Nash 
equilibrium concept. 

62  Aumann (1987) suggests the fair coin toss as one of the most simple randomization 
devices, making it a good candidate for studying the emergence of CE. Another equilibrium 
studied in the literature is for the Chicken game (Duffy and Feltovich, 2010), with the 
characteristic that the CE is outside of the convex hull of NE (i.e. the randomization allows 
higher Pareto efficient payoffs). However, as those authors argue, such CE can be more difficult 
to learn (at least for humans) because it requires three recommendation profiles, instead of the 
two implemented here. Cason and Sharma (2007) find that humans’ difficulty in learning a CE 
comes from the uncertainty about their rival’s actions, not a lack of incentives (i.e. higher 
payoffs). One objective here is to test a CE that could arguably be the easiest to learn. 
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strategy above, using the signal as if a recommendation profile is being 
followed. 

Other behavior, even if under traditional theoretical assumptions (which 
are relaxed in our model) could also be labeled as CE, will be referred to 
independently in order to maintain focus on this particular form of signal use. 

 
 

 

 

Figure 3.2: Set of attainable payoffs of BOS game under a correlated strategy 
pair. ZLö is the boundary of the convex hull, hence any payoffs on or inside of this 
hull are attainable with the appropriate randomization. Point D represents the 
correlated equilibrium given by a fair coin toss as the randomization device. 

For a more formal presentation of the one shot game and some equilibrium 
concepts, see Appendix 3.7.1. 

3.3 RELATED LITERATURE 

3.3.1 On Correlated Equilibrium and learning 
Aumann (1974) introduced the concept of CE into the literature and refined 

it in Aumann (1987), showing that Bayesian rationality implies convergence to 
a CE. However, this required players to have the same prior beliefs regarding 
the distribution of the exogenous signal. Some following papers focused on 
giving conditions or learning rules for achieving convergence. In Foster and 
Vohra (1997), such convergence is based on players making “calibrated 
forecasts”. This implies evaluating the complete past actions of all rivals, and 
using this to make perfect probabilistic forecasts that match beliefs with 
randomized strategies. Fudenberg and Levine (1999) presented an alternative 
mechanism requiring similar memory capabilities. Hart and Mas-Colell 
(2000) introduced convergence via “regret”, with players making better 
choices instead of using best responses (i.e. they switch to actions that would 
have given higher payoffs than the ones used in the past). This latter approach 
relaxes some of the rationality assumptions in previous work, but still requires 
players to have a complete memory of all past actions and calculate the 
potential payoffs of all of the strategies that could have been played under all 
potential scenarios. These approaches require very sophisticated players, with 
unbounded memory and computational capabilities, playing indefinitely. In 

0

1

2

3

0 1 2 3

Pl
ay
er
	C
ol
um

n	
Pa
yo
ffs

Player	Row	 Payoffs

A	=(2,3)

B	=(3,2)

C	=(0,0)

D	=(2.5	,2.5)



96 
 

contrast, the approach here is to model agents with limited memory and no 
prior beliefs, and test whether evolutionary learning processes at the 
population level can lead them to learn the CE. 

Recent experiments in the lab have focused on CE. These studies have been 
conducted by Cason and Sharma (2007), Duffy and Feltovich (2010), Bone et 
al. (2013), Duffy et al. (2014) and Anbarci et al. (2015). A key result arising in 
all of them is that while some subjects do follow the recommendations given, 
they do so inconsistently, casting some doubt on the descriptive power of the 
CE concept63. However, as conjectured by Cason and Sharma (2007) in their 
conclusions, perhaps in longer time spans subjects might learn to consistently 
follow the recommendations. The evolutionary approach with adaptive agents 
presented here addresses this issue by conducting long-run analyses that 
would be impossible to conduct in the lab. Also, it is worth noting that all the 
experiments above give subjects common knowledge about the distribution of 
the recommendations as well as what is being recommended to the rival. While 
such information is useful in helping subjects understand the experiment, how 
is it that agents come to know such information in a different environment? 

3.3.2 On methodology 
This paper uses artificial adaptive agents to study the learning and evolution 

of behavior consistent with CE. Modelling artificial adaptive agents serves as a 
great compliment to theoretical analysis in economic theory (Holland and 
Miller, 1991), and it has been used in a wide range of social science topics like 
market institutions (Gode and Sunder, 1993), pricing (Arifovic, 1994), auctions 
(Andreoni and Miller, 1995), the evolution of norms (Axelrod, 1986), elections 
(Kollman et al. (1992)), political institutions (Kollman et al., 1997), loyalty in 
fish markets (Kirman and Vriend, 2000) and the emergence of communication 
(Miller et al., 2002), among many others. 

Agents presented in this work are boundedly rational with limited 
information and memory. They are embedded with a mechanism that 
promotes constant adaptation to their changing environment. Since all agents 
adapt to each other at the same time, they constitute a co-evolving complex 
adaptive system. Such adaptive behavior is modelled by means of a genetic 
algorithm (Holland, 1992), which captures the idea of social learning: 
strategies that are successful are more likely to be copied by other agents and 
hence spread in the population, but strategies that are unsuccessful are more 
likely to be distorted in the learning process. The algorithm strikes a balance 
between exploration and exploitation (i.e. looking for new solutions versus 
exploiting the ones that have already been found), which constitutes a classic 
conundrum in problem-solving (Holland, 1992; Holland et al., 1986). 

Each agent is defined as a finite state automaton. Rubinstein (1986) was the 
first to introduce automata into game theory as representations of strategies. 

                                                        
63 Our evolutionary methodology makes it impossible to make quantitative comparisons 

with the results obtained in the short time span possible in the lab. However, in section 3.5, we 
observe qualitative patterns that also emerge in these experiments, giving some external validity 
to the model presented. The experimental literature is also relevant because results in the lab 
can inspire new scenarios to explore computationally and vice versa. It is our belief that 
complementarities and mutual feedbacks exists in social sciences between studies conducted 
with humans and machines (Duffy (2006) or Poteete et al. (2010) present overviews of this 
methodological complementarity. Andreoni and Miller (1995) is an example of lab experiments 
working in tandem with computational simulations). 
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Miller (1988) introduced the idea of using evolutionary algorithms to model 
adaptive learning in games (Miller (1996), Ioannou (2013) and Zhang (2015)). 
Some recent studies have explored the use of automata in coordination games 
(such as Browning and Colman, 2004; Hanaki, 2006; Ioannou and Romero, 
2014a; Ioannou and Romero, 2014b) but no one has studied exogenous signals 
or CE. 

Here we explore with adaptive agents the long run emergence of CE 
behavior. Arifovic et al. (2015) used individual learning to see if adaptive 
agents can replicate quantitatively the short-term behavior of subjects in the 
laboratory, including exogenous recommendations. In contrast the approach 
here uses social learning at the population level to focus on the long-term 
evolution of signal conditioning. 

3.4 THE COMPUTATIONAL MODEL 

3.4.1 Overall structure 
The game used in this paper is the repeated Battle of the Sexes (BOS) as 

presented in section 3.2. Each agent represents a strategy, and agents face each 
other in a computational tournament.  

More specifically, agents are represented as finite automata (their 
formalization explained in detail in section 3.4.2). The model has two 
populations, COL and ROW, each one consisting of N agents. Each time step 
of the model is called a generation, denoted as t. At each t, each agent in 
population COL plays R rounds of the BOS game against each other agent in 
population ROW. The average score (payoffs) of each agent is recorded across 
all à×!  rounds of play in one generation. Agents select their strategies by 
imitating the strategies used by other successful agents, with the average score 
being the (fitness) measure used of success. Hence, strategies with lower scores 
will tend to disappear from the population while those with higher scores will 
tend to spread. This is due to the learning algorithm (detailed in section 3.4.3) 
giving successful strategies higher probability of being copied by other agents. 
This learning happens at the end of each generation, with agents copying only 
strategies that are in their own population, thus the ROW and COL  
populations evolve independently of each other.64 

The computational experiments conducted here consist of two main 
treatments: No-Signal and Signal. Under No-Signal, agents play without any 
randomization device or exogenous signal. In the main treatment, Signal, 
agents play under the same game structure, but are allowed to observe an 
exogenous signal (given by the fair coin toss) at the beginning of each round. 

3.4.2 Artificial agents as finite automata 

                                                        
64 The choice of the structure of the game, mainly repeated interactions (instead of one-shot) 

and having two populations instead of one, makes learning potentially easier and should give 
the emergence of the CE the best possible chance. Experiments conducted by Duffy and 
Feltovich (2010) show that humans in the lab learn more frequently to follow the exogenous 
signals in coordination games when they play repeatedly versus playing in one-shot interactions. 
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Each agent is defined as a class of finite automata using a Moore machine 
(Moore (1956)), which is a mathematical model with discrete inputs and 
outputs 65 . The system can be in any of a finite number of internal 
configurations, called “states”. States summarize the past set of inputs and 
determine the automaton’s behavior for subsequent outputs. 

A finite automaton can be described as a four-tuple õ, úÄ, g, ù , where 

• Q is a finite set of internal states, 

• úÄ	t	õ is specified to be the initial state, 

• g:		õ → Z)	t	{Z, L}  is an output function that maps each state into an 
action of the machine, and 

• ù: õ	×	† → õ is a transition function assigning a state to every two-
tuple of state and observed input. 

Here, † = Zw)	t	{Z, L}, where Zw)  is the action implemented by the other 
agent. In this case the only input used by an agent to decide its next action is 
the action implemented by its rival. In the BOS such input can be A or B, giving 
agents two potential inputs to respond to. This is how the agents are 
implemented for the No-Signal treatment. 

In the Signal treatment, each automaton is allowed to respond to four 
different inputs. Let Ñ	t	{°, P}  be an exogenous random signal with a 
probability distribution ;

X
, ;
X

 (e.g., a fair coin toss showing either Heads (H) or 
Tails (T)), and having the same value H or T for any pair of interacting agents 
at a given round (i.e. both agents observe the same signal). Thus, in this 
treatment † = Zw)	×	Ñ  with †	t	{ Z, ° , Z, P , L, ° , (L, P)}  giving all four 
possible combinations of the other agent’s action and observed signal. 

An intuitive way to describe an automaton is by using a transition diagram. 
Figure 3.3 shows two examples of such diagrams. The nodes in the transition 
diagrams represent the internal states. The arrows originating from each node 
represent the transition function with the labels showing the input (rival’s 
action and signal) required for a transition. The arrows point towards the state 
that the automaton transitions to after observing the corresponding input. The 
initial state of the machine is given by the “start” arrow. 

The automaton in Figure 3.3 (a) for the No-Signal treatment shows a 
strategy that starts by playing A in the first round. Afterwards, it does the same 
as the rival did in the last round: whenever it observes A it transitions to the 
state playing A, and whenever it observes B it transitions to the state playing 
B. This is the famous Tit-for-Tat strategy (Axelrod (1980)). In the Signal 
treatment (Figure 3.3 (b)), transitions are coded using two letters, the first 
representing the rival’s last action (A or B) and the second representing the 
observed signal (H or T). So a transition showing, say, AT, means that such a 
transition occurs when the agent observed the rival playing A in the last round 
and the signal is T for the current one. There are four possible transitions for 
each node in the diagram. The strategy here starts playing A and when it 
observes a signal of T, regardless of the rival’s past action or the machine’s 
current internal state, it will play A. This is easily noticed by observing that all 

                                                        
65  There are other types of finite automata such as Mealy machines. Choosing Moore 

machines as the type of automata implemented is due to it being the standard in previous game 
theoretical literature. We see no evident reason to deviate from this convention. 
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the arrows that have a signal of T go into the initial state. Similarly, whenever 
it observes H, regardless of the rival’s action, it plays B. This strategy gives a 
consistent interpretation of the signal: play A when T, B when H. This is one 
possible strategy that could be consistent with CE behaviour. 

 

Figure 3.3: Examples of automata for both No-Signal and Signal treatments. 

In order to use the learning routines (explained in section 3.4.3) the 
automata need to be coded as finite length strings. Figure 3.4 shows the coding 
for both treatments. The No-Signal automata is coded as a 25-length string, 
where the first element provides the initial state of the machine (Figure 3.4(a)). 
Then, there are eight three-element packets, each representing one of the eight 
internal states of the automaton66. In these packets, the first element gives the 
action the agent takes when it is in that particular internal state (i.e. to play 
either A or B). The other elements are the transitions to make when observing 
the different inputs (i.e. the rival’s action): the second element is the transition 
when the rival is observed to play A, and the third element is the transition 
when observed to play B (Figure 3.4(b)). The coding for the Signal treatment 
is very similar, with the difference that it requires a longer string (41 elements 
instead of 25). This is because including the signal allows four possible inputs, 
requiring four transition per internal state (instead of two). Hence for each 
state, as in Figure 3.4(d), the first element is the action to be taken, and the 
following elements are the transitions for all four possible combinations of the 
rivals’ action in the last round and the observed signal in the current. 

                                                        
66 The number of states used in the machines is in line with previous literature. For example, 

Ioannou (2013) also uses eight internal states arguing that it allows for a variety of automata 
that can incorporate a diverse array of characteristics. It is worth noting that more complex 
machines (more states) do not necessarily mean better strategies. As pointed by Rubinstein 
(1986), more complex plans of actions are more likely to break down, are more difficult to learn, 
and can require more time to be executed. Gigerenzer et al. (2011) has several examples of simple 
rules of thumb that perform better than complex strategies. 
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Figure 3.4: Coding of automata for both No-Signal and Signal treatments. 

There are some important technical points inherent to the use of automata. 
Notice that the machines don’t have any sort of “expectations” of what the rival 
will do and that their behavior is purely backwards looking, which is one way 
to represent simple, boundedly-rational strategies in evolutionary processes. 
Also, although no separate computational memory is implemented, the 
internal state of the machine contains the relevant history of the game. A 
strategy that is based on the past n moves of its opponent will require a 
maximum of 2¢ internal states: for example, the Tit-for-Tat strategy requires 
the automata to remember only the last action of the opponent, hence it 
requires two states. Even if the automata here is modelled with eight internal 
states, only a subset of these states may be accessible to a machine given the 
starting state and transitions. The number of potential configurations of 
machines is rather large. In the No-Signal treatment, there are 8;£×
2§ different arrangements of the strings. However, since many of the 
configurations lead to the same behavior, the number of unique strategies is 
lower. For example, two-state machines have 2• = 128 possible arrangements 
(genotypes) but only 26 unique strategies (phenotypes)67. Finally and related 

                                                        
67  For 3-state machines (with also two inputs and two outputs) the number of unique 

strategies is 5,832. Notice the exponential growth in the number of possible phenotypes. This 
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to the latter, automaton theory, as in Harrison (1965), proves that isomorphic 
automata that represent the same behavior can be mapped to a minimal state 
machine in the canonical form. This means that many different machines can 
lead to the same behavior, all of them being able to be represented by a single 
‘minimal’ automaton. These are referred to as “behaviorally equivalent” or 
“minimized” machines. 

3.4.3 Evolution of strategies 

3.4.3.1 Motivation for the learning mechanism 
The learning algorithm used in this paper is derived from a class of 

optimization routines from computer science called genetic algorithms (GA), 
introduced by Holland (1975). GAs are computer programs that mimic the 
processes of biological evolution in order to solve problems and to model 
evolutionary systems. We use GAs for two main reasons: its technical 
advantages and its analogy as a learning mechanism reflecting bounded 
rationality. 

The algorithm has several advantages over other optimization methods. It 
is designed to work well in difficult domains, meaning domains that involve 
discontinuities, nonlinearities (many local optima), noise and high 
dimensionality (these issues arise in the strategy space in the tournament 
analyzed here). Contrary to calculus-based methods that require derivatives in 
order to perform an effective search for better structures, GAs require payoffs 
associated with the individual strings, making it ideal for game theoretical 
environments with their well-defined payoffs structure. All of the above makes 
GAs a more canonical optimization method than many other search schemes68. 

Evolutionary processes such as a GA explicitly model a dynamic process 
describing how agents adjust their choices over time by learning from 
experience; this makes the GA a useful tool for observing the learning (or lack 
thereof) of coordinating behavior with an exogenous signal. In the same line 
as Kandori et al. (1993), this evolutionary approach gives a concretely defined, 
step by step process of how an equilibrium can emerge based on trial and error 
mechanics. Even if biological interpretations are usually given to such 
processes, the algorithm’s processes can be reinterpreted as bounded 
rationality, reflecting the limited ability on the player’s part to receive, decode 
and act upon information they get in the course of the game. As in Kandori et 
al. (1993) three main hypotheses are relevant and related to this learning 
interpretation, reflecting its adequacy in order to model adaptive, boundedly 
rational agents. First, the inertia hypothesis holds since not all players react 
instantaneously to their environment. This is because given the imperfect 
observations agents have (for example, regarding payoffs and strategic choices 
of other agents), changing one’s strategy can be costly. Second, the myopia 
hypothesis holds since there is substantial inertia in the system with only a 
small fraction of agents changing their strategies simultaneously, resulting in 
agents making only moderate changes. The myopia hypothesis also captures a 
key factor in social learning: imitation or emulation. Agents learn what are 
good strategies in a complex environment (where they cannot calculate best 

                                                        
makes calculations on the exact number of possible strategies for machines with more internal 
states increasingly costly in computational terms. 

68 For further discussions on genetic algorithms, see Mitchell (1998). 
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responses) by observing what works well for others. In such an environment 
strategies that remain effective in the present are likely to remain effective in 
the near future. Also, myopic agents do not take into account the long-run 
implications of their actions or strategies. Finally, the mutation hypothesis 
holds given that with some small probability agents will play an arbitrary 
strategy, capturing the exploration aspect of most learning processes. 

3.4.3.2 Details of the Genetic Algorithm implementation 

The mechanics of the implemented GA (for both No-Signal and Signal 
treatment) are as follows: two populations (ROW and COL) are randomly 
initialized with 40 agents each at t=1 (first generation).  This initialization 
consists of generating for each agent a random finite-length string automaton 
as in Figure 3.4 (with uniform probability across the alternatives)69. Then each 
automaton is tested against the environment: this consists of each agent in 
population ROW playing 50 rounds of the repeated BOS game against each of 
the 40 agents in COL population. Scores are stored for all automata, with the 
score for each agent being the average payoffs earned across all games.  

Two new offspring populations, each with 40 agents, are created based on 
the current parent populations (i.e. the populations existing at the beginning 
of the generation). Each population evolves independently, so the offspring of 
the COL population will be based only on the parent COL population (the same 
applies for ROW). Offspring populations are created based on two operators: 
selection and mutation. For selection, the top 20 scorers are chosen and given 
a copy in the new population. The other 20 needed to keep populations 
constant are chosen via pairwise tournaments by randomly picking two agents 
(with replacement), and keeping the one with the highest score. Such 
tournaments are repeated 20 times in order to keep population size constant. 

Before moving on to the next generation, the 20 strategies picked via the 
pairwise tournament go through mutation process. Each automaton has a 0.5 
probability of being randomly altered. If a strategy undergoes mutation, one of 
the internal states is randomly selected and with a 0.5 probability the action of 
that state is changed (thus, if the state had an action of A, it is changed to B 
and vice versa); otherwise, a randomly chosen transition (from the chosen 
state) is changed with uniform distribution for the alternatives70. 

Finally, once both ROW and COL offspring populations have been created, 
scores are reset to zero and a new generation of the algorithm is begun (i.e. 
agents are again tested against the environment, scores are assigned, and 

                                                        
69  Randomly generated populations will favour minimized (behaviourally equivalent) 

machines that represent strategies with only one internal state (i.e. always play A or always play 
B). When the maximum internal states allowed is equal to two, the probability of generating a 
machine that always plays A is 31% (analogous for always playing B). When three internal states 
are allowed, this probability is 20%. Making such calculations for more internal states becomes 
increasingly costly; however, the dynamics of the GA will quickly start favouring strategies that 
perform better. 

70 There are other ways to implement selection and mutation. GAs are a broad class of 
algorithms with many variations, but fortunately they are fairly robust to different parametric 
and algorithmic choices. The mutation parameters and mechanism used are the same as in 
Miller et al. (2002) and Miller and Moser (2004). In general, within reasonable changes, results 
will be consistent. However, if taken to an extreme, too small mutation rates eliminate 
exploration and will lead the system to converge based only on the selection process. If mutation 
is too high, the system will always be exploring, unable to settle down and exploit information. 
The chosen mechanism tends to be in a reasonable “sweet spot” to balance this out. 
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populations undergo selection and mutation). An overview of the whole 
process is given in Figure 3.5. 

 

Figure 3.5: Structure of the evolutionary process (works the same for both No-
Signal and Signal treatment) 

3.5 RESULTS 

Given the model we can analyze its behavior. The following five questions 
address the overarching research goals presented in the introduction, serving 
as a roadmap for the evidence ahead. They will be answered in the order 
presented. 

1) Will the system converge to an equilibrium? 

A priori, is not clear if an equilibrium will emerge. We hypothesize that 
without the signal agents will converge into one of the pure Nash 
equilibria. With it, our hypothesis is that they will converge in Turn-
Taking (alternation), taking turns symmetrically in both coordination 
points of the game. For both treatments the hypothesis is that the 
system will stabilize in the corresponding equilibrium and remain there. 

2) Will the presence of the signal allow agents to coordinate more easily? 
That is, will the system be more efficient when the signal is included? 

1) Initialise	two	random	populations	(ROW	and	COL)	with	40	agents	

each.	Set	t=1	(first	generation)	

2) Test	each	agent	against	the	environment:	play	50	rounds	of	BOS	

against	each	agent	in	the	rival	population,	saving	average	scores.	

3) For	ROW	population,	 form	a	new	population	of	40	agents	 in	the	

following	way:	

a) Copy	top	20	scorers	from	old	population	(will	also	be	potential	

parents)	

b) Pairwise	 tournament:	 choose	 randomly	 2	 potential	 parents	

from	the	population	of	20	copied	in	(a),	with	replacement.	The	

one	with	the	highest	score	gets	one	child	copy	of	itself	

c) With	50%	probability,	mutate	the	child:	

i) Randomly	choose	one	internal	state	

ii) With	50%	probability,	switch	the	action	of	that	state	

iii) If	 didn’t	 change	 action	 in	 step	 (ii)	 (50%	 prob.),	

randomly	 choose	 one	 transition	 of	 the	 state	 and	

change	 it	 with	 uniform	 probability	 across	

alternatives.	

d) Repeat	steps	(b)	and	(c)	until	the	new	ROW	population	has	40	

agents.	

4) Do	step	(3)	for	COL	population	

5) Increment	t	by	1	(next	generation),	reset	scores	to	zero	and	iterate	
(go	to	step	(2)).	
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We hypothesize that when the signal is included, agents will 
miscoordinate less often leading to higher payoffs. 

3) Are there other treatment differences, if any, in terms of the aggregate 
behavior of the system?  
We have no other a priori hypotheses regarding treatments differences 
besides the ones addressed in questions 1 and 2, but we leave the 
possibility for unexpected results. With the power of hindsight, we know 
that there are indeed other differences that are worth exploring once 
answers to questions 1 and 2 above are known. 

4) Conditioned on observing Turn-Taking (alternation) as hypothesized in 
question 1, will agents be actually conditioning on the signal in a way 
consistent with CE? 
This question might seem subtle, but its analysis is key to understanding 
the emergence of CE. Notice that agents might alternate or take turns in 
the two coordination points by either using the signal or by completely 
ignoring it. Both types of behavior would seem similar at the aggregate 
level, but only conditioning on the signal would be consistent with CE 
as defined here. We hypothesize that agents will learn to condition their 
actions based on the signal. 

5) At the micro level, how are agents coordinating? That is, how do we 
characterize the strategies that evolve? 
Analysis of questions 1 to 4 are made at the aggregate level of the system 
(e.g. average payoffs, coordination rates). But one of the advantages of 
using automata and computational methods is that we can directly 
observe each and every strategy in the system at any point in time. Here 
we use a methodology based on pairs of interacting strategies to 
characterize them and understand their exact behavior. A priori, given 
the immensity of the possible strategy space, we don’t have any 
particular expectation of the type of strategies that would evolve besides 
the ability to invoke both pure Nash and alternating behavior. However, 
as we will see, novel and interesting behavior evolved that we didn’t 
predict beforehand.    

3.5.1 Regimes and epochs 
We start by focusing on what type or types of equilibrium are selected under 

the No-Signal treatment. Figure 3.6 shows the average payoffs obtained by 
each population across all rounds of play. Five panels are shown, each one of 
them corresponding to a different run of the model. Some key patterns can be 
observed and some characteristics inferred based only on the average payoffs. 

Note that the system never fully stabilizes. Instead, it is characterized by 
punctuated equilibria: the system locks for several generations in a kind of 
stasis where average payoffs per population are quite stable, followed by a 
sudden transition into a different (and similarly stable) configuration71. 

                                                        
71 The assertion that the system “never” stabilises is based on longer runs. Some of the 

earliest literature on similar models ran simulations for around 50 generations. Recent work has 
used between 1,000 and 2,000 generations. Besides the five simulations, the model has been 
run several times up to 5,000 and 10,000 generations. One very long simulation that will be 
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Three kinds of equilibrium behavior are identified. Remembering that both 
game’s pure Nash equilibria have payoffs of (3,2) and (2,3), the run in the top 
panel of Figure 3.6 shows consistent coordination on either (A,A) or (B,B). In 
this run, one population is consistently receiving average payoffs very close to 
three and the other very close to two. Thus, one population is ‘dominating’ the 
other in terms of payoffs. The transitions here only change which population 
is getting the higher payoffs. 

The second equilibrium behavior observed, for example, on the third panel 
around the 1,000 generations mark, has both populations obtaining average 
payoffs close to 2.5. Given the structure of the model, without the exogenous 
signal this means that the agents have found a way to coordinate on some sort 
of turn-taking behavior. They are alternating symmetrically between the two 
coordination points, although it is not clear if they are alternating each turn. 
They could, for example, by playing three times in a row (A,A), then three times 
in a row (B,B), and so on. 

The third equilibrium that arises in the model was not foreseen. It can be 
observed in the bottom panel, around generations 1,100 to 1,700. Here agents 
use ‘biased turn-taking’: although they take turns, it is not symmetric. Agents 
are playing, for example, two rounds at (A,A), followed by one round of (B,B) 
and then back to (A,A). This gives both agents a chance to play to their 
preferred coordination point, but one of them having its way more often. This 
is the first time such behavior has been documented in a BOS game, either in 
simulated or experimental data. The micro analysis showing exactly what 
strategies emerged for all three equilibria will be done section 3.5.5.2, allowing 
us to understand how such coordination happens. 

 

Figure 3.6: No-Signal treatment. Average payoffs per population. Each panel is 
one different run of the model, each consisting of 2,000 generations. 

It is convenient to have a formal way to describe and name these equilibria: 
each generation, t, will be classified under one of the following regimes based 
on the a-posteriori probability of observed play. Let ZZ¶V  be the percentage of 
rounds for any pair of agents playing (A,A) during generation t, and LL¶V  the 

                                                        
reported below was run for 100,000 generations. In all runs the system displayed punctuated 
equilibria. 
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analogous for (B,B). Then each generation is classified into one of four regimes 
according to the following rules72: 

• Domination A (B): if ZZ¶V 	 LL¶V > 	0.8 

• Turn-Taking: if (0.4 > 	ZZ¶V < 0.55)	^óò	(0.4 > 	LL¶V < 0.55) 

• Biased Turn-Taking A (B): if 

0.15 > 	ZZ¶V LL¶V < 0.4 	^óò	 0.55 > 	LL¶V ZZ¶V < 0.80  

• Other: if none of the above. 
An epoch is defined as a streak of consecutive generations under the same 

regime. Technically, it is a window of at least ten generations with the same 
regime where no more than three are being classified under a different regime 
(hence allowing for some “mistakes”). For example, 500 generations in a row 
classified under the regime “Domination A” (allowing for a few mistakes) is 
considered as one ‘Domination A’ epoch. 

In order to have representative measures of the system’s behavior, one very 
long simulation (with t=100,000) was run for each treatment73. Compared to 
the t=2,000 of initial simulations, the longer time span gives us a good 
measure of the system’s statistical properties. All of the following data for each 
treatment is based on the corresponding long simulation74. 

Based on such long simulations, less than 1% of generations are classified 
under the ‘Other’ regime. So the system under the No-Signal treatment can be 
accurately described in terms of the three main regimes Domination, Turn-
Taking and Biased Turn-Taking. 

What is the equilibrium behavior of the system when the signal is included? 
Surprisingly, it is very similar to the No-Signal treatment. One can grasp an 
intuitive feeling for this by observing appendix 3.7.2, where figures for the 
100,000 simulations and five short ones for the Signal treatment are 
presented. The reader will notice that the payoffs present very similar patterns 
compared to the No-Signal treatment. Formally, based on the corresponding 
100,000 generations simulation, the system can also be classified in more than 
99% of the time in one of the three main regimes, and constant transitions 
between them are also observed. This means that at the aggregate level, both 
with and without the signal the model presents similar behavior in terms of the 
regimes that emerge. Other treatment differences will be addressed below, 

                                                        
72  The threshold values for each regime were chosen in order to allow a convenient 

classification, and the analysis is robust to reasonable changes. 
73 Having one very long simulation instead of aggregating several short ones for the main 

analysis was chosen for a reason: as will be seen below, some epochs can be rather long, 
characteristic that would be lost with short simulations. 

74 Although one might initially have concerns for the effects of the random initial conditions, 
given enough time and due to the switch between epochs (i.e. the phase transitions), the system 
will eventually forget its past. Each type of epoch (i.e. regime) can be seen as an attractor of the 
model, and by visiting them all the system is no longer dependent on the initial conditions. This 
would be different if the system would lock in one of the attractors forever, which would make 
initial conditions critical. 
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including the probability of finding the system in each regime (confirming this 
result). 

The evidence so far can be summarized as follows: 
Result 1: The behavior of the system can be described in terms of three 

main regimes: Domination, Turn-Taking and Biased Turn-Taking. The 
system never stabilizes in one particular regime, but instead presents 
transitions switching from one long epoch to another in short time spans. 
This applies for both Signal and No-Signal treatments75. 

3.5.2 Efficiency 
The next question we consider is the efficiency of the system. Table 3.1 

presents the average payoffs in the long run as well as the average coordination 
rates. The latter is measured as the percentage of rounds across all generations 
where any pair of agents play a coordination point (either (A,A) or (B,B)). In 
terms of payoffs both treatments have virtually the same value of 2.4, which is 
very close to the Pareto optimal of 2.576. Coordination rates also show that the 
system is highly efficient. In both treatments agents play one of the pure Nash 
strategies (i.e. a coordination point) in more than 95% of rounds. Comparing 
this with the expected coordination rates for agents playing mixed strategies 
(48%) or even playing randomly (50%), it can be seen that the system is equally 
efficient with or without the use of the signal. Contrary to what was 
hypothesised a priori, the signal doesn’t really help agents solve the 
coordination problem. 

Result 2: Under both treatments the system is quite efficient: the 
probability of agents coordinating in one of the two pure Nash equilibria is 
close to 95% with and without the signal. Payoffs are virtually the same and 
very close to the Pareto optimal of 2.5, so we conclude that there are no 
treatment effects in terms of payoffs or efficiency. Agents learn to coordinate 
equally well with or without the exogenous signal. 

                                                        
75 Simulations using an alternative selection mechanism also have been run. Instead of 

selecting 20 top scorers to go directly into the next generation and then using a pairwise 
tournament, the alternative was to conduct the tournaments directly for the whole population, 
without guaranteeing any strategy a direct copy. Simulations are robust to this result, namely 
the regimes observed and the constant transitions between them. 

76 Average payoffs by population are, for the Signal treatment 2.38 and 2.43, and for the No-
Signal treatment, 2.26 and 2.48. Due to the large amount of observations, differences are 
statistically significant, although they seem relatively small in economic terms. Such small 
differences can occur due mainly to the presence of some very long epochs, particularly for the 
Biased Turn-Taking regime (as shown below). 



108 
 

Average Payoffs  Average Coordination 
Rate 

No-Signal Signal  No-Signal  Signal 

2.36 2.4  95% 96% 

Table 3.1: Average Payoffs and Coordination Rates for both No-Signal and Signal 
treatments. Treatment differences are barely noticeable. 

3.5.3 Probabilities of each regime 
We turn now to the differences in regime frequencies. Figure 3.7 presents 

the probability of randomly choosing one generation and having it classified 
under each regime. The percentages presented are equivalent to the ratio of 
the number of generations classified under each regime to the total number of 
generations in the run (here t=100,000). This provides a measure of how much 
time the system spends in each regime. For easy of exposition, notice that 
‘Domination A’ and ‘Domination B’ are aggregated simply as ‘Domination’ (the 
same applies to Biased Turn-Taking). 

 

Figure 3.7: Percentage of the time that the system spends in each regime. 
Measured as the ratio of generations classified under each regime to the total 
generations in the run (t=100,000).  

Figure 3.7 shows that Turn-Taking is the least frequent of the three regimes, 
both with and without the signal. This suggests that CE may not be a more 
likely equilibrium concept than pure Nash. There’s also no evidence that Turn-
Taking would be learned “first”. All simulations ran started with a short period 
of learning (usually no more than ten generations) followed by a Domination 
epoch. This is due to the random generation of automata favoring strategies 
that always play A or always play B (as mentioned before). So in this model, 
behavior consistent with pure Nash equilibrium is both more frequent and 
happens before any kind of Turn-Taking. Figure 3.7 also shows that the system 
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spends most of the time in a Biased Turn-Taking regime under both 
treatments. Why is this the case? 

One potential explanation for the prevalence of Biased Turn-Taking is that 
the system transitions more often into these epochs than into the others. 
Figure 3.8 shows the total number of transitions the system underwent (a), 
and how are those distributed across the three regimes, i.e. the percentage of 
transitions into each regime (b). It can be seen that even if the system 
transitions more often under the No-Signal treatment, the distribution is the 
same under both treatments. For both treatments, Biased Turn-Taking is the 
regime to which the system transitions into least frequently. If Biased Turn-
Taking is the more frequent regime, but also the one to which the system 
transitions into less frequently, the length of the epochs must be driving our 
results77. 

 

Figure 3.8: Panel a): Number of different epochs observed per treatment (i.e. time 
the system underwent a phase transition). Panel b): Distribution of epochs across 
regimes. Under the Signal treatment the system has less phase transitions (left 
panel), but the relative proportions across the regimes is the same for both 
treatments (right panel). 

Figure 3.9 shows the average length of epochs per regime. As expected, the 
Signal treatment has longer epochs than No-Signal. But more importantly it 
also shows that Biased Turn-Taking has the longest epochs of all regimes for 
both treatments. So even if the number of Biased Turn-Taking epochs is low, 
their length makes it more frequent. 

                                                        
77 Further tests on understanding better the difference in the frequency of transitions across 

treatments have been conducted (not reported), although preliminary results show that the 
causes might be quite complex. See section 3.6.3, on “future research”, for additional comments 
on this regard. 
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Figure 3.9: Average length of epochs per regime. Signal treatment presents the 
longest epochs. 

Finally, it is worth emphasizing the difference in time spent under the Turn-
Taking regime across treatments. In this case, the probability of a generation 
being classified as Turn-Taking goes from 11% without the signal to 22% when 
it is included (which can be seen in Figure 3.7) 78. So, even if Turn-Taking is the 
least frequent regime, it is more likely to be found with the signal than without 
it. 

Let us summarize these findings as follows: 
Result 3: Two main treatment effects are identified: first, the system 

undergoes fewer epoch changes under the Signal treatment: a total of 35 
compared to 177 for No-Signal. Second, the probability of finding the system 
under a Turn-Taking regime increases with the Signal from 11% to 22%. 
However, Turn-Taking is the least probable regime for the system. The 
system spends most of its time under Biased Turn-Taking regimes, with such 
epochs being longer, rather than more frequent. 

This result rules out CE being more frequent than other equilibrium 
concepts such as pure Nash, but it doesn’t say anything about agents actually 
following the signal. For this, the strategies that are being used under Turn-
Taking epochs need to be evaluated in a different way, both at the macro and 
micro level. 

3.5.4 Searching for CE behavior at the aggregate level 
In order to analyze behavior consistent with CE, the reader is reminded 

that, here, CE is being used only to refer to an equilibrium in which agents 

                                                        
78 Differences here are statistically significant: since the sample is so large and the units of 

observation are generations, each one taken as an independent observation (with t=100,000), 
standard errors of the mean are on the order of 1×10w® , resulting in very small confidence 
intervals. 
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condition their actions by using the signal. This avoids using CE to describe 
other types of behavior such as pure Nash. 

The first way to explore if there are Turn-Taking epochs in which agents are 
following the signal, is to develop an aggregate measure based on the 
probabilities of agents playing each action conditioning on the signal. The 
intuition is that if agents are following the signal, one should observe, on 
average, that the probability of playing the same action (say A) should be high 
when the same signal is observed (say Heads). On the contrary, if the signal is 
being ignored, one should not expect the same action for each signal. Although 
this measure doesn’t show exactly how agents are coordinating (such analysis 
is done in section 3.5.5), it will allow us to identify if there are epochs in which 
the signal is consistently being followed.  

Let * |y, = Z Ñ = P^"©})  be the observed probability in a particular 
generation for an agent from population ROW to play A, given that the 
observed signal for that round was Tails. Then, using analogous notation for a 
player from population COL, action B and signal Heads, we define our 
Correlated Equilibrium Measure in generation t (öÖ7V) as follows: 

 
Notice that öÖ7V ∈ [0,1]. If agents are using the signal, öÖ7V ≈ 1. Under a 

Domination regime, öÖ7V ≈ 0 . If agents are Turn Taking but ignoring the 
signal, öÖ7V will be somewhere in-between. 

We find that the behaviour of the values of öÖ7 are very stable within single 
epochs. Agents use the signal in the same way within epochs, meaning that 
within a single one, agents tend to use the signal in the same way. Appendix 
3.7.3 shows the öÖ7 values vs. the average payoffs for the Signal treatment. 
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Average 
´¨≠ Regime 

Number 
of 

Epochs 

0.12 Turn-Taking 2 

0.86 Turn-Taking 2 

0.11 Biased Turn Taking 1 

0.23 Biased Turn Taking 1 

0.40 Biased Turn Taking 2 

0.00 Domination 26 

Table 3.2: Average Correlated Equilibrium Measure (CEM) for all observed 
epochs under the Signal treatment. Calculated as the average öÖ7V of all generations 
within a single epoch. Different epochs under the same regime can have the same 
average CEM, which is reflected in the “Number of Epochs” column. 

Table 3.2 presents the average values of öÖ7V  for all different epochs 
observed under the Signal treatment. The values in the left column are the 
average öÖ7V  across all generations within a single epoch. Different epochs 
can have the same CEM value, which is shown in the “Number of Epochs” 
column. The first two rows of the table indicate that out of a total of four 
observed Turn-Taking epochs, the average value of öÖ7Y  is 0.12 for two of 
them and 0.86 for the other two. Thus, in two of the Turn-Taking epochs 
agents are following the signal. This is our first evidence showing that agents 
have indeed learned to play CE. Yet, despite agents being able to learn 
coordination by using the exogenous signal, they can also ignore it completely 
and alternate as they would do in the absence of a signal79. 

Unexpectedly, the CEM also shows that the behaviour under Biased Turn-
Taking regimes can vary widely in its use of the signal. This behaviour will be 
explored below when analysing at the micro level the strategies that emerged, 
but it is worth mentioning that agents use the signal in different ways: this is 
what leads to the various observed intermediate values of the öÖ7  in Table 
3.2. 

How important are the epochs where agents are learning to use the signal? 
The total time the system spends under a Turn-Taking regime in the Signal 
treatment is 22% (Figure 3.7), corresponding to four different epochs. 
However, the two epochs with a high average CEM constitute only 6.2% of the 
total time. So even if the evidence shows that agents can indeed learn to 
alternate their actions by following the signal, this happens rarely in the 
system80. 

                                                        
79  Duffy et al. (2014) found similar results in their experiments. They document evidence in 

a BOS game where subjects exhibit both types of behaviour, alternating both by using the signal 
as well as by ignoring it. 

80 Why are agents not learning CE more often? One potential answer is that the learning 
algorithm is having difficulties in finding complex solutions (strategies) that include processing 
the signal. If the latter is true, one could argue that the results are driven by an inefficient 
algorithm instead of some deeper property of the system’s dynamics. Appendix 3.7.4 
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Result 4: Agents can learn to play CE and alternate their actions tied to 
an external signal. However, the likelihood of finding such behaviour is small. 
Agents can also learn to alternate by completely ignoring the signal. No 
evidence is found of CE being learned faster, or more frequently, than other 
types of behaviour. 

Thus while agents can indeed learn to play by conditioning on the signal, 
such learning occurs very rarely, and CE may not be the best descriptive notion 
of actual behaviour. 

The one remaining question is related to how exactly are agents 
coordinating. Regimes and epochs classification hint at what agents are 
playing and gives us a characterization of the system at the macro level, but 
several different strategies at the micro level can lead to the same aggregate 
patterns. For example, even without the signal, Turn-Taking behaviour could 
be happening by playing (A,A) four times in a row followed by (B,B) four times, 
or by alternating one time on each. Understanding precisely what strategies 
have evolved is also important for the Biased Turn-Taking regimes. Not only 
does the system spend most of its time under such epochs, but the different 
values observed for CEM suggest that coordination happens under a wide 
range of behaviours. Such heterogeneity is impossible to grasp based on the 
aggregate measures presented so far as exploring such findings requires a 
more fine-grained micro analysis of what strategies evolved under each 
regime. 

3.5.5 Micro Analysis 

3.5.5.1 Individual Machines 

Here we observe the exact structure of the most successful strategies playing 
under each regime. How are strategies responding to both the signal and the 
rival’s actions? One first approach to understand these micro characteristics of 
the agents is to observe the top evolved individual machines. 

Figure 3.10 shows some of the most frequent machines for each regime, 
chosen by randomly picking one epoch and selecting the most frequent 
strategy in one population81. The most frequent machine for one Domination 
epoch (Column population) is shown in panel (a), showcasing a very simple 
kind of behavior: play A no matter what. Perhaps surprisingly, simple 
strategies can perform very well in complex environments (see for example 
Gigerenzer et al. (2002) or Gigerenzer et al. (2011)). Strategies for Turn-Taking 
and Biased Turn-Taking are a bit more complex, but still far away from using 
all eight states. Even so, it becomes difficult to gain a clear insight about the 
system by observing only individual strategies. For example, it is hard to infer 
directly from the Turn-Taking machine (panel (b)) if that strategy follows the 
signal. For some particular cases (such as the automaton in panel (b) of Figure 
3.3) this can be easier, but in general it is not trivial. 

                                                        
implements a test that addresses this issue. Results show that without the strategic component 
of the game, agents can easily learn to alternate their actions by using the signal. 

81 The reader is reminded that the machines all have eight internal states, but that some of 
those states can be inaccessible or redundant (e.g. a machine with all eight states having an 
action of A has the same behaviour as a machine with one single state with action A). The shown 
machines are the minimal equivalents. 
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To be able to make such inferences one often needs to observe also the 
opponents’ strategies. These are shown in Figure 3.11 for the Domination and 
Turn Taking regimes. 

 

Figure 3.10: Some evolved strategies from Signal treatment. These were chosen 
by randomly selecting an epoch of the corresponding regime and choosing the most 
frequent strategy for one of the populations. 

As can be seen, the top (most frequent) strategies in the opposing 
population are more complex. By observing the two interacting machines in 
panel (b) (of both Figure 3.10 and Figure 3.11), it is difficult to infer if they are 
following the signal or not. How exactly are they managing to coordinate?82. 
So directly observing the strategies may not be the best way to analyze the 
system at the micro level, unless one limits the strategies to a few internal 
states. 

Another way to analyze the machines, previously used in the literature (e.g. 
Miller (1996) or Ioannou (2013)) is to generate average measures based on the 
accessible states of the machines. For example, checking how many of the 
accessible states in each machine have particular behavioral traits has been 
used to describe cooperation games (e.g. how many states punish defections, 
or how many forgive one). 

Although this approach has proven very useful, it doesn’t come without 
limitations. To illustrate this, observe that larger strategies may not necessarily 

                                                        
82 These two strategies, when playing against each other, actually do follow the signal.  
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use all of their states even if they are accessible83. A machine could only visit a 
subset of the accessible states if no rival machine gives it the necessary input. 
So focusing the analysis on measures of the states of the individual machines 
can be misleading, because it could include behavior that is never actually 
used. 

 

 

Figure 3.11: Evolved complex individual strategies. They were chosen by 
randomly selecting an epoch of the corresponding regime and choosing the most 
frequent strategy for one of the populations. The strategies presented are considered 

                                                        
83 As a reminder, a state is accessible if there exists at least one combination of inputs (i.e. 

opponent’s last action and exogenous signal) that can lead the machine to be in that state. 
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among the complex ones (i.e. having more internal states). Is very difficult to infer 
the behavior of the system by observing them. 

In summary, focusing the micro behavior on the analysis of individual 
machines presents two potential difficulties: first, single machines don’t 
capture the interaction between strategies. Second, average measures of the 
accessible states can be misleading, for not all of them are necessarily visited. 
So how can such analysis be done? In order to solve these issues, this paper 
uses ‘Joint Machines’ analysis84. 

3.5.5.2 Joint Machines 

The interaction between any two automata can be modeled as a Joint 
Machine (JM). A JM is a ‘meta’ machine that represents, in a single automaton, 
the observed behavior of two automata playing each other. An example is 
appropriate to understand it. 

Figure 3.12, in panels (a) and (b) shows automata for the No-Signal 
treatment. Is not straightforward to understand how are they coordinating by 
directly observing them, but panel (c) shows the corresponding JM. Both 
interacting machines start playing B in their initial state, which is represented 
by a starting state of the JM with action BB. The machine in (a), after observing 
B, transitions to its last state with action A, while the machine in (b) transitions 
to a state with action B (also its last). These actions are captured by the second 
state of the JM, with a joint action of AB. Following the same logic, using the 
input received by each machine and the state they transition into, the JM 
captures the actions in states that are visited. In Figure 3.12, by observing the 
JM in (c), it is easy to notice that after the two initial rounds, both machines 
will take turns, alternating their coordination point from AA to BB and back to 
AA, indefinitely. These machines correspond to a Turn-Taking regime. 

Notice that JMs’ actions are no longer the action of one particular strategy, 
but those of both interacting machines that are being represented. A state of 
the JM is given by corresponding states of the two interacting machines. So if 
the action of the JM is, for example AB, it means that in that particular state 
one agent plays A and the other B. This representation makes a JM a simpler 
representation of complex behavior. 

 

                                                        
84 This approach is an original idea of, and has been developed by, professor John H. Miller. 

The implementations here are based on his own original algorithms via personal 
communication. 
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Figure 3.12: Example of Joint Machine for No-Signal treatment. When the 
machines in (a) and (b) play each other, their interaction can be represented as the 
Joint Machine in (c). These machines evolved under a Turn-Taking regime. 

Without the signal there is no stochastic component, so the JM is 
completely deterministic (as the one in panel (c) of Figure 3.12). With the 
signal, transitions of the JM will depend only on the stochastic observed signal 
H or T. In any case, since the constituent automata are finite, the JM at some 
point will return to one state-pair that has already been visited, and from there 
cycle between a subset of states indefinitely85. The focus in what follows of this 
section is on the Signal treatment, but some intuition about JMs under No-
Signal can be found in Appendix 3.7.5.1. 

Turn-Taking Joint Machines: 

                                                        
85 In the formal definition of automata in section 3.4.2, the following are the differences 

when the automata defined is a JM instead of a single strategy. For both Signal and No-Signal 
treatments, the JM actions are Z)	t	{ZZ, LL, ZL, LZ}. For Signal, now † = Ñ ∈ {°, P}, meaning 
that the machine no longer depends on the input Zw) (opponent’s action last round) since such 
information is already contained in the actions of each internal state. Under No-Signal the 
machines are simpler: † is no longer defined since the JM doesn’t depend in any input or state 
of the world. The transitions are deterministic with ù: õ → õ, with each state Q having one single 
transition into another õ. 



118 
 

 

Figure 3.13: Joint Automata that evolved during the Turn-Taking epochs of the 
Signal treatment. Each machine was picked from the corresponding epoch (with low 
or high CEM value). One generation was randomly chosen from that epoch, and the 
most frequent Joint Machine is the one shown. Probability Density Functions show 
the long-run probability of finding the machine in each particular internal state. 

Observe the JM presented in panel (a) in Figure 3.13, which is one of the 
three representative JMs shown for three different Turn-Taking epochs. The 
machine has only two states. In the starting one, both machines play A, and 
whatever the observed signal is (either H or T), it will always transition into 
the second state. In the second state, the action is BB, and again the transitions 
are the same regardless of the signal, returning into the initial state. This JM 
represents two strategies that when interacting will take turns playing (A,A), 
then (B,B), then (A,A) and so on. Notice that this machine completely ignores 
the signal, but still manages to perfectly alternate. This is precisely what the 
CEM captures at the aggregate level. Such machines belong to a Turn-Taking 
regime with öÖ7Y = 0.12: a low value reflecting that under such regime agents 
are not relying on the signal to coordinate their actions. 
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The JMs presented in Figure 3.13 are representative of the behavior 
observed during each epoch 86 . They were chosen by randomly picking a 
generation from an epoch with the corresponding CEM and then selecting the 
most frequent JM. For example, for the machine in panel (a), its frequency is 
67%. This means that 67% of all the pairs of strategies playing each other in 
such generation are described by this automaton87. 

Associated with each machine, there is a Probability Density Function 
(PDF). It shows the probability of finding the machine in each state in the very 
long run. States that have zero probability would only be visited before the JM 
starts cycling, so in the long run their probability tends to zero. Those states 
with positive probabilities are the ones characterizing the core behavior of the 
system, and will be referred to as the cycling states. Finally, it is worth noting 
that the cycling states are also very stable across epochs. Even if the JMs don’t 
represent 100% of the interactions, usually the states in the cycle do. Two JMs 
can have different states before reaching the cycle, but once there, their 
behavior is very similar. This is the case for JMs in panels (b) and (c), having 
different states with low probability, but the same cycle. JMs, and particularly 
the states with positive probabilities in the PDF, are an excellent tool for 
understanding the micro behavior of the system. 

Let us also explain the behavior found in panels (b) and (c). Such JMs give 
us another formal way to understand the CE learned by the agents. Notice the 
cycling states (again, the ones with positive probability in the PDF). Even if 
both machines are from different epochs and have different states, their 
cycling behavior is identical. In both JMs the behavior alternates between AA 
and BB depending on the signal: in any of the two cycling states, whenever the 
signal is T, it will transition to the actions AA. Whenever it is H, it will 
transition to actions BB. This shows that the machines have learned to 
interpret the signal and coordinate based on it. As expected, on average, most 
JMs found under Turn-Taking epochs (the three panels) will play 50% of the 
times AA and 50% of the times BB. The difference —what is being captured by 
the CEM—is whether their transitions depend on the signal or not. This can be 
easily grasped in the JMs by observing the transitions in the cycling states. 

Biased Turn-Taking Joint Machines: 

                                                        
86 A total of four Turn-Taking epochs were identified for the No-Signal treatment. Only three 

machines are shown because the JM that doesn’t follow the signal (panel (a)) was found to be 
representative under two of them. The other two epochs with high CEM values are shown in 
order to highlight that even if the machines are different, their core behaviour can be the same. 

87 With 40 agents in each population, the total number of possible Joint Machines in each 
generation is 40×40 = 1,600.  
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Figure 3.14: Joint Automata that evolved during a Biased Turn-Taking epoch of 
the Signal treatment. Each machine was picked from an epoch having a different 
CEM value. One generation was randomly chosen from that epoch, and the most 
frequent machine is the one shown. Probability Density Functions show the long-run 
probability of finding the machine in each particular internal state. 

The corresponding analysis for the Biased Turn-Taking regime is also 
presented. Representative JMs for epochs with different CEM values are 
shown in Figure 3.14. Notice that the ratio of AA to BB actions varies across 
JMs (observe the probabilities of each machine being in AA or BB during the 
cycling states). This characteristic is impossible to grasp by observing only the 
aggregate classification based on the regime. 

Each machine uses the signal differently in each state. For example, the JM 
in panel (a) interprets the signal consistently in state 4 and state 5, but not in 
its other states. In state 4, it transitions to AA given H and to BB given T. This 
means that the two constituent strategies found a way to coordinate by using 
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the signal in that particular state. In state 5 an interpretation to the signal is 
also given, but it is the opposite of that in state 4: BB when H and AA when T. 
In state 3, the machine completely ignores the signal and always transitions to 
state 4. Here again, such behavior would have been impossible to observe 
based only on the aggregate CEM measure of 0.11 (and very difficult to grasp 
based on the individual machines). The JM’s cycling states and the associated 
PDFs allows an understanding of how partial signal following is happening. 
Similar intuitions can be made for the other JMs in the Biased Turn-Taking 
epochs. 

Perhaps the reader could have had an accurate a priori intuition of the kind 
of behavior observed under the Turn-Taking regime based on the values of 
CEM. Even so, the JMs present a much more intuitive and clear analysis of 
how machines coordinate. But for the Biased Turn-Taking epochs, such a 
priori expectations are more unlikely: the varied and perhaps less intuitive 
ways in which agents follow the signal were not hypothesized and were 
surprising. Potentially finding some strategies that follow the signal and others 
that don’t was initially thought of. But observing such behavior under one 
single interaction (one single pair of agents) that represents strategies able to 
follow the signal or ignore it at the same time, was unexpected. This is a nice 
example of how adaptation can come up with marvelous and unexpected 
solutions that would be difficult to anticipate. 

Result 5: Analysis based on Joint Machines (which summarizes any two 
interacting strategies) is more clear and robust than analyzing individual 
machines. For the Turn-Taking epochs, such analysis shows how some agents 
completely ignore the signal and how others perfectly condition on it. For the 
Biased Turn-Taking epochs, it shows that single machines can at the same 
time ignore, partially use, or perfectly follow the signal depending on the 
history of the game (i.e. their internal state). 

3.6 CLOSING REMARKS 

3.6.1 Summary 
This paper uses an explicit evolutionary process, simulated by a genetic 

algorithm, in order to analyze the effects of an exogenous signal in a repeated 
Battle of the Sexes coordination game. Its focus is on analyzing the strategies 
that emerge when coordinating with boundedly rational agents. 

Contrary to what was expected, with and without the signal, coordination 
behavior was quite similar, presenting the same types of equilibria (such as 
pure Nash and alternation, both symmetrical and asymmetrical). 
Interestingly, the system doesn’t settle down to a single equilibrium, but rather 
exhibits a constant transition from one to the other. Efficiency in terms of 
payoffs is the same with and without the signal, meaning that agents 
coordinate equally well under both setups. The main difference found was the 
frequency of transitions from equilibrium to equilibrium: with the signal, there 
is more stability (i.e. less transitions). 

Our adaptive agents can indeed learn to coordinate consistently using the 
signal as a “recommendation” of what to play. However, such behavior is 
learned very rarely (around 5% of the time), making other strategies a more 
likely descriptive notion of observed behavior. 
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This is the first work using adaptive agents in the long run to study 
coordination games that include a signal. The above results constitute our 
main findings regarding Correlated Equilibrium. It also analyzes automata by 
focusing on Joint Machines: ‘meta’ automata that summarizes several 
interacting agents in a single representation. This analysis permitted us to 
analyze complex agents. Regarding Correlated Equilibrium, this analysis 
showed that when the signal is included some strategies can alternate their 
actions by using the signal while others can do so by completely ignoring the 
signal. It also allowed us to see that signal interpretation is not necessarily as 
intuitive as one might think, and that complex strategies learned to use signals 
in very different ways. For example, the same strategy can, depending on the 
history of the game, sometimes use the signal as different “recommendations” 
of play, partially use it, or completely ignore it. This complexity on how 
strategies use the signal would be difficult to observe without this 
methodology. 

Previous studies of signal use in coordination game have mainly been done 
with experiments. Conclusions from such experiments show that even though 
some subjects can indeed learn to alternate their actions by following an 
exogenous signal, this rarely happens, as they can also alternate by completely 
ignoring signals (as in Duffy and Feltovich (2010)). One of the main 
advantages of evolutionary simulations is that they allow agents to learn over 
considerably longer time spans than in the lab. The limited time span of the 
lab has led some authors (e.g. Cason and Sharma (2007)) to speculate that 
signal conditioning would probably be learned much more often if agents were 
given more time. Our results, however, show that this is not necessarily the 
case, reinforcing previous results that cast doubt on the notion of  Correlated 
Equilibrium as an accurate description of commonly observed behavior. 

3.6.2 Discussion 
The Battle of the Sexes game has both coordination and conflict elements 

(Camerer (2003), p.354;  Lau and Mui (2008), p.154). This “mixed motive” 
social situation arises because both players want to coordinate and choose the 
same action (a social or shared motive) but also disagree on the activity they 
want to coordinate on (an individual motive). Our results show that the 
coordination dimension is solved most of the time, with or without the signal: 
the system is equally efficient most of the time. But the degree of conflict 
inherent in the solutions (equilibria) found by the agents can vary at different 
moments in time. When agents are taking turns symmetrically, they have 
found a solution without any conflict in terms of received payoffs, but when 
playing one of the Nash solutions consistently or under asymmetric turn 
taking, the conflict dimension is not solved. We can make a distinction in the 
behavior of the system in terms of the time span analyzed. In the short run, 
coordination seems to dominate over conflict. But since regimes are subject to 
change and transitions, in the (very) long run the conflict issues are averaged 
out. So in the long run the system has both coordination an absence of conflict 
(or efficiency and equality), but at any moment in time only coordination is 
found for sure. 

Regarding the effects of the signal, in theory it could help agents solve both 
coordination and conflict. However, since agents learn to coordinate quite well 
without it, the signal is addressing a problem that doesn’t need help to be 
solved. The signal could also solve the conflict dimension, but in evolutionary 
terms, it only does that in occasion according to our model. At the heart of this 
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distinction, is the game theoretic induction approach to solve these problems. 
Theoretically, agents could reason a priori and arrive to a common 
understanding about how to use the signal to solve both coordination and 
conflict, hence playing conditioning on the signal.  But this would require a lot 
of reasoning and common knowledge. And notice that such outcome is only 
one possibility consistent with traditional rationality, since one agent being 
completely stubborn and only playing its preferred action, with the other 
complying, is a Nash Equilibrium. 

In summary, it seems that the signal doesn’t have the expected effect in 
behavior because agents don’t really need it to coordinate. And even if the 
signal could solve the conflict dimension in the short run, the system can still 
operate under different degrees of conflict, since it doesn’t lead to 
miscoordination or efficiency losses. In the long run, without the signal, both 
dimensions are solved, so the introduction of the signal seems redundant. 

3.6.3 Future research 
One of the main behavioral differences found between the No-Signal and 

Signal treatments was the difference in number of transitions. Tests on 
alternative treatments have been conducted, hinting that such results can be 
related to how the mutation rates interact with the number of transitions in 
the machines. However, results are not conclusive. The problem seems more 
complex than anticipated, requiring the development of better performing 
software than the one currently being used. Not only being able to run 
simulations for longer time spans could aid in this regard (which would reduce 
potential effects of very long epochs), but would also allow more efficient 
exploration of other potential variables that could also be related88. 

Answering the above is also related to more general questions, to be 
pursued in the mid and long-term. Recent efforts in evolutionary biology have 
focused on understanding similar phase transitions in natural systems, and 
other areas ranging from statistical physics, to artificial life to evolutionary 
robotics, have already made some contributions in understanding general 
principles of such changes across domains89. The computational nature of our 
model makes detailed analysis of all its components feasible, at least in 
principle. Understanding what mutations at the micro level are necessary for 
the system to transition, what aggregate measures show that the system is 
“ripe” for a sudden change and what precise evolutionary pathways are 
followed when this happens, will certainly shed some light not only in better 
understanding equilibrium behavior in systems with boundedly rational 
agents, but also into understanding phase transitions in evolutionary, artificial 
and social systems. 
  

                                                        
88 Several of this tools have already been implemented. Some measures such as evolutionary 

“waste” or inefficiency in the construction of the machines, or unused behaviour related to 
unvisited states present in the machines (reflecting potential for change in the system) have 
already been explored. However, their examination is currently very expensive in computational 
terms, requiring further development on the implemented software. 

89 Solé (2016) presents a recent review of contributions across different fields. Sornette 
(2004) is an example of how understanding phase transitions is relevant for social sciences, in 
this case financial markets. 
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3.7 APPENDIX 

3.7.1 Formal presentation of correlated equilibrium and the one 
shot BOS game90 

3.7.1.1 Correlated strategy pairs: relations with pure and mixed strategies 

In a game one shot game with two players having two possible actions the 
general form of a correlated strategy pair is 

  Player 2 

  C D 

 Player 
1 

A *; *X 

B *Å *Æ 

where *; + *X + *Å + *Æ = 1. Such strategy can be represented as a 4-dimensional 
vector ( = *;, *X, *Å, *Æ , meaning that (A,C) is played with probability *; , (A,D) is 
played with probability *X, etc.. Under correlated strategy ( the expected payoffs or 
rewards of player "  are denoted as à)(()  and calculated with respect to the joint 
distribution of the actions to be taken. So such payoffs are given by a linear 
combination of the *): 

à) ( = *;à) Z, ö + *Xà) Z, N + *Åà) L, ö + *Æà)(L, N) 

Notice the relationship between a correlated strategy pair and other 
strategy types. If *) = 1 for some ", then the correlated strategy pair is a pair of 
pure strategies. If ( is of the form (ú|, ú 1 − | , 1 − ú |, 1 − ú 1 − | ) then it 
corresponds to a pair of mixed strategies. Here, Player 1 takes action A with 
probability ú  and Player 2 takes action C with probability | , with such 
probabilities being independent of the action of the rival. This makes the set of 
correlated strategy pairs an extension of the set of mixed strategy pairs. 

In general, to attain a correlated strategy pair communication is required, 
with an agreement on it before the game is played. However, the agreement is 
not (and cannot be made) binding, so players are free to ignore any 
recommendation. 

3.7.1.2 Conditions for a CE in a 2x2 matrix game 

According to strategy pair ( = *;, *X, *Å, *Æ , Player 1 is recommended (by the 
randomization device or the external third party) to play A with probability *; + *X. 
Given that Player 1 is recommended to play A, the probability of Player 2 being 
recommended to play C is ¶r

¶r_¶Ø
. 

In a CE each player should maximise her expected payoffs à)(() given the 
recommendation (signal) she receives. So if Player 1 is recommended to play A, her 
expected payoffs under such a correlated strategy pair are 

                                                        
90 A textbook presentation on correlated equilibrium can be found in Myerson (1997). The 

one in this appendix was greatly benefited from the lecture notes of Dr. David Ramsey used at 
the University of Limerick, found online at 
http://www3.ul.ie/ramsey/Lectures/Operations_Research_2/gametheory4.pdf (last visited on 
April 25 of 2016).  
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à; ( =
*;à; Z, ö
*; + *X

+
*Xà; Z, N
*; + *X

 

If Player 1 ignores her recommendation to play A and she plays B instead, 
her expected payoffs are 

à; ( =
*;à; L, ö
*; + *X

+
*Xà; L, N
*; + *X

 

For stability it is required that 
*;à; Z, ö
*; + *X

+
*Xà; Z, N
*; + *X

≥
*;à; L, ö
*; + *X

+
*Xà; L, N
*; + *X

 

which leads to 

*;à; Z, ö + *Xà; Z, N ≥ *;à; L, ö + *Xà;(L, N) 

For the sake of completion, notice that the above expression is not defined 
in the case where *; = *X = 0 since we would be dividing by zero. However, in 
this case Player 1 is never recommended to play A and this condition might 
then be ignored. 

The same line of argument given above can be used for the conditions 
corresponding to the following recommendations: i) Player 1 to play A, ii) 
Player 1 to play B, iii) Player 2 to play C and 4) Player 2 to play D. 

Hence, the four condition for a correlated equilibrium, respectively for the 
above recommendations are: 

*;à; Z, ö + *Xà; Z, N ≥ *;à; L, ö + *Xà;(L, N) 

*Åà; L, ö + *Æà; L, N ≥ *Åà; Z, ö + *Æà; Z, N  

*;àX Z, ö + *ÅàX L, ö ≥ *;àX Z, N + *ÅàX L, N  

*XàX Z, N + *ÆàX L, N ≥ *XàX Z, ö + *ÆàX L, ö  
There are some relationships between correlated equilibria and other types 

of equilibria that are worth mentioning. First, any Nash equilibrium pair of 
strategies is also a correlated equilibrium. Second, a pair of mixed strategies 
that is not a Nash equilibrium is not a correlated equilibrium. Third, any 
randomization over Nash equilibria is also a correlated equilibrium. Finally, 
any randomization over a set of strong Nash equilibria can be attained by joint 
observation of a public signal91. 

3.7.1.3 Battle of the sexes correlated equilibrium 

The CE solution of interest in this paper for the BOS game, as indicated in 
the main text, is the one given by a fair coin toss as the exogenous signal. 
Formally, such CE is described as ( = ;

X
, 0, 0, ;

X
. This equilibrium is both an 

utilitarian and an egalitarian equilibrium. Let us define such properties 
formally and then use the concrete payoffs examined in this paper in order to 
derive such solution. 

                                                        
91 The two last conditions allow the easy graphical representation of the convex hull for 

correlated equilibria, as in the main text. In such case for the BOS, both (A,C) and (B,D) are 
strong Nash equilibrium, so any correlated strategy pair that picks (A,C) with probability * and 
picks (B,D) otherwise, is a correlated equilibrium. 
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1) Utilitarian equilibrium: an equilibrium which maximizes the sum of 
the expected payoffs of the players 

2) Egalitarian equilibrium: an equilibrium which maximizes the 
minimum expected payoff of a player. 

Since the expected payoff of players are linear combinations of *) , the 
criteria above can be expressed as a maximization of a linear combination of 
*). So equilibria of such types can be derived by defining the problem as a linear 
programming one. For this, consider the following payoff matrix, with the 
same rewards of interest as in the main text: 

  Player 2 

  A B 

 Player 
1 

A 2,3 0,0 

B 0,0 3,2 

 
The utilitarian equilibrium can be found by solving the following problem: 

max í = (2 + 3)*; + 0 + 0 *X + 0 + 0 *Å + 3 + 2 *Æ = 5*; + 5*Æ 

subject to 

*) ≥ 0	gy|	" = 1,2,3,4 

*; + *X + *Å + *Æ = 1 

2*; + 0*X ≥ 0*; + 3*X ⟹ *; ≥
3*X
2

 

0*Å + 3*Æ ≥ 2*Å + 0*Æ ⟹ *Æ ≥
2*Å
5

 

3*; + 0*Å ≥ 0*; + 2*Å ⟹ *; ≥
2*Å
5

 

0*X + 2*Æ ≥ 3*X + 0*Æ ⟹ *Æ ≥
3*X
2

 

The first two restrictions represent the conditions for (*;, *X, *Å, *Æ)  to 
define a joint distribution. The final four conditions are the ones required for 
the solution to be a correlated equilibrium (as defined before). 

One could solve this problem for all *), but there is a simpler way if one 
knows the pure Nash equilibria for this problem. Here, (A,A) and (B,B) are 
Nash equilibria that maximize the sum of the payoffs to the players over the 
set of pure strategy pairs. And any randomization over these two Nash 
equilibria is a correlated equilibrium that gives the same sum of payoffs. 
Hence, any ( of the form ( = 	 (*, 0, 0, 1 − *) is a utilitarian equilibrium. So ( =
;
X
, 0, 0, ;

X
 is a utilitarian equilibrium. 

Let’s turn now to the egalitarian equilibrium. For this, it is convenient to 
notice that the BOS game is not symmetric but still has a degree of symmetry. 
A 2x2 game where both players can choose either action A of action B will be 
called quasi-symmetric if the following conditions hold (which is indeed the 
case for BOS): 
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à; ", a = àX(a, ") 

à; ", " = àX a, a , ,ℎ{|{	" ≠ a, ^óò	", a	t	{Z, L} 

In words, this means that a payoff vector on the leading diagonal is the 
reverse of the other payoff vector on that diagonal. 

As a result, at an egalitarian equilibrium of a quasi-symmetric game both 
players must obtain the same expected payoffs. So to find an egalitarian 
equilibrium of a quasi-symmetric game, the problem is to maximize the 
expected sum of the payoffs using the same constrains as before, but adding a 
new one: that both players should obtain the same payoffs. Hence the problem, 
is 

max í = 5*; + 5*Æ 

subject to (as before) 

*) ≥ 0	gy|	" = 1,2,3,4 

*; + *X + *Å + *Æ = 1 

2*; + 0*X ≥ 0*; + 3*X ⟹ *; ≥
3*X
2

 

0*Å + 3*Æ ≥ 2*Å + 0*Æ ⟹ *Æ ≥
2*Å
5

 

3*; + 0*Å ≥ 0*; + 2*Å ⟹ *; ≥
2*Å
5

 

0*X + 2*Æ ≥ 3*X + 0*Æ ⟹ *Æ ≥
3*X
2

 

and adding the condition 

2*; + 3*Æ = 3*; + 2*Æ ⟹ *; = *Æ 

 

As before, any correlated equilibrium of the form (*, 0, 0, 1 − *) maximises the 
sum of expected payoffs. And observing that setting * = ;

X
 holds for that new 

last condition, one can then define ;
X
, 0, 0, ;

X
 as the egalitarian equilibrium of 

interest. 

3.7.2 Additional overview of average payoffs 
Statistical analyses of the model are based on the simulations presented on 

Fig. A. One very long run with 100,000 generations is run for each treatment. 
Fig. B presents five shorter simulations for the Signal treatment, analogous to 
the figure presented on the main text for No-Signal. 
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Fig. A: Average payoffs per population. Longest simulations for both Signal and 
No-Signal treatment with 100,000 generations. Statistical analyses in the main text 
are based on these runs of the model. 

 

Fig. B: Signal treatment. Average payoffs per population. Each panel is one 
different run of the model, each consisting of 2,000 generations. 

3.7.3 Correlated Equilibrium Measure (CEM) 
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Fig. C: Average Payoffs on Signal treatment (top panel)  vs. Correlated 
Equilibrium Measure CEM (bottom panel). Vertical lines in the bottom panel indicate 
the end of an epoch. It can be seen that within single epochs, the CEM is quite stable, 
meaning that agents use (or not) the signal in the same way consistently under each 
single epoch. 

3.7.4 A learning test 
Why agents don’t learn to play CE more often? If the cause is that the 

algorithm finds it difficult to explore the larger strategy space when the signal 
is included, then not finding CE more often wouldn’t be due to an interesting 
feature of the strategic interactions of the agents, but rather to having an 
inefficient (or perhaps wrongly ‘tuned’) learning mechanism. In order to 
address this concern, a test for the model in the Signal treatment was run by 
changing the payoffs of the game. The test is implemented by modifying the 
payoffs depending on the outcome of the signal in each round as follows: 

Payoffs if Signal = Heads  Payoffs if Signal = Tails 

  Player 2    Player 2 

  A B    A B 

 Player 
1 

A 3,3 0,0   Player 
1 

A 0,0 0,0 

 B 0,0 0,0  B 0,0 3,3 

 
Notice that with these payoffs there’s no conflict of interests between the 

agents. If they are able to follow the signal in this environment, it means the 
algorithm is not having difficulties exploring the larger strategy space 
(compared to No-Signal). The model was run five different times up to 2,000 
generations. Under this setup both generations will have the exact same 
payoffs and the Pareto optimal is now three for both populations. 

 In all of the simulations agents quickly learned to follow the signal and 
coordinate appropriately. After some generations (around 30) the system’s 
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behaviour becomes stable. No transitions are observed, average payoffs settle 
very close (2.85) to the Pareto optimal and the average öÖ7Y is very close to 
one (equals 0.9). This indicates that the learning mechanism has no problems 
finding CE strategies. If agents don’t learn CE is due to the strategic 
environment, not due to something inherent to the implementation of the GA. 
Fig. D shows graphically this information (only 200 generations are reported 
due to the model becoming very stable and not presenting relevant changes).  

 

Fig. D: Average payoffs and CEM for the learning test. Around generation 30 
agents have learned to follow the signal almost perfectly, shown by the high payoffs 
and high CEM. 

3.7.5 Additional Joint Automata (JM) 

3.7.5.1 No-Signal JMs 
Compared to the JMs with the signal, the ones without are much simpler 

due to their deterministic nature. Fig. E presents three typical JMs that 
evolved, one under each regime. All JMs without the signal have a very similar 
“lollipop” shape: they visit several states in order, and at their end (since the 
automata are finite) they transition back to one that was previously visited. 
This last transition marks the beginning of a cycling behavior, meaning that 
the machine will forever repeat its actions. In our analysis, usually the JM takes 
one or more states that can include some miscoordination, but then enters the 
cycle and coordinates in a way reflected by the corresponding regime.  
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Fig. E: Joint Automata under No-Signal treatment. Transitions are deterministic. 
The machines will eventually come back to an already visited state, cycling forever 
into a subset of states. Each Joint Automata corresponds to the indicated regime. 
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