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Abstract

Arthritic diseases, a group of degenerative joint diseases, cause pain, disability
and the loss of independence. Research over the last 30 years has improved our
understanding of these conditions. We now know that these conditions are patho-
logical in nature, and are mediated by cytokines, cell signalling proteins. We still
have much to learn about disease initiation, control and progression if we wish to
develop reliable and e�ective disease-modifying treatments.

In this thesis we use mathematical modelling to extend our understanding of
arthritic disease. We focus our attention on two arthritic diseases, rheumatoid
arthritis (RA), predominantly initiated in the synovium of joints, and osteoarthri-
tis (OA), predominantly initiated in the cartilage of joints.

We develop an ODE model of cytokine dynamics in the synovium and show that it
contains some features associated with RA. We �nd that increases in cytokine pro-
duction rates over time can lead to initiation of RA, including periods of relapsing-
remitting disease. We �nd that dose timing and interval as well as dose size are
all important to treatment outcome.

We develop two models of cytokine dynamics in cartilage and use these to analyse
OA initiation and progression. The �rst model is an ODE model, expanding on the
synovium model, and the second model is a spatial Cellular Potts model. We use
these to consider pathways that could lead to the development of OA, and show
that combined treatment strategies are more e�ective than single target therapies
in treating OA. We also show that di�usion in cartilage plays an important role
in OA.

We look brie�y at the downstream signalling pathways of cytokines, which are also
not fully understood. Here we focus on the binding of a family of transcription
factors (STAT proteins) to DNA. We �nd that multiple high a�nity binding sites
are not a requirement for cooperative binding of STAT proteins.
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Chapter 1

Introduction

1.1 Motivation

The focus of this thesis is to study the dynamics of cytokines, particularly in

arthritic disease. Cytokines are cell signalling molecules present in joint tissue,

and have been implicated in initiation and progression of arthritic diseases such

as rheumatoid arthritis (RA) and osteoarthritis (OA). We aim to model the key

interactions that lead to arthritic disease and �nd suitable strategies for phar-

macological interventions.In particular we focus on two types of arthritic joint

disease, RA and OA. In the case of RA, drug therapies targeting key cytokines

have been successful in treating, although not curing the condition. However,

there are no similar therapies available for OA. The World Health Organisation

estimates that there 9.6% of men and 18% of women over 60 have symptomatic

OA [129]. Whilst literature suggests that up to 80% of those over 75 have radio-

graphic evidence (where joint damage is seen on x-ray images) of OA, although

they may be asymptomatic [7]. As life expectancy increases the burden of OA on

both individuals and healthcare systems will likely increase.

Research into therapeutic interventions for OA has been largely unsuccessful.
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Chapter 1: Introduction

Whilst experimental research has provided some promising potential targets for

OA treatments, only a small number have made it to clinical trial stage, the re-

sults of which have been disappointing. This highlights the need for a better

understanding of the key mediators in OA, and importantly, how these interact

with each other. Mathematical modelling is a useful tool in human disease and

is particularly useful in understanding the dynamics of interacting species. We

�rst consider RA, where although disease modifying treatments exist, optimum

treatment strategies are based mainly on clinician experience and the dynamics

leading to disease remission in some individuals are still largely unknown. We

hope to gain a better understanding of why remission is achievable only in some

cases, and give insight into optimum dose sizing and timing. We will then move

on to investigate OA, for which we know much less. Our aim in this thesis is to

produce a feasible model of the dynamics of key mediators of OA which can then

inform future experimental and clinical research into OA treatments. This may

highlight possible targets that would otherwise have been dismissed or suggest

that some current targets of research are unlikely to be successful.

1.2 Joint Biology

Joints are structures in the body where two or more bones meet. Articular (freely

moving) joints, those a�ected by RA and OA are mainly weight-bearing joints

whose function is to provide movement. Examples of these joints include the knee

and hip joints. The joint is made up of three primary components, all relevant to

OA. These are cartilage, bone and the synovium (Figure 1.1).

Articular cartilage lines the articular joints and has the dual function of providing

a smooth surface for movement and absorbing stress [53]. These functions are

essential for maintaining joint integrity, and cartilage damage can lead to long

term mobility issues.

2



Chapter 1: Introduction

Figure 1.1: Diagram of an articular joint showing the bone, cartilage and joint
capsule, taken from Textbook of Anatomy [30]

Cartilage tissue is avascular and aneural, comprised mainly of an extracellular

matrix (ECM) of collagen and proteoglycans (Figure 1.2). The ECM is sparsely

populated with chondrocytes, the only cell type. These are responsible for main-

taining cartilage homeostasis by degradation, synthesis and remodelling of the

ECM [86]. ECM synthesis and remodelling takes place on long time scales. ECM

structure varies through the tissue and can be divided into four zones: super�cial,

intermediate, deep and calci�ed [7]. Collagen �bres, predominantly type II colla-

gen, constitute up to 30% of the ECM [27]. The �bers form cross-links resulting in

a mesh of collagen that imparts tensile strength to the ECM [117]. Proteoglycans,

constituting up to 10% [27], are hydrophillic in nature and give elasticity to the

ECM. The shape of cartilage is restored after deformation as water molecules are

pulled back into the tissue by proteoglycans [3].

Chondrocytes derive from the mesenchymal stem cell line but specialisation makes

them unique from all other cell types [97]. They are present in greatest numbers

3



Chapter 1: Introduction

Figure 1.2: Schematic of cartilage tissue showing an ECM densely �lled with
collagen �bres and sparsely populated with chondrocytes (blue dots)

through childhood and adolescence then cell numbers start to decline when matu-

rity is reached at around 30 years of age [3]. Since there is little proliferation after

maturity chondrocytes have a long lifespan of decades. Chondrocytes enable the

cartilage to cope with the everyday wear and tear of a mechanically loaded tissue.

They respond both to mechanical changes in their environment and to chemical

signals from the surrounding tissue, by remodelling the ECM [55]. They do this

by producing a wide range of cytokines which have both autocrine (acting on the

cell that produced them) and paracrine (acting on other cells) e�ects locally. De-

spite this chondrocytes are poor at repairing tissue from major injury or trauma

since they are unable to adequately compensate tissue loss and replace the intri-

cate network of cross-links in the cartilage. To help protect chondrocytes from

the e�ect of excessive mechanical loading they are encapsulated within �uid-�lled

sacs called chondrons [109].

The synovium consists of the synovial membrane and the synovial �uid within

the membrane. The synovial membrane is important to the correct functioning of

articular joints and is implicated in the pathobiology of articular disease [50]. It

provides a capsule for the synovial �uid, which cushions the joint against stress

and provides a medium for chemical transport and immune cells; it provides a bar-
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Chapter 1: Introduction

rier to control which molecules and cells are able to move through the joint space;

and synoviocytes within the membrane play a crucial role in the biochemistry of

the joint by synthesis of enzymes, growth factors and cytokines. Synoviocytes are

the cells that make up the synovial membrane. Rather than there just being one

cell type present, as in cartilage, synoviocytes come in two forms, types A and B.

Type A cells are macrophages and as such are involved in the immune response of

the synovial membrane [65]. They have a key role in synovial in�ammation (syn-

ovitis), since as well as their phagocytic function they produce pro-in�ammatory

cytokines such as IL-1 [17]. Type B cells are �broblasts whose main function is the

secretion of components of synovial �uid [65]. They produce hyaluronic acid which

is a major constituent of synovial �uid and the main source of lubrication, whose

concentration is known to be depleted in arthritic joints [119]. Synovial �brob-

lasts have also been shown to produce matrix metalloproteinases (MMPs) which

are tissue degrading enzymes, pro-in�ammatory and anti-in�ammatory cytokines

when aggravated by microparticles [37], such as those present in synovitis.

Subchondral bone is the bone located immediately under the articular cartilage

and provides a surface for the cartilage to anchor to. It undergoes continual repair

and remodelling and releases growth factors and cytokines, some of which may

move into the cartilage [86].

In addition to the cells already discussed, that are native to the tissues of the joint,

some other cell types migrate to the tissue in the presence of in�ammation and

disease. T cells are a class of lymphocyte, a type of white blood cell, responsible for

the cell mediated immune response which is part of the adaptive immune system

[67]. T cells have been shown to be present in the synovial �uid of osteoarthritic

joints, suggesting that at least part of the OA in�ammatory response is T cell

mediated [98]. T cell involvement has also been shown for related conditions

such as rheumatoid arthritis [87] and juvenile idiopathic arthritis [33], however

unlike OA these are both classed as autoimmune conditions (conditions where the
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Chapter 1: Introduction

immune system attacks its own cells). B cells are part of the humoral immune

system, another part of the adaptive immune response and their main function

is to secrete antibodies [67]. These cells have been found to be activated in the

synovium of osteoarthritic patients [111].

1.3 Cytokine Signalling

Cytokines are cell signalling proteins that act by binding to receptors on the

cell surface. This initiates a chain of events that leads to transcription factors

within the nucleus binding to promoter regions of DNA. This in turn leads to

the gene expression, which involves the transcribing of the DNA and eventually

the translation of this transcribed DNA (RNA) to proteins. The exact process of

signal transduction varies between cell types and di�erent cytokines and there is

still much to be discovered about the control of these processes. However, there

are two common pathways that are initiated by cytokine signalling and that are

reasonably well understood. These are the Janus kinase / Signal Transducer and

Activator of Transcription (JAK/STAT) and the Nuclear Factor - κB (NF-κB)

signalling cascades.

The JAK/STAT kinase signalling cascade is one of the simplest pathways since

STAT proteins are uniquely able to move from the cytokine receptor through the

nucleus to bind to DNA as a transcription factor with no other molecules involved

[31] (Figure 1.3). Upon activation of the receptor a JAK kinase protein phos-

phorylates the tyrosine residues (tyrosine containing monomers) on the receptor.

This allows the receptor, in turn, to phosphorylate a STAT monomer [104]. Phos-

phorylated STAT monomers dimerise and enter the nucleus, where they bind to

the DNA at high a�nity sites, initiating gene transcription. This sequence of

events leading to DNA binding is shown in Figure 1.3. There are 7 types of STAT

and although they are similar, there are some physical and functional di�erences
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Chapter 1: Introduction

Figure 1.3: Schematic showing the JAK/STAT signalling pathway. Upon binding
of a cytokine to the receptor, the STAT monomer is phosphorylated, which allows
it to polymerise and move into the nucleus.
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which allows for binding and activation of di�erent gene sequences [63]. Binding of

STAT proteins to DNA is not fully understood, with some members of the STAT

family requiring polymerisation to remain bound to DNA and others able to bind

as dimers. These issues are areas of ongoing research, see Chapter 5.

Figure 1.4: Schematic showing the NF-κB signalling pathway. The binding of a
cytokine to the receptor sets o� a chain of events leading to the NF-κB complex
binding to DNA.

NF-κB signalling is one of the best characterised signalling pathways. Its widespread

involvement in in�ammatory, immune, neurological and oncogenesis processes

means it is implicated in a wide variety of diseases. NF-κB consists of a fam-

ily of eight closely related transcription factors [102]. When inactive they exist

mainly in the cytoplasm bound to IκB molecules. Upon activation of the relevant

cytokine receptor IκB molecules are phosphorylated by receptor-associated IκB ki-
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Chapter 1: Introduction

nases, which causes them to release the NF-κB complex. This complex then moves

into the nucleus where it binds to DNA, often in conjunction with co-activators

(see Figure 1.4). NF-κB is involved in many of the signalling cascades relevant to

OA cartilage, including IL-1 and TNF-α signalling [13]. Its potential as a target

for OA treatments has been researched but it is crucial for many normal biological

functions so inhibition-type treatments are impractical [113].

1.4 Rheumatoid Arthritis

Rheumatoid Arthritis (RA) is an autoimmune disease predominantly a�ecting the

joints. The condition causes chronic in�ammation of the synovium due to raised

cytokine levels, this leads to joint degradation and eventual destruction of the joint

[26]. Symptoms of RA include pain, sti�ness, immobility and in�ammation. Addi-

tionally, individuals with RA may su�er from systemic symptoms such as fatigue

and weight loss [61]. As a result of high circulating levels of pro-in�ammatory

cytokines, there is also a higher risk of developing cardiovascular diseases such

as ischemic heart disease, as a result of systemic in�ammation a�ecting coronary

arteries [56]. RA patients are also at higher risk of developing some cancers and

lung problems [18, 54, 92].

Causes of RA are still being investigated, however it has been established that

in active RA the telomeres within some types of T cells are excessively short-

ened [24]. Telomeres are regions at the ends of chromosomes that are shortened

over an individuals life span as part the normal chromosome replication process,

protecting genes within the chromosome from degradation [57]. Excessive or pre-

mature shortening of the telomeres can lead to defects and is associated with a

range of diseases [23]. It is thought that in RA this shortening leads to a loss

of T cell homoeostasis and the loss of the ability to control pro-in�ammatory

cytokine production [72, 89]. Excessive cytokine production lies at the heart of
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Chapter 1: Introduction

RA. The pro-in�ammatory cytokines TNF-α, IL-1 and IL-6 are found in raised

levels in the synovium, having been released by B cells and T cells in the joint

[90]. Anti-in�ammatory cytokine levels, such as IL-10 and IL-4, are also raised in

response but are unable to halt the pro-in�ammatory cytokine production. For

many individuals symptoms of RA are cyclic, and �are ups may be linked to high

pro-in�ammatory cytokine levels.

Treatments for RA include both pain relieving drugs and disease modifying drugs.

In terms of pain relief, the range of options is the same as that for OA (see

Section 1.5). Several types of disease modifying drugs are available for RA. The

most widely prescribed drugs are anti-rheumatic drugs such as Methotrexate and

Sulfasalazine, which are immunosuppressants. These drugs suppress the immune

system, throughout the body, allowing them to be used for a range of immune

and autoimmune conditions. This general action however, does mean that there

can be serious side e�ects associated with their use [61]. For individuals where

anti-rheumatic drugs are not e�ective biologic therapy may be used, such as anti-

cytokine therapy. These drugs work by suppressing the action of one of the key

cytokines active in RA. The �rst licensed and most widely used drugs are anti-

TNF-α drugs such as In�iximab and Etanercept [43]. Other biologics include

Tocilizumab, an IL-6 inhibitor and Rituzimab, a B cell inhibitor. All the biologic

therapies are relatively new drugs, having been available for only the last 15 years,

which means long term side e�ects are not yet fully explored. For this reason, as

well as cost, biologic drugs are not currently used as a �rst-line treatment.

1.5 Osteoarthritis

Osteoarthritis (OA) is a disorder of the synovial joints characterised by a loss

of cartilage, in�ammation and changes to the subchondral bone [82]. Clinical

symptoms of the disease include in�ammation, pain, sti�ness in a�ected joints,
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and instability of the joints. The joints in an individual are not typically a�ected

homogenously, particularly if injury or repetitive strain has been a contributing

factor [7]. Studies of the epidemiology of OA show it is more prevalent in aged

individuals and more likely to a�ect women than men [32]. Other risk factors

include obesity, genetic factors, particularly mutations of the Col2A gene, which

a�ects collagen production, and a history of joint injury or excessive mechanical

strain as seen in certain manual occupations as well as professional sportsmen [7].

OA is a disease of the whole joint and changes associated with disease onset

and progression are seen in the cartilage, subchondral bone and synovium [46].

Changes in the cartilage are most pronounced and are thought to be most impor-

tant in terms of progression and loss of joint function [16]. However the cause of

disease onset is as yet unclear and may not be cartilage based. In some animal

models subchondral bone changes have been shown to precede cartilage damage

[74], whilst in other work increased numbers of pro-in�ammatory cytokine recep-

tors have been found in OA chondrocytes [15]. One popular viewpoint is that OA

is not a disease with a single cause but rather a set of initial abnormalities that

lead to a single progression pathway [45]. Another viewpoint is that OA is a repair

mechanism for a variety of problems in the joint and with increasing age the repair

mechanism itself develops faults leading to clinically diagnosed OA. More research

is needed into the initiation and early stages of OA as it is likely that this is the

point where treatment would be most e�ective as has been found in RA [96]. The

biological changes in OA are described below and summarised in Table 1.1.

In osteoarthritic cartilage the normal homeostatic balance between ECM synthe-

sis and degradation fails and both processes accelerate [115]. The changes that

characterise early OA are di�erent to those that characterise late OA. In early OA

there is an increased rate of cell proliferation, stimulated by cytokines, and char-

acteristic chondrocyte clustering is seen [50]. Synthesis of the ECM is increased,

either as the result of higher levels of anabolic cytokines (cytokines mediating
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ECM synthesis) or greater sensitivity to anabolic cytokines, both of which have

been observed [15]. However, despite the increased synthesis the �brils laid down

are disorganised and lacking the cross linkage needed to give strength. Cartilage

breakdown is also accelerated through raised pro-in�ammatory cytokine levels,

which results in additional MMPs [86]. The degradation of the ECM includes

�bronectin breakdown and waste �bronectin fragments act as an irritant stimu-

lating further pro-in�ammatory cytokine response [85].

As OA progresses, raised levels of TNF-α lead to increased levels of chondrocyte

apoptosis, although this has only a small e�ect on the cartilage [115]. In later OA

however, there is a signi�cant decrease in matrix synthesis and increased rates of

degradation, some of which may be due to the reduction in chondrocytes. In�am-

mation is often present in late osteoarthritis and evidence suggests that as well as

being an undesirable clinical symptom, in�ammation leads to further breakdown

of the cartilage and a loss of function, probably due to additional in�ammatory

cytokines [17]. Ultimately the ECM degradation processes begin to dominate the

ECM synthesis and the cartilage is thinned and damaged. Without cartilage the

bone endings rub together, causing pain, immobility and inappropriate mechani-

cal loading. Another change in late OA is the development of osteophytes, bony

spurs growing on the bone endings of OA joints, due to subchondral bone dam-

age. These are formed at the growth plate between the cartilage and subchondral

bone through ossi�cation of cartilage and bone remodelling. It is likely that this

process is mediated by anabolic cytokines since these are found in high levels

in osteophytes in experimental models [14]. Often, osteophytes do not have any

symptoms and may be an attempt to distribute loads more e�ectively, but they

may cause pain and loss of mobility if they are in particularly sensitive areas, e.g.

close to nerve endings [20].

As previously discussed matrix degradation is a major reason for progression of OA

and is the main cause of joint instability and in�ammation. It is now generally
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accepted that cytokines play a major role in the pathways leading to excessive

degradation as well as a role in the e�orts to limit or repair the damage [116].

Type II collagen is broken down by MMP-1 (Collagenase-1), MMP-8 and MMP-

13 and synthesis of these MMPs is increased in OA by raised levels of IL-1 and

TNF-α [126]. IL-1 and TNF-α bind to di�erent receptors on the cell but both

initiate similar responses once bound which involves activation of several types

of kinases, including NF-kB kinase, leading to activation of transcription factors

for the MMPs [126]. O�setting some of this activity IL-1Ra will also bind to the

IL-1 receptors but will not activate these pathways. Synthesis of proteoglycans,

another major component of the ECM is also inhibited by a pro-in�ammatory cy-

tokine mediated pathway. Chondrocytes are induced to produce nitric oxide (NO)

by IL-1 and studies have shown that NO inhibits the synthesis of proteoglycans

within articular cartilage [121]. To a lesser degree TNF-α and IL-6 also reduce

proteoglycan synthesis, although in the case of the latter only in the presence of

soluble IL-6 receptor α.

OA bone shows increased remodelling near the joint which leads to greater den-

sity [75], which is associated with protection from osteoporosis. Mineralisation is

not increased so overall the bone contains less minerals and is more brittle [75].

This means that bone is more susceptible to damage on loading and more likely

to transfer inappropriate loads to the cartilage leading to damage. It has been

suggested that the increased bone density can be an initiating factor in OA [75].

In early OA bone resorption by osteoclasts is increased and lesions appear in the

bone. The number and size of these lesions increase as the disease progresses

and can be used as a measure of disease severity, since they are easily viewed by

MRI. In later OA additional bone is laid down by osteoblasts, and it has been

suggested that this is an attempt at widening the joint surface to distribute the

load [46]. Subchondral bone is known to express increased levels of growth factors

including insulin-like growth factor I (IGF-1) and TGF-β. These growth factors
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stimulate proliferation and di�erentiation of osteocytes as well as increased bone

matrix synthesis [74]. It is likely that these factors also pass directly across the

damaged growth plate in OA, to the cartilage, where they exert similar e�ects on

the chondrocytes [46]. In late OA the synovium starts to show changes associated

with chronic in�ammation.

Treatment for OA is aimed at relieving symptoms such as pain, in�ammation and

sti�ness rather than reducing or repairing the damage caused by OA. In part this

may be due to the historical di�culties in di�erentiating OA from general joint

pain at an early enough stage, meaning that patients present with considerable

damage to both the cartilage and subchondral bone. However, another major

reason for the lack of preventative treatments is the poor understanding of the

mediators of matrix degradation.

A range of pain relief drugs are o�ered to individuals with OA, the most basic

of which are simple systemic analgesics such as paracetamol for moderate pain

or stronger opioids for more intense pain. More sophisticated treatments involve

reducing the in�ammation, which increases mobility and reduces pain, typically via

Non Steroidal Anti In�ammatory Drugs (NSAIDs), such as ibuprofen or diclofenac

[70]. Alternatively COX-2 inhibitors, such as celecoxib, may be used if NSAIDs

are unsuitable [32]. In severe cases, steroid treatment may be used at the site of

the in�ammation in the form of corticosteroid injections [100].

As OA progresses conventional drugs may be inadequate to alleviate the symp-

toms su�ciently so in these cases surgery may be used. Surgical options include

keyhole surgery to clean out the joint and reduce in�ammation, partial removal

of subchondral bone (in knee joints) and joint replacement surgery [84]. In ex-

treme cases a procedure called arthrodesis may be o�ered, which involves fusing

the joint into a permanent position to increase stability [84]. Options such as

these highlight the need for research into e�ective treatment in early OA to slow
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progression of the disease. Other complementary treatments for osteoarthritis

may be recommended alongside those mentioned above. These include treatments

to slow disease progression and increase mobility such as low impact exercise or

physiotherapy [32]. Another treatment used is Transcutaneous Electrical Nerve

Stimulation (TENS) therapy, which uses electrical impulses to block pain related

nerve signals [100]. However, although widely used evidence for the e�ectiveness

of this treatment is lacking [91].

Treatments being researched for OA tend to fall into three categories: drugs aimed

at reducing the symptoms and progression of OA, tissue engineering to help repair

damage to the joints and gene therapy. Cytokines are involved in both in�am-

mation and matrix degradation in OA, meaning that they are relevant both to

disease progression and the clinical symptoms of OA. This makes them a good

target for possible treatment strategies. Many cytokines have been implicated

in OA but those thought to be of particular relevance are the pro-in�ammatory

cytokines, IL-1 and TNF-α, and the anti-in�ammatory cytokines, IL-4, IL-10 and

IL-1Ra. All of these have been shown to be present at higher than normal levels

in OA. Since so many growth factors, cytokines and hormones are involved in OA

pathways there are many potential targets for treatment, however the complex-

ity means that blocking one pathway will be unlikely to halt progression of the

disease altogether. It addition to this, speci�city and side e�ects make �nding

suitable treatments di�cult. One treatment possibility is anti TNF-α treatment,

which inhibits the action of TNF-α thereby reducing the matrix degradation and

in�ammation associated with OA. Anti TNF-α treatment was �rst developed for

the treatment of rheumatoid arthritis, where in�ammation plays a greater role.

Experimental studies showed blocking the action of TNF-α reduced in�ammation

and clinical trials showed that this treatment was bene�cial in RA su�erers [2].

TNF-α has been shown to be important in the in�ammatory response and ECM

degradation in OA so may prove to be a good therapeutic target. One anti TNF-α
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drug is currently undergoing clinical trials as a treatment for OA, but no results

have been reported [12]. Several other targets are in various stages of clinical trials.

These include drugs to target Nerve Growth Factor in order to reduce pain; MMP

inhibitors to reduce matrix degradation; and IL-1 inhibitors including IL-1Ra in-

jections [12]. One of the IL-1 inhibitors recently tested for OA was Anakinra [25],

this drug is clinically e�ective in the treatment of RA (although not recommended

for treatment due to poor cost e�ectiveness) however clinical trials found is was

not e�ective as a treatment for OA.

Gene therapy has two potential uses in OA, �rstly if used early enough it may

prevent the progression of the disease, secondly it may be used in the repair of

damaged tissue [41]. The �rst of these cases includes injecting vectors carrying

genes into the synovium or articular cartilage. This method has had some success

in experimental models, particularly using genes coding for IL-1Ra, known to be

e�ective at inhibiting the e�ects of IL-1 [41]. Several of these treatments have

made it to the clinical trials stage, however these are still in the early stages so

although safety has been established, e�ectiveness has still to be determined. The

use of gene therapy to initiate cartilage repair in partial thickness lesions, as seen

in OA, has also been successfully demonstrated in animal models, see Gelse et al.

[47] and Goomer et al. [51].

In order for cytokine related drug treatments to be used in OA, we need a clear

understanding of typical cytokine levels and a link between this and disease pro-

gression. Levels of cytokines are di�cult to measure and vary greatly in OA

between di�erent individuals. This may be the result of di�erent stages of disease

progression, di�ering levels of in�ammation or the complex interactions of di�er-

ent cytokines. There is also some evidence that genetic factors are important.

However generally, there is a consensus that the levels of the major cytokines in-

volved in OA are high compared with those of normal subjects [50, 116]. The

classi�cation of normal and osteoarthritic subjects is di�cult due to the nature
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of OA. There is no one marker that indicates the presence of OA and symptoms

vary both between individuals and within di�erent joints of a single individual.

An additional complication is that OA is highly prevalent in the elderly, who are

most at risk of the disease, so �nding comparable healthy non arthritic subjects is

di�cult. It has been suggested that OA a�ects as, many as 80% of those over 75

years of age [7]. Despite these di�culties some studies have found that cytokine

levels are raised in OA, Moos et al. [94] found the levels of IL-1, TNF-α, IL-4,

IL-6 and IL-10 were all raised compared to the level in normal cartilage tissue,

which was negligible. In a study by Goekoop et al. [48] subjects were taken from

volunteers of a cohort study of people born in the city of Leiden, The Netherlands,

rather than being taken from patients presenting with a illness as is more usual.

The subjects had blood samples taken at the age of 85, and a measure of ex vivo

cytokine levels was taken. Five years later the subjects completed a medical ques-

tionnaire to determine the presence or absence of OA. Sixteen of the 82 subjects

that were available for both parts of the study were considered to be free of OA (no

OA in the hips, knees or hands) and the study reported lower levels of IL-1b, IL-6

and IL-1Ra. Levels of IL-10 and TNF-α were not signi�cantly di�erent. Levels of

TNF-α are not elevated in many of the studies conducted, one reason for this may

be that TNF-α is implicated only in the most severe, late stage OA [86], so raised

levels would not be seen in most subjects with OA. Another reason may be that

rather than the TNF-α levels becoming raised, the cells themselves may become

more sensitive to this cytokine, this has been suggested by Arntz et al. [8].

We have a good understanding of the biochemical processes in the cartilage, and

which processes are implicated in OA. However, there is no clear understanding of

what the initiating events that cause OA are, or how the process may be halted.

Additionally, research in this area is challenging for many reasons. Cytokines

are short lived and act locally, hence making them di�cult to detect in easily

obtainable samples (e.g. blood serum, urine). Symptoms of OA in humans do
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not generally occur until late in the disease process, making research into early

OA limited. Finally, OA is a truly multi-scale disease with joint mechanics as

well as biochemical processes both being important factors. This means that

experimental cell based research cannot be easily extrapolated in vivo. Similarly,

joint mechanics in animal models are signi�cantly di�erent to human. All these

factors make this area an ideal candidate for mathematical modelling.
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Chapter 1: Introduction

1.6 Previous modelling work

1.6.1 Articular Cartilage and Subchondral Bone

The modelling of normal cartilage and bone has been relatively widely researched

in order to give an insight into what happens when these normal processes start

to malfunction. These models are often of the mechanics of the tissue rather than

the biochemical properties which may provide insight into some of the stimulus

or responses resulting from the biochemical changes during osteoarthritis. Several

authors have developed models of chondrocytes surrounded by ECM and these

may be particularly relevant as OA progresses and symptoms of OA such as apop-

tosis and depleted collagen and proteoglycan content become more profound. For

example, Wu et al. [130] proposed a model of cartilage containing chondrocytes

surrounded by ECM. These were considered to have di�erent material properties

as suggested by experimental results and showed how the tissue would deform in

space and time under mechanical loading. The authors did not explore how this

might change under degenerative conditions such as OA but did suggest that the

model could be used to look at degeneration and remodelling.

A paper by Trewenack [125] presented a continuum model of a single chondrocyte

producing an extracellular matrix. This model di�ered from previous studies in

two main aspects, �rstly it looked at a single chondrocyte in isolation, rather

than looking at cartilage as a tissue and secondly it considered two methods of

movement of matrix components, di�usion and advection. Generally di�usion is

considered to be the only signi�cant method of movement. In this article the

authors investigated the model in relation to the development of tissue engineered

cartilage, however it may have some relevance to the attempts at cartilage repair

during early OA, and the movement of cytokines through the ECM.

A model of fracture healing in bone by Bailón-Plaza et al. [9] may be relevant
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to our work. This model simulates cell migration, proliferation, ECM remodelling

and growth factor levels. The model used PDEs and ODEs to successfully demon-

strate the regulatory mechanisms of the fracture healing process which requires

migration and di�erentiation of mesenchymal stem cells followed by cartilage for-

mation and ossi�cation. The model neglects many of the growth factors and cells

involved in the process and concentrates on only two growth factors and three cells

types, which the authors considered to be most important, however the results are

still comparable to experimental results. Whilst the tissue and processes here are

di�erent to osteoarthritis in articular cartilage (the involvement of the vasculature

for example), the paper shows how models of the regulatory molecules and cells

can be used to simulate structural changes in the tissue.

More recent modelling include attempts to model synthetic or repaired cartilage,

such as a model by Lutianov et al, which used PDEs to model the cartilage

response to cell regeneration therapy [83], or a model by Catt et al [22], simulating

cartilage growth on a sca�old.

1.6.2 Arthritic Diseases

There is very little published work modelling arthritic conditions and those that

are available generally consider the mechanical aspects for the conditions rather

than the biochemistry mediating these events. In an early model of RA by Wit-

ten [128] the author presents a second order logistic growth model of articular

erosion in RA. The model shows how the cartilage might erode over time based

on reported erosion at presentation of an individual, however the model does not

consider the processes behind the erosion and so is of little use in investigating

how the disease progresses. Similarly, Pollatschek and Nadir [107] present a high

level ODE model of the deterioration of certain components in OA, such as pro-

teoglycan content, shock absorbance and microfractures. Whilst the model serves
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to demonstrate that OA can be modelled mathematically, the components iden-

ti�ed are the observable clinical symptoms of OA rather than underlying factors

and processes such as cytokine mediation. Whilst models of OA and RA are not

common, some of the typical processes of these diseases are more widely mod-

elled, albeit for di�erent applications. For example, angiogenesis present in RA

has been modelled in relation to tumour growth (see [88], [106] and [69]), and

bone remodelling as seen in osteophyte formation has also been modelled [123].

In�ammation is now thought to be involved in osteoarthritis as well as RA and

models of in�ammation are discussed below.

1.6.3 In�ammation

Models of in�ammatory responses may be the most relevant models to look to

when building models of cytokine interactions in osteoarthritis, since in�amma-

tion is increasingly seen as an important part of OA [17], and even some non-

in�ammatory events in OA are mediated by the same cytokines. In�ammation

may be classi�ed as either an acute or chronic response, both of which may be

present in OA [19].

A model of acute systemic in�ammation as a result of pathogen infection was

presented by Kumar et al. [73]. The model identi�ed �ve possible outcomes de-

pendent on parameters: healthy response, non-infectious in�ammation, infectious

in�ammation, recurrent in�ammation and immuno-de�cient response. It seems

likely, given reported clinical symptoms that some of these responses would be

present in OA, particularly healthy response and recurrent in�ammation, although

the stimulus of in�ammatory response would not be pathogen related and the in-

�ammation in OA is not systemic but is restricted to particular joints within an

individual. A general model of in�ammation was proposed by Herald [60], which

showed conditions under which an in�ammatory response would become chronic
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in the absence of ongoing infection. The model showed that if the macrophages are

particularly sensitive to pro-in�ammatory cytokines, or if anti-in�ammatory cy-

tokine levels are low, then even small in�ammatory responses to infection become

chronic rather than being resolved.

1.6.4 Cytokines

There has been very little published work modelling cytokines either as part of

a biological process or alone, however two key models may be relevant to OA

modelling. One model uses a set of six continuous di�erential equations to describe

the behaviour of IL-1 and IL-10 with TNF-α in monocytes as an external stimulus

for IL-1 [118]. The model showed di�erent types of behaviour dependent upon the

parameter values including uncontrolled production of IL-1, stable equilibria and

stable limit cycles. The authors were able to link the model results to observed

behaviour in RA and Septic Shock, and it is likely that with some modi�cation,

some parts of this model could be incorporated into a model of synovitis in OA.

This may be complicated however by the involvement of chondrocytes as well as

macrophages.

A related model by Jit [68] looked in more depth at the pro-in�ammatory TNF-

α and in particular, modelled the e�ects of anti TNF-α drugs in the in�amed

synovial joint. The study considered the issue of why anti TNF-α drugs worked

well in the treatment of RA but were not e�ective in Systemic In�ammatory

Response Syndrome (SIRS), another TNF-α mediated condition. From the model

results the authors suggested that cytokine levels in RA were usually in equilibrium

and anti TNF-α treatment forced a shift from a disease equilibrium to a healthy

equilibrium. However, they suggested that SIRS was a non-equilibrium condition

and as such was not able to be moved to a healthy equilibrium state, further they

suggested that the drugs may interfere with the body's natural attempts at repair.
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1.7 Thesis Outline

In the rest of this thesis we develop several models relevant to cytokine dynamics

in arthritic disease. In Chapter 2 we develop a two-variable model of pro- and

anti-in�ammatory cytokine dynamics in the synovium. We use bifurcation anal-

ysis to explore the parameter space and �nd monostable, bistable and oscillatory

behaviours. We consider how changes in cytokine production rates could lead to

RA and demonstrate that this model displays features present in RA initiation

and progression. We model anti-cytokine treatment and consider the importance

of dose size, interval and timing to treatment outcome.

In Chapter 3 we extend the previous model to include MMPs and �bronectin

fragments, making it relevant to cartilage cytokine dynamics. We use one- and

two-parameter bifurcation analysis to explore the transitions between behaviour

types. We replace constant parameters with time dependent functions to explore

possible pathways to OA initiation. We consider the e�ectiveness of di�erent

treatment strategies, and combine treatments to �nd the best treatment outcome.

We consider the spatial aspects of cartilage cytokine dynamics in Chapter 4 by

developing a model of OA cartilage using a Cellular Potts model. We consider

two main tissue types, chondrocytes and ECM, surrounded by synovial �uid and

bone. We investigate how the spatial separation of chondrocytes changes the

dynamics that we see in Chapter 3. Di�usion coe�cients are not readily available

for cytokines, MMPs and Fn-fs in cartilage so we consider the e�ect that di�ering

di�usion rates may have on the model.

In Chapter 5 we consider some of the downstream signalling dynamics that we

have so far neglected, but which could a�ect cytokine signalling. In particular we

focus on the JAK/STAT pathway and focus our analysis on the binding of Stat

proteins to DNA. Given that Stat1 in known to require cooperative binding to

remain bound to DNA, we investigate whether there is a requirement for multiple
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high a�nity binding sites. We also consider how Stat3, another member of the

Stat family of proteins, interacts with Stat1 when competing for binding sites.

Finally in Chapter 6 we summarise the results we have found in this work and

consider how this could be developed in future work.
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Chapter 2

Pro- and anti-in�ammatory cytokine

model for rheumatoid arthritis

2.1 Introduction

Rheumatoid arthritis (RA) is a chronic in�ammatory joint disease which a�ects

around 1% of the adult population [128]. The condition is three times more likely

to a�ect women (likely due to changes in hormone levels with age) than men and

disease onset generally occurs over the age of 40, although it occurs much earlier

in a small number of individuals [64].

The disease is characterised by chronic in�ammation of the synovial lining of

joints (synovitis) with consequent destruction of cartilage and bone [26]. Cells in

in�ammatory synovitis produce high levels of numerous cytokines which act locally

to produce the characteristic joint pain, swelling and sti�ness, and systemically

to produce a range of e�ects including the production of acute phase proteins by

the liver, part of the systemic immune response [64]. In addition to being easily

measurable markers of in�ammation, these proteins contribute to some of the

long term systemic e�ects of RA including the two-fold increase in cardiovascular
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rheumatoid arthritis

mortality [34], as a result of exacerbated tissue injury during myocardial infarction

[105]. It is thought that cytokine interactions play a crucial role in the development

of RA and can modulate the severity and duration of the associated in�ammation

[52].

A range of cytokines have been identi�ed in the synovium and each one has a

unique but overlapping set of functions. They can be classi�ed into pro-in�ammatory

and anti-in�ammatory groups according to the primary function of the cytokine in

the synovium. Two of the most important pro-in�ammatory cytokines in rheuma-

toid arthritis are interleukin-1 (IL-1) and tumour necrosis factor-α (TNF-α) [26].

Examples of anti-in�ammatory cytokines found in the synovium include IL-1 re-

ceptor antagonist (IL-1Ra) and Interleukin-10 (IL-10) [36]. Based on this we

think it is useful to model this system using the classi�cation of pro- and anti-

in�ammatory cytokine groups. To date, there has been no RA-speci�c modelling

that considers the dynamics of both pro- and anti-in�ammatory cytokines. By

modelling these two groups we can look at the involvement of cytokines in RA

onset and treatment, which has not been considered previously.

The redundancy and dual role of many cytokines suggests that a functional rather

than chemical classi�cation may prove particularly useful. We therefore aim to

represent the complex cytokine network in the synovium by a simple two variable

model. This will allow us to assess whether changes in the parameters governing

these two groups and their interactions can lead to the features seen in RA. In

addition to looking at the development and progression of RA we would like to

consider the e�ect of anti-cytokine treatment of RA and consider which properties

of treatment lead to a bene�cial response.

In the following section we look at the model development and justify the terms

within the model. We also non-dimensionalise the model and give a biological

interpretation of each of the parameters. In Section 2.3 we analyse the model,
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beginning with consideration of the nullclines and steady states of the system. We

then look at bifurcations as we vary the pro-in�ammatory cytokine production

parameter, which allows us to classify the di�erent types of behaviour in the

system. Lastly we look at bifurcations in two parameter space and consider how

these change for di�erent values of the other parameters. In Section 2.4 we consider

the possibility of time dependent changes in patient-speci�c parameters leading to

the onset of RA. In Section 2.5 we consider the e�ect of treatment involving doses

of anti-in�ammatory cytokines. We look at di�erent dose levels and regimes and

how these a�ect the behaviour of the model. Finally in Section 2.6, we consider

possible clinical implications of the model as well as its limitations.

2.2 An activator-inhibitor model for cytokine in-

teractions

The synovium consists of a variety of cells including �broblasts, macrophages and

T cells and each individual cell has a di�erent response pattern [4], as discussed

Chapter 1. We neglect this variability in cell behaviour and the synovium is

modelled as a spatially uniform collection of homogeneous, generic cells. We fo-

cus on the cells' production of pro-in�ammatory and anti-in�ammatory cytokine

molecules and neglect other functions such as cytotoxic mechanisms or prolifera-

tion. The binding of pro-in�ammatory cytokine molecules to membrane-bound

receptors induces production of both pro-in�ammatory and anti-in�ammatory

cytokines whilst the binding of anti-in�ammatory molecules causes a downreg-

ulation in production of pro-in�ammatory molecules. This has been demon-

strated by Brennan et al. [21] who showed that TNF-α has both an autocrine

and paracrine pro-in�ammatory function, and upregulates itself as well as other

pro-in�ammatory cytokines (particularly IL-1). TNF-α is also known to upreg-
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ulate the production of IL-10 which functions to downregulate both TNF-α and

IL-1 [36].

We denote the concentration of pro-in�ammatory cytokine molecules by p and the

concentration of anti-in�ammatory cytokine molecules by a. The degradation of a

cytokine concentration is assumed to be linear, with rates dp and da. The general

form of the equations for the cytokine dynamics is then

dp

dt
= −dpp+ φ(p)θ(a) (2.2.1)

da

dt
= −daa+ ψ(p). (2.2.2)

The product φ(p)θ(a) models the combined e�ect of pro-in�ammatory and anti-

in�ammatory stimuli on pro-in�ammatory cytokine production, based on the as-

sumption that anti-in�ammatory molecules work by inhibiting the synthesis of

pro-in�ammatory cytokine molecules [103]. φ(p) and ψ(p) are increasing sat-

urating functions of p, so that they represent induced upregulation with some

maximum production rate. Similarly, θ(a) represents the downregulation of p in

response to an increase in a and with a decreasing e�ect from some maximum at

a = 0. Examples of functions which have these properties are

φ(p) = c0 + c1
pm1

cm1
2 + pm1

(2.2.3)

θ(a) = c3
cm2

4

cm2
4 + am2

(2.2.4)

ψ(p) = c5
pm3

cm3
6 + pm3

. (2.2.5)

where c0, c1, c2, c3, c4, c5 and c6 are non-negative constant parameters. Since

pro-in�ammatory production is stimulated by an external stimulus and is de-

tected in low levels in normal blood [124], a background production term c0 has

been included in φ(p), anti-in�ammatory production is stimulated only by pro-
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in�ammatory cytokine molecules so no background term is necessary. The coe�-

cients m1, m2 and m3 will all be taken as 2 for the analysis of this system since

values greater than 2 show qualitatively similar behaviour and a value of 1 reduces

the range of behaviours, this is discussed further in Appendix A. Some sample

forms for these feedback functions are shown in Figure 2.1.

p

ψ(p)

φ(p)c

c

+c0 1

2

0
c c 6

c 5

a

θ(a)

c 3

c 4

Figure 2.1: Examples of qualitative forms for the production feedback functions
φ(p), θ(a) and ψ(p) (Equations 2.2.3, 2.2.4,and 2.2.5).

The model equations are nondimensionalised using

p = p∗c2, a = a∗c4 and t = t∗
1

da
;

With the asterisks dropped for notational simplicity and setting m1 = m2 = m3 =

2, equations (2.2.1) - (2.2.2), with the equations 2.2.3, 2.2.4, and 2.2.5, become

dp

dt
= −γpp+

1

1 + a2

(
Pbp + Ppp

p2

1 + p2

)
(2.2.6)

da

dt
= −a+ App

p2

A2
ph + p2

, (2.2.7)

where

Pbp =
c0c3

c2da
, Ppp =

c1c3

c2da
, Aph =

c6

c2

, App =
c5

c4da
and γp =

dp
da
.
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Pbp is the dimensionless background production rate for pro-in�ammatory cy-

tokine so that when a = p = 0, pro-in�ammatory production occurs at a rate

Pbp. The parameter Ppp corresponds to the maximum rate of pro-in�ammatory

cytokine production over and above the basal rate. Aph is the concentration of

pro-in�ammatory cytokine at which anti-in�ammatory production is half maxi-

mal. App corresponds to the maximum rate of production of anti-in�ammatory

cytokine. γp is the ratio of the pro-in�ammatory and anti-in�ammatory decay

rates.

Throughout this work we explore the behaviour of the system by looking at dif-

ferent parameter values so it is useful to have some idea of the values that would

be reasonable. We can gain some insight into this by examining the de�nitions of

the parameters which are summarised for reference in Table 2.1.

Parameter Interpretation
Pbp Background pro-in�ammatory production rate

Ppp Magnitude of additional pro-in�ammatory cytokine pro-
duction

Aph Pro-in�ammatory cytokine concentration at which anti-
in�ammatory production is half maximal

App Magnitude of anti-in�ammatory cytokine production

γp Relative rate of clearance of pro-in�ammatory cytokine
to anti-in�ammatory cytokine

Table 2.1: Summary of the dimensionless parameters in the cytokine dynamics
model (2.2.6)-(2.2.7)

If we assume that the cytokine degradation rates are similar then we would ex-

pect γp = dp
da

to be close to 1. Aph is the ratio of the EC50 of anti-in�ammatory

production to the EC50 of pro-in�ammatory production, where EC50 is the con-

centration of the variable which induces a response halfway between the maximal

and minimal response. Since both c2 and c6 are both thresholds for p and are
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activated via the same receptors we would expect them have similar values, hence

we expect Aph to be of order 1.

We expect Ppp to be of the same order as the maximum anti-in�ammatory cytokine

production rate, App. We consider a range of values for these parameters in the

bifurcation analysis that follows in Sections 2.3.2 and 2.3.3. In order to have an

e�ective response to infection and injury, the background level of cytokines must

be much smaller than the event stimulated production, hence Pbp needs to be

small, and should be much smaller than Ppp.

In the following sections we will consider how the nullclines of the system can

intersect for di�erent parameter values, determining the number of steady states

in the system. We show how through bifurcation analysis how bistability and os-

cillatory behaviour can arise from this model and consider possible interpretations

of this behaviour in a biological context.

2.3 Model Analysis

2.3.1 Nullclines and Steady states

To analyse the steady states of this system we will consider the forms of the

nullclines, and consider only the positive quadrant. The nullclines of the system

(2.2.6), (2.2.7) respectively, are as follows:

a = Na(p) =
Appp

2

Aph + p2

a = Np(p) =
√
f(p)

where

f(p) =
p2(Pbp + Ppp) + Pbp

γpp(1 + p2)
− 1.
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Figure 2.2 shows the ways that these nullclines may intersect and hence how the

steady states may arise. The diagrams suggest there is always at least one steady

state and for some parameter values three steady states exist: S0, S1 and S2.

Figure 2.2: Schematic showing the nullclines of the system (2.2.6), (2.2.7) and
the di�erent ways they may intersect. The dashed line represents the a nullcline
(da

dt
= 0) and the solid line represents the p nullcline (dp

dt
= 0).

We cannot �nd the steady states of this system analytically but by looking at the

turning points of each nullcline we can identify how many possible steady states

there may be. Na(p) is simply an increasing Hill function and always goes through

the point (p, a) = (0, 0). The number of turning points of Np(p) cannot be found

analytically but since we need only consider real positive values of p and a, we

can see that the number of turning points of Np(p) will be equal to the number of

turning points in f(p).

Di�erentiating f(p) shows it has four possible turning points at,
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p =

√
2

2

√
(Pbp + Ppp)((Ppp − 2Pbp)±

√
P 2
pp − 8PppPbp)

Pbp + Ppp
(2.3.1)

and

p = −
√

2

2

√
(Pbp + Ppp)((Ppp − 2Pbp)±

√
P 2
pp − 8PppPbp)

Pbp + Ppp
. (2.3.2)

p will always be either negative or complex in Equation 2.3.2, leaving only two

relevant turning points. If Ppp < 8Pbp then both these points will be complex.

This means that Np(p) will be a monotonically decreasing function and can cross

Na(p) only once, giving a single steady state. Otherwise, f(p) and consequently

Np(p) must decrease to zero and then increase again from zero so can cross Na(p)

three times giving a maximum of three steady states. It is not possible to �nd the

stability of the steady states analytically, but the Jacobian, A, shown below, does

give us some information regarding the stability,

A =

−γ + 2Ppp

(1+a2)
p

(1+p2)2
−2a

(1+a2)2

(
Pbp + Ppp

p2

1+p2

)
2App

A2
php

(Aph
2+p2)2

−1

 (2.3.3)

Hence,

TrA =
2Ppp

(1 + a2)

p

(1 + p2)2 − γ − 1 (2.3.4)

detA = γ − 2Ppp
(1 + a2)

p

(1 + p2)2 + 4App
a

1 + a2

(
Pbp + Ppp

p2

1 + p2

)(
A2
php

(Aph
2 + p2)2

)
(2.3.5)

We can see that when p � 1 and a � 1 then TrA ≈ −γ − 1 and detA ≈ γ,
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so for a small p, S0 will be stable. At some point, for steady states at larger

values of p and a, the steady state loses stability. The limp→∞ TrA = −γ − 1 and

limp→∞ detA = γ; so, S2 is stable for large values of p. The exact thresholds for

the loss of stability depend on the both the variable and parameter values and

cannot be determined analytically; however, numerical simulation reveals that in

the parameter ranges we are interested in, S0 is always stable, S1 is always unstable

and S2 can be either stable or unstable.

There is one case in which a steady state and stability can be determined an-

alytically: when Pbp is zero. We can see from the nullclines that if Pbp is zero

(i.e. there is no background pro-in�ammatory cytokine production) then there is

a steady state at (p,a)=(0,0). Examining the trace and determinant in this case

gives TrA = −γ − 1, which will always be negative and detA = γ, which will

always be positive, meaning that the steady state must be stable.

The case of two state states only occurs at bifurcations. For this reason, through-

out this chapter we will focus more on the one and three steady state cases.

2.3.2 One Parameter Bifurcation Diagrams

Of the �ve free parameters, the cytokine production rates (Ppp and App) are rates

that could change as part of the immune response and so, are likely to change

over time in response to injury, aging, or therapeutic intervention. If we assume

that the rate of clearance is determined by the size and structure of the cytokine

and by the chemical environment within the host, it is reasonable to assume the

decay rate parameter γp will remain constant in an individual (or vary over a

much longer timescale than that over which cytokine interactions occur). Simi-

larly, we assume that the background production rate and the anti-in�ammatory

production threshold parameter, Pbp and Aph, are �xed within an individual. To

demonstrate the types of behaviour that can arise from this model we consider
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bifurcation diagrams of variations in Ppp for a range of di�erent values of the other

parameters. The types of behaviour displayed are summarised in Table 2.2 and

discussed in detail below. All bifurcation plots and simulations in this chapter

were produced in XPPAUT [39] and MatCont [35].

Case Steady States Limit Cycles

Ai S0 - Stable �

Aii S2 - Stable �

Aiii S0 - Stable; S1 - Unstable; S2 - Unstable �

B S2 - Unstable L1 - Stable

Ci S0 - Stable; S1 - Unstable; S2 - Stable �

Cii S0 - Stable; S1 - Unstable; S2 - Stable L2 - Unstable

Di S0 - Stable; S1 - Unstable; S2 - Unstable L1 - Stable

Dii S0 - Stable; S1 - Unstable; S2 - Unstable L1 - Stable; L2 - Un-
stable

Table 2.2: Summary of the behaviour types in the cytokine dynamics model
(2.2.6)-(2.2.7). S denotes steady states and L denotes limit cycles

Monostable and Bistable Behaviour

In a simple case, illustrated in Figure 2.3, two fold bifurcations give rise to monos-

table and bistable behaviour. For su�ciently small values of Ppp monostable be-

haviour is seen where trajectories undergo at most one peak in p before decaying

to the steady state S0 which has a low level of p (case Ai). The phase plane for

this case is shown in Figure 2.3b, and the nullclines correspond to Figure 2.2a.

This case could generally be considered as a healthy state since p is always low

and there are no oscillations.
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For intermediate values of Ppp, bistable behaviour is observed, with two stable

steady states and a single unstable steady state (case Ci), shown in Figure 2.3c.

In this case the stable manifold of S1 divides phase space into two regions, the

basins of attraction of the healthy state S0 and the disease state S2. The values of

Ppp and App determine the size of the region contained within the stable manifold.

Increasing App decreases the size of the region whereas increasing Ppp increases the

size of the region. This means that if anti-in�ammatory production is increased

then the set of disease states is smaller and if the pro-in�ammatory production

is increased the set of disease states is larger. One counter-intuitive observation

to be made from Figure 2.3c is that any state within the disease region could be

returned to the healthy state by a stimulus that increases the pro-in�ammatory

concentration su�ciently. This would cause a further increase in p triggering

an anti-in�ammatory response which would raise both a and p before returning

both to lower levels at the healthy steady state. Similarly, but more intuitively,

a su�cient increase in the anti-in�ammatory concentration can always return the

system to a state of health.

Finally, for su�ciently large Ppp there is another monostable case (case Aii), in

which all trajectories in the phase plane undergo oscillations of decaying magni-

tude to S2 (Figure 2.3d). In this case, the value of p is generally relatively high,

indicative of a disease state. However, as App is increased the value of p at S2 de-

creases, and case Aii starts to behave like case Ai, making the distinction between

health and disease less clear. Changes in App are discussed further in Section 2.3.3.

Monostable and Bistable Behaviour with Oscillations

For larger values of App (∼ 3-fold increase compared to Fig 2.3a) the model also

displays oscillatory behaviour in addition to the behaviours described above (Fig-

ure 2.4). This more complex bifurcation diagram corresponds to two additional
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Figure 2.3: Monostable and Bistable behaviour in the model (2.2.6)-(2.2.7) for
the interaction between pro and anti-in�ammatory cytokines (Pbp = 0.025, Aph =
0.5, App = 3.5 and γp = 1.25). (a) Bifurcation plot of p against Ppp. The solid
lines represent stable branches whilst the dashed lines represent unstable branches.
The vertical red dashed lines signify the thresholds between di�erent behaviour
types. (b) Phase plane plot of Case Ai, a single healthy steady state (Ppp = 5).
(c) Phase plane plot of Case Ci, two stable steady states (S0 and S2) and one
unstable steady state (S1) (Ppp = 8). (d) Phase plane plot of Case Aii, a single
unhealthy steady state with (Ppp = 17).
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types of phase-plane behaviour. The �rst type, case Di, has a single stable steady

state (S0), two unstable steady states (S1 and S2), and a stable limit cycle around

S2 (Figure 2.4b). In this situation the limit cycle represents in�ammation in the

system due to �uctuating high levels of p (perhaps re�ecting relapsing-remitting

disease, see [79]). This case is similar to Ci, with all states within the stable man-

ifold of S1, evolving to the disease limit cycle and all states outside evolving to

the healthy state.

The second new behaviour, case B, has only a single unstable steady state (S2)

surrounded by a stable limit cycle (Figure 2.4c). The limit cycle can be thought

of as a disease state due both to high levels of p and the oscillatory behaviour.

This is similar to case Aii, since all trajectories undergo decaying oscillations into

the disease limit cycle.

The bifurcation plot in Figure 2.4a shows that as Ppp is increased it goes through a

fold bifurcation, then a Hopf, followed by a second fold and �nally a second Hopf.

For larger values of App (∼ 6-fold increase compared to Fig 2.3a) we encounter

both the folds before the Hopf bifurcations (Figure 2.5a), which means that we

lose Di behaviour. As App is increased further (∼ 10-fold increase compared to

Fig 2.3a) Ci behaviour is also lost (Figure 2.5b).

Monostable and Bistable Behaviour with Homoclinic Bifurcations

For a small range of parameters, there is a saddle node bifurcation that gives rise

to a stable limit cycle, L1, surrounded by an unstable limit cycle, L2 (Figure 2.6a).

There is also a homoclinic bifurcation where the unstable limit cycle, L2, collides

with the steady state S1, giving rise to additional behaviours. A monostable

region exists with a stable steady state, S0, and two unstable steady states, S1

and S2 (case Aiii). This case behaves similarly to Ai, except that within the stable

manifold trajectories will approach S0 in an oscillatory manner (Figure 2.6b). For
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Figure 2.4: Monostable and Bistable behaviour with oscillations in the model
(2.2.6)-(2.2.7) for the interaction between pro and anti-in�ammatory cytokines
(Pbp = 0.025, Aph = 0.5, App = 9 and γp = 1.25). (a) Bifurcation plot of p against
Ppp. The solid lines represent stable branches whilst the dashed lines represent
unstable branches. The vertical red dashed lines signify the thresholds between
di�erent behaviour types. (b) Phase plane plot of Case Di, one stable steady state
(S0) two unstable steady states and a stable limit cycle around S2 (Ppp = 15).
(c) Phase plane plot of Case B, one unstable steady state (S2) surrounded by a
globally stable limit cycle (Ppp = 30). Cases Ai, Ci and Aii are shown in Figure
2.3.
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Figure 2.5: Bifurcation plots for di�erent values of App showing how cases Ci and
Di are lost compared with Figure 2.4a (Pbp = 0.025, Aph = 0.5 and γp = 1.25).
The solid lines represent stable branches whilst the dashed lines represent unstable
branches. The vertical red dashed lines signify the thresholds between di�erent
behaviour types. (a) App = 18, �rst Hopf bifurcation moves to right of the second
fold and case Di is lost (b) App = 30, folds coalesce and all bistability is lost.
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a very narrow parameter range the system is bistable (Figure 2.6c) with one stable

steady state and one stable limit cycle, as well as two unstable steady states and

an unstable limit cycle (case Dii). The stable limit cycle, L1, with high pro-

in�ammatory cytokine concentrations, represents a disease state and lies inside

the unstable cycle, L2. L2 de�nes the basin of attraction of the disease cycle and

the most suitable treatment strategy depends on the current stage in the cycle.

For example, if an individual has a high level of a and an intermediate level of p,

then to bring about a state of health, an increase in anti-in�ammatory cytokine

would be more e�ective than a decrease in pro-in�ammatory cytokine of similar

magnitude.

Figure 2.6: Monostable and Bistable behaviour with homoclinic bifurcations in
the model (2.2.6)-(2.2.7) for the interaction between pro and anti-in�ammatory
cytokines, showing the new behaviours Aiii and Dii. (a) Bifurcation plot of Ppp
against p. The solid lines represent stable branches whilst the dashed lines rep-
resent unstable branches. The vertical red dashed lines signify the thresholds
between di�erent behaviour types. (b) Phase plane plot of Case Aiii, a stable
steady state (S0) and two unstable steady states (Ppp = 15).(c) Phase plane plot
of Case Dii, a stable steady state (S0), two unstable steady states, a stable limit
cycle and an unstable limit cycle (Ppp = 18.73). Cases Ai, Ci and Di are shown in
Figure 2.4. (Pbp = 0, Aph = 0.5, App = 7 and γp = 1.25)
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Bistable behaviour with a homoclinic bifurcation

One �nal type of behaviour (case Cii) can be seen for larger values of Aph (Figure

2.7). Here, an unstable limit cycle exists with two stable steady states (S0 and

S2) and one unstable steady state (S1). The limit cycle is the boundary of the

basin of attraction of S2. The unstable manifold of S1 divides the remaining region

into those states which evolve to health in an oscillatory fashion (those inside the

unstable manifold) and those which have at most one extremum (those outside

the unstable manifold). This state arises though a supercritical Hopf bifurcation,

where the branch of limit cycles turn and become unstable almost immediately

after the bifurcation.

So far we have considered only variations in the pro-in�ammatory cytokine pro-

duction rate, Ppp. It is likely that the anti-in�ammatory cytokine production rate,

App, is also important in determining disease activity since anti-in�ammatory cy-

tokines will mitigate pro-in�ammatory cytokine response. Hence, in the next

section we will look at Ppp-App parameter space for di�erent values of the other

three parameters.

2.3.3 Two Parameter Bifurcation Diagrams

It is useful to consider the two parameter bifurcation structure in Ppp-App param-

eter space. Figure 2.8 shows bifurcation diagrams for several di�erent values of

Pbp. It illustrates the curves of Hopf and fold bifurcation points and the types of

phase-plane behaviour that are observed in this space and demonstrates the e�ect

that changes in Pbp have on the bifurcations. The �gure also shows that where the

Hopf and fold bifurcations meet we have Bogdanov-Takens points. A Bogdanov-

Takens bifurcation is a bifurcation of codimension 2, i.e. it is only seen as we vary

two parameters, and occurs where there is a pair of zero eigenvalues. From this

point a homoclinic bifurcation emerges between the fold and Hopf bifurcations. In
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Figure 2.7: Bistable behaviour with a homoclinic bifurcation in the model (2.2.6)-
(2.2.7) for the interaction between pro and anti-in�ammatory cytokines. (a) Bi-
furcation plot showing Ppp plotted against p. The inset shows how Case Cii
arises through a supercritical Hopf bifurcation where the branch of limit cy-
cles turns and becomes unstable almost immediately after bifurcation. The
solid lines represent stable branches whilst the dashed lines represent unstable
branches. The vertical red dashed lines signify the thresholds between di�er-
ent behaviour types. (b) Phase plane plot showing case Cii, two stable steady
states (S0 and S2), an unstable state(S1) and an unstable limit cycle around
S2 (Ppp = 7.75). Cases Ai, Aii, Aiii and Ci are shown in Figures 2.4 and 2.6.
(Pbp = 0.01, Aph = 1, App = 10 and γp = 1.25)
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the diagrams in this section the Hopf bifurcations are denoted H1 and H2, the fold

bifurcations are denoted F1 and F2 and the Bogdanov-Takens points are labelled

BT. The dotted line in Figure 2.8b corresponds to the one parameter bifurcation

diagram shown in Figure 2.4. It is now clear why increasing App results in the loss

of Di and Ci, since the overlap of the regions enclosed by the Hopf and fold bifur-

cations is decreased and then the folds are destroyed at the cusp. It is important

to make the distinction between a healthy state and a disease state since when

App is su�ciently small there is a range of Ppp over which two observable stable

steady states can coexist. Where there are two stable steady states the relative

levels of p allow one to be designated as disease and the other as health, since

in any individual baseline levels of cytokines may vary. Where there is only one

stable state, designation of health or disease is more di�cult.

As Pbp is decreased, the fold and Hopf bifurcations connect at a Bogdanov-Takens

point, one of the Hopf bifurcations is lost and a homoclinic bifurcation emerges.

Additionally, the cusp where the fold bifurcations meet occurs at larger values of

both Ppp and App. The background production parameter Pbp does not signi�cantly

alter the position of the Hopf bifurcation H1. However, as Pbp is decreased H2

moves closer to F1, with H2 eventually being destroyed, leaving the system with

only one Hopf bifurcation, H1, which is then supercritical as before and can cause

the creation of a stable limit cycle.

Figure 2.8d shows the two parameter bifurcation diagram for Pbp = 0, where is no

background production, and here the steady state structure of the system changes.

When the system is at zero concentration no cytokine is produced and it remains

at this state, thus the healthy state S0 is �xed at (p = 0, a = 0) and is stable.

The system still has an unstable state S1 and a state S2 which can be stable or

unstable. Since S2 occurs at a relatively high value of p, if S2 is stable it represents

a disease state and may lie an unstable limit cycle. S2 can also be unstable in

which case the system can only be in the healthy cytokine-free state unless S2 lies
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Figure 2.8: Parameter space plots in Ppp-App (Aph = 0.5 and γp = 1.25) showing
the fold (F1 and F2) and Hopf (H1 and H2) bifurcations and types of phase space
for decreasing values of Pbp.(a) Cases Ai, Aii, B, Ci and Di are shown. (b) Cases
Ai, Aii, B, Ci and Di are shown. The red dashed line represents a slice through
the parameter space at App = 9, consistent with the bifurcation plot in Figure 2.4
(Pbp = 0.025). (c) Cases Ai, Aii, Aiii, B, Ci, Di and Dii are shown., (d) Cases Ai,
Aii, Aiii, Ci, Di and Dii are shown. The red dashed line represents a slice through
the parameter space at App = 7, consistent with the bifurcation plot in Figure 2.6
(Pbp = 0).
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within a stable limit cycle (with the system at either the healthy state or in a state

of periodically varying cytokine concentrations). When this is compared with the

behaviour when Pbp > 0 we see that cases Aii and B are no longer possible since

there is always a stable healthy state.

Variations in Aph and γp show similar e�ects to variations in Pbp. Figure 2.9 shows

Ppp-App parameter space for a range of values of Aph. As Aph increases, the cusp at

which the fold bifurcations meet and are destroyed occurs for a higher value of the

anti-in�ammatory production parameter App. The pro-in�ammatory production

parameter Ppp at the cusp varies little with Aph. One consequence of this e�ect

is that if the threshold Aph is large then the range of states which can exhibit

health and disease is increased. When Aph is small, most conditions lead a single

state with pro- and anti-in�ammatory concentrations varying according to Ppp.

Figure 2.10 shows a two parameter bifurcation diagram for a large value of Aph

but a smaller value of Pbp. Here, all the possible behaviours are observed through

variations in Ppp and App.

Figure 2.11 shows Ppp-App parameter space diagrams for various values of γp and

demonstrates that as γp decreases the fold and Hopf bifurcations move apart.

This means that the parameter region over which there is bistability decreases

and the majority of parameter space leads to a single generic stable steady state

or a stable limit cycle. Biologically this implies that decreasing the clearance

of pro-in�ammatory cytokine from the system, leads to disease, and reduces the

likelihood of curable disease. Conversely, increases to the rate of clearance could

o�er better treatment response rates.
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Figure 2.9: Figure showing the dependence on threshold parameter Aph of the
location of fold and Hopf bifurcations in Ppp-App parameter space for parameter
values (Pbp = 0.025, γp = 1.25).

Figure 2.10: Ppp-App parameter space showing all the behaviour types found in
the model. The red dashed line represents a slice through the parameter space at
App = 10, corresponding to the bifurcation plot in Figure 2.7 (Pbp = 0.01, Aph =
1 and γp = 1.25)

48



Chapter 2: Pro- and anti-inflammatory cytokine model for

rheumatoid arthritis

Figure 2.11: Diagrams showing the positions of the fold (F) and Hopf (H) bifur-
cations in Ppp-App parameter space for decreasing values of γp and the parameters
(Pbp = 0.025 and Aph = 0.5).

2.4 Time-Dependent Parameter Variations

Some cases of rheumatoid arthritis have a characteristic mode of onset in which an

initially healthy individual experiences �aring and remitting in�ammation (palin-

dromic RA) over a sustained length of time before eventually reaching a state of

persistent synovitis. The model given by equations (2.2.6)-(2.2.7) is capable of re-

producing some of the key features of this onset pattern by using a time-dependent

pro-in�ammatory production parameter Ppp. It is likely that such �uctuations in

Ppp occur in vivo due either to a spontaneous rise in pro-in�ammatory cytokine

production in response to injury or infection or a gradual rise in production with

increasing age [29, 114]. To illustrate the potential of this approach we can con-

sider Ppp as an increasing, saturating function of time,

Ppp(t) = Pmin
pp +

(Pmax
pp − Pmin

pp )t2

P T
pp

2 + t2
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so that Ppp(0) = Pmin
pp with Ppp increasing with time and limt→∞ Ppp(t) = Pmax

pp .

The parameter P T
pp is the time at which the Ppp(t) is at half maximal. We take

Pmin
pp = 1, Pmax

pp = 50 and PppT = 15 with the remaining parameters given by

{γp = 1.25, Pbp = 0.025, Aph = 0.50}. Figure 2.12 shows how Ppp changes over

time.
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Figure 2.12: Plot of the time dependent pro-in�ammatory cytokine production
parameter Ppp against time.

We run simulations for a set of constant values of App, equivalent to taking a

horizontal section through the parameter plane in Figure 2.8(b). It is immediately

obvious that App will be critical in determining the evolution pattern. To show this

e�ect the simulation is run for the values App = {2, 7, 15} and the concentration

evolution in each case is shown in Figure 2.13.

These results show that in each case, when Ppp is su�ciently large, the system

is forced to the disease state, S2, but signi�cant di�erences in the form of the

cytokine response are observed. For low App, as Ppp increases with time , the

state is forced to stable disease without any oscillations. For larger App, as Ppp

increases the state is still forced into stable disease but has an intermediate period

of oscillations. The length of time over which the system is in an oscillatory

state increases with App and for a large App the system is forced into sustained
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Figure 2.13: Plots of pro-in�ammatory and anti-in�ammatory cytokine concen-
trations for App = 2, 7 and 15. (Pbp = 0.025, Aph = 0.5, γp = 1.25,). In each case,
the system moves to a disease state over time as Ppp increases. As App gets larger,
the time the system is in an oscillatory state increases until, for some value of App,
the system moves onto a stable limit cycle. The parameter Ppp increases over time
and this is equivalent to taking a horizontal slice through the bifurcation diagram
in Figure 2.8(b).

oscillations. The highest values of App result in a disease state with lowest pro-

in�ammatory concentration and highest anti-in�ammatory concentration. These

concentration patterns emphasise the di�erences which can be attributed to an

individual's ability to produce anti-in�ammatory cytokine. Those individuals with

a faster rate of anti-in�ammatory cytokine production (large App) may be more

likely to see the remitting and relapsing pattern of disease onset.

The function used here for Ppp is representative of an age related increase in

Ppp over time. Responses due to infection may lead to an initial spike in pro-

in�ammatory production rate (Ppp) followed by the gradual decline of the rate to

a new base line rate (Figure 2.14). In this case the system may settle either to

a state of health or disease, determined by the value of Ppp after infection. For

appropriate parameter values there can be a period of oscillations, which may

be representative of the mechanism by which some individuals go on to develop

sustained RA after a period of palindromic RA, whilst others move into remission.

51



Chapter 2: Pro- and anti-inflammatory cytokine model for

rheumatoid arthritis

Figure 2.14: Plots of Ppp and pro-in�ammatory cytokine concentrations against
time. The two plots in the upper panel show two forms of the Ppp function, in
both cases Ppp starts at 3 and spikes to 25 after t=5. They then settle to a new
value of Ppp, 16.5 in the �rst column and 10 in the second. The plots in the lower
panel show how the concentration of pro-in�ammatory cytokine varies over the
same time period. Both plots show decaying oscillations to a steady state, in the
�rst column the steady state is a disease state and in the second it is healthy.
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2.5 Treatment Strategies

Some individuals with RA are treated with doses of pro-in�ammatory cytokine

inhibitors, known as anti-cytokine therapy, either in the form of pro-in�ammatory

cytokine receptor antagonists or antibodies targeting pro-in�ammatory cytokines

[49]. Doses are given either by subcutaneous injection or intravenous infusion at

intervals ranging from weekly to four-weekly. Short term e�ects of the reduction

of pro-in�ammatory cytokine activity include reduction in joint swelling, pain

and sti�ness and improvement in general well-being [80]. Long term e�ects in-

clude reduction in the rate and severity of joint damage [44]. For simplicity, we

assume that each dose of pro-in�ammatory cytokine inhibitors causes a propor-

tional decrease in pro-in�ammatory cytokine level. We then use an instantaneous

decrease in pro-in�ammatory cytokine concentration (p) in the model to mimic

these cytokine treatments. Some e�ects similar to those reported during cytokine

treatment, such as a temporary reduction in disease activity or remission, are

exhibited by the model.

To see the importance of dose size and interval, parameters for which the system

displays type Ci behaviour (see Section 3.2.1) are taken so that the system can

show both healthy and disease stable steady states. We start the system at a

stable disease state (S2) and reduce the value of p by a �xed amount at a speci�c

time point. An increase in dose magnitude is modelled by a larger reduction in the

level of p. If the system is at the disease state and a single dose of anti-cytokine

treatment is given then the response of the system depends entirely on the size of

that dose.

A reduction in pro-in�ammatory concentration which is not su�cient to shift the

system to a state outside the basin of attraction of S2 can cause a temporary fall in

pro-in�ammatory concentration followed by an overshoot and decaying oscillations

back to the disease state (Figure 2.15). A larger dose can be su�cient to trigger a
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Figure 2.15: Pro-in�ammatory and anti-in�ammatory cytokine concentration re-
sponse to a single infusion of anti-in�ammatory cytokine at time t = 50 (dose of
magnitude 0.02 in the �rst column and 0.04 in the second). The �rst row shows
the time course for the change in Pro-in�ammatory cytokine concentration, whilst
the second row shows the phase plane for the parameters used. The red curves on
the phase plane track the time evolution of p as seen on the time course. The time
courses of anti-in�ammatory cytokine concentration are not shown for brevity, but
pro�les look similar to pro-in�ammatory cytokine concentration. The parameters
used are {Pbp = 0.025, Ppp = 15.5, Aph = 0.5, App = 18 and γp = 1.25}.
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monotonic decrease in p until the system settles at the healthy state. This is not a

feature that is normally seen in clinical practice which may suggest that either the

dose levels used do not move the system outside of the basin of attraction of S2,

or that disease relapses by a change in the parameters, moving the system from a

healthy steady state or that the patient in not curable.

The pattern of treatment is also pivotal to the results obtained. By administering

multiple treatments it may be possible to achieve results which are not seen for a

single dose, although the timing can be crucial. Using the same parameter values

as in Figure 2.15, taking a dose of magnitude 0.02 (which as a single dose did not

return the system to S0) and giving two doses at di�erent intervals, shows that

the response depends in a non-trivial way on timing (Figure 2.16).

A dose interval of 10 units drives the system to the stable healthy state, whilst

a 15 unit interval sees a return to stable disease after an initial response. Re-

markably, a longer interval can be bene�cial; for a 17 unit interval a healthy state

is achieved. This dependence on timing arises because in the 15 time unit dos-

ing interval protocol, the second dose is applied when the pro-in�ammatory and

anti-in�ammatory concentration have risen signi�cantly from their �rst minimum,

meaning that the second dose is insu�cient to force the trajectory out of the stable

manifold (Figure 2.16). In the �rst and third case, the second dose is administered

at a point where the pro-in�ammatory concentration is low and so the dose pushes

the trajectory out of the basin of attraction of the disease state. The trajectory

must be su�ciently close to the basin boundary (the manifold) at the time the

second dose is given.

So far, each of the doses provided has been able to shift the system to the healthy

state. Some doses, however, are not large enough to achieve this, regardless of

the number of doses unless the pattern of dose administration is changed. Using

the same parameters as before with a dose half the size of the previous dose size
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Figure 2.16: Time dependence of pro-in�ammatory and anti-in�ammatory cy-
tokine concentration for di�erent time separation between doses. All doses have a
magnitude of 0.02 and the parameters values are {Pbp = 0.025, Ppp = 15.5, Aph =
0.5, App = 18 and γp = 1.25}. The �rst column shows the time courses of pro-
in�ammatory concentration for two doses given 10, 15 and 17 time units apart.
The time courses of anti-in�ammatory cytokine concentration are not shown for
brevity, but pro�les look similar to pro-in�ammatory cytokine concentration. The
second column shows phase plane diagrams of the simulations, with the red curves
showing the time evolution of p.
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(0.01) and applying it at time intervals of 5 units over a sustained period of time,

we obtain the pro-in�ammatory concentration pro�le shown in Figure 2.17a. This

treatment pattern brings about a temporary reduction in the concentration of

pro-in�ammatory cytokine although there are oscillations in the level. When the

treatment ceases, the pro-in�ammatory cytokine concentration returns to the pre-

treatment level. Only by reducing the time interval can this change be sustained

after treatment has ceased (Figure 2.17b). The reduction in time interval means

that the next dose is given before the system has moved fully back to disease,

hence increasing the e�ective dose.

Figure 2.17: Pro-in�ammatory cytokine pro�les for the system with doses of anti-
in�ammatory cytokine of magnitude 0.01 at (a)5 unit intervals between t = 25
and t = 75 and (b) 3 unit intervals between t = 25 and t = 75 and parameters
{Pbp = 0.025, Ppp = 15.5, Aph = 0.5, App = 18 and γp = 1.25}. There is a trade
o� between dose size and interval. The dose interval needs to be reduced to give
a sustained response for smaller dose sizes.

2.6 Discussion

Cytokines are important mediators in RA. The success of clinical treatments based

on altering the synovial cytokine pro�le suggests that the composition and inter-

actions of the cytokine network are key factors in at least the regulation, if not the

onset, of rheumatoid arthritis [44]. The model developed here is a two variable

activator-inhibitor system that simulates the dynamics of two classes of cytokines,

57



Chapter 2: Pro- and anti-inflammatory cytokine model for

rheumatoid arthritis

pro-in�ammatory and anti-in�ammatory. Five key dimensionless parameters have

been identi�ed. We have shown that the model can have either one steady state

(S0 or S2) or three steady states (S0, S1 and S2). This leads to a range of phase

plane behaviours.

The model shows four types of monostable phase plane behaviour (Ai, Aii, Aiii

and B). These behaviours may be interpreted as a healthy response (Ai and Aiii)

due to a low level of p, a disease response due to a high level of p (B) or an un-

clear response of health/disease due to an intermediate range of p. In addition

to monostable behaviour, the model also shows four types of bistable phase plane

behaviour (Ci, Cii, Di and Dii). These have a stable healthy steady state and a

stable disease state which is either a �xed point or a limit cycle. One point to note

is that if an individual has a high level of pro-in�ammatory production, so that a

monostable disease state prevails, increasing the magnitude of anti-in�ammatory

production, App, does not return the system to distinct health, but does reduce

the level of p at the �xed point (see Figure 2.8b). In clinical practice, only cy-

tokine concentrations are changed rather than production rates, so increasing the

magnitude of anti in�ammatory cytokine production would relate only to intrinsic

changes in parameters at present. However, this may be relevant for development

of gene therapy approaches.

Figure 2.13 shows that as the pro-in�ammatory production parameter (Ppp) in-

creases over time the system moves from the healthy steady state to a disease

state. Here, the anti-in�ammatory production parameter, App, determines the

pattern of disease onset. As App increases, the approach to the disease state

changes from a straightforward switch to an oscillatory approach. The size of App

determines the time taken for the oscillations to settle until, for some larger App,

we have sustained oscillations. These counter-intuitive features highlight the need

for a well-de�ned measure of the link between the cytokine pro�le and synovial

in�ammation in the model, since lower cytokine levels may still result in a longer

58



Chapter 2: Pro- and anti-inflammatory cytokine model for

rheumatoid arthritis

period of persistent disease. Figure 2.14 shows that temporary spikes in the pro-

in�ammatory production parameter, which may represent a response to infection,

can also initiate disease onset. In this case, disease onset is determined by the

level of pro-in�ammatory cytokine production after the initial spike as well as the

underlying individual's parameters.

Cytokine treatment simulations show the relevance of dose size to the e�cacy of

a particular treatment. Two doses were applied when the system was at rest at

the disease state (Figure 2.15). We demonstrated that the larger dose could move

the system to a state of health, whilst the smaller dose was insu�cient. Repeated

smaller doses could be used to move the system to health, but the dose interval

used here is crucial. The key factor in determining the dose interval is the point

in the oscillatory cycle at which the second or subsequent dose is administered

(Figure 2.16). Intuitively, the best time to apply the second dose is when the

pro-in�ammatory concentration is at its lowest so that the cumulative e�ect is as

large as possible. Mathematically, the best time to apply it is when the horizontal

separation in the (p, a) phase plane between the bounding curve of the basin of

attraction of S2 and the concentration trajectory is a minimum, since this gives

the best chance of leaving the basin of attraction of the disease state. These

conditions are not necessarily equivalent. If the side e�ects of a high dose of a

drug are unacceptable then we have shown that it may be possible to apply a

course of smaller doses at targeted times to return the system to health. Clearly,

it may be possible to manipulate the treatment regime to include the smallest

possible dose over the fewest possible applications. The model has the surprising

property that an increase in the pro-in�ammatory cytokine level can also bring

about remission, this has not been tested clinically but has interesting implications

for novel treatment strategies.

In parameter regimes where only the disease state exists, no treatment of the types

described here, no matter how large the dose, could ever achieve remission (i.e.
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a sustained state of health). Manipulation of the system parameters is the only

way this could be achieved. However, a dose of anti-cytokine therapy would move

an individual to a lower pro-in�ammatory cytokine level temporarily followed by

a gradual return to the disease state. This is still a desirable outcome in clinical

practice and justi�es the use of anti-cytokine therapy, particularly when given as

a series of regular treatments, even where remission is impossible.

We believe that a healthy individual at low risk of developing RA will have param-

eters corresponding to a phase plane with a single, globally stable, steady state.

Individuals with very early RA or at risk of developing RA will have parameters

de�ning a system with three steady states. These individuals may go on to oc-

cupy a steady disease state from which it is possible to return to a healthy state by

appropriate manipulation of pro- and anti-in�ammatory cytokine levels. Corre-

spondingly, clinicians refer to a window of opportunity in treating early RA during

which remission is more likely than in later disease [99], implying time dependence

of the underlying parameters. In clinical practice, the closure of this window of

opportunity marks the transition from early to established disease. In this model,

it may mark the transition from a system with three steady states to one with

a single, steady, inescapable disease state characterised by high pro-in�ammatory

cytokine levels, which occurs as Ppp changes. In established RA, remission rates

with anti-cytokine therapy are only around 20% [60], suggesting that the either

majority of patients with established RA are in this state or they are not being

treated optimally.

This model has produced many of the features observed in real cytokine systems,

but if the characteristics of this model are to be interpreted in a clinical context,

then it is necessary to link concentration of cytokines to a measurable disease in-

dicator. Ideally, we would like to link the model results to clinical data of cytokine

levels over time in individuals with early and late RA. Practical considerations,

including the short half life of cytokines and the di�culty of extracting synovial
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�uid from the joint, mean this type of data is di�cult to obtain in humans. It

may be possible to collect similar data from animal models or alternatively we may

be able to use other types of clinical data. The in�ammatory marker C-Reactive

Protein (CRP) is routinely used by clinicians as a measure of disease activity in

RA [101]. However, variation between individuals is large and the link between

cytokine level and CRP level or in�ammation is as yet unclear. That said, in the

majority of cases we identify from our model, the interpretation is very clear. We

either have low levels of p indicating health or high levels of p indicating disease.

It is only when the levels are intermediate that we are unable to de�ne a clear

threshold between health and disease. Whilst there is no precise link between

model variables and speci�c disease markers, the interactions in the model are

well-established and the predictions are robust to variations in parameter values

and functional forms. It would ultimately be desirable to have a model which

includes a number of speci�c cytokines and measurable disease markers to allow a

clear link between model behaviour and disease activity. This would give a better

idea of how cytokine levels in�uence disease manifestations and would provide a

clearer de�nition of health and disease.

The dynamics of pro- and anti-in�ammatory cytokines are likely to be relevant in a

wider context than RA in the synovium. As discussed in Chapter 1, Osteoarthritis

involves the same cytokines, and hence similar dynamics are likely to exist. It is

likely that the RA model presented here could form a basis for examining the

cytokine dynamics within OA tissue and we will consider this further in Chapter

3. Additionally, other conditions, such as diabetes, sepsis, Alzheimer's disease and

lupus, are also known to have cytokine involvement and due to the generality of

this model it may be applicable in these wider contexts.
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Chapter 3

Mathematical modelling of

cytokines, MMPs and ECM

fragments in osteoarthritic cartilage

The focus of the model developed in the previous chapter was to understand the

pro-in�ammatory and anti-in�ammatory cytokine interactions in the synovium.

The network of cytokine interactions in the joint is more complex than in the

synovium. In the cartilage, since the main role of the cytokines to control ECM

remodelling, it makes sense to extend the model to include the dynamics of MMPs,

the enzymes that break down ECM �bres, and degraded �bronectin fragments (Fn-

fs), a waste product which can stimulate cytokine production. A predominant

feature of OA is excessive breakdown of the ECM. Higher than normal levels of

Fn-fs have been found in osteoarthritic individuals and are thought to contribute

to the acceleration of the disease [86]. The model we have developed is based on

the simpli�ed cytokine network schematised in Figure 3.1.
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Figure 3.1: A simpli�ed network of cytokine interactions within articular cartilage.
Cytokines are classed as pro-in�ammatory or anti-in�ammatory. MMPs have a
direct role in the breakdown of the ECM leading to increased Fn-fs. Fibronectin
fragments are irritants to the cartilage and lead to increased cytokine production
as part of the in�ammatory response.
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3.1 Model Rationale

In this paper we develop a four-variable model of cytokine interactions in the carti-

lage, as seen in OA. Our model variables are pro-in�ammatory cytokines (p), anti-

in�ammatory cytokines (a), MMPs (m) and Fn-fs (f). In order to keep the model

tractable, cytokines have been put into two functional groups, pro-in�ammatory

and anti-in�ammatory. This is the same grouping as we used in the cytokine-only

model of the synovium (Chapter 2). Pro-in�ammatory cytokines are normally

present at low levels in the cartilage as they play a role in mediating the normal

turnover of the ECM [108], which involves remodelling the cartilage ECM at a very

slow rate to maintain tissue integrity. Production of pro-in�ammatory cytokine

is up-regulated in response to trauma or infection, as part of the in�ammatory

response and repair mechanism. This response is usually kept in homeostatic bal-

ance by anti-in�ammatory cytokines, which act both to inhibit the synthesis of

pro-in�ammatory cytokines and also to block pro-in�ammatory cytokine receptors

[103]. To model these processes we assume that production of pro-in�ammatory

cytokines, p, is dependent on itself, anti-in�ammatory cytokines, a, and Fn-fs, f ,

dp

dt
=

(
pbp + ppp

p2

pph2 + p2
+ pfp

f 2

pfh2 + f 2

)(
pah

2

pah2 + a2

)
− dpp. (3.1.1)

We make the source term saturating since we assume there will be a maximal

production rate in the cell and therefore model functions of p, a and f as Hill

functions. We also assume that pro-in�ammatory cytokines will degrade natu-

rally at rate dp. We have chosen all the Hill coe�cients to be 2. We choose

to make the stimulatory terms additive as we expect these two pathways to be

independent since they are biochemically distinct and activate di�erent cell re-

ceptors. This means that even if there is no cartilage degradation there may still
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be a large cytokine response due to an increase in p. This may be the case, for

example, if there is an in�ammatory episode where there is no physical damage

to the cartilage. Since anti-in�ammatory cytokines reduce production and ef-

fectiveness of pro-in�ammatory cytokines regardless of the source we apply the

anti-in�ammatory inhibition term to all the source terms.

The dynamics of the anti-in�ammatory cytokines, a, includes source terms rep-

resenting the up-regulation of a, by both pro-in�ammatory cytokines and Fn-fs,

and a natural degradation term,

da

dt
= app

p2

aph2 + p2
+ afp

f 2

afh2 + f 2
− daa. (3.1.2)

The source terms are saturating Hill functions of p and f .

MMPs mediate ECM degradation and the synthesis of MMPs is stimulated by

pro-in�ammatory cytokines [126]. MMPs are also found at low levels in normal

cartilage so we assume some basal production. The dynamics of MMPs (m) are

therefore modelled as having source terms that account for basal production and

up-regulation by pro-in�ammatory cytokines and a natural degradation term,

dm

dt
= mbp +mpp

p2

m2
ph + p2

− dmm. (3.1.3)

Fn-fs, produced as a result of ECM degradation, need to be explicitly included in

the model since they are involved in the stimulation of cytokine production, see

Figure 3.1. Since the ECM is degraded by MMPs the source term is a function of

m. Additionally, breakdown of the ECM may be caused by mechanical damage,

represented by the term fdam. We also include natural degradation, giving
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df

dt
= fmpm+ fdam − dff. (3.1.4)

3.2 Model Equations

We non-dimensionalise the model using the scalings:

p = pphp̃ a = pahã m =
pfhdam̃

fmp
f = pfhf̃ t =

t̃

da

where the tilde denotes dimensionless quantities. Dropping the tildes for conve-

nience, gives the dimensionless model:

dp

dt
=

(
Pbp + Ppp

p2

1 + p2
+ Pfp

f 2

1 + f 2

)(
1

1 + a2

)
− γpp (3.2.1)

da

dt
= App

p2

Aph
2 + p2

+ Afp
f 2

A2
fh + f 2

− a (3.2.2)

dm

dt
= Mbp +Mpp

p2

Mph
2 + p2

− γmm (3.2.3)

df

dt
= m+ Fdam − γff (3.2.4)

where,
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Pbp =
pbp
pphda

, Ppp =
ppp
pphda

, Pfp =
pfp
pphda

, App =
app
pahda

,

Aph =
aph
pph

, Afp =
afp
aphda

, Afh =
afh
pfh

, Mbp =
mbpmpp

pfhda
2 ,

Mpp =
mppfmp

pfhda
2 , Mph =

mph

pph
, Fdam =

fdam
pfhda

, γp =
dp
da
,

γm =
dm
da
, γf =

df
da
.

The meaning of each of these new parameters is summarised in Table 3.1.

Table 3.1: The parameters in the system (3.2.1) - (3.2.4) and their interpretation

Parameter Description

Pbp Background pro-in�ammatory production

Ppp Pro-in�ammatory cytokine driven pro-in�ammatory cytokine production

Pfp Fibronectin fragment driven pro-in�ammatory cytokine production

App Pro-in�ammatory cytokine driven anti-in�ammatory cytokine production

Aph Pro-in�ammatory cytokine concentration at which pro-in�ammatory

cytokine driven anti-in�ammatory cytokine production is half maximal

Afp Fibronectin fragment driven anti-in�ammatory cytokine production

Afh Fibronectin fragment concentration at which Fn-fs driven

anti-in�ammatory cytokine production is half maximal

Mbp Background MMP production

Mpp Pro-in�ammatory cytokine driven MMP production

Mph Pro-in�ammatory cytokine concentration at which MMP

production is half maximal

Fdam Mechanical damage parameter

γp Relative rate of clearance of pro-in�ammatory cytokine

to anti-in�ammatory cytokine

γm Relative rate of clearance of MMP to anti-in�ammatory cytokine

γf Relative rate of clearance of Fn-fs to anti-in�ammatory cytokine

3.3 Steady States

Insight into the nature of the steady states of this system can be gained from the

nullclines, hypersurfaces given by,
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ṗ = 0⇐⇒ a = Np(p, f) =
√

g(p, f), (3.3.1)

where

g(p, f) =
1

γpp

(
Pbp + Ppp

p2

1 + p2
+ Pfp

f 2

1 + f 2

)
− 1,

and

ȧ = 0⇐⇒ a = Na(p, f) = App
p2

A2
ph + p2

+ Afp
f 2

A2
fh + f 2

, (3.3.2)

ṁ = 0⇐⇒ m = Nm(p) =
Mbp

γm
+
Mpp

γm

p2

M2
ph + p2

, (3.3.3)

ḟ = 0⇐⇒ f = Nf (m) =
m+ Fdam

γf
. (3.3.4)

The steady states of the model are the points where all the nullclines intersect.

We can locate these points by solving equations (3.3.1)-(3.3.4) simultaneously,

however this is analytically intractable. We can, however, substitute m = Nm

and f = Nf (Nm(p)) into Np and Na, reducing the problem to two simultaneous

equations,

a = Np(p,Nf (Nm(p))), a = Na(p,Nf (Nm(p))),

leading to,

a =
√

h(p), (3.3.5)
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where

h(p) =
1

γpp

Pbp + Ppp
p2

1 + p2
+ Pfp

(
Fdamγm +Mbp +Mpp

p2

M2
ph+p2

)2

(γfγm)2 +
(
Fdamγm +Mbp +Mpp

p2

M2
ph+p2

)2

− 1,

and

a = App
p2

A2
ph + p2

+ Afp

(
Fdamγm +Mbp +Mpp

p2

M2
ph+p2

)2

(γfγm)2A2
fh +

(
Fdamγm +Mbp +Mpp

p2

M2
ph+p2

)2 . (3.3.6)

The intersections of these two curves, equations (3.3.5) and (3.3.6), give the steady

states. Although analytical solutions are not tractable, the forms of the curves

tell us the possible number of steady states.

Equation (3.3.6) consists of two terms, the �rst is a Hill function of p and the

second is a Hill function of p embedded within another Hill function. This allows

(3.3.6) to take two forms, either a sigmoidal shape, if Aph and Afh are close in

value (Figure 3.2a), or a double sigmoidal shape if Aph and Afh are su�ciently

di�erent (Figure 3.2b).

Equation (3.3.5) involves the square root of the function h(p), and therefore only

exists when h(p) ≥ 0. As p → 0, h(p) → ∞. As p → ∞, h(p) → −1 and h(p) is

continuous. Hence, (3.3.5) always meets the p-axis for a large enough value of p.

If we consider h(p) as,

h(p) =
k(p)

γpp
− 1,

the function k(p), similar to eq. (3.3.6), can have either a sigmoidal or double
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sigmoidal shape. The double sigmoidal shape is possible when the terms involving

Ppp and Pfp are su�ciently di�erent. This leads to several possible shapes for the

function h(p) and likewise a =
√
h(p). These are shown in Figures 3.2c-f.

The forms of equations (3.3.5) and (3.3.6) mean that they will always intersect at

least once, so the system will always have at least one steady state. It is clearly

possible for these curves to also intersect three times. We could conceivably have

up to nine intersections, but we have found a maximum of �ve (see Section 3.4.6)

with the Hill coe�cients of 2. Two or four steady states will only occur when the

curves meet tangentially. Since this only occurs at bifurcations we will focus on

cases with one, three or �ve steady states. In each case when the levels of p are

low we assume this would indicate a healthy steady state. We chose the value of

all the Hill coe�cients in the model to be 2, which determines the shapes of the

nullclines. With a coe�cient of 1 we would restrict the number of steady states

possible. Equation (3.3.6) increases monotonically and equation (3.3.5) decreases

monotonically, giving only one possible steady state. For Hill coe�cients greater

than 2 or mixed coe�cients, the nullclines take the same form as with coe�cients

of 2, although the parameter values di�er and the steeper gradients allow for the

possibility of additional steady states. For example we have been able to �nd up

to seven steady states with mixed Hill coe�cients of 2 and 4. These additional

states occur in only small regions of parameter space. For this reason we consider

only the case where the Hill coe�cients are 2, and consider the implications of

higher coe�cients in the Discussion, as in our previous work, [10].
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Figure 3.2: Diagrams of the shapes that the p and a nullclines may take, with m =
Nm(p) and f = Nf (Nm(p)). The steady states of the system occur where these
equations intersect. The a nullcline is either sigmoidal (a) or double sigmoidal (b)
in shape. The p nullcline can take up to several forms that may meet the x-axis
zero (c) and (f), one (e) or two (d) times.
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3.4 Bifurcation Analysis

This model has a large number of parameters and it is not feasible to explore

the entire parameter space so we will limit our analysis of model behaviour to

a reference parameter set and look at one- and two-parameter variations around

that point, through bifurcation analysis. Additionally we will look at signi�cant

variations to that reference parameter set where the behaviour is of particular

interest either mathematically or biologically.

Due to the di�culties of obtaining measurements of cytokine rates and levels both

in vivo and in vitro, there is little reliable and reproducible data concerning the

parameters in the model. We therefore start with a simple set of parameters,

summarised in Table 3.2, avoiding unlikely scenarios. All the sensitivity param-

eters (Aph, Afh and Mph) are set to 1 so that they are of the same magnitude

as the thresholds of the other functions in the model. Similarly, the degradation

rates (γp, γm and γf ) are set to 1 to match the degradation rate of a. We set the

mechanical damage parameter initially to 0. We set all the cytokine and MMP

production parameters (Ppp, Pfp, App, Afp and Mpp) to 10, making them equal

avoids unnecessary bias in the networks, and this magnitude allows the nullclines

to intersect. We wish the background production parameters (Pbp and Mbp) to be

much smaller so we set these to 0.01. We believe we have a clear understanding

of the dynamics of the model as demonstrated below. Thus despite incomplete

knowledge about the parameters, we think that variations reasonably close to this

reference parameter set show the range of behaviours that the model can display.

With these parameters there are three steady states: S0, S1 and S2 (variable

values and eigenvalues shown in Table 3.3). The system is bistable with S0 likely

to indicate health due to low levels of p and f , which are very close to basal

production levels, and a limit cycle around S2 likely to indicate disease due to

high and �uctuating levels of p and f .
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Parameter Value

Pbp 0.01

Ppp 10

Pfp 10

App 10

Aph 1

Afp 10

Afh 1

Mbp 0.01

Mpp 10

Mph 1

Fdam 0

γp 1

γm 1

γf 1

Table 3.2: Reference parameter set

S0 S1 S2

p 0.013 0.054 0.260

a 0.003 0.044 3.57

m 0.012 0.039 0.645

f 0.012 0.039 0.645

Eig(1) -0.497 0.454 0.015 + 0.780i

Eig(2) -1.00 -0.995 0.015 - 0.780i

Eig(3) -1.12 + 0.327i -1.20 + 0.728i -1.85 + 1.30i

Eig(4) -1.12 + 0.327i -1.20 - 0.728i -1.85 - 1.30i

Stability Stable Unstable Unstable (with stable limit cycle)

Table 3.3: Details of the steady states of the reference parameter set used for
bifurcation analysis of the dimensionless model (Eqn. 3.2.1-3.2.4). The position
of the steady states, eigenvalues and stability of steady state are shown.
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A sensitivity analysis of small parameter changes around the reference parameter

set gives some insight into the behaviour of the system. Figure 3.3 shows sensi-

tivity of the parameters to a ± 10% change as measured by three features: the

concentration of p at the steady state, the amplitude and the period of any limit

cycles. We use a one-at-a-time sensitivity analysis to measure the sensitivity gain

for each feature according to the sensitivity function,

Sφk =
δφ/φ

δk/k
, (3.4.1)

where φ is the feature being measured and k is the parameter being changed.

Parameters related to anti-in�ammatory cytokine production and clearance rate

parameters are consistently the most sensitive when the system is at the disease

state. This suggests that if we alter these parameters from the reference parameter

set we may have signi�cantly di�erent bifurcation behaviour. We will consider this

later in the next section. When the system is at the healthy state it is additionally

sensitive to changes in Pbp and γp.

For this parameter set, due to γf being 1 and Fdam being zero, m and f are equal

at the steady states. Figure 3.4a shows simulated solution trajectories for various

sets of initial conditions for the reference parameter set as a three dimensional

projection in (p, a,m) space.

The �gure shows that the basin of attraction of the disease state is very large

compared to that of the healthy state and that decaying oscillations into the

disease state have a large amplitude. This may translate clinically to slow onset of

OA with periods of �are up followed by asymptomatic periods. However, we need

to view the basin of attraction in terms of realistic perturbations from the steady

state. Figure 3.4b shows perturbations within a small range of the healthy steady
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Figure 3.3: Diagrams of the sensitivity of the parameters as measured by the
values of p at the steady state, the period and amplitude of limit cycles. The x-
axis shows the relative sensitivity coe�cient as the parameters are varied by 10%
(blue circles) or -10% (red triangles). A value of 1 on the x-axis is representative of
a 10% change in the feature given a 10% change in the parameter. The diagrams
show that the parameters related to anti-in�ammatory cytokine production are
particularly sensitive to small changes.
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(a) (b)

Figure 3.4: Projection of the phase space for the reference parameter set, speci�ed
above, showing trajectories, for the cartilage model, for various regularly spaced
initial conditions in (p, a,m) space. (a) shows all three steady states whilst (b)
focuses on the behaviour around the healthy steady state. The black circles show
the position of unstable �xed points and the red dot shows the stable �xed point.
The trajectories either move to the stable �xed point or the stable limit cycle
which surrounds an unstable �xed point.The unstable steady state in�uences the
path taken by trajectories.

state. We can see from this that increases in the anti-in�ammatory cytokine level

do not move the system to disease and, for this parameter set, up to a six fold

increase in either pro-in�ammatory cytokine, MMP or Fn-fs is required. We can

also see that the unstable steady state in�uences the path taken by trajectories.

In some cases, this may lead to large �uctuations, which we will discuss later.

Throughout this analysis we will be drawing comparisons with the cytokine-only

model from the previous chapter. We have redone bifurcation plots from the

previous chapter using the parameters we have chosen for this reference param-

eter set, Figure 3.5. Using parameter values Pbp=0.01, Ppp=10, App=10, Aph=1,

γp=1 to match the reference parameter set from this model, we have produced

single parameter bifurcation diagrams for each of the parameters. We use this for

comparison with the fuller model later in this section.

The bifurcation analysis of the full cartilage model reveals a wide range of be-

haviours as we vary the parameters away from the reference parameter set, these
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Figure 3.5: Bifurcation plots of the cytokine-only model using the reference pa-
rameter values used in this chapter showing the transitions from monostable to
bistable. Comparison with the cartilage model in this chapter gives insight into
the e�ect of the ECM fragment driven feedback.
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Name No. of Stability of Steady States Limit Cycles Type

Steady States

Ai 1 SS0 - Monostable Health

Aii 1 SS0 - Monostable Disease

Aiii 1 SU0 LS1 Monostable

Bi 3 SS0 , S
U
1 , S

U
2 - Monostable Health

Bii 3 SU0 , S
U
1 , S

S
2 - Monostable Disease

Biii 3 SS0 , S
U
1 , S

S
2 - Bistable

Ci 3 SS0 , S
U
1 , S

U
2 LS1 Bistable

Cii 3 SU0 , S
U
1 , S

S
2 LS1 Bistable

Ciii 3 SS0 , S
U
1 , S

S
2 LS1 Bistable

Civ 3 SS0 , S
U
1 , S

S
2 LU1 , L

S
2 Bistable

Cv 3 SU0 , S
U
1 , S

U
2 LS1 Monostable Disease

Di 3 SS0 , S
U
1 , S

S
2 LU1 , L

S
2 Bistable

Dii 3 SS0 , S
U
1 , S

U
2 LS1 , L

U
2 Bistable

Diii 3 SU0 , S
U
1 , S

S
2 LU1 , L

S
2 Bistable

Ei 5 SS0 , S
U
1 , S

S
2 , - Tristable

SU3 , S
S
4

Eii 5 SS0 , S
U
1 , S

U
2 , - Bistable

SU3 , S
S
4

Fi 5 SS0 , S
U
1 , S

U
2 , LS1 Tristable

SU3 , S
S
4

Fii 5 SS0 , S
U
1 , S

S
2 , LU1 Tristable

SU3 , S
S
4

Table 3.4: Summary of the behaviours that arise for di�erent values of the pa-
rameters in system (3.2.1 - 3.2.4). The abbreviation S means Stable and U means
Unstable, indicating the stability of the steady state or limit cycle.

are summarised in Table 3.4. In the rest of this section we will look at single

parameter variations away from the reference parameter set for each parameter.

This may give insight into OA initiation and allow suitable treatment strategies

to be considered.

3.4.1 Changes in Pbp,Ppp and Pfp

The parameters Pbp, Ppp and Pfp govern the production of pro-in�ammatory cy-

tokines. These cytokines are raised in OA and this has been implicated in disease
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progression [59]. The mechanism by which these raised levels occur is unclear but

could be the result of higher than normal production rates of pro-in�ammatory

cytokines.

Figure 3.6: Bifurcation plots of the pro-in�ammatory cytokine level (p) against
the pro-in�ammatory cytokine production parameters (a) Pbp, (b) Ppp and (c)
Pfp. The dashed lines denote the transition between di�erent behaviours, which
are labelled.

In this four-variable model if any of these three parameters are su�ciently high

bistability is lost through a fold bifurcation and there is a single steady state

(Fig 3.6). For intermediate Pbp and Ppp values loss of bistability is followed by a

single stable limit cycle (Figs 3.6a and b) representing an oscillatory state. Then

at higher levels of these parameters this is lost, via a Hopf bifurcation, leaving a

single stable steady state. For increases in Pfp, the Hopf bifurcation is encountered

before the fold bifurcation, giving rise to two stable steady states for some values

of Pfp. For low values of Pfp, we can have a single stable steady state representing

health. As the limit cycle collides with S1 at a homoclinic bifurcation it leaves
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only one stable and two unstable steady states. Examination of the phase space

suggests that, as for the reference parameter set, the basin of attraction of the

disease state is large in the bistable region and remains large even as we move

towards the homoclinic (Figure 3.7). Indeed, in the monostable health region,

trajectories undergo large �uctuations in p before settling to the healthy state

(Figure 3.8). One interpretation of these large basins of attraction is that major

deviations from the state of health due to trauma or infection are likely to move

an individual to a state of disease, since the large basins for disease persist over

the range of small parameter variations, which we might expect to see in di�erent

individuals. Even in monostable health large deviations from the healthy state

could cause cartilage damage. This behaviour may be point to the reasons for OA

being so prevalent since the system trajectories deviate from the healthy steady

state for wide ranges of parameters and initial conditions.

From our reference parameter set, variations in either of the other two pro-

in�ammatory cytokine production parameters (Pbp, Ppp) cannot lead to monos-

table health, although altering Ppp can change the stable disease state from a

limit cycle to a �xed point. We do not know whether a �xed disease state or a

oscillatory disease state is more damaging to the cartilage. An oscillatory state

may be considered to be less damaging since it results in periods of low damage

and possible repair. However, due to the poor repair capacity of cartilage it is

also possible that a stable steady disease state might be preferable to a limit cycle

disease state, since the large amplitude �uctuations may result in more cartilage

damage at high points on the cycle and little repair at low points. The average

value of the limit cycle (the blue dashed line on Figure 3.6) may indicate how

damaging the limit cycle is compared to steady states.

Comparison of Figure 3.6a and b with Figure 3.5a and b (the cytokine-only model)

shows similar behaviour. One important di�erence is that both Pbp and Ppp in

Figure 3.6 show oscillatory behaviour whereas the disease states are �xed points
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Figure 3.7: Projection of the phase space for the reference parameter set except
Pfp = 5, showing trajectories for various regularly spaced initial conditions in
p − a −m space. These parameters are close to a homoclinic orbit and the plot
shows that even here the basin of attraction of disease is large, compared to that
of the healthy steady state. The red dot denotes a stable �xed point and the black
circle denote unstable �xed points.
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Figure 3.8: Projection of the phase space for the reference parameter set with Pfp
changed to 3, showing trajectories for various regularly spaced initial conditions
in p− a−m space. There is only one stable steady state which is healthy but the
�uctuations into the state are large. The red dot denotes a stable �xed point and
the black circle denote unstable �xed points.
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in the cytokine-only model. If a �xed disease state is clinically preferable to an

oscillatory one the model suggests that inhibition of fragment-driven feedback

may be a justi�able treatment aim. This may be achieved by greater clearance of

�bronectin fragments or lower MMP production, both of which have been explored

clinically, although without clear results. We consider these treatment options in

Section 3.8.

3.4.2 Changes in App and Afp

Anti-in�ammatory cytokines reduce the production and activation of pro-in�ammatory

cytokines and hence we expect that higher values of App and Afp, the anti-

in�ammatory cytokine production parameters, would lead to health. Figure 3.9

shows that this is indeed the case with high levels of either parameter resulting in

the loss of the disease state. For App the disease state is lost through a fold bifur-

cation. Whereas for Afp, the disease state becomes unstable at a much lower level

and the disease limit cycle is lost through a homoclinic orbit. Decreasing App from

its reference value leads to an increase in the amplitude of the limit cycle of the

disease state (Fig 3.9a), which seems likely to have a detrimental a�ect. A lower

level of Afp results in the disease limit cycle being replaced with a disease steady

state (Fig 3.9b). However, the average of the limit cycle decreases when Afp in-

creased so this will depend on the relationship between cytokine level and cartilage

destruction. These bifurcation plots suggest that increases to anti-in�ammatory

cytokine production levels could be bene�cial and lead to reduced or even halted

cartilage degradation. As discussed previously, a shift from a disease limit cycle to

the disease steady state could be bene�cial. Hence decreases to anti-in�ammatory

production, whilst not moving the system to health, may also be bene�cial.

Comparing this behaviour with the cytokine-only model (Fig 3.5c), the bistable

region occurs over a much wider range for this cartilage model. In some cases this
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Figure 3.9: Bifurcation plots of the pro-in�ammatory cytokine level (p) against
anti-in�ammatory cytokine production parameters (a) App and (b) Afp. The
dashed lines denote the transition between di�erent behaviours, which are labelled.

could mean that inhibition of fragment-driven feedback could move the system

from disease to health.

3.4.3 Changes in Mpp and Mbp

The parameters Mbp and Mpp determine the maximum rates of MMP production.

Since MMP levels are known to be raised in OA these parameters are of great

interest. Figure 3.10 shows that, for variations in these parameters about the

reference parameter set, there are no regions of monostable health. At high levels

of MMP production, with either high Mbp or Mpp, there is a region of monostable

disease with a stable steady state. In both cases, at production levels below the

reference parameter set, a fold bifurcation leads to bistability with the introduction

of stable and unstable steady states, providing the possibility of moving to a

healthy state. For Mpp, Figure 3.10b, within the bistable region there is a region

of oscillatory disease due to two Hopf points.

For this parameter set, for an individual in an oscillatory disease state, an increase

in Mpp production pushes the system to a steady disease state in p which is lower

than the average of the limit cycle in the oscillatory states. However, if the level is

too high, although the disease state may result in slower cartilage destruction, we
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Figure 3.10: Bifurcation plots of the pro-in�ammatory cytokine level (p) against
the MMP production parameters Mbp and Mpp. The dashed lines denote the
transition between di�erent behaviours, which are labelled.

lose the possibility of moving to a healthy steady state. However, the level of f is

lower at smaller values of Mpp so the lower levels of p do not necessarily imply less

cartilage degradation. This counter-intuitive result arises as a result of a balance

in the positive and negative feedback pathways. Mpp is part of both pathways and

for the reference parameter set the negative feedback is dominant.

3.4.4 Changes in Aph, Afh and Mph

The parameters Aph and Afh are the concentrations of p and f at which the anti-

in�ammatory cytokine production terms are half maximal. As such they represent

the sensitivity of the anti-in�ammatory cytokine response to pro-in�ammatory and

Fn-fs stimulation.

When either Aph or Afh is small, the anti-in�ammatory cytokine response is max-

imal at low inputs, and we only have a low single steady state, indicative of health

(Figure 3.11). At higher values of either Aph or Afh, larger concentrations of p

or f are required for anti-in�ammatory cytokine production, and there is a fold

bifurcation. For Aph this leads to bistability whereas for Afh the region immedi-

ately after the fold bifurcation is still monostable since both additional states are

unstable. This is due to the branch of a Hopf bifurcation at a higher value of Afh
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Figure 3.11: Bifurcation plots for the pro-in�ammatory cytokine level (p) against
the parameters Aph, Afh andMph. The dashed lines denote the transition between
di�erent behaviours, which are labelled.
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colliding with the unstable branch. A Hopf bifurcation at higher values of Aph

leads to an oscillatory disease state.

The bifurcation plot of Aph is similar to that in the cytokine-only model (Fig 3.5d)

for low levels of Aph. Here however, there is oscillatory disease in addition to a

�xed disease state.

Mph governs the sensitivity of MMP production in response to activation by pro-

in�ammatory cytokine. When Mph is small there is a single stable steady state

with a high value of p indicative of disease (Figure 3.11). For higher values of

Mph we move to bistability through a fold bifurcation. The disease state is also

oscillatory for some values of Mph due to two Hopf bifurcations.

3.4.5 Changes in γp, γm and γf

Figure 3.12a shows that when the clearance of pro-in�ammatory cytokines, γp, is

low the steady state is at a high level of p indicating disease. When γp is high

there is a stable steady state, at low p, indicating health for these parameters. This

implies that inactivation or rapid clearance of pro-in�ammatory cytokines could

be e�ective in halting the disease course of OA, and clinical trials investigating

this approach have had some measure of success. The bifurcation plot here is

relatively similar to the γp bifurcations on the cytokine only model (Fig 3.5e).

For the reference parameter set the bifurcation plots of γm (Fig 3.12b) and γf (Fig

3.12c) are qualitatively similar with monostable disease for low levels of γf and

γm and bistability for higher levels. The bistable region is divided into a region

with an oscillatory disease state and a region with a �xed disease state. γf is the

degradation rate of �bronectin fragments and principally represents removal from

the ECM via di�usion or advection. Di�usion rates are likely to be decreased by

the changes in the joint that are seen in OA, e.g. increased water content and im-

mobility, hence worsening OA progression. However, ECM fragment clearance can
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Figure 3.12: Bifurcation plots of the pro-in�ammatory cytokine level (p) against
the natural degradation parameters γp, γm and γf . The dashed lines denote the
transition between di�erent behaviours, which are labelled.
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be increased by mechanical loading such as exercise. If the move from monostable

disease to bistability exists in vivo it suggests that increasing ECM fragment clear-

ance could be bene�cial, possibly improving the outcome of treatment to reduce

cytokine levels if the two treatments were used together, increasing the parameter

at the same time as reducing variable levels.

3.4.6 Additional behaviour seen in the model

So far we have looked only at variations in a single parameter from the reference

parameter set, which is a relatively restricted region. Explorations of other param-

eter sets reveal other features and bifurcation behaviour that we do not encounter

with the reference set. These include regions with �ve steady states, tristability

and isolas. We will now look at some of these in more detail and discuss the pos-

sible biological applications. Due to the large number of parameters involved we

will focus particularly on those that we believe are most likely signi�cant in the

development and progression of OA. Background levels of cytokines and MMPs

are unlikely to vary much as a result of disease, and although there may be sig-

ni�cant variation between individuals we neglect changes in Pbp and Mbp in this

analysis. Similarly, degradation rates of cytokines and enzymes are unlikely to

vary signi�cantly so variation in γp and γm can be ignored. In contrast γf may be

a�ected by joint and behavioural changes as discussed above. Aph, Afh and Mph

are half maximal rate parameters and are likely to be determined by the chemistry

of the molecules involved in the production of the cytokines and enzymes, hence

are unlikely to change much either over time or in response to disease. Fdam is

the mechanical damage parameter and we will look at the e�ects of mechanical

damage later in this chapter. For the time being we shall set it to zero. This

means that we are left with 6 parameters that we would like to focus the analysis

on: Ppp, Pfp, App, Afp, Mpp and γf .
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Tristable parameter values

As discussed in Section 3.3 the system can have one, three or �ve steady states.

Single parameter variations from the reference set did not show any �ve-state

behaviour, however this can arise from variations in two parameters. Figure 3.13

shows that the �ve states emerge as a result of fold bifurcations as Afp and Aph

are varied. In the bottom left corner of the diagram, where the Hopf and fold

bifurcation meet there is a Bogdanov-Takens bifurcation point. From this point

the homoclinic bifurcation emerges between the fold and Hopf bifurcations.

Figure 3.13: Bifurcation plot of Afh against Afp, for the reference parameter set.
The diagram shows that if we reduce the value of both Afp and Afh from the
values of the reference set there is a region where there are �ve steady states as
a result of fold bifurcations (shown in blue). A homoclinic bifurcation is shown
in black, which arises as a result of a Bogdanov-Takens bifurcation (labelled BT).
Cusp points of the fold bifurcations are labelled CP. The Hopf bifurcation is shown
in green.

At Afp = 3.2 and Afh = 0.2 there are �ve steady states (Figure 3.14) with two

stable steady states and a stable limit cycle. As a result of the smaller value of
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Afp, the maximum rate of anti-in�ammatory cytokine feedback is lower than that

of the reference parameter set. However a smaller Afh means the fragment-driven

anti-in�ammatory cytokine production rate may be stronger when levels of f are

low. Tristability may be important for OA treatment, if realised biologically, since

a move from one disease state to a less destructive one could slow the disease course

where movement to the healthy state is not possible. This is discussed in Section

3.8. The phase space projection (Figure 3.14) for this alternative parameter set

shows that like the reference parameter set, the basin of attraction of the healthy

state is small, but the basin of attraction for the lower disease limit cycle is larger.

Figure 3.14: Projection of the phase space for a parameter set displaying trista-
bility. The lower healthy stable state has a small basin of attraction whereas the
disease steady state and disease limit cycle both have large basins of attraction.
The red dots denote stable steady states, whilst the black circles denote unstable
steady states. A stable limit cycle surrounds one of the unstable steady states.
The reference parameters have been used except Afp=3.2 and Afh=0.2.

Figure 3.15 shows bifurcation plots for single parameters variations of Ppp, Pfp,

App, Afp, Mpp and γf for this new parameter set. Comparing the plots in Figure
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3.15 to those of the reference parameter set, for Pbp we see a reduced range of

oscillatory behaviour and monostable disease occurs at lower values of Pbp. The

bifurcation plot of Ppp, Fig 3.15b, shows that a region of monostable health emerges

when Afp and Afh are lower, compared to the reference parameter set. As with

Pbp the range over which oscillatory disease occurs is much reduced. Pfp variation

(Fig 3.15) changes little from the bifurcations in the reference parameter set.

Bistability persists at high values of Mbp when Afp and Afh are lower (Fig 3.15d),

however the levels of p in both states are high and are likely to indicate di�ering

intensities of disease rather than health and disease. The plot for Mpp (Fig 3.15e)

looks considerably di�erent to that of the reference parameter set, as additional

fold bifurcations in the upper branch cause the branch to fold back on itself.

Additionally the limit cycle branches from the two Hopf points now collide with

unstable branches at homoclinic bifurcation points rather than connecting. This

has a signi�cant e�ect as there is now a region of monostable health between the

two regions rather than bistability. γF , (Figure 3.15f), like Mbp, has a new region

of monostable health between two disease states.

Excitability

For some parameter sets (e.g. the reference parameter set with γp increased to

2) the model displays excitable behaviour. This behaviour is most pronounced

where there is a single healthy steady state with unstable disease states. Here

perturbations from the steady state result in long trajectories around the unstable

states.

Figure 3.16 shows an example of this. Here, after a perturbation from the steady

state of p = 0.1, the system moves directly back to the steady state, but a larger

perturbation from the steady state (p = 0.4) has a long trajectory around both the

unstable states. Perturbations close to the unstable state spiral outwards before
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Figure 3.15: Bifurcation plots of the cartilage model in a parameter region with �ve
steady states. The sub�gures show the pro-in�ammatory cytokine level plotted
against for the parameters Ppp, Pfp, App, Afp, Mpp and γf and show regions of
monostability, bistability and tristability. The dashed lines denote the transition
between di�erent behaviours, which are labelled and described in Table 3.4. The
reference parameters have been used except Afp=3.2 and Afh=0.2.
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Figure 3.16: Plot of the (p, a,m) phase space showing excitable behaviour in the
system. The red dot denotes the stable steady state which is healthy, whilst the
black circles denote unstable steady states. Trajectories arising su�ciently close
to the healthy state, quickly move into it. However, trajectories originating else-
where have much longer paths including oscillations. [Pbp=0.01, Ppp=10, Pfp=10,
App=10, Aph=1, Afp=10, Afh=1,Mbp=0.01,Mpp=1Mph=1, Fdam=0, γp=2, γm=1
and γf=1]
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moving back to health.

Biologically, this excitable behaviour may mean that a healthy individual who

sustains trauma to the cartilage may have a long recovery period and display

OA-like symptoms as the cytokine levels return to normal.

Mushrooms and Isolas

If we move far away from the parameter sets we have considered so far, we �nd

further new bifurcation behaviours. Figure 3.17 shows a parameter set which

displays mushroom bifurcations, which are composed of four fold bifurcations.

Figure 3.17: Bifurcation plots of p against Mpp showing fold bifurcations forming
a mushroom. [Pbp=0.01, Ppp=24, Pfp=25, App=1.7, Aph=0.1, Afp=1.7, Afh=0.1,
Mbp=0.01, Mph=0.1, Fdam=0, γp=1.25, γm=1.25 and γf=1.25]

As we increase Ppp, two of the folds move together and the upper branch pinches

o� leaving an isola (Figure 3.18). Isolas are closed loops of equilibrium points

and in this case contain both fold and Hopf bifurcations. This behaviour appears
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to be displayed over a small range of parameters, which may not be biologically

relevant.

Figure 3.18: Bifurcation plots of p against Mpp showing a fold bifurcations form-
ing an isola. [Pbp=0.01, Ppp=25, Pfp=25, App=1.7, Aph=0.1, Afp=1.7, Afh=0.1,
Mbp=0.01, Mph=0.1, Fdam=0, γp=1.25, γm=1.25 and γf=1.25]

However, if this behaviour does exist then it has interesting and counter-intuitive

implications for the disease course. For instance in Figure 3.17 we can see that

someone in a disease state at a low level of Mpp may be forced to a lower disease

state ifMpp increases during the progression of their disease, for example by having

Mpp between the upper two folds.

3.5 Two Parameter Variations

The previous section demonstrated how the behaviour of the model changes as we

vary one parameter at a time. It also showed that these behaviours are sensitive to

changes in the other parameter values and that varying two parameters could lead
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to additional steady states. To further explore the parameter space and better

understand how the di�erent behaviours are connected we will now expand the

bifurcation analysis in two parameters, to a wider group of parameters. Here we

focus on the six parameters that we consider to be the most relevant to disease pro-

gression and most likely to change over the disease course: Ppp, Pfp, App, Afp,Mpp

and γf .

3.5.1 Ppp variations

Two parameter bifurcation diagrams are shown in Figure 3.19 with the parameters

Pfp, App, Afp, Mpp and γf plotted against Ppp.

In the one parameter analysis Pfp had a value of 10 and as Ppp was increased the

system moved through four fold bifurcations moving from bistability at low Ppp to

monostable disease. At a higher level of Pfp (Figure 3.19a) the bistable region is

lost and we have monostable disease at a lower value of Ppp, as might be expected

since Ppp and Pfp both increase pro-in�ammatory cytokine production. Both the

Hopf bifurcation and the homoclinic bifurcation are generated from a Bogdanov-

Takens point at a low value of both Ppp and Pfp. These change the nature of

monostable disease from �xed to oscillatory. A Bogdanov-Takens bifurcation is

a bifurcation of codimension 2, i.e. it is only seen as we vary two parameters,

and occurs where there is a pair of zero eigenvalues. At this point the fold and

Hopf bifurcations collide. At parameter values close to this point the limit cycle

connects with one of the two steady states, resulting in the loss of the limit cycle

to a homoclinic orbit [66]. Often in the vicinity we also have a Generalised Hopf

(GH) point (or Bautin bifurcation) where the Hopf switches from subcritical to

supercritical. In this case the GH point is at a high level of Ppp, and results in a tiny

region of bistability with a stable �xed point surrounded by both an unstable and

stable limit cycle. Since this region is so small and also relies on huge di�erences
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Figure 3.19: Two parameter bifurcation diagrams showing Ppp against Pfp, App,
Afp, Mpp and γf . Fold bifurcations are shown as blue lines, Hopf bifurcations as
green lines and homoclinic bifurcations are shown in black. Areas of monostable
health, bistability and monostable disease are indicated . The reference parameter
set is used.
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in magnitude between Pfp and Ppp, it is unlikely to have biological signi�cance.

App is �xed at 10 in the previous Ppp bifurcation analysis. At much higher levels

of App we have a region of monostable health emerging for low values of Ppp as a

result of a fold bifurcation. When App is large enough we also lose the oscillatory

disease behaviour which is replaced with monostable disease.

In contrast with App the bifurcation diagram of Afp against Ppp shows a large

region of bistability and only a small region of monostable disease (Figure 3.19c).

This may suggest that any changes to App are more likely to be damaging than

changes to Afp since they are more likely to move an individual to monostable

disease. As Afp increases a small region of monostable health emerges at small

values of Ppp.

When Mpp is very small two fold bifurcations move the system from monostable

health, through bistability to monostable disease as Ppp increases (Figure 3.19d).

For larger values of Mpp the region of health is lost and we have bistability and

monostable disease. The bifurcation plot is dominated by a Hopf bifurcation which

encloses a region where the disease state is oscillatory.

The two parameter bifurcation plot for γf against Ppp is relatively similar to that of

Mpp. Here, however the region of health for a low Ppp occurs when γf is relatively

large. Again, the closed Hopf bifurcation encloses the oscillatory region.

Generally, as Figure 3.19 shows, the behaviour of the system mostly displays

behaviour associated with monostable disease. When Ppp is low we generally

have bistability, with disease occurring at higher levels of Ppp. This behaviour

may indicate that this parameter is important in OA initiation and progression.

The behaviour suggests that increases in this parameter either though genetic,

biochemical or physical processes, regardless of the parameters of the rest of the

system, is likely lead to disease.
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3.5.2 Pfp variations

Figure 3.20 shows the changes in the behaviour of the system as we vary Pfp

alongside each of the other parameters (excepting Ppp which was discussed above).

Generally, regardless of the value of the other parameter varied, if Pfp is made

large enough the system moves to monostable disease. Compared to the Ppp

parameter variations above, the regions of monostable health and bistability are

much larger when we vary Pfp with other parameters. This suggests that the

system is better able to withstand variation in Pfp than Ppp before the system

is pushed to monostable disease, where treatment options are likely to be more

limited.

Figure 3.20: Two parameter bifurcation diagrams showing Pfp against App, Afp,
Mpp and γf . Fold bifurcations are shown as blue lines, Hopf bifurcations as green
lines and homoclinic bifurcations are shown in black. Areas of monostable health,
bistability and monostable disease are indicated. The reference parameter set is
used.
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3.5.3 App variations

Changes in the system behaviours as we vary App with the other parameters are

shown in Figure 3.21. In terms of the general behaviour as we change App with

the parameters Afp, Mpp and γf we have only bistable and monostable healthy

behaviour. However, in the case of Ppp and Pfp (Figs 3.19b and 3.20a) there is

monostable disease at low levels of App as the pro-in�ammatory cytokines over-

whelm the anti-in�ammatory cytokine response.

Figure 3.21: Two parameter bifurcation diagrams showing App against Afp, Mpp

and γf . Fold bifurcations are shown as blue lines and Hopf bifurcations as green
lines. Areas of monostable health, bistability and monostable disease are indicated.
The reference parameter set is used.
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3.5.4 Afp variations

Figure 3.22 shows the bifurcation behaviour as we vary Mpp and γf with Afp. In

both diagrams there is a region of bistability for low Afp moving to monostable

health as Afp increases. For a high value of Mpp there is a region of monostable

disease regardless of the values of Afp. Similarly, we have a region of monostable

disease for low γf .

Figure 3.22: Two parameter bifurcation diagrams showing Afp against Mpp and
γf . Fold bifurcations are shown as blue lines, Hopf bifurcations as green lines and
homoclinic bifurcations are shown in black. Areas of monostable health, bistability
and monostable disease are indicated. The reference parameter set is used.

Generally, higher values of Afp lead to health as we would expect, both in these

plots and in the previous sections. However there is an exception to this for certain

values of Mpp, where increasing Afp moves the system from health to bistability.

3.5.5 Mpp variations

The bifurcation diagram of γf against Mpp is shown in Figure 3.23. The majority

of the plot is bistable with a small area of monostable disease at small values of

γf . There are no regions of monostable health for this parameter set, however, the

variations of Mpp with other parameters (Figures 3.19d, 3.20c, 3.21b and 3.22a)

do display monostable health.
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Figure 3.23: Two parameter bifurcation diagram showing Mpp against γf . Fold
bifurcation is shown as a blue line and Hopf bifurcations as green lines. Areas of
bistability and monostable disease are indicated. The reference parameter set is
used.

Generally speaking, in the two parameter variations we have analysed, increases in

Mpp are detrimental to individuals, moving the system from health to bistability

or from bistability to disease. However, the single parameter bifurcations showed

this was not always the case for other parameters sets. Since Mpp forms part of

both negative and positive feedback loops within the model, the e�ect of increases

is dependent upon which type of feedback is dominating the system.

3.5.6 γf variations

Two parameter variations in γf have been presented in the previous �ve sections.

As in the case of Mpp, increases in γf can have both positive and negative e�ects

in terms of moving the system from disease to health or vice versa.
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3.6 Mechanical Damage

In our model we represent mechanical damage to the cartilage by an increase in

Fdam, the rate at which �bronectin fragments are produced. Mechanical damage

is considered to be a major risk factor in OA and the �rst stage of repair after

mechanical damage to the cartilage is necrosis of the damaged tissue which leads

to increased concentrations of �bronectin fragments. Thus, changes in the model

behaviour as Fdam increases could be indicative of the changes in OA. Figure

3.24a shows the bifurcation diagram for small changes in Fdam, with the reference

parameter set used for the other parameters. Since Fdam was zero in the reference

parameter set, there is bistability at Fdam = 0 as before. As Fdam increases a fold

bifurcation removes the lower two states leaving only monostable disease.

(a) (b)

Figure 3.24: Bifurcation plots of the parameter Fdam against p. The changes in
behaviour are indicated by dashed lines. a) shows small changes in Fdam close to
zero where there is bistability. b) shows changes in Fdam extending further from
zero. Here the level of p at the disease state decreases. The reference parameter
set is used

For this parameter set even small levels of damage lead to sustained disease, how-

ever, when we look at Fdam on a larger scale (Fig 3.24b) we see that if we increase

this parameter further the level of p at the disease state reduces. This feature is

counter intuitive and may be due to the simplifying assumptions within the model,

since large amounts of mechanical damage would most likely cause changes in joint
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loading also.

3.7 Biological Applications

In the previous sections we have considered how the behaviour of the system

depends on the parameter values. In clinical settings, we would generally be more

interested in how the key variables change over time, stimulated by either changes

in variable levels or parameter values. In this section we will examine time course

simulations and consider such biological applications.

The reference parameter set discussed previously shows bistability. An individual

at the healthy steady state will move to the disease state if an appropriate stimulus

is applied (Figure 3.25). In this case an increase in the pro-in�ammatory cytokine

level to 0.05 at time 20 is not su�cient to move the system to disease, whilst a

stimulus of 0.06, does move the system into the basin of attraction of the disease

state.

Figure 3.25: Time course plot of cartilage model with a pro-in�ammatory stimulus
at t = 20.(a) the pro-in�ammatory level is increased to 0.05 and the system
recovers after a short time. (b) the pro-in�ammatory level is increased to 0.06
leading to disease. The parameters used are that of the reference parameter set.

In addition to bistability, for other parameter values, there are also regions of

monostable health. As discussed earlier, the model displays regions of excitable
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behaviour which means that not all regions of monostable health behave in the

same way. Figure 3.26 shows two sets of time courses for parameters with only

one stable steady state. In the �rst there are no other steady states and after a

trauma the system, modelled as an instantaneous increase in all four variables,

quickly moves back to the healthy state. In the second, there are two unstable

steady states and the system oscillates around these for a short period before

returning to health. In this case, the level of Fn-fs is raised, suggesting that the

cartilage is being damaged as the system oscillates before health is restored.

Figure 3.26: Time course plot of system with a stimulus [p = 0.5, a = 2, m = 0.5,
f = 0.5] at t = 20. In �gure (a) the parameter γp is 3 indicating monostable health
with only one stable steady state. In �gure (b) the parameter γp is 2 indicating
monostable health with one stable and two unstable steady states. (Pbp = 0.01,
Ppp = 10,Pfp = 10,App = 10, Aph = 1, Afp = 10, Afh = 1, Mbp = 0.01, Mpp = 10,
Mph = 1, Fdam = 0, γm = 1 and γm = 1)

3.7.1 Time dependent changes in feedback parameters

The previous sections have shown that a wide range of behaviours can be observed

in this system. We will now show that changes in the system parameters over

time could be biologically signi�cant and lead to the development of OA. In the

cytokine-only model (Chapter 2) we proposed that changes in key parameters

over time could lead to the onset of RA. In this model we similarly suggest that

changes in parameters could lead to OA in the cartilage. In RA it is thought
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that the parameter changes are the result of premature aging in T cells [72, 89],

whereas in OA much less is known about the reason for OA onset. It is likely that

the onset of OA varies between individuals, and possible reasons include changes

to chondrocytes, changes in chondrocyte numbers, and mechanical factors.

The network diagram (Figure 3.1) shows that there are four feedback pathways

in this system and we will investigate whether changes in any or all of these can

lead to disease.

Positive cytokine-driven feedback

The cytokine-driven positive feedback loop highlighted in Figure 3.27 has only one

parameter, Ppp.

Figure 3.27: Cytokine network diagram showing the positive cytokine driven feed-
back loop which has only one parameter.

Bifurcation analysis suggested that high values of Ppp correspond to a disease

state (Section 3.4.1). In the previous chapter we showed that increases in the

equivalent parameter (Ppp) over time may lead to RA in the synovium. In this

model increasing Ppp over time also leads to disease. We can simulate an increase
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in the pro-in�ammatory-driven pro-in�ammatory cytokine production rate over

time by making Ppp a function dependent on time, similar to the time varying

function in the two variable model. In this model we use the function,

Ppp = Pmin
pp +

(Pmax
pp − Pmin

pp )t2

P T
pp

2 + t2
, (3.7.1)

and set the parameters as Pmin
pp = 1, Pmax

pp = 26, and P T
pp = 20. Figure 3.28 shows

the system initially has a healthy steady state, but as the value of Ppp increases

the system moves to an oscillatory disease state. This move corresponds to a fold

bifurcation as we increase Ppp, see Figure 3.6. Since we set the maximum value

of Ppp to 26 we do not encounter the Hopf bifurcation as Ppp changes. However,

if we allowed Ppp to increase past the Hopf bifurcation the system would move

from oscillatory disease to a stable steady disease state. Oscillatory behaviour of

OA is di�cult to con�rm clinically due to the lack of biomarkers for OA, however

some patients report intermittent pain or sti�ness on early OA [58, 120]. Currently

diagnosis of OA relies on pain, as reported by patients, and radiographic evidence,

both of which are often not formally investigated until later in the disease course.

Positive fragment-driven feedback

The second positive feedback loop in the model is driven by MMP and ECM

fragment interactions and involves the parameters Pfp,Mpp andMph (Figure 3.29).

The latter two are also involved in negative feedback so we will consider these

separately further on, leaving only Pfp. We simulate a time dependent increase in

Pfp by,
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Figure 3.28: System variables plotted against time as the parameter Ppp increases
in a time dependent fashion. The system moves to a disease state as Ppp moves
through a fold bifurcation. The other parameters are the reference parameter set.

Figure 3.29: Cytokine network diagram from Fig 3.1, highlighting,the positive
ECM fragment driven feedback loop which has only three parameters: Pfp, Mpp

and Mph.
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Figure 3.30: System variables plotted against time as the parameter Pfp increases
in a time dependent fashion. The system moves to a disease state as Pfp moves
through a fold bifurcation. The other parameters are the reference parameter set.

Pfp = Pmin
fp +

(Pmax
fp − Pmin

fp )t2

P T
fp

2
+ t2

, (3.7.2)

where Pmin
fp = 1, Pmax

fp = 45, and P T
fp = 20.

As in the case of Ppp, changes in Pfp move the system to a disease state (Figure

3.30) as time progresses, and this again corresponds to moving through a fold

bifurcation. The disease state in this case is not oscillatory. These di�erent disease

states and routes to progression may account for the variability seen in clinical

presentation and disease progression of OA.
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Negative cytokine-driven feedback

The negative cytokine driven feedback is controlled by two parameters App and

Aph (Figure 3.31), the �rst governing the maximum rate of production and the

second controlling the sensitivity of the production rate to changes in p.

Figure 3.31: Cytokine network diagram highlighting the negative cytokine driven
feedback loop which has two parameters: App and Aph.

The bifurcation analysis suggested that decreases in the parameter App could lead

to disease since this would interfere with the systems ability to down-regulate

pro-in�ammatory cytokines. We make App dependent on time with the function,

App = Aminpp +
(Amaxpp − Aminpp )

ATpp
2 + t2

, (3.7.3)

where Aminpp = 1, Amaxpp = 5, and ATpp = 20, which decreases monotonically.

When we simulate the system with this time dependent anti-in�ammatory pro-

duction rate we remain in a state of health, con�rming that decreases in App alone
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would not lead to OA as seen in the bifurcation analysis (Fig 3.9a). However, if

we add a trauma to the simulation , modelled as an instantaneous increase in pro-

in�ammatory cytokine concentration as before, the system now moves to a state

of disease due to bistability in the system (Figure 3.32). The move to disease is

dependent on both the timing and the severity of the trauma.

Figure 3.32: Time series plot of three system variables (p, a and m) against time
as the parameter App decreases in a time dependent fashion (App pro�le shown
in the lower right plot). A trauma is simulated at time = 40, modelled as an
instantaneous increase in the p by 0.1. The system moves to a oscillatory disease
state. The other parameters are the reference parameters.

Mathematically the trauma needs to take place once we have passed into the

bistable region and be large enough to push the system outside of the basin of

attraction of the healthy stable steady state. Intuitively, it seems to make sense

that a decrease in anti-in�ammatory cytokine alone would not lead to disease

since the function of anti-in�ammatory cytokines is to react to the presence of a

pro-in�ammatory response.

The second parameter in this feedback loop, Aph controls the sensitivity of the
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feedback to changes in the level of pro-in�ammatory cytokine. If this is not sensi-

tive enough then an inadequate anti-in�ammatory cytokine response may lead to

OA. We simulate a time dependent increase in Aph using,

Aph = Aminph +
(Amaxph − Aminph )t2

ATph
2

+ t2
, (3.7.4)

where Aminph = 0.001, Amaxph = 2, and ATph = 20.

As in the App case, increasing the parameter alone is not su�cient to drive the

system to disease. However with an additional trauma the system moves to disease

as before (Figure 3.33).

Figure 3.33: System variables plotted against time as the parameter Aph increases
in a time dependent fashion. A trauma is simulated at time = 40, modelled as
an instantaneous increase in p by 0.1. The system moves to an oscillatory disease
state. The other parameters are the reference parameters.
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Negative fragment-driven feedback

The second negative feedback loop in this model is via MMP and Fn-fs production

and contains the parameters Afp, Afh, Mpp and Mph (Figure 3.34).

Figure 3.34: Cytokine network diagram highlighting the negative fragment driven
feedback loop which has four parameters: Afp, Afh, Mpp and Mph.

We will consider the latter two in the next section since these also have a role a

positive feedback loop. We use the functions,

Afp = Aminfp +
(Amaxfp − Aminfp )

ATfp
2

+ t2
, (3.7.5)

and

Afh = Aminfh +
(Amaxfh − Aminfh )t2

ATfh
2

+ t2
, (3.7.6)

where Aminfp = 1, Amaxfp = 5, Aminfh = 0.001, Amaxfh = 2, and ATfp = ATfh = 20.

114



Chapter 3: Mathematical modelling of cytokines, MMPs and ECM

fragments in osteoarthritic cartilage

As in the case of App and Aph, time dependent increases to Afp and Afh alone

do not move the system to disease. Instead as before an additional stimulus is

required. This time, however, as expected from the bifurcation plots in Figure

3.35, the disease state is �xed rather than oscillatory.

Figure 3.35: System variables against time as the parameters (a)Afp and (b)Afh
increase in a time dependent fashion, given by equations 3.7.5 and 3.7.6. A trauma
is simulated at t = 40, modelled as an instantaneous increase in the p by 0.1 in both
cases. The systems move to a stable disease steady state. The other parameters
are from the reference parameter set.

MMP-driven feedback

The MMP production rate parametersMpp andMph, are involved in both positive

and negative feedback (Figure 3.36).

Hence, the e�ect of time dependent changes in these parameters may be dependent

on the relative strengths of the positive and negative feedback loops. In the

parameter set we have been using in this section the feedback is relatively balanced

and we expect increases in Mpp and decreases in Mph to lead to disease. Using the

functions,

115



Chapter 3: Mathematical modelling of cytokines, MMPs and ECM

fragments in osteoarthritic cartilage

Figure 3.36: Cytokine network diagram highlighting the negative and positive
feedback loops involving Mpp and Mph.

Mpp = Mmin
pp +

(Mmax
pp −Mmin

pp )t2

MT
pp

2 + t2
(3.7.7)

Mph = Mmin
ph +

(Mmax
ph −Mmin

ph )

MT
ph

2
+ t2

, (3.7.8)

where Mmin
pp = 0,Mmax

pp = 5,Mmin
ph = 0.001,Mmax

ph = 0.5, and MT
pp = Mph = 20,

we can show that this is indeed the case. Figures 3.37 and 3.38 show simulations

using each of these functions and in both cases a disease state is reached.

In the case of Mph the disease state has a comparatively low level of p, but higher

levels of a, m and f . We can see from Figure 3.10 why this is the case since, by

the time we move past the fold the disease state is relatively low. If we introduce

a trauma, as we have done previously we force the system to move to the disease

state much sooner (Figure 3.39).
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Figure 3.37: System variables plotted against time as the parameterMpp increases
in a time dependent fashion. The system moves to a disease state as Mpp moves
through a fold bifurcation. The other parameters are from the reference parameter
set.
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Figure 3.38: System variables plotted against time as the parameterMph decreases
in a time dependent fashion. The system moves to a disease state as Mph moves
through a fold bifurcation. (The parameters are taken from the reference param-
eter set.)
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Figure 3.39: System variables plotted against time as the parameterMph decreases
in a time dependent fashion. A trauma is added at t = 20 resulting in a move to
the disease state. The other parameters are taken from the reference parameter
set.
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3.7.2 Mechanical Damage

Mechanical damage is a large risk factor in OA but the response to mechanical

damage may di�er between individuals. We consider two di�erent scenarios in-

volving mechanical damage, �rstly where the damage causes a previously healthy

individual, with parameters indicating monostable health, to move to a disease

state and secondly where an individual susceptible to developing OA, with pa-

rameters indicating bistability, is pushed into active disease due to damage. In

the �rst case a change to the parameter values would be required, whereas the

second requires only a variable change.

In the �rst case, as in the previous section we increase the level of the parameter

Fdam over time which may be representative of an individual who incurs a persis-

tent level of damage over time for example though occupational stresses, gradual

weight gain or high impact exercise. We model this increase as a function of time

as before with,

Fdam = Fmin
dam +

(Fmax
dam − Fmin

dam)t2

F T
dam

2
+ t2

, (3.7.9)

where Fmin
dam = 0, Fmax

dam = 0.5, and F T
dam = 20.

In this case the system moves to disease as time increases (Figure 3.40) and the

system moves through a fold bifurcation.

In the second case we assume that individuals with high pro-in�ammatory cy-

tokine production rates are likely to be more susceptible to the development of

OA and look at the e�ect of mechanical damage to these individuals. We take

two parameter sets, the �rst, termed Lower Risk, has low pro-in�ammatory cy-

tokine production rates (Ppp = 5). The second, termed Higher Risk, has higher

pro-in�ammatory cytokine production rates (Ppp = Pfp = 24); all other param-
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Figure 3.40: Plot of the system variables against time as the parameter Fdam
increases in a time dependent fashion, according to equation 3.7.9. The system
moves to a disease state as the value of p at the steady state increases. (Pbp = 0.01,
Ppp = 5, Pfp = 10, App = 5, Aph = 0.5, Afp = 5, Afh = 0.5,Mbp = 0.01,Mpp = 0.2,
Mph = 0.1, γp = 1.25, γm = 1.25 and γm = 2)
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eters are the same. For all the simulations we have used the initial conditions:

p = 0, a = 0,m = 0, f = 0, which are close to a healthy steady state in both

groups when Fdam = 0.

We simulate a short pulse of mechanical damage by an increase in Fdam, to 1, for

30 ≤ t ≤ 31, this emulating a short time period of high damage, representing an

injury, followed by a return to zero. Figure 3.41 shows that lower risk individuals

maintain a healthy steady state with the anti-in�ammatory feedback mechanism

keeping the pro-in�ammatory production low whereas in higher risk individuals

the system moves to a disease state (Figure 3.41).
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Figure 3.41: Time courses for two groups Lower Risk (Ppp = 5) and Higher Risk
(Ppp = 24) with di�erent pro-in�ammatory production rates and a pulse of me-
chanical damage applied at time 30 (Fdam = 1). (Pbp = 0.01, App = 5, Aph = 0.5,
Afp = 5, Afh = 0.5, Mbp = 0.01, Mpp = 0.2, Mph = 0.1, γp = 1.25, γm = 1.25,
γf = 1.25).

3.8 Treatment Strategies

Clinical trials of disease modifying drugs for OA so far have not shown a slowing

down of disease progression, as measured by pain, in�ammation and joint space, or

have had unexpected complications. Several treatment options have reached clin-

ical trials for OA and here we consider two of the main types that have been con-

sidered; anti-cytokine drugs and MMP inhibitors. Anti-cytokine therapy, licensed
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for use in RA, inhibits either the production or functioning of pro-in�ammatory

cytokines, usually TNF-α. We model this treatment option as an instantaneous

reduction in the level of model variable p to a minimum of zero. Additionally we

consider an anti-cytokine therapy which increases the level of anti-in�ammatory

cytokine. This type of treatment is licensed for RA but trials for OA have been

unsuccessful [25]. We model this treatment type as an instantaneous increase in

the level of the model variable a. We model MMP inhibitors as a reduction in the

level of m in the system. In addition to these threes types of therapies we also

consider the possibility of Fn-fs as a target for OA treatment and model this as

a reduction in the level of f . Here we consider how monostable disease, bistable

and tristable behaviours may respond to treatments.

3.8.1 Treatment for bistable cases

In the bistable case (as in the reference parameter set we consider here) it is

theoretically possible for an individual in the disease state to be moved to a state

of health, and this should be the aim for disease modifying treatment, to achieve

the best clinical outcome.

In this model, for the reference parameter set, we tried single doses of anti-cytokine

therapy, MMP inhibition or Fn-fs inhibition modelled as instantaneous reductions

in p, m or f respectively. In each case we modelled the largest possible dose by

reducing the level to zero, but none of these treatments moved the system to health

(Figure 3.42), since the system was not moved outside the basin of attraction of

disease.

This result is in line with data from clinical trials, of anti-cytokine and MMP

inhibition treatments, that have shown no long term bene�t in single dose therapy

[110]. However, we have found that a combined treatment strategy can bring the

system to a state of health. Over several simulations we reduced the magnitude
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Figure 3.42: Time course simulations of single treatments where the system dis-
plays bistable behaviour. At t = 0 the system is at the disease limit cycle. A
single dose of anti-cytokine (reduction in p), MMP inhibition (reduction in m) or
Fn-fs inhibition (reduction in f) treatment was simulated at t = 20. The dose size
given in each case was the maximum possible (i.e. an instantaneous decrease to
zero of each of the variables). None of these treatments are su�cient to move the
system to health. The reference parameter set was used for these simulations.
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of the doses used, until we found the smallest dose of each treatment that would

bring the system to health when combined, this is time-dependent. Figure 3.43

shows the system moving from disease to health with a combined dose of all three

treatments, with the smallest dose of each treatment. In this case the magnitudes

of the variable reductions are 0.2(p), 0.5(m) and 0.4(f).

Figure 3.43: Time course simulations of combined treatments where we have
bistable behaviour in the system. At t = 0 the system is at the disease limit
cycle. A single combined dose of anti-cytokine, MMP inhibition and Fn-fs inhibi-
tion treatment was simulated at t = 20 and t = 16. The dose size is the minimum
dose size (see text) that moves the system to health (0.2(p), 0.5(m) and 0.4(f)).
The reference parameter set was used for these simulations. The diagrams show
that dose timing as well as dose size is important

The timing of the dose is of crucial importance, particularly for this parameter set

since the disease state is oscillatory. If a dose is given at the wrong point in the

disease cycle then it may not be large enough to move out of the basin of attraction

of the disease state and may result in a period of increased amplitude oscillations

as it moves back to the disease state (Figure 3.43). This type of behaviour could

have large implications both for clinical trial results and treatment regimens for

drugs taken to market.

We �nd that multiple doses of treatment given over time can also reduce the

system to health and allow smaller individual doses to be given. Figure 3.44

shows a series of six doses, given ten time units apart, which moves the system to
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health; the magnitude of each dose is 0.1(p), 0.2(m) and 0.1(f). Compared to the

single dose strategy this represents a large reduction in dosage at any particular

time. This may be bene�cial if there are side e�ects associated with the drugs,

although overall, the dosage would be higher in this case. As with the single dose,

the timing and size of the dose is important as well as the total number of doses.

Figure 3.44: Time course simulations of multiple combined treatments where we
have bistable behaviour in the system. At t = 0 the system is at the disease
limit cycle. Six combined doses of anti-cytokine, MMP inhibition and �bronectin
fragment inhibition treatment are simulated starting at t = 20, with a dose interval
of ten time units. This allows the magnitude of the dose to be reduced from the
single dose therapy. The dose magnitude for each of the six doses is 0.1(p), 0.2(m)
and 0.1(f). The reference parameter set was used for these simulations.

Anti-in�ammatory cytokines are not currently used in anti-cytokine therapy as

they have shown poor responses in clinical trials. We found that a single dose

of anti-in�ammatory cytokines was able to bring the system to a healthy state

from the disease state. Figure 3.45 shows a dose of 40 units given at time t = 20,

which moves the system to health, when given at t = 20. This dose is the lowest

that will bring the system to health. However, this dose is an order of magnitude
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greater that the anti-in�ammatory cytokine level at the disease state, so may not

be clinically feasible.

Figure 3.45: Time course simulations of single doses of anti-in�ammatory cy-
tokines where we have bistable behaviour in the system. At t = 0 the system
is at the disease limit cycle. A dose of 40 units of a is given at t = 20 bringing
the system to health. The reference parameter set (Table 3.2) was used for these
simulations.

Since the disease state in this case is oscillatory, timing of doses can have an e�ect

on the magnitude of the dose needed. For example, in this case by changing the

timing of the dose to t = 26 we can reduce the dose required to 21 units, almost

half that needed at t = 20. The timing of the dose however is not trivial and the

optimal dose timing is not at the highest point of p of the limit cycle as might be

expected, but at the point where the system is closest to the basin of attraction

of the healthy state. This point may vary between individuals so individually

tailored treatment plans may be necessary for most e�ective treatment.

We investigated application of multiple doses of anti-in�ammatory cytokines in

order to further reduce the dose size necessary. By giving 3 doses at intervals of
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14 time units starting at t = 20 we were able to bring the system to health with a

dose size of 20, reduced from 40 in the single dose case at this time (Figure 3.46).

Again timing of the initial dose, the interval and number of intervals are of crucial

importance.

Figure 3.46: Time course simulations of multiple doses of anti-in�ammatory cy-
tokines where we have bistable behaviour in the system . At t = 0 the system is
at the disease limit cycle. In the top row three doses of 20 units of a are given as
indicated by the black arrows. In the bottom row �ve doses of 10 units of a are
given as indicated by black arrows. Multiple doses reduces the size of dose need
to move the system to health but timing of the initial dose, dose interval and dose
size are all crucial in determining treatment outcome. The reference parameter
set (Table 3.2) was used for these simulations.

Finally for the bistable case we have considered how an increased rate of Fn-fs

clearance could a�ect treatment options. Research has shown that clearance of

macromolecules such as Fn-fs is increased in the cartilage with cyclic loading [42],

so an increase in γf alongside reductions in p or m, may be representative of a

course of exercise or physiotherapy in combination with disease-modifying drugs.

Increasing the value of γf has a similar e�ect to Fn-fs inhibition and simulations

show that if this is raised we no longer need to alter the amount of f to bring

the system to health (Fig 3.47). This may mean that combined anti-cytokine and

MMP inhibition therapy, alongside physical therapy, could be a viable treatment

option.
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Figure 3.47: Time course simulations of multiple combined treatments where the
system displays bistable behaviour. The �rst row shows the system with the
reference parameter set, whilst the second row shows the same parameters except
that γf is increased by 15%. At t = 0 the system is at the disease limit cycle. Six
combined doses of only anti-cytokine and MMP inhibition treatment are simulated
starting at t = 20, with a dose interval of ten time units. The dose magnitude for
each of the six doses is 0.4(p) and 0.4(m).

3.8.2 Treatment for tristable cases

Where we have tristable behaviour we generally have two disease states and one

healthy state. Simulations of treatment options for this type of behaviour show

that if the system is at either one of the disease states it will act as in the bistable

case and can be moved to the healthy state, with a su�cient number of doses of

combined treatments. Additionally, if the system is at the higher disease state

it can be moved to the lower disease state with fewer doses of treatment than

are required to move the system to health. Figure 3.48 shows multiple doses of

combined treatments of anti-cytokine, MMP inhibition and Fn-fs clearance ther-

apies. Where two doses are given the system returns to the original disease state.

When four doses are given the system moves to a lower disease state, which in

this case is a limit cycle. Six doses are su�cient to move the system to a state of

health. Figure 3.49, shows a similar pattern of behaviour for anti-in�ammatory

cytokine therapy. For this parameter set much lower doses of a bring about health

compared to the bistable case.
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Figure 3.48: Time course simulations of multiple combined treatments where the
system displays tristable behaviour. The �rst column shows two doses of treat-
ment, the second column four doses and the third column six doses. The doses
of anti-cytokine, MMP inhibition and �bronectin fragment inhibition treatment
are simulated starting at t = 20, with a dose interval of ten time units. The dose
magnitude for each of the doses is the same as in the bistable case. The number
of doses determines which state the system is moved to.
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Figure 3.49: Time course simulations of multiple doses of anti-in�ammatory cy-
tokine where we have tristable behaviour in the system. The �rst column shows
one dose of treatment, the second column two doses and the third column three
doses. The doses of anti-in�ammatory cytokine have a magnitude of 2.5 and are
simulated starting at t = 20, with a dose interval of ten time units. The number
of doses determines which state the system is moved to.
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3.8.3 Treatment for monostable cases

In cases of monostable disease a move to a healthy state is not possible without

parameter changes. However, disease control may still be possible with ongoing

doses of disease modifying drugs (Figure 3.50) which can reduce the cytokine and

�bronectin levels to those comparable with a healthy state. In this case the dose

size required is much higher than that needed in the bistable case, to bring the

system to low cytokine levels.

Figure 3.50: Time course for the system showing monostable disease. Multiple
combined treatments are given ten time units apart starting at time 20. The
dose size for the treatments are 0.4(p), 1.2(m) and 1.1(f) representing a 98%(p),
82%(m) and 75%(f) reduction from the disease state. These lower the system
variables to a healthy level but cessation of treatment would cause the system to
move back to the disease state. Parameters used are the reference parameter set
as described in Section 3.4, except for Pfp=40.

There is a trade o� between dose size and dose interval, with smaller intervals

allowing a decrease in the size of the dose. However, in clinical practice there
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would be both medical and practical considerations in reducing dose interval.

Repeated doses of anti-in�ammatory cytokine can also reduce the cytokine and

�bronectin levels. However, the dose size needs to be very high. For this parameter

set a dose size of 500 units, 62 times greater than the disease state is required. The

system is also very sensitive to dose size with some smaller dose sizes increasing

the levels of p. The large dose size and sensitivity to change may make this type

of treatment di�cult to implement in a clinical setting.

3.9 Discussion

Cytokines, MMPs and �bronectin fragments are key mediators in destructive

OA mechanisms. E�ective disease modifying therapies are much needed for OA

[110, 28], and these pathways appear to o�er good targets. However, the lack of

success in clinical trials suggests that we may not fully understand the dynamic

interactions of these pathways. The aim of this modelling was to gain a better

understanding of the nature of these dynamics. We have grouped cytokines by

function, either pro-in�ammatory or anti-in�ammatory, in addition to MMPs and

Fn-fs. This allowed us to simplify the problem to four variables and study the

feedback loops in the system.

The bifurcation analysis revealed a range of di�erent behaviour types. In gen-

eral terms we can class the behaviour as monostable health, monostable disease,

bistable or tristable. These groups respond very di�erently to treatment. In the

cytokine-only model, Chapter 2, the regions of monostable health were relatively

large and we suggested that many individuals would, therefore, not be susceptible

to RA. However in this model, in all the parameter space we considered, monos-

table health only accounted for very small regions in comparison with the other

behaviours. This may imply that most healthy individuals actually fall into the
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bistable or tristable regions, and that given the necessary stimulus could be moved

to a disease state. This idea corresponds with the etiology of OA, given the large

percentage of a�ected individuals including asymptomatic individuals.

Both oscillatory and �xed disease states are present in the model. Some patients

report intermittent periods of pain in early OA. This pattern of behaviour in

RA has been linked to cyclic levels of cytokines, and the same may be true for

OA, although data is not yet available for OA. It may be possible, with disease

modifying drugs, to move a patient from an oscillatory disease state to a �xed

disease state, such as in the tristable case illustrated in Figure 3.49 . In this model,

we do not examine which type of disease behaviour is most destructive long term,

but it may be possible to explore this with a spatial model of OA cartilage. It

has been proposed that OA is a not a condition that has a single cause, but a

group of many diseases with a common pathway of progression. The bifurcation

analysis in Section 3.4 is consistent with this idea. Single parameter variation in

all of the fourteen model parameters were considered for a reference parameter set

and in each case led to regions of monostable and bistable behaviour. This would

suggest that variations in any of these parameters outside of a normal range may

lead to abnormal cartilage behaviour, moving an individual to a bistable region

where they are more susceptible to OA or moving them from a bistable region to

a monostable disease region, likely to indicate established disease. Additionally,

analysis of the mechanical damage parameter showed that even small increases

in this parameter can lead to monostable disease, consistent with the view that

mechanical damage is the largest risk factor for OA.

The system shows a wide range of mathematically interesting behaviours, includ-

ing �ve steady states which appear to be closely tied to Bogdonov-Takens bifur-

cations, mushrooms and isolas, and regions of excitability. It is also possible that

there are additional behaviours that we have not found since we were unable to

fully explore the parameter space.
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The two parameter bifurcation analysis suggests that although the behaviour of

the system is complex, the overall behaviour as some parameters vary is relatively

simple. Increases in Pfp and Ppp and decreases in App and Afp lead to monostable

disease, whereas the changes in Mpp and γf are not so easy to classify. This may

mean that cytokine production levels may make the best molecular targets for

therapy approaches as they are most likely to have consistent results in di�erent

individuals.

We have shown in Section 3.4 that changes in many of the system parameters

over time can lead to raised levels of p which we believe to be indicative of OA.

Increasing evidence suggests that aging chondrocytes undergo telomere shortening,

which could lead to changes in production rates over time [81]. The pattern

of disease onset is variable in the model and this may correlate with signi�cant

variation in clinical presentation of OA. However, this is di�cult to prove without

a better disease measure for OA, such as a biomarker, and also without a clear link

between the disease measures used and the model variables. Similarly, whilst we

describe a reduced level of p as a return to health, it is more likely that this simply

re�ects a reduction or halting of cartilage degradation, which may not result in an

improvement in pain or symptoms for the individual, since the structural damage

leading to pain persists. We have shown that increases in parameter values over

time can lead to OA onset and generally lead to monostable disease after a period

of time. To have the greatest chance of treating OA e�ectively treatment during

the bistable phase would be preferable. For this it is likely that early diagnosis of

OA would be needed in conjunction with disease modifying treatments.

We have shown that the system is sensitive to mechanical damage. Increases in

this parameter can move the system from health to disease, either as a result of

moving to another steady state in the case of bistability or as a result of increasing

the value of p at a previously healthy steady state. These �ndings are consistent

with that fact that mechanical damage is a large risk factor for initiation and

135



Chapter 3: Mathematical modelling of cytokines, MMPs and ECM

fragments in osteoarthritic cartilage

progression of OA. The absence of any reparative in�uences in this model however,

may make the e�ect of mechanical damage more dominant than it is in reality.

We have considered four di�erent treatment strategies: anti cytokine therapy,

anti-in�ammatory cytokines, MMP inhibitors and Fn-fs inhibitors. We found a

combined treatment strategy could be e�ective at treating bistable, tristable and

monostable disease. Dose size and timing were important to treatment outcome

and it may be possible to optimise these using control theory. We found that the

only e�ective monotherapy was to use anti-in�ammatory cytokines, although this

treatment often required very high dose sizes and treatment outcome was highly

sensitive to dose timing and interval. These issues may make clinical treatment

with anti-in�ammatory cytokines, such as IL-1Ra, unfeasible and may explain the

failure of IL-1Ra drugs trials [25], despite promising experimental results. For

the other three treatment options any one of these alone was ine�ective, and

combined treatments were necessary (Section 3.8). We can see from the phase

diagram (Figure 3.4) why this is the case. The basin of attraction of the healthy

state is small and local to the state itself, for the reference parameter set. Any

move from the disease state in only one direction would remain in the basin of

attraction of the disease state. In all the parameter sets that we considered the

basin of attraction of the healthy state was small. If this is seen biologically, results

from our model suggest that combined treatments o�er a much better possibility of

success than single treatments, even where the single treatment showed no bene�t

alone (Figures 3.42 and 3.43). We saw that in the case of tristability we had an

option of treatment to move the system from a higher disease state to that of a

lower one. However it is unlikely that in the foreseeable future that we would be

able to identify individuals with such multiple disease states or personalise the

treatment plan to such a degree.

We explored the possibility that an increase in the Fn-fs clearance parameter,

γf , could have a positive e�ect on cartilage health. An increase in γf (Figure
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3.12) could move the system from monostable disease to bistability. Whilst this

alone would not move an individual to health, since they would still be on the

disease branch, this change could be combined with disease modifying drugs which

might either improve treatment outcome or reduce the amount of drugs required.

Research has shown that cyclic loading can increase the movement of molecules

such as Fn-fs in the joint, which would result in an increased rate of clearance

from the joint, so it seems likely that some form of low impact cyclic loading could

increase this parameter. This form of therapy has already been established to have

positive e�ect on OA patients [40, 38, 112] although the biophysical mechanisms

of the improvements are not well understood.

In this chapter we have explored the behaviour of cytokine interactions in the joint

and identi�ed potential areas of future research into OA treatment strategies. Lim-

itations of the model include the lack of a link to clinical disease measures, which

include joint space narrowing and radiographic evidence of cartilage deteriora-

tion.. In future, as better measures of OA disease activity are developed, such

as OA biomarkers (easily measurable indicators of disease severity) we may be

able to draw more detailed conclusions about OA disease dynamics. We have not

explored spatial and mechanical aspects of the disease, which play a large role in

OA progression, and have been explored mathematically by others. We believe

that future work in this area needs to combine all these aspects of OA and joint

mechanics, as it is becoming increasingly clear from biological research that the

interactions between the physical and biochemical factors in OA are signi�cant.

In the next chapter we extend this model to a spatial version. This gives a new

results variable, cartilage degradation, and allows us to consider the e�ects of cell

sparsity and local tissue changes.
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4.1 Introduction

In the previous chapter we considered an ODE model of the cytokine biochemistry

of cartilage. We found asymptotic solutions associated with health and disease,

and suggested possible treatment strategies based on these states. A major as-

sumption of our ODE model is that of spatial homogeneity. This assumption is

unlikely to hold in the cartilage, since the cartilage is a spatially structured tissue.

Cartilage tissue, as shown in Figure 4.1, contains chondrocytes �xed in a collagen

and proteoglycan matrix. The chondrocytes are spaced irregularly through the

tissue with a higher density at the synovial interface. Chondrocytes are e�ectively

immobile, trapped within a dense network of �bres [95], meaning that cytokines,

MMPs and matrix components which are all secreted from the cell surface, rely

on di�usion and advection to disperse through the tissue, leading to further inho-

mogeneity. Additionally, as the ECM degrades it does so non-uniformly [71].

In this chapter, we will assess whether the �ndings from the ODE model still
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Figure 4.1: Diagram of cartilage tissue showing chondrocytes (represented by blue
dots) enclosed in a mesh of collagenous ECM.

hold in a more realistic spatial model. We will consider the importance of spa-

tial structure and di�usion to both the disease processes and possible treatment

strategies.

4.2 Model speci�cation

We model the biochemical network of cytokines, MMPs and �bronectin fragments

in the cartilage and its e�ect on the tissue as depicted in Figure 4.2.

We require the model we develop to be cell based in order to simulate randomly-

placed chondrocytes enclosed in an ECM, for this reason we choose not to use a

PDE-only model and instead develop a hybrid model, with continuous variables,

such as cytokine concentrations, represented by PDE's and the discrete elements

of this model, such as chondrocytes, represented by a cellular approach. The

Compucell3D modelling environment [122] is a hybrid system which combines PDE

and Cellular Potts models, making it ideal for combining cell and tissue dynamics

we require. Compucell3D uses an algorithm based on the Cellular Potts algorithm

(also known as the Glazier-Graner-Hogeweg (GGH) algorithm) to simulate cells on
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Figure 4.2: Schematic showing the tissue and cell signalling included in the model.
The cell dynamics that were present in the ODE modelling take place within
chondrocytes, with the exception of Fn-fs release, which takes place in the ECM.
All biochemicals are secreted and move freely by di�usion through the domain,
MMPs and anabolic cytokines act directly on the ECM.
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a lattice. This allows us to simulate irregularly placed chondrocytes which secrete

biochemical molecules. Compucell3D is an open source modelling environment

written in a combination of XML, Python and C++. Users can build simulations

using a combination of pre-de�ned plugins, modules that calculate the e�ective

energy in the model edited via XML scripts, and user-de�ned steppables, that

perform cell based operations and are written in Python.

We model the system in two spatial dimensions for simplicity, but could extend

to a three dimensional model within the modelling framework later if necessary.

We consider three di�erent tissue types as well as synovial �uid. These are ECM,

chondrocytes and bone. For simplicity, we assume bone is an inert tissue providing

a surface for the ECM to adhere to. We include �ve biochemical variables in the

model, pro-in�ammatory, anti-in�ammatory and anabolic cytokines, �bronectin

fragments and MMPs. Anabolic cytokines are a class of cytokines that stimulate

the production of collagen to remodel the ECM. Since we include the ECM volume

in this model, and since pro-in�ammatory cytokines have a background production

term, without the inclusion of anabolic cytokines we could not represent healthy

ECM remodelling. Instead the ECM would always degrade. Anabolic cytokines

are present to balance the background ECM degradation, simulating normal re-

modelling of the tissue. Initial conditions for the model consist of the spatial

con�guration of the tissue and initial concentrations of the biochemical variables.

We also impose boundary conditions. Figure 4.3 shows an example of the initial

con�guration of the tissue we have used in the simulations. The chondrocytes are

randomly spaced throughout the ECM, and make up 5% of the tissue.

4.2.1 Modelling approach

The GGH algorithm associates an e�ective energy to the system con�guration,

and accepts changes to that con�guration with a probability that is an increasing
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Figure 4.3: Example initial spatial con�guration of tissue in model. ECM is
shown in orange, and sparsely populated with chondrocytes (blue). A layer of
bone (white) lines the bottom edge of the ECM and synovial �uid �lls the top of
the domain (black).

function of the associated e�ective energy reduction. Cell behaviours such as

growth, cell-cell contact, mitosis and chemotactic responses are represented by

energy terms, which may represent real energies or be metaphoric. The e�ective

energy (HGGH) of the cell is the sum of these terms. The e�ective energy term

must include volume (or area in 2D models), surface area and boundary adhesion

terms. In addition, in our model we also include a focal point plasticity term,

giving,

HGGH = Hvol +Hsurf +Hadhesion +Hfocal. (4.2.1)

We shall discuss the calculation of these terms further below.

The system consists of a collection of lattice sites within a square grid. We divide
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the grid into a series of cells each of which is a smaller collection of the lattice

sites, each of which has a unique index (Figure 4.4). These cells, termed generalised

cells, are distinct from biological cells and may consist of a single biological cell, a

cluster of biological cells, or other tissue constituents, e.g. ECM. To di�erentiate

generalized cells from biological cells we will italicise. In our model, we use a cell

to represent a section of ECM, chondrocyte or a bone cell. Initially we set all

these cells to be of similar volume since we expect chondrocytes and bone cells to

be similar and the size of the ECM cells is arbitrary.

We simulate changes to the cells using a stochastic simulation mechanism through

a series of Monte Carlo Steps and index copy attempts. The index copy is the basic

building block. This has the e�ect of moving cells, changing cell size or changing

their shape. We select a pixel at
−→
i (target pixel) and a neighbouring pixel

−→
i ′

(source pixel) randomly. If the two are in the same cell we do nothing. If they

are di�erent cell (i.e. we have selected a pixel on the cell border) we calculate the

change in e�ective energy (∆HGGH) associated with copying selected pixel to the

target pixel and accept the copy attempt with the probability,

P (σ(
−→
i → −→i ′)) =

 exp(−∆HGGH/Tm) if ∆HGGH > 0

1 if ∆HGGH ≤ 0

 , (4.2.2)

where σ is the cell and Tm is the e�ective cell motility (the amplitude of cell

membrane �uctuations).

Each Monte Carlo step (MCS) consists of a number of index copy attempts equal

to the number of pixels in the simulation. E�ective energy is calculated at each

MCS. Monte Carlo steps move the simulation forward in time and between each

MCS we perform additional operations such as di�usion and secretion. These

a�ect the levels of the chemical �eld variables in the model but do not directly
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Figure 4.4: Schematic showing the lattice sites for three cells with two di�erent cell
types. The strength of the interactions between cells J depends on the di�erence
in e�ective energy between the cells. Each pixel copy attempt will try and copy
the cell type from one pixel to another, and the success of this will depend on the
value of J .
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change the e�ective energy of cells.

The main simulation process is shown in Figure 4.5, adapted from the Compu-

cell3D documentation.

Figure 4.5: Flowchart showing the simulation process for the cartilage model in
Compucell3D. Each simulation is a series of Monte Carlo steps (MCS) consisting
of many index copy attempts.

4.2.2 Physical properties of the model

Volume

The volume constraint along with the boundary adhesion constraint is a manda-

tory term in the GGH algorithm and these two terms combined give the basic

GGH e�ective energy equations. In this model, since we are working in 2D the
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volume constraints are actually area constraints. We use the volume constraint

to simulate degradation of the collagen �bres within the cartilage. The volume

constraint contribution to equation 4.2.1 is,

Hvol =
∑
σ

λvol(σ)(v(σ)− Vt(σ))2, (4.2.3)

where σ is the cell, λvol(σ) is the inverse compressibility of the cell, Vt is the target

area and v is the actual area. Area is measured in units of pixels2. Since site

copies are more likely to be accepted if they decrease their e�ective energy this

form of volume constraint will tend to drive the cell volumes towards their target

volumes.

We set synovial �uid as the default tissue type (described as medium in Compu-

cell3D) and hence it does not require a target volume as it simply �lls in the space

left by other cells to stop empty space appearing. We �x the volume and shape

of bone cells, so we only consider changes to ECM and chondrocyte volumes in

the model. ECM is degraded by MMPs and is synthesised by anabolic cytokines.

Hence, we change the target volume of the ECM cells dynamically as a function

of the MMP and anabolic cytokine concentrations according to the term,

∆Vt = ffp(nc − pc), (4.2.4)

where nc and pc are the concentrations of anabolic and pro-in�ammatory cytokines

respectively and ffp is a non-negative parameter.

The target volume of the chondrocytes is generally �xed. However if these cells

come in contact with synovial �uid their target volume is reduced to zero so that
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the cell is degraded, and shrinks until it is removed when its actual volume reaches

zero, which may be a short time later. This constraint stops individual chondro-

cytes existing in synovial �uid once the surrounding tissue has been degraded,

since this is not seen in vivo.

Adhesion

Cellular adhesion refers to the way in which cells stick to each other to form a

tissue. In this model the majority of the cells are ECM rather than true biological

cells. Therefore, the adhesion properties of the model can be considered to be a

proxy for the strength of the ECM. Compucell3D de�nes adhesion as,

Eadhesion =
∑
i,j

J(τσ(i), τσ(j))(1− δσ(i),σ(j)),

where i and j are neighbouring lattice sites, J is the contact energy, τ denotes

the cell type and σ denotes the cell ID. The �rst term sums the adhesion energies

between di�erent sites whilst the second term ensures that pairs of neighbours

that belong to the same cell are discounted. The values of the contact energy

between di�erent cell types are model parameters and the values we have used

are listed in Table 4.1. The units are dimensionless with the default value of ten

indicating moderate adhesion and lower values indicating stronger adhesion since

lower e�ective energies are favoured by the algorithm. We de�ne neighbours in

the model as any cells which directly touch the cell.

Since the cells of the ECM tissue are representing a interconnected mesh, as well

as boundary adhesion we also include focal point plasticity in the model. This

Compucell3D plugin allows connections between the centers of mass of the cells.

We specify a maximum distance constraint between the centre of mass of a cell

147



Chapter 4: Spatial modelling of joint degradation in OA

and the centre of mass of its neighbour and specify how many neighbours each cell

will have. The determination of which cells are neighbours is determined by Com-

pucell3D based on these parameters and may change as the cells move/degrade.

The energy contribution of the focal point plasticity term is given by,

E =
∑

i,j−cellneighbours

λij(Iij − Lij)2, (4.2.5)

where λ is a measure of the plasticity, speci�ed as a model parameter; Iij is the

distance between the cells i and j; Lij is the target distance between cells i and

j and is another model parameter and the max distance, which is the point at

which a link breaks. We also specify the likelihood of a new link being made in

any particular pixel copy attempt. In this model we keep this likelihood low since

we are modelling mature cartilage whose ability to form new collagen crosslinks is

poor. The parameters we have used in the model are listed in Table 4.1.

Di�usion

We model di�usion of pro- and anti-in�ammatory cytokines, MMPs and Fn-fs

through both the ECM and synovial �uid. We have not found any experimental

work giving the di�usion coe�cients of these parameters in cartilage. However,

we can estimate the di�usion coe�cients of these proteins by considering their

size. Leddy and Guilak [76] provides di�usion coe�cients of various sizes of dex-

tran molecules in cartilage. The values given are compatible with the value we

calculate using the Einstein formula for di�usion. Hence we choose a di�usion co-

e�cient for all tissue types of 2 µm2s−1 which is compatible both with the dextran

experiments and the Einstein formula. However, we believe that the e�ective dif-

fusion coe�cient for these proteins could be much lower than that of dextran since
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these cytokines, MMPs and �bronectin fragments will all be actively binding and

unbinding to cell surface receptors on chondrocytes and possibly interacting with

collagen. For this reason we also consider a slower rate of di�usion, 0.002µm2s−1.

For the slower di�usion simulations we use non-steady state di�usion,

∂c

∂t
= D∇2c− kc+ secretion, (4.2.6)

where D is the di�usion constant and k is the decay constant. We solve this at

each MCS using the Forward Euler method. For faster di�usion this method is

unsuitable, since numerical instabilities necessitate very small time steps, making

simulations over longer timescales unfeasible. Hence, for faster di�usion we use

a steady state approximation. We discuss this di�usion approximation further in

Section 4.6. The secretion term for both types of di�usion is calculated separately

and discussed in section 4.2.3. We use periodic boundary conditions in the x-

direction and no �ux boundary conditions in the y-direction for the di�usion.

4.2.3 Biochemical properties

Secretion

Wemodel secretion of pro-in�ammatory, anti-in�ammatory and anabolic cytokines

and MMPs from chondrocyte cells. Additionally we model release of �bronectin

fragments from ECM cells as their volume reduces. Pro-in�ammatory, anti-

in�ammatory and anabolic cytokines and MMPs are secreted according to the

state at the beginning of each Monte Carlo step and the level secreted is a func-

tion of the state of the cell secreting. Pro-in�ammatory cytokines are secreted

according to the function,
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psecreted =

(
pbp + ppp

p2
c

p2
ph + p2

c

+ pfp
f 2
c

p2
fh + f 2

c

)
p2
ah

p2
ah + a2

c

. (4.2.7)

where pc and fc are the concentrations of pro-in�ammatory cytokine and �-

bronectin at the centre of the cell. The secretion term re�ects up-regulation of

pro-in�ammatory cytokines, by themselves and �bronectin fragments, and the

down-regulation of pro-in�ammatory cytokine production by anti-in�ammatory

cytokines. Anti-in�ammatory cytokines are secreted according to the term,

asecreted = app
p2
c

a2
ph + p2

c

+ afp
f 2
c

a2
fh + f 2

c

+ anp
n2
c

p2
nh + n2

c

. (4.2.8)

Here the level of anti-in�ammatory cytokine secreted is up-regulated in the pres-

ence of pro-in�ammatory cytokines, anabolic cytokines and ECM fragments.

MMPs are up-regulated by pro-in�ammatory cytokines and down-regulated by

anabolic cytokines, according to the term,

msecreted =

(
mbp +mpp

p2
c

m2
ph + p2

c

)
m2
np

m2
np +mnhn2

. (4.2.9)

Anabolic cytokines are involved in the normal homeostasis of the ECM tissue,

hence have a background production rate. They are also upregulated in response

to �bronectin fragments in the joint according to the term,

nsecreted =

(
nbp + nfp

f 2
c

n2
fh + f 2

c

)
. (4.2.10)
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All of the chemicals secreted by chondrocytes in this model are secreted on the

boundary of the cell, they then di�use away from the cell according to the di�usion

PDE.

During each MCS when the cell volume is amended in response to MMP levels we

also make a corresponding secretion of Fn-fs. The amount of �bronectin fragments

released is calculated as:

fsecreted =

 −ffp∆v if ∆v < 0

0 if ∆v ≥ 0
(4.2.11)

where ∆v is the change in target volume of the cell.

4.3 Model Parameters

Table 4.1: Summary of base parameter values in model. Dimensionless unless
otherwise stated.

Parameter Value

Temperature 20

Neighbour Order 2

λ Surface ECM 2

λ Surface Chondrocytes 2

Target Surface ECM 2 pixels

Target Surface Chondrocytes 25 pixels

Contact Adhesion Energy

Medium-Medium 10

Medium-ECM 10

Continued on next page
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Table 4.1 � continued from previous page

Parameter Value

Medium-Chondrocyte 16

Medium-Bone 10

ECM-ECM 4

ECM-Chondrocyte 6

ECM-Bone 6

Chondrocyte-Chondrocyte 10

Chondrocyte-Bone 16

Bone-Bone 10

Focal Point Plasticity

λ ECM-ECM 10

Activation Energy ECM-ECM -100

Target Distance ECM-ECM 7 pixels

Max Distance ECM-ECM 10 pixels

Max no. of junction ECM-ECM 5

λ ECM-Chondrocyte 10

Activation Energy ECM-Chondrocyte -100

Target Distance ECM-Chondrocyte 7 pixels

Max Distance ECM-Chondrocyte 10 pixels

Max no. of junction ECM-Chondrocyte 5

λ ECM-Bone 10

Activation Energy ECM-Bone -100

Target Distance ECM-Bone 7 pixels

Max Distance ECM-Bone 10 pixels

Slow Di�usion Coe�cient 1.8 pixels2MCS−1 (0.002 µ2s−1)

Fast Di�usion Coe�cient 1800 pixels2MCS−1 (2.0 µ2s−1)

Continued on next page
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Table 4.1 � continued from previous page

Parameter Value

Decay Coe�cient 0.17 MCS−1 (0.69 hr−1)

ECM λ area 2 pixels2

ECM target area 55 pixels2

Chondrocyte λ area 2 pixels2

Chondrocyte target area 55 pixels2

pbp 0.0017

ppp 1.7

pph 1

pfp 1.7

pfh 1

pah 1

app 1.7

aph 1

afp 1.7

afh 1

anp 1

anh 1

mbp 0.00017

mpp 1

mph 1

mnh 1

nbp 0.0001

nfp 0.001

nfh 1

ffp 0.17
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4.4 Transition from ODE to spatial model

4.4.1 Direct Comparison

To explore the relationship of this model to the ODE model we start by simplifying

the spatial model to minimise the di�erences between the two models. We replace

the synovial �uid, ECM and bone tissue in the model with chondrocytes to create

a uniform domain, which also necessitates allowing �bronectin to be released from

chondrocytes rather than ECM.We also change the parameters nbp and nfp to zero,

to remove anabolic cytokine production. We change the boundary conditions to

be periodic in both the x- and y-axis. We then run a series of simulations of the

model varying the parameter ppp each time. We use non-steady state di�usion.

At the start of the simulations all cytokines, MMP and �bronectin fragment con-

centrations are zero. For each simulation we run the model for 10000 MCS and

simulate a trauma, a pulse of ps=10, at t = 1000. In each case the biochemical

variables reach a steady level by t = 1000 and then after the trauma either re-

covers to the original level or moves to a di�erent steady level or a oscillates. We

measure the maximum and minimum and average value of ps in the chondrocytes

over the �nal 500 MCS in each simulation with and without a trauma and use

this to construct a plot which we compare with a bifurcation plot from the ODE

model, Figure 4.6.

Comparing the Cellular Potts model to the ODE model, we appear to have broadly

the same behaviour. We have a steady state at a low concentration of p for low

values of ppp, which we lose as we increase this parameter. At higher values of

ppp we have oscillatory behaviour. In the Cellular Potts model the amplitude and

average value of the oscillations is larger than for the ODE model. This is likely to
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Figure 4.6: Comparison of bifurcation plot from the cartilage ODE model with the
results from the spatial model with parameters approximating the ODE model.
The solid lines are the stable and unstable branches of the ODEmodel bifurcations,
The dashed black and red lines of the ODE limit cycle maximum, minimum and
average values. The black and red stars are the maximum,minimum and average
values from the spatial model at 10000 MCS.
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be due to the slight di�erences in the two models, principally the e�ect of di�usion.

At even larger values of the ppp both models move to a stable steady state, at a

similar level of p.

4.4.2 Number of cells

A major di�erence between the spatial model and the ODE model is the spar-

sity of chondrocytes, since the ODE model assumes spatial homogeneity which we

can consider analogous to 100% chondrocytes in the spatial model. In cartilage

tissue only 5% of the volume is chondrocytes. We now gradually reduce the num-

ber of chondrocytes in the Cellular Potts model, whilst still secreting �bronectin

fragments from the chondrocytes. In these simulations the ECM plays no part

in the cartilage dynamics, but instead acts as an inert connective tissue between

cells. This allows us to consider the e�ect of reduced intercellular communication.

Figure 4.7 shows a set of bifurcation plots as the proportion of chondrocytes is

reduced from 100% to 10% and replaced by ECM.

As we reduce the number of chondrocytes in the tissue the bifurcation plot changes.

The Hopf point appears to remain at a similar value of ppp, but the amplitude of

the oscillations reduces, possibly due to the limit cycle colliding with the unstable

branch and the resulting homoclinic bifurcation moving up unstable branch of the

fold. As the number of cells reduces further oscillatory behaviour is lost altogether.

In addition, the disease branch rises, occurring at higher values of p as the number

of chondrocytes reduces.

Reducing the number of cells has two e�ects on the model. Firstly the overall

amount of all the variables secreted is reduced, due to the reduction in the number

of cells. Secondly, communication between cells is reduced, due to being spaced

further apart, and chemicals having to di�use through the ECM, which can lead

to cells behaving less uniformly. In the full model where tissue degradation further
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Figure 4.7: Bifurcation plots of p against ppp showing the stable steady states. We
reduce the proportion of chondrocytes, replacing them with ECM tissue. As the
number of cells reduces we lose the oscillatory behaviour.
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increases non-uniformity this e�ect could be more important.

In these simulations we have released �bronectin (f) from the chondrocytes. This

is unrealistic so we next look at secretion of �bronectin from the ECM. We reduce

the number of chondrocytes again, this time with f released from the ECM, Fig

4.8. Hence, when we have 100% chondrocytes we have no Fn-fs released. When f

is released from the ECM we do not see any oscillatory states. As the number of

cells reduces the disease state �rstly lowers then rises again as the chondrocytes

reduce to more realistic numbers. The range for which we have only a healthy

state or both a healthy and disease state increases as we reduce the number of

chondrocytes.

Overall, moving the system from 100% chondrocytes with f released from the cells

to 5% chondrocytes with f released from the cells is more comparable to cartilage

biology. This change introduces non-uniform behaviour in the tissue, which could

not be modelled with ODE methods. The non-uniformity is dependent upon the

di�usion rate, and is likely to reduce and disappear as we increase the rate of

di�usion, which we show in Section 4.6.

4.4.3 Tissue boundaries

In the simulations so far we have considered only cartilage tissue. However in

the joint the cartilage in anchored to bone and surrounded by synovial �uid. We

now introduce these aspects back into the model. Figure 4.9c shows the initial

con�guration of the tissue with bone on the bottom boundary and synovial �uid

on the top boundary. Since we now have di�erent tissues on the boundary a

periodic boundary condition is no longer appropriate for the y-axis so we instead

change this to no �ux. We leave the x-axis boundary periodic since we assume the

cartilage is wider than is it deep in line with normal cartilage histology in joint

such as the knee or hip.
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Figure 4.8: Bifurcation plots of p against ppp showing the stable steady states for
decreasing numbers of cells. Here, f is released from the ECM rather than from
the chondrocytes.
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(a) (b)

(c)

Figure 4.9: a) Bifurcation plot of spatial model with 5% chondrocytes in ECM
with no other tissue types. b) Bifurcation plot of the spatial model with 5%
chondrocytes in the ECM but realistic tissue boundaries of synovial �uid on the
top boundary and bone on the bottom boundary. c) Initial spatial domain used
in (b).
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Figure 4.9a shows a bifurcation plot of p against ppp where we have 5% chon-

drocytes. Comparing this to Figure 4.9b, in the �rst we have cartilage tissue

only as in previous simulations, whereas in the second we have bone and synovial

�uid. There is little di�erence between these two plots, so adding the bone and

synovial �uid makes little di�erence for this con�guration. When the percentage

of chondrocytes is higher however, the e�ect of the change is greater. Since a

higher percentage of chondrocytes is not biologically realistic we do not explore

this further.

4.4.4 Tissue degradation and disease measures

The �nal feature that we need to add back into the model that is not present in

the ODE model is the degradation of the cartilage. This is a signi�cant change

from the ODE model as it means that in disease we have a continually changing

environment. At this point we also put anabolic cytokines back into the model,

as even with low level of pro-in�ammatory cytokines the background production

would lead to tissue degradation without a balance to give homeostasis. Figure

4.10 shows a time course of the levels of p as the tissue is degraded. As the tissue

is degraded the number of chondrocytes is reduced and cytokine feedback between

cells is made more di�cult by the tears that develop in the tissue, as this moves the

cells further apart. This, coupled with the stochastic changes in the model means

that to we can no longer consider the model in behaviour at a �xed time point, but

instead need to consider the time course of the model. With these considerations

in mind we will now move on to considering how this model behaves and how we

de�ne health and disease in the spatial model.

In the previous chapters we have used the concentration of pro-in�ammatory cy-

tokine as the main measure of disease, loosely de�ning health as very low concen-

trations of pro-in�ammatory cytokine and disease as higher levels. This measure

161



Chapter 4: Spatial modelling of joint degradation in OA

(a) (b)

Figure 4.10: Time course plot of the model over 3000 MCS, an instantaneous
increase in p is simulated at t = 500 to move the system to disease. a) The
concentration of p initially remains at a low concentration suggesting a healthy
state, but after the stimulus the level of p changes with time. b) The ECM volume
continually degrades once disease is initiated. This may be a better measure of
disease than pro-in�ammatory cytokine concentration.

of disease has several limitations and with the spatial model we have the opportu-

nity to consider other measures of disease. Speci�cally, a measure of the amount

of tissue loss would seem intuitively to be a good disease measure. This measure

of disease is more in line with clinical disease measures that often include joint

space narrowing as seen on x-rays. In contrast, accurate measures of cytokine or

MMP levels are not practical in a clinical environment due to be the short half

life of these biochemicals and the di�culty of extracting samples from patients.

Since we know that tissue degradation is mediated by cytokines, we would expect

strong correlation between high levels of cytokines in disease and tissue degrada-

tion. Figure 4.10 shows time courses for a simulation of the model showing the

proportion of cartilage tissue remaining in addition to the pro-in�ammatory cy-

tokine levels. We see here that the level of p is very variable and drops to zero once

all chondrocytes have died, which could be misinterpreted as a return to health.

However the ECM plot clearly shows that the ECM volume is much reduced, and

here the ECM volume is a better measure of disease stage and progression.

Overall in this section we have seen the e�ect of moving from an ODE to a Cellular

Potts model. Whilst there are di�erences in model behaviour at certain parameter
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values, generally comparable behaviour types seem to exist, which may mean that

the treatment strategies seen in the ODE model are still applicable. In the next

section we will further examine the behaviour groups that we see in this spatial

model.

4.5 Classi�cation of behaviours in the spatial model

In the ODE modelling we were able to classify behaviour based on the nature and

stability of the steady states and limit cycles of the system. In the spatial model

the domain is continually changing as the matrix remodels. Hence it is no longer

possible to observe behaviour that is homogeneous either in time or space. For this

reason we look at how the system behaves over time in the presence and absence

of pro-in�ammatory stimulus to classify di�erent parameter sets into behavioural

groups. This grouping is important as it determines the type of treatments that

would be possible and the likelihood of slowing disease progression. Using the

bifurcation analysis from the previous chapter to help identify di�erent behaviour

types we have found three behaviour groups: persistent health, inducible disease

and persistent disease.

Persistent health is analogous to monostable health in the ODE model. With no

stimulus we have low levels of all the variables, and if a stimulus is given we quickly

move back down to a healthy state with little change to the ECM tissue (see Figure

4.11a). One point to note with this state is that if a pro-in�ammatory stimulus

is given it will damage the cartilage and degrade it slightly, and this damage is

unlikely to recover, due to low levels of anabolic cytokines. For a short stimulus this

is not a problem since the amount of damage is small relative to the healthy tissue

(Figure 4.11c). However, if we stimulate repeated pro-in�ammatory stimuli over a

longer time period we see that the matrix can become signi�cantly degraded, to the

point where you may get loading problems in the joint (Figure 4.12). We expect
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that the same result could be observed with a mechanical stimuli. This may be

representative of a simple wear and tear process where the joint cartilage becomes

degraded but the cartilage is not osteoarthritic. In these cases, removal of the

pro-in�ammatory stimulus is su�cient to halt the degradation process, however

in a severely damaged joint the abnormal loading as a result of degradation may

in itself act as an additional pro-in�ammatory stimuli.

(a) (b)

(c)

Figure 4.11: Plots showing behaviour of the persistent health type. a) Average
concentration of p in the chondrocytes against time. A pro-in�ammatory stimulus
of p = 10 is given at t = 500. This quickly dies down without noticeable long term
e�ects. b) Concentration of p in four individual chondrocytes plotted against
time. These shows generally uniform cell behaviour c) Proportion of ECM tissue
remaining relative to the initial level plotted against time. Only minor changes
on the ECM tissue are seen. (ppp = 0)

As we increase the value of ppp we move out of the region of persistent health and

into a region of inducible disease. Here for low initial conditions of all variables

we have a state of heath as before. However, if a pro-in�ammatory stimulus is

given the system will move to a disease state where the concentration of cytokines,
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Figure 4.12: Time course plot of the spatial model over 10000 MCS, with a series
of regular stimuli of p in all chondrocytes. Stimuli of 10 units of p are made at
intervals of 20 MCS between t = 500 and t = 6000. These cause degradation of
the ECM. However, once these secretions are halted at t = 6000 the degradation
ceases. The parameters are as speci�ed in Table 4.1 except that ppp = 2.

MMPs and �bronectin are all comparatively high, and the ECM is being degraded.

Figure 4.13a shows the average concentration of pro-in�ammatory cytokine in the

chondrocytes over time as the simulation progresses. A pro-in�ammatory stimulus

is given at t = 1000, at which point the level of p increases and then settles to

a disease level and the ECM tissue starts to be degraded (Figure 4.13c). As

the simulation progresses the number of chondrocytes is decreasing, hence the

increasing variation in the concentration of p, until at approximately t = 2500 the

level of p drops back down to zero as the last chondrocyte is degraded. Figure 4.13b

shows time courses for four individual chondrocytes from the same simulation.

This �gure demonstrates that although broadly similar, the behaviour of each

chondrocyte is individual and in�uenced by the concentration of biochemicals in

its vicinity. Large spikes in the concentration of p are seen and the cells die at

di�erent times during the simulation.

Figure 4.14 shows spatial domain at four di�erent time points through the simula-

tion shown in Figure 4.13. We can see that as the tissue degrades the chondrocytes

cluster together as the tissue between the chondrocytes degrades quicker than the

rest of the tissue due to higher concentrations of cytokines. We also see that the

pro-in�ammatory cytokine concentration is higher in the locality of chondrocytes,
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(a) (b)

(c)

Figure 4.13: Plots showing behaviour of the inducible disease type. a) Average
concentration of p in the chondrocytes against time. A pro-in�ammatory stimulus
of ps = 10 is given at t = 500 which moves the model to a disease state. By
t = 2500 all the chondrocytes have been degraded. b) Concentration of p in
three individual chondrocytes plotted against time. c) Proportion of ECM tissue
remaining relative to the initial level plotted against time. (ppp = 15)
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we will later contrast this with the case when we have faster di�usion.

Figure 4.14: Plots showing behaviour of the inducible disease type at di�erent time
points. The �rst column shows the cells degrading whilst the second column shows
the pro-in�ammatory cytokine concentration through the domain at the same
time points. The images show that the di�usion of the pro-in�ammatory cytokine
concentration in addition to the spatial con�guration of the domain determine
how the tissue degrades. (ppp = 15)
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Persistent disease is analogous to monostable disease in the ODE model, and

we �nd this behaviour as we increase ppp to 20 with the reference parameter

set. Without any stimulus the system is in a disease state regardless of initial

conditions. Figure 4.15a shows the average concentration of pro-in�ammatory

cytokine in the chondrocytes, and even though we start with initial conditions of

zero for all variables in the model, the level of pro-in�ammatory cytokines rise.

The other variables rise in a similar fashion and the cartilage is degraded (Figure

4.15c). Interestingly, for some parameter ranges this does not occur uniformly

in every chondrocyte. The majority of chondrocytes move quickly to be disease

state (Chondrocytes 1 in Figure 4.15b) but some chondrocytes remain healthy

for a short time before moving to disease (Chondrocytes 2 and 3), whilst others

remain healthy throughout the simulation (Chondrocyte 4). This is likely to be

dependent on the local positioning of the chondrocyte, and is suggestive that the

structure of chondrocyte positioning through the tissue could be a factor in disease

progression. This type of behaviour is seen close to the threshold where we switch

between inducible and persistent disease.

Figure 4.16 shows the spatial domain during the simulation where ppp = 20 and

hence have non uniform cell behaviour. It is clear that cells that are in closest

vicinity to other cells are the ones which reach disease levels soonest. Then as pro-

in�ammatory cytokine di�uses and as the ECM degrades the disease state spreads

to cells further away. We can also see that the ECM degradation itself causes fur-

ther clustering, presumably because the ECM tissue between two chondrocytes

is subject to higher concentrations of pro-in�ammatory cytokines and hence de-

grades quickest. Biologically, chondrocyte clustering is seen in OA, although it

is theorised that this is due to cell division. It is possible that the movement

of chondrocytes via ECM degradation may also be contributing to this observed

phenomena.

At higher levels of ppp (ppp = 50), further away from this threshold, we get more
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(a) (b)

(c)

Figure 4.15: Plots showing behaviour of the persistent disease type. a) Average
concentration of p in the chondrocytes against time. No stimulus is given in
this simulation. By t = 3000 most of the chondrocytes have been degraded.
b) Concentration of p in four individual chondrocytes plotted against time. c)
Proportion of ECM tissue remaining relative to the initial level plotted against
time (ppp = 20).
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Figure 4.16: Plots showing behaviour of the persistent disease type at di�erent
time points. The �rst column shows the cells degrading whilst the second col-
umn shows the pro-in�ammatory cytokine concentration through the domain at
the same time points. The images show that cell clustering is occurring during
the simulation as tissue between cells receives the highest concentration of pro-
in�ammatory cytokine. (ppp = 20)
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uniform cell behaviour, Figure 4.17b. As we might expect with a larger rate of

pro-in�ammatory production we also degrade the ECM much quicker. Here, we

see that the additional disease measure of ECM tissue in the spatial model gives

us a better link to the disease that an individual may experience. For example,

where we see a drop to low cytokine levels in the ODE model, and assume health,

we may �nd that the ECM is signi�cantly damaged.

(a) (b)

(c)

Figure 4.17: Plots showing behaviour of the persistent disease type for a high value
of ppp compared to Figure 4.15 a) Average concentration of p in the chondrocytes
against time. No stimulus is given in this simulation. By t = 1500 most of
the chondrocytes have been degraded. b) Concentration of p in four individual
chondrocytes plotted against time. The chondrocyte behaviour is more uniform
compared to persistent disease with lower ppp (Figure 4.15) i.e. the chondrocytes
all reach raised cytokine levels at the same time c) Proportion of ECM tissue
remaining relative to the initial level plotted against time(ppp = 50).

As Figures 4.14 and 4.16 show, the di�usion rate used in these simulations is such

that the e�ective di�usion length is about 4-5 cell lengths. Since the di�usion

coe�cients for cytokines, MMPs and Fn-fs are poorly de�ned in cartilage, in the
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next section we will consider how both slower and faster di�usion a�ect the tissue

degradation.

4.6 Impact of di�usion rate variation

As discussed previously in this chapter the di�usion coe�cients of cytokines,

MMPs and �bronectin fragments in cartilage are poorly de�ned. The di�usion

rates we have used so far for the simulations are slow compared to some esti-

mates. We will now consider the e�ect of faster di�usion rates on the system. We

will also consider how slower di�usion rates a�ect the simulations.

Large di�usion rates, present some practical problems in Compucell3D, since the

di�usion solver uses the forward Euler method, which is unstable for large di�u-

sion coe�cients. To avoid this Compucell3D adjusts the di�usion time step, but

this slows the simulations considerably. Hence, in order to consider faster di�usion

without excessively long simulations we make the assumption that the concentra-

tion pro�le quickly settles to a steady state in time, allowing us to use steady state

di�usion methods. A steady state di�usion solver is built in to Compucell3D and

is based on the Helmholz equation,

52c− kc = F, (4.6.1)

where c is the concentration, k is the decay and F is the source term. F can

be input in the model through either an initial concentration, or through cellular

secretion. However, the cellular secretion option is designed to take a constant,

to be secreted at each MCS. To dynamically control the secretion amount at each

MCS, such that the amount secreted is based on the concentration of the other
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variables in the model we calculate this in a steppable written in Python then

couple it to the di�usion through F . At each time step, on a pixel-by-pixel basis,

we take the current concentration of all the chemical �elds at the pixel. We

then calculate the secretion amount based upon the equations in Section 4.2.3.

The amount to be secreted is then fed back into the di�usion plugin as a constant

concentration to be used at the next time step. This method solves the problem of

non-constant secretion in Compucell's steady state di�usion solver, however since

the secretion is not fully integrated into the di�usion solver, there is an uncoupling

e�ect that leads to unexpected results for some parameter regimes. For this reason

we restrict the use of this solver to fast di�usion where the use of the non-steady

state di�usion solver is impractical. For the parameters speci�ed in Table 4.1

with changes only to ppp we see sensible results in line with the non-steady state

di�usion method.

In Section 4.5 where we had slower di�usion we found persistent health, persistent

disease and inducible disease. We �nd that when we increase the di�usion (using

the fast di�usion parameters from Table 4.1) that the regions of persistent health

and inducible disease increase. The range of ppp for which we see inducible dis-

ease increases signi�cantly with the transition to persistent disease occurring at

approximately ppp = 1000 rather than 15. This �nding is signi�cant as it suggests

that increasing the di�usion rate could transform the behaviour of the disease

from incurable to potentially curable (i.e. does not require ongoing treatment to

maintain low tissue degradation). It should be noted, however, that at the disease

state the rate of degradation is higher than when we have slower di�usion. Fig-

ure 4.18 shows time course plots of pro-in�ammatory cytokine concentration and

ECM area for a simulation when ppp = 20. If we compare this with Figure 4.15

we can see that not only is the degradation more complete but the degradation is

approximately four times faster. This could have implications for the development

of therapies based on altering di�usion rates.
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(a) (b)

Figure 4.18: Plots showing behaviour when ppp = 20 for a fast di�usion rate.
Compared to Figures 4.15 and 4.17 the rate of tissue degradation is much faster,
however, with a larger di�usion rate the behaviour is of the inducible disease type
and hence potentially curable.

4.7 Discussion

In this chapter we have considered whether the spatial structure of cartilage tissue

is of importance to the dynamics of the biochemical networks in OA. We have de-

veloped a spatial model in which we have two main tissue types, chondrocytes and

ECM, along with bone and synovial �uid, within the Compucell3D modelling envi-

ronment. By modelling in Compucell3D, which uses the Cellular Potts algorithm

on a lattice, we have been able to use a complex and realistic spatial structure of

chondrocytes spaced randomly through the ECM tissue. The modelling has shown

that in the spatial model we lose the concepts of monostable health, monostable

disease and multi-stability, which we saw in the ODE modelling (Chapter 3). This

is due in part to the stochastic nature of the model, but mainly to the continually

changing spatial domain. We do however have analogous behaviour types of per-

sistent health, persistent disease and inducible disease. It is possible that inducible

disease behaviour includes scenarios where there is more than one disease state,

but we have not found this in the parameter regimes we have considered.

Persistent health, analogous to monostable health, maintains background levels of

all biochemical species even after a stimulus. However, in the presence of a con-

tinual or regular stimulus damage to the ECM will occur. Clinically, radiographic
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evidence (i.e. x-ray images) of OA is seen in almost all individuals over the age of

30, however not all of these go on to develop symptomatic and ongoing OA. It is

possible then that this type of behaviour could explain those cases where evidence

of OA is seen, i.e. wear and tear due to mechanical or biochemical stimuli over

time, but OA does not develop. Persistent disease does not require any stimulus

to enter a disease state, even when starting in the absence of any cytokines, MMPs

or Fn-fs. Interestingly, our simulations suggest that for some parameter ranges,

the disease state is not uniform through the tissue and some chondrocytes remain

healthy. This behaviour depends of the di�usion rate with faster di�usion leading

to more uniform behaviour. Since OA tends to develop with old age, it is likely

that persistent disease only exists biologically if the parameters of the model, e.g.

production rates, are able to change with either time or disease advancement.

Given the changes that have been observed in OA, e.g. chondrocyte division and

increased numbers of receptors, this is likely to be the case. However this would

need to be studied in more detail.

Inducible disease requires a stimulus to move from a healthy state to disease. In

our simulations we induced a pro-in�ammatory stimulus in all the chondrocytes,

leading to uniform disease behaviour. If the stimulus was con�ned to a speci�c

area, the behaviour of the model would be less uniform. Inducible disease is

analogous to the multi-stable behaviours seen in the ODE model and o�ers the

possibility of treatment leading to remission since we could move the system back

to health, as we discussed in detail in Chapter 3, in relation to the ODE model.

With the spatial model we can also better consider how the method of treatment

is likely to a�ect outcome, although a more accurate realisation of the synovial

�uid may be required.

The most important �nding of this modelling has been the importance of di�usion

coe�cients to disease initiation and progression. The structure of the cartilage tis-

sue means that di�usion is key to intracellular communication. In the previous
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chapter, we theorised that increased di�usion could increase clearance of Fn-fs,

slowing disease progression. Here we also see that decreased di�usion halts in-

tracellular communication, which also slows disease progression. The possibility

of changing di�usion coe�cients as a therapy for OA is not seen in the currently

available literature, and it may not be possible to signi�cantly change coe�cients

in vivo. However, it may be that changes to cyclic loading could o�er a way of

increasing the e�ective di�usion by increasing advection in the tissue. This could

be investigated as a way of slowing disease progression.

This modelling has showed that a spatial model introduces important parameters

that can not be considered in the ODE model, and gives a better disease measure

that is more easily compared to clinical measures. There are many di�erent di-

rections which we would like to explore by extending this model in future. One

important direction which would need signi�cant expansion is the inclusion of the

mechanical aspects of the joint in the model. This would allow us to consider both

mechanical damage and whether cyclic loading of the tissue could a�ect transport

of biochemicals through the tissue. We would also like to consider coupling the

model with a model of cytokine dynamics in the synovial �uid, to be a better

realisation of the cytokine dynamics through the whole joint. We have not fully

considered the e�ect of stochasticity in this model, and this is something we could

consider further in future.

Overall, the spatial model has demonstrated that whilst the ODE modelling is

useful in considering the behaviour of the cartilage in osteoarthritis there are

several advantages to using a spatial model. The additional complexity, while

making interpretation more di�cult, allows us to consider further possibilities for

therapies.
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Binding interactions in cytokine

mediated STAT signalling

5.1 Introduction

A group of proteins involved in signal transduction for some cytokine networks

is a family of transcription factors called Signal Transducers and Activators of

Transcription (Stat) [77]. Stat proteins are uniquely able to take signals directly

from the cytokine receptors on the cell membrane to the DNA within the nucleus.

An example of how this occurs is described below. There are seven di�erent Stats

identi�ed; they share similar structure but properties can vary quite signi�cantly,

particularly in relation to binding a�nities [78].

In this chapter we are particularly interested in Stat1 binding both alone and

in the presence of Stat3 dimers. Stat1 is activated by Interferon-γ (IFN-γ) as

part of the immune response. It is found in a wide range of mammalian cells and

is responsible for the regulation of over 200 di�erent genes. Activation of IFN-γ

receptors leads to tyrosine phosphorylation of Stat1 which then dimerises with

another Stat1 molecule and translocates to the nucleus. Tyrosine phosphorylation
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is the binding of a phosphate group to the tyrosine residue of the Stat1 molecule,

this process is described more fully in Chapter 1. Once in the nucleus the Stat1

dimers are able to bind to speci�c sequences of DNA and if the sequence is a

IFN-γ activated (GAS) site, transcription will occur [78]. Once bound to DNA,

Stat1 binds cooperatively with other Stat1 dimers at adjacent sites allowing it

to remain on DNA. Experimental results suggest that this cooperativity is vital to

Stat1 gene response. As well as binding to GAS sites the Stat protein may bind

to non-GAS sites where there is partial conservation of Stat protein sequence.

In this case the binding a�nity is low and the Stat is more likely to disassociate

than when it is bound to a GAS site [93]. The distribution of GAS sites in DNA

is not known precisely and distinction between GAS and non GAS site is unclear.

Figure 5.1: Schematic showing how STAT1 dimers bind to both GAS and non-
GAS sites on the DNA then cooperatively form dimers to remain.

Stat3 is activated by Interleukin-6 (IL-6) and like Stat1 will dimerise and translo-

cate to the nucleus. Stat3 is able to bind to the same sites as Stat1 since their

conformations are very similar. However, Stat3 binding to GAS sites will not

activate gene transcription. Stat3 is found mainly in dimer form but can rarely

form polymers [77].

One of our aims in this chapter is to comment on the importance of GAS site

position and binding strength to DNA binding and gene response. Early research

178



Chapter 5: Binding interactions in cytokine mediated STAT

signalling

into Stat1 suggested that adjacent GAS sites were required to facilitate poly-

merisation and nuclear retention. More recent research has shown that single

GAS sites are more abundant than these double sites, implying that having an

adjacent GAS site is not a necessity for retention. We aim to show with modelling

whether single GAS sites are su�cient for nuclear retention. We will also analyse

how the two Stat proteins, Stat1 and Stat3, with di�erent properties, co-exist

whilst competing for binding at the same sites. We develop here two models of

Stat binding, a cooperative binding model, and a competitive binding model.

5.2 Experimental Work

The importance of cooperativity to Stat1 gene expression has been demonstrated

using a Stat1 mutant cell line, F77A [11]. In this mutant an amino acid residue,

alanine, in the Stat1 N-domain is swapped for Phe77. Since cooperative bind-

ing occurs in the N-domain this inhibits cooperative binding. Figure 5.2a shows

a competition electrophoretic mobility shift assay (EMSA) experiment for both

F77A (KI) and wildtype Stat1 (ST). The plots show that for wildtype Stat1,

Stat1 dimers are mostly bound as tetramers (GAFx2) suggesting cooperative

binding is taking place. For F77A, Stat1 is bound mainly as dimers showing

that cooperative binding is inhibited. Stat1 only remains in the nucleus when

bound to DNA. Fluorescence recovery after photobleaching (FRAP) experiments

measuring nuclear mobility can be used to measure Stat1-DNA binding. This

involves making Stat1 molecules �uoresce by attaching a �uorescent tag, then

using light to bleach an area of the nucleus. Fluorescence is then measured as

the tagged Stat1 molecules move back into the bleached area giving a measure

of the mobility of Stat1. Figure 5.2b shows FRAP recovery times for both wild-

type and F77A Stat1. The mutant recovers quicker from bleaching than wildtype

suggesting that it is more mobile and not bound at tightly to the DNA. This com-
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bined with the results from Figure 5.2a show that inhibiting Stat1 cooperativity

impedes its ability to e�ectively bind to DNA.

Figure 5.2: a) Adapted from Fig 1 in [11]. Competition EMSA with tandem GAS
sites stimulated with IFN-γ for 60 mins. The wildtype is bound as tetramers to
the DNA probe whilst the mutant is bound predominantly as dimers. b) Adapted
from Fig 3.15 in [6]. FRAP recovery curves for the F77A mutant and wildtype
Stat. The mutant recovers more quickly from photobleaching suggesting it is not
bound as tightly to the DNA.

We are concerned in this modelling with Stat1-DNA binding to both single and

tandem GAS sites. In [11] the authors discuss their experimental work with the

F77A mutant, which has shown that cooperativity is bene�cial at both single and

tandem GAS sites. Figure 5.3 gives an example of two genes, one at a single GAS

site and one at a tandem GAS site. In both cases gene expression is lost when

cooperativity is inhibited. The authors found this with many of the genes they

looked at. Additionally, they found that of the genes known to be activated by

Stat1, 85% of these were single GAS sites rather than tandem GAS sites.

Finally, we considered how Stat3 interacts with Stat1 and a�ects gene expres-

sion. Figure 5.24 shows the gene expression of Stat1 after activation by IFN-γ.

In these experiments cell lines were stimulated with low levels of IFN-γ to produce

low concentrations of Stat1. The cells fell into three categories Stat3 KO, where
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Figure 5.3: Example of Stat recruitment to a genes with (a) tandem GAS sites
and (b) a single GAS site. These gels show that wildtype Stat1 binds to the gene
cooperatively in both cases. Adapted from [11].

no Stat3 was activated, IFN-γ stimulation only, resulting in a very low concen-

tration of Stat3 or IFN-γ and IL-6 stimulation, resulting in a high concentration

of activated Stat3. The gene response was recorded in each case and found to be

the same. All the cells were then boosted with high levels of IFN-γ, increasing the

Stat1 concentration. Stat1 High refers to Stat1 after additional boosting with

IFN-γ. When Stat1 is boosted to higher concentrations in the presence of Stat3,

the gene expression is much reduced which we theorise is due to Stat3 competing

for binding space with Stat1 [U. Vinkemeier, personal communication, 2013]. We

will test this with modelling.
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Figure 5.4: The gene expression of Stat1 with either no Stat3 (black) a low
amount of Stat3 through cross stimulation (grey) or high Stat3 (white) after
activation with IFN-γ and boosted with further IFN-γ to achieve higher Stat1
activation [U. Vinkemeier, personal communication 2013]. When we have low
Stat1 the presence of Stat3 makes no di�erence to Stat1 binding. At higher
concentrations of Stat1 the presence of Stat3 a�ects Stat1 binding.
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5.3 Cooperative Binding Model

5.3.1 Model Rationale

In this model we consider free Stat1 dimers binding to promoter regions of DNA

(Figure 5.5).

Figure 5.5: Diagram showing binding of Stat1 dimers to DNA in the cooperative
binding model. Activated Stat1 dimers can bind to both the non-GAS DNA
binding sites (1) and the GAS DNA binding sites (2). Adjacent bound Stat1
dimers can then polymerise (3). Stat1 dimers bind to the GAS and non-GAS
sites with di�erent a�nities.

We produce three variations of the model with two, three and four binding sites.

The two-site model replicates the typical in vitro situation where, generally, two

binding sites are analysed. This may either be a double GAS site or a single GAS

site adjacent to a non-GAS site. We also use a symmetric single GAS site and

symmetric double GAS site model where we have either a single or double GAS

site with a non-GAS site at either side (Figure 5.6). These models are closer to

the in vivo situation where the GAS sites exist on the DNA strand.

Once bound to DNA, Stat1 dimers may form polymers with Stat1 dimers on

adjacent sites leading to the formation of tetramers and longer polymers. We

allow dimers to unbind from DNA and from each other. Polymer units cannot
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Figure 5.6: Diagram showing some of the binding possibilities in the symmetric
single and double GAS site models. Activated STAT1 dimers can bind to either
the central GAS binding sites or the non-GAS biding sites. This situation is more
biologically feasible than the typical experimental two-site model.

unbind from DNA without �rst breaking down into dimers. The GAS sites have

di�erent binding rates to the non-GAS sites. We have three pairs of reaction rates,

each containing an on and o� rate. These are Stat-DNA binding rates at the

GAS site, Stat-DNA binding rates at the non-GAS site and polymerisation rates

(Figure 5.7). We neglect spatial dynamics, nuclear cycling and degradation in this

model.

We model the system using mass action kinetics. The reactions for the two site

model are,

DNA00 + S1

Kon
G

−−−−⇀↽−−−−
Koff

G
DNA10

DNA00 + S1

Kon
NG

−−−−−⇀↽−−−−−
Koff

NG
DNA01

DNA01 + S1

Kon
G

−−−−⇀↽−−−−
Koff

G
DNA11

DNA10 + S1

Kon
NG

−−−−−⇀↽−−−−−
Koff

NG
DNA11

DNA11

Kon
P

−−−−⇀↽−−−−
Koff

P
DNA1-1,

where S1 is the concentration of Stat1 dimers and the DNA sites are denoted
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Figure 5.7: Diagram showing model parameters used in all the cooperative binding
models. KG

on and K
NG
on are the binding rates for STAT-DNA binding at GAS and

non-GAS sites, respectively. Similarly, KG
off and K

NG
off are the unbinding rates at

the GAS and non-GAS sites. KP
on and KP

off are the binding and unbinding rates
for bound STAT polymerisation reactions.
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DNAXX , where each subscript represents one of the sites of the DNA segment.

The subscripts may take the value 0 or 1, representing an unbound site or a Stat1

bound site. For example, DNA01 is a length of DNA with a Stat1 dimer bound to

site 2, the non-GAS site. Cooperative binding results in dimer-dimer bonds and

these are denoted by a dash (-). Hence DNA1−1, denotes a length of DNA with a

Stat1 tetramer bound.

The symmetric single GAS site model has fourteen variables, and eighteen re-

versible reactions, composed of 12 Stat1-DNA binding reactions and 6 polymeri-

sation reactions as follows:

DNA000 + S1

Kon
NG1

−−−−−⇀↽−−−−− DNA100

DNA000 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA010

DNA000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA001

DNA100 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA110

DNA100 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA101

DNA010 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA110

DNA010 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA011

DNA001 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA101

DNA001 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA011

DNA110 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA111

DNA101 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA111

DNA011 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA111

DNA110

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−10

DNA011

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA01−1

DNA111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA11−1

DNA111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−11

DNA11−1

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−1

DNA1−11

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−1.

The symmetric double GAS site model has 32 reversible Stat-DNA binding re-

actions and 25 polymerisation reaction, which are listed in Appendix B. We use

Copasi [62] to generate ODEs from these reactions and to simulate the three sys-

tems. Algebraic analysis of these models is not practical due to the number of
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Parameter or variable Initial Conditions

DNA00, DNA000 & DNA0000 0.1nM

S1 varies

Kon
G1 2x1010M−1s−1

Koff
G1 100s−1

Kon
NG1 2x1010M−1s−1

Koff
NG1 varies

Koff
P 100s−1

Kon
P 1000-60000s−1

Resulting dissociation constants

KG
d 5x10−9M

KNG
d varies

KP
d (high) 0.0017-0.1

Table 5.1: Parameter variations and initial conditions in cooperative binding mod-
els

variables.

In the simulations to follow we vary KP
on, K

NG
off and the initial Stat1 concen-

tration. The other parameters and initial conditions are �xed (summarised in

Table 5.1). We start the simulations with only unbound DNA promoter frag-

ments, at a concentration of 0.1nM , and free STAT1 dimers, whose concentration

was varied in each simulation. The STAT-DNA binding rate used at the GAS

sites is 2x1010M−1s−1 and the unbinding rate is 100s−1. This gives the disso-

ciation constant a value of 5x10−9M, in line with experimental results [1]. The

STAT-DNA binding at the non-GAS sites retain the same on-rate as the GAS site,

2x1010M−1s−1. The polymerisation rate parameters are set to either high or low

cooperativity, with a 60-fold di�erence between the two groups in line with the

di�erence between the polymerisation rates of wild-type STAT1 and mutant with

a truncated N-domain [127]. The o�-rate in both cases is 100s−1 and the on-rate

is 1000s−1 in the low cooperativity case and 60000s−1 in the high cooperativity
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case.

In order to make comparison with experimental results we use several results

measures. The main measure we use is fractional GAS site occupancy, which we

believe to be proportional to gene response. In the two site and single GAS site

model this is the proportion of the DNA with the GAS site occupied by Stat1.

Since the double GAS site model is symmetric, the fractional GAS site occupancy

at each GAS site is identical. Hence, we can measure the results at either site. We

also break this down by concentration of dimers and larger polymers, since some

experimental methods are able to di�erentiate them by molecular weight.

5.3.2 Model Simulations

We know from experimental work that Stat1 binds well to DNA and is bound

both as dimers and polymers [1]. When cooperative binding is inhibited, via

mutation of the N-domain of the protein, DNA binding is much reduced [6]. We

can replicate this mutant in the model by reducing the polymerisation on-rate.

Experimental work suggests a 60-fold di�erence between wildtype and mutant

binding rates [U Vinkemeier, personal communication 2013]. Figure 5.8 shows a

time course simulation for the two site model with high cooperativity and low

cooperativity, with a 60-fold di�erence in the polymerisation on rate. The Stat-

DNA binding rates are the same on both sites, representing a double GAS site.

Here we see that fractional GAS site occupancy is reduced from 1 to approximately

0.35 by the altered polymerisation rate. This is in line with experimental results

that showed a reduction in nuclear mobility of Stat1 in the mutant compared to

wildtype (see Figure 5.2b) [6].

For these simulations we assume a �xed initial Stat1 concentration and a double

GAS site. It is likely that the Stat1 response, and therefore concentration, varies

both between cells and with di�erent stimuli. We also know that there are many
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Figure 5.8: Time course simulation of free Stat1 binding to DNA in double GAS
site (two site) cooperative model. When cooperativity is inhibited the fractional
occupancy of the GAS site is much reduced. We set Kon

P = 60000s−1 where
we have cooperativity and Kon

P = 1000s−1 to inhibit cooperativity. (Kon
G =

Kon
NG = 2x1010M−1s−1,Koff

G = Koff
NG = 100s−1,Koff

P = 100s−1)

functional single GAS sites with a non-GAS site adjacent. A typical di�erence

between the binding rate of a GAS and non-GAS site is 50-fold [11] so we simulated

the model with this di�erence for a range of initial Stat1 concentrations. Figure

5.9 shows the single GAS site simulations compared to a double GAS site in

the two site model. We can see that a single GAS site, as might be expected,

will attain less GAS site occupancy than the double GAS site for a given Stat1

concentration. However, we can also see that for any particular level of GAS site

occupancy for the double GAS site, the same level can be achieved at the single

GAS site, with a higher Stat1 concentration.

The two site model arti�cially limits the length of polymers to tetramers or smaller

there is no biological reason or evidence that longer polymers do not form. For

this reason it is more useful to consider the single or double GAS sites as part of a

longer chain, and for this we use the single GAS site model in a three-site chain and
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Figure 5.9: Plot of fractional GAS site occupancy against initial free STAT1
concentration for both single and double gas sites in the two site model. The plot
shows that single GAS sites can attain the same occupancy as double GAS site but
requires a greater Stat1 concentration. We set Kon

P = 60000s−1 where we have
cooperativity and Kon

P = 1000s−1 to inhibit cooperativity. In the single GAS
site simulations Koff

NG = 5000s−1; in the double GAS site simulation Koff
NG =

100s−1. (Kon
G = Kon

NG = 2x1010M−1s−1, Koff
G = 100s−1, Koff

P = 100s−1)

190



Chapter 5: Binding interactions in cytokine mediated STAT

signalling

the double GAS site model in a four-site chain. Repeating the previous simulations

in these models we see that the same behaviour is observed (Figure 5.10). Here for

a GAS site occupancy of either 90% or 99% in the single site model we required

roughly a three-fold increase in the initial Stat1 concentration compared to the

double GAS site model, regardless of whether we have cooperativity (Figure 5.11a).

Figure 5.10: Plot of fractional GAS site occupancy against initial free STAT1
concentration for both the symmetric single and symmetric double gas site models.
The plot shows that single GAS sites can attain the same occupancy as double
GAS site but requires a greater Stat1 concentration. We set Kon

P = 60000s−1

where we have cooperativity and Kon
P = 1000s−1 to inhibit cooperativity. In the

single GAS site simulations Koff
NG = 5000s−1; in the double GAS site simulation

Koff
NG = 100s−1. (Kon

G = Kon
NG = 2x1010M−1s−1, Koff

G = 100s−1, Koff
P =

100s−1)

Figure 5.11b, based on the data in Figure 5.10, also shows that the loss of cooper-

ativity would necessitate an 9-fold increase in Stat1 to reach the 90% occupancy

level. If a 99% occupancy level is required then the reduction in cooperativity

would require a 13-fold increase at the single gas site and a 22-fold increase at the

double GAS site.

In experimental models, boosting of Stat1 concentration by increasing the stim-
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(a) (b)

Figure 5.11: Plot of relative increasing in concentration required to compensate
for: (a) the presence of only a single GAS site rather than a double GAS site
with and without cooperativity at both 90% and 99% fractional GAS site oc-
cupancy; (b)the loss of cooperativity, at both 90% and 99% fractional GAS site
occupancy for both the symmetric single and symmetric double gas site models
We set Kon

P = 60000s−1 where we have cooperativity and Kon
P = 1000s−1 to

inhibit cooperativity. In the single GAS site simulations Koff
NG = 5000s−1; in the

double GAS site simulation Koff
NG = 100s−1. (Kon

G = Kon
NG = 2x1010M−1s−1,

Koff
G = 100s−1, Koff

P = 100s−1)

ulus can achieve up to approximately a three-fold increase. If this is indicative of

the range of variation of Stat1 levels we may see in vivo, it implies two conclu-

sions. Firstly, that double GAS sites are not required for e�ective gene response,

since single GAS sites can achieve the same levels of occupancy, within the range

of activated Stat1 concentrations we may achieve with boosting. Secondly, that

cooperativity is essential to gene response, since to achieve the required levels of

GAS site occupancy without cooperativity would require unrealistically high levels

of activated Stat1.

The �nal source of natural variation that we consider is the strength of the non-

GAS site compared to the GAS site. The non-GAS site in vivo will vary in

the number of matching base pairs, and less matching base pairs leads to lower

a�nity. Hence, the a�nity of this site will vary for di�erent genes. The di�erence

in KNG
off between the GAS and non-GAS sites could be as much as 200-fold [U

Vinkemeier, personal communication 2013]. Figure 5.12 shows the fractional GAS
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site occupancy against initial Stat1 concentration for a range of di�erent non-

GAS site binding strengths relative to the GAS site binding strength in both the

single and double GAS site models. As the non-GAS site binding rate gets weaker

in the single GAS site model the fractional GAS site occupancy reduces quite

signi�cantly. In the double GAS site model, the reduction in binding strength of

the non-GAS sites has much less e�ect; presumably the tetramerisation on the

GAS sites is su�cient to retain the GAS site occupancy. In the single site case,

the strength of the surrounding sites is much more important.

(a) (b)

Figure 5.12: Plot of fractional GAS site occupancy against initial free STAT1
concentration for di�ering strengths of non-GAS site binding in the (a) single
symmetric and (b) double symmetric GAS site models. The plots shows that in
the single GAS site model GAS site occupancy reduces much more with increasing
di�erence between GAS and non-GAS binding strength than in the double GAS
site case. (Kon

P = 60000s−1, Koff
P = 100s−1, Kon

G = Kon
NG = 2x1010M−1s−1,

Koff
G = 100s−1)
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5.4 Competitive Binding Model

5.4.1 Model Rationale

In the competitive binding model we extend the previous model to consider an

additional species of Stat protein, Stat3. Stat1 behaves exactly as in the simpler

model. Stat3, however, does not polymerise as readily. We therefore consider two

scenarios (i) no cooperative binding of Stat3 (also comparable to a Stat mutant

with cooperative binding inhibited) and (ii) a small amount of Stat3 cooperative

binding compared to Stat1. We have Stat3-DNA binding on- and o�- rates for

both GAS and non-GAS sites and Stat3 polymerisation on- and o� rates which

are minimal. Stat1 and Stat3 may bind to adjacent DNA sites, but cannot bind

with each other. We consider three di�erent lengths of DNA segment: two, three

and four (Figure 5.13). The reactions for each of these DNA lengths are listed in

Appendix B.

We refer to Stat1 homodimers as S1 and Stat3 homodimers as S3. The DNA

sites are denoted DNAXXX , where each subscript represents one of the sites of

the DNA segment. The subscripts may take the value 0, 1 or 3 representing

an unbound site, a Stat1 bound site or a Stat3 bound site respectively. For

example, DNA301, is a length of DNA with a Stat3 dimer bound to site 1 (from

left to right) and a Stat1 dimer bound to site 3. Cooperative binding results in

dimer-dimer bonds and these are denoted by a dash (-) hence DNA1-10, denotes a

length of DNA with a Stat1 tetramer bound.

We have little data on binding rates for Stat3. We set the concentration of DNA,

and the GAS and non-GAS on-rates to 1, and make all other concentrations and

rates relative to these on-rates.
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Figure 5.13: Diagram showing binding of Stat1 and Stat3 dimers to DNA in the
competitive binding model. Activated Stat1 and Stat3 dimers can bind to the
DNA binding sites and polymerise although Stat1 polymerises more readily than
Stat3. Three variants of the model are considered, with 2, 3 or 4 binding sites.
The GAS site position in each case is highlighted.
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5.4.2 Model Simulations

The experimental data suggest that at high concentrations of Stat1 the presence

of Stat3 dimers should reduce the amount of Stat1 that is bound to the GAS

site, whilst at low concentrations of Stat1 we should not see this e�ect (Figure

5.24b). We believe this to be due to the Stat3 dimers competing with Stat1 at

high concentrations to bind to DNA, hence interrupting the cooperative binding

of Stat1. If this is the case we should be able to �nd parameters that demonstrate

this behaviour.

No cooperative Stat3 binding

We ran several simulations for di�erent initial concentrations of Stat1 and Stat3

using the two site model. In each simulation the fractional occupancy of the GAS

site by Stat1 was recorded at steady state and plotted against Stat1 concentra-

tion (Figure 5.14).

We consider four di�erent initial concentrations of Stat3. The simulation with

a low Stat3 concentration represents a situation where only IFN-γ pathways are

stimulated leading to activation of Stat1 and a small amount of Stat3 activa-

tion (Stat3 is known to be weakly activated by IFN-γ). As Stat1 concentration

increases the occupation of the GAS site increases up to a limit close to one. Simu-

lations with a higher Stat3 concentration (Stat3 mid and high) represent a situ-

ation where both the IFN-γ and the IL-6 pathways are stimulated leading to both

Stat1 and Stat3 activation. In this situation, when the Stat1 concentration is

low, the response is close to that seen for Stat3 low. As the Stat1 concentration

increases the response seen deviates from the response at lower Stat3 concentra-

tions, and the fractional occupation of the GAS site is lower. When the Stat3

concentration is zero (Stat3 KO) the response curve is very similar to Stat3 low.

However at high Stat1 concentrations the response is slightly higher. When the
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Figure 5.14: Plot of fractional occupation of the DNA GAS site against the initial
concentration of free Stat1. The values are taken at steady state. The parameter
values are: KG1

off = 0.01; KNG1
off = 0.1; KG3

off = 0.0001; KNG3
off = 0.001; KP1

off =
0.001; KG1

on = KNG1
on = KG3

on = KNG3
on = KP1

on = 1; KP3
on = KP3

off = 0

cooperative binding of Stat1 is turned o� (KP1
on = 0) but all other parameters

kept the same the levels of GAS site occupation are similar to when cooperativity

is on (Figure 5.15 compared to Figure 5.14), suggesting that if polymers cannot

form, the GAS sites become occupied by Stat1 dimers. This is not the case in

vivo, since without polymerisation gene response is much reduced [6]. Hence it is

likely that the parameters we use here are not of similar magnitudes to those in

vivo.

In order for the model display behaviour as seen in vivo, the disassociation rate

of Stat1 binding to DNA needs to be increased further, and we do this by in-

creasing the parameters KG1
off and K

NG1
off . It is conventionally assumed that Stat3

and Stat1 dissociation constants are relatively similar, since their structure is so

similar. However, if we make Stat3 o� rates the same as Stat1 o� rates then

at steady state Stat1 dominates, since it is able to polymerise and we do not

see the results observed experimentally (Figure 5.16). Hence, we keep the Stat3
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Figure 5.15: Plot of Fractional occupation of the DNA GAS site against the
initial concentration of free Stat1. The values are taken at steady state. The
parameter values are: KG1

off = 0.01; KNG1
off = 0.1; KG3

off = 0.0001; KNG3
off = 0.001;

KP1
off = 0.001; KG1

on = KNG1
on = KG3

on = KNG3
on = 1; KP1

on = KP3
on = KP3

off = 0

dissociation rate small.

Figure 5.17 shows that increasing the Stat1 dissociation rate and maintaining

the Stat3 rate lowers the GAS site occupation when there is no cooperativity

as required (Figure 5.17a). An undesirable e�ect of this rate change is that the

di�erences between di�erent concentrations of Stat3 is greater even at low con-

centrations of Stat1 (Figure 5.17b).

We now look at increasing the number of DNA sites, and hence the maximum

length of Stat1 polymers. Using the same rate parameters as in the two-site model

and increasing the Stat1 and Stat3 concentrations proportionally to account for

the additional DNA binding sites, the results (Figure 5.18) can be compared with

Figure 5.17a and look quite similar.

However, with three sites we can consider higher concentrations of Stat3 (Figure

5.19), which will give a larger decrease in occupancy at higher Stat1 concentra-

tion. In the two site model, these larger concentrations resulted in large di�erences
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Figure 5.16: Plot of Fractional occupation of the DNA GAS site against the
initial concentration of free Stat1, with no cooperative binding and larger Stat-
DNA binding o� rates compared to Figure 5.15. The values are taken at steady
state. The parameter values are: KG1

off = 2; KNG1
off = 20; KG3

off = 2; KNG3
off = 20;

KP1
off = 0.001; KG1

on = KNG1
on = KG3

on = KNG3
on = KP1

on = 1; KP3
on = KP3

off = 0
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(a)

(b)

Figure 5.17: Plot of Fractional occupation of the DNA GAS site against the initial
concentration of free Stat1, with and without cooperative binding. The values
are taken at steady state. a) KP1

on = 1 b) KP1
on = 0. (The other parameter values

are: KG1
off = 2; KNG1

off = 20; KG3
off = 0.0001; KNG3

off = 0.001; KP1
off = 0.001;

KG1
on = KNG1

on = KG3
on = KNG3

on = 1; KP3
on = KP3

off = 0)
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Figure 5.18: Plot of Fractional occupation of the DNA GAS site against the
initial concentration of free Stat1 in the three site model. The values are taken
at steady state. The parameter values are: KG1

off = 2; KNG1
off = 20; KG3

off = 0.0001;
KNG3
off = 0.001; KP1

off = 0.001; KG1
on = KNG1

on = KG3
on = KNG3

on = 1; KP1
on = 1;

KP3
on = KP3

off = 0
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in occupancy at lower concentrations also. The di�erence in occupancy at lower

concentrations in the three site model is still greater than the experimental results

suggest (experimental results suggested the occupancy was unchanged), which

may point to there being some level of Stat3 polymerisation, as discussed in the

next section.

Figure 5.19: Plot of Fractional occupation of the DNA GAS site against the
initial concentration of free Stat1 in the three site model. The values are taken
at steady state. The parameter values are: KG1

off = 2; KNG1
off = 20; KG3

off = 0.0001;
KNG3
off = 0.001; KP1

off = 0.001; KG1
on = KNG1

on = KG3
on = KNG3

on = 1; KP1
on = 1;

KP3
on = KP3

off = 0

If we extend the model to four sites and again increase the Stat1 and Stat3

concentrations to account for the additional DNA binding site, the results (Figure

5.20) can be compared with Figure 5.18 and follow the same trend. With higher

concentrations of Stat3, Figure 5.21 can be compared with Figure 5.19 in the

three site model. These results show that the addition of another site increases

the di�erence in GAS site occupancy at higher Stat1 concentrations, but also

has a large e�ect on the di�erence at lower concentrations. Additionally at higher
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Stat3 concentrations the shape of the curve as Stat1 is increased also starts to

become sigmoidal, as the Stat3 concentration relative to Stat1 concentration

increases.

Figure 5.20: Plot of fractional occupation of the DNA GAS site against the initial
concentration of free Stat1 in the four site model. The values are taken at steady
state. The parameter values are: KG1

off = 2; KNG1
off = 20; KG3

off = 0.0001; KNG3
off =

0.001; KP1
off = 0.001; KG1

on = KNG1
on = KG3

on = KNG3
on = 1; KP1

on = 1; KP3
on = KP3

off =
0

So far the results have shown that introduction of Stat3 dimers does a�ect the

fractional occupancy of GAS sites by Stat1, due to reducing the amount of Stat1

cooperative binding. We have also shown that this has a much greater e�ect

at higher Stat1 concentrations than at lower concentrations where there is less

competition for binding sites. However, the reduction in occupancy that we see at

lower Stat1 concentrations is still of greater magnitude than experimental results.

This may be due the assumption we have made that there is no cooperative binding

of Stat3. Cooperative binding of Stat3 would increase the time that Stat3

remains on DNA and so could potentially account for this discrepancy. In the

next section we assume a small amount of Stat3 cooperative binding.
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Figure 5.21: Plot of fractional occupation of the DNA GAS site against the initial
concentration of free Stat1 in the four site model. The values are taken at steady
state. The parameter values are: KG1

off = 2; KNG1
off = 20; KG3

off = 0.0001; KNG3
off =

0.001; KP1
off = 0.001; KG1

on = KNG1
on = KG3

on = KNG3
on = 1; KP1

on = 1; KP3
on = KP3

off =
0
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Minimal cooperative Stat3 binding

The simulations from the previous section were repeated with the addition of a

small amount of cooperative Stat3 binding. The results for the two site model

(Figure 5.22) show that this increases the fractional occupation of the GAS site by

Stat1 slightly, decreasing the e�ect seen in Figure 5.17a. Whilst this may seem

counterintuitive, a close look at the di�erences in each variable provides the reason

for this result. With no cooperative binding of Stat3, the Stat3 molecules are

free to move on and o� the DNA and spend a proportion of the time bound to

DNA with an adjacent Stat1 molecule which restricts polymerisation of Stat1.

With the addition of cooperative binding of Stat3, the free Stat3 molecules are

more likely to become tightly bound to the DNA in the form of Stat3 tetramers.

Hence there are less Stat1-Stat3 bound DNA sites, increasing the opportunities

for Stat1 cooperative binding since there are more unbound double DNA sites.

Importantly, at lower Stat1 concentrations, the curves of Fig 5.22 are pulled

closer together, and resemble more closely the response we see in the experimental

results. This is quite subtle in the two site model but more obvious as the number

of sites increases.

Adding cooperative binding of Stat3 into the three site model (Figure 5.23), we

see these properties are displayed here as well. The curves are pulled together at

low Stat1 concentrations and pulled up slightly at higher Stat1 concentrations

compared to the situation when we have no cooperative Stat3 binding. However,

since the reduction in fractional occupancy between low and high Stat3 is greater

in the three site model, this increase less pronounced.

If we compare the results from this model to the experimental results (Figure 5.24)

we now see that this model can explain the results gained from the experimental

work.

Continuing to the four site model (Figure 5.25), again we get the same e�ect,
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Figure 5.22: Plot of fractional occupation of the DNA GAS site against the initial
concentration of free Stat1, with cooperative binding of both Stat1 and Stat3.
The values are taken at steady state. The parameter values are: KG1

off = 2;
KNG1
off = 20; KG3

off = 0.0001; KNG3
off = 0.001; KP1

off = 0.001; KP3
off = 0.01; KG1

on =
KNG1
on = KG3

on = KNG3
on = 1; KP1

on = KP3
on = 1
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Figure 5.23: Plot of fractional occupation of the DNA GAS site against the initial
concentration of free Stat1, with cooperative binding of both Stat1 and Stat3.
The values are taken at steady state. The parameter values are: KG1

off = 2;
KNG1
off = 20; KG3

off = 0.0001; KNG3
off = 0.001; KP1

off = 0.001; KP3
off = 0.01; KG1

on =
KNG1
on = KG3

on = KNG3
on = KP1

on = KP3
on = 1
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Figure 5.24: a)Plot of fractional occupation of the DNA GAS site against a low
and high concentration of Stat1 for three di�erent Stat3 concentration, with
cooperative binding of both Stat types. (Parameters as in Figure 5.23). b) Plot
of experimental results.
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however this time the di�erence achieved in moving from three to four sites is

minimal. This is likely to be due to the fact that the binding of polymers involving

a GAS site is more important than binding to a non-GAS site, and the four-site

model only allows additional non-GAS site bonds.

Figure 5.25: Plot of fractional occupation of the DNA GAS site against the initial
concentration of free Stat1, with cooperative binding of both Stat1 and Stat3.
The values are taken at steady state. The parameter values are: KG1

off = 2;
KNG1
off = 20; KG3

off = 0.0001; KNG3
off = 0.001; KP1

off = 0.001; KP3
off = 0.01; KG1

on =
KNG1
on = KG3

on = KNG3
on = KP1

on = KP3
on = 1

So far we have looked at a narrow range of parameters that display the behaviours

similar to those seen in vitro. We have found that the Stat-DNA binding of Stat3

must be much stronger than the Stat-DNA binding of Stat1. Another possible

explanation of the experimental results is that Stat1 will only initiate a gene

response if a tetramer is bound to the binding sites. We will consider this scenario

in the next section as we look at a wider parameter range.
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Parameter Exploration

Since Stat1 and Stat3 both actively stimulate transcription of genes, we expect

there must be conditions which allow Stat1 and Stat3 to both be bound on the

DNA. The binding rates may vary from site to site. We will look at how changes

in the parameters in the model a�ect the binding of both these proteins. We

will �rst at the two-site model in which only Stat1 is able to bind cooperatively.

We will initially set the GAS and non-GAS binding rates to be the same. In the

case of Stat1 we will now consider the gene response to be proportional to the

tetramer concentration. For Stat3 we will consider the gene response to be the

concentration of Stat3 bound to the �rst DNA site regardless of what is bound

to the second site.

We set the DNA binding rate parameters to be the same and start with equal

concentrations of Stat1 and Stat3. Figure 5.26a shows that increasing the co-

operativity of Stat1 is bene�cial to the cooperative binder since it results in

a greater gene response across all DNA binding rates. For the non-cooperative

binder (Stat3), cooperativity of a competitor is detrimental to gene response,

Figure 5.26b.

There are two ways in which the concentration can be increased, either increasing

the total concentration whilst keeping the Stat1:Stat3 ratio the same or changing

the relative concentrations. Figure 5.27 shows the e�ect of increasing the total

initial concentration of free STAT dimers. At low binding strengths, increasing

the concentration is marginally bene�cial to both Stat1 and Stat3, since there

is little competition for DNA sites. As the DNA binding strength increases the

higher concentrations are still bene�cial to the cooperative binder, but become

detrimental to the non-cooperative binder.

We now keep the total concentration the same and change the Stat1:Stat3 ratio,

Figure 5.28. As might be expected, Stat1 is at an advantage when its concentra-
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Figure 5.26: Plots of Stat1 and Stat3 gene response against the DNA binding
strength (DNA on rate / DNA o� rate) for three increasing levels of Stat1
cooperativity. The cooperativity binding strengths (KP1

on /K
P1
off ) are 1000 (Strong),

10 (Moderate) and 1 (Weak). The initial conditions are S1=3, S3=3, DNA00=1.
The values are taken at steady state.
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Figure 5.27: Plots of Stat1 and Stat3 gene response against the DNA binding
strength (DNA on rate / DNA o� rate) for increasing initial concentrations of
Stat1 and Stat3. The cooperativity binding strength in all cases is 10. The
values are taken at steady state.
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Figure 5.28: Plots of Stat1 and Stat3 gene response against the DNA binding
strength (DNA on rate / DNA o� rate) for di�erent proportions of Stat1 and
Stat3. The cooperativity binding strength in all cases is 10. The values are taken
at steady state.

tion is dominant and similarly for Stat3.

The two types of Stat proteins elicit the greatest gene response in di�erent en-

vironments. The cooperative Stat, works best in high concentrations, regardless

of the concentration of non-cooperative Stat. However, if the concentration of

the non-cooperative binder is low this increases the gene response further. The

non-cooperative Stat gene response is more dependent on the concentration of

the cooperative binder. The gene response is greatest where this is low. Where the

DNA binding strength is low this relationship is slightly changed since increasing

the concentration of both Stats is bene�cial to Stat3, however increasing Stat3

concentration whilst keeping Stat1 low results in a greater gene response.

So far we have considered only situations where the DNA binding strength of the

two Stat competitors is similar. Whilst we expect that generally the binding

strength will be of similar order, natural variation does exist, particularly on sub-

optimal sites where conservation of the genetic code is lower. We will now look

at situations where either Stat1 or Stat3 have higher binding rates. Trends in

the data show that the order of di�erence in the two binding rates is important in
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determining the gene response. When the Stat3-DNA binding strength is larger

than the Stat1 DNA binding strength the Stat1 gene response is much reduced

(Figure 5.29).
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Figure 5.29: Plot of Stat1 gene response against the DNA binding strengths
(DNA on rate / DNA o� rate) of Stat1 and Stat3. The cooperativity binding
strength in all cases is 10 and the initial conditions are S1=3, S3=3, DNA00=1.
The values are taken at steady state.

Similarly, if the Stat1 DNA binding strength is larger than the Stat3 DNA

binding strength the Stat3 gene response is much reduced (Figure 5.30). This

agrees with the results from Section 5.4.2 which shows that when the binding rates

are di�erent Stat1 gene response is reduced in the presence of Stat3.

So far in this section we have kept the DNA binding rates the same on both sites

i.e. treating them as tandem GAS sites. As mentioned previously, a�nity varies

between sites and it is likely that the high a�nity GAS site is next to a site of

lower a�nity, since double GAS sites are rare. Figure 5.31 shows the e�ect that

di�ering site a�nity has on Stat1 gene response.
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Figure 5.30: Plot of Stat3 gene response against the DNA binding strengths
(DNA on rate / DNA o� rate) of Stat1 and Stat3. The cooperativity binding
strength in all cases is 10 and the initial conditions are S1=3, S3=3, DNA00=1.
The values are taken at steady state.
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Figure 5.31: Plot of Stat1 gene response against the DNA binding strengths
(DNA on rate / DNA o� rate) of GAS and non-GAS sites. Here the DNA binding
strength of Stat1 and Stat3 are equal. The cooperativity binding strength is 10
and the initial conditions are S1=3, S3=3, DNA00=1. The values are taken at
steady state.
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The gene response is greatest when the DNA binding strength to either site is

greater than the cooperativity strength. As the binding strength to either site

decreases the gene response goes down. In the case of Stat3 gene response (Fig-

ure 5.32), if the non GAS site binding strength is greater than the cooperativity

strength, then the gene response is at a maximum for strong GAS site binding

and decreases as the binding strength decreases.
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Figure 5.32: Plot of Stat3 gene response against the DNA binding strengths
(DNA on rate / DNA o� rate) of GAS and non-GAS sites. Here the DNA binding
strength of Stat1 and Stat3 are equal. The cooperativity binding strength is 10
and the initial conditions are S1=3, S3=3, DNA00=1. The values are taken at
steady state.

However, unlike Stat1, when the non-GAS site binding strength is less than the

cooperativity binding strength, the gene response increases. Stat3 gene response

is less dependent on the non-GAS site than Stat1 so a low a�nity site is ad-

vantageous as it reduces Stat1's ability to compete as well as increasing the

concentration of free Stat3. This means that Stat1 is likely to be more e�ective

where there are multiple high a�nity sites, whereas Stat3 appears to be better
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adapted to single high a�nity sites.

5.5 Discussion

In this chapter we have developed models of the binding of STAT transcription

factors to DNA. We have looked at Stat1 alone and in competition with Stat3.

With appropriate parameters this model can be generalised to any Stat protein.

We had four aims in this chapter. Firstly, we wanted to clarify the importance of

tandem GAS sites to Stat1 gene response. Secondly, we wanted to con�rm that

cooperativity increased DNA binding and suggest rates that allow this. Thirdly,

we wanted to show that Stat3 reduces the gene response of Stat1 by reducing

cooperative binding. Finally, we wanted to suggest conditions which favour each

of these species.

In Section 5.3 we showed that we could reproduce the results seen experimentally.

Namely, high fractional occupancy of the GAS site with cooperativity, and little

occupancy where cooperativity is blocked. We have shown that is it not necessary

to have double GAS sites for Stat-DNA binding. The amount of binding, even

to single GAS sites (those with poorly conserved neighbours), can be high given a

large enough Stat1 concentration. This �nding supports recent research suggest-

ing that most of the Stat1 binding sites responsible for gene response are single

GAS sites. We also showed that in the absence of cooperativity, Stat1 cannot

e�ectively bind to DNA.

In Section 5.4 we produced three models of competitive binding of Stat proteins,

each with a di�erent number of binding sites. If we consider the di�erence in

fractional occupancy of the GAS site by Stat1, between Stat3 at a high level and

Stat3 at low level, this di�erence increases as the number of DNA sites increases.

The change from three sites to four is less than that of two sites to three but
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this is expected since it does not involve additional GAS site binding. We would

expect this trend to continue up to a limit as the number of sites increases, since

as the length of the chain increases so does the probability of a bond in the chain

breaking resulting in two smaller polymers.

It has also emerged that with a small amount of Stat3 polymerisation the di�er-

ences in occupancy at lower Stat1 concentration is reduced. This e�ect is most

signi�cant in the four site model, and is important in achieving results similar to

experimental results. This may suggest that Stat3 does form polymers on DNA

in vivo, albeit less frequently that Stat1. This also agrees with experimental work

that shows that Stat3 tetramers can form on GAS sites [6].

The models used here require Stat3 to have a smaller dissociation rate than

Stat1, and this is a restriction which has not been found experimentally. In

the simple models we have used here there appears not to be a way to achieve

competition between Stat1 and Stat3 where Stat1 is capable of cooperative

binding, without Stat3 having a smaller dissociation rate. This suggests that

either the dissociation rates in vivo are di�erent, as we have used here, or there

are more complex interactions involved than we have modelled here.

We propose here that although cooperativity may be necessary for Stat1 to bind

remain bound to DNA, double or tandem GAS sites are not required for this

cooperativity. However, under competitive conditions, such as the presence of

Stat3, tandem GAS sites are extremely bene�cial to Stat1. We believe that

Stat3 interferes with the cooperative binding of Stat1 when the concentration

of Stat1 creates competition for GAS sites. Although lack of cooperativity is

disadvantageous to Stat3, there are situations where it can bind well and co-exist

with Stat1. Namely, where we have only single high a�nity GAS sites, and where

Stat3 concentration greatly exceeds Stat1 concentration.
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Arthritic diseases a�ect millions of individuals worldwide and cause signi�cant

pain, disability and loss of independence. As well as the large e�ect this has on

the individual's quality of life it also places a large burden on health and social

services. Research into the pathobiology and treatment of these diseases is in the

relatively early stages and whilst disease modifying treatments are available in

some cases, most notably RA, there is not a full enough understanding of disease

dynamics to approach treatment systematically.

A range of cytokines have been observed to be raised in arthritic disease. Experi-

mental cell biology has shown that these cytokine pathways are important in the

mediation and progression of disease. However, the nature of the dynamics be-

tween cytokines, particularly in vivo, is still largely unclear. One of the reasons for

this is that the dynamics and the interactions of cytokines are di�cult to capture

experimentally, in part due to their short half-life. Therapies targeting cytokine

pathways in arthritic disease have been partially successful for RA, but for OA

have remained elusive. The purpose of this research has been to use mathemati-

cal modelling to clarify how di�erent cytokine groups interact in arthritic disease.

We have considered whether variations in cytokine production rate parameters

217



Chapter 6: Summary and Future Directions

could lead to arthritic disease and progression and whether the dynamics of the

cytokine interactions could identify treatment targets or strategies not previously

considered.

We initially looked at a two variable model of cytokine dynamics where we grouped

cytokines into pro- and anti-in�ammatory groups (Chapter 2). We consider this to

be a feasible model for cytokine dynamics in the synovium and hence an appropri-

ate model for cytokine dynamics in RA. We found that the positive and negative

feedback mechanisms in this model lead to complex dynamics, with monostable,

bistable and oscillatory behaviours. We identi�ed that where there is bistable

behaviour there is the possibility of inducing remission with an appropriate treat-

ment strategy. E�ective treatment was shown to depend not only on dose size but

also on dose timing and interval, and the optimum was not necessarily the high-

est dose over the shortest interval. We found that in some cases counter-intuitive

treatment strategies worked well, such as increasing dose interval or increasing the

concentration of pro-in�ammatory cytokine. These types of treatment strategies

may not have been considered clinically, and o�er new opportunities for consider-

ation.

To make the model of the synovium applicable to the cartilage we extended it

to take into account two other major mediators of arthritic disease, MMPs and

�bronectin fragments (Chapter 3). In this model we had two negative and two

positive feedback networks, giving rise to both monostable and multi-stable be-

haviour. In contrast to the two variable synovium model, we found that most

of the parameter space we explored contained disease states, which were either

monostable or bistable. This is in line with the higher prevalence of OA than RA.

We considered treatment targets for this extended model, and found that single

target therapies aimed at reducing pro-in�ammatory cytokine or MMP concen-

trations were ine�ective, a result also observed in clinical trials. Simulations of

therapies increasing anti-in�ammatory cytokines were e�ective but required large
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dose sizes. We found that combined target therapies were e�ective both at induc-

ing remission in multi-stable cases, and slowing progression in monostable disease.

We suggested that increasing cytokine clearance rates, for example through exer-

cise, could be bene�cial as a complimentary therapy alongside other treatments.

To consider how the spatial structure of cartilage a�ects the cytokine dynamics

that we had observed in the ODE models we developed a spatial model of carti-

lage in the Compucell3D modelling environment (Chapter 4). This allowed us to

model the di�usion of cytokines between chondrocytes and through the tissue, and

therefore investigate how chondrocyte spacing and di�usion rates a�ects the dy-

namics. We found that with slow di�usion the cells were less able to communicate

(through cytokine signalling) and hence displayed less uniform behaviour. This

resulted in some chondrocytes secreting only low levels of cytokines (and therefore

considered healthy) whilst others secreted higher levels of cytokines (considered to

be a pathological response). When the di�usion rate was faster the behaviour of

the cells was more uniform. It is possible that this behaviour could be exploited to

optimise treatments, for example increasing di�usion or advection so that treat-

ments delivered to one area of cartilage would result in a tissue-wide response, or

decreasing di�usion so that disease type behaviour is isolated in small areas of the

tissue. This type of treatment strategy may be worthy of further modelling and

consideration.

Whilst we have mainly focused on cytokine dynamics in this work, the pathway

from signalling to cartilage degradation is much more complex with many down-

stream signalling factors. As with cytokines the dynamics of many of these factors

are not yet fully understood. We have looked at one example of these downstream

signalling factors, the Stat family of transcription factors (Chapter 5). In col-

laboration with experimentalists, we have considered a speci�c aspect of Stat

proteins, the binding of Stat dimers to DNA. We were able to show that cooper-

ativity between bound Stat1 dimers decreased the mobility of Stat1 even where
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when there was a single high a�nity site (GAS sites). We also showed that the

presence of Stat3 interfered with the ability of Stat1 to bind cooperatively at

high concentrations due to competition for binding sites. These �ndings helped to

support the �ndings of the experimental work. This work also demonstrated that

whilst we focus on cytokine dynamics in relation to OA initiation and progression,

there are many other aspects of cartilage remodelling and degradation that could

impact the condition.

Modelling of cytokines in terms of arthritic disease is a novel research area and

the models in this thesis have shown conceptually that such models can repli-

cate some of features of the behaviour seen in vivo and hence give insight into

treatment strategies. However, this work is at a very early stage and re�nement is

needed for these models. The simplest two-variable model o�ers some insights into

treatment of RA, but to be able to translate this into clinical practice we would

need to be able to link the model parameters to measurable disease markers in

individuals. Although in this work we have considered this model in the context of

cytokine interactions in the synovium, cytokines are used throughout the body. It

is entirely possible that this model could be applied to a range of conditions where

cytokines play a role, with model extensions such as those used for OA applied

where necessary. Conditions such as asthma, eczema, diabetes and lupus are all

known to have some level of cytokine involvement.

The four-variable cartilage model concentrates on what we consider the four most

important variables in cartilage degradation. However there are other important

factors that could be considered such as nitric oxide and Prostaglandin E2, which

have been shown to play a role in cartilage breakdown [5]. The spatial model of

cartilage degradation should be expanded to consider the a�ects of the mechan-

ical properties of the tissue. This needs to be considered at the tissue level, for

example, the di�ering chondrocyte densities, material properties and proximity to

bone in di�erent cartilage zones may a�ect how the tissue responds to treatment.
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Additionally, the mechanical properties of the tissue need, to be considered at

joint level, by including joint morphology and loading. Finite element modelling

would be an appropriate methodology to use to include these joint level extensions.

The current model could also be extended to include a more accurate representa-

tion of synovial �uid and bone, which would enable the theoretical aspect of drug

placement to be considered.

This work has demonstrated that mathematical models of arthritis disease could

help to guide experimental research into treatment strategies and give a greater

understanding of the disease dynamics. Future research with collaboration with

both cell biologists and clinicians has the potential to make progress in our under-

standing of OA, leading to the development of disease modifying therapies, that

could transform the experiences of individuals with this debilitating condition.
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Appendix A

Hill Coe�cients in the Pro- and

anti-in�ammatory cytokine model

So far we have taken all the Hill coe�cients (m1, m2 and m3) to be 2. In this

section we will justify this choice by examining the some other possibilities and

considering the e�ect these would have on the model.

dp

dt
= −γpp+

1

1 + am2

(
Pbp + Ppp

pm1

1 + pm1

)
(A.0.1)

da

dt
= −a+ App

pm3

Aph + pm3
(A.0.2)

The Hill coe�cients from the functions φ(p)ψ(p) and θ(a) also appear in the

nondimensionalised equations in the form of equations (A.0.1)-(A.0.2). There

are three main alternatives to the assumption we have made, �rstly that all the

coe�cients are the same but are some value greater than 2, secondly that all the

coe�cients are 1 or �nally that we have some combination of di�erent coe�cients

for the di�erent terms in the model.
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Appendix A: Hill Coefficients in the Pro- and anti-inflammatory

cytokine model

Hill Coe�cients m1,m2,m3 > 2

For coe�cients greater than two the qualitative shape of the Hill function does

not change, only its steepness. This means that for m1,m2,m3 > 2 the nullclines

of the system will cross in a similar manner, and we expect qualitatively similar

behaviour, with the stability of the steady states and the types of bifurcations

unchanged. The only change we would expect is alterations in the parameters

values at which the various bifurcations occur.

Hill Coe�cient m1 = m2 = m3 = 1

Since the shape of the Hill function when the coe�cient is 1 is di�erent from when

it is greater than 1, the behaviour of the model is also likely to change. In this

situation, the model equations become,

dp

dt
= −γpp+

1

1 + a

(
Pbp + Ppp

p

1 + p

)
, (A.0.3)

da

dt
= −a+ App

p

Aph + p
, (A.0.4)

which gives the nullclines,

a = N1(p) =
Appp

Aph + p

a = N2(p) =
p(Pbp + Ppp) + Pbp

γpp(1 + p)
− 1.

As in the original model, N1 is monotonically increasing. However, now N2 is

monotonically decreasing in p and hence there can be no more than a single steady

state.
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Appendix A: Hill Coefficients in the Pro- and anti-inflammatory

cytokine model

Mixed Hill Coe�cients

So far we have only considered situations where all three Hill coe�cients are ≥ 2

or equal to 1, but the coe�cients are independent and could have di�erent values.

Since values greater than 2 behave the same as a value of 2, we only need to

consider combinations of 1 and 2. Also, if we look at the nullcline N1 it is a

monotonically increasing function regardless of the value of m3, so, we need only

look at two situations: m1 = 2, m2 = m3 = 1 and m1 = 1, m2 = 2, m3 = 1.

In the �rst case, when m1 = 2, m2 = m3 = 1, N2 becomes

a = N2(p) =
p2(Pbp + Ppp) + Pbp

γpp(1 + p2)
− 1.

This two real, positive turning points, meaning that we can have either one or

three steady states. This exhibits similar behaviour to the original model except

that the steady states tend to occur at larger values of both p and a.

In the second case, when m1 = 1, m2 = 2 and m3 = 1, N2 becomes,

a = N2(p) =
√
f(p)

where

f(p) =
p(Pbp + Ppp) + Pbp

γpp(1 + p)
− 1.

f(p) is monotonically decreasing, so that N2 must also be monotonically decreas-

ing in the positive quadrant, and can cross N1 only once giving, exactly one

steady state. This situation is similar to the case when all the coe�cients are 1

and exhibits similar behaviour. Essentially, m1 must be greater than 1 to give

bifurcations and bistability in the model, i.e. strong feedback in p is required.
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Appendix B

Stat signalling model reactions

B.0.1 Cooperative Four Site Model

DNA0000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0001

DNA0000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0010

DNA0001 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0011

DNA0010 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0011

DNA0000 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA0100

DNA0100 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0101

DNA0001 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA0101

DNA0010 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA0110

DNA0100 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0110

DNA0011 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA0111

DNA1001 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1011

DNA1010 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1011

DNA1000 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA1100

DNA0100 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1100

DNA0101 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1101

DNA1001 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA1101

DNA1100 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1101

DNA0110 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1110

DNA1010 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA1110

DNA1100 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1110
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Appendix B: Stat signalling model reactions

DNA0101 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0111

DNA0110 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0111

DNA0000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1000

DNA0001 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1001

DNA1000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1001

DNA1000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1010

DNA0010 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1010

DNA0011 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1011

DNA011−1

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA01−1−1

DNA1100

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−100

DNA1101

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−101

DNA1110

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−110

DNA0111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA01−11

DNA1110

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA11−10

DNA1−110

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−10

DNA11−10

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−10

DNA1111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−111

DNA1111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA11−11

DNA0111 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1111

DNA1011 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA1111

DNA1101 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1111

DNA1110 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1111

DNA0011

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA001−1

DNA0110

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA01−10

DNA0111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA011−1

DNA01−11

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA01−1−1

DNA1111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA111−1

DNA1−111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−11−1

DNA111−1

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−11−1

DNA1−111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−11

DNA11−11

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−11

DNA11−11

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA11−1−1

DNA111−1

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA11−1−1

DNA1−1−11

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−1−1

DNA1−11−1

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−1−1

DNA11−1−1

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−1−1
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Appendix B: Stat signalling model reactions

B.0.2 Competitive Three Site Model

DNA000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA100

DNA000 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA010

DNA000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA001

DNA100 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA110

DNA100 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA101

DNA010 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA110

DNA010 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA011

DNA001 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA101

DNA001 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA011

DNA110 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA111

DNA101 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA111

DNA011 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA111

DNA000 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA300

DNA000 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA030

DNA000 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA003

DNA300 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA330

DNA300 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA303

DNA003 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA303

DNA030 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA330

DNA030 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA033

DNA003 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA033

DNA330 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA333

DNA303 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA333

DNA033 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA333

DNA300 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA310

DNA100 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA130

DNA300 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA301

DNA100 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA103

DNA030 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA130

DNA010 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA310

DNA030 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA031

DNA010 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA013

DNA003 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA103

DNA001 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA301

DNA003 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA013

DNA130 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA131
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DNA001 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA031

DNA310 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA311

DNA310 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA313

DNA130 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA133

DNA301 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA311

DNA301 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA331

DNA113

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−13

DNA110

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−10

DNA011

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA01−1

DNA111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA11−1

DNA11−1

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−1

DNA1−11

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−1

DNA311

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA31−1

DNA111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−11

DNA103 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA133

DNA103 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA113

DNA031 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA331

DNA031 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA131

DNA013 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA313

DNA013 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA113

DNA330

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−30

DNA033

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA03−3

DNA333

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA33−3

DNA333

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−33

DNA33−3

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−3−3

DNA3−33

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−3−3

DNA133

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA13−3

DNA331

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−31
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B.0.3 Competitive Four Site Model

DNA0000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0001

DNA0000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0010

DNA0001 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0011

DNA0010 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0011

DNA0003 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0013

DNA0030 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0031

DNA0000 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA0100

DNA0100 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0101

DNA0001 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA0101

DNA0003 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA0103

DNA0010 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA0110

DNA0100 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0110

DNA0011 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA0111

DNA0101 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0111

DNA0110 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0111

DNA0013 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA0113

DNA0103 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0113

DNA0030 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA0130

DNA0130 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0131

DNA0031 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA0131

DNA0033 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA0133

DNA0300 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0301

DNA0300 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0310

DNA0310 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0311

DNA0301 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0311

DNA0303 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0313

DNA0330 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA0331

DNA0000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1000

DNA0001 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1001

DNA1000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1001

DNA0003 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1003

DNA1000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1010

DNA0010 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1010

DNA0011 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1011

DNA1001 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1011

DNA1010 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1011

DNA0013 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1013

DNA1003 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1013

DNA0031 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1031

DNA0030 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1030
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DNA1030 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1031

DNA0033 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1033

DNA1000 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA1100

DNA0100 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1100

DNA0101 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1101

DNA1001 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA1101

DNA1100 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1101

DNA0103 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1103

DNA1003 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA1103

DNA0110 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1110

DNA1010 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA1110

DNA1100 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1110

DNA0111 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1111

DNA1011 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA1111

DNA1101 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1111

DNA1110 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1111

DNA0113 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1113

DNA1013 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA1113

DNA0130 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1130

DNA1103 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1113

DNA1030 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA1130

DNA0131 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1131

DNA1031 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA1131

DNA1130 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1131

DNA0133 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1133

DNA1033 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA1133

DNA0300 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1300

DNA0301 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1301

DNA1300 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1301

DNA0303 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1303

DNA0310 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1310

DNA1300 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1310

DNA0311 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1311

DNA1301 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1311

DNA1310 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1311

DNA0313 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1313

DNA1303 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1313

DNA0331 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1331

DNA0333 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1333

DNA1330 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1331
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DNA3000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3001

DNA3000 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3010

DNA3001 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3011

DNA3010 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3011

DNA3003 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3013

DNA3030 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3031

DNA3000 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA3100

DNA3001 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA3101

DNA3100 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3101

DNA3003 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA3103

DNA3010 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA3110

DNA3100 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3110

DNA3011 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA3111

DNA3101 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3111

DNA3110 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3111

DNA3013 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA3113

DNA3103 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3113

DNA3030 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA3130

DNA3130 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3131

DNA3031 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA3131

DNA3033 + S1

Kon
G1

−−−−⇀↽−−−−
Koff

G1
DNA3133

DNA3300 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3301

DNA3300 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3310

DNA3301 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3311

DNA3310 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3311

DNA3303 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3313

DNA3330 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA3331

DNA0330 + S1

Kon
NG1

−−−−−⇀↽−−−−−
Koff

NG1
DNA1330

DNA0000 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0003

DNA0010 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0013

DNA0000 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0030

DNA0001 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0031

DNA0030 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0033

DNA0003 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0033

DNA0100 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0103

DNA0110 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0113

DNA0100 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0130

DNA0101 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0131

DNA0103 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0133

DNA0130 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0133
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DNA0000 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA0300

DNA0001 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA0301

DNA0300 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0303

DNA0003 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA0303

DNA0010 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA0310

DNA0011 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA0311

DNA0013 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA0313

DNA0310 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0313

DNA0300 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0330

DNA0030 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA0330

DNA0031 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA0331

DNA0301 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0331

DNA0033 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA0333

DNA0303 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0333

DNA0330 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA0333

DNA1000 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1003

DNA1010 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1013

DNA1000 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1030

DNA1003 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1033

DNA1001 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1031

DNA1030 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1033

DNA1100 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1103

DNA1110 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1113

DNA1100 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1130

DNA1101 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1131

DNA1103 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1133

DNA1130 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1133

DNA1000 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA1300

DNA1001 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA1301

DNA1003 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA1303

DNA1300 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1303

DNA1010 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA1310

DNA1011 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA1311

DNA1013 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA1313

DNA1310 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1313

DNA1030 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA1330

DNA1300 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1330

DNA1031 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA1331

DNA1033 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA1333

DNA1301 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1331
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DNA1303 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1333

DNA1330 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA1333

DNA0000 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3000

DNA0001 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3001

DNA0003 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3003

DNA3000 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3003

DNA0010 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3010

DNA0011 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3011

DNA0013 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3013

DNA3010 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3013

DNA0030 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3030

DNA3000 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3030

DNA0031 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3031

DNA3001 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3031

DNA0033 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3033

DNA3003 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3033

DNA3030 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3033

DNA0100 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3100

DNA0103 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3103

DNA0101 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3101

DNA3100 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3103

DNA0110 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3110

DNA0111 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3111

DNA0113 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3113

DNA3110 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3113

DNA0130 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3130

DNA3100 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3130

DNA0131 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3131

DNA3101 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3131

DNA0133 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3133

DNA3103 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3133

DNA3130 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3133

DNA0300 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3300

DNA3000 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA3300

DNA0301 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3301

DNA3001 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA3301

DNA0303 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3303

DNA3003 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA3303

DNA0310 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3310

DNA3300 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3303
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DNA3010 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA3310

DNA0311 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3311

DNA3011 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA3311

DNA0313 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3313

DNA3013 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA3313

DNA3310 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3313

DNA0330 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3330

DNA3030 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA3330

DNA0011

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA001−1

DNA0110

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA01−10

DNA0111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA011−1

DNA01−11

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA01−1−1

DNA011−1

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA01−1−1

DNA0113

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA01−13

DNA0311

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA031−1

DNA1100

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−100

DNA1101

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−101

DNA1103

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−103

DNA1110

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−110

DNA0111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA01−11

DNA3300 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3330

DNA0331 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3331

DNA3031 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA3331

DNA3301 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3331

DNA3330 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3333

DNA3303 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3333

DNA3033 + S3

Kon
G3

−−−−⇀↽−−−−
Koff

G3
DNA3333

DNA0333 + S3

Kon
NG3

−−−−−⇀↽−−−−−
Koff

NG3
DNA3333

DNA1110

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA11−10

DNA1−110

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−10

DNA11−10

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−10

DNA1111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−111

DNA1111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA11−11

DNA1111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA111−1

DNA1−111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−11−1

DNA111−1

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−11−1

DNA1−111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−11

DNA11−11

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−11

DNA11−11

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA11−1−1

DNA111−1

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA11−1−1
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DNA1−1−11

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−1−1

DNA1−11−1

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−1−1

DNA11−1−1

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−1−1

DNA1113

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−113

DNA1113

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA11−13

DNA1−113

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−13

DNA11−13

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−1−13

DNA1130

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−130

DNA1131

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−131

DNA1133

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−133

DNA113−3

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA1−13−3

DNA3011

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA301−1

DNA3110

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA31−10

DNA3111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA31−11

DNA3111

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA311−1

DNA31−11

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA31−1−1

DNA311−1

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA31−1−1

DNA3113

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA31−13

DNA3311

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA331−1

DNA3−311

Kon
P1

−−−−⇀↽−−−−
Koff

P1
DNA3−31−1

DNA3313

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−313

DNA3330

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−330

DNA3330

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA33−30

DNA3−330

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−3−30

DNA33−30

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−3−30

DNA3333

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−333

DNA3333

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA33−33

DNA3333

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA333−3

DNA3−333

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−33−3

DNA333−3

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−33−3

DNA3−333

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−3−33

DNA33−33

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−3−33

DNA33−33

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA33−3−3

DNA333−3

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA33−3−3

DNA3−3−33

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−3−3−3

DNA3−33−3

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−3−3−3

DNA33−3−3

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−3−3−3

DNA1133

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA113−3

DNA1−133

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA1−13−3

DNA3311

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−311

252



Appendix B: Stat signalling model reactions

DNA331−1

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−31−1

DNA0033

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA003−3

DNA0133

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA013−3

DNA0330

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA03−30

DNA0331

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA03−31

DNA0333

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA03−33

DNA0333

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA033−3

DNA03−33

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA03−3−3

DNA033−3

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA03−3−3

DNA1033

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA103−3

DNA1330

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA13−30

DNA1331

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA13−31

DNA1333

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA13−33

DNA1333

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA133−3

DNA13−33

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA13−3−3

DNA133−3

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA13−3−3

DNA3300

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−300

DNA3301

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−301

DNA3303

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−303

DNA3310

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−310

DNA3331

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−331

DNA3331

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA33−31

DNA3−331

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−3−31

DNA33−31

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA3−3−31

DNA3133

Kon
P3

−−−−⇀↽−−−−
Koff

P3
DNA313−3
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