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Abstract 

Transcranial direct current stimulation (tDCS) is a popular non-invasive brain stimulation 

technique, which has the potential to modulate cortical excitability. The effects of tDCS 

are known to outlast the stimulation period, and in some cases, repeated applications 

have been found to produce long lasting clinically relevant effects. The primary aim of 

this thesis was to explore the reliability and therapeutic potential of this technique.  

In Chapters 3 and 4 transcranial magnetic stimulation (TMS) was used to measure tDCS 

effects. These experiments revealed substantial variability regarding the way in which 

healthy adults responded to stimulation. Notably, there were differences between 

participants regarding the direction and magnitude of change in cortical excitability. 

Furthermore, even when group level effects were found reliably, there was substantial 

intra-subject variability across repeated testing sessions.  

Subsequent experiments in Chapters 5 and 6, explored the biological and behavioural 

effects of tDCS in individuals with Gille de la Tourette’s syndrome (GTS). GTS is a 

neurodevelopmental disorder characterised by motor and phonic tics which have been 

linked to hyper excitability within motor-cortical regions. Therefore, these experiments 

aimed to reduce cortical excitability of targeted regions in the hope that this would 

impact on tics. Disappointingly, no such effects were found immediately after a single 

session of tDCS (Chapter 5). Consequently, it was hypothesised that repeated 

applications may be necessary for significant reductions in tics to occur. This was 

investigated in Chapter 6 using an in-depth case study. The results were encouraging, in 

particular there was a substantial drop in tics following 10 days of tDCS at 1.5mA 

intensity. The stimulation was well tolerated and the treatment regimens were closely 

adhered to, despite tDCS being delivered in the participants own home with remote 

supervision. A weaker stimulation intensity was not as effective. The findings of 

Chapters 3-6 highlight that the optimal stimulation parameters may vary from person to 

person, and that exploration of individual data is critical in therapeutic contexts. The 

results also suggest that tDCS may be helpful as a treatment for GTS and furthermore 

highlight the feasibility of home use stimulation.  

  



3 
 

Acknowledgements 

I am very grateful to my supervisors Stephen Jackson and Georgina Jackson for 

their enthusiastic support, encouragement and guidance throughout my PhD. I 

have learned so much and am indebted to you both for giving me this 

opportunity. I am also very grateful to Jane Fowlie for all her help with 

recruitment, to Elena Nixon for her advice on tic counting and to the participants 

themselves who made this research possible. 

I would like to thank my office mates Miguel Espirito Santo, Christina Ralph-

Nearman and Beverly Brown for making it such a lovely place to work and for our 

many interesting conversations. I am also very grateful to my friends in the 

department for their support and advice, in particular Sophia Pépés and Hilmar 

Sigurdsson for help with all things scanner related, Amelia Draper for introducing 

me to Nottingham, and Soyoung Kim for discussing ideas with me and helping 

with my never ending Matlab issues.   

I would like to say a huge thankyou to my wonderful parents for supporting me 

in all I do and for their tireless efforts as thesis proof readers. Finally, a special 

thankyou to James who has been there for me throughout, with an endless 

supply of encouragement, patience and understanding. 

 

 

 

  



4 
 

Table of contents 

Abstract 2 

Acknowledgements 3 

Table of contents 4 

List of figures 9 

List of tables 14 

 General Introduction 15 

1.1 A brief history of therapeutic brain stimulation 15 

1.2 Modern day methods: Transcranial Direct current Stimulation (tDCS) 16 

1.3 Gilles de la Tourette Syndrome 20 

1.4 Non-invasive brain stimulation and Tourette Syndrome 21 

1.5 Research aims and summary 22 

 Non-invasive stimulation and investigation of the human 

motor cortex 24 

2.1 Transcranial Magnetic Stimulation 24 

2.1.1 TMS and the motor cortex 26 

2.1.2 Biological underpinnings 27 

2.1.3 Single pulse measures 31 

2.1.4 Paired pulse measures 37 

2.2 Magnetic Resonance Spectroscopy 41 

2.3 Transcranial Direct Current Stimulation 43 

2.3.1 Insights from animal research 43 

2.3.2 Insights from pharmacology, TMS and MRS 45 

 Exploring the temporal effects of tDCS 51 

3.1 Introduction 51 

3.2 Method 54 

3.2.1 Participants 54 



5 
 

3.2.2 Design 55 

3.2.3 tDCS of the motor cortex 55 

3.2.4 TMS measurements and EMG recording 56 

3.2.5 Procedure 58 

3.2.6 Analysis and statistics 60 

3.3 Results 63 

3.3.1 Effects of tDCS on RMT 63 

3.3.2 Effects of tDCS on IO curve slope 63 

3.3.3 Correlational analysis: baseline relationships with slope change 67 

3.3.4 Effects of tDCS type and time on IO curve slope 68 

3.4 Discussion 70 

 Exploring intra and inter subject reliability and stability in 

response to tDCS 76 

4.1 Introduction 76 

4.2 Pilot 79 

4.3 Method 89 

4.3.1 Participants 89 

4.3.2 Design 89 

4.3.3 tDCS of the motor cortex 90 

4.3.4 TMS measurements and EMG recording 90 

4.3.5 Experimental procedures 92 

4.3.6 Data analysis 93 

4.4 Results 94 

4.4.1 Analysis of group effects 95 

4.4.2 Analysis of inter-subject reliability 102 

4.5 Discussion 104 



6 
 

 Can cathodal tDCS reduce tics in Tourette’s syndrome?110 

5.1 Introduction 110 

5.2 Method 115 

5.2.1 Participants 115 

5.2.2 Design 116 

5.2.3 tDCS of the supplementary motor area (SMA) 116 

5.2.4 TMS measurement and EMG recording 116 

5.2.5 Video recording 118 

5.2.6 Yale Global tic severity scale 118 

5.2.7 Procedure 121 

5.2.8 Data analysis 122 

5.3 Results 125 

5.4 Discussion 130 

 Case study report - Can repeated applications of cathodal 

tDCS help to reduce tics in Tourette’s syndrome? 135 

6.1 Introduction 135 

6.2 Method 137 

6.2.1 Participant details 137 

6.2.2 Design 137 

6.2.3 tDCS of the supplementary motor area (SMA) 140 

6.2.4 Video recordings 141 

6.2.5 Questionnaire measures 141 

6.2.6 Scanning protocol (anatomical, resting state FMRI) 142 

6.2.7 TMS data collection 143 

6.2.8 Tic coding procedure (analysis of video data) 143 

6.2.9 rs-fMRI data pre-processing 144 



7 
 

6.3 Results 148 

6.3.1 Tic counts measure from video data 148 

6.3.2 Scores on questionnaire measures 149 

6.3.3 Resting state fMRI 151 

6.4 Discussion 156 

 What are we measuring with magnetic resonance 

spectroscopy and why is this important? 167 

7.1 Introduction 167 

7.2 Method 173 

7.2.1 Participants 173 

7.2.2 MR acquisition 174 

7.2.3 TMS measurements and EMG recording 176 

7.2.4 Experimental procedure 179 

7.2.5       Analyses of MRS data 180 

7.2.6 Analyses of TMS data 180 

7.2.7 Correlations between MRS and TMS measures 183 

7.2.8 Analysis of acute effects of gabapentin/placebo administration 184 

7.3 Results 184 

7.3.1 Correlations between baseline TMS and MRS measures 184 

7.3.2 Acute effects of gabapentin/placebo on MRS measures 189 

7.3.3 Effects of baseline MRS measure and subsequent change 190 

7.3.4 Acute effects of gabapentin/placebo on TMS measures 192 

7.3.5 Effects of baseline TMS measure and subsequent change 193 

7.3.6 Questionnaire measures 195 

7.4 Discussion 196 

 General discussion 207 



8 
 

8.1 tDCS effects in neurologically typical individuals 207 

8.2 tDCS effects and Tourette Syndrome 210 

8.3 Exploring the origin of the MRS-GABA signal and the effects of 

Gabapentin 214 

8.4 Limitations and suggestions for future research 216 

8.5 Conclusions 220 

References 222 

Appendices 246 

Appendix i: Effects of tDCS on MEPs (Ch.3) 246 

Appendix ii: Individual variability & 2mA anodal tDCS (Ch. 3) 247 

Appendix iii: Effects of tDCS on raw IO curve slope (Ch. 3) 248 

Appendix iv: Sigmoidal fitting with IO curve data (Ch. 4) 249 

Appendix v: ICC analysis for Rush (Ch. 5) 251 

Appendix vi: Sigmoidal curve fitting (Ch. 5) 252 

Appendix vii: Further analysis with RUSH score (Ch. 5) 253 

Appendix viii: ROIs in Baseline/Sham comparisons (Ch. 6) 254 

Appendix ix: ROIs in Baseline/Active comparisons (Ch. 6) 255 

Appendix x: ROIs in Active/Sham comparisons (Ch.6) 256 

Appendix xi: ROIs in Baseline2/Active2 conditions (Ch.6) 258 

Appendix xii: ROIs implicated in Active-Baseline which are predictive of 

connectivity in Post condition (Ch.6) 259 

 

  



9 
 

List of figures 

Figure 1.1. Illustration of tDCS application. ...................................................................... 17 

Figure 2.1. Illustration of TMS application. Black arrows indicate electrical current flow, 

red dashed line indicates magnetic field. .......................................................................... 24 

Figure 2.2. Illustration of figure of eight coil (left) and single round coil (right) with peak 

magnetic field shown as heat map. .................................................................................. 26 

Figure 2.3 A. Example of EMG recording showing increasing MEP amplitude resultant of 

increased TMS intensity. Arrows indicate passing of time. B. IO curve data with slope 

fitted to median values for each intensity (red circles). .................................................... 35 

Figure 2.4. Example EMG readout for various TMS measures. ........................................ 37 

Figure 3.1. Experimental protocol for each testing session. Arrow demonstrates the 

passage of time over an experimental testing session. .................................................... 58 

Figure 3.2. Schematic of data analysis with key aspects highlighted. .............................. 60 

Figure 3.3. Example IO curve slope fit. Black circles indicate individual MEP amplitudes, 

purple diamonds show median values for each intensity. ................................................ 61 

Figure 3.4. Ratio values showing change in slope following 2mA anodal stimulation. Each 

colour represents an individual participant’s data set. Black line indicates no change from 

baseline. ............................................................................................................................ 64 

Figure 3.5. Mean and SEM of average MEP amplitudes at each given TMS intensity pre 

and post stimulation for A: 1mA Anodal, B: 1mA Cathodal, C: 1mA Sham. ................... 65 

Figure 3.6. Mean and SEM of average MEP amplitudes at each given TMS intensity pre 

and post stimulation for A: 2mA Anodal, B: 2mA Cathodal, C: 2mA Sham.  Indicated 

significant difference from baseline. ................................................................................. 66 

Figure 3.7. Uncorrected Pearson’s correlation coefficients of baseline slope with slope 

change at the four time points for A: 1mA anodal; B: 1mA cathodal and C: 1mA sham 

condition. Filled circles indicate significant correlations (p=<0.05). ................................. 67 

Figure 3.8. Uncorrected Pearson’s correlation coefficients of baseline slope with slope 

change at the four time points for A: 2mA anodal; B: 2mA cathodal and C: 2mA sham 

conditions. Filled circles indicate significant results (p=<0.05). ........................................ 68 

Figure 4.1. Normalized values showing median change in MEP amplitude for 1ms SICI 

protocol. Black dotted line indicates no change in amplitude from unconditioned pulses. 

Each colour represents an individual participant. ............................................................. 84 

file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691658
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691658
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691659
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691659
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691660
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691660
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691660
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691661
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691664
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691664
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691668
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691668
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691668


10 
 

Figure 4.2. Normalized values showing median change in MEP amplitude for the 3ms SICI 

protocol. Black dotted line indicates no change from unconditioned pulses. Each colour 

represents an individual participant. ................................................................................ 85 

Figure 4.3 Normalized values showing median change in MEP for 100ms LICI protocol. 

Black dotted line indicates no change from unconditioned pulses. Each colour represents 

an individual participant. .................................................................................................. 86 

Figure 4.4. Normalized values showing median change in MEP amplitude for 10ms ICF 

protocol. Black dotted line indicates no change from unconditioned pulses. Each colour 

represents an individual participant. ................................................................................ 86 

Figure 4.5. Normalized values showing median change in MEP amplitude for 12ms ICF 

protocol. Black dotted line indicates no change from unconditioned pulses. Each colour 

represents an individual participant. ................................................................................ 87 

Figure 4.6 Normalized values showing median change in MEP amplitude for 15ms ICF 

protocol. Black dotted line indicates no change from unconditioned pulses. Each colour 

represents an individual participant. ................................................................................ 87 

Figure 4.7. Mean & SEM MEP amplitude pre and post anodal tDCS. .............................. 96 

Figure 4.8. Mean & SEM MEP amplitude pre and post cathodal tDCS. ........................... 96 

Figure 4.9. Mean & SEM MEP amplitude pre and post sham tDCS. ................................. 97 

Figure 4.10. Mean and SEM change in ICF pre/post anodal (A), cathodal (B) or sham (C) 

stimulation. ....................................................................................................................... 97 

Figure 4.11. Mean & SEM levels of inhibition for 1ms SICI pre/post anodal (A), cathodal 

(C) or sham (E) stimulation. Pre/post level of inhibition for 3ms SICI pre/post anodal (B), 

cathodal (D) or sham (F) stimulation. ............................................................................... 99 

Figure 4.12. Average inhibition caused by LICI for each participant over each session of 

pre anodal stimulation. Each colour represents an individual participant. Dashed line 

illustrates no change from unconditioned stimulus elicited by TS alone (uncondi all). .. 100 

Figure 4.13. Amount of change in IO curve slope (pre/post) for each participant following 

(A) anodal, (B) cathodal and (C) sham stimulations. Each coloured data point represents 

a single session, black diamonds indicate mean change. Horizontal line indicated no 

change from baseline. ..................................................................................................... 103 

Figure 5.1. Schematic of experimental procedure. ......................................................... 121 

Figure 5.2. Mean ± SD total tics per minute (TPM) for videos taken before and after 

sham stimulation. ........................................................................................................... 126 

file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691679
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691679


11 
 

Figure 5.3. Mean SD total tics per minute (TPM) from videos taken before and after 

cathodal stimulation. ...................................................................................................... 127 

Figure 5.4.Mean ± SD tic severity score using Rush scale before and after sham 

stimulation. ..................................................................................................................... 128 

Figure 5.5. Mean ± SD tic severity score using Rush scale before and after cathodal 

stimulation. ..................................................................................................................... 128 

Figure 5.6. Mean ± SEM IO curve slots. A: before and after cathodal tDCS, B: before and 

after sham tDCS. ............................................................................................................. 129 

Figure 5.7. Mean SEM MEP amplitude evoked from SI 1mV pulse A: Pre/ post cathodal 

stimulation and B: pre/post sham stimulation. .............................................................. 130 

Figure 6.1. Schematic showing the study design. A. shows the initial baseline, sham, 1mA 

cathodal and 1 month follow up conditions which were tested. B. shows the second 

phase of the study in which 1.5mA cathodal stimulation was tested against a new 

baseline. Two months elapsed between the final 1mA cathodal stimulation and the 

measurement of the second baseline. ............................................................................ 139 

Figure 6.2. Schematic of electrode placement with the smaller electrode placed over the 

SMA, and the larger one placed over the upper deltoid muscle of the arm. .................. 140 

Figure 6.3. Mean and SD of tic per minute counted from ten-minute video segments 

recorded on alternate days during sham and 1mA cathodal (active) conditions. .......... 148 

Figure 6.4. Mean and sd of tic per minute counted from video segments collected during 

baseline2 which was taken after 2 months with no stimulation, and after 10 days of 

1.5mA cathodal stimulation (active2). ............................................................................ 149 

Figure 6.5. YGTSS score on the various subcomponents measured at baseline, after 10 

days of sham stimulation, after 10 days of 1mA cathodal stimulation (active) and in a 1 

month follow up (post) condition. ................................................................................... 149 

Figure 6.6. YGTSS score on the various subcomponents measured during a second 

baseline (baseline2) taken over 2 month after any active stimulation took place and after 

10 days of 1.5mA cathodal stimulation (active2). .......................................................... 150 

Figure 6.7. Plots showing changes in functional connectivity from baseline for sham 

stimulation (top left), active stimulation (top right) and post stimulation (bottom left). 

Bottom right shows differences in functional connectivity following active stimulation 

compared to sham). ........................................................................................................ 151 

file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691689
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691689
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691691
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691691


12 
 

Figure 6.8. Left image: shows the change in connectivity strength (active-baseline) 

expressed as standard scores. Right image: shows a binarised image identifying those 

ROI pairs with standard scores greater than 1.96 or less than -1.96. ............................ 154 

Figure 6.9. Plot showing changes in functional connectivity for baseline2 for active2. 

Whereby active2 is the scan taken shortly after the completion of 10 sessions of 1.5mA 

stimulation. ..................................................................................................................... 155 

Figure 7.1 [A] Position of the voxel of interest (VOI=20×20×20mm3) located over the left-

hand area of M1 shown in (i) sagittal, (ii) axial (iii) and coronal views. [B] Standard 

deviations (shaded area) overlying the group mean in vivo spectrum acquired from the 

VOI obtained with STEAM sequence (TS/M=17/17ms) at 7T are shown (N=27). [C] A 

representative in vivo spectrum obtained from the M1 VOI is shown, together with its 

LCModel fot. Residual and fitted signals for metabolites of interest and macromolecules 

(MM) and baseline (BL) are shown. ................................................................................ 176 

Figure 7.2. Schematic showing study timeline. .............................................................. 179 

Figure 7.3. Group mean of individual median MEP values for paired pulse SICI (1ms and 

3ms ISI) and ICF (10ms and 12ms ISI) trials. Error bars represent the standard error of the 

mean. .............................................................................................................................. 182 

Figure 7.4 Spider’s web plot illustrating Pearson correlation coefficients for TMS 

measures with GABA/tCR ratios. Plot shows correlation coefficients running from 1.0 

(outer ring) to -1.0 (inner ring) with the broken black line representing a correlation 

coefficient of 0. Open blue circles are not statistically significant (p>0.05), whereas filled 

blue circles represent statistically significant correlations (p<0.05). .............................. 184 

Figure 7.5. Spider web plot illustrating Pearson correlation coefficients between 

individual values for each TMS measurement and glutamate concentrations (Glu/tCr 

ratios). Filled circled indicate significant relationships for 10ms ICF and IO plateau with 

Glu/Cr. ............................................................................................................................. 185 

Figure 7.6. Spider web plot illustrating Pearson correlation coefficients between 

individual values for each TMS measurement and glutamine concentrations (Gln/tCr 

ratios). Filled circled indicate significant relationships for Median MEP amplitude at RMT 

(Med MEP) and Gln/Cr. ................................................................................................... 186 

Figure 7.7.  % change from baseline for GABA, Glu and Gln measures shown as mean and 

SEM for placebo and GBP groups. .................................................................................. 189 

Figure 7.8. Change in GABA level following gabapentin plotted against baseline GABA 

level. ................................................................................................................................ 190 



13 
 

Figure 7.9. Change in GABA level following placebo plotted against baseline GABA level.

 ........................................................................................................................................ 191 

Figure 7.10. Change in Gln/tCr level following placebo plotted against baseline Gln/tCr 

level. ................................................................................................................................ 192 

Figure 7.11. Results of Pearson’s correlational analysis between A: baseline 1ms SICI 

slope and % slope change following gabapentin; B: baseline 1ms SICI slope and % change 

following placebo; C: baseline 10ms ICF and % change following gabapentin; D: 10ms ICF 

baseline and % change following placebo. Anything left of the blue line in C and D 

indicates a lack of true ICF effect in that conditioned MEPs were not larger than those 

from un-conditions trial. ................................................................................................. 193 

 

 

  

file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691708
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691708
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691709
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691709
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691709
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691709
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691709
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691709


14 
 

List of tables 

Table 2.1. Notable TMS investigations of tDCS effects. .................................................... 49 

Table 3.1. Subject characteristics. Data are presented as mean ± SD; N= number of 

participants; F= Female; M=Male; RMT= Resting Motor Threshold. ................................ 55 

Table 3.2. Results of repeated measures ANOVAs calculated for 1mA data in which the 

effects of time, and polarity on IO curve slope are explored ............................................ 69 

Table 3.3. Results of repeated measures ANOVAs calculated for 2mA data in which the 

effects of time, and polarity on IO curve slope are explored. ........................................... 70 

Table 4.1. Mean ± standard deviation of RMT for each condition and testing session.... 94 

Table 4.2. Summary of Repeated measures ANOVA results for anodal sessions. .......... 100 

Table 4.3. Summary of Repeated measures ANOVA results for cathodal sessions. ....... 101 

Table 4.4. Summary of Repeated measures ANOVA results for sham sessions. ............ 101 

Table 5.1. Participant demographics .............................................................................. 115 

Table 5.2. Participant demographics YGTSS, sham. ....................................................... 119 

Table 5.3. Participant demographics YGTSS, cathodal. .................................................. 120 

Table 7.1. Participant demographics for baseline analysis. Data are presented as mean 

value ± sd. RMT = mean resting motor threshold. SI 1mV = mean stimulator output 

required to produce a MEP with an amplitude of 1mV. † Percentage of maximal 

stimulator intensity. ........................................................................................................ 174 

Table 7.2. Participant demographics for analysis of drug manipulation data. Data are 

presented as mean value ± sd. ........................................................................................ 174 

Table 7.3. Category values for BF10, adapted from Wetzels & Wagenmakers (2012) .. 188 

Table 7.4. Bayesian hypothesis test for correlations. Data presented are each BF10 .... 188 

 

  

file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691901
file:///C:/Users/lpxksd/Dropbox/Write%20ups%20for%20thesis/KD_thesis_FINAL.docx%23_Toc474691902


15 
 

 General Introduction 
 
Key words: transcranial direct current stimulation (tDCS), electroconvulsive 
therapy (ECT), transcranial magnetic stimulation (TMS), long term potentiation 
(LTP), long term depression (LTD), supplementary motor area (SMA), magnetic 
resonance spectroscopy (MRS), Gilles de la Tourette’s syndrome (GTS), cortical 
excitability.  

 
In this thesis, a number of studies are discussed in which the effects of 

transcranial direct current stimulation (tDCS) were explored in neurologically 

typical individuals and individuals with Gille de la Tourette’s syndrome (GTS). This 

thesis also explores the relationship between different methods used to measure 

neurotransmitter function including Gamma-Aminobutyric Acid (GABA) and 

glutamate.  

1.1 A brief history of therapeutic brain stimulation 
 
The use of electrical stimulation to influence and study the brain is not 

new. In fact, there are historical references dating as far back as 131-401 AD 

which document the uses of fish with electrical properties to alleviate headaches 

(Priori, 2003). Although these early examples exist, prior to the 17th century little 

was understood about the body’s natural relationship with electricity. An 

individual who is often credited with greatly enhancing our understanding of this 

is Luigi Galvani. Galvani revolutionized scientific thinking by demonstrating that 

lifeless bodies could be made to move using electrical stimulation (Piccolino, 

1998). In doing so he was the first person to identify the electrical nature of 

muscle contraction and nerve conduction (Piccolino, 1998).  Galvani’s nephew 

Giovanni Aldini developed this by conducting experiments in which electrical 

currents were applied to the heads of executed prisoners to induce muscular 

contractions (Piccolino, 1998).  Aldini also applied electrical currents to the heads 

of living individuals as a treatment for complaints such as ‘melancholia’ (Priori, 

2003). These experiments are arguably the origin of modern therapies using 

electrical stimulation to treat neuropsychiatric disorders.   
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Throughout the 17th century understanding and experimentation with 

electrical stimulation grew, and with it, application of electrical currents to treat 

mental health conditions increased (Elliott, 2014). During this time perhaps one 

of the most important developments was the use of electro convulsive therapy 

(ECT) to treat patients under psychiatric care. Initially ECT was used to treat a 

range of conditions, however, with improved psychiatric care and the 

introduction of psychotropic drugs in 1950s and 1960s it’s use began to decline 

(Fink, 2001). Today ECT is still used to successfully alleviate symptoms in 

conditions such as severe treatment resistant depression (Fink, 2001), however, 

it is not without side effects or complications. Even with the use of general 

anaesthesia and more efficient use of electrical wave forms the treatments can 

result in memory impairment and other cognitive deficits (Sackeim et al., 2007).  

The nature of the technique makes it unpopular with many and has heavily 

restricted its therapeutic use. Nevertheless, ECT provides a powerful 

demonstration of the potential of electrical stimulation in treating the symptoms 

of psychiatric illness.   

A number of less invasive brain stimulation techniques have since emerged 

which use electrical currents to influence the brain. These include transcranial 

magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS).  

1.2 Modern day methods: Transcranial Direct Current 

Stimulation (tDCS) 
 

tDCS is a non-invasive brain stimulation technique which has been shown 

to effectively modulate cortical excitability in humans. The application of tDCS 

involves running a low density electrical current between two electrodes – at 

least one of which is placed on the scalp (see Figure 1.1). The intensity of the    

currents used are typically 1-2mA, which is substantially below those found to be 

safe in animals (Mccreery et al. (1990) Liebetanz et al. (2009)).  The electrodes 

used are typically made from conductive rubber and are connected to a battery 

powered device capable of delivering continuous current. When the device is 
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switched on direct current flows from one electrode (Anode) to the other 

(Cathode); some of this current will be shunted by the scalp and cerebral spinal 

fluid (CSF), however, a proportion will penetrate through to reach the cortical 

surface of the brain (Moreno-Duarte et al., 2014).  

 

Figure 1.1. Illustration of tDCS application. 

Within the tDCS literature the two electrodes are often referred to as 

‘active’ and ‘reference’ rather than anode and cathode.  The active electrode is 

typically placed on the scalp above the area of interest, whereas the reference 

electrode can be placed in a number of different locations (including on the 

contralateral forehead, opposite hemisphere or at an extra-cephalic location 

such as the shoulder). It is important to note that the term ‘reference’ is 

somewhat misleading, as the current will affect tissue at this location in addition 

to at the active electrode and areas between.  It should also be noted that when 

researchers refer to anodal or cathodal stimulation they are typically referring to 

the electrode placed above the area of interest i.e. the ‘active’ electrode.  

tDCS is a particularly interesting technique as it has the ability to both 

increase and decrease cortical excitability depending on the electrode polarity. A 

number of studies have demonstrated that cortical excitability typically 

decreases in the areas under the cathode and increases in areas beneath the 

anode (Jacobson et al., 2012). These induced changes in excitability are typically 

short lived, lasting up to 120 minutes following stimulation cessation (Batsikadze 

et al., 2013). However, more long term effects may be achievable with repeated 
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applications through activation of long term potentiation (LTP) and long term 

depression (LTD) type changes in plasticity. The potential to induce longer lasting 

changes in cortical excitability with minimal adverse effects has led to a dramatic 

increase in interest of the technique’s therapeutic potential, particularly in 

recent years (Brunoni et al., 2012).  

tDCS has a number of additional advantages over other forms of 

stimulation which make it an appealing tool for therapeutic use. The machine 

itself is small, portable and relatively easy to use which makes home use 

possible. This is particularly advantageous when compared with other non-

invasive brain stimulation techniques such as TMS, as these often involve 

repeated visits to a clinic for treatment which may be inconvenient and/or 

distressing.  

When recognised guidelines are followed, tDCS is considered to be a safe 

and low risk technique (see Fregni et al. (2014)) with considerably less adverse 

effects reported than those occurring as a result of other forms of stimulation or 

psychoactive medication. An extensive review carried out on 567 tDCS sessions 

in healthy controls and individuals with symptoms of migraine, tinnitus or stroke, 

found the most common side effect was tingling under the electrode; moderate 

fatigue and an itching sensation were also reported by some during stimulation. 

Reported side effects occurring after stimulation included headache which was 

reported by approximately 11.8%, nausea which was reported in less than 2% 

and insomnia which was reported by less than 1% (Poreisz et al, 2007). It is 

possible that some of these effects may be circumstantial and unrelated to tDCS 

itself. A more recent review revealed that although side effects such as tingling 

and itching sensations below the electrodes were slightly higher in active 

stimulation conditions, this was not significantly different to sensations reported 

during sham. In addition to this, reports of headache, burning sensation or 

discomfort were similar for the two conditions (Brunoni, Amadera, et al., 2011).  

A number of studies have highlighted the potential effectiveness of tDCS 

in treating a range of conditions including depression (Boggio et al., 2008; 
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Brunoni, Ferrucci, et al., 2011; Fregni, Boggio, et al., 2006), and schizophrenia 

(Brunelin, 2012). tDCS has also been found to be helpful in reducing chronic pain 

(Antal et al., 2010), pain caused by fibromyalgia (Fregni, Gimenes, et al., 2006)  

and reducing fatigue caused by multiple sclerosis (Tecchio et al., 2014). Small 

scale case studies also suggest that tDCS may be helpful in reducing seizure in 

individuals with epilepsy (Yook et al., 2011) and in reducing tics in Tourette’s 

syndrome  (Carvalho et al., 2015; Mrakic-Sposta et al., 2008).  

Although the reports of therapeutic application are generally positive, 

they are limited in number and, therefore, few extensive reviews of their 

effectiveness have been carried out. Studies into the effects of tDCS within 

healthy neurologically typical individuals reveal a somewhat mixed picture. 

Although many studies report that tDCS is able to influence cortical excitability 

and behavioural outcomes, this is not always found. In a recent meta-analysis 

Horvath et al. (2015) made the claim that tDCS has little or no reliable 

neurophysiological effects beyond changes in specific TMS measures (Horvath et 

al., 2015). This claim and the methodology used in reaching it has been met with 

a strong backlash and criticism (for example see Antal et al. (2015)). However, it 

does serve to highlight that tDCS effects are not always simple and predictable.      

In the excitement surrounding tDCS and its clinical potential, important 

factors have often been ignored and there are a number of unexplored issues 

which require attention in order to build stronger conclusions about its 

effectiveness. In particular, there is uncertainty about the exact mechanisms 

underlying the effects (although see section 2.3). There is also little 

understanding of the effectiveness of stimulation across and within participants, 

and regarding issues relating to parameter selection and the setup of stimulation 

protocols.  
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1.3 Gilles de la Tourette Syndrome 
 

Gilles de la Tourette syndrome (GTS) is a childhood onset disorder, 

characterized by the presence of motor and phonic tics which are present for a 

minimum of 1 year (Leckman, 2002). Tics are involuntary, brief, stereotyped 

behaviours of a limited duration and can involve movement (motor tic) or the 

production of sound (phonic tic). The disorder is thought to affect approximately 

1% of children and has been reported almost globally (Robertson, 2008). GTS 

often follows a time course whereby tics are typically at their worst aged 10- 12 

years; for three quarters of children these will then diminish by early adulthood 

with over a third becoming seemingly tic free adults (Bloch & Leckman, 2009). 

Many individuals with GTS will also have a co-occurring diagnosis such as 

Attention Deficit Hyperactivity Disorder (ADHD) or Obsessive Compulsive 

Disorder (OCD). Estimates suggest that approximately 86.5% of children with GTS 

have also met the criteria for one or more additional diagnoses, with ADHD being 

the most common (Bitsko et al., 2014).   This can make understanding the 

aetiology of GTS particularly complex, as instances of ‘pure GTS’ are less 

common.  

The most common forms of treatment for GTS are behavioural therapies 

such as ‘habit reversal training’ and pharmacological interventions including 

antipsychotics. Although these work for some, they are not always ideal. In 

particular, the side effects associated with antipsychotics make them 

unappealing for many. For example, a study of 51 participants with GTS who 

were prescribed the antipsychotic Haloperidol found that 41% discontinued its 

use due to intolerable side effects (Silva et al., 1996). There is a clear need for the 

development of additional treatments and it is possible that non-invasive brain 

stimulation techniques may play an important role.     

The aetiology and neurobiology of Tourette syndrome is not yet fully 

understood, however, genetic factors are implicated and differences in the 
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structure and function of different brain regions are also likely to be involved. 

Although the evidence is far from conclusive, a number of structures and circuits 

have been identified including the basal ganglia (Worbe et al., 2012), corpus 

callosum and caudate nucleus (see Albin & Mink (2006) for review). Thinning in 

motor cortical areas has also been reported (Worbe et al., 2010), and 

dysfunction in the cortico-striato-thalamo-cortical circuits suggested (Mink, 

2001).  

1.4 Non-invasive brain stimulation and Tourette Syndrome 
 

In order for tDCS to be a developed as a potential treatment for GTS, it is 

important that an appropriate stimulation site can be identified. As previously 

discussed a number of different regions have been implicated, however, some of 

these such as the basal ganglia are deep within the brain. Direct stimulation of 

these deep sub-cortical structures using a standard 1-2mA intensity is not 

possible as the current density is strongest at the cortical surface and rapidly 

decreases with distance from the electrodes. However, a number of studies have 

suggested that it may be possible to reach these structures using stimulation 

which targets cortical areas connected to structures of interest  (Kadosh, 2015).  

Fortunately, one cortical area seems to be particularly implicated in the 

production of tics. This location known as the supplementary motor area (SMA), 

has been found to have altered metabolic activity in individuals with Tourette’s 

syndrome (Eidelberg et al., 1997). In addition to this, levels of an inhibitory 

neurotransmitter known as Gamma-Aminobutyric Acid (GABA) within the SMA 

have been found to correlate with tic scores (Draper et al., 2014). The 

connectivity of this area also makes it an appealing target for stimulation, as it 

has extensive connections to areas relating to motor control and cognitive 

processing (Picard & Strick, 2001). 

To date, it seems that non-invasive stimulation may be useful in reducing 

tics when applied to the SMA. Application of repetitive TMS (rTMS) using pulse 

configurations known to reduce cortical excitability has been found to reduce tic 
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severity scores over a 12 week period following 10 sessions of stimulation (Kwon 

et al., 2011). A similar finding was published by Le et al. (2013) who reported an 

improvement in tic symptoms following 20 days of rTMS which lasted up to 6 

months in some participants; and by Mantovani et al. (2007) who reported 

significant reductions in self-reported measures of tics following 10 days of 

stimulation.  The application of cathodal tDCS to the SMA also shows therapeutic 

promise, Carvalho et al. (2015) found that tic severity and frequency reduced 

significantly following 10 sessions of cathodal tDCS. These effects were still 

present at a 6 month follow up and changes in the resting state network of the 

brain were also identified. Finally a study by Mrakic-Sposta et al. (2008), reported 

a significant reduction in tics following 5 days of cathodal tDCS that was greater 

than that which occurred following a sham condition.  

These results are all very promising, but, with the exception of Mrakic-

Sposta et al. (2008) none were sham controlled, which makes possible placebo 

effects difficult to distinguish from those due to stimulation. Furthermore, the 

studies have often focused on a limited pool of outcome measures (for example 

self-report alone) therefore making it impossible to draw strong conclusions 

about how the effects may be occurring.  

1.5 Research aims and summary 
 

Through a series of experiments my aim was to better understand the 

effects of tDCS in order to explore its potential as a therapeutic intervention for 

reducing tics in individuals with Tourette’s syndrome. The initial two studies 

(Chapters 3 and 4) were designed to investigate the neural effects of tDCS in 

neurologically typical individuals to establish and identify patterns of response 

relating to different parameter selections. In the third study (chapter 5) I 

explored the neural and behavioural changes related to cathodal stimulation of 

the SMA in individuals with Tourette’s syndrome. This was expanded into 

experiment four (Chapter 6) in which the effects of prolonged application were 

investigated in a single case. Finally, an experiment investigating the use of 
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magnetic resonance spectroscopy was conducted (Chapter 7) to explore what 

neurochemical markers are being measured by the technique and how this 

relates to previous findings about the neurobiology of tDCS effects.  

 

In this thesis the following questions are addressed: 
 

1.  What is the time course of the effects of a single session of tDCS? Does 
this differ depending on the intensity and polarity of stimulation used? 
 

2. How stable are the effects of tDCS within and between individuals? 
 

3. Does a single session of tDCS applied to the SMA influence cortical 
excitability or tics in individuals with Tourette’s syndrome?  

 
4. Does 10 days of tDCS applied to the SMA have any short term or lasting 

effects on tics in an individual with Tourette’s syndrome. 
 

5. What do past studies using MRS tell us about the biological underpinnings 
of tDCS? How do we know what MRS is measuring?  
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 Non-invasive stimulation and investigation 

of the human motor cortex 
 

Key words: transcranial direct current stimulation (tDCS), transcranial magnetic 
stimulation (TMS), direct waves (D-wave), indirect waves (I-wave), corticospinal 
neurones (CSNs), pyramidal tract neurones (PTNs), motor evoked potential 
(MEP), motor threshold (MT), input output curve (IO curve) short interval 
intracortical inhibition (SICI), long interval intracortical inhibition (LICI), 
intracortical facilitation (ICF), magnetic resonance spectroscopy (MRS). 

 

In recent years a number of different techniques have been used to explore 

the physiological effects of tDCS.  One of the most popular is transcranial 

magnetic stimulation (TMS) which can be used to make inferences about cortical 

excitability within the motor cortex.  This technique is used throughout the 

experiments discussed in this thesis and is therefore covered in depth in this 

section. Other methods including animal work and pharmacological 

manipulations have also been important; as has work conducted using Magnetic 

Resonance Spectroscopy (MRS).  

2.1 Transcranial Magnetic Stimulation 
 

Transcranial Magnetic Stimulation (TMS) is a 

safe, non-invasive stimulation technique which 

was first demonstrated in 1985 (Barker et al., 

1985). This was five years after Merton and 

Morton (1980) demonstrated that areas of the 

human motor cortex could be stimulated 

through the intact scalp using a brief high 

voltage electric shock. The development of 

TMS as a technique revolutionised the field of 

non-invasive brain stimulation as, in comparison 

to its predecessors, it causes minimal 

discomfort. This is because it is not necessary to 

Figure 2.1. Illustration of TMS 
application. Black arrows indicate 
electrical current flow, red dashed 
line indicates magnetic field. 
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apply high currents directly to the scalp (which can cause strong and unpleasant 

sensations at high intensities); instead TMS works via the principles of electro-

magnetic induction. 

  During stimulation a brief but strong electrical current is delivered from 

an electrical capacitor to the TMS coil. The TMS coil contains windings of copper 

wire which conduct the current. Different TMS machines are capable of 

delivering this current using two main pulse configurations, known as mono and 

biphasic.  A monophasic pulse involves the production of a strong initial current 

which is then balanced by a dampened return current. Whereas a biphasic pulse 

is characterised by an initial current rise followed by a reverse in current and 

then again by a subsequent increase, meaning the direction of the current is 

reversed twice (Rossini et al., 2015). Both of these pulses are capable of inducing 

a fluctuating magnetic field which is perpendicular to the coil. The resultant 

fluctuating magnetic fields (which can be at strengths of 1-2 Tesla (Rossini et al., 

2015) are able to pass through the scalp and skull relatively unaltered to induce 

an electrical current in the brain. This induced current is able to interact with the 

neuronal tissue and influence electrical signalling of neuronal populations; in 

particular the induced current can depolarize neurones or their axons (Hallett, 

2000).   

The effects of TMS are dictated by a number of important factors, 

including properties relating to the hardware such as the coil type (L. G. Cohen et 

al., 1990), pulse configuration (Brasil-Neto et al., 1992; Kammer et al., 2001) and 

possibly even differences between stimulator models (Kammer et al., 2001). 

These factors can easily be controlled within studies, although may cause some 

issue when comparing across them.    

 The shape of the TMS coil influences the magnetic field generated, which 

in turn influences the strength and localization of the induced electrical current 

below. The two most prototypical coils are single round coils and figure-of-

eight/’butterfly’ coils (See Figure 2.2). Single round coils create the strongest 

induced electrical field at the circumference, whereas the peak field strength for 
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figure of eight coils is created at the intersection between the two round 

components (L. G. Cohen et al., 1990); this makes figure-of-eight coils more focal 

than round coils.  In addition to coil shape, the size of the coil is also important, 

with smaller coils resulting in more spatially restricted electrical fields (L. G. 

Cohen et al., 1990).   

 

 

 

 

 

As previously noted the nature of the TMS pulse (mono or biphasic) can 

also influence the effects of the stimulation (Brasil-Neto et al., 1992; Kammer et 

al., 2001). A TMS pulse results in a minimum of two phases (dependant on the 

pulse configuration), which are positive when the current in the coil is increasing 

and negative when the current is decreasing (Brasil-Neto et al., 1992). The 

differences in the wave forms appears to result in differences in the optimal coil 

orientation for stimulation of the motor cortex (Brasil-Neto et al., 1992; Kammer 

et al., 2001), and differences in motor threshold (Kammer et al., 2001).  It is, 

therefore, important to maintain these as constants within any study and be 

mindful when comparing between.   

2.1.1 TMS and the motor cortex 

TMS can be used to study a range of cortical areas and functions; 

however, by far the most popular area of study is the motor cortex. This is 

because of the relative ease by which reliable indicators of TMS effects can be 

obtained by measuring motor evoked potentials (MEPs). MEPs are cortically 

driven muscle contractions (induced by stimulating the motor cortex) that can be 

Figure 2.2. Illustration of figure of eight coil (left) and single round coil 
(right) with peak magnetic field shown as heat map. 
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measured using electromyography (EMG) from electrodes attached to a target 

muscle. MEPs provide a non-invasive quantifiable measure of induced activity, 

without the need for specially designed cognitive tasks or invasive procedures. 

Although this approach can be used to gain insights about various facets of 

motor cortex excitability (discussed in depth in 1.2.3 and 1.2.4), it does not allow 

for more detailed and direct information about neuronal responses.  Therefore, 

in order to discuss the biological underpinning of TMS it is necessary to first 

discuss research using single cell recording. In this method small electrodes are 

placed directly into epidural or subdural space in the spinal cord, from which 

electrical impulses traveling down the fibres can be recorded. This procedure is 

invasive and much less accessible than MEP recording, although it does offer 

some critical insights into the effects of TMS delivered to the motor cortex.   

It should be noted that the relationship between single cell recordings 

and MEPs are not straight forward. This is because even a focal TMS pulse can 

excite many corticospinal neurones (CSNs) within the stimulated area, and of 

those excited only a small proportion may be destined to influence the motor 

neurone pool of the muscle from which the MEP response is being recorded via 

EMG (Di Lazzaro et al., 2008). Nevertheless, MEPs are a well-established and 

popular research tool for exploring cortical excitability which have been greatly 

informed by research carried out with single cell recordings.  

2.1.2 Biological underpinnings 

Early studies conducted in the 1930s and 1950s using animals such as cats 

and non-human primates, revealed that when a single electrical stimulus was 

applied directly to the motor cortex a number of high frequency waves were 

detectable via electrodes placed in the medullary pyramid or the dorsolateral 

surface of the cervical spinal cord (Adrian & Moruzzi, 1939; Patton & Amassian, 

1954). Two types of waves were distinguished following a single stimulation 

which were termed direct waves (D-wave) and indirect waves (I-wave) (Patton & 

Amassian, 1954). The D-wave appeared to stem directly from excitation of the 

fast conducting corticospinal neurones (CSN), whereas the I-waves were found to 
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be largely dependent on the integrity of the cortical grey matter and were 

thought to originate indirectly via trans-synaptic activation of the CSN (Patton & 

Amassian, 1954).  These early findings in animals have proved to be robust, and 

have since been found in human participants and in response to transcranial 

stimulations.    

 Some of the first studies investigating 

the effects of modern electrical 

stimulation in humans were conducted 

with patients under anaesthetic during 

surgery. These studies revealed that a 

strong electrical currents (up to 750v) 

delivered by anodal transcranial electrical 

stimulation (TES), or induced via 

monophasic transcranial magnetic stimulation (TMS), evoked a series of 

transcending waves down the corticospinal tract which resembled D and I-waves. 

Although both stimulation types resulted in recordable volleys, the properties of 

the waves differed between them. In particular Berardelli et al. (1990) found that 

the initial waves generated by TMS were of slightly longer latency and smaller 

amplitude than those generated by TES. Similar effects have been found from 

epidural recordings in non-anaesthetised humans (Di Lazzaro, Oliviero, et al., 

1998; Nakamura et al., 1996), however, the findings have not always been 

consistent. For example, Burke et al. (1993) reported that the threshold for D-

waves produced using TMS was lower than for I-waves. This has not been found 

in subsequent studies and may be due to confounding effects of anaesthesia (Di 

Lazzaro, Oliviero, et al., 1998). Overall these studies provide strong evidence that 

various forms of transcranial electrical stimulation can successfully influence the 

motor cortex, leading to distinctive patterns of activity that can be measured 

further down the spinal cord. The different patterns of the descending volleys 

suggest differences in how the underlying tissue responds to the electrical field. 

However, the complex nature of these interactions means that even within a 

single stimulation type such as TMS, there are variations in the patterns of 

Note: 

The terms Pyramidal Tract Neurone 
and Cortico Spinal Neurones are both 

used by researchers to describe 
biological underpinnings. 

The terms are somewhat 
interchangeable as the majority of 
PTNs project onto the corticospinal 

tract  (Di Lazzaro et al., 2008). 
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response. For TMS these effects seem to be particularly dependent on factors 

such as intensity of stimulation and direction of current flow.    

Further research into the effects of TMS gave rise to the characterization 

of different I-waves evoked from a single monophasic pulse, resulting in the 

categorization of early and late I-waves. These appear to be influenced by the 

intensity of the TMS pulse, and suggest that the threshold for activation and 

consequently the mechanisms of action differ. Low TMS intensities using a 

posterior to anterior (P-A) current flow result in a single descending volley 

termed the I1-wave, which is thought to be produced by indirect activation of 

corticospinal cells (via activation of monosynaptic cortical-cortical connections 

projecting onto CSNs). At higher TMS intensities, later volleys known as late I-

waves are measurable; it has been suggested that these arise from complex 

mechanisms which result in repetitive discharge to pyramidal tract neurones 

(PTNs) (Di Lazzaro, Profice, et al., 2012). Manipulations of the inhibitory 

neurotransmitter GABA using the benzodiazepine Lorazepam found that the 

drug did not affect threshold levels of stimulation, or the I1-wave, but caused 

pronounced suppression of later I-waves (Di Lazzaro et al., 2000). This has been 

interpreted as further evidence to suggest that these late I-waves are generated 

by networks which are presynaptic to CSN (Di Lazzaro et al., 2008).  If the TMS 

intensity is increased even further, this can result in the production of D-waves. 

These do not appear to be altered by experimentally manipulated changes in 

cortical excitability and are therefore thought to be generated by the direct 

activation of corticospinal axons some way away from the cell body (Di Lazzaro, 

Profice, et al., 2012; Di Lazzaro et al., 2008). 

Another insight gleaned from experiments using direct recording is that 

the effects of stimulation are influenced by the direction in which the current is 

traveling.  Nakamura et al. (1996) found that orientating the TMS coil in a way 

which induced posterior to anterior (P-A) current flow using a monophasic pulse 

resulted in preferential production of I-waves. Conversely orientating the coil to 

induce lateral-medial (L-M) current flow resulted in preferential production of D-
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waves.  A similar effect was found by Kaneko et al. (1996), who suggested that P-

A stimulation preferentially stimulates the corticospinal tract trans-synaptically 

resulting in I-waves, whereas L-M current flow preferentially influences the 

corticospinal tract via non-synaptic activity which results in D-waves. Similar 

effects have also been found using lower TMS intensities (Di Lazzaro, Oliviero, et 

al., 1998).  

The findings relating to coil orientation suggest that different neuronal 

populations have different selective sensitivities to the direction of current flow.  

Variation in cortical folding and orientation of neurones is likely to be one of a 

number of factors which causes individual variability reported in a number of 

studies (Berardelli et al., 1990; Burke et al., 1993; Di Lazzaro et al., 2001; 

Houlden, Schwartz, Tator, Ashby, & MacKay, 1999).  

The complex nature of the interactions between the induced current and 

the underlying cortical tissue make it incredibly difficult to pinpoint exact 

mechanisms of TMS, and there are still aspects which are not well understood. 

Nevertheless, single cell recordings have provided valuable insights and highlight 

the importance of careful consideration of factors such as TMS intensity and coil 

angle in experimental use.   
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2.1.3 Single pulse measures 

Single pulse TMS involves the application of a TMS pulse in isolation. 

Although a number of pulses may be applied, the temporal gap between them is 

typically thought to be too long to induce any interactive effects; therefore, the 

pulses can be seen as independent from each other. There are various methods 

in which single pulse TMS can be used to assess cortical excitability. Of particular 

interest are motor threshold and input-output curves, both of which involve 

measuring MEPs.  

MEPs can vary in both size and shape, even in response to identical 

stimulation (Ellaway et al., 1998). As a result, the measurement of IO curves, 

motor threshold (MT) and other techniques typically involve the measurement of 

multiple MEPs in response to the same stimulation. These responses are then 

averaged to give an estimate of MEP amplitude in response to given parameters.  

The variability of MEPs is likely to stem from a combination of factors, including, 

Key points:  

 TES and TMS can induce descending corticospinal volleys in subtly 

different ways.  

 TMS intensity influences responses. Lower intensities produce I1 

waves associated with indirect activation of CSNs via monosynaptic 

corticocortical connections. Higher intensities produce late I waves 

which are associated with repetitive discharge to CSNs via presynaptic 

networks.  

 Coil orientation can critically influence the effect of the TMS pulse. In 

particular, P-A current flow preferentially produces I-waves. Whereas 

L-M currents preferentially produce D-waves.  

 The effects of a single TMS pulse on the human motor cortex are 

highly complex and relate to properties of the induced current and the 

structural arrangement of neural circuits.  
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the number of recruited motor neurones in the spinal cord, the number of motor 

neurones discharging more than once to a stimuli, and the synchronization of the 

TMS-induced motor neurone discharges (Rosler & Magistris, 2008). As these 

effects are particularly difficult to predict or account for, the use of averaged 

MEP amplitude in response to stimulation has become standard practice and is 

used in the measurement of all the following methods.  

Motor threshold (MT) 

A critical advantage of applying TMS to the motor cortex is the ability to 

individualize the intensities used; this can be achieved by calibrating intensities 

to what is known as an individual’s motor threshold (MT). MT is defined as the 

amount of stimulation needed (expressed as a percentage of maximal stimulator 

output) to reliably generate a MEP of a predefined magnitude (typically 50-100 

µV). This can be measured in a muscle at rest (resting motor threshold RMT) or 

during a slight contraction (active motor threshold AMT) (Devanne et al., 1997). 

AMT is typically lower than RMT and also results in a shorter delay between 

pulse delivery and MEP production (Hess et al., 1987). MT is lower in intrinsic 

hand muscles and increases in proximal muscles occurring in the lower limbs, 

arms and trunk (Chen et al., 1998).  

MT (measured using a standard monophasic P-A TMS pulse) is thought to 

largely reflect the effects of the I1-wave (Hallett, 2007), and is considered to be 

predominantly reflective of indirect activation of corticospinal neurones (CSNs) 

(via activation of monosynaptic cortical-cortical connections) (Di Lazzaro, Profice, 

et al., 2012). Therefore, MT is thought to reflect the excitability of the main 

corticospinal projections to the target muscle with the lowest excitation 

threshold  (Hallett, 2007).  

Pharmacological studies have found that voltage-gated sodium channel 

blockers such as carbamazepine increase MT (Menzler et al., 2014; Ziemann, 

Lonnecker, et al., 1996). Voltage-gated sodium channels are known to be critical 

in regulating the excitability of axons, therefore these results provide further 
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support that MT reflects the excitability of cortical-cortical fibre axons excited by 

TMS (Ziemann, 2013). Glutamatergic mechanisms may also be important. 

Ketamine, which is a NMDA receptor antagonist and indirectly increases 

glutamate via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

receptors (Du et al., 2007), has been found to decrease motor threshold (Di 

Lazzaro et al., 2003). This may suggest that MT also reflects fast ionotropic 

glutamatergic neurotransmission via the synapses connecting these fibres to 

corticospinal neurones (Ziemann, 2013). 

MTs are known to be highly variable between, but not within individuals 

(Mills & Nithi, 1997). They also appear to have a genetic component, as the MTs 

of siblings have been found to be highly correlated (Wassermann, 2002). This 

correlation may reflect the heritability of factors such as skull density or 

potentially even intrinsic neuronal properties.  A strong predictor of MT is scalp 

to cortex distance (Cukic et al., 2009; Herbsman et al., 2009; Kozel et al., 2000; 

McConnell et al., 2001; Stokes et al., 2005). It has been estimated that for every 

1mm away from the TMS coil it is necessary to increase the stimulator output by 

approximately 3% to induce the equivalent amount of stimulation within the 

motor cortex (Stokes et al., 2005). The orientation of white matter fibres has also 

been found to be predictive of MT (Herbsman et al., 2009). Taken together scalp-

cortex distance and white matter fibre orientation in the corticospinal tract have 

been estimated to predict up to 82% of the between subjects variance in MT 

(Herbsman et al., 2009). Some studies have reported a correlation with age 

suggesting that aging increases MT (Rossini et al., 1992; Smith et al., 2009), 

however, this appears to be somewhat unreliable as other studies have found no 

association (Herbsman et al., 2009; McConnell et al., 2001; Wassermann, 2002). 

The effects of handedness may also contribute to variation in MT, however, as 

with age, the evidence is mixed. Some studies report that MT is significantly 

lower in response to stimulation of the dominant hemisphere (Macdonell et al., 

1991; Triggs et al., 1994), but this has not always been found to be the case 

(Civardi et al., 2000; Rossini et al., 1992; van der Kamp et al., 1996). Interestingly 

even when MT was not found to be significantly different, the stimulated area 
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which could produce an MEP has been found to be larger in the dominant 

hemisphere (Triggs et al., 1999).   

Input output (IO) curves  

Another common method of assessing cortical excitability is to calculate 

input output (IO) curves (also sometimes known as recruitment curves or 

stimulus response curves). IO curves are measured by recording MEP amplitudes 

evoked from various intensities of TMS; typically, these intensities are 

individualized for each participant using percentages of their MT (see Figure 2.3 

for example).  

Compared with MT, IO curves can measure activity from neurones which 

are spatially further away from the centre of activation. They can be used as an 

index of excitability within a wider region of the cortex and are thought to reflect 

the strength of corticospinal projections (Chen, 2000). Evidence from a range of 

pharmacological studies suggests that there are important differences between 

the mechanisms for MT and those which mediate MEPs evoked from higher 

stimulation intensities (Ziemann, 2013). As IO curves measure a range of 

intensities they encompass different physiological processes at different parts of 

the curve.  
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The IO curve contains two distinctive components: the bias level (also 

known as the threshold) and the gain/slope (Devanne et al., 1997).  In addition to 

this, IO curves may also show a plateau, which is characteristic of their sigmoidal 

shape in which MEP amplitude increases steeply close to MT and then eventually 

plateaus at higher intensities (Devanne et al., 1997; Hess et al., 1987).  As 

previously noted, low intensities of TMS (delivered with a P-A current flow) 

appear to elicit a single I-wave, whereas stronger intensities result in the 

production of additional late I-waves (Di Lazzaro et al., 2008). It has been 

suggested that these later I-waves are likely to occur through the activation of 

corticospinal interneurons via excitatory interneurons which are controlled by 

many neurotransmitters (see (Ziemann, 2013) for review). In addition to this the 

higher TMS intensities have also been found to elicit D-waves resulting from 

direct activation of the corticospinal tract (Di Lazzaro et al., 2001). As a result of 

Figure 2.3 A. Example of EMG recording showing increasing MEP amplitude resultant of 
increased TMS intensity. Arrows indicate passing of time. B. IO curve data with slope 
fitted to median values for each intensity (red circles). 
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the different underlying mechanisms the slope and intercept of IO curve should 

be examined separately.  

Unlike MT there is evidence that IO curves may be effected by participant 

age. Pitcher et al (2002) found that although the maximum amplitude of MEPs in 

older and younger subjects was similar, it took higher stimulator intensities to 

achieve this in the older participants. This is an important factor to consider 

when conducting studies with a large age range.    

When measuring IO curves it is standard protocol to measure each 

intensity multiple times in order to address variability within the MEP response. 

This can be done by measuring the response to stimulation in a ramped (blocked 

trials of ascending or descending intensity) or in a randomized fashion. The 

method chosen may have a significant effect on the data collected, particularly 

when short inter-trial-intervals (ITIs) such as 5 seconds (s) are used. Moller et al. 

(2009) found that measuring IO curves using increasing intensity strengths 

resulted in shallower curves than when stimulation was decreased; the effect of 

randomized pulses resulted in a curve between the other two.  This was found 

for 5s ITIs but not when 20s was used. Pearce et al. (2013) also found no 

significant differences between ramped and randomized pulses when ITI was set 

at 6-20s.  Therefore, when short ITIs are used, the order of stimulus intensity 

should be randomized.   
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2.1.4 Paired pulse measures 

Another method of assessing cortical excitability using TMS involves the 

use of paired pulse protocols. These techniques use a conditioning-test paradigm 

in which the first pulse modulates the second. The two pulses are typically 

delivered to the same location with a set Inter-Stimulus-Interval (ISI) between 

them, the duration of which determines 

whether the effects are excitatory or 

inhibitory (see Figure 2.4). Short ISIs of 1-5 

milliseconds (ms) typically lead to an 

increase in inhibition, whereas longer ISIs of 

8-30ms have been found to lead to 

facilitation (O'Shea & Walsh, 2007). 

Interestingly, increasing the ISI to 50-200ms 

has also been found to lead to inhibition, 

however, for these long ISIs to become 

inhibitory it is necessary to use a different 

conditioning stimulus intensity than used for 

1-5ms protocols. Some notable paired pulse 

techniques are short interval intracortical 

inhibition (SICI), intracortical facilitation (ICF) 

and long interval intracortical inhibition 

(LICI). 

Short interval intracortical inhibition (SICI) 

One of the most established paired pulse techniques is short interval 

intracortical inhibition (SICI), which involves the application of a sub-threshold 

conditioning stimulation (CS) followed by a supra-threshold test stimulation (TS) 

delivered through the same coil after an ISI of 1-5ms (Hanajima & Ugawa, 2008). 

SICI was first documented by Kujirai et al. (1993) in the human motor cortex, and 

has since been studied extensively in both healthy subjects (Garry & Thomson, 

2009; Roshan et al., 2003) and patient populations (Cantello et al., 2002; 

Figure 2.4. Example EMG readout 
for various TMS measures. 
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Daskalakis et al., 2002; Gilbert et al., 2011; Ridding et al., 1995; Ziemann et al., 

1997). The subthreshold conditioning stimuli used in SICI is not thought to 

influence excitability in the spinal cord, as these intensities do not appear to 

produce recognisable epidural volleys when tested alone (Di Lazzaro, Restuccia, 

et al., 1998). At present it is widely thought that the conditioning pulse causes a 

short lasting inhibitory postsynaptic potential in corticospinal neurones via the 

activation of a low-threshold cortical inhibitory circuit. The engagement of this 

circuit is then thought to inhibit the action potentials generated in the same pool 

of corticospinal neurones in response to the test stimulus (see Ziemann (2013) 

for a review).  

Animal models and pharmacological studies have suggested that the 

effects of SICI are strongly mediated by activity linked to the inhibitory 

neurotransmitter gamma-aminobutyric acid (GABA), in particular GABA-A 

receptors appear to be heavily implicated (Hanajima & Ugawa, 2008). For 

example, a number of pharmacological studies have found that administration of 

benzodiazepines (thought to positively modulate GABA-A receptors) increases 

levels of SICI (see Ziemann (2013) for a review).  In addition the exploration of 

the effects of other drug manipulations on SICI suggest that the effect is more 

related to the receptor subtypes a2- and a3-GABA-A rather than a1-GABA-A  

receptors (Ziemann, 2013).  GABA-B receptors have also been implicated, for 

example, the GABA-B receptor agonist baclofen has been found to significantly 

decrease the effect (McDonnell et al., 2006).  The effects of GABA-B modulation 

have been linked to activation of presynaptic GABA-B receptors which are 

effective in reducing GABA release. It has been proposed that it is this process 

that influences SICI (McDonnell et al., 2006).  

Interestingly the effects of SICI may be non-uniform. Although SICI is 

noted to occur using ISIs of 1-5ms, SICI resulting from 1ms ISIs appears to have 

different properties than those occurring at later time points (Cengiz et al., 2013; 

Fisher et al., 2002; Roshan et al., 2003). Initially it was proposed that the effects 

of 1ms ISIs may be due to refractory periods of cortical-cortical axons (Fisher et 
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al., 2002), however, this was cast into doubt by later research which found that 

levels of inhibition were increased when higher TS were used (Roshan et al., 

2003). Roshan et al. (2003) argued that if refractory periods were responsible 

then increasing the intensity of the TS would lead to a reduction in inhibition. 

This is because TS intensities at increasing strengths would lead to the 

recruitment of non-refractory interneurons in addition to those in refractory 

states caused by the CS. Based on this, conclusions were made that 1ms SICI 

cannot be explained by axonal refractory periods alone, and that synaptic 

inhibition may also contribute (Roshan et al., 2003). These findings have been 

supported by some (for example, Vucic et al. (2009)), however, there are others 

who favour the refractory period theory as an explanation of their findings. For 

example, a study by Stagg et al. (2011) found a correlation between levels of 

GABA measured using magnetic resonance spectroscopy (MRS) and the amount 

of inhibition that was found using a 1ms SICI protocol. No correlations were 

found between MRS measured GABA and SICI measured using a 2.5ms ISI. The 

authors speculated that MRS may measure extra-synaptic, tonic GABA, which has 

the effect of depolarizing neuronal axons (via increases in chloride ions) leading 

to the lengthening of the refractory periods. This may seem counter-intuitive at 

first as increased tonic GABA would typically be expected to cause 

hyperpolarization of the cell membrane, however, the authors argue that 

differences between the concentrations of chloride ions between the cell body 

and axon can account for these results. Research using transcranial Direct 

Current Stimulation (tDCS) by Cengiz et al. (2013) also supports a distinction 

between the mechanisms of early and late SICI. The effects of tDCS were found 

to influence the early component of SICI in the opposite direction to that of SICI 

measures with ISIs of 2.5-5s.  However, although both Stagg et al. (2011) and 

Cengiz et al. (2013) suggest refractory periods as possible mechanisms of 1ms 

SICI, neither are able to test this directly. Therefore, the origins of the response 

still remain somewhat elusive.  
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Intracortical facilitation (ICF) 

ICF is measured using a similar condition-test protocol to SICI, but with 

longer intervals of 7-20ms between the two pulses (Kujirai et al., 1993). Although 

the mechanisms of ICF are less well understood, there is a general consensus 

that ICF tests the excitability of an excitatory neuronal motor network which is 

distinctive to the SICI network (Ziemann, 2013).  Differences have been found 

between the threshold and optimal coil angle for the two measures (Ziemann, 

Rothwell, et al., 1996). In addition to this, the profile of effects of various drugs 

on ICF are very different to the pattern seen for SICI (Ziemann, 2013). Both N-

methyl-D-aspartate (NMDA) receptor antagonists and manipulations that 

positively modulate GABA-A receptors have been found to reduce ICF (Ziemann, 

2013). This suggests that ICF is in part modulated via processes that involve 

glutamatergic and GABAergic mechanisms. Positive modulators of 

norepinephrine have been found to consistently enhance ICF, which suggest a 

strong modulating effect (for review see Ziemann, 2013). 

Long Interval Intracortical Inhibition (LICI) 

Long interval intracortical inhibition (LICI) is a paired pulse protocol which, 

like SICI, leads to inhibition of the size of MEPs evoked from a test pulse.  LICI can 

be measured using two supra-threshold pulses separated by 50-200ms (Claus et 

al., 1992; Di Lazzaro et al., 2002; Valls-Sole et al., 1992), and is thought to be 

mediated by GABA-B receptors. Direct evidence for this comes from the findings 

that the GABA-B receptor agonist baclofen has been found to strongly increase 

the effects of LICI (McDonnell et al., 2006). Although baclofen has also been 

found to effect SICI (McDonnell et al., 2006), the two mechanisms are distinct. In 

particular SICI is thought to be strongly mediated by GABA-A receptors and is 

influenced by the administration of the GABA-A agonist lorazepam (Di Lazzaro et 

al., 2006; Teo et al., 2009) whereas LICI is not affected by this manipulation (Teo 

et al., 2009).  In addition, increasing the test pulse strength has been found to 

increase SICI effects but reduce those of LICI (Sanger et al., 2001). Increasing the 

intensity of the test stimuli is thought to result in the recruitment of neurones 
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spatially further away from the site of action and/or with higher thresholds. The 

evidence suggests that these neurones are more sensitive to SICI than LICI 

protocols and, therefore, provide evidence that the effects are mediated by 

distinct cell populations. 

While LICI is reported to occur using ISIs of 50-200ms, it appears that the 

exact ISI used exerts a subtle influence over the effect. Di Lazzaro et al. (2002) 

found that LICI occurring at ISIs of 100 and 150ms caused a reduction in MEP 

amplitude and also supressed I2 and later waves, which are thought to be of 

cortical origin. Within the same participants, ISIs of 50ms were also found to 

reduce MEP amplitudes, however, the amplitude of late I-waves was increased. 

This suggests that the inhibitory effects of 50ms LICI may occur at subcortical 

locations such as the spinal cord. As a result of this finding much subsequent 

research has used ISIs of 100ms and longer to measure LICI.  

2.2 Magnetic Resonance Spectroscopy 
 

Proton MRS (1H MRS) is a non-invasive neuroimaging technique which can 

be used to quantify levels of metabolites within a predefined location. Unlike 

TMS the MRS technique allows neurotransmitters such as GABA and glutamate 

to be measured in various brain regions and is not restricted to the motor cortex. 

This is done through the placement of a small Volume of Interest (VOI), for 

example a 2*2*2cm voxel cube, within a predefined location during scanning. 

Levels of metabolites within this location are then measured by detecting 

radiofrequency signals that arise from hydrogen nuclear spins within the tissue. 

The signals produced by different metabolites have chemically specific 

frequencies caused by the chemical environment of the hydrogen spins (Puts & 

Edden, 2012). Once acquired, the resulting MRS signals can be separated into a 

spectrum known as the chemical shift, from which it is possible to quantify levels 

of metabolites present in the voxel.  
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Although MRS has proven to be a useful research tool, it is not clear 

exactly where the signals it detects are produced. For example, GABA can be 

present intracellularly within both neurones and glia, in addition to being present 

in extracellular locations. Furthermore, GABA is part of a complex metabolic 

cycle and is largely synthesised from glutamine via glutamate, therefore at any 

one time point only a fraction of MRS-GABA will be neurotransmitter (Rae, 

2014). This is a complex and important issue. In the instance of the 

neurotransmitter GABA, these different pools can lead to subtly different 

processes known as tonic and phasic inhibition. GABA present at the synapse is 

associated with phasic inhibition. This involves the release of GABA within 

synaptic vesicles which then diffuses across the synaptic cleft to occupy 

postsynaptic GABA receptors. This process is very quick as the receptors have a 

low-affinity meaning the molecules only occupy the cleft for a very brief period 

of time, resulting in a brief postsynaptic conductance change (Brickley & Mody, 

2012). Extra synaptic ambient levels of GABA are associated with tonic inhibition, 

which occurs via extra synaptic GABA acting on related extra synaptic receptors. 

These receptors have a high-affinity and, therefore binding here can result in 

persistent conductance and longer lasting inhibition (Brickley & Mody, 2012). 

As previously noted, MRS measures the total concentration of 

neurochemicals within a predefined area, in doing so it is not possible to 

distinguish separate functional pools, however, it is possible to examine 

correlations between other measures such as TMS to help understand the origin 

of the signal. Tremblay et al. (2013) found SICI and LICI were not significantly 

associated with MRS measured levels of GABA; this was also found by Stagg et al. 

(2011), albeit with subtly different parameters. These findings suggest that the 

GABA measured by MRS is not predominantly of synaptic origin. Stagg et al. 

(2011) identified a significant relationship between MRS measured GABA and 

SICI measures using a 1ms ISI. The mechanisms by which 1ms SICI works are still 

somewhat elusive, however, it is possible that it may reflect refractory periods 

occurring at the axon, which may suggest an involvement of tonic GABA levels. 

On the basis of this, Stagg et al. (2011) have suggested that MRS measured GABA 
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reflects extra-synaptic inhibitory tone. This should be viewed with caution as the 

finding is highly speculative and yet to be replicated. Stagg et al. (2011) also 

found that the slope of IO curves was significantly correlated with measures of 

MRS glutamate, which suggests this reflects pre-synaptic levels of glutamate. 

However, IO curves were also correlated with MRS measured GABA, whereby 

higher levels of GABA were associated with steeper slope. This is counter 

intuitive as steeper slopes are indicative of higher cortical excitability. The 

authors speculate that this relationship is probably driven through the close 

biochemical relationship between the two neurotransmitters as the majority of 

GABA is metabolised from glutamate. A further complication is the fact that it is 

not always possible to separate out individual metabolites. For example, the 

ability to separate glutamate and glutamine is dependent on properties relating 

to the scanner and also the scanning sequence as a result a number of studies 

report a composite measure known as glx. These factors should be considered 

when reviewing MRS findings across studies.  

2.3 Transcranial Direct Current Stimulation 
 

As outlined in Chapter 1, tDCS is a non-invasive stimulation technique, 

which has the ability to effectively modulate cortical excitability. The underlying 

mechanisms of tDCS have been explored using a range of different methods 

including animal models, TMS and MRS. Key findings are discussed below.  

2.3.1 Insights from animal research 

As previously mentioned in Chapter 1, findings from early animal work 

have provided a fundamental starting point for understanding the influence of 

electrical stimulation in the human brain. With regard to tDCS this research has 

been particularly important for understanding polarity specific effects.  Two 

notable studies which address this were conducted by Bindman et al. (1964)  and  

Creutzfeldt et al. (1962) using direct cellular recordings from anesthetised 

animals. Using these techniques, it was found that spontaneous neuronal 

discharges were increased by surface positive current and decreased by surface 
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negative current. Interestingly the polarity specific effect did not appear to be 

true for all neurones. At deeper levels of the cortex (more than 3mm deep) 

Creutzfeldt et al. (1962) found positive currents had an inhibitory effect and vice 

versa for negative currents. In addition to this, research by Purpura and 

McMurtry (1965) revealed that both non-pyramidal tract neurones and 

pyramidal tract neurones were sensitive to different current densities, with non-

pyramidal tract neurones being stimulated at lower total charge than pyramidal 

neurones (which were not influenced by charge densities of 40-80µV/mm). 

These findings suggest that interneuron populations may be more sensitive to 

the low intensities of stimulation typically applied during tDCS (1/2mA) than 

pyramidal tract neurones.     

These findings have important implications for studies in humans. They 

indicate that the orientation of neurones relative to the electrical field is likely to 

be critical to the response. They also highlight that tDCS may stimulate different 

populations of neurones and that the effects may differ depending on the 

intensity of the stimulation used and the depth of the neurones stimulated. 

Another important finding from the animal literature is that the effects of 

electrical stimulation are present both during and after current application 

(Bindman et al., 1964; Purpura & McMurtry, 1965). These findings have since 

been explored in humans and are typically referred to as ‘online’ and ‘offline’ 

effects. The so called offline effects of tDCS may be dependent on long term 

depression (LTD) and long term potentiation (LTP) type plasticity, whereby 

synaptic connections are strengthened or weakened in response to previous 

activity. Some direct evidence for this is provided by Fritsch et al. (2010) who 

found evidence of LTP-like plasticity in an in vitro mouse study, where an anodal 

stimulation was passed through a slice preparation of the motor cortex. This was 

found to be dependent on the neurotrophic brain-derived neurotrophic factor 

(BDNF), which is implicated in synaptic plasticity and is thought to be dependent 

on NMDA receptor activation (Fritsch et al., 2010).   
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With the exception of a handful of invasive studies (for example, Dymond 

et al. (1975)), tDCS research in humans has been carried out using non-invasive 

methods with lower intensities than those used in the animal research. The 

current is applied to the scalp which differs from many early animal studies   

(Bindman et al., 1964; Creutzfeldt et al., 1962; Purpura & McMurtry, 1965)  in 

which the current was applied directly to the surface of the cortex. Applying the 

current to the scalp results in a less focal stimulation as the current flow can 

become distorted by a number of factors including the conductivity of the 

different tissue types it passes through (Sadleir et al., 2010). This is important to 

consider when comparing between animal and human studies. Further insights 

into the mechanisms underlying tDCS effects in humans come from studies using 

pharmacological manipulations, TMS and brain imaging techniques such as MRS. 

These studies have revealed differences between online and offline effects and 

will therefore be discussed separately.  

2.3.2 Insights from pharmacology, TMS and MRS 

Online effects of tDCS 

Findings from pharmacological and TMS research suggest that the online 

effects  of tDCS are largely mediated by changes in membrane potential rather 

than changes in synaptic plasticity (Stagg & Nitsche, 2011). Nitsche, Fricke, et al. 

(2003) found that when calcium-gated ion channels were blocked using 

Flunazine (FLU) anodal stimulation did not change cortical excitability. The 

blocking of sodium-gated ion channels using Carbamazepine (CBZ) also 

prevented any effects of online anodal stimulation. Interestingly the online 

effects of cathodal stimulation were not influenced by FLU or CBZ; this could be 

due to cathodal stimulation hyperpolarizing the neuronal membrane which 

would make it insensitive to the effects of both FLU and CBZ (Nitsche, Fricke, et 

al., 2003).  Evidence that online anodal tDCS does not influence glutamatergic or 

GABAergic interneurons comes from the finding that the TMS measures of ICF  (a 

measure of glutamatergic interneurons) and SICI (a measure of GABAergic 

interneurons) are not significantly influenced by the stimulation (Nitsche et al., 
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2005).  Blocking of glutamatergic NMDA receptors using dextromethorphan 

(DMO) also did not influence the effects (Nitsche, Fricke, et al., 2003). 

Interestingly the effects of cathodal stimulation appear to be subtly different to 

those of anodal. Although blocking of NMDA receptors using DMO did not 

influence effects (Nitsche, Fricke, et al., 2003), online cathodal stimulation has 

been found to reduce the effects of ICF and also to alter the slope of IO curves 

(Nitsche et al., 2005). The changes in ICF appear to suggest an involvement of 

glutamatergic interneurons. However, the changes in IO curves provide further 

support that the effect occurs by modulating the membrane potential of 

glutamatergic interneurons rather than synaptic activity, because changes in IO 

curves are typically thought to represent changes in interneuronal activity  

(Stagg, 2014).  

 

Offline effects of tDCS 

Residual offline effects of tDCS are commonly found after stimulation, 

and have been known to last from a few minutes to a number of hours. The 

strength and duration of these effects appears to be dependent on the duration 

and intensity of the stimulation used, however, for the most part the 

mechanisms underlying these effects appears to be similar.  

 

The after-effects of anodal tDCS are thought to reflect changes in synaptic 

strength and appear to be dependent on membrane depolarization. 

Pharmacological blocking of calcium and sodium channels using CBZ and FLU 

prevented the occurrence of any observable alterations in cortical excitability 

(Nitsche, Fricke, et al., 2003). Evidence from TMS studies (see Table 2.1) suggests 

that offline anodal effects are likely to involve widespread interneurons, as they 

have been found to influence IO curves but not motor thresholds (Nitsche et al., 

2005). It also seems likely that the effects involve synaptic modulation and, in 

particular, GABAergic and glutamatergic systems may be influenced. The effects 

of SICI have generally been reported to reduce following anodal stimulation 

(Batsikadze et al., 2013; Kidgell et al., 2013; Nitsche et al., 2005), which strongly 
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suggests the involvement of GABA-A receptors. In addition, studies using MRS 

measured levels of GABA have reported a significant reduction in the stimulated 

area following anodal stimulation (Kim et al., 2014; Stagg et al., 2009). ICF has 

also been found to increase after anodal tDCS (Batsikadze et al., 2013; Nitsche et 

al., 2005) and a trend towards increase in Glx (a composite of glutamate and 

glutamine) has been reported in an MRS study following stimulation (Stagg et al., 

2009). In addition, pharmacological blocking of N-methyl-D-aspartate (NMDA)-

receptors (which are glutamate sensitive) using DMO has been found to prevent 

after-effects (Liebetanz et al., 2002; Nitsche, Fricke, et al., 2003). The 

involvement of NMDA receptor activity is particularly interesting as these 

receptors have known involvement in cortical neoplastic mechanisms like LPT 

and LTD (Bennett, 2000). Pharmacological manipulations have also revealed that 

the after-effects may be influenced by neuromodulators such as norepinephrine, 

dopamine and serotonin. In particular, the effects of dopaminergic systems may 

have an important role due to their involvement in synaptic plasticity (see Stagg 

(2014) for review).   

 

The after-effects of cathodal stimulation appear to be less dependent on 

membrane polarization than those of anodal. Pharmacologically blocking of 

sodium and calcium channels using CBZ and CBU does not appear to influence 

the effects (Nitsche, Fricke, et al., 2003). However, it is possible that this is due to 

measurement issues (as discussed for online effects) and, therefore, it is not yet 

possible to conclude that membrane polarization changes are not at least in part 

involved. As with anodal stimulation there is evidence that a wide pool of 

interneurons may be involved in the effect. This evidence comes from the finding 

that although motor thresholds are not influenced, the slope of IO curves has 

been found to decrease (Nitsche et al., 2005) as has the size of MEPs evoked 

from TMS intestines which previously resulted in 1mV MEP 

amplitudes(Furubayashi et al., 2008; Nitsche & Paulus, 2000). Cathodal after-

effects also appear to be in part dependent on the modulation of glutamatergic 

synapses. ICF was significantly reduced following stimulation (Nitsche et al., 
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2005) and blocking of NMDA receptors using DMO has been reported to abolish 

after-effects (Nitsche, Fricke, et al., 2003). Evidence from MRS work also 

supports the role of glutamate; in a study by Stagg et al. (2009) glutamate 

concentration was found to reduce following cathodal stimulation. Taken 

together the evidence seems to support a strong role of the modulation of 

glutamatergic activity, however, the results of pharmacology studies have not 

always been consistent and some attempts to modify glutamate have failed to 

impact on after-effects (see Stagg (2014)). Evidence for the involvement of 

GABAergic mechanisms are also somewhat mixed between the different 

methods. TMS research using SICI has found that SICI appears to be increased 

following cathodal stimulations of less than 2mA (Batsikadze et al., 2013; Nitsche 

et al., 2005). A reduction in GABA concentration has also been reported using 

MRS (Stagg et al., 2009), however, the evidence from pharmacology studies is 

more mixed. The variations found between the different methods may be due to 

their different sensitivities and the possibility that they are 

measuring/influencing neurotransmitters at different sites (such as synaptic and 

extra synaptic levels). In addition, some of the complex findings from 

pharmacological studies may relate to the close association which exists 

between glutamate and GABA (Stagg & Nitsche, 2011).  

Overall the mechanisms underlying the effects of anodal tDCS both online 

and offline appear to be clearer than those of cathodal stimulation. 

Nevertheless, we are coming closer to understanding how the effects truly work 

which can only be beneficial in understanding their future uses, particularly as 

therapeutic interventions.  
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Table 2.1. Notable TMS investigations of tDCS effects.  

TMS Measure Protocol Mechanisms Anodal after 

effects 

Cathodal after 

effects 

Resting motor 

threshold 

(RMT)  

Intensity 

needed to 

induce an MEP 

of a predefined 

amplitude 

(typically 50-

100µV).  

Corticospinal tract (CSP) 

neurones and closely 

associated intracortical 

neurones. 

Neuronal membrane 

excitability (Ziemann, 

Rothwell, et al., 1996). 

Not effected 

(Batsikadze et al., 

2013; Nitsche et al., 

2005; Quartarone et 

al., 2005; Scelzo et 

al., 2011) 

Generally not effected 

(Batsikadze et al., 2013; 

Di Lazzaro, Manganelli, 

et al., 2012; Nitsche et 

al., 2005; Quartarone 

et al., 2005). However 

one study did find a 

difference in 

individuals with 

schizophrenia and 

matched controls 

(Hasan et al., 2012).  

Single pulse 

MEPs (at 1mV 

or over) 

Single pulse 

TMS, multiple 

pulses at the 

same intensity.  

CSP neurones and 

intracortical inter-

neurones over a wider 

area. Neuronal membrane 

excitability but also 

GABAergic involvement 

(Boroojerdi et al., 2001), 

particularly at higher 

intensities.  

With a few 

exceptions (Priori et 

al., 1998), generally 

found to increase 

MEP amplitude 

(Batsikadze et al., 

2013; Furubayashi et 

al., 2008; Kidgell et 

al., 2013; Nitsche & 

Paulus, 2000) 

With a few exceptions 

(Priori et al., 1998), 

generally found to 

decrease MEP 

amplitude (Furubayashi 

et al., 2008; Nitsche & 

Paulus, 2000)when 

intensities of less than 

2mA are used 

(Batsikadze et al., 

2013). No effects found 

by Strube et al. (2016).  

Input- output 

curve (IO curve) 

Single TMS 

pulses delivered 

at increasing 

intensities.  

See single pulse MEPs.  

 

Slope increase 

(Nitsche et al., 2005), 

although not always 

found (Batsikadze et 

al., 2013; Strube et 

al., 2016). 

Slope decrease 

reported (Nitsche et al., 

2005) although not 

always found to be 

significant (Batsikadze 

et al., 2013). 

Short 

intracortical 

inhibition 1ms 

(SICI) 

Paired pulse 

technique. First 

pulse sub 

threshold, 

second supra. 

ISIs of 1ms.  

Unclear, potentially 

refractory periods (Fisher 

et al., 2002) and/or 

synaptic inhibition 

(Roshan et al., 2003). 

Offline effects 

unknown. 

Increase in inhibition 

found during 

stimulation (Cengiz et 

al., 2013).  

Offline effects 

unknown.  

Decrease in inhibition 

found during 

stimulation (Cengiz et 

al., 2013).  

Short 

intracortical 

inhibition (SICI) 

Paired pulse 

technique. First 

pulse sub 

threshold, 

second supra. 

ISIs of 1.5-5ms. 

 GABAA ergic 

interneurones (Ziemann, 

2013) 

 

 

Reduce inhibition 

reported (Batsikadze 

et al., 2013; Cengiz et 

al., 2013; Kidgell et 

al., 2013; Nitsche et 

al., 2005) 

Increased inhibition 

reported (Nitsche et al., 

2005), opposite effects 

reported when 2mA 

stimulation used 

(Batsikadze et al., 

2013) 
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Long 

intracortical 

inhibition (LICI) 

Paired pulse 

technique, both 

pulses supra 

threshold. ISI of 

50-200ms.  

GABAB receptors 

(McDonnell et al., 2006). 

No significant effects 

reported (Antal et al., 

2010) 

 

Intracortical 

facilitation (ICF) 

Paired pulse 

technique. First 

pulse sub 

threshold, 

second supra. 

ISIs of 7-20ms. 

Glutamatergic and 

potentially GABAergic 

interneurons (Liepert et 

al., 1997; Ziemann, 

Lonnecker, et al., 1996) .  

Increased facilitation 

(Batsikadze et al., 

2013; Nitsche et al., 

2005) 

Decreased facilitation 

(Nitsche et al., 2005), 

opposite effects 

reported with 2mA 

stimulation (Batsikadze 

et al., 2013). 
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 Exploring the temporal effects of tDCS 
 

Key words: transcranial direct current stimulation (tDCS), transcranial magnetic 
stimulation (TMS), resting motor threshold (RMT), input output curve (IO curve). 

 

3.1 Introduction 
 

As discussed in the previous chapter, much of the past research into the 

effects of tDCS suggests the existence of a well-established pattern of responses, 

whereby anodal currents increase and cathodal currents decrease excitability. It 

is also established that tDCS has both online and offline effects which are 

mediated by partially distinct mechanisms. Online effects are thought to arise 

from changes occurring at the neuronal membrane, whereas the offline effects 

appear to occur primarily through changes in synaptic plasticity (Stagg & Nitsche, 

2011).  

The duration of the offline effect is thought to be dependent on the 

duration and intensity of the stimulation used, for example, intensities of 1mA 

appear to induce longer lasting effects than those occurring following intensities 

of 0.8mA and below (Nitsche & Paulus, 2000). On the basis of these findings it is 

tempting to assume that stronger intensities applied for longer durations will 

lead to more prolonged effects; however, this assumes that the effects follow a 

linear stimulus-response type pattern. Research by Batsikadze et al. (2013) 

highlights that this is not always the case. Batsikadze et al. (2013) found that 

although 20minutes of 1mA cathodal stimulation applied to the motor cortex 

caused a reduction in cortical excitability, 2mA stimulation caused an unexpected 

increase. This reversal of effects at higher intensities was not found for anodal 

stimulation which appears to be more stable. Interestingly the reversal following 

cathodal tDCS only became significant 90 minutes after stimulation ended. This is 

a critical finding as it suggests that the effects of tDCS are at least partially non-

linear; it also highlights that the optimal time for measuring change may not 
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always be immediately following stimulation. The findings have added 

importance as 2mA intensities have become increasingly popular in behavioural, 

cognitive and clinical studies (Batsikadze et al., 2013; Nitsche & Paulus, 2011). If 

these findings can be replicated, it would strongly suggest that caution is 

warranted when using cathodal stimulation in therapeutic contexts, particularly 

if 2mA is applied with the aim of reducing cortical excitability. At the time of 

writing, the findings of Batsikadze et al. (2013) have yet to be replicated.  One 

notable study conducted by Wiethoff et al. (2014) found that, overall, 2mA of 

cathodal stimulation had no discernible effect on cortical excitability. However, 

methodological differences between the two studies may account for the 

discrepancy. In particular Wiethoff et al. (2014) used a stimulation duration of 10 

minutes and only measured effects immediately after stimulation, therefore any 

effects occurring at later time points would have been missed.   

The mechanisms underlying the effects of 2mA cathodal stimulation are 

unknown. However, similar instances of non-linear effects have been reported as 

a result of increased intensity using stimulation protocols such as theta burst 

TMS (Doeltgen & Ridding, 2011),  transcranial random noise stimulation (tRNS) 

and transcranial alternating current stimulation (tACS) (V. Moliadze et al., 2012).  

It is speculated by Batsikadze et al. (2013) that these reversal effects may relate 

to the amount of calcium influx caused by the respective stimulations. This 

would stand to reason for offline tDCS effects, as these are known to be 

somewhat dependent on calcium channel mechanisms (Nitsche, Fricke, et al., 

2003).  These changes in calcium channel mechanisms could relate to different 

populations and parts of neurones being stimulated. In early animal studies 

Purpura and McMurtry (1965) found that non pyramidal tract neurones and 

pyramidal tract neurones were sensitive to different current densities. Therefore, 

there is a possibility that increasing stimulation intensity leads to stimulation of 

different parts of the neurone present at different depths, or even different 

types of neurone, and that this results in distinctive response patterns.     
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A further possible explanation for the reversal of cathodal effects 

following 20 minutes of stimulation at 2mA relates to the engagement of 

homeostatic type processes. This was also argued by Batsikadze et al. (2013) as a 

potential reason for the delayed response following 2mA of stimulation. 

Homeostasis refers to the properties of a system which allow it to remain stable 

within certain limits. These regulatory mechanisms have been proposed to 

maintain neuronal activity within a useful and effective range, and have been 

identified as playing an important role in stabilizing properties of neuronal 

circuits (Siebner et al., 2004). Compelling evidence for the influence of these 

mechanisms in the human motor cortex comes from studies in which two 

periods of non-invasive stimulation are applied in close temporal proximity to 

each other (Fricke et al., 2011; Monte-Silva et al., 2010; Siebner et al., 2004).   In 

these studies, TMS or tDCS is used to pre-condition the motor cortex; shortly 

following this a second period of stimulation is given and changes in cortical 

excitability are measured. If homeostatic mechanisms are not engaged, an 

additive effect may be expected in which two periods of inhibitory or excitatory 

stimulation simply lead to more inhibition/ excitation. However, this does not 

seem to be the case; in fact in all three of these studies a reversal of the initial 

effect was found. It is possible that the reversal of the expected effects of 

cathodal stimulation found by Batsikadze et al. (2013) relates to these 

mechanisms.  

If homeostatic mechanisms play an important role in moderating the 

effects of tDCS, baseline excitability is likely to be an important factor. This is 

supported by the finding that baseline MEP amplitudes and responses to 2mA 

anodal tDCS have been found to be significantly correlated (Wiethoff et al., 

2014). Wiethoff et al. (2014) also found that the relationship between baseline 

and 2mA cathodal stimulation approached significance.  However, a sham 

condition was not included which makes it difficult to draw strong conclusions 

from these findings.  
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The following experiment was conducted to investigate changes in cortical 

excitability caused by anodal, cathodal or sham stimulation applied at 1mA 

(experiment 1) or 2mA (experiment 2) for 20 minutes to the motor cortex. The 

effects of stimulation were explored at various time points for 90 minutes. The 

study aimed to add to the original single pulse TMS findings of Batsikadze et al. 

(2013); in particular the finding that 2mA cathodal increased cortical excitability 

whereas 1mA cathodal decreased it. In order to assess changes in cortical 

excitability IO curves were measured. Batsikadze et al. (2013) found significant 

effects using SI 1mV measures but failed to find any significant change in IO 

curves. However, it is possible that this is due to the fact that they only measured 

IO curves immediately after stimulation. In this study the decision not to 

measure SI 1mV was made as IO curves typically encompass effects similar to 

those measured by SI 1mV in addition to capturing change in excitability within a 

wider population of neurones. This is because IO curves measure change in MEP 

amplitudes in response to a range of stimulator intensities, whereas SI 1mV only 

measures responses to one.  

3.2 Method 
 

3.2.1 Participants 

A total of 22 healthy participants who did not smoke were recruited, of 

these 11 completed both experiment 1 and experiment 2 (Table 3.1). 

Participants were right-handed as measured by an adapted, shortened version 

(M. S. Cohen, 2008) of the Edinburgh handedness inventory ( Oldfield 1971).  All 

were free from CNS active medication and had no counter indications to TMS 

(Rossi et al., 2009). Participants gave informed written consent prior to the study 

and received financial compensation for participation. All experimental 

procedures were approved by the University of Nottingham Research Ethics 

Committee.  
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Table 3.1. Subject characteristics. Data are presented as mean ± SD; N= number 

of participants; F= Female; M=Male; RMT= Resting Motor Threshold. 

 

3.2.2 Design 

In Experiment 1 a within-subjects design was used to investigate changes 

in cortical excitability over a period of time following anodal, cathodal or sham 

stimulation applied at 1mA intensity to the motor cortex. Time of measurement 

(0, 30, 60 and 90 minutes) and tDCS condition (anodal, cathodal or sham) acted 

as independent variables. Change in MEP amplitude as measured by IO curves 

served as the dependent measure.  

Experiment 2 closely followed the design of experiment 1, however, a 

stronger tDCS intensity of 2mA was used.  

3.2.3 tDCS of the motor cortex 

tDCS was delivered via a NeuroConn DC- stimulator (GmbH, Ilmenau, 

Germany) with a maximum stimulation output of 4.5mA. Stimulation was applied 

using surface sponge electrodes each measuring 35 cm² to the area representing 

the first dorsal interosseous (FDI) muscle in the hand (identified using TMS) and 

to the contralateral right orbit. The electrodes were soaked in saline solution of 

up to 154mM to increase conductance whilst attempting to limit participant 

discomfort (Dundas et al., 2007). The current was run between the electrodes for 

a total of 20 minutes at 1 mA (experiment 1) or 2 mA (experiment 2). The current 

was ramped up over 8 seconds in the 1mA condition, followed by an 8 second 

ramp down period. The ramp up/ ramp down periods were increased to 15 

seconds in the 2mA condition for participant comfort. The intensity under the 
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electrodes correspond to current densities of 0.028 mA cm² in the 1mA condition 

(1mA/35cm²) and 0.057 mA cm² in the 2mA condition (2mA/35cm²). 

Sham stimulation mimicked the timings used by Batsikadze et al. (2013); 

20 second ramp up, 30 seconds of stimulation and a 10 second ramp down 

period. The current was ramped up to 1mA in both experiments because 1mA 

has previously been found to create reliable sham effects in participants (Ambrus 

et al., 2012), and was, therefore, considered sufficient. To limit any potential 

effects of sham polarity, this was counterbalanced, hence for half of the 

participants a cathodal electrode arrangement was used, whereas for the other 

half an anodal arrangement was utilized. Subjects participated in all three 

conditions (anodal, cathodal and sham stimulations), with a minimum of a week 

separating active stimulations. The order of experimental session was 

counterbalanced within each experiment.  

3.2.4  TMS measurements and EMG recording 

TMS stimulation was delivered using a Magstim 200 (Magstim, 

Whiteland, Dyfed, UK) with a figure of 8 magnetic coil (diameter of one winding 

70mm). The coil was held tangentially to the scalp and positioned 45° from the 

midline. The optimal location for stimulation (‘hot spot’) of the contralateral FDI 

was defined as the location over the left motor cortex which when stimulated 

consistently resulted in the largest MEP. This was marked lightly with adhesive 

tape to inform tDCS electrode placement.  

MEPs were recorded using disposable, Ag-AgCl surface electrodes 

attached to the right FDI muscle in a belly tendon montage. Alcohol wipes were 

used to prepare the skin prior to application of the electrodes. The signals were 

amplified and bandpass filtered (10Hz- 2kHz, sampling rate 5kHz) and digitalized 

using Brainamp ExG (Brain Products GmbH, Gilching, Germany) controlled by 

Brain Vision Recorder (Brain Products GmbH, Gilching, Germany). Participants 

were encouraged to maintain their hand in a relaxed position on a table directly 

in front of them. Resting motor threshold (RMT) was determined as the lowest 
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intensity needed to yield an MEP response of >100µV in the relaxed FDI muscle 

in a minimum of 5 of 10 trials.  

A neural navigation system (Brainsight, Rogue Research Inc., Montreal 

Quebec, Canada) was used to track coil position in relation to the participants 

head and the location of the identified hotspot. This was done using a template 

which was constructed from a consenting individuals anatomical brain scan. 

Individuals head were registered to this template as individual anatomical scans 

were not available. A chin rest was used during stimulation to maintain the 

position of the participant’s head. Participants were informed that they could 

take breaks if necessary and move if uncomfortable.  

IO curves were measured using TMS intensities of 95, 100, 105, 110, 115, 

120, 125 and 130% RMT. Each block was presented 10 times; hence participants 

experienced 80 TMS pulses during a single IO curve measurement. The order of 

the stimuli was randomized (using Matlab) as opposed to using a ‘ramped’ 

procedure (whereby stimuli are measured in steps from high to low intensity).  

This was chosen to avoid any potential order effects, however this precaution 

may have been unwarranted as the effects of these different methods have since 

been found to show no statistical differences (Pearce et al., 2013). Each TMS 

pulse was separated by an inter stimulus interval (ISI) of 5 seconds.  
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3.2.5 Procedure 

 

 

Figure 3.1. Experimental protocol for each testing session. Arrow demonstrates the 

passage of time over an experimental testing session. 

 
Experiment 1: 1mA tDCS 

After gaining informed consent, participants were seated in a 

comfortable chair with their head positioned in a chin rest and their right hand 

placed in a relaxed position in front of them. The location of the participant’s 

head was then registered to a template using the Brainsight system (Rogue 

research Inc., Montreal Quebec, Canada), and disposable electrodes were 

attached to the hand. Following this, the hotspot for FDI stimulation was 

identified using TMS, which was then mapped onto the template brain to aid coil 

localization and marked lightly on the scalp with mildly adhesive tape. RMT was 

then determined and baseline IO curves recorded. 1mA anodal, cathodal or sham 

tDCS was then applied to the identified hotspot for 20 minutes, which was 

ramped up for 8 seconds at the start of stimulation and down for 8 seconds 

following the end of stimulation. Participants were blind to the stimulation 

polarity, however due to constraints on resources the researcher was not. IO 

curves were then re-measured following tDCS; on average this occurred 6.30 ± 

3.05 minutes after the end of stimulation due to re-localization of the TMS coil 

and removal of the tDCS electrodes. As this was the first time point collected this 

is hereafter referred to as time point 0 or the time immediately following 

stimulation. IO curves were also measured at 30, 60 and 90 minute intervals post 
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tDCS (see Figure 3.1). RMT was kept constant and not adjusted over the course of 

a testing session.  

Participants were asked to get a good night’s sleep before each 

experimental session and watched films during the experiment in an attempt to 

reduce fatigue and maintain alertness. This method was used as fatigue and its 

subsequent effects on alertness have previously been found to increase cortical 

excitability (De Gennaro et al., 2007; Huber et al., 2013) resulting in increases in 

RMT and both low and high threshold measures using TMS. The order of 

experimental conditions was counterbalanced between participants to avoid 

potential order effects. The time of testing was held constant whenever possible 

for each participant to limit any potential influences of the time of day and 

circadian rhythms, as these may influence cortical excitability (Huber et al., 

2013).  

Experiment 2: 2mA tDCS 

The experimental protocol for experiment 2 was identical to experiment 

1, with the exception that 2mA of intensity was used and that the ramp up/ ramp 

down times were increased to 15 seconds. Sham protocol remained the same as 

in experiment 1. The first IO measure started on average 6.34 ±2.39 minutes 

after tDCS.    
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3.2.6 Analysis and statistics 

 

Figure 3.2. Schematic of data analysis with key aspects highlighted. 

MEP data was analysed by measuring peak-to-peak amplitudes using an 

in-house Matlab script. Any trials in which there was evidence of pre-contraction 

of the FDI muscle in the period prior to the TMS pulse were excluded as this is 

known to inflate the MEP response. For each individual, the data was further 

processed by calculating the median MEP amplitude for each of the 8 intensities 

measured during each IO curve. Median rather than mean was used in an 

attempt to limit the effect of outliers. 

For completeness the resultant data was analysed using three 

methodologies (see Figure 3.2). Only one method will be discussed in depth 

here, however, further information regarding the other statistical analyses 

performed is available in Appendix.i, Appendix.ii and Appendix.iii. These analyses 

were all initially carried out for each polarity respectively (anodal, cathodal, 

sham) to allow for in-depth exploration of effects within a given testing session. 
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However, further analysis in which polarity is also entered into the model is 

included for completeness, as this allows more direct comparisons between the 

measures to be made.  

Analysis of tDCS effects on RMT 

The potential effects of tDCS on RMT were explored using paired samples 

t-tests to compare any changes in MEP amplitudes evoked by the 100%RMT 

condition. The stimulator intensity used to measure RMT was held constant over 

the course of each testing session, therefore, change in MEP amplitude can be 

used as a proxy to suggest a change in threshold.  

Analysis of tDCS effects on IO curve slope 

 

The data was analysed by fitting a linear trend of best fit to the median 

MEP values of intensities from 100-130% RMT. 95% RMT was not included 

because for many participants this was subthreshold and resulted in no 

measurable MEPs (See Figure 3.3 for example IO curve).  Linear fitting was 

deemed appropriate based on visual inspection of the data which showed no 

clear evidence of high or low end slope plateau. Average fitting for Experiment 1 

was good (mean R²=0.86) as was fitting for Experiment 2 (mean R²= 0.86). 

By using slope fits the need to include intensity as a variable is removed. 

This makes it possible to more easily explore the data further by normalizing 

Figure 3.3. Example IO curve slope fit. Black circles indicate individual MEP amplitudes, 
purple diamonds show median values for each intensity. 
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slope values to their respective baselines to provide an indication of the 

magnitude and direction of change in IO curve slope following stimulation. This 

approach was used to address naturally occurring differences in baseline slopes 

between individuals. Without exploring the data using this method, differences 

in baselines could skew the results as a seemingly small increase in slope can 

involve a larger proportion of change for some individuals than others. 

Normalized values were entered into repeated measures ANOVAs to assess any 

effects of time. This was done separately for each polarity and intensity.  

To explore the potential effects of baseline cortical excitability on the 

magnitude and direction of change following stimulation, correlational analyses 

were conducted in which baseline slope was correlated with the normalized 

slope values (post/pre) at each time point for each condition. 
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3.3 Results 

3.3.1 Effects of tDCS on RMT 

 

Experiment 1: 1mA 

RMT was held constant throughout each testing session, therefore, 

change in MEP amplitudes evoked by TMS pulses at RMT can be used as a proxy 

for change. As any significant change in MEP amplitudes would suggest that a 

change in RMT had occurred. Paired sampled t-tests revealed no significant 

differences in MEP amplitude at RMT between baseline and measures taken 

after 1mA anodal tDCS (all p> .7).  No significant differences from baseline were 

found following cathodal stimulation (all p>.07) or sham stimulation (all p>.13). 

Experiment 2: 2mA 

MEP amplitudes at RMT were not significantly altered from baseline 

immediately, 30 and 60 minutes following anodal stimulation (all p>0.34). A 

significant difference was found between baseline and 90 minutes (t(15)=2.23, 

p=.04), however, this did not survive correction for multiple comparisons. No 

significant differences were found following cathodal stimulation (all p>0.16) and 

there were no significant changes immediately, 30 and 90 minutes following 

sham stimulation (all p>0.13). A significant difference was found between 

baseline and 60 minutes post sham stimulation (t(15)=-2.63, p=0.02) although 

this effect did not survive correction for multiple comparisons.  

3.3.2 Effects of tDCS on IO curve slope 

Repeated measures ANOVAs were used to assess change in IO curve 

slope across the different time points using ratio data (post tDCS/ baseline). This 

was done to control for subtle variations in baseline between conditions.  1mA 

cathodal and sham conditions violated the assumption of sphericity, therefore, 

Greenhouse-Geisser correction was applied.  
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Experiment 1: 1mA 

Time of measurement (baseline, 0, 30, 60 , 90 minutes) did not 

significantly influence IO curve slope for the 1mA anodal F(4,68)=.21, p=.93, the 

1mA cathodal F(2.3,38.45)=.1.43, p=.25, or the 1mA sham conditions 

F(4,44.47)=.21, p=.07. Average IO curves can be seen in Figure 3.5. 

Experiment 2: 2mA 

The 2mA anodal condition was significantly influenced by time of 

measurement F(4,56)=3.55, p=.01. Exploration of this effect using paired sample 

t-tests revealed that this effect arose from differences between baseline and 30 

minutes post stimulation t(14)=2.4, p=.03 measures. The difference between 

baseline and 60minutes post stimulation was also significant t(14)=2.23, p=.04. 

However, neither effect survived correction for multiple comparisons using the 

Bonferroni method. There was no significant effect of time of measurement for 

the 2mA cathodal F(4,56)=.62, p=.65 or sham condition  F(4,56)= 1.03, p=.4.  

Averaged IO curves can be seen in Figure 3.6. 

  Change in slope over the different time points can be seen in Figure 3.4. 

This illustrates the individual variability within conditions even when the effects 

are found to be significant at group level.  

 

 

 

 
 
 
 
 
 
 

Figure 3.4. Ratio values showing change in slope following 2mA anodal 
stimulation. Each colour represents an individual participant’s data set. Black line 
indicates no change from baseline. 
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Figure 3.5. Mean and SEM of average MEP amplitudes at each given TMS 

intensity pre and post stimulation for A: 1mA Anodal, B: 1mA Cathodal, C: 1mA 

Sham. 
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Figure 3.6. Mean and SEM of average MEP amplitudes at each given TMS 

intensity pre and post stimulation for A: 2mA Anodal, B: 2mA Cathodal, C: 2mA 

Sham.  Indicated significant difference from baseline.   
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3.3.3 Correlational analysis: baseline relationships with slope change 

The results of Pearson’s correlation analysis are shown without correction 

for multiple comparisons. However, in the case of correlation coefficients 

reaching conventional statistical significance (p=<0.05) the Bonferroni correction 

was applied and is discussed. Figure 3.7 and Figure 3.8 show spider plot diagrams 

of Pearson’s correlation coefficient for slope change at each time point and 

respective baseline; filled circles indicate correlations that reach conventional 

levels of statistical significance (p=< .05).  

Experiment 1: 1mA 

Baseline slope was not related to slope change following 1mA anodal 

tDCS at any time point (all p > 0.44) as is shown in Figure 3.7A. Change in slope 

following 1mA cathodal stimulation (Figure 3.7B) was not found to be related to 

baseline at any time point (all p>0.36). Baseline slope was associated with slope 

change following sham stimulation (Figure 3.7 C) immediately following 

stimulation (r=-0.48, p=0.04), post 30 minutes (r=-0.55, p=0.02), post 60 minutes 

(r=-0.55, p=0.02) and post 90 minutes (r=-0.62, p=0.00). However, when the 

Bonferroni correction for multiple comparisons is applied only the correlation 

between baseline and 90 minute follow up remained statistically significant (r=-

0.62, p=0.02).    

 

Figure 3.7. Uncorrected Pearson’s correlation coefficients of baseline slope with 
slope change at the four time points for A: 1mA anodal; B: 1mA cathodal and C: 
1mA sham condition. Filled circles indicate significant correlations (p=<0.05).  
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Experiment 2: 2mA 

Baseline slope was not related to slope change following 2mA anodal 

tDCS at any time point (all p>0.16) as shown in Figure 3.8 A.  However, baseline 

slope was correlated with change in slope immediately following 2mA cathodal 

stimulation (r=-0.57, p=0.03), marginally correlated with slope 30 minutes after 

stimulation (r=-0.57, p=0.05) and correlated with slope measures 60 minutes 

following stimulation (r=-0.55, p=0.03). Baseline was not correlated with slope 

measures 90 minutes following stimulation (r=-0.47, p=0.08), see Figure 3.8 B. 

Baseline slope was also not found to be significantly correlated with slope 

following sham stimulation at any time point (all p=>0.11), see Figure 3.8 C.  

 

Figure 3.8. Uncorrected Pearson’s correlation coefficients of baseline slope with 
slope change at the four time points for A: 2mA anodal; B: 2mA cathodal and C: 
2mA sham conditions. Filled circles indicate significant results (p=<0.05).  

 

3.3.4 Effects of tDCS type and time on IO curve slope  

 

Experiment 1: 1mA 

In order to compare the effects of the different polarities more directly, 

additional repeated measures ANOVAs were calculated using the slope ratio data 

from all conditions. This analysis was also conducted using raw slope values, 

details of which can be found in Appendix.iii.  Slope change was entered as the 

dependent variable. Polarity (3 levels) and time of measurement (5 levels) served 
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as independent factors. The Greenhouse-Geisser correction was used to correct 

for any significant violations of sphericity.   

No significant effects of tDCS polarity were found in the analysis of the 

1mA data (Table 3.2). There was no significant interaction between time and 

polarity; however, a significant main effect of time was revealed F(4,56)= 2.73, 

p=.04. Post hoc tests using the Bonferroni correction revealed a single significant 

difference between slope change from baseline at the 0 minute measurement 

(p=.02), which showed a general increase across all tDCS measures at this time 

point.  This can be seen in part in Figure 3.5 (in which baseline as indicated in 

red, is always below 0min measure indicated in green).  

 
Table 3.2. Results of repeated measures ANOVAs calculated for 1mA data in which the 

effects of time, and polarity on IO curve slope are explored 

 

 

 

Experiment 2: 2mA 

No significant effects of polarity were found in the analysis of 2mA data 

(Table 3.3). The interaction was also not found to be significant, however, as in 

the 1mA condition there was a significant main effect of time, F(4,56)=3.24, 

p=.02. Post hoc Bonferroni tests revealed a significant difference between 

baseline and slope change 60 minutes after stimulation (p=.02). Inspection of the 

data shown in Figure 3.6 suggests that this effect is primarily driven by the 

anodal and sham conditions.  

 

Factor df F P p² 

Polarity 2,28 1.08 .35 .06 

Time 4,56 2.73 .04* .14 

Polarity*Time  4.44,75.44 .63 .66 .04 
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Table 3.3. Results of repeated measures ANOVAs calculated for 2mA data in which the 

effects of time, and polarity on IO curve slope are explored. 

 

 

3.4 Discussion 
 

Changes in cortical excitability following 1mA tDCS  

In line with previous studies there was no evidence of either 1mA anodal, 

cathodal or sham conditions significantly effecting RMT (Batsikadze et al., 2013; 

Nitsche et al., 2005; Quartarone et al., 2005; Scelzo et al., 2011).   

Extensive analysis of change in IO curve slope following 1mA tDCS failed 

to reveal any significant differences from baseline for either anodal, cathodal or 

sham conditions. This was true of measurements taken immediately following 

stimulation and at each subsequent time point measured. The lack of an effect is 

somewhat at odds with previous literature (Nitsche et al., 2005), as the IO curve 

measures in this study show no evidence of significantly increased cortical 

excitability following anodal stimulation, nor decrease following cathodal 

stimulation. In addition to this there was no evidence that anodal, cathodal and 

sham stimulations influenced IO curves in distinct ways. If anything there was a 

tendency towards a slight increase in IO curve slope over the course of each 

experimental session regardless of tDCS type.  

Correlational analysis revealed that change in IO curve slope following 

sham stimulation was significantly correlated with baseline at all time points. 

However, only the relationship between baseline and 90 minutes post 

stimulation survived the adjustment for multiple comparisons. Baseline slope 

Factor df F P p² 

Polarity 2,28 .184 .833 .013 

Time 4,56 3.239 .018* .188 

Polarity*Time  8,112 .939 .487 .063 
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was not found to significantly correlate with change in IO curves for either 

anodal or cathodal stimulation.  

Changes in cortical excitability following 2mA tDCS 

2mA cathodal tDCS was not found to have any significant influence on 

RMT, however, a significant difference was identified between RMT measured at 

baseline and the 90 minutes following anodal stimulation. This finding is 

somewhat novel and not supported by previous literature (Batsikadze et al., 

2013), however, the effect did not survive correction for multiple comparisons, 

and may be due to methodological issues/natural fluctuation over time rather 

than an effect of tDCS. This view is partially supported by the finding of a 

significant difference between baseline and 60minute follow up in the sham 

condition, although this also failed to survive the correction for multiple 

comparisons.  It is possible that the use of a slightly higher threshold criteria 

(>100µV rather than 50-100 µV ) may also have contributed to these effects.  

Analysis of the 2mA anodal data revealed a significant increase in IO 

curve slope from baseline at 30 and 60 minutes following stimulation; however, 

neither of these effects were strong enough to survive the multiple comparison 

correction. 2mA cathodal and sham stimulation failed to have any significant 

effect on slope at any time point. It is theoretically possible that significant 

cathodal differences may have been observed at a later time point, as effects 

were previously found up to 120 minutes post stimulation (Batsikadze et al., 

2013). However, this seems unlikely as the 2mA anodal effects found in the 

present experiment were actually found earlier (30 at 60 minutes post 

stimulation) than those found by Batsikadze et al. (2013) who reported 

significant effects only after 60 minutes. It is unclear why 2mA anodal effects 

would show an earlier time course, while cathodal effects would be more 

delayed within the same sample of participants.   

In depth analysis of the data suggests that the effects on IO curve slope 

following 2mA anodal stimulation are largely driven by changes occurring in 
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MEPs evoked from the strongest 130%RMT pulses. This is apparent upon visual 

inspection of the data and also in analysis in which the effects on individual TMS 

intensities were explored (discussed in Appendix.i and Appendix.ii). This may 

relate to the total amount of neurones stimulated by each TMS intensity and the 

focality of tDCS stimulation.  The amount of current reaching the cortical surface 

as a result of tDCS is thought to be varied and widespread (Datta et al., 2012; 

Miranda et al., 2006), particularly when standard rectangular electrodes are used 

(Datta et al., 2012).  As a result, higher stimulation intensities, such as 130% RMT 

(which recruits neurones more widely than lower intensities), may be more able 

to capture changes induced by tDCS. Although it is possible that in the present 

study higher intensities may have revealed more effects, it should be noted that 

previous studies have successfully identified changes in MEP amplitudes using SI 

1mV intensities (Batsikadze et al., 2013; Furubayashi et al., 2008; Kidgell et al., 

2013; Nitsche & Paulus, 2000). In the current data set this would generally reflect 

responses to TMS intensities from 115% RMT and upwards, yet significant 

differences are only apparent at 130%.  

Although the independent analyses revealed some support that anodal 

tDCS, but not sham or cathodal stimulation, significantly altered IO curve slope, 

no significant differences between polarities were found in the group analysis. 

This suggests that the effect is somewhat weak and contrasts with many studies 

which have reported significant differences between MEP amplitudes following 

different polarities of tDCS and sham conditions (Batsikadze et al., 2013; Fricke et 

al., 2011; Nitsche et al., 2007; Nitsche & Paulus, 2000). It is unclear why the 

findings using IO curve would be so different to those measuring MEPs from a 

single TMS intensity, nevertheless it is worth noting that despite many studies 

using SI 1mv only a few have used IO curves. Of those studies using IO curves one 

reported a significant change depending on stimulation type (Nitsche et al., 

2005) however another failed to replicate this  (Batsikadze et al., 2013).  

The potential impact of baseline cortical excitability on the amount and 

direction of subsequent change following stimulation was also explored for the 
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2mA condition. This was done by calculating correlational values between 

baseline slope values and ratios of change at each time point. Interestingly, 

although in the 1mA condition baseline slope was correlated with changes 

following sham stimulation, the same was not found in the 2mA data set. Here 

neither baseline slope for sham nor anodal stimulation were significantly related 

to subsequent change. For the 2mA cathodal condition, baseline slope was 

significantly related to change at 0 and 90 minutes following stimulation, 

however, neither of these correlations survived correction for multiple 

comparisons. These results differ to those found in the sham condition for 

experiment 1, hence making clear interpretation difficult.  

The results of the correlations also appear to differ from a recent 

experiment conducted by Wiethoff et al. (2014) in which baseline MEP amplitude 

correlated with changes following 2mA anodal tDCS. Wiethoff et al. (2014) also 

identified a trend between baseline and change following 2mA cathodal 

stimulation, a finding which is weakly implicated at specific time points in the 

current data set. A number of methodological differences between the studies 

may account for the lack of effects in this study, in particular, the sample size 

which was much larger (n=53) in the study by Wiethoff et al. (2014), and 

differences between the TMS protocols used.  

A final point of interest is the finding that even in the 2mA anodal 

condition, in which there is some evidence of change in cortical excitability, there 

is substantial variability between participants. At the time of starting this study 

(in 2013) there was little published research exploring this issue, however, since 

then a number of articles have been published which show that the effects of 

tDCS are not as clear cut and polarity specific as initially believed. In particular, 

the study by Wiethoff et al. (2014) revealed that in a large sample of 53 

participants, 50% showed only minor or no response to stimulation. In addition, 

the direction of responses was mixed, with some participants showing increased 

excitability in response to both anodal and cathodal stimulation (2mA) and 

others showing increase following anodal and decrease following cathodal.  This 
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variability is an interesting issue and warrants further exploration if tDCS is to 

fulfil its potential as both a research tool and therapeutic technique.  

Limitations 

As with most, the design of this study is not perfect and it cannot be ruled 

out that methodological issues may have contributed to the findings. In 

particular, TMS coil placement and the ability of participants to watch films 

during the study may have contributed.  

Although neural navigation software was used throughout the 

experiment, this involved registering the participants to a template head, as 

individual anatomical scans were not available. Although useful this process is 

not exact, and therefore there is a possibility that the TMS coil was not always 

localized in exactly the same area each time. As a result, this could influence MEP 

amplitudes and thereby add error into the measure.  

Another potential source of variability within the experiment was 

differences in participant mood and arousal level as a result of the films they 

chose to watch. Although horror and comedy films were excluded (to limit 

participants’ movements from laughter/ startle responses) participants were 

broadly allowed to choose what to watch. Previous research has found that 

viewing highly emotive static picture stimuli (both pleasant and unpleasant) 

increases MEP amplitudes in comparison to neutral stimuli (Coombes et al., 

2009; Hajcak et al., 2007). It is, therefore, possible that some variability within 

the data could relate to the material participants were viewing, although the 

effects of such viewing material are likely to differ from the static, high valence 

images used in previous studies. In addition, it is not clear if the effects of 

fatigue, boredom and natural changes in emotional state would have had an 

impact had there not been something for participants to watch and engage in.  
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Conclusions 

With the exception of the 2mA anodal condition, the study largely failed to 

replicate previous findings. Unlike past research, 1mA anodal tDCS did not 

significantly increase cortical excitability, nor did 1mA cathodal stimulation 

decrease it. The study also failed to replicate the increase in cortical excitability 

found  by Batsikadze et al. (2013) following 2mA cathodal stimulation.   As the 

methods used are not identical to previous published works it cannot be ruled 

out that methodological issues contributed to the lack of significant effects. 

However, thorough inspection of the data revealed high variability with regard to 

the direction and magnitude of change seen for each individual. This is even 

apparent when the effects are significant at a group level (see Figure 3.4). It is, 

therefore, suggested that natural variability occurring between participants may 

also have contributed to the lack of effects. This issue is explored in depth in the 

next chapter.  
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 Exploring intra and inter-subject reliability 

and stability in response to tDCS 
 

Some of this work has been previously reported in: Dyke, K., Kim, S., Jackson, G. 

M., & Jackson, S. R. (2016). Intra-Subject Consistency and Reliability of Response 

Following 2 mA Transcranial Direct Current Stimulation.  Brain Stimulation 9(6), 

819-825. 

Key words: transcranial direct current stimulation (tDCS), transcranial magnetic 
stimulation (TMS), resting motor threshold (RMT), input output curve (IO curve), 
short interval intracortical inhibition (SICI), long intracortical inhibition (LICI), 
intracortical facilitation (ICF), intra-subject variability, inter-subject variability.  

 

4.1 Introduction 

Chapter 3 reported studies in which the effects of various tDCS parameters 

were explored using single pulse TMS. These studies failed to replicate previous 

findings of polarity specific effects following 1mA stimulation (Nitsche et al., 

2005), and also were unable to replicate the reversal of cathodal effects when 

delivered at 2mA (Batsikadze et al., 2013). The only significant effect observed 

was the finding that 2mA anodal stimulation significantly increased cortical 

excitability 30 and 60 minutes following tDCS application.   

In tDCS studies a number of factors are known to influence outcomes, 

including the intensity and duration of stimulation used (Batsikadze et al., 2013; 

Monte-Silva et al., 2013), the measures used to quantify effects (Horvath, 2014; 

Jacobson et al., 2012) and the electrode montage used (Miranda et al., 2006; 

Nitsche & Paulus, 2000). Although these factors are important, they cannot 

explain the variability found within studies. For example, Wiethoff et al. (2014) 

found substantial inter-subject variability in response to both 2mA anodal and 

cathodal stimulation.  The studies discussed in Chapter 3 also show high 

variability between individuals, even when the group level effects are significant.  
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This issue of variability between participants in response to stimulation is 

not unique to tDCS. Variability has also been reported in response to other non-

invasive brain stimulation methods such as Paired Associative Stimulation (PAS) 

and intermittent Theta Burst Stimulation (iTBS) (Fratello et al., 2006; Hamada et 

al., 2013; Lopez-Alonso et al., 2015; Muller-Dahlhaus et al., 2008). Given 

individual differences in anatomy, including skull shape, thickness and density, 

and additional factors such as baseline neuronal states, it is perhaps not 

surprising that these techniques do not yield identical results across individuals. 

However, developing an understanding of the factors that may predict this 

variability is a critical step in increasing the reliability and usefulness of such 

techniques for use within both research and therapeutic contexts.  

To date, a number of inter-subject factors have been identified as 

influencing tDCS including: anatomical structure (Bikson et al., 2012; Datta et al., 

2012), age (Fujiyama et al., 2014; V Moliadze et al., 2014), and potentially even 

genetic profile (for review see Li et al. (2015)). These factors can be useful in 

explaining differences occurring between participants, however, less is known 

about the reliability of the effects within individuals. A few notable studies have 

explored these issues for anodal stimulation at 1mA (Horvath et al., 2016; Lopez-

Alonso et al., 2015) and at 0.5mA (Chew et al., 2015). Interestingly, although 

1mA anodal tDCS was found to have a reasonable level of inter-subject reliability 

(Lopez-Alonso et al., 2015) the same was not true of 0.5mA (Chew et al., 2015). 

Furthermore, even when reliability has been explored using the same intensity 

the results are conflicting.  Horvath et al. (2016) found that reliability across 

sessions was poor, which contrasts with the findings of Lopez-Alonso et al. 

(2015). It is possible that the differences between the studies reflect the 

different methodologies used.  A few notable and potentially influential 

differences include electrode size, duration between testing sessions, duration of 

stimulation, use of neural-navigation and the amount of sessions tested. Less 

research exists exploring the reliability of cathodal stimulation, with the notable 

exception of a study at 1mA by Horvath et al. (2016) in which consistency was 

found to be poor.  
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Of the three studies which explored intra-subject consistency, only one 

reported the effects of tDCS on paired pulse TMS measures. These measures can 

provide more specific information about the biological underpinnings of tDCS 

effects. For example, while MEP amplitudes evoked from relatively high TMS 

intensities may reflect global excitability (combination of inhibitory and 

facilitatory outputs) measures such as short interval intracortical inhibition (SICI) 

can give specific information about the engagement of GABAergic mechanisms, 

in particular effects occurring at GABA-A receptor sites.  Interestingly, the one 

study which did explore the effects of SICI failed to replicate previous findings in 

which SICI is reduced following anodal stimulation (Batsikadze et al., 2013; 

Cengiz et al., 2013; Kidgell et al., 2013; Nitsche et al., 2005). Lopez-Alonso et al. 

(2015) found that 1mA anodal tDCS did not significantly alter SICI. However, the 

amount of change in this measure was found to have some consistency between 

two testing sessions when measured 6 minutes but not 46 minutes following 

anodal stimulation.  

As previously discussed, one of the parameters known to influence the 

effects of tDCS is the intensity at which it is applied. At present, the maximum 

used in humans is often 2mA, and although considered safe (Fregni et al., 2014), 

the effects at this intensity are less well explored than those resulting from 1mA 

applications. However, the use of 2mA intensities in both therapeutic and 

research contexts is not uncommon, and for many, the idea of using a ‘stronger 

dose’ of stimulation may be appealing. In fact, the assumption that a stronger 

intensity may yield stronger changes in cortical excitability is tentatively 

supported by the findings in Chapter 3, in which it was possible to see some 

change in excitability following 2mA but not 1mA anodal stimulation.  

  This study aimed to explore inter and intra-subject variability using a 

repeated measures design in which participants experienced multiple sessions of 

2mA tDCS applied to the motor cortex (M1)for 20 minutes. Changes in cortical 

excitability were assessed using the following single and paired pulse TMS 

measures: IO curves, resting motor thresholds (RMT), short interval intracortical 
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inhibition (SICI), intracortical facilitation (ICF) and long interval intracortical 

inhibition (LICI). The TMS parameters used in the study were informed by the 

previous work in Chapter 3 and also by a specially conducted pilot study.     

4.2 Pilot 

The aim of the pilot study was to identify the optimal paired pulse 

parameters which reliably showed inhibition/ facilitation without producing 

ceiling effects. As a result, the optimal parameters were not always the ones 

showing the largest change in MEP as this would have limited the ability to see 

the influence of tDCS on those measures.  

The three main factors influencing the effects of paired pulse protocols are 

the inter stimulus interval (ISI), the conditioning stimulus (CS) and the test 

stimulus (TS). Overall there is strong consensus that when a subthreshold CS is 

applied before a suprathreshold TS the result will be increased inhibition if the ISI 

was 1-5ms, and increased facilitation with ISIs of 8-30ms (O'Shea & Walsh, 2007). 

Choosing the optimal CS and TS parameters to elicit these effects is difficult due 

to the wide range of intensities which could be used and methodological factors 

such as the use of Resting (RMT) or Active Motor Thresholds (AMT).  

Much of the previous literature utilizing SICI and ICF protocols has used 

suprathreshold TS of SI 1mV or 120%RMT. Although the intensity of the TS is 

known to influence the magnitude of SICI effects (Garry & Thomson, 2009; Ilic et 

al., 2002), intensities that yield MEPs of 1mV (SI 1mV) or are delivered at 120% 

RMT are commonly used; and there is evidence to support that these intensities 

are optimal. For example, Garry and Thomson (2009) found that CS intensities of 

110-120%RMT yield the largest inhibitory effects when ISIs of 1-5ms were used. 

It was beyond the scope of this pilot study to explore both the effects of TS and 

CS on the different protocols, therefore, it was decided that the TS would remain 

fixed at SI 1mV and that the optimal CS intensity would be explored. SI 1mV was 

used rather than 120% RMT in line with previous key studies investigating the 
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effects of tDCS on paired pulse protocols (Batsikadze et al., 2013; Nitsche et al., 

2005). 

Previous research with SICI has revealed that when 3ms ISIs are used the 

relationship between CS intensity and the inhibitory effects appears to form a U-

shaped pattern (Kossev et al., 2003; Peurala et al., 2008), with CS intensities of 

60-75% RMT reportedly producing the largest inhibitory effects (Kossev et al., 

2003). CS intensities ranging from 70-80% RMT have been traditionally used (for 

example: (Kujirai et al., 1993; Roshan et al., 2003), however, it is not easy to find 

a general consensus as some researchers prefer to use a percentage of active 

rather than resting threshold (for example, Batsikadze et al. (2013)). With regard 

to SICI occurring using ISIs at and around 1ms, there is less information available. 

However, there is some evidence that the optimal CS intensities for this distinct 

measure are lower than those used in later SICI (Fisher et al., 2002; Vucic et al., 

2009). In this pilot study the effects of CS intensity on 1ms and 3ms SICI were 

explored. Percentages of RMT were used throughout.  

This pilot study also explored the effects of CS intensity on ICF 

measurements using ISIs of 10, 12 and 15ms. Previous research suggests that CS 

intensities of 70% AMT are effective when measuring ICF with ISIs of 10 and 

15ms (Batsikadze et al., 2013; Nitsche et al., 2005); but also that CS intensities of 

70, 80 and 85% RMT are effective when 13ms ISIs are used (Kossev et al., 2003).  

The final paired pulse measure explored in the pilot study was LICI. The 

effects of LICI are thought to be reliably produced by ISIs of 100ms (McDonnell et 

al., 2006; Sanger et al., 2001), and can be found using a range of suprathreshold 

CS intensities (Sanger et al., 2001). Unlike in SICI and ICF protocols the intensities 

used for both CS and TS in LICI can be identical as both are required to be 

suprathreshold. In this pilot the effects of various suprathreshold CS intensities 

were explored using an ISI of 100ms and a TS set at SI 1mV. Few studies have 

reported investigating the effects of tDCS using this measure, and when this has 

been done it has been with patient populations (Antal et al., 2010) which may 

differ to healthy controls. LICI effects can reach ceiling level rapidly, therefore, a 
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key aim of this pilot was to identify CS intensities which would avoid this 

problem. 

Pilot Method 

Participants 

Five healthy participants (2 male, 3 female) with a mean age of 26 years 

(range 25-27) took part in this study. Participants were right handed and free of 

any medications or counter indications to TMS.  

Design 

The pilot experiment was designed to select the optimal parameters for 

paired pulse measures. This was done by examining the effects of a range of TMS 

protocols on MEP amplitudes.  Participants completed all conditions with the 

measures for ICF 12 and 15 being completed in a secondary testing session.  

TMS delivery and recording of MEPs 

TMS was delivered using Magstim 200 stimulators connected via a Bistim 

module (Magstim, Whiteland, Dyfed, UK) through a figure of eight magnetic coil 

(diameter of one winding 70mm). The coil was held tangentially to the scalp and 

positioned 45° from the midline. The optimal location for stimulation (‘hot spot’) 

of the contralateral FDI muscle was defined as the location over the left motor 

cortex which when stimulated, consistently resulted in the largest MEP. To keep 

the location of the coil stable the neural navigation software Brainsight (Rogue 

Research Inc., Montreal Quebec, Canada) was used. Anatomical brain scans were 

not available for the participants, therefore, the location was mapped to a 

template head (constructed from a consenting individuals anatomical scan), 

which was registered to anatomical landmarks on each participant. This method 

allowed coil placement with reasonable accuracy although it was compromised 

slightly by the use of a template. Consequently, the coil location was also marked 

in pen onto a swimming cap which the participants wore throughout the study. 

During stimulation participants’ head positions were kept stable with the aid of a 

chin rest. The TMS coil was held in place using a Manfrotto mechanical arm 
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(Vitec Group, Italy). Participants were asked to remain as still as possible during 

testing, but were offered frequent breaks to stretch and adjust their position.     

MEPs were recorded using disposable, Ag-AgCl surface electrodes 

attached to the right FDI muscle in a belly tendon montage. The signals were 

amplified and bandpass filtered (10 Hz- 2kHz, sampling rate 5kHz) and digitized 

using Brainamp ExG (Brain Products GmbH, Gilching, Germany) controlled by 

Brain Vision Recorder (Brain Products GmbH, Gilching, Germany). Participants 

were encouraged to maintain their hand in a relaxed position throughout testing.   

All trials were triggered using an in-house software program (written 

using Matlab: Mathworks, MA, USA). Paired pulse and single pulse trials were 

intermixed to limit any effects of presentation order from occurring.   

TMS parameters 

Resting motor threshold (RMT) 

Resting motor threshold (RMT) was determined as the lowest intensity 

needed to yield an MEP with a peak-to-peak amplitude of >50µV in the relaxed 

FDI muscle, in a minimum of 5 of 10 trials. 

Stimulus intensity needed for 1mV MEP amplitude (SI 1mV) 

A 1mV (SI 1mv) threshold was also determined by calculating the lowest 

intensity needed to evoke an MEP of 1mV in 5 of 10 consecutive trials. 

Short Interval Intracortical Inhibition (SICI) 

Two ISIs were tested, 1ms and 3ms. The conditioning stimulus (CS) was 

delivered at one of nine intensities ranging from 40-80% RMT in 5% increments. 

The test stimulus (TS) was delivered at SI 1mV. Each condition was tested 10 

times, hence, 90 trials were used to test 1ms ISI and an additional 90 trials were 

used to test 3ms ISI.   

Intracortical Facilitation (ICF) 

ICF was tested using ISIs of 10, 12 and 15ms. Conditioning pulses were 

delivered at one of nine intensities between 40% and 80% of the individual’s 
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RMT in 5% increments. Each condition was tested 10 times and 90 trials were 

used in total to study each ISI.  

 
Long Interval Intracortical Inhibition (LICI) 

A single ISI of 100ms was investigated using one of seven conditioning 

pulses ranging from 100-130% RMT in 5% increments. The test pulse was SI 1mV. 

Each condition was repeated 10 times, hence a total of 90 trials were used to 

measure LICI.  

 
Unconditioned trials 

A total of 60 trials were measured at SI 1mV in the first experimental 

session. A further 30 unconditioned trials were measured in the second session 

in which ICF was measured with ISIs of 12 and 15ms.  

 

Procedure 

After gaining informed consent, participants were seated in a 

comfortable chair with their head positioned in a chin rest and their right hand 

placed in a relaxed position in front of them. The location of the participant’s 

head was then registered to a computation template using the Brainsight system 

(Rogue Research Inc., Montreal Quebec, Canada), and disposable electrodes 

were attached to the hand. The hotspot for FDI stimulation was then identified 

using TMS, which was then mapped onto the template brain to aid coil 

localization and marked lightly onto the swimming cap that participants wore 

throughout. RMT and SI 1mV were then determined.  The various paired pulse 

measures were then collected in a randomized order.  Exactly the same 

procedure was followed for the second session of testing in which ICF with 12 

and 15ms ISIs was collected in addition to 30 unconditioned trials.  
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Analysis and Statistics 

Peak-to-peak amplitude of MEPs evoked by the TS were measured using in-

house software (programed using Matlab, Mathworks, MA, USA). Any trials in 

which there was evidence of pre-contraction of the FDI muscle were excluded. 

Median MEP sizes were calculated for each CS at each respective ISI. The 

resulting values were then normalized to the respective median of 

unconditioned trials to create a ratio.  

Repeated measures ANOVAs were used to identify any significant effects of 

CS intensity on MEP amplitude for each TMS measure (1ms SICI, 3ms SICI, 10ms 

ICF, 12ms ICF, 15ms ICF and 100ms LICI). CS intensity served as a within subjects 

independent factor whereas ratio of change in MEP amplitude (CS/TS) served as 

the dependent factor. Any significant effects were explored further using one 

sample t-tests in which normalized values were compared to a value of no 

change (1). Data are not corrected for multiple comparisons and should 

therefore be interpreted with a degree of caution.  

 

Pilot Results 

 

Figure 4.1. Normalized values showing median change in MEP amplitude for 1ms 
SICI protocol. Black dotted line indicates no change in amplitude from 
unconditioned pulses. Each colour represents an individual participant. 
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A repeated measures ANOVA revealed that CS intensity significantly 

influenced MEP amplitude in the 1ms SICI condition F(8,32) =8.51, p=0.00. One 

sample T-tests revealed significant inhibitory effects at CS intensities of 45% RMT 

t(4)=-3.18, p=.03;  50%; 50% RMT t(4)=-3.20, p=.03;  55% RMT, t(4)=-12.48, 

p=.00;  60% RMT, t(4)=-14.47,p=.00;  65% RMT t(4)=-15.65,p=.00;  70%r RMT 

t(4)=--3.77,p=.02,  75% RMT t(4)=-6.2,p=.00 and 80%RMT t(4)=5.09,p=.01.  Data 

is shown in Figure 4.1.  

 

Figure 4.2. Normalized values showing median change in MEP amplitude for the 

3ms SICI protocol. Black dotted line indicates no change from unconditioned 

pulses. Each colour represents an individual participant. 

 

A separate repeated measures ANOVA revealed that CS has a significant 

impact on the data in the 3ms SICI condition F(8,32)=-3.74,p=.00. One sample t-

tests revealed that a CS intensity of 65% RMT yielded a significant reduction in 

MEP size t(4)=-3.56, p=.02, as did 70% RMT t(4)=-3.8, p=.02 and 80% RMT t(4) = -

8.31, p=.00. Relevant data are shown in Figure 4.2.  
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Figure 4.3 Normalized values showing median change in MEP for 100ms LICI 

protocol. Black dotted line indicates no change from unconditioned pulses. Each 

colour represents an individual participant. 

 CS intensity was found to have a significant effect on MEPs in the 100ms 

LICI condition F(6,24) =9.689, p=.000 (Figure 4.3). One sample t-tests revealed 

significant differences between unconditioned and conditioned MEP sizes at CS 

intensities of 110% RMT t(4)=-3.33,p=.029; 115% RMT t(4)=4.75, p=.009; 

120%RMT t(4)=3.31, p=.030; 125%RMT t(4)=12.18, p=.000; and 

130%RMT(4)=23.69, p=.000.  

Figure 4.4. Normalized values showing median change in MEP amplitude for 

10ms ICF protocol. Black dotted line indicates no change from unconditioned 

pulses. Each colour represents an individual participant. 
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No significant differences were found between MEP amplitudes evoked 

from different CS intensities in the 10ms ICF condition F(8,32) =.881, p=.4 (Figure 

4.4). Further explorative analysis using one sample t-tests revealed a significant 

facilitator effect of CS intensity of 60% RMT t(4)=2.895, p=.044. No other 

significant effects were identified.  

Figure 4.5. Normalized values showing median change in MEP amplitude for 

12ms ICF protocol. Black dotted line indicates no change from unconditioned 

pulses. Each colour represents an individual participant. 

12ms ICF was not found to be significantly influenced by CS intensity 

F(8,32)=1.504, p=0.195 (Figure 4.5).

 
Figure 4.6 Normalized values showing median change in MEP amplitude for 15ms 

ICF protocol. Black dotted line indicates no change from unconditioned pulses. 

Each colour represents an individual participant. 
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15ms ICF was also not found to be significantly influenced by CS 

F(8,32)=1.18, p=0.34 (Figure 4.6). 

 
Discussion of pilot data 

A wide range of CS intensities were found to lead to significant inhibition 

of MEPs for 1ms SICI and 100ms LICI. The range of CS intensities capable of 

leading to significant inhibition evoked from 3ms SICI was slightly narrower, and 

required higher CS intensities than the effects of 1ms SICI. The finding that 1ms 

SICI requires lower CS intensities to be effective is in agreement with previous 

findings (Fisher et al., 2002; Vucic et al., 2009). Although the sample size is very 

small this could be seen as further evidence to suggest that the mechanisms 

underlying 1ms and 3ms SICI effects differ.  

Unlike Kossev et al. (2003) 3ms SICI did not show a U-shaped pattern of 

response in the pilot study.  This is probably due to methodological differences 

between the experiments. In particular, the TS used in this experiment was 1mV 

whereas in the previous studies 120% RMT was used. In addition to this, Kossev 

et al. (2003) measured CS intensities of up to 85% RMT which is closer to 

threshold than the 80% used here. It seems likely that if a wider range of CS 

intensities were measured a U-shaped pattern would have emerged; this is 

almost apparent in the 1ms SICI condition.  

 
ICF measured using ISIs of 10, 12 and 15ms were not found to lead to 

significant facilitation. This was unexpected as these ISIs have previously been 

found to be effective (Kujirai et al., 1993; Ziemann, Rothwell, et al., 1996) and 

have been used within tDCS literature to demonstrate alterations in cortical 

excitability following stimulation (Batsikadze et al., 2013; Nitsche et al., 2005). 

Batsikadze et al. (2013) found that 2mA anodal and cathodal tDCS significantly 

increased facilitation using 10ms ICF whereas 15ms ICF was unaffected. As this 

pilot study revealed no clear differences between the ISIs tested, 10ms ICF was 

selected to be used in the main study based on this literature. Visual inspection 

of graphical data presented by Batsikadze et al. (2013) shows only a small effect 
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of ICF at baseline, yet clear changes following tDCS are visible therefore even if 

ICF does not reveal powerful effects at baseline it may still be possible to 

measure tDCS induced changes.  

 

The pilot study was designed to select the optimal parameters for use in 

subsequent research into the effects of tDCS. In order to avoid confounds of 

ceiling effects the optimal parameters for SICI and LICI cannot be those which 

show absolute inhibition of MEP responses. On this basis CS intensities of 40, 45, 

50 and 55% RMT were used to measure 1ms SICI; intensities of 60, 65, 70 and 

75% RMT were used to measure 3ms SICI and CS intensities of 65, 70 and 75% 

RMT were used to measure 10ms ICF. In order to reduce the amount of total 

pulses used in the experiment only one CS intensity of 115% was used to 

measure LICI.  

4.3 Method 
 

4.3.1 Participants 

Ten participants were enrolled in the study, of whom 7 were female. The 

mean age was 24 ± 4 years.  The anodal and cathodal stimulation conditions 

were completed by all ten participants. The sham stimulation condition was 

completed by all but one participants (F, 23.4years) who was unable to complete 

the sham condition due to relocating.  All participants were healthy, free from 

medication and counter indications to TMS. Participants were deemed right-

handed using an adapted, shortened, version of the Edinburgh Handedness 

Inventory (Oldfield, 1971).   

4.3.2 Design 

A within subjects design was utilized to explore the stability of tDCS 

effects across a number of sessions. All participants completed anodal and 

cathodal tDCS conditions; nine also completed the sham condition. The study 

was initially designed to investigate the stability of 2mA anodal tDCS but was 

extended to include cathodal and sham conditions. As a result participants 
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always completed the anodal session first followed by completion of sham and 

cathodal conditions, the order of which was counterbalanced between 

participants. On average the study took 6 months for participants to complete all 

10 testing sessions. Anodal and cathodal sessions were separated by a minimum 

of one month (mean separation period 5 months). The participants were blind to 

the experimental condition, however, for practical reasons the researcher was 

not. Change in MEP amplitude following tDCS or sham stimulation served as the 

dependent measure. 

4.3.3 tDCS of the motor cortex 

tDCS was delivered using a NeuroConn DC- stimulator (GmbH, Ilmenau, 

Germany) with a maximum stimulation output of 4.5mA. Stimulation was 

delivered using saline soaked surface sponge electrodes, each measuring 35 cm², 

to the area representing the first dorsal interosseous (FDI) muscle for the right 

hand (identified using TMS). The reference electrode was located over the 

contralateral right orbit. For anodal and cathodal stimulation, the current was 

ramped up to 2mA over 15 seconds, held constant for 20 minutes and then 

ramped down over a further 15 seconds. By contrast, in the sham condition the 

current was ramped up to 2mA over a period of 15 seconds, sustained at this 

intensity for 30 seconds and then ramped down over a further period of 15 

seconds. Electrodes were removed during TMS. 

4.3.4 TMS measurements and EMG recording 

TMS was delivered using a BiStim TMS system (Magstim, Whiteland, 

Dyfed, UK) with a figure of 8 coil (diameter of one winding 70mm). The coil was 

held tangentially to the scalp and positioned 45° from the midline resulting in a 

posterior to anterior current flow. Neural navigation software (Brainsight, Rogue 

Research Inc., Montreal Quebec, Canada) was used in conjunction with each 

participant’s anatomical brain scan to aid accurate coil placement over the left 

motor cortex. The coil was moved in small increments within the anatomical 

target to locate the optimal stimulation site (‘hot spot’), which was identified as 

the location which when stimulated produced the largest MEP amplitude. The 
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optimal location was tracked using the software and was also marked onto a 

swimming cap which the participant wore during stimulation. Participants were 

asked to remain as still as possible during testing with the aid of a chin rest, but 

were offered frequent breaks to stretch and adjust their position. The coil was 

held stable over the hot spot using a Manfrotto mechanical arm (Vitec Group, 

Italy) and adjusted as necessary.  

MEPs were recorded using disposable Ag-AgCl surface electrodes 

attached to the right FDI muscle in a belly tendon montage. The signals were 

amplified, bandpass filtered (10Hz- 2kHz, sampling rate 5kHz), and digitized using 

Brainamp ExG (Brain Products GmbH, Gilching, Germany) controlled by Brain 

Vision Recorder (Brain Products GmbH, Gilching, Germany). Participants were 

encouraged to maintain their hand in a relaxed position throughout testing.   

Threshold determination 

Resting motor threshold (RMT) was determined as the lowest intensity needed 

to yield an MEP with a peak-to-peak amplitude of >50µV in the relaxed FDI 

muscle in a minimum of 5 of 10 trials. A 1mV (SI 1mv) threshold was also 

determined by calculating the lowest intensity needed to evoke an MEP of 1mV 

in 5 of 10 consecutive trials.  

Input Output curves 

IO curves were measured using TMS intensities set at 100, 110, 120, 130, 140 

and 150% of RMT. Ten pulses at each of the 6 intensities were delivered in a 

randomized order with 5 seconds occurring between each pulse. 

Intracortical inhibition and facilitation  

1ms SICI 

Subthreshold conditioning stimuli (CS) were delivered at one of four intensities 

(45, 50, 55, 60% RMT) which were followed after a 1ms interval by a supra 

threshold test stimulus (TS) of S1 1mV delivered to the same location within M1. 

Ten trials were measures for each CS- TS pairing.  
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3ms SICI 

Subthreshold CS was delivered at 60, 65, 70 or 75% RMT prior to a 

suprathreshold TS at S1 1mV that was delivered after an interval of 3ms. Ten 

trials were measured for each CS- TS pairing.  

 

LICI 

A single ISI of 100ms was adopted between a suprathreshold CS of 115% RMT 

and a TS that was also delivered at 115% RMT. A total of 20 trials were 

measured.  

 

ICF 

One ISI of 10ms was tested. Conditioning pulses were delivered at one of three 

subthreshold intensities at 65, 70 or 75% RMT and followed by a suprathreshold 

TS of S1 1mV after 10ms. Each CS-TS pairing was measured 10 times.  

 

Unconditioned trials 

A total of 30 unconditioned trials were measured at SI 1mV. 

4.3.5 Experimental procedures 

During the first testing session the hot spot for FDI stimulation was 

identified with the aid of an anatomical target displayed using neuro-navigation 

software. This location was then used to guide coil placement for subsequent 

sessions, and was only subject to minor adjustments. Following hot spot 

identification, both RMT and S1 1mV were measured. IO curves and paired pulse 

measures were then taken, the order of which was counterbalanced within and 

between subjects. Following the TMS measures of baseline cortical excitability 

the tDCS electrodes were placed on the scalp and stimulation was applied for 20 

minutes. Immediately after tDCS stimulation the electrodes were removed, the 

TMS coil was replaced, and TMS coil location and thresholds (both RMT and SI 

1mv) were checked. If necessary small adjustments to thresholds were made 

prior to measuring IO curves and paired pulse measures the second time. The 
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same procedure was completed four times for cathodal and anodal conditions; 

and twice for the sham condition. Each testing session was separated by a 

minimum of 3 and a maximum of 4 days, and where possible the time of testing 

was kept constant within subjects. To maintain relatively constant levels of 

alertness and arousal throughout testing, subjects watched wildlife 

documentaries throughout the testing sessions.  

4.3.6 Data analysis  

Peak-to-peak MEP amplitudes were estimated using in-house Matlab 

software (Mathworks, MA, USA). All trials in the 500ms period prior to MEP were 

carefully visually inspected and any trials in which there was evidence of pre-

contraction of the FDI muscle were excluded. 

IO curve measurements were estimated by calculating the median intra-

individual MEP amplitudes for each TMS intensity value (i.e. 100-150% of RMT); 

linear fits were then applied to the resultant values (mean R² = 0.89). For 

alternative slope fitting please see Appendix.iv. Median values were calculated 

rather than the mean in order to limit the effect of non-standard distribution of 

individual data. For one participant 150% RMT could not be tested. Slopes were 

therefore fitted to the available values (i.e. 100-140% RMT). 

Paired pulse data was analysed by normalizing median MEP amplitudes 

evoked from conditioned trials to the respective median of unconditioned trials. 

Intra-subject median inhibition or facilitation across the various CS intensities 

was then calculated for each protocol. This method was chosen because average 

slope fits were poor and highly variable across participants (for example the 

mean R² value for baseline measures in the 3ms SICI anodal condition was 

R²=0.63, with a range of R²=0.12- 0.99).  

Repeated measures ANOVAS were calculated for each TMS measure (IO 

curve slope, 1ms SICI, 3ms SICI, LICI and ICF) with time of testing (pre/post) and 

experimental session (1-4) entered as within-subject independent factors.  

Mauchley’s test of sphericity was performed and corrections were made using 
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the Greenhouse-Geisser correction when necessary. A priori assessment of 

baseline threshold differences were carried out using Students t tests (paired 

samples, two tailed, p <0.05).  

In order to investigate intra-subject reliability of tDCS induced changes, 

ratios of IO curve slope change were calculated by dividing each individual’s 

post-tDCS IO slope by their baseline (pre tDCS) slope for each session. Ratios of 

change in the paired pulse measures were also calculated in the same manner. 

Intra-class correlation coefficient (ICC (2,1)) analysis was then used to explore 

the reliability of tDCS induced changes over the four sessions for anodal, 

cathodal and sham data. ICC results are reported based upon Lahey et al. (1983), 

whereby ICC values of <0.4 are considered to indicate poor intra-class reliability, 

values >0.4 and <0.59 are fair, values >0.6 and <0.74 are good, and values >0.74 

are excellent. Negative ICC values are taken to indicate a lack of reliability within 

the measure.  

4.4 Results 

Paired sample t-tests confirmed that baseline values for RMT did not 

significantly differ between sessions (p > 0.05) for anodal (all t(9) < 1.63, all p > 

0.14), cathodal (all t(9) < 1.13, all p > 0.29) or sham conditions (t(8)=.610, 

p=0.56). These details can be seen in Table 4.1.  

Paired samples t-tests also confirmed that RMT did not significantly alter 

from baseline for any session following anodal stimulation (all p>0.168), cathodal 

stimulation (all p>0.343) or sham (all p>0.347).   

 

Table 4.1. Mean ± standard deviation of RMT for each condition and testing 
session. 

 Anodal  
RMT  

Cathodal RMT  Sham RMT  
 

Session 1 45.8 ± 4.6 45.8 ± 4.3 45.6 ± 5.8 
Session 2 46 ± 4.4 45.9 ± 4.8 45.8 ±5.8  
Session 3 46.2 ± 4.7 46 ± 5.0 Na 
Session 4 46.3 ± 4.6 47.1 ± 5.0 Na 
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4.4.1 Analysis of group effects 

Input Output curve slope 

For the anodal condition a repeated-measures ANOVA revealed a 

significant main effect of time of stimulation (i.e., Pre vs. Post tDCS), 

F(1,9)=5.232, p = 0.048. There was no significant effect of testing session 

F(3,27)=2.5, p=0.08, and no significant interaction between these two factors 

F(3,27)=0.58, p=0.63. Figure 4.7 shows mean MEP amplitudes at each TMS 

intensity before and after anodal stimulation.  

 

For the cathodal condition a separate repeated-measures ANOVA was 

calculated. The ANOVA revealed no significant main effects of time of stimulation 

F(1,9)=3.491, p=0.095 or of testing session F(3,27)=0.03, p=0.99, and the 

interaction between these two factors was not significant F(3,27) 0.53, p=0.67.  

Figure 4.8 shows mean MEP amplitudes at each TMS intensity before and after 

cathodal stimulation.  

 

For the sham condition a repeated-measures ANOVA revealed no 

significant main effect of time of stimulation, F(1,8)=.218, p=.653. There was no 

significant effect of testing session F(1,8)=.424, p=0.533, and no significant 

interaction between these two factors F(1,8)=0.186, p=0.678. Figure 4.9 shows 

mean MEP amplitudes at each TMS intensity before and after sham stimulation 
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Figure 4.7. Mean & SEM MEP amplitude pre and post anodal tDCS. 

 

Figure 4.8. Mean & SEM MEP amplitude pre and post cathodal tDCS. 
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Figure 4.9. Mean & SEM MEP amplitude pre and post sham tDCS. 

 

Intracortical facilitation 
 
Anodal tDCS was not found to significantly 

alter the amount of ICF (Figure 4.10 A). 

Full results can be seen in Table 4.2. 

Repeated measures ANOVA revealed no 

significant main effect of cathodal tDCS on 

ICF, nor a significant main effect of time 

(pre/post). However, a significant 

interaction was revealed. Further 

exploration using paired samples t-tests 

revealed a significant difference between 

pre (M=104.1, SD=37.0) and post 

(M=133.8, SD=48.6) measures in session 4 

t(9)=-3.01, p=0.015. Relevant data can be 

seen in Figure 4.10 B and Table 4.3. 

ICF was not significantly altered in the sham 

condition on either of the two testing 

sessions (Figure 4.10C). See Table 4.4 for full 

results.  

Figure 4.10. Mean and SEM change in 
ICF pre/post anodal (A), cathodal (B) or 
sham (C) stimulation. 
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Short interval intracortical inhibition (1 and 3ms) 
 

1ms SICI was not significantly altered by anodal tDCS (Figure 4.11 A), no 

significant main effects or interactions were found.  Contrasting with the findings 

of 1ms SICI, the ANOVA run using the 3ms SICI data (Figure 4.11 B) revealed a 

significant main effect of measurement time (pre/post) F(1,9)=7.803, p=0.021. 

No main effect of session was revealed F(3,27)=.687,p=.568, however a 

significant interaction between the two factors was observed F(3,27)=3.727, 

p=0.023. Paired sample t-tests revealed a trend towards a reduction in inhibition 

after tDCS for sessions 1, 2 and 4, however, this difference was only found to be 

significant for session 4, t(9)=-4.425, p=.002. A significant difference between 

baseline and post anodal inhibition was also found for session 3, however, this 

showed the opposite pattern of results t(9)=3.590, p= .006. Further exploration 

of the data suggests that the results for session three should be interpreted with 

caution. This is because during this session the average MEP amplitude of the 

1mV test pulse differed significantly between baseline (M=0.84, SD=0.76) and 

post measures (M=1.33, SD=0.62) for this session (t(9)=-2.419, p=.039). TS 

intensity has been found to significantly influence inhibition caused by SICI (Garry 

& Thomson, 2009), with lower TS intensities found to yield less inhibition. 

Therefore, it should be considered that differences between TS intensities in 

session 3 could be masking any true effects of anodal tDCS.  

 

1ms SICI was not significantly altered by cathodal tDCS (Figure 4.11 C). 

The repeated measures ANOVA revealed no significant main effects nor a 

significant interaction. 3ms SICI was also not significantly altered (Figure 4.11 D). 

Full results are shown in Table 4.3 Similarly, the effects of sham stimulation also 

did not significantly alter 1ms or 3ms SICI (Figure 4.11 E, F). See Table 4.4 for full 

results.  
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Long interval intracortical inhibition 

LICI was found to reach ceiling level and totally abolish the MEP response 

in 7 of 10 participants during baseline anodal sessions (Figure 4.12). 

Consequently, the results of LICI were not further analysed as this would make it 

impossible to identify any significant decreases. As a result of the findings during 

the anodal testing session the measure was dropped from cathodal and sham 

conditions.  

 

 

Figure 4.11. Mean & SEM levels of inhibition for 1ms SICI pre/post anodal (A), 
cathodal (C) or sham (E) stimulation. Pre/post level of inhibition for 3ms SICI 
pre/post anodal (B), cathodal (D) or sham (F) stimulation. 
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Figure 4.12. Average inhibition caused by LICI for each participant over each 
session of pre anodal stimulation. Each colour represents an individual 
participant. Dashed line illustrates no change from unconditioned stimulus 
elicited by TS alone (uncondi all).  

 

 

 

 

 

  

Table 4.2. Summary of Repeated measures ANOVA results for anodal sessions. 

Measurement Factor d.f F P p² 

IO curve slope  Session 3 2.505 .08 .218 
 Time 1 5.232 .048* .368 
 Session*Time  3 .583 .631 .061 
1ms SICI Session 1.5 .190 .902 .021 
 Time 1 1.897 .202 .174 
 Session*Time  3 2.038 .132 .185 
3ms SICI Session 3 .687 .568 .071 
 Time 1 7.803 .021* .464 
 Session*Time  3 3.727 .023* .293 
ICF Session 3 .761 .526 .078 
 Time 1 .770 .403 .079 
 Session*Time  1.6 .2.321 .142 .205 
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Table 4.3. Summary of Repeated measures ANOVA results for cathodal sessions. 

Measurement Factor d.f F P p² 

IO curve slope  Session 3 .030 .993 .003 
 Time 1 3.491 .095 .279 
 Session*Time  3 .525 .669 .055 
1ms SICI Session 3 1.751 .180 .163 
 Time 1 .346 .571 .037 
 Session*Time  3 1.679 .195 .157 
3ms SICI Session 1.3 1.140 .326 .112 
 Time 1 .284 .607 .031 
 Session*Time  1.3 1.577 .218 .149 
ICF Session 3 1.274 .302 .124 
 Time 1 .011 .919 .001 
 Session*Time  3 3.295 .036* .268 

 

 

Table 4.4. Summary of Repeated measures ANOVA results for sham sessions. 

Measurement Factor d.f F P p² 

IO curve slope  Session 1 .424 .533 .050 
 Time 1 .218 .653 .027 
 Session*Time  1 .186 .678 .023 
1ms SICI Session 1 1.643 .236 .170 
 Time 1 2.366 .163 .228 
 Session*Time  1 .058 .815 .007 
3ms SICI Session 1 .254 .628 .031 
 Time 1 .990 .349 .110 
 Session*Time  1 .045 .837 .006 
ICF Session 1 .043 .841 .005 
 Time 1 .079 .786 .010 
 Session*Time  1 1.33 .282 .143 
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4.4.2 Analysis of inter-subject reliability 

To investigate the intra-subject reliability of the effect of anodal, cathodal 

and sham tDCS on the slope of each participant’s IO curve, an intra-class 

correlation coefficient (ICC) analysis was conducted, based upon the ratio of 

post-tDCS and pre-tDCS slopes, separately for each stimulation. For anodal 

stimulation, the change in IO curve slope was found to be poorly related across 

the four separate testing sessions, ICC(2,1) = 0.28 . Relevant data are presented 

in Figure 4.13A. When the same analyses were conducted for cathodal tDCS the 

ICC analysis revealed poor interclass reliability, ICC(2,1) = 0.04, Relevant data are 

presented in Figure 4.13B .  ICC analysis of the sham condition revealed fair 

interclass reliability across the two testing sessions ICC(2,1)=.44. Relevant data 

are shown in Figure 4.13C.  

 

 To allow for more accurate comparisons to the sham condition ICC was 

also calculated using the first two sessions for the 9 participants who completed 

all conditions. For anodal stimulation this revealed a poor reliability ICC(2,1)=0.1, 

poor reliability was also found for the cathodal condition ICC(2,1)=0.35.  

 

Change in 1ms SICI was not reliable across the different anodal testing 

sessions ICC(2,1)=.02. Nor was it reliable across cathodal sessions ICC(2,1)=-0.15; 

or sham sessions ICC(2,1)=-0.21.  Change in 3ms SICI was also found to be 

unreliable across the different anodal testing sessions ICC(2,1)=0.33; cathodal 

sessions ICC(2,1)=0.23 and sham sessions ICC(2,1)=0.06. ICC analysis of the ICF 

data revealed no reliable changes across sessions following anodal stimulation 

ICC(2,1)=0.37; cathodal stimulation ICC(2,1)=0.10; or sham ICC(2,1)=0.01. 
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Figure 4.13. Amount of change in IO curve slope (pre/post) for each participant 
following (A) anodal, (B) cathodal and (C) sham stimulations. Each coloured data 
point represents a single session, black diamonds indicate mean change. 
Horizontal line indicated no change from baseline. 
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4.5 Discussion 
 

This study investigated the reliability and consistency of the effects of 2mA 

tDCS by assessing changes induced in a number of single and paired pulse TMS 

measures over repeated testing sessions. The effects of anodal, cathodal and 

sham stimulations were assessed at group level and also individually across the 

multiple testing sessions.  For clarity, the results of the single pulse (IO curve) 

and paired pulse measures (SICI, ICF, LICI) will be discussed separately.  

tDCS effects on single pulse (IO curve) measures of cortical excitability 

The results demonstrate a group level increase in IO curve slope following 

anodal tDCS, but no significant change in this measure following cathodal or 

sham stimulation. IO curves are thought to reflect the strength of cortico-spinal 

projections (Chen, 2000) and the balance of inhibitory and facilitatory processes. 

Therefore, the finding of increased IO curve slopes following anodal tDCS is a 

good indication of increased cortical excitability overall, and a finding which has 

also been reported by others (Nitsche & Paulus, 2000; Nitsche et al., 2005). 

Interestingly, although this effect was signficant at a group level, individual 

analysis of the data for each testing session revealed variability both within and 

between subjects in response to the stimulation, with ICC anlysis suggesting the 

effect to be of poor reliability within individuals. The effects of cathodal tDCS 

were also found to show poor reliability across sessions, whereas the sham 

condition revealed moderate stability.   

It should be noted that the above findings and conclusions are restricted 

to the effects occurring within a 30 minute period after 2mA tDCS stimulation 

was applied to the motor cortex for 20 minutes. It is possible that the lack of 

effects in the cathodal condition are resultant of the time the measurements 

were taken. This is because previous research (Batsikadze et al., 2013) has 

reported a significant change in excitability which only became apparent after 90 

minutes. Batsikadze et al. (2013) inferred change in cortical excitability by a 

change in MEP amplitude from a single intensity rather than in an IO curve 
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measurement, therefore, timing is not the only difference between their study 

and this one. However, the differences between the measures used are not 

necessarily problematic. This is because IO curves measure the change in MEP 

amplitude over a range of TMS intensities and would, therefore, encompass 

those measured using a single intensity such as that used by Batsikadze et al. 

(2013).   

The results reported by Batsikadze et al. (2013) are counter to previous 

studies reporting the effects of cathodal tDCS on motor excitability insofar as 

they reported that cortical excitability, as indexed by MEP amplitude, was 

increased following 2mA cathodal tDCS whereas previous studies of cathodal 

tDCS at lower stimulation intensities had reported that cathodal tDCS decreases 

cortical excitability (Nitsche, Nitsche, et al., 2003; Nitsche & Paulus, 2001). 

Although non-significant, inspection of Figure 4.8 suggests that the findings are 

broadly consistent with the findings of Batsikadze et al. (2013), in that many 

participants showed an increase rather than a decrease in motor excitability and 

this effect was close (p=0.08) to conventional statistical significance thresholds. 

However, this effect was variable across participants and more importantly it 

was variable within participants, as indicated by ICC analysis. It is possible that a 

longer follow-up period using TMS would have revealed significant effects and 

furthermore that these effects may have become more stable and consistent 

following a sizeable delay such as 90-120 minutes. However, for practical reasons 

this was not tested and, therefore, this can only be speculation.  

The finding that the effects of 2mA anodal stimulation were not reliable 

within individuals despite significant group level effects is particularly interesting 

as it suggests that group level analysis may hide substantial variability which 

occurs both between and within subjects. Previous evidence regarding stability 

of anodal effects has been mixed. The results of this study are more in line with 

the recent findings of Horvath et al. (2016) than those of Lopez-Alonso et al. 

(2015). However, as previously noted there are methodological differences 

between the studies which may in part contribute to the findings. In particular, 
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the study by Lopez-Alonso et al. (2015) was conducted with sessions separated 

by 6-12 months and only two sessions were compared, although it should be 

noted that this work was conducted with a larger sample. Our finding of 

moderate stability following sham stimulation is also in agreement with previous 

work (Horvath et al., 2016). 

Throughout the study efforts were made to maintain stability across 

testing sessions (e.g. by the use of neuro-navigation software). However, one 

factor which may have varied across the sessions was the exact timing of when 

the TMS measurements were taken. This was due to three factors: 1) Delays due 

to set-up issues such as removing tDCS electrodes and re-registering the 

participants head using neuro-navigation software. 2) TMS delays such as 

identifying the optimal stimulation location and if necessary re-calculate RMT 

and SI1mV. 3) Counterbalancing of TMS measures (pp/ IO) which was done to 

allow for better detection of group level effects. It is difficult to say how much of 

the variability seen in the data reflects these timing issues. However, it should be 

noted that when a large amount of TMS measures are collected (as in this study) 

it takes time, therefore even if data collection starts exactly as tDCS finished this 

may be acquired over a period of 10-20 minutes. When fewer TMS 

measurements are taken it becomes possible to measure more discrete time 

points, this was done by both Horvath et al. (2016) and Lopez-Alonso et al. 

(2015) who measured every 10 minutes following tDCS. Using this method and 

examining change in a single MEP amplitude Horvath et al. (2016) found the 

effects of 1mA anodal tDCS to be unreliable over a 30 minute follow up period. 

Contrarily Lopez-Alonso et al. (2015) found the effects to be of fair reliability in 

the 0-30 minute period following stimulation, but not after 30-60 minutes. These 

findings are based on ICC analysis with binned data, yet it is worth noting that 

when individual time points are studied (such as 10, 15 and 20 minutes) the ICC 

values drop in the study by Lopez-Alonso et al. (2015) to revealed poorer 

reliability in most instances. Based on these findings the variability found in the 

present results seems unlikely to be due to timing issues alone.  
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tDCS effects on paired pulse (SICI, ICF) measures of cortical excitability 

2mA anodal tDCS was not found to significantly alter 3ms SICI. Although 

Lopez-Alonso et al. (2015) also failed to show a significant change in SICI (using a 

2ms ISI), this is counter to previous work which has reported reductions during 

anodal stimulation (Cengiz et al., 2013), and also following stimulation applied at 

0.8mA (Kidgell et al., 2013); 1mA (Batsikadze et al., 2013; Kidgell et al., 2013; 

Nitsche et al., 2005) and 2mA (Batsikadze et al., 2013).  

SICI is considered to be primarily dependent on GABA-A synaptic activity 

(Ziemann et al., 2015), and therefore many have argued that a reduction in SICI 

indicates that the effects of anodal tDCS are at least in part resultant of synaptic 

changes and alterations in levels of GABA. Our results do not provide clear 

support for this; however, neither do they strongly refute them, as in three of 

the four sessions there was a trend for SICI to be reduced.  

ICC analysis of 3ms SICI effects showed that the influence of anodal 

stimulation on this measure was unreliable across sessions. This conflicts with 

the findings of Lopez-Alonso et al. (2015) whose ICC analysis revealed ‘fair’ 

reliability. As previously discussed there are a number of differences between 

the two studies which may have contributed to the different findings, including 

differences in the intensity and duration of tDCS used, differences in sample sizes 

and differences between SICI measurements.  

Less is currently known about 1ms SICI with regards to its origin. 

However, it has been found that the effects of anodal tDCS (both 1 and 2mA) on 

1ms SICI appear to be the reverse of those occurring when SICI is measured using 

ISIs of 3ms  (Cengiz et al., 2013). The study by Cengiz et al., (2013) was conducted 

during stimulation, and therefore is not directly comparable to the offline results 

seen here. However, it is worth noting that in this offline study there is no clear 

evidence that 1ms and 3ms SICI were influenced differently by anodal tDCS.  

Cathodal tDCS also failed to influence either of the SICI measurements. 

The effects of 2mA cathodal stimulation are far less explored than those of 1mA; 
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and although there is evidence that 1mA cathodal stimulation increases 3ms SICI 

(Nitsche et al., 2005); the effects of cathodal stimulation are known to be more 

difficult to produce and have been found to show a more variable pattern of 

responses (Wiethoff et al; Horvath et al 2016). The study by Batsikadze et al. 

(2013), revealed a significant reduction in SICI following cathodal stimulation 

which became apparent only 60 and 90 minutes after tDCS. Interestingly the 

significant change in SICI was only found for ISIs of 5ms but not in the 2 or 3ms 

conditions. This highlights further complexities in the study of tDCS effects using 

TMS. Particularly as there is no clear reason to believe that the underlying 

mechanisms of 3 and 5ms SICI to be different (although 2ms may be closer to the 

seeming distinct processes underlying 1ms SICI effects).   

Neither anodal nor sham stimulation significantly altered ICF measures. 

This is counter to previous research which has reported increases in ICF following 

anodal stimulation (Batsikadze et al., 2013; Nitsche et al., 2005).  The finding that 

2mA cathodal stimulation significantly increased ICF on a single session is similar 

to the increase reported by Batsikadze et al. (2013); however it’s unclear why 

this difference was only apparent on the fourth session.  

Limitations: 

The counterbalancing of the conditions tested in this experiment was not 

optimal, and ideally the experimenter would be blind to the stimulation used. 

Unfortunately, for practical reasons this was not feasible. However, experimental 

controls were in place (such as the use of neuro-navigation systems to guide TMS 

coil placement) to offset these limitations.   

A further potential limitation of the study is the sample size. Although 

small sample sizes are common within tDCS research and this sample size was 

large enough to reveal a significant group effect following anodal stimulation, a 

larger sample may have provided more robust results. Recent work has revealed 

surprisingly low rates of responses to tDCS even for anodal stimulation which is 

thought to be more reliable than cathodal. For example, in a study of 45 
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participants Lopez-Alonso et al. (2015) estimated 60-64% of participants 

responded to anodal stimulation with an overall increase in cortical excitability.  

Another study by Wiethoff et al. (2014) estimated that approximately 50% of the 

53 participants they tested had minor or no response to tDCS.  

Conclusions:  

In summary, we investigated the reliability and consistency of the effects 

of 2mA anodal and cathodal tDCS on motor excitability by examining how a 

number of TMS measures were influenced by tDCS. We found that anodal 

stimulation significantly increased the slope of TMS IO curves and that this effect 

was consistent at a group level across repeated testing sessions. Using ICC 

analysis these effects were not found to be reliably consistent within individuals. 

Sham stimulation failed to significantly influence IO curve slope, however the 

effects of this intervention were found to be moderately reliable within subjects. 

The results of the paired pulse stimulations revealed no clear tDCS induced 

changes for any measures, with the exception of an increase in ICF following 

cathodal stimulation in a single session.   

As previously discussed, variability with non-invasive brain stimulation 

techniques is not uncommon. However, in order to develop techniques such as 

tDCS into more powerful methods in both research and therapeutic contexts, 

understanding the sources of this are likely to be critical. In particular furthering 

our understanding regarding the reliability and consistency of these effects may 

allow us to better identify responders and non-responders to particular 

paradigms. The present research suggests that at least some of the variability 

comes from non-fixed factors (opposed to more stable factors such as anatomy), 

as variability was apparent within participants. This makes the task of identifying 

features causing variability more complex, and it is unlikely that all will be 

identified. Nevertheless, research identifying key sources could be particularly 

useful in furthering the development of tDCS as an effective treatment 

alternative to conventional approaches.   
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 Can cathodal tDCS reduce tics in Tourette’s 

syndrome?  
 

Key words: Gilles de la Tourette’s syndrome (GTS), transcranial direct current 
stimulation (tDCS), transcranial magnetic stimulation (TMS), resting motor 
threshold (RMT), input output curve (IO curve), Yale global tic severity score 
(YGTSS).  

 

5.1 Introduction 

As previously discussed in Chapter 1, Gilles de la Tourette’s syndrome 

(GTS) is a childhood onset disorder, characterized by the presence of motor and 

phonic tics which are present for a minimum of 1 year (Leckman, 2002). Tics can 

vary in their complexity, intensity and frequency. They can also vary over time 

and from person to person, for example, one individual with GTS may experience 

only ‘simple’ tics such as eye blinking and sniffing, whereas another may 

experience more ‘complex’ tics such as imitating actions or repeating words. Tics 

are thought to wax and wane over both long and short periods of time. Tics are 

often at their worst in children aged 10-12 years and follow a time course in 

which approximately three-quarters of children will see their tics largely diminish 

by the time they are adults (Bloch & Leckman, 2009). Over a shorter time period 

stress and fatigue may exacerbate tics (Hoekstra et al., 2004; Lin et al., 2007), 

whereas engaging in enjoyable activities have been reported to reduce them. 

Although tics and reactions to them can vary from person to person, the 

quality of life in adults with GTS has been found to be strongly related to GTS 

symptomology (Jalenques et al., 2012). In both adults and children, tics have 

been found to influence various aspects of life including social, 

occupational/academic and psychological well-being (Conelea et al., 2011; 

Conelea et al., 2013). Tics may also put a physical strain on the body, for example 

sudden tics may be painful, tissue damage may occur from repetitive tics and 

injury secondary to a tic may occur (-such as by striking an object). Tics may even 
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result in stress fractures and musculoskeletal damage (Fusco et al., 2006; Moon 

et al., 1998). Sadly, painful tics are not uncommon. A recent large scale study 

found that 60% of adults with GTS reported having at least one tic which caused 

pain or physical damage (Conelea et al., 2013); for children a similar large scale 

study found rates to be 64% (Conelea et al., 2011). Consequently, developing 

treatments which reduce tics are critical in improving quality of life for 

individuals with GTS. 

At present, two of the most common treatments for GTS are medication 

and behavioural interventions. The most popular behavioural intervention is 

‘habit reversal training’ which is a form of cognitive behavioural therapy 

involving two stages. The first stage is ‘awareness training’, during which the 

individual learns to focus on any sensory phenomena they experience prior to a 

tic. These sensations as often referred to as premonitory urges and can involve 

unpleasant sensations such as feelings of pressure which are temporarily relived 

or reduced following a tic (Woods et al, 2005). The second stage is known as 

‘competing response training’, and involves learning to perform a voluntary 

action that is incompatible with the tic whenever an urge to tic occurs. This 

voluntary action is intended to help manage the urge to perform a tic in a way 

that differs from tic suppression (Piacentini et al., 2010).  There is evidence that 

habit reversal training can work well to reduce tics (Piacentini et al., 2010; Yates 

et al., 2016), however, access to this type of treatment is limited by the amount 

of trained professionals able to deliver it.  The treatment is also time consuming 

and may be too large a commitment for families, particularly if a long commute 

is necessary to visit specialists.  

At present the main alternative to behavioural therapy is medication and  

although few medications have received formal FDA approval for the treatment 

of GTS, a number of different drugs can be prescribed by clinicians, often based 

on their personal experience (Kurlan, 2014). Some of the main drugs prescribed 

for treatment of GTS are antipsychotics such as Haloperidol; dopamine depletors 

such as Tetrabenazine, and alpha-agonists such as Clonidine (Kurlan, 2014).  
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Although these treatments will work for some, others may not respond, or find 

that the side effects outweigh the benefits. For example, antipsychotics are often 

prescribed but have been associated with sedation, depression, increased 

appetite and Parkinsonism (Kurlan, 2014). Tardive dyskinesia has also been 

reported as a side effect of the antipsychotic Aripiprazole (Pena et al., 2011). Due 

to the known side effects of this class of drug, clinicians may prescribe other 

medications first, including alpha-2 adrenergic drugs such as clonidine, and drugs 

which deplete dopamine such as Tetrabenazine (Kurlan, 2014). Although 

Clondine has been found to outperform placebo in the treatment of tics 

(Leckman et al., 1991) and Tetrabenazine has also been found to be helpful 

(Porta et al., 2008), neither are without side effects. Clondine has been 

associated with sedation, headaches, dizziness and irritability (Kurlan, 2014); and 

sedation, depression, insomnia and restlessness are reported side effects of 

Tetrabenazine  (Jimenez-Shahed & Jankovic, 2013). 

Although there are clear merits to behavioural therapies and 

pharmacological interventions, the disadvantages of these treatments cannot be 

ignored. There is a clear need to develop alternatives which are both convenient 

and free of side effect. These alternatives may come in the form of non-invasive 

brain stimulation (NIBS) techniques.  

The approach of using NIBS to treat symptoms of GTS is rather different 

from the approaches used in behavioural therapies and pharmacology.  One key 

difference is that NIBS techniques allow a specific brain region to be targeted, 

unlike behavioural interventions which are less direct or pharmacological 

interventions which may involve influencing the level of a neurotransmitter 

throughout the whole brain. 

As discussed in Chapter 1, the neurological underpinnings of GTS are not 

yet fully understood. Although advances in neuroimaging techniques have 

implicated an array of different brain regions, many of which support the idea of 

dysfunction in cortico-striato-thalamo-cortical networks (Greene et al., 2015; 

Mink, 2006), the results are not always consistent and can be contradictory. One 
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area of the brain in which the evidence for alterations is somewhat more 

consistent is the supplementary motor area (SMA). This area of the brain has 

extensive connections to areas relating to motor control and cognitive 

processing (Picard & Strick, 2001) and has been linked to the genesis of tics in a 

number of multi-modal studies. fMRI blood oxygen level dependent (BOLD) 

signal in the SMA has been found to increase proceeding the occurrence of a tic 

(Bohlhalter et al., 2006). In addition to this, evidence from a positron emission 

tomography (PET) study found increased SMA activity in individuals with GTS 

(Eidelberg et al., 1997). Magnetic encephalography (MEG) has also been used 

and implicated the SMA as an important area in GTS. Based on the findings of a 

MEG study involving simple motor movements, Franzkowiak et al. (2012) 

suggested that the hyper-activity within M1 in GTS is caused by increases in the 

functional interaction between SMA and this area.  

In addition to findings from fMRI, PET and MEG, stimulation studies in 

individuals with GTS and neurologically typical participants provide further 

support for the involvement of the SMA in GTS. A recent study by Finis et al. 

(2013) demonstrated that it was possible to induce tic like behaviours (similar to 

echolalia) in neurologically typical individuals by stimulating the SMA with 5Hz 

rTMS. As 5Hz rTMS protocols are known to lead to temporary increases in 

excitability (Pascual-Leone et al., 1994), this provides support for the theory that 

elevated SMA excitability can contribute to the genesis of tics.  

As outlined in Chapter 1, using NIBS to reduce excitability within the SMA 

could be an effective method of reducing tics in individuals with GTS. Following 

promising results of an open label study in GTS and OCD (Mantovani et al., 2006); 

Mantovani et al. (2007) conducted a further study in which it was found that 

inhibitory 1Hz rTMS applied to the SMA for 10 days reduced tic symptoms in two 

individuals for up to 4 months after treatment. Kwon et al. (2011) also found that 

10 sessions of 1Hz rTMS reduced tic symptoms in 10 children/adolescents (ages 

11-14) over the course of a 12 week follow-up. A similar finding was reported by 

Le et al. (2013) who found that 20 sessions of 1Hz rTMS to the SMA reduced tic 
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symptoms, and that these effects lasted up to 6 months in some of the 25 

participants tested.  

Studies with tDCS have also shown promise in reducing tics. Carvalho et al. 

(2015) identified significant changes in tics which were still present at 6 months 

following 10 sessions of cathodal tDCS applied to the SMA. Finally, Mrakic-Sposta 

et al. (2008) found tics significantly reduced following 5 days of tDCS applied to the 

left motor cortex. These effects were found to be greater than in a sham condition. 

Although the previous work has shown promise, with the exception of the work by 

Mrakic-Sposta et al. (2008) the studies have not been sham controlled and the 

majority have been conducted using rTMS. One of the key advantages of tDCS 

stimulation is that it has potential for home use due to its portability and 

comparably cheap price. It is also associated with a much lower risk of major side 

effects than rTMS. Therefore, there is a need for more studies investigating its 

potential in addition to a need for further sham controlled studies using rTMS.  

In this study, the effects of a single session of cathodal/sham tDCS on tic 

symptoms was investigated. Many previous studies, including most discussed above, 

have assessed changes in tic severity using self-report based measures and semi-

structure interviews such as the Yale Global Tic Severity Scale (YTSSG). In this study 

tics were assessed using short video recordings of participants. This method has a 

number of advantages, including the ability for trained individuals to objectively 

assess tics whilst being blind to the condition. It is also relatively quick and is not 

restricted by the participant’s ability to describe their experiences of tics. 

Furthermore, it is less likely to be subject to self-reporting biases as a result of 

experiencing an intervention.  

In addition to video recordings, TMS was also used in an effort to explore how 

tDCS may be influencing cortical excitability. This was done by recording changes in 

MEP amplitudes at M1. Unlike the previous studies reported in Chapters 3 and 4, 

tDCS was not applied at the same location, therefore, any effects observed may 

suggest an indirect change resulting from the influence the SMA may exert over M1.   
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5.2 Method  
 

5.2.1 Participants 

A total of ten participants with a diagnosis of Tourette’s syndrome (N=9) 

or Chronic tic disorder (N=1) were recruited. The mean age of participants was 

22.8 years (range 16-33 years); five were male and five were female. Participants 

were recruited through a UK charity, Tourettes Action, and through a local NHS 

clinic. Some participants had diagnoses of additional co-occurring disorders and 

some were taking medications (see Table 5.1 for details).  

 
Table 5.1. Participant demographics 

ID Sex 

(M/F) 

Age Tic 

diagnosis 

Co-occurring 

 diagnoses 

Medication 

1 M 23.3 GTS N/A Clonidine 

2 M 16.1 GTS Anxiety Clonidine, Aripiprazole, Sertraline 

3 M 20.5 GTS ADHD Pentasa (not CNS active) 

4 F 20.5 GTS N/A N/A 

5 F 18.4 GTS OCD, dyscalculia, depression Citalopram (20mg) 

6 F 32.2 GTS N/A N/A 

7 F 33.3 GTS ADHD Concerta, Fluoxetine 

8 M 20.3 GTS N/A Clonidine (175mg) 

9 M 20.5 GTS ADHD Methylphenidate hydrochloride 

10 F 23.1 CTD N/A N/A 
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5.2.2 Design 

A within subjects design was used to explore the effects of sham and 

cathodal tDCS on tic expression and motor cortical excitability. The independent 

variable was tDCS which had two levels (sham/ cathodal), the dependent 

variables were the amount of change in TMS measures (IO curve and SI 1mv) and 

also the change in tic expression measured via short video clips.  Each 

experimental session was separated by a minimum of one week to avoid any 

potential carry over effects. The order in which participant’s experienced 

stimulation (sham or cathodal) was counterbalanced across participants.  

5.2.3 tDCS of the supplementary motor area (SMA) 

tDCS was delivered via a NeuroConn DC- stimulator (GmbH, Ilmenau, 

Germany) with a maximum stimulation output of 4.5mA. Stimulation was applied 

using surface sponge electrodes measuring 35 cm². The ‘active’ electrode was 

placed on the area of the scalp thought to be directly above SMA in a way which 

afforded bilateral stimulation. This location was identified in accordance with 

previous studies (Enticott et al., 2012; Finis et al., 2013; Mantovani et al., 2007)   

in which the 10-20 EEG system was used to identify the site which is 15% of the 

distance between nasion and inion anterior of the CZ location. The reference 

electrode was placed on the right hand side of the participant’s forehead. In the 

cathodal condition a 1mA current was run between the two electrodes for 20 

minutes, this was ramped up for 15 seconds at the start of the stimulation and 

ramped down over 15 seconds at the end. In the sham condition the current was 

also ramped up and down over a 15 second period, although it was only held 

constant at 1mA for 30 seconds. This resulted in a maximum current density of 

0.028 mA cm² (1mA/35cm²) in both conditions. Participants were blind to the 

experimental condition, however for practical reasons the researcher was not.  

5.2.4 TMS measurement and EMG recording 

TMS was delivered using a Magstim 200 (Magstim, Whiteland, Dyfed, UK) 

with a figure-of-8 magnetic coil (diameter of one winding 70mm). The coil was 
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held tangentially to the scalp and positioned 45° from the midline. The optimal 

location for stimulation (‘hot spot’) of the contralateral FDI was defined as the 

location over the left motor cortex which when stimulated consistently resulted 

in the largest MEP.   

MEPs were recorded using disposable, Ag-AgCl surface electrodes 

attached to the right FDI muscle in a belly tendon montage. Alcohol wipes were 

used to prepare the skin prior to application of the electrodes. The signals were 

amplified and bandpass filtered (10Hz- 2kHz, sampling rate 5kHz) then digitalized 

using Brainamp ExG (Brain Products GmbH, Gilching, Germany) controlled by 

Brain Vision Recorder (Brain Products GmbH, Gilching, Germany). Participants 

were encouraged to maintain their hand in a relaxed position on a table directly 

in front of them. Resting motor threshold (RMT) was determined as the lowest 

intensity needed to yield an MEP response of 50-100µV in the relaxed FDI 

muscle, in a minimum of 5 of 10 trials.  

A neural navigation system (Brainsight, Rogue Research Inc., Montreal 

Quebec, Canada) was used to track coil position in relation to the participant’s 

head and the location of the identified hotspot. This was done using a template 

as individual anatomical scans were not available. A chin rest was used during 

stimulation to maintain the position of the participant’s head. Participants were 

informed that they could take breaks if necessary and move if uncomfortable.  

IO curve measurement 

IO curves were measured using TMS intensities of 100, 110, 120, 130, 140 

and 150% RMT. The order of the stimuli was randomized, controlled and 

triggered via a software program (Matlab, The Mathworks, MA, USA). Each 

intensity was tested a total of 10 times and each TMS pulse was separated by an 

inter-stimulus interval (ISI) of 5 seconds (S). There was a pause every 10 pulses in 

which the coil position was checked carefully and participant comfort was also 

assessed.  
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SI 1mV measurement 

A 1mV threshold was identified as the intensity needed to yield an MEP 

of approximately 1mV when the coil was located over the hot spot. A total of 20 

pulses were delivered to this area with an ISI of 5s separating each individual 

pulse.  

TMS thresholds (RMT, SI 1mV) were not adjusted following tDCS, thereby 

allowing for identification of any changes in threshold through change in MEP 

amplitudes following stimulation.  

5.2.5 Video recording 

Video recordings lasting 8 minutes were collected both before and after 

tDCS. During this time participants were instructed to not supress their tics, to sit 

and relax and to try to stay awake. The researcher waited outside the room 

throughout recording.  

5.2.6 Yale Global tic severity scale  

The Yale global tic severity scale (YGTSS; (Leckman et al., 1989)) was used 

to rate the number, frequency, intensity, complexity and interference of motor 

and phonic tics at baseline. The scale was also used to provide an overall 

estimate of impairment (by summing motor + phonic + impairments scores). The 

YGTSS is a common measurement instrument within GTS research and has been 

found to have good psychometric properties, including internal consistency, 

convergent validity and association with clinician rating of impairment (Leckman 

et al., 1989; Storch et al., 2005). 

The YGTSS was administered by one of two experienced researchers; this 

was held constant for both sessions (sham/ cathodal).  For baseline YGTSS score 

in each condition see Table 5.3 and Table 5.4.  
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5.2.7 Procedure 
 

 

Figure 5.1. Schematic of experimental procedure. 

After gaining informed consent the YGTSS was administered by the 

primary investigator (KD) or an experienced research nurse (JF). This took the 

form of a semi-structured interview in which participants were asked about the 

tics they had experienced within the last week. Tics noticed by the researcher 

but not reported by the participant were included in the total score. On average 

this took 15-30 minutes to complete.  

  Following completion of YGTSS the participant was moved to sit directly 

in front of a camera and an 8-minute video recording was taken with the 

researcher and any other individuals (such as parents) outside of the room.   

After the video recordings the participant was seated in a comfortable 

chair with their head positioned on a chin rest and their right hand and forearm 

placed in a relaxed position on a table directly in front of them. The location of 

the participant’s head was then registered to a template (constructed from a 

consenting individuals anatomical brain scan) using the Brain sight system 

(Rogue Research Inc., Montreal Quebec, Canada), and disposable electrodes 

were attached to the hand. Following this, the hotspot for FDI stimulation was 

identified using TMS, which was then mapped onto the template brain to aid coil 

localization.  RMT was then defined before the measurement of IO curves. 

Following this SI 1mV threshold was measured and data was collected from 20 

pulses delivered at this intensity.   

After the first session of TMS the head tracker was removed and the 

researcher measured the approximate location of the SMA on the scalp using the 
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method previously described. This was marked in pen to aid placement of the 

tDCS electrode. The saline soaked sponge covered tDCS electrodes were then 

placed over this mark and over the right side of the forehead. These were 

attached using a rubber band and elasticated bandage. Participants then 

remained seated during 20 minutes of sham or active stimulation. After tDCS 

stimulation the electrodes were removed, the headband tracker was replaced 

and re-registration was performed using the neural navigation software. The 

hotspot was then checked using the previously sampled location; at times this 

required minor adjustments due to registration issues. IO curves and SI 1mV 

measures were then taken using the same intensities as in the pre tDCS 

condition. Throughout the TMS and tDCS protocols participants were able to 

watch wildlife documentaries. This was done in an attempt to maintain levels of 

arousal and attention during stimulation.   

After the second session of TMS, another 8-minute video recording was 

made with the participant alone in the room. Following this the participants 

were thanked and received financial compensation for their time. The whole 

procedure was completed twice for each participant in a counter-balanced 

fashion with at least one week separating each session.  

5.2.8 Data analysis 
 

Tic coding procedure 

Prior to tic coding the videos were anonymised, therefore, coders scored 

all videos while blind to the experimental condition. A list of potential tics was 

generated to aid tic identification using the tic type subscale of the YGTSS. Videos 

were played using VLC media player. The advanced tools options were used to 

allow videos to be slowed down and played frame by frame. Whenever possible 

a continuous 5-minute segment was sampled from the 8 minute videos. This 

sample was taken from the 2-minute point onwards to allow participants to relax 

and become familiar with the situation. For two data sets it was only possible to 

score 3 minutes of data due to camera failure and the participant falling asleep. 
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In addition to this it was not possible to analyse a continuous 5-minute segment 

for a further three data sets. For each video segment in each condition, motor 

and phonic tics were counted and averaged per minute resulting in a score of tics 

per minute (TPM). These TPM scores were then averaged to give the mean tic 

rate for each video clip in accordance with previous protocols (Himle et al., 2006; 

Nixon et al., 2014).  

Each video recording was also scored using the Modified Rush Video 

Scale (Goetz et al., 1999). The scale has five components which are as follows: 

number of body areas, motor/phonic tic frequency (scored as TPM) and 

motor/phonic tic severity, each of which have been found to correlate well with 

comparable items on the YGTSS (Goetz et al., 1999). The total impairment score, 

calculated from the Rush by summing the five measured components, has also 

been found to correlate with the ‘overall impairment rating’ on YGTSS (Goetz et 

al., 1999). Each component on the Rush is typically scored on a scale of 0-4, 

however, for the purposes of this study it was only possible to score 0-3 on the 

body areas component. This is because tics were only counted from the upper 

body and face, meaning the maximal amount of body areas was 5, which 

corresponds with a rating of 3 on the scale. As a result, the maximal score 

possible on the Rush in this study was 29 rather than 30. The scores from each 

minute segment were combined to calculate the mean Rush score for each video 

clip.  

By using the Rush scale it is possible to get an overall impression of an 

individual’s tics over a short period of time, including the severity of them. This is 

not recognised in TPM analysis, therefore, there is merit in studying the two side-

by-side.  

Assessment of inter-rater reliability 

The 5-minute video segments were first analysed by the primary 

investigator (KD) who then trained two secondary coders (ER and KF). Training 

was conducted using 1-minute video segments taken from the start of recordings 
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(these were not included in the later analysis). Once the coders were familiar 

with the distinct tics of each participant they were given 2 minute segments to 

rate. Each coder (KF and ER) scored half of the participants resulting in 40% of 

the total data being reviewed twice. As previous studies have used a sample of 

24% (Himle et al., 2006; Nixon et al., 2014) this was considered more than 

adequate.  

Inter-rater agreement for total tic counts was assessed using the 

frequency-within-interval method (Sharenow et al., 1989). In accordance with 

previously established protocols (Himle et al., 2006), each of the 2-minute video 

clips were divided into 12 consecutive 10 second intervals. The amount of tics 

counted in each of these intervals was compared with the corresponding amount 

of tics counted by the primary coder (KD) by dividing the lower number of tics 

observed by the higher number and then multiplying these values by 100. The 

scores were then averaged across all 12 segments to calculate the percentage 

agreement for each video. Using this method, the median agreement between 

the primary (KD) and secondary (ER) coders was found to be 74% (range: 50-

94%) for motor tics and 96% for phonic tics (range: 55-100%). Agreement 

between the primary coder (KD) and the other secondary coder (KF) was 73% 

(range: 50-100%) for motor and 96% for phonic tics (range: 67-100%).  

Inter-rater agreement was also checked for the Rush scores. The Rush 

protocol was designed to be used in longer time segments, therefore, the scores 

for each of the two minutes were compared by dividing the lower score by the 

higher score and then calculating average agreement across the two as opposed 

to calculating agreement in 10 second intervals. This revealed 85% agreement 

between coders KD and KF (range: 71-96%), and 86% agreement between coders 

KD and EF (range: 67-100%).  

Intra-class correlation co-efficient (ICC) analysis was also calculated to 

assess agreement (for full details see Appendix.v). This showed varying degrees 

of agreement for the different measures/subscales, however, overall reliability of 

measurement for total impairment on the Rush was deemed excellent between 
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primary and secondary coders (KD-KF reliability: ICC(2,1)=.92; KD-ER reliability: 

ICC(2,1)=.81). ICC also revealed excellent reliability for total tic score using the 

average TPM method between the primary coder (KD) and the secondary coder 

(KF), ICC(2,1)=.97 and fair reliability between primary coder (KD) and secondary 

coder (ER), ICC(2,1)=.59.  

Based on the inter-rater agreements established, analysis of the full data 

set was conducted using the scores of the primary coder.   

Input-Output curves and SI 1mV 

Peak-to-peak MEP amplitudes were estimated using in-house Matlab 

software (Mathworks, MA, USA). All trials in the 500ms period prior to MEP were 

carefully visually inspected and any trials in which there was evidence of pre-

contraction of the FDI muscle were excluded. 

 

IO curve measurements were estimated by calculating the median intra-

individual MEP amplitudes for each TMS intensity value (i.e., 100-150% of RMT). 

Linear fits were then applied to the resultant values (mean R² = 0.87). For 

alternative slope fitting details and analysis please see Appendix.vi. Median 

values were calculated rather than the mean in order to limit the effect of 

outliers.  

  

5.3 Results 
 

Video monitoring of tics: tics per minute 

A repeated measures ANOVA was calculated to explore any significant 

differences in total tic score (average TPM) following cathodal or sham 

stimulation. This revealed no significant main effect of tDCS type F(1,9)=2.25, 

p=.17; no significant main effects of time F(1,9)=2.28, p= .65 and no significant 

interaction F(1,9)=.21, p=.65. Change in average TPM scores pre/post sham 
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stimulation can be seen in Figure 5.2, whereas Figure 5.3 shows change pre/post 

cathodal stimulation.    

Additional repeated measures ANOVAs were calculated to assess any 

significant differences in motor tics following stimulation. This revealed no 

significant main effects of tDCS on motor tics F(1,9)=1.51, p=.25; no significant 

main effects of time of testing (pre/post) F(1,9)=.97, p=.35, and no significant 

interaction between the two F(1,9)=1.44, p=.26. tDCS also failed to have a 

significant main effect on phonic tics F(1,9)=3.33, p=.10; there were no 

significant effects of time F(1,9)=.77, p=.08, and no significant 

interactionbetween the two F(1,9)=.75, p=.41.   

 

Figure 5.2. Mean ± SD total tics per minute (TPM) for videos taken before and 

after sham stimulation. 
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Figure 5.3. Mean SD total tics per minute (TPM) from videos taken before and 
after cathodal stimulation. 
 
Video monitoring of tics: Rush 

A repeated measures ANOVA calculated using the total impairment score 

(body areas + tic frequency + tic severity) from the Rush revealed a significant 

main effect for tDCS type (cathodal/sham) F(1,9)=6.7 p=.03. However, the main 

effect of time (pre/post) was not found to be significant F(1,9)=1.25, p=.29; and 

there was no significant interaction between the two factors F(1,9)=.01, p=.93. 

Paired samples t-tests (two tailed) revealed no significant baseline differences 

between the sham and cathodal conditions t(9)= 1.65, p=.134. However, when 

comparing post tDCS tic severity scores, there was a significant difference 

between post sham (M=9.66, SD=3.29) and post cathodal (M=8.8, SD=3) 

conditions t(9)=2.35, p=.04. It should be noted that on average there was a small 

reduction in scores in both sham and cathodal conditions, however in both cases 

this difference was small.  Average change in total impairment scores can be 

seen for each individual in Figure 5.4 and Figure 5.5. Analysis of all sub-

components of the Rush can be seen in Appendix.vii.  
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Figure 5.4.Mean ± SD tic severity score using Rush scale before and after sham 
stimulation.  

 
Figure 5.5. Mean ± SD tic severity score using Rush scale before and after 
cathodal stimulation. 

 
Transcranial magnetic stimulation: IO curve 

Paired samples t-tests revealed no significant differences between IO 

curve slopes measured in the pre sham (M=65.53, SD=30.71) and pre cathodal 

(M=67.65, SD=46.14) conditions t(9)=-.17, p= .87. A repeated measures ANOVA 

was calculated in which time (pre/ post) and tDCS type (sham/ cathodal) served 

as independent factors. IO curve slope was entered as the dependent variable. 

The analysis revealed no significant main effects of tDCS type F(1,9)=.11, p=0.75 

or time F(1,9)=1.16, p= .31 and no significant interaction between these two 
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factors F(1,9)=.03,p=.87. Data showing average IO curve plots for each condition 

seen in Figure 5.6.  

 

Figure 5.6. Mean ± SEM IO curve slots. A: before and after cathodal tDCS, B: 
before and after sham tDCS. 
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Transcranial magnetic stimulation: SI 1mV data 

Paired samples t-tests revealed no 

significant difference between 

baseline MEP amplitude evoked in 

the SI 1mV condition in the 

cathodal (M=1302.1, SD=278.4) 

and sham conditions (M=1467.53, 

SD=514.7), t(9)=-.89, p=.397. 

Repeated measures ANOVA 

revealed no significant effects of 

tDCS type F(1,9)=.67, p=0.43; no 

significant effect of time 

F(1,9)=2.60, p= .14 and no 

significant interaction between the 

two factors F(1,9)=.11, p=.75. See 

Figure 5.7 for average change in SI 

1mV measures. 

 
 

5.4 Discussion 
 

Effects of cathodal tDCS on tics 

The effects of applying 1mA cathodal or sham stimulation to the SMA for 

20 minutes were explored. Average scores of TPM were compared before and 

after cathodal and sham stimulation. The analysis revealed no significant effect 

of tDCS type, no effect of time (pre/post) and no interaction between the two 

factors.  Analysis of the video data using the Rush total impairment score (in 

which both tic frequency and severity are taken into account) revealed no 

significant main effects of time and no significant interaction. However, there 

was a significant main effect of tDCS type. Further exploration with paired 

Figure 5.7. Mean SEM MEP amplitude 
evoked from SI 1mV pulse A: Pre/ post 
cathodal stimulation and B: pre/post 
sham stimulation. 
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sample t-tests revealed that although there were no significant differences at 

baseline between sham and cathodal conditions, there was a significant 

difference between them in the post stimulation measure. However, this effect 

and the differences between the two measures was small, and without a 

significant interaction must be treated with caution. Further analysis with the 

sub-component of the Rush scale failed to reveal any further significant 

differences.  

Although there was no strong evidence of change in tic frequency or 

severity here, it should be noted that there are a number of important 

differences between this study and those which have previously reported 

cathodal stimulation to be effective (Carvalho et al., 2015; Mrakic-Sposta et al., 

2008). In particular, the effects of cathodal stimulation were only explored 

immediately following a single application. To my knowledge there are no other 

papers investigating the immediate effects of cathodal tDCS on tics, however, 

there is evidence suggesting that more prolonged stimulations may lead to 

stronger effects. In their single case study,  Carvalho et al. (2015) reported a 

significant 21% reduction in the YGTSS (tic severity + deficit) following 5 sessions 

of stimulation; this increased to 41% following 10 sessions.  Mrakic-Sposta et al. 

(2008) also reported an increase in effect as time went on, with the effects of 5 

days of cathodal stimulation applied to the motor cortex being significantly 

stronger than those occurring on the 4 previous days.  

In some ways the lack of an effect immediately after stimulation is 

surprising, as numerous behavioural and physiological studies have suggested 

that tDCS can exert an influence both during, and for a number of hours after 

stimulation. However, it is possible that influencing a phenomenon such as tics in 

GTS is far more complex than simply changing excitability within M1 or 

increasing performance on simple motor based tasks. The mechanisms 

underlying the effects of tDCS within M1 are still not fully understood, and the 

underlying effects of longer courses of stimulation and at different locations 

remain even more enigmatic. However, it has been speculated that the more 
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long-term effects caused by tDCS may depend on modulations of the strength of 

underlying synaptic connections (Stagg & Nitsche, 2011). This may explain why 

findings of accumulative effects of tDCS stimulation in neurologically typical 

individuals revealed sustained increases in cortical excitability with increased 

testing session, rather than showing increased sensitivity to stimulation at each 

session (Galvez et al., 2013).  

It is theoretically possible that if repeated testing sessions were used to 

build up accumulative effects then changes in tics would have been revealed 

even with this small sample size. However, at present, this study serves as the 

first of its kind to investigate the immediate effects of cathodal tDCS applied to 

the SMA. 

Effects of cathodal tDCS applied to the SMA on cortical excitability at M1 

Although the main focus of this study was exploration of cathodal tDCS 

on tics, changes in MEPs measured from M1 were also explored in an attempt to 

provide physiological evidence of change in cortical excitability induced by 

cathodal stimulation. It may seem counter-intuitive to measure MEPs from the 

hand area of M1 when cathodal stimulation was applied to the SMA, however, 

these areas are known to be highly connected and, therefore, influencing 

excitability of the SMA may impact on M1. Evidence to support this comes from 

dual site TMS experiments in which applying a conditioning pulse to the SMA has 

been found to influence MEP amplitudes measured from the M1 just 

milliseconds afterwards (Arai et al., 2012; Civardi et al., 2001; Oliveri et al., 2003). 

These studies clearly demonstrate connectivity between the regions and how 

causing a brief interference within the SMA can impact on the output of M1. 

Although no studies appear to have investigated changes in MEP 

amplitude after tDCS stimulation of the SMA, this has been explored using rTMS. 

Matsunaga et al. (2005) found that 750 pulses of 5Hz rTMS to the SMA increased 

MEP amplitudes for up to 10 minutes, which strongly suggest that changes of 

excitability induced by NIBS within the SMA can be measured by recording MEPs 
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at M1. Therefore, it is not clear why significant differences were not found in this 

present study between the sham and cathodal conditions for either IO curves of 

SI 1mV.  

Timing of measurements seems unlikely to be an issue, as all TMS 

measurements were repeated within 5-15 minutes of tDCS ending which should 

still be well within the period of expected after-effects. It is possible that the 

stimulation parameters used (1mA cathodal tDCS for 20 minutes) may have been 

inadequate to induce significant changes in excitability in this participant sample. 

Although a number of studies have demonstrated significant decreases in 

cortical excitability following similar applications of cathodal stimulation (see 

Table 2.1), the effects produced appear to be weaker on average when 

compared to those of anodal stimulation (Horvath et al., 2015) and physiological 

changes following cathodal stimulation are not always found (for example 

Horvath et al. (2016), Kim et al. (2014)). In addition to this, the majority of 

evidence of physiological change induced by tDCS has all been measured from 

M1 and it is possible that the effects at the SMA may differ. It is also possible 

that the electrode montage used in this study was not optimal for stimulating 

SMA.  

Summary and limitations 

The effects of 20-minute stimulation of the SMA using 1mA 

cathodal/sham tDCS were explored. The average number of tics per minute was 

not significantly altered by either stimulation. However, a significant difference 

was observed between the post sham and post cathodal scores for the Rush 

measure of total tic impairment, despite no significant differences at baseline. 

Although this finding is somewhat promising, it should be treated with extreme 

caution as the difference was small. Measures of cortical excitability (IO curve, SI 

1mV) failed to be influenced by either stimulation.  

The findings suggest that a single session of cathodal tDCS has no clear, 

immediate effects on tics. As discussed, it may be that a single session is not 



134 
 

enough to induce any measurable behavioural changes in such a complex 

phenomenon, and that repeated stimulations may be necessary. In order to fully 

test the effectiveness of cathodal tDCS in reducing tics, a sham controlled study 

over a number of days is necessary. Arguably, this should involve a range of 

measures such as video recording, self-report and physiological measures in 

order to identify objective, subjective and physiological markers of change.  
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 Case study report - Can repeated 

applications of cathodal tDCS help to reduce tics in 

Tourette’s syndrome? 
 

Key words: Gilles de la Tourette’s syndrome (GTS), transcranial direct current 
stimulation (tDCS), supplementary motor area (SMA), Yale global tic severity 
score (YGTSS), premonitory urge to tic scale (PUTS), false discovery rate (FDR), field 
of view (FOV), repetition time (TR), echo time (ET) tics per minute (TMS).  

 

6.1 Introduction 
 

As discussed in Chapter 5, there is promising evidence that NIBS 

techniques could be effective in reducing tics in individuals with GTS. However, 

despite some positive findings, the quantity of research is sparse, particularly 

with regard to tDCS. With the exception of two small scale studies (Carvalho et 

al., 2015; Mrakic-Sposta et al., 2008) there is little published work and, therefore, 

little consensus regarding what works and how these effects manifest. In my own 

work (presented in Chapter 5), I failed to find any clear evidence that a single 

session of cathodal tDCS was any different to sham stimulation. It is possible that 

a single session of stimulation is too weak an intervention to have any 

measureable impact, whereas repeated sessions may be more effective. In 

support of this, substantially larger reductions in tics have been reported after 10 

days of stimulation when compared with four (Carvalho et al., 2015), and the 

effects of five days of stimulation have been found to be larger than those 

measured on any of the previous four days  (Mrakic-Sposta et al., 2008).   

Although the two studies by Mrakic-Sposta et al. (2008) and Carvalho et al. 

(2015) both suggest that tDCS could be a useful tool in the reduction of tics, 

there are important methodological differences between the two. Mrakic-Sposta 

et al. (2008) conducted a sham controlled study to compare the effects of 

cathodal/sham tDCS in two individuals with GTS. Effects on tics were measured 

using video recordings and the Yale global tic severity scale (YGTSS), a visual 
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analogue scale (VAS) for wellness was also used. A significant reduction in tic 

frequency (measured from video data) was found in the cathodal but not the 

sham condition, this was also apparent in scores on the YGTSS and ratings of 

‘quietness’ on the VAS. These findings provide support for the effectiveness of 

cathodal tDCS in reducing tics, however, the measures tell us nothing about the 

biological underpinnings of these changes. This could be particularly important in 

understanding any long term effects, and was explored in more depth by 

Carvalho et al. (2015). In a single case study Carvalho et al. (2015) found that ten 

sessions of consecutive cathodal stimulation applied to the SMA reduced scores 

on the YGTSS, hence suggesting a reduction in perceived tics. Importantly, a 

change in resting state fMRI was also seen between scans taken before and after 

the ten days of stimulation. In particular, activity within the left precentral region 

and left cerebellum of the sensorimotor resting state network was reduced.  The 

sensorimotor region has repeatedly been found to show increased activity in 

individuals with GTS (Rickards, 2009) as has the cerebellum (Bohlhalter et al., 

2006; Pourfar et al., 2011) and animal work has suggested that spiking activity 

occurs in these regions immediately before the production of tic like behaviours 

(McCairn et al., 2013). Given these findings, it may be that cathodal tDCS can 

reduce tics by downregulating these areas. 

In the following case-study I aimed to build upon the previous work by 

Carvalho et al. (2015) and Mrakic-Sposta et al. (2008) by using a sham controlled, 

multi modal design to explore the effects of cathodal tDCS on tics.  Video 

recordings were used to obtain an objective measure of tics and their severity, 

questionnaires recorded the participants’ own views and MRI scanning was used 

to identify any substantial neuroanatomical changes.   

Unlike previous studies, stimulation was applied in the participants own 

home with remote supervision. The reasons for doing this were two fold. Firstly, 

for tDCS to fulfil its potential as a viable alternative to pharmacology or other 

forms of stimulation, it is necessary that it works in day-to-day life. Secondly, this 

method caused the least disturbance to the normal routine of the participant 
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and their family.  Although two well cited advantages of tDCS are its portability 

and relative ease of use, very few studies have been conducted outside of highly 

controlled laboratory settings. In one notable exception, Kasschau et al. (2016) 

found that patients with muscular sclerosis were able to cope well with remote 

supervision of tDCS application and that both tolerability of stimulation and 

protocol adherence were good.  If tDCS is to be developed and marketed as a 

useful therapeutic technique, it is critical that it can be flexible. Therefore, what 

is relinquished in experimental control in home use studies is gained in valuable 

experience and knowledge of the techniques potential for treatment in day-to-

day life.  

6.2 Method 

6.2.1 Participant details 

The participant was a 16-year-old male who had received a formal 

diagnosis of Tourette’s syndrome at the age of 8 years. The participant had no 

additional diagnoses, however, elevated levels of anxiety had previously been an 

issue, for which the participant took the SSRI Sertraline (100mg). Some obsessive 

compulsive behaviours were also reported, although there was no formal 

diagnosis of OCD. In addition to Sertraline the participant was also on a stable 

medication regime using both Clondine (200mg) and Aripiprazole (10mg).  

6.2.2 Design 

Phase 1 

A schematic of all experimental procedures is summarised in Figure 6.1. 

During the first part of this case study, the participant and one of their parental 

guardians visited the University of Nottingham where baseline MRI scans and 

questionnaire measures (described below in 6.2.5) were collected. During this 

visit, the participant and their guardian were trained by the primary researcher 

(KD) to safely and effectively use the pre-programed tDCS machine. They then 

returned home with detailed instructions and the equipment needed to start the 

first phase of this home use study.  
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Over 10 consecutive days, the participant received sham stimulation 

within the comfort of his own home. Application of the stimulation was 

monitored remotely by the primary researcher (KD). With the exception of a few 

issues on the first day, application and use of tDCS went well. During the 

stimulation period, ten-minute video segments of the participant passively 

watching the television were recorded every other day. The first video clip was 

assessed to give guidance regarding camera positioning and lighting to ensure 

that tics could clearly be seen. After this, the videos were not seen by the 

primary researcher (KD) so that they could later be coded with the researcher 

blind to the condition.  

Four days after the final sham stimulation the participant returned to the 

University of Nottingham to repeat the questionnaire measures and to be 

scanned. The participant then returned home to complete a further 10 days of 

consecutive 1mA cathodal stimulation and video recordings every other day. Five 

days after the last application of tDCS the participant returned to the University 

of Nottingham for follow up questionnaires and scanning. An additional follow 

up was completed approximately one month later.   

Phase 2 

After reviewing the findings of the first study, it was decided that a 

second phase of the experiment would be run in which a stronger intensity of 

tDCS would be used (Figure 6.1B). Two months elapsed between the final 1mA 

cathodal stimulation and the new data collection. As sham stimulation appeared 

to have a limited effect on tics, the effects of a sham protocol were not 

measured again in phase 2. Instead a more extensive baseline was measured in 

which home video recordings were included in addition to scans and 

questionnaire measures. Following the 10-day baseline, a further 10 days of 

consecutive stimulation were completed, this time using 1.5mA cathodal 

stimulation. During this time, videos were also recorded every other day.  A final 

follow up including scanning and questionnaire measures was taken five days 

after the last stimulation.  The participant was always blind to the experimental 
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condition, and all data were analysed with details of experimental condition 

removed.   

 

Figure 6.1. Schematic showing the study design. A. shows the initial baseline, 

sham, 1mA cathodal and 1 month follow up conditions which were tested. B. 

shows the second phase of the study in which 1.5mA cathodal stimulation was 

tested against a new baseline. Two months elapsed between the final 1mA 

cathodal stimulation and the measurement of the second baseline. 
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6.2.3 tDCS of the supplementary motor area (SMA) 

tDCS was delivered via a NeuroConn DC 

stimulator mobile (GmbH, Ilmenau, Germany). This 

was programed in advance by the researcher (KD) 

to deliver one of three options (sham, 1mA, 

1.5mA). The stimulator was set so that it could only 

be used once within a 22 hour period and the 

settings could not be changed by anyone other 

than the researcher. In the first session, the stimulator 

was set to deliver a 20-minute sham protocol, in 

which the current was ramped up for 15s, held 

constant at 1mA for 30s and then ramped down over 

a further 15s period. For the second part of the initial 

study the machine was programed to deliver 1mA stimulation for 20 minutes 

with a ramp up and ramp down time of 15s at the start and end. In phase 2 of 

the study the stimulator intensity was increased to 1.5mA and kept constant for 

20 minutes; the ramp up and down time were also set to 15s.  The current was 

run between two saline soaked sponge covered electrodes, the smallest of which 

measured (25cm2) and was placed approximately over the SMA. This location 

was identified in accordance with previous studies (Enticott et al., 2012; Finis et 

al., 2013; Mantovani et al., 2007), in which the 10-20 EEG system was used to 

identify the site which is 15% of the distance between the nasion and inion, 

anterior of the CZ location.  The ‘reference’ electrode measured 100cm2 and was 

placed on the upper deltoid muscle on the participant’s right arm (Figure 6.2). 

The participant and their guardian were trained to apply the stimulation during 

the baseline session. Over the first few sessions the electrode placement was 

monitored remotely via photographs showing electrode montage. 

Communication and support were provided throughout the studies duration.  

Figure 6.2. Schematic of 
electrode placement with the 
smaller electrode placed over 
the SMA, and the larger one 
placed over the upper deltoid 
muscle of the arm. 
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6.2.4 Video recordings 

10-minute video clips were recorded on alternative days during 

stimulation periods. The video clips were taken by the participant’s guardian 

while the participant passively watched television in their family home. These 

video clips were collected with the aim of generating naturalistic data in which 

day-to day tic levels could be recorded. Unfortunately, this resulted in some 

variation in the timings for both videos and stimulation, and a miscommunication 

resulted in the videos being recorded before stimulation in phase 1 (sham and 

1mA cathodal conditions) of the study. In the sham condition the videos were 

taken on average 39 minutes prior to stimulation (SD= 50 minutes) at 17.28pm 

(earliest 15:51pm, latest 19:41pm). In the 1mA cathodal condition the average 

duration between video and stimulation was 32minutes (SD=26 minutes) and the 

videos were taken on average at 17:46pm (earliest 16:08 pm, latest 19:33pm) 

which is similar to those recorded during sham. 

During the second phase of the study (no stimulation baseline and 1.5mA 

cathodal) the videos were consistently recorded after stimulation. However, the 

average timing of video recordings was far later in the 1.5mA condition.  At 

baseline videos were taken on average at 18:22pm (earliest 16:45pm, latest 

22:27pm) whereas this was 21.30pm in the 1.5mA cathodal condition (earliest: 

19:14pm, latest 22:43pm). In the 1.5mA condition the duration between video 

and stimulation was 147 minutes on average (SD=125 minutes). These timing 

differences should be kept in mind when considering the results and 

interpretations of this measure.  

6.2.5 Questionnaire measures  

All questionnaire measures were administered by an experienced 

professional (JF) who was blind to the experimental condition. The measures 

used were as follows:  
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Yale Global tic severity scale (YGTSS) 

The Yale global tic severity scale (YGTSS; (Leckman et al., 1989)) was used 

to rate the number, frequency, intensity, complexity and interference of motor 

and phonic tics at the various time points. The YGTSS was selected as it has good 

psychometric properties including internal consistency, convergent validity and 

association with clinician rating of impairment (Leckman et al., 1989; Storch et 

al., 2005).  

Premonitory urge to tic scale (PUTS) 

The Premonitory Urge for Tics Scale (PUTS; Woods et al. (2005)) was used 

to measure the experience of sensation prior to the onset of a tic. PUTS is a self-

report measure which contains 10 items designed to assess different sensory 

properties of urges and their relationships to tics. The measure has been found 

to have good internal consistency, test-retest reliability and construct validity 

among 11-16 year olds (Woods et al., 2005). 

6.2.6 Scanning protocol (anatomical, resting state FMRI) 

All scanning procedures took place at the Sir Peter Mansfield Imaging 

Centre (SPMIC), University of Nottingham using a 3T Philips Achieva system 

(Philips Healthcare, Best, Netherlands) and a 32-channel SENSE radio frequency 

head coil. Following thorough explanation of the scanning procedure, the 

participant was placed supine and head-first into the scanner. Head motion was 

minimized by inserting foam pads between the participant’s head and the coil.  

The participant wore ear plugs and also large headphones for hearing protection; 

the headphones also provided additional padding around the head, thereby 

helping to reduce potential head motion.  

T1- weighted anatomical scans were acquired using the magnetization-

prepared rapid gradient echo (MPRAGE) sequence (180 continuous axial slices 

with 1mm³ isotropic resolution, field of view (FOV)= 256x256 mm, matrix size = 

256x224, repetition time (TR)= 8.6ms, echo time (TE)= 4.0ms). Following this T2* 



143 
 

weighted resting-state functional MRI (rs-fMRI) images were acquired using 

gradient-echo echo-planar imaging (GE-EPI) sequence (TR=2000ms, TE=35ms, 

FOV= 208x208 mm, matrix size 64x64 with 34 slices, 320 dynamics with voxel 

size = 3.25mm²). 

6.2.7 TMS data collection 

In the original design of this study it was planned that TMS measures of 

global cortical excitability (IO curve), intracortical inhibition (SICI) and facilitation 

(ICF) would be recorded during each visit to the University of Nottingham. TMS 

was included in the design to supplement the other techniques, and to give 

insight into any potential changes in GABAergic activity. However, although this 

was achieved in the first baseline session, it was not possible to obtain full data 

sets in two subsequent time points due to participant discomfort (headache and 

desire to tic). As a result, the measure was dropped from the experiment and not 

analysed further due to a lack of data.    

6.2.8 Tic coding procedure (analysis of video data) 

Prior to tic coding the videos were anonymised, thereby allowing coders 

to score the videos while blind to the experimental condition. A list of potential 

tics was generated to aid tic identification using the tic type subscale of the 

YGTSS. Videos were played using VLC media player and the advanced tools 

options were used to allow videos to be slowed down and played frame by 

frame. For phase one of the experiment (sham vs. 1mA cathodal) the first video 

from each condition was dropped from the analysis due to poor quality in the 

first sham session. The 10-minute video clips were analysed in whole by the 

primary coder (KD) in the first phase of the experiment. However, statistical 

analysis revealed no differences between scores calculated from 10 vs. 5 minute 

segments, therefore only 5 minutes of video were scored for the second phase 

(baseline vs. 1.5mA). For each video segment, motor and phonic tics were 

counted and averaged per minute resulting in a score of tics per minute (TPM). In 
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accordance with previous protocols (Himle et al., 2006; Nixon et al., 2014) these 

TPM scores were then averaged to give the mean tic rate for each video clip. 

 Each video recording was also scored using the modified Rush video scale 

(Goetz et al., 1999), resulting in scores for motor/phonic tic severity, 

motor/phonic tic frequency, number of body areas and a total impairment score 

calculated from the sum of the others. Each component on the Rush is typically 

scored on a scale of 0-4, however, for the purposes of this study it was only 

possible to score 0-3 on the body areas component. This was because tics were 

only counted from the upper body and face meaning the maximal amount of 

body areas was 5, which corresponds with a rating of 3 on the scale. As a result, 

the maximum score possible on the Rush in this study was 29 rather than 30. The 

scores from each minute segment were combined to calculate the mean Rush 

score for each video clip.  

Assessment of inter-rater reliability 

In the first phase (sham vs 1mA cathodal) of the study, continuous 2 

minute segments from each video were selected at random and scored by a 

trained secondary coder (KF), resulting in 25% of the total video duration being 

scored twice. As previous studies have used a sample of 24% (Himle et al., 2006; 

Nixon et al., 2014) this was considered more than adequate.  For the second 

phase of the experiment (baseline vs 1.5mA cathodal) 1.5 minutes of data were 

cross-checked (30% duration of the 5 minute videos analysed).  Using this 

method, the median agreement between the two coders for phase one of the 

experiment was 69%; this was 77% for the second phase.  

6.2.9 rs-fMRI data pre-processing 

The rs-fMRI data was pre-processed using the Statistical Parametric 

Mapping toolbox (SPM v8; www.fil.ion.ac.uk/spm) for Matlab (Mathworks, MA, 

USA). The structural and functional images were manually reoriented so that the 

origin was set to the anterior-commissure posterior-commissure (AC-PC) plane. 

The functional scans were then corrected for head motion using the six rigid 
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body motion parameters and by realigning to the first volume in the scanning 

sequence. In order to account for potential head movements between the 

anatomical and resting state scans the mean functional image was then co-

registered to the respective structural scan. Following these processing steps, 

both the structural image and functional images were normalized to the 

Montreal Neurological Institute (MNI) template. Finally, the normalized 

functional images were smoothed using an 8mm full-width half-maximum 

(FWHM) Gaussian kernel. Throughout the pre-processing steps, data was visually 

inspected to ensure quality.  The data were further pre-processed using ART- 

based scrubbing for functional outlier detection using the functional connectivity 

SPM toolbox Conn v.15d (Whitfield-Gabrieli & Nieto-Castanon, 2012). Scrubbing 

is a censoring technique proposed by Power et al. (2012) which makes it possible 

to identify and address subtle movement artefacts the data imaging data. This 

method identified a total of 7 time points during the sham scan, 9 during the 

active scan, 2 during the phase2 baseline scan and 5 during the final scan which 

was measured after the 1.5mA cathodal condition. No time points were 

identified as outliers in the phase 1 baseline condition, nor in the follow up 

condition.  

Analysis of resting state connectivity 

Following the initial pre-processing steps the SPM toolbox Conn v.15d 

(Whitfield-Gabrieli & Nieto-Castanon, 2012) was used to assess connectivity 

between different areas at rest. This was achieved by entering each individual 

scan into the first level analysis as a separate condition, with the respective 

motion parameters (identified previously using the six rigid body motion 

parameters) and outliers (detected using ART-based scrubbing) entered as 

covariates in order to guard against spurious correlations which have been 

known to arise due to subject motion (Power et al., 2012). The steps applied 

during this analysis included linear de-trending and de-meaning followed by 

regression of nuisance parameter signals (entered as co-variates) from white 

matter, CSF and their first temporal derivatives. Functional rs-fMRI images were 
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then band-pass filtered (0.009 < ƒ < 0.001) in order to remove physiological 

fluctuations occurring due to respiratory and cardiac noise. Following these 

steps, a general linear model (GLM) for connectivity was estimated for each scan 

and these correlations were transformed using r-z-transformation. A total of 132 

regions of interest (ROI) were identified based on the default atlas available in 

CONN which combines the cortical and subcortical regions of the FSL Harvard-

Oxford atlas with cerebral areas from the automated anatomical labelling (AAL) 

atlas. It was not always possible to generate z-scores for all ROIs; in particular, in 

4 of the 6 scans connectivity to some areas of the cerebellum was not calculated 

(3-4 regions per scan of a possible 18 identified as cerebellum by the atlas). This 

was due to issues during the planning of the scan which resulted in this area 

being cropped from the FOV. These data points were therefore removed from 

further analysis. In addition to this, if the sum of the z-scores for a particular ROI 

was smaller than 0.01 and larger than -0.01 these ROIs were removed from 

further analysis. This only effected the values obtained in the second baseline 

scan and resulted in the removal of additional ROIs within the cerebellum.   

Statistical analysis of rs-fMRI: average connectivity 

 Paired sample t-tests were used to compare average differences in 

functional connectivity between the different scans. This was done separately for 

negative and positive correlations based on regions identified from the active 

condition. Only half of the correlation matrix was used in order to avoid 

duplicates. The following steps were applied: 

1. Any ROIs showing positive connectivity values (z-score >0) in the active 

condition were identified.  

2. The z-scores identified for these ROIs were then compared between the 

different scans. For example, to assess differences in the averaged 

functional connectivity between sham and baseline scans the z-scores in 

the predefined ROIs (from the Active scan) were compared using paired 

samples t-tests.  
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3. The same procedure was completed to test for changes in ROIs which 

showed negative connectivity in the active condition (z-score <0).   

The same steps were used for the second phase of the experiment, however, the 

scan acquired after 1.5mA cathodal (active2) was used in steps 1 and 2 rather 

than the scan acquired after 1mA stimulation (active).  

Statistical analysis of rs-fMRI: Identifying differences in functional connectivity 

across ROIs 

The data were analysed further to identify statistically significant differences in 

functional connectivity between ROIs across the different scans. Paired sample t-

tests were used to compare the connectivity of each ROI in the sham condition 

to baseline. The same procedure was also carried out to compare the 

connectivity of ROIs in the Active condition to those in the baseline condition 

and between the active and sham conditions. Paired samples t-tests were also 

used to assess differences between ROIs in the baseline2 and active2 conditions. 

The resulting p values from these t-tests were corrected using the false discovery 

rate (FDR). 

 Statistical analysis of rs-fMRI: identifying ROI pairs which predict change 

Using the data acquired from phase 1 of the experiment it is possible to 

explore how any changes from baseline in the active condition may predict the 

change from baseline seen in the Post condition. This was explored using two 

different methods. The first method involved using a customised script in Matlab 

(Mathworks, MA, USA) to calculate a series of linear regression analyses for the 

purpose of identifying any significant ROI pairs in the active - baseline condition 

which significantly predicted change in connectivity in the post - baseline 

condition. The false discovery rate was used to correct for multiple comparisons. 

To determine if the levels of variance explained by these ROI pairs was 

significantly different to that which would be expected from non-intervention 

(sham-baseline) a paired samples t-test was used to compare differences 

between the obtained R² values.    
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 Using the second analysis method the correlation coefficients between 

sham and post, and between active and post were measured. Corrections for 

multiple comparisons were addressed using false discovery rate. A z-test was 

then used to test whether the correlations obtained for the active-baseline 

condition were significantly different from those obtained in the sham- baseline 

condition.  

6.3 Results 
 

6.3.1  Tic counts measure from video data 

 

Phase 1 

 

Figure 6.3. Mean and SD of tic per minute counted from ten-minute video 
segments recorded on alternate days during sham and 1mA cathodal (active) 
conditions. 
 

There were no clear differences in total tics per minute between the 

sham and cathodal conditions. There was also no clear pattern of results when 

the video data was analysed using the Rush scale. Average tics per minute are 

shown in Figure 6.3.  
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Phase 2

 

Figure 6.4. Mean and sd of tic per minute counted from video segments collected 
during baseline2 which was taken after 2 months with no stimulation, and after 
10 days of 1.5mA cathodal stimulation (active2). 

There was no clear difference between the number of tics counted per 

minute in the sham and 1.5mA cathodal tDCS. Rush scores were also not clearly 

influenced by the stimulation. Average scores from each video are shown in 

Figure 6.4. 

6.3.2 Scores on questionnaire measures 

Phase 1 

 

Figure 6.5. YGTSS score on the various subcomponents measured at baseline, 
after 10 days of sham stimulation, after 10 days of 1mA cathodal stimulation 
(active) and in a 1 month follow up (post) condition. 
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There was a gradual decrease in global severity score on the YGTSS in 

which the final follow-up measure was 24% smaller than the value given at 

baseline (Figure 6.5). Examination of the subscales for total motor and total vocal 

(sum of the number, frequency, intensity, complexity and interference 

components) revealed no clear pattern of tic reduction following 1mA cathodal 

stimulation. The effects on the global severity score appear to be primarily driven 

by changes in impairment ratings.  

Scores on the PUTS also gradually declined over the course of the study. 

Scores in the sham condition showed a 21.7% decrease from baseline, which 

enlarged to a 34.8% decrease after cathodal and a 39.1% decrease in the follow-

up measure.  

Phase 2 

 

Figure 6.6. YGTSS score on the various subcomponents measured during a second 
baseline (baseline2) taken over 2 month after any active stimulation took place 
and after 10 days of 1.5mA cathodal stimulation (active2). 
 

Scores on the YGTSS global severity score decreased 35% from baseline 

after 1.5mA cathodal stimulation. Scores on the total motor tic component 

reduced by 45.8%, and impairment rating decreased by 33.3% (Figure 6.6). There 

was no change in the total vocal tic score. Scores on the PUTS reduced by 14.3% 

after 1.5mA cathodal tDCS.  
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6.3.3 Resting state fMRI 

Phase 1: average connectivity 

  

 

Figure 6.7. Plots showing changes in functional connectivity from baseline for 
sham stimulation (top left), active stimulation (top right) and post stimulation 
(bottom left). Bottom right shows differences in functional connectivity following 
active stimulation compared to sham).  

A total of 128 ROI pairs remained in the analysis after the removal of 

regions for which there was insufficient data (defined as ROIs in which the sum 

across all possible pairings was <0.01 and >-0.01). This data was then analysed 

using the methods described above in 6.2.9. Paired sample t-tests revealed that 

the average amount of positive connectivity between ROIs was significantly 

larger in the scan taken after 1mA cathodal stimulation (active) compared to the 

baseline t(4849)=31.04, p= <.0001. There was also significantly stronger positive 

connectivity overall in the 1 month follow up condition (post) in comparison to 

baseline t(4849)=7.68, p=<.0001. Positive connectivity was actually lower in the 
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sham condition than at baseline, however, this effect was notably smaller than 

the other comparisons t(4849)=-3.01, p=.0027. Finally and most importantly, 

there was a clear difference between the scans taken following sham and active 

stimulation t(4849)=35.91, p= <.001, with the active scan revealing significantly 

more positive connectivity.  

Separate paired sample t-tests were calculated to explore differences 

between areas of negative connectivity. These revealed that the active scan had 

significantly stronger levels of negative connectivity than the baseline scan 

t(3277)=31.93, p= <.0001. The scan taken following sham stimulation also had 

significantly stronger negative functional connectivity than the baseline 

condition t(3277)=5.71, p= <.0001. No significant differences were found 

between the baseline and follow up (post) scan t(3277)=1.28, p= .20. The 

strength of the negatively connected ROIs was stronger after 1mA cathodal 

stimulation (active) compared to connectivity following sham stimulation 

t(3277)=27.01, p= <.0001. The contrasts between the different scans can be seen 

in Figure 6.7. 

Phase 1: Identifying statistical differences in functional connectivity across ROIs 

 In order to further investigate differences between ROIs, paired sample t-

tests were used to compare the connectivity of each ROI to all other ROIs 

between baseline and sham scans, baseline and active scans, and between 

sham and active scans. The resulting p values were corrected for multiple 

comparisons using FDR.  

The analysis revealed a total of 41 ROIs which showed significant 

differences (p <0.05, FDR corrected) in connectivity between the baseline and 

sham scans, including one region of the cerebellum and both the left and right 

accumbens. When a more conservative alpha level was used (p<0.01, FDR 

corrected), a total of 23 ROIs were identified including areas within the 

precentral gyrus, inferior frontal gyrus (IFG), superior temporal gyrus (STG) and 

inferior temporal gyrus (ITG). Differences in the left accumbens also remained 
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statistically significant. A full list of ROIs can be found in Appendix.Viii. 

Comparison of ROIs in the active scan compared to the baseline scan 

revealed 42 ROIs which showed statistically significant differences in connectivity 

(p<0.05, FDR corrected), including 5 regions within the cerebellum and the right 

accumbens. A total of 16 differences between ROIs were identified when a more 

stringent criteria was applied (p<0.01, FDR corrected), including two regions of 

the cerebellum, regions in the IFG, ITG and supramarginal gyrus (SMG). A full list 

of ROIs can be found in Appendix.ix. 

A number of the ROIs identified as statistically different from baseline in 

the sham condition, were also found to be statistically different from baseline in 

the active condition (12 in total). However, when the scans from the active and 

sham conditions were compared directly, a large number of differences were 

also found. Using a conservative threshold of p=<0.01 (FDR corrected) a total of 

51 ROIs were found to be statistically different (A full list of ROIs can be found in 

Appendix.x. Of these differences, some of the largest (p<0.001) were seen 

between the right post central gyrus, the left posterior division of the superior 

temporal gyrus (STG), the left posterior division of the IFG, the right postcentral 

gyrus, 3 regions of the lateral occipital cortex, left/right central and parietal 

operculum cortex and the right planum temporale. There was also a strong 

statistical difference (p<0.001) between both left and right regions of the 

supplementary motor area (SMA).  

Phase 1: Identifying ROI pairs which predict change 

First it was necessary to identify if any of the ROI pairs which were 

different in the active condition compared to baseline (active – baseline) were 

significantly different to the relative amount of change between the two scans 

(active – baseline). In order to assess this the following steps were followed:  

1: Mean and standard deviation of change in the active – baseline condition 

were calculated.  
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2: Scores from the active condition were standardized relative to those derived 

from step 1. 

3: ROI pairs with change scores greater or less than 1.96 STD from the mean 

were identified.  

This analysis revealed a large number of ROI- pairs that can be seen in Figure 6.8. 

These ROIs were used in the subsequent analysis described below.   

 

Figure 6.8. Left image: shows the change in connectivity strength (active-
baseline) expressed as standard scores. Right image: shows a binarised image 
identifying those ROI pairs with standard scores greater than 1.96 or less than -
1.96. 

Two methods were used to identify ROIs which predict change following 

active stimulation in the follow up condition (post). The first involved a series of 

linear regression analyses which were conducted to identify any significant ROI 

pairs in the active-baseline condition (identified above) which predict change in 

connectivity in the post-baseline condition (corrected for multiple comparisons 

using false discovery rate (FDR)). This analysis identified a number of ROIs. In 

order to test that the variance explained by this condition significantly differed to 

that which would be expected in a non-intervention case the results obtained 

were tested against those found when the same analysis was conducted for the 

sham-baseline condition. This was done using a paired sample t-test comparing 

the R² values obtained from the active-baseline condition (M=0.52, SD= 0.12) to 
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those obtained using Sham-Baseline condition as predictors (M=0.47, SD= 0.19). 

The t-test revealed that the two are statistically different t(125)=-4.23, p=<.001. 

This suggests that changes in connectivity found in the post condition are more 

reliably predicted by changes from baseline in the active than sham conditions.  

Using the second analysis method, the correlation coefficients between 

ROI pairs in the sham and post conditions and between active and post 

conditions were measured. Corrections for multiple comparisons were addressed 

using false discovery rate.  A z-test was then used to determine whether the 

correlations obtained for the active/baseline condition were significantly 

different from those obtained in the sham/ baseline condition. A number of ROI 

pairs were identified by this analysis.  

 A total of 25 ROIs were identified by both analyses out of a possible 128. 

Of these 8 are of particular interest (right caudate, right accumbens and 6 

regions within the cerebellum). All regions identified by both analyses can be 

seen in Appendix.xii.  

Phase 2: average connectivity  

 

Figure 6.9. Plot showing changes in functional connectivity for baseline2 for 
active2. Whereby active2 is the scan taken shortly after the completion of 10 
sessions of 1.5mA stimulation.  
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 A total of 112 ROI pairs remained in the analysis after the removal of 

regions for which there was insufficient data (defined as ROIs in which the sum 

of z scores across all possible pairings was <0.01 and >-0.01). Paired sample t-

tests revealed that the average amount of positive connectivity between ROIs 

was significantly larger in the scan taken after 1.5mA cathodal stimulation 

(active2) compared to the second baseline scan (baseline2) t(3619)=77.75, p= 

<.0001. Interestingly the active2 condition also showed significantly stronger 

negative connectivity than baseline2 t(2595)=-64.13, p=<.0001. The data can be 

seen in Figure 6.9.  

Phase 2: Identifying statistical differences in functional connectivity across ROIs 

 Paired sample t-tests were used to compare the connectivity of each ROI 

to all other ROIs in the baseline2 and active2 scans. The resulting p values were 

corrected for multiple comparisons using FDR. This analysis revealed a total of 47 

ROIs in which connectivity to other ROIs was significantly different between the 

two conditions (Appendix.xi).  

6.4 Discussion 
Previous research (Carvalho et al., 2015; Mrakic-Sposta et al., 2008) has 

found that multiple sessions of cathodal tDCS can have a strong and significant 

impact on the number of tics experienced by individuals with GTS. This study 

aimed to extend and build upon the previous work. The main findings of the 

experiment are summarized below.  

Findings from the questionnaire data 

Questionnaire data provide a unique insight into the participants own 

feelings towards premonitory urges and tics and are, therefore, a valuable tool 

for assessing tDCS as an intervention. In phase 1 (baseline, sham, active, post 

conditions) scores on the global tic severity component of the YGTSS decreased 

over the course of the study (Figure 6.5). The global tic severity component 

reduced from baseline to active measures and remained reduced in the 1 month 

follow up. Scores on the PUTS also decreased from baseline as the study 
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progressed. These results could suggest that both tics and the urge to tic reduced 

following tDCS intervention, and that this persisted even one month afterwards. 

However, it should be noted that these reductions in scores from baseline were 

present in both the sham and 1mA active conditions. Furthermore, the 

reductions in YGTSS scores were primarily influenced by changes in the ratings 

given for the impairment subsection of the scale. While this is an important 

component of the YGTSS, the findings of previous studies (Carvalho et al., 2015; 

Mrakic-Sposta et al., 2008) suggest that a change in the motor or vocal 

component would have also been expected. As a result, although the findings in 

phase 1 hint at an effect of tDCS, it is not possible to rule out a placebo effect or 

a natural reduction in tics over time.  

In phase two of the experiment there was a substantial drop in values 

from the baseline condition to those collected after 10 sessions of 1.5mA 

cathodal stimulation (Figure 6.6) Unlike in phase 1, the scores on the YGTSS 

decreased in the motor, impairment and global severity aspects of the 

questionnaire. These reductions were also far larger than those seen in phase 1 

of the experiment. In particular, global severity score was reduced by 35% after 

stimulation, whereas in phase 1 of the experiment this reduction was 24%. 

Scores on the PUTS also decreased, although in this measure the reduction was 

smaller than in phase 1. It is likely that this reflects the differences between the 

baseline scores as in phase 1 these were far larger (PUTS score: 23 of a maximum 

score of 36) than the baseline2 (PUTS score: 14).  

Although it could be argued that the reductions in the YGTSS scores seen 

in this study reflect a natural, gradual decline in tic severity due to the 

participants age, this is not supported by the data. This is because there are no 

clear differences between the YGTSS scores in the Post and Baseline2 conditions. 

If a natural decline were occurring independent of any intervention, then it 

would be expected that the scores in Baseline2 would be lower, as these were 

measured 2 months after the Post condition. The scores on the PUTS were also 

identical between Post and Baseline2 measures which suggests that intervention 
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(or at least perception of an intervention) influenced the results opposed to a 

natural decline.    

Taken together, the results of the questionnaire measures suggest that 

the participant perceived a reduction in tic related symptoms over the course of 

the study. There is tentative evidence to suggest that the 1.5mA cathodal tDCS 

intervention had an impact on tics and urge to tic that went far beyond the 

effects of the 1mA intervention.   

Findings from video data 

There were no apparent differences in the amount of tics executed 

during videos taken in the sham condition compared to those recorded in the 

1mA cathodal condition (Figure 6.3). Somewhat surprisingly, there were also no 

clear differences between the amount of tics counted during the 1.5mA cathodal 

condition and the second baseline measure (Figure 6.4). These findings are at 

odds with the results from the questionnaire data, particularly for phase 2 of the 

experiment. They also conflict with previous research conducted by Mrakic-

Sposta et al. (2008). 

 Mrakic-Sposta et al. (2008) found that the amount of motor and vocal 

tics exhibited by their two participants reduced substantially by the end of 5 days 

of cathodal stimulation; critically this was not found after sham stimulation. 

Furthermore, unlike the findings of this study, the drop in tics counted during the 

videos also corresponded with a drop in tic symptoms reported on the YGTSS.  

There are a number of differences between the studies regarding the application 

of tDCS, however, it seems unlikely that these would fully account for the 

differences. For example, although Mrakic-Sposta et al. (2008) applied 2mA 

cathodal stimulation above the left M1 and  the current study stimulated the 

SMA at 1 or 1.5mA, the optimal stimulation parameters are likely to differ from 

individual to individual. Furthermore, stimulating the SMA has previously been 

found to be effective in reducing tics  (Carvalho et al., 2015; Kwon et al., 2011; Le 

et al., 2013; Mantovani et al., 2007; Mantovani et al., 2006) and weaker 
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intensities such as 1mA have been found to influence cortical excitability 

(Batsikadze et al., 2013; Furubayashi et al., 2008; Nitsche & Paulus, 2000). It 

seems more likely that the discrepancy in findings (particularly with the results of 

the 1.5mA intervention) relate to methodological issues regarding data collection 

which may have undermined the quality of the data, hence making it difficult to 

see any real effects.  

Due to the prolonged nature of this study, compromises were made in 

order to limit the impact on day-to-day living for the participant and his family.  It 

was decided that videos should only be taken every other day and that the 

timings of these could be slightly flexible to fit in with their normal schedule. 

Unfortunately, this led to more variability than initially expected. It is possible 

that differences between the timings of when the videos were taken could have 

impacted on the findings, especially in phase 2 of the experiment. This is because 

on average the videos were taken much earlier (approx. 18.30pm) during the 

baseline2 condition than during the active2 condition (approx. 21.30 pm).  The 

participant and his parents reported that his tics typically became worse later 

into the evening, as a result any differences between the conditions may have 

been masked. This may explain the discrepancy between the video and the 

questionnaire data, particularly in phase 2.   

Findings from the imaging data 

  Analysis of the overall patterns of connectivity between the 

different scans revealed statistically significant changes from baseline in the 

active and sham conditions and also partial differences (only for positive 

connectivity) between baseline and the follow up (post) scans. Although the 

sham condition was found to be statistically different to baseline in both 

analyses (exploring negative and positive connectivity), this was always smaller 

than the difference between baseline and active. Furthermore, when sham and 

active conditions were directly compared they were found to be significantly 

different. Analysis of phase 2 of the experiment also revealed statistically 

significant differences between baseline2 and active2 scans. These results are 
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encouraging, however, additional analysis was required in order to study these 

findings in more depth.  

 The data was further analysed to identify differences between the 

connectivity of specific ROIs. In phase 1 of the experiment statistically significant 

differences between a variety of ROIs were found when baseline and sham 

conditions were compared. A large number of ROIs were also found to have 

significantly altered connectivity between the baseline and active scans. 

Although some of the same regions were identified in the sham/baseline and 

active/baseline comparisons, there were also a large number of differences 

which were further highlighted when these conditions were directly compared. 

Interestingly, the total number of ROIs found to be different between the 

baseline/sham conditions was similar to the number found for baseline/active 

conditions. This was somewhat surprising, as it was initially expected that more 

change from baseline would be observed in the active condition. Furthermore, 

the results are particularly difficult to interpret as the lack of clear effects on the 

motor/vocal component of the YGTSS and from the video data make it 

impossible to interpret what the consequences of these changes in connectivity 

may be.  

Although in their current form it is not possible to rule out that the 

findings in phase 1 of the experiment were in part due to extraneous factors (see 

conclusions/ limitations) it is worth noting that there were changes in a number 

of ROIs in the cerebellum in the baseline/active comparison which were not 

found in the baseline/sham comparison. Furthermore, there were statistically 

significant differences between these areas when the two scans were directly 

compared. A total of 5 regions within the cerebellum were found to have 

statistically significant differences in connectivity (p<.05), of which 3 (cerebellum 

3 left, 3 right and 4 5 right in the atlas) had significantly lower connectivity in the 

active than in the sham scan when tested at p<.01.  

Differences within the cerebellum are notable because in a previous case 

study Carvalho et al. (2015) found that activity within left regions decreased after 
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10 sessions of cathodal tDCS. Furthermore, the cerebellum has been implicated 

in a number of GTS studies using a variety of experimental methods. For 

example, in an event related fMRI study the cerebellum was found to be more 

active during the beginning of a tic action (Bohlhalter et al., 2006) and in an 

animal model of GTS increased neuronal spiking in the region has also been 

associated with tic onset (McCairn et al., 2013). Studies using PET have found 

increased metabolic activity within the region at rest (Pourfar et al., 2011) and 

altered GABA-A receptor binding bilaterally (Lerner et al., 2012). Structural 

differences have also been noted, with individuals with GTS having bilateral 

reductions in cerebral hemispheres when compared to controls (Tobe et al., 

2010).  

Unfortunately, in this experiment a large proportion of the cerebellum 

was not captured by the scans in baseline2 and active2 conditions, therefore 

changes in these regions could not be assessed for phase 2 of the study. A 

number of ROIs were identified as having significantly altered levels of 

connectivity between these two scans. However, although a clear reduction in 

tics was seen on the YGTSS between baseline2 and active2, the finding of 

widespread change in connectivity in the sham-baseline condition makes it 

difficult to draw any strong conclusions regarding how change in specific ROIs 

may relate to changes in tics following stimulation. Consequently, this is not 

speculated here, although a full list of identified ROIS can be found in 

Appendix.xi.    

In phase 1 of the experiment it was possible to assess how change in the 

active condition may predict the change from baseline seen in the post 

condition. Both the analyses used implicated the cerebellum, with a total of 6 

regions being identified as significant predictors. Scores on the global 

impairment scale of YGTSS remained stable between the active and post scans, 

and the PUTS score actually dropped slightly over this time. Taken together it 

may be that changes within the cerebellum had a sustained effect on some 

aspects relating to the participant’s perception of their own tics and feelings of 
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premonitory urge. However, as there were also changes in the questionnaire 

measures between baseline and sham conditions and little effect on the 

motor/vocal component of the YGTSS, it is not possible to conclude that these 

changes were necessarily the result of 1mA cathodal tDCS or even linked to 

changes in tics.  

 In addition to the cerebellum, a number of regions were implicated as 

significant predictors. Of particular interest were changes in the right Caudate 

nucleus and the right accumbens. Findings within the caudate are particularly 

notable for a number of reasons. Firstly, the caudate is known to receive inputs 

from the SMA (Vergani et al., 2014), secondly, the caudate has repeatedly been 

implicated as both structurally and functionally different in individuals with GTS 

when compared to control subjects. In particular, the caudate has been reported 

to be smaller in children and adolescents with GTS (Makki et al., 2008; Peterson 

et al., 2003), and the volume of the caudate in childhood has been found to be 

predictive of symptom severity in adults with GTS (Bloch et al., 2005), with 

smaller caudate volumes in childhood (<14 years old) correlating with higher 

scores on the YGTSS years later in life (>16 years old). Furthermore, in a study of 

13 adults with GTS, Wang et al. (2011) found that activity within the caudate was 

reduced in GTS individuals during spontaneous tics in comparison with self-paced 

tic-like- movements in 22 healthy controls, hence implicating the region in tic 

production. The caudate is thought to be important in exerting top-down control 

over motor pathways, therefore when taken together with research in GTS it 

seems logical that changes in this region may contribute to changes in 

symptomology. However, although the caudate was implicated in this analysis, it 

is important to note that the connectivity of this region was not found to be 

significantly altered when the active or sham conditions were compared to 

baseline. Thus while the findings suggest that the caudate is an interesting ROI to 

examine in future work, strong conclusions about this area cannot be drawn 

from this data.   
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A final notable finding from the imaging data was that changes in the 

connectivity of the right accumbens following sessions of 1mA tDCS predicted 

change from baseline in the follow-up condition (post). Changes in this region are 

interesting as the area has previously been found to have altered structural 

connectivity in adults with GTS (Neuner et al., 2011). Furthermore, there is 

evidence that deep brain stimulation of the accumbens may help with symptoms 

of obsessive compulsive disorder (OCD)  (Denys et al., 2010), a disorder which 

commonly co-occurs with GTS (Bitsko et al., 2014).However, in the present study 

it is not possible to draw strong conclusions about changes in the accumbens and 

changes in tics as a result of 1mA cathodal stimulation. This is due to the finding 

that resting state connectivity in the accumbens was significantly different 

between the baseline and sham scans, in addition to being different when active 

and baseline scans were compared (see Appendix ix and x). Nevertheless, the 

finding that change in the active – baseline condition was predictive of post- 

baseline condition and that during this time the scores on the global severity 

rating of the YGTSS remained stable while scores on PUTS dropped could 

implicate this region as linked with the participants own experiences of their tics.  

  Although no strong conclusions can be drawn from the imaging data, the 

findings may play an important role in identifying the physiological basis of 

change in tics for future studies in which larger sample sizes and full 

counterbalancing of conditions could be used.  

Evaluation of home use stimulation 

 To my knowledge this study is the first to trial home use stimulation for 

the treatment of GTS and one of a very small number of studies to use tDCS 

outside of the laboratory. Despite a few teething issues with electrode 

placement at the start, overall application of tDCS went well. Compliance was 

very high, and all of the 30 advised stimulations were attempted (10 for sham, 

1mA cathodal and 1.5mA cathodal respectively). Of these, only one was not fully 

completed due to an electrode moving after a head tic which caused the 

machine to abort stimulation for that day.  Rates of compliance in larger studies 
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have also shown that tDCS application at home is feasible. Kasschau et al. (2016) 

found that compliance was high in a group of 20 participants with muscular 

sclerosis (MS) with 98% completing at least 8 of the 10 advised sessions. 

Kasschau et al. (2016) also found that of 192 supervised treatment sessions none 

required discontinuations and no adverse events were reported. In this study the 

participant did report some feelings of mild nausea and headache following 

stimulation. However, these were reported in both the sham and cathodal 

conditions and were reported by the participant and their family to be tolerable.  

 The main challenge of the home use approach in this study was not the 

application of tDCS, but the accurate data collection of video clips. Although 

video recordings in naturalistic settings provide a rich data set which can give 

insight into the frequency, intensity and type of tics experienced, this type of 

data comes with some inherit variability, and it proved difficult to obtain good 

quality video recordings using this method.  

Conclusions and limitations 

Overall the study provides some support that tDCS may be a useful tool in 

reducing tics in individuals with GTS, however, there are some important 

limitations which must be considered. Firstly, the study consisted of a single 

participant, and while efforts were made to include a sham condition it remains 

a possibility that the order in which the different sessions were tested may have 

had an impact. Furthermore, the participant was a 16 year old and it is known 

that tics may wax and wane with age and that many adolescents will experience 

a remission in symptom severity as they approach adulthood (Bloch & Leckman, 

2009). Despite this, a natural decline in tics over the course of the study seems an 

unlikely explanation for the effects seen after 1.5mA cathodal stimulation, due to 

the finding that scores on the PUTS and YGTSS did not decrease during the two 

month interval between Post and Baseline2 data collection. Nevertheless, without 

additional participants and counter balancing it is not possible to rule out the 

possibility that random fluctuation in tic symptoms unrelated to tDCS may have 

contributed to the data.  
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Although the application of tDCS within the participant’s home was relatively 

unproblematic, this was not true of the video recordings. A number of issues were 

present which may have compromised the quality of the data and could account for 

the discrepancy between scores on the YGTSS and tic count; in particular, in phase 2 

of the experiment in which a decrease in motor tics was reported yet not evidenced 

in the video data.     

The findings of the resting state fMRI analysis are somewhat difficult to 

interpret, particularly as significant differences were identified in the sham condition 

in addition to after the 1mA cathodal and 1.5mA cathodal sessions. Furthermore, a 

surprisingly large number of ROIs were found to show significant alterations in 

connectivity between the different scans. Although some of this may be 

resultant of the intervention/perceived intervention in the sham condition, it is 

also possible that a number of additional uncontrolled variables contributed to 

these findings. In particular, although the participant was instructed to keep his 

eyes shut it was not possible to check this. Furthermore, it was apparent that 

during some scans the participant may have fallen asleep. Previous work has 

demonstrated that having the eyes open or closed can have an impact on resting 

state data (McAvoy et al., 2008; Yan et al., 2009) as can being asleep or awake 

(Tagliazucchi & Laufs, 2014). In larger scale studies this may be less problematic, 

however, in a single case design such as in this study the impact is likely be more 

apparent.  

It is also possible that some of the differences found between the scans 

may reflect differences in the participant’s level of tic suppression/ tic enactment 

during the scan. Previous work using fMRI has identified distinct patterns of 

activity occurring shortly before tic onset and during tic execution (Bohlhalter et 

al., 2006), and differences have also been found between patterns of activity 

during tics compared with voluntary motor actions (Bohlhalter et al., 2006; 

Hampson et al., 2009; Wang et al., 2011). These studies have implicated a 

number of regions particularly within the motor pathway including the 

sensorimotor cortex, putamen, palladium, substantial nigra (Wang et al., 2011), 
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the SMA (Bohlhalter et al., 2006; Hampson et al., 2009) and cerebellum 

(Bohlhalter et al., 2006). In this study some of these regions were found to be 

significantly different across the scans, however, as no information about tic 

occurrence or suppression was collected during the scan it is not possible to 

decipher if these differences were related to tic occurrence or if they were more 

stable. This is a consideration for future research in order to determine if the 

effects seen using techniques such as resting state fMRI reflect stable changes or 

the consequences of differences in the level of tics an individual experiences 

while in the scanner. It may also be beneficial to use other methods to assess 

change, including any change in white matter connectivity.  

 To conclude, this study provides some support that the home application 

of tDCS may be useful in reducing tics in Tourette’s syndrome. The evidence from 

the YGTSS suggests that 1.5mA cathodal stimulation was more effective than 

1mA, this was also reflected by the participants’ own sentiments after receiving 

this intervention. This research adds to that of Carvalho et al. (2015) and Mrakic-

Sposta et al. (2008) and highlights the need for larger, counterbalanced, sham 

controlled studies to fully evaluate the techniques’ potential.  
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 What are we measuring with magnetic 

resonance spectroscopy and why is this important?  
 

Some of this work has previously been presented in: Dyke, K., Pépés, S, E., 

Chen, C., Kim, S., Sigurdsson, H. P., Draper, A., Husain, M., Nachev, P., Gowland, 

P, A., Morris, P. G., & Jackson, S. R. (2017). Comparing GABA-dependent 

physiological measures of inhibition with proton magnetic resonance 

spectroscopy measurement of GABA using ultra-high-field MRI. Neuroimage, 

152, 360-370. 

Key words: transcranial magnetic stimulation (TMS), resting motor threshold 
(RMT), input output curve (IO curve), short interval intracortical inhibition (SICI), 
long intracortical inhibition (LICI), intracortical facilitation (ICF), magnetic 
resonance spectroscopy (MRS), gamma-aminobutyric acid (GABA), glutamate 
(Glu) glutamine (Gln). 

MRS data collection was completed by Sophia Pépés with whom co-authorship of 

this study is shared.  

7.1 Introduction 
 

Although the exact mechanisms underlying Tourette’s Syndrome (GTS) 

remain partially unclear, there is a large amount of convergent evidence to 

suggest that GTS is characterised by altered GABA function.  GABA is the primary 

inhibitory neurotransmitter in the human brain, and has been estimated to be 

present at 20-50% of all synapses. GABA plays a critical role in the regulation of 

cortical excitability, and is of great importance during brain maturation (Ben-Ari 

et al., 2012). Dysregulation of GABA has been reported in a number of 

neurodevelopmental disorders including autism spectrum disorder (Hussman, 

2001; Pizzarelli & Cherubini, 2011) , epilepsy (Treiman, 2001), Tourette’s 

syndrome  (Draper et al., 2014) and schizophrenia (Gonzalez-Burgos et al., 2010). 

As a result, GABA is a major target for drug development and interventions using 

NIBS.  

The evidence for dysregulation of GABAergic systems in GTS is convergent 

across multiple methods, and consistent with the view that GTS is specifically 

linked to alterations in GABA signalling and the operation of inhibitory brain 
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circuits. It is generally acknowledged that cortical-striatal-thalamic-cortical 

circuits (CSTC) are dysfunctional in GTS. As a result of this dysfunction, subsets of 

striatal neurons are thought to become active in inappropriate contexts. This is 

thought to result in disinhibition of thalamo-cortical projections (Albin & Mink, 

2006) and hyper-excitability of limbic and motor regions of the brain, both of 

which are thought to result in the occurrence of tics (Bohlhalter et al., 2006; 

Orth, 2009; Tinaz et al., 2015). Consistent with these findings, post-mortem 

studies have found significant reductions in the amount of GABAergic 

interneurons within the striatum in individuals with GTS (Kalanithi et al., 2005; 

Kataoka et al., 2010). In addition to this, positron emission tomography (PET) has 

revealed a reduction in GABA-A receptor binding sites in the striatum, thalamus 

and insular cortex (Lerner et al., 2012). Evidence from paired pulse TMS studies 

also suggests abnormalities in GABA levels. Individuals with GTS have been found 

to have lower levels of SICI responses (Gilbert et al., 2005; Orth et al., 2005; 

Ziemann et al., 1997) which suggests a reduction of GABA-A receptor mediated 

inhibition within the motor cortex. Furthermore, studies using animal models 

have suggested a direct link between GABA and tic generation. For example, 

injecting different parts of the striatum with a GABA antagonist has been found 

to induce motor and phonic tic like behaviours in monkey and rat models 

(Bronfeld et al., 2013). 

A recent study using ultra-high-field strength (7 Tesla) magnetic resonance 

spectroscopy (MRS) found significantly elevated levels of GABA within the 

supplementary motor area (SMA) in individuals with GTS when compared with 

closely matched control subjects (Draper et al., 2014). Although this finding may 

seem counter intuitive at first, Draper et al. (2014) argued that this seemingly 

paradoxical increase may be a compensatory, adaptive mechanism, through 

which individuals with GTS develop increased control over motor outputs. 

Draper et al. (2014) also found that levels of MRS-GABA within the SMA were 

correlated with tic severity, which suggest that this compensatory mechanism 

may arise due to the gain of motor outputs being altered as a result of increased 

GABA levels within the SMA. Interestingly, Draper et al. (2014) failed to find any 
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significant alterations in GABA levels within the motor cortex. This is somewhat 

surprising, as a number of previous studies using SICI have suggested a reduction 

of GABAergic activity within this brain region (Gilbert et al., 2005; Orth et al., 

2005; Ziemann et al., 1997). However, it is possible that the discrepancy between 

these results at M1 and the seemingly paradoxical elevation of GABA at the SMA, 

relate to differences between the two techniques.  

It has been speculated that what is measured in MRS may reflect 

extracellular levels of GABA which are linked to ‘tonic’ GABA-ergic inhibition 

(Rae, 2014). Whereas, TMS measures of SICI are thought to primarily reflect the 

operation of low threshold, transiently activated, cortical GABA interneurons 

(Ziemann, Lonnecker, et al., 1996; Ziemann, Rothwell, et al., 1996). If the two 

techniques are measuring from distinct pools of GABA, it would be unsurprising 

to find a decrease in one and increase in another, particularly in the context of 

syndromes such as GTS whereby an adaptive compensatory response may be 

apparent.  

Enhancing our understanding into what we are measuring with MRS is 

important to better comprehend the causes and consequences of disorders such 

as Tourette’s syndrome. In addition to this, enhancing knowledge about MRS 

measures could also help to develop our understanding of the effects of NIBS 

techniques.   

Past research with TMS (Batsikadze et al., 2013; Cengiz et al., 2013; Kidgell 

et al., 2013; Nitsche et al., 2005) and MRS (Stagg et al., 2009) has suggested that 

tDCS can influence levels of GABA. This could be particularly important with 

respect to using these techniques therapeutically, as long-term potentiation 

(LTP) type plasticity within the neocortex is thought to be critically dependent on 

the modulation of this neurotransmitter (Trepel & Racine, 2000).  However, the 

effects of tDCS on GABA levels may not be direct, particularly for cathodal 

stimulation. This is supported by the finding that administration of the GABA-A 

receptor agonist Lorazepam did not significantly alter the after-effects of 

cathodal stimulation (as measures by TMS), although it did significantly reduce 
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anodal tDCS after-effects (Nitsche et al., 2004). This finding has led to speculation 

that the observed after-effects of cathodal stimulation may be due to the tight 

coupling between GABA and Glutamate (Stagg & Nitsche, 2011). As GABA is 

synthesised from glutamate, and glutamate level has been shown to change 

following cathodal stimulation (Nitsche et al., 2005; Stagg et al., 2009) this seems 

plausible. Testing this further using a multi-modal approach is likely to answer 

this question, but in order for this to be truly effective it is important that 

questions such as exactly where is the MRS-GABA signal coming from are 

answered.  

  Two recent studies have sought to address the relationship between TMS 

and MRS measures of GABA and glutamate/glutamine within the sensorimotor 

cortex (Stagg et al., 2011; Tremblay et al., 2013). Both studies acquired TMS and 

MRS measures using conventional field strengths (3 Tesla) within the same 

individuals. Tremblay et al. (2013) failed to find any significant correlations 

between any TMS measures (including 3ms SICI) and MRS measured GABA 

levels. However, Stagg et al. (2011) reported that although MRS-GABA 

concentrations within motor cortex (M1) were uncorrelated with 2.5ms SICI, 

there was a significant correlation with the slope of the 1ms SICI curve. As 

discussed in chapter 2, the physiological mechanisms underlying 1ms SICI effects 

are thought to be distinct from those occurring at later ISIs, and although these 

mechanisms are not yet fully understood, it has been speculated that the effects 

may reflect axonal refractory periods (Fisher et al., 2002). In line with this, Stagg 

et al. (2011) discuss the possibility that the relationship suggests that MRS 

measures extra synaptic, tonic GABA which may relate to the duration of the 

refractory periods of neuronal axons. Although a plausible explanation, the 

refractory periods theory of 1ms SICI is not held by all, and some argue that 

synaptic involvement in the effect is also likely (Vucic et al., 2009). In addition to 

this,  although Tremblay et al. (2013) also failed to identify correlations between 

MRS measured GABA and later SICI (3ms SICI), they did not measure 1ms SICI, 

hence the results of Stagg et al. (2011), have yet to be replicated.  
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The Stagg and Tremblay studies also differ in the associations that they 

reported for other TMS/MRS metabolite pairings, partially due to the use of 

different TMS measurements. Thus, while Stagg et al. (2011) reported that a 

general measure of cortical excitability - the slope of the TMS recruitment (IO) 

curve - was significantly associated with MRS glutamate concentrations within 

M1, Tremblay et al. (2013) reported a significant positive correlation between 

Glx (a composite measure of glutamate and glutamine) and the duration of the 

cortical silent period (CSP). Furthermore, in addition to differing on which 

particular TMS measures to relate to MRS measures of motor cortical excitability 

and physiological inhibition, the above studies also differed in that one study 

used a GABA-edited MRS sequence (Tremblay et al., 2013) while the other (Stagg 

et al., 2011) did not. This may have had important implications for the 

measurements obtained, particularly as both studies were conducted at 

conventional MR field strengths.  

The advantages of ultra-high field (7 Tesla) are the increased signal-to-

noise ratio (SNR) obtained and greater chemical shift dispersion (Tkác et al., 

2009). The increased SNR improves the detection sensitivity and efficiency of 

metabolites, especially those with low concentration such as GABA. Greater 

chemical shift dispersion increases the separation of signals with similar 

resonance frequencies, allowing a more accurate identification and 

quantification of each metabolite. For instance, due to spectral overlapping the 

differentiation of GABA, Glu and Gln signals are difficult in 1H spectra at field 

strengths of 3 T or less (Puts & Edden, 2012), and Glx (a composite measure of 

Glu + Gln) is reported instead. By contrast, GABA, Glu and Gln become separable 

at field strengths of 7 T or above. Also, GABA-edited (J-difference editing) 

sequences (Mescher et al., 1998; Near et al., 2013) rely on subtraction to remove 

overlapping signals from the spectrum. This technique is therefore particularly 

susceptible to motion-related errors that are less of an issue for non-edited MRS 

sequences (e.g., STEAM) that can be utilised at 7 T (Bhattacharyya et al., 2007; 

Bogner et al., 2014). 
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In this study, we investigated how TMS and MRS measures relate by 

directly comparing a wide range of TMS measurements of motor cortical 

excitability (including TMS recruitment curves and paired-pulse measures of 

intracortical facilitation [ICF]) and physiological inhibition (including both 1ms  

and 3ms SICI) with MRS measures of GABA, Glu and Gln acquired at ultra-high-

field (7 Tesla) using a non-edited STEAM sequence. 

In addition to investigating correlations of TMS and MRS measured at 

baseline, the effects of a pharmacological manipulation of GABA using the drug 

gabapentin (GBP) were explored. Gabapentin (1-

(aminomethyl)cyclohexaneacetic acid (Neurontin®)) is a safe and widely 

prescribed drug typically used to treat conditions such as epilepsy and neuralgia. 

It was originally synthesised as a GABA analogue, however, animal experiments 

revealed that the drug failed to show direct GABAergic receptor action (Ziemann 

et al., 2015). The exact mechanisms of action for GBP are yet to be fully 

understood, however, there is evidence that GBP may increase GABA synthesis 

and turnover, decrease glutamate release and block α2 voltage gated calcium 

channel sub-units (VGCC) (Ziemann et al., 2015).  

Although GBP does not appear to interact directly with GABA-A or GABA-

B receptors (Goa & Sorkin, 1993; Sills, 2006; Taylor et al., 1998), and does not 

appear to be a GABA-A (Kondo et al., 1991) or GABA-B agonist (Lanneau et al., 

2001), it has been found to influence both TMS and MRS measures associated 

with GABA.  Of particular interest are the findings of two TMS studies in which 

800mg and 1200mg doses of GBP were found to increase SICI and decrease ICF, 

while not influencing motor thresholds (Rizzo et al., 2001; Ziemann, Lonnecker, 

et al., 1996). As MT is known to be effected by voltage-gated sodium channel 

blockers such as carbamazepine (Menzler et al., 2014; Ziemann, Lonnecker, et 

al., 1996) but is not influenced by GBP, this suggests that calcium channel 

inactivation is unlikely to fully explain the effects.  It has been proposed that 

GBP’s effect on SICI could be a result of increased GABA synthesis (Ziemann et 

al., 2015). Unfortunately, neither TMS study was placebo controlled, and there 
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appears to have been no subsequent attempts to establish the effects of GBP 

using TMS.  

Evidence from MRS studies supports the hypothesis that GBP influences 

GABA synthesis, and the drug has repeatedly been found to cause elevated levels 

of GABA in vivo in the human brain. Three notable studies have been 

documented, the first of which was conducted by Petroff et al. (1996). They 

found elevated levels of GABA in patients with epilepsy who were medicated 

with GBP compared with individuals who were taking medications such as 

carbamazepine. Interestingly the effects appeared to be dose specific, with those 

taking higher doses showing higher levels of GABA. In a more recent 7T MRS 

study with healthy participants, Cai et al. (2012) found that a single 900mg dose 

of GBP significantly elevated levels of GABA within the visual cortex. This 

elevation was far greater than that seen in the control condition and therefore, 

the effects cannot be accounted for by natural GABA fluctuations over time. 

Finally, Kuzniecky et al. (2002) studied the effects of acute and chronic doses of 

GBP in healthy participants using MRS at a field strength of 4.2 Tesla. A single 

acute dose of the drug (adjusted to participant’s weight (17mg/kg)), caused 

significant increases in GABA measures 6 but not 3 hours after ingestion. 

Significantly elevated levels of GABA were also measurable after a 4 week course 

of the drug, although not after 2 weeks.  

It appears that no placebo controlled trials have been conducted in which 

the effects of a single dose of GBP are studied using both TMS and MRS from the 

same individuals. Therefore, the aims of this study were two fold.  Firstly, to 

investigate the relationship between MRS and TMS measures of GABA, Glu and 

Gln, and secondly, to explore the effects a single dose of GBP may have on both 

of these measures.  

7.2 Method 

7.2.1 Participants 

29 healthy right-handed adults (age range 19-27) participated in the 

study. All participants were free from neurological or psychiatric illness and any 
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contra-indications for MR scanning or TMS.  Of the 29 participants recruited, two 

were subsequently excluded from the analysis of baseline MRS/TMS measures: 

one due to poor quality TMS data (insufficient test pulse intensity) and one due 

to poor quality MRS data.  Details of the 27 participants included in the data 

analyses for baseline correlations are contained in Table 7.1. 

Table 7.1. Participant demographics for baseline analysis. Data are presented as mean 
value ± sd. RMT = mean resting motor threshold. SI 1mV = mean stimulator output 
required to produce a MEP with an amplitude of 1mV. † Percentage of maximal 
stimulator intensity. 

N Sex (M/F) Age RMT † S1 1MV † 

27 13/14 23.1 ± 2.4 45.7 ±6  55.3±6.8  

 

Of the 29 participants tested 14 were assigned to the placebo condition 

and 15 were assigned to the GBP condition. Due to the exclusion of one data set 

for poor quality TMS in the placebo group, and one data set from the GBP group 

due to poor quality MRS data, there were slight variations between sample sizes. 

Participant demographics for the different conditions can be seen in Table 7.2. 

Table 7.2. Participant demographics for analysis of drug manipulation data. Data are 
presented as mean value ± sd.  

 N Sex (m/f) Age BMI 

MRS placebo  14 8F, 6M 22.3 ± 2.4 21.8±3.6 

MRS gabapentin 14 7F, 7M 23.6 ± 2.4 21.9 ± 2.6 

TMS placebo 13 7F, 6M 23 ± 2.5 22.1 ± 3.7 

TMS gabapentin 15 7F, 8M 23.6 ± 2.4 21.9 ± 2.6 

 

7.2.2 MR acquisition 

All MR data were acquired using an ultra-high field 7T Philips Achieva 

system (Philips Healthcare, Best, Netherlands) with a 32-channel radio frequency 

head coil at the Sir Peter Mansfield Imaging Centre (SPMIC), University of 
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Nottingham. Participants were placed supine and head-first into the scanner. 

Foam pads were inserted between the participant’s head and the coil to 

minimise and control head movement; a pair of prism glasses was provided to 

allow participants to view a screen outside the magnet bore.  

At the start of each imaging session 1H image localiser and B0 maps were 

acquired, followed by BOLD-fMRI T2
*-weighted images, which were acquired to 

guide placement of the left motor cortex (M1) spectroscopy voxel in the 

following MRS scans. The BOLD-fMRI used a single shot EPI sequence 

(TR/TE=1999/25ms, FOV=208×192 mm3, matrix=112×112, 30 slices, slice 

thickness=4mm, no slice gap, 160 dynamics). During the fMRI scan, eight blocks 

of bimanual finger-to-thumb opposition tapping were performed in a blocked-

trial paradigm as follows. The words ‘TAP’ and ‘REST’ were alternately displayed 

for 8s and 32s, respectively. Participants were asked to tap their thumbs to each 

finger with both hands simultaneously and continuously during the ‘TAP’ phase 

and to rest (withhold movement) during the ‘REST’ phase. Maximum activation 

of the left M1 was found by analysing the BOLD response on-line using the 

Philips IViewBOLD software. 

T1-weighted anatomical images were then acquired with a MPRAGE 

sequence (TR/TE/TI=7.3/3.4/998ms, FA=8o, FOV=224×224×120 mm3, isotropic 

resolution=1mm3) for tissue segmentation. Anatomical landmarks from these 

images were also used to assist in the placement of the left M1 voxel for MRS. 

In vivo 1H MRS data were acquired from a voxel of interest 

(VOI=20×20×20mm3) placed over the hand area in the left M1 (Figure 7.1A) using 

a STEAM sequence (TE/TM/TR=17/17/2000ms, sample size=4096, spectral 

bandwidth=4000Hz, phase cycling=8, 288 averages, 9.6mins). Water suppression 

was performed using multiply optimised insensitive suppression train (MOIST) 

(Murdoch, 1993).  Prior to this, a non-suppressed water reference spectrum (16 

averages) from the same VOI was acquired for eddy current correction and 

quantification. B0 shimming of the VOI was performed automatically by the 
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Philips pencil beam (PB) algorithm (Gruetter, 1993) in order to increase B0 field 

homogeneity.  

 

Figure 7.1 [A] Position of the voxel of interest (VOI=20×20×20mm3) located over 
the left-hand area of M1 shown in (i) sagittal, (ii) axial (iii) and coronal views. [B] 
Standard deviations (shaded area) overlying the group mean in vivo spectrum 
acquired from the VOI obtained with STEAM sequence (TS/M=17/17ms) at 7T are 
shown (N=27). [C] A representative in vivo spectrum obtained from the M1 VOI is 
shown, together with its LCModel fot. Residual and fitted signals for metabolites 
of interest and macromolecules (MM) and baseline (BL) are shown. 

 

7.2.3 TMS measurements and EMG recording 
 

MR scanning sessions were performed before TMS measurements were 

obtained. On average the time in between the final MR scan and the 

commencement of the collection of TMS measurements was 30 minutes.   

TMS was delivered using a Magstim Bistim system (Magstim, Whiteland, 

Dyfed, UK) with a figure-of-eight magnetic coil (70mm diameter of each 

winding). The coil was held tangentially to the scalp and positioned 45° from the 

midline, resulting in a posterior to anterior current flow. Neuro-navigation 

software (Brainsight, Rogue Research Inc., Montreal Quebec, Canada) was used 

in conjunction with individual T1-weighted anatomical images (acquired using the 
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MPRAGE sequence outlined above) to aid coil placement over the hand area of 

the left motor cortex. All TMS measures were obtained from the motor hot spot 

identified for the First Dorsal Interosseous (FDI) muscle. This was defined as the 

location that consistently yielded the largest MEP amplitudes for the FDI. 

Participants were required to remain still during testing, and head movements 

were minimised with the aid of a chin rest. Participants were offered frequent 

breaks to stretch and adjust their position and neuro-navigation was used to 

accurately reposition the coil over the motor hot spot on each occasion. The coil 

was held stable over the hot-spot using a Manfrotto mechanical arm (Vitec 

Group, Italy) and adjusted when necessary.  

Motor evoked potentials (MEPs) were recorded using disposable Ag-AgCl 

surface electrodes attached to the right FDI muscle in a belly-tendon montage. 

The signals were amplified and bandpass filtered (10 Hz- 2kHz, sampling rate 

5kHz) then digitalized using Brainamp ExG (Brain Products GmbH, Gilching, 

Germany) controlled by Brain Vision Recorder (Brain Products GmbH, Gilching, 

Germany). Participants were encouraged to maintain their hand in a relaxed 

position throughout testing.   

All trials were controlled using an in-house program (written using 

Matlab: Mathworks, MA, USA), with an inter-trial interval of 5s occurring 

between each trial for all measures. Intracortical inhibition and facilitation were 

investigated using a range of TMS paired pulse protocols, with a range of inter-

stimulus intervals (ISIs) including 1, 3, 10 and 12ms (Kujirai et al., 1993). A 100ms 

ISI inhibitory protocol was also measured (Claus et al., 1992; Valls-Sole et al., 

1992). All paired pulse measures and unconditioned trials were randomized and 

presented within the same session. Input output curves were always calculated 

prior to paired pulse measures.  

Threshold determination 

Resting motor threshold (RMT) was determined as the lowest intensity 

needed to yield an MEP with a peak-to-peak amplitude of >50µV in the relaxed 
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FDI muscle in a minimum of 5 of 10 trials. A 1mV (SI 1mV) threshold was also 

determined by calculating the lowest intensity needed to evoke an MEP of 1mV 

in 5 of 10 consecutive trials.  

Input output curves  

TMS intensities at 100, 110, 120, 130, 140 and 150% of RMT were used. 

10 pulses at each of the 6 intensities were delivered in a randomized order.  

Unconditioned trials 

A total of 30 unconditioned trials were measured at SI 1mV. 

Short interval intracortical inhibition (SICI) 

SICI was measured using 1 and 3ms ISIs. The selection of conditioning 

stimuli (CS) intensities was informed by a pilot study (data not shown) which 

revealed 1ms SICI to have a lower threshold than that of 3ms SICI. This finding 

confirms previous research (Fisher et al., 2002) and, therefore CS intensities of 

45,50,55 and 60% RMT were used to measure 1ms SICI, whereas 60, 65, 70 and 

75% RMT were used to measure 3ms SICI. Each CS was followed by a supra-

threshold test stimulus (TS) of SI 1mV delivered to the same location.  Ten trials 

were measured for each CS-TS pairing for both 1 and 3ms ISIs.  

Long interval intracortical inhibition (LICI) 

A single ISI of 100ms was tested using a supra-threshold CS of 110% RMT 

and a TS delivered at SI 1mV. A total of 20 trials were measured.  

Intracortical facilitation (ICF) 

10 and 12ms ISIs were measured using a CS at 75% RMT followed by a SI 1mV TS. 

20 trials were measured for each ISI.  
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7.2.4 Experimental procedure 
 

 

Figure 7.2. Schematic showing study timeline. 

The testing sessions commenced at the same time each morning for all 

participants and lasted approximately 6 hours in total (see Figure 7.2). A 7T Philips 

Achieva system (Philips Healthcare, Best, Netherlands) scanner was used to 

collect anatomical and MRS data (using MPRAGE and STEAM sequences 

respectively). Approximately 30 minutes after this, TMS measures (IO curve, 1ms 

SICI, 3ms SICI, 10ms ICF, 12ms ICF and LICI) were collected. After completing the 

first set of TMS measures, participants were asked to fill out a simple bespoke 

questionnaire to indicate their perceived level of fatigue and tiredness on a scale 

of 1(absent) to 10 (severe).  

Participants were then given a drink containing 900mg of GBP or with 

nothing added. A strong sugar free blackcurrant flavoured drink was used to 

mask the taste of the drug. Assignment of participants to the drug or control 

condition was done by a researcher (HS) who was not involved in data analysis 

but was present during scanning. The primary investigators (KD and SP) were 

kept blind to the condition until data analysis was complete. After receiving the 

drug or control drink, participants ate a light lunch which typically involved a 

sandwich, a low sugar snack such as crisps and a low sugar drink (typically 

water). During the break participants were closely monitored and engaged in 

restful activities such as watching films or reading. Participants were re-scanned 

on average 1.59 hours after consuming the control/ GBP containing drink. The 

second set of TMS measurements were then performed. On average these took 

MRS TMS 

Questionnaire 

MRS Gabapentin/ 

placebo 

TMS 

Questionnaire 

Break 

Baseline 

measures 

Post measures  
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place 2.52 hours following drug/placebo intake. If necessary thresholds (RMT/ SI 

1mV) were adjusted during the second measurement. Finally, participants were 

asked to rate their level of fatigue and tiredness again on the questionnaire. 

Participant comfort was closely monitored throughout the experiment.  

7.2.5 Analyses of MRS data 

In vivo 1H spectra were fitted and quantified with the LCModel software 

package (Provencher, 1993). The basis set used for quantification included an 

experimentally acquired macromolecule spectrum and model spectra of 20 

metabolites. The LCModel analysis was performed within the chemical shift 

range 0.5 to 4.2 ppm. Water scaling was applied using the non-suppressed water 

reference. The LCmodel control parameters were based on previously published 

parameters (Tkác et al., 2009). The absolute concentration for each cerebral 

metabolite are reported in institutional units. Metabolites with Cramer-Rao 

lower bound (CRLB) >20% were rejected from further analysis. The linewidth of 

in vivo spectra were 10.35±1.99 Hz. Total Cr (tCr, i.e., PCr+Cr) was used as the 

internal reference for quantification due to its relatively high and stable 

concentration in the human brain (Danielsen & Ross, 1999; Stagg & Rothman, 

2014).The group mean in vivo spectrum acquired from the VOI is presented in 

Figure 7.1B. Any significant outliers were identified and removed using Grubbs 

test.  

7.2.6 Analyses of TMS data  
 

All trials were carefully visually inspected and trials in which there was 

evidence of pre-contraction of the FDI muscle in the period 500ms prior to an 

MEP were excluded. For the remaining data peak-to-peak MEP amplitudes were 

measured using in-house software (programmed using Matlab, The Mathworks, 

MA, USA). When analysing individual participant data median values were 

calculated to indicate average MEP amplitude in response to a particular 

stimulator output.  Significant outliers were identified and removed from further 

analysis using Grubbs test. 
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Resting motor thresholds (RMT)  

The group mean RMT was 45.7 (±6) of maximum stimulator output.  The 

group mean for the 1mV (SI mV) threshold (i.e., the lowest intensity needed to 

evoke an MEP of 1mV in 5 of 10 consecutive trials) was 55.3(±6.8) %. The group 

mean MEP amplitude for a TMS pulse delivered at SI 1mV was 1365.3 

(±556.9)mV.  

TMS recruitment (IO) curves 

Single pulse TMS IO curves were measured by calculating for each 

individual the median MEP amplitude for each given TMS intensity (100 -150% 

RMT). Four-parameter sigmoidal fits were then applied to the resultant values 

and the maximal slope and the plateau of the curve were calculated. The 

sigmoidal function used to fit curves to the individual datasets was: 

MEP𝑆 = 𝑦0 +  
MEPMAX

1 + 10(𝑆50−𝑆)𝑘
 

MEPMAX is the maximum MEP amplitude measured, S50 is the TMS intensity 

needed to produce 50% of the maximum MEP, k is the gradient of the maximum 

steepness of the curve and y0 is the minimal MEP response, which was set to 0. 

Two measures of interest were taken from the sigmoid curve: the maximum 

slope of the sigmoid (IO curve slope) and plateau of the sigmoid (IO plateau). 

Paired pulse data 

Paired pulse trials were analysed by calculating for each individual the 

median MEP amplitude for each CS intensity at each ISI. These values were then 

divided by the median MEP amplitude for unconditioned trials to create a ratio 

measure. Linear slopes were fitted to 1ms and 3ms SICI measures (Figure 7.3) 

and a median value was calculated across the different CS intensities to reveal 

the average level of inhibition. Individual median MEP values were also 

calculated for ICF trials; the resultant group data are presented in Figure 7.3. 



182 
 

Inspection of this figure clearly illustrates that while the SICI paired pulse trials 

(ISIs 1ms and 3ms) led to a large reduction of the MEP produced by the test 

stimulus, the ICF trials (ISIs 10ms and 12ms) led to a large increase in the MEP to 

the test stimulus. These data are consistent with the inhibitory and excitatory 

effects of SICI and ICF paired pulse TMS stimulation. Statistical analysis using a 

one-way ANOVA confirmed that there was a significant effect of stimulator 

intensity on MEP amplitudes for both the 1ms SICI curve (F(3,104) = 32.58, p < 

0.0001) and the 3ms SICI curve (F(3,107) = 19.23, p < 0.0001). Paired sample t-

tests confirmed that the values for both 10ms ICF trials (t(26)=10.8, p=.00) and 

12ms ICF (t(26)=10.63, p=.00) differed significantly to unconditioned trials.  

 

Figure 7.3. Group mean of individual median MEP values for paired pulse SICI (1ms and 

3ms ISI) and ICF (10ms and 12ms ISI) trials. Error bars represent the standard error of the 

mean. 

 

Following initial analyses, it was determined that data from LICI trials 

would not be analysed further. This was based upon the large percentage of 

participants who reached floor levels for this measure (i.e., there was a complete 

inhibition of the MEP in 8/27 participants). While this illustrates that the LICI 

paired pulse TMS procedure was highly effective, it reduces individual variability 

in LICI values and, therefore, makes correlation analyses less effective. 
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7.2.7 Correlations between MRS and TMS measures 
 

One of the key aims of this study was to directly examine the association 

between TMS measures of physiological inhibition - assessed by TMS stimulation 

of the hand area of the motor cortex (M1) of the left hemisphere - with MRS 

measurement of GABA concentration – acquired from a voxel centred over the 

hand area of left hemisphere M1. To examine these association Pearson 

correlation coefficients were calculated for the entire set of TMS measures 

against a measure of M1 GABA concentration. For completeness correlations are 

reported without adjustment for multiple comparisons. Where correlation 

coefficients are statistically significant the adjusted statistical threshold (alpha) 

calculated for multiple comparisons using the Holm-Bonferroni correction 

method is reported separately for each neurotransmitter.  

The TMS measures used in the analyses consisted of the following ten 

measurements for each individual: the resting motor threshold (50-100μV); the 

median MEP for a single, unconditioned, TMS stimulus delivered at that 

individual’s RMT (med MEP); the stimulator output (%) required to produce an 

MEP of approximately 1mV (SI 1mV); the linear slope of the TMS IO curve (IO 

curve); the median inhibition value (%) observed for 1ms SICI trials (1ms SICI); 

the linear slope value for 1ms SICI trials (1ms SICI slope); the median inhibition 

value (%) observed for 3ms SICI trials (3ms SICI); the linear slope value for 3ms 

SICI trials (3ms SICI slope); the median value (%) observed for 10ms ICF trials 

(10ms ICF); and the median value (%) observed for 12ms ICF trials (12ms ICF). 

While the primary focus of this study was to examine the association 

between TMS measures of physiological inhibition (e.g., SICI) and MRS measures 

of GABA (hereafter referred to as MRS-GABA), and also the effects of GBP on 

GABA. For completeness, the relationship of TMS measures with MRS measures 

of glutamate (Glu), glutamine (Gln), and the ratio of glutamine to glutamate were 

also explored.  
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7.2.8 Analysis of acute effects of gabapentin/placebo administration 
 

Grubbs test was used to identify and remove outliers in the post GBP and 

post sham conditions. Once outliers were removed from each data set, 

percentage change from baseline was calculated. Independent samples t-tests 

were then used to test for significant differences occurring between the placebo 

and GBP groups for each TMS/MRS measure.  Pearson’s correlation analysis was 

also used to examine any relationships between change in MRS/TMS measures 

and baseline measures for each group. 

7.3 Results 
 

7.3.1 Correlations between baseline TMS and MRS measures 
Association of TMS measures with GABA (GABA/tCR) 

 

Figure 7.4 Spider’s web plot illustrating Pearson correlation coefficients for TMS 

measures with GABA/tCR ratios. Plot shows correlation coefficients running from 1.0 

(outer ring) to -1.0 (inner ring) with the broken black line representing a correlation 

coefficient of 0. Open blue circles are not statistically significant (p>0.05), whereas filled 

blue circles represent statistically significant correlations (p<0.05).  
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Figure 7.4 displays a spider plot of the Pearson correlation coefficients of 

the TMS measures with GABA/tCr ratio. These analyses revealed that all effects 

failed to reach conventional levels of statistical significance (all p > 0.29). In 

particular, the correlation coefficients for 1ms and 3ms SICI did not approach 

statistical significance for either median inhibition (1ms SICI: r = -0.19, p=0.34; 

3ms SICI: r = -0.08, p=0.68), or slope (1ms SICI: r = -0.17, p = 0.39; 3ms SICI: r = 

0.06, p = 0.77).  

Association of TMS measures with glutamate (Glu/tCR) 

 

Figure 7.5. Spider web plot illustrating Pearson correlation coefficients between 

individual values for each TMS measurement and glutamate concentrations (Glu/tCr 

ratios). Filled circled indicate significant relationships for 10ms ICF and IO plateau with 

Glu/Cr. 

Figure 7.5 displays a spider’s web plot of the Pearson correlation 

coefficients of the TMS measures with Glu/tCr ratio. Similar relationships were 

found as expected. A significant negative relationship was found between IO 

plateau and Glu/tCr (r=-0.74, p<0.0001 [corrected using Holm-Bonferroni 

method]) but not IO maximal slope (r=-0.2, p=0.34) or RMT (r=-0.09, p=0.67). A 
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significant positive relationship was found between Glu/tCR and 10ms ICF (ICF 

10ms: r=0.52, p<0.01), however, this did not survive Holm-Bonferroni correction 

(r=0.52, p=0.08).  12ms ICF was not found to have any relationship to Glu/tCR  

(ICF 12ms: r=0.06, p=0.78).  

 

Association of TMS measures with glutamine (Gln/tCR)  

 

Figure 7.6. Spider web plot illustrating Pearson correlation coefficients between 

individual values for each TMS measurement and glutamine concentrations (Gln/tCr 

ratios). Filled circled indicate significant relationships for Median MEP amplitude at RMT 

(Med MEP) and Gln/Cr. 

Figure 7.6 displays a spider’s web plot of the Pearson correlation 

coefficients of the TMS measures with Gln/tCr ratio. The analysis revealed a 

significant correlation between the Gln/tCr ratio and the median amplitude of 

MEPs in response to stimulation at RMT (r=-0.40, p=0.05), although this did not 

survive the Holm-Bonferroni correction (r=-0.4, p=0.5). Neither RMT (r=0.11, 

p=0.61) nor IO maximal slope (r=-0.01, p=0.97) were significantly associated with 
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Gln/tCR concentration and all other correlations failed to reach statistical 

significance. 

Multiple regression analyses 

To address any potential multivariate effects, the following six MRS 

measures were entered as separate predictors into a multiple regression model: 

GABA/tCR; Glu/tCR; Gln/tCR; GABA/Glu; GABA/Gln and Gln/Glu. These 

predictors were then used to predict each of the TMS measurements in turn.  

These analyses confirmed that the magnitude of the median MEP 

obtained at RMT was predicted by a combination of the Gln/Glu ratio (t=-3.43, 

p=0.03) and GABA/Glu ratio (t=-2.85, p=.01)(t = -3.09, p = 0.01); R2 = 0.4, F = 7.1, 

p = 0.00.  

The model also revealed that 10ms ICF was predicted by Glu/tCR ratio 

(t=-2.92, p=.01), R2= .27, F=8.5, p=.01. In addition to this Glu/tCR was found to 

significantly predict IO plateau (t=-2.92, p=.01), R2= .27, F=8.45, p=.01.  

Bayesian Statistics 

A Bayesian Hypothesis test was employed primarily to evaluate whether 

there was evidence in favour of the null hypothesis (H0), i.e. that a metabolite 

bore no relationship with neurotransmitter function as tested by TMS. It further 

allowed us to quantify the strength of the relationship of any correlations found 

(evidence in support of the alternative hypothesis, H1). Bayes Factors (BF10) were 

calculated using JASP (JASP-Team, 2016); JASP uses the Bayesian correlation test 

proposed by Jeffreys (1961). Bayes Factors above 1 show support for H1 whilst 

below 1 show support for the H0, the magnitude of the BF10 shows the strength 

of the evidence in support of either the H1 or H0. For cut-off values for the 

different strengths of evidence please see Table 7.3. 

In support of previous analyses, the Bayesian Hypothesis test showed 

there was decisive evidence that Glu/tCr is related to IO plateau (BF10=1119.59) 

and substantial evidence that ICF 10ms is related to Glu/tCr (BF10=7.05). Further, 
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there is substantial evidence that the majority of TMS measures do not relate to 

MRS measures of Glu/tCr, Gln/tCr or GABA/tCr. Most notably there is substantial 

evidence for no relationship between SICI 3ms, and SICI 3ms slope and GABA/tCr 

(BF01=3.86 and 4.02 respectively). For full results of the Bayesian Hypothesis Test 

please refer to Table 7.4. 

Table 7.3. Category values for BF10, adapted from Wetzels and Wagenmakers (2012) 

 

 

Table 7.4. Bayesian hypothesis test for correlations. Data presented are each BF10 

 
*substantial evidence for H1, **strong evidence for H1, ***decisive evidence for H1, †

substantial evidence for H0 BF10 > 1 supports H1, BF10<1 supports H0, BF10=1 suggests no 

evidence. 
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7.3.2 Acute effects of gabapentin/placebo on MRS measures 
 

 

Figure 7.7.  % change from baseline for GABA, Glu and Gln measures shown as mean and 

SEM for placebo and GBP groups. 

 

GABA/tCr 

Independent samples t-tests revealed no significant differences between 

the two groups for percentage change in GABA level, (t(26)=-1.42, p=.17). 

Bayesian statistics revealed anecdotal support in favour of no real differences 

existing between the two groups (BF10=0.74). Relevant data can be seen in Figure 

7.7.    

Glu/tCr 

There were no significant differences between the amount of change in 

Glu levels between the two groups (t(25)=.45, p=.66). Bayesian statistics provide 

anecdotal support in favour of there being no difference between the two 

(BF10=0.39).   Relevant data can be seen in Figure 7.7.    

Gln/tCr 

There were no statistically significant differences between the amount of 

change in Gln levels between the two groups (t(26)=.08, p=.93). Bayesian 
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statistics provide anecdotal evidence that the effects were not different 

(BF10=0.35).   Relevant data can be seen in Figure 7.7.    

7.3.3 Effects of baseline MRS measure and subsequent change  
 

Gabapentin condition 

 

 

Figure 7.8. Change in GABA level following gabapentin plotted against baseline GABA 

level. 

 

A significant relationship was found between baseline GABA and 

subsequent change in GABA level (r=-.78, p=.00). The results of the Bayesian 

hypothesis testing suggest very strong support that baseline GABA predicted the 

% change in GABA following GBP administration (BF10=41.82). This relationship 

can be seen in Figure 7.8. 

Baseline levels of glutamate were not found to significantly relate to 

subsequent levels of change in glutamate (r=-.53, p=.06). Bayesian hypothesis 

testing revealed only anecdotal support in favour of the relationship (BF10=1.63). 

Baseline levels of glutamine were not significantly related to subsequent 

change in glutamine measures (r=-.18, p=.55). Bayesian hypothesis testing 
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revealed anecdotal evidence in favour of no relationship between the two 

(BF10=0.39). 

 

Placebo condition 

 

Figure 7.9. Change in GABA level following placebo plotted against baseline GABA level. 

 

Levels of GABA at baseline were not significantly related to levels of GABA 

following placebo (r=-.34, p=.24). The results of the Bayesian hypothesis test 

showed anecdotal evidence in favour of there being no relationships (BF10=.63). 

This data can be seen in Figure 7.9.  

-90

-70

-50

-30

-10

10

30

50

70

90

0.00 0.05 0.10 0.15 0.20 0.25 0.30

%
 C

h
a
n
g
e
 i
n
 G

A
B

A
/t
C

r 
 f
o
llo

w
in

g
 

p
la

c
e
b
o

Baseline GABA/tCr



192 
 

No statistically significant relationship was found between baseline 

glutamate levels and subsequent change (r=-.421, p=.128). Bayesian hypothesis 

testing also failed to provide support for a relationship (BF10= 0.948). 

 

Baseline measures of glutamine were found to significantly correlate with 

the amount of change in this measure after placebo (r=-.71, p=.004). Bayesian 

hypothesis testing suggests strong evidence in favour of the existence of this 

relationship (BF10= 12.86). Relevant results can be seen in Figure 7.10.  

7.3.4 Acute effects of gabapentin/placebo on TMS measures 

There were no significant differences between the two participant groups 

for any of the TMS variables, including those thought to reflect GABAergic 

inhibition. In particular 3ms SICI median inhibition (t(26)=1.0, p=.33) and 3ms SICI 

slope (t(26)=-.17, p=.87) were not significantly different between groups. Change 

from baseline in measures of 1ms SICI median inhibition (t(26)=-1.59, p=.12) and 

1ms SICI slope (t(25)=-.32, p=.76) were also not significantly different.   
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Figure 7.10. Change in Gln/tCr level following placebo plotted against baseline Gln/tCr 
level. 
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7.3.5 Effects of baseline TMS measure and subsequent change  
 

 

Gabapentin 

Baseline values were not found to significantly relate to subsequent 

change in 3ms SICI median (r=-.42, p=.12) nor 3ms SICI slope (r=-.021, p=.94). 

Bayesian hypothesis testing revealed anecdotal evidence that there was no 
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Figure 7.11. Results of Pearson’s correlational analysis between A: baseline 1ms SICI slope and % slope 

change following gabapentin; B: baseline 1ms SICI slope and % change following placebo; C: baseline 10ms 

ICF and % change following gabapentin; D: 10ms ICF baseline and % change following placebo. Anything 

left of the blue line in C and D indicates a lack of true ICF effect in that conditioned MEPs were not larger 

than those from un-conditions trial.  
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relationship between baseline and change for either measure (BF10=0.99 and 

BF10=.32). 

Change in 1ms SICI median inhibition (r=-.76, p=.00) and 1ms SICI slope 

(r=-.85, p=.00) were found to negatively correlate with their respective baseline 

values. For the 1ms SICI median condition the model shows that as baseline 

median MEP amplitudes increase, the percentage change from baseline in the 

second measurement decreases or becomes negative. Larger median MEP 

amplitudes suggest lower levels of inhibition, therefore, this implies that those 

with initially low levels of inhibition at baseline show less change/a tendency 

towards increased inhibition (lower MEP amplitudes). Whereas, those who 

showed higher levels of inhibition at baseline (indexed by low med MEP 

amplitude) were more likely to show a larger percentage increase in MEP 

amplitude, hence indicating a shift towards lower levels of inhibition than 

previously measured.  A similar pattern of results is true for 1ms SICI slope 

measures (Figure 7.11 A) in which, as baseline slope increases (larger negative 

values suggest steeper slope), the percentage change from baseline decreases or 

becomes negative. Those with low slope values at baseline (indicating less 

inhibition) were more likely to show increased slope values in the second testing 

session (indicating an increase in inhibition) whereas the opposite is true for 

individuals whose baseline slopes were initially high.  Bayesian hypothesis testing 

revealed very strong evidence of the relationship between baseline and 

subsequent change in 1ms median inhibition (BF10=40.19) and decisive support 

for the relationship between baseline and change for 1ms SICI slope 

(BF10=407.5).  

Baseline values from 10ms but not 12m ICF significantly correlated with 

subsequent change (r=-.69, p=.00). The results can be seen in Figure 7.11 C, in 

which it can be observed that as baseline ICF values increased the percentage 

change decreased or became negative. This suggests that those who showed the 

largest ICF effects at baseline were then more likely to show a decrease in 
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subsequent measures and vice versa was true for those with lower values at 

baseline.   

 Bayesian hypothesis testing revealed strong support for the existence of 

a negative correlation between baseline 10ms SICI and subsequent change after 

GBP (BF10=13.38).  

Placebo 

The correlations between baseline TMS measures and their subsequent 

change are similar to those found for the GBP condition. Specifically, correlations 

between baseline and subsequent change were found for 1ms SICI slope and 

10ms ICF but no other measures.   

Change in 1ms SICI slope (r=-.81, p=.00) was significantly negatively 

correlated with its baseline values (Figure 7.11 B). Bayesian statistics suggest 

there is strong evidence in favour of the relationship (BF10=30.39).  

As was the case with the GBP participants, baseline 12ms ICF was not 

related to subsequent change in this measure, however, baseline 10ms ICF was 

(r=-.72, p=.00). Bayesian statistics revealed strong support for the negative 

correaltion (BF10=11.52). Relevant data can be seen in Figure 7.11 D. 

 

7.3.6 Questionnaire measures 
 

Independent samples t-tests revealed no significant differences between 

baseline ratings of fatigue t(24)=1.13, p=2.71. Ratings of tiredness were also not 

significantly different between the two groups at baseline t(24)=1.86, p=.08.  

A repeated measures ANOVA revealed no significant main effect of group 

(F(1,24)=.11, p=.75) on fatigue ratings. However, ratings were found to 

significantly increase when measured at the end of the study (F(1,24)=8.47, 
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p=.00). The interaction between time of measurement and group was not 

statistically significant (f(1,24)=2.86, p=.10).  

Ratings of tiredness significantly increased in the second measurement 

(F(1,24)=7.21, p=.01). There was also a significant interaction between time and 

group (F(1,24)=6.14, p=.02), although the main effect of group was not 

significant (F(1,24)=.42, p=.52). Further exploration using paired samples t-tests 

revealed no significant differences between pre- and post-fatigue ratings for the 

placebo group (t(11)=-1.55, p=.15), but a significant difference was found for the 

GBP group (t(13)=-3.7, p=.00).  

Correlations between percentage of change in fatigue/tiredness rating 

and percentage of change in MRS-GABA were also assessed using Pearson’s 

correlation co efficient. However, no significant correlations were found.  

 

7.4 Discussion 
 

Imbalances in glutamatergic (excitatory) and GABA (inhibitory) signalling 

within key brain networks are thought to underlie many brain disorders 

including: schizophrenia (Gonzalez-Burgos et al., 2010), depression (Kalueff & 

Nutt, 2007) and ‘hyperkinetic’ neurodevelopmental disorders such as TS (Clarke 

et al., 2012; Ramamoorthi & Lin, 2011). For this reason there is considerable 

current interest in the use of MRS to measure in vivo concentrations of brain 

molecules (e.g. GABA, glutamate, glutamine) that can be correlated with brain 

function and dysfunction. While it is tempting to equate the GABA measured 

using MRS (hereafter referred to as MRS-GABA) with neurotransmitter function, 

and with physiological or behavioural inhibition (e.g. Dharmadhikari et al. (2015); 

Haag et al. (2015)) it is important to note that at any point in time only a fraction 

of MRS-GABA will be neurotransmitter, and that increased MRS-GABA 

concentrations do not necessarily mean that there is increased physiological or 

behavioural inhibition (Rae, 2014). Furthermore, it is currently unclear whether 
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MRS-GABA represents the entire pool of GABA available for measurement (i.e., 

metabolic, intracellular, and extracellular GABA), or as some have argued, 

represents instead largely extracellular, extra-synaptic, GABA that is unrelated to 

the synaptic transmission of GABA (Rae, 2014; Stagg, 2014).  

In the current study we compared directly, in the same individuals, MRS-

GABA (and other important neurometabolites such as glutamate and glutamine) 

measured from a voxel located in the sensorimotor cortex against TMS measures 

of cortical excitability and GABA-mediated physiological inhibition measured 

from the hand area of motor cortex. We also used a placebo controlled drug 

manipulation to explore the effects GBP may have on TMS and MRS measures. It 

is important to note that using these techniques we obtained high-quality MRS 

data and replicated each of the previously reported TMS effects (i.e., TMS 

recruitment curves, 1ms SICI and 3ms SICI curves, and 10ms and 12ms ICF 

effects) that we set out to examine in this study. 

The main results of our study are summarised below.  

1. Individual concentrations of MRS-GABA were unrelated with any TMS 

measurements, including TMS measures of: general cortical excitability (i.e., TMS 

recruitment curve slopes); GABA mediated physiological inhibition (i.e., 3ms 

SICI), and TMS measures thought to be dependent upon the glutamatergic 

NMDA receptor (i.e., 10ms ICF and 12ms ICF).  

2. Individual levels of MRS-glutamate (Glu) were significantly negatively 

correlated with the plateau of the IO curve; a measure which is thought to reflect 

the balance of excitatory and inhibitory components of the corticospinal volley 

(Devanne et al., 1997). The relationship suggests that as levels of MRS-Glu 

increase the maximum MEP amplitude predicted by the model reduces. Multiple 

regression analysis revealed Glu/tCR to be the only significant predictor of this 

measure and, furthermore, Bayesian hypothesis tests provide very strong 

support in favour of the experimental hypothesis.  
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3. MRS-Glu was also found to be marginally correlated with 10ms but not 12ms 

ICF. The multiple regression analysis confirmed that Glu/tCR was a significant 

predictor of 10ms but not 12ms ICF. Bayesian hypothesis testing confirmed that 

there is substantial evidence in favour of the relationship.  

4. There was some evidence of correlation between glutamine (Gln) 

concentrations and median amplitude of the MEP response to TMS stimulation 

delivered at RMT. However, the Bayesian hypothesis test revealed only 

anecdotal support in favour of the relationship. This is possibly explained by the 

findings of the linear regression model which reveal that median MEP amplitude 

was found to be predicted by both the Gln/Glu and GABA/Glu ratios, but not 

significantly by Gln/tCR.  

5. Gabapentin did not significantly change MRS or TMS measures when 

compared with the placebo group. GBP also did not appear to significantly alter 

MRS measures of glutamate or glutamine.  

6. Levels of baseline MRS-GABA were significantly correlated with percentage 

change in MRS-GABA approximately 2 hours after participants received GBP, but 

not placebo. Those with the lowest levels of MRS-GABA at baseline saw the 

largest increases, however, those with initially high levels of MRS-GABA showed 

a decrease in the second scanning session. Bayesian hypothesis testing 

confirmed very strong support for the relationship in the GBP condition only.  

7. Baseline measures of 1ms SICI and 10ms ICF were found to be negatively 

correlated with subsequent change in these measures for both the GBP and 

placebo conditions.  

MRS-GABA and physiological inhibition  

Our finding, that individual concentrations of MRS-GABA are unrelated to 

GABA-mediated physiological inhibition, as measured by 3ms SICI, replicates 

previous reports for 3ms SICI (Tremblay et al., 2013) and 2.5ms SICI (Stagg et al., 

2011). The physiological mechanisms that underpin both 2.5ms and 3ms SICI 
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effects are well established and are thought to primarily involve post-synaptic 

inhibition mediated through GABA-A receptors (Ziemann et al., 2015). Although 

SICI has also been found to be modulated by neurotransmitters such as 

dopamine (Gilbert et al., 2006; Korchounov et al., 2007; Ziemann, Bruns, et al., 

1996), the contribution such neurotransmitters make to GABAergic 

neurotransmission is complex (see (Hasselmo, 1995) and beyond the scope of 

this study (Hasselmo, 1995). As a result, it is suggested that the lack of 

correlation between 3ms SICI and MRS-GABA observed in this study and others 

indicates that the primary source of MRS-GABA is unlikely to be that associated 

with GABAergic synaptic transmission, but instead most likely relates to 

concentrations of metabolic GABA and to levels of ambient extracellular GABA 

that contribute to tonic GABAergic activity and, therefore, to the GABAergic tone 

of a brain region (Rae, 2014; Stagg, 2014). 

 In a previous study, Stagg and colleagues (Stagg et al., 2011) reported a 

significant correlation between MRS-GABA concentrations and 1ms SICI slopes. It 

is important to note that the underlying physiological mechanisms for the 1ms 

SICI effect are thought to be distinct from those associated with longer ISIs such 

as the 3ms SICI effect (Cengiz et al., 2013; Fisher et al., 2002; Roshan et al., 

2003), however, the exact mechanisms underlying 1ms SICI are currently unclear. 

Some have proposed that the effects may relate to the refractory periods of 

inter-neurons (Cengiz et al., 2013; Fisher et al., 2002), whereas others have 

argued that synaptic processes may also play a role (Roshan et al., 2003; Vucic et 

al., 2009).  

Unfortunately, in this study the findings observed by Stagg et al. (2011) 

are not directly replicated and it is not fully clear why this would be. It is unlikely 

to be due to a lack of power, as the sample size used here was more than double 

that used previously (i.e., N=27 versus N=12). Similarly, it is also unlikely to be 

due to the efficacy of our TMS procedures as our 1ms SICI protocol was highly 

effective in producing effective inhibition and a 1ms SICI curve is clearly present. 

The main differences between the two studies were the nature of the MRS 
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protocol used (i.e. SPECIAL versus STEAM) and the field strength of the MR 

scanners (i.e., 3T versus 7T). Obviously it is difficult to conclude anything from a 

null effect, so at this point it is only possible to say that the previously observed 

relationship between 1ms SICI and MRS-GABA is not entirely reliable.  

MRS-glutamate and glutamine and cortical excitability  

TMS recruitment curves are thought to reflect cortical excitability more 

generally and the strength of cortico-spinal projections (Chen, 2000). However, 

different physiological processes may contribute to the TMS recruitment curve 

across the different stimulator intensities used, and various neuromodulators 

and neurotransmitters, including both GABA and Glu, may contribute to the 

effects observed (Ziemann, 2013). Furthermore, different aspects of the 

recruitment curve may relate to different mechanisms. For example, it may be 

that measures of the slope of the curve are distinct from measures of the plateau 

(Kouchtir-Devanne et al., 2012).  

Stagg et al. (2011) reported a significant correlation between cortical 

excitability, as indexed by the slope of the TMS recruitment curve, and MRS-

glutamate. This finding was not replicated in this study which in fact found quite 

the opposite, at least at first appearance. We found the plateau of the IO curve 

to be negatively correlated with Glu/tCr. We did not, however, find a relationship 

between IO curve and Glu/tCr. The most obvious differences between both 

protocols as mentioned are the differences between the sequences used to 

acquire MRS data, the scanner strength and the sample. Other possible 

explanations for the differences between these two studies may be the subtle 

differences between the protocols used for measuring TMS recruitment curves in 

each study. In this study we used a standard procedure; increasing the stimulator 

intensity in 10% increments proportional to an individual’s resting motor 

threshold. By contrast, Stagg et al. (2011) used a procedure in which the 

percentage of the intensity needed to yield an MEP of 1mV was tracked over 

time. This method ensures a similar degree of neuronal recruitment across 

participants’ mid-slope, whereas the method that we used ensures that this is 



201 
 

the case at 100% of RMT. However, it is important to note that despite these 

procedural differences, the IO curves themselves appear to be similar. In 

particular, the mean amplitude for MEPs in response to the highest stimulation 

was highly similar across both experiments (i.e., approximately 3: 3.5mV) 

indicating that the two methods were producing comparable effects. For this 

reason, we feel that the different results obtained in the two studies are unlikely 

to have resulted from procedural differences in TMS stimulation.  

At first glance our finding appears to be somewhat unorthodox, however, 

it highlights that what we are measuring with MRS (and TMS) is most probably 

not just “excitation” vs. “inhibition”. Initially a high plateau may indicate more 

excitation, in which case, we may expect more glutamate. This is simply not the 

case. Prior literature describes that the maximum plateau of a recruitment curve 

does not simply reflect the maximum output of the corticospinal system 

(Devanne et al., 1997; Houdayer et al., 2008; Kouchtir-Devanne et al., 2012). It 

may instead reflect the intrinsic balance of excitation and inhibition at M1 

(Devanne et al., 1997). Few articles discuss the cortical origins that lead to the 

plateau of a recruitment curve. One experiment shows that decreases in 

maximum plateau across different active muscle conditions is accompanied by 

reductions in SICI and LICI but not in ICF (Kouchtir-Devanne et al., 2012) and we 

have speculated that this may relate to the functional coupling between 

intracortical circuits within M1. At least one study has shown that slope and 

plateau do not always change together and that active high frequency rTMS can 

reduce plateau and increase slope (Houdayer et al., 2008), thus our findings may 

not be entirely incompatible with Stagg’s 2011 paper. Any conclusions from this 

finding can only be speculation on our part, particularly since to our knowledge 

there are no similar findings in the literature between IO plateau and glutamate 

(or any other neurometabolite). 

 A significant relationship was found between 10ms but not 12ms ICF and 

MRS-glutamate. The lack of a significant relationship with 12ms is consistent with 

the previous findings by Stagg et al (2011), however, the relationship with 10ms 
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ICF is novel as this was not measured in either of the previous TMS-MRS studies 

(Stagg et al., 2011; Tremblay et al., 2013). The mechanisms underlying ICF are 

not yet fully understood, however, ICF is generally thought to test the excitability 

of an excitatory neuronal motor network which is likely to be modulated by both 

glutamatergic and GABAergic mechanisms (Ziemann, 2013). ICF can be measured 

using ISIs of 7-20ms (Kujirai et al., 1993; Vucic et al., 2006) and although this is a 

relatively large range of effective ISIs, to our knowledge no clear distinction has 

been drawn between these parameters (unlike SICI). Therefore, although the 

results suggest support for the experimental hypothesis, further study and 

replication of this effect is warranted to draw strong conclusions about this 

relationship.  

Finally, it was demonstrated that individual MEP amplitudes were 

predicted by a linear combination of the ratios of glutamine/glutamate and 

GABA/glutamate. Glutamate exists in several metabolic pools in the brain and 

these pools serve as the source of glutamate for neurotransmission. Also, there 

is a balanced cycling between glutamate and glutamine that is essential for the 

normal operation of brain functions and the levels of these neurometabolites are 

highly correlated with one another in the healthy brain (Rae, 2014). Specifically, 

glutamate removed from the synaptic cleft is converted to glutamine within 

astrocytes and astrocyte-derived glutamine is then used as a precursor for the 

synthesis of glutamate or GABA within neurons. This cycling of glutamate and 

glutamine between cell types in the brain is highly dynamic and is thought to 

account for 80% of cerebral glucose consumption (Ramadan et al., 2013). For this 

reason it is very likely that TMS-induced changes in cortical excitability may be 

indexed by subtle changes in the balance between glutamate and glutamine.  

 

Effects of Gabapentin on TMS measures 

GBP was not found to significantly alter any of the TMS measures when 

compared with the placebo group. This was somewhat surprising as based on the 

previous literature (Rizzo et al., 2001; Ziemann, Lonnecker, et al., 1996) it was 



203 
 

expected that GBP would significantly increase SICI, and reduce ICF.  To our 

knowledge, this study is the first to use a double blind, sham controlled method 

to investigate the effects of GBP on TMS measures. This study also appears to be 

the first not to show a clear effect of GBP on TMS measures. It is not entirely 

clear why the present study failed to replicate previous findings, although it is 

possible that subtle differences between experimental designs may have 

contributed.  

Power seems an unlikely reason for the lack of observable effects, as our 

sample was substantially larger (N=15) than the first experiment conducted by 

Ziemann, Lonnecker, et al. (1996) (N=6) and slightly larger than that used by 

Rizzo et al. (2001) (N=11). Drug dosage also seems an unlikely reason for the lack 

of effects, as, although this study used a 900mg dose which was lower than that 

use by (Ziemann, Lonnecker, et al., 1996)(1200mg) it was higher than the 800mg 

used by Rizzo et al. (2001).  

Another possible reason for the lack of replication may be the timing 

between drug uptake and TMS measurement. On average the second TMS 

measurements were taken 3 hours after receiving GBP, however, this ranged 

from 2.36-3.25 hours between participants. In their study Rizzo et al. (2001) 

found increased SICI and decreased ICF 3 hours after participants received an 

800mg dose of GBP. This may suggest, that in this study the duration for drug 

uptake may have been too short for some individuals. However, Ziemann, 

Lonnecker, et al. (1996) found significant effects of SICI and ICF after just 2 hours. 

Unfortunately, as different doses and timings were used in all studies it is not 

possible to draw strong conclusions about the lack of effects seen here. If a 

similar study were to be conducted again it would be interesting to measure 

effects over a number of time points to map the time course of GBP and its peak 

effects.  

Pearson’s correlational analysis was used to explore any impact baseline 

may have on subsequent change in TMS measures. Although baseline was 

significantly correlated with measures including 1ms SICI slope and 10ms ICF, 



204 
 

these correlations were present for both GBP and control groups.  The pattern of 

results and the finding of similar correlations in both conditions strongly suggest 

a regression to mean type effect, and provides no further explanation for the 

lack of observable GBP effects on TMS measures.   

Effects of GBP on MRS measures 

Contrary to previous findings (Cai et al., 2012; Kuzniecky et al., 2002; 

Petroff et al., 1996) GBP did not significantly alter levels of MRS-GABA.  As was 

the case with the TMS measurements it is possible that the lack of replication in 

this study reflects the timing of the measures.  Approximately 2 hours elapsed 

between drug intake and scanning in this study, however, this ranged from 1.45-

2.23 hours. Interestingly, although Cai et al. (2012) found significantly elevated 

GABA levels 2.5 hours after drug uptake, similar effects were only found 6, but 

not 3 hours after intake by Kuzniecky et al. (2002).  Although the studies differ in 

a number of ways including the field strengths used to collect MRS data and the 

amount of gabapentin given to participants, these findings both suggests that 2 

hours may have been too early to see effects.  

In order to explore the potential effect baseline GABA levels may have on 

subsequent levels of change correlational analyses was conducted.  A significant 

correlation was found between baseline and subsequent % change following GBP 

(Figure 7.8) but not placebo (Figure 7.9). The correlation between baseline and 

change in GABA following GBP was also reported by Cai et al. (2012). However, 

unlike the relationship found by Cai et al. (2012) not all participants showed a 

percentage increase in GABA; in fact, some of those with higher baseline GABA 

levels showed a percentage decrease in the second MRS measurement. It is not 

entirely clear why this would be so, and although speculation regarding 

homeostatic mechanisms or regression to mean are possible, without further 

testing these explanations would be superfluous.     

There are a number of similarities between the present studies design 

and that used by Cai et al. (2012) including performing the study at 7T and using 
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a 900mg dose of gabapentin. However, there also remain a few key differences 

between the two. One potentially important difference is that in their study Cai 

et al. (2012) tested only male participants. The decision to do so appears to be 

related to previous findings that females show more variability in GABA level 

(Epperson et al., 2006), which can be particularly elevated during certain times of 

the menstrual cycle. Given the correlation between GABA level and increase 

following GBP (Cai et al., 2012) it could be that effects in females may be smaller 

if measured during such a time when GABA levels are elevated. Our sample size 

is too small to make strong claims about the potential differences between 

sexes, however, comparison of the percentage of change in GABA following GBP 

for males (N=7) and females (N=7) revealed no clear differences (data not 

shown). In addition to this the changes in MRS-GABA were found by Kuzniecky et 

al. (2002) whose participant sample include both males and females.  

Another difference between this study and those previously conducted, is 

that participants were able to eat immediately following drug consumption. 

Although this may seem problematic, there is little evidence that gabapentin 

absorption is negatively influenced by food. In fact, some studies have even 

found that foods with higher levels of protein such as a milk based breakfast 

option (Gidal et al., 1996) and chocolate pudding (Gidal et al., 1998) have been 

found to moderately enhance absorption. Nevertheless, it is true that 

participants did not consume exactly the same food so it cannot be ruled out 

that this increased variability within the effects.   

 The aims of this study were two-fold. Firstly, we aimed to investigate how 

levels of key neurometabolites (i.e., glutamate, glutamine and GABA) relate to 

TMS measures of cortical excitability and physiological inhibition (i.e., TMS 

recruitment curves, ICF and SICI). The results of this study reveal mixed support 

for the previous findings thus reported in the limited number of studies which 

have explored this relationship. Specifically, it was found that 3ms SICI and MRS 

measured GABA are uncorrelated. These findings appear to be consistent with 

the view that the GABA concentrations measured using MRS largely represent 
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pools of extracellular GABA that are linked to tonic rather than phasic inhibition 

and thus contribute to the inhibitory tone of a brain area rather than GABAergic 

synaptic transmission (Rae, 2014; Stagg, 2014). 

 The secondary aim of the study was to explore the effects GBP may have 

on TMS and MRS measures using a double blind, sham controlled design. The 

results showed no clear effects of GBP on either TMS or MRS measures and did 

not replicate previous findings. Although there is no clear, singular reason why 

GBP did not influence our TMS and MRS measures, it is possible that the 

duration between drug uptake and measurement was too short for clear effects 

to be observed. This may be particularly true for MRS measurements.  
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 General discussion 
 

Key words: transcranial direct current stimulation (tDCS), transcranial magnetic 
stimulation (TMS), magnetic resonance spectroscopy (MRS), Gilles de la 
Tourette’s syndrome, variability, reliability, therapy.  

 

The primary aim of this thesis was to explore the effects of tDCS and its 

therapeutic potential in the treatment of Tourette’s syndrome. A secondary aim 

of the thesis was to explore what is being measured with MRS, with particular 

reference to the inhibitory neurotransmitter GABA.  

In this chapter the key findings from each of the preceding experimental 

chapters will be discussed and reviewed. For clarity, they will be organized under 

the following titles: tDCS effects in neurologically typical individuals (Chapters 3 

and 4), tDCS effects and Tourette’s syndrome (Chapters 5 and 6) and exploring 

the origins of MRS measured GABA (Chapter 7). General conclusions and 

limitations of the work presented in this thesis will also be discussed.   

8.1 tDCS effects in neurologically typical individuals 
 

In Chapter 3 the time course of 1mA and 2mA tDCS effects were explored 

using TMS. Based on the general consensus of past literature, it was expected 

that 1mA anodal stimulation would produce an increase in cortical excitability (as 

indicated by increased MEP amplitudes), whereas, 1mA cathodal stimulation 

would produce a decrease. The predicted outcome of the 2mA condition was less 

well defined, due to more recent findings suggesting non-linear effects following 

2mA cathodal stimulation (Batsikadze et al., 2013).  

The initial aim of the study was to identify the optimal stimulation 

parameters for altering cortical excitability, with the hope that these could then 

be used to inform parameter selection in subsequent work. It was also hoped 

that the study would identify the time course of the effects and that this would 
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help inform when best to measure any therapeutic outcomes. Disappointingly, 

the results of the study failed to provide clear answers to either of these 

questions. 1mA stimulation was not found to significantly alter cortical 

excitability (as measured by TMS IO curves) in either anodal or cathodal 

conditions at any of the time points measured. The effects of 2mA tDCS were 

also disappointing, and only revealed one small effect of increased excitability 90 

minutes following anodal stimulation. 2mA cathodal stimulation did not 

significantly increase excitability, consequently, the study by Batsikadze et al. 

(2013) remains the only one which has reported this effect. 

 What was most apparent in Chapter 3 was the large amount of variability 

which occurred between participants in response to stimulation, even in 

conditions when a significant group level effect was found. At the time of 

conducting this research it became apparent that others were also experiencing 

high levels of variability within their own data (Wiethoff et al., 2014) and that the 

well accepted pattern of tDCS effects was starting to be questioned.  

In Chapter 4, I aimed to explore this variability using a variety of TMS 

measures. I was particularly interested in exploring the stability of tDCS effects 

within individuals, as finding intra-subject stability would suggest the possibility 

that anatomical features such as skull-cortex distance could be used to 

individualise stimulation parameters. In addition to this, if intra-subject stability 

were found, it may become possible to identify responders/non responders in a 

single pre-testing session. However, this was not to be.  

Despite making improvements to the experimental design used in Chapter 

3 (such as using anatomical brain scans for accurate TMS coil localization), no 

significant effects were found in TMS measures taken immediately after 2mA 

cathodal stimulation. Analysis of intra-subject reliability using interclass 

correlation coefficients (ICC) revealed poor inter-subject reliability across the 

four sessions tested. This was true of changes from baseline in IO curve, SICI and 

ICF measures. 
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The results of the 2mA anodal condition were more promising. At a group 

level there was a significant increase in IO curve measures, and some evidence of 

significant changes in 3ms SICI after stimulation. The increase in IO curves after 

anodal tDCS replicated previous findings (Nitsche & Paulus, 2000; Nitsche et al., 

2005), however, the 3ms SICI results were less clear. Although SICI was found to 

decrease after anodal stimulation in the majority of the 4 sessions, significant 

effects between baseline and post stimulation were only found for 2 of the 4 

sessions. Somewhat surprisingly, in one session the effects on 3ms SICI appeared 

to be reversed, revealing a significant increase after 2mA anodal stimulation, 

however, this can largely be accounted for by methodological issues relating to 

differences in test pulse intensity. Consequently, although the findings highlight 

the importance of vigilance when measuring SICI, the results were not in direct 

conflict with previous work in which SICI was reduced after anodal tDCS 

(Batsikadze et al., 2013; Kidgell et al., 2013; Nitsche et al., 2005). Hence the IO 

curve and SICI results largely support the previously reported findings that 

anodal tDCS increases overall cortical excitability, which may in part be mediated 

by a reduction in GABA.   

The findings of ICC analysis revealed that despite significant group level 

effects on IO curves these changes were unreliable within individuals across the 

different testing sessions. ICC analysis also revealed poor reliability for changes in 

3ms SICI, which conflicts with the previous findings of Lopez-Alonso et al. (2015). 

It is possible that the variability found in this measure could reflect 

methodological differences, although it should also be noted that Lopez-Alonso 

et al. (2015) failed to find any significant changes in SICI measures. 

Key findings from Chapters 3 and 4 

 To summarize, the findings of the experiments discussed in Chapters 3 

and 4 reveal some difficulty in replicating findings of tDCS induced changes in 

cortical excitability. In particular, both studies failed to find evidence of 

significant change in excitability following cathodal stimulation. Furthermore, the 
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studies revealed high levels of both inter and intra subject variability, even when 

group effects were significant.  

 

8.2 tDCS effects and Tourette’s Syndrome 
 

In Chapter 5 I aimed to explore the potential of tDCS to reduce tics in 

individuals with Tourette’s syndrome. Gilles de la Tourette’s syndrome (GTS) is a 

neurodevelopmental condition characterized by the presence of motor and 

phonic tics which occur for a minimum of 1 year (Leckman, 2002). These tics can 

be embarrassing, socially alienating and physically harmful, and can start to 

become apparent in children as young as 3 years old  (Leckman et al., 1998). The 

treatment options available for individuals with GTS are limited, and while 

behavioural interventions such as habit reversal training (HRT) do exist, they may 

not be accessible to all. Consequently, many individuals with GTS take 

medications including forms of antipsychotics, which may have a number of 

undesirable side effects (Kurlan, 2014). Of those taking medications many will be 

children, as tics are often at their worst when individuals are 10-12 years old 

(Bloch & Leckman, 2009). This makes it particularly pertinent that alternative 

avenues of treatment are explored, one of which may be the development of 

non-invasive brain stimulation techniques (NIBS) such as tDCS.  

Two small scale studies have reported significant reductions in tics 

following repeated sessions of cathodal stimulation (Carvalho et al., 2015; 

Mrakic-Sposta et al., 2008). These results are promising, however, the sample 

sizes in these studies were particularly small, and the findings limited to the 

effects of prolonged applications of stimulation. Therefore, despite disappointing 

results in healthy individuals regarding cathodal stimulation effects (Chapters 3 

and 4), I chose to extend the previous findings of others using a sham controlled 

design in which the immediate effects of tDCS were assessed using video 

recordings/ tic counts and TMS.  
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Although I had previously failed to find significant cathodal effects, I felt 

that methodological differences such as participant sample, outcome measures 

and stimulation site may result in different findings than those reported in 

Chapters 3 and 4. Disappointingly this was not to be, and no clear differences 

were observed between the sham and cathodal conditions in any measure.  

Analysis of the TMS data (both IO curves and SI1mv) revealed no significant 

change in cortical excitability following either sham or cathodal tDCS. These 

results may appear to replicate the lack of cathodal effects seen in Chapters 3 

and 4, however, one important methodological difference should be considered. 

Unlike the previous experiments, stimulation was applied to the SMA rather than 

directly to M1. Although work using TMS had demonstrated that stimulation to 

SMA can influence MEPs derived from M1 (Arai et al., 2012; Civardi et al., 2001; 

Oliveri et al., 2003) it may be that tDCS effects are simply too weak to do so. 

Furthermore, without individualized models of current flow it is not possible to 

know if tDCS had any direct influence on M1. As a result, although the findings 

yet again failed to show reduced cortical excitability following cathodal 

stimulation they are not directly comparable to those discussed in Chapters 3 

and 4.  

The lack of change in the amount of tics counted in the video data was 

particularly disappointing, as this was a far more direct measure of clinical 

outcome. However, significant changes in such measures have only previously 

been reported after prolonged periods of stimulation which are repeated over a 

number of days (Carvalho et al., 2015; Mrakic-Sposta et al., 2008). Therefore, it is 

possible that a single session of tDCS may not be enough to cause any clear 

effects on such a complex phenomenon as tics.  

In Chapter 6 an in-depth, sham controlled case study was presented in 

which the effects of 10 day tDCS applications (sham, 1mA and 1.5mA) were 

explored using a variety of measures.  This study not only tested the potential of 

tDCS to reduce tics, but also explored the feasibility of home use stimulation. 
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This posed a number of challenges, in particular with regard to data collection 

using video recordings.  

In phase 1 of the study a clear decrease in impairment scores measured 

using the YGTSS questionnaire was found. Although there was a decrease from 

baseline after 10 sessions of 1mA cathodal stimulation, there was also a decrease 

in the sham condition. Furthermore, the subscales of the YGTSS which relate 

specifically to motor and phonic tics did not show a clear reduction. The results 

of the 1.5mA cathodal intervention appeared to be far more successful. Scores 

on the YGTSS clearly reduce compared to baseline, including scores on the motor 

tic aspect of the measure. Following the 1.5mA cathodal intervention, the 

participant also reported experiencing positive effects which were far beyond 

those reported after sham and 1mA conditions.  

The video data failed to show any clear changes from baseline in the 

amount of tics counted during either the 1mA or 1.5mA interventions. Although 

this is disappointing and does not reflect the previous findings reported by 

Mrakic-Sposta et al. (2008), there remains a strong possibility that this was the 

result of a number of methodological issues caused by the home video data 

collection. If true, this may explain the discrepancy between the findings from 

the video data and the findings from the questionnaires.  

The results of the imaging data revealed widespread change in resting 

state connectivity, including between the baseline and post sham stimulation 

scans. As a result, it is difficult to interpret which changes between regions were 

the result of the cathodal stimulation. Nevertheless, a number of regions within 

the cerebellum were found to have significantly altered levels of connectivity 

from baseline in the scans taken shortly after 10 days of 1mA cathodal 

stimulation and 1 month later. These regions were not found to significantly alter 

in the sham condition. The cerebellum has been implicated in a number of 

studies exploring the neurophysiology of GTS (Bohlhalter et al., 2006; Lerner et 

al., 2012; McCairn et al., 2013; Pourfar et al., 2011; Tobe et al., 2010) and work 

by Carvalho et al. (2015) saw a decrease in this region following 10 sessions of 
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cathodal stimulation. This may suggest tDCS induced changes within the region, 

although it is clear that more comprehensive studies would be needed to 

confirm this. Unfortunately, the scans in phase 2 did not fully capture the 

cerebellum, although a number of significant differences were found between a 

second baseline condition and after 1.5mA tDCS applications.  

Although collecting data outside of the laboratory using video recordings 

proved difficult, compliance with tDCS application was good and none of the 30 

stimulation days were missed.  With regard to side effects the participant did 

report mild nausea and mild headache after stimulation, however, assessment of 

their personal notes revealed that this was no different in the sham and active 

condition during phase 1. In phase 2 daily notes were not recorded, however, the 

participant was told to inform the experimenter of any effects that they were 

concerned about; nothing was reported. The successful application and remote 

supervision of home use tDCS echoes the findings of a recent study by Kasschau 

et al. (2016)  which also found good compliance and adherence to treatment 

regimes in 20 participants when remote supervision was provided. This is 

particularly promising for tDCS, as it suggests that home use is a viable option.       

Key findings from Chapters 5 and 6 

 The results in Chapter 5 suggest that a single session of 1mA cathodal 

tDCS applied to the SMA is not sufficient to have an effect on tics in the period 

shortly after stimulation. Furthermore, the stimulation was not found to have 

any distinct effects on cortical excitability as measured by MEPs. Although the 

results are somewhat discouraging, it may be that a single session of stimulation 

is simply not enough to influence complex behaviours such as tics.  

The effects of repeated applications of cathodal tDCS were explored in 

Chapter 6 with some success. Although the results of the different measures 

were conflicting, the participant’s self-report of symptoms and the results from 

the YGTSS suggest that for this participant repeated sessions of 1.5mA cathodal 

tDCS may be beneficial in reducing tics. The imaging analysis also revealed 
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distinctive changes in regions of the cerebellum which were present after 1mA 

cathodal but not sham stimulation. Although the therapeutic outcomes of the 

case study are less clear than previous work (Carvalho et al., 2015; Mrakic-Sposta 

et al., 2008) the study does successfully demonstrate how home use of tDCS 

under remote supervision is possible.  

8.3 Exploring the origin of the MRS-GABA signal and the 

effects of Gabapentin  
 

A secondary aim within this thesis was to explore exactly what is being 

measured using MRS, particularly with reference to GABA. MRS is a useful tool 

which has been used to explore the biological basis of tDCS effects (Stagg et al., 

2009) and also to enhance understanding of the underlying neurobiology of GTS 

(Draper et al., 2014; Puts et al., 2015). However, the findings of such studies are 

limited by a lack of understanding regarding exactly where the MRS-GABA signal 

originates from. 

In Chapter 7, MRS-measured GABA and other metabolites were explored 

using TMS. The effects of gabapentin (GBP) were also explored. In line with 

previous studies (Stagg et al., 2011; Tremblay et al., 2013) there was no 

significant relationship between baseline MRS-GABA and later phases of SICI 

(thought to be primarily GABA-A receptor mediated (Ziemann, 2008)). This 

suggests that the primary source of MRS-GABA is not dependent on GABAergic 

synaptic transmission, instead it is more likely to reflect ambient extracellular 

levels of GABA which relate to tonic GABAergic inhibition.  

Unlike the findings in Stagg et al. (2011) baseline levels of MRS-GABA did 

not significantly correlate with 1ms SICI. The underlying mechanisms of 1ms SICI 

are somewhat unclear, and it is not fully apparent why this discrepancy between 

studies occurred. One possibility is that the use of different MRS protocols 

contributed, however, without directly comparing the sequences this can be 

nothing more than speculation.  
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The findings of MRS-Glu were somewhat mixed when compared with 

findings reported in the previous literature. Levels of MRS-Glu were found to 

significantly correlate with the plateau of the IO curve. However, unlike the 

findings of Stagg et al. (2011), no relationship was found between this measure 

and IO curve slope. Furthermore, although 12ms ICF was not found to be 

significantly related to MRS-Glu as found by Stagg et al. (2011), 10ms ICF was. As 

of yet no distinctions have been drawn between the mechanisms underlying 12 

and 10ms ICF, however, it remains possible that subtle differences between 

them may exist. Further exploration and replication would be needed to confirm 

this finding.  

Interestingly, despite in-depth exploration of the data, GBP failed to 

significantly alter either MRS or TMS measures. It is largely unclear why these 

findings reported in Chapter 7 differ to previous work exploring the effects of 

GBP (Cai et al., 2012; Kuzniecky et al., 2002; Rizzo et al., 2001; Ziemann, 

Lonnecker, et al., 1996). In the case of MRS, it could be that insufficient time was 

allowed between drug uptake and scanning to allow effects to be seen. However, 

the duration between drug administration and TMS measures was similar to 

Rizzo et al. (2001) and longer than Ziemann, Lonnecker, et al. (1996) ; therefore 

timing is an unlikely explanation for the lack of effects.  

Key findings from Chapters 7 

  Despite using a larger sample size than Stagg et al. (2011),  a relationship 

between 1ms SICI and MRS-GABA was not found. It is possible that this reflects 

differences in the scanning sequences used, nevertheless, it suggests that at best 

the relationship is unreliable and in need of further exploration.  

Although the findings differ slightly from previous work conducted by 

Stagg et al. (2011) and Tremblay et al. (2013), they are largely in agreement with 

the previous assertion that MRS measures pools of extracellular GABA. These 

pools of GABA are linked to tonic rather than phasic inhibition and thus 
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contribute to the inhibitory tone of a brain area rather than GABAergic synaptic 

transmission. 

 In light of previous work (Cai et al., 2012; Kuzniecky et al., 2002; Rizzo et 

al., 2001; Ziemann, Lonnecker, et al., 1996), it was surprising to find that GBP 

failed to influence either TMS or MRS measures. While the lack of change in MRS 

may reflect a timing issue, the timings of the TMS measures reflects those used 

in previous work (Rizzo et al., 2001; Ziemann, Lonnecker, et al., 1996). 

Furthermore, as this study was sham controlled and with a far larger sample than 

that used in previous TMS studies (Rizzo et al., 2001; Ziemann, Lonnecker, et al., 

1996), this raises questions regarding the ability of GBP to truly influence these 

measures. Hence raising questions about the underlying mechanisms of GBP.  In 

order to investigate the effects of GBP in more detail it may be necessary to 

include a physical measure of drug uptake (such as blood samples) which could 

be used to verify that enough time had elapsed and a suitable dose had been 

delivered. If this method were applied it may be possible to not only enhance 

understanding into the effects of the drug, but also to explore the origin of the 

MRS-GABA signal – in particular if a discrepancy between TMS and MRS results 

were identified.  

8.4 Limitations and suggestions for future research 
 

One of the fundamental problems with tDCS is that unlike TMS there is no 

established method for individualising and optimising stimulation parameters. In 

Chapters 3, 4, 5 and 6, the selection of stimulation parameters was based upon 

the findings of previous studies; these parameters were then used for all 

participants without exception. Although this is common practise within tDCS 

research, it is far from ideal. It is highly possible that this issue contributes to 

some of the inter-subject variability found in response to tDCS, which has been 

reported in this thesis and in the work of others (Labruna et al., 2016; Wiethoff 

et al., 2014).  
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It is becoming increasingly important that future tDCS research addresses 

the cause of inter-subject variability, as this may help to identify markers which 

could be used to predict responses. This could be particularly helpful in 

identifying individuals who may benefit therapeutically. Recently, associations 

between sensitivity to TMS measures and response to tDCS have been identified 

(Labruna et al., 2016; Strube et al., 2016; Wiethoff et al., 2014), although the 

results are not always synonymous. For example, Wiethoff et al. (2014) found a 

correlation between baseline MEP amplitude (in response to SI 1mV stimulation) 

and tDCS induced change. Specifically, individuals with smaller MEP amplitudes 

were found to be more prone to show increased cortical excitability following 

anodal or cathodal tDCS. Whereas Strube et al. (2016) found the opposite to be 

true. Interestingly, a recent study by Labruna et al. (2016) found that higher 

sensitivity to TMS (as indexed by lower thresholds for SI1mv) was related to 

larger MEP enhancement following anodal but not cathodal stimulation. These 

finding suggest that it may be possible to use TMS to predict responses to tDCS, 

although it is clear that further research is needed.  

Integrating computational modelling into future tDCS studies may help to 

optimise the selection of stimulation parameters with regard to electrode 

placement. It is known that differences in anatomical structure have critical 

effects on current flow (Bikson et al., 2012; Datta et al., 2012), and it has already 

been shown that subject-specific modelling can facilitate more effective use of 

tDCS (Datta et al., 2012). The utilization of such models is not yet commonplace 

in tDCS research, however, as more evidence amounts of their efficiency, they 

could prove a particularly useful tool with regard to the therapeutic use of the 

technique.  

In Chapter 4, high levels of intra-subject variability were found in response 

to 2mA tDCS. This poses another potential issue for the technique as it suggests 

that causes of variability may go beyond anatomy. For example, it may be that 

transient changes in cortical excitability and neurotransmitter levels also 

influence the effect. If so, this could make identifying individuals who may 
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benefit from the stimulation particularly difficult. However, it may also be that 

the methodological issues between different testing sessions contribute to 

findings, hence revealing more variability than there truly is. Replication of 

results and the use of multimodal techniques will be important in answering 

these questions. Furthermore, this may help to understand why some studies 

such as Lopez-Alonso et al. (2015) reported acceptable levels of intra-subject 

stability whereas Horvath et al. (2016) and the research reported in Chapter 4 

did not.  

The need to develop a multi-modal approach to investigate the biological 

underpinnings of tDCS is highlighted by the fact that the exact method used to 

measure the effects is likely to influence the outcome. For example, although 

TMS IO curves are thought to index global cortico-spinal excitability (Abbruzzese 

& Trompetto, 2002; Devanne et al., 1997) which is supposedly influenced by 

tDCS, a number of studies have now failed to find clear effects using IO curves 

(Batsikadze et al., 2013; Strube et al., 2016) despite finding significant changes in 

MEP amplitude when using SI 1mV. It is unclear exactly why this may be, 

however, the amount of TMS pulses given and the intensity at which these occur 

are possible explanations. This may explain why 2mA anodal tDCS was not found 

to significantly alter IO curves immediately after stimulation in Chapter 3, but did 

so in Chapter 4 in which higher TMS intensities were used.  

Methods such as MRS may be useful in providing a different perspective on 

tDCS. For example, significant alterations in MRS-GABA have previously been 

reported following tDCS (Kim et al., 2014; Stagg et al., 2009).  Based on the 

findings of Chapter 7 and those reported by Stagg et al. (2011) and Tremblay et 

al. (2013), it seems that MRS measures pools of extracellular GABA.  Hence, 

when combined with the wide ranging evidence that SICI is also altered by tDCS 

(Batsikadze et al., 2013; Cengiz et al., 2013; Kidgell et al., 2013; Nitsche et al., 

2005) it can be concluded that the effects of tDCS on GABA are widespread and 

not restricted to change at the synapse. MRS could prove useful in exploring 

intra-subject variability following stimulation. For example, tDCS induced 
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changes in neurotransmitter levels could be measured multiple times in the 

same individual (as in chapter 4). The results of this could then be used to 

confirm or refute that the lack of intra-subject stability found in Chapters 4 and 

by Horvath et al. (2016) was the result of methodological issues pertaining to the 

TMS protocols.  

To summarise, the main limitations of the work presented in this thesis are: 

 Limited ability to generalize findings of Chapters 3, 4, 5 and 6. It is likely 

that altering tDCS parameters (intensity, duration or electrode 

placement) would also alter the effects found. 

 Dependence on TMS alone to measure tDCS effects in Chapters 3 and 4. 

In Chapter 3 it is possible that changes in cortical excitability were missed 

due to inadequate outcome measures.  

 Issues with parameter selection and the lack of individualised protocols. 

The necessary stimulation parameters to cause significant physiological or 

behavioural change are likely to differ from person to person. This is 

apparent in Chapter 6, in which 1.5mA stimulation appeared to be more 

effective than 1mA.  

Future work should aim to: 

 Increase understanding of factors which may cause the inter and intra- 

subject variability often reported in tDCS studies.  

 Use multi-modal techniques to explore factors which may predict an 

individual’s response to tDCS. This is critical to developing methods 

which allow stimulation parameters to be tailored to each individual. 

This is likely to be an important step in improving efficiency and 

therapeutic outcomes.  

 Replicate previous findings and publish failures to replicate. This may be 

particularly important with regard to the effects of cathodal stimulation.  
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8.5 Conclusions 
 

tDCS effects proved to be more elusive than initially expected, and over the 

course of this thesis it became apparent that developing tDCS as an effective 

therapeutic intervention may be far more complex than initially anticipated.  

The findings in Chapters 3 and 4 suggest that although a number of studies 

have reported significant reductions in cortical excitability following cathodal 

stimulation (see Table 2.1), these effects are unreliable at best and can be 

difficult to replicate.  In Chapter 4, it was found that while 2mA anodal tDCS did 

successfully increase cortical excitability at a group level, there was substantial 

inter and intra-subject variability. This finding makes important contributions to 

the current literature and raises some real questions regarding the use of the 

technique and the reporting of experimental findings.  

The findings in Chapter 5 suggest that a single session of cathodal tDCS 

applied to the SMA has no clear effects on tics in individuals with Tourette’s 

syndrome. This is a novel finding, and suggests that the previous reports of tic 

reduction following stimulation (Carvalho et al., 2015; Mrakic-Sposta et al., 2008) 

are the result of accumulative tDCS effects. The findings in Chapter 6 offer some 

support for this hypothesis, as there was evidence of a meaningful reduction in 

tics after 10 days of 20-minute cathodal stimulation delivered at 1.5 mA. The 

findings in Chapter 6 also highlight the need to optimise stimulation parameters 

for each individual, as the effects following 1mA were not that distinctive from 

the sham condition.  

In Chapter 7, evidence was found which supports the previous assertion 

that MRS-GABA reflects extra-synaptic GABA tone (Stagg et al., 2011; Tremblay 

et al., 2013). The study also highlighted a number of interesting relationships 

between TMS and MRS measures, and raised some interesting questions 

regarding the ability of gabapentin to raise GABA levels in healthy participants.  



221 
 

To conclude, the field of non-invasive stimulation continues to grow and a 

substantial amount of progress has been made in recent years. The once widely 

held assertions of tDCS effects are recently being challenged, and it is being 

found that cathodal tDCS does not always reduce cortical excitability. 

Furthermore, recent work has focused on discussing and unpicking variability 

found in individual responses to the stimulation. The work presented in this 

thesis, contributes to this and suggest that the technique and its effects are far 

more variable and difficult to predict than might initially be expected. Despite 

this, the findings in Chapter 6 show that although tDCS effects may be variable, 

repeated applications of cathodal stimulation may still be effective in reducing 

tics in Tourette’s syndrome. Furthermore, the findings highlight that application 

of tDCS outside of the lab is possible with remote supervision. Although more 

work is clearly needed, tDCS has proved that it still has therapeutic potential, and 

perhaps with a little more research this potential will finally be reached.  
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Appendices 

Appendix i:  Effects of tDCS on MEPs (Ch.3) 

Repeated measures ANOVAs in which time and intensity served as within 

subject’s factors with 5 and 8 levels respectively. The analysis was run separately 

for each tDCS parameter (anodal, cathodal or sham, at 1mA or 2mA) to allow for 

in-depth exploration of changes from baseline.   Significant effects were further 

analysed using students t-tests (paired samples, two tailed, p<0.05). The 

Greenhouse-Geisser correction was used to correct for significant violations of 

sphericity.  

 

Polarity Factor d.f F P p² 
Anodal 1mA Time 2.45 .88 .44 .05 
 Intensity 1.27 29.6 .00* .64 
 Time*Intensity  2.91 .62 .60 .04 
Cathodal 1mA Time 2.35 1.3 .29 .07 
 Intensity 1.23 35.72 .00* .68 
 Time*Intensity  4.74 1.17 .33 .06 
Sham 1mA Time 2.52 .8 .48 .05 
 Intensity 1.40 40.56 .00* .71 
 Time*Intensity 5.55 .93 .48 .05 
Anodal 2mA Time 4 2.48 .05* .15 
 Intensity 1.33 40.22 .00* .74 
 Time*Intensity  5.39 2.46 .04* .15 
Cathodal 2mA Time 4 1.34 .27 .09 
 Intensity 1.37 48.01 .00* .77 
 Time*Intensity  5.2 .87 .51 .06 
Sham 2mA Time 2.08 1.69 .20 .11 
 Intensity 1.31 29.95 .00* .68 
 Time*Intensity 3.35 1.37 .26 .09 

 

Uncorrected paired samples t-tests were used to examine the significant 

interaction found for the 2mA anodal condition. At 130%RMT significant 

differences emerged between baseline (M=2216.71, SD=968.35) and 30 minutes 

post stimulation (M=3386.85, SD=2138.46) t=-2.758, p=.02; and also between 

baseline (M=2216.71, SD=968.35) and 60 minutes (M=3044.53, SD=1902.35), t=-

2.62, p=.02. No significant differences were found between baseline and 0 

minutes or baseline and 90 minutes after stimulation. No significant differences 

were found for lower intensities.  
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Appendix ii: Individual variability & 2mA anodal tDCS (Ch. 3) 

Although the results of the ANOVA suggest that 2mA anodal stimulation 

significantly increased MEP amplitudes 30 and 60 minutes following stimulation, 

there was substantial variability even within this condition. Figure below shows 

normalized MEP values from the 130% condition for each individual following 

2mA anodal stimulation.  
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Appendix iii: Effects of tDCS on raw IO curve slope (Ch. 3) 

Raw values from linear fitting were entered in to separate repeated 

measures (rm) ANOVAs, in which time was also included as an independent 

factor. Post hoc analysis were conducted using students t-tests (paired samples, 

two tailed, p<0.05). When necessary the Greenhouse-Geisser correction was 

applied.  

Rm ANOVAs revealed no significant effect of time for 1mA anodal tDCS 

F(2.17,38.92)=.246, p=.801. 1mA cathodal tDCS also failed to significantly alter 

slope at any time point, F(2.08,35.39)=1.234, p=.30; as did sham stimulation  

F(4,68)=.74, p=.57.  

Rm ANOVA revealed a significant effect of time in the 2mA anodal 

condition F(4,56)=4.28, p=.00. Uncorrected paired samples t-tests revealed a 

significant increase in IO curve slope at 30minutes post tDCS when compared to 

baseline t(15)= 2.37, p=.03. A significant increase 60minutes following tDCS was 

also apparent t(15)=2.46, p=.03. Time was did not significantly alter slope 

following cathodal F(4,56)=.26, p=.62 or sham stimulation F(2.05,28.67)=3.16, 

p=.31.   

To allow the different measures to be compared more directly the 

ANOVAs were run again with tDCS polarity included as a factor. No significant 

differences were found between baseline slopes in the 1mA conditions (all 

t=<1.89, all p>0.08). No significant effects were revealed – see table below. 

 

 

 

No significant differences between baseline slopes were found between 

the 2mA conditions (all t=<1.72, all p=>.28).  No significant effects of polarity 

were found, however, there was a significant main effect of time F(4,56)=2.82, 

p=0.34. This appears to be driven by an increase in slope from baseline at 

30minutes post stimulation (t(45)=2.29, p=0.03) and also a significant increase in 

slope from baseline at 60minutes (t(45)=2.48, p=0.2).  

 

 

  

Factor df F P 

Polarity 2,34 .64 .53 
Time 2.04 1.02 .37 
Polarity*Time  4.04, 68.61 .6 .67 

Factor df F P 

Polarity 1.4,19.76 .19 .75 
Time 4,56 2.82 .03* 
Polarity*Time  4.26,59.64 .891 .480 
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Appendix iv: Sigmoidal fitting with IO curve data (Ch. 4) 

Four-parameter sigmoidal fits were applied to the median MEP amplitude for 

each TMS intensity (100-150%). From this fitting the maximal slope and the 

plateau of the curve were calculated. The sigmoidal function used to fit curves to 

the individual datasets was: 

MEP𝑆 = 𝑦0 +  
MEPMAX

1 + 10(𝑆50−𝑆)𝑘
 

In which MEPMAX is the maximum MEP amplitude measured, S50 is the 

TMS intensity needed to produce 50% of the maximum MEP, k is the gradient of 

the maximum steepness of the curve and y0 is the minimal MEP response, which 

was set to 0. 

In some instances sigmoidal fitting yielded higher R² values than linear 

fitting, however, it also produced some surprisingly high predictions when 

looking at estimates of plateau, and revealed a number of outliers when fitting 

slopes. Outliers were identified and removed using Grubbs test (alpha 0.01) prior 

to analysis. For Slope values this resulted in the removal of 2 data sets from 

anodal, 1 from cathodal and 4 from sham conditions. For slope plateau this 

resulted in the removal of 8 data sets from the anodal, 5 from sham and 1 from 

the sham condition.  RmANOVAs were used to explore any significant change 

over time (pre/post) and across the four different sessions tested for each tDCS 

condition (anodal, cathodal, sham). Results for slope can be seen below. 

 

 

Measurement Factor d.f F P p² 

Anodal slope  Session 3 1.03 .4 .13 
 Time 1 .24 .64 .03 
 Session*Time  3 .92 .45 .12 
Cathodal slope Session 3 .52 .68 .06 
 Time 1 .18 .68 .02 
 Session*Time  3 .57 .64 .07 
Sham slope Session 1 .32 .6 .06 
 Time 1 .05 .84 .01 
 Session*Time  1 2.32 .19 .32 
Anodal plateau Session 3 3.34 .04* .36 
 Time 1 1.97 .21 .25 
 Session*Time  1.4 1.09 .35 .15 
Cathodal plateau Session 1.36 1.72 .23 .2 
 Time 1 1.54 .26 .18 
 Session*Time  3 .18 .91 .03 
Sham plateau Session 1 .01 .92 .00 
 Time 1 .63 .45 .08 
 Session*Time  1 .45 .52 .06 
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Justification for use of linear opposed to sigmoidal fits 

Although IO curves are reportedly sigmoidal in shape (Devanne et al., 1997; Hess 

et al., 1987), this is dependent on testing a large range of intenties to capture 

both the bias level and the top plateau after which increase in MEP amplitude 

slows dramatically. The parameters used in this study (100-150% RMT) are not 

necesserily broad enough to reveal either of these factors. Although linear fits 

are not prefect, they do appear to reflect the data well.   
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Appendix v: ICC analysis for Rush (Ch. 5) 

To assess the degree of reliability between primary and secondary coders 

ICC analysis was conducted. The ICC results are reported based upon Lahey et al. 

(1983), ICC values of <0.4 are considered to indicate poor intra-class reliability, 

values >0.4 and <0.59 are fair, values >0.6 and <0.74 are good, and values >0.74 

are excellent. 

ICC analysis was first carried out using the mean rush total score, which 

was calculated by averaging the total score per minute for each of the two 

minute video segments. This revealed excellent reliability between the primary 

coder (KD) and the secondary coder (ER) ICC(2,1)=.81. The reliability between the 

primary coder (KD) and the other secondary coder (KF) was also found to be 

excellent ICC(2,1)=.92.  

 

Further analysis on the individual components of the rush scale revealed 

different levels of reliability between the primary coder (KD) and secondary 

coder (ER) which are discussed below. As with the analysis of total score the 

average score across the two minute video clips was used.  ICC analysis revealed 

fair reliability for scores on the body areas component ICC(2,1)=.462. It was poor 

for motor tic frequency ICC(2,1)=.35; excellent for phonic tic frequency 

ICC(2,1)=.85; good for motor tic severity ICC(2,1)=.68 and excellent for phonic tic 

severity ICC(2,1)=7.42.  

 

For consistency, ICC analysis was also used to assess the agreement 

between the mean amount of tics per minute counted by each coder during the 

two minute video clips. Average tic score was assessed by calculating the mean 

amount of tics over the twelve 10S time segments.  

 

ICC analysis for average total tics revealed fair reliability between primary 

coder (KD) and secondary coder (ER) ICC(2,1)=.59. Reliability between primary 

coder and second coder (KF) was found to be excellent ICC(2,1)=.97. ICC analysis 

motor tics was fair between KD and ER, ICC(2,1)=.47; and excellent between KD 

and KF, ICC(2,1)=.96. ICC analysis for phonic tic scores revealed excellent 

reliability between scores of the primary coder (KD) and the secondary coder 

(ER) ICC(2,1)=.88; and also excellent reliability between the primary coder and 

secondary coder (KF) ICC(2,1)=.96.  
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Appendix vi: Sigmoidal curve fitting (Ch. 5) 

Four-parameter sigmoidal fits (as described in Appendix iv) were applied to 

the median MEP amplitude for each TMS intensity (100-150%). From this fitting 

the maximal slope and the plateau of the curve were calculated.  

Although the slope fits were generally very good (average R² values = 0.95), 

sigmoidal fitting resulted in some significant outliers which were detected using 

Grubbs test (using an alpha level of 0.01). This resulted in the removal of one 

data set from the pre sham, and one from the post sham condition for maximal 

slope value. A further data set was removed for the plateau calculation form the 

post sham condition.  This was not an issue when linear slope fits were used.  

A repeated measures ANOVA was calculated in which time (pre/ post) and 

tDCS type (sham/ Cathodal) served as independent factors. IO curve slope was 

entered as the dependent variable. No significant effects were revealed, see 

below. 

 

 

  

Measurement Factor d.f F P p² 

Slope plateau tDCS type 1,9 .97 .35 .097 
 Time 1,9 1.0 .35 .1 
 Type*Time  1,9 .99 .35 .1 
Maximal slope tDCS type 1,9 1.08 .33 .11 
 Time 1,9 .34 .57 .04 
 Type*Time  1,9 1.23 .3 .12 
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Appendix vii: Further analysis with RUSH score (Ch. 5) 

Repeated measures ANOVAs were calculated for each component of the RUSH to 

explore any effects of tDCS (sham/cathodal) and time (pre/post).  

 

  

Measurement Factor d.f F P p² 

Total 
impairment 

tDCS type 1,9 6.7 .03* .427 

 Time 1,9 1.25 .29 .12 
 Type*Time  1,9 .01 .93 .00 
Motor 
frequency 

tDCS type 1,9 1.98 .19 .18 

 Time 1,9 1.84 .21 .17 
 Type*Time  1,9 3.67 .09 .29 
Phonic 
frequency 

tDCS type 1,9 2.53 .15 .219 

 Time 1,9 .33 .58 .04 
 Type*Time  1,9 1.14 .31 .11 
Motor severity tDCS type 1,9 .33 .58 .04 
 Time 1,9 2.53 .15 .22 
 Type*Time  1,9 1.14 .31 .11 
Phonic severity tDCS type 1,9 .28 .61 .03 
 Time 1,9 .18 .68 .02 
 Type*Time  1,9 .26 .62 .03 
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Appendix viii: ROIs in Baseline/Sham comparisons (Ch. 6) 

ROIs identified as statistically different between Baseline and Sham scans 

using paired sample t-tests. R indicated right, L indicated left. **Indicates 

significantly difference at p=<0.01 (FDR corrected). ***Indicates significant at 

p=<0.001(FDR corrected), otherwise significant at p<0.05 (FDR corrected). 

Atlas no. Region 
1 
2 

Frontal pole R  
Frontal pole L ** 

5 Superior Frontal Gyrus R  

9 
11 

Inferior Frontal Gyrus, pars triangularis Right *** 
Inferior Frontal Gyrus, pars opercularis Right ** 

13 
14 

Precentral Gyrus R ** 
Precentral gyrus L *** 

17 
18 
20 

Superior Temporal Gyrus, anterior division R ** 
Superior Temporal Gyrus, anterior division L ** 
Superior Temporal Gyrus, posterior division L *** 

21 
22 
24 
25 

Middle Temporal Gyrus, anterior division R 
Middle Temporal Gyrus, anterior division L 
Middle Temporal Gyrus, posterior division L 
Middle Temporal Gyrus, temporooccipital part R 

27 Inferior Temporal Gyrus, anterior division Right 

30 
31 
32 

Inferior Temporal Gyrus, posterior division L ** 
Inferior Temporal Gyrus, temporooccipital part R ** 
Inferior Temporal Gyrus, temporooccipital part L *** 

33 Postcentral gyrus R ** 

38 
39 
40 

Supramarginal Gyrus, anterior division L 
Supramarginal Gyrus, posterior division R ** 
Supramarginal Gyrus, posterior division L 

41 Angular gyrus right 

49 Frontal Medial Cortex *** 

50 
51 

Supplementary motor area R ** 
Supplementary motor area L ** 

56 Cingulate Gyrus, posterior division ** 

57 Precuneous Cortex 

63 Parahippocampal Gyrus, anterior division L 

70 
71 

Temporal Fusiform Cortex, posterior division R  
Temporal fusiform cortex, posterior division L ** 

77 Frontal Operculum Cortex Left *** 

78 Central Opercular Cortex R 

81 Parietal Operculum Cortex R *** 

90 
91 

Occipital pole R 
Occipital pole L 

98 
99 

Palladium R ** 
Palladium L 

102 Amygdala R ** 

104 
105 

Accumbens R 
Accumbens L ** 

115 Cerebelum 6 L 
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Appendix ix: ROIs in Baseline/Active comparisons (Ch. 6) 

ROIs identified as statistically different between Baseline and Active scans 

using paired sample t-tests. R indicated right, L indicated left. **Indicates 

significantly difference at p=<0.01 (FDR corrected). ***Indicates significant at 

p=<0.001(FDR corrected), otherwise significant at p<0.05 (FDR corrected). 

Atlas no. Region 

1 
2 

Frontal pole R ** 
Frontal pole L 

5 Superior Frontal Gyrus R ** 

7 Middle frontal gyrus 

9 
11 
12 

Inferior Frontal Gyrus, pars triangularis R ** 
Inferior Frontal Gyrus, pars opercularis R ** 
Inferior Frontal Gyrus, pars opercularis L 

21 
23 

Middle Temporal Gyrus, anterior division R 
Middle Temporal Gyrus, posterior division R ** 

27 Inferior Temporal Gyrus, anterior division R ** 

39 Supramarginal Gyrus, posterior division R ** 

42 Angular gyrus L 

44 
45 
46 

Lateral Occipital Cortex, superoir division L ** 
Lateral Occipital Cortex, inferior division R 
Lateral Occipital Cortex, inferior division L 

47 Intracalcarine Cortex R 

49 Frontal medial cortex 

53 Paracingulate Gyrus Right ** 

55 
56 

Cingulate Gyrus, anterior division 
Cingulate Gyrus, posterior division 

57 Precuneous Cortex *** 

59 Cuneal Cortex L 

60 
61 

Frontal Orbital Cortex R *** 
Frontal Orbital Cortex L  

62 
64 
65 

Parahippocampal Gyrus, anterior division R 
Parahippocampal Gyrus, posterior division R 
Parahippocampal Gyrus, posterior division L ** 

67 Lingual Gyrus L 

69 Temporal Fusiform Cortex, anterior division L 

75 Occipital Fusiform Gyrus L 

79 Central Opercular Cortex L  

80 Parietal Operculum Cortex R ** 

86 Planum temporale R *** 

100 Hippocampus R 

104 Accumbens R 

106 Brain-Stem 

108 
111 
113 
114 
117 
120 

Cerebelum Crus1 R 
Cerebelum 3 L 
Cerebelum 4 5 L ** 
Cerebelum 4 5 R ** 
Cerebelum 7b L 
Cerebelum 8 R 
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Appendix x: ROIs in Active/Sham comparisons (Ch.6) 

ROIs identified as statistically different between Active and Sham scans using paired 

sample t-tests. R indicated right, L indicated left. **Indicates significantly difference at 

p=<0.01 (FDR corrected). ***Indicates significant at p=<0.001(FDR corrected), otherwise 

significant at p<0.05 (FDR corrected). 

Atlas no. Region 

1 Frontal pole R 

3 Insular cortex R ** 

5 Superior Frontal Gyrus R ** 

10 Inferior Frontal Gyrus, pars triangularis Left 

13 
14 

Precentral Gyrus R *** 
Precentral gyrus L ** 

18 Superior Temporal Gyrus, anterior division L ** 

20 Superior Temporal Gyrus, posterior division L *** 

23 
24 

Middle Temporal Gyrus, posterior division R 
Middle Temporal Gyrus, posterior division L **  

30 Inferior Temporal Gyrus, posterior division L *** 

32 Inferior Temporal Gyrus, temporooccipital part L ** 

33 
34 

Postcentral Gyrus R *** 
Postcentral Gyrus L 

37 Supramarginal Gyrus, anterior division R 

44 
45 
46 

Lateral Occipital Cortex, superoir division L ***  
Lateral Occipital Cortex, inferior division R *** 
Lateral Occipital Cortex, inferior division L *** 

47 
48 

Intracalcarine Cortex R 
Intracalcarine Cortex L 

50 
51 

Supplementary motor area R *** 
Supplementary motor area L *** 

55 Cingulate Gyrus, anterior division ** 

57 Precuneous cortex 

58 
59 

Cuneal cortex R ** 
Cuneal cortex L ** 

60 Frontal Orbital Cortex R ** 

62 
63 
64 

Parahippocampal Gyrus, anterior division R ** 
Parahippocampal Gyrus, anterior division L ** 
Parahippocampal Gyrus, posterior division R *** 

66 
67 

Lingual Gyrus R *** 
Lingual Gyrus L *** 

74 
75 

Occipital Fusiform Gyrus R *** 
Occipital Fusiform Gyrus L *** 

77 Frontal Operculum Cortex L 

78 
79 

Central Opercular Cortex R *** 
Central Opercular Cortex L *** 

80 
81 

Parietal Operculum Cortex R *** 
Parietal Operculum Cortex L *** 

84 
85 

Heschl''s Gyrus R ** 
Heschl''s Gyrus L ** 

86 
87 

Planum temporale R *** 
Planum temporale L ** 

88 Supracalcarine Cortex R 
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93 Thalamus L ** 

98 Palladium R ** 

100 
101 

Hippocampus R *** 
Hippocampus L  

102 
103 

Amygdala L ** 
Amygdala R 

105 Accumbens L 

106 Brain stem ** 

108 
111 
112 
114 
117 

Cerebelum Crus1 R 
Cerebelum 3 L ** 
Cerebelum 3R ** 
Cerebelum 4 5 R ** 
Cerebelum 7b L 
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Appendix xi: ROIs in Baseline2/Active2 conditions (Ch.6) 

Significant differences (p=<0.05, FDR corrected) in connectivity between 

Baseline2 and Active2. R = right, L = left. **Regions were significantly different at 

p=<0.01 (FDR corrected). *** p=<0.001(FDR corrected). 

Atlas no. Region 
2 Frontal pole L 

3 
4 

Insular cortex R 
Insular cortex L ** 

8 Middle front gyrus L 

12 Inferior frontal gyrus (pars opercularis) L ** 

13 Precentral gyrus R *** 

15 
16 

Temporal pole R ** 
Temporal pole L *** 

21 Middle temporal gyrus (anterior division) R 

25 
26 

Middle Temporal Gyrus, temporooccipital part R ** 
Middle Temporal Gyrus, temporooccipital part L *** 

29 
30 
31 
32 

Inferior Temporal Gyrus, posterior division R *** 
Inferior Temporal Gyrus, posterior division L *** 
Inferior Temporal Gyrus, temporooccipital part R ** 
Inferior Temporal Gyrus, temporooccipital part L *** 

33 
34 

Postcentral gyrus R ** 
Postcentral gyrus L ** 

37 Supramarginal Gyrus, anterior division R ** 

47 
48 

Intracalcarine Cortex R ** 
Intracalcarine Cortex L 

51 Juxtapositional Lobule Cortex/ SMA-L 

60 
61 

Frontal Orbital Cortex R ** 
Frontal Orbital Cortex L *** 

62 
63 
64 

Parahippocampal Gyrus, anterior division R ** 
Parahippocampal Gyrus, anterior division, L*** 
Parahippocampal Gyrus, posterior division R 

66 
67 

Lingual gyrus R ** 
Lingual gyrus L  

70 
71 
72 
73 

Temporal Fusiform Cortex, posterior division R *** 
Temporal fusiform cortex, posterior division L *** 
Temporal Occipital Fusiform Cortex R ** 
Temporal occipital fusiform cortex left ** 

77 Frontal operculum cortex L 

78 
79 

Central Opercular Cortex R 
Central Opercular Cortex L ** 

80 80: Parietal Operculum Cortex R ** 

82 
83 

Planum Polar R ** 
Planum polar L ** 

85 Heschl’s Gyrus L ** 

86 
87 

Planum temporale R 
Planum temporale L ** 

92 
93 
94 

Thalamus R 
Thalamus L *** 
Caudate R   ** 

99 Pallidum L 

102 
103 

Amygdala R 
Amygdala L 
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Appendix xii: ROIs implicated in Active-Baseline which are 

predictive of connectivity in Post condition (Ch.6) 

Atlas no. Region 

15 Temporal pole R 

17 
19 

Superior Temporal Gyrus, anterior division R 
Superior Temporal Gyrus, posterior division R 

27 
28 
32 

Inferior Temporal Gyrus, anterior division R 
Inferior Temporal Gyrus, anterior division L 
Inferior Temporal Gyrus, temporooccipital part L 

54 
56 

Paracingulate Gyrus L 
Cingulate gyrus posterior division 

60 
61 

Frontal Orbital Cortex R 
Frontal Orbital Cortex L  

62 Parahippocampal Gyrus, anterior division R 

68 Temporal Fusiform Cortex, anterior division R 

78 
79 

Central Opercular Cortex R 
Central Opercular Cortex L 

94 Caudate R 

98 Pallidum R  

104 Accumbens R   

109 
110 
111 
112 
119 
120 

Cerebellum Crus2 L 
Cerebellum Crus2 R 
Cerebellum 3 L 
Cerebellum 3 R 
Cerebellum 8 L 
Cerebellum 8 R  

125 
128 

Vermis 1 2 
Vermis 6 

 


