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Abstract

This Thesis is written in three parts. The first part describes the analytic cal-

culation of the unequal-time correlator of cosmic strings and superstrings. The

first efficient constraint analysis of all string and superstring network parameters

is performed. By studying the effect of cosmic strings on the cosmic microwave

background (CMB) radiation it is discovered that cosmic strings must make

up a vanishingly small proportion of the energy density of the universe. The

constraints on string network parameters are all skewed toward reducing the

magnitude of energy density arising from strings. Also in this Part, a better

comprehension of the unconnected segment model (USM) was gained. In partic-

ular, a greater understanding of the string scaling parameter Lf was garnered,

as well as finding the reason why the USM tends to provide greater power than

simulations of Nambu-Goto cosmic strings.

The second part contains a detailed description of statistical cosmology and

how differences between parameter constraints from different data sets can lead

to misleading quantification of discordance. The majority of this part describes

different methods of quantifying differences between probability distributions

and how these can be interpreted. In particular, using the most up-to-date data

possible, differences between parameter constraints using the CMB and probes

of large scale structure (LSS) in the universe can be measured. With current

data the discordance can be interpreted as a low level of disagreement, but the

application of prior ranges on well known parameters can force the tension to be

greater. Using data from earlier work, this issue is considered in greater detail,

with extensions to the accepted ΛCDM model added to test if the discordance

can be alleviated. These extensions include the addition of active or sterile neu-

trinos and even ad-hoc changes to the primordial power spectrum. Although

there are slight hints that these may help, when considering only the new data it

might be unwise to believe that the discordance between parameter distributions

from different data sets exists to a degree where the modifications are necessary.

Finally, application of deep learning to astrophysical observations is discussed.

Using neural networks to learn about specific problems is de rigueur and their

use in astronomy and cosmology is a promising field of study. In particular,

applying raw data to neural networks can often outperform, or add enhanced

features, to what is possible with current, non-empirical feature detection. The

classification of supernovae from their light curves can be achieved using a spe-

cific machine learning architecture called a recurrent neural network (RNN).
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Using the raw data from supernova light curves, the RNN is able to learn about

features in sequences which can be used to classify types of supernova. Although

a large training set is needed to perform as well as current techniques, one major

advantage the RNN method has is the possibility of early detection. Rather

than needing the entire light curve to perform statistical fits to categorise the

supernova type, relatively little information from the early observation data is

needed to classify using the RNN. Installing RNN on machinery for observation

would save a vast amount of time by early classification since only supernovae

of interest can be concentrated on.
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Never before have such accurate measurements of the evolution of the universe

been available. Using the incredible amounts of accumulated data on cosmic his-

tory it is now possible to interpret how the cosmos must have matured into the

domain that currently exists. The field of modern cosmology began almost ex-

actly a century ago with the advent of Einstein’s general relativity [124] followed

by Lemâıtre’s and Friedmann’s prediction of the expansion of the universe [135;

231], confirmed by Hubble in 1929 [188]. This was furthered by the conjecture of

the cosmic microwave background (CMB) radiation (described in Part I–2.2) by

Gamow, Alpher and Hermann [26; 136] and its vindication in 1965 by Penzias

and Wilson [284]. Precision cosmology, in truth, began with the Cosmic Back-

ground Explorer (COBE) satellite and its measurements of the thermal spectrum

of the CMB from 1989-1993 [254]. From this time onwards observations of the

cosmos have become progressively detailed, pinning cosmological features such

as the amount of matter and energy, and the expansion history. From this, it can

be inferred that the universe probably began with a period of inflation, settling

into expansion driven by, firstly radiation pressure, followed by a matter era and

finally entering a stage of dark energy domination [122; 152]. Using the precision

measurements available, the total energy density in the universe coming from the

everyday matter that we see around us must account for ∼5%. Around 25% of

the energy density comes from a form of weakly interacting “dark matter” which

must be non-relativistic, or “cold”, to fit current observations. This is known

as cold dark matter (CDM). The remaining 70% of the energy budget exists as

“dark energy”, a mysterious force - still not well understood - which causes the

expansion of the universe to accelerate [343]. More about this standard model

of cosmology, referred to as ΛCDM, will be presented in Part I–2.

CMB observations reached their pinnacle with the Planck experiment [354]. This

is the third generation CMB mission following the aforementioned COBE satel-

lite and the Wilkinson Microwave Anisotropy Probe (WMAP) [53]. COBE’s Far-

InfraRed Absolute Spectrophotometer (FIRAS) first measured the blackbody

spectrum of the CMB at TCMB = 2.73K [254]. It also showed that anisotropies

existed only on a level of one part in one-hundred-thousand, i.e. the anisotropies

had an amplitude of ∆T . 10µK [253]. COBE’s successor, WMAP managed to

measure these anisotropies to such an extent that it could constrain the age of

the universe to 13.8 billion years within a precision of 1% [53]. WMAP was also

instrumental as placing ΛCDM as the standard model of cosmology, measuring

the distribution of energy density between radiation, baryonic matter, CDM and

dark energy [53]. WMAP’s finding suggested that the geometry of the universe

was consistent with being flat with an initial period of inflation [53]. As well as
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measuring the temperature anisotropies of the CMB, WMAP detected the E-

mode polarisation - a curl-free signature of photons scattering from electrons [53].

The results from the polarisation measurements suggested that primordial den-

sity fluctuations were adiabatic, i.e. an underdensity in one species, say the pho-

ton, would be accompanied by an underdensity in other species [53]. The Planck

satellite advanced WMAP’s achievements, measuring the CMB anisotropies at

three times higher resolution, making the measurements limited only by fore-

ground subtraction and not by the detector performance [354]. The satellite

contained two instruments, a Low Frequency Instrument (LFI) and a High Fre-

quency Instrument (HFI), both capable of measuring the temperature and po-

larisation of photons. The detailed measurements from Planck secured ΛCDM’s

position and suggested that extensions, such as massive neutrinos or modified

gravity were not essential or even likely [14]. Not only was Planck capable of ob-

serving the CMB anisotropies and its polarisation but it also had a wide variety of

other scientific objectives. Two worth mentioning here are the surveying of weak

gravitational lensing of the CMB - the perturbation of CMB photon trajectories

by the gravitational potential around dense objects such as galaxy clusters [15],

and the counting of the number of galaxy clusters using the Sunyaev–Zel’dovich

(SZ) effect - the heating of photon temperature by inverse Compton scattering

with high energy electrons in the intracluster plasma [17].

Since measurements of the universe have become so specific, theoretical predic-

tions about what may exist beyond ΛCDM can be tested. Although observations

from Planck suggest there is no distinguishable deviation from ΛCDM there is

still some scope for constraints to be placed on extensions of the standard cosmo-

logical model. Features in the CMB give an indication of physics which occurred

earlier in the history of the universe than the surface where photons last scat-

tered with ionised protons and electrons, a time known as recombination [281;

386]. Before this era, the universe was at an extremely high temperature - high

enough that we know at least the electromagnetic and weak forces were uni-

fied [145; 315; 374; 375] and that the strong force could be unified under a larger

grand unified theory (GUT) [140; 278]. Signatures of a GUT could be left be-

hind during symmetry-breaking phase transitions [103]. The possibility of these

signatures from topological defects, in particular cosmic strings, being detected

is discussed in Part II. Here, the two-point correlation function of cosmic strings

is analytically calculated, allowing constraints on the string network parameters

to be obtained using observations of the CMB.

Although the CMB as measured by Planck is in complete agreement with the
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theoretical predictions of a ΛCDM cosmology, this does not take into account

what other data may indicate about the state of the universe. It has been

noticed that there are a variety of probes of large scale structure (LSS) with

parameter constraints that do not agree with the constraints obtained using

Planck in a ΛCDM model [5; 12; 45; 57; 112; 138; 156; 183; 222; 245; 300;

310; 382]. This discordance suggests that there is a possibility of an extension

to the standard cosmological model to bridge the differing results obtained on

the largest scales of the CMB to the smaller scales of LSS. To calculate whether

the discordance exists, a deep understanding of the differences between high

dimensional cosmological probability distributions is necessary. Part III–1 in-

troduces several measures which quantify the similarity or difference between

posterior distributions with the same parameters in the same model, but con-

strained by different data sets. Once a measure is established, the constraints

from cosmological data can be considered. Loosely, measurements of LSS prefer

less small scale structure than CMB observations. This is noticed for a number

of different observational probes including: redshift-space distortions (RSD) [58]

- the squashing of galaxies in real-space due to their observation in redshift-

space; weak gravitational lensing [10; 169] - the warping of a photon’s path by

the variation in gravitational potential it passes through; and SZ galaxy cluster

counts [12] - the number of galaxy clusters determined by the heating of photons

due to inverse Compton scattering in the intracluster plasma. Details of these

probes can be found in Part III–2.2. Since each of these probes are independent,

non-correlated observations, they can be combined to form a much tighter set of

parameter constraints than each probe independently. Nominally, it is seen that

there is not a very statistically significant difference between the posterior distri-

butions from the combined LSS data sets and Planck. The story changes when

applying well known cosmological priors which shift the LSS posterior along cor-

related parameter directions into regions which are in greater tension with the

Planck constraints. If these priors are to be believed then extensions to ΛCDM

can be considered to alleviate the discordance. Some well motivated extensions

(discussed in Part III–2.4) include the addition of active or sterile neutrinos and

modifications to the primordial power spectrum.

The analysis of cosmological data requires ever more sophisticated computa-

tional techniques and greater understanding of assumed astrophysics. Future

large-scale surveys will produce such large quantities of data, current processing

techniques will not be powerful enough [107]. One of the, potentially promis-

ing, methods to improve data processing is the application of deep learning [39].

Deep learning is a way of generating a specific algorithm from a generic set of
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expressions contained within “neurons”. Networks of these neurons are trained

to take an input and interact such that the output is the required answer, and so

provide a black box-like algorithm. In Part IV there is a description of machine

learning and how neural networks can be trained. It is often necessary to pull

the key components from data for analysis to be able to deal with large quanti-

ties of information [269]. In Part IV–2 the raw data from simulated supernova

light curves are fed directly into a neural network. By learning directly from

the data, without needing any fitting, early classification of supernovae can be

achieved - well before the end of the whole observation. If techniques such as

this were applied to current technology, such as telescopes, then huge amounts of

observation time could be saved by focussing only on the desired supernovae type.

The remainder of this Part introduces a detailed description of ΛCDM and how

it can be constrained via imprints in the CMB.



Chapter 1

Theory

To truly understand some aspects of this Thesis it will be useful to know some

differential geometry terms such as manifold, covariant derivative, scalar, vector

and tensor. To make it clear what these refer to, this chapter will contain a short

description of some of the major points of general relativity which can be used

as a guide throughout.

1.1 Manifolds, curvature and parallel transport

A manifold is a formally defined topological space, i.e. a set of points with neigh-

bours which follow certain axioms [30; 264, Chapter 9]. More than just a set of

points, a manifold is locally a Euclidean space - the n-dimensional space of real

numbers Rn [30; 264, Chapter 9]. Maps into the n-dimensional space of complex

numbers Cn can be conceived but are not considered here. Coordinates can now

be defined since each point on the manifold has a one-to-one mapping into the

space of real numbers [30; 264, Chapter 9]. Any point which is unique in Rn must

therefore be unique on the manifold, although the manifold need not contain a

map to all of Rn [30; 264, Chapter 9]. A subset of the points on the manifold

can be mapped to a patch of coordinates in Rn, which can be transformed to a

different set by mapping back to the manifold and then forward to Rn using a

different map [30; 264, Chapter 9].

Scalar, vector and tensor fields can be defined on this manifold. Firstly, a (real)

scalar field is simply a function which assigns a point in the manifold to a number

(or coordinate) in Rn [30; 264, Chapter 9]. At each point in the manifold there is

a tangent vector space, a set of functions (called vectors) which act on the points

on the manifold describing how a scalar function changes [30; 264, Chapter 9].

An example of this is the changing of a function in a timelike direction, i.e. a

velocity. A vector field then is a selection of vectors from the vector space at

6
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each point on the manifold showing how a monotonically (single-valued) increas-

ing interval mapped into points on the manifold changes at each point [30; 264,

Chapter 9]. This can then be interpreted as the direction of the flow of a func-

tion at each coordinate in the space of real numbers. One-forms are cotangent

to vectors, meaning that a one-form acting on a vector (or a vector acting on

a one-form) is a real number, i.e. a scalar field [30; 264, Chapter 9]. Finally,

this can be generalised to a tensor field with rank (p, q) which describes a linear

functional of p one-form fields and q vector fields [30; 264, Chapter 9].

Within this Thesis, particularly in this Part, the components of the metric tensor

will be used to define the geometry of space. The metric tensor g, is a symmetric

(0, 2)-type tensor field which acts on two vector fields to give a number in Rn.

This can be interpreted as the measure of the square of the length on the mani-

fold, ds2 [161, Chapter 7; 264, Chapter 11]. Coordinates in Rn are denoted xµ,

where greek indices label of the dimension n, of the manifold, i.e. µ = 0→ n−1.

The distance relation between points on the manifold separated by infinitesimal

coordinate intervals dxµ is

ds2 = gµν(x)dxµdxν , (I–1.1)

where gµν(x) are the components of the metric tensor in a given coordinate ba-

sis [109, Chapter 2; 161, Chapter 7; 264, Chapter 14]. Here similar indices are

summed over, ςµς
µ ≡

∑n−1
µ=0 ςµς

µ. This notation will be used throughout the

Thesis.

Manifolds need not be flat, and in fact, direction is conceptual [30; 264, Chap-

ter 11]. Since vectors at different points are in different vector tangent spaces

they cannot be compared, there is no idea of direction between tangent spaces.

One way to introduce direction is to consider parallel transport via a covari-

ant derivative [264, Chapter 14]. If there is a curve through two points on the

manifold then the value of a vector at the second point from the first point’s

vector space will not necessarily be equal to the vector from the vector space at

the second point. The covariant derivative is defined by comparing the vector

from the first vector space, which is parallel to the curve at the second point, to

the vector from the second vector space given that the points are infinitesimally

separated [30; 264, Chapter 11]. Since this difference is equivalent to the vector

at the first point being transported in a predefined way to the second point, it

describes another vector. This is one of the useful properties of the covariant

derivative, a derivative on a rank (p, q)-type tensor still has rank (p, q) [30; 264,

Chapter 11]. Parallel transport requires vectors transform covariantly, the com-
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ponents of a vector must change in a way such that the vector is invariant under

change of coordinate basis. The corrections to the components of the vector are

known as Christoffel symbols Γαµν , and ensure a change of basis vector, say from

eµ to eν , define the same vector via

∇µeν = Γανµeα , (I–1.2)

where ∇µ ≡ ∇eµ is the covariant derivative along the flow lines of the eµ ba-

sis vector [109, Chapter 2; 161, Chapter 22; 264, Chapter 11]. If a vector is

parallel transported such that its basis vector doesn’t change, then its covariant

derivative vanishes. This allows the Christoffel symbols to be calculated from

the components of the metric tensor. The metric tensor g, acts on vectors to pre-

serve distances on the manifold at any point. Since the metric tensor acting on

the two vectors is a real number, it’s covariant derivative vanishes. This means

the covariant derivative of the metric itself must vanish at every point. Using

the definition of the covariant derivative acting on a rank (0, 2)-type symmetric

tensor, such as the metric, and knowing this vanishes allows the calculation of

the Christoffel symbols

Γαµν =
1

2
gαβ(∂µgβν + ∂νgµβ − ∂βgµν) , (I–1.3)

where gαβ are the inverse components of the metric tensor (gµν(x))−1 with ∂µς ≡
∂ς/∂xµ as differentiation with respect to the coordinate xµ [109, Chapter 2; 161,

Chapter 7; 264, Chapter 11]. The idea of curvature in the manifold can be

constructed from the Christoffel symbols. Any non-zero displacement between a

vector at a point on the loop and the vector parallel transported around the loop

indicates curvature of the manifold [264, Chapter 11]. Requiring the vector and

the transported vector be equal reveals a rank (1, 3)-type tensor known as the

Riemann curvature tensor. This parallel transporting of vectors about a curved

manifold introduces the commutator of covariant derivatives along the direction

of the initial vectors as well as the covariant derivative of the commutator of those

vectors. The components of this tensor which preserve a change of coordinate

basis (when the coordinate bases commute) are

Rαβµν = ∂µΓανβ − ∂νΓαµβ + Γαµ%Γ
%
νβ − Γαν%Γ

%
µβ . (I–1.4)

These components anticommute under interchange of either the first two indices

or the last two and commute under interchange of the first two with the last

two [109, Chapter 2; 264, Chapter 11]. From the Riemann curvature tensor,

two other important quantities for this Thesis can be calculated. These are the

Ricci tensor and the Ricci scalar, both obtained via contraction of indices [109,

Chapter 2; 264, Chapter 11]. Firstly the components of the Ricci tensor are
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found by contracting the first and third indices Rµν ≡ Rαµαν and so can be

calculated from

Rµν = ∂αΓανµ − ∂νΓααµ + ΓααβΓβνµ − ΓανβΓβαµ . (I–1.5)

The Ricci scalar is finally found by contracting the inverse components of the

metric tensor with the components of the Ricci tensor R ≡ gµνRµν [109, Chap-

ter 2; 264, Chapter 11]. The components of the metric tensor and its inverse can

be used to raise and lower indices on vectors, one-forms and tensors such that

ςαν ≡ gαµςµν or gµαgµβ = δαβ where δαβ is the Krönecker δ, where δαβ = 1 when

α = β but vanishes otherwise.

One final tensor should be described here, the components of the Einstein ten-

sor Gµν [109, Chapter 2; 161, Chapter 7; 264, Chapter 14]. This contains the

transverse components of the Ricci tensor and in four spacetime dimensions is

Gµν ≡ Rµν −
1

2
gµνR , (I–1.6)

where, as a consequence of Bianchi identities, ∇µGµν = 0. It will be convention

throughout to refer to the components of a tensor by the tensor’s name, i.e.

the components of the Einstein tensor is named the Einstein tensor and the

components of the metric tensor called the metric.



Chapter 2

ΛCDM cosmology

2.1 Friedmann equation and cosmological evolution

The standard model of cosmology, named ΛCDM, depends on just a few key as-

sumptions. It is presumed that the universe is both homogeneous and isotropic -

the universe appears the same from any position with no preferred direction [135;

161, Chapter 18; 231]. One exact solution to Einstein’s field equations, built

on these assumptions, is the Friedmann-Lemâıtre-Robertson-Walker (FLRW)

metric [135; 231]. This describes a universe which can either be expanding or

contracting, whose spatial expansion a(t) can be time-dependent and is written

ds2 = −dt2 + a(t)2

[
dr2

1− κr2
+ r2dΩ2

]
, (I–2.1)

where κ describes the curvature of space, dt and dr are the timelike and ra-

dial coordinates and dΩ2 = dθ2 + sin2 θdφ2 are spherical polar coordinates [161,

Chapter 18]. κ can be normalised such that κ = 1, 0, −1 describes spherical,

Euclidean and hyperbolic spaces respectively [161, Chapter 18]. κ will not be

normalised when mentioned later so that more general statements about param-

eters can be made. It will be useful, throughout this Thesis, to consider the

comoving - or conformal - time τ , which is related to physical time t via ([109,

Chapter 2])

τ ≡
∫

dt

a(t)
. (I–2.2)

Einstein’s field equations describe how energy affects the geometry of spacetime

through ([109, Chapter 2; 161, Chapter 22])

Gµν = 8πGTµν − Λgµν , (I–2.3)

where Gµν is the Einstein tensor from equation (I–1.6) and gµν is the metric. G

is Newton’s constant, Λ is the cosmological constant (further discussed below)

10
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and Tµν is the energy-momentum tensor which contains the information about

the elements of matter in the universe. For perfect fluids, which will be solely

discussed in this Thesis,

Tµν = (%+ p)uµuν + pgµν (I–2.4)

where %(t) is the energy density of each constituent form of matter and p(t) is

the corresponding pressure [161, Chapter 7]. uµ ≡ gµνu
ν where uν is the four-

velocity of the fluid where gµνu
µuν = −1.

There are three sources of energy to be concerned with in the universe: ra-

diation; matter; and dark energy [109, Chapter 1]. Radiation describes relativis-

tic species such as photons or massless (or even relativistic massive) neutrinos,

whilst matter relates to the non-relativistic species such as baryons or CDM.

Massive particles are relativistic when their kinetic energy is comparable to or

greater than their rest energy [259, Chapter 3]. CDM is an essential ingredi-

ent to ΛCDM and is necessary to provide the correct structure growth in the

universe (discussed in Part I–3.3). Dark energy is a force which causes the ex-

pansion of the universe to accelerate, the current cause of which is unknown [109,

Chapter 1]. In ΛCDM cosmology the cosmological constant is responsible for

dark energy. It provides an energy density which is constant through time [161,

Chapter 18]. To see how each of the constituents affects cosmological expansion

Einstein’s field equations (given in equation (I–2.3)) are used along with an equa-

tion of state. The equation of state relates the pressure of one the constituents

to its energy density, p = w% [161, Chapter 18; 376, Chapter 1]. For radiation

and matter w can be found by comparing the energy density of particles in a

given volume to the pressure within the volume. For radiation w = 1/3 and

for matter w = 0 [161, Chapter 18; 376, Chapter 1]. The equation of state

parameter for a cosmological constant can be found by absorbing the last term

in equation (I–2.3) to the Tµν term by transforming

% → %+
Λ

8πG
,

p → p− Λ

8πG
.

(I–2.5)

Substituting these into the equation of state requires w = −1 to cancel the Λ

terms. This means that Λ provides the negative pressure necessary to cause

accelerated expansion [376, Chapter 1].

The evolution of the universe is described by the Friedmann equation, provided
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by the 00-component of equation (I–2.3) with an FLRW metric. In conformal

coordinates, where Λ has been absorbed,

H2 =
8πGa2

3
%(τ)− κ . (I–2.6)

H = a′/a is the Hubble function, a is the scale factor first mentioned in equa-

tion (I–2.1) and ′ ≡ d/dτ is differentiation with respect to conformal time [161,

Chapter 18]. It becomes useful to consider the critical density [161, Chapter 18],

the density required to yield a flat universe,

%c ≡ 3H2

8πGa2
. (I–2.7)

Using the critical density, a dimensionless density parameter can be defined as

the ratio

Ω ≡ %(τ)

%c
. (I–2.8)

The current total energy density in the universe can be calculated from the

measurements of the Hubble function and the density parameter today, H0 = H0

and Ω0, setting the present-day scale factor a0 = 1 [161, Chapter 18]. Ω0 = 1

corresponds to a currently flat universe. Since the total energy density is formed

from the energy densities of radiation, matter and dark energy it becomes useful

to define their present density parameters as Ωr, Ωm and ΩΛ respectively, where

Ω0 = Ωr + Ωm + ΩΛ. The evolution of each species is dictated by the fluid

equation derived by the vanishing divergence of the energy-momentum tensor

∇µTµν = 0 [264, Appendix B]. In an FLRW universe this is

%′ = −3H(%+ p) . (I–2.9)

Solving for an arbitrary equation of state, p = w% gives the evolution of energy

density as % ∝ a−3(1+w) [161, Chapter 18]. By substituting in the equation of

state parameter for each species, the evolution of the universe is given by the

evolution of the density of its constituents,

H2 = H2
0

(
Ωra

−2 + Ωma
−1 + ΩΛa

2 − Ωκ

)
, (I–2.10)

where Ωκ = 1−Ωr−Ωm−ΩΛ indicates the deviation of the universe from flatness.

Equation (I–2.10) describes the background evolution of a ΛCDM universe. Due

to the different scaling regimes of each of the constituents, the universe went

through different epochs of expansion [109, Chapter 1]. First, radiation was the

dominant cause of cosmic expansion, followed by the matter contribution. If the

universe were not flat, the curvature term would then come to dominate finally

reaching a regime of cosmological constant expansion.
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2.2 Cosmic microwave background

2.2.1 CMB temperature

The universe was opaque until approximately 300,000 years after the big bang [109,

Chapter 1]. Due to the large amount of energetic radiation when the universe

was young, nuclei were instantly ionised [161, Chapter 17]. The mean-free path

length of travelling photons was extremely short at this time. It was only as

the universe cooled well below the binding energy of electrons and protons, at a

temperature of T ≈ 2700K, that photons could begin to free-stream [316, Chap-

ter 3]. The free-streaming occurs below the binding energy of electrons and

protons because there is such a large proportion of photons to baryons, so the

probability of interaction is high [109, Chapter 2]. This surface of last scattering

is what is being observed by measurements of the CMB.

Due to collisions with electrons earlier than the surface of last scattering, the

CMB photons were in equilibrium as they began to free-stream [109, Chapter 2].

This means that the CMB forms an extremely precise blackbody spectrum [109,

Chapter 1]. The temperature of the CMB blackbody evolves proportional to the

inverse scale factor, since the energy density of photons is proportional to the

fourth power of the temperature and evolves as a−4 [109, Chapter 2]. The cur-

rent temperature is TCMB = 2.7255(6)K [131], which is in the microwave band

of the electromagnetic spectrum.

2.2.2 Anisotropies

The CMB is a perfect blackbody to one part in ten-thousand [339]. Below this

level this anisotropies begin to appear. It is, in fact, these anisotropies which

give insight to the interesting physics in the early universe. A favoured paradigm

is where they are caused by quantum fluctuations during a period of inflation at

the beginning of the universe and form the seeds of all structure seen today [376,

Chapter 8]. To see where they come from Einstein’s field equations need to be

taken beyond zeroth-order. First the components of the metric tensor can be

Taylor expanded to

gµν = ḡµν + δgµν , (I–2.11)

where ḡµν is the background components of the metric (equivalent to gµν as

so far used) [109, Chapter 5; 376, Chapter 5]. δgµν describes a perturbation

about ḡµν . The Einstein tensor can be recalculated using this expansion which

gives, again, a background component Ḡµν (equivalent to Gµν before) and the
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fluctuation δGµν [109, Chapter 5; 376, Chapter 5]. In a similar vein, the energy-

momentum tensor is expanded to

Tµν = (%̄+ δ%+ p̄+ δp)uµuν + (p̄+ δp)gµν + σµν . (I–2.12)

It is conventional to denote the perturbed quantities as the density contrast

δ ≡ δ%/%̄ and the pressure contrast Π ≡ δp/%̄ [109, Chapter 5; 376, Chapter 5].

σµν is a first-order tensor describing the anisotropic stress. The perturbed version

of the Einstein field equations can be formed

δGµν = 8πGδTµν , (I–2.13)

dictating the evolution of the fluctuations until they surpass the perturbative

regime [109, Chapter 5].

Since the energy density (and the fluctuations in the energy density) of pho-

tons is related to the temperature %γ ∝ T 4, then the anisotropies in the CMB

photons can be found by measuring the temperature across the sky [109, Chap-

ter 8]. The photon temperature anisotropy is defined as

Θ(n̂) =
T (n̂)− TCMB

TCMB
, (I–2.14)

that is, the normalised difference between the temperature in the direction of the

unit vector n̂ and the CMB temperature TCMB [109, Chapter 8; 376, Chapter 2.6].

The CMB temperature is found by averaging the temperature from all directions

on the sky from all positions

TCMB = 〈T (n̂)〉 ,

=
1

4π

∫
dΩn̂T (n̂) .

(I–2.15)

where dΩn̂ is the infinitesimal solid angle in a direction n̂. Θ(n̂) from equa-

tion (I–2.14) is continuous but can be decomposed into a set of discrete spherical

harmonics Y m
` (n̂),

Θ(n̂) =
∑
`m

a`mY
m
` (n̂) , (I–2.16)

where a`m are an infinite set of complex, constant coefficients, with ` = 0→∞
and m = −` → ` [109, Chapter 8]. Since the Θ(n̂) are random variables, each

of the a`m are also random variables [109, Chapter 8]. The spherical harmonics

are the analogue of the Fourier series over the surface of a sphere where ` = 0

refers to a function on the whole sphere, ` = 1 over the three axes of the sphere

and so on [96]. Higher ` therefore corresponds to fluctuations on smaller scales.

The a`m then describe the amplitude of these fluctuations at every position in

the universe [376, Chapter 2.6].
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2.3 Power spectrum

The average of the temperature fluctuations over the whole sky vanishes but

the variance does not [109, Chapter 8]. The variance is directly related to the

angular power spectrum C`. C` is a measure of the average amplitude of a`m for

each ` independent of the orientation of the function, given by m [109, Chapter 8;

376, Chapter 2.6]. This is written

〈a`ma∗`′m′〉 = δ``′δmm′C` , (I–2.17)

where 〈 〉 implies the average over infinite realisations of random processes, i.e.

averages over infinitely many different primordial perturbations each with a set

of a`m [376, Chapter 2.6]. The measured temperature variation Θ(n̂) can be

related to the angular power spectrum by taking the ensemble average

〈Θ(n̂)Θ(n̂′)〉 =
∑
`

2`+ 1

4π
C`P`(n̂ · n̂′) , (I–2.18)

where P`(n̂ ·n̂′) are the Legendre polynomials. To find this, the addition theorem

for spherical harmonics [121] has been used, along with equation (I–2.17). The

observed power spectrum differs from the theoretical power spectrum of equa-

tion (I–2.18) since there is only one available set of a`m which can be observed,

those of the CMB [109, Chapter 8; 376, Chapter 2.6]. In this case equation (I–

2.18) remains the same but the definition of the angular power spectrum changes

to ∑
m

|a`m|2 = (2`+ 1)Cobs
` . (I–2.19)

The expected square of the fractional difference ∆C` = (Cobs
` − C`)/C`, be-

tween the theoretical and observed angular power spectrum reveals a fundamen-

tal uncertainty in the measurement of the C` known as cosmic variance [109,

Chapter 8; 376, Chapter 2.6] which states that〈
∆C2

`

〉
=

2

2l + 1
. (I–2.20)

At low ` there is a large uncertainty between the observed Cobs
` and the theoret-

ical C` which becomes smaller for large `. It is useful to consider Θ(k), which

is the Fourier transform of Θ(n̂), since the wavenumber k quantifies the size of

scales on the CMB [109, Chapter 8]. The temperature anisotropy can be decom-

posed into an initial condition ξ(k), and a transfer function T`(k), which is the

solution to the evolution equation of each energy-density species evaluated until
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today [109, Chapter 8]. The power spectrum can now be written as

〈Θ(k)Θ(k′)〉 =

∫
d3k

(2π)3

∫
d3k′

(2π)3
〈ξ(k)ξ(k′)〉|T`(k)|2 ,

=

∫
d3k

(2π)3
P0(k)|T`(k)|2 .

(I–2.21)

In the second line 〈ξ(k)ξ(k′)〉 = (2π)3P0(k)δ(3)(k − k′) where P0(k) is the pri-

mordial power spectrum which describes any ignorance in initial conditions [109,

Chapter 8]. More about the primordial power spectrum will be mentioned in

Part I–3. Equation (I–2.21) can be equated to Fourier transform of equation (I–

2.18) integrating over all angles on the sky to find the relation between the

photon transfer function and the C`,

C` =
2

π

∫
dkk2P0(k)|T`(k)|2 . (I–2.22)

In the next chapter, more detail about calculating the photon transfer function

T (k), will be mentioned.



Chapter 3

Calculating observable effects

3.1 Einstein-Boltzmann equations

To constrain cosmological parameters detailed information about the individual

elements which make up the universe and their interactions must be calculated.

This is done using the Einstein-Boltzmann equations [109, Chapter 4]. The gen-

eral form of the Boltzmann equation describes the rate of change of the probabil-

ity density function of an ensemble of particles due to forces acting on them, their

diffusion and any collisions which occur [109, Chapter 4]. It is useful to begin

by considering each component and their interaction. CDM provides collision-

less, pressureless perturbations to Einstein’s field equations [109, Chapter 4; 376,

Chapter 6], whilst massless neutrinos are also collisionless but provide pressure

since they are a form of radiation [109, Chapter 7]. Massive neutrinos (which

can be considered a form of hot or warm dark matter) are again collisionless, but

they become non-relativistic once the temperature of the universe drops below

their mass and so the momentum dependence cannot be integrated out [109,

Chapter 7]. More about this will be mentioned in Part III–2.4.1. Photons and

baryons are coupled in the early universe via Compton scattering, and so provide

a collision term to the Boltzmann equations [109, Chapter 4; 376, Chapter 6].

Here, “baryons” is a term collectively describing protons and electrons as well

as neutral hydrogen, and neutral and ionised helium [109, Chapter 4].

Codes such as CMBFAST [327] and CAMB [237] treat the Einstein-Boltzmann equa-

tions in a particular way. The evolution of the CMB temperature (and polari-

sation) anisotropies are described using a hierarchy of coupled differential equa-

tions [243; 327]. These include a Compton scattering term due to the photon’s

interaction with baryons as well as the influence from all the other constituents

through their coupling to geometry [109, Chapter 4; 243]. By integrating these

17
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Figure I–3.1: (Top) Planck2015 temperature power spectrum with ΛCDM best

fit. (Bottom) Residuals with respect to ΛCDM [356].

over the past lightcone, the temperature anisotropies can be written as a geomet-

ric term, in the form of Bessel functions, which are independent of cosmology

and a source term encoding all the physics [327]. This is very efficient since

the Bessel functions can be precomputed on a grid and only the first few pho-

ton multipole moments need to be calculated [237]. Since power from the low

multipole moments are transferred to the higher multipoles more terms in the

expansion need to be kept for accurate computation, but still relatively few are

needed compared to calculating each of the multipoles independently [327]. As

the power spectrum is smooth then the amplitude of the C` only needs to be

calculated at a sparse number of multipoles, which can then be interpolated be-

tween. This is only true for larger ` & 10 since the spectrum is discrete at small

multipoles [237; 327].

3.2 Power spectrum shape

The values of cosmological parameters can be inferred from the angular power

spectrum for the temperature anisotropy. The amplitude of the C` at a particular

` come from the various interactions during the early universe [109, Chapter 8].

The low ` anisotropy is dominated by the Sachs-Wolfe effect and, to a lesser

extent, the integrated Sachs-Wolfe effect (ISW) [295; 312]. These occur due to

the gravitational redshift (or blueshift) of CMB photons due to fluctuations in

the gravitational potential at last scattering, or due to time-dependent fluctu-

ations of the gravitational potential between the surface of last scattering and
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the present day. The angular power spectrum due to the Sachs-Wolfe effect is

proportional to 1/l(l + 1). For this reason the power spectrum is often plotted

as multipole ` against l(l + 1)C` [68].

The higher ` anisotropies come from the effective temperature of the photons

and velocity of the radiation-matter fluid at last scattering [335] and further

input from the ISW [295].

The main features in the power spectrum from CMB photons is due to the

interplay between tightly-coupled photons and baryons moving through a grav-

itational potential when the universe was still opaque [282; 347] . The baryon-

photon fluid is somewhat compressible and at the bottom of a gravitational

potential well the photons are in an overdense region causing a maximum in

the photon temperature. Pressure in the fluid causes the photons and baryons

to rarefact to an underdense region with a minimum in photon-baryon density

and minimum in the photon temperature. The fluid collapses again and the

oscillations continue until the photons decouple from the baryons at which point

the overdensities and underdensities in the temperature are frozen in. These

baryon acoustic oscillations (BAO) form peaks in the power spectrum. The first

peak is caused by the photon-baryon fluid which has only undergone maximum

compression by the time of freeze-out, with the second due to the first maximum

rarefaction and so on [109, Chapter 8].

Since baryons are massive they provide drag, slowing the movement of the fluid

and thus increasing the frequency of the peaks, but they also increase the grav-

itational potential [378]. This has the effect of increasing the amplitude of the

odd peaks and reducing the even peaks [280].

Doppler shifting of the photon temperature also occurs due to movement in

the photon-baryon fluid. At maximum compression and maximum rarefaction

the fluid is stationary and thus the Doppler shift has no effect, but inbetween

photons temperatures are modified. These are completely out of phase with the

BAO and thus have the effect of flattening out the peaks in the power spec-

trum [109, Chapter 8].

Finally, the photon-baryon fluid is not truly completely coupled since the in-

teraction cross-section is not infinite. This means that there is some diffusion of

photons through the baryons which causes a washing out of the peak structure

of the power spectrum which becomes more pronounced for higher ` [334].
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It is through the use of the peak structure of the power spectrum that constraints

can be put on the amount of matter, radiation, dark energy and curvature in

the universe, amongst many other factors.

3.3 Cosmological parameters

So far, only vague descriptions of how different constituents affect the universe

have been discussed. These can be collected into a few cosmological parame-

ters. In ΛCDM in particular there are six parameters which can be tuned to

precisely match the observed power spectrum [122]. These parameters are the

physical densities of baryons and CDM, the size of the sound horizon at last

scattering, the amplitude of primordial scalar perturbations, the spectral tilt of

the primordial power spectrum and the optical depth to reionisation which are

written Ωbh
2, Ωch

2, ΘMC, As, ns and τR respectively.

The physical densities of baryons and CDM are self-descriptive. They are

directly related to the density contrast of equation (I–2.8) and more directly

Ωm = Ωb + Ωc of equation (I–2.10). h is a dimensionless number equivalent

to 0.01 × H0 km−1s Mpc where H0 is the Hubble constant. It was originally

introduced to quantify the uncertainty in the value of the Hubble constant in

historic measurements [317; 365], but can be well constrained now that H0 is

known to within a few percent. Since Ωb and Ωc appear directly in the Fried-

mann equation (I–2.10) they clearly have an effect on the background evolution

of the universe. They also affect the temperature anisotropies. As mentioned

in the previous chapter, baryons are tightly coupled to photons and result in

BAO. If the fraction of baryons in the universe is higher the relative heights of

the odd peaks to the even peaks in the power spectrum become larger. Also,

due to the greater drag caused by a larger density of baryons, the C` at higher

multipoles become more washed out [187; 335]. The CDM content provides the

gravitation potential which initially causes the oscillations to occur [65; 69; 280].

This gravitational potential is also the progenitor of the Sachs-Wolfe effect and

the ISW [295; 312]. It is therefore connected with various aspects of the power

spectrum, including the small-scale amplitude, the frequency of the BAO peaks

and their relative heights [66].

The first peak of the CMB power spectrum describes the fundamental mode

of the photon-baryon fluid frozen in at last scattering, as mentioned in the pre-

vious chapter. ΘMC describes the angular size of this sound horizon. Although
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there is some dependence on the amount of CDM and the value of the Hubble

constant, it is mostly determined by the amount of curvature in the universe [95].

The primordial power spectrum P0(k), first mentioned in equation (I–2.21),

quantifies any ignorance in the early universe. It is widely acknowledged that

the universe began with a period of exponential growth known as inflation [16;

152]. This solves many issues which arise from observations of the universe, such

as: isotropy - the fact that non-causally connected regions look the same; ho-

mogeneity - the temperature is the same throughout the universe; and flatness -

the curvature of the universe must be highly fine tuned to match observations.

It is not in the remit of this Thesis to go into too much detail about inflation.

For more information see the review [239]. It is, however, important to note

that observable fluctuations in the universe could come from perturbations in

the field causing inflation, the inflaton [16]. Variations in the inflaton can be

assumed to be Gaussian and (nearly) scale invariant. In the exactly scale invari-

ant case, the primordial power spectrum is described by the Harrison-Zel’dovich

spectrum [160; 385]. For deviations from scale invariance, the power spectrum

can be quantified with just two parameters, the scalar perturbation and the

spectral tilt, As and ns

P0(k) = Ask
ns−1 . (I–3.1)

If ns = 1 then the spectrum is totally scale invariant and P0 provides a shift in

the amplitude of the CMB power spectrum only. However, if ns 6= 1 then the

tilt in primordial power spectrum influences the scale dependence in the CMB

power spectrum.

After recombination, when protons and electrons bound to form neutral hy-

drogen, photons were able to free stream [109, Chapter 4]. Later, regions of the

universe began to become dense again due to gravitational collapse. In these

collapsed regions the energy became large enough to ionise the neutral hydro-

gen, an epoch known as reionisation [109, Chapter 4; 184; 346]. Photons began

to scatter off electrons once again, with some fraction of the CMB photons be-

ing scattered out of the line-of-sight [67; 282; 348] . The probability that the

photons scatter during reionisation is proportional to exp(−τR) where τR is the

optical depth to reionisation. τR can be found by integrating the electron density

and the scattering cross-section from the period of reionisation until today [184].

This causes a dampening in the high multipole tail of the power spectrum. The

main effect of reionisation, though, is causing polarisation of the CMB photons.

Two types of photon polarisation are seen in measurements of the CMB. These
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Parameters Constraints

Ωbh
2 0.02222± 0.00023

Ωch
2 0.1199± 0.0022

100ΘMC 1.04086± 0.00048

ln
(
1010As

)
3.090± 0.039

ns 0.9652± 0.0062

τR 0.078± 0.019

Table I–3.1: Constraints on the six ΛCDM parameters from the Planck2015

temperature and low-` polarisation results [14]. It should be noted that in [19],

with the inclusion of the Planck low-` EE polarisation likelihood from Planck

HFI (lollipop) analysis τR reduces substantially to τR = 0.058± 0.012.

are the curl-free E-mode and the divergence-free B-mode, named due to their

similiarity to the electric and magnetic fields respectively. E-modes are created

by photons scattering off electrons, which is the reason why polarisation is ex-

pected to arise during reionisation. B-modes on the other hand are created via

interactions with gravitational waves [205], although E-modes can leak into the

B-mode signal so foreground contamination must be well considered [6]. The

discovery of B-mode polarisation from primordial gravitational waves would be

an exceptional tool since it could probe into the epoch before last scattering,

earlier than the temperature or E-mode polarisation are able to [205; 206; 324;

328; 384].

Although six parameters provides a very simplistic model of cosmology, it is

remarkable how well they fit the data. The Planck2015+low-` [14] cosmological

parameters constraints can be found in Table I–3.1. ΛCDM is often extended

by the addition of five other parameters [9]. So far no mention has been made

to tensor perturbations, for which new parameters such as the primordial tensor

amplitude and tensor spectral tilt are needed. The spectral indices (scalar and

tensor) could also be allowed to run so the primordial power spectrum is not only

not scale invariant but the spectral index is itself scale dependent [53]. The equa-

tion of state parameter for dark energy could also deviate from w = −1 [340].

A large portion of this Thesis includes extensions to the vanilla six parameter

ΛCDM. For example, in Part II cosmic string parameters are added to modify

the CMB power spectrum to constrain to what extent cosmic strings are present

in the universe. Since tensor perturbations are provided by cosmic strings then

the ΛCDM tensor parameters are also included. In Part III–2.4.1 massive and

sterile neutrino parameters,
∑
mν , and meff

sterile and ∆Neff are included to try
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and reconcile inconsistent ΛCDM parameters when constrained using the CMB

and probes of LSS.

3.4 Markov chain Monte Carlo

With some selected data D, a likelihood function L(D|θ,M), can be constructed

from the theoretical calculations within a given model M with parameters

θ [196]. This is the probability of the data given some parameter values within a

model. For example, using RSD (described in more detail in Part III–2.2.2) ob-

servations measure three quantities, the Alcock-Paczynski factor, the ratio of the

comoving volume distance to the distance to the sound horizon during the drag

epoch and the growth rate θ = {FAP(zeff), DV(zeff)/rs(zd), f(zeff)σ8(zeff)} [143].

The correlation between these parameters can be collected in a covariance matrix

CRSD. A likelihood can then be produced by considering the difference between

the data and the theoretical model, say ΛCDM, prediction

L(RSD| θ,ΛCDM) ∝ exp

[
−

(θobs − θpred)C−1
RSD(θobs − θpred)

2

]
. (I–3.2)

θobs and θpred are the values of the three RSD parameters from observations

and calculated from a set of cosmological parameters in the theoretical model

respectively. C−1
RSD is the inverse of the observed RSD covariance matrix.

To be able to learn about the probability of parameters then the posterior dis-

tribution needs to be calculated [196]. This can be found using Bayes’ theorem

P (θ|D,M) =
L(D|θ,M)p(θ)

p(D)
, (I–3.3)

where p(θ) is the prior on the values of θ and

p(D) =

∫
dθL(D|θ,M)p(θ) (I–3.4)

is the evidence. The whole distribution up to a normalisation constant could, in

theory, be constructed on a grid [178, Chapter 3]. For high dimensional problems

such as in cosmology, this is prohibitively expensive. A more efficient way to un-

derstand the probability of cosmological parameters given the data is to draw

samples from the posterior distribution. Statistics can then be obtained from

these samples. There are various methods to obtain samples from a posterior

distribution, but one of the most efficient for cosmology is the use of Markov

chain Monte Carlo (MCMC) [178, Chapter 3; 234].
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A Markov chain is constructed of vectors of parameter samples where each sub-

sequent vector is related to only the previous vector and no others [329, pg. 2]. A

good example of a Markovian process is a random walk where each step depends

on the current position, but not any of the previous positions [132, pp. 373-374].

Markov chains can be used to sample from a probability distribution by dictating

that the probability of arriving at a point θi is proportional to the probability

distribution at that point P (θi). The probability at the next point in the chain

θi+1, must be equivalent to the probability of transferring to that point from

θi ([132, pp. 373-374])

P (θi+1) =

∫
dθiP (θi)T (θi, θi+1). (I–3.5)

T (θi, θi+1) is a transfer probability which must be defined such that the probabil-

ity of transferring here and being there is the same as being here and transferring

there

P (θi+1)T (θi+1, θi) = P (θi)T (θi, θi+1). (I–3.6)

This is known as detailed balance [178, Chapter 3]. The samples obtained using

detailed balance will probe the underlying distribution, but neighbouring sam-

ples will be correlated. For this reason many steps need to be taken between

points to ensure mostly uncorrelated samples.

The transfer function used for parameter constraints throughout this Thesis

comes from the Metropolis-Hastings algorithm [163; 262]. The transfer proba-

bility is

T (θi, θi+1) = α(θi, θi+1)q(θi, θi+1), (I–3.7)

where q(θi, θi+1) is a proposal density distribution and

α(θi, θi+1) = Min

[
1,
P (θi+1)q(θi+1, θi)

P (θi)q(θi, θi+1)

]
, (I–3.8)

is the probability that a new point is accepted. It is usually chosen such that

the proposal density is symmetric q(θi+1, θi) = q(θi, θi+1) [178, Chapter 3]. This

means that if the probability is low at an initial point θi and the probability is

higher at the next θi+1 then α = 1 and so the new proposed point is accepted.

On the other hand, if the probability at the next point is lower than at the

current point then there is some probability that the next point will be rejected

and another “next step” must be taken to a different point. If a point is rejected

the step is effectively taken to the same point. This can be added to the samples

as the next step, but clearly is correlated with the current point [178, Chapter 3].
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It is important that the proposal density approaches the true distribution which

is being probed to cover the whole parameter space with samples [304]. If the

proposal density is too narrow, once the peak of the distribution is reached there

is very little probability that any samples from the edges of the distribution will

be obtained. Likewise, if the proposal density is too broad, the steps will often

stray away from the peak of the distribution and not give a representative sam-

ple of points from the distribution since the acceptance probability will be low.

Fortunately the proposal density can be tuned during the early stages of running

the Markov chain [178, Chapter 3]. This early stage is known as burn-in and is

a period where the points are randomly probing the distribution but have not

reached the maximum and so are not drawing representative samples. Once the

maximum is reached and the proposal density is tuned using the covariance ma-

trix from the early samples, these burn-in samples are discarded and the Markov

chain begins in truth. Since each adjacent sample is correlated it is important to

obtain very large numbers of samples to make sure each is independent. With

a perfect proposal density it takes n steps to cover the distribution in each pa-

rameter direction if the steps are of size 1/
√
n. This means it takes O(n) steps

to cover the distribution in each direction and hence each ∼ nth step is as close

to uncorrelated as possible [178, Chapter 3].

The collection of samples forms an efficient high dimensional representation of

the posterior distribution P (θ|d,M) from which statistics can be calculated.

When quantifying single parameters, each of the other parameters must be inte-

grated out, a technique known as marginalisation [358, pp. 32–33]. For example,

say θ = {α, β, γ, δ} is a vector of parameters then the posterior distribution of α

is

P (α|D,M) =

∫
dβ dγ dδ P (α, β, γ, δ|D,M). (I–3.9)

It is not trivial to go from P (α|D,M) back to P (α, β, γ, δ|D,M) and so care

should be taken when interpreting the marginal distribution.

Another useful property of the samples obtained via MCMC is that they can

be importance sampled. Importance sampling is an efficient way of getting sam-

ples from a new distribution which is very similar to the posterior the samples

were drawn from [178, Chapter 3]. For example, if the choice of prior used

whilst obtaining the samples is changed, perhaps due to the results of new data,

then the likelihood of the samples in the chains can be re-weighted under the

influence of the updated prior. The weights are derived from the ratio of the
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probability of obtaining a sample in the new distribution to the probability of

obtaining the same sample in the original distribution [178, Chapter 3]. New

statistics, such as the expected value of a parameter, can then be easily found by

summing the value of that parameter for every sample weighted by the weight

of each corresponding sample (normalised by the sum of the weights). Again,

care needs to be taken here. If the new distribution is distinctly different from

the original, then the weights will be close to zero for much of the parameter

range. Hence, most of the samples will be lost and the expected parameters from

the new distribution may be skewed from their values when considering samples

drawn directly from the new distribution.

With well defined posterior distributions and known priors the plausibility of

two models can be tested. The Bayesian evidence is one way to compare two

models M1 and M2. This takes into account relative sizes of the model spaces

allowed, penalising complicated models with large number of parameters and a

significant amount of freedom and favouring simpler models. Care needs to be

taken when using the evidence since it is sensitive to the choice of priors (more

is mentioned about this in Part III–2.4.1). Typically when a likelihood approach

prefers the inclusion of the parameter at > 3σ, the use of Bayesian evidence will

come to the same conclusion. The Bayes factor quantifies the relative plausibility

of two models with the same a priori probability

ΘB =
P (M1|D)P (M2)

P (M2|D)P (M1)
, (I–3.10)

where P (M|D) is the conditional probability of a model being correct given

the data, D, and P (M) is the probability of the model being correct [195].

The model probabilities are usually normalised such that P (M2)/P (M1) = 1.

When M1 ⊂ M2 then the Savage-Dickey density ratio can be used to simplify

the Bayes factor (see e.g. [367] for details)

ΘB =
P (ψ|D,M2)

P (ψ|M2)

∣∣∣∣
ψ=ψ1

(I–3.11)

where ψ are the additional parameters in the extended model and ψ1 are their

fiducial values in the nested model. Therefore, in order to calculate ΘB only

the parameter posterior likelihood is needed for the extended model and the

probability defined by the prior at the value the parameter would have in the

base model.
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Cosmic strings are line-like concentrations of energy that can arise as topological

defects in theories of the early Universe [86; 91; 172; 215; 216; 372]. In particular,

they form naturally in models of hybrid inflation [48; 75; 93; 117; 118; 200; 240]

in which the inflationary phase ends with a second-order phase-transition [75;

90; 194; 318]. Although they were originally considered as an alternative can-

didate for providing the seeds for structure formation in the Universe [71; 85;

217; 283], it is now understood that they cannot give rise to the observed BAO

in the power spectrum [22; 23; 32; 47; 89], but can play a subdominant role.

There are a wide range of potential observational signatures of cosmic strings,

including wakes in the density of matter perturbations, gravitational waves from

loop radiation and line-like discontinuities in the CMB temperature anisotropy

via the Kaiser-Stebbins effect [74; 148; 203; 372, Chapter 11]. Thus, strings

provide a powerful tool for testing theories of the early Universe. Observations

have strongly constrained the contribution of cosmic strings to the total CMB

anisotropy [13; 23; 46; 120; 290; 333; 381]. Current data place a 2σ upper

bound on the string tension of Gµ < 1.3 × 10−7 for Nambu-Goto strings [14]

or Gµ < 2.7 × 10−7 for Abelian-Higgs strings [241], which corresponds to ∼1%

of the total temperature anisotropy at ` = 10. G is the gravitational constant,

µ is the tension of the string. Although this may seem insignificant, there is

still constraining power left in the data since strings generate specific signatures

in the primordial B-mode polarisation spectrum [59; 266; 289; 290; 325; 326;

362], which can now be analysed with the Planck2015 polarisation [18] and joint

BICEP2 data [6].

Going beyond the simplest cosmic string models, complex networks of multi-

ple types of interacting superstrings, each with a different tension, can also be

considered. Notably, interacting networks of fundamental F-strings, one dimen-

sional D-branes (D-strings) and bound (FD) states between F- and D-strings,

collectively referred to as cosmic superstrings, arise naturally in string theoretic

inflation [75; 119; 360]. These networks are notably different to their simpler,

single-type string counterparts since the different string types have intercommu-

tation probabilities that are not necessarily unity [34; 35; 157; 192; 193; 198;

360]. The interactions among different string types are also much more complex,

as colliding strings can zip together or unzip, producing heavier or lighter FD-

string states carrying different charges. These features affect CMB signatures

allowing us to obtain constraints on string theory parameters such as the string

coupling gs and the fundamental string tension µF [36; 293].

In Part II–1 a brief overview of the formation of cosmic strings via sponta-
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neous symmetry breaking is presented. Along with this, the scaling solutions

of networks of cosmic strings and their observational signatures are shown. In

Part II–2 the Planck2015 public data [18] is used to perform the first full MCMC

analysis of ΛCDM models with cosmic string or superstring networks. For “ordi-

nary” cosmic string networks the unconnected segment model (USM) framework

is used and the analytic method introduced in [37] is used for fast computation of

the string unequal-time correlator (UETC). This is used as a source to compute

CMB anisotropies and hence obtain joint constraints on ΛCDM and the string

network parameters, including the tension Gµ, the loop chopping efficiency cr

and the wiggliness parameter α. In the case of cosmic superstring networks the

method is extended to deal with multiple network components. The UETC ap-

proach is efficient, meaning the superstring spectrum can be computed in much

less time than previous codes, obtaining joint constraints on the fundamental

string tension GµF, the string coupling constant gs, the self-interaction coeffi-

cient cs, and the parameter w of [293], quantifying the volume of compact extra

dimensions.



Chapter 1

Cosmic strings

1.1 Spontaneous symmetry breaking

Cosmic strings are topological defects arising from the breaking of axial symme-

tries [216]. If in fieldspace, there is a non-simply connected vacuum manifold,

then non-contractible loops generically form. For example, take the local Abelian

scalar field (Higgs) theory ([270])

L = −1

2
∇̄µϕ̄∇µϕ−

1

4
FµνF

µν − V (ϕ), (II–1.1)

where ϕ(x) is a complex scalar field (ϕ̄ is the complex conjugate), ∇µ is a

covariant derivative and Fµν is the field strength tensor of the Abelian gauge

field Aµ,

∇µϕ = (∂µ + ieAµ)ϕ, (II–1.2)

where e is the gauge coupling constant and

Fµν = ∂µAν − ∂νAµ. (II–1.3)

The bare potential is quartic in the fields ([171])

Vbare(|ϕ|) =
λ

4
(|ϕ|2 − η2)2, (II–1.4)

where η is the symmetry breaking scale and λ is the coupling to this term. High

temperature corrections need to be included and are of the form

V (|ϕ|) = Vbare(|ϕ|) + CT 2|ϕ|2 + · · · (II–1.5)

where the precise details of C are unimportant here, but depend on one-loop cor-

rections [55; 111; 377]. A critical temperature can then be defined by minimising

the potential and equating the ϕ terms to get

T 2
C =

λη2

2C
. (II–1.6)

30
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Im[ϕ]

Re[ϕ]

V (ϕ)

Re[ϕ]

Im[ϕ]

ϕ = ηeiϑ

Figure II–1.1: Manifold of allowed field values once the Abelian-Higgs symmetry

is spontaneously broken and settled at T = 0.

With this, the potential can be rewritten as

V (|ϕ|) =
λ

4

[
|ϕ|4 + η4 − 2

(
1− T 2

T 2
C

)
|ϕ|2η2

]
. (II–1.7)

When TC > T then the positive quadratic term dominates and there is a mini-

mum at ϕ = 0. Below TC the symmetry is spontaneously broken such that the

fields obtain vacuum expectation values with magnitudes ([216])

|ϕ|2 = η2

[
1− T 2

T 2
C

]
. (II–1.8)

The manifold of allowed field states is a circle, M = U(1), i.e. the homotopy

group π1(M) = Z is non-trivial [216; 265, Chapter 4.6.3; 372, Chapter 3]. At

zero temperature this simply reduces to |ϕ|2 = η2. The allowed values of ϕ can

be seen in figure II–1.1. The field values can be represented by a one-parameter

family given by

ϕ = η eiϑ, (II–1.9)

where 0 ≤ ϑ < 2π [372, Chapter 4]. As the early universe cools below TC then

patches Hubble distances apart settle to different values of the phase ϑ because

thermal fluctuations in ϕ are large [215; 216]. Due to ∇̄µϕ̄∇µϕ, it is energetically

favourable for the regions between these patches to have a smooth transition

between values of ϕ [215]. Since ϕ must be single valued then any closed loop in

space must undergo an integer number of n rotations such that ∆ϑ = 2πn. When

n = 0 then the closed loop can be deformed to a point and no string exists, but

when n 6= 0 the loop contains a region where ϕ is undefined within the manifold

of allowed field values [216; 265, Chapter 4.6.3; 372, Chapter 3]. This is the

cosmic string. In three dimensional space, this string must be infinitely long, or

closed [265, Chapter 4.6.3]. If this were not true then the closed path around

the string would be able to deform around the end of the string and close to a
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point. Not every edge of a domain forms a cosmic string. When ϕ in each cell

is uncorrelated and varies along the shortest path in M between the two cells

then one in four curves forms a cosmic string [265, Chapter 4.6.3]. An example

of cosmic strings forming between domains of different ϑ values can be seen in

figure II–1.2. The correlation length ξ can be defined as the distance within

which regions of space have correlated ϑ [372, Chapter 2]. As the universe cools,

the symmetry is spontaneously broken. Just below the critical temperature,

the fluctuations of the field ϕ are large enough to exceed the potential barrier.

Cooling continues, the effective mass of the field becomes finite and the scale of

the fluctuations define the correlation length of the string ([215])

ξ ∼ 1

λη
. (II–1.10)

The correlation length is frozen in because the fluctuations in the field are no

longer large enough to scale the potential barrier [387]. The temperature where

this occurs is known as the Ginzburg temperature and is ∼ λTC lower than the

critical temperature and so is O(η) [215]. The horizon size at this temperature

is H ∼
√
Gη2 where G is Newton’s constant. This shows that the correlation

length at the time of formation is proportional to the size of the horizon ([372,

Chapter 9])

ξH ∼
√
G
η

λ
. (II–1.11)

The strings which form via this mechanism have the structure of a random walk.

Simulations of cosmic string formation show that 65–80% of strings are long and

the rest are closed loops [31; 363]. The correlation length evolves throughout

time, but cannot exceed a Hubble distance. This is because correlations cannot

form at faster than the speed of light [216].

1.2 Size and tension of a string

By imposing ∂µA
µ = 0 on the gauge field from equation (II–1.2) integrating a

closed path around the string reveals a quantised magnetic flux flowing along

the string ([3])

ΦB =

∮
dl ·A

=
2πn

e
.

(II–1.12)

Due to this localisation there is vanishing divergence of the scalar field and

gauge boson away from the core of the string [270]. The width of the string

can then be found from the Compton wavelength of these fields, i.e. the inverse



CHAPTER 1. COSMIC STRINGS 33

x

y

0

π

2

π

3π

2

2π

ϑ

Figure II–1.2: Cosmic string formation when different regions of the universe

spontaneously break into different field values.

of the mass of the fields. The Abelian-Higgs’ mass is read from the quadratic

term from equation (II–1.7) as mϕ =
√
λη, whilst the gauge boson’s mass is

mA = eη [372, Chapter 3]. The energy density (tension) of the string is then

found by integrating the 00-component of the energy momentum of the string.

For a string aligned along the z axis, the x− y plane is integrated

µ =

∫
dxdy T 0

0 , (II–1.13)

where the energy-momentum tensor Tµν is obtained by varying the action with

Lagrangian from equation (II–1.1) with respect to the metric [264, Chapter 21].

When the mass of the gauge boson is larger than the mass of the scalar field, the

string tension is approximately µ ≈ η2. The string is described by a region where

ϕ→ 0, inside of which is a tube of magnetic flux where ΦB = 2πn/e. Any small

scale structure on the string gets stretched with cosmological expansion, and as

a result reduces in amplitude [369]. This leads to long straight strings with their

radius of curvature much greater than their width [372, Chapter 6]. Since the

width of a cosmic string is much less than the correlation length, cosmic strings

can be well modelled by the Nambu-Goto action. This is the description of a

one dimensional string with zero with. It is strings of this form that will be

considered in Part II–2.

1.3 String evolution

Networks of strings undergo three main processes which dictate their evolution.

In fact, these processes interact in such a way that a network of cosmic strings
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will evolve towards a scaling regime, where the characteristic length scale of the

network is proportional to the size of the horizon [24]. Firstly, the length of any

string increases (gets stretched) as the universe expands. If the characteristic

length scale of a network of Brownian random walks is L then the stretching

dictates this to evolve as

L(τ) =
H0

H
L(0), (II–1.14)

whereH is the comoving Hubble function, H0 is the value of the Hubble constant

today and L(0) is the length scale of the network at an initial conformal time

τ = 0 [372, Chapter 9]. The energy for such a network is ([24; 372, Chapter 9])

E =
µV

L2
. (II–1.15)

Loops form when a string intersects itself or intersects with another string in the

network. Since a string is expected to encounter another string within a distance

L in a volume L3 for a random walk, then a rate of energy density loss can be

described by ([372, Chapter 9])

E′ ≈
(
H− a

L

)
E. (II–1.16)

Defining ξτ = L/a then

ξ′

ξ
= −3H

2
− 1

2τ

[
2− 1

ξ

]
. (II–1.17)

During matter and radiation domination H = 2τ−1 and H = τ−1 respec-

tively [109, Chapter 2]. This means that(
ξ′

ξ

)
matter

= − 1

2τ

[
8− 1

ξ

]
, (II–1.18)

and (
ξ′

ξ

)
radiation

= − 1

2τ

[
5− 1

ξ

]
, (II–1.19)

for matter and radiation. There are regimes, when ξmatter = 1/8 and ξradiation =

1/5 where the correlation length of the network is fixed with respect to the size

of the causal horizon [24; 87]. The correlation length is small when there is

a high density of strings [372, Chapter 9] which means that ξ′/ξ > 0 and so

loop chopping becomes very efficient and the correlation length increases as the

density reduces. Likewise, if the correlation lengths are long, when densities

are low, ξ′/ξ < 0 and loop chopping becomes less efficient and the density

increases, reducing the correlation lengths [372, Chapter 9]. The final process

which is important for the evolution of string networks is the loss of energy by

gravitational radiation at kinks and from small loops [371]. This means that the

density of strings will reduce over time.
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Figure II–1.3: Observational signatures due to the conic spacetime about a cos-

mic string

1.4 Observational signatures from cosmic strings

There are several observable effects that cosmic strings are able to provide. These

arise from the effect of the cosmic string’s energy density on spacetime. To

linear order the perturbation of the metric by the string is given (in cylindrical

coordinates) as ([372, Chapter 10])

ds2 = −dt2 + dz2 − dr′2 − r′2dθ′2, (II–1.20)

where r′ is a radial coordinate about the string related to the usual radial coor-

dinate
(
r =

√
x2 + y2

)
by

r′2 =
1− 8Gµ ln(r/r0)

1− 8Gµ
r2, (II–1.21)

with an integration constant r0 which can be set to the radius of the string

and r > r0 [370]. The logarithm arises by solving the perturbed Einstein equa-

tions [370; 372, Chapter 6]. θ′ from equation (II–1.20) is

θ′ = (1− 4Gµ)θ, (II–1.22)

where θ is the usual polar coordinate. Equation (II–1.20) describes a conical

spacetime since 0 ≤ θ′ < 2π(1 − 4Gµ) and so there is an azimuthal deficit of

∆ = 8πGµ [148; 203; 372, Chapter 10]. Due to the conical metric around a

cosmic string then both matter and radiation are effected.

The most simple observational example is the bending of the paths of light

which pass perpendicular to the string. An example of this mechanism is plot-

ted in figure II–1.3a. Objects on the far side of a cosmic string from an observer

will be seen as images to the left and to the right of a string aligned along the z
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axis. More generally the missing angle is ∆ sin θ and the angular separation of

the images is ([372, Chapter 10])

ς =
l∆ sin θ

l + d
, (II–1.23)

where l is the distance of the object to the string, d is the distance of the string

to the observer and θ is the angle that the cosmic string makes with the plane

containing the object and the observer. These long straight-line doubling of

images could be visible in weak lensing surveys. For example, thousands of

weakly lensed objects would be expected from just one Hubble length cosmic

string with Gµ ≈ 10−6 by LSST (Large Synoptic Survey Telescope) [189], but

the signal would mostly be dominated by weak lensing from LSS. Perhaps the

use of data mining techniques for large field surveys will be able to access hidden

correlations left by cosmic strings in future surveys.

Wakes in matter can also form as a string passes through dust. A velocity

perturbation is provided to the matter with magnitude

δv = vsγ∆ (II–1.24)

where γ = (1 − v2
s )−1/2 and vs is the velocity perpendicular to the string [342;

372, Chapter 11]. An example plot is shown in figure II–1.3b. These straight

line structures would be observable if the string tension were large enough. For

example, future CMB polarisation experiments should be able to detect the sig-

natures of these wakes if the tension is Gµ ∼ 3× 10−7 [99].

Most important for this Thesis is the (Gott-)Kaiser-Stebbins effect [148; 203].

An example of this effect is plotted in figure II–1.3c. Discontinuous line features

in the frequency of CMB photons, passing on either side of a moving string which

is perpendicular to the line of sight, form due to Doppler shifting

Θstring = γ∆ n̂ · (vs × ŝ), (II–1.25)

where Θstring is the fractional change in temperature over the step, vs is the

velocity of the string (with magnitude vs), ŝ is the unit vector along the string

and n̂ is the unit vector along the line of sight [372, Chapter 11]. The conclusion

of this effect is that, photons in front of the moving string remain at the same

temperature whilst the deficit angle in the conic spacetime causes photons be-

hind the moving cosmic string to blue-shift [203]. This means that hot to cold

line discontinuities in the CMB temperature map would arise.

As already mentioned, cosmic strings emit gravitational radiation either at kinks
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in long strings [210] or from the dissipation of loops [74; 364]. Whilst the pre-

cise details are not needed here, it is useful to note that strings can provide a

stochastic background of gravitational waves which can potentially be detected

by future gravitational wave experiments.

1.5 Other topological defects

So far, only cosmic strings have been discussed. Other topological defects can

arise from the breaking of different symmetries [216]. The most simple to con-

sider is the breaking of an O(1) symmetry to S0, i.e. two discrete values. Using

the O(1) (real) analogue of equation (II–1.5) at T = 0 the field can take values

of ϕ = ±η [216; 265, Chapter 4.6.3]. Patches of space which have spontaneously

broken to different field values cannot smoothly deform since the manifold of

allowed field values is disconnected [215; 216]. A domain wall forms at the

boundary between the patches, the region where the disallowed field value ϕ = 0

occurs. The energy per unit surface area can be worked out similarly to the en-

ergy per unit length of a string. If they are present, there should be at least one

domain wall per Hubble time, with a mass Mwall ∼ 1065λ1/2(η/100GeV)3 [265,

Chapter 4.6.3]. This is exceptionally large for any non-fine-tuned values of λ

and η, which would cause obvious (dominant) fluctuations in the CMB [265,

Chapter 4.6.3]. Such fluctuations have not been seen, suggesting that domain

walls are not present in the universe [13].

Monopoles can form when the manifold of allowed states forms non-contractible

two-surfaces [181; 292]. In this case π2(M) needs to be non-trivial. An example

where monopoles arise is the breaking of an SO(3) symmetry. Since the two-

sphere,M = S2, is invariant under SO(3) then it defines the manifold of allowed

field values once the symmetry is broken. One particularly important feature of

monopoles is that they have a magnetic flux, but this is trapped at a localised

point, in a similar way to charged particles sourcing an electric field [106; 181].

Bounds are generally given on the monopole flux FM = nMv where v is the av-

erage magnitude of the velocity of monopoles and nM is the number density of

monopoles. The Parker bound states that ([277])

FM ≤ 10−15cm−2s−1, (II–1.26)

which is found by considering the magnetic energy dissipation of galaxies. As

the galactic magnetic field accelerates monopoles out of the galactic halo, the

field is dissipated. Measuring the current magnetic field of galaxies therefore

provides a constraint on the monopole flux [372, Chapter 14]. The strongest
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bounds are found by calculating the number of monopoles captured by neutron

stars giving ([105; 133; 224])

FM . 10−20cm−2s−1. (II–1.27)

Since the flux is related to the number density of monopoles, these bounds can

be related directly to the energy density of monopoles, which scales with Higgs

correlation length [372, Chapter 14]. Monopoles annihilate with anti-monopoles,

but the rate of annihilation is lower than observational bounds allow [130]. Not

observing as many monopoles as predicted was one of the initial reasons for the

introduction of inflation into cosmological evolution [123; 153]. A period of infla-

tion would dilute the number density of monopoles considerably, allowing them

to exist but not break observational bounds [152].

Finally, textures arise when π3(M) is non-trivial [336; 372, Chapter 15]. In

this case, the scalar fields are always in the vacuum manifold but energy re-

mains from the gradient of the field. Knots in the manifold form when regions

of space have different field values. These unwind at relativistic speeds which

give the fields enough energy to get over potential barriers in the manifold. The

energy is then dissipated leaving regions at the same field value. The gravita-

tional fields of textures distort the CMB temperature anisotropies revealing a

spectrum like the Harrison-Zel’dovich spectrum, which is promising [372, Chap-

ter 15]. Unfortunately, due to the nature of the high energy unwindings in the

early universe, there would be a large non-Gaussian signature which is tightly

constrained. It is usual to quote bounds on Gµ, as it is for strings, but the string

tension is associated with the symmetry breaking scale for the texture ([13])

µ = 2πη2. (II–1.28)

From temperature maps alone the constraints from Planck on textures is

Gµ < 1.06× 10−6 (II–1.29)

but the sensitivity of non-Gaussian probes of cosmology could reduce this. Most

presented results are for global cosmic strings rather than textures [13].
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Cosmic string spectra

2.1 Unequal-time correlator

Unlike passive inflationary perturbations which are set as initial conditions, met-

ric perturbations from cosmic string networks are actively sourced at all times.

To compute string spectra the components of the string network’s energy mo-

mentum tensor must be used as sources in the linearised Einstein-Boltzmann

equations. The relevant quantity to calculate is the UETC, whose dominant

eigenmodes, found by diagonalising, can be used as source functions, each indi-

vidual mode being coherent [283]. The UETC

〈Θµν(k, τ)Θ∗αβ(k, τ ′)〉 ≡ Cµν,αβ(k, τ, τ ′) (II–2.1)

determines all the two-point correlation functions such as the CMB temperature

C` and matter power spectra P (k), defined as in [72]. Θµν(k, τ) is the string

energy-momentum tensor defined below.

2.1.1 String energy-momentum tensor

Nambu-Goto strings are one-dimensional defects in the zero-width limit. They

provide a good description for long cosmic strings, whose correlation length

is many orders of magnitude larger than their width, at least away from string

intersections. A string moving in spacetime spans a two-dimensional surface, the

worldsheet xµ(σa), where the indices µ = 0, 1, 2, 3 label spacetime coordinates

and a = 0, 1 are the indices of coordinates on the worldsheet [175; 268]. The

worldsheet action is reparametrisation invariant and a gauge can be chosen by

imposing two conditions on the spacetime coordinates xµ as functions of σa. In

an FLRW background, a useful choice of gauge is such that σ0 = τ , the conformal

time, and x′ · ẋ = 0, where ˙ ≡ ∂/∂τ and ′ ≡ ∂/∂σ, relabelling σ1, which in this

gauge is a spacelike worldsheet coordinate, as σ. In this gauge the Nambu-Goto

39
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string energy-momentum tensor is

Θµν(y) =
1√
−g

∫
dτdσ

[
U

√
−x′2

ẋ2
ẋµẋν

−T
√
− ẋ2

x′2
x′µx′ν

]
δ(4)(y − x(τ, σ)).

(II–2.2)

Here, U is the string energy per unit length and T is the string tension. For

Nambu-Goto strings on arbitrarily small scales, Lorentz invariance requires that

T = U = µ. However, if the string is coarse-grained, then the integrated effect

of small-scale structure is to make the effective tension smaller than the energy

density [79; 180]. The effect of small-scale wiggles on the string can then be

included via a “string wiggliness” parameter α, such that U = αµ and T = µ/α

satisfying UT = µ2.

The Fourier transform of the 00-component of the energy-momentum tensor

of a representative string segment in a network is

Θ00(τ,k, χ) =
µα√

1− v2

sin(k · X̂ξτ/2)

k · X̂/2
cos
(
k · x0 + k · ˙̂

Xvτ
)
, (II–2.3)

where v and ξ are the string network velocity and comoving correlation length,

defined in section II–2.1.2 below, and x0 is the position of endpoint of a string

segment. The string segment is parametrised by

x(σ, τ) = x0 + σX̂ + vτ
˙̂
X, (II–2.4)

with the string orientations and velocity orientations

X̂ =


sin θ cosφ

sin θ sinφ

cos θ

 , (II–2.5)

˙̂
X =


cos θ cosφ cosψ − sinφ sinψ

cos θ sinφ cosψ + cosφ sinψ

− sin θ cosψ

 . (II–2.6)

˙̂
X is transverse to X̂ such that X̂ · ˙̂

X = 0. Note that the position of the string

endpoint appears only through a phase in the cosine factor in equation (II–2.3),

denoted χ ≡ k·x0. The other components of the string energy-momentum tensor

are given by

Θij =

(
v2 ˙̂

Xi
˙̂
Xj −

1− v2

α2
X̂iX̂j

)
Θ00, (II–2.7)
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with i, j = 1, 2, 3. Choosing coordinates so that k lies along the k̂3 axis, the

scalar, vector and tensor anisotropic stresses are given by

ΘS =
1

2
(2Θ33 −Θ11 −Θ22), (II–2.8)

ΘV = Θ13, (II–2.9)

ΘT = Θ12. (II–2.10)

2.1.2 Velocity dependent one-scale model

The velocity dependent one-scale model (VOS) equations dictate the values of

the string network correlation length L, and the average velocity v, of string

segments in the network [214]. There are many different approaches to address-

ing the evolution of the string network which can take into account different

physical effects [214; 353; 363]. Here only VOS is considered. The correlation

length L is the average length of string segments which, for scaling networks

(that have a random walk structure), is also equal to the average string separa-

tion. The network velocity v, is the root-mean-square (RMS) velocity of these

correlation-length-sized string segments averaged over all (shorter) length scales.

The macroscopic evolution equations for these network parameters can be de-

rived from the Nambu-Goto action by applying a statistical averaging procedure

over the string worldsheet [248; 250; 251]. Expressed in terms of the conformal

time τ they read

L′ = (1 + v2)HL+
crva

2
, (II–2.11)

v′ = (1− v2)

(
k̃a

L
− 2Hv

)
, (II–2.12)

where ′ ≡ d/dτ , unlike in equation (II–2.2). The loop chopping efficiency pa-

rameter cr, quantifies the energy loss due to loop production and k̃ provides a

phenomenological description of the small-scale structure on the string, which,

for relativistic strings, is given by

k̃ =
2
√

2

π

(
1− 8v6

1 + 8v6

)
. (II–2.13)

Recalling that the correlation length can be written in comoving units as ξτ =

L/a. The VOS equations in comoving units are

ξ′ =
1

τ

(
Hv2ξτ − ξ +

crv

2

)
, (II–2.14)
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v′ = (1− v2)

(
k̃

ξτ
− 2Hv

)
, (II–2.15)

For fixed expansion rate the scaling solutions, found by the requirement ξ′ = 0

and v′ = 0, read

ξ =

√
k̃(k̃ + cr)(1− β)

4β
, (II–2.16)

v =

√
k̃(1− β)

β(k̃ + cr)
, (II–2.17)

where β is the physical time FLRW expansion exponent a ∝ τβ and is equal to 1

and 2 in the radiation and matter eras respectively. Note in the scaling solutions

of (II–2.17) the implicit velocity dependence of k̃ through equation (II–2.13).

Earlier implementations of the cosmic defect CMB code CMBACT [288] used two

sets of values for the loop chopping efficiency and the parameter k̃ in the scaling

solutions (II–2.17) for the radiation and matter eras. These values were then

interpolated between for the transition between the radiation and matter eras.

However, in the latest implementation of the VOS equations in CMBACT4 [287],

the velocity dependence of k̃ is explicitly used and the loop chopping efficiency is

kept constant throughout both epochs [248]. This approach is adopted here: at

any particular τ , the values of ξ and v, found using the VOS equations (II–2.14 –

II–2.15), are used for calculating the UETC, keeping cr constant throughout and

explicitly accounting for the velocity dependence (II–2.13) of k̃. In earlier ver-

sions of CMBACT the wiggliness α, was also an evolving parameter, but it is now

kept constant in CMBACT4, which is the approach taken here. The evolution of

the network parameters can be seen for a range of cr in figure II–2.1 showing

that a wide range of correlation lengths and velocities are available. Detailed

comparison of the VOS model with Nambu-Goto simulations of ordinary string

networks (i.e. single string type with unit intercommuting probability [330]) de-

termine the loop chopping efficiency to cr = 0.23± 0.04 [248], corresponding to

the black dot-dot-dashed curves in figure II–2.1. Models of cosmic superstrings

generally have suppressed intercommutation probabilities [157; 192; 193; 198],

which effectively reduces cr and so they correspond to the purple region in the

figure. Such networks have relativistic RMS velocities v ∼ 1/
√

2 and correlation

lengths much smaller than the horizon, corresponding to a much higher string

number density compared to ordinary string networks. However, they also have

smaller string tension so their overall effect on the CMB can be small, consistent

with the data.
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Figure II–2.1: The evolution of the velocity v, and correlation length ξ, for a

range of cr = [10−2, 1.0]. The black dot-dot-dash line indicates the correlation

lengths and velocities obtained when cr = 0.23. The greener area (lighter in

black and white) of the plot indicates larger values of cr whilst the more purple

region (darker in black and white) shows smaller cr.

It should be noted that the RMS network velocity used in the VOS model arises

from a worldsheet average and is thus integrated over all (short) length scales.

Therefore, it provides an accurate measure of the energy stored in a wiggly

string segment, but does not explicitly correspond to (and in fact is expected

to be larger than) the coherent velocity on correlation-length scales. Indeed,

numerical simulations of Nambu-Goto strings reveal a network velocity distri-

bution with larger velocities at short scales, implying that the RMS velocity is

dominated by relativistic speeds at short distances. On length scales of order

the correlation length, coherent velocities as low as vcoh ' 0.2 have been re-

ported [25; 54; 249; 252]. Other network velocity measures (again containing

information from a range of length scales) in both Nambu-Goto and Abelian-

Higgs string simulations also tend to be lower than the VOS RMS velocity, with

velocities in the Abelian-Higgs model vAH ' 0.5, significanlty slower than in

Nambu-Goto simulations [60; 63; 174]. For further discussion about the impact

of string velocities on the UETC and the string power spectrum see the end of

Part II–2.1.6.
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2.1.3 Unconnected segment model

Simulations of evolving string networks are numerically very expensive. Strings

decay as 1/(ξτ)3, eventually reaching a scaling solution (ξ = constant) with a

number density of tens to hundreds of strings per horizon volume. At early

times, the box contains a huge number of strings whose dynamics and interac-

tions have to be tracked at each time step. The USM [22; 288] dramatically

reduces the required computational resources by approximating the string net-

work as a collection of correlation-length-sized segments, with the time evolution

of the correlation length and segment velocity described by the VOS equations.

Moreover, the model consolidates these string segments by collecting all strings

that decay between any two times, and so fewer strings need to be tracked. The

number of strings that decay between any two conformal times in a volume V ,

is

Nd(τi) = V [n(τi−1)− n(τi)] , (II–2.18)

where n(τ) is the number density of strings at conformal time τ , given by n(τ) =

C(τ)/(ξτ)3. In CMBACT, the factor C(τ) is chosen so as to keep the number of

strings at any time proportional to 1/(ξτ)3. The energy-momentum tensor for

the string network is then given by the sum over the total number of consolidated

string segments K , with a factor accounting for string decay

Θµν =
K∑
i=1

√
Nd(τi)Θ

i
µνT

off(τ, τi, Lf). (II–2.19)

The string decay factor T off(τ, τi, Lf) is a function interpolating between 1 and 0

and is responsible for turning off the contribution of the ith consolidated segment

after the time it has decayed. Its steepness is controlled by a string decay

parameter 0 < Lf ≤ 1, as follows:

T off(τ, τi, Lf) =


1 τ < Lfτi

1/2 + 1/4(y3 − 3y) Lfτi < τ < τi

0 τi < τ

(II–2.20)

where

y =
2 ln(Lfτi/τ)

ln(Lf)
− 1 . (II–2.21)

Thus, in the limit Lf → 1 the string decay factor T off(τ, τi, Lf) approaches a

Heaviside function, sharply switching off the contribution of the ith consolidated

segment to the network energy-momentum tensor for times τ > τi.
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The Lf parameter

Since the number of consolidated segments also sets the number of decay epochs,

a finite number of consolidated segments leads to discrete steps in the number

density of strings. The string decay parameter Lf was introduced to allow a

fraction of the consolidated strings to decay before the end of their respective

decay epoch, thus making the number density evolution smoother. The function

C(τ) was also introduced to ensure that the number of strings at any conformal

time τ is kept proportional to (ξτ)−3. However, one consequence of Lf < 1 is

that it is possible that Lfτi+1 < τi, meaning strings can start to decay earlier

than their respective epoch and the number density is systematically lower.

In the CMBACT4 implementation changing the number of consolidated segments

from 200 to 10000 has very little impact on the string spectra, as shown in fig-

ure II–2.2. However, the amplitude of the C` is dependent on the value of Lf .

The change is scale dependent, but can be as much as 30%, for example near

the peak of the scalar temperature signal. Previous analyses which have used

the results from CMBACT have overlooked this dependence. Although not en-

tirely degenerate with the amplitude of C`, which scales proportional to (Gµ)2,

it will clearly have some affect on the inferred values of Gµ from the USM. This

approach is compared in the following section.

Infinite consolidated string segments

A large number of segments can be accommodated analytically. As discussed in

[37], the scaling factor, that weights the UETC taking into account string decay,

has a particularly simple form when the number of consolidated string segments

tends to infinity, Lf → 1 and C(τ)→ 1. This is

f(τ1, τ2, ξ(τ1) , ξ(τ2)) =

K∑
i=1

Nd(τi)T
off(τ1, τi, Lf)T

off(τ2, τi, Lf),

= (ξ(Max[τ1, τ2])Max[τ1, τ2])−3 ,

= f
(
τMax, ξ(τMax) .

)
(II–2.22)

An analytic expression for the scaling factor can also be found for arbitrary Lf

using the form of Toff quoted in equation (II–2.20). However, it seems natural to

consider only the case Lf = 1 when the number of consolidated string segments

is very large. In the infinite limit the segments will decay at an infinite number of

epochs which are infinitesimally separated, a continuous limit in which the string

number density is smooth. The number density scales according to (ξτ)−3 in this

approach. While infinite consolidated segments may seem unphysical, it is just a
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limit used to obtain the correct scaling relation. Very similar results to CMBACT4

are obtained when using between 200 to 10000 segments with Lf = 1. The

question of whether the observed resulting modification of scaling from early

string decay obtained when Lf < 1 is physical or not requires investigation.

Since C(τ) = 1, different scaling behaviour does not need to be considered.

Ultimately, the USM is a simplified model which aims to match the UETC from

simulations by adjusting the network parameters. Overall it has been shown

to match Nambu-Goto simulations well [227]. However, due to the correlation

between the inferred values for Gµ for a given Lf , this issue should be considered

more closely. Since the number density scales according to (ξτ)−3 using the

approach here, it is adopted for the comparison to data.

2.1.4 Analytic calculation of the unequal-time correlator

The UETC can be computed analytically [37] by integrating over all string con-

figurations (orientations and positions) in the network. For the two point cor-

relator between Θ(τ1,k1, χ1) and Θ(τ2,k2, χ2) translational invariance implies

k1 = −k2 = k and so χ1 = −χ2 = χ. Considering that, due to equations

(II–2.3) and (II–2.7), Θ(τ,k, χ) is a symmetric function of k the integral is

〈Θ(τ1,k)Θ(τ2,k)〉 =
2f(τMax, ξ(τMax))

16π3

∫ 2π

0
dφ

∫ 2π

0
dψ

∫ π

0
sin θdθ

×
∫ 2π

0
dχΘ(τ1,k, χ)Θ(τ2,k, χ). (II–2.23)

Without loss of generality k can be chosen to lie along the k3-axis, such that

k = kk̂3. Θ here represents each of Θ00, ΘS, ΘV and ΘT in equations (II–2.8–

II–2.10). The φ, ψ and χ integrals can be done analytically in this case leaving

only the θ integral in terms of Bessel functions. The UETC can then be written

as the sum over six integral identities

〈Θ(τ1, k)Θ(τ2, k)〉 =
f(τMax, ξ(τMax))µ2

k2
√

1− v(τ1)2
√

1− v(τ2)2

×
6∑
i=1

Ai[Ii(x−, %)− Ii(x+, %)], (II–2.24)

where % = k|v(τ1)τ1 − v(τ2)τ2| and x± = (x1 ± x2)/2 with x1,2 = kξ(τ1,2)τ1,2.

Here x1,2 means x1 or x2 respectively. This extends the corresponding result of

[37] in that ξ and v are now functions of τ instead of being kept constant. This

means that the expressions of the amplitudes Ai, presented in Table II–A.1 in

Appendix II–A, are now time-dependent. The integral identities (shown in equa-

tions (II–A.1)–(II–A.6) in Appendix II–A) remain the same. It should be noted

that I1(x, %) and I4(x, %) diverge but the combination I1,4(x−, %)− I1,4(x+, %) is
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regular and, in the limit where x1,2 � x2,1, has an analytic approximation given

by

I1(x−, %)− I1(x+, %) =
πx1,2

2
J0(%), (II–2.25)

I4(x−, %)− I4(x+, %) =
πx1,2

2%
J1(%). (II–2.26)

In the small x1,2, limit the UETC can be written as

〈Θ(τ1, k)Θ(τ2, k)〉 =
f(τMax, ξ(τMax))µ2

k2
√

1− v(τ1)2
√

1− v(τ2)2
B, (II–2.27)

and at equal times, when x1 = x2 = x and % = 0, the equal-time correlator is

given by

〈Θ(τ, k)Θ(τ, k)〉 =
f(τ, ξ(τ))µ2

k2(1− v(τ)2)
C. (II–2.28)

The form of B and C are similar to [37] but again depend on the values of v

and ξ at τ1 and τ2. These coefficients have been included in Table II–A.2 in

Appendix II–A. Thanks to these analytic approximations, computational times

can be greatly reduced compared to the case where the integral identities Ii are

used for computation over the whole range of kτ1, kτ2. The regions where these

approximations are valid are shown in figure II–2.3, only the white region is

computationally intensive. It should be noted that, because ξ is a function of

time, the shape of the approximated regions in figure II–2.3 changes for different

values of k and so a large number of k-modes must be considered when computing

the UETC. This is in contrast to [37], where the approximation of constant ξ

and v meant that the UETC was only a function of the combinations kτ1 and

kτ2.

Negative values of the UETC

It has been noted in [297] that there are negative regions in the string UETC

calculated analytically through the formalism used here, which do not appear

in the Gaussian model for the string UETC used in [297]. These can be seen in

figure II–2.4.

There are two distinct types of regions with negative values of the UETC. First,

regions with small kτ1 and large kτ2 (and vice versa), corresponding to the top

left and bottom right corners of figure II–2.3 or figure II–2.4: in these regions

the UETC should be zero, but small negative (and positive) values can arise

from the finite order truncation of the Bessel series expansions of I1(x±, ρ) and

I4(x±, %) in equation (II–2.24). These values are spurious and can be thought
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10 2 10 1 100 101

x1

x 2
10 2

10 1

100

101

Figure II–2.3: The regions of x = kτξ covered by analytic approximations. In

green is the region when x1 � 1 and x2 � 1, red when | log x1 − log x2| < ε and

blue when |x1 − x2| � 1. In the code the x1,2 � 1 region is set for x1,2 < 0.2,

ε = 0.001 for x1 ≈ x2 and |x1 − x2| > 10 for x1,2 � x2,1.

of as noise arising from the truncation. The order of truncation must then be

chosen such that this noise is at a tolerable level.

Second, in the regions off the diagonal with large kτ1 ≈ kτ2 (corresponding

to the top right corner of figure II–2.3 or figure II–2.4) there is a ringing pattern

with successive positive and negative peaks that decay away from the diagonal.

These oscillatory patterns are a consequence of causality [22; 116; 359], built

into the USM: as the correlator must vanish at superhorizon scales (in fact in

the USM it vanishes at scales larger than the correlation length, which is smaller

than the horizon), this introduces a sharp edge in physical space that becomes

oscillatory in Fourier space. This oscillatory pattern therefore has a clear phys-

ical origin, but in the USM it is somewhat artificially enhanced due to the fact

that the model assumes all string segments have the same length. If segments

are instead given a length distribution peaking at the network correlation length,

the sharp edge is smoothed and the oscillatory pattern gets suppressed. Further,

considering a segment velocity distribution peaking near the network RMS ve-

locity again suppresses these oscillations. The Gaussian model assumes a wide

Gaussian distribution of string lengths (but also assigns non-zero values to the

correlator at superhorizon scales) so this causal oscillatory feature is absent from

the UETC in that model.

The suppression of oscillations in the UETC can be seen in figure II–2.5 where
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the blue solid line shows the profile of the UETC across the diagonal as calcu-

lated using the velocity and correlation lengths from VOS. In red dot-dot-dash

is the same profile when a Gaussian distributed sample of velocities and corre-

lation lengths, peaking on the VOS values, are chosen. The oscillatory features

are mostly washed out but the first trough remains a prominent feature. The

off-diagonal dip in the correlation functions that are found after considering a

range of segment lengths and velocities has also been observed in Abelian-Higgs

simulations [60]. It may also be related to the velocity anti-correlation observed

in Nambu-Goto simulations on correlation-length scales and can be attributed

to string intercommutations [249].

2.1.5 Eigenmode decomposition

The UETC is generally rescaled by a factor of
√
τ1τ2, which, for ξ and v con-

stant, makes it a function of kτ1 and kτ2 only. This is not true in the present case

because now the time-dependence of ξ and v is tracked, so the UETC depends

separately on k, τ1 and τ2. However, it is still useful to introduce this rescal-

ing in order to facilitate direct comparison of the UETC with previous results.

This rescaled UETC can then be discretised onto a logarithmic grid in kτ1 and

kτ2 with n × n grid points and then diagonalised giving the eigenvectors and

eigenvalues ([283])

(k2τ1τ2)γ
√
τ1τ2〈Θ(τ1, k)Θ(τ2, k)〉 =

N∑
i=1

λiui(kτ1)⊗ ui(kτ2). (II–2.29)

Due to the explicit dependence on k, this diagonalisation procedure has to be

repeated for a large number of k-modes, and the eigenvalues are k-dependent.

This significantly increases the computation time compared to [37]. The extra

factor (k2τ1τ2)γ is used for more efficient reconstruction of the UETC when the

eigenmodes are truncated below n. The choice γ = 0.25 gives the best recon-

struction on scales that give the dominant contribution to the CMB anisotropies.

There is no correlation between the scalar, vector and tensor modes and so

the vector and tensor UETC can be diagonalised independently. However, the

density Θ00, and scalar anisotropic stress ΘS, are correlated. The diagonalisation

is done over a 2n× 2n grid constructed from

〈Θ00(τ1, k)Θ00(τ2, k)〉 〈ΘS
00(τ1, k)ΘS

00(τ2, k)〉

〈ΘS
00(τ1, k)ΘS

00(τ2, k)〉 〈ΘS(τ1, k)ΘS(τ2, k)〉
, (II–2.30)

where 〈ΘS
00(τ1, k)ΘS

00(τ2, k)〉 is the symmetric combination of the cross-correlation

between Θ00 and ΘS. After diagonalisation, the first half of the eigenvectors
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Figure II–2.5: Profile of the UETC across the diagonal in the oscillatory region

with large kτ1 ≈ kτ2. The solid blue line shows the amplitude of the UETC using

the value of the velocity and correlation length from the VOS equations whilst

the red dot-dot-dash lines has Gaussian distributed velocities and correlation

lengths about the VOS values.

refer to the density and the second to the anisotropic stress. The diagonalisa-

tion creates orthogonal eigenvectors which are then used as source terms in the

CAMB [237] linear Einstein-Boltzmann code. The C` are calculated using each

individual eigenvector ui(kτ)/(
√
τ(kτ)γ), as a source function Ci`, which can be

summed to give the total power spectra

C` =
n∑
i=1

λiC
i
`. (II–2.31)

By ordering λi from largest to smallest, the required accuracy in the C` can be

achieved by including relatively few eigenmodes. This can be seen in the middle

row of figure II–2.6 where there is only about 10% difference between using all

512 eigenmodes of a 512× 512 grid compared to only using 32 eigenmodes when

fixing the value of Gµ. Also, it can be seen in the top row of figure II–2.6 that

reducing the grid resolution reduces the amplitude of the C`. A grid resolution

of 128 × 128 is about 5% lower, on average, than using the 512 × 512 grid but

convergence times decrease drastically. It should be noted that there is negligible

difference between using a 512 × 512 and a 1024 × 1024 grid meaning that the

former is reliably giving the full C` contribution. The bottom row shows what

happens when using more k values in the calculation. Wiggly features arise

from using too few k values and can be removed at the expense of a much longer

calculation. These findings are used to choose the optimal UETC parameters

to give good quality C` in a reasonable amount of time. The resulting spectra

obtained from our analytical method are shown in figure II–2.2 in green dot-

dot-dashed curves and agree well with USM string realisations, especially in the
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Figure II–2.7: Comparison of approaches to string modelling, scaled by Gµ in

the upper subplot and normalising the temperature power spectrum at ` = 10

in the lower subplot. The approach developed here (in solid blue) is compared

to CMBACT4 [288], Nambu-Goto simulations [227], and Abelian-Higgs simula-

tions [60] (in dashed green, dotted red, dot-dashed orange and the analytic USM

with the velocity fixed at v = 0.4 in dot-dot-dashed purple respectively).

limit of large numbers of simulated segments.

2.1.6 Comparison of the string power spectrum

In figure II–2.7 the temperature power spectrum calculated here (scaled by

Gµ in the upper subplot and normalised at ` = 10) is compared to those

of CMBACT4 [288], Nambu-Goto simulations [227], and Abelian-Higgs simula-

tions [60]. Both CMBACT4 and this method use the same velocity dependent

one-scale model parameters, but CMBACT4 uses Lf = 0.5. The Nambu-Goto sim-

ulations are performed in an expanding background from recombination to today,

including Λ domination. Large loops are kept in the simulation and contribute to

the total energy-momentum tensor of the network, but these simulations cannot

resolve small-scale physics near the string width and do not include the effects of

radiation backreaction. In contrast, the Abelian-Higgs simulations can resolve

small-scale structure and radiative effects [101]. These, however, have smaller

dynamical range and cannot easily evolve through the radiation-matter transi-
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tion (so the UETC is instead interpolated), but see recent progress in [101] where

the authors simulate through the transition.

In summary, given the large differences in modelling between the various ap-

proaches means this comparison is encouraging, although more work is needed

to further delineate the differences. In particular, as discussed at the end of

Part II–2.1.2, the VOS RMS velocity is defined through a worldsheet integral

over all scales and receives a large contribution from relativistic wiggles on the

string. On the other hand, the USM assumes straight segments moving at a

given speed and the small-scale structure on the segments is captured via a

“renormalisation” of their tension. This implies that the speed to be associated

to the USM segments must be lower than the VOS RMS velocity, and should

correspond to the network velocity at correlation length scales. Numerical sim-

ulations show this to be significantly lower than the RMS speed. This issue has

not been examined before, partly because the calculated string spectra from dif-

ferent approaches can differ by up to a factor of two, and partly because it can be

offset by choosing a lower value for the USM parameter Lf (see below). As quan-

titative agreement between the different approaches is now being established, it

is important to fully understand this issue. To this end it will be important to

extract the network velocity distribution as a function of length scale in both

Nambu-Goto and Abelian-Higgs simulations.

Plotted in figure II–2.7 in purple dot-dot-dash is the C` obtained when v = 0.4.

As can be seen, the peak of the velocity fixed C` has a very similar amplitude

to the Nambu-Goto simulation C` in dotted red, although the simulations still

have larger power at both lower and higher `. This supports the idea that the

discrepancy in the amplitude of string spectra could be related to different predic-

tions/assumptions on string velocity in the different approaches (cf. discussion

at the end of Part II–2.1.2). Note that the parameter Lf in the USM is somewhat

degenerate with the string velocity - for fixed v a lower Lf reduces the density

of strings by increasing the string decay rate, thus reducing the C` amplitude

and matching simulations better than using Lf = 1. In the absence of a more

complete quantitative understanding of the string velocity distribution - input

required from string evolution simulations - the string spectra obtained from the

USM have a larger amplitude (see the solid blue line in the upper subplot of

figure II–2.7). This leads to slightly tighter constraints on cosmic strings than

in numerical simulations. Marginalising over the network parameters cr and α,

partly takes care of the differences between Lf = 0.5 and Lf = 1 in the USM

since high cr reduces the velocity (as seen from equation (II–2.15) and pictorially
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in figure II–2.1).

Overall, when normalised at ` = 10, the four spectra agree reasonably well.

The USM variants (CMBACT4 and the approach here) both predict slightly more

power at the peak than either of the simulations. The Nambu-Goto simulations

predict more power on very small scales, around twice as much as the Abelian-

Higgs model. It is well known that Nambu-Goto calculations yield higher string

densities than field theoretic ones, which will increase their overall normalisation.

The resulting constraints on Gµ are therefore around a factor of 50% lower [14]

as can be inferred from the upper subplot in figure II–2.7. The USM variants are

closer to the Nambu-Goto simulations in this respect [227]. Within this work,

using the analytic USM to mimic the Abelian-Higgs spectra is not considered.

As shown, there is some additional uncertainty in the USM, as the normalisation

depends somewhat on the choice of Lf .

2.2 Cosmic superstrings

A cosmic superstring network can be modelled as a collection of string segments

of different types, each string type having its own tension and self-intercommuting

probability [34; 35; 92; 157; 173; 192; 193; 198; 293; 360; 361]. Strings of different

types interact with each other via “zipping” or “unzipping” leading to heavier or

lighter strings respectively, that are connected to the original strings at trilinear

Y-shaped junctions [291]. The fundamental building blocks for these networks

are light (fundamental) F-strings and heavier (Dirichlet) D-strings, with a ten-

sion hierarchy controlled by the fundamental string coupling [291; 322; 379].

Heavier strings arise as bound states between p F-strings and q D-strings, where

p,q are coprime. Given the fundamental string tension, the corresponding ten-

sions of these heavier (p, q)-strings are controlled mainly by p,q and the value

of the string coupling. These networks generally behave very differently than

their ordinary cosmic string counterparts. They are typically characterised by

small intercommutation probabilities, thus leading to higher string number den-

sities [34; 198; 293; 360]. The complex interactions present imply that several

string types with different tensions and correlation lengths can simultaneously

contribute to the string network CMB spectra.

In scaling superstring networks, the string number density is dominated by the

lightest F-strings, followed by D-strings and the first bound state, i.e. (1,1)-

strings. Heavier bound states are suppressed, so the number of string types

considered in the model can be truncated at a finite number. Following [293] the
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network is described by keeping seven distinct types of strings:

1 F (1, 0),

2 D (0, 1),

3 FD (1, 1),

4 FFD (2, 1),

5 FDD (1, 2),

6 FFFD (3, 1),

7 FDDD (1, 3), (II–2.32)

...
...

...

where the last column describes the (p, q) charges of the corresponding string

type.

The large-scale dynamics is then modelled by seven copies of the VOS equa-

tions, appropriately extended to account for transfer of energy among the differ-

ent string types through zipping and unzipping interactions [35; 360]. In each

copy of the VOS equations describing a single string, say of type i, the self inter-

action coefficient cr in equation (II–2.14) is replaced by the corresponding self-

interaction coefficient ci, and new cross-interaction terms with coefficients dkij are

added to describe zipping and unzipping. The coefficients ci, d
k
ij are controlled by

the corresponding microphysical intercommuting probabilities Pij [293], which

can be estimated [192; 193] from the corresponding string theoretic amplitudes

(and field theory approximations in the case of non-perturbative interactions

between heavy strings [157]). They can be expressed as a product of two pieces:

one that is dependent on the volume of the compact extra dimensions Vij(w, gs),

and a quantum interaction piece Fij(v, θ, gs). Physically, Vij can be thought of

as arising from string position fluctuations around the minimum of a localising

potential well, giving rise to an effective volume seen by each type of string. The

heavier the string the smaller the fluctuations are and so the smaller the value

of Vij [193]. The parameter w corresponds to the effective volume in the com-

pact extra dimensions seen by F-strings. gs is the fundamental string coupling

and v and θ are the relative velocity and angle of the incoming strings. For a

pair of strings colliding at an angle θ, and relative speed v, the intercommuting

probability is

Pij(v, θ, w, gs) = Fij(v, θ, gs)Vij(w, gs). (II–2.33)

Explicit forms for Fij and Vij are calculated in [293]. Since the network contains

a large number of individual strings with a range of velocities and orientations,
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the coefficients ci and dkij are determined by the integral of Pij over a Gaus-

sian velocity distribution centred on the scaling network velocities of each string

type and over all angles. This gives the average intercommuting probabilities

Pij(w, gs) ≡ Pij . Numerical simulations of single-type Nambu-Goto strings with

small intercommuting probability [34] suggest that the self-interaction coeffi-

cients ci scale as

ci = cs × P 1/3
ii , (II–2.34)

where cs is the standard self-interaction coefficient in three dimensions corre-

sponding to the value cr in Part II–2.1.2. This choice of cs implies a convenient

normalisation of the coefficients ci so that the ordinary cosmic string value cr is

recovered when Pii = 1. This facilitates direct comparison with ordinary cosmic

strings.

For cross-interactions between two strings of types i and j (i 6= j), produc-

ing a segment of type k, there is an additional factor arising from the kinematic

constraints of Y-junction formation [88; 94] that is denoted as Skij (i 6= j). This

also arises as an integral over relative velocities and string orientations [33; 293]

Skij =
1

S

∫ 1

0
v2dv

∫ π/2

0
sin θdθ

×Θ(−f→
µ

(v, θ)) exp[(v − v̄ij)2/σ2
v ]

(II–2.35)

where S is a normalisation factor [293], Θ(−f→
µ

(v, θ)) imposes the kinematic

constraints (f→
µ

(v, θ)) is the condition for junction formation to be kinematically

possible) [94] and σ2
v is the variance of the velocity distribution peaked on the

relative scaling velocities v̄ij = (v2
i + v2

j )
1/2 between strings of type i and j. The

cross-interaction coefficients are then given by

dkij = dij × Skij (II–2.36)

where dij = κ × P 1/3
ij . The overall normalisation κ is the analogue of cs, but

for cross-interactions. There is no obvious choice for this phenomenological pa-

rameter, but it may be expected to be of order unity by analogy to the ordinary

self-interacting string result for cr, obtained by numerical simulations. Strictly

speaking it should be treated as an extra parameter for the model but, given the

large computational resources required in the MCMC analysis, it is set to unity

in this work. The analysis will still indirectly capture the effects of changing

this parameter as it is somewhat degenerate with w. To see this, note that dij

is also proportional to P
1/3
ij which depends weakly on w through the volume

factor Vij(w, gs). The leading effect of w is to change the relative amplitude
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between self-interactions (FF interactions having the strongest w dependence)

and cross-interactions of heavy strings, thus mimicking somewhat the effect of

varying κ relative to cs. As computational power improves and this methodology

is refined, κ should be re-introduced as an additional MCMC parameter.

The modified VOS equations [35; 293], in comoving units, are

ξ′i =
1

2τ

[
2v2
i ξiτH− 2ξi + civi

+
∑
a,b

(
dbiav̄iaξi`

b
ia

ξ2
a

−
diabv̄abξ

3
i `
i
ab

2ξ2
aξ

2
b

)]
,

(II–2.37)

v′i =
v2
i − 1

τ

[
2viτH−

ki
ξi

−
∑
a,b

biab
v̄ab
2vi

(µa + µb − µi)
µi

ξ2
i `
i
ab

ξ2
aξ

2
b

]
,

(II–2.38)

where `iab is the average length of segments of type i formed by the zipping/unzipping

of string types a and b at conformal time τ , and µi is the tension of the ith string

type. biab are coefficients described below. All string tensions can be expressed

in terms of the fundamental string tension µF, and in flat spacetime [291; 322;

379] are given by

µi =
µF

gs

√
p2
i g

2
s + q2

i , (II–2.39)

where pi and qi are the charges of string type i as listed in equation (II–2.32).

The coefficients biab appearing in the velocity evolution equations (II–2.38) are

related to energy conservation and allow for the energy saved from zipping inter-

actions to be redistributed as kinetic energy of the new segment (biab = diab) [35]

or radiated away (biab = 0) as in [360]. A more realistic model should have a

specific radiation mechanism so that 0 < biab < diab such that some of the energy

is redistributed whilst the rest is radiated away. However, for cosmic superstring

networks (for which dij are much smaller than unity) this term has negligible

impact on the string scaling densities and velocities [33; 293], so biab = 0 is used.

Once the velocities and correlation lengths of all string types in the network

are obtained by solving (II–2.37 – II–2.38), their UETC can be calculated inde-

pendently as laid out in Part II–2.1. Although N > 3 string types are needed

in order to accurately construct the abundances of the dominant three lighter

strings (in this case the seven string types in equation (II–2.32) are used), the

resulting scaling densities of the higher charged states with N > 3 are strongly

suppressed compared to the lighter F-, D- and FD-strings [33; 35; 360]. This
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Figure II–2.8: The radiation and matter era evolution of the velocity v, and

correlation length ξ, for the F-string in solid black, D-string in dot-dashed blue

and FD-string in dotted red. These results are obtained when gs = 0.3, w = 1

and cs = 0.23.

allows only these first three states to be considered in the computation of CMB

signatures through the UETC analytic method. The evolution of the network

parameters for the three lightest strings can be seen in figure II–2.8 for cs = 0.23,

w = 1 and gs = 0.3.

Once the UETC of each of the three lighter strings are calculated they can

simply be summed to give the total string UETC, since the individual segments

are uncorrelated in the USM. This can then be diagonalised and the eigenvec-

tors and eigenmodes used as sources for finding the contribution from cosmic

superstrings to the CMB anisotropy. The analytic UETC method reproduces

the results of figure 4 in [293], including the shift in the location of the peak as

gs is varied. A slightly lower amplitude in the B-mode spectrum is found, and

can be attributed to the extra factor of 2 in the vector modes that was present

in CMBACT3 (which [293] was based on) and has been corrected in CMBACT4 [287]

2.3 Cosmic string constraints

Joint constraints on cosmic string network and ΛCDM parameters are obtained

using a modified version of COSMOMC. To reduce computational time in the anal-

ysis two methods for deriving string network constraints have been tested. In

the first method, the string C` are pre-calculated for a range of cr = [0.1, 1]

and α = [1, 10] at the Planck best fit values for the cosmological parameters,

i.e. Ωbh
2, Ωch

2 and H0. These C` are read into COSMOMC, interpolated at the

MCMC cr and α values and then scaled by (Gµ)2. This is an extremely effi-

cient way for obtaining network constraints since only the ΛCDM C` need to be
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Figure II–2.9: The total C` (scalar+vector+tensor modes) for different values of

cr and α. The red solid lines show cr = 0.1 and through yellow (long-dashed),

green (short-dashed), blue (dot-dashed) and purple (dot-dash-dotted) for cr =

0.3, cr = 0.5, cr = 0.7 and cr = 0.9. The upper (solid-patterned) lines indicate

α = 10 whilst the lower (dotted versions of the pattern) lines are for α = 1. This

is shown for CTT` and CEE` on the left and right of the top row, and CBB` and

CTE` on the left and right of the bottom row.

calculated, while the interpolation takes very little time. The difference in the

resulting string C` has been checked and when calculated at the upper and lower

3σ bounds in Ωbh
2, Ωch

2 and H0 is ∼0.5% in the temperature, E- and B-modes

and no more than∼ 10% in the TE cross-correlation. This uncertainty in the

string C` is � 1% of the total C`. The C` for different cr and α are plotted

in figure II–2.9. The different bands of colour indicate the value of cr, solid red

being the lowest (cr = 0.1) then progressing through long-dashed yellow, short-

dashed green, dot-dashed blue and dot-dash-dotted purple in steps of 0.2, up to

cr = 0.9. The upper (patterned) and lower (dot-patterned) edges of the bands

indicate α = 10 and α = 1 respectively. From this it can be seen that the effect

of α is to change the amplitude of the C`, with lower α also flattening the small

` features (as best seen in the upper right subplot and to a lesser extent in the

lower left of figure II–2.9). Increasing cr reduces the amplitude of the C` and, as

best seen in the lower left subplot of figure II–2.9, shifts the main peak towards

slightly smaller `. In the second method, which is computationally expensive,

the string and ΛCDM C` are simply calculated for each (network) parameter

value and compared to CMB data.
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The same process of pre-calculating string spectra can be done for cosmic su-

perstring networks in the parameter ranges cs = [0.1, 1], gs = [0.01, 0.9] and

w = [0.001, 1]. The superstring C` can be seen in figure II–2.10, where the same

colours and patterns are used for the steps in cs as in figure II–2.9. The bands

indicate values of w, with w = 10−3 corresponding to the solid-patterned lines

and w = 1 to the dotted version of the same pattern. The rows indicate varying

values of gs, with gs = 0.01, gs = 0.1 and gs = 0.9 for the top, middle and bottom

rows respectively. The first point to notice is that the C` amplitudes at low gs

are much greater than those at large gs. For large cs values there is less differ-

ence between the greatest and smallest values of w, especially at low gs, i.e. the

purple dot-dash-dotted lines in the top row of figure II–2.10 overlap, but are well

separated in the bottom row. This is because for large cs the cross-interaction

terms dkij (which are less dependent on w than the self-interaction terms ci) play

a more important role in setting the scaling string number densities. For small

values of cs, the ci coefficients become smaller (while dkij are unaffected) leading

to small correlation lengths and so large string number densities. The C` ampli-

tudes are then affected more strongly by ci, giving rise to a stronger dependence

on w.

The datasets used in the MCMC analysis come from the Planck2015 mission [18],

in particular:

Planck2015 TT+lowP: This contains the 100-GHz, 143-GHz, and 217-GHz

binned half-mission temperature autocorrelation (TT) frequency cross-spectra

for ` = 30 − 2508 with CMB-cleaned 353-GHz map, CO emission maps, and

Planck catalogues for the masks and 545-GHz maps for the dust residual con-

tamination template. It also uses the joint temperature and E-mode cross cor-

relation (TE), E-mode autocorrelation (EE) and B-mode autocorrelation (BB)

for ` = 2−29 with EE and BB maps from the 70-GHz LFI full mission data and

foreground contamination determined by 30-GHz LFI and 353-GHz HFI maps.

Planck2015 TT+Pol+lowP: This contains the same data as Planck2015 TT+

lowP but also uses the TE and EE cross-spectra for ` = 30− 1996.

Planck2015 TT+Pol+lowP+BKPlanck: This again contains all of the data

used in Planck2015 TT+Pol+lowP but includes also the cross-frequency spectra

between Background Imaging of Cosmic Extragalactic Polarization (BICEP2)

and Keck maps at 150 GHz with Planck maps at 353 GHz including the B-

mode spectra at multipoles ` ∼ 50− 250.
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The interpolation method is first considered, where the C` are pre-calculated

on a grid in cr and α (or in the case of cosmic superstring networks cs, gs and

w), and then a spline interpolation used between grid values. The results ob-

tained from this method are very quick and accurate due to the ability to use

all 512 eigenmodes of the 512× 512 grid for the UETC. The constraints on net-

work parameters derived from this method are shown in figure II–2.11. Gµ is

implemented into the MCMC analysis through a logarithmic prior of [−10,−5]

such that Gµ = 10[−10,−5].

There is no significant difference in the constraints when using Planck2015

TT+lowP, or including EE and TE or both EE and TE and BB results. The

upper 2σ value for the tension is Gµ < 1.1 × 10−7 for Planck2015 TT and is

similarly Gµ < 9.6× 10−8 and Gµ < 8.9× 10−8 for Planck2015 TT+Pol+lowP

and Planck2015 TT+Pol+lowP+BKPlanck. These agree well with the Gµ <

1.8×10−7 and Gµ < 1.3×10−7 from the Planck cosmological parameters analy-

sis [14]. The slightly tighter constraints obtained here are due to the amplitude

of the C` not scaling with the value of Lf , i.e. the C` are larger when Lf = 1 as

assumed here, while previous results were obtained from CMBACT with Lf = 0.5.

There is little difference between using the Planck temperature data alone and

including polarisation data as expected from [14]. As can be seen in the other

two columns of figure II–2.11, cr and α are not constrained. There is a slight

preference for higher values of cr and lower values of α since both of these lead to

smaller C`. Features, such as the position of the main peak or the pronounced

lower ` peak make very little difference to the overall constraints. There is a

very slight correlation between Gµ and cr and anti-correlation between Gµ and

α, as expected from the C` seen in figure II–2.9. A combination of high α and

low cr is mildly disfavoured. Further, by comparing the constraints on Gµ and

cr to their affect on the C` in figure II–2.9 there is a larger difference between

changes at small cr than changes at large cr. For this reason we expect to see

greater correlation between Gµ and cr on a logarithmic scale from values cr � 1

to cr ≈ 0.1 than implied over the prior range used here.

Considering the direct calculation method, where the string spectra are cal-

culated every time along with the C` from ΛCDM, the constraints are slightly

weaker. This is because there is a pay-off between the resolution of the UETC

and number of eigenmodes used in the reconstruction and the time spent com-

puting the spectra. To efficiently calculate the constraints a grid resolution of

128×128 with 64 eigenmodes has been used. As can be seen in figure II–2.6 there
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is expected to be a reduction in power of about 10− 20% which means the value

of Gµ is allowed to be higher than when the high resolution, full reconstruction

interpolation method is used. For Planck2015 TT+lowP this is Gµ < 4.3×10−7.

The constraints on cr and α also show a slight preference for lower cr and larger

α, as in the interpolation method.

For cosmic superstrings, GµF, gs and w are marginalised over logarithmic pri-

ors, and cs over a flat prior. Again all 512 eigenmodes of the 512 × 512 grid

for the UETC are used. The likelihood contours obtained from the interpola-

tion method can be found in figure II–2.12. It can be seen that w and cs are

almost flat (columns 3 and 4), again with larger values of cs favoured as this

leads to smaller amplitude C`. As the string density grows with decreasing gs,

the constraints on gs favour larger values, as seen in the second column. Note,

however, that the model is not reliable for large values of gs as the perturbative

expansion starts to break down and the string interaction amplitudes used in ci

and dkij have large uncertainties. Finally, the first column shows the constraints

on the fundamental string tension GµF, which is much smaller than for ordinary

cosmic strings. It can be seen that GµF < 2.8× 10−8 for Planck2015 TT+lowP

when marginalising over gs, cs and w, and the same constraint for Planck2015

TT+Pol+lowP and Planck2015 TT+Pol+lowP+BKPlanck.

Also figure II–2.12 shows the constraints when using the direct calculation method,

where the string spectra are calculated at every step in the Markov chain. This

is a much more intensive computation and so a lower resolution grid and fewer

eigenmodes in the reconstruction had to be used. As for cosmic strings the opti-

mal balance between computing time and accuracy suggested using a 128× 128

grid with 64 eigenmodes. The constraints are thus slightly weaker, with the

main result GµF < 4.2× 10−8. The results from the two methods used here are

in good agreement, justifying the use of the interpolation method, and show-

ing that varying ΛCDM parameters within Planck priors has little effect on the

string constraints.
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Chapter 3

Discussion

Currently, there are two main approaches to the detection of cosmic strings.

Firstly, since they actively generate scalar, vector and tensor perturbations they

lead to signatures in the temperature, polarisation, and non-Gaussian spectra

of the CMB. Secondly, a cosmic string network will emit gravitational waves,

primarily from loop decay. This leads to a stochastic background which can

be constrained using pulsar timing, laser interferometry experiments such as

the Laser Interferometer Gravitational-Wave Observatory (LIGO) and exten-

dend Laser Interferometer Space Antenna (eLISA), and also the CMB [338].

A transient gravitational wave signal is also expected from cusps and kinks in

the network [98]. The latter class of tests has the potential to provide even

stronger constraints on the string tension Gµ, but there are large uncertainties

in the loop size, which is fixed by gravitational back-reaction. Model depen-

dence on gravitational waves from cosmic strings further makes it difficult to

determine signatures, for example, whilst Nambu-Goto strings decay into loops,

Abelian-Higgs strings primarily decay into particles [98; 115; 273]. It is therefore

important to use a variety of complementary observational probes.

The first class of tests also suffer from uncertainties, but these are less significant.

The string UETC can be obtained from simulations and used as source functions

in CMB codes, but simulations are numerically expensive and suffer from issues

in dynamical range. An alternative approach is to model the string network as

an ensemble of segments using the USM. Crucially, although the USM provides

a simplified picture of the network, it is able to match simulations by adjusting

the free parameters of the model, namely the correlation length, RMS velocity

and string wiggliness.

In this Part of the Thesis, previous work on string power spectra from the USM

68
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has been significantly improved and extended.

1. The UETC has been analytically solved for an evolving string network,

compared with previous work where it was restricted to constant network

parameters. The UETC itself can be computed in under a minute. For

the CMB power spectrum, although the time taken is increased due to

tracking a larger number of Fourier modes, on a 3.1 GHz Intel Xeon central

processing unit (CPU) with 8 threads, the code runs in ∼ 60 minutes. For

comparison, around 2000 network realisations are required for CMBACT4 to

achieve the same accuracy and since this code is serial, the computation

time is ∼ 30 hours.

2. The formalism has been extended to cosmic superstring networks with

multiple string types and different network parameters. Here the UETC

can be computed for each string type and added, since the segments are

assumed to be uncorrelated. The UETC calculation is much quicker than

the CMB line-of-sight integration, so the total computation time is not

significantly increased over the single string case.

3. For the first time marginalisation over the string network parameters when

fitting to Planck2015 and joint Planck -BICEP2 data has been achieved.

The data is consistent with no strings for both the single and multi-string

case. Since other network parameters are unconstrained when the tension

is very small, it is only possible to present joint constraints on these with

Gµ. In the superstring case, for example, the constraint on the string

coupling gs is degenerate with GµF.

There are several possibilities to explore in future work. Firstly, there are var-

ious ways in which the USM could be improved. Superstring networks contain

Y-type junctions, but in the present formulation these only impact the evolution

of the network parameters. Since junctions are relatively rare in the limit of

large and small coupling, the USM is expected to provide a sufficient descrip-

tion. However, in some regimes the energy density of the network may not be

dominated by a single string type, and junctions may become important. In this

case the USM could be modified to include a correlation between segments. A

further improvement is the inclusion of loops. The decay of string segments in

the USM should mimic the energy loss in loops, but it is possible these may lead

to additional interesting signatures.

Given that Planck has largely exhausted the available signal in the tempera-

ture data, future string constraints from the CMB will be driven by polarisation
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and non-Gaussianity. The non-Gaussian signal from post-recombination simu-

lations has been used to obtain constraints on Gµ [13], and attempts have been

made to compute the bispectrum analytically using a Gaussian model for the

string correlators [296]. It is also possible to compute the non-Gaussian signal

using the USM which will, by design, include physics from recombination and

along the line-of-sight. This has already been demonstrated for the CMB bis-

pectrum [137] by performing many realisations of the network. It is possible

to employ a similar analytic method used in this work to compute the string

bispectrum and trispectrum, which is expected to be significantly faster [82].

The detection of gravitational waves by LIGO is particularly exciting for strings,

and the next generation of ground and space based experiments can potentially

provide much stronger limits than those from the CMB. However, these limits

strongly depend on modelling, for example, the loop, kink and cusp distribu-

tion. Further work is needed to understand these and until then, the CMB will

continue to be an important tool in the search for strings.
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Integral identities and analytic

coefficients
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There is a huge amount of data which needs to be understood to quantify pa-

rameters in models of cosmology. As mentioned in Part I, a basic, six-parameter

cosmological model, ΛCDM, is able to fit the observed data exceptionally well,

from both measurements of the CMB and from various LSS probes [14; 17; 57;

199]. The yearning for learning about parameters values, in a given model,

has kickstarted an in depth look at statistical quantification of cosmological

data [178; 358]. Advanced techniques such as MCMC analysis and importance

sampling allows constraints to be placed on high dimensional cosmological pa-

rameter distributions. In particular, the use of MCMC code COSMOMC [234] built

on the fast Einstein-Boltzmann cosmology solver CAMB [237] allow for various

data sets to provide constraints on cosmology by creating samples probing the

parameter distributions of cosmological parameters.

It is through disagreement between predicted model parameters and observed

data that changes to a particular model are considered. The establishment of

the ΛCDM model itself occurred through these channels. Although the clinching

piece of evidence was the detection of cosmic acceleration using type-Ia super-

novae [285; 302], there had been clear indications that a universe with critical

matter density did not fit the data. Early in the process of constraining cos-

mological parameters it was seen that the RMS perturbation in spheres of ra-

dius 8h−1 Mpc, σ8, for the COBE normalised critical matter density models was

σ8 ≈ 1.5, whereas observations from a range of indicators suggested that it was

in the range 0.7 − 0.9 favouring Ωm < 1 [125; 168]. The shape of the matter

power spectrum was also in conflict with Ωm = 1 [73; 122].

As the precision of cosmological parameter estimation increased, it was noticed

that the parameter values of Ωm and σ8 were in contention when constrained by

different data [5; 12; 45; 57; 112; 138; 156; 183; 222; 245; 300; 310; 382]. The

implication was that constraints from probes of LSS implied there was too much

small scale structure when compared to the constraints from measurements of

the CMB. In particular, it was shown in [45; 156; 382] that both SZ cluster

counts and lensing, from the CMB and from cosmic shear, were in conflict with

CMB measurements and that a neutrino component - which could be from ac-

tive or sterile neutrinos - could be used to reconcile these measurements. In

turn, this built on the earlier suggestion in [11] that tension between the CMB

measurements and SZ cluster counts could be accounted for in this way. The

fact that the SZ cluster counts and the lensing data are compatible with each

other strengthens the two ∼ 2σ discrepancies into a statistically improbable dis-

crepancy of ∼ 4σ. This reconciliation of measurements of large and small scales
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was at the expense of less good fit to the CMB data - the two being seen to be

in conflict at the level of 2.8σ [45].

Neutrino masses are an obvious way to explain a dearth of power on small scales.

Particle physics oscillation experiments are sensitive to the square differences be-

tween the neutrino masses and cosmology is mostly sensitive to the sum of the

masses,
∑
mν . If the neutrinos are sterile it is possible that the best-fit model

can be made more compatible with direct measurements of the Hubble constant

from low-redshift standard candles such as Cepheids [301]. The preference for

massive neutrinos reported in [45; 156; 382] is a result of a global fit with an

extended cosmological model. Clearly any systematic error in the data, or its

interpretation, could lead to a false detection and therefore it needs to be treated

with caution. Moreover, there are other extensions to the standard model that

could lead to a similar result.

Bayesian statistics has plenty of tools which can help distinguish between models

given posterior distributions of parameters [178] (and see Part I–3.4). Although

model comparison is routine, it is less common to test the significance of data

sets within a given model. In Part III–1, techniques for comparing two high

dimensional posterior distributions given a model but two different data sets is

discussed. There are several accepted techniques which can lead to misleading

interpretations and so two new measures are introduced to better understand

these differences.

In Part III–2 the probability distributions of ΛCDM parameters obtained by

measurements of the CMB and a range of LSS probes are compared. The ten-

sion between the parameter constraints are discussed using the various measures

introduced in Part III–1. The results themselves can be interpreted differently

depending on the belief in well understood cosmological measurements, i.e. the

size of the sound horizon ΘMC and the scalar spectral index ns. If these are

constrained freely by the LSS measurements then the two sets of parameter

constraints are, mostly, in good agreement. But, if well believed tight priors

on ΘMC and ns are used, the tension between parameter constraints increases

greatly due to correlation between parameter distributions. To alleviate the

discordance arriving in this case, it is useful to discuss extensions to ΛCDM. A

non-exhaustive range of alternative explanations for the tension, including added

neutrino content, optical depth assumptions inferred from WMAP polarisation,

and modifications to the primordial power spectrum are present in Part III–2.4.
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It should be noted that work in this Part comes from two different analyses.

The first, carried out in 2013-2014, had Gaussian priors on ΘMC and ns which

came from the Planck2013 analysis. The second set of results come from 2015-

2016 and do not contain these tight priors. Since the same procedure was, mostly,

carried out for both studies, they are presented side by side.



Chapter 1

Quantifying discordance

The probability distribution P (θ) of the five relevant ΛCDM parameters ex-

cluding τ which is only constrained by the CMB, is a complicated 5D, not-

necessarily Gaussian, function. These parameters were introduced in Part I–

3.3. When constraining the parameters using the CMB only, one distribu-

tion P (θ|CMB,ΛCDM) is found and a second, supposedly similar, distribution

P (θ|LSS,ΛCDM), can be derived from constraints using LSS. Since each of these

distributions are difficult to quantify in a simple way, any comparison between

them is also complicated. A number of different measures are used to give a

simple, generally “single-numbered”, quantification of any differences [61; 190],

where the measures introduced in [247; 323; 367] are particularly used in cos-

mology and astronomy. The way each of these measures are interpreted can lead

to confusing statements about any discordance and so a thorough discussion of

a few of the major methods is laid out here. In the next chapter, each of the

methods mentioned here will be used to quantify the tension between param-

eter constraints using CMB data and LSS data. Detailed descriptions of each

method, using some simple distributions, can be found in Appendix III–B in

order to help guide the reader.

1.1 Methods to quantify discordance

Consider the posterior distributions P1 ≡ P (θ|D1,M) and P2 ≡ P (θ|D2,M) for

data sets D1 and D2, respectively, parameters, θ, of a model M.

1. Bhattacharyya distance The Bhattacharyya distance [61] compares the

probability distributions from each model at a given parameter value

B =

∫
dθ
√
P1P2. (III–1.1)

78



CHAPTER 1. QUANTIFYING DISCORDANCE 79

B = 1 indicates two identical distributions whilst B & 0 for disparate distri-

butions with values in between indicating the level of tension. If one of the

distributions is particularly broad compared to the other then this will give a

low Bhattacharyya distance value meaning the distributions are distinctly dif-

ferent. This is true even if the peaks of the distributions are identical. The

Bhattacharyya distance is not used in a cosmological context since the variance

of the posterior distribution given LSS data is often much wider than when us-

ing measurements of the CMB. It is, however, easy to understand and aids in

comprehension of comparisons between posterior distributions.

2. Overlap coefficient The overlap coefficient [190] works in a similar way

to the Bhattacharyya distance. In this case the quantity obtained is given by

O =

∫
dθMin[P1, P2]. (III–1.2)

As with B, two identical distributions have O = 1 and non-overlapping distri-

butions have O = 0. The scale of difference between 0 < O < 1 is not the

same as the Bhattacharyya distance, with the overlap coefficient taking lower

values for the same pair of differing distributions. Again broader distributions

are indicated as being in tension, even with identical distribution peaks. This is

also not often used for cosmological comparison.

3. Difference vector This measure, presented in detail here and inspired by

the two sample T-test [299], involves calculating the difference between the pa-

rameter ranges from the first and second probability distributions and creating

a new probability distribution from the difference vector

P (δθ|D1, D2,M) =

∫
dθ′P1(θ′)P2(θ′ − δθ). (III–1.3)

Here δθ = θ1−θ2, where θ1 and θ2 are the allowed values of the parameters from

the distributions from data set D1 and data set D2, thus P2(θ1 − δθ) ≡ P2(θ2).

This convolution effectively shifts the mean of the new distribution to the dif-

ference in the means of the original two distributions, µδθ = µθ1 − µθ2 , with

parameters spanning a range from µδθ − Min[θ1, θ2] to µδθ + Max[θ1, θ2]. For

convenience P (δθ|D1, D2,M) is denoted P (δθ). A quantification of the disagree-

ment between the distributions is obtained by integrating this new distribution

within the isocontour formed by the value of the probability distribution function

at δθ = 0,

C =

∫
A
dδθP (δθ), (III–1.4)
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where

A = {δθ |P (δθ) > P (0)} (III–1.5)

For the analysis in Part III–2 when using Planck2013+WP+BAO (defined in

Part III–2.1) for the CMB data, samples are taken from MCMC chains and anal-

ysed, giving means for each parameter and a covariance matrix for each distri-

bution. The covariance matrices are then combined using the law of total covari-

ance [309]. This combined covariance is used to form a multivariate Gaussian dis-

tribution centred at the difference in the means of the parameters obtained from

the COSMOMC analysis of the MCMC chains. When using Planck2015+Pol+BAO

(also defined in Part III–2.1) for the CMB data in Part III–2 the difference

between the samples in the chains is used directly to form the probability distri-

bution. This means that any non-Gaussianity of the distributions is taken into

account.

As a single unit measure this does a good job of indicating disagreements between

distributions. It can be interpreted easily since C is a measure of the fraction

of samples within a bounded area. This area is arbitrary and choosing δθ = 0

(as in equation (III–1.5)) is not essential. Of course, the measure cannot fully

describe the complexity of both of the entire probability distribution functions

P1 and P2. Using more parameters can help give greater understanding.

4. Integration between intervals Using two numbers to quantify the simi-

larities and differences between probability distributions can provide more in-

formation. By integrating each of the probability distributions within a given

interval of the other distribution, the total level of agreement can be quantified.

The two useful numbers here are

I1 =

∫
A2

dθP1 (III–1.6)

I2 =

∫
A1

dθP2, (III–1.7)

where

Ai =

{
θ

∣∣∣∣ ∫ dθPi = 0.997

}
. (III–1.8)

I1 is obtained by integrating the probability distribution P1 within the isocon-

tour of the probability distribution P2 which would contain 99.7% of the samples

drawn from it. I2 is obtained in exactly the same way, exchanging the probabil-

ity distribution P1 for P2. This measure is particularly useful since I1 and I2 can

be directly related to samples obtained via MCMC analysis. The limit chosen
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for the integration interval is arbitrary. If the interval is chosen to measure the

amount of P1 within the isocontour which contains 68.4% of P2 then, if I1 = 0,

the tension could be interpreted as being greater than 1σ. We have chosen to

consider isocontours containing 99.7% of the samples from each distribution. If

I1 = 0 when integrated within the bounds containing 99.7% of the samples drawn

from P2 then P1 would be considered to be in > 3σ tension with P2. Although

computationally intensive, this method can be used to quantify an exact tension

by increasing the integration limits of one of the distributions until the integral

of the other distribution was no longer zero. This procedure is not performed in

Part III–2.3 due to computational resources.

5. Surprise Another method which compares one distribution to another

giving two measures is that used in [323]. Here the relative entropy is found

when P2 is used as an update to P1 and is given by

D(P1||P2) =

∫
dθP2 log

P2

P1
. (III–1.9)

An expected relative entropy can be found using

〈D〉 =

∫
dP2

∫
dθP1P2D(P1||P2). (III–1.10)

By comparing the difference of the relative entropy to the expected relative

entropy a quantity (which is named surprise in [323]) can be calculated

S = D(P1||P2)− 〈D〉. (III–1.11)

Using a combination of D(P1||P2) and S a quantification of information gain

due to different distributions can be found. S should be close to zero for data

sets which are similar and can be positive or negative. A positive suprise in-

dicates that the distribution used to update the original is more different than

expected. A negative suprise is obtained when the updating distribution is in

more agreement than expected with the original distribution. This technique is

particularly useful when comparing the amount of suprise for a given expected

relative entropy. The results of which can be quoted as a p-value and interpreted

as how likely one distribution is to be in agreement with the other.

6. Quantification of Bayesian evidence Other measures that have previously

been discussed generally involve comparisons of Bayesian evidences. The most

simple and commonly used was introduced in [247]. This is given by

R =
p(D1, D2)

p(D1)p(D2)
, (III–1.12)
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where p(Di) is the evidence given data Di,

p(Di) =

∫
dθPip(θ), (III–1.13)

where p(θ) is the prior on the parameter θ and the index i = 1, 2 denotes which

data set is used. The numerator of equation (III–1.12) is given by

p(D1, D2) =

∫
dθP1P2p(θ). (III–1.14)

This is related quite closely to the Bhattacharyya distance. R is the ratio of

the evidence given both data sets, to the evidence of each data set. The prior

assumptions of the parameter must be specified and taken into account. Using

logR, the results can be interpreted on the Jefferys scale with logR > 0 indi-

cating agreement and logR < 0 indicating disagreement to some degree. This,

as for the Bhattacharyya distance and the overlap coefficient methods, reveals

a degeneracy between shifts in the peaks of distributions and broadening of the

variances of distributions. The numbers from logR are dependent on the choice

of priors. As long as the prior is stated along with analysis then the results can

be recreated and interpreted by the individual.

7. Shifted probability distribution Another measure, used in [366], shifts one

distribution (in a similar way to the difference vector method) so that the maxima

of the two distributions coincide is then found. The ratio to the joint probability

distribution

T =
p(D1, D2)shifted

p(D1, D2)
. (III–1.15)

Identical distributions have log T = 0 and log T > 0 indicates deviations from

similarity. The values of log T do not directly map to a statistical significance

or a p-value. Also, log T can be expected to be twice as large when the dimen-

sionality of the problem increases by two. This can either be corrected or taken

into consideration when interpreting the result.

Each of the measures described in this section indicate, to some degree, whether

or not two distributions agree or disagree with each other. They do not each

give the same emphasis as to where tension arises.

• The Bhattacharyya distance, overlap coefficient and quantification of Bayesian

evidence give disagreements arising from broadening of one distribution in

comparison to another. The difference vector, shifted probability distribu-

tion, integration between intervals and suprise methods take this broad-

ening into account.
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• The Bhattacharyya distance and overlap coefficient have results which are

difficult to interpret and do not map to any useful scales.

• The quantification of Bayesian evidence and shifted probability distribu-

tion methods are prior dependent and, out of the two, only logR can be

interpreted on the Jeffreys scale.

• The suprise gives a variety of quantifications which can be mapped to

two p-values, thus quantifying the amount of disagreement when either

distribution is used to update the other.

• The difference vector relates the fraction of samples within an arbitrary

boundary formed by the samples away from the difference in the means.

It does not capture all the information, but can be quoted as a single

number by mapping C onto the interval of the 1D Gaussian. Due to its

construction, the value of C matches the expected results when comparing

2D likelihood contours, but extends to higher dimensions.

• Integration between intervals is more powerful than using C for observing

differences and it is easy to understand each integral individually. However,

the combination needs to be taken into account to truly describe how much

tension is present between distributions. This can lead to some confusion

when considering a broad distribution compared with a tight one.

In Part III–2.3, the difference vector measure (3 ) will be used for comparison

of the constraints on ΛCDM parameters derived from the CMB and individual

LSS probes. This represents an update of [44] (also considered in Part III–2.3)

on the basis of more recent data.



Chapter 2

Cosmological parameter

constraints

In this chapter a range of CMB and LSS data sets are used for the comparison

of the posterior distribution of cosmological parameters in ΛCDM and its exten-

sions. Since probability distributions are complex and multi-dimensional, care

needs to be taken when making histograms from MCMC chain samples. These

distributions can often be sparsely sampled in important overlapping regions.

For measures 1, 2 and 4 -7 from Part III–1 the histogram of the distributions

considered in this chapter are made for a number of different bins and both with

and without Gaussian smoothing. The results quoted are the consensus values

from this range of tests (which are all quite similar). For measure 3, the number

of samples from the chains is much greater since there are NCMB ×NLSS differ-

ences, where NCMB is the number of samples from the CMB chains and NLSS is

the number of samples from the LSS chains. The histogram is made for a range

of bins and with and without Gaussian smoothing to check that the results are

robust. The data used is presented below.

2.1 Cosmic microwave background

The temperature anisotropies and polarisation of photons from the CMB have

been measured to an extremely high resolution over the largest possible scales by

both Planck [7; 14] and WMAP [176] with smaller scale analysis performed by

the Atacama Cosmology Telescope (ACT) [100] and the South Pole Telescope

(SPT) [298]. Several combinations of CMB data will be used.

WMAP+highL+BAO: The 9 year full mission temperature measurements

made by WMAP [176] over the multipole range ` ≈ 2− 800 complemented with

84
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higher resolution measurements made by ACT [100] and SPT [298] and com-

bined with BAO discussed below:

Planck2013+WP+BAO: Measurements of the temperature anisotropy power

spectrum made by Planck that have been extensively used for cosmological pa-

rameter analysis [9]. These results cover the multipole range ` ≈ 2− 2500. This

is implemented by using the standard likelihood [8] and uses the measurements

of the polarisation and temperature-polarisation cross-correlation power spectra

from WMAP 9 year data [177]. BAO are also included and described below.

Planck2015+Pol+BAO: The updated results from the Planck2015 analy-

sis. This includes the temperature TT, EE and TE spectra from Planck HFI

for 29 < ` < 2509 and TT, TE, EE and BB spectra from Planck LFI for

2 < ` < 29 [18]. This is combined with the measure of the BAO peak described

below.

The ratio of the sound horizon at the drag epoch, rs(zd), to the volume-averaged

distance DV(zeff), can be constrained using BAO ([58; 142])

DV(zeff)

rs(zd)
=

(
α2
⊥α‖[(1 + zeff)Dfid

A (zeff)]2
zeff

Hfid(zeff)

)1/3

rfid
s (zd)

.
(III–2.1)

Dfid
A (zeff), Hfid(zeff) and rfid

s are the fiducial values of the angular diameter dis-

tance, Hubble function and sound horizon at the drag epoch for a given cos-

mology. The scaling factors along the line-of-sight and perpendicular to it are,

respectively ([58])

α‖ =
Hfid(zeff)rfid

s (zd)

H(zeff)rs(zd)
, (III–2.2)

and

α⊥ =
DA(zeff)rfid

s (zd)

Dfid
A (zeff)rs(zd)

. (III–2.3)

Both WMAP+highL+BAO and Planck2013+WP +BAO are combined with the

results of several surveys which detect the BAO signal in the power spectrum:

6dF Galaxy survey : Constraints on rs(zd)/DV(zeff) = 0.336 ± 0.015 (4.5%

precision) and DV(zeff) = (456± 27) Mpc where zeff = 0.106 [56; 197].

SDSS DR7 : Reanalysed Sloan Digital Sky Survey (SDSS) data release (DR)

7 constraints by [275], with DV(zeff)/rs(zd) = 8.88± 0.17 at zeff = 0.35.
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SDSS BOSS DR9 : The Baryon Oscillation Spectroscopic Survey (BOSS)

maps the spatial distribution of luminous red galaxies and quasars to detect the

characteristic BAO scale. The results constrain DV(zeff)/rs(zd) = 13.67 ± 0.22

at zeff = 0.57 [27].

Planck2015+Pol+BAO also contains the results from the 6dF Galaxy Survey [56]

and the SDSS DR7 Main Galaxy Sample [275] but the updated final SDSS-III

BOSS DR12 CMASS and LOWZ [143] results are used where H(zLOWZ)rs(zd) =

(11.63±0.69)×103km s−1 and DA(zLOWZ)/rs(zd) = 6.67±0.15 with rHDA
= 0.35

for the LOWZ sample (zLOWZ = 0.32) and H(zCMASS)rs(zd) = (14.67± 0.42)×
103km s−1 and DA(zCMASS)/rs(zd) = 9.47 ± 0.12 with rHDA

= 0.52 for the

CMASS sample (zCMASS = 0.57) [142]. Here the angular diameter distance

DA(zeff) is constrained instead of the volume-averaged distance.

The Planck2013 data is used when considering extensions to ΛCDM, whilst

Planck2015 data is used for discussion on the quantification of discordance. It

will be seen in the subsequent discussion there are subtle quantitative differences

between the conclusions that are drawn by choosing a particular CMB data set,

but the qualitative results are the same.

2.2 Large scale structure

LSS can be measured via a number of different probes. Four independent

measurements of LSS are considered here, each of which can be consistently

combined to form a total constraint denoted All LSS. Since LSS cannot con-

strain the optical depth to reionisation it is fixed to the central value from

Planck2015+Pol+BAO of τR = 0.078, unless the results are compared with

Planck2013+WP+BAO or WMAP+highL+BAO in which case τR = 0.09. An

important point to note is the prior ranges set on the parameter ranges for each

of the data sets. When using either Planck2013+WP+BAO or WMAP+highL

+BAO uniform priors of Ωbh
2 = [0.005, 0.1], Ωch

2 = [0.01, 0.99] and ln(1010As) =

[2.7, 4] as well as well determined Gaussian priors of 100ΘMC = 1.04131±0.00063

and ns = 0.9603 ± 0.0073 [9] are applied to the LSS data sets. Alternatively,

when using Planck2015+Pol+BAO the same wide priors as used in the thor-

ough analysis of weak lensing using the Canada France Hawaii Lensing Sur-

vey (CFHTLenS) [199] are adopted, Ωbh
2 = [0.013, 0.033], Ωch

2 = [0.01, 0.99],

ΘMC = [0.5, 10], ns = [0.7, 1.3] and ln(1010As) = [2.3, 5]. The application of

different priors leads to quite different outcomes in terms of quantification of
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the level of agreement between the posterior distributions found using either the

CMB or LSS. This will be discussed in Part III–2.3.

2.2.1 Weak gravitational lensing

In a similar way to using the temperature to calculate the CMB power spectrum,

the lensing power spectrum involves extracting the lensing potential across the

sky [218; 219; 236]. For weak lensing the Newtonian gravitational potential Φ can

be defined by using the Newtonian gauge in cosmological perturbation theory,

where δg00 = −2a2Ψ and δgij = 2a2Φδij in equation (I–2.11) [109, Chapter 4;

243]. There is no anisotropic stress when Ψ = Φ [109, Chapter 4; 243]. Through

equation (I–2.13) the lensing potential can be related to the matter in a ΛCDM

universe, which in Fourier space is ([185; 218; 219; 236])

k2Φ(k) = −3

2
ΩmH

2
0a
−1δ(k) (III–2.4)

where Ωm is the matter density parameter, H0 is the Hubble constant, k is the

wavevector with magnitude k in direction n̂ and a in the scale factor where

a = 1 today. δ(k) is the Fourier transform of the density contrast at wavevector

k. Integrating this along the line-of-sight gives the lensing potential, ψ, at an

angle, (θ, ϕ) = n̂, on the sky [219]. An amplification matrix A, describing the

mapping of the coordinates of a lensed image to its unlensed source can be

written in terms of this lensing potential ([218])

Aij = δij − ∂i∂jψ. (III–2.5)

Further, this amplification matrix can be decomposed into

κ =
1

2
∇2ψ, (III–2.6)

where ∇2 is the Laplacian (∂θ∂θ + ∂ϕ∂ϕ) and

γ1 =
1

2
(∂θ∂θ − ∂ϑ∂ϑ)ψ, (III–2.7)

γ2 = ∂θ∂ϕψ, (III–2.8)

where it is usual to combine γ1 + iγ2 = γ [218]. κ and γ are the convergence

and shear which provide isotropic and anisotropic magnification of lensed im-

ages [218; 219]. As well as anisotropic magnification, γ describes the shape

distortion of the images of sources [218; 219]. When the anisotropic stress is

zero (as when Ψ = Φ) then the only distortion of the shape of images must come

from the gravitational tidal field and so the comic shear γ, totally encapsulates

this [219].
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As with the temperature fluctuations of the CMB, the lensing potential can

be decomposed into functions on a sphere ([185; 219; 236; 357])

ψ(n̂) =
∑
`m

ψ`mY
m
` (n̂), (III–2.9)

where ` = 0→∞ and m = −`→ ` and

ψ`m =

∫
dΩn̂ψ(n̂)Y m

`
∗(n̂). (III–2.10)

The lensing power spectrum is then given, for redshift bins i, j = 1, 2, · · · , by [219;

357]

〈ψ`m,iψ∗`′m′,j〉 = δ``′δmm′Cψij(`). (III–2.11)

Cψij(`) is proportional to the matter power spectrum Pm by integration along the

line-of-sight, including a factor of 3ΩmH
2
0/2 [219].

Galaxy lensing

Galaxy surveys measure the statistical shapes of galaxies. These can be related

to the lensing potential through the shear and convergence power spectra [169].

The shear power spectrum can be related to the lensing power spectrum by

Cγij(`) =
1

4

(
(`+ 2)!

(`− 2)!

)2

Cψij(`), (III–2.12)

where the details of the calculation are not important here, but arise due to the

relation between the lensing potential to the shear via the Jacobi matrix [219].

It is most common to work with the shear correlation functions ξ+ and ξ− since

they can be measured directly from the galaxy shape catalogues [204]. This

means that the shape of galaxies viewed in galaxy surveys are directly related

to the cosmic shear. The correlation functions are given by

ξ+(n̂ · n̂′) =
1

4π

∞∑
`=2

(2`+ 1)CγP`(n̂ · n̂′) (III–2.13)

where P`(n̂·n̂′) are the Legendre polynomials [219]. The flat sky power spectrum

P γ(`), analogue of equation (III–2.12) can be used when the correlations are over

scales where the curvature of the sky is less important, which gives the correlation

functions

ξ+ =
1

2π

∫
d``J0(` n̂ · n̂′)P γ(`), (III–2.14)

and

ξ− =
1

2π

∫
d``J4(` n̂ · n̂′)P γ(`), (III–2.15)
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where J0 and J4 are the Bessel functions of the first kind at order 0 and 4 [218;

219]. Measurements of the shear correlation functions therefore reveal informa-

tion on Ωm directly through the relation to Cψ.

The convergence power spectrum is calculated in a similar way to the cosmic

shear power spectrum and is related to the lensing power spectrum by ([219])

Cκij =
1

4

(
(`+ 1)!

(`− 1)!

)4

Cψij . (III–2.16)

From this, it can be seen that the convergence power spectrum is considerably

larger than the shear power spectrum on large scales (low `), but comparable at

large ` [219].

Although the correlation of ellipticity between galaxies reveals information on

the shear field, it is contaminated by the intrinsic alignment of galaxies [357].

Galaxies which form near each other will be aligned due to their gravitational

pull on each other. The galaxies which are in the same tidal field will also be

aligned with each other along the line-of-sight [169]. If the observed shear field

is expanded to

γobs = γ + γI, (III–2.17)

where γ is the true shear field and γI describes the correlated intrinsic alignment

of galaxies the correlation functions which need to be considered are

〈γobs
i γobs

j 〉 = 〈γiγj〉+ 〈γiγI
j〉+ 〈γI

iγj〉+ 〈γI
iγ

I
j〉, (III–2.18)

where only 〈γiγj〉 = ξ+ provides useful constraints on cosmological parame-

ters [170]. The other objects are expected to be small and can be encapsulated

by modelling of galactic physics and controlled via uncertainty biases during

analysis. Modelling the gravitational lensing signature is difficult since it in-

volves knowing, to a high precision, galaxy dynamics [220].

The galaxy lensing measurements used in this Thesis are:

Lensing2013 : When using Planck2013+WP+BAO or WMAP+highL+BAO

the CFHTLenS tomographic blue galaxy sample is used as the galaxy lensing

data. This was shown in [170] to have an intrinsic alignment signal that was con-

sistent with zero. This eliminates the need to marginalise over any additional

nuisance parameters. The cosmic shear correlation functions are estimated in

six redshift bins, each with an angular range 1.5 < θ < 35 arcmin. The power
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spectrum on non-linear scales can be corrected using the Halofit fitting formu-

lae [337; 350], which has been shown to be accurate enough to use with massive

neutrinos [62]. This data set is always combined with the Planck2013 lensing

data.

CFHTLenS (Strong): This relates directly to the Min case in [199] fig-

ure 12 which has the strongest assumptions made about astrophysical uncer-

tainties. There are seven angular bins and seven tomographic redshift bins

which each have their own uncertainties related to them. These redshift un-

certainties are Gaussians about ∆z1 = −0.045 ± 0.014, ∆z2 = −0.013 ± 0.010,

∆z3 = 0.008± 0.008, ∆z4 = 0.042± 0.017 and ∆z5 = 0.042± 0.034 leaving the

last two bins with flat priors of ∆z6,7 = [−0.1, 0.1], keeping all angular scales.

There are also tight priors on the amplitude of intrinsic alignments and the in-

trinsic alignment luminosity and redshift dependence are zero.

CFHTLenS (Weak): As for the CFHTLenS (Strong) case, this also comes

from [199] where it is denoted Max. The astrophysical assumptions are greatly

reduced with wide flat priors on intrinsic alignment measurements and ∆z =

[−0.1, 0.1] for each of the seven tomographic bins, while non-linear scales are

cut in the matter power spectrum. The cut to the non-linear scales is the main

cause for measurements from CFHTLenS (Weak) being much less constraining

than CFHTLenS (Strong).

DES Science Verification: The results from the Dark Energy Survey (DES)

follow the prescription in [1] where the range of angular scales included is less

than in either of the CFHTLenS analyses for each of its three redshift bins.

Here uncertainties in the redshift bins are not taken into account and intrin-

sic alignments are set to zero. As such the constraints are not as tight as the

CFHTLenS (Strong) but provide a stronger constraint than CFHTLenS (Weak).

Kilo-Degree Survey : During the preparation of this Thesis the Kilo-Degree

Survey (KIDS) [226] has produced results which are similar in many ways to

those produced by CFHTLenS. Given this, a value for the discordance has not

been quoted for this data in the next section, presuming it to be close to that

for CFHTLenS.

CMB lensing

Measuring the gravitational lensing of CMB photons can also provide informa-

tion about cosmological shear correlations related to the matter power spectrum,
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hence revealing information about Ωm and σ8 [236]. As lensing maps the tem-

perature Θ(n̂) → Θ(n̂ + ∇ψ) throughout space, the effects of lensing on the

CMB power spectrum can be calculated [236]. The correlation of the lensed

temperature is given by [185]

C lensed
` =

1− `2

4π

∫
d`′`′3Cψ`′

C`
+

∫
dn̂′

(2π)2

[
(n̂′ − n̂) · n̂′

]
C|n̂−n̂′|C

ψ
n̂

(III–2.19)

where C` is the CMB temperature power spectrum from equation (I–2.22) and

C` is the lensing power spectrum from equation (III–2.11). This represents a

convolution of the unlensed temperature power spectrum with the lensing power

spectrum to flatten peaks and shift power from large scales to smaller scales in

the temperature power spectrum [236]. Equation (III–2.19) shows that the mea-

surements of the temperature anisotropies of the CMB are closely linked to the

lensing potential the photons travel through to be observed. By disentangling

the lensed spectrum from the unlensed temperature therefore allows information

to be learned about the matter power spectrum and the density of matter. The

CMB lensing data used is:

Planck2013 lensing : Lensing2013 constraints of cosmic shear are always com-

bined with the gravitational lensing of the CMB using reconstructions from

Planck2013 [10] and SPT [129]. The combination of Planck2013 lensing and

Lensing2013 will simply denoted Lensing for convenience.

Planck2015 lensing : The updated Planck2015 lensing contains measurements

of the lensing power spectrum between 40 < ` < 400 as in [15] where other scales

are cut due to spurious features.

2.2.2 Redshift-space distortions

Non-linear effects from the peculiar velocities of galaxies within galaxy clusters

can be measured by surveys in redshift-space. In particular, pancake-like struc-

tures can form in redshift-space due to the velocities of galaxies falling towards

the centre of galaxy clusters [191]. Since RSD are the result of perturbations in

the velocity field of matter within galaxies the non-linear evolution, galaxy bias

and distortion need to be calculated to, at least, second order in perturbation

theory [58]. The anisotropic galaxy power spectrum is given by

Pg(k, µ) = e−(fµσv)2
[
Pg,δδ(k) + 2fµ2Pg,δθ(k)

+f2µ2Pθθ(x) + b31A(k, µβ) + b41B(k, µ, β)
]
.

(III–2.20)
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Pg,δδ(k), Pθθ(k) and Pg,δθ(k) are the power spectrum of the density fields, velocity

divergence and their cross correlation and are related to the Kaiser terms [202;

351] which enhances the view of the overdensity in redshift space. A(k, µ, β) and

B(k, µ, β) are high order correlations between these Kaiser terms and velocity

fields [351]. f is the growth factor, k the wavenumber and µ is the cosine

of the angle between the line-of-sight and the wavevector. σv is the velocity

dispersion and β = f/b1. The biases are free parameters in the model where b1

is the renormalised linear bias. The density-density and density-velocity power

spectrum also contains higher order biases from the second and third order non-

local spectrum and the second order local spectrum, bs2, b3nl and b2. The non-

local biases can be related to any initial linear order bias such that bs2 = −4(b1−
1)/7 and b3nl = 32(b1 − 1)/315 [38; 80; 313]. The anisotropic galaxy power

spectrum can then be used to calculate the multipole power spectrum

P`(k) =
2`+ 1

2α2
⊥α‖

∫ 1

−1
dn̂′Pg(k′, n̂′)P`(n̂ · n̂′), (III–2.21)

where k′ and n̂′ are the true wavenumber and true angle along the line-of-

sight [41], P`(n̂ · n̂′) are the Legendre polynomials and α⊥, α‖ are the scaling

factors introduced in equations (III–2.2) and (III–2.3). The joint growth of struc-

ture and amplitude of density perturbations of dark matter fσ8, can also be con-

strained using the relative amplitudes of the RSD monopole and quadrupole [58].

Measuring the deviation of observations from a fiducial cosmology allows the

RSD to be quantified by the Alcock-Paczynski factor FAP, which is related di-

rectly to the fiducial Hubble parameter Hfid(z), and the angular diameter dis-

tance Dfid
A (z) for a given cosmology

FAP(zeff) =
α⊥
α‖

(1 + z)Dfid
A (z)Hfid(z) . (III–2.22)

Using FAP(zeff) and the measure of the BAO signal from equation (III–2.1) the

degeneracy between DA(z) and H(z) can be broken [58]. The data sets used for

parameter constraints are:

SDSS-III BOSS DR11 RSD : The RSD parameters and their covariance es-

timated with kmax = 0.20hMpc−1 are ([58])
DV(zeff)/rs(zd)

FAP(zeff)

f(zeff)σ8(zeff)

 =


13.88

0.683

0.422

 , (III–2.23)
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C−1
kmax=0.20 =


31.032 77.773 −16.796

2687.7 −1475.9

1323.0

 ,

(III–2.24)

with zeff = 0.57.

SDSS-III BOSS DR12 RSD : Measurements of the clustering of galaxies along

the line-of-sight at effective redshifts of zLOWZ = 0.32 and zCMASS = 0.57 can

constrain fσ8 and the combination of the Hubble parameter and the comoving

sound horizon at the baryon drag epoch H(z)rs(zd), and the ratio of the angular

diameter distance to the sound horizon DA(z)/rs(zd) ([143])
f(zLOWZ)σ8(zLOWZ)

H(zLOWZ)rs(zd)

DA(zLOWZ)/rs(zd)

 =


0.392

11.48× 103km s−1

6.38

 , (III–2.25)


f(zCMASS)σ8(zCMASS)

H(zCMASS)rs(zd)

DA(zCMASS)/rs(zd)

 =


0.445

13.99× 103km s−1

9.43

 . (III–2.26)

Here, the covariance matrix for these parameters from the Quick-Particle-Mesh

(QPM) mocks are used

C−1
LOWZ =


669.33 −34.364 −96.193

6.2323 −1.9444

54.992

 ,

(III–2.27)

C−1
CMASS =


1736.7 −67.932 −185.18

10.036 −3.5814

76.115

 .

(III–2.28)

These are calculated from a minimum scale of kmax = 0.24hMpc−1 to a largest

scale of kmin = 0.02hMpc−1 for the monopole, and kmin = 0.04hMpc−1 for the

quadrupole.

In figure III–2.1 the theoretical RSD multipole power spectra are computed

according to the same procedure as in [58]. First, corrections to the linear

CAMB [237] power spectrum are applied at two-loop order using RegPT [352]. The

anisotropic galaxy power spectrum can then be modelled using the prescrip-

tion in [351], which includes corrections due to the coupling between the den-

sity and velocity components. Bias corrections are then applied to the density
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Figure III–2.1: The quadrupole component of the redshift space power spectrum

for the range of allowed Planck2013 cosmologies (indicated by the narrow red

and black bands), relative to the best-fit BOSS spectrum, for the NGC and SGC.

field according to [258], and finally, window functions for the north galactic cap

(NGC) and south galactic cap (SGC) added. The plot in figure III–2.1 shows

the quadrupole component of the anisotropic power spectrum for Planck2013

ΛCDM cosmologies, relative to the best-fit BOSS spectra (where the growth

rate is treated as a free parameter) for the NGC and SGC. For the purposes of

the plot, the bias parameters are fixed (which are nuisance parameters in the

full fit) to their BOSS best-fit values, but included in the range of Planck2013

cosmologies allowed by an MCMC analysis. The excess power (on large scales)

is apparent for the Planck2013 cosmologies, visually showing the preference of

the BOSS data for a lower growth rate. In practice calculating the non-linear

corrections are computationally expensive, so the SDSS-III BOSS DR11 RSD

data are used for MCMC fitting.

The intermediate data products {DV(zeff)/rs(zd), FAP(zeff), f(zeff)σ8(zeff)} or

{f(zeff)σ8(zeff), H(zeff)rs(zd), DA(zeff)/rs(zd)} are used in the MCMC analysis.

The RSD results have also been shown to be accurate enough to use with mod-

els with non-zero neutrino mass [57]. It should be noted that BAO are never

combined with RSD results since they are correlated.

2.2.3 Sunyaev–Zel’dovich galaxy cluster counts

Inverse Compton scattering of CMB photons by high energy electrons in intra-

cluster media can be used to measure the number of galaxy clusters as a function

of redshift, from which the growth of structure and various geometrical factors
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can be constrained [17]. In particular, the number of galaxy clusters in a solid

angle and redshift interval is given by

dN

dΩdz
=

dV

dΩdz

∫
dM

dn

dM
(III–2.29)

where the term before the integral describes the comoving volume which is re-

lated directly, via general relativity, to the energy density in the universe [77].

The comoving density is

dn

dM
=

√
2

π

%m

M

δcol

σ2

dσ

dM
exp

[
−

δ2
col

2σ2
MD

2

]
. (III–2.30)

M is the mass of the cluster, D(z) is the growth of density perturbations as

a function of redshift and %m is the density of matter today. σ is the RMS

density fluctuation at a given mass scale and redshift and σM is the same cal-

culated at z = 0. δcol is the threshold at which an overdensity will collapse and

is δcol ≈ 1.68 [294]. This result has been updated slightly by [331], but the ex-

act details are not needed here. Importantly, by knowing the number of galaxy

clusters in any direction, a direct understanding the amount of matter in the

universe can be garnered [154].

The actual detection of the galaxy cluster via the SZ effect is evident from

the increase in energy of CMB photons when they pass through high energy

electrons. For simplicity, considering one photon and one high energy electron,

the energy E, of the incoming photon gets shifted E′ → E(1 +β cos(θ)) where β

is the ratio of the velocity of the electron to the speed of light and θ is the angle

between the electron’s velocity and the photon’s path [276]. CMB photons pass-

ing through the intra-cluster medium will therefore deflect off the high energy

photons, changing their paths and increasing in energy. This can be detected as

a shifting of the photon temperature in observations of the CMB [12].

The relationship between the observable SZ flux, Y , and the mass of the cluster,

M , must be determined empirically using either observations or simulations. A

simple assumption for the thermal state of a cluster is to assume hydrostatic

equilibrium [17]. Any deviation from the Y −M relation derived from this as-

sumption is quantified using a hydrostatic mass bias 1 − b. This factor can be

constrained using follow-up observations of X-ray detected samples using weak

lensing or directly from the lensing effect of clusters on the CMB, measured from

the Planck data.

Planck2013 lensing : Planck has detected clusters via the SZ effect. Us-

ing a sample of 189 clusters, cosmological constraints can be deduced in the
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Figure III–2.2: 1σ and 2σ constraint contours in the Ωm − σ8 plane within

the ΛCDM model for a range of data. RSD DR11, SZ Planck2013, Lens-

ing2013+Planck2013 lensing are plotted in red, yellow and blue respectively.

Combining each of the independent LSS constraints in All LSS (2013) forms

the green contours. WMAP+highL+BAO and Planck2013+WP+BAO CMB

constraints are in purple and orange.

σ8 − Ωm plane [11]. The constraints can then be implemented by imposing pri-

ors on σ8(Ωm/0.27)0.3 = 0.764±0.025, where 1−b is allowed to vary in the range

[0.7, 1.0]. This is compatible with other determinations using cluster counts se-

lected using the SZ effect [162; 319] and in other wavebands [308; 368].

Planck2015 lensing : The lensing effect of 439 clusters on the CMB can be

used to infer 1/(1−b) = 0.99±0.19 [15; 17]. This greatly improves the constraint

from Planck2013 lensing.

Weighing the Giants: There are 51 galaxy clusters in the sample studied by

the Weighing the Giants (WtG) project, 22 of which overlap with the Planck2015

galaxy clusters, for which lensing data exists [246]. The mass bias determined

by WtG is lower than for Planck2015, at 1 − b = 0.688 ± 0.092, and as such

galaxy cluster dynamics suggest that these objects deviate significantly from hy-

drostatic equilibrium.

When using Planck2015 lensing or WtG to calculate the bias for SZ galaxy

cluster counts, the BAO combinations mentioned in Part III–2.1 are used, un-

less the SZ constraints are combined with RSD.



CHAPTER 2. COSMOLOGICAL PARAMETER CONSTRAINTS 97

0.64

0.72

0.80

0.88

C=0.99
C=0.12

C=0.07

0.64

0.72

0.80

0.88

RSD DR12

0.24 0.28 0.32 0.36 0.40

SZ (Planck2015 lensing)
SZ (WtG)

C=0.75

C=0.96
C=0.68Planck2015+Pol+BAO

CFHTLenS (Strong)
CFHTLenS (Weak)

0.20 0.24 0.28 0.32 0.36 0.40

Planck2015 lensing

Figure III–2.3: 1σ and 2σ constraint contours in the Ωm − σ8 plane within

the ΛCDM model for a range of data. In each subplot the orange contours

show the constraints from Planck2015+Pol+BAO. The top left subplot shows

the constraints from weak lensing with the CFHTLenS (Strong) and CFHTLenS

(Weak) results plotted in purple and and light blue respectively. The bottom left

and top right subplots show the constraint from CMB lensing in dark blue and

from BOSS DR12 RSD in red. The bottom right subplot contains the constraint

from SZ galaxy cluster counts with mass biases from CMB lensing in lime green

and WtG in yellow.

2.3 Parameter constraints

To get a description of the posterior distribution on the five relevant ΛCDM

parameters θ = {Ωbh
2,Ωch

2, 100ΘMC, ln(1010As), ns} MCMC analysis can be

performed using either LSS data or the CMB (as described in Part I–3.4). This

gives samples which can then be used to learn about statistics such as expected

parameter values, correlations between parameters and more. The samples can

also be used directly to assess differences in the posterior distributions of cosmo-

logical parameters given different data sets. Following [9], the sum of the masses

of the active neutrinos are fixed to
∑
mν = 0.06eV within the ΛCDM model in

order to satisfy the results from oscillation experiments.

Plotted in figures III–2.2 and III–2.3 are the Ωm − σ8 1σ and 2σ constraint
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contours projected from constraints on the ΛCDM parameters for a range of

LSS distributions as well as the three different CMB constraints. Figure III–2.2

shows the comparison of the 2013 data sets where it can be seen that each of the

independent LSS constraint contours lie slightly outside of the CMB contours,

but when all of the LSS constraints are combined into All LSS (2013) the green

2σ contours only just touch the Planck2013+WP+BAO orange contours. More

explicitly, in figure III–2.3 each of the LSS constraint contours are plotted sepa-

rately (comparing CFHTLenS (Strong) and (Weak) or SZ (Planck2015 lensing)

and SZ (WtG) in the top left and bottom right subplots) with Planck2015+Pol

+BAO in orange. In the bottom left of each subplot of figure III–2.3 the quan-

tification of tension using the difference vector method (3 ) from Part III–1 is

plotted. This quantification of tension is for the five dimensional parameter space

containing each of the relevant ΛCDM parameters, and for not the discordance

in the Ωm−σ8 plane. This means that the C values quoted may not be reflected

by the visual examples in the plots. Table III–2.1 shows the plotted C values

and their interpretation when mapped on to the intervals of a 1D Gaussian (the

DES scientific verification results are also included in the table).

The discordances between the posterior distributions using Planck2015+Pol+

BAO and each of the LSS data sets are not particularly significant, with the

possible exceptions of CFHTLenS (Strong) and SZ (Planck2015 lensing) - both

of which are barely significant. Since each of the LSS probes are independent

measurements they can be combined to provide an All LSS constraint. If each of

the mildly discrepant LSS constraints lie in the same region of parameter space,

then their combination can become more significant than each separately. Three

combinations considered here are:

All LSS (2013): The combined Lensing2013 and Planck2013 lensing results,

DR11 RSD measure and SZ (Planck2013 lensing) galaxy cluster counts are com-

bined. Gaussian priors of 100ΘMC = 1.04131±0.00063 and ns = 0.9603±0.0073

are also applied during the MCMC analysis. Comparison of this constraint

(green) to Planck2013+WP+BAO (orange) and WMAP+highL+BAO (purple)

are shown in figure III–2.2. Using the difference vector method of quantification

of the level of agreement between the posterior distributions of All LSS (2013)

and Planck2013+WP+BAO and mapping the result directly to an interval on

a 1D Gaussian there is a tension which exceeds 5σ. This is not reflected in

the Ωm − σ8 contours of figure III–2.2 because these derived parameters are not

highly correlated in the ΛCDM parameter directions where the tension arises.

More on this result will be discussed at the end of this section.
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Comparison data set Difference vector Interpretation

CFHTLenS (Strong) 0.99 2.7σ

CFHTLenS (Weak) 0.12 0.15σ

DES scientific verification 0.62 0.90σ

Planck2015 lensing 0.07 0.08σ

RSD DR12 0.75 1.2σ

SZ (Planck2015 lensing) 0.96 2.0σ

SZ (WtG) 0.68 0.99σ

Table III–2.1: Amount of discordance between the Planck2015+Pol+BAO

ΛCDM posterior distributions and each of the LSS data set constraints from

figure III–2.3 (also including DES scientific verification results). The Interpreta-

tion is found by mapping C to an interval on a 1D Gaussian.

All LSS (Weak): By combining CFHTLenS (Weak) with Planck2015 lensing,

RSD DR12 and SZ galaxy cluster counts using the WtG mass bias the least dis-

crepant joint analysis compared to Planck2015+Pol+BAO can be found. In fig-

ure III–2.4 the green contours in the Ωm−σ8 plane visually overlap substantially

with Planck2015+Pol+BAO giving a difference vector value C = 0.55 (0.76σ).

For more information on the correlated tensions in the five relevant ΛCDM pa-

rameters the 2D projection for every combination is presented in figure III–2.5.

All LSS (Strong): Combining the CFHTLenS (Strong) constraints with RSD

DR12, Planck2015 lensing and SZ galaxy cluster counts using the mass bias from

Planck2015 lensing is shown in brown in figure III–2.4. The 2D projections for

each of the five relevant ΛCDM parameters can also be found in figure III–2.6.

All LSS (Strong) is a more discrepant combination of data than All LSS (Weak)

with C = 0.99 (2.55σ). Note that this is less discrepant than the CFHTLenS

(Strong) discrepancy by itself. This suggests that there are internal tensions

between the LSS data sets, as well as with CMB constraints.

The calculated values for each of the statistics introduced in Part III–1 are

presented in tables III–2.2 and III–2.3. These indicate that All LSS (Strong) is

more discrepant than the parameter distributions inferred from Planck2015+Pol

+BAO whilst using All LSS (Weak) appears to be more compatible.

The results of measures 1 and 2 in tables III–2.2 and III–2.3 are small com-

pared to B = 1 or O = 1 suggesting a large degrees of discordance between
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Figure III–2.4: The 1σ and 2σ constraints on the Ωm − σ8 plane from

Planck2015+Pol+BAO in orange and from combining each of the LSS data

sets, with those in the most tension with the CMB data set in brown and in

the least tension in green. The five parameter ΛCDM difference vector with

Planck2015+Pol+BAO is quoted for both sets of constraints in the bottom-left

corner.

Measure Result Interpretation

1 B = 1.81× 10−2 Unknown

2 O = 2.71× 10−3 Unknown

3 C = 0.55 (0.76σ) Low

4 ICMB = 3.81× 10−1 Low

ILSS = 2.30× 10−3

5 D(CMB||LSS) = 7.20× 10−2 Likely

SCMB→LSS = −4.25× 10−1 similar

D(LSS||CMB) = 8.52

SLSS→CMB = 8.03

6 logR = 3.29 Low

7 log T = 2.59 Mild

Table III–2.2: Quantification of the similarity of the probability distributions

of the ΛCDM parameters from Planck2015+Pol+BAO and All LSS (Weak) for

each of the measures 1 -7 from Part III–1. The first column contains the measure

used, the second column shows the result and the final column gives a description

of degree of discordance.
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Measure Result Interpretation

1 B = 8.90× 10−4 Unknown

2 O = 9.70× 10−5 Unknown

3 C = 0.99 (2.55σ) Moderate

4 ICMB = 2.82× 10−2 Moderate

ILSS = 5.44× 10−5

5 D(CMB||LSS) = 2.85× 10−3 Likely

SCMB→LSS = −5.85 different

D(LSS||CMB) = 7.84

SLSS→CMB = 1.99

6 logR = −1.36 Significant

7 log T = 7.56 Significant

Table III–2.3: Identical table to Table. III–2.2 using All LSS (Strong) to con-

strain the LSS parameter distributions. The first column contains the measure

used, the second column shows the result and the final column gives a description

of the degree of discordance.

constraints obtained from LSS and CMB datasets. To illuminate how poor

these measures are at quantifying tension, a toy model can be considered to

see what the results are equivalent to in terms of shifts of two distributions. If

P1 = N (µ1,Σ) and P2 = N (µ2,Σ) with µ1 = (0, 0, 0, 0, 0), µ2 = (0, 0, 0, 0, θ)

and Σ = diag(1, 1, 1, 1, 1) then B = 1.81 × 10−2 needs θ = 4.23 whilst B =

8.90× 10−4 needs θ = 5.59. In a similar way O = 2.71× 10−3 requires θ = 3.48

and O = 9.70 × 10−5 needs θ = 4.42. From these shifts in the five dimen-

sional distributions it appears that All LSS (Weak) and All LSS (Strong) are

both quite distinct from Planck2015+Pol+BAO. There is a strong dimensional

dependence using these two measures so extremely small values can, and do,

appear as large discrepancies. On the basis of this, these measures indicate sig-

nificant discordance between All LSS (Weak) and Planck2015+Pol+BAO and

severe discordance between All LSS (Strong) and Planck2015+Pol+BAO. How-

ever, since the shift in the means has an equivalent description in terms of

broadening of the variance then it is difficult to make any useful statement. In-

stead consider another toy model where P1 = N (µ,Σ1) and P2 = N (µ,Σ2)

with µ = (0, 0, 0, 0, 0), Σ1 = diag(1, 1, 1, 1, 1) and Σ2 = diag(σ2, σ2, σ2, σ2, σ2)

then B = 1.81× 10−2 needs σ ≈ 10 whilst B = 8.90× 10−4 needs σ ≈ 33. Nei-

ther of these P2 distributions would be considered in tension with P1, although

P2 would not be informative. In general, the values of B and O are much less

than one, which would suggest that there is reasonably significant discordance
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between All LSS (Weak) or All LSS (Strong) and Planck2015+Pol+BAO. It is

clear why neither the Bhattacharyya distance nor the overlap coefficient mea-

sures are used for data comparison in cosmology.

Measure 3 is simple to interpret from both tables III–2.2 and III–2.3. Since

the value of C is the fraction of samples within an interval then it maps easily

to the number of samples within an interval of a 1D Gaussian distribution. As

such C maps directly to a quantification in terms of a number of standard de-

viations. For All LSS (Weak) compared to Planck2015+Pol+BAO, C = 0.55 is

equivalent to 0.76σ, which is interpreted as very little discordance. Comparing

All LSS (Strong) to Planck2015+Pol+BAO provides C = 0.99 which (including

more significant figures in the calculation) maps to 2.55σ. While this is much

greater than for All LSS (Weak), the suggested interpretation of the tension is

only moderate. These values reflect the position of the contours in figure III–2.4.

When interpreting measure 4 it is only necessary to consider Max[ICMB, ILSS]

to get an indication of the level of agreement. The ratio of the larger value to

the smaller value then describes the relative widths of the distributions. In a

similar way to measure 3, the values of ICMB and ILSS relate directly to numbers

of samples, although the distributions are cut at the complementary distribu-

tions 3σ isocontours, meaning they are discontinuous. While this means they

cannot truly be mapped to intervals of a 1D Gaussian, that is still a useful in-

dicator of discordance. For All LSS (Weak) 38.1% of the samples drawn from

the Planck2015+Pol+BAO distribution are within the isocontour which would

contain 99.7% of the samples drawn from the All LSS (Weak) distribution. This

seems like a small fraction, but is actually the equivalent of a discrepancy of

0.88σ when compared to a 1D Gaussian and so should be interpreted as in-

dicating a low level of discordance. Since ICMB > ILSS then the constraints

on the parameters using Planck2015+Pol+BAO are tighter than those from

All LSS (Weak). Similarly, ICMB is larger in table III–2.3 showing that the

constraints from Planck2015+Pol+BAO are tighter than those from All LSS

(Strong). ICMB = 2.82× 10−2 means that 2.82% of the samples drawn from the

Planck2015+Pol+BAO distribution are within the isocontour which would con-

tain 99.7% of the samples drawn from the All LSS (Strong) distribution. Again,

this seems quite low but is the equivalent to 2.2σ and so is again only moderately

discordant.

Measure 5, is a bit more difficult to interpret. In the case of updating both

the All LSS (Weak) and the All LSS (Strong) constraints with the constraints
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from Planck2015+Pol+BAO there is little relative entropy, but large negative

suprise. Since the values of the suprise are negative this suggests that the dis-

tributions are more similar than expected. It should be noted that this does not

mean that the distributions are similar, just that there is less of an information

gain than expected. Indeed, it is is very difficult to quantify quite how severe the

discordance is using this measure; it should rather be used to describe whether

one data set is likely to update another data set. The important outcome of

the measure 5 results from tables III–2.2 and III–2.3 is the similarity between

the results for D(LSS||CMB) and those for SLSS→CMB for All LSS (Weak). This

indicates that the distributions are likely to be similar, but D(LSS||CMB) being

larger than SLSS→CMB shows that it is more probable that the parameter distri-

butions from Planck2015+Pol+BAO can be updated with the constraints from

All LSS (Strong). This means the distributions are likely to be more distinct.

For measure 6, table III–2.2 has logR = 3.29 signifying that the joint distri-

bution, with Planck2015+Pol+BAO and All LSS (Weak) as data sets, is more

likely than each of the distributions separately. The similarity is quite signif-

icant when using flat priors from the minimum to maximum parameter values

obtained in the samples. This happens only when the two distributions are, at

worst, mildly discordant. When comparing this to the All LSS (Strong) result

of logR = −1.36, in table III–2.3, the negative value shows that the joint dis-

tribution is less likely than each of the distributions separately, which is true

when the distributions are more distinct. It is best to interpret the values of

logR on the Jeffreys scale often used in Bayesian analysis [196], with a result

of logR = 3.29 showing Planck2015+Pol+BAO is “decisively similar” to All

LSS (Weak) and logR = −1.36 suggesting Planck2015+Pol+BAO is signifi-

cantly different to All LSS (Strong). These statements are more extreme than

the other measures as a result of placing relatively tight priors. Increasing the

range of the prior distribution allows less extreme interpretation of the results

but with the same quantitative outcome - the All LSS (Weak) distribution is

more similar to Planck2015+Pol+BAO than the All LSS (Strong) distribution is.

Finally, measure 7 indicates that the discordance between All LSS (Weak) and

Planck2015+Pol+BAO is mild, but as with measure 6 this statement is prior

dependent. Again, the log T value when using All LSS (Strong) shows a much

more significant discordance. By changing the priors, the interpretation of this

result can change from All LSS (Weak) being in almost complete agreement

with Planck2015+Pol+BAO to there being significant or severe disagreement.

The interpretation from All LSS (Strong) then follows suit, being always more
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discordant than All LSS (Weak).

To summarise the usefulness of each of these methods:

• 1 and 2 cannot give a useful quantification of discordance, although the

small values would suggest more significant discordance than other meth-

ods.

• 3 and 4 can be related to drawn samples from distributions and so mapped

to intervals on a 1D Gaussian and tend to give slightly more conservative

interpretations of the discordance.

• 5 is useful to find out whether a distribution is likely to usefully update one

distribution from a pre-existing data set, but cannot be easily interpreted

as a quantification of the difference between the data sets.

• 6 and 7 are prior dependent and so care needs to taken when interpreting

the actual values as a indication of the severity of discordance.

All of these measures, for both All LSS (Weak) and All LSS (Strong), are not

representative of the value of the tension obtained by comparing All LSS (2013)

and Planck2013+WP+BAO. This is true even though the Ωm − σ8 2σ contour

for the All LSS (Strong) in figure III–2.4 looks similar to the All LSS (2013)

contour in III–2.2. This is due to the application of Planck2013 priors on ΘMC

and ns. These parameters were chosen since they are well measured by the CMB

and in particular ΘMC is known to within 0.05%. Using importance sampling on

the All LSS (Strong) chains and placing priors of 100ΘMC = 1.04086± 0.00048

and ns = 0.9652 ± 0.0062, the resulting tension with Planck2015+Pol+BAO is

C = 0.999(95) (4.06σ) which is in closer agreement with the All LSS (2013)

result. There are relatively few samples in the prior regions of ΘMC and ns when

using All LSS (Strong) so the probability distribution from the samples is likely

not to be representative of the true distribution.

Since these values are restricted to a particular region of their parameter space,

the other three ΛCDM parameters (Ωbh
2, Ωch

2 and ln(1010As)) become con-

strained to less favourable regions, i.e. distinctly different from Planck2013+WP

+BAO. Figures III–2.5 and III–2.6 show the projected likelihood contours

comparing Planck2015+Pol+BAO to All LSS (Weak) and All LSS (Strong)

respectively. Although, not entirely accurate - the application of priors on

ΘMC and ns would restrict the green and the brown contours to the size of the

Planck2015+Pol+BAO contours in the ΘMC and ns directions. For figure III–

2.5, even though the priors limit the All LSS (Weak) parameter distributions in
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Figure III–2.5: Projected 1σ and 2σ likelihood contours for each of the relevant

ΛCDM parameters. The green contours show the All LSS (Weak) constraints

and the orange contours are the constraints from Planck2015+Pol+BAO.

all directions, they do not become significantly more discrepant with Planck2015

+Pol+BAO. On the other hand, in figure III–2.6, the priors restrict ln(1010As)

and Ωch
2 to the upper range of their allowed values. This causes a knock on ef-

fect requiring both lower and higher Ωbh
2 values from the correlation with Ωch

2

and the allowed region from the priors respectively. This “new constraint” lies

further from Planck2015+Pol+BAO and so the agreement with All LSS (Strong)

with priors decreases. It should be noted that it is näıve to use the combinations

of the 2D contours in figures III–2.5 and III–2.6 to make serious assumptions

about shifts in the distributions with the application of priors. The true distri-

butions are five dimensional and can only be projected down to the 2D contours

via marginalising out other parameters, therefore losing a lot of information in

the process. Releasing these priors to cover a wider range allows more natural

values in the remaining parameters to be chosen. The variances of these LSS

parameter distributions mean that more samples overlap with samples from the

Planck2015+Pol+BAO distribution, reducing the tension.

It should be noted that if the belief in the ns and ΘMC priors is strong, the

greater tension result may be favoured. This was the argument made in the

2013 study presented here. The priors themselves come from Planck2013 con-
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Figure III–2.6: Projected 1σ and 2σ likelihood contours for each of the relevant

ΛCDM parameters. The brown contours show the All LSS (Strong) constraints

and the orange contours are the constraints from Planck2015+Pol+BAO.

straints. Even though the priors are well believed, they were are not applied in

the 2015 study to decouple the CMB and LSS measurements completely. Neither

choice is incorrect, they are both belief dependent.

2.4 ΛCDM extensions

As mentioned in the previous section, if priors are placed on ΘMC and ns when

obtaining samples from the posterior distribution given LSS data then there is

significant tension between the distributions from LSS and the CMB. There are

various ways to extend ΛCDM to try and alleviate the discordance. A non-

exhaustive selection of extensions are laid out below.

2.4.1 Neutrinos

The inclusion of a neutrino component in the cosmological model can reduce

the amount of power on small scales for a given large-scale normalisation, As.

This is true both in the case of active neutrinos that correspond to the mass

eigenstates of the standard three flavours and also for a sterile neutrino, which

evades the strong bound on the number of neutrino species from particle physics

experiments not coupling to weak interactions. Using Planck2015+Pol+BAO
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to constrain ΛCDM with either active or sterile neutrinos added indicates no

preference for either a mass for active neutrinos,
∑
mν < 0.15eV or any mass

deviation of the number of relativistic degrees of freedom from sterile neutrinos,

meff
sterile < 0.65eV and ∆Neff < 0.342 [14].

Active neutrinos

The inclusion of active neutrinos is modelled by the addition of a single pa-

rameter,
∑
mν , assuming that this is distributed equally amongst the three

species of massive neutrino. This approximates a degenerate hierarchy with

m1 = m2 = m3 =
∑
mν/3, which is true for large

∑
mν with respect to the

mass differences of the eigenstates, as is the case in the models we will find

gives rise to the best fit to the data (see figure III–2.11). Within the currently

constrained limits, such models affect structure growth on small scales and the

primary anisotropies of the CMB [127; 155; 158; 233].

There is little difference between massive neutrinos (with
∑
mν . 0.5 eV) and

massless neutrinos in terms of their effect on pre-recombination dynamics - both

the background and of perturbations - since they are relativistic at recombina-

tion in both cases. The differences that do arise are due to the ratio of the

angular diameter distance to last-scattering, DA(z∗), to the sound horizon at

last-scattering, rs(z∗), which sets the angular scale of the CMB acoustic peaks.

As the mass of the neutrino increases, DA(z∗) decreases, last-scattering appears

closer and anisotropies are shifted to larger angular scales [155]. There is a de-

generacy in the effect on the CMB primary anisotropies between dark energy

density and massive neutrinos in flat space, in addition to a difference in the

Hubble constant, but this degeneracy is broken by several effects including the

late-time ISW [182; 235; 301]. The CMB primary anisotropies are affected via

the back-reaction on the metric perturbations from the stress-energy of neutrino

perturbations. The size of the effect on the CMB is O[(
∑
mν/kBTν)2]ρν/ρtot

where ρν is the energy density per species of massless neutrino. For neutrino

mass scales relevant to this analysis, changes in the CMB should be ∼ 0.1% as

found in [155] where they used
∑
mν = 0.37eV.

Massive neutrinos also reduce structure growth on small scales compared to

massless neutrinos. Neutrinos cluster on scales above their free-streaming length

- for a non-relativistic transition in matter domination the free-streaming length

is λFS(z) ∝ a1/2 [233], therefore the comoving free-streaming length decreases

with time. The growth of structure is reduced since the neutrino Fourier modes

inside the comoving horizon at the non-relativistic transition cannot cluster un-
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Figure III–2.7: 1σ and 2σ constraints in the Ωm − σ8 plane for ΛCDM+
∑
mν

from Planck2013+WP+BAO (orange) and WMAP+highL+BAO (purple) on

the left and Planck2015+Pol+BAO (light orange) on the right and from com-

bining each of the LSS data sets, All LSS (2013) (lighter green) on the left and

All LSS (Strong) (brown) and All LSS (Weak) (darker green) on the right. The

five parameter ΛCDM difference vector with Planck2015+Pol+BAO is quoted

for both sets of constraints in the bottom left corner of the right subplot.

til the modes leave the shrinking comoving free-streaming length. There is

suppression in the matter power spectrum on smaller scales due to the mas-

sive neutrino modes which are currently within the comoving free-streaming

length. This is found to have scale-free fractional suppression of ∼ −8fν where

fν = Ων/Ωm [186].

The equivalent of figures. III–2.2 and III–2.3 are shown in figure III–2.7 when∑
mν is allowed to vary. There is a significant reduction in the tension between

the All LSS (2013) constraint (green contours left subplot) and the CMB obser-

vations from WMAP+highL+BAO (purple contours). It appears that there is

still a tension in the case of Planck2013+WP+BAO (orange contours left sub-

plot) although this is weaker than in the case when
∑
mν is fixed to 0.06eV.

The tension still remains, but now at the level of ∼ 2.5σ. This opposes the

right hand subplot of figure III–2.7, particularly in the All LSS (Strong) case.

Clearly, here, there is very little benefit from adding active neutrinos, evident

from the Ωm − σ8 contours. When including
∑
mν in the quantification of

discordance analysis, such that the probability distribution is six dimensional

C = 0.999(85) (3.79σ) and C = 0.781 (1.23σ) for All LSS (Strong) and All

LSS (Weak) respectively. This is due to the distribution of neutrino mass not

aligning particularly well when constrained using All LSS (Strong) or (Weak)

compared to Planck2015+Pol+BAO and not because an extra degree of freedom

has been added. It is interesting that active neutrinos slightly alleviate tension
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Figure III–2.8: Comparison of the the 1D marginalised value
∑
mν and 1σ

errors for a wide range of LSS data combinations with CMB data. The CMB

data used is Planck+WP (orange) or WMAP+highL (purple). The LSS data

sets are indicated on the right are labelled B for BAO (where BOSS DR9 is

used), L for Lensing2013 + Planck2013 lensing, R for RSD DR12 and SZ for

Planck2013 lensing.

between All LSS (2013) and WMAP+highL+BAO posterior distributions (and

marginally between All LSS (2013) and Planck2013+WP+BAO distributions)

but worsens the agreement between the posterior distributions using data from

All LSS (Strong) and Planck2015+Pol+BAO. One thing to notice is that priors

on ΘMC and ns already require that constraints from All LSS (2013) be simi-

lar to Planck2013+WP+BAO in two dimensions, and correlation between these

parameters and
∑
mν forces the distribution of the mass of the neutrinos from

both All LSS (2013) and Planck2013+WP+BAO to be similar. On the other

hand, without the priors All LSS (Strong) parameters shift away from those

constrained by Planck2015+Pol+BAO when
∑
mν is included, increasing the

tension.

It is interesting to consider the distribution of the mass of the active neutrinos for

a given range of LSS observations when combined with CMB data. Figure III–2.8

shows the marginalised
∑
mν mean values and 1σ errors when combined with

Planck2013+WP in orange or WMAP+highL in purple. In some cases there is

clearly only an upper bound, but as the number of LSS data sets included in-

creases the constraint stabilises to a non-zero value with a significance of around

3 − 4σ. It is clear that preference for non-zero
∑
mν is not dependent on this

choice when two or more LSS data sets are included. Moreover, it is clear that

there is a preference for non-zero neutrino mass without including SZ data. It can
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Parameter Planck2013+WP+BAO Planck2013+WP+All LSS (2013)

Ωbh
2 0.02213±0.00025 0.02229±0.00025

Ωch
2 0.1185±0.0019 0.1154±0.0014

100θMC 1.04141±0.00057 1.04156±0.00056

τR 0.092±0.013 0.096±0.014

nS 0.9627±0.0061 0.9677±0.0055

log(1010As) 3.090±0.025 3.091±0.027∑
mν [eV] <0.26 0.357±0.099

H0 67.57±0.92 66.52±1.15

Ωm 0.311±0.012 0.320±0.015

σ8 0.818±0.023 0.749±0.019

zre 11.21±1.11 11.15±1.20

Table III–2.4: Marginalised parameter table when ΛCDM is extended with ac-

tive neutrinos. The data combinations are Planck2013+WP+BAO in the first

column and Planck2013+WP+All LSS (2013) in the second.

be seen that Planck2013+WP with Lensing2013 + Planck2013 lensing with or

without SZ cluster counts (i.e. excluding BAO data) prefers a higher mass than

WMAP+highL, unlike in other cases. This is due to WMAP+highL preferring

a larger mean σ8 than Planck+WP when excluding BAO data, and because σ8

is anti-correlated with
∑
mν . When BAO is included then the mean σ8 is com-

parable for Planck+WP and WMAP+highL. The 1D marginalised likelihoods

for
∑
mν are presented in figure III–2.9 for Planck+WP combined with permu-

tations of two LSS data sets. The full set of fitted parameters are presented in

the 2nd column of table III–2.4. For the combination of Planck2013+WP+All

LSS (2013),
∑
mν = (0.357 ± 0.099) eV compared to a 95% upper limit of∑

mν < 0.258 eV for Planck2013+WP+BAO. The largest change in the other

fitted parameters is a ∼ 1.6σ shift in Ωch
2. As expected the fitted value of σ8

shifts from 0.818 ± 0.023 to 0.749 ± 0.019 when LSS is included, but the value

of Ωm actually increases by around 1σ, presumably since the massive neutrinos

contribute to it. The value of the combined mass of neutrinos using All LSS

(Strong) or All LSS (Weak) combinations with Planck2015+Pol included be-

comes
∑
mν = (0.176±0.056)eV or

∑
mν = (0.146±0.057)eV, where the signifi-

cance of neutrino masses has slightly reduced from the
∑
mν = (0.357±0.099)eV

stated above.

The significance of the increased goodness of fit can be evaluated using the

likelihood ratio test. For nested models, it is particularly simple and involves
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Figure III–2.9: 1D marginalised likelihoods for
∑
mν for Planck2013+WP and

different combinations of LSS data. The main result is Planck2013+WP+All

LSS (2013) (blue), which gives
∑
mν = (0.357 ± 0.099) eV. The LSS data sets

are labelled L for Lensing2013 + Planck2013 lensing, R for RSD DR12 and SZ

for Planck2013 lensing. The combinations of two LSS probes are BAO + L + S

(green), L + R (red) and R + S (yellow).

taking the difference of the maximum likelihood for the base model, in this

case ΛCDM, and an extended model with
∑
mν . This can then be compared

to a χ2 distribution for one degree of freedom, with the p−value quantifying

the probability of the simpler model being preferred over the extended model.

For Planck2013+WP+BAO a probability of 50.2% is found but when using

Planck2013+WP+All LSS (2013) the probability is only 0.35%, suggesting that

the simpler model can be rejected with high probability. The high values of∑
mν are not favoured by the Planck+WP+BAO data: values of

∑
mν for

Planck2013+WP+All LSS (2013) are in tension with the upper limit from

Planck2013+WP+BAO. As discussed in [45], this can be quantified by per-

forming the analysis using two different neutrino masses and considering the

statistics of the difference. To be concrete, in the MCMC analysis two masses,∑
mCMB
ν and

∑
mLSS
ν , are included and all observables (CMB power spectra,

lensing convergence etc.) for each are calculated. For any CMB data the ob-

servable mass of the neutrino is
∑
mCMB
ν , and for any LSS data the observable

mass of the neutrino is
∑
mLSS
ν . The other cosmological parameters are shared.

The marginalised posterior ∆M =
∑
mCMB
ν −

∑
mLSS
ν can be computed to

quantify at what significance this is non-zero. Performing such an analysis gives

∆M = 0.32± 0.13 eV, i.e. non-zero at the 2.5σ level. This quantifies the extent

to which the active neutrino model is in tension with Planck2013 data. The
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Figure III–2.10: The value of the natural logarithm of the Bayes factor for a

Gaussian probability with a given mean, variance σ and fixed flat prior of [0,

3] eV. The 1, 2, 3 and 4 σ values are plotted in blue, green, red and light blue

respectively.

likelihood ratio test can also be used to assess the increase in goodness of fit,

finding the simpler one-neutrino model is favoured with a probability of only

0.30%.

The inclusion of active neutrinos can be seen as an addition to ΛCDM and

as such model comparison can be performed using the Savage-Dickey density

ratio. From equation I–3.11 in Part I–3.4, M1 is ΛCDM and M2 is ΛCDM

+
∑
mν where the additional parameter is ψ =

∑
mν . Recall that in the

vanilla ΛCDM model
∑
mν is set to 0.06eV. The normalised posterior likelihood,

P (
∑
mν |d,ΛCDM + ψ) is taken from the MCMC chains, where a prior range

of
∑
mν = [0, 3] eV is assumed. For d = Planck2013+WP+All LSS (2013),

ln(ΘB) = −1.8 implying that a model including active neutrinos is preferred over

plain ΛCDM by odds of around 6 : 1. This represents reasonably strong evidence

on the Jeffreys scale [196]. If instead of the prior [0, 3] eV, which is not unreason-

able but is also not compelling, [0, 1] eV or [0, 10] eV, then ln(ΘB) = −2.9 and

−0.6 respectively. These equate to odds from 18:1 to 2:1. Figure III–2.10 shows

the value of the logarithm of the Bayes factor when a Gaussian probability is

assumed with some flat prior,

ln(ΘB) = ln

(
e(x0−x)2/2σ2

σ
√

2π
× 1

p(x)

)
, (III–2.31)

where σ is the standard deviation, x is the mean mass, x0 is the fiducial mass

and p(x) is the uniform prior range normalised to 1. For ΛCDM +
∑
mν then
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Figure III–2.11: Masses of the neutrino eigenstates using

Planck2013+WP+BAO (orange) and Planck2013+WP+All LSS (2013)

(blue), together with results from oscillation experiments [78]. These allow for

two solutions, called normal (crosses) and inverted (circles) hierarchies. When

the higher
∑
mν value from Planck2013+WP+All LSS (2013) is used then the

eigenstates become degenerate.

x = 0.06eV and with the prior [0, 3] eV, p(x) = 1/3. For
∑
mν = 0.357± 0.099

obtained from Planck2013+WP+All LSS (2013), the value of the Bayes factor

is ln(ΘB) ∼ −2 and has between 3-4σ significance (red and light blue lines in fig-

ure III–2.10). As such, not only are the Bayesian statistics showing reasonably

strong odds, but so is the statistical likelihood. If the prior range is changed

to some larger value, the Bayes factor becomes larger and starts supporting no

change from standard ΛCDM, but the statistical likelihood would continue to

show that active neutrinos are significant within the 3-4σ range.

Cosmological limits on
∑
mν for active neutrinos are important since they

can be combined with square differences between the neutrino masses obtained

from atmospheric, ∆m2
A, and solar neutrino measurements, ∆m2

S, in order to

calculate the masses of the individual eigenstates, (mν1 ,mν2 ,mν3) [274]. An

important question to answer is whether the masses have a “normal”, “in-

verted” or “degenerate” hierarchy. From [78] the difference between m2
ν3 and

m2
ν1 is given by ∆m2

A = 2.4+0.1
−0.1 × 10−3eV2 (i.e. an uncertainty of ∼ 4%) and

the difference between m2
ν2 and m2

ν1 is given by ∆m2
S = 7.5+0.3

−0.2 × 10−5eV2

(i.e. an uncertainty of ∼ 3%). For normal hierarchy, m2
ν1 and m2

ν2 are much

less than m2
ν3 and the mass eigenstates are given by m2

ν2 = m2
ν1 + ∆m2

S and

m2
ν3 = m2

ν1 + ∆m2
A with mν1 being the lowest mass eigenstate, and in the

inverted hierarchy, m2
ν3 is the lowest mass eigenstate with a mass much less

than m2
ν1 = m2

ν3 + ∆m2
A − ∆m2

S and m2
ν2 = m2

ν3 + ∆m2
A. In figure III–

2.11 the individual neutrino masses are shown for
∑
mν given the limits from

Planck2013+WP+BAO and Planck2013+WP+All LSS (2013), i.e. smallest

and largest
∑
mν values respectively. The normal hierarchy equations are plot-
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ted with crosses and the inverted with circles. Planck2013+WP+BAO pre-

dicts the mass of three active neutrinos to be < 0.258 eV with mν3 greater

than mν1 and mν2 indicating that, if this limit is correct, then a “normal” hi-

erarchy is preferred, although “inverted” or “degenerate” hierarchy are by no

means excluded. The preferred masses are mν1 = (0.022 ± 0.028) eV, mν2 =

(0.031 ± 0.021) eV and mν3 = (0.059 ± 0.013) eV. The same is true when look-

ing at the inverted hierarchy equation, where clear preference is seen for “in-

verted” whilst “normal” and “degenerate” hierarchies are not ruled out. The

masses in this case are mν1 = (0.036± 0.028) eV, mν2 = (0.048± 0.020) eV and

mν3 = (0.018± 0.024) eV. Interestingly, when looking at the inverted hierarchy

equation, mν1 is unbounded from below like mν3 is whereas mν3 is statisti-

cally unlikely to have zero mass in the normal hierarchy case, perhaps suggest-

ing slightly more preference for normal hierarchy. Planck2013+WP+All LSS

(2013) constrains
∑
mν = (0.357 ± 0.099)eV which is more consistent with a

degenerate hierarchy for both the normal and inverted equations. The preferred

masses in this case are mν1 = (0.115± 0.034) eV, mν2 = (0.116± 0.034) eV and

mν3 = (0.126± 0.031) eV or mν1 = (0.123± 0.032) eV, mν2 = (0.123± 0.032) eV

and mν3 = (0.111 ± 0.036) eV for normal and inverted equations respectively.

Each indicate more than 3σ preference for non-zero neutrino mass. There is

strong correlation between the probability distribution for each eigenstate. The

results using Planck+WP+All LSS (2013) reveal that, regardless of hierarchy

equation, degenerate hierarchy seems to be preferred rather strongly in compar-

ison to CMB data alone which is compatible with all three.

Sterile neutrinos

There are a host of anomalies from short baseline neutrino oscillation experi-

ments which may be solved by the addition of a sterile neutrino. Firstly, the

LSND experiment [20] observes an excess of ν̄e candidates, suggesting the os-

cillation ν̄µ → νs → ν̄e where the mass of the sterile neutrino is constrained to

∼ 1eV by the KARMEN [29] and Bugey [102] experiments. The MiniBooNE

experiment [21], as well as testing the LSND signal, also detects an excess of νe

from the neutrino mode rather than anti-neutrino mode. Although the neutrino

mode does not completely agree with the expected sterile neutrino signal, there

are several explanations due to the method of detection [209]. Reactor anoma-

lies detect a 6% lower rate of electron anti-neutrinos than is expected, which can

be interpreted as neutrino oscillations with a 1eV sterile neutrino [261]. Lower

event rates of νe+71 Ga→71 Ge+e− than expected can also be explained by 1eV

sterile neutrino oscillations, solving what is known as the Gallium anomaly [144].
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Joint analysis using cosmological and short baseline data has been carried out

for models with both one and two added sterile neutrinos [28]. The addition of

short baseline data in the form of priors on the cosmological data lowers the mass

of the sterile neutrino, in a single sterile neutrino model, to the msterile ∼ 1eV

range at high significance. A model with two added sterile neutrinos is generally

not allowed since this leads to a universe with too much radiation [232, pg. 163].

When considering two mixing angles between active and sterile neutrinos a small

allowed parameter space is left putting tension between short baseline neutrino

oscillation experiments and cosmological bounds. This can be rectified by in-

cluding new parameters in the cosmological model, such as large asymmetries

between neutrinos and antineutrinos [263]. This problem is not considered here,

since the more general addition of sterile neutrinos is concentrated on, rather

than a specific model.

The standard approach to modelling sterile neutrinos is to introduce two new pa-

rameters into the fitting process. The first is an effective neutrino mass, meff
sterile,

and the second is the change in the effective number of degrees of freedom, ∆Neff ,

such that Neff = 3.046 + ∆Neff . In this case the active neutrinos are modelled

as one massive neutrino with mν = 0.06 eV and two massless neutrinos, which

would accurately model a normal hierarchy with m1 < m2 � m3. The cosmo-

logical results are not very sensitive to this assumption on the structure of the

neutrino active sector. The density of sterile neutrinos is given by

Ωsterileh
2 =

meff
sterile

94 eV
. (III–2.32)

In the MCMC analysis, a prior on meff
sterile/∆Neff < 10 eV is imposed, as used

in the Planck2013 analysis [9], since sterile neutrinos with large effective masses

become degenerate with CDM.

This parameterisation encompasses a wide of range of possible models for sterile

neutrinos, which are typically formed in the early Universe by oscillations. Two

possible scenarios that have been widely discussed in the literature are:

“On resonance” oscillations in the Dodelson-Widrow model [110]. In this

case the sterile neutrinos have the same temperature as their active counter-

parts and are formed via oscillations when there is no lepton asymmetry and

the mixing angle is small. Under the assumption that neutrino decoupling is

instantaneous, the distribution function for the neutrinos is

fDW(p) =
∆Neff

exp[p/Tν ] + 1
. (III–2.33)
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In this case ∆Neff is a constant, which is not necessarily an integer, and the

true mass is given by msterile = meff
sterile/∆Neff . This means that the distribution

function is suppressed with respect to one of the active neutrinos.

“Off resonance” oscillations leading to a thermal scenario [332]. The dis-

tribution function is standard Fermi-Dirac with thermal temperature Tsterile,

given by

Tsterile = ∆N
1/4
eff Tν , (III–2.34)

where Tν is the thermal temperature of the active neutrinos. ∆Neff , again not

necessarily an integer, quantifies the level of thermalisation with ∆Neff = 1

corresponding to the complete thermalisation, for one species of sterile neutrino,

with Tsterile = Tν . The thermal mass of the neutrinos is given by

msterile = ∆N
−3/4
eff meff

sterile . (III–2.35)

The detailed analysis of a wide range of LSS data combined with CMB data from

Planck2013+WP or WMAP+highL on active neutrinos showed that combina-

tions of the CMB and two or more LSS data sets lead to consistent conclusions.

Similar is true for results from the sterile neutrino case. For this reason, the

results are restricted to a limited range of possibilities.

Figure III–2.12 illustrates the impact of including meff
sterile and ∆Neff as param-

eters on the constraints in the σ8 − Ωm plane for various data combinations.

Unlike in the case of active neutrinos, in the left subplot there is clear evidence

that inclusion of sterile neutrinos can ameliorate, at least partially, the discrep-

ancy between the Planck2013+WP+BAO and All LSS (2013) parameter dis-

tributions. Figure III–2.13 presents the results of joint CMB and LSS analyses.

There is a consistent picture for a range of combinations of these data suggesting

a non-zero value for meff
sterile. Using Planck2013+WP+All LSS (2013) it can be

seen that meff
sterile = (0.67 ± 0.18) eV and ∆Neff = 0.32 ± 0.20 - marginalised

parameters are presented in Table III–2.5.

Comparing the newer data sets of Planck2015+Pol+BAO, All LSS (Weak)

and (Strong), sterile neutrinos fare a little better than their active counter-

parts in reducing the tension. When meff
sterile and ∆Neff are included in the

quantification analysis C = 0.891 (1.60σ) and C = 0.652 (0.94σ) compar-

ing Planck2015+Pol+BAO to All LSS (Strong) and All LSS (Weak) respec-

tively. This is in good agreement with the visual inspection of Ωm − σ8 con-

tours. Due to the high dimensionality of this problem each bin in the his-

togram for meff
sterile and ∆Neff is computed separately, written to disk and then
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Figure III–2.12: 1σ and 2σ constraints in the Ωm − σ8 plane for

ΛCDM+meff
sterile+∆Neff from Planck2013+WP+BAO (orange) and

WMAP+highL+BAO (purple) on the left and Planck2015+Pol+BAO

(light orange) on the right and from combining each of the LSS data sets, All

LSS (2013) (lighter green) on the left and All LSS (Strong) (brown) and All

LSS (Weak) (darker green) on the right. The five parameter ΛCDM difference

vector with Planck2015+Pol+BAO is quoted for both sets of constraints in the

bottom-left corner of the right subplot.
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Figure III–2.13: 2D Likelihood plots for msterile
eff and ∆Neff for Planck2013+WP

combined with different LSS data combinations. The main result is

Planck2013+WP+All LSS (2013) (blue). The LSS data sets are labelled L

for Lensing2013 + Planck2013 lensing, R for RSD DR12 and SZ for Planck2013

lensing. The combinations of two LSS probes: BAO + L + S (green), L + R

(red) and R + S (yellow).
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Parameter Planck2013+WP+BAO Planck2013+WP+All LSS (2013)

Ωbh
2 0.02237±0.00029 0.02250±0.00028

Ωch
2 0.1250±0.0050 0.1180±0.0045

100θMC 1.04067±0.00073 1.04122±0.00063

τR 0.096±0.014 0.096±0.015

nS 0.977±0.010 0.969±0.010

log(1010As) 3.115±0.029 3.105±0.030

meff
sterile[eV] <0.48 0.66±0.18

∆Neff 0.47±0.27 0.32±0.21

H0 69.79±1.71 68.00±1.11

Ωm 0.308±0.012 0.321±0.013

σ8 0.817±0.030 0.736±0.017

zre 11.77±1.18 11.66±1.25

Table III–2.5: Marginalised parameter table when ΛCDM is extended with ster-

ile neutrinos. The data combinations are Planck2013+WP+BAO in the first

column and Planck2013+WP+All LSS (2013) in the second.

analysed from the disk. This increases computation times significantly, espe-

cially when testing for a range of bin sizes and amounts of Gaussian smooth-

ing. The values of meff
sterile = (0.470 ± 0.227)eV and ∆Neff = 0.093 ± 0.057 or

meff
sterile = (0.234±0.115)eV and ∆Neff = 0.116±0.059 are obtained by combining

All LSS (Strong) or All LSS (Weak) combinations with Planck2015+Pol. These

constraints are similar to the values expected from Planck2015+Pol+BAO, al-

though with peaks in their respective distributions.

Since the Planck2013+WP+All LSS (2013) results show a significant prefer-

ence for the sterile neutrino model using the joint likelihood it is again useful to

quantify using the likelihood ratio test, with two extra degrees of freedom, meff
sterile

and ∆Neff . The probability of the simpler ΛCDM model being preferred is 89.3%

using Planck2013+WP+BAO, but 0.00% when using Planck2013+WP+All LSS

(2013).

It was pointed out in [45; 382] that the extra degree of freedom due to ∆Neff

allowed for a best-fitting value of H0 more compatible with low redshift measure-

ments, for example, using Cepheids [301]. This is due to the degeneracy between

∆Neff and H0. However, with the inclusion of RSD an even lower value of σ8 is

preferred (see figures III–2.2 and III–2.3). Due to the σ8−H0 degeneracy the re-

sult is a lower value of H0 more closely aligned with the Planck2013+WP+BAO
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value.

As with active neutrinos, the improvement in the likelihood when including the

extra parameters comes at a price; the Planck2013 component of the likelihood

is increased by ∆χ2 ≈ 4. This is less problematic than in the case of active neu-

trinos since the extra freedom from ∆Neff allows a better fit to the CMB, but

it is still unsatisfactory. Performing a similar analysis to quantify the residual

level of tension CMB parameters, meff,CMB
sterile and ∆NCMB

eff , and LSS parameters

meff,LSS
sterile and ∆NLSS

eff are defined, with all other parameters shared. As before,

each CMB or LSS observable uses the relevant neutrino parameters. The joint

marginalised distribution of meff,LSS
sterile −m

eff,CMB
sterile and ∆NLSS

eff − ∆NCMB
eff is then

constructed, and it is found that both parameters are non-zero at the 1.6σ level.

In this case the likelihood ratio test favours the one sterile neutrino model with

a probability of 8.60%, again indicating less internal disagreement between the

CMB and LSS values than the active case.

The Savage-Dickey density ratio can again be calculated, where the extension

parameters are ψ = (msterile
eff ,∆Neff). The unextended posterior likelihood,

P (ψ|d,ΛCDM + ψ) is obtained from MCMC by setting msterile
eff = 0 eV and

Neff = 3.046. The priors used are msterile
eff = [0, 3] eV and Neff = [3.046, 10].

Again using d = Planck2013+WP+All LSS (2013) then ln(ΘB) = −2.67, which

strongly supports the addition of sterile neutrinos over vanilla ΛCDM. This is

in contrast to the values presented in [230]. For a similar data combination they

find that ln(ΘB) ≈ 1. Since they use a similar prior range, msterile
eff = [0, 3] eV, it

appears that the discrepancy is due to the posterior likelihood for msterile
eff . Al-

though no specific numbers are presented, it is clear from the right-hand panel of

figure 1 in [230] that their constraint is much weaker than themsterile
eff = 0.67±0.18

we report here. The values in this Thesis are compatible with those presented in

[45; 156; 382] all of which suggest ∼ 4σ preferences for sterile neutrinos, albeit

for slightly different data combinations. It is clear from the figure in [230] that

a 4σ detection with a central value of 0.2− 0.4, as reported, has a Bayes factor

that should be somewhere in the range −2 to −4, compatible with the values

presented here, and contrary to [230].

2.4.2 Alternative explanations

It has been noted in Part III–2.4.1 that tensions between All LSS (2013) and

Planck2013+WP+BAO measurements of the CMB are reduced with the addi-

tion of neutrinos, although this is not seen to as great an extent when considering

All LSS (Weak) and All LSS (Strong) with Planck2015+Pol+BAO. Although
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the discordance is partially reduced in the former case, there may be better mod-

ifications to the standard cosmological model that might accommodate the two

types of data. Some possible explanations are presented in this section.

Modifications to the primordial power spectrum

The inclusion of massive neutrinos reduces the amount of small-scale power rel-

ative to large-scales in the observed matter power spectrum. One obvious possi-

bility that needs to be considered is whether such an effect can be created using

a simple modification to the primordial power spectrum of adiabatic perturba-

tions, Pi(k). Within the ΛCDM model this is Pi(k) = PΛCDM = As(k/kpivot)
ns

where kpivot is fixed to be kpivot = 0.05 Mpc−1. Similar endeavours have been

made previously in the literature, as in [126], where the primordial power spec-

trum is modified via the application of a set of “top-hat” steps or a “sawtooth”

shaped function to the original power spectrum. This was done as an attempt

to explain specific features which could not easily be explained by a power law,

Pi(k) ∝ kn, such as a bump-like feature in the CMB at k ∼ 0.004hMpc−1 [150;

159], a step-like feature between k ∼ 0.06 − 0.6hMpc−1 [43] and a dip at

k ∼ 0.1hMpc−1 [149]. Inflationary features can be included by modifying the

primordial power spectrum. Step-like features, in particular, can be caused by

interacting scalar fields which, in turn, cause localised oscillations in the CMB

which can provide a better fit to data than a featureless power spectrum [50; 51;

201].

Modifications to the primordial power spectrum that can mimic the effects of

including massive neutrinos are considered here. In particular, the specific form

of the modification is

Pi(k) =

[
1− α

2

(
1 + tanh

(
lnβk

ln δ

))]
PΛCDM(k) , (III–2.36)

where α determines the magnitude of the overall suppression and β and δ con-

trol the position and rate of the turn over, respectively. For example, α = 0.14,

β = 20 Mpc and δ = 5 mimics the matter power spectrum of an active neutrino

model with
∑
mν = 0.3 eV. Note that having the same observed matter power

spectrum does not imply that the CMB power spectrum will be the same. The

matter power spectrum and CMB temperature power spectrum are plotted in

figures III–2.14 and III–2.15 for a range of different modified Pi(k) parameter

values, as well as for a range of different active and sterile neutrino parameters.

A similar form of modification to the primordial power spectrum was proposed

in [165], which examined how binning the primordial spectrum can produce fea-

tures similar to Starobinsky inflation [345]. They found that a sharp transition
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Figure III–2.14: Predicted matter power spectra for models colour coded by

their fits to likelihoods: (i) active neutrinos (red); (ii) sterile neutrinos (green);

(iii) modified P (k) (blue). The overlayed dotted lines show the best fit results

for each model.

is equally as probable as a smooth transition, since δ is unconstrained from below.

After marginalisation using Planck2013+WP+All LSS (2013) α = 0.32± 0.11,

β = 5.96± 0.70 Mpc and δ = 1.24± 0.11 with best-fits α = 0.20, β = 6.76 Mpc

and δ = 1.12. The combined likelihood is improved in comparison to the addi-

tion of sterile and active neutrinos by ∆χ2 ≈ 1 and by ∆χ2 ≈ 11 respectively,

which can be attributed to a better fit to Planck2013 temperature data. The

Planck data has a “dip” at around ` = 1800 which corresponds with a resid-

ual systematic feature due to incomplete 4K line removal [9]. It is possible the

modified Pi(k) model fits this feature better, as seen by the reduction in power

around ` = 1800 in the figure III–2.15. The modified Pi(k) model fits LSS data

as well as the neutrino models.

Given the fact there is a reduction in power for ` & 2000, Planck2013+WP+All

LSS (2013)+highL has also been used, where highL is the reduced ACT+SPT

data used in the Planck2013 analysis. The shape of the hyperbolic tangent func-

tion remains similar with highL data, β = 6.00± 2.51Mpc and δ = 0.92± 0.48,

but the amplitude, α = 0.111 ± 0.083, is tightly constrained. Therefore, it ap-

pears that this model can be excluded on the basis of α being consistent with

zero. The fit is also worsened in comparison to the previous case, where highL

is not included, with a ∆χ2 ≈ 10.
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Figure III–2.15: CMB temperature power spectra for models colour coded by

their fits to likelihoods: (i) active neutrinos (red); (ii) sterile neutrinos (green);

(iii) modified P (k) (blue). The overlayed dotted lines show the best fit results

for each model.

Varying the lensing parameter, AL

Weak lensing has two effects on the CMB: the first is an additional contribu-

tion to the angular power spectrum, the second is a non-Gaussian effect that

has an impact on the higher-order moments. This latter effect is used in the

reconstruction that had already been part of this analysis. One odd effect that

has been documented in the Planck2013 analysis (the result being more signif-

icant when including highL data) is that, when one adds a phenomenological

parameter such that Cψ` → ALC
ψ
` [76], with AL = 0 corresponding to an un-

lensed model and AL = 1 the physical result, one finds AL = 1.23 ± 0.11 [9]

(Planck2013+WP+highL) which is ∼ 2σ away from the expected value. The

reasoning behind this high value of AL being favoured is a mystery.

The impact of varying of AL on the models considered in tables III–2.4 and III–

2.5 and the equivalent results are presented in table III–2.6 and III–2.7. It is

seen that larger values of
∑
mν and meff

sterile are allowed for Planck+WP due to

the degeneracy with AL. However, when including All LSS (2013), the fit to the

Planck2013 component of the likelihood is still degraded, although this is less

severe for active neutrinos than when AL = 1. With All LSS, the significance of

the active neutrino result increases to
∑
mν = (0.420±0.097) eV, but for a ster-

ile neutrino the mass decreases, such that meff
sterile = (0.56±0.15) eV. The reason

for this is the correlation between the effective sterile neutrino mass and several

of the observable parameters. For example, H0 anti-correlates with meff
sterile and
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Parameter Planck2013+WP+BAO Planck2013+WP+All LSS (2013)

Ωbh
2 0.02247±0.00030 0.02244±0.00024

Ωch
2 0.1160±0.0023 0.1141±0.00142

100θMC 1.04174±0.00063 1.04179±0.00055

τR 0.087±0.013 0.089±0.012

nS 0.9696±0.0070 0.9718±0.0056

log(1010As) 3.075±0.025 3.073±0.023

AL 1.28±0.13 1.182±0.055∑
mν [eV] <0.47 0.420±0.097

H0 67.75±1.04 66.58±1.14

Ωm 0.307±0.013 0.319±0.014

σ8 0.777±0.038 0.725±0.019

zre 10.65±1.08 10.86±1.05

Table III–2.6: Marginalised parameter table for the same model presented in

table III–2.4 (ΛCDM+
∑
mν) when the amplitude of the lensing contribution

the CMB temperature power spectrum, AL, is allowed to vary.

since H0 is larger when AL is allowed to vary, this would suggest a lower sterile

neutrino mass. Ωm and zre are both correlated with meff
sterile and since both Ωm

and zrei have lower values when AL is varied, then this also corresponds with

meff
sterile being smaller.

Ignore WMAP polarisation data

The measurement of the E-mode polarisation on large-scales by WMAP is crucial

in all the previous analyses containing WP. The CMB temperature anisotropies

constrain the parameter combination Ase
−2τR in the absence of the ISW effect

and this requires a measurement of polarisation on large scales to infer τR and

hence allow As to be deduced independently. The small-scale amplitude σ8 is a

derived parameter and is sensitive to all the cosmological parameters, but it is

proportional to the square root of the amplitude of scalar perturbations,
√
As. If

τR were lower than the τR = 0.091±0.013 as required by Planck2013+WP+BAO

then σ8 would reduce ∝ eτR . In particular a reduction of σ8 from ≈ 0.83 as sug-

gested by CMB measurements to ≈ 0.78, which is closer to the value preferred

by the LSS measurements, would require τR to reduce from ≈ 0.09 to ≈ 0.05. Of

course, this would require the WMAP polarisation measurement on large scales

to have been misinterpreted. However, this is the regime where instrumental

systematics and foreground subtraction are most difficult and therefore it seems

at least sensible to consider such a possibility.
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Parameter Planck2013+WP+BAO Planck2013+WP+All LSS (2013)

Ωbh
2 0.02286±0.00037 0.02277±0.00030

Ωch
2 0.1232±0.0052 0.1213±0.0043

100θMC 1.0410±0.00075 1.0410±0.00066

τR 0.092±0.014 0.090±0.013

nS 0.985±0.012 0.982±0.012

log(1010As) 3.103±0.030 3.095±0.026

AL 1.29±0.13 1.137±0.063

meff
sterile[eV] <0.82 0.56±0.15

∆Neff 0.55±0.27 0.54±0.26

H0 70.59±1.71 69.66±0.15

Ωm 0.302±0.012 0.311±0.013

σ8 0.771±0.044 0.732±0.017

zre 11.23±1.21 11.12±1.10

Table III–2.7: Marginalised parameter table for the same model presented in

table III–2.5 (ΛCDM+meff
sterile + ∆Neff) when the amplitude of the lensing con-

tribution the CMB temperature power spectrum, AL, is allowed to vary.

In order to illustrate the point that the LSS measurements can be used to fix τR

in the absence of the a large scale polarisation measurement, WP can be removed

from the likelihood and the standard ΛCDM model fitted to the Planck2013+All

LSS (2013) data. The results from doing this are presented in the final column

of table III–2.8 and can be compared to using only Planck2013+WP+BAO data

in the first column. The marginalised distributions for τR are presented in fig-

ure III–2.16. For Planck2013+WP+BAO there is a narrow range of values

of τR, but for Planck2013+All LSS (2013) the likelihood distribution for τR is

much wider and τR = 0.049 ± 0.021. As with the both the active and sterile

neutrino case, the improved fit to the LSS data leads to a degradation in the fit

to the Planck2013 temperature data quantified by ∆χ2 ≈ 6. It is clear that the

Planck2013+WP+BAO data has a preference for τR ∼ 0.1 but this is not suf-

ficiently strong to prevent the LSS dragging it to lower values in order reduce σ8.

The lower value of τR corresponds to a redshift reionisation of zre = 6.91± 2.20

for Planck2013+All LSS (2013), much lower than the value of zre ≈ 11 pre-

ferred by Planck2013+WP+BAO. However, such values might be considered

desirable in the context of astrophysical constraints on reionisation. Light from

quasars show Lyman-α absorption, due to neutral hydrogen in the intergalactic
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Parameter Planck2013+WP+BAO Planck2013+All LSS (2013)

Ωbh
2 0.02210±0.00025 0.02224±0.00026

Ωch
2 0.1187±0.0018 0.1166±0.0017

100θMC 1.04137±0.00058 1.04143±0.00058

τR 0.091±0.013 0.049±0.021

nS 0.9618±0.0058 0.9635±0.0061

log(1010As) 3.088±0.025 3.000±0.039

H0 67.73±0.80 68.64±0.80

Ωm 0.309±0.011 0.296±0.010

σ8 0.825±0.012 0.783±0.012

zre 11.13±1.08 6.91±2.20

Table III–2.8: Marginalised parameter table when τR is allowed to vary. The data

combinations are Planck2013+BAO in the first column and Planck2013+All LSS

(2013) in the second.

Planck2013+WP+BAO
Planck2013+All LSS (2013)

0.00 0.04 0.08 0.12 0.16

τR

Figure III–2.16: Marginalised likelihood distributions for τR within the

standard ΛCDM model, for Planck2013+All LSS (2013) (green) and

Planck2013+WP+BAO (orange). Using WP to constrain τR leads to a nar-

row distribution of values centred on 0.09 whereas using the LSS data favours a

much lower value, albeit with a wider distribution.
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Parameter Planck2013+WP+BAO Planck2013+All LSS (2013)

Ωbh
2 0.02235±0.00028 0.02236±0.00025

Ωch
2 0.1177±0.0019 0.1160±0.0014

100θMC 1.04159±0.00059 1.04160±0.00057

τR 0.086±0.013 <0.047

nS 0.9657±0.0061 0.9660±0.0054

log(1010AS) 3.077±0.025 2.955±0.023

AL 1.19±0.10 1.202±0.055

H0 68.37±0.89 69.02±0.67

Ωm 0.301±0.011 0.292±0.008

σ8 0.817±0.012 0.7605±0.0086

zre 10.60±1.11 3.99±1.47

Table III–2.9: Marginalised parameter table for the same model presented in

table III–2.8 (ΛCDM+τR) when the amplitude of the lensing contribution the

CMB temperature power spectrum, AL, is allowed to vary.

medium, at a range of frequencies depending on the redshift. The Lyman-α

forest is more greatly populated for larger redshift quasars, but at z ∼ 6 all elec-

tromagnetic radiation flux below the Lyman-α forest drops to zero, known as

the Gunn-Peterson trough [151]. This effect is due to a large fraction of neutral

hydrogen, hence indicating the boundary at the end of reionisation. A complete

Gunn-Peterson trough can be seen in objects such as a quasar at z = 6.28 [49].

Objects at even lower redshifts, z ∼ 5.5, are seen to have partial Gunn-Peterson

troughs suggesting that the end of reionisation was patchy [108]. These redshifts

are much lower than the predicted redshifts for the beginning of reionisation

from WMAP polarisation data. Reionisation is generally modelled as a step in

the ionisation fraction, which must be a double step when taking the beginning

and end of reionisation at different redshifts [207; 223], but the lower value of

τR ∼ 0.05 allows for a single step or a smooth transition from beginning to end.

Looking at Table III–2.9 where AL is allowed to vary, τR = 0.023 ± 0.012 and

zre = 3.99± 1.47 are below the Gunn-Peterson bound.

The residual tension can again be quantified between the parameter value pre-

ferred by LSS compared to the CMB by introducing τCMB,TT
R and τCMB,TE

R in an

MCMC fit. Here τCMB,TT
R is used for Planck2013 temperature data and τCMB,TE

R

for large-angle WMAP polarization sourced at z . 20. The marginalised pos-

terior of the difference, τCMB,TE
R − τCMB,TT

R , is non-zero at 2.1σ. Therefore,

although Planck2013 temperature data is more compatible with τCMB,TE
R than
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the active neutrino equivalent, one should also bear in mind the combined fit to

CMB+LSS data of the varying τR model is slightly worse. The likelihood ratio

test shows the simpler one τR model is preferred with a probability of 0.40%,

again indicating the tension between TCMB,TT
R and TCMB,TE

R is real and not an

artefact of overfitting.

In [4] the Planck2015 temperature anisotropies are combined with the lollipop

likelihoods and obtains a lower value of the optical depth to reionisation τR.

This shifts the Planck2015 value of τR = 0.078 ± 0.019 to τR = 0.058 ± 0.012

which is much closer to the τR = 0.049±0.021 from Planck2013+All LSS (2013)

presented here from the 2013 study.

The discrepancy between the values of τR inferred from WP and LSS suggests

a possible resolution any source of tension. With the new, lower constraint on

τR from Planck+lollipop [4], the tension would be expected to reduce. Since

the Planck+lollipop chains and likelihood code were not publicly available at

present the Planck2015+Pol+BAO chains have been importance sampled using

τR = 0.058 ± 0.012. In this case, the quantification of tension when comparing

to All LSS (Weak) reduces from C = 0.550 (0.76σ) to C = 0.432 (0.57σ). This

also reduces to a minor extent from C = 0.989 (2.55σ) to C = 0.985 (2.44σ) for

the comparison to All LSS (Strong). At this stage it is not possible to make any

conclusive statement that the lowering of τR is in any more or less tension than

Planck2015+Pol+BAO.



Chapter 3

Discussion

In this Part, several methods with which to quantify the amount of disagreement

between parameter constraints when using two different data sets and the same

model have been considered. Particularly, it has been seen that without knowing

the precise details of the method being used, significantly different interpreta-

tions of tension can be made. In this Thesis, two new methods of quantification

have been used which are robust in a wide variety of scenarios. These are the

difference vector (3 ) and the integration between intervals (4 ) from Part III–1.

Although they are not foolproof, a quantification by either of these methods

should resemble what one would expect by comparing likelihood contours. More

than this, they also work well in high dimensions and the interpretations remain

easily understandable. This is unlike other methods, where consistent data sets

could be interpreted as being significantly different or the results being very dif-

ficult to map to an easily understandable quantity describing the similarity of

the distributions.

Armed with the new methods of quantification, a range of LSS probes were

considered to constrain cosmological parameters for comparison with constraints

from CMB observations. For independent LSS probes, joint constraints could

be found which can be in either more or less tension than each of the indi-

vidual constraints, depending on choice of analysis. From work presented from

the 2013 analysis, when tight Gaussian priors were applied during MCMC anal-

ysis, the tension between the parameter constraints obtained when using the

CMB and LSS was extremely significant. In the updated 2015 work presented in

this Thesis, the priors were not applied and the tension was much less significant.

Assuming (whether correctly or not) the application of priors gave the correct

discrepancy between LSS and CMB parameter constraints allowed the consid-

128
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eration of extensions to ΛCDM. This included the addition of active or sterile

neutrinos, which could be seen to reduce the tension, but not alleviate it com-

pletely. In the updated analysis, where the discordance was far reduced from the

original work without any extensions, the addition of neutrinos did not affect

the residual parameter distributions. Ad-hoc modifications to the primordial

power spectrum were able to relieve the tension in the original work better than

neutrinos, but this may have been due to the model’s ability to fit spurious

features in the CMB data, and still the tension was not wholly removed. The

Planck lensing parameter was also allowed to vary to provide more correlated

parameter space with neutrinos to be explored, finding that AL has a preference

for being larger than AL = 1 and that the active neutrino constraints were more

significant. Finally, the effect of the WMAP polarisation data on the parame-

ter constraints was considered. A significantly lower τR is preferred when WP

was ignored. This predicts the (now confirmed) results from the updated 2016

Planck+lollipop analysis [19].

Confirming that a discordance exists between data sets for a given model is

difficult. Robust methods to quantify this needs considerable development. In-

deed, if any tension does persist, a great deal of work is opened for consideration,

whether this be improving the assumptions from given surveys or whether it be

extending or changing the underlying cosmological model to solve the issue. This

work on improving the robustness of comparative tests is essential for modern

cosmology, perhaps taking precedence over the underlying physics which may be

causing any deviations. As an example, it is more important that one under-

stands whether differences in parameter values in ΛCDM are due to statistical

interpretation than it is to understand whether neutrinos can be used to alleviate

apparent discordances. To be able to introduce new physics it is imperative to

understand how and why different statistical measures give different interpreta-

tions and gain a consensus comprehension of the results. These are all general

topics which need to be considered in the future.

One particularly interesting subject, which is currently blossoming, is Bayesian

hierarchical modelling [167]. Here, every single assumption made throughout the

entire data processing, modelling and analysis has sets of hyper-priors describ-

ing the amount of belief in each uncertainty. This is extremely powerful since

all unknowns are accounted for, highlighting any areas in the process where ten-

sions in parameter distributions could come from. With this technique, it will be

possible to understand whether current tensions have arisen from the incorrect

assumptions made during analysis of the data, or perhaps more interestingly,
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the presence of new physics which affects scales differently.



Appendix B

Comparison of methods

To understand how each of the different methods of quantification work it is

useful to compare some simple distributions, shown in tables III–B.1 and III–B.2.

Figures for each measure of every 1D and 2D parameter distribution comparison

can be found on pages 139-141. As in Part III–1, these posterior distributions

are P1 ≡ P (θ|D1,M) and P2 ≡ P (θ|D2,M) for data sets D1 and D2 respectively

in a modelM. In the 1D case θ ≡ θ is a one dimensional parameter, whereas in

2D θ = {θ1, θ2}. In each case the probability distributions are normalised such

that ∫
dθPi = 1. (III–B.1)

P1 P2

I N (0, 1) N (0, 1)

II N (0, 1) N (0, 3)

III N (5, 1) N (−5, 1)

IV N (0, 1) N (1.427, 1)

V N (0, 1) +N (−2, 1) N (1.427, 1) +N (4, 2)

Table III–B.1: 1D probability distributions being compared.

I - Identical distributions Figure III–B.1 shows the distributions and inte-

grated measures quantifying the amount of agreement or disagreement of two

identical distributions, described in row I of tables III–B.1 and III–B.2. Each

method is unanimous in its quantification of the combination of these two dis-

tributions in both 1D and 2D.

1, 2. The Bhattacharyya distance and the overlap coefficient are B = 1 and
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P1 P2

I N

((
0 0

)
,

(
1 0

0 1

))
N

((
0 0

)
,

(
1 0

0 1

))

II N

((
0 0

)
,

(
1 0

0 1

))
N

((
0 0

)
,

(
32 0

0 32

))

III N

((
5 5

)
,

(
1 0

0 1

))
N

((
−5 −5

)
,

(
1 0

0 1

))

IV N

((
0 0

)
,

(
1 0

0 1

))
N

((
1.427 1.427

)
,

(
1 0

0 1

))

V N

((
0 0

)
,

(
1 0

0 1

))
N

((
1.427 1.427

)
,

(
1 0

0 1

))

+N

((
−2 −2

)
,

(
1 0

0 1

))
+N

((
4 4

)
,

(
22 0

0 22

))

Table III–B.2: 2D probability distributions being compared.

O = 1, in both one and two dimensions. This shows the distributions are iden-

tical, since P1 = P2 then
√
P1P2 = P1 = P2 and Min[P1, P2] = P1 = P2 which is

unity when integrated as in equations (III–1.1) and (III–1.2).

3. A value of C = 0 means that the distributions must be identical. The

parameter ranges are identical identical distributions (and infinite for the distri-

butions in tables III–B.1 and III–B.2) so the difference in the range is the same,

δθ = θ1 = θ2. A new Gaussian is formed with half the variance and a mean at

δθ = 0. Since δθ = 0 is at the maximum of the distribution then there are no pa-

rameter ranges above the value of the probability distribution function at δ = 0

to integrate. For the result in figure III–B.1 the result obtained by integrating

inside the isocontour formed by the value of the probability density function at

δθ = 0 deviates slightly from zero due to the finite number of samples taken.

The rest of the samples outside of this boundary can be considered consistent.

4. When I1 = I2 = 0.997 then the two distributions are shown to be iden-

tical. The set of parameter values which contain 99.7% of the samples of either

distribution are equal for identical distributions. This means integrating either

distribution for these parameter ranges will equate to Ii = 0.997, i.e. the total

fraction of samples that can be drawn from the parameter ranges are drawn from

both distributions.

5. There is no gain in information when two distributions are identical. Since

this is expected it means there is also no surprise. This can be seen trivially in
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equation (III–1.9) since log(P2/P1) = log 1 = 0 when P1 = P2.

6. A value of logR = 1.730 or logR = 3.460 shows that evidence favours the

combined probability distribution when the distribution is chosen to be uniform

between −10 < θ < 10 in one or two dimensions. This is expected for identi-

cal distributions since, although the integrals p(D1) and p(D2) are greater than

p(D1, D2) their combination p(D1)p(D2) is smaller. This is always true indepen-

dent of the choice of prior. The magnitude of logR does depend on the prior:

logR is larger when the prior is wider; it is smaller when the prior is narrower.

The positive logR can be interpreted as an indication that the two distributions

are somewhat similar. Although logR = 1.730 means the distributions are iden-

tical with the given prior, it is not a particularly intuitive value.

7. Similar to measure 3 log T = 0 shows that the two distributions are identi-

cal since p(D1, D2)shifted = p(D1, D2). Both of the means of the joint probability

distributions are the same so the mean of the shifted distribution does not move.

The ratio is therefore T = 1 giving a log T = 0 showing that they are identical.

This is again true in both 1D and 2D.

II - One distribution broader than the other but with the same mean

Figure III–B.2 shows the measure of discordance when one distribution remains

the same as in I, but the width of the second distribution increases to σ = 3 as

in the second row of tables III–B.1 and III–B.2. A useful measure here would

indicate either that the distributions are very similar, or that P1 is completely

consistent with P2 even though P2 is not completely consistent with P1.

1. B = 0.775 and B = 0.600 in one and two dimensions. These values show

that the distributions are not concordant in some way. It does not illuminate in

which way the distributions disagree. Knowing the distributions, it can be seen

that the disagreement occurs because the value of P2 are small for parameter

values where P1 is large, and vice versa. The integral over the combined distri-

butions is therefore less than unity.

2. Similarly, the overlap coefficient reveals O = 0.516 and O = 0.325 in one

and two dimensions respectively. The low maximum value of P2 means that

Min[P1, P2] is capped where P1 is large. This gives the same misleading inter-

pretation as the Bhattacharyya distance. In fact, since the values of O are lower,

they could be interpreted as the distributions being in greater disagreement.

3. The measure here does not take into account broadening of distributions

and so C = 0 again. The variance of P2 has increased (compared to in I) so the

variance of the new distribution P (δθ) is larger, but the mean is still centred on

δθ = 0. The isocontour defined by the value of P (0) contains no parameter val-

ues and so integrating again gives zero. This measure indicates that the samples
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in the new distribution are consistent and so the original distributions agree. In

fact, they can be interpreted as being identical, which may be misleading.

4. This measure is the most informative of all the quantifications of the level

of agreement. I1 = 1.000 and I2 = 0.684 show that all of samples drawn from

P1 are contained in the parameter ranges which contain 99.7% of the samples

drawn from P2. Simply, P1 is completely consistent with P2. I2 < I1 indicates

that P2 has a greater variance than P1, the value of I2 showing how broad the

distribution is in comparison to P1. If I2 . I1 then P2 is quite similar to P1, but

if I2 � I1 then P2 has a much greater variance.

5. There is a gain in information from updating P1 with P2 since there is

an extension of available parameter space, but this is mostly due to surprise

as the entropy expected by broadening the distribution is small. On the other

hand, when P1 updates P2 there is a much smaller relative entropy, but there is

expected to be a large amount, so the surprise is negative. These two values can

be interpreted as showing that P2 does not agree with P1 as much as expected

and that P1 agrees with P2 more than is expected.

6. The interpretation of this measure is exactly the same as for I. The distri-

butions must be similar since logR is positive. The value is lower for the same

reason that the Bhattacharyya distance is less but, because it is normalised by

the evidences of each distribution, it is still informative. As such it is possible

to tell that, for a given prior, P1 is not the same as P2, but they are still similar.

7. Similar to measure 3, log T = 0 shows the distributions are consistent (or

identical in fact). The maximum value of the distribution p(D1, D2)shifted is less,

but it is still equal to p(D1, D2) and so the logarithm of their ratio vanishes.

III - Discordant distributions Figure III–B.3 shows examples of each of the

measures when two distributions are greatly separated. This is the last of the

distribution combinations in which all of the measures are in agreement, showing

that the distributions are not similar.

1, 2, 4, 6. Since P1 is negligible where P2 6= 0 then the integration of

any combination of P1 and P2 will (approximately) vanish, which explains the

values of B = 0 and O = 0. Similarly, if the integration ranges where 99.7%

of the samples from one distribution would be drawn do not overlap with the

non-negligible regions of the other distribution then Ii ≈ 0. Since p(D1) and

p(D2) are much greater than P (D1, D2) (which almost vanishes) then logR is

extremely negative, preferring either evidence to the joint evidence. All these

measures show that P1 is not at all similar to P2.

3. The mean of the new distribution is far δθ = 0 and the value of the

distribution is negligible there. The parameter range within the contour formed
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where P (0) = 0 contains the whole distribution and as such C = 1. This is

only possible when the whole distribution is integrated, showing that none of

the samples drawn from either of the original distributions would be consistent

with the other.

5. There is a very large relative entropy since the distributions contain

completely different areas of parameter space, so a large amount of information

is gained. However, since the means are incompatible, this information is not

expected so the whole of the relative entropy is driven by surprise. This shows

that the distributions do not agree with each other.

7. When means of P2 are shifted to coincide with the means of P1, p(D1, D2)

� p(D1, D2)shifted and so T is large. A large positive log T indicates that the

distributions are severely discordant.

IV - Slightly shifted distribution Figure III–B.4 shows the row IV distri-

butions from tables III–B.1 and III–B.2. The second distribution P2, has the

same variance as P1 but the means of P2 are shifted such that the value of B is

the same as using the distributions in row II of tables III–B.1 and III–B.2.

1. As already described, B = 0.775 and B = 0.601 in one and two dimen-

sions. These are the same values obtained when the variance of P2 is three

times that of P1. This example shows how the Bhattacharyya distance allows

broadening of distributions to be mapped to shifts in the mean. Due to this, it

is harder to interpret the meaning of B without seeing at least a projection of

the probability distribution. 0 < B < 1 could arise from purely a flattening of a

distribution, or a shift in the means, or a combination of both.

2. The overlap coefficient is similar to the Bhattacharyya distance, although

a shift in the means of one distribution is more heavily penalised (a lower value

of O found) than a broadening of the variance of that distribution. The same

problem still persists, that there is no distinction between flattening of the dis-

tribution or shifts or combinations of them both.

3. P (δθ) is centred slightly away from δθ = 0 because the means of P1 and

P2 are not equal. The value of the probability distribution at δθ = 0 forms a

contour (or interval) which contains 69.7% and 61.1% of the samples drawn from

the distribution in one and two dimensions. These percentages can be mapped

to the proportion of samples drawn from a one dimensional Gaussian, comparing

the intervals to a number of standard deviations. In this Thesis, 69.7% would

map to a tension of ∼ 1.0σ, which means the distributions are consistent.

4. Since I1 = I2 = 0.942 then both P1 and P2 must have the same variance,

but I1 = I2 < 0.997 shows that not all the possible samples are contained within

the integration interval. This indicates that the means of P1 must not coincide
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with the means of P2. Since the result of I1 and I2 are close to 0.997, then

the means are not well separated and hence the distributions are in reasonable

agreement.

5. The information gain from updating either distribution with the other is

equal showing that both distributions have the same variance. In one dimension

this gain is mostly expected and so the surprise is small and the distributions

can be considered compatible. In two dimensions there is a lot more expected

relative entropy than information gained and so the surprise is highly negative.

This means the distributions are more similar than expected. It is difficult to

quantify what this means in terms of similarity of the two distributions.

6. logR = 1.221 and logR = 2.442 in one and two dimensions. These val-

ues indicate that the joint evidence is more likely than each of the individual

evidences p(D1) and p(D2), and therefore the distributions are similar. Interest-

ingly, these measures show that the shift in the means of one of the distributions

is more consistent than each of the distributions having equal means, but the

variance of one being larger (as in row II of tables III–B.1 and III–B.2).

7. log T = 0.509 and log T = 1.018 shows that the distributions are sim-

ilar but not identical, in one and two dimensions. The shifted joint evidence

is slightly larger than p(D1, D2), but because the means of P2 are close to the

means of P1 the ratio between p(D1, D2)shifted and p(D1, D2) is only slightly

greater than one.

V - Unusually shaped distributions Figure III–B.5 shows the values each

of the measures give for unusual shaped distributions (constructed by combining

Gaussians in this case) in tables III–B.1 and III–B.2.

1, 2. The Bhattacharyya distance is lower than the comparisons of P1 and P2

in rows II and IV from tables III–B.1 and III–B.2 suggesting that these distribu-

tions agree less than in those cases. The same is true for the overlap coefficient.

In the one dimensional case, mapping B = 0.487 to a shift in the mean only is

equivalent to moving the peak of a Gaussian distribution by θ = 2.4 from the

centre of the other distribution. Likewise, O = 0.264 obtained here is equivalent

to shifting the peak of a Gaussian distribution to θ = 2.2 compared to another

Gaussian with the same variance centred at θ = 0. Comparing the values of

B and O to shifts in the mean is a useful way to interpret results from these

methods, although it still does not take into account the flattening of the distri-

butions.

3. The values of C = 0.620 and C = 0.310 suggest that P1 and P2 are ex-

tremely consistent, although not identical. Mapping to one dimensional Gaussian

distributions, these are equivalent to tensions of 0.9σ and 0.4σ respectively. This
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maybe quite misleading since (according to figure III–B.5) a lot of the distribu-

tion lies away from δθ = 0, it is just the primary peak which is near to δθ = 0.

This means it is the only measure here to quantify these two distributions as

more consistent than in row IV of tables III–B.1 and III–B.2.

4. 70.4% of samples drawn from P1 are within the the 99.7% confidence

intervals of P2 and 59.3% of the samples drawn from P2 are within the 99.7%

confidence intervals of P1 in one dimension. This shows that P1 is more con-

sistent with P2 than the other way around. Since I1 > I2 then the effective

variance of P2 is larger than P1’s. Both the values of I1 and I2 being less than

0.997 suggests a shift so that the peaks of the distribution are not aligned. Of

course, the distributions could both be peaked at the same parameter value but

one of the distributions skewed which would give similar results.

5. The relative entropy is mostly surprise driven suggesting the distributions

are not in a great level of agreement. P2 is less consistent with P1 than P1 is

with P2 since the information gain and surprise are smaller when P1 is used to

update P2.

6. The positive values of logR = 0.120 and logR = 1.110 show that the two

probability distributions are consistent since the joint evidence is more likely

than either of the evidences combined. The values of logR are closer to zero

than any of the previous comparisons from tables III–B.1 and III–B.2 with the

exception of row III suggesting that the agreement is less in this case.

7. The ratio of p(D1, D2)shifted to p(D1, D2) is fairly large so log T shows that

the agreement is less than for the other comparisons in tables III–B.1 and III–B.2

except row III. The value is much less than log T for row III and so it is clear

that these distributions are not wholly discordant.

When comparing the one and two dimensional distributions it can be seen that

the general trends are the same. It should be noted here that the 2D distri-

butions are slightly more distinct than the 1D distributions are for each row

in tables III–B.1 and III–B.2 so the measure values are expected to show less

consistency. The integration between interval (4 ) and difference vector methods

(3 ) have the same interpretation value independent of the number of dimen-

sions. The other methods (1, 2, 5, 6 and 7 ) give different values in different

dimensions, which needs to be taken into account or corrected when analysing

the measures.
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Probability distribution comparison figures

Each figure in this section shows the comparison of two probability distributions

for each method discussed in Part III–1. The top row of figures III–B.1, III–

B.2, III–B.3, III–B.4 and III–B.5 show the comparisons of the distributions in

rows I, II, III, IV and V in table III–B.1 respectively. Likewise, the bottom

row of each figure shows the comparison between the distributions in rows I–

V in table III–B.2. The columns show the Bhattacharyya distance (1 ), the

overlap coefficient (2 ), the integral of P1 between the limits containing 99.7%

of P2 and the integral of P2 between the limits containing 99.7% of P1 (4 ), the

quantification of Bayesian evidence (6 ), the shifted probability distribution (7 ),

surprise (5 ) and the difference vector (3 ) from left to right. For the first six

columns the solid, blue and dashed, red lines indicate the distributions P1 and

P2 respectively. In the top rows, the shaded grey area (bounded by a dotted,

black line) shows the integrated quantity used to give the comparison measure.

In the bottom rows, the integrated quantities are shaded with blue being close

to zero, turning red for Max[P1, P2]. In the top row of the sixth column the

green shaded area (bounded by a dot-dashed, green line) indicates the integrated

shifted quantity P1P
shifted

2 , whilst the grey shaded area (bounded by a dotted,

black line) marks the integrated non-shifted quantity P1P2, the ratio of which

gives the measure. The seventh column shows the amount of relative entropy in

the wider, darker bars and the amount of surprise in the slimmer, lighter bars.

The upper, blue bars indicate the relative entropy and surprise when P2 is used

to update P1 and the lower, red bars show the relative entropy and surprise

when P1 updates P2. The final column shows the probability distribution of the

difference vector with a solid purple line. The grey shaded area in the top row

is the integrated quantity giving the measure. The integration bounds are the

values of the probability distribution greater than its value at δθ = 0.
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Deep learning is a powerful method for gaining multiple levels of abstraction,

and has recently produced state-of-the-art results in tasks such as image classifi-

cation and natural language processing [228]. It involves using machine learning

to learn a specific algorithm, without needing to have any prior knowledge of

what the algorithm should be like [321]. Machine learning itself is a study which

dates back almost as far as the advent of computing [257; 286]. Based on early

probabilistic ideas of the workings of biological neurons, starting with just a few

generic functions, neural networks can be constructed to calculate solutions to

problems which are almost intractable for computers. Computing power has,

very recently, reached a point where large networks of neurons can be built, and

along with advances in optimisation procedures, can now be used to solve many

types of problems [134]. As well as image classification and natural language

processing, neural networks are excellent at data mining [380] - searching for

hidden correlations between inputs in large data sets - and autoencoding [70] -

finding optimum compression procedures for any data type. Especially in the

last few years, deep learning has been used by vast portions of the computer

science community to attempt almost any task in computing where a large data

set is available [52].

It is therefore interesting to consider the application of neural networks to the

field of cosmology and astronomy. The field is very young, especially the use

of deep learning. So far, a short list of possible attempts to solve astronomi-

cal problems includes: catalogue matching [305]; galaxy image classification [42;

341]; data belief networks [40]; data mining [39; 64]; and theoretical data predic-

tion [134]. When coupled with the announcement and development of various

large photometric surveys there are many applications of deep learning. These

include, but are not limited, to the measurement of galaxy shapes from images,

automated strong lens identification from multi-band images and galaxy cluster

identification.

First, Part IV–1 contains a detailed description of machine learning, neural net-

works and how to train them. Then, in Part IV–2, a specific type of network

is used to attempt to classify supernovae from the simulated raw data in the

Supernovae Photometric Classification Challenge (SPCC) [213].



Chapter 1

Machine learning

1.1 Perceptrons

The most primitive artificial neurons are called perceptrons. They take a set of

inputs xi, and produce a single, binary output [257; 271; 286; 307]. Each of the

inputs are connected to a node via a weight wlji, where the j denotes the output

node, i is the input node and l describes the layer (described in more detail

below). Each node contains a bias bli which is used to change the threshold at

which the neuron fires [257]. It is useful to denote the weighted, biased input as

vlj = wljixi + blj , (IV–1.1)

where there is implicit summing over repeated indices (i in this case). Whether

or not the neuron is activated is dictated by a function ([286])

φ(vli) =

{
0 vli ≤ 0

1 vli > 0
. (IV–1.2)

An example perceptron can be seen in figure IV–1.1 where φ(vi) is taken to

be the Heaviside function (almost) in equation (IV–1.2). As an example of the

x1

x2

x3

b1

w11

w12

w13

φ(v1)

Figure IV–1.1: A simple, three input artificial neuron.
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power of perceptrons, it is quite simple to construct a NAND gate from a network

of just five neurons with two inputs each. Each of the ten weights are set to

wlij = −2 and the five biases are set to bli = 3 [271]. The weights and biases do

not need to be trained. Since a NAND gate can be built, any universal computa-

tion can be performed by combining series of these networks [97].

One problem with perceptrons is that a small change in the weights can cause

a large change in the output, which makes it very difficult to train them to a

specific algorithm [271]. The Heaviside-like function in equation (IV–1.2) can

be modified to take values between 0 and 1. An activation function that can

take on fractional values allows small changes in weights to propagate to small

changes in the output. In fact, the change in the output ∆φ(vlj), from node j is

approximately a linear function of the change in all the weights ∆wlji from i to

j and the change in the j node biases ∆blj ([271])

∆φ(vlj) ≈
∂φ(vlj)

∂wlji
∆wlji +

∂φ(vlj)

∂blj
∆blj . (IV–1.3)

It is quite straight-forward to calculate these using gradient descent, but first it

is useful to discuss hidden layers.

1.2 Artificial neural networks

Deep learning depends on stacks (or layers) of neurons which are known as

multilayer perceptrons (even when the activation function is non-binary) [97;

271]. The word deep implies a layer of abstraction between the inputs and

outputs which cannot necessarily be understood [52; 147]. The inputs of the

first layer become another set of inputs to a second layer, which are different

from the original data, and so on through each of the hidden layers until the

output. The output from each hidden layer is distinctly different (more abstract)

than the original input layer [104]. It is useful to consider the input xi as the

output activation function of a zeroth layer xi = φ(v0
i ). The outputs from each

successive layer are then calculated as already prescribed such that the first

hidden layer outputs are

φ(v1
j ) = φ(w1

jiφ(v0
i ) + b1j ) , (IV–1.4)

and the outputs from subsequent layers are ([271])

φ(vlj) = φ(wljiφ(vl−1
i ) + blj) . (IV–1.5)

This describes a feedforward artificial neural network (ANN), such as the one

shown in figure IV–1.2. Other networks which do not simply feed the inputs
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Inputs Hidden Hidden Pooling

l = 0 l = 1 l = 2 l = 3

3

2

1

4

3

2

1

4

3

2

1

1

w1
43

w2
44

w3
14

Figure IV–1.2: Full connected, two layer, ANN with four nodes in each layer,

three inputs and one output.

forward through the network [128; 260] are possible. One example is a recurrent

neural network (RNN), which is described in Part IV–1.5 and used for classifi-

cation of supernovae in Part IV–2.

1.3 Back propagation

To approach the algorithm which the network is designed to recreate, the weights

and the biases need to be set such that the inputs to the network result in the re-

quired output [271]. It is possible to train the network, which means the weights

and biases do not need to be known a priori [311]. Training involves having a

large set of training data with output results (in the supervised learning method

described here). The input is fed through the network to the output and the

weights and biases repeatedly nudged until the output from the network is rep-

resentative of the pre-known output results (supplied as part of the data) [271].

As mentioned in equation (IV–1.3), the change in the output of each layer can

be calculated as a linear function of the change in the weights and the change in

the biases. This can be reversed, allowing the change in the weights and the bi-

ases to be calculated by knowing the change in the outputs for each layer. Since

the output of the network needs to approach the correct result for the training

data then a minimisation procedure can be performed on the error [311]. The
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function which is going to be minimised needs to be sensitive to small changes in

the output given small changes in the weights and biases. This loss function can

take many forms, such as the mean square error between the data result and the

network output, or the categorical cross-entropy [114]. For simplicity, consider

the mean square error

L(w,b) =
1

2n

n∑
x

||y(x)− φ(vL)||2 (IV–1.6)

where w and b are all the weights and biases in the network, y(x) is the vector

of output results of each of the n vectors of training inputs to the network x.

φ(vL) is the vector of network outputs where L is the number of layers in the

network.

It is useful to consider the change of the loss function given the weighted in-

put at any layer vlj . Using the chain rule, relations can be made between the

rate of change of the weights or the biases between different layers [311]. For the

output layer the rate of change of the loss function with respect to the weighted,

biased input is ([271])

∂L

∂vL
=

∂L

∂φ(vL)
� ∂φ(vL)

∂vL
(IV–1.7)

where � is the Hadamard (element-wise) product [81]. ∂L/∂φ(vli) is small if

neuron i is unimportant [271]. To propagate the rate of change of the loss

function with respect to the weighted, biased input to any prior layer l

∂L

∂vl
=

(
wl+1

)T ∂L

∂vl+1
� ∂φ(vl)

∂vl
. (IV–1.8)

(wl+1)T is the transpose of the weights at the l+1 layer [271]. The rate of change

of the loss function with respect to the weighted, biased input at the l+ 1 layer

is propagated by the transpose of the weights to layer l. The Hadamard product

propagates this error through the l layer activation function to give the rate of

change of the weighted, biased output at layer l. Using these two equations, the

rate of change of loss function with respect to the weighted, biased output at

any layer can be found [271].

To optimally train the weights and biases in the network the change in the loss

function must be negative, i.e. the loss function approaches its minimum [311].

Since the change in the loss function given a change in the weights or the biases

is simply

∆L ≈ ∂L

∂wl
∆wl , (IV–1.9)
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and

∆L ≈ ∂L

∂bl
∆bl , (IV–1.10)

then choosing

∆wl = −η ∂L
∂wl

, (IV–1.11)

and

∆bl = −η ∂L
∂bl

, (IV–1.12)

means that ∆L = −η||∂L/∂wl||2 ≤ 0 and ∆L = −η||∂L/∂bl||2 ≤ 0 respec-

tively [271; 311]. η is a learning rate which must be small so that the approx-

imation in equations (IV–1.9) and (IV–1.10) is respected, but must be large

enough that the weights will update [271]. The transformation in the weights

and biases which will optimally cause the loss function to reduce on every pass

of training input are ([311])

wl → wl − η ∂L
∂wl

, (IV–1.13)

and

bl → bl − η ∂L
∂bl

. (IV–1.14)

These equations can be used to define the transformations of the weights and

biases to achieve a change in the output. Again using the chain rule, the relation

between the rate of change of the loss function with respect to the weights or

with respect to the biases and the quantity found in equation (IV–1.8) can be

calculated

∂L

∂vl
=

1

φ(vl−1)

∂L

∂wl
, (IV–1.15)

∂L

∂vl
=

∂L

∂bl
. (IV–1.16)

Back propagation is an extremely efficient method of updating the weights and

biases since it is equivalent to only two passes through the network (with some

overhead from calculating the derivative of the activation function) [271]. The

full training algorithm for a single piece of training data is

1. For every piece of data in the training set input the vector x = φ(v0), into

the network.

2. Feed forward and compute the weighted, biased input in equation (IV–1.1)

and the activated output from equation (IV–1.5) at every layer for every

training set input.
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3. Compute the rate of change of the loss function (which is averaged over

the whole training set) for the weighted, biased output in the last layer

using equation (IV–1.7).

4. Back propagate through the entire network to find ∂L/∂vl at every layer

using equation (IV–1.8).

5. Calculate the gradients of the loss function with respect to the weights and

the biases respectively using equations (IV–1.15) and (IV–1.16).

6. Update the weights and biases using equations (IV–1.13) and (IV–1.14).

In practice, carrying out this process is quite computationally heavy due to us-

ing the whole training data on every update of the weights. A technique called

stochastic gradient descent can be used to speed up the training [139]. Here,

the training set is randomly split into batches (often called mini-batches) of m

sets of inputs. A good estimate of the gradient of the loss function with respect

to the weighted, biased inputs can be calculated from the mini-batch. This can

then be used to update the weights and biases and repeated for all batches in

the training set [271]. This completes one epoch of training at which point the

training set can be randomly split into a different set of batches and training

commence as before.

If the weights are all initialised to the same value (say zero) before training

then there is no asymmetry in the network which can make large portions of the

network redundant [373]. For example, since the output of each neuron will be

the same then back propagation will update the final layer of a fully connected

ANN (such as in figure IV–1.2) to the same weights. Back propagation will again

update the previous hidden layers to similar weight values all the way back to

the input. Only after the first update to the weights and biases will the inputs

start having an effect on the output. By initialising each set of weights to a very

small value from a Gaussian distribution about zero then there will be some

random asymmetry in the network which can encourage more constructive back

propagation of the loss function [373]. Since the variance of the outputs grow

with greater number of inputs, the variance of the Gaussian to draw weights

from should be normalised to σ = 2/n where n is the number of inputs [373].

1.4 Activation functions

The activation functions can take on many forms, a few of the popular ones

are the sigmoid, hyperbolic tangent, rectified linear unit (ReLU) and softmax
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functions: (1 + exp[−vi])−1, tanh(vi), Max[0, vi] and ln(1+exp[vi]) [97; 166; 225;

271]. Examples of these are shown in figure IV–1.3.

Although the sigmoid function most closely matches the activation of biological

neurons, it is widely regarded as dangerous for training purposes since the gradi-

ent vanishes when φ(vli) ≈ 0 or φ(vli) ≈ 1 [306]. The neuron saturates and stops

learning, i.e. ∂L/∂wlji ≈ 0 so equation (IV–1.13) means wlji → wlji. The same

argument is true for the biases. The sigmoid function also is non-zero centred,

which can affect the gradient descent during training. The hyperbolic tangent

activation function is therefore preferred over the sigmoid [229]. Although it

saturates, it is zero-centred which mitigates some of the training issues. Both

of these functions were originally thought to be the most useful for mapping

outputs to probabilities [271].

Taking the Max value of the weighted input has many advantages over the

sigmoid or hyperbolic tangent function [267]. Training using this activation

function can be up to six times faster than the other two methods [225]. This is

both due to the speed of the calculation of the Max function as well as its ease

of use in optimisation procedures. Unfortunately ReLU has a tendency to set

weights to zero so that the activation function never fires for a large proportion

of the neurons, which means the network becomes extremely inefficient and can-

not be trained beyond a certain point [166]. This is because the gradient of the

function when vli < 0 is zero and hence the weights and the biases stop getting

updated. The softmax function partially improves on the common ReLU since

it is a smooth function and can be analytically differentiated (to the sigmoid

function). For some architectures this is quicker to calculate than the gradi-

ent of the Max function, but not always [349]. There is still the issue of large

portions of the activation functions not firing after training since the gradient

vanishes for more negative values of vli.

More recent developments in activation functions include the leaky ReLU [244]

and parameterised ReLU (PReLU) [166]. The former activation function has a

pre-defined small negative slope

φ(vi) =

{
αvi vi < 0

vi vi ≥ 0
. (IV–1.17)

This prevents the gradient from vanishing, but the value of α needs to be picked

correctly to ensure optimal training. There is no intuitive way to achieve this.

Instead, α can be included as a tuneable parameter along with the network

weights. This gives rise to PReLU activation functions [166]. Each neuron in the
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0.5

1

vi

φ(vi)

(a) sigmoid activation function

−1

1

vi

φ(vi)

(b) tanh activation function

vi

φ(vi)

(c) ReLU activation function

vi

φ(vi)

(d) softmax activation function

Figure IV–1.3: Example activation functions

network has a different value of αl (like an additional bias) so that each neuron

is independent of the input data used during training. This means that there is

much less chance of the neuron saturating. Finally, randomised ReLU (RReLU)

activation functions work by choosing a random value of α for every batch of

training, and is then set to a constant value during training [383]. Although this

may seem counterintuitive, the freedom in the network not knowing the final

value of α prevents overfitting (described below) and so performs better than

the previous methods. The use of the ReLU family of activation functions is

much preferred over either the sigmoid or hyperbolic tangent function [271].

1.5 Recurrent neural networks

Knowing about ANN, back propagation and different types of activation func-

tions allows more interesting networks to be considered. As already briefly men-

tioned in Part IV–1.2, RNN are one such interesting application of neural net-

works, which is not simply feed forward [128; 238; 279; 320]. Here there are

feedback loops between neurons which do not affect the training given one set of

inputs, but can cause the neurons to fire differently on the next set of inputs, i.e.

causing the network to learn about sequences in sets of data as well as about the

inputs themselves. This a very important feature for extended data sequences,
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Figure IV–1.4: An LSTM cell showing the functions which allow the state of the

network to be remembered over long sequences.

say natural language processing. It is difficult to process the meaning of a sen-

tence by learning each word in the sentence separately (even for humans). On

the other hand, an understanding of the sentence can be achieved by looking at

the sentence as a whole. To achieve this, the influence of previous words in the

sentence need to be tracked. It is long term correlations, like the sequence of

words in sentences, that RNN architecture can learn about.

In general, RNN can only learn about data close in the sequence by passing

the activated output of the network back as an additional hidden input for the

next input in the sequence [260]. This short term knowledge can be improved

upon using a specific neuron type called a long short term memory (LSTM)

unit [179], or variants like the gated recurrent unit (GRU) [84], described below

and used in Part IV–2.

An LSTM cell is a particular set of functions which is capable of storing impor-

tant information from the sequence of the input vectors over extended regions

of the sequence [272].

A hidden state ht−1 contains the LSTM cell output vector from the previous

step in the sequence t − 1. This is combined with the input vector from the

network at sequence step t, xt [179]. This combination can be performed in

several ways, two popular forms are concatenation and consensus. When using
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concatenation ht−1 and xt pass through two identical copies of the network and

so the only influence the prior state has on the input is the shared weights of the

functions in the cell [260]. Consensus combination simply adds the values (or in

some cases finds the average) of ht−1 and xt. Figure IV–1.4 shows an example

LSTM cell where the input and hidden state are concatenated to form [xt,ht−1].

First, [xt,ht−1] is passed through a forget gate [141] which is a sigmoid function.

Note this sigmoid function is not a neuron, since there are as many outputs and

inputs

ft = σf(w
f � xt + uf � ht−1 + bf). (IV–1.18)

Each element in the input vector xi,t has a weight wf
i and each element in the

hidden state vector hi,t−1 has a weight uf
i [272]. The sigmoid function also

has a bias for each element in either of the vectors bfi. The output of this

sigmoid function contains information about what is important and not in both

the hidden state and the network input (represented by ft = 1 and ft = 0

respectively and values in between) [141]. This forget vector is multiplied by

the state vector from the previous sequence step Ct−1, which contains all the

important information about each element in the input vector over the sequence

up to step t− 1,

Cf
t = ft �Ct−1. (IV–1.19)

The multiplication removes (or forgets) unimportant information in the state

vector and weights down less important features [141; 272].

[xt,ht−1] is also passed through another sigmoid gate to select for importance

and a hyperbolic tangent function separately, and combined via multiplication

to create the vector of important inputs at sequence t

it = σi(w
σi � xt + uσi � ht−1 + bσi)

� tanh(wi � xt + ui � ht−1 + bi),
(IV–1.20)

with another four vectors of weights wσii , wi
i, u

σi
i and ui

i, and biases bσii and bii

for each element in [xt,ht−1] [179]. This is then added to the state vector which

has forgotten unimportant information, creating

Ct = Cf
t + it. (IV–1.21)

Ct is the state vector which contains all the important information from all se-

quence steps including the current step t [179].
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Finally an output sigmoid is used to select important features, with a new set

of weights wo
i , u

o
i and biases boi ([179; 272])

ot = σo(wo � xt + uo � ht−1 + bo). (IV–1.22)

Ct is passed through an activation-like function ϕ(Ct) to force the values in the

vector to be of the form needed for the output [179]. ϕ can be any activation-like

function, say the hyperbolic tangent function or a ReLU, but with an output for

every input [272]. The output vector is then given by

ht = ot � ϕ(Ct), (IV–1.23)

creating the current hidden state vector which contains only the important in-

formation from the current sequence step [179; 272]. Two copies of ht are made,

one is passed back to the LSTM cell as ht−1 on the next step, and the other is

outputted from the cell. It is usual that this output goes through an activation

(in the neuron sense) so that the LSTM cell also acts as a neuron, with one out-

put [83]. Most current uses of LSTM cells have ReLU activation on the output.

Since there are essentially three inputs from the network (passing through func-

tions ft, it and ot) then back propagation can set the weight of each gate dif-

ferently. This allows the sequence to be learned about, i.e. which inputs to

forget, which inputs to propagate through the sequence and which inputs to

pass through the network at a given sequence step [141; 179].

GRU are a more recent development of the traditional LSTM, where the for-

get and importance gates are combined and the hidden state vector and cell

state are not distinguished between [84]. This means there are fewer weights to

set, and so training is quicker, but GRU can have less freedom than traditional

LSTM. More complicated network architecture tends to be needed when using

GRU to overcome the reduced number of weights.

1.6 Data augmentation

Since extremely large amounts of data are needed for training a network, espe-

cially deep networks, the input data can be augmented to increase the training

set size. Data augmentation takes one of the original pieces of data and modifies

it in some way and uses both the original and modified data as input to the net-

work [380]. For example, if using an image as an input, it could be augmented

by flipping the image across either the horizontal or vertical axis, rotating the

image, adding a small amount of noise to the pixel values, randomly cropping
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etc [373]. By doing this, a similar image is produced which the network can learn

about, without over-learning about the specifics in the original image.

1.7 Overfitting

Overfitting occurs when a network learns about specific features in the training

set, which may not be present in the test set [113]. In particular, sampling noise

may be learned about, i.e. noise in the training set may statistically correlate

but not be present in the entire data when the test set is included [164]. The

weights in the network are set to detect these features, and so sets preference for

these features in the test set. The training therefore over-learns this noise and

cannot learn more about the real features in the data. Overfitting can typically

be detected by comparing the loss of the training and test data. If the loss of

training data continues to decrease, but the loss of the test data increases, this

is a sure sign of overfitting [355]. If, on the other hand, no sign of overfitting is

observed, the network is not usually complex enough to fully learn the relation-

ship between inputs and outputs (called underfitting) [355].

To prevent overfitting regularisers can be added [373]. The most common is the

L2 regulariser where the loss function is appended with λw2
ji/2, for every weight

in the network, where λ is a strength parameter for the regulariser [256]. This

means that particularly strong weights are penalised and less strong weights

preferred. Overfitting is therefore prevented, since the “well known” features

(statistically correlated noise) in the training set will become less important

than the overall (real) features of the set [373]. This is necessary because the

well known features in the training set might not end up being in the test set

and therefore the network will prefer knowledge which it doesn’t need.

Another way to prevent overfitting is L1 regularisation, where the loss func-

tion has λ|wij | added to it [256]. Almost all weights are set to zero, making

a particularly sparse network which picks up only very specific features in the

inputs regardless of noise [373]. This usually makes training the network more

difficult than when using L2 regularisation since fewer features from the inputs

can be considered by the network.

By constraining the weights such that they never exceed a value c, then the net-

work can be prevented from over-learning one specific input, where the weight

becomes extremely large [373]. Since the network weights cannot become too

large, no single weight can dominate the network, although specific features can
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be learned better than for the L2 regulariser. c is arbitrary and it can be hard

to tune this parameter to best constrain the network.

Finally, dropout is an extremely useful technique which can be used by itself

or as a complement to the other regularisation techniques [344]. During training

a fraction of the network weights are set to zero and only the non-zero fraction

of the weights are updated for each batch. This effectively samples different net-

works in the total number of possible networks for the given architecture [344].

Training a network with n neurons when using dropout is equivalent to train-

ing 2n thinned networks (with weight sharing) to learn about different features.

Each network may learn about specific features, but the ensemble does not know

about these features and so overfitting can be prevented. Dropout is the tech-

nique used in Part IV–2.3 to prevent overfitting.



Chapter 2

Supernovae classification

In this chapter supernovae will be classified using deep RNN. LSST, for example,

is expected to find over 107 supernova [2]. However, it is estimated that only 5000

to 10,000 (although these numbers are not guaranteed) will be spectroscopically

confirmed by follow up surveys [255], so classification methods need to be devel-

oped for photometry. All previous approaches to automated classification [208;

242; 269] have first extracted features from supernovae light curves before using

machine learning algorithms. One of the advantages of deep learning is replacing

this feature extraction.

Supervised deep learning is used here. During training, the machine is given

inputs and produces a set of output predictions. It is also given the correct set

of outputs. An objective loss function then measures the error between the pre-

dicted and target outputs, and the machine updates its adjustable parameters

to reduce the error. It can then make predictions for unknown outputs.

RNN are a class of ANN that can learn about sequential data [260]. They are

commonly used for tasks such as speech recognition and language translation,

but have several possible applications in astronomy and cosmology for processing

temporal or spatial sequential data. RNN have several properties which makes

them suitable for sequential information. The inputs to the network are flexible,

and they are able to recognise patterns with noisy data (for example the context

of a word in a sentence relative to others can vary, or a time stream can contain

instrument noise).

As described in Part IV–1.5 the main problem with vanilla RNN is that they are

unable to store long term information, so inputs at the end of a sequence have

no knowledge of inputs at the start. This is a problem if the data has long term

correlations. LSTM units can be used to overcome this problem. A detailed

157
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Figure IV–2.1: Two-layer, bidirectional RNN for sequence classification. The

input vectors at each sequential step are fed into a pair of bidirectional hidden

layers, which can propagate information forwards and backwards. These are

then merged to obtain a consensus view of the network, and finally a softmax

layer computes classification probabilities.

description of LSTM [179] is presented in Part IV–1.5. Another problem with

RNN is that information can only flow in one direction. With bidirectional RNN,

information is able to pass both forwards and backwards. Bidirectional LSTM

networks have been shown to be particularly powerful where sequential data is

accompanied by a set of discrete labels.

The architecture of a typical bidirectional RNN for sequence labelling is shown

in figure IV–2.1, where the circles represent neurons. In this case the inputs,

which are vectors at each sequential step, are connected to two hidden RNN lay-

ers, either vanilla RNN or memory units. Each hidden layer contains a number

of hidden units (capable of storing information), and in each layer information

flows either forwards or backwards, but no information passes between the two

directions. Several hidden layers can be stacked to form deep neural networks.

Deep networks are capable of learning higher-level temporal or spatial represen-

tations, and complex relationships between the inputs and outputs.
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The output from the final set of hidden layers in each direction is merged

at each sequential step, and mean pooled (averaged) over all steps to obtain

a consensus view of the network to improve the performance of the network.

Finally, the mean output is fed to a softmax layer, taking an input vector

φ(vL−1) and returning normalised, exponential outputs for each class label i,

exp(φ(vL−1
i ))/

∑
i exp(φ(vL−1

i )), i.e. a vector of probabilities.

Each neuron is connected to another by a weight matrix, and the optimal weights

are found by back propagating the errors from a loss function of the output layer.

For classification problems, this is typically the categorical cross-entropy between

predictions and targets, defined as

L = −ti,j ln (pi,j) (IV–2.1)

where i, j run over the class labels, ti,j are the targets for each class (either 0 or

1) and pi,j are the predicted probabilities. Back propagation takes the derivative

of the loss with respect to the weights wL of the output layer, ∂L/∂wL, the chain

rule is used to update the weights in the network as described in Part IV–1.

2.1 Example data

Data from the SPCC [212; 213] is considered here, consisting of 21,319 simulated

supernova light curves. Each supernovae sample consists of a time series of flux

measurements, with errors, in the g, r, i, z bands (one band for each timestep),

along with the position on the sky and dust extinction. An example set of light

curves is shown in figure IV–2.2.

Due to the format of the input data, a small amount of data processing is first

performed to obtain values of the g, r, i, z fluxes and errors at each sequential

step. This assumes the time sequence begins at day 0 for each supernovae, rather

than counting days forwards and backwards from the maxima of the light curve.

For observations less than ∼ 1 hour apart, the g, r, i, z values are grouped into

a single vector, ensuring there is at most one filter-type in each group. If there

is more than one filter-type, the group is further subdivided using a finer time

interval. The group time is the mean of the times of each observation, which is

reasonable as the time intervals are small compared to the characteristic time of

the light curve.

Figure IV–2.3 shows how the length of the grouped-time data vector is related

to the duration of the light curve. The bottom left subplot shows that when
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Figure IV–2.2: (Top) Example light curve in the four g, r, i, z bands for SN

ID 551675 (a type-Ia) in the SPCC data [213]. The data has been processed

using augmentation so there is a g, r, i, z value at each sequential step. (Bottom)

Type-Ia probability as a function of time from a two-layer LSTM model, trained

with around 104 supernovae and SN 551675 excluded. The final probability gives

99.5% confidence that the supernovae is of type-Ia.
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Figure IV–2.3: . (Top) Distribution of the total number of days for each light

curve with the minimum, maximum, mean and median values indicated. (Bot-

tom right) Distribution of the number of elements in the grouped time vector

with the minimum, maximum, mean and median values indicated. (Bottom left)

The trend showing that more days in the light curve result in longer group time

vectors.
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Time g r i z

t1 g1 r1 i1 z1

t2 g2 r2 − z2

t3 g3 r3 i3 z3

Table IV–2.1: Data augmentation of missing observations. The missing data is

replaced randomly by a value between i1 and i3.

there are more days since the beginning of observation of the light curve results

there are a greater number of grouped time elements in the vector. The upper

subplot shows the distribution of observation lengths in the SPCC data varies

significantly with two distinct peaks. These are grouped into an average of 40-

element data vectors as can be seen in the bottom right subplot.

Observations are of the form in table IV–2.1, where any missing values are de-

noted by a dash. In order to impute the missing value of i, data augmentation

is used, by randomly selecting a value between i1 and i3. Five random augmen-

tations of all missing data are made, thereby increasing the size of the data set

fivefold. The importance of this can be tested by training each augmentation

separately and comparing the change in accuracy, which is ∼ 1%. Training with

multiple augmentations at once gives the best performance since the network

learns to ignore random-filled values.

The data comes in two types, those with and those without the host galaxy

photometric redshift. Each data set is split into a training and test set, with

the training set containing a spectroscopically confirmed supernovae type and

redshift. It is important that augmented data with the same supernovae ID go

into either the training or test set otherwise they will not be independent. The

original SPCC data consisted of 1,103 training samples. The answer keys were

subsequently made available for the test set [212].

The input vector to each sequential step consists of: time in days since the

first observation; flux in each of the 4 bands; flux errors in each of the 4 bands;

RA and Dec; dust extinction; and host photo-z if relevant. Whilst some of these

variables are not expected to impact the classifier accuracy, the network is left

to decide if they are relevant, preventing any feature engineering.

RNN typically perform better with more training data, so the network is trained

using the SPCC test set with answer keys (which is a non-biased representational
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data set - unlike the original SPCC training set was non-representational), and a

random fraction selected to act as the training set. 1,103 supernovae (a training

fraction of 0.052) are considered, the same size as the original challenge, and

fractions of 0.25 and 0.5 (around 5000 and 104 supernovae respectively), nearly

an order of magnitude larger, and closer to the number likely to be followed

up for LSST. The training performance of RNN is also improved if the data is

processed in mini-batches. In order to do this the input data must be of the

same length, so the sequence length is set to be the maximum length over all

supernovae observations, the input is prepended with padding. In training the

network the padding is ignored by masking the padded input.

The times of the observations in the light curve are irregularly spaced and whilst

this may not be optimal for the network it is found that it is better to use the

data padded at the end of the sequence than to place observations at similar

times in similar sequence positions. There may even be hidden connections be-

tween the clustering of observation times and supernovae type, although it is

hard to test for this.

The goal of the classifier is to determine the supernovae type in the test set.

Two problems are considered, (1) to categorise two classes (type-Ia vs. non-

type-Ia), and (2) to categorise three classes (supernovae types-1, -2 and -3).

These are denoted ‘SN1a’ and ‘123’ respectively. The first two problems are also

attempted using only the first six observations with S/N > 4 and the data taken

on the night of the sixth observation as described in [213].

Several metrics are used to assess the classifier. The simplest is the accuracy,

defined as the ratio between the number of correct predictions and total number

of predictions. With two classes a random classifier would have an accuracy of

0.5, and with three classes an accuracy of 1/3.

Next are a variety of metrics coming from the confusion matrix of predictions.

For binary classification problems, the confusion matrix splits predictions into

true positives (TP), false positives (FP), false negatives (FN), and true nega-

tives (TN). We consider the purity and completeness of the classifier. These are

defined as

Purity =
TP

TP + FP
, (IV–2.2)

Completeness =
TP

TP + FN
. (IV–2.3)
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These are evaluated for each class separately vs. ‘the rest’ (e.g. type-Ia vs. non-

type-Ia). The SPCC also defined the F1 figure-of-merit for the SN1a classification

problem. This is

F1 =
1

TP + FN

TP2

TP + 3× FP
, (IV–2.4)

so incorrectly classifying a non-type-Ia supernovae as a type-Ia is penalised more

heavily.

Finally, the area under the curve (AUC) is calculated. The AUC is the area

under the curve of the TP rate vs. FP rate, as the threshold probability for

classification is increased from 0 to 1. A perfect classifier has an AUC of 1, and

a random classifier 0.5. For multi-class problems, the AUC is calculated for each

class vs. the rest, and an unweighted average is taken to give the final AUC

score.

2.2 Network architecture

Several combinations of the network architecture are taken. For the RNN type

in the hidden layers, both vanilla RNN and long term memory (LSTM and

GRU) units are tested. Both unidirectional and bidirectional networks are also

attempted. For unidirectional networks the direction is fixed to be forwards. For

bidirectional networks, the number of hidden units in each RNN layer is equal

in the forward and backward directions.

Stacking two sets of layers is also tested to form a deep network. In the unidirec-

tional case two hidden layers are stacked. In the bidirectional case the two stacks

consists of a pair of forwards and backwards layers. The number of hidden units

in a network with a single stack are denoted by [h1], and the number of hidden

layers in a two stack model by [h1, h2]. The number of hidden units are varied,

testing h = [4], [8], [16], [32], [4, 4], [8, 8], [16, 16] and [32, 32]. A stack of two

layers is the maximum number tested due to the limited size of the data set.

For each network five randomised runs are performed over the training data

to obtain the classifier metrics. The loss function is the categorical cross-entropy

between the predictions and test data. The network weights are trained using

back propagation with the Adam updater [221]. Mini-batches containing 10 sam-

ples are used throughout, and each model is trained for 200 epochs, where each

epoch is a full pass over the training data. If training with a graphics process-

ing unit (GPU), larger mini-batches are recommended to make use of the GPU
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Figure IV–2.4: (Left) Training loss (green) vs. test loss (blue) for a unidirec-

tional 2 layer LSTM network with 16 hidden units in each layer. (Right) Training

accuracy (green) vs. test accuracy (blue) for the same network.

cores.

2.3 Results

A data set of 21,319 is relatively small by deep learning standards. Furthermore,

the ‘feature space’ of supernovae light curves is significantly smaller than, say,

using RNN to learn about language. Care therefore needs to be taken about

over-fitting.

For a training fraction of 0.5, the best architecture was a deep 2-layer net-

work with unidirectional LSTM units. Bidirectional units did not significantly

improve the test accuracy and made the network more difficult to train. There

was a marked improvement in test accuracy using 16 hidden units in each layer

rather than 8, but too much over-fitting occurred using 32 hidden units. Over-

fitting was still an issue for 16 hidden units, but a dropout could regularise this.

As described in Part IV–1.7 dropout sets a random fraction of connections to

0 at each update during training only, preventing the units from adapting too

much. Dropout is only applied to non-recurrent connections after each hidden

layer.

Figure IV–2.4 shows the training and tests losses for such a network, with a

dropout of 0.5, applied to type-Ia vs. non-type-Ia classification with host galaxy

photo-z information. Without dropout the training loss continues to fall and the

test loss rises. For five randomised runs, training for 200 epochs, a classification
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accuracy of 94.9 ± 0.2%, AUC of 0.986 ± 0.001 and F1 = 0.64 ± 0.01 are ob-

tained. The corresponding type-Ia purity and completeness are 87.3± 0.8% and

91.4 ± 1.1% respectively. A summary of results and comparisons can be found

in tables IV–2.2 and IV–2.3. The inclusion of host galaxy photo-z marginally

improves the classifier performance. The 1σ errors quoted in the table are the

result of five runs where the training data is randomly chosen (and so differ-

ent) each time. Some random choice of the set of light curves are more effective

for training the network than others, but it is extremely difficult to optimise this.

To test the robustness of the time-grouping method 10% of the known filter

values (and/or their errors) are removed before grouping the data into a single

vector and randomly augmenting the missing values. After training there is a

small degradation in the results, i.e. for a training fraction of 0.5 using a deep

two-layer, unidirectional network with 16 hidden units, a dropout of 0.5 and

including the photo-z information the obtained results are very similar to the

second line in table IV–2.2. This shows that a reduction in 10% of the points is

similar to the omission of the photo-z data and therefore the data augmentation

method is extremely robust.

One advantage of the approach used here is that light curve data can be directly

input to a pre-trained model to give very fast evaluation (< 1s) of supernovae

type. In the lower panel of figure IV–2.2 the light curve of a type-Ia supernovae

(excluded from training) is inputted as a function of time to the pre-trained

two-layer LSTM model discussed above. The classifier (type-Ia vs. non-type-Ia)

is initially unsure of classification, with a type-Ia probability of around 0.5. The

probability then decreases slightly, but rapidly increases near the peak of the

light curve. The classifier has high confidence the supernovae is of type-Ia at

around 60 days, and the final probability is excess of 99.5%. This method could

therefore be useful to give early indication of supernovae type in surveys.

The same model is tested using a training fraction of 0.25 (around 5000 su-

pernovae), closer to the lower end of the number likely to be followed up for

LSST. After five randomised runs and training for 200 epochs an accuracy of

92.9 ± 0.6%, AUC of 0.975 ± 0.003 and F1 = 0.57 ± 0.03 is obtained. The cor-

responding type-Ia purity and completeness are 86.6 ± 2.0% and 83.4 ± 3.4%

respectively. The F1 metric has degraded by ∼ 10% for a reduction in data of

50%.

For 5.2% of the representative SPCC data, the training data set is so small
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that over-fitting is more severe. Using the same two-layer LSTM network with

sixteen hidden units and dropout of 0.5 there is a notable increase in the test

loss after ∼ 20 epochs, but the accuracy and other metrics remain relatively

constant (F1 values of 0.35 to 0.4 were obtained). The reason for this apparent

discrepancy is that the accuracy, say, simply takes the maximum value of the

softmax output layer. For example, a two-class problem with output proba-

bilities [0.6, 0.4] and target [1, 0] has the same accuracy as one with output

probabilities [0.8, 0.2]. The loss in the latter case would be lower however, and

represents increased confidence of the network in its predictions. Models with

severe over-fitting and an increasing cross-entropy loss at the expense of metrics

such as F1 are therefore rejected and the model complexity is decreased.

For a training fraction of 5.2% a single-layer LSTM network, with 4 hidden

units, and dropout of 0.5 satisfies this criteria. For five randomised runs, train-

ing for 200 epochs, a classification accuracy of 85.9±0.9%, AUC of 0.910±0.012

and F1 = 0.31 ± 0.03 is obtained. The corresponding type-Ia purity and com-

pleteness are 72.4± 0.4% and 66.1± 6.0% respectively.

It is difficult to directly compare the results from the SPCC challenge in [212]

with this work since the figure of merit is quoted as a function of redshift and

a non-representative set of light curves was originally used. In [212] the method

of [314] had the highest average F1, with 79% purity and 96% accuracy. This is

a, somewhat, confusing average as F1 ∼ 0.4 at a redshift z ∼ 0.1 up to F1 ∼ 1

at z ∼ 0.9. Other methods performed similarly.

It is better to consider comparison with other methods using post-SPCC data.

The results obtained here are competitive with previous approaches. The anal-

yses by [208] and [269] are easier to compare. Along with [242] these employ a

two-step process, where features are first extracted by various methods before

machine learning classification. The results obtained for similar sized training

sets are comparable as can be seen in the top section of table IV–2.2. When

using half the data set to train on we get a higher F1 value, F1 = 0.64 compared

to F1 = 0.58 in [208]. The value in [269] is also similar given that the sample size

is smaller. For a smaller sample training set of 5.2% of all the data we again per-

form similarly to [208] but under perform compare to [269] taking into account

the slightly larger sample size in the latter case. In [242] using the SALT2 fits

provided the best average AUC over a range of machine learning techniques. By

imposing a purity of 90% a completeness of 85% was achieved while requiring a

completeness of 90% reveals a corresponding purity of 85%.
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The top section of table IV–2.3 shows the results of the early-epoch challenge

from SPCC. Here only the data before the night of the sixth observation with

S/N > 4 for each light curve can be used - a great reduction from the use of

the full light curve. An accuracy of 93.1 ± 0.4%, AUC of 0.977 ± 0.002 and an

F1 = 0.58±0.01 with a training fraction of 0.5 and including host-z gives surpris-

ingly good results. These values are not far from those obtained using the whole

light curve and are equivalent to the full results of [208]. The results are not as

good with a training fraction of 0.052, but still comparable to the results found

here using the whole light curve. The network trained on the partial light curves

does better than suggested from feeding the early-epoch light curve through a

network trained on the full sequence. This is due to the later parts of the light

curve influencing the weights of the network whilst training. Training on only

the initial part of the light curve optimises the network weights such that early

sequence features have more effect, resulting in better accuracy, AUC and F1

values than expected.

In the middle section of table IV–2.3 the three class categorisation is shown.

There is no available data for comparison of this problem, but compared to clas-

sification between type-Ia vs. non-type-Ia, bidirectional RNN do well. The AUC

and accuracy remain high, still above 90% when the host-z is included using a

training fraction of 0.5. Using a smaller training fraction of 0.052, the results

are worsened similar to the two class categorisation in table IV–2.2.

Finally, the bottom section of table IV–2.3 has the results of the three class

categorisation when using the early-epoch data. The results are similar to the

difference between the full light curve and early-epoch data SN1a categorisation

when comparing with the full light curve 123 categorisation. It should be noted

that the bidirectional network used for the 123 categorisation using the full light

curve revealed sizeable over-fitting when using the early-epoch data and so a

unidirectional network was used instead.
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Chapter 3

Discussion

A new method for performing photometric classification of supernovae has been

presented in this Part. Machine learning methodology has previously been ap-

plied to SPCC classification [208; 242; 269]. Instead of performing feature ex-

traction before classification, the approach here uses the light curves directly

as inputs to an RNN, which is able to learn information from the sequence of

observations.

Although the network has been trained on the cross-entropy loss and not the

F1 score, for the same sized data set of ∼ 103(104) supernovae (including host

galaxy photo-z), the method in [208] obtained F1 values of 0.33 (0.58), and the

method in [269] got values of 0.42 (0.57), compared to 0.31 (0.64) here. RNN

therefore compare well with other methods when a larger training set is avail-

able. The performance isn’t quite as good with a smaller training set, possibly

due to the network having to learn from no prior information about (noisy) light

curves. The current state-of-the-art for a small training set (∼ 103 supernovae)

comes from a combination of SALT2 (Spectral Adaptive Light curve Template

2) template fits and boosted decision trees [242]. It would be interesting to check

how deep learning compares to this with a larger training set.

As well as finding competitive results for the final metrics, it is possible to

give fast, early evaluation of supernovae type using pre-trained models. This is

possible since the light curve can be fed to the model directly without needing

any feature extraction. Most interestingly, training a network only on the early

epoch light curve data results in a better early-time predictor than using a net-

work trained on entire light curve data. The results using only the early-epoch

data are close to those using the entire light curve data for both SN1a and 123

categorisation with both large and small training fractions.

170
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There are several possibilities for future work. One of the advantages of RNN

are that inputs are agnostic, so the impact of any additional inputs could be

explored. It would be possible, for example, to even pass the raw images in each

filter though a convolutional network and use those as inputs. A representative

training sample has been considered here, but spectroscopic follow up surveys

may be biased. The performance of the network could be measured against se-

lection bias, and the results used to inform the best follow up strategy. Further

work could also be performed to optimise the early detection probability of the

network. Finally, to improve performance in the small data regime one can use

transfer learning. Here, a more complex network is pre-trained on simulations or

existing data from other surveys, then the weights of the network are fine-tuned

on the new, smaller data set.

Other than using RNN to learn about time domain physics, a very exciting

era of machine learning in cosmology and astronomy is on the horizon. The use

of convolutional neural networks to data mine surveys will probe hidden features

which are missed using conventional techniques [211]. Belief networks [303] will

also allow statistical interpretation of results to be processed without human

bias, relating to the outcomes of future work from Part III. As greater amounts

of data are obtained from a variety of different experiments then work on learn-

ing how to amalgamate different networks to cope with different input types is

necessary [146]. Outside of the cosmological community, machine learning can

almost certainly be argued to be the most popular and thriving collective in

computing today. Every problem which has a large data set is most likely be-

ing tackled with deep learning, even now. Where there is not a large data set,

neural networks are being trained using unsupervised learning or reinforcement

learning. The field of machine learning is burgeoning and many tasks in the near

future will undoubtedly prosper due to its growth.
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