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ABSTRACT  

Fast urban growth and topographical factors across Europe have contributed to an 

increase in the total number of hillside residential buildings. In the case of Portugal, 

a clear need for hillside building design which can fully benefit from the thermal 

advantage of slope terrains has been identified. Although the energy efficiency of 

ground-integrated architecture has been the subject of numerous research works, 

only a small number of those research projects have focused on the thermal 

potential of ground-integrated buildings constructed on sloped terrains. The 

research presented in this thesis sheds light on the energy saving potential of 

ground-integrated buildings on slope terrains and provides design guidelines based 

on the research findings.  

Firstly, through mathematical calculations, this research demonstrates that ground 

thermal patterns under slope terrains are different from those below flat areas. In 

Lisbon, terrain inclinations have higher annual ground thermal potential than flat 

terrains. It is furthermore noted that a transitional zone is formed immediately before 

and after a slope. As a result of these investigations it is concluded that slopes of 

30° to 40° provide the best annual ground thermal potential.  

Secondly, through a parametric study using EnergyPlus to simulate ground heat 

transfer, it is show that ground integration affects buildings thermal performance. It 

is found that the greater the ground integration the lower the energy demand, but 

also that total ground integration fails to provide the best solution. Concerning the 
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levels of slope integration, the steeper the slope, the greater the average annual 

savings. However the thermal advantage difference between steeper slopes such as 

those of between 30° to 50° is small. Regarding the impact of building design on 

annual saving potential, it is found that building design does affect models’ thermal 

performance and that its impact is greatest with shallower slopes.  

It is therefore concluded that in temperate climates, new hillside constructions can 

take advantage of the energy saving potential of ground integration into slope terrain 

and of slope building designs. 
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1. INTRODUCTION 

“There is much to learn from architecture before it became an expert’s art. The 

untutored builders in space and time (…) demonstrate an admirable talent for 

fitting their buildings into the natural surroundings. Instead of trying to “conquer” 

nature, as we do, they welcome the vagaries of climate and the challenge of 

topography. Whereas we find flat, featureless country most to our liking (any 

flaws in the terrain are easily erased by the application of a bulldozer), more 

sophisticated people are attract by rugged country.” Rudofsky (1964, p. NA). 

 

Since the early 1960’s, two distinct works have set the direction of half a century of 

design in sustainable architecture. One of these works raised awareness to what 

today is called vernacular architecture. The other established the basis for 

sustainable building design by mapping several examples of vernacular architecture. 

The first, Bernard Rudofsky’s Architecture Without Architects (1964), opens a 

window onto numerous examples of world vernacular architecture that it was still 

possible to see in the early 1960’s. The richness and uniqueness of each example 

of this kind of architecture proves that humans have long been able to design for 

different climates, generating different construction solutions by taking advantage of 

local characteristics including topography and available construction materials. The 

second work, Victor Olgyay’s Design with Climate (firstly published in 1963) brings 

to architectural practice the concept of climate design and architectural regionalism 

based on the legacy of vernacular architecture. Even today, both Rudofsky and 

Olgyay‘s concepts form the core principles of sustainable design in architecture.  
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The reasons why such fundamental aspects as the local climate, topography, and 

construction traditions have so often been ignored during modern processes of 

building design and construction is linked to the until-recently ready availability of 

cheap energy and modern industrial materials (Van der Ryn, 1979, p. NA). 

However, I believe that this analysis is not complete without taking into 

consideration economical elements such as prosperity and consumption. For 

example, the rising access to an increasing number of modern commodities in 

rapidly developing parts of the world has generated the need for new dwelling 

layouts, which have become necessary in order to accommodate our increasing 

consumption, and therefore, perpetuate the escalation between wants and needs. 

An illustration of the above problem, which is developed in more detail in Chapter 2, 

is the effect produced by the Chinese agricultural incentives of the 1980s. In a 

process that began shortly after the introduction of these economic incentives, the 

traditional Chinese ground-integrated buildings have been gradually abandoned in 

favour of newly-constructed above-ground buildings. One of the identified reasons 

behind this trend is the lack of living space (Golany, 1992, p. 43; Liu et al., 2010, p. 

124). Traditional underground buildings present space constraints which mean that 

they struggle to accommodate new domestic commodities. Consequently, the 

current cost of constructing buildings ignoring local climate and customs is 

undermining local construction knowledge (Tong, Chen and Li, 2011, p. 1644) in 

favour of new construction types. However, these new constructions are less energy 

efficient (Zhu et al., 2014, p. 159) for the local harsh climate conditions and are less 

affordable due to the high cost of the new construction materials (Jun and Yan-yung, 

2006, p. NA). 

The practice of ignoring the land’s physical features, by designed buildings without 

taking site topography into consideration and simply transforming any site in to a flat 

area is contributing to two distinct losses: land loss and the energy loss. Regarding 
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the issue of land loss, the relevance of efficient land use is fast increasing due to 

two well know factors, the global population growth (World Resources Institute, 

1994, p. 27) and the much more rapid growth in urban populations (UN-Habitat, 

1987, p. 23; World Resources Institute, 1990, p. 66, 1994, p. 31). The rising global 

population demands larger quantities of food production, but new agricultural land 

comes at a high cost. New agricultural land is limited by physical constraints such as 

terrain inclination, and in most cases its expansion inflicts heavy costs on areas that 

are economically vital and ecologically delicate (World Resources Institute, 1990, p. 

88). On the other hand, the existing cropland area is being threatened by the global 

trend towards urbanization (ibid., p. 88; World Health Organization and UN-Habitat, 

2016, p. 102) since “the expansion of cities often invades rich agricultural lands 

surrounding them” (World Resources Institute, 1988, p.42). 

We can grasp a way to attenuate the competition for space between construction 

and agriculture by looking to the particular relation of agriculture and urban land use 

with topography. This is essentially because flat land and valleys are better for 

agriculture, while slope terrains can be ideal for human settlements. Flat land and 

valleys have been identified as more suitable for food production than slope terrains, 

because the soils are more fertile (Sterling, Carmody and Elnicky, op.cit., p. 29) and 

there are fewer spatial limitations. From the perspective of construction, which is 

discussed in more detail in Chapter 4, slope-building constructions are more land 

efficient. A settlement built on a slope requires less construction area than a flat 

settlement with the same characteristics (Turan, op.cit., p. 159). Regarding the 

energy losses, slope areas benefit from a more moderate climate than a flat land or 

valley. Therefore buildings constructed on hillsides or mountains have lower energy 

requirements than those built on flat land (Golany, 1996, p. 456) and consequently, 

produce better thermal performances.  
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A further thermal advantage of building on slopes is that buildings can take 

advantage of ground thermal potential through direct contact, which is done by 

integrating the building into the slope. This was a common practice in ancient slope 

settlements and it is still used in hillside settlements as the case of Mardin (Turkey), 

Alicante (Spain), Santorini (Greece) and Matera (Italy). 

Although nowadays there is an increasing number of hillside residential areas due to 

urban development and topographical factors, evidence shows that there is still a 

lack of relation between recent residential building constructions and the thermal 

advantage that sloped terrain building designs can provide (Simpson and Purdy, 

1984, op.cit, p. 9), in particular in terms of the thermal benefits ground-integration 

can provide (Benardos, Athanasiadis and Katsoulakos, 2014). Since the global 

energy crisis of the early 1970’s several studies have been conducted, focussing on 

the energy efficiency of ground-integrated buildings. However, only a few of these 

studies are focused on the particular case of the thermal performance of ground-

integrated buildings on slope terrains. This is particularly true in the case of studies 

concerning the effect of slope degree or the effect of slope building designs on 

buildings performance. 

In the case of Portugal, Veloso da Veiga’s (2009) study identified a clear need for an 

approach to hillside building design that can take advantage of the hillside thermal 

comfort potential (ibid., p. 264). According to Veloso da Veiga, the recent increase in 

hillside building design in the north of Portugal is connected with factors such as 

local topography, urban development, and lack of available construction land (ibid., 

p. 264). When studying the ‘Encosta do Bom-Jesus’ hillside in Braga, Veloso da 

Veiga found that most of the houses were constructed recently and their designs 

commissioned to architects. The study shows that the high-income residents are 

conscious about solar technologies advantages and aware of energy-saving 

methods. However, a significant number of households reported little or no 
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satisfaction with the thermal comfort of the houses, and very few residents use solar 

technologies (ibid., p. 265).  

Newly-built constructions on hillsides miss an opportunity to fully benefit from either 

ground thermal potential or from building design. Therefore the overall aim of this 

thesis is to clarify the thermal benefits of ground-integrated buildings on slope 

terrains. Investigating the thermal patterns produced by different terrain inclinations 

and verifying how ground thermal affects buildings’ annual and seasonal thermal 

performances, according with levels of ground integration. Considering building 

design, this research explores the thermal potential of buildings aspect as forms, 

number of floors, basement, underground courtyard and slope building designs. 

With the purpose of accomplish the thesis aim the following objectives were 

determined: 

• Identifying gaps on this subject, through the literature review on ground 

thermal energy, benefits and weaknesses of ground-integrated architecture 

and advantages of slope-integrated architecture. 

• Verifying the ground thermal potential on temperate climates. This is 

achieved by analysing the ground temperature at six different locations and 

different depths in Portugal, using a mathematical model to calculate ground 

temperatures according with depth.  

• Investigating the ground thermal potential produced by terrains inclination, by 

calculating the ground temperatures at different depths using the 

correspondent solar radiation values. 

• Identifying the software and procedure to simulate ground heat transfer by 

comparing three building simulation packages, Tas, EnergyPlus (E+) and 

Ecotect. 

• Identifying through the available statistic data the average building topology 

in Portugal to be used to develop the case studies. 
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• Designing and simulating the parametric case studies based on the findings 

produced with the above objectives. 

• Analysing the parametric case studies that allow identify thermal saving 

potential produced by ground-integration and building designs. 

• Providing energy efficiency design guidelines, based on the findings and 

conclusions of the parametric case studies. 

Methodology 

To meet the above aim and objectives, this research deploys the following 

methodologies. Firstly, this study presents a comprehensive literature review 

examining ground thermal energy, ground-integrated architecture, slope-integrated 

architecture and Portuguese building environment and construction context. 

Secondly, this study deploys quantitative methods and considers particular case 

studies. Initially, the ground thermal potential and slope thermal potential is 

investigated using an experimental approach through a mathematical model. 

Afterwards, the effects of ground-integration and buildings designs are examined, 

using a parametric study using E+ to simulate ground heat transfer. 

Research Structure and Key Outcomes 

The structure of this thesis is organised in three parts as illustrated in Figure 1.1. 

The initial part presents a literature review on subjects such as ground thermal 

potential, ground-integrated architecture, and slope-integrated architecture. The 

second part looks into the ground thermal potential of the Portuguese mainland, 

while also setting the procedure for the computer-based simulations of ground heat 

transfer. The third part presents the parametric studies of ground-integrated 

buildings on horizontal and slope terrains. The chapters’ contents and outcomes are 

as follows: 
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Figure 1.1: Research structure 

The structure of this thesis is organised in three parts as illustrated in Figure 1.1. 

The initial part presents a literature review on subjects such as ground thermal 

potential, ground-integrated architecture, and slope-integrated architecture. The 

second part looks into the ground thermal potential of the Portuguese mainland, 

while also setting the procedure for the computer-based simulations of ground heat 

transfer. The third part presents the parametric studies of ground-integrated 

buildings on horizontal and slope terrains. The chapters and correspondent contents 

are as follows: 

Chapter 2. Ground Thermal Energy 

This first chapter gives an overview of ground thermal energy sources and its 

application for the heating and cooling of buildings. It looks into temperature 

distribution, as well as the factors that affect ground temperature and provides a 

review of existing literature on ground thermal potential. This chapter also provides a 

review of ground heating and cooling of buildings through indirect contact by 

introducing aspects concerning vernacular systems and earth-air heat exchanger 
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systems (EAHE). Lastly, this initial chapter identify factors that affect EAHE systems 

performance. 

Chapter 3. Ground Thermal by Direct Contact  

The second chapter contextualises the study of buildings heating and cooling 

through direct ground contact. The historical context of ground-integrated 

architecture is given, as well as terminologies and levels of integration. This second 

chapter also evaluates relevant advantages and disadvantages of ground-integrated 

buildings, and gives an overview of the studies on the thermal performance of 

ground-integrated architecture.  

Chapter 4. Ground-integrated Architecture on Slope Terrains 

The third chapter focus on the design potential of buildings on slope surfaces. It 

looks into the issue of lack of suitable land and possible sustainable land use 

through building on slopes. It provides an overview of slope-integrated settlements 

and the reasons that lead to this configuration type. Furthermore, this chapter also 

provides a review of the ground thermal potential of slopes, of the types of slope 

building designs and of the case studies of slope-integrated buildings. 

Chapter 5. Ground Thermal Potential in Temperate Climates 

This chapter serves as an introduction to Portuguese mainland temperate climates, 

and to the Portuguese built environment and energy consumption context regarding 

residential buildings. It addresses the ground thermal potential in Portugal through 

mathematical analysis of the ground temperature produced by the Portuguese 

climate. This chapter also provides a study of the solar radiation received by slopes 

in Lisbon by looking into how total annual and seasonal solar radiation changes 

according with slope inclination. Lastly, Chapter 5 presents a study of the slope 
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thermal potential in Lisbon, which shows how slope surface affects the ground 

temperature at different depths and therefore its thermal potential.  

Chapter 6. Thermal Simulation of Ground Contact 

This chapter presents a sequence of studies undertaken in order to determine the 

most suitable building energy simulation software to conduct research into the 

benefits of ground-integrated buildings. It analyses the performance of different 

software packages including Ecotect, Tas and E+ when calculating ground heat 

transfer, through several comparative and sensibility studies. It also explains the 

procedure used for the parametric studies of Chapter 7 and Chapter 8. 

Chapter 7. Case Studies: Ground Integration  

This chapter examines the thermal effects on buildings produced by different levels 

of ground integration, looking into the annual and seasonal thermal performance 

and possible energy savings of each level of integration. It also scrutinizes the 

relevance of design features such as building form, number of floors and the 

application of basement and courtyards. 

Chapter 8. Case Studies: Slope Integration 

This chapter presents the slope-integrated building parametric studies. It examines 

the thermal effect produced by different slope inclinations and by building design, 

specifically as forms and slope building designs. This is done by analysing the 

annual and seasonal thermal performance simulation results and the produced 

energy savings. 

Chapter 9. Conclusions and Further Work 

This last chapter provides a summary of thesis process and findings. It presents 

design recommendations based on the main findings of Chapter 7 and Chapter 8 

and identifies gaps in the field that can be subject of future research. 
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Primary Contribution to Knowledge. 

This research demonstrates the energy saving potential of ground-integrated 

buildings on slopes terrains in countries with temperate climates. The primary 

contributions to this field are the following: 

• Demonstrating the high ground thermal potential in different Portuguese 

temperate climates. 

• Proving the superior thermal potential of inclined terrain in a temperate 

climate as Lisbon. 

• Showing why building simulation package need to include terrain inclination 

and orientation for simulation of ground heat transfer. 

• Providing evidence that the use o E+ to compare ground-integrate models 

on flat and slope terrains needs to be avoided. 

• Producing design guidelines for ground-integrated architecture on flat and 

slope terrains in temperate climates. 

The impact of built environment on climate change is too great to be ignored. In the 

particular case of commercial and residential buildings, the greenhouse gas 

emissions associated with electricity production are mainly the result of heating and 

cooling of these buildings. Together, the heating and cooling of homes is 

responsible for 8% of the total global greenhouse emissions (UN-Habitat, 2011, p. 

42). Consequently, controlling and reducing the greenhouse gas emissions in the 

built environment is our current challenge to mitigate its impact, which can be 

achieved in part by designing and constructing energy efficient buildings. Newly-built 

constructions on hillsides can reach this aim through a greater knowledge of the 

thermal advantages provide by slope terrains and slope building designs. 
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CHAPTER 2. GROUND THERMAL 
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2. GROUND THERMAL ENERGY 

2.1. INTRODUCTION TO GROUND THERMAL ENERGY 

The ground absorbs a large part of the solar radiation received by the earth’s 

surface. To a certain depth, the ground can act as an indirect solar energy source 

since it is able to collect, store and transmit energy. The other ground’ energy 

sources are atmosphere, geothermal, decomposition of organic matter and 

radioactivity of rocks (Chang, 1958, p. 43).  

The thermal performance of buildings can be improved by using indirect solar 

energy, as the ground source’s heating and cooling can be transferred to a building 

by direct or indirect contact strategies. In direct contact strategies, a building is 

totally or partially buried in the ground, so its structure is in direct contact with the 

soil. In indirect contact strategies, the ground can be used to change the 

temperature of a fluid, normally air in the case of Earth to Air Heat Exchangers 

(EAHE), by passing it through pipes placed below ground before being introduced 

inside a building space. 

For an efficient implementation of both earth-coupling strategies it is vital to know 

the diurnal and annual ground temperature behaviour at different depths. To identify 

ground thermal patterns it is necessary to determine the ground temperature as well 

as components that influence ground heat flux.  
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2.2. GROUND TEMPERATURES 

2.2.1. Distribution Zones: Surface, Shallow and Deep 

 
Figure 2.1: Ground energy source and zone temperature distribution 

 

The temperature distribution within the ground varies according to depth, and can be 

divided into three distinct zones: surface, shallow and deep (Figure 2.1). The 

surface zone is the soil area immediately below the surface where its temperature is 

affected by the daily weather conditions, and this immediate influence can be found 

up to soil depths of 0.5 to 1 m. The shallow zone is the soil area where soil 

temperatures are more stable and mainly affected by seasonal climate conditions. 

The extent of this zone depends on the physical properties of the soil, and can be 

set between 1 to 8 m in most soils, or reach depths of 20 m in some cases.  

The deep zone begins immediately below the shallow zone. In this area the soil 

temperature is almost constant all year round and is no longer affected by diurnal or 

seasonal climate conditions. Normally the average annual ground temperature is 

similar to the mean annual ambient air temperature (Chang, op.cit., p. 58; Golany, 

1995, p. 193; Popiel, Wojtkowiak and Biernacka, 2001, p. 301; Rantala, 2005, p. 52; 

Banks, 2008, p. 42). Below the ’permatemp line’ (Golany, 1980, p.110) that divides 
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the shallow zone from the deep zone, the ground temperature is affected by the 

geothermal heat flux provided by the earth’s interior (Popiel, Wojtkowiak and 

Biernacka, op.cit., p. 301; Banks, op.cit., p. 49), making it a renewable energy 

source that does not depend on the sun (Brown and Garnish, 2004, p. 342).  

 
Figure 2.2: Ground temperatures at different depths; by the author, charts based on US 
Department of Energy weather data 
 

 
Figure 2.3: Granada, Spain. Air and ground temperatures, time lag and annual temperature 
range 

Figure 2.2 illustrates the air and ground temperature at different locations. At or near 

these locations, examples of vernacular architecture that apply ground thermal 

potential can often be found. Similar patterns can be found for time lag and annual 

temperature range in the graphs above. Looking more closely at a location such as 

Annual Temperature 
Range 

 

 
 

Highest 4 m 

  

Time lags between air temperature and ground temperatures 

Highest air temp. Highest 0.5 m 

Lowest air temp.  

Lowest 0.5 m 

 

Lowest 4 m 
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Granada (Spain), as illustrated in Figure 2.3, we can see that the time lag between 

the outside air and ground temperature increases according to depth; the greater 

the depth, the longer the time lag. We can also see that the greater the depth, the 

smaller the annual temperature range. These undisturbed ground temperatures are 

defined by fluctuations in the annual pattern of the ground surface temperature and 

the constant ground temperature at a certain depth (Givoni, 1994, p. 192). 

2.2.2. Factors that Affect Ground Temperature 

Table 2.1: Factors that affect ground thermal behaviour 
Intrinsic factors External factors 

Soil thermal properties Location characteristic Climate conditions 

• Thermal conductivity 
• Organic matter 
• Colour 
• Moisture content 

 

• Slope orientation 
• Topography 
• Nearby elements 
• Ground coverage 

• Solar radiation 
• Rain 
• Relative humidity 
• Air temperature 
• Wind velocity 
• Snow 

There are several different factors that affect below ground temperature. Table 2.1 

presents these factors according to Chang’s categories as intrinsic or external 

(Chang, op.cit., pp. 128-167). The intrinsic factors combine ground thermal 

properties such as thermal conductivity or density, and location characteristics 

including topography, cover or slope orientation. The external factors that need to be 

considered are elements of climate conditions, such as solar radiation, wind velocity, 

precipitation values, humidity, ambient air temperature and snow coverage.  

2.2.2.1. Soil Thermal Properties 

The physical characteristics of the soil affects the ground temperatures (Florides et 

al., 2011, p. 5027). The accurate understanding of soil thermal properties such as 

soil thermal conductivity is important to earth-contact heat transfer simulations 

(Rees, Zhou and Thomas, 2007, p. 1485), and these properties depend on factors 

such as location, depth, density and moisture content (Labs, 1980, p. 127). The 

impact of the thermal conductivity of the soil is pointed out by Geiger (1950, p. 35) 



Chapter 2 - Ground Thermal  

 -17- 

as the key factor in the ability of the ground to act as reservoir of heat; the higher the 

thermal conductivity of the soil, the higher the potential of the ground as a heat 

store. As an example, poorly conductive soil leads to extreme microclimate 

conditions near the ground with cold nights and hot days, in contrast to soils with 

high conductivity, which generate more stable microclimates near the ground. 

However, in defining a design strategy based on time lag or seasonal lag in 

Australia, Braggs (1982, p. 130) states that soils with low thermal conductivity 

should be selected to delay the effects of extreme air temperatures on the ground. 

According to Adjali, Davies and Littler (1998, p. 358) the influence of soil 

conductivity on ground temperature is greater during the winter. 

The organic matter content, colour, and moisture content of the soil affects ground 

temperature (Chang, op.cit., p. 145). The soil colour affects its absorptivity and 

therefore influences ground temperature (Chang, ibid., p. 146) since the soil surface 

temperature is higher when ground absorptivity increases (Mihalakakou et al., 1997, 

p. 189), and during the summer the influence of soil colour is greatest (Adjali, Davies 

and Littler, op.cit., p. 358). Regarding the water content of the soil due to changes in 

weather, variable moister content is, according to Geiger (op.cit., p. 33), the main 

factor that affects ground temperatures. 

2.2.2.2. Location Characteristics 

Different characteristics such as latitude, altitude, and slope steepness and 

orientation are relevant to determine ground temperature values (Chang, op.cit., p. 

153). The topographical characteristics (Geiger, op.cit., p. 215; Chang, ibid., pp. 

153-167; Labs, op.cit., p. 128; Lewis and Wang, 1992, p. 99; Dimoudi, 1996a, pp. 

84-89; Šafanda, 1999, p. 374; Wang, 2009; Ruiz-Arias et al., 2011, p. 1812; 

Manners, Vosper and Roberts, 2012), ground coverage (Chang, op.cit., p. 166-167; 

Labs, op.cit., p. 128; Lewis and Wang, op.cit, p. 93; Argiriou, 1996, p. 383; Šafanda, 
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op.cit., p. 374) or surrounding elements such as, for example, nearby buildings 

(Kusada and Archenbach, 1965, p. 1), regulate the solar radiation received by the 

soil (Chang, op.cit., pp. 166-167).  

The ground temperature below, or around in the case of ground-integrated 

structures, a building are affected by the building. Not just because of the area it 

covers and shadows is produces, but also because of the internal temperatures of 

the building. Therefore, as Boyer and Grondzir (1987, p. 70) point out, thermal 

calculations relating to buildings  should take in consideration the difference 

between disturbed and undisturbed ground temperatures. During summer the 

ground will be charged with the building’s heat since it flows into the ground, and 

during the winter the lower temperatures inside the building allow the ground to 

discharge the stored heat (ibid., pp. 80-82). 

The ground surface temperature changes according with ground coverage; areas 

with forest coverage can be 1.7°C to 2.2°C cooler than areas with bare ground 

(Lewis and Wang, op.cit, p. 93). The ground vegetation cover also affects the 

precipitation values received by the soil and its moisture content (Geiger, op.cit., 

269; Liu et al., 2011, p. 1210). Additionally, ground coverage can change the snow 

coverage duration, reduce wind velocity, change the air temperature and humidity, 

and the provision of organic matter (Chang, op.cit., pp. 166-167). 

2.2.2.3. Climate Conditions  

The weather conditions affect the soil temperature (Figure 2.4). The clearest 

examples of this relationship are the results of extreme meteorological effects, such 

as storms and hurricanes, found in deep underground quarries (Perrier, Morat and 

Le Mouel, 2001). In severe climates, the temperature difference between ground 

and ambient air becomes larger. This can be observed in cold climate areas or in 

zones with severe winters and prolonged snow coverage, where the average annual 
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ground temperature is higher (Fitton and Brooks, 1931, p. 8). Snow, as a ground 

cover, can affect the ground temperature in two different ways, “first as a cover with 

its peculiar thermal properties, and second as a source of ground moisture after 

thawing commences” (Chang, op.cit., p. 137). 

 
Figure 2.4: Ground temperature distribution - climate influence 

Large differences between ground and air temperature can also be found in high 

altitude areas and in hot dry climates due to higher solar radiation values (Chang, 

op.cit., p. 59). According to Chang (ibid., p. 129), solar radiation is the principal 

factor that influences ground temperature. Since solar radiation values can be 

affected by sky coverage, it should be pointed out that clouds also contribute to 

ground temperature: during the day by reducing the amount of direct solar radiation 

received by the ground surface, and during the night by reducing the amount of 

terrestrial radiation (Chang, ibid., p. 132; Labs, op.cit., p. 128).  

One of the most relevant climatic elements, as pointed out by Mihalakakou, 

Santamouris and Asimakopoulos (1998, p. 19,509), ambient air temperature 

strongly affects ground surface temperature values (Chang, op.cit., p. 138; 

Tsilingiridis and Papakostas, 2014, p. 1015) at depths between 0 m to 0.6 m (Liu et 

al., op.cit., p. 1208). According to Siegenthaler (see Geiger, op.cit., p. 27), the 
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correlation between air temperature and ground temperature at 10 cm depth is 0.87, 

which shows how great an impact air temperature  has on ground temperature in the 

area immediately below the surface. As indicated by Rees, Zhou and Thomas 

(op.cit., p. 1483), near the surface  the temperature amplitude is greater because it 

is more affected by  external boundary conditions, while at greater depths the 

ground is less affected by seasonal temperature amplitude due to being less 

dramatically influenced by these outside factors.  

The amounts of precipitation and irrigation within the soil interfere with ground 

temperature, since both these factors increase the conductivity and heat capacity of 

the ground (Givoni and Earth, 1985, pp. 17-18). Soils with higher water content 

produce lower and more uniform ground temperatures (Fitton and Brooks, op.cit., p. 

8). Concerning cooling, rain has the capacity to reduce ground temperature due to 

evaporative cooling (Labs, ibid, p. 128).  

The humidity of the air influences ground temperature due to latent heat; when 

relative air humidity increases the surface temperature also increases (Mihalakakou 

et al., op.cit., p. 189). El-Din’s (1999) study found that the ground temperature and 

heat transfer range was affected by relative air humidity, ground absorptivity, 

evaporation fraction and wind speed. There was an increase in ground temperature 

and heat transfer range when relative air humidity and ground absorptivity were 

higher. The ground temperature and heat transfer range decreases as evaporation 

fraction and wind speed increases (ibid., pp. 487-488). 

Lastly, wind is also a climatic parameter to be considered. The wind velocity affects 

the soil surface temperature: the higher the wind velocity, the lower the surface 

temperature. This is due to heat transfer by both convection and latent heat transfer 

through evaporation (Mihalakakou et al., op.cit., p. 189).  
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2.3. GROUND HEAT TRANSFER AND TEMPERATURE SIMULATION 

MODELS  

Models to calculate ground heat transfer and ground temperatures are crucial to 

determining the thermal environment of underground constructions and the potential 

of indirect ground contact systems. During the last four decades several methods or 

approaches have been used to developed models that simulate ground heat transfer 

or calculate ground temperatures. The following table provides a list of these models 

and the approaches upon which they draw. 

Table 2.2: Developed models to predict heat transfer and ground temperatures 

Modelling approaches: Based on: 

• Analytical model 
• Semi-analytical model 
• Numerical model 

o One-dimensional model 
o Two-dimensional model 
o Three-dimensional model 
o Response factor elements 

• Empirical model (base on experimental data) 
• Semi-empirical 
• Simplified model 

• Fourier technique 
• Artificial neural network 
 

Kusada and Archenbach (op.cit.) use ground temperature data from 63 stations 

scattered across the United States to correlate the average monthly temperature 

values, temperature ranges, phase angles and soil thermal diffusivity. Kusada and 

Archenbach’s study applied a numerical model based on simplified heat conduction 

theory. Labs and Harrington (1982), on the other hand, use a mathematical model 

based on the heat conduction and environmental theory developed by Carslaw and 

Jaeger and by Wijk and Vries to study the ground cooling potential in five regions of 

the United States. Finally, Braggs (op.cit.) proposes a mathematical model to 

calculate ground temperatures. Braggs’ model is based on Labs’ mathematical 

models but was adapted for the southern hemisphere and uses Kusada’s methods 

of statistical analysis. 



Chapter 2 - Ground Thermal  

 -22- 

Jacovides et al. (1996) demonstrate that the surface and underground temperatures 

of a specific location could be estimated by using the Fourier technique. El-Din 

(op.cit.) developed two mathematical models to calculate ground temperature at 

different depths. The first model presumes that soil surface temperature difference 

can be described as a sine wave, while the second model develops its analysis 

through the Fourier series. Wang and Bras (1999) propose a one-dimensional heat 

transfer method to determine the daily patterns of ground heat flow, based on the 

relationship between soil surface temperature and ground heat flow. Popeil, 

Wojtkowiak and Biernacka (op.cit.) propose a semi-empirical model base on Braggs’ 

formula, in order to calculate ground temperature distributions, considering complex 

soil properties and climate boundaries conditions. Mihalakakou (2002) uses a neural 

network model to calculate the ground surface temperature by analysing different 

climate data parameters. Through his research Badescu (2007) developed a 

numerical model to estimate ground heat exchange that calculates the temperature 

of the ground surface at different depths. Badescu’s model considers the convective 

energy between air and soil, the solar radiation absorbed by the ground, and the 

latent heat flow and long-wave radiation. Liu et al. (op.cit.) propose an alternative, 

simplified, model to estimate underground temperatures during hot weather 

conditions based on the correlation between air temperature and surface 

temperature. Recently, Tsilingiridis and Papakostas (op.cit.) developed a set of 

analytical equations based on the relationship between ground and air temperatures 

in order to calculate average monthly ground temperatures. 

Regarding the difference in the results produced by models approaches, 

Mihalakakou et al. (op.cit., p. 189) compares a model based on an energy balance 

equation to a model based on a Fourier analysis of the same data.  As a result of 

this comparison, Mihalakakou found that both models are able to accurately 

estimate the ground surface temperature as well as the underground temperatures 
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with a high level of precision. Mihalakakou (op.cit., p. 259) also compares an 

analytical model and a neural network model that simulate daily and annual patterns 

of ground surfaces temperatures. In this comparison, Mihalakakou found that, for a 

warmer period, the predictions of the analytical model are slightly more accurate 

than those generated by the neural network model. This accuracy gap increases 

during winter, when the analytical model predictions are significantly more accurate, 

as it is able to integrate several different weather parameters. Droulia et al. (2009, p. 

218) use an analytical and a semi-empirical model to calculate underground 

temperature patterns. This study found that both approaches’ hourly ground 

temperature results are in accordance with measured data. The study found the 

same level of agreement for the main annual underground temperature patterns. 

However, they also found that the semi-empirical model results were more accurate 

than those of the analytical model.  

Several models have been developed to include moister transfer in their prediction 

of ground temperature. Bharadwaj and Bansal (1981) developed a model to 

calculate diurnal and annual ground temperature behaviour according to four 

surface conditions, including dry and wet exposed surfaces and dry and wet shaded 

surfaces. Thakur (1982) proposes a method that considers soil thermal conductivity 

as inconstant, since ground water contents change over time. Moukalled and Saleh 

(2006) propose an unsteady two-dimensional model that applies a finite-volume-

based numerical method to simulate heat and moister patterns in soils. This model 

considers soil physical properties such as moister retention, hydraulic conductivity, 

thermal conductivity and specific heat. Herb et al. (2008) propose a soil temperature 

model for dry and wet surfaces. Through the input of climate data this model 

calculates the heat flux as radiative, convective, conductive and evaporative, taking 

place on dry or wet surfaces. As a result of this multifaceted analysis the model 

offered by Herb et al is able to calculate the ground temperatures for rainfall events.  
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2.4. CASE STUDIES OF GROUND THERMAL POTENTIAL 

Fitton and Books (op.cit.) compiled the data of 32 agricultural experimental stations 

in order to analyse the soil temperature in the United States. As a result, the authors 

were able to provide a large number of conclusions and verify the results of several 

previous studies. Some of the reported findings were that air and soil temperature at 

a shallow depth display a parallel pattern, a daily temperature pattern can be 

observed up to depths of 0.9 m, and that at depths of 3 m season effects are still 

visible in ground temperature (ibid., p. 7). However, the time lag between air and 

ground temperature increases with depth. Regarding soil coverage, it was confirmed 

that any coverage can reduce the diurnal and annual ground temperature 

amplitudes (ibid., p. 8).  

 
Figure 2.5: Wet sun exposed 
surface - ground temperature. 
Bharadwaj and Bansal, 1981 

 
Figure 2.6: Ground winter and summer temperature. 
Florides and Kalogirou, 2007 

Kusada and Archenbach’s (op.cit., p. 39) study shows that the average ground 

temperature is constant according to depth, and that the temperature values are 

near the same as the annual average air temperature of the location. Labs and 

Harrington’s (op.cit., p.10) report that using the ground as a cooling device produces 

good results in most areas, except in warm and humid regions. The best cooling 

results are found in temperate regions with cold winters. Bharadwaj and Bansal’s 

(op.cit., pp. 184-185) study found that diurnal underground temperature in Delhi 

become stable at a depth of 0.15 m, and that the reported annual variations are 

constant at a depth of 4 m. The authors conclude that wet shaded or wet solar 
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exposed surfaces provide the best ground temperatures for heating during winter 

and for cooling during summer (Figure 2.5). For different locations in India, Ghosal 

et al.’s study (2004, p. 61) found that the daily amplitude of ground temperatures 

becomes stable at a depth of 0.3 m  and the annual amplitude stabilised at a depth 

of 4 m.  

 

 
Figure 2.7: Ground 
temperature at Ariel. 
Pouloupatis, Florides and 
Tassou, 2011 

 

In Cyprus, Florides and Kalogirou (2007, p. 2462) observed that the summer and 

winter ground temperatures in Nicosia were nearly constant for depths below 5 m 

(Figure 2.6). This proves that the ground could be used for heating and cooling 

buildings. Pouloupatis, Florides and Tassou (2011, p. 814) measured the ground 

temperature distribution at three locations in Cyprus. The authors found that the 

surface zone in these locations can extend to a depth of 0.5 m, and that the shallow 

zone could extend to a depth of 7 m (Figure 2.7). In a location with a mean annual 

air temperature of 19.5°C, the almost constant temperature at a depth of 7 m was 

22.6°C. The time lag found for soil 1 m below the surface was two weeks, for a 

depth of 3 m the lag was two and a half months, and for 5 m the lag was three and a 

half months. Similar results were reported in Florides et al.’s (op.cit., p. 5036) study, 

which measured the ground temperature of eight locations in Cyprus.  In this study 

Forides et al found that the starting point of the deep zone was at a depth of 

between 7 and 8 m below the surface, and the constant temperature of this deep 

zone varied from 18ºC to 23ºC, according to the locations.  
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Figure 2.8: (Left) Ground temperature 
below a car park. Popeil, Wojkowiak and 
Biernacka, 2001 
Figure 2.9: (Above) Ground temperatures. 
Badescu, 2007 

Popeil, Wojtkowiak and Biernacka (op.cit., pp. 306-307) investigated the behaviour 

of ground temperatures in Poznan (Poland)  below a car park surface and below a 

short-grass covered surface. The surface zone at both locations was extended to a 

1 m depth and the boundary between the shallow and deep zone was found at a 

depth of 10 m. During the summer, and at a depth of 1 m, the ground temperature 

below the short-grass surface was 4ºC lower than below the car park (Figure 2.8). 

Nassar et al. (2006, pp. 596-597) studied the underground soil temperatures of 

Tripoli (Libya) by measuring the ground temperatures at a 4 m depth of a dry soil 

surface and a glass covered soil surface. For both surfaces the temperatures were 

found to be nearly constant throughout the year.  

 
Figure 2.10: Ground temp. at 1m, Mazarron 

and Cañas, 2009 

 
Figure 2.11: Ground temp. at 7m, Mazarron 

and Cañas, 2009 

Badescu (op.cit., p. 851) reports that at Chemnitz in Romania, the ground 

temperature at a depth of 4 m is almost constant throughout the year with amplitude 

of only 4°C (Figure 2.9). At a depth of 2 m the ground annual temperature range is 

7°C and for 1 m the temperature range increases to around 20°C. Wu, Wang and 
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Zhu’s (2007, p. 1469) study shows that in Guangzhou, Southern China, the average 

monthly ground temperatures range is lower at greater depths. Mazarron and 

Cañas’ (2009, p. 2489) study demonstrates that at Ribeira del Duero (Spain), the 

ground temperature at a depth of 7 m is almost constant. From depths of 1 to 3 m, 

the annual temperature ranges are reduced by nearly one half (Figure 2.10 and 

2.11).  

 
Figure 2.12: Ground temp. borehole I, Tinti et 

al., 2014 

 
Figure 2.13: Ground temp. borehole II, Tinti 

et al., 2014 

Recently, in Italy, Tinti et al. (2014, pp. 458-459) compared the experimental data 

retrieved from two boreholes with sensors at depth of 2, 4 and 6 m with the values 

obtained with a mathematical model (see Equation 5.1). The results proved that at 

the studied depths, the ground temperatures were not affected by the daily weather 

conditions. As illustrated in Figure 2.12 and 2.13, the mathematical model produced 

values similar to those obtained with both sets of boreholes sensors.  
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2.5. GROUND THERMAL BY INDIRECT CONTACT  

A building can benefit from the ground thermal potential through indirect ground 

contact. As part of a heating and/or cooling strategy, indirect earth contact can be 

provide with an EAHEs, the air temperature is made temperate by passing through 

an underground channel, before being introduced into the building. The inlet and 

outlet air temperature difference changes due to the heat transferred to the soil in 

the system. 

2.5.1. Vernacular Ground Cooling and Heating Systems  

 
 

Figure 2.14: Kiva - Southwest USA 

The use of natural ventilation systems that takes advantage of ground thermal 

potential can be found in vernacular architecture. These systems are already 

adapted to be integrated on to below-ground spaces (Labs, op.cit., p. 125) and are 

more viable for these structures than above-ground ones since their cooling and 

heating demand is lower (Van Der Meer, 1980, p. 141). Examples of these systems 

are the Kiva from Southwest North American Native architectural traditions, and the 

Badgir, the Baud-Geers and Naghb as well as the Shavadoon from Persia. 

The Kiva (Figure 2.14) is an underground dwelling that uses a ventilation system 

similar to a wind tower system (Labs, op.cit., p. 125) to improve its thermal comfort. 

The Persian Badgir (Figure 2.15) is a wind tower design of an uncertain origin. As 
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pointed out in Stead (1980, p. 39), one of its possible original uses was to serve as 

an air duct, a thesis based on archaeological evidence found in Nabupdlassar’s 

summer palace in Babylon.  

 

   
Figure 2.15: Persian house with Badgir and 
basement. Stead, 1980 

 
Figure 2.16: Baud-Geer and Naghb; Naghb 
cross-section. Jafarian et al., 2010 

 

    

  
Figure 2.17: Persian house with Shavadoon – section 
and plan. Hazbei et al., 2015 

 
Figure 2.18: Shavadoon – Natural 
ventilation. Hazbei et al., 2015 

The Baud-Geers and Naghb (Figure 2.16) comprise a vernacular cooling system. 

The first works as a wind-catcher and the second is the underground tunnel that 

connects the air into a building space (Jafarian et al., 2010, p. 559). A Shavadoon 

(Figure 2.17 and 2.18) is an underground space formed by rooms dug on the 

ground. These spaces can be found in depths of 5 to 12 m and have a small 

channel that provides temperate air to the upper building (Hazbei et al., 2015, p. 16). 

 

  
Figure 2.19: Ventilation systems on underground structures. Golany, 1980 
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Based on these passive ventilation concepts, Golany (1980, p. 112) proposes their 

application to underground spaces, as illustrated in Figure 2.19. For Golany, the use 

of passive ventilation systems integrated into subterranean constructions has the 

economic advantage of providing energy savings. This system can be used to 

control the temperature of the outside air supply that contributes to better thermal 

comfort and, therefore, provides additional economic advantages. 

2.5.2. Ground Cooling and Heating Through Induce Ventilation: EAHEs 

 
Figure 2.20: EAHE System - indirect ground contact strategy 

The EAHE systems take advantage of ground thermal potential to reduce buildings’ 

heating and cooling loads and therefore improve their thermal comfort. Generally, 

these systems consist of underground channels or pipes, which use air as a carrier 

fluid for cooling (Banks, op.cit., p. 199). The system illustrated in Figure 2.20 works 

by conducting outside air into a building space, with the initial air temperature being 

modified by passing through the buried channels or pipes (Bansal and Sodha, 1986, 

p. 177; Bansal, Hauser and Minke, 1994, p. 157; Al-Ajmi, Loveday and Hanby, 

2006, p. 236; Kwok and Grondzik, 2011, p. 193). The change in air temperature is 

due to convection transfer between the air and the inner surface of the pipe, and by 

the conduction between the outer surface of the pipe and heat transfer from the soil 
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(Al-Ajmi, Loveday and Hanby, op.cit., p. 237). The temperature difference between 

the outside air and ground temperature where the system is placed determines the 

cooling and heating potential of the system (Kwok and Grondzik, op.cit., p. 193). 

 
Figure 2.21: EAHE system configuration - open and closed-loop 

The EAHE system can be configured as either an open loop or a closed-loop, as 

shown in Figure 2.21. In an open loop system, the outside air is brought into a 

building space through an underground pipe (Argiriou, op.cit., p. 367; Kwok and 

Grondzik, op.cit., p. 193; Ozgener, 2011, pp. 4484-4485). In the closed loop 

configuration, the inlet and outlet air are both inside the building. Because the cross 

ventilation in both systems is induced by a fan, EAHE system is a hybrid system 

since it is not entirely passive. 

2.5.3. Advantages and Disadvantage of EAHE Systems 

Bansal and Sodha (op.cit., p. 177) make reference to a shift from earth-air tunnel 

structures to buried tubes. This shift can be linked to the design requirements of 

these tunnels, as well as their construction and maintenance costs, as well as 

efficiency problems due to water infiltration, caused by local geological and climate 

conditions or by negligent maintenance. The EHAE pipe systems are able to 

minimise some of these problems when compared to tunnels. Its main advantages 

are lower maintenance (Bansal and Sodha, ibid., p. 182; Shukla, Tiwari and Sodha, 
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2006, p. 366) and lower energy requirements to operate (Pfafferott, 2003, p. 971; 

Shukla, Tiwari and Sodha, ibid., p. 365).  

Other advantages of the system include its low cost (Argiriou, op.cit., p. 391; Shukla, 

Tiwari and Sodha, ibid., p. 365), being simple to operate and maintain and not 

needing skilled labour (Shukla, Tiwari and Sodha, ibid., p. 365), as well as its own 

simplicity, high thermal performance, and the reduction it causes in the  heating and 

cooling energy demands of a building. These are factors toned to be considered 

because of the resulting reductions in annual fossil fuel usage (Pfafferott, op.cit., p. 

971). Furthermore, the system’s equipment is not affected by the severe cold since 

it is frost-free (Trzaski and Zawada, 2011, p. 1436). However, there are also 

disadvantages in the use of EAHE Systems, such as water accumulation inside the 

tubes caused by condensation (Argiriou, op.cit., p. 388), which can cause the growth 

and development fungi and bacteria within the system (Kwok and Grondzik, op.cit., 

p. 195) that can produce unpleasant odours (Steemers, 1991, p. 11). Furthermore, 

during operation, the fan required as part of the system can produce noise (Argiriou, 

ibid., 389). The performance of an EAHE System can also degrade due to 

continuous heat transfer from the pipes to the surrounding ground (Kwok and 

Grondzik, ibid., p. 194).  

2.5.4. Factors that Affect EAHE Systems Performance 

There are multiple factors that affect EAHE system thermal performance. Table 2.3 

summarises the most influential factors reported in different researches. These 

factors are presented as external climate conditions, geological factors surrounding 

the system that determine soil thermal characteristics, and factors originating from 

the system itself including its design and operational. The focus of this section is on 

case studies examining the external and system-surrounding aspects that determine 
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performance because both factors also affects the thermal performance of ground-

integrated architecture.  

Table 2.3: Factors that affect EAHE systems performance reported in different researches 
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Trombe, Pettit and Bourret (1991) found that EAHE are affected by external factors 

such as air temperature and relative humidity, system surrounding factors such as 

soil temperature and water content, and by system factors. Kumar, Kaushik and 

Garg (2006, p. 1154) investigate the effect of humidity, ambient temperature, and 
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ground temperature both at the surface and at pipes installation depth on an EAHE 

system’s thermal performance. In their study Kumar, Kaushik and Garg found that 

the supply air temperature is highly dependent upon the ambient temperature and 

the ground temperature at the installation depth of the system’s pipes, which these 

authors discuss as the most relevant factor.  

Mihalakakou, Lewis and Santamouris (1996a, p. 45) analyse the effect of bare soil 

and short-grass soil coverage on single and multi-pipe EAHE systems performance 

in Dublin (Ireland). The authors found that during winter bare soil could increase the 

system’s heating performance compared to short-grass covered soil. Regarding the 

performance of EAHE systems in New Delhi, Shukla, Tiwari and Sodha (op.cit., pp. 

374-376) found that is the performance of these systems is affected by the surface 

conditions as blackened, blackened and glazed, and wetted surfaces produced 

different performance profiles. During winter, a darker surface can increase the 

system heating potential, while during the summer, soil with higher moisture content 

provides the coolest supply air.  

 
Figure 2.22: Ground temperatures around the end of an EAHE. Trzaski and Zawada, 2011 

For climate conditions in Poland, Trzaski and Zawada (op.cit., p. 1442) found that, 

during summer, the grass-covered soil increased the cooling potential of the system 

by providing a 1 K lower temperature than the bare soil (Figure 2.22). The winter 

results from this study show that the temperature difference between the different 
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kinds of soil coverage is negligible. The authors did, however, state that objects 

located near an EAHE system could affect its performance. 

Concerning ground thermal properties and climate, a study conducted by Ascione, 

Bellia and Minichiello (2011, p. 2187) shows how an EAHE system performance 

integrated into an air-conditioned building is affected by the boundary conditions at 

different climates. The authors found that the system has higher potential with wet 

and heavy soils and in the colder Italian climate, potentiating thermal energy savings 

that could go up to 44%. Trzaski and Zawada (op.cit., p. 1442) found that low 

thermal diffusion coefficient soils had a high cooling performance, but a low heating 

performance. The authors also found that the opposite was true for soils with a high 

diffusion coefficient. 

2.5.5. EAHE Thermal Performance – Case Studies 

 
Figure 2.23: EAHE system; experimental 
set-up. Trombe, Pettit and Bourret, 1991 

Figure 2.24: Comparison - House with and 
without EAHE. Trombe, Pettit and Bourret, 1991 

Regarding the thermal potential, Trombe, Pettit and Bourret (op.cit.) studied the 

cooling performance of an EAHE system located in France during the summer 

(Figure 2.23). The authors assessed the system by measuring temperature data and 

comparing two similar buildings, one with and another without an EAHE system. The 

authors found that the air temperature inside the tube decreases in temperature. It 

had an accentuated decrease in temperature in the initial length of the tube and a 

more steady decrease in temperature across the rest of the length of the tube. The 

air relative humidity at the outlet was higher than that at the inlet. The average 



Chapter 2 - Ground Thermal  

 -36- 

difference between the temperatures inside the two buildings was 1.5ºC (Figure 

2.24). The authors concluded that the system had a sufficient thermal potential to 

provide air conditioning for these buildings (ibid., p. 707). 

Several studies have reported the cooling and heating potential of EAHE systems. 

Bojic et al.’s (1997, p. 1151) study establishes that the use of EAHE systems in 

Greece can reduce the daily heating and cooling energy demands of buildings. The 

cooling performance of these systems was better than their heating performance, 

and therefore the energy and cost efficiency saving of these systems was higher 

during summer than during winter.  

Hollmuller and Lachal’s (2001, p. 517) investigation states that the use of EAHE 

systems to preheat the outside cold air during the winter induces energy savings, 

since it reduces the heating energy demand within the building itself. For the study 

time set, the use of EAHE systems for air preheating was not sufficient by itself and 

was more expensive than conventional fuel heating systems. During the summer the 

cooling provided by these systems could be sufficient by itself when used as a 

ventilation system. So the systems could substitute for conventional air-conditioner 

systems, and therefore they were able to reduce energy costs.  

Pfafferott’s (op.cit., p. 971) study on EAHE systems performance in European office 

buildings reports that, during winter, these systems can contribute to reducing the 

heating demands of such buildings by pre-heating the incoming air. During summer, 

the EAHE systems integrated with building thermal design are sufficient to avoid the 

use of active air conditioning units. Therefore, Pfafferott considers the system as a 

passive cooling alternative in moderate climates.  

Tittelein, Achard and Wurtz (2009, p. 1691) found that, for the temperate climate in 

France, the EAHE system could be used as a cooling system for a low-consumption 
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building during the summer. During winter, however, the system was not 

recommended as a heating system, since it usage was not justified. 

 
Figure 2.25: EAHE pre-heating potential. Ascione, Bellia and Minichiello, 2011 

Ascione, Bellia and Minichiello (op.cit.) evaluated the summer and winter energy 

performance of EAHE in different Italian climates (Milan, Rome and Naples). During 

summer, the best energy efficient ratios were registered in Milan (Figure 2.25). 

Since Milan has the coldest winters of these three Italian climates, during the 

summer the subsoil temperatures were also lower than the other cities (ibid., p. 

2183). For winter conditions, Milan also registered the highest potential, as the air 

temperature increases are around 10ºC, compared with the temperature increases 

of around 4ºC obtained in other cities. Thus, the use of EAHE for heating was only 

convenient for cold Italian climates (ibid., pp. 2183-2184). This study found that 

thermal comfort is only achieved in Milan, not in the other cities included in the 

study. For the other climates covered by this study, the use of these passive 

techniques could improve the thermal comfort, but were only effective with the help 

of an active cooling system (ibid., p. 2187). 
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2.6. CONCLUSIONS 

As discussed throughout this chapter the temperature of the ground changes 

according to depth. As also stated, to a certain depth the ground temperature values 

vary due to the soil’s capacity to collect and retain solar energy. This is more clearly 

the case for the surface and shallow zones, as the ground temperature distribution 

at both zones closely follows the climate conditions. While the ground temperatures 

at the surface zone have a diurnal pattern, the shallow zone has a seasonal pattern 

of temperatures and the time lag can be up to several months. Within the deep 

zone, the ground temperature is constant all year round and close to the mean 

annual air temperature of the location, and the ground energy source is geothermal. 

The use of ground thermal energy as an energy source to heat and cool buildings 

can be provided by direct or indirect contact, both of which produce conductive heat 

gains or losses according with the season. For both strategies, there is a high level 

of contact with the ground. Most parts of the building structure and most parts of the 

EAHE pipes are in direct contact with the surrounding soil. For this reason, to 

determine the ground heating and cooling potential of either strategy it is important 

to understand the thermal potential of the soil. This is done by determining ground 

surface temperature and ground temperature at different depths.  

For both cases, the main difficulty resides in the multiple factors that contribute to 

this heat transfer, mutual interference that can disturb ground temperatures, time 

inconstancies in soil properties or external factors due to various changes. In this 

chapter it is pointed out that climate conditions such as air temperature and solar 

radiation are some of the main factors that influence the ground temperature. 

Furthermore, these external factors depend on location characteristics such as 

topography, which is described in Chapter 4 and investigated in detail in Chapter 5. 
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Chapter 3 - Ground Thermal by Direct Contact  

 
-40- 

3. GROUND THERMAL BY DIRECT CONTACT 

“We learn that many audacious “primitive” solutions anticipate our cumbersome 

technology; that many a feature invented in recent years is old hat in vernacular 

architecture - prefabrication, standardization of building components, flexible and 

movable structures, and, more specially, floor-heating, air-conditioning, light 

control, even elevators. (…) we may find that long before modern architects 

envisioned subterranean towns under the optimistic assumption that they may 

protect us from the dangers of future warfare, such towns existed, and still exist, 

on more than one continent.” (Rudofsky, 1964, p. NA) 

 

3.1. INTRODUCTION TO GROUND-INTEGRATED ARCHITECTURE 

The use of ground thermal potential as applied to the heating and cooling of a 

building is based on the temperature difference between the ambient air 

temperature and the ground temperature at a specific depth. Through direct contact 

with the ground, a large part of the structure of a building is able to take direct 

advantage of the thermal potential of the ground. To allow for this interaction or 

coupling between the ground and the structure of the building insulation should be 

avoided (Givoni, 1994, p. 210). The use of insulation can reduce energy savings 

because the building structure is decoupled from the surrounding ground (Boyer and 

Grondzik, 1987, pp. 102-103). However the use of insulation must be considered if 

thermal resistance is needed in order to minimize heat losses (Givoni, op.cit., p. 

210). 
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Far from being a new way to control building thermal comfort, ground-integrated 

building concepts can be traced back to ancient times. Subterranean structures 

such as caves have been used for habitation since the Palaeolithic Era and provided 

the first shelter for humans. Reasons for using these structures include: protection 

from severe climate (Golany, 1980, p.  109; Balaras, 1996, p. 2; Jannadi and Ghazi, 

1998, p. 102; Al-Mumin, 2001, p. 103; Çorakbas, 2012, p. 1451), preservation of 

land for agriculture (Golany, op.cit., p. 109), and defensive strategies and 

ceremonial needs (Golany, ibid., p. 109; Jannadi and Ghazi, op.cit., p. 102). Shelter 

from local predators, local topographical issues, geological characteristics and lack 

of construction materials (Erdem, 2008, p. 493; Stasinopoulos, 2014, p. 26) such as 

timber (Çorakbas, op. cit., p. 1451) also contributed to the use of these structures in 

ancient times.  

 
Figure 3.1: World distribution of ground-integrated buildings 

The users of these ground-integrated structures noticed that these shelters are able 

to provide more stable and comfortable conditions when compared to outside ones 

(Golany, op.cit., p. 109). The use of these habitable spaces provides us with 

knowledge of the earth’s potential as a thermal provider for living and working, and 

for food storage and security (Golany, 1995, p. 183).  
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Examples of ground-integrated settlements can be found in many different locations, 

including the Mediterranean areas of the Göreme Valley of Cappadocia (Turkey), 

Matmata (Tunisia), Matera and Sicilia (Italy), Santorini (Greece), Andalucia (Spain), 

Tripolitania (Libya), and in the African area of Seripe (Ghana). Similar ground-

integrated settlements can be found in Iran, in the Middle East, in India, in the 

southwest of the USA, in central and South Australia, and in Asia, particularly in the 

Chinese Provinces of Henan, Shanxi and Gansu (see Figure 3.1). 

 
Figure 3.2: Slope-
integrated buildings, China. 
Golany, 1995 

 
Figure 3.3: Ground-
integrated buildings, 
Matmata, Tunisia. Golany, 
1995 

 
Figure 3.4: Slope-integrated 
buildings, Cappadocia, Turkey. 
Aydan and Ulusay, 2003 

 
Figure 3.5: Ground-
integrated building, Shanxi, 
China. Golany, 1995 

 
Figure 3.6: Ground-
integrated house, Sahara. 
Callaway, 1980 

 
Figure 3.7: Kaymaklı 
underground city, Cappadocia, 
Turkey. Aydan and Ulusay, 2003 

The largest below-ground settlements are in China, Tunisia and Turkey. All these 

areas have in common several factors including severe climate conditions, and the 

lack of construction resources (Golany, p. 184). China has the world’s highest 

number of below ground residents – approximately ten million people is reported to 

be currently living underground in China by Tong and Zhang (see Tong and Chen, 

2011, p. 5662). Chinese ground-integrated structures (Figure 3.2 and 3.5) have 

been used for more than four thousand years and can be found in both rural and 

urban settlements (Stead, 1980, p. 41; Golany, 1995, p. 184). The three main 

structure types identified in these studies of Chinese underground architecture are 
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the cliff, pit, and vaulted earth-sheltered dwellings, which are dependent on site 

selection (Golany, 1992, p. 66).  

Matmata (Figure 3.3 and 3.6), in Southern Tunisia, is the second area with the 

largest amount of belowground settlements. It is composed of approximately twenty 

settlements (Golany, 1995, p. 184). Its ground-integrated structures are based on a 

circle generated around a courtyard (Al-Mumin, op.cit., p. 103).  

In Cappadocia (Figure 3.4 and 3.7), located in Anatolia (central Turkey), ground-

integrated settlements can be traced back to 400 B.C (Erdem, op.cit., p. 493). There 

are three main settlement types; the cliff or semi-underground, the underground and 

the modern rock structures, and the locations of these settlements are dependent on 

the characteristics of the local landscape (Aydan and Ulusay, 2003, pp. 252-253). 

3.1.1. Recent Reuse and Abandonment of Underground Structures 

The reuse of underground construction was initiated in the USA during the 1960’s, 

as a Cold War military strategy. One decade later, these constructions were studied 

not as a defence concept but because of their potential energy performance levels, 

particularly due to the energy crisis of the 1970’s which was generated by a sudden 

increase in fuel prices (Brown and Novitski, 1981, p. 299; Labs, 1982, p. 397; Bartz, 

1986, p. 71; Boyer and Grondzik, 1987, p. 1; Jannadi and Ghazi, op.cit., p. 103; 

Rees et al., 2000, p. 217; Staniec and Nowak, 2011, p. 221). Since then, energy 

related issues, including thermal comfort, are the main reasons for going 

underground in contemporary architecture. Another reason for going underground is 

the provision of additional space, sometimes connected with land preservation, land 

cost, or land restrictions. 

However, whilst there is an increase in attention and some degree of acceptance of 

ground-integrated structure’s thermal potential, the future of these buildings is being 
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undermined in areas where they were once the dominant architectural form. For 

example, at the Loess Plateau, one of China’s poorest regions, the once 

predominant ground-integrated buildings are being replaced by conventional 

constructions, despite the fact that the costs of constructing the latter are higher, 

due to a lack of conventional construction resources including fired bricks and 

concrete. In this region, the costs of ground-integrated buildings are 20% lower than 

conventional constructions, due to the availability of local technology and materials 

(Jun and Yan-yung, 2006, p. NA). Nevertheless, the popularity of this type of 

construction is rapidly declining, which could lead to the loss of local knowledge and 

techniques of vernacular construction (Tong, Chen and Li, 2011, p. 1644). Hayashi 

(1986, p. 169) reports how the future of earth-sheltered architecture in China has 

been affected by this change in construction during the 1980’s. Hayashi identifies a 

shift in attitudes towards earth-sheltered houses, as underground construction is no 

longer an attractive industry. According to Hayashi, the rapid economic growth of 

Chinese farmers has contributed to a rapid change in housing construction. Earth-

sheltered architecture, once the main type of housing construction and the main 

source of employment for the local workforce and resources, has lost its importance 

in the face of the rise of modern concrete constructions.  

Similarly, Golany (1992, p. 43) identified the same shift in attitudes concerning 

earth-sheltered architecture during the 1990’s. Golany argues that improvements in 

the economic lot of Chinese farmers have led to the need for larger living spaces, in 

order to accommodate a larger number of household possessions. Golany also 

argues that these changes also encouraged the desire to live in above-ground 

homes, which were seen as more desirable. More recently, Liu et al. (2010, p. 124) 

reported that the internal space of traditional earth-sheltered houses is no longer 

appropriate for current living requirements among these farmers, since these 

constructions are perceived as having low aesthetic value. Consequently, the 
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increase in the number of brick houses being constructed has increased the energy 

use of farmers’ buildings, as well as claiming good farming land (Zhu et al., 2014, p. 

159). The previous estimated global number of 35-40 million below ground residents 

used by researchers during the last three decades (Stead, op.cit., p. 41; Golany, 

1992, p. 42, 1995, p. 183; Wang and Liu, 2002, p. 985; Zeng and Song, 2012, p. 

3486), has fallen to 10 million in actual terms since 2007 (see Tong and Chen, 2011, 

p. 5662), a number revealing a 70-75% reduction in below-ground living. 

Furthermore, and in the Tunisian case, Golany (1995, p. 208) states that the last 

underground building in Matmata was constructed in 1975, revealing the 

discontinuation of these kind of constructions locally.   
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3.2. CONFIGURATIONS, SITES AND CATEGORIES  

3.2.1. Types of Building Configurations 

In a building, the source of heat gains can be internal or external. Internal heat gains 

are mainly produced by the building’s users and, therefore, are under human 

control; these internal gains are caused by factors such as lighting, domestic 

appliances such as those used for cooking, or by the heat produced by the 

building’s habitants themselves. The external gains are due to the relationship 

between the local climatic characteristics, such as solar radiation and ambient air 

temperature, and the design of the building. These external gains can be controlled 

at the design stage (Dimoudi, 1996b, pp. 35-39).  

The shape of a building affects the amount of solar radiation and wind exposure it 

receives (Balaras, 1996, p. 7), and therefore these factors can be used as a design 

technique in order to control the amount of heat gains and losses, which are 

determined by the ratio of exposed surface area to building volume. Another way of 

controlling heat gains and losses is through increasing the surface area of the 

building that is in direct contact with the ground, since this will reduce the surface 

area that is exposed to solar radiation, ambient air temperature and wind. 

Furthermore, ground-integrated buildings have lower air infiltration due to their 

airtight structure, and will therefore experience fewer heat gains and losses. 
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Figure 3.8: Plan concepts – elevational, atrium and penetrational. Underground Space 
Center, 1979 

There is a large range of ground-integrated buildings designs and, usually, their 

configurations are linked with local climate and site characteristics. Two examples of 

these configurations are the elevational and the atrium configurations, as pointed 

out by Sterling, Carmody and Elnicky (op.cit., p. 104) (Figure 3.8). The elevational 

house usually has three walls in contact with the ground, leaving the South-facing 

wall exposed to sun and wind. The roof of elevational houses can either be exposed 

or covered with soil. The most common shape for this kind of dwelling is a rectangle, 

with the longest sides facing south and north. This design can be built on a flat site, 

but sloped sites of to 50% are ideal (ibid., pp. 104-105). Generally, the atrium design 

is a single floor building with a square shape. It can be built on sloped sites of up to 

15%, but its construction is easier if erected on a flat site. The main difference 

between the elevational and atrium designs is that the atrium design is not 

dependent on site orientation (ibid., p. 108). The Underground Space Center (1979, 

p. 42) adds to these two configurations a third, the penetrational, a building concept 

that allows several openings along its perimeter, such as entrance and windows. 
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3.2.2. Sites and Categories of Ground-integrated Structures 

 
Figure 3.9: Ground integration types according with site 

Natural, excavated or buried, underground spaces have been used for residential, 

military, religious, social and educational purposes, as well as for food production or 

storage, for transportation and for storage of utilities. There are several ways to 

categorize ground-integrated structures and normally these categories are linked to 

the type of building site. The site integration is usually divided in horizontal and 

vertical, the latter referring to slope terrains (Figure 3.9). Stead (op.cit., p. 41), 

identifies two categories: the ground-integrated structures on flat land, constructed 

around an underground courtyard, and concerning slope terrains, the slope ground-

integrated structures, which are typically composed of several independent rooms 

carved along a cliff and with a single façade. 

 
Figure 3.10: Levels of ground-integration. Golany, 1980 

Golany (1980, p. 111) defines five levels of ground integration in a model that 

considers both flat and slope areas. As illustrated in Figure 3.10, there are three 
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types of ground integrations on flat areas: total subterranean, subterranean and 

semi-subterranean that is integrated with above ground construction. Regarding the 

two types of ground integrations on slopes, Golany makes a division between 

subterranean and semi-subterranean. Contrarily, Van Der Meer (1980, p. 144) 

considers two main categories of ground integration, based on construction 

techniques. Van Der Meer refers to these categories as the ‘constructed’ and a ‘no 

constructed’ types, with the first requiring all the building elements such as walls, 

roof, and floor to be constructed, and the second one requiring that the building 

space be created within the soil. Van Der Meer divides the underground constructed 

structures into sub-categories, the partially underground, the earth covered, and the 

totally underground. 
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Figure 3.11: Ground-integrated structures. Boyer, 1980 
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Figure 3.12: Ground-integrated structures – Building sections, 
Chamber types. Boyer, 1980

 
“True” 

Underground 
Atrium or 
Courtyard 

Hillside 
Elevational 

Side 
Penetration 

“Non-earth” 
Roof 

Berm 
Types 

Figure 3.13: Ground-integrated structures – Building sections, Berm 
types. Boyer, 1980
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Figure 3.14: Ground-integrated structures – Building elevation. 
Boyer, 1980
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According to Boyer (1982, p. 202) there are several approaches to applying a 

ground-integrated structures concept to reality. Boyer’s classification of structures is 

based on the type of building plan, type of cross-section and type of elevation 

(Figure 3.11 to 3.14). Jannadi and Ghazi (op.cit., p. 103) organise ground-integrated 
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constructions according to building location and surface. The four structure types 

they offer are chamber (a totally underground building), atrium (around a buried 

courtyard), elevation (on a slope) and bermed (built above ground and later covered 

with earth). Anselm (2008, p. 1217) divides ground structures based on two 

construction concepts: bermed spaces and true underground spaces. In Anselm’s 

work bermed structure styles are further subdivided into elevational or slope design, 

and atrium or courtyard design. As for Kwork and Grondzik (2011, p. 200) their 

typography of ground-integrated buildings is based on three implementation types: 

below ground surface on a level site, above or semi- underground surrounded by 

earth (berm) and integrated into a sloped site. 

The types of ground-integrated spaces described by Golany (1995, p. 185) are 

those determined by the different forms related to the earth and the thermal 

performance patterns that result, the ways in which they are adapted to the location 

and climate conditions, and the local construction resources. Golany then divides 

these sturctures into five main types: earth-sheltered habitat, semi-below-ground 

habitat, subsurface space, belowground space and ‘geospace’ (ibid., pp. 189-190). 

 
Figure 3.15: Earth-sheltered buildings. 
Golany, 1995 

 
Figure 3.16: Semi-below-ground buildings. 
Golany, 1995 

Earth-sheltered habitats are above-ground constructions where earth is used as 

thermal insulation. This strategy controls the heat flux, but the storage potential is 

limited. The use of these constructions can be found in hot-dry regions such as Iran, 

Turkey and USA and, according to Golany, this style of building was still being used 

in Jerusalem several decades ago (Figure 3.15). The semi-below-ground habitats, 

such as basements, are constructions with some elements below and some above 
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ground. These were considered one of the initial human made constructions and 

were commonly used in Neolithic settlements in China and Japan, and are still in 

use in rural settlements in Africa. These can be found in different forms such as the 

igloo in cold climates, and on slope ground-integrated terrace dwellings in the 

Mediterranean (Figure 3.16). 

 
Figure 3.17: Subsurface buildings. 
Golany, 1995 

 
Figure 3.18: Belowground buildings. Golany, 1995 

The subsurface building is erected on an underground level but its roof soil 

coverage is minimal. The distance between the soil surface and the building’s ceiling 

is small, as can be seen at some Roman constructions in north Tunisia (Figure 

3.17). The belowground spaces are underground constructions with a soil layer 

between the ceiling and soil surface of at least 3 m. These constructions depend on 

the characteristics of the local soil and on topography. These spaces are carved into 

the soil and are based on three main types; the pit-type, the cliff-type and the nest-

type. Pit-type dwellings are used in flat ground areas, such as found in Tunisia and 

in China. The cliff-type and nest-type constructions are used in areas where the soil 

is easy to carve and self-sustaining, such as can be found in Turkey and China 

(Figure 3.18). Finally, the constructions termed by Golany as ‘Geospace[s]’, are all 

types of below-ground structures. 
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3.3. ADVANTAGES AND ‘DISADVANTAGES’ OF GROUND-

INTEGRATED BUILDINGS 

The main benefits of constructing buildings at least partially underground are that 

the structure provides protection against harsh diurnal or seasonal temperatures, as 

well as providing more stable and moderate thermal values. By controlling the 

climate conditions the heating and cooling requirements of the building are reduced 

and, therefore, such buildings provide good energy conservation (Labs, 1980, p. 

130; Barker, 1986, p. 59; Carmody and Sterling, 1987, p. 59; Chester and 

Zimmerman, 1987, p. 414; Golany, 1995, p. 197; Argiriou, 1996, p. 360; 

Mihalakakou et al., 1997, p. 181; Jannadi and Ghazi, op.cit., p. 108; Al-Mumin, 

op.cit., p. 105; Liu et al., 2010, p. 124; Li and Wu, 2011, pp. 82-85; Zhang, 2011, p. 

6969; Tong and Chen, 2012, p. 4105). Ground-integrated structures are energy-

efficient because they require less energy for heating or cooling than above-ground 

buildings (Brown and Novitski, op.cit., p. 303; Golany, 1992, p. 110; van Dronkelaar 

et al., 2014, p. 136). These buildings provide a better thermal environment than a 

standard building (Boyer, op.cit., p. 203), with lower energy costs (Van Der Meer, 

op.cit., p. 141; Boyer, op.cit., p. 203; Khair-El-Din, 1991, p. 10) which, consequently, 

leads to the prevention of fuel poverty (Hunt, Jefferson and Rogers, 2011, p. 218). 

The thermal conditions of ground-integrated structures are good for food 

preservation (Aydan and Ulusay, op.cit., p. 254; Fuentes Pardo and Canas 

Guerreiro, 2006, p. 475; Erdem, op.cit., p. 495) and can be used by industries that 

need stable temperatures such as the film stock preservation (Golany, 1995, p. 199) 

or wine making industries (Golany, ibid., p. 199; Cañas Guerrero and Ocana, 2005; 

Ocana and Cañas Guerrero, 2005; Mazarron and Cañas, 2008; Cañas Guerrero 

and Mazarron, 2009; Mazarron and Cañas, 2009; Mazarron, Cid-Falceto and 

Cañas, 2012; Tinti et al., 2014).  
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Furthermore, a good, stable thermal environment has a positive effect on human 

health (Golany, 1992, p. 125; Tong and Chen, 2012, p. 4106), and its residents live 

longer (Li and Wu, op.cit., p. 87; Tong and Chen, ibid, p. 4106). Stable temperatures 

decrease the time needed to heal external injuries by up to 20% (Golany, 1995, p. 

199). Yan (1986, p. 173) reported that living in an earth shelter dwelling environment 

could contribute to a reduction in upper respiratory infections, and a similar 

reduction in the incidence of rheumatism, nasal bleeding and infection, and skin 

conditions. Furthermore, a stable thermal environment has the potential to reduce 

infections, and to protect against health-related problems caused by noise due to 

the ability of the ground to act as sound barrier. 

Regarding heritage and urban planning, underground constructions are identified as 

good ways to generate open space without additional land costs, and can be used 

as no-visual barriers (Aughenbaugh, 1980, p. 151; Van Der Meer, op.cit., p. 141; 

Givoni, 1994, p. 219; Al-Mumin, op.cit., p. 105; Erdem, op.cit., p. 492; Hunt, 

Jefferson and Rogers, op.cit., p. 218). These constructions contribute to preserving 

the landscape by maximizing the land use potential of an area (Aughenbaugh, 

op.cit., p. 151; Labs, 1980, p. 130, 1982, p. 410; Barker, op.cit., p. 59; Golany, 1995, 

p. 199; Jannadi and Ghazi, op.cit., p. 101; Kumar, Sachdeva and Kaushik, 2007, p. 

2450), and reducing the visual impact of buildings (Van Der Meer, op.cit., p. 141; 

Barker, op.cit., p. 59; Khair-El-Din, op.cit., p. 10; Argiriou, op.cit., pp. 363-364; 

Jannadi and Ghazi, op.cit., p. 101; Al-Temeemi and Harris, 2004, p. 253). Another 

advantage of ground-integrated urban planning is that such buildings have a lower 

impact on the local ecology and microclimates (Van Der Meer, op.cit., p. 141). 

Considering security and safety issues, underground shelters provide privacy thanks 

to their safe and secure environment (Golany, pp. 197-198; Argiriou, op.cit., p. 365; 

Mihalakakou et al., op.cit., p. 181; Jannadi and Ghazi, op.cit., p. 109; Al-Mumin, 

op.cit., p. 105). These buildings also protect their occupants from exterior generated 
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noise (Aughenbaugh, op.cit., p. 105; Van Der Meer, op.cit., p. 151; Labs, 1982, p. 

410; Barker, op.cit., p. 59; Boyer and Grondzik, op.cit., p. 36; Carmody and Sterling, 

op.cit., p. 59; Golany, 1995, pp. 197-198; Argiriou, op.cit., p. 364; Mihalakakou et al., 

op.cit., p. 181; Jannadi and Ghazi, op.cit., p. 109; Tong and Chen, 2012, p. 4106), 

and provide protection against high winds and tornados (Labs, 1980, p. 130; Van 

Der Meer, op.cit., p. 141; Labs, 1982, p. 410; Barker, op.cit., p. 59; Boyer and 

Grondzik, op.cit., pp. 187-188; Chester and Zimmerman, op.cit., p. 414; Argiriou, 

op.cit., p. 365; Mihalakakou et al., op.cit., p. 181; Jannadi and Ghazi, op.cit., p. 109), 

sand storms (Labs, 1980, p. 130) and fire propagation (Aughenbaugh, op.cit., p. 

151; Labs, ibid., p. 130; Boyer and Grondzik, op.cit., p. 193; Chester and 

Zimmerman, op.cit., p. 414; Golany, 1995, pp. 197-198; Argiriou, op.cit., p. 365; 

Mihalakakou et al., op.cit., p. 181; Tong and Chen, 2012, p. 4107). When efficiently 

designed, underground constructions also withstand earthquakes better than above-

ground structures (Luo, 1987, p. 205; Yucheng and Liu, 1987, p. 216; Golany, 1992, 

p. 126, 1995, p. 199; Argiriou, op.cit., p. 365; Al-Mumin, op.cit., p. 105; Erdem, 

op.cit., p. 495; Tong and Chen, ibid., p. 4107), since their structural elements move 

with the ground as a unit and not “as an unrelated assemblage of parts” (Boyer and 

Grondzik, op.cit., p. 192). 

There is no consensus regarding the comparative construction costs of underground 

compared to above-ground constructions. The divergence in different cost analyses 

of ground-integrated buildings is caused by the construction context as well as soil 

characteristics, excavation problems due to hard rock, water table locations or the 

need for special drainage design. Wendt (1982, p. v) reports that, on average, an 

underground house could cost 10% to 35% more than a above-ground house. It 

should be added that for the market conditions of 1981, and taking in account a life 

cycle cost of a building, this extra amount might not add any benefits. According to 

Egg and Howard (2011, p. 9), prohibitive construction cost is one of the reasons why 
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people do not build entire dwellings underground. For Labs (1980, p. 137), however, 

the construction costs and technologies required for underground buildings are not 

obstacles to building underground constructions. Other researchers have perceived 

low construction costs as an incentive for ground-integrated structures 

(Aughenbaugh, op.cit., p. 157; Golany, 1992, p. 78, 1995, p. 197; Al-Mumin, op.cit., 

p. 107; Liu et al., op.cit., p. 124; Tong, Chen and Li, op.cit., p. 1645). For Golany 

(1995, p. 197), ground-integrated building construction costs proved to be up to 50% 

lower than above buildings constructions with similar dimensions, as the land price 

for sites suitable for ground-integrated dwellings is normally low because they often 

feature slope terrain, and the soil itself can be used as the construction material. 

Aughenbaugh (op.cit., p. 157) states that underground construction costs are 

economically viable, since they are able to compete against above ground buildings, 

with his research showing a 10-20% reduction in construction costs for underground 

compared to above-ground dwellings. Studies by Al-Mumin (op.cit., p. 107) proved 

that, in Kuwait at least, an underground courtyard building with one floor is less 

expensive than a similar above-ground building. And as for underground courtyard 

buildings with two floors, the final costs for these buildings are, according to Al-

Mumin, similar to above-ground construction of similar buildings. However, if the 

running costs were added to the equation, the sunken courtyard design would 

improve its total costs when compared to above-ground constructions of the same 

type.  

When considering maintenance, the building envelope of a sheltered house has 

fewer surfaces affected by climate conditions and therefore the maintenance needs 

of underground buildings are lower and less demanding than those of an above-

ground building. This includes a reduction in exterior maintenance costs 

(Aughenbaugh, op.cit., p. 151; Van Der Meer, op.cit., p. 141; Barker, op.cit., p. 59; 

Argiriou, op.cit., p. 365; Mihalakakou et al., op.cit., p. 181; Jannadi and Ghazi, 
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op.cit., p. 109; Al-Mumin, op.cit., p. 105) and lower water systems maintenance due 

to pipes’ lower exposure to freezing temperatures (Golany, 1995, pp. 197-198). 

However, Wendt (op.cit., p. 38) pointed out that this analysis depends upon the 

objects compared. If we compare an underground house with a well-built above-

ground house the maintenance cost difference would not be so pronounced. 

The most commonly accepted issue concerning below-ground buildings is the 

general perception or conceptualization of such buildings (Labs, 1980, p. 137), 

making social and psychological problems the greatest obstacle to the spread of 

these constructions (Golany, 1980, p. 120; Jannadi and Ghazi, op.cit., p. 105). Van 

Der Meer  points out that underground housing construction acceptance is low in the 

USA due to a negative perception of such buildings in the country’s collective 

memory. In the US, underground dwellings are associated with a primitive culture 

and with poverty due to the use of basement accommodations during the Great 

Depression of the 1930s (Van Der Meer, op.cit., p. 141), as well as with the post-

World War II basements accommodations of unfinished houses (Jannadi and Ghazi, 

op.cit., pp. 106-107). In China, religious buildings were always built above ground to 

be ‘pure’ (Golany, 1992, p. 7). It was also common in these areas for buildings with 

a higher monetary value to be built above ground, which makes living in ground-

integrated buildings not a choice, but rather a result of economic restriction (Golany, 

1995, p. 200). This history has contributed to the perception of ground-integrated 

spaces as dark places, humid and with poor ventilation, which provide a poor health 

environment and a sense of claustrophobia. In the case of the Cappadocia 

constructions, Çorakbas (op. cit., p. 1451) argues that carving underground spaces 

was more economical and took less time than constructing the same area above 

ground. Furthermore, the underground spaces at this location could be adapted or 

reused. For Çorakbas, this fact leads to the argument that underground structures 

were not a preference but probably a necessity. 
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Aughenbaugh (op.cit., p. 157) provides a new perspective to this problem. For 

Augenbaugh the main obstacle to the construction of underground buildings is not 

the negative public perception of such buildings, but rather the planner’s 

assumptions. On the few occasions where the public was informed of the living 

conditions in underground dwellings and was able to see different house plans and 

studies, it became clear that all objections to these buildings ceased. In a similar 

manner, Boyer (op.cit., p. 209) argues that the psychological problems associated 

with living underground fail to be borne out when confronted with the reality of 

underground living. With regard to schools, Boyer reported that sheltered buildings 

provided a good learning environment. As for workspaces, Boyer stated that the 

experience was similar to working in large above ground workplaces. Bartz (1986, p. 

80) found that the residents of earth-shelter houses developed a more positive 

opinion of such dwellings after living in earth-shelter homes. Before moving, 

residents reported some concerns and divided negative, positive and neutral 

attitudes. After the experience, the residents’ attitude changed, becoming universally 

extremely positive. Al-Mumin (op.cit., p. 111) also states that occupant of below 

ground dwellings in Kuwait expressed high satisfaction and positive reactions to the 

conditions provided by the design. 

Other reported disadvantages of these constructions are the high relative humidity 

and insufficient air quality (Khair-El-Din, op.cit., p. 6; Argiriou, op.cit., p. 366; 

Jacovides et al., 1996, p. 167; Liu et al., op.cit., p. 124; Zhang, op.cit., p. 6969), 

excessive weight of roofs due to a large amount of soil waterproofing (Khair-El-Din, 

op.cit., p. 6), size requirements or restrictions (Van Der Meer, op.cit., p. 142; Liu et 

al., op.cit., p. 124; Tong and Chen, 2012, p. 4107), lack of appropriate sites (Jannadi 

and Ghazi, op.cit., p. 109), slow reaction to new conditions (Steemers, 1991, p. 11) 

and finally, construction codes, regulations and financial impediments due to lending 

restrictions (Van Der Meer, op.cit., p. 142).  
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3.4. CASE STUDIES 

3.4.1. Initial Studies 

In order to assess the potential of underground construction, Golany (1995) studies 

the thermal comfort of a below-ground residential building in the Ya’nan City area in 

Shaanxi Province (China), of a hotel in Matmata (Tunisia) and of the Hunt House, an 

uninhabited Roman subsurface house structure in Bulla Regia (Tunisia). 

 
Figure 3.19: Studied building, 
Ya’nan City, China. Golany, 
1995 

 
Figure 3.20: Marhala Hotel, 
Tunisia. Golany, 1995 

 
Figure 3.21: Hunt House, 
Bulla Regia, Tunisia. 
Golany, 1995 

The family building in China shown in Figure 3.19 consisted of a south facing L-

shape, with five rooms on both sides. The right wing of the building was carved into 

a cliff so that its structure has soil coverage 15 m deep, and the left wing is an earth-

sheltered structure with 2 m roof soil coverage. During the summer, which featured 

an outside maximum temperature of 28ºC and diurnal amplitude of 14ºC, the cliff-

type wing provided good thermal comfort with a low temperature oscillation of 3ºC 

and a maximum temperature of 21ºC. The earth-sheltered wing had the highest 

temperature and thermal oscillation. Through the winter it was found that both wings 

required some sort of heating. The cliff-type wing had more stable temperatures 

than the earth-sheltered wing, but it also registered the lowest ones. However, in 

summer and winter the humidity level was lowest and almost constant in the earth-

sheltered wing (ibid., pp. 202-204). 

The below-ground Marlhala Hotel in Tunisia consisted of a pit-type construction 

(Figures 3.20). During the summer all the rooms’ temperatures were stable. In the 
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intermediate room, with 4 m soil coverage, the temperature was highest and 

registered the biggest thermal oscillations. A smaller room with a soil coverage of 10 

m registered temperatures 17ºC lower than the outside temperatures. In winter 

Golany found that all rooms registered higher temperatures than those found in the 

outside areas. The lower rooms had the most stable thermal conditions throughout 

the year. Golany concluded that the soil structure influences the below ground 

spaces, and this provided both a more stable temperature and better thermal 

comfort than those found in above ground buildings. At depths of up to 10 m, Golany 

observed that the deeper the space is buried, the better its thermal performance. 

The humidity values are also lower and the diurnal and seasonal humidity and 

temperature oscillations are reduced the deeper a room is buried (ibid., pp. 204-

210). 

The Hunt House, illustrated in Figure 3.21, is formed of five rooms that are 

connected via an open patio. Its structure was built 5 m below the surface and the 

soil roof coverage is less than 1 m. The house’s structure works as a thermal 

insulator and does not provide thermal storage. All rooms have an internal duct for 

light and ventilation. By analysing the site temperature measurements once in the 

winter and once in the summer, Golany found that the temperatures found in the 

structure were lower than the outside temperatures on both occasions (ibid., pp. 

210-214).   

3.4.2. Location and Climate  

Protected by UNESCO since 1993, the “Sassi” district of Matera, Italy, is formed by 

a number of semi-underground excavated constructions. These buildings’ main 

problem is the high humidity. In the case of Santa Maria of the Paloma Sanctuary, 

this high humidity caused the degradation of the mural frescos, a degradation which 

could have been prevented by improving the natural ventilation of the space 
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(Cardinale and Ruggiero, 2002, p. 412). Cardinale, Guida and Ruggiero (2001, p. 

302) argue that the semi-cave settlement of “Sassi of Matera” was a bio-climatic 

architecture able to use soil, location and climate to provide a good thermal 

environment. 

  
Figure 3.22: Restored underground space. Guida, Pagliuca and Rospi, 2008 

Guida, Pagliuca and Rospi (2008, p. 149) studied the thermal performance of two 

reconverted underground buildings adapted into hotels, shown in Figure 3.22. They 

concluded that these underground constructions provided passive cooling and 

heating and delivered a thermal environment in accordance with recent European 

directives. Later, Cardinale, Rospi and Stazi (2010, p. 94) confirmed that the walls’ 

thermal mass was sufficient to control the daily and annual internal thermal 

environment by avoiding large thermal amplitudes. After restoration, the spaces 

provided good thermal comfort and could be used with a reduced technology 

system. Recently, Cardinale, Rospi and Stefanizzi (2013, p. 598) analysed two 

examples of vernacular buildings in southern Italy. The experimental research 

proved that both the “Sassi of Matera” and “Trulli of Alberobello” structures produce 

outstanding energy performances. 

Khair-El-Din (op.cit., pp. 15-16) analysed earth sheltered constructions through their 

design characteristics based on location, climate and environmental impact. Khair-

El-Din’s study concludes that these types of structures should be part of future 

housing construction in hot and dry climate locations. Al-Temeemi and Harris 

(op.cit., p. 404) studied the effect of earth-contact buildings in Kuwait by measuring 
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the energy efficiency of a wall with ground contact at different depths. The study 

confirms that by increasing the ground contact of a subterranean wall at up to 2 m 

depth, the heat flux decreases (Figure 3.23). By comparing earth-contact walls with 

above ground walls Al-Temeemi and Harris found that the heat flux could be 

reduced by up to 51.6%.  

 
Figure 3.23: Ambient air and underground wall surface temperatures. Al-Temeemi and 
Harris, 2003 

In Japan, Yoshino et al. (1992) conducted a study that collected the thermal 

performance data of the semi-underground dwelling in Sendai. This study was 

carried through five years, measuring internal temperatures, soil temperatures, and 

an analysis of the heating energy demands of the building in four different scenarios. 

Hasegawa, Yoshino and Matsumoto (1997, p. 435) analysed the annual 

temperatures measurements inside the Sendai dwelling. They confirmed that the 

temperature amplitude inside the house was far smaller than the outside 

temperature swing.  

The Sendai data was used also by Sobotka, Yoshino and Matsumoto (1996, p. 165) 

to study and compare the thermal performance of semi-underground rooms 

(Sendai) and totally earth integrated rooms (Brhlovce, Slovakia). In temperate 

climates, totally integrated constructions without insulation and with good solar gains 

designed through fenestration were found to be too cold, with poor thermal comfort 

during spring and a part of the summer. Therefore, the use of insulation was 

recommended. In hot climates, where the cooling needs are more accentuated, this 
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insulation can be omitted. The key design parameters for the passive, solar-earth 

sheltered building are, according to these authors, the level of ground integration, 

the structure insulation levels and the percentage of south-facing walls that are 

glazed. 

Rantala (2005, p. 52) studies the thermal behaviour of slab-on-ground structures. 

According to Rantala, a heated building changes the ground thermal behaviour by 

providing a more constant heat flux, creating a ‘warm cushion’ below the building. 

However, the surrounding ground without coverage limits the extent of the depth of 

the ‘warm cushion’ effect. Below this limit, the ground temperature registers similar 

values to the average annual subsurface. 

 

 
Figure 3.24: (Left) Ground contact 
structures. Kumar, Sachdeva and Kaushik, 
2007 
Figure 3.25: (Above) Air temperatures. 
Kharrufa, 2008 

Kumar, Sachdeva and Kaushik’s (op.cit) study focuses on five different ground 

contact structures configurations, as illustrated in Figure 3.24. These five 

configurations are a slab with ground contact, a raised bank, a single-slope, a 

double-set slope configuration and an underground structure. The results of this 

comparison show that the configuration which had the highest energy conservation 

value, and therefore the best comfort zone, was the underground structure. The 

underground structure was followed by the double-set slope, single-slope and raised 

bank configurations (ibid., p. 2458). It is therefore possible to confirm that the heat 

flux through the structures’ envelope is affected by the amount of ground contact. 
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The higher the amount of soil contact the lower the heat transfer value. Kumar, 

Sachdeva and Kaushik’s results prove that ground contact structures are highly 

valuable as passive technology, and that underground walls at different depths have 

a direct effect on the total energy demand of a building (ibid., p. 2460). 

In Iraq, according to Kharrufa (op.cit., p. 411), traditional building space was used 

based on a cyclic rotation between the living areas of the basement, the courtyard 

and the roof, which depended on daily activities and external and internal air 

temperatures. More recently, this space-use pattern was abandoned in favour of air 

conditioning systems. This shift was caused by the low cost of energy and the rise of 

underground water levels, which increased the costs and risks of underground 

construction. Recently, this scenario is changing due to general land cost increases, 

the unreliable electricity supply in Iraq throughout the last decade, and the 

impression of safety against stray bullets and shrapnel (ibid., p. 412). Kharrufa’s 

(ibid., p. 416) study of cooling thermal performance in underground spaces in Iraq 

proves that, during the summer, basements provided better thermal comfort than 

above ground areas, with the air temperature measuring 4.5ºC lower than above 

ground areas (Figure 3.25). Therefore, basement spaces require less energy to 

improve their thermal environment. 

3.4.3. Soil Characteristics Influence 

Ocana and Cañas Guerrero (op.cit., p. 708) demonstrate that soil thermal 

characteristics and construction depth set the air temperature range inside the 

underground space. Staniec and Nowak (op.cit., pp. 233-234) consider the influence 

of soil characteristics on the heating and cooling demands of an earth sheltered 

building. According to Staniec and Nowak, for underground buildings the type of soil 

affects the building’s thermal behaviour, as 80-90% of the building envelope is in 

direct contact with the ground, while an above ground building has, in general, only 
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30% of its envelope in contact with the ground. The type of soil affects an the energy 

demand of an above ground building by only 3-11%, and affects an earth-sheltered 

building’s energy demand by 11-80%. Soil with a low thermal conductivity coefficient 

leads to a building with low heating and cooling energy demands. 

3.4.4. Patios and Courtyards Impact 

Regarding the influence of the patio and courtyard on a ground-integrated building’s 

thermal comfort, Brown and Novitski (op.cit.) consider two underground building 

designs in different climates of North America: one with an atrium and the other with 

a courtyard facing south. The authors found that earth sheltered buildings have the 

potential to respond to the climate patterns (ibid., p. 299). Brown and Novitski’s 

study argues that the immediate outside spaces around the earth-sheltered building 

could contribute to, as well as benefit from, better thermal comfort (ibid., p. 304).  

 
Figure 3.26: Ground-integrated building with 
courtyard. Al-Mumin, 2001 

 
Figure 3.27: Ground-integrated house 
with courtyard. Al-Mumin, 2001 

Al-Mumin (op.cit., p. 111) investigates the cooling performance of a ground-

integrated building with a case study of a courtyard situated in Kuwait. This 

structure, according to Al-Mumin, has three major advantages for a hot, dry climate. 

Firstly, it avoids the direct and indirect solar radiation heat gains through the roof 

and walls; secondly, it reduces the heat gains through infiltration and, thirdly, it 

reduces the heat gains that could be transferred to the roof and wall through the 

outside air temperature in the summer (Figure 3.26 and 3.27). Al-Mumin’s study 

demonstrates that the sunken courtyards have a 23-35% reduction in annual energy 

demand. 
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Figure 3.28: (Left) Heat flux- with and without a courtyard. 
Wang and Liu, 2002 
 
Figure 3.29: (Above) Case study “a) Areaway space; (b) 
basement; (c) 1st floor; (d) 2nd floor.” Bu, Kato and 
Takahashi, 2010 

Concerning the heating potential of a courtyard, Wang and Liu (op.cit., p. 1000) 

examine its effects on earth-sheltered constructions in Northern China through the 

interaction between the rooms, the courtyard area and the outside ambient 

temperature. Wang and Liu establish that the courtyard functioned as a buffer zone 

(Figure 3.28), which reduced the heat losses from the rooms, controlled the winds 

effect on the building’s facade and collected solar radiation throughout the day. The 

data collected for Wang and Liu’s study show that the temperature inside the 

courtyard is constantly 2ºC higher than the outside ambient temperature and its 

amplitude is 3ºC lower than the outside temperature. The three main reasons for 

this result, as argued by the study’s authors are, firstly, the increase in received 

solar radiation and, secondly, the shelter effect provided by the room’s and 

courtyard’s walls and, lastly, the courtyard’s ability to collect heat lost from the 

adjacent rooms. 

Bu, Kato and Takahashi (2010) studied the benefits of areaways (open sunken 

courtyards) in urban residential areas (Figure 3.29). The areaway spaces these 

authors studied are identified as buffer zones and can control the inside thermal 

conditions of building areas such as basements, improving their natural ventilation 

and light conditions (ibid., p. 2263). Compared to the pit cave dwelling courtyards 

found in China, the areaways in Japan are smaller spaces. The authors conclude 
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that in an urban setting, areaway spaces are sustainable elements able to provide 

ventilation to below ground spaces and, therefore, improve the underground 

environment (ibid., p. 2271). 

3.4.5. Earthships Constructions Performance 

 
Figure 3.30: Earthship section, Brighton, UK. Ip and Miller, 2009 

Michael Reynolds developed the Earthship construction, which is a ground-

integrated structure characterised by operating in self-sufficient mode and which 

utilizes recycled and local construction materials (Figure 3.30). Grindley and 

Hutchinson (1996, p. 154) investigated the thermal behaviour of an Earthship 

building in New Mexico (USA), simulating its behaviour in a southeast location in the 

UK. Grindley and Hutchinson found that the building suffered from overheating 

during the summer months in both New Mexico and in the UK. The building in New 

Mexico provided good thermal conditions during the day for the rest of the year, with 

some heating needs during the night and during winter. The same building in the UK 

only required a small amount of heating during winter. Similarly, Ip and Miller (2009, 

p. 2043) analysed the performance of an Earthship building’s seasonal thermal 

storage system in Brighton, UK. The initial measurement shows that the unoccupied 

building is able to minimise the outside extreme temperatures. The thermal store, as 

described by the authors, was working as an initial ‘charging’ cycle. This cycle was 

expected to continue throughout the first years, with an annual increase in thermal 

comfort during winter. 
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3.4.6. Wine Cellars 

Ocañas and Cañas Guerreno (op.cit., p. 1393) investigate the summer and winter 

thermal behaviour of four underground wine cellars in the Ribera del Duero region, 

Spain. Their study found that the internal temperature of the cellars were stable 

compared to the outside air temperature. However, the internal temperature and 

humidity level varied between the cellars. The mean temperature difference 

between all cellars was smaller during the summer than during the winter. The 

authors concluded that the outdoor temperature did not affect the cellars internal 

temperature. 

 
Figure 3.31: Slope-integrated wine cellars. 
Ocañas and Cañas Guerreno, 2005 

 
Figure 3.32: Studied wine cellars, plans 
and section. Cañas Guerreno and 
Ocañas, 2005 

Cañas Guerrero and Ocañas (op.cit.) studied the hygro-thermal cooling patterns of 

two traditional wine cellars (Figure 3.31 and 3.32). To understand the best thermal 

conditions for a wine cellar, the authors based their study on knowledge of the local 

wine producers of Morcuera (Soria, Spain) (ibid., pp. 46-48). The study proves that 

these cellars have high passive cooling potential by providing stable temperatures 

much lower than 18ºC during the summer (ibid., pp. 53-54). The cellars carved on 

hillside sites registered air temperature variations of 0.8ºC with a minimum value of 

11.4ºC. The cellar carved at a lower depth registered a stable temperature of around 

9ºC, 2.4ºC lower than the hillside cellar minimum. 
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Cañas Guerrero and Mazarron (op.cit., p. 1825) investigated the effects of natural 

ventilation on the hygrothermal patterns of underground wine cellars in Ribeira del 

Duero. This study proves that underground wine cellars with and without wind vents 

(zarceras) provide good temperature and relative humidity conditions for wine 

maturing, by controlling the large annual temperature variations. Therefore, the 

benefits of these traditional cellars also include no energy costs compared to above 

ground cellars that need air conditioning systems. The wine cellar without vents had 

lowest temperature oscillations. Both cellars registered constant relative humidity 

values; however the cellar without vents registered high values during the summer.  

Cañas Guerrero and Mazarron also found that wind vents improved the 

underground cellar’s hygrothermal patterns. The natural ventilation provided by this 

feature only worked from September to April, which contributes to the removal of the 

CO2 generated by wine fermentation during this period without compromising the 

internal air temperature. 

On further investigation, Mazarron and Cañas (op.cit., p. 2484) found that wine 

cellars’ internal air temperature is determined by the ground temperature at the 

average depth of the construction space, and by the outside air temperature through 

ventilation. The stability of the thermal environment changes according to the 

seasons. Mazarron and Cañas found that the cooling thermal performance of the 

underground cellars was better than their heating performance (ibid., pp. 2491-

2492). During the warmer period of spring and summer, the influence of ground 

temperatures dominated the inside air temperatures. During the autumn and winter, 

the air temperature of the cellars temperature is more highly influenced by the 

outside air temperatures due to an increase in ventilation. 

Mazarron, Cid-Falceto and Cañas (op.cit.) developed a modelling procedure to 

simulate the annual air temperature pattern of underground cellars in different 

locations. Their study used the climate data of twenty wine producing regions; it 
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considered future global warming and its effects on the underground wine cellars’ 

thermal environment, on locations with a mean annual air temperature higher than 

15ºC (ibid., p. 57). Mazarron, Cid-Falceto and Cañas found that for all the wine-

producing locations the ideal thermal environment could be secured by constructing 

the cellar at the right depth, a depth that was determined by the thermal properties 

of the soil and external climate conditions (ibid., p. 61).  
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3.5. CONCLUSIONS 

Natural, excavated, or buried, ground-integrated spaces have been used for 

residential, military, religious, social and educational purposes, or for food 

production or storage, transportation and utilities. The categories of ground 

integration can be based on site integration for both slope and flat land, and by 

ground integration as total, semi and bermed. 

The ground integration of a building’s envelope is a ground thermal strategy that 

enables the building to take advantage of the ground thermal potential through direct 

heat transfer. These buildings are able to control and decrease heat loss during the 

cold seasons and to avoid heat gains during the warmer seasons. The increase in 

surface area with direct ground contact reduces the effect of external parameters 

such as solar radiation, ambient air temperature and wind, as well as reducing air 

infiltration. The use of insulation produces lower or total decoupling between ground 

and building structure and, therefore, its use should only be considered when there 

is high ground heat loss.  

The thermal environment of below ground spaces is influenced by multiple factors 

such as local climate, site topography and orientation, soil characteristics, the level 

of ground integration, depth and nearby elements. 

Other than energy conservation, thermal comfort and land preservation are the main 

advantages of ground-integrated buildings, followed by security and safety, 

maintenance and health benefits. Most of the disadvantages, such as high humidity, 

poor air quality, reduced lighting and size restrictions, can be prevented through 

careful design. Other disadvantages to consider are the lack of suitable sites and 

increased construction costs in areas where these types of constructions are 

uncommon.
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CHAPTER 4. GROUND-INTEGRATED ARCHITECTURE ON 

SLOPE TERRAINS 
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4. GROUND-INTEGRATED ARCHITECTURE ON SLOPE 

TERRAINS 

4.1. POTENTIAL APPROCHES FOR A SUSTAINABLE LAND USE 

A large part of the world’s population lives in areas with severe climate conditions 

such as hot dry, hot humid, and cold dry climates. The increasing urban population 

of these areas could lead to the use “of new natural resources. In this situation, 

intense development of the mountain slopes (…) will become inevitable, creating a 

new urban frontier and new challenges for urban designers and climate specialists.” 

(Golany, 1996, p. 464). 

Three decades have passed since Simpson and Purdy (1984, p. 1) pointed to an 

increasing tendency toward building on slope terrains in the UK, a trend which was 

linked to the scarcity of flat land and to a rising appreciation of the need to preserve 

agricultural land (ibid., p. 248). Both these issues are global, as the shortage of flat 

construction land is an on going problem, and the rapid urban development of the 

past three decades had led to steep increases in land prices and to the claiming of 

farming land for building purposes (Hayashi, 1986, pp. 167-168; Burger, 1987, p. 

288; Golany, 1992, p. 115, 1998, p. xi; Liu et al., 2010, p. 125). To continue the 

practice of building on flat land could lead, in the near future, to food shortages due 

to the waste of good agriculture land. 
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For sustainable land use, the three main ground integration strategies currently used 

are the use of underground space, the reuse of existing underground spaces and 

the exploration of slope ground-integrated spaces. 

Firstly, going underground permits a dual use of land, below and above ground, 

thereby taking advantage of space. Reclaiming urban underground levels is not a 

new solution. Below ground spaces have long been used for infrastructural projects 

such as sewers, utilities and transportation (Hunt, Jefferson and Rogers, 2011, p. 

215). Although understood as a legacy of the Cold War defence strategy of the 

1950s and of the 1970s energy crisis, land preservation or urban land limitations are 

currently the main incentive for the increasing interest in below ground dwelling 

spaces. Lack of available land is normally linked with a land cost increase, which 

has been a reason for recent interest in and studies on underground spaces 

(Golany, 1995, p. 186) such as the reclamation of land in Japan through the use of 

underground rooms (Yoshino et al., 1992, p. 339; Sobotka, Yoshino and Matsumoto, 

1996; Hasegawa, Yoshino and Matsumoto, 1997) and areaways (Bu, Kato and 

Takahashi, 2010), or the reintroduction of basement spaces in Iraqi constructions 

(Kharrufa, 2008, pp. 411-412).  

 
Figure 4.1: Weels of the Fouggara. 
Amara, Nordell and Benyoucef, 2011 

 
Figure 4.2: Slope students’ dorm -Yan 
University, Shaanxi. Golany, 1995 

Secondly, already-available unused underground spaces can be adapted to different 

functions. This could be the case with inactive mines, which could be converted into 

housing and commercial spaces (Aughenbaugh, 1980, p. 156; Golany, 1980, p. 
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120), and underground wine cellars (particularly in Spain), which could be converted 

into social and cultural spaces (Fuentes Pardo and Canas Guerreiro, 2006; Fuentes 

Pardo et al., 2010). Other examples are the Fouggara (Figure 4.1), formerly 

underground channel systems in Sahara, Algeria used for water transport, these 

tunnels have the potential to be re-used for building ventilation, heating and cooling 

systems (Amara, Nordell and Benyoucef, 2011). 

A third potential strategy for reclaiming underground levels for construction is the 

maximization of slope land. Ground-integrated buildings are considered ideal for 

sharply inclined sites (Aughenbaugh, op.cit., p. 154; Sterling, Carmody and Elnicky, 

1981, p. 26; Lee and Shon, 1988, p. 409; Kwok and Grondzik, 2011, p. 199). Since 

flat land tends to have the richest soils, ideal for agriculture (Sterling, Carmody and 

Elnicky, op.cit., p. 29), slope-integrated buildings are able to maximize the use of 

land generally not suitable for agriculture proposes (Golany, 1992, p. 84). This is the 

case of the main student dorm at Yan University, shown in Figure 4.2, an example 

of a slope-integrated structure design with the main purpose of saving local 

agricultural land (Golany, 1995, p. 229). 

This last approach, which is the focus of this research, is far from being a new 

concept. Old hill towns are proof that vernacular architects understood and knew 

how to take advantage of ground thermal potential and slope microclimate, such as 

moderate ambient air temperatures and slope airflow. However, this clever and 

sustainable use of land, a common building practice for millennia in several parts of 

the world, has become an unfamiliar and almost unusual concept, particularly during 

the last century.  
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4.2. SLOPE EFFECT ON CLIMATE  

4.2.1. Topography Effects on Air Temperature and Solar Radiation 

As previously discussed in Chapter 2, different location characteristics, such as 

latitude, altitude, slope steepness and orientation affect ground temperature. The 

characteristics of topography regulate the solar radiation received by the soil 

(Šafanda, 1999, p. 374; Bennie et al., 2008, p. 47), and therefore have great 

influence on ground temperatures (Šafanda, ibid., p. 374). Thus it can be safely 

assumed that topography also affects the thermal performances of slope-integrated 

buildings.  

Latitude effects the amount of solar radiation received by a location, and the higher 

the latitude, the lower are the insolation values (Chang, 1958, p. 153). Fitton and 

Brooks (1931, p. 9) noted that the amount of solar radiation received by the ground 

increased with altitude, which affects the ground temperatures and annual 

temperature amplitude, since both values decrease with altitude. For each 300 m 

altitude increase, there is an air temperature decrease of approximately 1.9 ºC 

(Sterling, Carmody and Elnicky, op.cit., p. 50). 

Figure 4.3: Air ambient temperatures at different heights at Arber; illustration based on 
Geiger (1950) 

The ambient air temperatures on slopes are more temperate and their range smaller 

than those found in the lower and upper areas of a mountain (Dimoudi, 1996a, p. 

85). The above illustration (Figure 4:3), based on Geiger (1950, pp. 249-250), shows 
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how topography affects daily air temperatures during the spring. Although during the 

day the hill base has the best temperature values, during the night the temperature 

is the lowest, providing the highest daily air temperature amplitude. As shown in 

Figure 4.4, the best building site is located in the middle zone of a slope because, 

both during winter and summer, this zone benefits from less extreme conditions 

(Sterling, Carmody and Elnicky, op.cit., p. 50). However, slope orientation produces 

different patterns. As altitude increases, the annual average air temperature 

decrease is higher on a north-facing slope than on a southern slope. The annual 

average diurnal temperature amplitude is higher on the southern slope but the 

annual average temperature amplitude is higher on the north-facing slope (Tang and 

Fang, 2006, p. 200). 

 
Figure 4.4: Effects of altitude and topography on ground and air ambient temperature based 
on  Geiger (op.cit., pp .219-249); slope best building site for different climates, based on 
Dimoudi (1996a, p. 98) and Sterling, Carmody and Elnicky (op.cit., p. 156) 

Slope orientation contributes greatly toward building heat gains and loss, as well as 

light access (Golany, 1983, p. 11). South oriented slopes in the Northern 

hemisphere receive the highest amount of solar radiation and hours of sunshine. In 

contrast, north-facing slopes receives the lowest (Fitton and Brooks, op.cit., p. 9; 

Chang, ibid., p. 156; Dimoudi, 1996a, p. 86; Šafanda, op.cit., p. 367; Littlefair, 

Santamouris and Alvarez, 2011, p. 29) and, therefore, south facing slopes have 

higher ground temperatures (Sterling, Carmody and Elnicky, op.cit., p. 155).  
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South facing slopes have the best light access, and buildings produce a lower solar 

obstruction (Littlefair, Santamouris and Alvarez, ibid., p. 29). Through semi or total 

slope-integration, it is possible to reduce a building’s mutual obstruction to null 

values, which means good day light access in a compact land area. Geiger (op.cit., 

p. 219) links the relevance of slope orientation with latitude, and slope orientation 

has a greater influence on total solar radiation values at middle latitudes and low 

impact at either low or high latitudes. 

 
Figure 4.5: Solar radiation variation of the slope. Wang, 2009 

The angle of a slope also affects the solar radiation received by the ground (Chang, 

op.cit., p. 159; Wang, 2009, p. 2184). According to Chang, “by changing the degree 

of slope, the effect of latitude is simulated on a small scale. The temperature 

differences between exposures are usually accentuated by the slope.” (Chang, ibid., 

p. 159). Wang’s (op.cit., p. 2187) study found that for slopes between 10° to 20° 

there is a gradual increase in solar radiation values received by the slope surface, 

from 20° to 30° a small decrease, and between 30° to 60° there is a clear decrease 

in solar radiation values. With the exception of 20° and 30° slope surfaces, all 

studied slopes, of whatever steepness received lower solar radiation than a flat 

surface (Figure 4.5).  

According to Tian et al. (2001, pp. 69-70), the effect of slope angle is higher during 

winter and summer than during spring and autumn. The effect of slope orientation is 

considerable during winter in the northern hemisphere, due to shadows produced by 

the lower position of the sun. On complex terrain the effect of orientation is just as 
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evident, as solar radiation received by the soil is affected by terrain shading (Ruiz-

Arias et al., 2011, p. 1812; Manners, Vosper and Roberts, 2012, p. 721).  

4.2.2. Slope Flow - Katabatic and Anabatic Winds  

 
Figure 4.6: Slope flow occurancy 

Slope flow is a thermally-induced airflow produced in mountainous areas where 

there is a large temperature difference between the ground surface and the ambient 

air (Luo and Li, 2001, p. 5946). There are two types of slope flow, the anabatic and 

the katabatic winds. Both winds have high relevance for the air quality of a slope 

settlement (Catalano and Cenedese, 2010, p. 1859).  

As illustrated in Figure 4.6, the first slope flow occurs during the diurnal period, and 

the second during the night period (Simpson and Purdy, op.cit., p. 21; Dimoudi, 

op.cit., p. 86; Luo and Li, op.cit., p. 5947). An anabatic wind develops when the 

ground temperature of a slope is greater than the ambient air temperature, causing 

an up flow of air movement ascending the slope. The katabatic wind is formed 

during the night by a rapid ground heat loss under clear skies, when cold air 

descends along the slope, cooling the ambient air temperatures. This effects the 

ground surface temperature (Chang, op.cit., p. 166; Luo and Li, ibid., p. 5947).  

Highly populated, compact cities have higher potential to generate urban heat island 

environments, which are normally linked with urban pollution islands. To mitigate 

urban heat island environments, Luo and Li (ibid.) have studied the potential of 



Chapter 4 - Ground-integrated Architecture on Slope Terrains  

 
-79- 

slope flow for urban ventilation in cities located in a mountainous area. This 

research found that slope flow was relevant to urban ventilation and its importance 

increased when there was a lack of wind. Luo and Li concluded that katabatic winds 

are a favourable way of avoiding the urban heat island effect throughout the night 

period.   
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4.3. SLOPE-INTEGRATED SETTLEMENTS 

4.3.1. Landscape Integration 

Slope settlements are one of the earliest settlement configurations, and they have 

been used since the Neolithic period (McHenry, 1980, p. 97; Turan, op.cit., p. 159). 

Generally these settlements provided natural advantages due to their south face 

oriented terrains that attenuate local climate conditions (McHenry, ibid., p. 97). An 

example of southern oriented sloped settlement is Akkoy, in Cappadocia where 

buildings are terraces, arranged in different platforms following the land topography. 

This organization contributes to good natural light access due to the advantageous 

solar exposure of southern slope settlements (Turan, ibid., pp. 148-151). 

 

 
Figure 4.7: (Left) Mardin, slope-integrated buildings, 
Imamoglu, 1980 
Figure 4.8: (Above) Mardin, cross section. Turan, 1983, p. 158 

 

 
Figure 4.9: Macchu Picchu, 
Andes, Peru. Burger, 1987 

 
Figure 4.10: Matera, 
Basilicata. Lembo, Marino 
and Calcagnoa, 2011 

 
Figure 4.11: Pietrapertosa, 
Basilicata. Lembo, Marino and 
Calcagnoa, 2011 

Similarly, the ancient city of Mardin, in southeast Turkey (shown in Figure 4.7) was 

developed over a south-sloping hillside with a 30 to 40º gradient (Imamoglu, 1980, 

p. 53). Rebuilt by the Romans during the 6th century (BC) the origins of Mardin can 

be traced back to approximately 1230 BC. This slope settlement takes advantage of 

prevailing wind directions and katabatic winds to provide thermal comfort throughout 

the year (Turan, op.cit., p. 155). These terraced houses are semi-integrated along 
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the slope, as shown in Figure 4.8. Its underground spaces are reported to provide 

good thermal comfort throughout the year (Imamoglu, ibid., p. 62). Other examples 

of ancient slope ground-integrated settlements are the Mesa Verde settlement in 

Colorado (USA), the city of Machu Picchu (Figure 4.9) in Peru (Burger, op.cit., p. 

289), and the Matera (Figure 4.10) and Pietrapertosa cities (Figure 4.11), both in 

Basilicata, Italy (Lembo, Marino and Calcagnoa, 2011). 

4.3.2. Contemporary Landscape Integration 

Burger (op.cit. pp. 288-289) provides more recent examples of slope settlements, 

which are classified by the author as Geomorphic Architecture. This is a building 

design concept able to solve issues around land constraints by exploring the 

physical features of sloped terrains and hillsides. According to Burger this slope-

integrated design appeared in western European countries where available land 

was limited and mostly reserved for farming. In general, the design of geomorphic 

constructions is based on nature or develops from a natural process. This design fits 

within the natural contour of the place, and becomes part of the landscape and is 

semi- or total ground-integrated. These geomorphic constructions have proven to be 

land efficient, to provide high physical and physiological benefits and privacy, as well 

as to be highly energy efficient. 

4.3.3. Advantages of Sloped Settlements 

Table 4.1: Comparison between ground-integrated buildings on flat and slope land  

Flat land constructions Slope land constructions 

Disadvantages  
 

• Floods 
• Deposit of dust (sand 

storm) 
• Limited light 
• Claustrophobia 
• Reduce perception of 

surrounding elements 
or landscape 

• Limited ventilation 
 

Advantages  • Good drainage, so avoids floods 
• Lower impact to dust storms 
• Can provide good light since it does not limit 

light through obstruction 
• Reduce claustrophobic feelings 
• Can provide good views also with lower levels 

of obstruction 
• Good ventilation 
• Underground and semi-underground slope 

integration 
Disadvantages  • Construction costs due to soil characteristics 

(rock) and land accessibility it might be need 
additional road construction  
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Housing on slopes can enjoy a large number of benefits compared to a flat site. The 

above table provides a comparison summary based on Golany (1980, pp. 110-111). 

Examining the advantages and disadvantages of flat and slope land constructions, 

Golany (ibid., p. 110, 1995, p. 229) concludes that ground-integrated constructions 

in slope hills are better than those on flat land, and achieve the best thermal 

performance in a moderate climate. Other benefits of sloped urban sites, as 

opposed to low-flat sites, are the better views and the reduction of health risks, due 

to better air ventilation a reduction in air pollution (Golany, 1992, p. 121, 1996, p. 

456). The energy consumption of sloped land settlements is lower than flat land 

settlements. Sites on flat land or valleys are subject to higher air temperature 

amplitudes and, therefore, their heating and cooling demands are higher (Golany, 

1996, p. 456). A flat land settlement in a hot dry climate consumes 50% more 

energy than an equivalent south-sloped settlement (Turan, op.cit., p. 159). 

Slope-integrated construction contributes to efficient land use (Liu et al., op.cit., p. 

124; Zhang, 2011, pp. 6968-6969). Underground buildings integrated on flat land 

require higher percentages of land than slope-integrated buildings (Golany, 1992, p. 

115). Flat land settlements occupy double the area of slope settlements with the 

same characteristics (Turan, op.cit., p. 159). In addition, due to safety concerns, the 

area above ground-integrated building on flat land cannot be used for agriculture, 

resulting in a waste of land. For this reason, in the Chinese province of eastern 

Gansu, the construction of underground-integrated buildings on flat land was 

prohibited (Golany, ibid., pp. 116-118). 

However, the benefits of building housing on slopes are not always considered and 

normally ignored. As Simpson and Purdy (op.cit, p. 9) point out, a sloped site most 

often “appears to be regarded as a nuisance to be overcome rather than as an 

opportunity to be exploited”.  



Chapter 4 - Ground-integrated Architecture on Slope Terrains  

 
-83- 

4.4. SLOPE BUILDING DESIGN 

4.4.1. Slope Site Approach 

 

    
Figure 4.12: (Left) Site inspired design. View and 
section, NP House by NO Arquitectos, Lda., 
Famalicão, Portugal. http://architizer.com  
Figure 4.13: (Above) Special design. View and 
section, Mediterrani 32 by Daniel Isern Associates, 
Sant Pol de Mar, Spain. http://architizer.com  

According to Simpson and Purdy (op.cit, pp. 34-35) there are three ways to 

approach a slope site, as a site inspired, land-form adapted and special designs. 

Examples of site inspired designs are hill towns, where buildings and access to 

them have been developed around the topography in an organic way. Figure 4.12 

shows an example of a pre-existing building that was extended by adapting to the 

surrounding landscape. A land-form adapted approach is normally used in site 

adaptations for slopes lower than 7°. With this approach any slopes on the site are 

levelled into flat areas, creating terraced sites, in order to implement flat site 

constructions. Finally, the special design approach is used when slopes are higher 

than 8° and, therefore, too high to be flattened (Figure 4.13). 

4.4.2. Building Design 

Slope site design adaptation can be tackled in three ways, as illustrated in Table 

4.2. One way is by adapting (in either a simple or complex way) a building planned 

for a flat site, a process that normally occurs in sites with small slopes. Simple 

adaptations consists of adding extra masonry for small adjustments of building walls 

on the lowest side of the site, and cut-and-fill operations that level the site into a flat 

area. 
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Table 4.2: Slope site design adaptation for houses; by the author based on Simpson and 
Purdy (op.cit, pp. 87-89) 

Adaptation of the site Slope building design Site detached 
Extra masonry Cut-and-fill Amended section Split level Cascade Building on posts 

      

Lower slopes Median slopes Median to high 
slopes 

Median to high 
slopes 

0° to 4° 1° to 6° 6° to 13° 4° to 8° 11° to 26° or + 8° to 26° or + 

The second way is to design a building by taking site slope in consideration. This is 

the case in the amended section, split level and cascade or step-hill designs that are 

normally found on average to high slopes and are the designs studied in Chapter 8. 

The amended section uses several floor levels that normally have different access 

depending on the terrain configuration. With the split level design the building floors 

are organised in several levels, which can be based on half storey variation of 

levels. The cascade or step-hill designs generate an off-set that is linked with slope 

degree (Figure 4.14). With the latter design it is possible to create horizontal and or 

vertical subdivisions, forming several individual units (Figure 4.15). The last way is 

by erecting houses on posts. As illustrated in Figure 4.16, the building is suspended 

and, therefore, detached from the ground (Simpson and Purdy, op.cit, pp. 85-86). 

 
Figure 4.14: Cascade house. 
Casa Tóló by Álvaro Leite Siza 
Vieira, Vila Real, Portugal. 
http://ultimasreportagens.com 

 
Figure 4.15: Cascade multi 
unit housing by Ken 
Architekten BSA AG, Brugg, 
Switzerland. 
http://architizer.com 

 
Figure 4.16: House on 
posts. by Hiroyuki Arima, 
Fukuoka, Japan.  
http://architizer.com 

Slope building design, as cascade is commonly understood to be the best solution 

for steep slopes, as the “profile keeps close to the natural slope and so helps the 

building to integrate with its immediate landscape. The stepped profile can provide 
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clear, unobstructed views without loss of privacy. It is hardly surprising that it is a 

favoured form with those seeking to exploit the full potential of sloping sites where 

the land is to be use intensively” (Simpson and Purdy, op.cit, p. 129). 

4.4.3. Structure Integration and Roof Coverage 

The elevational design described in Chapter 3 is generally pointed out as the ideal 

design for slope-integration. Although the long shape of an elevational design 

requires larger sites than a (more compact) conventional building, the design can be 

adapted to be integrated into slope sites, and building density can increase 

according with the slope. In steeper slopes there is the advantage of increasing the 

building density, but also the disadvantage of limited site selection. Considering 

passive solar gains, only south, south-east and south-west slopes are suitable for 

buildings with an elevational design (Sterling, Carmody and Elnicky, op.cit., p. 105).  

As explained above, elevational design can be used to create multiple attached 

configurations, forming single or multiple units with several floors or side by side. By 

combining units the construction costs of each unit can be reduced, as can land use, 

and the units become increasingly energy efficient (Sterling, Carmody and Elnicky, 

op.cit., p. 105). It should be noted that the building shape affects its thermal 

performance, and this is due to surface area. Comparing a square shaped building 

with a rectangular building with equal floor area it is evident that the surface area 

changes. A compact form such as a square has a lower surface area than the 

longer form of a rectangle and the higher the surface area the higher the building’s 

heat losses will be (Underground Space Center, 1979, p. 35). Therefore, instead of 

constructing just one floor, if the total area is distributed between two or more floors 

the building shape is more compact, and consequently the total surface area and 

resultant heat losses decrease. This design can also reduce the circulation 

problems that one floor plan units often experience (ibid., p. 40).  
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Figure 4.17:  Slope structure integration of multiple floor building; based on Sterling, 
Carmody and Elnicky (1981) 

Although several units can be vertically attached, the costs of retaining an earth 

berm of 9 m or higher are large (Figure 4.17). A cascade or step-hill approach is a 

better solution since it is easier to construct and has lower construction costs 

(Sterling, Carmody and Elnicky, op.cit., p. 105). This last approach also does not 

require steeper slopes, as it facilitates the provision of individual access to each unit 

and it benefits from separate external areas if the front façade follows the slope. 

 
Figure 4.18: Grass roof coverage, Edgeland 
House by Bercy Chen Studio, USA. 
http://www.bcarc.com 

 
Figure 4.19: Bare soil coverage, 
Sustainable House in Douro Valley by 
Utopia - Arquitectura e Engenharia Lda. 
Vila Real, Portugal http://architizer.com 

Regarding roof coverage, and as previously discussed in Chapter 2, generally the 

daily weather conditions cease to affect the ground temperatures from 30 cm depth, 

and consequently this would be the minimum roof soil coverage value necessary to 

produce some energy savings. Roof soil coverage, however, needs to also consider 

ground surface type, because bare soil surface or a grass surface will require lower 

depths than a soil covered roof with shrubs or trees (Figure 4.18 and 4.19). 
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Therefore, it needs to be pointed out that the structural costs could increase with the 

amount of roof coverage. Soil depths of 30 to 46 cm are advisable for grass covered 

roofs, small shrubs require 61 to 76 cm of soil, and large shrubs and trees should 

need soils depths of around 152 cm (Underground Space Center, op.cit., p. 46). 

4.4.4. Topography Influence on Building’ Solar Access and Density 

 
Figure 4.20: Density based on floor number and topography 

Building design should take in consideration local topographical aspects such as 

slope degree and orientation from the earliest design stages. The number of 

buildings that can be constructed on a site is closely affected by the topography of 

the site because it will influence buildings’ solar access, as shown with Figure 4.20. 

Designing for a flat site, a south-facing slope site or a north-facing slope site will 

require different spacing between buildings. The site density on a south-facing slope 

is higher than a flat location, and a north facing slope requires a larger area to 

achieve similar building numbers (Sterling, Carmody and Elnicky, op.cit., p. 123). 

Another factor that interferes with site density is the number of floors planned for 

each unit. A single floor building is more appropriate for a flat site and a two-storey 

building is more appropriate for terrains with a 20% inclination (Sterling, Carmody 

and Elnicky, op.cit., p. 137).  
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Table 4.3: Topography effect  on buding density 

Topography* Lot size (4 units)* Building density 
(units/hectare)* 

Percentage of 
building density (%) 

Flat 36 m x 118 m 9.4 100** - 

Slope 
10%, south-facing 27 m x 112 m 13.2 140.4 + 40.4 
10%, north-facing 48 m x 127 m 6.56 69.8 -  30.2 
20%, south-facing 

(two floor units) 24 m x 70 m 23.8 253.2 + 153.2 

*Values retrieved from Sterling, Carmody and Elnicky (1981); data converted to units per hectare;  
**Value set as 100% for comparison with different slopes. 

The topography, lot size and building density values presented in Table 4.3 are 

based on Sterling, Carmody and Elnicky study (op.cit., p. 137). These values allow 

us to compare the relationships between topography, floor numbers and site 

density. The author used those values to add to the table the percentage difference 

of building density according to the site inclination and orientation. The values of this 

new column assume that the flat terrain is 100%. From this assumption, all remain 

values were calculated based on the following relation: if a density of 9.4 is equal to 

100, then a density of 13.2 will be equal to x. Therefore x will be obtain by 

multiplying 13.2 with 100, which will be divided by 9.4. This operation was repeated 

for all the table rows. The following step, the density percentage of the flat area was 

assumed as the pivot value: above this values the percentage difference is positive 

and below this values the percentage difference is negative. 

With the values resulting from this procedure it was possible to verify that the lot size 

required for a 10% south-facing slope is lower than for a flat site and, without 

compromising solar access, the site density can be expanded to 40.4%. However a 

north-facing slope requires 30.2% more land than a flat site because the density of 

unit per hectare is lower. When the living area of the units on a site is spread 

between two floors the individual lot size is reduced. If this configuration is set on a 

20% south-facing slope the overall density increases by 153.2%, when compared 

with the single floor units on a flat site. This shows that site density is dependent on 

topographical aspects such as slope orientation and degree, as well as a lot size 

resulting from single or multi floor unit designs.  
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4.5. CASE STUDIES 

4.5.1. Slope Ground Integration – New Concepts and Proposals 

 
Figure 4.21: Hotel plan. Labbe and 
Duffaut, 1995 

 
Figure 4.22: Hotel section. Labbe and Duffaut, 
1995 

Labbe and Duffaut (1995) propose the design of an underground hotel inside a 

hilltop in Grenoble, France. Labbe and Duffant’s design (illustrated through Figure 

4.21 and 4.22) explores the advantages of underground constructions on slope sites 

by using the hill’s internal space. The design solution took into account the 

preservation of the landscape, which provided both technical and psychological 

benefits. The listed technical advantages are thermal and sound insulation provided 

by the ground, good ventilation, use of solar and wind energy sources, and 

manageable access routes (ibid., p. 158). As for the psychological benefits, elevated 

underground constructions can offer good views. Also, the access is ascendant, 

which could remove issues surrounding claustrophobia or disorientation as the 

greater the slope gradient, the shorter the building access (ibid., p. 159).  

 
Figure 4.23:Slope-integrated houses and 
shopping area. Golany, 1995 

 
Figure 4.24: Passive ventilation system 
for slope buildings. Golany, 1995 
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Figure 4.25: Slope-integration for different gradients. Golany, 1995 

Golany’s (1995, p. 220-231) geospace city concept seeks to maximise the land 

topology and the levels of integration through different ground depths. Sloped 

terrains are the core element for these spaces, and are considered the ideal site 

topology. In this concept, the slope works as a pivotal point for the city structure and 

as a gateway between internal and external areas, as illustrated in Figure 4.23 and 

4.24. This deployment of the slope maximises light, land, solar exposure and natural 

ventilation potential. The slope’s habitat design could use to its advantage gradients 

from 7% to 80%, and the ground integration can vary between total and semi-

integration, or can be combined with above ground zones (Figure 4.25).  

 
Figure 4.26: View - projected building. Lembo, Marino 
and Calcagnoa, 2011 

 
Figure 4.27: Cross-sections; winter. 
Lembo, Marino and Calcagnoa, 2011 
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Lembo, Marino and Calcagnoa (op.cit., p. 570) propose a semi-underground 

building for the rehabilitation of urban mountainous areas in Basilicata, where these 

semi-underground constructions are part of local building traditions. Their proposal 

takes advantage of the site’s climatic and morphological characteristics. The semi-

underground building is integrated into the environment by being placed on a south-

facing hill, allowing the roof to be used as a garden and for walking paths, as shown 

in Figure 4.26 and 4.27 (ibid., pp. 573-577). It benefits from daily and seasonal 

thermal control and avoids overheating through reduced surface solar exposure and 

avoids cold winter winds. The project considers the use of earth to air pipes (indirect 

contact) and ventilation chimneys (stack ventilation) to provide better ventilation and 

thermal environment.  

4.5.2. Reuse of Old Concepts - New Cave Dwelling Design 

 
Figure 4.28: Cross-section. Liu et al., 2010 

 
Figure 4.29: Cave dwelling. Liu et al., 2010 

Liu et al. (op.cit., pp. 122-123) proposes a new cave dwelling model for slope 

terrains, as illustrated in Figure 4.28 and 4.29. Based on Chinese traditional ground-

integrated houses, the prototype tackles main problems of these traditional 

constructions such as reduced internal space, irregular temperature distribution, 

poor indoor air quality and poor natural light. The traditional one-floor house is 

adapted into a two-floor space, with a sunspace integrated on the front façade. This 

design also incorporates an EAHE system and takes advantage of green roofs 

(ibid., 125). The constructed buildings proved to be energy efficient. The comfort 
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conditions were reported to be satisfactory for 70% of the inhabitants during the 

winter, and by 85% of those during the summer. With regard to its natural light and 

ventilation, the satisfaction values were nearly 100% (ibid., 129).   

4.5.3. Thermal Performance and Construction Cost 

Lee and Shon (op.cit., p. 409) studied the thermal performance of a sloped ground-

integrated house, comparing its efficiency to an above ground house. Since hill 

terrains form 80% of South Korea’s land and 70% of this area is forested, most of 

the population is concentrated on a limited percentage of land. According to the 

authors, ground-integrated buildings are able to preserve energy and land area, and 

can be better adapted on the available slope land. This type of construction 

achieves the best thermal behaviour and provides better thermal comfort throughout 

the year (ibid., p. 416). The ground-integrated house has lower diurnal temperature 

range, which provide a more stable inside air temperature. The outdoor air 

temperatures had a lower effect on the internal temperatures compared to similar 

above-ground dwellings. 

 
Figure 4.30: Summer performance of a 
slope design and a courtyard design 
structure. Anselm, 2008 

 
Figure 4.31: Winter performance of a slope 
design and a courtyard design structure. 
Anselm, 2008 

Anselm (2008) studies the potential of ground-integrated buildings as an energy 

conservation system. The study analyses the heat flux patterns to identify the 

potential of ground-integrated buildings as an energy conservation system through 

computer simulation (Figure 4.30 and 4.31). Two ground-integrated structures are 
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compared in Anselm’s study: a slope design model with 50% ground direct contact, 

and a courtyard design structure with 80% direct earth contact. The study concludes 

that the higher the level of ground integration, the better the building’s thermal 

performance.  

 
 

 
Figure 4.32: Left up: Front view of slope-integated 
residence. Benardos, Athanasiadis and 
Katsoulakos, 2014 
Figure 4.33: Left down: Front view of above 
ground residence. Benardos, Athanasiadis and 
Katsoulakos, 2014 
Figure 4.34: Up: Buiding section with air flow - 
Slope-integated residence. Benardos, 
Athanasiadis and Katsoulakos, 2014  

Benardos, Athanasiadis and Katsoulakos (2014) use one slope-integrated design 

and one above ground residence design of similar characteristics to compare the 

thermal performance and building costs of the two buildings (Figure 4.32 to 4.34). 

The location of the study is the Kea Island in Greece, which according to the 

authors, is suitable for slope-integrated buildings due to its topography and warm 

climate. The calculation of energy needs and energy consumption is made with the 

EN 13790 standards. The results of the study showed that the thermal performance 

of the slope-integrated design is better than the above ground design, as it provide 

cooling savings of 25% and total energy demand savings of 42% (ibid., p.50). The 

authors believe that with a dynamic energy analysis method the difference in results 

between the designs would be greater. The construction cost analysis indicates that 

above ground design is 8% lower than the slope-integrated design. This small cost 

difference reveals that a slope design was affordable, and its reduce maintenance 

as well as operational cost could bring this gap even closer (ibid., p.52).  
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4.6. CONCLUSIONS  

The world’s rapid urban growth demands more construction land. This demand is 

contributing to the reclamation of agriculture land for construction. The rising global 

population and the expected food shortage intensifies these problems. Current 

construction practices not only consume large amounts of arable land also waste 

considerable energy resources. The use of hillside sites for construction has the 

benefit of using land that is considerably less suitable for farming.  

Topographical aspects such as altitude, slope orientation and degree have a great 

effect on air temperature, total solar radiation and wind. These factors can affect 

daily and seasonal air temperature values and patterns, and determine the solar 

radiation values received by a surface, as well as produce katabatic and anabatic 

winds.  

Slope-integrated settlements are an old construction configuration that has proved 

to be land and energy efficient. By maximizing the spatial potential of slopes through 

building ground-integration there is an increase in thermal advantages. These 

settlements provide better thermal comfort and ventilation than flat land settlements 

and benefit from slope flow.  

Slope-integrated buildings reflect a site inspired or a special design approach to 

architecture, since site form and restrains are embraced during the design process. 

These approaches are in opposition to a land-form adapted approach, where a 

slope site is flattened. The site slope angle can be the base for the slope building 

design, which can be an amended section, split level and cascade or step-hill. The 

building structure integration needs to take into consideration building floor levels 

and slope degree. These issues can be addressed through vertical attached and by 

cascade or step-hill, which for multiple levels can be less expensive. Covering the 

roof with large amounts of soil can also be expensive; therefore, if there are no 

thermal benefits this solution should be avoided. Southern slopes are ideal for 

slope-integrated buildings, as it provides good solar access with higher site density. 
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5. GROUND THERMAL POTENTIAL IN TEMPERATE CLIMATE 

As discussed in Chapter 2, climate conditions have a great impact on ground 

thermal potential. Ground temperatures are largely dependent on air temperature, 

on solar radiation values that are in turn affected by latitude and, as discussed in 

Chapter 4, by topographical characteristics such as altitude, slope degree and 

orientation. Considering these characteristics, this chapter analyses the potential of 

the use of ground thermal in a temperate climate, by looking into its application in 

Portugal’s mainland. Since Portugal’s temperate climate features a diverse range of 

conditions, it makes for a good base of study, as conclusions drawn from its range 

of conditions offers a broad range of potential applications to a larger number of 

countries with a particular type of temperate climate.  

 

5.1. THE STUDY AREA  

5.1.1. Climate Zones 

Mainland Portugal is located on the western side of the Iberian Peninsula, between 

latitudes of 37º to 40ºN. The country’s northern and eastern areas are bordered by 

Spain and its western and southern areas are limited by the Atlantic Ocean. The 

average altitude differs between northern and southern areas. While the north 

landscape is formed of mountainous terrain, with 90% of the land above 400 m, the 

southern areas are flatter, with around 60% of the land below 400 m above sea level 

(Inácio, Pereira and Pinto, 2008, p. 22). 
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Portugal’s temperate climate is modulated by factors including latitude, altitude, and 

proximity to the Atlantic Ocean. The average maximum temperatures during the 

summer are between 30ºC to 40ºC, and the average minimum temperatures range 

between 10ºC and 15ºC. During the winter, the average maximum temperatures are 

between 10ºC to 25ºC and the minimum average temperatures are typically 

between -7ºC and 3ºC. 

 
Figure 5.1: Portugal, Main land – Winter and summer climatic zones. Illustration based on 
Ministério Das Obras Públicas & Comunicações, 2006 
Table 5.1: Portugal’s winter and summer climate zones - average temperature limits  values 
based on Ferreira and Pinheiro (2011, pp. 7667-7668). 

Winter Climate Zones W1 W2 W3 

Ave. Temp. 
(°C) 

November > 12 10.5 – 13.5 0 – 9 
December > 10 8 – 12 0 – 6 
January > 9 7 – 11 0 – 7 
February > 9 7 – 9  0 – 7 

March > 11 9.5 – 12.5 0 – 8 
Summer Climate Zones S1 S2 S3 

Ave. Temp. 
(°C) 

June 23 – 29 25 – 29 > 29 
July 23 – 31 31 – 35 > 35 

August > 23 – 30 30 – 34 > 34 
September 25 – 28 25 – 28 > 28 
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The Portuguese climate is divided into several different winter and summer climatic 

zones. As illustrated in Figure 5.1 and shown in detail in Table 5.1, there are three 

winter climatic zones (W1, W2 and W3) and three summer climatic zones (S1, S2 

and S3) (Ministério das Obras Públicas and Comunicações, 2006, p. 2477), the 

order of these zones is defined as mild (1), moderate (2) and severe (3). 

 
Figure 5.2: Annual precipitation and average daily temperature, portugal. Illustration adapted 
from Selecções do Reader's and Instituto Geográfico (1988, p. 59).   

Areas near the Atlantic coast, such as Oporto, Lisbon or Faro, benefit from less 

extreme temperatures during the year. On a North-South axis, northern areas of 

Portugal are subject to higher heating demands. During the winter, low temperatures 

and occasional snowfall are registered at northern high-altitude areas such as 

Bragança, Vila Real and Guarda. As can be seen in Figure 5.2, areas including the 

north (Oporto) and north-central littoral (Coimbra) zones have higher annual 

precipitation values and consequently lower annual solar radiation values than 

south-centre inland and southern coastal areas (Lisbon and Faro). 
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5.1.2. Energy Production and Consumption in Portugal 

According to data from Eurostat (2015), which is shown in Figure 5.3, during 2013 

the percentage of Portuguese gross final energy consumption that originated from 

renewable sources was 25.7%, which is above the average values for the rest of the 

European Union. The Portuguese targets for 2020 show that there is a clear interest 

in increasing the use of renewable sources by 5.3%.  

 
Figure 5.3: European share of energy from renewable sources, 2009 and 2013. Eurostat, 
2015 

During the same period, the annual consumption of electric energy by inhabitants of 

Portugal was 4425 kWh/inhab. Of this consumption, 1177.2 kWh/inhab was 

household consumption (INE, 2015), a number that corresponds to a quarter of the 

total electric energy consumption. The relevance of these values comes from the 

fact that renewable sources were able to produce almost half (49.2%) of the total 

electricity generated in Portugal (Eurostat, 2015), with wind and hydro energy as the 

main sources, followed by thermal, photovoltaic and geothermal (INE, 2015).  

Looking further into the energy consumption of Portugal, and especially the annual 

quota of final energy consumption per sector in Figure 5.4, it is visible that during 

2013 more than one third (36%) of this energy quota was used by the transport 

sector, almost one third (30%) was used by industries, and the domestic sector was 

the third main consumer, using 17%. 
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Figure 5.4: Portugual’s quota of final energy consumption, 2013. INE, 2015 

 
Table 5.2: Average of energy consumption by dwelling and Consumption of electricity by 
type of utilization, 2010. INE, 2015 

Average energy consumption (%) by dwelling 

Heating Cooling Water heating Kitchen Lighting, appliance etc. 

17.5% - 20% 33.3% 29.2% 

Consumption of electricity (%) in conventional dwellings by type of utilization 

Heating Cooling Water heating Kitchen Lighting Small appliances, entertainment and 
computer related equipment) 

9.06% 1.60% 2.39% 40.52% 13.56% 32.86% 

Based on the 2010 statistics, heating energy needs correspond to 17.5% of the 

average energy consumption per dwelling (Table 5.2), which includes several types 

of energy sources as heating oil, firewood, solar thermal, natural gas, electricity and 

others. Regarding only the electricity consumption per type of utilization, 9.06% of 

total electricity production is used for heating, while only 1.60% is for cooling, which 

shows that heating has a much higher impact on building energy consumption. 

5.1.3. Residential Building Statistics 

Table 5.3: Building density, 2001. INE, 2015 
Buildings density 2001 

No./ km² 
Mainland North Centre Lisbon Alentejo Algarve 

33.6 51.6 35.1 133.1 11 32.1 

The dwelling density of Portugal’s mainland in 2001 (Table 5.3) shows a large 

concentration of dwellings in the northern areas of the country and a very high 

concentration around Lisbon. The lowest building density is in the upper south areas 

including Alentejo, which registered a density value well below the mainland values. 
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Figure 5.5: Residential buildings by dwelling number, 2001. Eurostat, 2015 

The total number of residential buildings in Portugal closely follows the European 

average (Figure 5.5), with the single-family house being the main type of dwelling. 

According to the data from Eurostat (2015), in 2001 Portugal’s one-dwelling 

residential buildings corresponded to 55% of the total number of residential 

buildings, a value which is 7% higher than the European average of 48%. 

Residential buildings with two dwellings corresponded to 8% and buildings 

containing three or more dwellings accounted for 37% of total domestic buildings. 

Table 5.4: Conventional dwellings by Building in Portugal’s mainland 2001. INE, 2015 

Conventional dwelling 
by building, 2001 

Mainland North Centre Lisbon Alentejo Algarve 

1.6 1.4 1.2 3.2 1.2 1.7 
 

 
Figure 5.6: Proportion of buildings with one dwellings in Portugal, 2011. INE, 2015 

Looking at the proportion of conventional dwellings by building (Table 5.4) in 2001, 

and based on the percentage of buildings with one dwelling and their distribution 

across the Portuguese mainland in 2011 (Figure 5.6), it can be argued that the 
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single-family house is the main type of dwelling in non-urban areas. In contrast to 

this, in urban areas such as Lisbon multiple occupancy buildings are the most 

commonly found type of building, particularly apartment buildings.  

Table 5.5: Number of floors and rooms, and average room utility area per complete 
residential building. INE, 2015 

 
Mainland North Centre Lisbon Alentejo Algarve 

Number of floors, 2014 2.1 2.2 2.1 2.6 1.6 2.6 

Number of rooms, 2014 5 5.3 5 5 5.1 4.2 

Recent INE statistics from 2014 (Table 5.5) show that the average number of floors 

per completed building in new family housing constructions are 2.1. At Alentejo the 

traditional one floor dwelling is still the norm among newly constructed buildings, 

while the buildings in the Algarve and Lisbon have equally the highest number of 

floors with an average 2.6. The average number of rooms in newly constructed 

family housing in 2014 is five.  
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5.2. GROUND THERMAL POTENTIAL IN PORTUGAL 

To identify the ground thermal potential in Mainland Portugal it is necessary to know 

the ground temperature at different depths. This section examines the ground 

thermal potential of six different locations in Portugal by using mathematical 

formulae to calculate the corresponding ground temperatures at different depths 

during the year.  

5.2.1. Formulas to Calculate Ground Temperature 

The annual ground temperature at different depths can be calculated through Labs’ 

(1979) one-dimensional sinusoidal equation that is expressed below in Equation 5.1 

and using values from Mihalakakou et al.'s (1997) Equations 5.2 and Equation 5.7, 

and also using Szokolay’s (2014, p. 10) soil surface convective heat transfer 

Equation 5.6. 

 
Equation 5.1 

Where:  
• T(x,t) = ground temperature (ºC) at a depth x (m) and time t is the day of the 

year, the reference day is January 1st;  

• Tm = mean annual temperature of the ground (ºC); 

• As = annual amplitude of the temperature wave at the soil surface (°C);  

• x = depth (m); 

• t = day of year (days); 

• to = phase constant of day with minimum soil surface temperature (days); 

• α = soil thermal diffusivity (m2/day). 
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Tm =
1
he

hrTma −εΔR+ bSm − 0.0168hsur fb(1− ra )[ ]  
Equation 5.2 

Where:  
• Tma = mean air temperature at time 2π/ω (°C);  

• ω = frequency of the temperature wave, as 2π/365 (rad/day); 

• ε = emittance of the ground surface; 

• ΔR = value dependent on humidity values of air over ground surface, sky 

temperature and soil radiative characteristics; 

• b = coefficient of ground surface absorptivity and illumination; 

• Sm = mean annual solar irradiance at the ground surface (W/m2); 

• hsur  = soil surface convective heat transfer coefficient (W/m2K); 

• f = fraction determined by ground cover and ground moisture content; 

• ra = relative humidity of the air above the ground surface. 

The coefficient of ground surface absorptivity and illumination can be calculated by 

using the following equation. 

 Equation 5.3 

Fraction f can be calculated for bare or grass covered soils. The fraction for bare 

soils increases with the soil moisture content (wet soil f = 1; humid soil f = 0.6-0.8; 

dry soil f = 0.4-0.5; arid soil f = 0.l-0.2). The fraction for grass covered soil is 

estimated by multiplying the above bare soil fraction values by a coefficient of 0.70 

(Mihalakakou et al.'s, op. cit., p. 185; Mihalakakou, 2002, p. 253). 

The he and hr values can be calculated using Mihalakakou et al.'s (op.cit.) Equation 

5.4 and Equation 5.5. 

 Equation 5.4 

 Equation 5.5 

 

b =1− albedo

he = hsur (1+ 0.0168af )

hr = hsur (1+ 0.0168ara f )
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Where a is equal to 103.00 (Pa/K).  

The soil surface convective heat is calculated with the following equation (Szokolay, 

op.cit.). 

hsur = 5.8+ 4.1×u  Equation 5.6 

Where u is the wind speed. 

The annual amplitude of the temperature wave at the soil surface is calculated with 

the following equation (Mihalakakou, et al.,op.cit.). 

 Equation 5.7 

Where:  
• Asa = amplitude of air temperature wave at 2π/ω (°C); 

• Sa = amplitude of solar irradiation wave (W/m2); 

• φ1 = phase constant (rad); 

• φa = phase constant (rad); 

• Ks = ground thermal conductivity (W/mK). 

5.2.2. Locations and Ground Temperature Calculations Inputs 

Table 5.6: Locations and correspondent climate zones 

Location Winter climate 
zone 

Summer climate 
zone 

Zone 

Oporto W2 S1 
North 

Littoral 

Bragança W3 S2 Inland 

Coimbra W1 S2 

Center 

North littoral 

Évora W1 S3 South inland 

Lisboa W1 S2 South littoral 

Faro W1 S2 South Littoral 

The selected locations are Oporto, Bragança, Coimbra, Évora, Lisbon and Faro. 

The winter and summer climate zones are displayed in Table 5.6, in accordance 

with official project data from Ministério das Obras Públicas e Comunicações (2006, 

pp. 2477-2478). 

As = [hrAsa − bSa exp(iϕ1 −ϕa )] / (he +Ks )
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Table 5.7: Nomenclature and values used on the ground temperature calculations at 
different locations 
Location Oporto Braganca Coimbra Evora Lisbon Faro 

Mean air temp, °C  Tma 17.73 12.36 15.32 15.77 16.29 17.73 

Amplitude of air temp wave, °C  Asa 12.10 17.40 11.50 14.20 12.00 12.10 

Phase constant φa 0.10 0.10 0.10 0.10 0.10 0.10 

Phase constant φ1 0.28 0.28 0.28 0.28 0.28 0.28 

Mean annual solar radiation - ground surf, 
W/m2 Sm 426.57 369.23 365.40 406.34 388.14 426.57 

Amplitude of the solar radiation wave, W/m2 Sa 342.29 397.00 342.00 370.71 349.29 342.29 

Phase constant soil surf - Day with min. soil 
temp, Day t0 40 35 35 40 40 40 

Value dependent of humidity and air, W/m2 Δr 63.00 63.00 63.00 63.00 63.00 63.00 

Pa/K a 103.00 103.00 103.00 103.00 103.00 103.00 

Emittance, 0 to 1 ε 0.93 0.93 0.93 0.93 0.93 0.93 

Wind, m/s u 3.61 2.61 2.31 4.40 4.99 3.61 

Relative humidity, % ra 0.67 0.70 0.77 0.68 0.68 0.67 

Soil absorptivity and illuminance = 1 - Albedo b 0.70 0.80 0.80 0.70 0.75 0.70 

Fraction of the soil, 0 to 1 f 0.50 0.50 0.50 0.40 0.50 0.50 

The ground temperature calculations at different depths for the six locations were 

produced using Equation 5.1. The mean annual temperatures of the ground (Tm) are 

calculated with Equation 5.2; the annual amplitude of the temperature wave at the 

soil surface (As) is calculated with Equation 5.7. The inputs used for each location 

are displayed in Table 5.7, with their values based on monthly weather data, which 

are displayed in Appendix 1. This data is retrieved from the weather files distributed 

by E+ and are produced with public data published by the Instituto de Meteorologia, 

which are combined by Instituto Nacional de Engenharia, Tecnologia e Inovação 

data and made available to the DOE. 

Table 5.8: Main types of rocks/soils 

Location 
Rocks/soils 

Granite Limestone Sandstone Shale (schist) Clay Sand 

Oporto X - - X (wet) X (wet) X (wet) 

Bragança X - - X X X 

Coimbra - X X X X - 

Évora X - X X X - 

Lisboa - X X - X X 

Faro - X X - X X 

X Materials used for the initial comparisons 

X Additional materials used for the amplitude damping comparison 
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Based on the geological characteristics (Selecções do Reader's and Instituto 

Geográfico, op.cit, pp. 42-45) of each location, four predominate type of soils have 

been selected. As displayed in Table 5.8, the highlighted rock or soil values are 

used for the ground temperature comparisons between these locations. To analyse 

the amplitude damping at each location the four correspondent soils are used in the 

calculations. 

Table 5.9: Thermal properties values of selected rocks and soils – medium values 
 

Class Material Dry  
Density (kg/m3) 

Conductivity 
(W/(m K)) 

Diffusivity (m2/day) 

Rocks 

Granite 2650 3 0.107 

Limestone 2600 3.1 0.107 

Sandstone - 2.8 0.38 

Shale, wet 2650 1.9 0.0745 

Shale, dry 2650 1.55 0.0645 

Soils 

Heavy clay, wet 15% water 1925 1.65 0.0515 

5% water 1925 1.2 0.054 

Heavy sand, wet 15% water 1925 3.3 0.097 

5% water 1925 2.2 0.1165 

Light sand, 5% water 1285 0.9 0.0875 

The thermal properties of the rock and soil, such as conductivity (Ks) and thermal 

diffusivity (α), are based on the thermal properties values of selected rocks and 

soils, as presented in Table 5.9. These values correspond to the normal range of 

median values provided by ASHRAE (2011, p. 34.15), and its full range is display in 

Appendix 1. 

5.2.3. Results and Discussion 

Observing the ground temperature results at the different locations, which are 

presented in Figure 5.7, we can see that the values vary according with location. 

The results show a clear division between three main areas, divided into northern 

and centre-north littoral, northern and centre interior and centre-south and southern 

littoral.  



Chapter 5 - Ground Thermal Potential in Temperate Climate  

 
-108- 

Figure 5.7: Ground temperature at different depths according with location 

The northern and centre-north littoral area, which includes Oporto and Coimbra, has 

high mean ground temperature (Tm) values and low annual temperature amplitudes 

(As). This is due to the high precipitation values in the region and, the high ground 

moisture content that results from this precipitation. The northern and central interior 

areas, which include Bragança and Évora, provide the greatest annual temperature 

amplitudes (As) of all areas, because of the contrast between winter and summer 

climate conditions in these areas. The mean ground temperature (Tm) values are 

17.52ºC at Bragança and 19.28ºC at Évora. The centre-south and southern littoral 

area, which comprises Lisbon and Faro, presents larger annual temperature 

amplitudes (As), and the average ground temperature (Tm) values are 18.63ºC in 

Lisbon and 21.23ºC in Faro.  

Tm= 17.52°C Tm= 19.32°C 

Tm= 18.63°C 

Tm= 21.86°C Tm= 19.28°C 

Tm= 21.23°C 

As= 5.70°C 

As= 1.87°C 

As= 5.07°C 

As= 1.40°C 

As= 6.26°C 

As= 4.27°C 
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 Figure 5.8: Annual amplitude of the ground temperatures at different depths and locations 

Figure 5.8 shows the decrease in annual ground temperature variation and the time 

lag with depth. For all locations, while at the ground surface the coldest 

temperatures are found in February and the warmest in August, at 4 m the 

temperature lag is extend up to four months. The coldest temperatures at this depth 

are registered in May and the warmest temperatures are registered during 

November. 

Figure 5.9 shows the ground heating and cooling potential at 3 m depth in the six 

studied locations. These figures establish that all locations can benefit from ground 

thermal potential. At this depth, the ground cooling and heating potential at 

Bragança and Évora are the highest, as these northern and central interior locations 
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provide the greatest ground thermal potential of all areas. The great ground thermal 

potential of these areas results from a combination of factors including high daily 

and annual air temperatures, moderate to high annual solar radiation values and low 

to moderate annual precipitation values. 

Figure 5.9: Ground heating and cooling potential at 3 m depth and at different locations 

At Oporto and Coimbra, in the northern and centre-north littoral area, the heating 

potential is higher but the cooling potential is limited. Regarding Lisbon and Faro in 

the centre-south and southern littoral areas, the ground heating potential is 

considerable, in view of the mild winters, as well as the ground cooling potential, 

which is high at Lisbon. As for Faro, the ground cooling potential is moderate due to 

the high mean ground temperature. 

±12°C 

High heating potential 

High cooling potential 

±10°C 

High heating potential 

Low cooling potential 

±8°C 

High cooling potential 

High/Moderate heating potential 

High heating potential 

Low cooling potential 
±12°C 

±12°C 
High cooling potential 

High heating potential 

High/Moderate heating potential 

Moderate cooling potential 

±8°C 
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Another factor to consider is the amplitude damping. The amplitude damping is the 

relation between the ground annual temperature amplitude and the depth where the 

mean ground temperature value is constant. This relation depends on soil 

characteristics such as soil thermal diffusivity. A fast temperature damping means 

that the mean ground temperature is reached at a depth closer to the ground 

surface. This is a relevant indicator in defining ground thermal potential because 

although the mean ground temperature is equal at all depths for a specific location, 

the depth that this value becomes constant through all year changes according with 

type of soil present in a location. Using the values from Table 5.7 and 5.9 the 

amplitude damping of the main soil type at the six locations (Table 5.8) was 

calculated using Labs’ (1979, p. 48) Equation 5.8 and the results are illustrated in 

Figure 5.10: 

 

Equation 5.8 

Where: 

• As the annual amplitude of the temperature wave at the soil surface (°C);   

• x the depth (m); 

• α is the soil thermal diffusivity (m2/day).  

The results shown in Figure 5.10 demonstrate that soil characteristics such as 

thermal diffusivity, which varies with moisture content, produces different amplitude 

damping. It is observable that light and dry soils have faster damping than heavy 

soils. The soil thermal diffusivity is far more relevant in Lisbon, Évora and Faro than 

at locations such as Oporto and Coimbra. This is because of the moisture content of 

the ground, as greater moisture values have a higher impact on thermal diffusivity 

than soil types. Therefore, at locations with high annual precipitation values, such as 

Oporto and Coimbra, the type of soil produces a low effect on ground temperatures. 
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Figure 5.10: Amplitude damping – according with depth, soil types and locations 

By comparing the different values of soil amplitude damping at Lisbon it is 

observable that a ground-integrated building at this location can benefit from greater 

thermal potential when constructed in soils such as heavy clay, light sand or 

limestone due to the fast amplitude damping. While a sandstone soil has slow 

amplitude damping, meaning that it has the lowest thermal potential. At Évora the 

best soils for ground-integration are heavy clay and shale soils, followed by granite 

soils. For the compared soils at this location, sandstone produces the slowest 

amplitude damping and, therefore, it has the worst performance. Regarding Faro, it 

is found that the best soils are heavy clay, followed by light sand and limestone. 

Sandstone is, once again, the soil type with the lowest ground thermal potential.   

Slowest amplitude damping: 
Heavy sand and Granite 

Faster amplitude damping: 
Heavy clay and shale 

No major difference 

Slowest amplitude damping: 
Sandstone 

Faster amplitude damping:  
Heavy clay, light sand and limestone 

No major difference 

Slowest amplitude damping: 
Sandstone 

Faster amplitude damping:  
Heavy clay, light sand and limestone 

Slowest amplitude damping: 
Sandstone and Granite 

Faster amplitude damping: 
Heavy clay and shale 
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5.3. SOLAR RADIATION ON SLOPES 

5.3.1. Location 

 
Figure 5.11: Sun’s rays angle at winter and summer sostice, and spring and autumn equinox 
- Lisbon 12pm; sun path study using Revit 

 

The solar radiation values received by slopes and flat surfaces are different, and this 

difference depends on latitude, slope gradient, orientation, as well as day of the year 

and hour of the day. As illustrated in Figure 5.11, in the Northern hemisphere during 

spring and autumn equinox at midday, a terrain surface with the same angle as the 

latitude is perpendicular to the sun’s rays. Therefore, during these periods a south 

oriented surface with the same inclination as the latitude receives the greater 

amount of solar radiation.  

To confirm the main solar radiation patterns that can be observed in Portugal 

throughout the year, a brief study was conducted according with terrain surface tilt. 

The Portuguese mainland territory ranges across latitudes 37°N to 42°N. Since the 

total range of these latitudes is only 5°, it is relevant to select Lisbon as the central 

location for this study.  
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5.3.2. Interactive Application and Used Inputs 

Table 5.10: Input parameters 

The monthly average solar radiation values for this study were obtained from the 

online Photovoltaic Geographical information system - interactive maps made 

available by the Joint Research Centre (JRC) from the European Commission. The 

surface tilts compared ranged from 0° to 60° with 5° degrees intervals. The 

parameters used to retrieve the monthly data are displayed in Table 5.10.  

5.3.3. Results and Discussion  

The annual average results showed in Figure 5.12, demonstrated that the total solar 

radiation values in this location change according with surface angle. From a 

horizontal surface to a 35° slope there is a substantial increase of the solar radiation 

received in proportion with the increasing steepness of the slope studied. From 35° 

to 60° slopes, the steeper the slope the lower the solar radiation received by its 

surface, meaning that the total annual solar radiation values decrease.  

Figure 5.12: Lisbon - Annual average total solar radiation for different surface tilt 

To maximize the annual solar radiation at this location the most effective slopes are 

those closer to the latitude, which in this case are slopes with angles of 30° to 40°, 

Constant Parameters Changed Parameters 

Latitude 38.74 Month No. 1 (Jan) to 12 (Dec) 

Surface Azimuth  
(-180;180): 

0 Surface Tilt (90 = vert.) 
0, 5, 10, 15, 20, 25, 30, 35, 40, 

45, 50, 55 & 60 

A slope between 5° to 10° has similar values to a 60° slope 
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which are further perpendicular to the sun’s rays during autumn and spring. It is also 

evident that small slopes can improve the solar radiation values received by a 

surface. A small slope of 10° received more solar radiation than a slope of 60°, and 

a 25° slope is better than 55° and 60° slopes.  

 
Figure 5.13: Winter monthly average of total solar radiation according with surface tilt 

Regarding the seasonal monthly solar radiation patterns for different tilts, shown in 

Figure 5.13, analysis shows that during wintertime the amount of solar radiation 

rises from the horizontal surface to a gradient of 50°. From 0° to 40° the increase is 

substantial, and from 40° to 50° the increase is minimal. The solar radiation values 

decrease in slopes of 50° to 60°. At this period the best slopes are from 45° to 55° 

and the optimum gradient is of 50°. 

 
Figure 5.14: Spring monthly average of total solar radiation according with surface tilt 

Similar values from 0° to 25° 

Similar values from 40° to 60° 



Chapter 5 - Ground Thermal Potential in Temperate Climate  

 
-116- 

As shown in Figure 5.14, during spring the solar radiation pattern changes. The 

smaller slopes receive the highest amounts of solar radiation. The greatest value 

was received by a 20° slope, and from 20° to 60° the values of solar radiation 

decrease. It should also be noted that the values received by 0° to 25° slopes are 

very similar. This is because at early spring the sun’s rays are perpendicular to 

angles closer to the latitude but at later spring the shallowest terrain inclinations 

receive higher amounts of solar radiation. For this period, and especially in the early 

months of the year when the ground heating potential is reduced, the steeper slopes 

are not recommended. However, if the objective is to produce lower ground 

temperatures for cooling in the summer, then steeper slopes are ideal. 

 
Figure 5.15: Summer monthly average of total solar radiation according with surface tilt 

As shown in Figure 5.15, during summertime the solar radiation values rise in slopes 

of 0° to 20° and fall in those from 20° to 60°. During this period a horizontal surface 

receives more solar radiation than 45° to 60° slopes. The highest values are 

received by slopes of 10° to 35°, and the optimum slope is of 20°. As illustrated with 

Figure 5.11, at early summer the sun’s rays are perpendicular with the lowest terrain 

inclinations, and this gradually change until late summer, when the sun’s rays are 

perpendicular with the latitude. If the intention is to harvest the maximum solar 

radiation for a greater ground heating potential at autumn, then the best surface 

Similar values from 
15° to 30° 



Chapter 5 - Ground Thermal Potential in Temperate Climate  

 
-117- 

inclinations should be lower than the latitude, in this case the best inclinations are 

slopes of 10° to 35°. 

During autumn the total solar radiation improved with gradient, since the steeper the 

slopes greater are the values (Figure 5.16). This is because at early autumn the 

sun’s rays are perpendicular to terrain surfaces with inclinations similar to the 

latitude, and by late autumn, when the sun path is lower, terrain surfaces with 

greater angle are more perpendicular to the sun’s rays. Therefore, the 55° slope 

receives the maximum value, and 50° to 60° slopes have similar results. 

 
Figure 5.16: Autumn monthly average of total solar radiation according with surface tilt 

To conclude, the seasonal monthly average total solar radiation received at different 

surface tilts reveals how these values change throughout the year. The steeper 

slopes receive the greater solar radiation values during autumn and winter, and the 

shallower slopes during summer.  

 

Similar values: 
50° to 60° 
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5.4. SLOPE GROUND THERMAL POTENTIAL 

5.4.1. Slope Ground Temperature and Zone of Influence 

 As discussed in Chapter 4, topography can affect the climate near the ground. It is 

already known that tilt, orientation and altitude determines the direct solar radiation 

received by a surface, and at higher latitudes the solar radiation received by a 

sloped surface is higher than for a flat one. This implies that flat and slope terrains’ 

underground temperatures are different, which leads to the question of how different 

the produced temperature values and patterns might be. 

 

  
Figure 5.17: Ground section temperatures; Slope influence on ground temperatures at a 
permafrost region. Chou et al., 2010 

A further point to be considered is the slope influence zone. The impact of a slope is 

not limited to its starting and finishing points. Underground areas that precede or are 

positioned after a slope terrain are still affected by the slope. Considering this issue, 

Chou et al. (2010) studied the impact of sunny-shady slopes on the thermal 

performance and deformation stability of the highway embankment on the Qinghai-

Tibet Plateau. This study can be used as an example to illustrate the extent of slope 

influence zones. Looking at the ground temperature section of Chou’s research 

(Figure 5.17) it can be noted that the effects of a slope are not limited to the slope 

area. In the case of this warm permafrost region it can be seen that the slope effect 

3. Push 
down upper 
limit of 
permanent 
frozen area 

Active layer 

Permanently 
frozen zone 

2. Warmer area  

1. Slope influence is larger than its limits. It precede the slope and continue after the slope 
ends 

South side North side 
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precedes and continues after the tilted area, producing a warm temperature area 

below the slope and pushing down the upper temperature limit of the permanently 

frozen area. The beginning of the slope is working as a pivot point between the 

ground temperatures below a slope and flat terrain. 

 
Figure 5.18: Topography effect on ground temperature 

As summarised in Figure 5.18, flat and sloped terrains share the same parameters 

to calculate ground temperature at a specific depth. These parameters are solar 

radiation, air temperature, ground surface temperature, soil type, soil moisture 

content and depth. This section of the chapter is focused on the solar radiation 

parameter. It does so by using the values received by a surface according with its 

inclination, with all the other parameters remaining unchanged. 

The two elements that form Equation 5.1 (T(x,t)), require solar radiation values (see 

Table 5.11). These values are the mean annual temperature of the soil surface (Tm) 

and the annual range of the temperature wave at the soil surface (As). The 

correspondent equation for Tm is Equation 5.2 and for As the corresponding equation 

is Equation 5.7. In this study, the values for the mean annual solar energy at the 
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ground surface (Sm), used to calculate Tm, as well as the values for the amplitude of 

solar radiation wave (Sa) for calculating As, are changed in accordance with the tilt.   

Table 5.11: Solar radiation aspects from Equation 5.1, 5.2 and 5.7 

Equation 4.1 

 Equation 4.2 
  
 

Equation 4.7 
Tm = mean annual temperature of the soil surface  
Sm = mean annual solar energy at the ground surface

 

As = annual range of the temperature wave at the soil surface  
Sa = amplitude of solar radiation wave

 

The Tm equation allows us to track the changing mean annual solar radiation on the 

ground surface (Sm) value according with its slope, while with the As equation the 

annual amplitude of the solar radiation wave (Sa) value can be changed also 

according with the study slope. Based on this, the ground temperatures in Lisbon 

can be calculated using the correspondent Tm and As equations for tilt surfaces from 

0° to 60° with 5° intervals. The Tm and As values are found using the correspondent 

Sm and Sa values for each slope. 

5.4.2. Ground Temperature Calculations Inputs 

Table 5.12: Nomenclature and values uses on the ground temperature calculations at Lisbon 
for different slope terrains 
Slope Terrain 

 

00° 10° 20° 30° 40° 50° 60° 

Mean annual solar radiation - ground surf, W/m2 Sm 388.14 419.46 441.88 453.75 454.91 444.72 423.36 

Amplitude of the solar radiation wave, W/m2 Sa 349.29 307.77 272.46 231.08 187.33 156.67 136.67 

Using this method, the ground temperatures for different tilt terrains in Lisbon were 

calculated using the corresponding solar radiating values, as displayed in Table 

4.12. These values are based on the monthly data retrieved from the online 

Photovoltaic Geographical information system - interactive maps (JRC), and that are 

available in Appendix 1. All other parameters used in this section correspond to the 

Lisbon values, which are displayed in Table 5.7 in Section 5.2. 
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[hrTma −εΔR+ bSm − 0.0168hs fb(1− ra )] As = [hrAsa − bSa exp(iϕ1 −ϕa )] / (he +Ks )
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5.4.3. Results and Discussion 

 
Figure 5.19: Tm and As according with slopes - Lisbon 

Using these data the author found that by changing the received mean annual solar 

radiation values (Sm) according with the slope, different mean soil surface 

temperatures (Tm) can be produced. As illustrated in the above figure, the Tm value 

increases in slopes from 0° to a 35°, with a total range of 1.04°C, and it decreases in 

slopes from 35° to a 60°. It can also be seen that the Tm value for a 15° slope is 

higher than for a 60° slope. 

Regarding the temperature amplitude of the soil surface (As), it is observed that 

these values are also affected by the inclination of the terrain. As can be seen in 

Figure 5.19, that by using the correspondent annual amplitude of the solar radiation 

wave (Sa) the solar radiation values increase with the steepness of the slope. The 

total As value range produced ranges of 2.77°C, from 5.07°C for a 0° slope to 

7.85°C for a slope of 60° slope. It should be pointed out that the steeper slopes, 

such as 55° and 60°, have a small amplitude difference between them. 

Therefore it is proved that by using the correspondent mean annual solar radiation 

(Sm) and temperature amplitude of the soil surface (As), the values of the terrain 

inclination affects both Tm and As values and, consequently affecting the ground 

temperature calculations.  

18.63°C 

35° 
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Figure 5.20: Ground temperature at different depths according with slope - Lisbon 

The impact of Tm and As values on ground temperatures according with slope 

inclination are visible in Figure 5.20. It can be observed that for the same location 

both values change due to tilt, leading to different ground temperatures values. This 

shows that ground temperature calculations need to use the appropriate solar 

values according with terrain inclination.  
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Figure 5.21: Ground heating and cooling potential for different depths, Lisbon – 1 m depth 

The annual ground temperature values for a 1 m depth can be seen in Figure 5.21, 

show that they are affected by terrain incline degree and the pattern of temperature 

change during the year. These figures reveal a considerable heating potential from 

October until March but the cooling potential is limited. This limitation exists because 

most slopes produce higher values than the daily average temperature. During 

January, slopes of 20° and 30° produce the best results, in April a 20° slope is the 

best inclination, in July a 0° slope produce the best values and in October a 50° 

slope has the best temperatures, the latter closely followed by a 40° slope. Overall, 

at this depth, the best annual temperatures are provided by slopes of between 20° 

to 40°. Regarding the time lag, the author found that in winter it is of around two 

months and in summer of one month.  

 
Figure 5.22: Ground heating and cooling potential for different depths, Lisbon – 3 m depth 
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Examining the values presented in Figure 5.22 it is clear that at 3 m depth all terrain 

inclinations have a good ground thermal potential. The temperature gap between 

the inclinations is reduced. During January the best slopes are of 30° and 40°, in 

April of 20°, in July 0° and in October the best slope is of 50°. The best annual 

temperatures are provided between 30° to 40° slopes. The time lag at the coldest 

period is around three months, while the warm ground temperatures are felt during 

October, that is, two months after the outside air temperature heat peak.  

 
Figure 5.23: Ground heating and cooling potential for different depths, Lisbon – 6 m depth 

As illustrated in Figure 5.23, in the case of 6 m below ground the ground thermal 

potential is improved with higher heating and cooling potential than in the lower 

studied depths. Due to more constant values throughout the year, the temperature 

amplitude value between the slopes and the annual temperature range for each 

inclination is narrow. During January and October the best values are registered by 

a 40° slope, followed by a 30° slope. In April this is reversed, with a 30° slope 

providing the best values, and closely follow by a 40° slope. In July the best value is 

for 0° and 60° slopes. At this depth, overall, the best slope is 40°, closely followed 

by a 30° slope. The time lag is increased to up to five months for the coldest 

temperature values, coinciding with the beginning of the summer, and the warmest 

ground temperatures are registered in December, four months after the hottest 

period of the year.  
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As previously explained, the ground is able to collect and store solar energy, and 

this energy can be transmitted to a building by direct and indirect contact. Slope 

terrains receive a higher amount of solar radiation than flat terrains. The higher 

amount of collected and stored energy is verified by comparing the ground 

temperature at 3 m depth below a flat terrain, against the location at which the same 

temperature is found under different slope terrains. This verification was done for 

single days at the beginning of January, April, July and October.  

 
Figure 5.24: Ground temperature comparison between flat and slope terrains, Lisbon – 1st 
January 

Sloped terrains produce different ground temperature patterns than flat terrains. An 

intermediate zone is produced between a flat and a sloped area. The slope affects 

the ground temperatures in this intermediate zone.  

At the beginning of January a warm ground temperature of 18.53°C can be found 

below a flat surface at 3 m depth. Following the same temperature value, Figure 

5.24 shows that its distance from the surface changes with the steepness of the 

slope. At this winter day the warmer values are closer to the ground surface below 
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all slopes. With a 10° slope the 18.53°C is found at 2.4 m depth and it reaches the 

lowest depth of 2.1 m with a 30° and 40° slope. This shows that ground-integrated 

buildings in, as well as near, slope terrains can benefit from higher ground thermal 

potential during winter. 

 
Figure 5.25: Ground temperature comparison between flat and slope terrains, Lisbon – 1st 
April 

In Figure 5.25 it is can be seen that by early spring the ground has released a great 

part of its energy. At this period, although the surface temperatures are warmer 

comparing with winter values, all other ground temperatures up to 4 m depth have 

reached their annual lowest.  

The author found that slopes from 10° to 40° are able to provide better ground 

temperature values than flat terrain. The 16.47°C value registered at 3 m depth 

below the flat surface moves closer to the surface below a 10° to 40° slope. Its 

proximity to the surface is greatest under a 20° slope located at a 2.4 m depth. It is 

also confirmed that slopes higher than 50° produce the worst ground temperatures, 

since the 16.47°C temperature is only found at depths below 3 m. 
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It can therefore be concluded that at this period slopes between 10° to 40° can 

increase ground heating potential. However, slopes greater than 50° have less 

ground heating potential than a flat terrain. 

 
Figure 5.26: Ground temperature comparison between flat and slope terrains, Lisbon – 1st 
July 

Observing the ground temperature positions below flat and inclined areas in the 

beginning of July (see Figure 5.26) it is clear that all slopes produce higher ground 

temperature values than flat terrain. The temperature value of 18.68°C registered at 

a 3 m depth below a flat terrain is pushed down to 3.9 m below a 10° slope, and the 

maximum depth of 6 m for this temperature value was found under a 30° slope. 

Although this shows that the ground cooling potential at a slope area is reduced 

when compared with a flat terrain, it indicates that the annual heating potential at 

any slope will be greater, since during this period the ground it is at a charging 

mode. 
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Figure 5.27: Ground temperature comparison between flat and slope terrains, Lisbon – 1st 
October 

As a consequence of this charging mode observed during the summer, it is evident 

in Figure 5.27 how the ground has stored the received solar energy by the 1st of 

October and is now totally charged. At the beginning of the autumn, all slope 

terrains have higher heating potential than flat terrain. The 20.79°C ground 

temperature value found at 3 m below a flat area appears further down below all 

slopes. Inclinations between 30° to 50° have good thermal potential, and 40° is the 

optimum slope during this period. 
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5.5. CONCLUSIONS 

Portugal’s temperate climate is divided into three winter climatic zones and three 

summer climatic zones, split between mild, moderate and severe. In 2013, the 

Portuguese annual quota of final consumption of energy per sector shows that the 

domestic sector was the third main consumer, accounting for 17% of all energy 

consumption. For this sector, in 2010, 17.5% of the average energy consumption 

per dwelling was used for heating. The electricity consumption values per type of 

utilization indicate that heating contributes to a larger energy usage than cooling, 

since 9.06% of the total electricity is used for heating and only 1.60% is for cooling. 

The dwelling density of Portugal’s mainland in 2001 indicates a higher concentration 

of dwellings in the north, rather than in the south, and with a very high concentration 

around Lisbon. A single-family dwelling is the main type of residence in Portugal, 

corresponding to 55% of total residential buildings, 7% higher than the European 

average. A two-dwelling building corresponded to 8% and buildings containing three 

or more dwellings are 37% of total domestic buildings. Data from 2001 and 2011 

makes reference to the amount of conventional dwellings by building and the 

percentage and distribution of buildings with one dwelling. This data shows that the 

single-family house is more predominant at non-urban areas, while in urban areas 

(such as Lisbon) there is a prevalence of multiple occupancy buildings, mostly 

apartment buildings. In 2014 the average number of floors per completed buildings 

in new families housing constructions was 2.1. The lowest number of average floors 

is found in the single floor dwellings of Alentejo, and the highest is an average of 2.6 

at the Algarve and Lisbon. The national average number of rooms per dwelling is 

five. 

The author conducted a study in order to identify Portugal’s ground thermal 

potential. This was done by analysing six locations at which the ground temperature 
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at different depths was calculated. The result of this analysis shows that all locations 

can benefit from ground thermal potential. The length of the potential is dependent 

on the mean ground temperatures (Tm) and annual temperature amplitudes (As). 

Three main ground thermal areas were identified by the conducted study analysis: 

Firstly, the north and centre-north littoral zone, which includes Oporto and Coimbra, 

and that has high heating potential but limited cooling potential due to higher 

precipitation values; secondly, a north and centre interior zone in which Bragança 

and Évora are included, which has the greatest thermal potential across the whole 

year due to the contrast between summer and winter weather; lastly, a centre-south 

and south littoral area, which includes Lisbon and Faro, with good ground heating 

potential, and with good cooling potential in Lisbon and moderate potential in Faro, 

the latter due to the mild winters and moderate summers. 

Regarding the relevance of soil types on ground thermal potential, this effect was 

found to be lower in zones with high annual precipitation, as it is the case of north 

and centre-north littoral, compared with zones with lower annual precipitation such 

as Lisbon, Évora and Faro. At these three locations, sandstone produces the worst 

ground thermal potential due to its slow amplitude damping. The result order for best 

to worst soil types in Lisbon is heavy clay, followed by light sand and limestone; in 

Évora it is heavy clay, shale and granite, while in Faro it is heavy clay, light sand 

and limestone. 

The author studied the solar radiation on slopes in Lisbon in order to understand 

annual and seasonal variations. The author found that at this location all slope 

terrains have higher annual solar radiation exposure than flat terrain. Between low to 

medium slopes the impact on annual solar radiation values is greater than between 

medium-steep slopes, as 5° slope receive 26.5% more solar radiation when 

comparing it with a flat terrain. As for slopes between 30° to 35°, the increase 
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difference is only 1.3%. The author also found that a 10° slope terrain have higher 

solar exposure than a 60° slope, while a 25° slope produces higher annual values 

than slopes between 55° and 60°. Gradients between 25° to 45° provided the 

greatest annual values, and the optimum slope is of 35°. Regarding the seasonal 

patterns, the author found that the highest slopes receive the greatest solar radiation 

values during winter and autumn, while the medium low and low slopes have the 

highest values during spring and summer. 

The slope ground thermal potential for Lisbon was studied by calculating the ground 

temperatures using the correspondent solar radiation data. For each tilt surfaces the 

appropriate Sm and Sa values were used. The analysis shows that, as consequence, 

Tm and As values are affected. This proves that ground temperature below slopes is 

different from that registered under a flat terrain. Between all studied slopes, 

changing the Sm generate a Tm results range of 1.04°C increases from 0° to 35° 

slope and decreases for 35° to 60° slopes. Whereas by altering the Ss values the As 

value range increased by up to 2.77°C, with 5.07°C for a 0° slope and 7.85°C for a 

60° slope. 

The author therefore concludes that in Lisbon, all terrain inclinations produce higher 

annual ground thermal potential than flat terrains. The author found that, for depths 

greater than 3 m, a 30° to 40° slope provides better temperatures in winter, spring 

and autumn than the other slopes studied. These are the seasonal periods when 

most energy is required. For summer, both slopes provide greater temperatures 

than shallower slopes as 0°, 10° and 20°. However this season corresponds to the 

annual period with lower energy needs and, therefore any form of ground integration 

is an advantage. This makes 30° to 40° slopes the best angles to maximise the 

annual ground thermal potential. The author observed that time lag increased with 

depth, as at 3 m the coldest ground temperature values are register three months 

after the outside cooling peak, while at 6 m the difference is increase to five months.  
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The author has demonstrated that slopes terrains produce different ground 

temperature patterns than flat terrains. Also, that between a flat and a slope area, an 

intermediate zone is produced since the slope affects is not limited to its own area. 

At the beginning of January, the author found that the ground temperature value at 3 

m below a flat terrain appears closer to the surface under all slopes. This proves 

that all slopes have higher ground heating potential than flat terrain. It is below 30° 

and 40° slopes that the temperature value reaches its lowest depth at 2.1 m. In early 

spring, the ground temperature value at 3 m under a flat terrain is visible closer to 

the surface beneath a 10° to 40° slope. This shows that these slopes produce the 

best ground thermal potential. During July, all slopes produce greater ground 

temperature when compared with a flat terrain. This indicates that the flat terrain has 

higher ground cooling capacity but also shows that the slope terrains are in charging 

mode, which means that their heating potential during autumn and winter is greater. 

During early October the optimum slope is found to be 40°. 

The next chapter looks into how ground heat transfer is simulated by different 

building simulation software. This is done to identify the software and methodology 

to be used in Chapter 7 and Chapter 8. 
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CHAPTER 6. THERMAL SIMULATION OF GROUND 

CONTACT 
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6. THERMAL SIMULATION OF GROUND CONTACT 

 Over the past two Decades several building energy simulation programs have been 

developed by private companies, universities and government bodies made 

available as both commercial and as free software. At the initial stage of this 

research, the author had access to three software packages that were identified as 

possible tools for studying ground integration effect on buildings thermal 

performance. The university provided two of those packages, Ecotec and Tas, while 

a third one, E+, was freely available. The author was only familiar with Ecotec. 

During the process of self-learning Tas and E+, it became evident to the author that 

each program has different strengths as well as limitations. As consequence of 

these different strengths and weaknesses, the ground thermal outputs can vary 

depending on the software used to calculate them. Therefore, the author placed a 

considerable emphasis on identifying a suitable software tool to conduct this 

research into ground thermal potential. This chapter analyses how different 

packages including Ecotect, Tas and E+ perform when simulating ground heat 

transfer.  

The selection process for this comparison was performed in four stages: an initial 

case, a second case, a sensibility case, and lastly a slope simulation case. The 

initial case study compares the three software packages made available to the 

author, Ecotect, Tas and E+. The results of this initial comparative study led to the 

second case study, where further comparisons between two of the software 

packages were conducted. This second case study focuses on defining the 
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simulation procedures for E+ simulations and looks specifically at ground contact 

effects through comparative tests. The third case studies tests additional results 

patterns and discrepancies between the different software packages, and 

determines which building energy simulation package the author will use across the 

rest of the thesis. The last case study looks into the limitations of each software 

package and outlines procedures for ground heat transfer simulations, in particular 

when simulating ground integrations on slope terrains.  
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6.1. INITIAL CASE MODEL - ECOTECT, TAS AND E+ 

6.1.1. The Computer Simulation Packages  

The software packages for building thermal simulation available to the author were 

Ecotect, Tas, and E+. Intending to identify the most suitable tool for this research, 

the author modelled an initial comparative case study test and simulated its ground 

thermal outputs using the three software packages. 

At the time of this comparative study, Ecotect was an Autodesk analysis software 

which was being marketed by the company as a sustainable building design 

software. Since 2015 the functionality of this software has been integrated into the 

Revit package. Regarding Tas, this package was a Bentley building energy 

simulation product and it is currently commercialised and distributed by EDSL. 

Finally, E+ is an energy simulation software developed by the United States 

Department of Energy, it is free, open-source, and cross-platform. The software 

versions used in this chapter were Ecotect Analysis 2010, Tas 9.2 and E+ 7.2. 

6.1.2. Model Dimension and Simulation Input Data  

Table 6.1: Model Dimension, Zones and Level of Ground Integration 
 Dimensions Zones 

 

  
Surface with Ground Contact 

 Case 00 Case 01 Case 02 Case 03 Case 04 

 
     

Zone 1 Floor Floor Floor 
Floor 
East wall 
West wall Floor 

Roof 
All walls except 
South wall (Zone 1) Zone 2 Floor Floor 

North wall 

Floor 
North wall 
East wall 
West wall 

Floor 
North wall 
East wall 
West wall 
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The model building used for the case study consists of a two zone building structure 

with an interior partition and a 1.2 m2 south-facing window. Each zone has a total 

area of 9 m2 and a volume of 27 m3. The case model variations are based on five 

different levels of ground integration. For each level the surface elements with direct 

ground contact vary, as illustrated in Table 6.1.  

The location used in this study is Bragança, Portugal. The reasons for this choice of 

location are the cold winters and hot summers found at this location, as these 

characteristics can produce greater contrasts in the simulation results, and therefore 

making the result patterns clearer. Details about the weather file are explained in 

Chapter 5 Section 5.2.2. The models assume that there are no internal gains and 

that no heating and cooling systems are used. The building materials are listed in 

Appendix 2. The winter day and summer day results used in this study correspond 

to the 1st January and 1st August. 

6.1.3. Simulation Results and Discussion 

The a priori hypothesis expected to be verified with this case study was that during 

winter the inside air temperature would increase as the ground-integration level of 

the model was increased. While with the summer results the opposite was expected, 

the inside air temperature should decrease as the ground integration was increased.  

 

 
Figure 6.1: Ecotect - Models winter and summer day air temperature 

All models have similar results with lower air 
temperatures than the exterior temperatures 
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Figure 6.2: Tas - Models winter and summer day air temperature 
 

 
Figure 6.3: E+ - Models winter and summer day air temperature 

The a priori hypothesis was confirmed by Tas and E+ simulation results. However, 

this was not the case with Ecotect generated results. As can be seen in Figure 6.1, 

for both the winter and summer days, the Ecotect results registered an almost 

constant inside air temperatures which consistently presented lower values than the 

exterior temperature. This clearly shows that Ecotect’s thermal simulations are not 

taking ground contact into consideration. In contrast, the results that Tas and E+ 

generated indicate that these models are able to benefit from ground integration 

during winter and summer. These models found that the higher the ground 

integration the better the temperature values in both zones (Figure 6.2 and 6.3).  
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Figure 6.4: Model Case 02 Tas and E+ winter and summer comparison 

When using Case 02 (see Table 6.1) to compare Tas and E+ results the author 

observed that Tas registers lower temperature results than E+, on the winter and the 

summer day. The lower amplitude difference between the programs is found at the 

winter results, as illustrated in Figure 6.4, which show a mean disparity of 5°C at 

Zone 1 and of 5.4°C at Zone 2. During the summer the gap increases to a mean 

difference of 5.3°C at Zone 1 and 5.5°C at Zone 2. 

6.1.4. Findings and Conclusions 

As a result of this initial case study Ecotect was found to be unsuitable as a tool 

option for this research. It is found that the results produced by Ecotect did not 

follow the basic a priori hypothesis. This lead to the conclusion that ground contact, 

as an input parameter, is not been simulated by Ecotect. However, it is evident that 

Tas and E+ results show that the level of ground contact does affect the models 

performance, as initially expected. However the result values differ between these 

two software packages. For this reason, further tests are needed to clarify the 

difference and identify the most appropriate research tool for this project.   
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6.2. SECOND CASE MODEL – TAS AND E+  

Table 6.2: Stages and analysed parameters 
Software Stage Analysed parameters 

E+ 
Defining procedure 

• Results produce by different ‘First run’ methods  
• Results patterns and discrepancies between E+ methods  
• Effects of simulation period: 1 Day versus 1 Month 

Comparative test • Effects of ground contact on ground-integrated buildings 

Tas Comparative test • Effects of ground contact on ground-integrated buildings  

E+ & Tas Comparative test • Effects of ground contact on ground-integrated buildings  

The second case study is divided in two stages. Firstly, it defines the procedures for 

E+ simulations and comparative tests (Table 6.2). Since E+ provides multiple ways 

to simulate ground heat transfer, defining a procedure is an essential step. For this 

reason the initial part of this case study is focused on testing different methods and 

settings. The second stage is focused on the analysis of the effect produced by 

ground contact on ground-integrated buildings. This is achieved through a 

comparative test between Tas and E+ results. 

6.2.1. Model Dimension and Simulation Inputs  

Table 6.3: Second Case models detail 
Second Case Models 

Name Configuration and Level of Ground 
Integration 

Floor North 
Wall 

East 
Wall 

West 
Wall 

South Wall Roof 

 
Sections Plans Perspectives       

 

Model 00  
No ground integration 

X S      

Model 01  
1 Side (N wall) 

X S X B     

Model 02  
2 Sides (N + E walls) 

X B X B X B    

Model 03   
2 Sides (N + W walls) 

X B X B  X B   

Model 04   
3 Sides (N + E + W walls) 

X B X B X B X B   

Model 05 
 

4 Sides (N + E + W walls + Roof) 

X B X B X B X B  X B 

X – surface with ground contact 
S – E+ Models - outside surface temperature from the Slab auxiliary program 
B – E+ Models - outside surface temperature from the Basement auxiliary program 
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The second case study model consists of a single zone block with no windows. The 

3 m by 3 m model has a total area of 9 m2 and a total volume of 27 m3. The model’s 

levels of ground integration are summarised in the Table 6.3. 

As in the previous section, this study’ simulations use the weather file of Bragança, 

Portugal. For higher contrast, the winter and summer days analysed correspond to 

the coldest and hottest days of the year - 19st January and 19st August. To prevent 

result differences due to complex material inputs and to amplify the impact of ground 

contact, all models use a single construction material of 20 cm thick concrete (Table 

6.4). 

Table 6.4: Models materials  
Material Width (cm) Conductiv. 

(W/m.°C) 
Convec. Coeff. 

(W/m2.°C) 
Density 
(kg/m3) 

Specific 
Heat 

(J/kg.°C) 

Thermal Resist. 
(m2.°C/W) 

Concrete 20 0.51 - 1400 1000 R=0.2/0.51=0.392 

 Thermal Absorpt. Solar Absorpt. Visible Absorpt.  U value (W/m2.°C) 

Concrete 0.9 0.65 0.65  1.772 

 

6.2.2. E+ – Ground Heat Transfer Simulation Methods Using Slab and 

Basement Auxiliary Programs 

With more or less complexity, E+ allows for the simulation of ground heat transfer in 

multiple ways. The main difference between processes is how the building surface 

temperatures in contact with the ground are obtained. The most complete and also 

most complex way to find surface temperatures is by using the Slab and Basement 

auxiliary programs. Slab and Basement auxiliary programs are part of the E+ 

package. These extra programs can be used to simulate ground heat transfer, and 

can be accessed through the EP-Launch window under the utilities tab (Department 

of Energy, 2012b). These pre-process programs generate monthly average zone air 

temperatures that can be later used. However, there are three different methods that 

can be used to generate these temperature values (Department of Energy, 2003; 

Andolsun et al., 2011, pp. 1664-1668, 2012, pp. 190-194; Department of Energy, 
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2012, pp. 81-116). Therefore these methods are compared in order to determine the 

simulation procedure.  

Table 6.5: Different methods to apply when using Slab and Basement programs  
‘First Run’ Methods 

Method 1 
Building surface temperature as 18 °C 

Site: Ground Temperature: Building surface = 18 °C (all year) 
Building Surface Detailed:  

o Outside Boundary Condition: Ground 
o Construction: Concrete floor 

Method 2 
Floor with external insulation 

Building Surface Detailed:  
o Outside Boundary Condition: Ground 
o Construction: Concrete floor with Insulation 

Method 3 
Floor as an internal surface 

Building Surface Detailed:  
o Outside Boundary Condition: Surface 
o Construction: Concrete floor 

Buildings affect ground temperatures and for this reason undisturbed ground 

temperatures cannot be used as a final ground temperature input. In an initial stage, 

a model is simulated to calculate the initial building monthly average indoor 

temperature value. This first stage can be set in three ways, as described in Table 

6.5. In a second stage, the ‘first run’ monthly average air zone temperature results 

for the model are run through the Slab and Basement pre-process programs. Both 

Slab and Basement auxiliary programs produce customised monthly average 

surface temperatures by generating output files that contain a Schedule: Compact 

list and a SurfaceProperty:OtherSideCoefficients list.  

In a third stage, these results lists are inserted into the .idf files. While the Slab 

results have to be inserted manually, the Basement data can be inserted by copying 

and pasting the objects generated by the out_bsmt.idf file. Finally, this data can be 

accessed as an Outside Boundary Condition Object that can be selected for each 

structure element listed at BuildingSurface:Detailed, with the Outside Boundary 

Condition set to OtherSideCoefficients.  
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6.2.3. E+ - Results Produce by Different ‘First Run’ Methods 

 
Figure 6.5: Monthly ground temperature results using different methods 

As previously described, E+ allows to determine ground-surface temperature using 

three different methods. To identify the method used in this research a comparison 

between the values produce using those methods was made. With the comparison it 

was verified that the methods generate different monthly average zone air 

temperature results. The author found that Method 2 and Method 3 results are 

similar, but Method 1 generates different results. The result disparity is more visible 

during the coldest months of December and January and during the hottest months 

of July and August. As can be seen in Figure 6.5, for the coldest period Method 1 

provides the warmest temperature as for the hottest period it generates the coldest 

ground temperature; therefore, Method 1 produces the results most inline with the a 

priori hypothesis. 

6.2.4. E+ - Results Patterns and Discrepancies Between Different Methods 

To identify the appropriate ‘first run’ method, the corresponding monthly air 

temperature values of each method are used with the Slab and Basement auxiliary 

program simulations. Later, Models M00 to M05 are simulated for each of the three 

methods, using the corresponding building surface temperatures. To conduct this 

research, the winter and summer day data is retrieved from the model simulation 

results and compared.  
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Table 6.6: Models’s winter and summer internal temperatures - different methods results 
  Winter day (ºC) Summer day (ºC) 

  
M00

 

M05

 
Range 

M00

 

M05

 
Range 

Method 1 
Min. -0.87 7.76 8.62 27.44 24.23 3.21 
Max. 1.14 8.46 7.32 32.3 25.59 6.7 

Method 2 
Min. -1.23 6.22 7.76 27.63 25.14 2.48 
Max. 0.8 6.93 6.13 32.48 26.51 5.97 

Method 3 
Min. -1.26 6.09 7.35 27.64 25.19 2.44 
Max. 0.77 6.81 6.03 32.49 26.56 5.93 

 

As shown in Table 6.6, temperature ranges are largest during the winter day than 

during the summer day. However, this temperature range increases or decreases 

depending on which method’s results are used. The models that use the data 

obtained from Method 1 have the highest temperature values in winter, followed by 

results from Method 2 and Method 3. The temperature difference between the 

models (M00 to M05) is also larger when using data from Method 1. Concerning the 

summer results, the results are reversed: Method 1 registers the lowest temperature 

values and the range difference between models M00 and M05 is, again, the 

largest. The results produced by models that use Method 1 output values are 

closest to the anticipated ones. 

Table 6.7: Methods temperature ranges and average temperature difference 
Methods Temperature Range (ºC) Ave. Temp. Diff. Between Methods (ºC) 

 19th Jan. 19th Aug. 19th Jan. 19th Aug. 

Model 00  2.02 4.85 0.37 0.19 

Model 05  0.71 1.36 1.65 0.97 

 

Regarding the effect of ground contact, the results amplitude differs according with 

level of ground integration, meaning that the higher the ground contact better the 

results. For all methods and both studied days, the author found that the 

temperature range decreases as ground contact increase (Table 6.7). 
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During winter, the average internal temperature differences between methods 

increases as the ground contact increases. For all methods, during the summer day 

the average internal temperatures decreases as ground contact increases. 

For both days, the results generated by Methods 2 and 3 are almost identical, as 

shown in Table 6.6. The temperature difference between these two methods and 

Method 1 increases with ground contact, so the higher the ground integration the 

larger the difference in temperature. This relationship is more evident during the 

winter day, with a 1.65ºC average temperature difference between methods for 

Model 05 (see Table 6.7). 

By comparing the ‘first run’ procedures the author found that although all the result 

patterns for all methods are similar, the use of different methods can affect the 

simulation values. Methods 2 and 3 present closer temperature values and Method 

1 results are most inline with the a priori hypothesis than Method 2 and 3 in the 

summer and winter days. Since the results generated by Method 1 are closer to the 

expected results, this method was chosen as the approach for the following E+ 

simulations. 

6.2.5. E+ - Effects of Simulation Period: 1 Day versus 1 Month  

During this study the author observed that the results are affected by the input 

simulation period. To identify how this input affect the results and what simulation 

period should be used, a brief comparison is made between results retrieved from 

one single day period input (19 Jan and 19 Aug), with a day result retrieved from a 

monthly period input (21 Dec to 21 Jan; 21 Jul to 21 Aug).  
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Figure 6.6: Model 00 to 05 – Winter day results from different simulation periods (1 day /1 
month) 

 
Figure 6.7: Model 00 to 05 – Summer day results from different simulation periods (1 day /1 
month) 

For all models, it is found that the internal temperature results for the studied winter 

and summer days are affect by simulation period. As can be seen in Figure 6.6 and 

6.7, the monthly simulation produces higher temperature results in winter and lower 

temperature results in summer than a single day period simulation. 

Table 6.8: Period comparison - single day versus month simulation results 
Results difference between single day and monthly simulation period (ºC) 

 Day time 
M00

 

M01

 

M02

 

M03

 

M04

 

M05

 

19th Jan 
00 am - 01 am 4.21 3 2.64 2.58 1.82 1.3 

23 pm - 00 am 1.28 1 0.7 0.68 0.44 0.27 

19th Aug 
00 am - 01 am 1 0.78 0.55 0.62 0.43 0.25 

23 pm - 00 am 0.26 0.19 0.14 0.15 0.1 0.07 

The largest differences between results are found during the initial hours, and the 

gap gradually narrowed during the day, as shown in Table 6.8. This indicates that 

the single day period simulation results are not taking the weather conditions of 

previous months or even days into consideration. Because ground thermal potential 
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follows the weather conditions with a specific time lag, the ground temperatures at a 

particular depth can be affected by the weather conditions of previous weeks or 

even seasons. The use of larger simulation input periods ensures that E+ is 

considering a larger weather sample and therefore the results should be more 

consistent. 

The author studied the effect of the simulation period as an input by comparing the 

results between a single day and one month simulation period. The results 

demonstrated that temperature outputs are affected by the simulation period. The 

monthly period simulation produced better results: during winter the monthly period 

results are higher, and during summer the monthly period results are lower. 

Therefore it is concluded that larger simulation input periods such as monthly or 

yearly data are preferable to single day inputs. 

6.2.6. E+ - Effect of Ground Contact on Ground-integrated Buildings 

 
Figure 6.8: Winter and summer day internal air temperature according with models ground 
contact – E+ Model 00 to 05 

This section examines in more detail the effect of ground contact on the E+ model 

results. It is found that for summer and winter, the larger the model’s ground contact 

the greater the difference between the outside ambient air temperature and models 

air temperature, therefore greater is the thermal comfort. As visible in Figure 6.8, 

during winter the internal temperatures are higher when ground contact increases, 

and in summer the temperature decreases when ground contact decreases.  
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It is also observed that the higher the ground integration, the lower the internal air 

temperature amplitude range, generating more constant internal temperatures. It is 

therefore concluded that the level of ground contact affects the models’ results. The 

increase in ground contact generates a better annual thermal performance, since 

the internal temperatures are more stable and less affected by outside climate 

conditions. 

6.2.7. TAS – Effects of Ground Contact on Ground-integrated Buildings 

 
Figure 6.9: Winter and summer day internal air temperature according with models ground 
contact – Tas Model 00 to 05 

Regarding the results produced by Tas, it is found that across the whole year, the 

amount of ground integration affects the thermal performance of the model. In 

winter, the higher the ground contact the higher the internal average air 

temperature. During summer the opposite is found, so the higher the ground contact 

the lower the internal average air temperature (Figure 6.9).  

 
Figure 6.10: Winter and summer week: Internal air temperature according with models 
ground contact – Tas Model 00 to 05 

The largest temperature difference between the study models was found in the 

summer and occurs when the maximum outside ambient temperature is registered. 

The models’ temperature ranges are smaller in winter and the largest temperature 
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difference is found when the minimum internal temperatures are registered. With the 

weekly results, displayed in Figure 6.10, it is observed that the temperature 

difference between models increases in winter when outside minimum and 

maximum temperature decrease, and during summer, when external temperatures 

increase. This shows a greater influence of daily weather conditions on models with 

lower levels of ground contact.  

Through this comparative test between models with different levels of ground 

integration the author concluded that level of ground contact influences the Tas 

models’ internal air temperature. The higher the ground integration better the annual 

thermal performance. Also, the internal air temperatures are more constant and less 

dependent on outside climate conditions. 

6.2.8. Comparison Between E+ and TAS Results 

Table 6.9: Tas and E+ results comparison 
Temperature difference between Tas and E+ simulation (ºC) 

Models 
M00

 

M01

 

M02

 

M03

 

M04

 

M05

 

19th Jan 
Min. 0.33 0.23 0.44 0.41 1.14 1.49 
Max. 0.65 0.10 0.18 0.15 0.91 1.19 
Ave. 0.19 0.35 0.52 0.50 1.18 1.44 

19th Aug 
Min. 1.91 3.82 6.14 6.12 7.52 8.95 
Max. 2.21 4.23 6.60 6.46 7.98 9.08 
Ave. 2.00 3.98 6.32 6.26 7.73 9.01 

Through the comparison between Tas and E+ results, it is found that the internal 

temperature difference is smaller in winter with average values between 0.19ºC to 

1.44ºC, than in summer when average values ranged from 2ºC up to 9.01ºC (Table 

6.9). This difference increases with ground contact since the higher the ground 

contact value, the larger the range between the results generated by different 

software packages.  
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Figure 6.11: Winter and summer day: Internal ait temperature – Model M00 and M05 – Tas 
and E+ comparison 

The level of ground contact affects both software results. Tas registers better 

thermal performance on both the summer and winter days, with the largest 

difference between programs results found on the summer day. The higher the 

ground contact the larger the gap between the different results generated by each 

software package. As can be seen in Figure 6.11, during the summer day Tas 

temperature results for model M05 are below the maximum and minimum daily 

outside temperatures. While the E+ model M05 results are above the minimum 

outside temperature. To identify what causes the discrepancy of results between 

Tas and E+, an additional case study based on a sensible test was made. 

6.2.9. Findings and Conclusions 

This study establishes the methodology used by E+ to calculate ground heat 

transfer. E+ provides multiple processes to take ground contact effect into 

consideration during building energy simulations. One of the processes used by E+ 

are the Slab and Basement auxiliary programs, which produce pre-process data to 

be later inserted into the E+ .idf files. This process allows E+ simulations to use the 

disturbed ground temperature produced by the building itself. To perform this 

process there are three methods to determine the initial internal temperatures for the 

auxiliary programs simulations. Overall, the author found that although all methods 

produce similar patterns, the values can differ. Therefore, the method selected was 

Method 1, which sets the initial building monthly surface temperature at 18°C.  
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Additionally, the author found that E+ results are affected by the simulation period, 

since the longer the simulation period the better the results. This study shows that 

E+ ‘builds up’ the results as a continuous simulation process over the course of the 

simulation period. For this reason larger simulation periods such as one-year are 

recommended. 

Regarding the ground integration effects, both software results show that the higher 

the ground integration, the better the internal air temperatures. The author found 

that the temperatures found inside ground-integrated buildings are more constant 

and less dependent on outside climate conditions since the internal temperature 

ranges decrease as ground integration increases. When comparing both programs, 

it is found a result discrepancy between Tas and E+, which increases when 

simulating models with greater levels of ground contact. Regarding the model with 

the highest ground integration, during the winter day, the average result difference 

between the two software packages is 1.44ºC and during the summer day, when the 

difference was greatest, it is 9.01ºC. To identify the cause for this results 

discrepancy and sensible case study was made.  
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6.3. THIRD CASE STUDY – TAS AND E+ 

Table 6.10: Stages and analysed parameters 
Software Stage Analysed parameters 

E+ Sensible test • Effects of ground contact, insulation and shadow device 

Tas Sensible test • Effects of ground contact, insulation and shadow device 

E+ & Tas Results Comparison • Effects of ground contact, insulation and shadow device 

This third case study analyses how each program simulates ground integration 

effects through a sensible test. The study is based on testing the impact of 

parameters such as ground contact, insulation, and shadow device (Table 6.10). 

The simulation package used in this thesis is determined with the comparison 

between E+ and Tas results.  

6.3.1. Model Dimension and Simulation Inputs  

Table 6.11: Third Case  models detail 
Third Case Models (Sensible test) 

Name Configuration and Level of Ground 
Integration 

Floor North 
Wall 

East 
Wall 

West 
Wall 

South Wall Roof 

 
Sections Plans Perspectives       

 

Model 
C01   

4 Sides (N + E + W walls + Roof) 

X B X B X B X B Insulated X B 

Model 
C02   

4 Sides (N+E+W walls + Roof+shadow device) 

X B X B X B X B 
Insulated; 
shadow 
device 

X B 

Model 
C03  

5 Total ground integration - Underground 

X B X B X B X B X B X B 

X – surface with ground contact 
S – E+ Models - outside surface temperature from the Slab auxiliary program 
B – E+ Models - outside surface temperature from the Basement auxiliary program 

This case study uses the same model as Section 6.2. and it focus on two levels of 

ground integration, a four sides and a total ground integration, as shown in Table 

6.11. It uses the same weather file and winter and summer days described in 

Section 6.2. All surfaces are made of a single construction material of 20 cm 

concrete. Damp proof and insulation is not used with any models surface apart of 

the south wall of Model C01 and C02, which has an extra layer of insulation (Table 
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6.12). A shadow device is introduced in Model C02. Its size is designed to minimize 

the direct solar radiation received by the insulated south wall.  

Table 6.12: Models materials  
Material Width (cm) Conductiv. 

(W/m.°C) 
Convec. Coeff. 

(W/m2.°C) 
Density 
(Kg/m3) 

Specific 
Heat 

(J/Kg.°C) 

Thermal Resist. 
(m2.°C/W) 

Concrete 20 0.51 - 1400 1000 R=0.2/0.51=0.392 
Insulation 30 0.03 - 140 1380 R=0.3/0.03=10 

 Thermal Absorpt. Solar Absorpt. Visible Absorpt.  U value (W/m2.°C) 

Concrete 0.9 0.65 0.65  1.772 
Insulation 0.9 0.6 0.7  0.098 

6.3.2. E+ - Effects of Ground Contact, Insulation and Shadow Device 

 
Figure 6.12: Winter and summer week: Daily internal air temperature – E+ Model C01 to C03 

This section investigates the effects of ground contact, insulation, and shadow 

device. It is observed that during winter and summer the results for the totally 

underground model (C03) are constant and not influenced by the weather conditions 

of the studied period (Figure 6.12). The temperatures of Model C01 (with insulation) 

and C02 (with insulation and shadow device) are almost constant. Moreover, by 

crossing information displayed in Figure 6.12, Figure 6.14 and Figure 6.15 it is found 

that this small weather influence has a time lag of one day. This demonstrates that, 

although by a small degree, Model C01 and C02 are affected by the outside weather 

conditions, while Model C03 is only affected by the ground thermal conditions. 

Regarding the shadow device on Model C02, it is found that this feature is able to 

reduce the gap between Model C01 and C03. 
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The author therefore concluded that all elements are able to affect buildings’ thermal 

performance. However, ground contact has a higher impact on heat gains and 

losses shown by these models than the insulation and shadow device.  

6.3.3. TAS - Effects of Ground Contact, Insulation and Shadow Device 

 
Figure 6.13: Winter week: Internal air temperature – Tas Model C01 to C03 

By comparing the results from the Tas models it is found that Model C01 and C02 

values are identical (Figure 6.13). Both models register an average 0.05°C lower 

temperature during winter, when compared with Model C03, and an average 0.1°C 

higher temperature in summer. These results show that the shadow device effect on 

Model C02 is not being taken in account by the Tas simulations. 

Overall, the results indicate that ground contact is able to reduce heat gains and 

losses, and the use of insulation generates a reduction of heat gains and losses. It is 

found that insulation has a greater effect on the exposed south façade wall since the 

shadow device contribution on Model C02 results is not being considered. However 

the most surprising finding is that the daily weather conditions continue to affect all 

models results, even when Model C03 is underground. As an underground 

structure, the model’s internal air temperature for the sample periods should be 

constant.  
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6.3.4. E+ and TAS - Effects of Ground Contact, Insulation and Shadow Device 

 
Figure 6.14: Winter week: Internal air temperature - Model C01 to C03 - Tas and E+ 
comparison 

  
Figure 6.15: Summer week: Internal air temperature - Model C01 to C03 - Tas and E+ 
comparison 

 
Table 6.13: Tas and E+ average temperature difference according with Model C01 to C03 
averages results 

Ave. temp. diff. between Tas and E+ (ºC) 
19th Jan. 19th Aug. 

2.42 10.41 

The comparison of the results from Tas and E+ indicates that one of the main 

differences between the two software packages is found in the average air internal 

temperature values. Tas temperatures are 2.42°C higher in the winter and 10.41°C 

lower in the summer than E+ (Figure 6.14, 6.15 and Table 6.13). The second 

difference is that the temperature patterns are different. All Tas models’ results 

follow the daily outside temperature changes, whereas in the results obtained from 

E+, only Model C01 and C02 follow the average daily outside temperatures, instead 

of the daily ones. As for Model C03, this underground model produces consistent 

winter and summer results with E+.  

During the winter and summer days, the Tas simulation results for Model C01 and 

C02 are identical (Figure 6.16 and 6.17). The south façade insulation blocks heat 

gains or loss, which explains why Model C02’ shadow device has no effect on the 

Tas values follow the daily weather conditions 

 

 

E+ values follow seasonal weather conditions 
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results. Concerning Model C03, totally underground, it registers the warmest 

temperature in winter and the coldest in summer, which indicates that the increased 

level of ground contact produces the best results. However, for all Tas models it is 

visible that, during both winter and summer, the internal average air temperatures 

follow the daily ones without any time lag. This goes against the fact that the daily 

weather conditions should stop affecting ground temperatures below depths of 

around 20 to 30 cm (Krarti and Kreider, 1996, p. 1564). 

 

 

 

Figure 6.16: Winter day Tas and E+ Internal air 
temperature Model C01 to C03 

Contrasting with this result, E+ temperature results pattern for Model C01 and C02 

do not follow the daily temperatures. Instead, the results follow the average daily 

temperature with a time lag of one day, so their changes are more gradual as if 

following a ‘seasonal’ pattern. In the case of Model C03, the temperature results are 

constant for the sample periods, as expected for an underground model.  

In winter, the difference of results registered by E+ temperature in all models is 

reduced (Figure 6.16). However, the temperature values for Models 01 and 03 are 

almost identical, and Model 02 has the lowest temperatures. This shows that the 

solar gains received by the insulated South façade allows Model 01 to have similar 

results as Model 03. Therefore, the lack of solar gains experienced by Model 02 

produces the lowest internal temperature. Although the input insulation is equal for 

both software packages, the result outcome is different.  
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During summer, the E+ temperature results difference between all models is once 

again small and increases throughout the day (Figure 6.17). Model C03 has the 

lowest temperature values, while Model C01 has the highest ones. Temperature 

results for Model C02 are lower than Model C01 because the shadow device is 

reducing the solar gains. 

 

 

 

 
Figure 6.17: Summer day Tas and E+ Internal air 
temperature Model C01 to C03 
 

In this comparison, it is clear that Tas and E+ present different behaviours. Tas 

results have a daily pattern that follows the outside temperature, as expected from a 

steady-state calculation. Results from E+ have a seasonal pattern, which shows that 

E+ simulations take weather data into consideration in a cumulative way.  

Regarding the temperature difference, in summer the results show a large gap 

between the two software packages. During this period Tas’ internal temperatures 

are approximately 10°C lower than E+. Concerning the insulation, the author found 

that it has a greater effect on Tas results than on E+ results. For this reason the 

shadow device effect on Model C02 is not been considered on Tas results, but is 

visible on E+ results.  

6.3.5. Findings and Conclusions 

This study shows that although Tas results are better than E+, the results are 

proved to be misleading, as they just follow the weather conditions as a steady-state 

Tas values peak at the same time as the outside temperature 
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calculation. Regarding ground contact effect, the results for the underground model 

put through Tas are not able to produce a constant temperature. This proves that its 

ground heat transfer calculations have limitations. Furthermore, the ground 

temperatures found around a ground-integrated structure are affected by the same 

structure. Tas simulation results appear to not take this into account, and therefore 

its good results might be caused by the use of undisturbed ground temperature.  

Taking the results presented above into consideration, the author decided that E+ 

was the most reliable software to use on the research. Although more complex and 

time consuming to use, its simulation results have proved to be more consistent, 

particularly when compared with the results obtained by Tas. 
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6.4. SLOPE SIMULATION WITH ENERGYPLUS 

The last part of this chapter presents a study which has two purposes. Firstly, to 

verify what difference, if any, would be found by comparing flat and slope ground 

integration models with equal ground contact and the same outside surface 

temperatures. The assumption is that, in these circumstances, the final results 

should be identical. Secondly, this study aims to define the procedure which should 

be adopted when simulating slope ground integrations, by identifying what outside 

surface temperature should be used on walls with slope integration. 

 
Figure 6.18: Flat ground integration model 

 
Figure 6.19: Slope ground integration model 

As previously discussed in Chapter 5 (Section 5.3), slopes affect the solar radiation 

values received by a surface, and as a consequence the ground surface 

temperature differs according with the ground surface gradient as verified in Section 

5.4. This means that the ground temperatures at a specific depth are different for flat 

and sloped surface areas. However, when basement outside surface temperatures 

are simulated, the depth of the wall bellow the ground is considered, but it is 

assumed that these values are constant. This means that these simulations assume 

that the ground integration of their models occurs on a flat surface. Consequently, 

the ground temperatures are calculated by applying the solar radiation amounts 

received by a flat surface.  

6.4.1. Model Dimension and Simulation Inputs  

All models have the same dimensions and use the same construction material. As 

shown in Figure 6.18 and 6.19, the models share the same amount of direct ground 
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contact. Both models’ north walls have full ground integration, while half of the east 

and west walls are in direct contact with the ground. 

Table 6.14: Models inputs – surfaces with ground contact 

Name 

Surface with Ground Contact 
 Floor 

 

North Wall 
 

East Wall 

 

West Wall 

 

01_Flat 

     

02_Slope 

     

03_Slope1 

     

04_Slope2 

     

05_Slope3 

     

Floor 
SlabAvgFloor - Outside surface temperature: SlabAverage 
BasAvgFloor - Outside surface temperature: BasementAvgFloor; Depth=3m 
BasAvgFloor1.5 - Outside surface temperature: BasementAvgFloor; Depth=1.5m 

Wall 
 

BasAvgWall - Outside surface temperature: BasementAvgWall; Depth=3m 
BasUppWall - Outside surface temperature: BasementUpperWall; Depth=3m 
BasAvgWall1.5 - Outside surface temperature: BasementAvgWall; Depth=1.5m 

The outside surface temperatures generated by the Basement auxiliary program 

provides three different wall surface values named as BasementAverageWall, 

BasementUpperWall and a BasementLowerWall. The BasementAverageWall gives 

the mean outside surface temperature of the wall, the BasementUpperWall provides 

the values for depths closer to the ground surface and the BasementLowerWall 

gives the surface outside temperatures on the deepest area of the wall. The ground 

integration of 01_Flat’s east and west walls are delimited by a vertical axis at the 

walls centre. As for the slope models, the ground integration is limited by a diagonal 

axis. This raises the question of what outside surface temperatures should be used. 

Consequently Models 02_Slope to 05_Slope in Table 6.14 explore a mix of different 

approaches to identify the most appropriate one to be used across this thesis. 
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6.4.2. Results and Discusssion 

The initial assumption that the final results would be identical is not confirmed by 

analysis of the results of this test. The 01_Flat and 02_Slope models with equal 

amount of ground-integrated area and outside surface temperature fail to produce 

identical results. In fact, the models’ total annual loads results, presented in Figure 

6.20, show that all slope models produce better outcomes than the flat model. 

 
Figure 6.20: Total annua loads values for flat and slope ground integrations models 

Floor inputs affect the results’ gap between 01_Flat and 02_Slope models. The 

slope model floor has the advantage of having a large area with the basement 

average floor temperatures. In the case of the flat model, the floor is divided in two 

areas, a north side floor area that uses the basement outside surface temperatures, 

and a south floor area that uses the slab outside surface temperatures. The flat and 

slope results only come close in 05_Slope when the floor, east and west walls use a 

mix input of basement average temperatures for 3 and 1.5 m depth.  

Through this study the author argue that a comparison between models with flat and 

slope integration using the same outside surface temperatures is not an accurate 

procedure. Therefore the author established that for future ground integration 

studies, flat and slope integrations should not coexist. For slope models it is adopted 

the outside temperatures input scheme presented in 04_Slope, as it presents a 

balance between all slope input configurations.  
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6.5. CONCLUSIONS  

As a result of the comparative tests explained above, the author concluded that E+ 

presents the most adequate performance to be used on this research. The 

simulation outcomes of this program proved to be more consistent than results 

obtained when using Tas. The reason why Tas internal temperatures are so 

different from E+ can be explained by the calculations presented by Tas, which use 

undisturbed ground temperatures. On the other hand, E+ uses disturbed ground 

temperature, through the use of the outside surface temperatures generated during 

the simulation process. 

Regarding the simulation methodology, the ground heat transfer method to be used 

with E+ is identified and the running period is defined. The author determined the 

use of Slab and Basement auxiliary programs, in order to find the outside 

temperature of surfaces with directed ground contact. It was also established that 

the ‘first run’ simulation is made by setting the initial building monthly surface 

temperature as 18°C. For the final simulations, it is recommend the use of larger 

simulation periods such as one full year.  

The objective of the slope simulation study is to identify the simulation procedures 

that should be used in applying outside surface temperatures to structures with 

slope-integration. Although E+ is not able to use ground inclination as a ground 

temperature parameter, this does not detract from its greater potential for modelling 

the thermal performance of buildings with direct ground contact. The results 

involving slope integration can be used to identify thermal patterns. However, the 

thermal performance comparisons between flat and slope integrations are not 

recommended, since the Basement auxiliary program does not have inputs for slope 

terrains. Therefore the process to calculate the exterior temperature of the structure 

elements with direct ground contact is limited to horizontal surfaces. Consequently, 
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the following chapters present cases studies divided in ground and slope integration. 

In Chapter 7 the author analyse the effect of direct ground contact is by assuming 

that the terrain is horizontal and Chapter 8 examines ground effect generated with 

slope gradients.  
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CHAPTER 7. CASE STUDIES: GROUND INTEGRATION
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7. CASE STUDIES: GROUND INTEGRATION  

 
Table 7.1: Chapter studies - Forms, Floors and Basement and Courtyard 

Forms Floors Basement and Courtyards 

Plan Perspective Section Perspective Plan Perspective 

   

 

 

 
 

In this chapter the author discuss the effect of direct ground contact on the thermal 

performance of buildings by analysing the annual and seasonal thermal patterns 

provided by changing levels of ground integration. This study is divided into three 

sections, based on three design features: building form, number of floors, and the 

use of basement and courtyards. As illustrated in Table 7.1, the Forms section looks 

into the thermal performance of five models based on four shapes as long, compact, 

semi-courtyard and courtyard. The results of this initial section are used to develop 
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the models and ground integrations which are applied in subsequent sections. The 

Floors section compares how the number of floors can affect buildings thermal 

performance. The last section looks at how the thermal performance of buildings 

can benefit from elements such as basements and courtyards. 

Simulation settings and inputs data: 

1. Software Version: EnergyPlus 8.1. 

2. Simulation Method: follows the proposed EnergyPlus simulation method for 

ground-integrated buildings described in Chapter 6.2. 

3. Location: Lisbon. 

4. Weather File: the weather data described in Chapter 5 Section 5.2.2. uses 

the Climate Design Data 2009 ASHRAE Handbook design conditions. 

5. Internal Gains: no internal gains were used. 

6. Ventilation: no ventilation was used. 

7. Infiltration: no infiltration was used. 

8. Comfort Zone: the annual comfort range at this location it is assumed to be 

between 20°C to 26°C. 

9. HVAC: the heating SetPoint is 20°C and cooling SetPoint is 26°C. 

10. Openings: no openings were used. 

11. Materials: all surfaces are assumed to be 20 cm concrete, see Table 6.4 in 

Chapter 6. 

12. Seasonal data: it is assumed that winter period correspond to January, 

February and March; the spring period combines April, May and June; the 

summer season is formed by July, August and September; the autumn 

period is formed by October, November and December. 
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7.1. FORMS STUDY 

From early sketch conceptualisation to construction, a buildings’ design develops 

around a form. For different locations and climates, building shape and volume are 

elements that can affect building’s thermal performance in different ways. This case 

study aims to identify the most appropriate building form for the 38-degree-latitude 

location of Lisbon. It also aims to understand how the thermal performance of 

buildings is affected by direct ground contact. The five main models used in this 

study are a long form with an East-West axis, a long form with North-South axis, a 

compact form, a U shaped model with a south facing open atrium or semi-courtyard, 

and an square shape model with a central courtyard. This section’s results identify 

the base models for the following simulation studies by identifying the best model 

and the most relevant levels of ground integration. 

7.1.1. Models Description and Levels of Ground Integration 

Table 7.2: Models characteristics - Forms study with ground integration 
 

The five models illustrated in Table 7.2, share the same height, floor area and 

volume, and are based on a single floor unit. Model F01 and F02 differ on their 

orientation, while F01 is oriented around an East-West axis, so the walls with larger 

surface areas are facing north and south. F02, meanwhile, has a North-South axis 

so the walls with the smaller surface area are facing north and south. The most 

compact shape is F03, has the smallest perimeter. The models F04 and F05 have a 

larger number of walls and, therefore, the largest perimeter and lowest ratio of area 

to perimeter.  

Model Name Model F01 Model F02 Model F03 Model F04 Model F05 

Models 
     

Area (m2) 168 168 168 168 168 

Perimeter (m) 62 62 52 70.8 73.6 

Ratio A/P 2.7 2.7 3.23 2.41 2.28 
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The following table provides further details of these five modules, identifying the 

models’ names, dimensions, type of ground integration and the reference name 

used to refer to each model during the simulations. 

Table 7.3: Models details - Forms study with ground integration 

 

 Models Dimensions Ground Integration Ref. Name 

M
od

el
 F

01
 

 

01 – No Ground Integration F01_01 

02 - North Wall F01_02 

03 - North & West Wall F01_03 

04 - North & East Wall F01_04 

05 - North, West & East Wall F01_05 

06 - Roof, North, West & East Wall F01_06 

07 - Total Underground F01_07 

M
od

el
 F

02
 

 

01 – No Ground Integration F02_01 

02 - North Wall F02_02 

03 - North & West Wall F02_03 

04 - North & East Wall F02_04 

05 - North, West & East Wall F02_05 

06 - Roof, North, West & East Wall F02_06 

07 - Total Underground F02_07 

M
od

el
 F

03
 

 

01 – No Ground Integration F03_01 

02 - North Wall F03_02 

03 - North & West Wall F03_03 

04 - North & East Wall F03_04 

05 - North, West & East Wall F03_05 

06 - Roof, North, West & East Wall F03_06 

07 - Total Underground F03_07 

M
od

el
 F

04
 

 

01 – No Ground Integration F04_01 

02 - North Wall F04_02 

03 - North & West Wall F04_03 

04 - North & East Wall F04_04 

05 - North, West & East Wall F04_05 

06 - Roof, North, West & East Wall F04_06 

07 - Total Underground F04_07 

M
od

el
 F

05
 

 

01 – No Ground Integration F05_01 

02 - North Wall F05_02 

03 - North & West Wall F05_03 

04 - North & East Wall F05_04 

05 - North, West & East Wall F05_05 

06 - Roof, North, West & East Wall F05_06 

07 - Total Underground F05_07 
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Table 7.4: Level of ground integration - Forms study with ground integration 

This case study uses seven levels of ground integration, as illustrated in Table 7.4. It 

starts from null ground integration, when the building is above ground (01) and only 

the floor is with direct contact with the ground, to total ground integration (07), when 

the whole exterior is in direct contact with the ground. For integration 02, 03, 04 and 

05 the walls in contact with the ground assumes a wall height of 3 m. For integration 

06 and 07 the walls with ground contact are 3.5 m below ground and there is a roof 

ground coverage of 0.5 m (see Chapter 3 Section 3.4.3). 

7.1.2. Results Analysis 

7.1.2.1. Annual Results 

 
Figure 7.1: Ground contact effect on Form models’ total annual load 

Levels of Ground Integration 
 

Walls Depth 

01 – No Ground Integration 
 

0 m 

02 – North Wall (1 Side) 
 

3 m 

03 – North & West Walls (2 Sides) 
 

04 – North & East Walls (2 Sides) 
 

05 – North, West & East Walls (3 Sides) 
 

06 – Roof, North, West & East Walls (4 Sides) 
 3.5 m 

07 - Total Underground 
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The annual results for all models show a similar pattern, as shown in Figure 7.1. The 

total annual energy demand for each building can be reduced through ground-

integration. By increasing the level of ground contact the energy needs of each 

building decrease. The exception in all models is the total underground integration, 

which achieved only the second best results. These results show that total 

underground integration is not the best approach for this climate.  

Table 7.5: Form models’ annual thermal performance according with ground integration 

The results for each model are summarised in Table 7.5 according with their thermal 

performance, ordered from best (1) to worst (7). The best annual results are found in 

ground integration 06, in which only the south facing wall is not in contact with the 

ground. The second best result was achieved by the total underground integration 

(07). The use of ground integration 05 produces the third best solution, 

demonstrating that this integration is a good compromise if there is no desire to 

cover the roof of the building, due to design restrictions or construction costs. 

Ground integrations 03 and 04 share similar annual results. Looking at the annual 

savings produced by the ground coupling displayed in Table 7.6, it is clear that 

these values of ground integration 03 and 04 are almost identical in all the models. 

As displayed in Table 7.6, it is also clear that the average annual energy savings 

difference between two walls (03 and 04) and three walls (05) ground integrations is 

4%, which is a small performance gap. Greater savings of 37.87% can be achieved 

with ground integration 06, an almost 20% average annual savings, which are much 

higher than ground integration 05. 

Effect of Ground Integration on Models Annual Thermal Performance 

01 02 03 04 05 06 07 

 
Above Ground 

 
1 Wall (3m) 

 
2 Walls N&W 

(3m) 

 
2 Walls N&E 

(3m) 

 
3 Walls (3m) 

 
Roof & 3 Walls 

(3.5m) 

 
Total Und. 

(3.5m) 

7 6 5** 4** 3 1 2 

ß   Scale 1 to 7   à 

* Performance Scale 1 to 7 (1= Best performance & 7= Worst performance); ** For Form 01 and 04 the order is 
reverse, and for all forms: Ground Integration 03 and 04 have similar results. 
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Table 7.6: Form models’ annual savings percentage according with ground integration 
Ground Effect - Annual Savings (%) per Model 

Models 
Levels of Ground Integration 

01 

 

02 

 

03 

 

04 

 

05 

 

06 

 

07 

 

F01 
 

0.00 12.38 18.33 18.31 21.26 44.89 34.86 

F02 
 

0.00 3.28 13.74 13.88 21.03 35.48 33.56 

F03 
 

0.00 5.56 13.42 13.51 18.58 36.83 32.39 

F04 
 

0.00 6.85 13.02 13.01 16.52 35.40 32.36 

F05 
 

0.00 4.91 12.33 12.43 16.98 36.73 33.13 

Average Savings % per Ground 
Integration 0.00 6.59 14.17 14.23 18.87 37.87 33.26 

In order to identify how the thermal performance of each model is affected by its 

design, the annual savings per ground integration for each model are compiled in 

Table 7.7. Also, each models’ overall results are based on average energy saving 

and thermal performance, using a scale from one to five, where one corresponds to 

the best result and five to the worst.  

Table 7.7: Annual thermal performance comparison between all Forms models’ design – for 
all ground integrations 

Design Effect - Models' Annual Savings (%) per Ground Integration and Models Overall Performance 

Models 
Levels of Ground Integration Overall Results 

S
ca

le
* 

01 

 

02 

 

03 

 

04 

 

05 

 

06 

 

07 

 

Average 
Savings* Perfor.** 

F01 
 

11.49 16.87 15.02 14.91 12.96 14.37 7.49 13.30 = 2 
ß

  1
 to

 5
   
à

 F02 
 

4.26 2.62 5.80 5.85 8.93 2.40 4.87 4.96 = 3 

F03 
 

13.62 14.21 14.70 14.69 15.28 13.78 12.66 14.14 = 1 

F04 
 

2.02 4.03 2.79 2.68 1.48 0.00 0.89 1.98 = 4 

F05 
 

0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.01 = 5 

*Average annual savings % per model; ** Performance Scale 1 to 5 (1= Best performace & 5= Worst performance). 

Two main findings emerge from these results. Firstly, there are two models that 

produce good results at this location: Models F01 and F03 share the highest number 

of best results. The long shape model achieves its best performance with ground 

integrations 02, 03, 04 and 06, while the compact model results show that this 
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shape is better with the remaining ground integrations 01, 05 and 07. Both models 

share similar results with integrations 03, 04 and 06. Model F01 has the second best 

annual average savings with 13.30%. As for Model F03, it has the best values, 

achieving savings of 14.14%. These two structures’ performances are followed by 

those of Models F02 and F04, while lastly, the courtyard shape Model F05 produced 

the worst results. 

7.1.2.2. Seasonal Results 

The monthly average loads per season were calculated in order to identify the main 

energy consumption patterns generated by the different ground integrations. In 

Figure 7.2 it is evident that the heating demand is the largest source of energy 

consumption. The highest energy need is found in winter, followed by the autumn 

values. Conversely, spring is the season with the lowest energy needs. 

It can also be observed that during winter, spring, and autumn increasing ground 

integration improves the thermal performance of all models. However, during these 

seasons a total underground integration only produces the second best results. The 

overall pattern of results in the summer showed that the higher the ground contact 

the lower is the energy needs of a model. For the two highest ground integrations 

the energy consumption in summer is null or almost null.  

 
Figure 7.2: Ground integration effect on model’ monthly average loads per season – Form 01 

Levels	
  of	
  
Ground	
  

Integration	
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The monthly average results per season for each model are compiled in Table 7.8. 

All models’ results show a similar pattern for each season except Model F01, a 

model that shows particular results during the winter season.  

Table 7.8: Forms models’ season thermal performance according with ground integration 
Ground Effect – Models Season Thermal Performance 

 Levels of Ground Integration 

Season 
01 02 03 04 05 06 07 

       

W
in

te
r F01 7 6 2** 4** 2** 1 5 

F02 to 
F05 7 6 3 5 4 1 2 

Spring 7 6 4** 4** 3 1 2 

Summer 7 6 5 4 3 1 (Null or 
almost null)  1 (Null) 

Autumn 7 6 4 5 3 1 2 

Scale* ß  1 to 7   à 

* Performance Scale 1 to 7 (1= Best performance & 7= Worst performance); **Equal or very similar results. 

Generally, for all seasons, the highest energy demand is found in models with 

reduced ground integration such as 01 and 02. The best ground integration is 06, 

which achieve the lowest energy consumption with all models. The second best 

ground integration is the totally underground integration (07). This level of 

integration works well in summer, with no cooling needs. However, during winter, in 

the case of Model F01, the total underground integration (07) achieved the worst 

results when compared with minor ground integrations such as 03, 04 and 05. 

Although the performance of the totally underground (07) integration is good at 

spring and autumn, the values are not far behind models with lower levels of ground 

integration. This leads to the conclusion that if construction costs are a concern, 

ground integration 05 can be a good choice in terms of energy efficiency, as it 

produces a stable performance during all seasons. 

The difference between the performances of ground integrations 03 and 04 is linked 

with the seasons. Using a seasonal energy loads analysis it was found that ground 

integration 03 (with north and west ground-integrated walls) gave a better 
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performance in winter and autumn. Whereas ground integration 04 (with north and 

east ground-integrated walls), has a better performance than 03, particularly during 

spring and summer. Therefore, the author concluded that ground integration 03 

works better as a heating strategy and ground integration 04 is a good option when 

applied as part of a cooling strategy.  

 
Figure 7.3: Seasonal loads comparison between all Forms models’ design – Above Ground 

A comparison between the seasonal results of all forms was made according with 

the levels of ground integration. Looking at the example of the results of ground 

integration 01 (Figure 7.3), it is clear that the seasonal loads are lower during spring, 

increases in summer and autumn, and produces the highest energy demand during 

winter. These patterns are found with all ground integrations. It is also clear that the 

differences between the results of different models are minor, and in some cases 

the outcomes are almost identical.  

The average monthly loads per season of each model and for all ground integrations 

are compiled in Table 7.9. These results show that in winter, when the forms have 

the highest energy demands, the best model is F03 followed by F02. Therefore, it is 

clear that the larger the perimeter of the model the worse the model’s results. 

However in spring, summer and autumn the results are diverse.  

During spring the models’ performances change according with shape and levels of 

ground integration. The performance of model F01 is the best, especially with small 
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ground integrations such as 02, 03 and 04. However as the ground integration 

increases the performance of the model declines. Model F02 is the best shape when 

using medium ground integrations such as 05. The Model F03 achieves the most 

stable results. This is the best shape to use when there is no ground integration, as 

in 01 and with a ground integration 04. With all other ground integrations Model F03 

achieves the second best results. On the other hand, Model F05 achieved the best 

spring results with the highest ground integrations, 06 and 07. 

Table 7.9: Comparison between all Form models’ design – Seasonal loads 
Design Effect - Models’ Seasonal Thermal Performance per Ground Integration 

Seasons and 
Levels of Ground 

Integration 

Model F01 Model F02 Model F03 Model F04 Model F05 

     
Winter – all levels 2 3 1 4** 5** 

Sp
rin

g 

01 
 

2 4 1 3 5 

02 
 

1 4 2 3 5 

03 
 

1 3 2 4 5 

04 
 

1 3 1 4 5 

05 
 

3 1 2 5 4 

06 
 

3 4 2 5 1 

07 
 

5 3 2 4 1 

Su
m

m
er

 

01 
 

1 5 2 3 4 

02 
 

1 4 2 3 5 

03 
 

1 4 2 3 5 

04 
 

3 1 2 4 5 

05 
 

3 1 2 4 5 

06 
 

3 Almost null 1 (Null) 1 (Null) 4 Almost null 5  Almost null 

07 
 

1 (Null) 1 (Null) 1 (Null) 5  Almost null 1 (Null) 

A
ut

um
n 

01 
& 
07 

 

 

2 3 1 4 5 

02 
& 
04 

 

 

1 4 2 3 5 

03, 
05 
& 
06 

 

 

 

1 3 2 5 5 

Scale* 01 

*Performance Scale 1 to 5 (1= Best performance; 5= Worst performance); **Reverse order for Ground Integration 06. 
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During summer, Model F01 produces the best results with lower ground integrations 

such as 01 to 03, while Model F02 has the best results when used with higher 

ground integrations such as 04 and 05. For all models, the cooling loads with the 

greatest integration (such as 06 and 07) are null or almost non-existent. In autumn, 

Model F03 produces the best performances for the lowest as well as the highest 

ground integrations, 01 and 07 respectively. Model F01 generates the best 

performance with the remaining ground integrations, 02, 03, 04, 05, and 06. Model 

F05, with its courtyard shape, achieves the worst results for all ground integrations. 

In summary, Models F01 and F03 achieve the best seasonal results with almost all 

ground integrations. Nevertheless, the results for the compact model are more 

consistent whereas the performance of Model F01 is more irregular. Whenever 

Model F03 is not the best option, it is always the second best.  

7.1.3. Findings and Conclusions 

The study above shows that, for this particular climate, direct ground contact effects 

have a greater impact on the thermal performance of buildings than building design 

effect, since ground integration can produce up to 2.6 times higher average annual 

savings than design effects. A building shape can, by itself, contribute to improving 

the thermal performance of a building, producing average annual energy savings of 

up to 14.14%. However, it was found that the ground effect can produce average 

annual energy savings of up to 37.87%.  

The total annual energy demand of each model was compared, firstly, to understand 

how building shapes respond to different levels of ground integration and, secondly, 

to identify the best shape for a temperate climate such as Lisbon. The study 

analysis presented above shows that different levels of ground integration produce 

different thermal performances, and therefore the higher the ground integration the 

better the annual thermal performance of each model. However, the total 
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underground integration (07) proves to be the exception to this trend, since it only 

achieves the second best performance. The reason why ground integration 06 

performs better than a total underground model is because of the heating load 

period. During the coldest season this integration is able to receive extra heating 

gains through the south-facing wall through solar exposure. Therefore, the author 

concluded that for this climate, better annual results can be achieved through 

greater levels of direct ground contact, but also that a totally underground building is 

not the best solution. Concerning the medium ground integrations such as 03 and 

04, and although both integrations produced equal annual results, the seasonal 

loads analysis revealed a different behaviour. It was found that as a heating strategy 

ground integration 03 is more efficient than 04 and that, as a cooling strategy, 

ground integration 04 is better than 03. 

Regarding the models behaviour it was found that for this location Model F01 and 

F03 are the two best shapes producing average annual savings of 13.30% and 

14.14% respectively. Although the results for the compact form (Model F03) are 

more consistent, both long and compact forms (Model F01 and F03) are revealed to 

be equally efficient for the study climate and location. Therefore, these two shapes 

are used as the base models on the following studies. Additionally, in most cases 

the two walls (03 and 04) and three walls (05) ground integration revealed very 

similar results with average saving differences of around only 4%. For this reason 

the following case studies use a reduced number of ground integrations, by 

excluding both two walls ground integrations. 
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7.2. FLOORS STUDY 

The distribution of floor area per number of stories produces different layouts and 

therefore different exterior surface areas. This section of the chapter looks at how 

the number of floors can affect the thermal performance of ground-integrated 

buildings.  

The long and compact Models F01 and F03, identified above as the most efficient 

shapes, are used as the base models for the Floors study. In this section all models 

share equal total area and volume. As previously discussed in Chapter 5, the single-

family residence is the most common type of dwelling in Portugal, a dwelling that 

has a slightly higher incidence value in Portugal than the European average. Also, 

the average number of floor per dwelling on the Portuguese mainland is 2.1, with the 

lowest value of 1.6 in the southern areas of Alentejo, and the highest average of 2.6 

around Lisbon. Therefore, this study focuses on three building floor types: a single 

floor, similar to the base models, a model with two floors, and another with three 

floors, which is the tallest model. 

Both base models (CompF_1F and LongF_1F) were reshaped based on two 

factors, depth (A) and proportion (B). The variations based on models depth keep 

the depth value of the base models constant while changing the length and number 

of floors. The variations based on the models proportion keep the base models ratio 

while changing the number of floors. 

7.2.1. Models Description and Levels of Ground Integration 

For the Compact Form, the models variations that keep the base models proportions 

(CompF_2FA and CompF_3FA) have a lower perimeter than the ones based on the 

models’ depth (CompF_2FB and CompF_3FB), as show on Table 7.10. Table 7.11 

shows the models’ details such as name, dimensions and type of ground integration, 



Chapter 7 - Case Studies: Ground Integration  

 
-179- 

as well as reference number for each model simulation. 

Table 7.10: Models characteristics – Floors study 

 
Table 7.11: Models details – Floors study 

   Models Dimensions Ground Integration Ref. Name 

C
om

pa
ct

 M
od

el
 D

ep
th

 a
nd

 P
ro

po
rt

io
n 

va
ria

tio
ns

 A
 –

 E
qu

al
 D

ep
th

 

C
om

pF
_3

FA
 

 

01- Above Ground CompF_3FA_01 

02 - North Wall CompF_3FA_02 

03 - North, West & East Wall  CompF_3FA_03 

04 - North, West & East Wall  CompF_3FA_04 

05 - ‘Total Underground’  CompF_3FA_05 

C
om

pF
 _

2F
A

 

 

01- Above Ground CompF_2FA_01 

02 - North Wall CompF_2FA_02 

03 - North, West & East Wall  CompF_2FA_03 

04 - North, West & East Wall  CompF_2FA_04 

05 - ‘Total Underground’  CompF_2FA_05 

B
as

e 
M

od
el

 

C
om

pF
 _

1F
 

 

01- Above Ground CompF_1F_01 

02 - North Wall CompF_1F_02 

03 - North, West & East Wall  CompF_1F_03 

04 - North, West & East Wall  CompF_1F_04 

05 - ‘Total Underground’  CompF_1F_05 

B
 –

 E
qu

al
 P

ro
po

rt
io

n 

C
om

pF
 _

2F
B

 

 

01- Above Ground CompF_2FB_01 

02 - North Wall CompF_2FB_02 

03 - North, West & East Wall  CompF_2FB_03 

04 - North, West & East Wall  CompF_2FB_04 

05 - ‘Total Underground’  CompF_2FB_05 

C
om

pF
 _

3F
B

 

 

01- Above Ground CompF_3FB_01 

02 - North Wall CompF_3FB_02 

03 - North, West & East Wall  CompF_3FB_03 

04 - North, West & East Wall  CompF_3FB_04 

05 - ‘Total Underground’  CompF_3FB_05 

In the case of the Long Form model, the variations that keep the same proportions 

as the base model, such as LongF_2FB and LongF_3FB, have higher perimeters 

 A - Equal Depth Base Model B - Equal Proportion 

Number of Floors 3 Floors 2 Floors 1 Floor 2 Floors 3 Floors 

Model Name CompF_3FA CompF_2FA CompF_1F CompF_2FB CompF_3FB 

Models 

     
Total Area (m2) 168 168 168 168 168 

Area per Floor (m2) 56 84 168 84 56 

Floor Perimeter (m) 36 40 52 36.8 30 

Floor Ratio A/P 1.55 2.1 3.23 2.28 1.87 
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than those based on the models’ depth, which is the case of LongF_2FA and 

LongF_3FA (Table 7.12). 

Table 7.12: Models characteristics – Comparison 
 A - Equal Depth Base Model B - Equal Proportion 

Number of Floors 3 Floors 2 Floors 1 Floor 2 Floors 3 Floors 

Model Name LongF_3FA LongF_2FA LongF_1F LongF_2FB LongF_3FB 

Models 

     
Total Area (m2) 168 168 168 168 168 

Area per Floor (m2) 56 84 168 84 56 

Floor Perimeter (m) 30 38 62 43.6 36 

Floor Ratio A/P 1.87 2.21 2.7 1.93 1.55 

 
Table 7.13: Models details – Comparison 

 
 

 Models Dimensions Ground Integration Ref. Name 
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01- Above Ground LongF_3FA_01 

02 - North Wall LongF _3FA_02 

03 - North, West & East Wall  LongF _3FA_03 

04 - North, West & East Wall  LongF _3FA_04 

05 - ‘Total Underground’  LongF _3FA_05 

Lo
ng

F_
2F

A
 

 

01- Above Ground LongF _2FA_01 

02 - North Wall LongF _2FA_02 

03 - North, West & East Wall  LongF _2FA_03 

04 - North, West & East Wall  LongF _2FA_04 

05 - ‘Total Underground’  LongF _2FA_05 

B
as

e 
M
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Lo
ng

F_
1F

 

 

01- Above Ground LongF _1F_01 

02 - North Wall LongF _1F_02 

03 - North, West & East Wall  LongF _1F_03 

04 - North, West & East Wall  LongF _1F_04 

05 - ‘Total Underground’  LongF _1F_05 

B
 –

 E
qu

al
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ro
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rt
io
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Lo
ng

F_
2F

B
 

 

01- Above Ground LongF _2FB_01 

02 - North Wall LongF _2FB_02 

03 - North, West & East Wall  LongF _2FB_03 

04 - North, West & East Wall  LongF _2FB_04 

05 - ‘Total Underground’  LongF _2FB_05 

Lo
ng

F_
3F

B
 

 

01- Above Ground LongF _3FB_01 

02 - North Wall LongF _3FB_02 

03 - North, West & East Wall  LongF _3FB_03 

04 - North, West & East Wall  LongF _3FB_04 

05 - ‘Total Underground’  LongF _3FB_05 

The Long Form models’ details such as name, dimensions, type of ground 
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integration and reference number are show in Table 7.13. 

Table 7.14: Level of ground integration – Floors study with ground integration 

As illustrated by Table 7.14, there are five levels of ground integration. The initial 

level is ground integration 01, when the all walls are above the ground. This 

integration is followed by a single wall with ground integration (02). With ground 

integration 03 and 04 three walls have direct ground contact but the walls depth 

differ, for ground integration 03 the depth is 3 m and for ground integration 04 the 

depth is 3.5 m. Lastly, with ground integration 05 the whole models are placed 3.5 m 

below ground. 

7.2.2. Results Analysis 

7.2.2.1. Annual Results – Compact Form 

 
Figure 7.4: Ground effect on Compact Form models’ total annual load 

Levels of Ground Integration 
   

Walls 
Depth 

01 – No Ground Integration 

 

0 m 

02 – North Wall (1 Side) 

 3 m 

03 – North, West & East Walls (3 Sides) 
 

04 – North, West & East Walls (3 Sides) 
 3.5 m 

05 – North, West, East & South Walls  
(4 Sides – ‘total underground’) 

 



Chapter 7 - Case Studies: Ground Integration  

 
-182- 

A clear pattern is found in this analysis of the total annual loads results (Figure 7.4). 

The annual thermal performance of the compact models improves in accordance 

with the ground integration level. However, with ‘total underground’ integration (05) 

this tendency is broken and the thermal performance worsens. This pattern reoccurs 

for all compact form results and is summarised in Table 7.15.  

Table 7.15: Compact Form models’ annual thermal performance according with ground 
integration 

Through this analysis, it was revealed that all models’ best results were achieved 

with ground integration 04. The second best results are divided between integration 

03 and 05. With CompF_1F and CompF_2FB, the results for total ground integration 

(05) is the second best and for the other models it proved to be the third best. With 

the exception of model CompF_1F, in all cases ground integration 03 and 05 results 

are very similar, showing very small energy saving differences between the two 

integrations (Table 7.16). That results leads the author to claim that the greater 

ground integration might not be cost effective when compared with a reduced 

ground integration option such as 03.  

The ground effect on the energy saving potential of the models is higher with the 

single floor model, which achieves the highest value of 36.76% with ground 

integration 04. The same ground integration can provide energy savings of up to 

17.44% for models with two floors, and up to 13.40% for models with three floors. 

The main reason why the ground impact decreases as the number of floors 

Effect of Ground Integration on Models Annual Thermal Performance 

01 02 03 04 05 

 
No Integration 

 
1 Wall (3m) 

 
3 Walls (3m) 

 
Roof + 3 Walls (3.5m) 

 
‘Total Und.’ (3.5m) 

5 4 2** 1 3** 

ß   Scale 1 to 5   à 

* Performance Scale 1 to 5 (1= Best performance & 5= Worst performance); ** For CompF_1F & CompF_2FB the 
order is reverse. 
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increases is because the surface area of the model with ground contact also 

decreases. 

Table 7.16: Compact Form models’ annual savings percentage according with ground 
integration 

Ground Effect - Annual Savings (%) per Model 

 A - Equal Depth Base Model B - Equal Proportion 
Overall Results 

Model Name CompF_3FA CompF_2FA CompF_1F CompF_2FB CompF_3FB 

Models 

     A
ve

ra
ge

 
S
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P
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fo
r.*

* 

S
ca
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Le
ve
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 o

f G
ro

un
d 

In
te

gr
at

io
n 01 

 
0.00 0.00 0.00 0.00 0.00 0.00 = 5 

ß
   

1 
to

 5
   
à

 02 
 

1.79 3.09 5.53 4.80 3.97 3.84 = 4 

03 
 

11.19 14.38 18.48 14.14 11.04 13.85 = 3 

04 
 

12.03 15.70 36.76 17.44 13.40 19.07 = 1 

05 
 

10.69 13.56 32.31 14.78 10.89 16.45 = 2 

* Average savings % per ground integ.; **Performance Scale 1 to 5 (1= Best performance & 5= Worst performance). 

Looking into the effect of the models’ design through the annual savings percentage 

(Table 7.17) it becomes clear that the shape of the model and its number of floors 

can produce result gaps of up to 18.36%. Furthermore, two main patterns can be 

observed. Firstly, the models based on equal proportions that keep a more compact 

form achieve better results than the ones based on an equal depth with a less 

compact form. Secondly, for both variations, namely equal depth and equal 

proportion, the models with two floors achieved better performance than the 

corresponding model with three floors. It is also visible that the single floor model is 

greatly affected by ground integration. Its performance improves when the level 

ground integration increases, as it is the model with the largest surface area with 

direct ground contact with integrations 04 and 05. The best average savings are 

shared between CompF_1F and CompF_2FB both of which generate results of 

around 21%. Overall, however, the savings produced by models CompF_2FB and 

CompF_3FB are better for lower ground integrations. 
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Table 7.17: Annual thermal performance comparison between all Compact Form models’ 
design – for all ground integrations 

Design Effect - Models' Annual Savings (%) per Ground Integration and Models Overall Performance 

 A - Equal Depth Base Model B - Equal Proportion 

Model Name CompF_3FA CompF_2FA CompF_1F CompF_2FB CompF_3FB 

Models 

     

Le
ve

ls
 o

f G
ro

un
d 

In
te

gr
at

io
n 01 

 
0.00 11.35 9.61 18.36 17.34 

02 
 

0.00 12.52 13.05 20.86 19.17 

03 
 

0.00 14.53 17.03 21.07 17.19 

04 
 

0.00 15.04 35.02 23.38 18.62 

05 
 

0.00 14.20 31.49 22.10 17.53 

Overall 
Results 

Average Savings* 0.00 13.53 21.24 21.16 17.97 

Perfor.** = 5 = 4 = 2 = 1 = 3 

Scale ß   1 to 5   à 

* Average savings % per model; **Performance Scale 1 to 5 (1= Best performance & 5= Worst performance). 

7.2.2.2. Seasonal Results – Compact Form 

 
Figure 7.5: Ground integration effect on model’ monthly average loads per season – 
Compact Form – 3 Floors A 

The energy loads distribution per season of each model, exemplified by the 

CompF_3FA results (Figure 7.5) indicate that heating, especially the winter, is the 

largest contributor to the energy requirements of each model, while spring is the 

season with the lowest energy demands. Per season and for each model the best 

ground integrations are identified and compiled on the following table. 

Levels	
  of	
  
Ground	
  

Integration	
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In Table 7.18, it can be seen that ground integration 04 is the most efficient, with a 

good performance in winter and autumn, and a very good performance in spring and 

summer. Ground integration 03 proved to be better as a heating strategy since it 

works well in winter and autumn. During summer, ground integration 05 achieved 

the best results. However this is not sufficient to highlight the performance of this 

ground integration because 03 and 05 produced similar annual results. 

Consequently, ground integration 05 might not be a better solution than 03 when 

considering construction costs. 

Table 7.18: Compact Form models’ season thermal performance – Best ground integration 
Season Ground Effect - Models Best Ground Integration per Season 

 A - Equal Depth Base Model B - Equal Proportion 

Model Name CompF_3FA CompF_2FA CompF_1F CompF_2FB CompF_3FB 

Forms 

     
Winter 03 03 04 04 04 

Spring 04 04 04 05 04 

Summer 05 05 04/05 Null 05 05 

Autumn 03/04 04 04 04 04 

Best Annual 04 04 04 04 04 

The best ground integration for each model according with season: 01= No Integration; 02= 1 Wall (3m); 03=3 Walls 
(3m); 04= ; Roof + 3 Walls (3.5m) 05= ‘Total Und.’ (3.5m). 
 

 
Figure 7.6: Seasonal loads comparison between all Compact Form models’ design – Above 
Ground 

The annual results patterns are repeated with the monthly average loads per 

season. The above figure, which corresponds to ground integration 01, shows that 

the models based on equal proportion (CompF_2FB and CompF_3FB) register the 

best performance at all seasons.  
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Table 7.19: Comparison between all Compact Form models’ design – Seasonal loads 
 

Design Effect - Models’ Season Thermal Performance per Ground Integration 

 A - Equal Depth Base Model B - Equal Proportion 

Model Name CompF_3FA CompF_2FA CompF_1F CompF_2FB CompF_3FB 

Forms 

     

W
in

te
r 

01 
to 
03 

 

5 3 4 1 2 

04 
 

5 4 2 1 3 

05 
 

5 4 3 1 2 

Sp
rin

g 

01  
 

5 3 4 2** 1** 

02 
 

5 4 3 1 2 

03 
 

5 4 1 2 3 

04 
& 
05 

 

5 3 1 2 4 

Su
m

m
er

 

01 
 

5 4 3 2 1 

02 
 

5 4 3 1** 2** 

03 
to 
05 

 

5 4 1 2 3 

A
ut

um
n 

01 
to 
03 

 

5 3 4 1 2 

04 
& 
05 

 

5 4 1 2 3 

Scale* ß   1 to 5   à 

* Performance Scale 1 to 5 (1= Best performance & 5= Worst performance). 

All results are summarised in Table 7.19, which is based on the performance of 

each model per ground integration. It is immediately visible that both models with 

equal depth, namely the longest ones, provide the worst results. However, while the 
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results for model ComF_3FA are always the least effective, performance results for 

model ComF_2FA are better in winter and autumn with none or low levels of ground 

integration. 

Looking to the best performance, it is found that the results change according with 

season and level of ground integration. Overall, for all seasons ComF_2FB and 

ComF_3FB have good performance, but in spring, summer and autumn the base 

model achieves the best performance with the greater levels of ground integrations. 

7.2.2.3. Annual Results – Long Form 

 
Figure 7.7: Ground effect on Long Form models’ total annual load  

As can be observed in Figure 7.7, the long form results repeat the same patterns as 

those found for compact forms. As summarised in the following table, for all floor 

plans the annual best performance is achieved with ground integration 04.  

Table 7.20: Long Form models’ annual thermal performance according with ground 
integration 

Effect of Ground Integration on Models Annual Thermal Performance 

01 02 03 04 05 

 
No Integration 

 
1 Wall (3m) 

 
3 Walls (3m) 

 
Roof + 3 Walls (3.5m) 

 
‘Total Und.’ (3.5m) 

5 4 2** 1 3** 

ß   Scale 1 to 5   à 

* Performance Scale 1 to 5 (1= Best performance & 5= Worst performance); ** For LongF_1F the order is reverse. 
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With the exception of model LongF_1F, the second best results are found with 

ground integration 03. Once again, and for all models, the best annual performance 

was not registered in the highest ground integration. Increasing the ground coverage 

from 04 to 05 shows a regression in the annual results. The thermal performance of 

this particular integration (05) is less efficient than 03 and in cases of two floor 

models it is very similar to ground integration 02, which only has one wall with 

ground contact. This leads the author to argue that models’ annual performance 

benefits from the south facing wall solar exposure. Therefore, the balance between 

solar exposure and ground contact should be always considered on an early design 

stage. 

Table 7.21: Long Form models’ annual savings percentage according with ground integration 
Ground Effect - Annual Savings (%) per Model 

 A - Equal Depth Base Model B - Equal Proportion 
Overall Results 

Model Name LongF_3FA LongF_2FA LongF_1F LongF_2FB LongF_3FB 

Models 

     A
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r.*

* 
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n 01 

 
0.00 0.00 0.00 0.00 0.00 0.00 = 5 

ß
   

1 
to

 5
   
à

 02 
 

4.62 7.01 10.63 9.23 7.44 7.79 = 4 

03 
 

11.11 14.38 18.36 15.07 11.82 14.15 = 2 

04 
 

12.03 15.68 38.72 18.17 14.11 19.75 = 1 

05 
 

8.69 11.23 30.03 13.68 10.01 14.73 = 3 

* Average savings %per ground integ.; **Performance Scale 1 to 5 (1= Best performance & 5= Worst performance). 

With Table 7.21 it can be observed that a ground integration such as 04 can 

produce energy savings up to 38.72% with the single floor model. For a two-floor 

model, the energy potential of this ground integration can reach 18.17%, and for a 

three-floor model the value can go up to 14.11%. 
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Table 7.22: Annual thermal performance comparison between all Long Form models’ design 
– for all ground integrations 

Design Effect - Models' Annual Savings (%) per Ground Integration and Models Overall Performance 

 A - Equal Depth Base Model B - Equal Proportion 

Model Name LongF_3FA LongF_2FA LongF_1F LongF_2FB LongF_3FB 

Models 

     

Le
ve

ls
 o

f G
ro

un
d 

In
te

gr
at

io
n 01 

 
12.30 13.77 0.00 9.80 7.13 

02 
 

6.41 10.27 0.00 8.40 3.82 

03 
 

4.80 9.85 0.32 6.46 0.00 

04 
 

3.28 8.85 23.18 7.47 0.00 

05 
 

4.18 8.40 16.28 6.83 0.00 

Overall Results 
Average Savings* 6.19 10.23 7.96 7.79 2.19 

Perfor.** = 4 = 1 = 3 = 2 = 5 

Scale ß   1 to 5   à 

* Average savings % per model; **Performance Scale 1 to 5 (1= Best performance & 5= Worst performance). 

When comparing the models design effect through the correspondent annual energy 

saving results (Table 7.22), it was found that by changing the shape and number of 

floors the energy savings could be improved up to 13.77%. The best performance 

was reached with model LongF_2FA, with average savings of 10.23%. Again, the 

two-floor models provide better results than the correspondent three-floor model. 

Additionally, it can be observed that the models that kept the initial depth have better 

results than the models that maintained the base model proportions. This pattern 

shows that for the study climate, longer forms have lower thermal efficiency 

comparing with a more compacted form.  
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7.2.2.4. Seasonal Results – Long Form 

 
Figure 7.8: Ground integration effect on model’ monthly average loads per season – Long 
Form – 3 Floors A 

In the example of model LongF_03A, seasonal results according to models’ levels of 

ground integration (Figure 7.8), it can be seen that ground integration 04 had the 

best results for spring and autumn and achieving the second best results in summer. 

In winter this is the only model that achieves its best performance with ground 

integration 03, which shares an almost equal value with ground integration 04. 

Table 7.23: Long Form models’ season thermal performance – Best ground integration 
Season Ground Effect - Models Best Ground Integration per Season 

 A - Equal Depth Base Model B - Equal Proportion 

Model Name LongF_3FA LongF_2FA LongF_1F LongF_2FB LongF_3FB 

Forms 

     
Winter 03 03/04 04 04 04 

Spring 04 04 04 04 04 

Summer 05 05 04/05 Null 05 05 

Autumn 04 04 04 04 04 

Best Annual 04 04 04 04 04 

The best ground integration for each model according with season: 01= No Integration; 02= 1 Wall (3m); 03=3 Walls 
(3m) ; 04= ; Roof + 3 Walls (3.5m) 05= ‘Total Und.’ (3.5m). 

Table 7.23 summarises the best ground integration by season for each model. The 

results presented in this table make clear that almost all models produce the same 

results. Ground integration 04 is the best annual ground integration and achieves 

the best results during spring, autumn and winter – corresponding to the three 

heating seasons. Ground integration 05 provides the best results in summer, which 

Levels	
  of	
  
Ground	
  

Integration	
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corresponds to the cooling season. These results, therefore, make this particular 

integration ideal for a cooling strategy. However, during winter and autumn, the 

performance of ground integration 05 drops and is surpassed by integrations with 

lower levels of ground contact such as ground integration 03 and in some cases 02. 

 
Figure 7.9: Seasonal loads comparison between all Long Form models’ design – Above 
Ground 

The comparison of the seasonal thermal performance of each model according with 

ground integration allows for the observation of several patterns, which occur 

throughout the year. In Figure 7.9 it is visible that without ground integration (01) the 

single floor model produces the worst results. During the heating periods of autumn, 

winter and spring the most compact models (LongF_2FA and LongF_3FA) produce 

better results than models LongF_2FB and LongF_3FB. Finally, during the summer 

the opposite was found.  

Other patterns become evident in the results presented in Table 7.24, which 

compiles all the thermal performance of all models, rated from best to worst. As 

summarised in this table, the performance of base model LongF_1F improves with 

higher level of ground contact. This is clear in spring, summer and autumn when this 

model achieves the worst results with the lowest ground integrations but also has its 

best performance with the highest ground integrations. 

During winter, spring and autumn, LongF_2FA shows the best performances, which 

leads the author to argue that this model is a good design solution for a heating 
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strategy. In summer LongF_2FB produces a more balance performance with all 

ground integrations, becoming a good design for a cooling strategy. 

Table 7.24: Comparison between all Long Form models’ design – Seasonal loads 
Design Effect - Models’ Season Thermal Performance per Ground Integration 

 A - Equal Depth Base Model B - Equal Proportion 

Model Name LongF_3FA LongF_2FA LongF_1F LongF_2FB LongF_3FB 

Forms 

     

W
in
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r 

01 
& 
02 

 

2 1 5 3 4 

03 
 

3 1 5 2 4 

04 
 

4 1 3 2 5 

05 
 

2 1 4 3 5 

Sp
rin

g 

01 
 

1 1 5 3 4 

02 
 

3 1 4 2 5 

03 
to 
05 

 

4 2 1 3 5 

Su
m

m
er

 

01 
 

4 3 5 2 1 

02 
 

5 3 4 1** 2** 

03 
 

5 2 1 3 4 

04 
 

5 2 1 (Null) 2 4 

05 
 

5 3 1 (Null) 2 4 

A
ut

um
n 

01 
 

2 1 5 3 4 

02 
& 
03 

 

3 1 5 2 4 

04 
 

4 2 1 1 5 

05 
 

4 1 1 3 5 

Scale* ß   1 to 5   à 

* Performance Scale 1 to 5 (1= Best performance & 5= Worst performance); **Similar values. 
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7.2.3. Findings and Conclusions 

The models variations based on the compact and long forms produced similar result 

patterns. The annual loads results show that the level of ground integration affects 

the thermal performance of every model. The performance of each model improves 

with ground contact, but the highest level of ground integration fails to produce the 

best annual results and only achieves the best seasonal results during the summer. 

The use of ground integration can improve the thermal performance of a building. 

However, for this temperate climate during the heating season (and mainly winter 

and autumn) the solar gains provided by the exposed surface area of the models 

are also relevant. This is particularly so for the south-facing surface area that was 

reduced with the highest ground integration. Therefore, a good balance between 

surface areas with direct ground contact and with solar exposure is the key for 

achieving the best performance.  

The best energy saving potential produced by direct ground contact for the single 

floor models is found to be 36.76% with the Compact Form, and 38.72% with the 

Long Form. For the two-floor models, the ground effect can produce savings of up to 

17.44% with the Compact Form models, and 18.17%, with the Long Form models. 

Considering the three-floor models, the best value achieved is of 13.40%, which was 

registered in the Compact Form models, and 14.11% by the Long Form models. 

Thus, the lower is the number of floors higher the ground thermal effect, as the 

surface area of the model with ground contact is greater. 

Looking into the design effect produced by the number of floors it is found that it can 

produce results difference up to 18.36% with the Compact Form models, and up to 

13.77% with the Long Form models. In general, models with two floors produce 

better results than models with three floors. The more compact shapes achieve 

better annual performance than longer ones, which only produce good results during 

summer. Therefore, the most compact models are better for this particular climate, 

and the longer models are efficient as part of a cooling strategy.  
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7.3. BASEMENT AND COURTYARD 

The previous section demonstrates that ground integration can improve the thermal 

performance of buildings, but in order to produce the best annual results for the 

temperate climate studied, it is necessary to produce a good balance between direct 

ground contact and solar gains. This section looks into this issue, addressing two 

questions. Firstly, what thermal contributions are produced by an underground 

construction (e.g. a basement) in comparison with an above ground building with the 

same characteristics. The second question is if there are any thermal benefits to be 

gained by introducing an underground courtyard area at the south-facing side of the 

basement of a building.  

This section uses models based on the two best shapes found in the Forms section 

of this chapter, the Compact and Long form. The study is divided in three groups: 

Above Ground, Basement and Basement with Courtyard.  

7.3.1. Models Description and Levels of Ground Integration 

Table 7.25: Models characteristics – Above Ground and Basement  
 Above Ground Basement 

Number of Floors 2 Floors 2 Floors 2 Floors 2 Floors 

Model Name CompF_Abv LongF_Abv CompF_Bsmt LongF_Bsmt 

Models 

     
Total Area (m2) 336 336 336 336 

Area per Floor (m2) 168 168 168 168 

Basement Floor - - 1 1 

Floor Perimeter (m) 52 62 52 62 

Floor Ratio A/P 3.23 2.7 3.23 2.7 

The Compact and Long models have the same total area and are designed with two 

stories (Table 7.25 and 7.26). With the first group that is the Above Ground group, 

both models are placed over the ground. In the second group named Basement, a 

basement is introduced in the models, the lower floor is underground and the upper 

floor is above the ground. In the third group named Basement and Courtyard, the 
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basement is used with the addition of a courtyard, this is done with the introduction 

of an open area at the basement south-facing wall. 

Table 7.26: Models characteristics – Basement with Courtyard 
 Basement with Courtyard 

Number of Floors 2 Floors 2 Floors 2 Floors 2 Floors 2 Floors 2 Floors 

Model Name CompF_01Crt CompF_02Crt CompF_03Crt LongF_01Crt LongF_02Crt LongF_03Crt 

Models 
      

Total Area (m2) 336 336 336 336 336 336 

Area per Floor (m2) 168 168 168 168 168 168 

Basement Floor 1 1 1 1 1 1 

Courtyard Area 
(m2) 

168 (1/1) 84 (1/2) 56 (1/3) 168 (1/1) 84 (1/2) 56 (1/3) 

Floor Perimeter (m) 52 52 52 62 62 62 

Floor Ratio A/P 3.23 3.23 3.23 2.7 2.7 2.7 

The courtyards’ dimension areas are based on the model’s area per floor and are 

illustrated in Table 7.26 and 7.29. The CompF_01Crt and CompF_01Crt models’ 

courtyard dimensions are equal to the models’ ones (1/1). Both 02Crt models have a 

courtyard area that is half of the model's floor area (1/2). Both 03Crt models’ 

courtyard is one third of the model's floor area (1/3). 

The Above Ground, Basement and Basement with Courtyard models’ details (such 

as dimensions, number of simulations, type of ground integration and used 

simulation reference) are displayed in Table 7.27 to 7.29. 

 
Table 7.27: Models details – Above Ground 

 Above Ground Models Dimensions Ground Integration Ref. Name 

C
om

pa
ct

 F
or

m
 

 

01 – No Ground Integration CompF_Abv_01 

02 - North, West & East Walls CompF_Abv_02 

03 - Roof, North, West & East Walls CompF_Abv_03 

Lo
ng

 F
or

m
 

 

01 – No Ground Integration LongF_Abv_01 

02 - North, West & East Walls LongF_Abv_02 

03 - Roof, North, West & East Walls LongF_Abv_03 
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Table 7.28: Models details – Basement 
 Basement Models Dimensions Ground Integration Ref. Name 

C
om

pa
ct

 F
or

m
 

 

01 – No Ground Integration CompF_Bsmt_01 

02 - North, West & East Walls CompF_Bsmt_02 

03 - Roof, North, West & East Walls CompF_Bsmt_03 

Lo
ng

 F
or

m
 

 

01 – No Ground Integration LongF_Bsmt_01 

02 - North, West & East Walls LongF_Bsmt_02 

03 - Roof, North, West & East Walls LongF_Bsmt_03 

 
Table 7.29: Models details– Basement with Courtyard 

 Courtyard Models Dimensions Ground Integration Ref. Name 

C
om

pa
ct

 F
or

m
 

C
ou

rty
ar

d 
1/

1 

 

01 – No Ground Integration CompF_01Crt_01 

02 - North, West & East Walls CompF_01Crt_02 

03 - Roof, North, West & East Walls CompF_01Crt_03 

C
ou

rty
ar

d 
1/

2 

 

01 – None CompF_02Crt_01 

02 - North, West & East Walls CompF_02Crt_02 

03 - Roof, North, West & East Walls CompF_02Crt_03 

C
ou

rty
ar

d 
1/

3 

 

01 – None CompF_03Crt_01 

02 - North, West & East Walls CompF_03Crt_02 

03 - Roof, North, West & East Walls CompF_03Crt_03 

Lo
ng

 F
or

m
 

C
ou

rty
ar

d 
1/

1 

 

01 – None LongF_01Crt _01 

02 - North, West & East Walls LongF_01Crt _02 

03 - Roof, North, West & East Walls LongF_01Crt _03 

C
ou

rty
ar

d 
1/

2 

 

01 – None LongF_02Crt _01 

02 - North, West & East Walls LongF_02Crt _02 

03 - Roof, North, West & East Walls LongF_02Crt _03 

C
ou

rty
ar

d 
1/

3 

 

01 – None LongF_03Crt _01 

02 - North, West & East Walls LongF_03Crt _02 

03 - Roof, North, West & East Walls LongF_03Crt _03 
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Table 7.30: Level of ground integration – Basement and Courtyard study with ground 
integration 

For each stage three types of ground integration are used, including none (01), 

three walls (02) and roof and three walls (03), as shown in Table 7.30. With no 

ground integration the walls depth below ground is 0 m for the Above Ground, and 3 

m for the Basement and Basement with Courtyard. With ground integration 02 the 

depth of the larger wall is 6 m, and for the ground integration 03 the depth of the 

larger wall is 6.5 m. 

7.3.2. Results Analysis 

7.3.2.1. Annual Results – Compact and Long Form 

 
Figure 7.10: Ground effect on Compact Form models’ total annual load – Above Ground, 
Basement and Basement with Courtyard 

The total annual loads of the Above Ground and Basement groups show that for 

both study forms (Figure 7.10, 7.11 and Table 7.31), the higher the ground 

Levels of Ground Integration 
   Walls 

Depth Above Ground Basement Basement with 
Courtyard 

01 – No Ground Integration 

   

0 m 

02 – North, West & East Walls 

   

6 m 

03 – Roof, North, West & East Walls 

   
6.5 m 
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integration the better the models’ thermal performance. The energy demand 

decreases as the level of ground integration increases.  

 
Figure 7.11: Ground effect on Long Form models’ total annual load – Above Ground, 
Basement and Basement with Courtyard 

For both compact and long shapes with the lowest ground integration (01), the 

Basement group models prove to be more energy efficient than the Above Ground 

models. But by increasing the ground integration (02 and 03) the performance of the 

Basement models becomes less efficient than the correspondent Above Ground 

models (Figure 7.10 and 7.11). 

Table 7.31: Compact and Long Form models’ annual thermal performance according with 
ground integration 

Two different patterns can be observed in the Basements with Courtyards group, as 

displayed in Figure 7.10 and 7.11, and in Table 7.31 and 7.32. Firstly, for both forms 

the smaller the courtyard, the most efficient the thermal performance of the building. 

Secondly, the higher the ground integration the higher is the models energy 

Effect of Ground Integration on Models Annual Thermal Performance 

Above Ground and Basement  Basement with Courtyard 

 01 02 03  01 02 03 

 
None 

 
3 Walls (6m) 

 
Roof & 3 Walls (6.5m) 

 
 

None 
 

3 Walls (6m) 
 

Roof & 3 Walls (6.5m) 

3 2 1  1 2** 3** 

ß   Scale* 1 to 3   à  ß   Scale* 1 to 3   à 

* Performance Scale 1 to 3 (1= Best performance & 3= Worst performance); ** For CompF_02Crt the order is 
reverse. 
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consumption. These results raise issues in terms of performance and, therefore, it 

cannot be concluded that the highest levels of ground integrations are energy 

efficient. Additionally, and for both forms, the best performance is not found in the 

Basement group, which have the highest ground integration, but in the Basement 

with Courtyard group.  

Regarding the ground effect on the annual savings per model (Table 7.32), in the 

Above Ground group, the highest ground integration (03) allows the CompF_Abv 

model to save 25.99% of the initial loads, and the LongF_Abv model is able to save 

up to 29.41%. For the same ground integration, in the Basement group the model 

CompF_Bsmt is able to save up to 16.40%, and LongF_Bsmt 1 saves up to 7.92%. 

Table 7.32: Compact and Long Form models’ annual loads savings percentage according 
with ground integration 

Compact and Long Form - Ground Effect - Annual Savings (%) per Model 

 Above 
Ground 

Basement  Basement with Courtyard 

Model Name CompF_Abv CompF_Bsmt  CompF_01Crt CompF_02Crt CompF_03Crt 

Compact Forms 
  

 

   

Le
ve

ls
 o

f G
r.I

nt
. 01 

 
0.00 0.00 

 
2.63 5.00 3.46 

02 
 

17.50 7.57 
 

0.62 0.00 0.78 

03 
 

25.99 16.40 
 

0.00 2.11 0.00 

Model Name LongF_Abv LongF_Bsmt  LongF_01Crt LongF_02Crt LongF_03Crt 

Long Forms 
  

 

   

Le
ve

ls
 o

f G
r.I

nt
. 01 

 
0.00 0.00 

 
5.14 5.71 7.03 

02 
 

19.29 7.94 
 

1.33 1.46 1.76 

03 
 

29.41 17.92 
 

0.00 0.00 0.00 

* Loads savings % per ground integration. 

With the Basement and Courtyard group it is clear that the lowest ground integration 

(01) has the best impact on the annual savings made by the models. For the 
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compact form the best savings are of up to 5% with model CopF_02Crt, and for the 

long form the best value is achieved by model LongF_03Crt with 7.03%. 

Table 7.33: Annual thermal performance, Compact and Long Form models’ design – for all 
ground integrations 

Design Effect – Models’ Annual Savings (%) per Ground Integration 

 Above Ground Basement Basement with Courtyard 

Model Name CompF_Abv CompF_Bsmt CompF_01Crt CompF_02Crt CompF_03Crt 

Compact Forms 

     

Le
ve

ls
 o

f G
r.I

nt
. 01 

 
0.00 7.53 10.55 17.67 26.09 

02 
 

9.64 6.38 0.00 5.07 16.80 

03 
 

19.44 15.85 0.00 7.65 16.66 

Model Name LongF_Abv LongF_Bsmt LongF_01Crt LongF_02Crt LongF_03Crt 

Long Forms 
     

Le
ve

ls
 o

f G
r.I

nt
. 01 

 
0.00 6.28 12.75 20.32 30.28 

02 
 

11.08 4.95 0.00 8.26 18.83 

03 
 

23.26 16.37 0.00 8.13 18.47 

*Loads savings % per model for each ground integration. 

The annual savings produced by the models’ design, illustrated in Table 7.33, shows 

once again that, for this climate, there is the need to find a balance between ground 

integration and solar exposure. 

For the compact and long models, the Basements with Courtyard group results 

demonstrate that this balance can be achieved with the addition of this feature on 

ground-integrated buildings with ground integration 01, which increases savings 

from 26.09% to 30.28% and, for ground integration 02, increases savings from 

16.80% up to 18.83%. Although the basement with the smallest courtyard has a 

good performance, for ground integration 03, the best annual savings are found with 

the Above Ground models; CompF_Abv achieves 44% and LongpF_Abv provides 

savings up to 23.26%. 
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7.3.2.2. Seasonal Results – Compact and Long Form 

 
Figure 7.12: Ground integration effect on model’ monthly average loads per season – 
Compact Form – Above Ground & Basement 
 

 
Figure 7.13: Ground integration effect on model’ monthly average loads per season – Long 
Form – Above Ground and Basement 

Figure 7.12 and 7.13 respectively display the compact and long form Above Ground 

and Basement models seasonal results. In these tables it can be observed that 

winter is the period with highest energy demands, thus it is during this period that 

the highest ground integrations fail to produce the best performance. This is the 

case of CompF_Abv and LongF_Abv with ground integration 02, as well as 

CompF_Bsmt and LongF_Bsmt with ground integration 02 and 03. For the Above 

Ground and Basement, during summer it is found that the highest ground integration 

(03) energy loads is null or almost null. 

In Table 7.34, the results compilation through the performance order make clear that 

for both compact and long forms the results for the Above Ground and Basement 

Levels	
  of	
  
Ground	
  

Integration	
  

Levels	
  of	
  
Ground	
  

Integration	
  



Chapter 7 - Case Studies: Ground Integration  

 
-202- 

models have the same pattern for spring, summer and autumn. The higher the 

ground integration the better the models’ performance.  

Table 7.34: Compact and Long Form models’ season thermal performance according with 
integration – Above and Basement 

Ground Effect – Models Season Thermal Performance 

Seasons 

Above  Basement 

Levels of Ground Integration Levels of Ground Integration 

01  02 03 01  02 03 

      

Winter 
Comp.Form 3 1 2  1 2 3 

Long Form 3 1 2  2 1 3 

Spring 3 2 1  3 2 1 

Summer 3 2 1  3 2 1 

Autumn 3 2 1  3 2 1 

* Scale ß    1 to 3   à  ß    1 to 3   à 

* Performance Scale 1 to 3 (1= Best performance & 3= Worst performance). 

It is during winter that the performance patterns are mixed. For the Above Ground 

models both forms have the best performance with ground integration 02, soon 

followed by ground integration 03. For the Basement models, the compact form 

achieves the best results with ground integration 01, followed by 02, and the best 

performance for the long form is achieved with ground integration 02. It needs to be 

pointed out that this change of pattern does not affect the overall heating 

performance. 

  
Figure 7.14: Ground integration effect on model’ monthly average loads per season – 
Compact Form – Basement with Courtyard 

Levels	
  of	
  
Ground	
  

Integration	
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Figure 7.15: Ground integration effect on model’ monthly average loads per season – Long 
Form – Basement with Courtyard 

Figure 7.14 and 7.15 shows the seasonal results for compact and long form 

Basement with Courtyard models. Table 7.35 display the models’ performance 

results summary, organised from best to worst performance.  

 
Table 7.35: Compact and Long Form models’ season thermal performance according with 
integration – Basement with Courtyard 

Ground Effect - Models Season Thermal Performance 

 Courtyard 

1/1 1/2 1/3 

Season and 

Model  

Levels of Ground 
Integration 

Levels of Ground 
Integration 

Levels of Ground 
Integration 

01 02 03 01 02 03 01 02 03 

         

Winter 
Comp. 1 3 4 2 7 5 6 8 9 

Long  2 6 8 1 4 5 3 7 9 

Spring 7 8 9 4 5 6 1 2 3 

Summer 9 8 7 6 5 4 3 2 1 

Autumn 
Comp. 6 8 9 4 7 5 1 2 3 

Long  7 8 9 4 5 6 1 2 3 

* Scale ß    1 to 9   à 

* Performance Scale 1 to 9 (1= Best performance & 9= Worst performance). 

Observing both the figures and the table it is understood that during spring and 

autumn the pattern is the same. These results make it clear that the smaller the 

courtyard the better the models thermal performance. Furthermore, it is also clear 

that the greater the ground integration the lower the thermal performance. The 

reverse of this pattern was found during the summer. During this season, it is 

Levels	
  of	
  
Ground	
  

Integration	
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observed that the smaller the courtyard the better the thermal performance of the 

model. However, the higher the ground integration the better the thermal 

performance during this period. During winter, the compact and long forms have 

different result patterns. For the compact form, the larger the courtyard the better the 

model’s results. Whereas, the performance pattern of the long forms seems to be 

more linked with the ground integration of the model than the size of the courtyard. It 

was found that the lower the ground integration the better the model's results. 

7.3.3. Findings and Conclusions 

This section results shows that a two floor building with a basement has a better 

thermal performance than models with two floors above ground, even those of the 

same shape and area. However, when the Above Ground and Basement models 

were simulated with higher ground integrations, the performances of the Basement 

models were worse than those of the Above Ground models. For both groups, the 

annual thermal performance improved with the increasing direct ground contact. 

The introduction of an underground courtyard area at the south-facing side of a 

building basement proved successful in increasing the thermal efficiency of the 

models, producing energy savings of up to 26.09% for the compact models, and of 

up to 30.28% for the long models. It was found that smaller courtyards produce 

better results. However, by increasing the ground integration, the Basement with 

Courtyard models becomes less efficient. 

Once again the results of these simulations indicate that for this climate a good 

balance between direct ground contact and solar exposure is essential to achieve 

the best thermal performance. 
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7.4. CONCLUSIONS 

As the findings above demonstrate, ground integration affects the thermal 

performance of buildings. The higher the ground contact the lower the annual 

energy loads of the models. However, and for the particular climate studied, 

evidence reveals that the highest ground integration fails to produce the best 

thermal performance. It was found that to achieve the best thermal performance, 

solar gains during the heating season are essential. This is because reduced or null 

surface areas (in particular south-facing surfaces) with direct solar exposure 

undermine the performance of these models. Therefore, a good balance between 

surface areas with direct ground contact and solar exposure needs to be 

established, in order to achieve greater thermal efficiency. 

As the Form study section of this chapter demonstrates, ground coupling improves 

buildings performance by up to 2.6 times more than the model designs considered 

in this study, achieving savings up to 37.87% against the design effect maximum of 

14.14%. Medium levels of ground integration such as those with two or three walls 

with direct ground contact show similar values. Between the three correspondent 

ground integrations, the average annual savings disparity is small, with values of up 

to 4%. Regarding the annual loads produced by both models with two walls ground 

integration, the values are equivalent, but the seasonal loads reveal different 

patterns. Models with north and west ground integration show superior results 

during the coldest seasons, while models with north and east ground integration are 

revealed as being ideal as part of a cooling strategy. 

The results of the Floor study show that for equal levels of ground integration, the 

lower the number of floors, the greater the thermal effect of the ground. The reason 

for this is due to the increased surface area of the model with direct ground contact. 

Therefore, the single floor models provide the highest energy saving potential, with 
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values of up to 36.76% for the compact form, and 38.72% for the long form. The 

annual average savings for the two-floor models are of up to 17.44% for the 

compact form, and 18.17%, for the long form. In the case of three-floor models, the 

compact form models with 13.40% produce the best results, and the long models 

are able to generate savings of up to 14.11%. 

Regarding the use of basements, the comparison between a two floor above-ground 

building and an equal building with a basement floor indicates that the ground 

coupling provided by the basement is able to improve the thermal performance of 

the models. The average annual energy savings are up to 7.53% for the compact 

models, and up to 6.28% for the long models. 

In the case of models designs impact, for this climate, different building shapes 

produce different thermal performances. The best results are achieved with two 

forms, the compact model (Model F01) and the long model with an East-West axis 

(Model F03), with correspondent average annual savings values of 14.14% and 

13.30%. This is so when compared with the worst thermal results, which are 

achieved with the model with courtyard (Model F05). The results from the compact 

form are more stable for all ground integrations during the whole year, while the long 

forms achieve the best performance during the cooling season. 

As also demonstrated by the results analysed in this chapter, the number of floors 

affects the thermal performance of all models. The author found that models with 

equal total floor areas but different numbers of floors can have average annual 

saving differences of up to 18.36% in the compact models, and of up to 13.77% in 

the long models. The two-floor models achieve the best results, followed by the 

three-floor models. Overall, the more compact models produce better results than 

the longer models with the same number of floors. 
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The results of the Basement and Courtyard study allow to found that by introducing 

an underground courtyard zone adjacent to the building's south-facing wall, the 

thermal efficiency of the models is improved. In the case of compact models, the 

annual average savings are of up to 26.09% and, similarly, of up to 30.28% in the 

long models. Regarding the courtyard size, it is found that smaller courtyards are 

able to generate better results. 

The following chapter analyses the thermal impact produced by ground integration 

on slope terrains. It analyses its impact on the above studied shapes and introduce 

new shapes based on slope building designs, which take terrain inclination into 

consideration. 
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CHAPTER 8. CASE STUDIES: SLOPE INTEGRATION 
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8. CASE STUDIES: SLOPE INTEGRATION 

Table 8.1: Chapter studies – Forms, Spit Levels, Slope Building Design Adaptation, 
Configurations and Cross Section Structure 

Forms 
Slope Building Designs 

Spit Levels Slope Building 
Design Configurations Cross Section 

Structure 

Perspective Section Section Section Section 

     

This chapter analyses the effect of slope integration on buildings energy 

consumption, by observing the energy patterns produced by slope degree. In 

particular, it explains how slope design can affect the thermal performance of a 

building. This Chapter is organised in five sections: Forms, Split Levels, Slope 

Building Design, Configurations and Cross Section Structure as illustrated in Table 
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8.1. Firstly, the Forms section focuses on five models used in Chapter 7 Section 7.1 

and discusses how those shapes perform with slope integration. Secondly, the Split 

Levels section analyses the effect produced by organising the floor area of a 

building into different levels. Thirdly, the Slope Building Design section combines 

models with and without slope designs. This section of the chapter compares four 

model designs that take site inclination into consideration such as spilt level, 

amends section and cascade or step-hill with a model without slope adaptations. 

Fourthly, the Configurations study compares six design arrangements with equal 

numbers of units and areas based on amend and cascade or step-hill sections. 

Lastly, the Cross Section Structure study compares slope structures integration 

strategies based on two vertical site integrations, amended sections and cascade 

sections. For all slope integration studies, when the terrain inclination increases the 

models surface area with ground contact also increases. 

Simulation settings and inputs data: 

1. Software Version: EnergyPlus 8.1. 

2. Simulation Method: follows the proposed EnergyPlus simulation method for 

ground-integrated buildings described in Chapter 6.2. 

3. Location: Lisbon. 

4. Weather File: the weather data described in Chapter 5 Section 5.2.2. uses 

the Climate Design Data 2009 ASHRAE Handbook design conditions. 

5. Internal Gains: no internal gains were used. 

6. Ventilation: no ventilation was used. 

7. Infiltration: no infiltration was used. 

8. Comfort Zone: the annual comfort range at this location it is assumed to be 

between 20°C to 26°C. 

9. HVAC: the heating SetPoint is 20°C and cooling SetPoint is 26°C. 

10. Openings: no openings were used. 

11. Materials: all surfaced are assumed to be 20 cm concrete, see Table 6.4 in 

Chapter 6. 

12. Seasonal data: it is assumed that winter period correspond to January, 

February and March; the spring period combines April, May and June; the 

summer season is formed by July, August and September; the autumn 
period is formed by October, November and December.  
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8.1. FORMS WITH SLOPE GROUND INTEGRATION 

8.1.1. Models Description and Levels of Slope Integration 

This parametric study looks at how different building shapes are affected by slope 

integration. Following the recommendations presented in Chapter 6, the models 

previously used in Chapter 7, Section 7.1 are utilised on this section as a separate 

study. Information regarding the area, perimeter and area to perimeter ratios of the 

forms can be found in Chapter 7, Section 7.1.1. The details of the models, such as 

name, dimensions, type of slope integration and its simulation reference name are 

displayed in Table 8.2. 

Table 8.2: Models details - Forms study with slope integration 
 Models Dimensions Slope Integration Ref. Name 

M
od

el
 F

01
 

 

0° Slope F01_00° 

5° Slope F01_05° 

10° Slope F01_10° 

15° Slope F01_15° 

20° Slope F01_20° 

M
od

el
 F

02
 

 

0° Slope F02_00° 

5° Slope F02_05° 

10° Slope F02_10° 

15° Slope F02_15° 

20° Slope F02_20° 

M
od

el
 F

03
 

 

0° Slope F03_00° 

5° Slope F03_05° 

10° Slope F03_10° 

15° Slope F03_15° 

20° Slope F03_20° 

M
od

el
 F

04
 

 

0° Slope F04_00° 

5° Slope F04_05° 

10° Slope F04_10° 

15° Slope F04_15° 

20° Slope F04_20° 

M
od

el
 F

05
 

 

0° Slope F05_00° 

5° Slope F05_05° 

10° Slope F05_10° 

15° Slope F05_15° 

20° Slope F05_20° 
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Table 8.3: Level of slope integration - Forms study with slope integration 

The present case study uses five levels of slope integration with intervals of five 

degrees, starting with a 0° slope (null) and going up to a 20° slope, as shown in 

Table 8.3. The total amount of models’ exterior surface with ground contact varies 

not only with the slope gradient but also with the models’ shape. The wall ground 

integration depth can range from 0 m to the highest depth of 3 m. In all cases the 

roofs of the models have total sun and wind exposure.  

8.1.2. Results Analysis – Effects of Slope and Models’ Design 

8.1.2.1. Annual Results 

 
Figure 8.1: Slope effect on Form models’ total annual load 

The models’ total annual loads results reveal one clear pattern. It is immediately 

obvious from Figure 8.1 that the total energy demand is affected by the degree of 

Levels of Slope Integration 
 

Walls 
Depth 

0° Slope 
 

0 m 

5° Slope 
 

Up to 3 m 
10° Slope 

 

15° Slope 
 

20° Slope 
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slope integration. It can clearly be seen that a slope gradient increase generates a 

reduction of energy consumption. 

Table 8.4: Form models’ annual thermal performance according with slope integration 

This pattern is reproduced with all models results, as summarised in Table 8.4, in 

which the slope performance is arranged from best (1) to worst (5). For all models, 

the higher the slope, the greater the amount of ground integration and the lower the 

total annual loads. The annual savings per model shown in Table 8.5 indicate that, 

for all models, any slope-integration has thermal benefits. The highest saving 

potential is achived with a 20° slope, with an average 24.31%. In shallow slopes, 

such as 5° and 10°, the correspondent average savings are around 6% and 12% 

each.  

Table 8.5: Form models’ annual savings percentage according with slope integration 
Slope Effect - Annual Savings (%) per Model 

Models 

Levels of Slope Integration 

0° 5° 10° 15° 20° 

  

  

 

F01 
 

0.00 4.05 7.12 9.93 12.93 

F02 
 

0.00 8.93 23.04 30.32 33.86 

F03 
 

0.00 5.84 10.32 20.06 27.10 

F04 
 

0.00 5.02 8.66 13.76 22.87 

F05 
 

0.00 5.97 9.50 19.56 24.79 

Average Savings % per slope Integration 0.00 5.96 11.73 18.72 24.31 

In order to assess the design effects, the models annual savings are calculated and 

compared for each level of slope integration and the corresponding values are 

Annual Slope Effect - Models Thermal Performance According with Slope Integration 

 0° Slope 5° Slope 10° Slope 15° Slope 20° Slope 

 
     

5 4 3 2 1 

ß   Scale 1 to 5   à 

*  Performance Scale 1 to 5 (1= Best performance & 5= Worst performance). 
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displayed in Table 8.6. The same table also displays the overall average annual 

savings percentage for each model, and their overall thermal performance using a 

performance scale from one to five, where one corresponds to the best performance 

and five to the worst. 

Table 8.6: Annual thermal performance comparison between all Forms models’ design – for 
all slopes  

These values show that Model F03 provides the best thermal performance. This 

model has the best results for slopes 0°, 5° and 20°. This same model has the 

second best results for slopes 10° and 15°, producing average annual savings of 

16.32%. Model F02 has the best results for slopes 10° and 15° and its shape is able 

to generate the second best average annual savings with 14.53%. The lowest 

energy savings were produced by Model F05, closely followed by values achieved 

by Model F04. 

 Design Effect - Models' Annual Savings (%) per Slope Integration and Models Overall Performance 

Models 

Levels of Slope Integration Overall Results 

S
ca

le
* 

0° 5° 10° 15° 20° 
Average 
Savings* Perfor.** 

     

F01 

 
12.68 10.89 10.38 5.65 0.00 7.92 = 3 

ß
  1

 to
 5

   
à

 

F02 

 
5.55 8.52 19.68 21.05 17.84 14.53 = 2 

F03 

 
14.78 14.66 15.56 18.28 18.30 16.32 = 1 

F04 

 
3.34 2.36 2.44 0.00 1.95 2.02 = 4 

F05 

 
0.00 0.00 0.00 3.50 1.08 0.92 = 5 

* Average annual savings % per model; ** Performance Scale 1 to 5 (1= Best performace & 5= Worst 
performance). 
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8.1.2.2. Seasonal Results 

 
Figure 8.2: Slope effect on model’ monthly average loads per season – Form 01 

Figure 8.2 shows that the monthly average loads per season change according with 

the different periods. The lowest loads are produced during spring and the highest 

during wintertime. It is therefore evident that the heating periods of winter and 

autumn are the largest contributors to the total annual loads. It is also clear that for 

all seasons the effect of slope integration is the same because the higher the slope, 

the lower the energy needs of the model.   

Table 8.7: Forms models’ season thermal performance according with slope integration 

The thermal performance of all models is ranked on a best (1) to worst (5) scale and 

combined in Table 8.7 according with slope integration. It is clear that for all models, 

the rise of ground contact due to slope increase improves the thermal performance 

of all models. This is because the higher the slope the lower the monthly average 

loads per season. 

The same performance scale is applied in Table 8.8, which summarises the average 

loads per season of each model according with slope integration. Through an 

Season Slope Effect - Models Thermal Performance According with Slope Integration 

 0° Slope 5° Slope 10° Slope 15° Slope 20° Slope 

 
     

5 4 3 2 1 

ß   Scale 1 to 5   à 

*  Performance Scale 1 to 5 (1= Best performance & 5= Worst performance). 

Levels	
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Ground	
  

Integration	
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examination of this table it becomes evident that some forms perform better at 

different seasons. Furthermore, two main patterns can be defined. The first occurs 

in the coldest seasons and the second is registered during the warmest seasons.  

Model F03 produces the best results in the winter and autumn seasons. These 

results are followed by those registered by Model F01 and F02. In winter Model F01 

performs better than Model F02 with null or shallower slopes (5° and 10°). The 

reverse of these results is found for steeper slopes (15° and 20°), where Model F02 

performs better than Model F01. During autumn, the results for Model F01 are better 

than Model F02 with 0° and 5° slopes. For 10°, 15° and 20° slopes, the performance 

of Model F02 is better than that of Model F01. 

Table 8.8: Comparison between all Form models’ design – Seasonal loads 
Models’s Design Effect - Thermal Performance According with Seasonal Loads 

 Form 01 Form 02 Form 03 Form 04 Form 05 

Slope Integration 
     

W
in

te
r 0°, 5° 

& 10° 
 

2** 3** 1 4 5 

15° & 
20°  

3 2 1 4 5 

Sp
rin

g 

0° 
 

2 4 1 3 5 

5° 
 

3 1 2 4 5 

10° 
 

3 1 2 5 4 

15° & 
20°  

5 1 2 4 3 

Su
m

m
er

 

0° 
 

1 5 2 3 4 

5° 
 

3 1 2 4 5 

10° 
 

4 1 2 5 3 

15° 
 

5 1 3 4 2 

20° 
 

5 1 2 4 3 

A
ut

um
n 0° & 5° 

 
2 3 1 4 5 

10°, 
15° & 
20°  

3** 2** 1 4 5 

Scale* ß   1 to 5   à 

*  Performance Scale 1 to 5 (1= Best performance; 5= Worst performance); **Equal results with 10° Slope. 
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Model F02 achieves the best results for all slope integration levels during spring. 

The exception is found with a 0° slope, where Model F03 has the lowest energy 

demand. Model F02 has also the best results in summer for all slopes except the 

null one. These good results are the result of two factors. Firstly, the reduced south 

wall area minimises the solar gains and, secondly, there is a higher amount of 

ground contact due to the east and west walls being direct contact with the ground. 

Model F03 is the second best shape during both spring and summer seasons. 

Overall, Model F03 presents the best results. For all slopes it is the model that 

performs best during winter and autumn and therefore it can be used as part of a 

heating strategy. Significantly, this is also the model that achieves the second best 

results in spring and summer. The results for Model F02 show that this shape is the 

best option as part of a cooling strategy. 

8.1.3. Findings and Conclusions 

Considering the results discussed above, it is argue that buildings can benefit from 

slope integration, since the higher the slope gradient, the lower the energy demand 

of the building integrated into that slope. Through this investigation the author have 

verified that any degree of slope-integration can produce thermal benefits. Small 

slopes such as 5° and 10° are still able to generate average annual energy savings 

of around 6% and 12% each. The highest savings are produced with a 20° slope, 

which presents an average 24.31% savings. 

The best shapes for this type of ground integration are Model F03, followed by 

Model F02. This finding differs from the Form study results presented in Chapter 6. 

The average annual savings produced by Model F03 are of 16.32% and by Model 

F02 of 14.53%. Model F03 performs the best for slope gradients of 0°, 5° and 20°, 

while Model F02 is the most effective shape for slope gradients of 10° and 15°. 
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Although the cooling performance is important at this location, a design based on a 

heating strategy can have a stronger impact on the annual energy demand of a 

building. The seasonal analysis of this demand allows us to identify Model F03 as 

the best shape for a heating strategy. This model has the best results for winter and 

autumn, the seasons in which energy demand is normally higher in this particular 

location. For spring and summer, Model F03 is the second best model, while Model 

F02 is the best shape. This makes Model F02 a more effective building form to use 

as part of a cooling strategy.  
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8.2. SPLIT LEVELS  

The split-level is a commonly used building design type that takes slope site 

characteristics into consideration. This design is normally used in average slopes 

and can be shaped by multiple floors levels that follow a slope gradient. This section 

of the chapter looks into this specific slope design, by focusing on number of levels 

as well as the position of those levels. It also examines how the slope-integration 

affects this design if the slope gradient is changed.  

8.2.1. Models Description and Levels of Slope Integration 

Table 8.9: Models characteristics – Split Level study 

This study uses five models with equal total areas. As illustrated in Table 8.9, the 

base model is SL01, formed by a single level. Models SL02, SL03 and SL04 have 

two levels, both with equal dimensions but differing in terms of the position of the 

unit. The levels of Model SL04 have equal areas and, lastly, Model SL05 is formed 

by three levels with equal areas.  

Model SL01 is the only model with a single story 3 m high. As visible in Table 8.10, 

all other models’ height varies with the units. The lower unit height is 3 m and the 

upper unit height is 4.5 m. All models’ dimensions, type of slope integration and 

correspondent reference name can be found in the same table. 

 

 

Model Name Split Level 01 
(SL01) 

Split Level 02 
(SL02) 

Split Level 03 
(SL03) 

Split Level 04 
(SL04) 

Split Level 05 
(SL05) 

Models 

     
Slope Building Desin Type - Split-level Split-level Split-level Split-level 

Total Area (m2) 168 168 168 168 168 

Unit Number 1 2 2 2 3 

Unit Area (m2) 168 112 56 56 112 84 84 56 56 56 

Unit Perimeter (m) 62 46 30 30 46 38 38 30 30 30 

Ratio A/P 2.7 2.43 1.87 1.87 2.43 2.21 2.21 1.87 1.87 1.87 
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Table 8.10: Models details – Split Level study 

The levels of slope integration used in this study are shown in Table 8.11. As in the 

previous section, there are five different slopes gradients with 5° intervals that range 

from 0° (null) to a maximum of 20°. The depths of the walls in each model wall  

change according with their design as well as level of slope integration, with values 

ranging from 0 m up to a maximum of 8 m. 

 

 
 
 
 
 
 
 
 

 Models Dimensions Slope Integration Ref. Name 

Sp
lit

 L
ev

el
 0

1 

 

0° Slope SplitLevel01_00° 

5° Slope SplitLevel01_05° 

10° Slope SplitLevel01_10° 

15° Slope SplitLevel01_15° 

20° Slope SplitLevel01_20° 

Sp
lit

 L
ev

el
 0

2 

 

0° Slope SplitLevel02_00° 

5° Slope SplitLevel02_05° 

10° Slope SplitLevel02_10° 

15° Slope SplitLevel02_15° 

20° Slope SplitLevel02_20° 

Sp
lit

 L
ev

el
 0

3 

 

0° Slope SplitLevel03_00° 

5° Slope SplitLevel03_05° 

10° Slope SplitLevel03_10° 

15° Slope SplitLevel03_15° 

20° Slope SplitLevel03_20° 

Sp
lit

 L
ev

el
 0

4 

 

0° Slope SplitLevel04_00° 

5° Slope SplitLevel04_05° 

10° Slope SplitLevel04_10° 

15° Slope SplitLevel04_15° 

20° Slope SplitLevel04_20° 

Sp
lit

 L
ev

el
 0

5 

 

0° Slope SplitLevel05_00° 

5° Slope SplitLevel05_05° 

10° Slope SplitLevel05_10° 

15° Slope SplitLevel05_15° 

20° Slope SplitLevel05_20° 
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Table 8.11: Level of slope integration – Split Level study with slope integration 

 

8.2.2. Results Analysis 

8.2.2.1. Annual Results 

  

 
Figure 8.3: Slope effect on Split Level models’ total annual load 

As illustrated in Figure 8.3, the models’ total annual loads show that from 0° to 20° 

slopes, the higher the slope, the better the thermal performance. However it can 

also be seen in the same figure that similar results are present in steeper slopes. 

This pattern is repeated by all models and is summarised in Table 8.12 by using a 

scale based on best (1) to worst (5) thermal performance. It should be pointed out, 

however, that the sole exception to this pattern is found in the performance of Model 

SL05. In this three-unit model, the annual thermal performance for 5° and 10° 

slopes is the same. 

Levels of Slope Integration 
 

Maximum 
Walls Depth 

0° Slope 
 

0 m 

5° Slope 
 

Up to 8 m 
10° Slope 

 

15° Slope 
 

20° Slope 
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Table 8.12: Split Level models’ annual thermal performance according with slope integration 

The annual savings produced by slope effect can be observed in Table 8.13. The 

results presented in this table strengthen the findings which slope-integration can 

affect the models efficiency, and the higher the slope, the better the thermal 

performance of each model. The average savings percentage produced by slope 

integration can go up to 25.61%. It is also observed that the average savings range 

is larger for 5°, 10° and 15° slopes with a correspondent average increase of 7.51%, 

6.46% and 8.1%, and a lower average saving range for a 20° slope, which only 

produces average savings 3.54% higher than a 15° slope.  

Table 8.13: Split Level models’ annual savings percentage according with slope integration 
Slope Effect - Annual Savings (%) per Model 

Models 

Levels of Slope Integration 

0° 5° 10° 15° 20° 

  

  

 

SplitLevel 01 
 

0.00 9.82 23.06 29.77 33.40 

SplitLevel 02 
 

0.00 6.41 13.50 20.41 22.20 

SplitLevel 03 
 

0.00 4.58 10.51 20.51 25.01 

SplitLevel 04 
 

0.00 5.41 11.50 21.09 24.59 

SplitLevel 05 
 

0.00 11.32 11.31 18.56 22.87 

Average Savings % per Slope Integration 0.00 7.51 13.97 22.07 25.61 

Average Increase Range % 0.00 7.51 6.46 8.1 3.54 

Table 8.14 displays the average annual savings generated by the models’ designs. 

It is observable in this table that the number of split-levels can affect the thermal 

Annual Slope Effect - Models Thermal Performance According with Slope Integration 

 0° Slope 5° Slope 10° Slope 15° Slope 20° Slope 

 
     

5 4** 3** 2 1 

ß   Scale 1 to 5   à 

*  Performance Scale 1 to 5 (1= Best performance & 5= Worst performance); For Split Level 05, 5° and 10° Slope 
have equal results. 
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performance of a building. Therefore, the higher the number of split-levels, the lower 

the thermal performance and average savings of the model. The pattern is 

confirmed in all slope integrations, excluding a 5° slope. Model SL01 produces the 

best results for all levels of slope integration, with average savings of 14.13%.  

Table 8.14: Annual thermal performance comparison between all Split Level models’ design 
– for all slopes 

When comparing the three models with an equal number of levels (i.e. Model SL02, 

SL03 ad SL04) it is noticeable that all models achieved similar results. The average 

savings difference between the three models is lower than 0.5%. Model SL02 has 

better results with shallower slopes, while Models SL03 and SL04 achieve better 

performance with the highest slopes.  

 Design Effect - Models' Annual Savings (%) per Slope Integration and Models Overall 
Performance 

Models 

Levels of Slope Integration Overall Results 

S
ca

le
* 

0° 5° 10° 15° 20° 
Average 
Savings* Perfor.** 

     

SplitLevel 
01 

 

6.05 8.23 18.50 18.98 18.88 14.13 = 1 

ß
  1

 to
 5

   
à

 

SplitLevel 
02 

 
3.31*s 1.98 5.69 5.51*s 2.47 3.79 = 3 

SplitLevel 
03 

 
3.25*s 0.00 2.37 5.56*s 5.93*s 3.42 = 4 

SplitLevel 
04 

 
3.30*s 0.92 3.50 6.30 5.45*s 3.90 = 2 

SplitLevel 
05 

 
0.00 3.94 0.00 0.00 0.00 0.79 = 5 

* Average annual savings % per model; ** Performance Scale 1 to 5 (1= Best performace & 5= Worst 
performance); *s Equal or similar results. 
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8.2.2.2. Seasonal Results 

 

 
Figure 8.4: Slope effect on model’ monthly average loads per season – Split Level 01 

The models’ monthly average results per season analysis indicate that, for models 

SL01 to SL04, in all seasons the performance improves as the angle of the slope 

increases (Table 8.15). This pattern of results can be seen in Figure 8.4, which 

corresponds to the results of Model SL01. It is clear that the higher the slope 

gradient the better the models’ thermal performance.  

During spring and summer, the difference in results between slope gradients of 15° 

and 20° is reduced. Thus, compared with a 15° slope, the biggest benefit from a 20° 

slope is linked to the heating seasons of autumn and winter. 

Table 8.15: Split Level models’ season thermal performance according with slope integration 
 Season Slope Effect - Models Season Results According with Slope Integration 

Season and Models 0° 5° 10° 15° 20° 

     

S
L0

1 
to

 S
L0

4 
A

ll 
S

ea
so

ns
 

 

5 4 3 2 1 

S
L0

5 

 

Winter 5 2 4 3 1 

Spring & Summer 5 4 3 2 1 

Autumn 5 3 4 2 1 

Scale* ß   Scale 1 to 5   à 

*  Performance Scale 1 to 5 (1= Best performance & 5= Worst performance). 
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Concerning Model SL05 (Table 8.15), the above pattern is only found in spring and 

summer. Throughout the heating period, in autumn and winter, the highest slope 

has the best results and the 0° slope produces the lowest results. However, during 

winter a 5° slope produces better results than 10° and 15° slopes, and in autumn a 

5° slope is better than a 10° slope. The reason why 5° and 10° slopes have equal 

annual results is because a 5° slope has better results in winter and autumn. 

Therefore, for Model SL05 a shallower slope of around 5° is more efficient as a 

heating strategy than steeper gradients. 

  
Figure 8.5: Seasonal loads comparison between all Split Level models’ design – 0° Slope 
integration 

Through an examination of the models’ monthly average loads per season for 0° 

slope integration, illustrated in Figure 8.5, it can be observed that there is a division 

in the results according with number of split-levels. The performance of the models 

worsens when the number of units rises. Again, it is visible that for Models SL02, 

SL03 and SL04 the results are similar, as the highest gap between these models 

can be found during winter.  

The results presented in Figure 8.5, as well as the results for all other slopes, are 

summarised in Table 8.16, using a performance scale of best (1) to worst (5). 

Several patterns can be seen in the results presented in this table. For every single 

season, Model SL01 has the best results except during spring and summer with 0° 
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slope. Under this setup this is the model with worst results. Regarding the 

performance of Model SL05, it is observed that during winter and autumn it 

produces the worst results. However, during spring and winter the results are mixed. 

This model achieves good results with shallower slopes, and its performance 

worsens as the slope gradient increases. 

Table 8.16: Comparison between all Split Level models’ design – Seasonal loads 

The design effect produced by Model SL02, SL03 and SL04 is irregular since a clear 

pattern cannot be established. It is also clear that the thermal performance 

difference between models is of reduced significance when comparing these 

designs. This is because the result values are similar and in some cases identical.  

Models’s Design Effect - Thermal Performance According with Seasonal Loads 

 SplitLevel01 SplitLevel02 SplitLevel03 SplitLevel04 SplitLevel05 

Slope Integration 
     

W
in

te
r/A

ut
um

n 0° & 10° 
 1 2** 4** 3** 5 

5°  
 

1 5 4 3 2 

15°  1 3** 4** 2** 5 

20° 
 1 4** 3** 2** 5 

Sp
rin

g 

0° 
 

5** 4** 2** 3** 1** 

5° 
 

1 3 5 4 2 

10°  1 2** 5 3** 3** 

15°  1 4 2 3 5 

20° 
 

1 5** 2 3** 3** 

Su
m

m
er

 

0° 
 

5 4 2 3 1 

5° 
 

1 3 5 4 2 

10°  1 2 5 4** 3** 

15° 
 

1 4** 3** 2 5 

20° 
 

1 5 2 3 4 

Scale* ß   Scale 1 to 5   à 

*  Performance Scale 1 to 5 (1= Best performance & 5= Worst performance); **Equal or similar results at autumn. 
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8.2.3. Findings and Conclusions 

Concerning the effect of slope-integration, it is found that higher the slope the better 

the thermal performance of each model, with average annual savings percentage of 

up to 25.61%. Consequently, it is concluded that slope-integration can improve the 

thermal performance of these models. It is also observed that the average annual 

savings amplitude is greater for 5°, 10° and 15° slopes, with correspondent values 

of 7.51%, 6.46% and 8.1%. For a 20° slope the value is just 3.54% higher than a 

15° slope. The seasonal analysis of slope effects reveals that, during all seasons, 

the performance of all models from SL01 to SL04 improved with the level of slope. 

With Model SL05, the above pattern is only found in spring and summer, as during 

winter and autumn the pattern changes. 

Observing the design effect, for slope integrations of 0° to 20° it is found that the 

number of split-levels can affect buildings annual thermal performance. It is 

identified that the higher the number of split-levels, the worse the results. Model 

SL01 is the most efficient model, with average savings up to 14.13% in comparison 

with Model SL05, which is the less efficient model, and produces annual savings of 

0.79%. Therefore, it is concluded that a slope design with split-levels should be used 

only if required. As for a ‘gradual’ zone division and distribution, this should be used 

in a reduced number of levels. Between models with equal number of split-levels, 

such as Model SL02, SL03 and SL04, the annual and seasonal thermal 

performance is mixed and the results are similar. Overall, the level size and position 

of the split-level is found to be irrelevant to the models’ thermal performance. 
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8.3. SLOPE BUILDING DESIGN 

As previously discussed in Chapter 4, Section 4.4.2., there are several design 

solutions when approaching a slope site. This section further explores these 

solutions, by focusing on site inspired and special designs. It compares four models 

with slope building designs and a model without slope design. The slope buildings 

designs used in this section are based on three types of slope design, namely spilt 

level, amends section, and cascade or step-hill. Examining the efficiency of these 

models, this section addresses two main questions: firstly, how these designs are 

affected by site slope degree and, secondly, which slope buildings designs are the 

most thermally efficient. 

8.3.1. Models Description and Levels of Slope Integration 

The five models used in this part of the study share the same total area, equal 

number of zones and unit area as those in Table 8.17. The designs used are a basic 

single form model (Model SlopeBD 01), a split level model (Model SlopeBD 02), a 

cascade model with independent units (SlopeBD 03), a cascade model with 

connected units (SlopeBD 04), and the last model is an amended section structure 

(SlopeBD 05).  

Table 8.17: Models characteristics – Slope Building Design study 
Model Name SlopeBD 01 SlopeBD 02 SlopeBD 03 SlopeBD 04 SlopeBD 05 

Models 

     
Slope Building 
Desin Type - Split-level Cascade or Step-hill; 

disconected units 
Cascade or Step-
hill; linked units 

Amended  
Section 

Total Area (m2) 168 168 168 168 168 

Zone N. 3 3 3 3 3 

Unit Area (m2) 56 56 56 56 56 

Unit Perimeter (m) 30 30 30 30 30 

Ratio A/P 1.87 1.87 1.87 1.87 1.87 
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The models’ dimensions, slope integration and correspondent reference name are 

listed in the Table 8.18. 

Table 8.18: Models details – Slope Building Design study 

This study uses slope integration levels from null (0°) up to 50°, with 10° intervals 

between each level, as illustrated in Table 8.19. The maximum wall depth with 

ground contact goes up to 8 m according to the design of each model, as well as the 

type of slope. All model simulations assume that the roofs of the buildings have full 

sun and wind exposure. 

 Models Dimensions Slope Integration Ref. Name 

 S
lo

pe
B

D
 0

1 

 

0° Slope SlopeBD01_00° 

10° Slope SlopeBD01_10° 

20° Slope SlopeBD01_20° 

30° Slope SlopeBD01_30° 

40° Slope SlopeBD01_40° 

50° Slope SlopeBD01_50° 

Sl
op

eB
D

 0
2 

 

0° Slope SlopeBD02_00° 

10° Slope SlopeBD02_10° 

20° Slope SlopeBD02_20° 

30° Slope SlopeBD02_30° 

40° Slope SlopeBD02_40° 

50° Slope SlopeBD02_50° 

Sl
op

eB
D

 0
3 

 

0° Slope SlopeBD03_00° 

10° Slope SlopeBD03_10° 

20° Slope SlopeBD03_20° 

30° Slope SlopeBD03_30° 

40° Slope SlopeBD03_40° 

50° Slope SlopeBD03_50° 

Sl
op

eB
D

 0
4 

 

0° Slope SlopeBD04_00° 

10° Slope SlopeBD04_10° 

20° Slope SlopeBD04_20° 

30° Slope SlopeBD04_30° 

40° Slope SlopeBD04_40° 

50° Slope SlopeBD04_50° 

Sl
op

eB
D

 0
5 

 

0° Slope SlopeBD05_00° 

10° Slope SlopeBD05_10° 

20° Slope SlopeBD05_20° 

30° Slope SlopeBD05_30° 

40° Slope SlopeBD05_40° 

50° Slope SlopeBD05_50° 



Chapter 8 - Case Studies: Slope Integration  

 
-230- 

Table 8.19: Level of slope integration – Slope Building Design study with slope integration 

 

8.3.2. Results Analysis 

8.3.2.1. Annual Results 

 

 
Figure 8.6: Slope effect on Slope Buildng Design models’ total annual load 

Regarding the slope integration effect, observable in Figure 8.6, for all models it was 

found that the total annual loads decrease according with slope, and therefore the 

higher the slope, the lower the annual load of each model. Consequently, the least 

efficient thermal performances are found with the null slopes and the most efficient 

are achieved with the highest gradients, which correspond to 50° slopes. However, 

it can be seen that between a 30°, a 40°, and a 50° slope the results gap is almost 

negligible. For this reason, the use of slopes between 30° up to 50° should be 

Levels of Slope Integration 

 

Maximum Walls 
Depth 

0° Slope 
 

0 m 

10° Slope 
 

Up to 8 m  

20° Slope 
 

30° Slope 
 

40° Slope 
 

50° Slope 
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considered against other factors, since there are not any noticeable advantages in 

using steeper slopes. 

Table 8.20: Slope Building Design models’ annual thermal performance according with slope 
integration 

The annual slope integration effect pattern is reiterated in the results provided in 

Table 8.20, which provides a summary of the results of all models by using a 

performance scale which runs from best (1) to worst (6). Table 8.21 shows the 

annual savings percentage for each model according with the slope level.  

Table 8.21: Slope Building Design models’ annual savings percentage according with slope 
integration 

Slope Effect - Annual Savings (%) per Model 

Models 

Levels of Slope Integration 

0° 10° 20° 30° 40° 50° 

      

SlopeBD01 
 

0.00 18.81 28.03 32.43 35.09 36.35 

SlopeBD02 
 

0.00 4.65 19.27 27.58 32.26 33.53 

SlopeBD03 
 

0.00 1.93 5.23 15.81 17.22 17.63 

SlopeBD04 
 

0.00 2.22 3.85 11.00 15.22 16.97 

SlopeBD05 
 

0.00 4.17 7.07 10.47 13.50 15.93 

Average Savings % per Slope Integration 0.00 6.36 12.69 19.46 22.66 24.08 

Average Increase Range % 0.00 6.36 6.33 6.77 3.2 1.42 

The results in both Table 8.20 and Table 8.21 indicate that slope integration does 

improve the thermal performance of every model, and it is argued that the higher the 

slope, the better the models’ results. The annual average savings can be of up to 

Annual Slope Effect - Models Thermal Performance According with Slope Integration 

 0° Slope 10° Slope 20° Slope 30° Slope 40° Slope 50° Slope 

 
      

6 5 4 3 2 1 

ß   Scale 1 to 6   à 

*  Performance Scale 1 to 6 (1= Best performance & 6= Worst performance). 
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24.08% with a 50° slope. From a null slope up to a 30° slope, for each 10° the 

average savings difference is around 6.5%. These values drop to 3.2% for 30° to 

40° slope, and to 1.42% for 40° to 50° slope.  

Table 8.22: Annual thermal performance comparison between all Slope Building Design 
models’ design – for all slopes 

The design effect produced by slope building designs can be observed in Table 

8.22, which provides the annual savings value for each model, compared with each 

model’s level of slope lintegration. The amend section design, which corresponds to 

Model SlopeBD 05, has the best performance, with an average annual savings of 

18.54%. These values are followed by the single level Model SlopeBD 01, which 

reaches 15.74%, Model SlopeBD 04 with a cascade with connected units, which 

achives 13.75%, the spit level Model SlopeBD 02 that produces savings of 10.67%, 

and lastly the cascade design with independent unit, Model SlopeBD 03, which 

achives the worst results. However it should be noted that the performance pattern 

of each model is different for a null slope. In this case, all models with slope building 

design produce better results that the single level Model SlopeBD 01. 

Design Effect - Models' Annual Savings (%) per Slope Integration and Models Overall Performance 

Models 

Levels of Slope Integration Overall Results 

S
ca

le
* 

0° 10° 20° 30° 40° 50° 
Average 
Savings* Perfor.** 

      

SlopeBD01 
 

0.00 14.92*s 21.96 17.52 19.42 20.59 15.74 = 2 

ß
  1

 to
 5

  à
 

SlopeBD02 
 

1.27 1.36 13.58*s 12.72 16.97*s 18.12*s 10.67 = 4 

SlopeBD03 
 

2.69 0.00 0.00 0.00 0.00 0.00 0.45 = 5 

SlopeBD04 
 

17.10 15.05*s 13.57*s 9.93 12.75 14.12 13.75 = 3 

SlopeBD05 

 

21.51 21.18 20.92 14.23 15.72*s 17.68*s 18.54 = 1 

* Average annual savings % per model; ** Performance Scale 1 to 5 (1= Best performace & 5= Worst 
performance); *s Equal or similar results. 
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8.3.2.2. Seasonal Results 

  
Figure 8.7: Slope effect on model’ monthly average loads per season –SlopeBD 01 

Looking at the seasonal results produced by Model SlopeBD 01 (Figure 8.7), a main 

pattern for all seasons can be observed: the steeper the slope the better the results 

of all models. It should be pointed out that greater results are found between 0° to 

30° slopes. The results differences between 30° to 50° slopes are narrowed down in 

all seasons with almost identical results during winter and spring. This pattern is 

found in the performance of most models and is displayed in Table 8.23. 

Table 8.23: Slope Building Design models’ season thermal performance according with 
slope integration 

Season Slope Effect - Models Season Results According with Slope Integration 

Season and Models 
0° 

Slope 
10° 

Slope 
20° 

Slope 
30° 

Slope 
40° 

Slope 
50° 

Slope 

      

W
in

te
r 

SlopeBD 
01, 02 & 04  

6 5 4 3** 2** 1** 

SlopeBD 03 
 

6 5 4 1** 1** 3** 

SlopeBD 05 
 

6 5 4 3** 1** 2** 

Sp
rin

g 

SlopeBD 
01& 02  

6 5 4 3** 1** 1** 

SlopeBD03 
 

6 5 4 3** 1** 2** 

SlopeBD 04 
& 05  

6 5 4 3** 2** 1** 

Summer – All models 6 5 4 3 2 1 

A
ut

um
n 

SlopeBD 
01, 02, 04 & 

05  
6 5 4 3 2 1 

SlopeBD 03 
 

6 5 4 3** 1** 2** 

Scale* ß   Scale 1 to 6   à 

* Performance Scale 1 to 6 (1= Best performance & 6= Worst performance); **Equal or very similar results. 

Levels	
  of	
  
Ground	
  

Integration	
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The performance summary provided by the above table shows that models’ results 

improve with slope increases for slopes from 0° to 30°. However during spring, 

autumn, and winter each model produces a distinct pattern with 30° to 50° slopes 

and, once more, the models results are similar. It should be emphasised that during 

these seasons, the difference between the results of most models is minimal, and 

consequently the thermal advantages of using steeper slopes such as 40° or 50° is 

reduced. 

Table 8.24: Comparison between all Slope Building Design models’ design – Seasonal loads 

The complexity of these results increases when comparing the performance of all 

models according with slope degree. Looking into Table 8.24 and summarising the 

results of all models from best (1) to worst (5), it becomes evident that the 

Models’s Design Effect - Thermal Performance According with Seasonal Loads 

 SlopeBD01 SlopeBD02 SlopeBD03 SlopeBD04 SlopeBD05 

Slope Integration 
     

W
in

te
r 0°  5** 3** 3** 2 1 

10° to 
50°  

3 4 5 2 1 

Sp
rin

g 

0°  4** 3** 5** 1 2 

10°  1 4 5 2 3 

20°  1 2 5 3 4 

30°  1 2 4** 3 5** 

40°  1** 1** 4** 3** 4** 

50°  1** 1** 5 3** 4** 

Su
m

m
er

 

0°  5 4 3 1 2 

10°  1 5 4 2 3 

20°  1 2 5 3** 4** 

30°  1 2 3 4 5 

40° & 
50°  1** 1** 4 3 5 

A
ut

um
n 

0°  5 4 3 2 1 

10°  3 4 5 2 1 

20°  2 4 5 3 1 

30°, 40° 
& 50°  2** 4** 5 3** 1 

Scale* ß   Scale 1 to 5   à 

* Performance Scale 1 to 5 (1= Best performance & 5= Worst performance); **Similar results. 
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performance of these models varies between seasons. For all slopes, the single 

floor model without slope design (Model R SlopeBD 01) has a medium performance 

in winter, and achieves the best results in spring and summer with slopes of 10° to 

50°. The split-level Model SlopeBD 02 produces the best results also during spring 

and summer with slopes of 40° and 50°. Therefore, both Model SlopeBD 01 and 

SlopeBD 02 can be used as part of a cooling strategy. Model SlopeBD 02 and 

SlopeBD 03 have poor results in winter and autumn. 

The thermal performance of Model SlopeBD 04 is the most stable throughout the 

year. This cascade design with connected units also achieves the best results at 

spring and summer for 10° slopes. The performance of SlopeBD 05 is the most 

consistent throughout all seasons, as it produces the lowest energy need in winter 

and autumn. However its overall performance during spring and summer is 

moderate. If construction costs and issues are to be taken to account, this amended 

section design becomes the best slope building design choice. 

8.3.3. Findings and Conclusions 

This section demonstrates that slope integration can affect the thermal performance 

of building models. In general, the steeper the slope, the better the models’ 

performances. The annual average savings can be of up to 24.08% with the highest 

slope. However it is found that between 0° to 30° slope for each 10° the average 

savings difference is approximately 6.5%, while for slope 30° to 50° the results 

difference is small. The average savings difference is of 3.2% for a 30° to 40° slope, 

and it falls to 1.42% between 40° and 50° slopes. For this reason, the use of 40° 

and 50° slopes might not bring many thermal benefits. When looking at the results 

produced in all seasons it is found that during spring, autumn, and winter and for 

slopes of between 30° and 50°, each model produces a distinct pattern and, again, 

all models produce similar results values.  
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Regarding the design effect produced by slope building designs the author found 

that the best design structure results is the amended section, Model SlopeBD 05, 

with average annual savings of 18.54%. The efficiency of this design is followed by 

the single floor Model SlopeBD 01 with 15.74%, the cascade with connected units 

Model SlopeBD 04 with 13.75%, the split-level Model SlopeBD 02 with 10.67% and, 

lastly, the cascade with independent units Model SlopeBD 03 with 0.45%. It is also 

found that for a 0° slope all models designed for slopes are more efficient than the 

model without a slope design. 
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8.4. CONFIGURATIONS 

This part of the study explores how different configurations perform against each 

other, and what patterns of thermal performance are produced when these 

configurations are simulated as integrated into slopes of different degrees of 

steepness. The numbers of building configurations are vast and dependent on 

creativity and project restrictions. Therefore, in this section, six design variations are 

studied in order to produce a sample of how different configurations designs for 

slope integration can impact the thermal performance of a building. The 

configurations are based on amend and cascade or step-hill sections.  

8.4.1. Models Description and Levels of Slope Integration 

All six models’ designs are variations of the single floor Model Confg 01. The 

models’ configurations share the same unit number and area. The units are 

distributed along the models depth with distinctive positions, as provided in Table 

8.25. The number of floors varies from a minimum of one to a maximum of three.  

Table 8.25: Models characteristics – Configuration study 

Details such as dimensions, level of slope integration, and use reference name for 

each simulation are displayed in Table 8.26. 

 

Model Name Confg 01 Confg 02 Confg 03 Confg 04 Confg 05 Confg 06 

Models 

      
Slope Building 
Desin Type - Amended  

Section 
Amended  
Section 

Cascade or 
Step-hill 

Cascade or 
Step-hill 

Cascade or 
Step-hill 

Total Area (m2) 168 168 168 168 168 168 

Floor N. 1 2 2 2 3 2 

Zone N. 4 4 4 4 4 4 

Unit Area (m2) 42 42 42 42 42 42 

Unit Perimeter (m) 26 26 26 26 26 26 

Ratio A/P 1.61 1.61 1.61 1.61 1.61 1.61 
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Table 8.26: Models details – Configuration study 

This particular case study considers six levels of slope integration, which range from 

a null slope (0°) up to a 50° slope, using intervals of 10°. The maximum wall depth 

for surfaces with direct ground contact is dependent on model design and slope 

 Models Dimensions Slope Integration Ref. Name 

C
on

fig
ur

at
io

n 
01

 

 

0° Slope Confg01_00° 

10° Slope Confg01_10° 

20° Slope Confg01_20° 

30° Slope Confg01_30° 

40° Slope Confg01_40° 

50° Slope Confg01_50° 

C
on

fig
ur

at
io

n 
02

 

 

0° Slope Confg02_00° 

10° Slope Confg02_10° 

20° Slope Confg02_20° 

30° Slope Confg02_30° 

40° Slope Confg02_40° 

50° Slope Confg02_50° 

C
on

fig
ur

at
io

n 
03

 

 

0° Slope Confg03_00° 

10° Slope Confg03_10° 

20° Slope Confg03_20° 

30° Slope Confg03_30° 

40° Slope Confg03_40° 

50° Slope Confg03_50° 

C
on

fig
ur

at
io

n 
04

 

 

0° Slope Confg04_00° 

10° Slope Confg04_10° 

20° Slope Confg04_20° 

30° Slope Confg04_30° 

40° Slope Confg04_40° 

50° Slope Confg04_50° 

C
on

fig
ur

at
io

n 
05

 

 

0° Slope Confg05_00° 

10° Slope Confg05_10° 

20° Slope Confg05_20° 

30° Slope Confg05_30° 

40° Slope Confg05_40° 

50° Slope Confg05_50° 

C
on

fig
ur

at
io

n 
06

 

 

0° Slope Confg06_00° 

10° Slope Confg06_10° 

20° Slope Confg06_20° 

30° Slope Confg06_30° 

40° Slope Confg06_40° 

50° Slope Confg06_50° 
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degree, and can go up to 8 m. Table 8.27 illustrates the models’ slope integration 

levels used in this study. 

Table 8.27: Level of slope integration – Configuration study with slope integration 

 

8.4.2. Results Analysis 

8.4.2.1. Annual Results 

 

 
Figure 8.8: Slope effect on Configuration models’ total annual load  

The simulation results in Figure 8.8 and summarised in Table 8.28 show that for all 

configurations the higher the slope level the more efficient the annual thermal 

performance of each model. However, as observed in the previous studies 

presented, it is clear that between 30°, 40° and 50° slopes the results produced are 

similar.  

Levels of Slope Integration 

 

Maximum 
Walls Depth 

0° Slope 
 

0 m 

10° Slope 
 

Up to 8 m 

20° Slope 
 

30° Slope 
 

40° Slope 
 

50° Slope 
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Table 8.28: Cofiguration models’ annual thermal performance according with slope 
integration 

The annual saving percentages produced by the slope effect are displayed in Table 

8.29. The highest savings are produced by a 50° slope, with an average value of 

23.18%. However, the average range difference between slopes decreases when 

the slope level is increased.  

Table 8.29: Configuration models’ annual savings percentage according with slope 
integration 

Slope Effect - Annual Savings (%) per Model 

Models 

Levels of Slope Integration 

0° 10° 20° 30° 40° 50° 

      

Confg 01 
 

0.00 18.70 27.30 29.72 32.08 33.27 

Confg 02 
 

0.00 10.32 17.78 19.67 20.25 20.60 

Confg 03 
 

0.00 6.66 10.29 14.41 16.15 18.94 

Confg 04 
 

0.00 4.30 12.84 20.41 24.11 25.52 

Confg 05 
 

0.00 1.80 6.09 12.19 13.76 15.62 

Confg 06 
 

0.00 1.56 10.36 17.92 23.46 25.15 

Average Savings % per Slope Integration 0.00 7.22 14.11 19.05 21.63 23.18 

Average Increase Range % 0.00 7.22 6.89 4.94 2.58 1.55 

It is visible that for a slope of between 0° and 10° the range of the average increase 

in thermal performance is 7.22%, which corresponds to the highest value, and 

between 40° and 50° slopes the thermal performance increases by only 1.55%, the 

lowest comparative increase. Therefore, all models benefit from any slope 

Annual Slope Effect - Models Thermal Performance According with Slope Integration 

 0° Slope 10° Slope 20° Slope 30° Slope 40° Slope 50° Slope 

 
      

6 5 4 3 2 1 

ß   Scale 1 to 6   à 

*  Performance Scale 1 to 6 (1= Best performance & 6= Worst performance). 
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integration, but the lowest slope levels produce the greater impact on the thermal 

performance of a model.  

Table 8.30: Annual thermal performance comparison between all Configuration models’ 
design – for all slopes  

The models’ design effect can be compared by consulting Table 8.30. This table 

displays the average annual energy saving percentage per model for each level of 

slope integration. The table also presents the overall average savings percentage 

per model and the overall performance, which is displayed on a scale running from 

best (1) to worst (6).  

By comparing these results, It is found that Model Conf 05 produces the best total 

annual loads with average savings of 17.79%. The results produced by this  three 

floor design is followed by Models Confg 03 and Confg 04. Both these models share 

the same number of floors and similar results, with corresponding average savings 

of 10.21% and 8.10%. It can be observed that while Model Confg 03 produces 

better performances with shallower slopes (0° to 20°), Model Confg 04 achives the 

best performances with steeper slopes (30° to 50°).  

 Design Effect - Models' Annual Savings (%) per Slope Integration and Models Overall Performance 

Models 

Levels of Slope Integration Overall Results 

S
ca

le
* 

0° 10° 20° 30° 40° 50° 
Average 
Savings* Perfor.** 

      

Confg 
01 

 
0.00 6.57 8.25 5.69 8.20 9.41 6.35 = 4 

ß
  1

 to
 6

   
à

 

Confg 
02 

 

7.23 4.39 3.74 0.00 0.00 0.00 2.56 = 6 

Confg 
03 

 
18.21 12.26 7.40 6.07 7.30 9.99 10.21 = 2 

Confg 
04 

 

12.53 3.80 3.80 6.59 10.28 11.57 8.10 = 3 

Confg 
05 

 

27.98 18.72 11.33 15.15 16.06 17.51 17.79 = 1 

Confg 
06 

 
11.60 0.00 0.00 2.64 8.55 10.18 5.50 = 5 

* Average annual savings % per model; ** Performance Scale 1 to 6 (1= Best performace & 6= Worst performance). 
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The less efficient results are achieved by Model Confg 02, with 2.56%, and Model 

Confg 06, with 5.50%. It is relevant to point out that most configurations integrated 

into slopes of 30° to 50° produced similar results. This leads the author to argue that 

design effect is more relevant with shallower slopes then with higher ones. 

8.4.2.2. Seasonal Results 

 
Figure 8.9: Slope effect on model’ monthly average loads per season – Configuration 01 

In Figure 8.9, the monthly average loads per season for Model Confg 01 show two 

main patterns, which are present with all models results. These patterns are 

summarised in Table 8.31.  

Firstly, during summer and autumn, the thermal performance of all models improves 

when the slope degree is increased. The only exception to this pattern is Model 

Confg 02 during the autumn season. Therefore, during those seasons the higher the 

slope degree, the better the thermal performance of all models. 

Secondly, during winter and spring the performance behaviour differs from model to 

model. In some cases, integration into a 20°, a 30° or a 40° slope produces the best 

results during winter. Consequently, the highest slopes might not provide the best 

thermal performance solution. Moreover, during both seasons, the models’ results 

reinforced the annual findings, since between 30° and 50° slopes most results are 

similar, producing little or no improvement in thermal performances. 

 

Levels	
  of	
  
Ground	
  

Integration	
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Table 8.31: Configuration models’ season thermal performance according with slope 
integration 

A good example of contrasting results of direct ground contact per season is Model 

Confg 01. In Table 8.32 it is possible to see that this model does not perform well 

during the coldest seasons – in actual fact it had the worst performance and winter 

but it achieved the best results during spring and summer. This is not just because 

of the model’s design, but also because of the large ground integration surface area 

generated by its slope integration. For this climate a good balance between 

structural elements with direct ground contact and solar exposure is essential to 

produce a better thermal performance.  

Comparing the results generated by Models Confg 03 and Confg 04 it is clear that 

the performance of Confg 03 is superior during winter and autumn, which makes it a 

better design to use as part of a heating strategy. Nonetheless, the results of Model 

Season Slope Effect - Models Season Results According with Slope Integration 

Season and Models 
0° Slope 10° Slope 20° Slope 30° Slope 40° Slope 50° Slope 

      

W
in

te
r 

Confg01 & 
04  

6 5 4 3** 2** 1** 

Confg02 
 

6 2 1 3** 4** 5** 

Confg03 
 

6 3 1 2 4** 4** 

Confg05 
 

6 5 4 1 2** 2** 

Confg06 
 

6 5 4 3 1** 2** 

Sp
rin

g 

Confg01, 
04, 05 & 06  

6 5 4** 3** 2** 1** 

Confg02 
 

6 5 1** 2** 3** 3** 

Confg03 
 

6 5 4 2** 2** 1** 

Summer – All models 6 5 4 3 2 1 

A
ut

um
n 

Confg01, 
03, 04, 05 

& 06 
 

6 5 4 3 2 1 

Confg02 
 

6 5 4** 1** 2** 2** 

Scale* ß   Scale 1 to 6   à 

* Performance Scale 1 to 6 (1= Best performance & 6= Worst performance); **Equal or very similar results. 
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Confg 04 are more stable throughout the year. Regarding Model Confg 05, the 

model is able to produce the best results during winter and autumn. However, it is 

also noticed that during spring and summer Model Confg 05 also produces effective 

results with shallower slopes, such as those of 0° to 20°.  

Table 8.32: Comparison between all Configuration models’ design – Seasonal loads 

8.4.3. Findings and Conclusion 

It is found that the thermal performance of the models is affected by the degree of 

slope integration and that the average annual savings of these models can go up to 

Models’s Design Effect - Thermal Performance According with Seasonal Loads 

 Confg01 Confg02 Confg03 Confg04 Confg05 Confg06 

Slope Integration 

      

W
in

te
r 

0° & 20°  6 5 2 3 1 4 

10°  6 4 2 3 1 5 

30°  5 6 2 3 1 4 

40°  5 6 2 3 1 2 

50°  4 5 5 3 1 2 

Sp
rin

g 

0°  6 5 2 4 1 3 

10°  1 4 3 5 2 6 

20°  1 2 6 3 3 5 

30°  1 5 3 2 4 5 

40°  1 5 4 2 3 3 

50°  1 5 5 2 4 3 

Su
m

m
er

 

0°  6 5 2 4 1 3 

10°  1 3 3 5 2 6 

20°  1 3 6 4 2 5 

30°  1 2 6 3 5 4 

40°  1 3 6 2 5 4 

50°  1 3 3 2 6 5 

A
ut

um
n 

0°  6 5 2 3 1 4 

10°  5 4 2 3 1 6 

20°  4 5 2 3 1 6 

30°  5 6 2 3 1 4 

40°  5 6 3** 2** 1 4 

50°  4 5 5 2 1 3 

Scale* Scale* 

* Performance Scale 1 to 6 (1= Best performance & 6= Worst performance); **Similar results. 
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23.18% with integration into a 50° slope. The author therefore concluded that for all 

model designs the higher the ground integration of a model, the better its annual 

thermal performance.  

It is also noted that the average increase range between slopes is greater between 

shallower slopes and decreases when slope degree increases. Therefore any level 

of slope integration produces energy savings, but the lowest slope levels produce a 

greater impact. For slopes of between 0° and 10°, the thermal performance of the 

models increases by 7.22%, while for 40° to 50° slope this value falls to 1.55%. This 

saving range decrease means that the results produced with integrations into slopes 

of between 30° and 50° are similar. The results produced by these slopes show that 

using the steepest slopes does not provide much advantage. The author therefore 

concluded that a 30° to 40° slope is preferable to a slope of 50°. 

Regarding the design effect it is found that it is more relevant on the building thermal 

performance with shallower slope integrations then with steeper ones. This is 

because most configurations integrated on 30° to 50° slopes generate similar 

results. Model Confg 05 achieves the best annual thermal performance with average 

savings of 17.79%. This is followed by Model Confg 04 with 10.21% and Confg 03 

with 8.10%.  

The seasonal analysis shows that during summer and autumn the higher the slope 

degree the better is the models thermal performance, as during these seasons the 

steepness of the slopes into which they are integrated exerts a larger influence on a 

models performance. It is found that the influence of the design in the model thermal 

performance is higher with shallower slopes and important mainly during winter and 

spring. In winter and spring the behaviour of the results differ according with the 

model being studied. Furthermore, the steepest slopes did not always produce the 
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best results. In some models, shallower slopes such as 20°, 30° or 40° are more 

efficient, and integrations into 30°, 40° and 50° slopes produced similar values.  

Model Confg 05 produces the best results during winter and autumn, and shows 

stable results in spring and summer with shallower slopes; the configuration of 

Model Confg 03 is a good design solution as part of a heating strategy, while Confg 

04 proved to be the most stable model throughout the year. Model Confg 05 had the 

best annual results, but these results are closely related to its large number of floors. 

In order to access these results, this model is used in Section 8.5 where it is 

compared against models with the same number of floors. 
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8.5. DIFFERENT CROSS SECTION STRUCTURES 

Slope building designs such as cascade and amended sections can have many 

vertical cross section shapes. This section explores several vertical structures 

variations, in order to verify more closely how these two site integrations designs 

can affect buildings thermal performance.  

8.5.1. Models Description and Levels of Slope Integration 

This section presents a case study that compares five cross section structure 

configurations. As presented in Table 8.33, the case study uses two amended 

section structures, Model CrossSec 01 and CrossSec 02, and three cascade 

sections as a Γ shape, a semi step-hill and a step-hill, which correspond to Model 

CrossSec 03, CrossSec 04 and CrossSec 05, respectively. Although the total area 

is kept the same, the unit area distribution between levels differs, and all models 

share the same number of floors. 

Table 8.33: Models characteristics – Different cross section structure study 
Model Name Models Slope 

Building 
Desin Type 

Total Area 
(m2) 

Floor 
N. 

Zon
e N. 

Unit Area 
(m2) 

Unit 
Perimeter 

(m) 

Ratio 
A/P 

CrossSection01 

 

Amended 
Section 168 3 3 

28 22 1.27 

56 30 1.86 

84 38 2.21 

CrossSection02 

 

Amended 
Section 168 3 3 

42 26 1.61 

42 26 1.61 

84 38 2.21 

CrossSection03 

 

Cascade;  Γ 
Shape  

168 3 3 

42 26 1.61 

56 30 1.86 

70 34 2 

CrossSection04 

 

Cascade; 
semi-step 

hill 
168 3 3 

42 26 1.61 

84 38 2.21 

42 26 1.61 

CrossSection05 

 

Cascade; 
step hill 168 3 3 

56 30 1.86 

56 30 1.86 

56 30 1.86 
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The models details such as dimensions, orientation, slope integration and reference 

name for each individual simulation are listed in Table 8.34. 

Table 8.34: Models details – Different cross section structure study 

Although the case studies presented in Sections 8.3 and 8.4 show that the results 

produced by integration with slopes of between 30° to 50° are similar, the models 

slope designs for the case study of this section can be integrated into steeper 

slopes. For this reason the case study uses steep slopes of 30°, 40° and 50° and a 

null (0°) level of slope integration. With the null inclination the buildings are above 

the ground, with some north facing walls with direct ground contact. For all models 

the maximum wall depth can go up to 8 m and it is dependent on slope degree and 

the design of the model (Table 8.35). 

 Models Dimensions Slope Integration Ref. Name 

C
ro

ss
 S

ec
tio

n 
01

 

 

0° Slope CrossSec01_00° 

30° Slope CrossSec01_30° 

40° Slope CrossSec01_40° 

50° Slope CrossSec01_50° 

C
ro

ss
 S

ec
tio

n 
02

 

 

0° Slope CrossSec02_00° 

30° Slope CrossSec02_30° 

40° Slope CrossSec02_40° 

50° Slope CrossSec03_50° 

C
ro

ss
 S

ec
tio

n 
03

 

 

0° Slope CrossSec03_00° 

30° Slope CrossSec03_30° 

40° Slope CrossSec03_40° 

50° Slope CrossSec03_50° 

C
ro

ss
 S

ec
tio

n 
04

 

 

0° Slope CrossSec04_00° 

30° Slope CrossSec04_30° 

40° Slope CrossSec04_40° 

50° Slope CrossSec04_50° 

C
ro

ss
 S

ec
tio

n 
05

 

 

0° Slope CrossSec05_00° 

30° Slope CrossSec05_30° 

40° Slope CrossSec05_40° 

50° Slope CrossSec05_50° 
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Table 8.35: Level of slope integration – Cross Section Structure study with slope integration 

 

8.5.2. Results Analysis 

8.5.2.1. Annual Results 

 
Figure 8.10: Slope effect on Cross Section Structure models’ total annual load 

The analysis of the total annual loads results shows that all models are affected by 

slope integration. As can be seen in Figure 8.10, increasing the steepness of the 

slope generates an improvement of the models thermal performance, and therefore 

the highest slope (50° slope) generates the best thermal performances. This pattern 

was found with all cross section models results and it is summarised in Table 8.36, 

which use a performance scale running from best (1) to worst (4).  

Levels of Slope Integration 

 

Maximun Walls 
Depth 

0° Slope 

 

8 m 

30° Slope 

 

40° Slope 

 

50° Slope 
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Table 8.36: Cross Section Structure models’ annual thermal performance according with 
slope integration 

Regarding the annual saving potential produced by the slopes (show in Table 8.37), 

it is found that a 50° slope is able to generate average savings of 16.43%, a 40° 

slope generates 14.42% and a 30° slope produces 10.76%. Once again a pattern 

can be seen in these results in which the average increase in thermal performance 

is reduced when the slope degree increases. For slopes of between 30° to 40° the 

thermal performance improves by 3.66%, while from 40° to 50° the values increases 

by 2.01%. It is also noticed a second pattern in the differences in results generated 

by the amended sections Model CrossSec 01 and CrossSec 02 and the cascade 

Model CrossSec 03, CrossSec 04 and CrossSec 05. Each level of slope integration 

is able to produce a higher effect on the amended section models results compared 

with the cascade models. 

Table 8.37: Cross Section Structure models’ annual savings percentage according with 
slope integration 

Slope Effect - Annual Savings (%) per Model 

Models 

Levels of Slope Integration 

0° 30° 40° 50° 

    

CrossSec 01 
 

0.00 13.27 16.66 17.79 

CrossSec 02 
 

0.00 13.43 16.41 18.25 

CrossSec 03 
 

0.00 9.77 13.69 15.95 

CrossSec 04 
 

0.00 8.67 12.66 15.14 

CrossSec 05 
 

0.00 8.65 12.69 15.03 

Average Savings % per Slope Integration 0.00 10.76 14.42 16.43 
Average Increase Range % 0.00 10.76 3.66 2.01 

Annual Slope Effect - Models Thermal Performance According with Slope Integration 

 0° Slope 30° Slope 40° Slope 50° Slope 

 
    

4 3 2 1 

ß   Scale 1 to 4   à 

*  Performance Scale 1 to 4 (1= Best performance & 4= Worst performance). 
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Regarding the design effect, a comparison of the annual energy savings of each 

model is displayed in Table 8.38. These results once again show that both amended 

section designs (Model CrossSec 01 and CrossSec 02) are able to provide better 

thermal performances when compared to all cascade section designs (i.e. Model 

CrossSec 03, CrossSec 04 and CrossSec 05). For the cascade sections, the best 

shape is Γ, followed by the step-hill and lastly the semi step-hill.  

Table 8.38: Annual thermal performance comparison between all Cross Section Structure 
models’ design – for all slopes 

The average savings difference between the amended section Model CrossSec 01 

and CrossSec 02 is of 0.43%, thus reduced and almost identical with a 40° slope, 

As for Model CrossSec 02 and CrossSec 04, which correspond to the best and the 

worst structures, the average savings difference is of 5.29%, and this value 

decreases as slope angle increases. This leads the author to conclude that the 

higher the slope the less impact is provided by the cross section designs. 

It is noted that Model CrossSec 04, which has the worst performance, corresponds 

to the best design presented in Chapter 8 Section 8.3 – that is Model Confg 05. This 

shows that the number of floors strongly affects the thermal potential of these 

models. 

 Design Effect - Models' Annual Savings (%) per Slope Integration and Models Overall 
Performance 

Models 

Levels of Slope Integration Overall Results 

S
ca

le
* 0° 30° 40° 50° 

Average 
Savings* Perfor.** 

    

CrossSec 01 
 

1.73*s 6.68*s 6.23*s 4.80*s 4.86 = 2 

ß
  1

 to
 5

   
à

 CrossSec 02 
 

2.06*s 7.16*s 6.27*s 5.66*s 5.29 = 1 

CrossSec 03 
 

1.12*s 2.31 2.29 2.08 1.95 = 3 

CrossSec 04 
 

0.00*s 0.00 0.00 0.00*s 0.00 = 5 

CrossSec 05 
 

0.69*s 0.66 0.72 0.56*s 0.65 = 4 

* Average annual savings % per model; ** Performance Scale 1 to 5 (1= Best performace & 5= Worst 
performance); *s Equal or similar results. 
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8.5.2.2. Seasonal Results 

 
Figure 8.11: Slope effect on model’ monthly average loads per season – Cross Section 
Structure 01 

The seasonal results analysis indicates that the slope effect produces two main 

patterns. Firstly, the slope degree has a greater effect on the models’ results during 

summer and autumn. It can be observed that for all models, the higher the angle of 

the slope the better the thermal performance of the model. This is observed in 

Model CrossSec 01, exemplified in Figure 8.11 and summarised in Table 8.39 

according with all models’ result performances ranked from best (1) to worst (4).  

Secondly, during winter and spring, almost every model generated its own pattern of 

results. As can be seen in Table 8.39, it is not always the steepest slope that is able 

to produce the best performance. The author emphasise that apart from summer, 

when the results gap between different slope degrees is clearly visible, the 

difference between the results generated by slopes of 30°, 40°, and 50° is normally 

small. Thus, apart from summer, the advantage of using steeper slopes is minimal.  

 

 
 

Levels	
  of	
  
Ground	
  

Integration	
  



Chapter 8 - Case Studies: Slope Integration  

 
-253- 

Table 8.39: Cross Section Structure models’ season thermal performance according with 
slope integration 

  
 

 Season Slope Effect - Models Season Results According with Slope Integration 

Season and Models 
0° Slope 30° Slope 40° Slope 50° Slope 

    

W
in

te
r 

CrossSec 01 
 

4 1** 2** 3** 

CrossSec  02 
 

4 2** 3** 1** 

CrossSec  03 & 05 
 

4 3** 1** 1** 

CrossSec  04 
 

4 3** 2** 1** 

Sp
rin

g 

CrossSec  01 
 

4 3** 1** 2** 

CrossSec  02, 03 
& 05 

 
4** 3** 2** 1** 

CrossSec  04 
 

4 3** 2** 1** 

Summer/Autumn – All models 4 3 2**Aut 1**Aut 

Scale* ß   Scale 1 to 4   à 

• Performance Scale 1 to 4 (1= Best performance & 4= Worst performance);** Equal or similar results; **Aut 
Similar results at autumn. 

Regarding the structural effect, Models CrossSec 01 and CrossSec 02 have the 

best seasonal results as can be observed in Table 8.40. While the amended Model 

CrossSec 01 achieves better performance during spring and summer, the amended 

Model CrossSec 02 achieves the best results during the coldest periods. This leads 

the author to conclude that Model CrossSec 01 is the best structure to use as part of 

a cooling strategy and that Model CrossSec 02 is an ideal slope building design to 

use as part of a heating strategy. Model CrossSec 03 achieves the most stable 

results with a medium performance. 
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Table 8.40: Comparison between all Cross Section Structure models’ design – Seasonal 
loads 

8.5.3. Findings and Conclusions 

The annual results show that all models are affected by slope integration since the 

steeper the slope, the better the thermal performance of the model integrated into it. 

The author found that a 50° slope can produce average annual savings of 16.43%, 

a 40° slope produces 14.42% and a 30° slope is able to generate energy savings of 

10.76%. It is also found that the steeper the slope the lower the impact of the slope 

on savings. This is because the average increase range is reduced as the slope 

angle increases. From a 30° to 40° slope the saving difference is 3.66%, and from a 

40° to 50° slope it is reduced to 2.01%.  

Querying how the vertical cross section, such as the amended and the cascade 

designs, affects the thermal performance of buildings it was found that the amended 

section models produced better results when compared with the cascade section 

models. The average annual savings difference between Models CrossSec 02 and 

Models’s Design Effect - Thermal Performance According with Seasonal Loads 

Slope Integration 
CrossSec01 CrossSec02 CrossSec03 CrossSec04 CrossSec05 

     

0°
 S

lo
pe

 

 

Winter & 
Autumn 

2 1 3 5 4 

Spring 1 2 3 5 4 

Summer 4 5 2 3 1 

30
°S

lo
pe

 

 

Winter & 
Autumn 

2 1 3 5 4 

Spring & 
Summer 

1 2 3 4 5 

40
° 

Sl
op

e 

 

Winter 2 1 3 5 3 

Spring 1 2 3 4 5 

Summer 1 2 3 5 4 

Autumn 2 1 3 5 4 

50
° 

Sl
op

e 

 

Winter 2 1 3 5 3 

Spring 1 2 3 4 5 

Summer 1 2 3 5 4 

Autumn 2 1 3 5 4 

Scale* ß   Scale 1 to 5  à 

Performance Scale 1 to 5 (1= Best performance & 5= Worst performance). 
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CrossSec 04, which correspond to the best and the worst models, is 5.29%, a 

number that only decreases as the slope angle increases. This leads the author to 

conclude that the impact provided by the cross section designs reduce as the angle 

of the slope increases. Regarding the annual performance of the different cascade 

designs, it was found that the best design is Model CrossSec 03 that has a Γ shape, 

followed by Model CrossSec 05 with a step-hill design and lastly, Model CrossSec 

04 with a semi step-hill design.  

The seasonal results show two main patterns produced by the slope effect. During 

summer and autumn the steepness of the slope has a greater effect on models 

results, since the steeper the slope the better the results. In winter and spring these 

patterns change according with model, and the steepnest slope does not always 

produce the best results. The differences between the results generated by 

integration into 30°, 40°, and 50° slopes are normally small, except in summer, 

reducing the advantage of using steeper slopes. The performance of Model 

CrossSec 01 is better during spring and summer and the results produced by 

CrossSec 02 are better during winter and autumn.  
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8.6. CONCLUSIONS 

This chapter analysed the energy saving potential of slope-integrated buildings by 

observing the effect produced by slopes and building design. Regarding the slope 

parameter, all case studies show that the thermal performance of these buildings 

can benefit from integration into slopes off all degrees of steepness. In general, it 

was found that the steeper the slope, the higher the energy savings produced 

through integration into it. However, it was also evident that the average saving 

potential produced by slopes decreases as the angle of the slope increases, which 

means that shallower slopes have greater savings impact. For all studies, building 

design can affect the thermal performance of these models. However, its impact 

decreases as the steepness of that slope increases. Therefore, a greater attention 

to building design is essential with shallower slope-integrations. 

According to the Form study, the average annual saving potential of shallow slopes 

of 5° to 10° is around 6% and 12% each, and for a 20° slope, this saving is of 

24.31%. Regarding the design performance, the two best shapes are Model F03 

and F02, with average annual savings of 16.32% and 14.53% respectively. Through 

the analysis of these seasonal results, it is clear that Model F03 has the best results 

during winter and autumn, and Model F02 is the best shape for spring and summer. 

Therefore Model F03 is the best design for a heating strategy, while Model F02 is 

the best design as part of a cooling strategy. 

The results from the Split Level study, which uses slopes of up to 20°, show that the 

highest slope generates an average increase in annual energy savings of 25.61%. 

Between 0° to 10° the average annual savings amplitude value is 7.51%, while 

between 15° to 20° the value is reduced to 3.54%, indicating that the saving 

potential amplitude decreases as the angle of the slope increases. Regarding the 

effect produced by a slope building design as split-levels, for slope integrations of 
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between 0° and 20° it is clear that the split-levels quantity can affect the thermal 

performances of buildings, since the higher the number of split-levels the worse the 

performance of the model. The average annual savings difference between the best 

and the worst models, corresponding to Model SL01 and SL05, is 14.13%. Overall, 

the author concluded that split-levels slope design should be used cautiously and in 

a small number of levels. However, the position of the split-level within the building 

layout was proved to be irrelevant to the thermal performance of the models. 

The Slope Building Designs case study shows that the annual average savings can 

be up to 24.08% with the steepest slope of 50°. For slopes of between 0° and 30°, 

each 10° increase corresponds to an average saving of approximately 6.5%. 

However for slopes of between 30° and 40° the different in results is 3.2% and it 

falls further to only 1.42% for 40° and 50° slopes. This indicates that the use of 40° 

and 50° slopes might not provide a better thermal benefit than a 30° slope. 

Considering the effect generated by slope building designs it is found that the best 

design structure results is achieved by the amended section. The coresponding 

Model SlopeBD 05 produces average annual savings of 18.54%, when compared 

with the less effective designs. This value indicates how relevant a slope building 

design can be to the thermal performance of a building.  

Concerning the Configuration case study, the slope effect analysis indicate that all 

studied inclinations produce an increase of average annual savings, which can go 

up to 23.18% with a 50° slope. However, the lowest slope levels produce greater 

impacts. This is because the average increase range between slopes is greater 

between shallower slopes and decreases when slope degree increases. Between 0° 

and 10° slopes the range is 7.22%, while for 40° to 50° slopes the value is 1.55%, 

and integrations between 30° to 50° slope generate similar results. This calculation 

leads the author to the conclusion that a 30° to 40° slope is preferable to 50° slope. 
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With regard to design effect, similar results are found on most configurations 

integrated into slopes of between 30° and 50°. This leads the author to conclude 

that design effects have a greater relevance for the thermal performance of 

buildings with shallower slope integrations than those with higher ones. The best 

annual thermal performance is produced by Model Confg 05, with average annual 

savings of 17.79% when compared to the less effective performances. The results 

of this design are followed by Model Confg 03 and Confg 04, with 10.21% and 

8.10% respectively. Model Confg 05, which has the highest number of floors 

produces the best annual results, with a superior performance during winter and 

autumn. Model Confg 03 is a good design solution as part of a heating strategy and 

Confg 04 proved to be more stable throughout the year. 

Through the analysis of these seasonal results, it is clear that during summer and 

autumn the models thermal performance is highly affected by the slope whereas 

during winter and spring, the building design has a greater impact on the thermal 

performances of the models with shallower slope integrations. In winter and spring it 

is also found that the best results do not always correspond to the steepest slopes. 

In some models, shallower slopes such as 20°, 30° or 40° are more effective, and 

slopes integrations with 30°, 40° and 50° generate similar results.  

The Cross Sections Structure case study shows that a 50° slope is able to generate 

annual average saving of 16.43%, while a 40° slope produces 14.42%, and a 30° 

slope 10.76%. As in previous case studies, it is found that steeper the slope the 

lower the energy saving potential increase. Between 30° to 40° slopes the saving 

range is 3.66%, and in 40° to 50° slopes the saving range is 2.01%.  

Regarding the thermal performance difference between a vertical cross section as 

the amended and the cascade designs, it is observable that the amended section 

models produce superior performances. However the author would also point out 
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that the average annual savings difference between the best and worst designs, 

which correspond Models CrossSec 02 and CrossSec 04, is of only 5.29%, and this 

value decreases with the steepest. Therefore, the difference between amended and 

the cascade designs is small and it becomes even less significant when the slope 

increases. 

Lastly, the results of the seasonal analysis show that two patterns are generated. 

Firstly, during summer and autumn, the steeper the slope, the better the thermal 

performance of the models and, consequently, the slope degree has a greater effect 

on models results. Secondly, in winter and spring, the patterns of results change 

according with the model and the steepest slopes do not always produce the best 

results. During winter, spring and autumn the results difference produced by 30° to 

50° slopes is small, something which decreases the advantage of steeper slopes-

integrations. The model CrossSec 01 performance is better during spring and 

summer, while CrossSec 02 is better in winter and autumn. 
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CHAPTER 9. CONCLUSIONS AND FURTHER WORK 
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9. CONCLUSIONS AND FURTHER WORK 

Far from being a new way to control building thermal comfort, ground integrated 

buildings on slope terrains are a long established part of vernacular architecture. 

Examples of urban areas built on hillsides or mountains can be traced all around the 

globe and are one of the earliest settlement configurations, as the case of Mardin 

(Turkey), Alicante (Spain), Santorini (Greece) and Matera (Italy). In most cases, the 

buildings in these settlements are not just constructed over the inclined surface but 

also explore the below ground areas of the site by incorporating part of their 

buildings into the ground. The advantages of ground-integrated buildings are also 

well known. The energy benefits generated by these constructions have been 

researched since the 1970s. However, only a limited number of studies have 

focused on ground-integrated buildings on slope terrains. 

The particular importance of ground-integrated buildings on slopes is due to three 

factors. Firstly, the thermal benefits produced by the actual site are a crucial 

advantage compared to buildings constructed on flat terrain. It is well known that 

topography affects the climate near the ground and, as a consequence of that, 

climate also affects the thermal potential of the ground. In temperate climates, 

buildings constructed on hillsides or mountains can benefit from a more moderate 

climate than buildings constructed on flat or valley sites. Sites on flat land or in 

valleys are typically subject to higher air temperature amplitudes than those on 

hillsides and, therefore, the heating and cooling demands of buildings constructed in 

these locations tend to be higher. Secondly, ground integrated buildings have been 
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identified as ideal to construct on sharply inclined sites. These integrated buildings 

on slopes reduce or even eliminate the risk of flooding, provide better ventilation and 

can offer better view and light access compared to ground integrated buildings 

constructed on a flat site. Thirdly, ground integrated buildings on slopes contribute to 

the efficient use of the available land. The relevance of slope-integrated buildings for 

efficient land use strategies is growing considerably due to two well-known and 

linked factors, the growth of both global and urban populations. On average a flat 

settlement occupies twice the area of a slope settlement with the same 

characteristics. Higher construction density can be achieved in slope terrains without 

compromising solar access and external view.  

The rising world population and the increasing tendency of that population to live in 

urban areas are both contributing to a rapid growth in urban settlements all around 

the globe. The higher demand for construction land and urban infrastructure is 

leading to the appropriation of agricultural land. This practice also intensifies 

forecasted food shortages due to the growing global population. Considering this 

issue, the use of underground areas for construction its one approach that can 

contribute to more efficient land use. Another relevant approach is to construct in 

hillside sites, as these sites are significantly less suitable for farming.  

This thesis explores both approaches in two distinct ways. Firstly, it looks into the 

ground thermal effect produced on buildings with direct ground contact, focusing on 

how buildings are affected by ground integration and terrain inclination. Secondly, 

this study examines the thermal effect produced by building design, looking at 

aspects such as construction shape, number of floors, basements, and courtyards 

and finally slope building designs, particularly the case of spilt level, amended 

section and cascade or step-hill designs. 

This research elucidates on the thermal benefits of ground-integrated buildings on 

slope terrains and this was accomplished by fulfilling the thesis objectives. Initially, 

through the literature review on ground thermal energy, the advantages and 
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disadvantages of ground-integrated architecture and the benefits of slope-integrated 

architecture it was identified a lack of knowledge on how terrain inclination affects 

the ground thermal potential. Furthermore, it also was demonstrate how building 

design can enhance the thermal performance of ground-integrated architecture.  

Consequently, the ground thermal potential on slope terrains was investigated. 

Firstly, the ground thermal potential in Portugal was verified through the study of the 

ground temperature at different depths. This was done by using a mathematical 

model. Secondly, it was demonstrated that terrain inclination affects ground 

temperatures. It was verified how the received annual and seasonal solar radiation 

values at Lisbon are affected by terrain inclination. It was also demonstrated that all 

terrain inclination produce greater ground thermal potential than a flat terrain.  

Thereafter, through comparing three building thermal simulation packages, E+ was 

identified as the simulation tool for investigating ground heat transfer. However it 

was raised the issue that E+ lacks of input parameters such as terrain inclination 

and orientation. Consequently, the comparison between ground-integrated models 

and slope-integrated models should be avoided. Therefore the parametric case 

studies were divided between ground integration and slope integration, and the 

designs were based on the finding from the literature review and Portuguese’ 

average building topology retrieved from statistic data.  

Lastly, the thermal saving potential produced by ground-integration and building 

design was identified, and these findings were therefore used to produce the energy 

efficiency design guidelines provided in this chapter. 
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9.1. SUMMARY OF THE GROUND THERMAL POTENTIAL AND 

THERMAL SIMULATION OF GROUND CONTACT STUDIES 

Ground integrated buildings benefit from ground heating and cooling through direct 

contact. This is based on the heat transfers produced between ground and building 

surfaces. The ground thermal potential is dependent on the temperature difference 

between the ambient air temperature and the ground temperature at a specific 

depth. The ground temperature values are determined by location characteristics 

such as nearby elements and topography in particular altitude, and slope degree 

and orientation. This relation is also affected by the type of soils present on the site 

and external factors such as climate conditions, and in particular air temperature 

and the received solar radiation values. 

9.1.1. Ground Thermal Potential  

The diversity of Portugal’s temperate climates offers a relevant case study to identify 

ground thermal patterns caused by a particular type of temperate climate. Therefore, 

the ground thermal potential in Portugal’s mainland was examined by calculating the 

ground temperatures at six locations and by verifying the impact of different soil 

types. It is found that all locations can benefit from ground thermal potential. Three 

main ground thermal areas are identified in the course of this research.  

The first area includes Oporto and Coimbra and corresponds to the north and 

centre-north littoral regions of Portugal. This area shows great heating potential but 

limited cooling potential. This zone has the highest annual precipitation values and 

has a moderate annual average daily air temperature. The second area includes 

Bragança and Évora and corresponds to the north and centre interior of the country, 

which is the area with the greatest ground thermal potential either for heating or 

cooling. This result is due in large part to the combination of three interrelated 

factors. Firstly, the greater contrast between the annual air temperature values, with 
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very cold winters and very hot summers; secondly, the moderate to high annual 

solar radiation values; and thirdly, the low to moderate annual precipitation values. 

Lastly, the third ground thermal area identified in this thesis includes Lisbon and 

Faro and corresponds to the centre-south and south littoral regions of Portugal. This 

area shows good ground heating potential for both locations; however the ground 

cooling potential at Lisbon is good, while at Faro it is moderate, something that 

results from its considerably milder winters.  

The impact of soil type on ground thermal potential was found to be of minimal 

relevance in locations such as Oporto and Coimbra, which are areas with higher 

annual precipitation. In locations with lower annual precipitation such as Lisbon, 

Évora and Faro, the soil type has a much larger impact on the ground thermal 

potential. For these three locations, sandstone-based soils presented the worst 

ground thermal potential, while heavy clay produced the best thermal results.  

9.1.2. Ground Thermal Potential of Slope Terrains 

Ground temperatures are largely dependent on topographical characteristics such 

as slope degree and orientation. It is generally assumed that the ground thermal 

potential provided by flat and slope terrain are different. To demonstrate this last 

observation this research project presents two studies that were based on the effect 

produced by changing a single parameter, more specifically the solar radiation 

values received according with terrain inclination.  

Initially, the annual and seasonal solar radiation received by slopes between 0° to 

60° in Lisbon were analysed. As expected, the results show that all inclined surfaces 

receive higher annual solar radiation than the flat surface, and the maximum solar 

radiation values were received by a 35° slope. Concerning the seasonal patterns, 

during winter and autumn, the highest slopes receive the greater amounts of solar 
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radiation, while the low and medium low slopes recorded the highest values during 

spring and summer. 

Subsequently, the ground temperatures below different terrain inclinations in Lisbon 

were calculated by using the correspondent received solar radiation values. Firstly it 

is observed that ground temperatures under slope terrains are different from those 

below a flat area. Secondly, the study demonstrates that a slope terrain affects the 

ground temperature of the areas immediately before and after the slope, and 

therefore generates a transitional zone. It was found that all terrain inclinations 

generate greater annual ground thermal potential than flat terrains. Finally, it is 

concluded that 30° to 40° slopes have the optimal inclinations, and therefore provide 

the best annual ground thermal potential. This finding can be applied in other 

locations. As rule of thumb, the terrain inclinations with the greatest annual ground 

thermal potential are close to the latitude of the place. 

Regarding the seasonal patterns results, in January all slope terrains produce higher 

heating potential than flat terrains, and the best heating potential is generated by 

30° and 40° slopes. During April, the best ground thermal potential is provided by 

slopes of between 10° to 40°. In July, the flat terrain has greater cooling potential 

because it generates the lowest ground temperatures. Nevertheless, firstly, all 

terrain inclinations can provide good thermal benefits, and secondly, the higher 

ground temperatures under the slopes show a greater potential of energy storage, 

essential at this location for using during autumn and winter as heating sources for 

ground integrated buildings, when the energy demand is higher. During October, the 

greatest heating potential is provided by a 40° slope.  

9.1.3. Summary of the Thermal Simulation of Ground Contact 

The studies conducted to establish the software and methodology to use for thermal 

simulation of ground contact leads to the conclusion that E+ is the most suitable tool 
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for this research, particularly when compared with other software applications such 

as Ecotect and Tas. Regarding the ground heat transfer of slope integrated 

buildings, it was verified that the E+ Basement auxiliary program lacks input 

parameters such as terrain inclination and orientation. This fact does not reduce its 

ability to be used as a tool to simulate the thermal performance of buildings with 

direct ground contact. However, result comparison between ground integration on 

flat and slope terrains should be avoided. As a consequence, the case studies 

presented in this study were divided in to ground integration and slope integration, 

which are analysed in Chapter 7 and Chapter 8, respectively. 
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9.2. CONCLUSIONS FROM THE GROUND INTEGRATION STUDIES  

9.2.1. Ground Integration Studies 

The ground integration studies examine the impact of direct ground contact on the 

thermal performance of buildings. This is done through the analysis of the annual 

and seasonal results produced by the different levels of ground integration. These 

studies also inspect the effect produced by the models’ design features, and are 

divided in three sections: Forms, Floors and Basement and Courtyard.  

For all three studies, the analysis of the impact of ground integration shows that for 

this climate, the higher the level of ground integration the better the annual thermal 

performance of the models. However, the highest ground integration fails to provide 

the best annual results, showing that during the coldest seasons some source of 

solar gain is necessary. 

Regarding the design impact, the simulations from the Form section of this research 

have confirmed that the precise configuration of a building affects its thermal 

performance. The best building shapes for this climate are found to be the compact 

model and the long model with an East-West axis. Compared with the worst 

performance, which was delivered by the courtyard model, the compact model can 

generate average annual energy savings of 14.14%, and the long model provides 

savings of 13.30%. The main difference between the two forms is that the long form 

has higher benefits as part of a cooling strategy; while the compact form has a more 

stable thermal performance throughout the whole year.  

The Floor study analysis shows that the ground thermal impact is higher for models 

with the lowest number of floors, which is caused by a higher surface area with 

direct ground contact. Concerning the designs impact, the simulation results 

demonstrate that average annual saving difference varies depending upon the 

number of floors, with the compact models saving up to 18.36% and the long form 
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saving up to 13.77%. These values were achieved by the two-floor models. The 

annual savings provided by both compact and long three-floor models follow these 

values. It is verified that for buildings with an equal number of floors, the compacted 

shapes models are able to provide superior results when compared with the longer 

shapes. 

Regarding the Basement and Courtyard study, the results indicate that the ground 

coupling produced by a basement floor improved the thermal performance of 

models. Concerning the models designs impact it is found that an underground 

courtyard area located on the south-facing facade improves the average annual 

thermal performance by 26.09% for the compact models, and up to 30.28% for the 

long models. It is also found that the courtyard size affects the models 

performances, as the best results were achieved with the models with the smallest 

courtyards. 

9.2.2. Slope Integration Studies 

The study of ground-integrated buildings on slope terrains is based on the analysis 

of the thermal impact generated by slope integration and also by building design. 

The study is divided on five sections: Forms, Split Level, Slope Building Designs, 

Configuration and Cross Sections Structure.  

Regarding the slope impact, it is found that slope steepness affects the thermal 

performance of buildings. For all studies it is verified that the steeper the slope the 

better the model’s annual thermal performance. In the case of the Split Level, Slope 

Building Designs, and Configuration studies, the steepest slopes produced annual 

saving potential of around 23% to 25%. In the case of the Cross Sections Structure 

the value is around 16%. However it is noted that the average annual saving 

potential produced by a slope, decreases as the slope angle increases. For 

example, in the case of the Slope Building Designs, the study shows that between 
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0° and 30° slope the average savings is approximately 6.5% for each 10° increase. 

While the savings increase produced by increasing the steepness of the slope from 

30° to 50°, is 3.2% for 30° to 40° and actually increases only 1.42% when 

increasingly the angle from 40° to 50°. This demonstrates that the saving potential 

range falls when the steepness of the slope increases. Therefore the thermal 

benefits provided by slopes of 40° and 50° might not be much greater that provided 

by a 30° slope. 

Regarding the design effect, the Form case study simulation analysis indicates that 

the best forms are the compact model and the long model with South-North axis, 

which are able to provide average annual savings of 16.32% and 14.53% 

respectively. The compact model provides the best results during autumn and 

winter, and therefore is the ideal shape for a heating strategy. On the other hand, 

the long model is ideal for a cooling strategy, since its performance is superior 

during spring and summer.  

Concerning the impact generated by a slope building design features such as split-

levels, the simulation results show that the split-levels quantity affects buildings’ 

thermal performance. The models’ performance declines as the number of split-

levels increases. The average annual savings difference between the best and 

worst models is 14.13%. The best results are generated with Model SL01 with no 

split-levels and the worst results were produced by Model SL05 (with the highest 

number of split-levels). Therefore, slope design features such as split-levels should 

be used carefully and designs featuring a large number of levels should be avoided. 

The location of the split-level within the building layout was found to be irrelevant to 

the models performance. 

According to the Slope Building Designs study the design impact is found to be 

relevant for a building’s thermal performance. The best structure is found to be the 
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amended section, which generates average annual savings of 18.54%, when 

compared with the cascade design with an independent unit, which provided the 

worst results. 

The results from the Configuration study show that building design can improve 

models’ average annual savings by up to 17.79%. It is found that most 

configurations have similar results for slope integration when they are built into 

slopes of between 30° to 50°. Therefore a parameter such as building design has 

higher relevance for slopes shallower than 30°. It became clear with the seasonal 

results analysis that in winter and spring the models configuration has a higher 

influence on models’ results, while in summer and autumn the slope impact on 

models performance is higher.  

The Cross Sections Structure case study shows that slope building design can 

improve models’ annual average savings. The amended section models have 

superior performance in comparison with the cascade designs. However the design 

comparison shows that the maximum average annual savings difference between 

models is just 5.29% and it grows less significant as the steepness of the slope 

increases. The seasonal results analysis shows that in summer and autumn slopes 

have a greater impact on models’ results than models’ design, while during winter 

and spring, the results differ according with model and the best results are not 

always registered in the highest slopes. 

9.2.3. Overall Conclusions 

The simulations conducted as part of the research for this thesis have shown that 

ground integration affects buildings thermal performance. In general, the thermal 

performances of these buildings can be improved by increasing the amount of the 

buildings’ surface area with direct ground contact. However, total ground integration 

of these structures fails to provide the best results, showing that in this particular 
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climate, solar gains have a relevant impact on the thermal performance of a 

building, at least during the periods with heating needs. Consequently, to achieve a 

greater thermal efficiency a good balance is needed between surface areas with 

direct ground contact and those with solar exposure. 

Concerning the levels of slope integration, the five studies featured in this thesis 

show that all slopes of all angles are able to improve the models’ thermal 

performances. Overall, the steeper the slope the building is constructed into, the 

greater the average annual savings. However, it is also noted that the average 

annual saving potential difference between slopes decreases as the steepness of 

the slope increases. For this reason, between steeper slopes, such as those of 

between 30° and 50°, the thermal advantages achieved are small. It was concluded 

that the best annual energy saving potential is achieved with terrain inclinations 

between 30° to 40°. This finding is particularly relevant, as it means that it can be 

applied in other locations. As rule of thumb, the best terrain inclinations are close to 

the latitude of the place. Regarding design impact, for all studies it is found that 

design affects models’ thermal performance. It is also confirmed that design 

influence decreases as the steepness of the slope increases. Consequently, for 

shallower slope-integrations a greater attention to building design is needed. 

The author therefore conclude that newly-built constructions on hillsides can benefit 

from the thermal potential provided by slope terrains and also slope building 

designs. In temperate climates, ground-integrated buildings on slopes terrains 

reduce the buildings’ energy demands for heating and cooling, and therefore 

mitigate the impact of the built environment on climate change. As design 

guidelines, the author presents the energy saving potential results provide by 

ground integration and building design.  

  



Chapter 9 - Conclusions and Further Work  

 
-273- 

9.3. RESULS SUMMARY FOR DESIGN GUIDELINES 
Table 9.1: Design guidelines – ground integration and building design 
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Table 9.2: Design guidelines – slope ground integration and slope building design 
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9.4. RECOMMENDATIONS FOR FUTHER RESEARCH 

This research could be expanded in the future by exploring some of the areas left 

out by the study. These include: 

• Further research of the ground thermal potential patterns under slope 

terrains, by undertaking long term ground temperature measurements at 

different depths under different slope terrains; 

• Undertaking long-term data collection of slope integrated buildings, for 

validation of the simulations of buildings’ ground heat transfer;  

• Undertaking long-term data collection of correspondent site weather data to 

produce weather files to be used on the thermal simulation of buildings; 

• For different climates, the use of terrain inclination should be studied in order 

to optimise the heating and/or cooling efficiency of EAHE systems; 

• Lastly, the study on the adding of underground south facing courtyards has 

shown that this is a good design solution to improve the thermal performance 

of buildings. Further research on this subject could be done, by looking into 

the benefits that this feature could bring, particularly regarding the heating 

and cooling potential of natural ventilation.    
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APPENDIX 1 

This appendix provides Chapter 5 additional information, as complete monthly 

weather data used in Section 5.2, complete thermal properties of selected soils and 

rocks and monthly solar radiation values for Lisbon used in Section 5.3 and 5.4. 

Table Appendices 1: Chapter 5 – Monthly weather data 
Oporto - Weather Data Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Temperature - Daily Avg 9.4 10.7 11.6 13.2 14.5 17.8 19 19.4 18 15.5 12.2 10.3 

Relative Humidity % - Daily Avg 80 81 78 77 78 75 80 76 82 77 81 82 

Wind Speed m/s - Daily Avg 2.8 4 3.9 3.3 4.1 1.6 3.2 2.2 1.9 3.7 3.1 1.9 

Mean solar radiation 

Wh/m2/day 1960 3050 4590 5600 6730 7340 7360 6620 5270 3550 2270 1730 

Hours with sun 10 11 12 13 14 14 14 13 12 11 10 10 

W/m2 196.00 277.27 382.50 430.77 480.71 524.29 525.71 509.23 439.17 322.73 227.00 173.00 

Braganca - Weather Data Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Temperature - Daily Avg 4.3 6 9.3 10.8 12.9 17.6 21.7 21 17.5 13.2 8.4 5.6 

Relative Humidity % - Daily Avg 85 83 62 70 70 65 56 52 56 74 81 88 

Wind Speed m/s Daily Avg 3 3 3.3 3 3.4 2.9 2.9 2.6 2.4 2.2 1.6 1 

Mean solar radiation 
Wh/m2/day 1760 2920 4410 5290 6480 7540 7840 6900 5230 3420 2130 1630 

Hours with sun 10 11 12 13 14 14 14 13 12 11 10 10 

 W/m2 176.00 265.45 367.50 406.92 462.86 538.57 560.00 530.77 435.83 310.91 213.00 163.00 

Coimbra - Weather Data Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Temperature - Daily Avg 9.6 11 12.7 13.1 15.6 19 20.8 21.1 20.6 16.9 12.2 11.2 

Relative Humidity % - Daily Avg 80 80 70 72 76 74 76 69 74 82 84 81 

Wind Speed m/s - Daily Avg 1.9 2.7 2.8 2.5 2.5 2.1 2 2.4 2 1.5 2.5 2.8 

Mean solar radiation 
Wh/m2/day 2050 3030 4420 5160 6200 6960 7350 6570 5160 3550 2330 1830 

Hours with sun 10 11 12 13 14 14 14 13 12 11 10 10 

 W/m2 205.00 275.45 368.33 396.92 442.86 497.14 525.00 505.38 430.00 322.73 233.00 183.00 

Evora - Weather Data Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Temperature - Daily Avg 8.8 10.2 12.5 13.2 17.2 19.8 22.7 23 22 17.2 12.1 10.5 

Relative Humidity % - Daily Avg 81 69 65 74 61 61 58 56 61 72 72 82 

Wind Speed m/s - Daily Avg 4.6 3.4 5 4.8 4.2 4.6 4.4 4.9 4.4 3.7 4.4 4.4 

Mean solar radiation 
Wh/m2/day 2340 3420 4870 5780 6800 7850 8130 7170 5510 3980 2710 2100 

Hours with sun 10 11 12 13 14 14 14 13 12 11 10 10 

 W/m2 234.00 310.91 405.83 444.62 485.71 560.71 580.71 551.54 459.17 361.82 271.00 210.00 

Lisbon - Weather Data Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Temperature - Daily Avg 10.6 11.5 12.8 14.6 17.3 20.1 22.3 22.6 21.3 17.8 13.6 11 

Relative Humidity % - Daily Avg 82 79 77 73 72 70 66 65 70 75 81 8 

Wind Speed m/s - Daily Avg 4.9 5 4.9 5.3 5.5 5.8 5.6 5.7 4.8 4.2 4.1 4.1 

Mean solar radiation 
Wh/m2/day 2180 3210 4640 5680 6680 7450 7620 6880 5400 3800 2510 1950 

Hours with sun 10 11 12 13 14 14 14 13 12 11 10 10 

 W/m2 218.00 291.82 386.67 436.92 477.14 532.14 544.29 529.23 450.00 345.45 251.00 195.00 

Faro - Weather Data Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Temperature - Daily Avg 11.8 12.4 14.8 15.8 18.6 21.1 23.9 23.7 21.8 20.2 15.5 13.2 

Relative Humidity % - Daily Avg 75 81 72 71 72 70 59 66 74 78 74 7 

Wind Speed m/s - Daily Avg 3.4 3.8 3.6 4.3 3.8 4 3.4 2 2.9 4.2 4.1 3.8 

Mean solar radiation 

Wh/m2/day 2590 3680 5230 6250 7240 8010 8040 7190 5700 4280 2960 2320 

Hours with sun 10 11 12 13 14 14 14 13 12 11 10 10 

W/m2 259.00 334.55 435.83 480.77 517.14 572.14 574.29 553.08 475.00 389.09 296.00 232.00 
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Table Appendices 2: Chapter 5 - Thermal properties of selected soils and rocks by ASHRAE 
(2011, p. 34.15) 

Class Material Dry  
Density (kg/m3) 

Conductivity 
(W/(m K)) Diffusivity (m2/day) 

Soils 

Heavy clay, 15% water 1925 1.4 to 1.9 0.042 to 0.061 

5% water 1925 1.0 to 1.4 0.047 to 0.061 

Light clay, 15% water 1285 0.7 to 1.0 0.055 to 0.047 

5% water 1285 0.5 to 0.9 0.056 to 0.056 

Heavy sand, 15% water 1925 2.8 to 3.8 0.084 to 0.11 

5% water 1925 2.1 to 2.3 0.093 to 0.14 

Light sand, 15% water 1285 1.0 to 2.1 0.047 to 0.093 

5% water 1285 0.9 to 1.9 0.055 to 0.12 

Rocks 

Granite 2650 2.3 to 3.7 0.084 to 0.13 

Limestone 2400 to 2800 2.4 to 3.8 0.084 to 0.13 

Sandstone  2.1 to 3.5 0.65 to 0.11 

Shale, wet 2570 to 2730 1.4 to 2.4 0.065 to 0.084 

Shale, dry 2570 to 2730 1.0 to 2.1 0.055 to 0.074 

 

Table Appendices 3: Chapter 5 – Lisbon, solar radiation data 
00° Slope  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean solar radiation 

Wh/m2/day 2180 3210 4640 5680 6680 7450 7620 6880 5400 3800 2510 1950 
Hours with sun 10 11 12 13 14 14 14 13 12 11 10 10 
W/m2 218 292 387 437 477 532 544 529 450 345 251 195 

10° Slope  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean solar radiation 
Wh/m2/day 2640 3740 5140 5910 6780 7450 7670 7160 5880 4340 3040 2430 
Hours with sun 10 11 12 13 14 14 14 13 12 11 10 10 

 W/m2 264 340 428 455 484 532 548 551 490 395 304 243 
20° Slope  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean solar radiation 
Wh/m2/day 3060 4200 5480 6060 6750 7290 7560 7260 6230 4790 3500 2860 
Hours with sun 10 11 12 13 14 14 14 13 12 11 10 10 

 W/m2 306 382 457 466 482 521 540 558 519 435 350 286 
30° Slope  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean solar radiation 
Wh/m2/day 3400 4550 5700 6070 6560 6970 7260 7190 6420 5130 3880 3220 
Hours with sun 10 11 12 13 14 14 14 13 12 11 10 10 

 W/m2 340 414 475 467 469 498 519 553 535 466 388 322 
40° Slope  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean solar radiation 
Wh/m2/day 3650 4800 5780 5940 6230 6490 6800 6940 6460 5340 4160 3510 
Hours with sun 10 11 12 13 14 14 14 13 12 11 10 10 

 W/m2 365 436 482 457 445 464 486 534 538 485 416 351 
50° Slope  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean solar radiation 

Wh/m2/day 3820 4920 5730 5670 5760 5860 6180 6510 6320 5410 4330 3700 
Hours with sun 10 11 12 13 14 14 14 13 12 11 10 10 
W/m2 382 447 478 436 411 419 441 501 527 492 433 370 

60° Slope  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Mean solar radiation 

Wh/m2/day 3880 4910 5530 5260 5150 5110 5420 5920 6020 5340 4390 3790 
Hours with sun 10 11 12 13 14 14 14 13 12 11 10 10 
W/m2 388 446 461 405 368 365 387 455 502 485 439 379 
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APPENDIX 2 

This appendix provides the model materials used in Chapter 6 Section 6.1 initial 

case study thermal simulations.  

Table Appendices 4: Chapter 6 – Initial case models - materials 
 Material Width 

(mm) 
Conductiv. 
(W/m.°C) 

Convec. 
Coeff. 

(W/m2.°C) 

Density 
(Kg/m3) 

Specific 
Heat 

(J/Kg.°C) 

Thermal 
Resist. 

(m2.°C/W) 

Roof 

1-Tiles 4 0.23 0.001 1500 1300 0.0174 
2- Insulation 80 0.04 0.001 30 850 2.0000 
3- Concrete 200 2.1 0.001 2400 850 0.0952 
Total thermal resistance 2.1126 
U value (W/m2.°C) 0.431 

External 
Wall 

1- Gyp board 15.88 0.16 0.001 800.923 1088.57 0.0993 
2- Insulation 89.41 0.046 0.001 19.222 962.964 1.9437 
3- Concrete 203.2 0.26 0.001 464.535 879.228 0.7815 
Total thermal resistance 2.8245 
U value (W/m2.°C) 0.335 

Floor 

1-Tiles 20 0.42 0 1200 837 0.0476 
2- Concrete 
screed 50 1.28 0 2100 1000 0.0391 
3- Concrete 125 0.87 0 1800 920 0.1437 
Total thermal resistance 0.2304 
U value (W/m2.°C) 2.209 

Internal 
Wall 

1- Plaster 25 0.079 0 400 837 0.3165 
2- Foamed slag 
con. 100 0.317 0 1040 1050 0.3155 
3- Plaster 25 0.079 0 400 837 0.3165 
Total thermal resistance 0.9484 
U value (W/m2.°C) 0.894 

Window 
frame 

1- Wood 25 0.138 0 500 2805 0.1812 
U value (W/m2.°C) 2.848 

Windows 

1- Glass 4 1 0.001 0 
 

0.004 
2- Air 16 0.01 1.76E-05 0 

 
1.6 

3- Glass (low-e) 4 1 0.001 0 
 

0.004 

  

Solar 
Trans. 

Ext. Solar 
Refl. 

Int. Solar 
Refl. 

Ext. 
Emiss 

Int. 
Emiss 

  
0.816 0.089 0.089 0.84 0.84 

U value (W/m2.°C) 0.463 0 0 0 0 0 

  
0.62 0.082 0.082 0.84 0.1 
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APPENDIX 3 

This appendix presents the monthly, seasonal and annual energy demand results 

from Chapter 7, Section 7.1, Section 7.2 and Section 7.3. 

Table Appendices 5: Section 7.1 - Forms heating and cooling results 
Forms - F1 

  F01_01 F01_02 F01_03 F01_04 F01_05 F01_06 F01_07 

 
       

Heating Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

M
on

th
ly

 

Jan 24.40 0.00 22.62 0.00 21.73 0.00 21.86 0.00 21.62 0.00 18.86 0.00 20.76 0.00 
Feb 16.78 0.00 15.46 0.00 14.74 0.00 14.95 0.00 14.82 0.00 14.01 0.00 15.84 0.00 
Mar 12.08 0.00 10.82 0.00 10.25 0.00 10.42 0.00 10.31 0.00 10.36 0.00 11.83 0.00 
Apr 4.70 0.02 3.85 0.00 3.58 0.00 3.67 0.00 3.60 0.00 3.79 0.00 4.90 0.00 
May 0.89 0.96 0.59 0.62 0.51 0.46 0.55 0.44 0.50 0.29 0.10 0.00 0.02 0.00 
Jun 0.05 3.03 0.02 2.43 0.01 2.11 0.01 1.96 0.01 1.64 0.00 0.00 0.00 0.00 
Jul 0.00 7.36 0.00 6.37 0.00 5.74 0.00 5.50 0.00 4.93 0.00 0.00 0.00 0.00 
Aug 0.00 7.18 0.00 6.43 0.00 5.83 0.00 5.54 0.00 5.02 0.00 0.08 0.00 0.00 
Sep 0.00 2.97 0.00 2.68 0.00 2.37 0.00 2.29 0.00 2.00 0.00 0.00 0.00 0.00 
Oct 1.20 0.07 0.79 0.04 0.70 0.03 0.72 0.02 0.66 0.01 0.01 0.00 0.00 0.00 
Nov 11.52 0.00 10.04 0.00 9.55 0.00 9.60 0.00 9.42 0.00 7.23 0.00 9.12 0.00 
Dec 22.54 0.00 20.65 0.00 19.83 0.00 19.93 0.00 19.68 0.00 16.45 0.00 18.43 0.00 

A
nn

ua
l 

Total 94.16 21.60 84.82 18.57 80.89 16.54 81.71 15.74 80.62 13.88 70.80 0.08 80.90 0.00 

H+C 115.76 103.38 97.43 97.45 94.50 70.87 80.90 

S
ea

so
n 

A
ve

r. 

Winter 17.75 0.00 16.30 0.00 15.57 0.00 15.74 0.00 15.58 0.00 14.41 0.00 16.14 0.00 
Spring 1.88 1.34 1.48 1.02 1.37 0.85 1.41 0.80 1.37 0.64 1.30 0.00 1.64 0.00 

Summe
r 0.00 5.84 0.00 5.16 0.00 4.65 0.00 4.44 0.00 3.98 0.00 0.03 0.00 0.00 

Autumn 11.75 0.02 10.49 0.01 10.03 0.01 10.08 0.01 9.92 0.00 7.90 0.00 9.19 0.00 

Forms - F2 

  F02_01 F02_02 F02_03 F02_04 F02_05 F02_06 F02_07 

 
       

Heating Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

M
on

th
ly

 

Jan 25.69 0.00 25.46 0.00 23.91 0.00 24.58 0.00 23.74 0.00 21.16 0.00 21.66 0.00 
Feb 17.42 0.00 17.35 0.00 16.17 0.00 17.17 0.00 16.61 0.00 15.90 0.00 16.35 0.00 
Mar 11.75 0.00 11.66 0.00 10.60 0.00 11.46 0.00 10.94 0.00 11.35 0.00 11.63 0.00 
Apr 4.12 0.05 4.05 0.02 3.43 0.00 3.91 0.00 3.48 0.00 4.05 0.00 4.20 0.00 
May 0.60 1.55 0.57 1.20 0.36 0.62 0.48 0.42 0.29 0.09 0.01 0.00 0.02 0.00 
Jun 0.03 4.40 0.02 3.81 0.00 2.87 0.00 2.03 0.00 1.22 0.00 0.00 0.00 0.00 
Jul 0.00 9.71 0.00 8.79 0.00 7.03 0.00 5.64 0.00 4.12 0.00 0.00 0.00 0.00 
Aug 0.00 9.02 0.00 8.23 0.00 6.63 0.00 5.13 0.00 3.77 0.00 0.00 0.00 0.00 
Sep 0.00 3.14 0.00 2.76 0.00 1.93 0.00 1.50 0.00 0.80 0.00 0.00 0.00 0.00 
Oct 1.25 0.05 1.18 0.03 0.90 0.00 1.03 0.00 0.77 0.00 0.00 0.00 0.00 0.00 
Nov 12.40 0.00 12.21 0.00 11.28 0.00 11.65 0.00 11.13 0.00 9.41 0.00 9.90 0.00 
Dec 24.04 0.00 23.77 0.00 22.27 0.00 22.81 0.00 21.93 0.00 18.91 0.00 19.43 0.00 

A
nn

ua
l 

Total 97.29 27.92 96.27 24.83 88.91 19.09 93.11 14.72 88.88 10.00 80.79 0.00 83.19 0.00 

H+C 125.21 121.10 108.00 107.83 98.88 80.79 83.19 

S
ea

so
n 

A
ve

r. 

Winter 18.29 0.00 18.16 0.00 16.89 0.00 17.74 0.00 17.09 0.00 16.14 0.00 16.55 0.00 
Spring 1.58 2.00 1.55 1.68 1.26 1.17 1.46 0.82 1.25 0.44 1.36 0.00 1.40 0.00 

Summe
r 0.00 7.29 0.00 6.59 0.00 5.20 0.00 4.09 0.00 2.90 0.00 0.00 0.00 0.00 

Autumn 12.56 0.02 12.39 0.01 11.48 0.00 11.83 0.00 11.28 0.00 9.44 0.00 9.78 0.00 

Forms - F3 

  F03_01 F03_02 F03_03 F03_04 F03_05 F03_06 F03_07 

 
       

Heating Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

M
on

th
ly

 

Jan 23.54 0.00 22.64 0.00 21.60 0.00 21.86 0.00 21.43 0.00 18.76 0.00 19.70 0.00 
Feb 16.01 0.00 15.34 0.00 14.56 0.00 15.00 0.00 14.77 0.00 14.05 0.00 14.95 0.00 
Mar 11.02 0.00 10.36 0.00 9.71 0.00 10.05 0.00 9.84 0.00 10.15 0.00 10.84 0.00 
Apr 3.97 0.03 3.52 0.01 3.19 0.00 3.37 0.00 3.21 0.00 3.65 0.00 4.17 0.00 
May 0.63 1.23 0.48 1.05 0.38 0.63 0.43 0.57 0.35 0.24 0.02 0.00 0.02 0.00 
Jun 0.03 3.61 0.02 3.31 0.00 2.60 0.01 2.26 0.00 1.60 0.00 0.00 0.00 0.00 
Jul 0.00 8.08 0.00 7.58 0.00 6.29 0.00 5.74 0.00 4.57 0.00 0.00 0.00 0.00 
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Aug 0.00 7.56 0.00 7.19 0.00 6.01 0.00 5.36 0.00 4.32 0.00 0.00 0.00 0.00 
Sep 0.00 2.75 0.00 2.60 0.00 1.99 0.00 1.83 0.00 1.28 0.00 0.00 0.00 0.00 
Oct 1.18 0.05 0.96 0.03 0.82 0.00 0.86 0.00 0.75 0.00 0.00 0.00 0.00 0.00 
Nov 11.31 0.00 10.57 0.00 9.99 0.00 10.10 0.00 9.83 0.00 8.05 0.00 9.01 0.00 
Dec 21.97 0.00 21.02 0.00 20.04 0.00 20.24 0.00 19.79 0.00 16.69 0.00 17.68 0.00 

A
nn

ua
l 

Total 89.66 23.31 84.92 21.78 80.28 17.52 81.93 15.77 79.97 12.01 71.36 0.00 76.38 0.00 

H+C 112.97 106.69 97.80 97.70 91.98 71.36 76.38 

S
ea

so
n 

A
ve

r. 

Winter 16.86 0.00 16.11 0.00 15.29 0.00 15.64 0.00 15.35 0.00 14.32 0.00 15.17 0.00 
Spring 1.54 1.62 1.34 1.46 1.19 1.08 1.27 0.94 1.19 0.61 1.22 0.00 1.40 0.00 

Summe
r 0.00 6.13 0.00 5.79 0.00 4.76 0.00 4.31 0.00 3.39 0.00 0.00 0.00 0.00 

Autumn 11.49 0.02 10.85 0.01 10.28 0.00 10.40 0.00 10.12 0.00 8.25 0.00 8.90 0.00 

 Forms - F4 

  F04_01 F04_02 F04_03 F04_04 F04_05 F04_06 F04_07 

 
       

Heating Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

M
on

th
ly

 

Jan 26.90 0.00 25.68 0.00 24.66 0.00 24.89 0.00 24.57 0.00 21.73 0.00 22.64 0.00 
Feb 18.61 0.00 17.70 0.00 16.92 0.00 17.29 0.00 17.13 0.00 16.22 0.00 16.98 0.00 
Mar 13.13 0.00 12.22 0.00 11.58 0.00 11.88 0.00 11.74 0.00 11.76 0.00 12.23 0.00 
Apr 5.07 0.02 4.41 0.00 4.08 0.00 4.25 0.00 4.13 0.00 4.20 0.00 4.39 0.00 
May 0.93 1.09 0.69 0.83 0.59 0.53 0.64 0.50 0.56 0.25 0.09 0.00 0.04 0.00 
Jun 0.05 3.50 0.02 3.08 0.01 2.52 0.01 2.25 0.00 1.72 0.00 0.00 0.00 0.00 
Jul 0.00 8.36 0.00 7.68 0.00 6.64 0.00 6.21 0.00 5.29 0.00 0.05 0.00 0.02 
Aug 0.00 7.97 0.00 7.46 0.00 6.51 0.00 5.98 0.00 5.15 0.00 0.22 0.00 0.07 
Sep 0.00 2.99 0.00 2.79 0.00 2.28 0.00 2.15 0.00 1.68 0.00 0.00 0.00 0.00 
Oct 1.41 0.05 1.09 0.03 0.95 0.01 0.99 0.01 0.89 0.00 0.04 0.00 0.03 0.00 
Nov 13.02 0.00 11.96 0.00 11.39 0.00 11.48 0.00 11.26 0.00 9.17 0.00 9.99 0.00 
Dec 25.03 0.00 23.72 0.00 22.77 0.00 22.94 0.00 22.60 0.00 19.31 0.00 20.29 0.00 

A
nn

ua
l 

Total 104.1
7 23.97 97.48 21.88 92.96 18.49 94.36 17.10 92.88 14.09 82.50 0.27 86.58 0.09 

H+C 128.14 119.36 111.45 111.46 106.97 82.77 86.67 

S
ea

so
n 

A
ve

r. 

Winter 19.55 0.00 18.53 0.00 17.72 0.00 18.02 0.00 17.81 0.00 16.57 0.00 17.28 0.00 
Spring 2.02 1.54 1.71 1.31 1.56 1.02 1.63 0.92 1.57 0.66 1.43 0.00 1.48 0.00 

Summe
r 0.00 6.44 0.00 5.98 0.00 5.15 0.00 4.78 0.00 4.04 0.00 0.09 0.00 0.03 

Autumn 13.16 0.02 12.26 0.01 11.70 0.00 11.80 0.00 11.58 0.00 9.50 0.00 10.10 0.00 

Forms - F5 

  F05_01 F05_02 F05_03 F05_04 F05_05 F05_06 F05_07 

 
       

Heating Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

Heatin
g 

Coolin
g 

M
on

th
ly

 

Jan 27.20 0.00 26.29 0.00 25.14 0.00 25.43 0.00 25.01 0.00 22.02 0.00 23.07 0.00 
Feb 18.66 0.00 17.96 0.00 17.09 0.00 17.58 0.00 17.35 0.00 16.21 0.00 17.20 0.00 
Mar 12.93 0.00 12.23 0.00 11.49 0.00 11.88 0.00 11.66 0.00 11.39 0.00 12.13 0.00 
Apr 4.78 0.03 4.28 0.01 3.88 0.00 4.08 0.00 3.89 0.00 3.53 0.00 4.02 0.00 
May 0.80 1.28 0.63 1.09 0.49 0.67 0.55 0.61 0.45 0.28 0.02 0.00 0.01 0.00 
Jun 0.04 3.95 0.02 3.66 0.00 2.92 0.01 2.55 0.00 1.85 0.00 0.00 0.00 0.00 
Jul 0.00 9.22 0.00 8.76 0.00 7.41 0.00 6.81 0.00 5.60 0.00 0.22 0.00 0.00 
Aug 0.00 8.79 0.00 8.47 0.00 7.23 0.00 6.51 0.00 5.43 0.00 0.47 0.00 0.01 
Sep 0.00 3.27 0.00 3.14 0.00 2.49 0.00 2.30 0.00 1.70 0.00 0.00 0.00 0.00 
Oct 1.33 0.05 1.09 0.04 0.91 0.01 0.97 0.01 0.83 0.00 0.01 0.00 0.00 0.00 
Nov 13.05 0.00 12.26 0.00 11.58 0.00 11.69 0.00 11.40 0.00 9.17 0.00 10.20 0.00 
Dec 25.40 0.00 24.43 0.00 23.34 0.00 23.55 0.00 23.12 0.00 19.70 0.00 20.81 0.00 

A
nn

ua
l 

Total 104.1
9 26.59 99.19 25.18 93.92 20.73 95.74 18.79 93.71 14.87 82.05 0.69 87.44 0.01 

H+C 130.78 124.37 114.65 114.53 108.57 82.74 87.45 

S
ea

so
n 

A
ve

r. 

Winter 19.60 0.00 18.83 0.00 17.91 0.00 18.29 0.00 18.01 0.00 16.54 0.00 17.47 0.00 
Spring 1.87 1.75 1.64 1.59 1.46 1.20 1.55 1.05 1.45 0.71 1.18 0.00 1.34 0.00 

Summe
r 0.00 7.10 0.00 6.79 0.00 5.71 0.00 5.21 0.00 4.24 0.00 0.23 0.00 0.00 

Autumn 13.26 0.02 12.59 0.01 11.94 0.00 12.07 0.00 11.78 0.00 9.63 0.00 10.34 0.00 
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Table Appendices 6: Section 7.2. Compact forms – heating and cooling results 
Compact Form - CompF_3FA 

 CompF_3FA_01 CompF_3FA_02 CompF_3FA_03 CompF_3FA_04 CompF_3FA_05 

 

     
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 25.19 0.00 24.82 0.00 23.62 0.00 23.79 0.00 24.22 0.00 
Feb 17.31 0.00 17.02 0.00 16.49 0.00 16.70 0.00 17.10 0.00 
Mar 11.94 0.00 11.65 0.00 11.45 0.00 11.59 0.00 11.86 0.00 
Apr 4.35 0.07 4.13 0.07 3.88 0.06 3.88 0.06 4.03 0.05 
May 0.54 1.22 0.49 1.19 0.42 1.02 0.39 0.89 0.38 0.88 
Jun 0.03 3.88 0.03 3.82 0.03 3.03 0.02 2.73 0.02 2.70 
Jul 0.00 10.51 0.00 10.42 0.00 7.73 0.00 7.25 0.00 7.18 
Aug 0.00 10.30 0.00 10.26 0.00 7.60 0.00 7.18 0.00 6.98 
Sep 0.00 3.66 0.00 3.65 0.00 2.72 0.00 2.51 0.00 2.42 
Oct 0.81 0.08 0.75 0.08 0.65 0.07 0.60 0.06 0.61 0.06 
Nov 11.85 0.00 11.53 0.00 10.68 0.00 10.64 0.00 11.02 0.00 
Dec 23.23 0.00 22.84 0.00 21.54 0.00 21.64 0.00 22.09 0.00 

A
nn

u
al

 Total  95.27 29.71 93.26 29.47 88.76 22.23 89.26 20.68 91.34 20.28 
H+C 124.98 122.74 110.99 109.94 111.62 

S
ea

so
n 

A
ve

r. 

Winter 18.15 0.00 17.83 0.00 17.19 0.00 17.36 0.00 17.73 0.00 
Spring 1.64 1.72 1.55 1.69 1.44 1.37 1.43 1.23 1.48 1.21 
Summer 0.00 8.16 0.00 8.11 0.00 6.02 0.00 5.65 0.00 5.53 
Autumn 11.97 0.03 11.71 0.03 10.96 0.02 10.96 0.02 11.24 0.02 

Compact Form - CompF_2FA 

 CompF_2FA_01 CompF_2FA_02 CompF_2FA_03 CompF_2FA_04 CompF_2FA_05 

 
     

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 22.64 0.00 22.07 0.00 20.64 0.00 20.79 0.00 21.43 0.00 
Feb 15.52 0.00 15.07 0.00 14.37 0.00 14.52 0.00 15.11 0.00 
Mar 10.66 0.00 10.23 0.00 9.93 0.00 9.97 0.00 10.36 0.00 
Apr 3.71 0.08 3.40 0.08 3.09 0.06 3.04 0.02 3.24 0.02 
May 0.45 1.20 0.38 1.17 0.32 1.00 0.27 0.79 0.26 0.75 
Jun 0.03 3.47 0.03 3.36 0.02 2.64 0.01 2.33 0.01 2.27 
Jul 0.00 8.93 0.00 8.76 0.00 6.02 0.00 5.58 0.00 5.44 
Aug 0.00 8.65 0.00 8.56 0.00 5.83 0.00 5.44 0.00 5.14 
Sep 0.00 3.04 0.00 3.00 0.00 2.12 0.00 1.90 0.00 1.75 
Oct 0.76 0.08 0.67 0.08 0.58 0.06 0.51 0.04 0.54 0.02 
Nov 10.65 0.00 10.17 0.00 9.29 0.00 9.22 0.00 9.81 0.00 
Dec 20.94 0.00 20.34 0.00 18.88 0.00 18.96 0.00 19.64 0.00 

A
nn

u
al

 Total  85.35 25.45 82.36 25.00 77.13 17.73 77.30 16.10 80.38 15.38 
H+C 110.80  107.37  94.86  93.40  95.77  

S
ea

so
n 

A
ve

ra
ge

 Winter 16.27 0.00 15.79 0.00 14.98 0.00 15.09 0.00 15.63 0.00 
Spring 1.40 1.58 1.27 1.54 1.15 1.23 1.11 1.05 1.17 1.01 
Summer 0.00 6.87 0.00 6.77 0.00 4.66 0.00 4.31 0.00 4.11 
Autumn 10.78 0.03 10.40 0.03 9.58 0.02 9.56 0.01 9.99 0.01 

Compact Form - CompF_1F 

 CompF_1F_01 CompF_1F_02 CompF_1F_03 CompF_1F_04 CompF_1F_05 

 
     

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 23.54 0.00 22.65 0.00 21.45 0.00 18.77 0.00 19.72 0.00 
Feb 16.01 0.00 15.34 0.00 14.78 0.00 14.06 0.00 14.96 0.00 
Mar 11.02 0.00 10.36 0.00 9.86 0.00 10.16 0.00 10.85 0.00 
Apr 3.97 0.03 3.53 0.01 3.22 0.00 3.66 0.00 4.18 0.00 
May 0.63 1.23 0.48 1.05 0.35 0.24 0.02 0.00 0.02 0.00 
Jun 0.03 3.61 0.02 3.31 0.00 1.60 0.00 0.00 0.00 0.00 
Jul 0.00 8.08 0.00 7.59 0.00 4.57 0.00 0.00 0.00 0.00 
Aug 0.00 7.56 0.00 7.19 0.00 4.32 0.00 0.00 0.00 0.00 
Sep 0.00 2.75 0.00 2.60 0.00 1.28 0.00 0.00 0.00 0.00 
Oct 1.18 0.05 0.96 0.03 0.75 0.00 0.00 0.00 0.00 0.00 
Nov 11.31 0.00 10.57 0.00 9.84 0.00 8.06 0.00 9.03 0.00 
Dec 21.97 0.00 21.03 0.00 19.82 0.00 16.71 0.00 17.71 0.00 

A
nn

u
al

 Total  89.66 23.31 84.94 21.78 80.07 12.02 71.44 0.00 76.47 0.00 
H+C 112.97  106.72  92.09  71.44  76.47  

S
ea

so
n 

A
ve

ra
ge

 Winter 16.86 0.00 16.12 0.00 15.37 0.00 14.33 0.00 15.18 0.00 
Spring 1.54 1.62 1.34 1.46 1.19 0.62 1.23 0.00 1.40 0.00 

Summe
r 0.00 6.13 0.00 5.79 0.00 3.39 0.00 0.00 0.00 0.00 

Autumn 11.49 0.02 10.85 0.01 10.14 0.00 8.26 0.00 8.91 0.00 
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Compact Form - CompF_2FB 

 CompF_2FB_01 CompF_2FB_02 CompF_2FB_03 CompF_2FB_04 CompF_2FB_05 

 
     

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 
M

on
th

ly
 

Jan 21.16 0.00 20.34 0.00 19.11 0.00 18.78 0.00 19.55 0.00 
Feb 14.60 0.00 13.96 0.00 13.29 0.00 13.09 0.00 13.83 0.00 
Mar 10.27 0.00 9.69 0.00 9.36 0.00 9.21 0.00 9.74 0.00 
Apr 3.72 0.06 3.29 0.06 3.05 0.05 2.97 0.02 3.25 0.01 
May 0.50 1.00 0.40 0.97 0.35 0.87 0.32 0.69 0.31 0.61 
Jun 0.03 2.81 0.03 2.68 0.02 2.32 0.02 1.99 0.02 1.88 
Jul 0.00 7.56 0.00 7.28 0.00 5.40 0.00 4.82 0.00 4.54 
Aug 0.00 7.44 0.00 7.27 0.00 5.34 0.00 4.81 0.00 4.33 
Sep 0.00 2.75 0.00 2.67 0.00 2.02 0.00 1.78 0.00 1.54 
Oct 0.70 0.08 0.59 0.08 0.53 0.07 0.48 0.04 0.53 0.02 
Nov 9.87 0.00 9.20 0.00 8.43 0.00 8.17 0.00 8.93 0.00 
Dec 19.48 0.00 18.63 0.00 17.39 0.00 17.04 0.00 17.86 0.00 

A
nn

ua
l 

Total  80.32 21.71 76.11 21.02 71.53 16.07 70.08 14.15 74.01 12.94 

H+C 102.03 97.13 87.60 84.23 86.95 

S
ea

so
n 

A
ve

ra
ge

 Winter 15.34 0.00 14.66 0.00 13.92 0.00 13.70 0.00 14.37 0.00 
Spring 1.41 1.29 1.24 1.24 1.14 1.08 1.10 0.90 1.19 0.83 

Summe
r 0.00 5.92 0.00 5.74 0.00 4.25 0.00 3.80 0.00 3.47 

Autumn 10.02 0.03 9.47 0.03 8.78 0.02 8.56 0.01 9.11 0.01 

Forms - CompF_3FB 

 CompF_3FB_01 CompF_3FB_02 CompF_3FB_03 CompF_3FB_04 CompF_3FB_05 

 

     
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 21.47 0.00 20.78 0.00 19.81 0.00 19.54 0.00 20.19 0.00 
Feb 14.95 0.00 14.42 0.00 13.91 0.00 13.76 0.00 14.41 0.00 
Mar 10.80 0.00 10.32 0.00 10.09 0.00 10.00 0.00 10.48 0.00 
Apr 4.23 0.04 3.86 0.04 3.73 0.04 3.67 0.04 3.96 0.03 
May 0.64 0.77 0.54 0.75 0.48 0.70 0.46 0.64 0.45 0.62 
Jun 0.03 2.38 0.03 2.28 0.03 2.06 0.03 1.86 0.03 1.79 
Jul 0.00 7.35 0.00 7.11 0.00 5.73 0.00 5.28 0.00 5.09 
Aug 0.00 7.45 0.00 7.32 0.00 5.83 0.00 5.42 0.00 5.08 
Sep 0.00 2.89 0.00 2.83 0.00 2.29 0.00 2.10 0.00 1.91 
Oct 0.66 0.08 0.58 0.07 0.53 0.07 0.50 0.06 0.53 0.06 
Nov 9.95 0.00 9.38 0.00 8.71 0.00 8.50 0.00 9.12 0.00 
Dec 19.61 0.00 18.89 0.00 17.89 0.00 17.61 0.00 18.30 0.00 

A
nn

ua
l 

Total  82.34 20.96 78.79 20.41 75.19 16.72 74.07 15.40 77.46 14.59 

H+C 103.31 99.20 91.91 89.46 92.05 

S
ea

so
n 

A
ve

ra
ge

 Winter 15.74 0.00 15.17 0.00 14.60 0.00 14.43 0.00 15.03 0.00 
Spring 1.63 1.07 1.47 1.03 1.41 0.94 1.39 0.84 1.48 0.82 

Summe
r 0.00 5.90 0.00 5.75 0.00 4.61 0.00 4.27 0.00 4.03 

Autumn 10.08 0.03 9.62 0.02 9.05 0.02 8.87 0.02 9.31 0.02 
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Table Appendices 7: Section 7.2. Long forms – heating and cooling results 
Long Form - LongF_3FA 

 LongF_3FA_01 LongF_3FA_02 LongF_3FA_03 LongF_3FA_04 LongF_3FA_05 

 

     

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 21.21 0.00 20.42 0.00 19.51 0.00 19.52 0.00 20.36 0.00 
Feb 14.82 0.00 14.22 0.00 13.72 0.00 13.76 0.00 14.58 0.00 
Mar 10.86 0.00 10.31 0.00 10.07 0.00 10.09 0.00 10.71 0.00 
Apr 4.34 0.04 3.93 0.04 3.81 0.04 3.77 0.03 4.12 0.03 
May 0.70 0.71 0.58 0.69 0.53 0.65 0.49 0.60 0.47 0.58 
Jun 0.03 2.16 0.03 2.06 0.03 1.90 0.03 1.77 0.03 1.71 
Jul 0.00 6.89 0.00 6.60 0.00 5.44 0.00 5.19 0.00 5.01 
Aug 0.00 7.08 0.00 6.91 0.00 5.62 0.00 5.41 0.00 5.06 
Sep 0.00 2.85 0.00 2.78 0.00 2.28 0.00 2.19 0.00 1.97 
Oct 0.65 0.08 0.56 0.08 0.52 0.07 0.49 0.07 0.51 0.06 
Nov 9.78 0.00 9.13 0.00 8.51 0.00 8.39 0.00 9.12 0.00 
Dec 19.32 0.00 18.48 0.00 17.55 0.00 17.51 0.00 18.38 0.00 

A
nn

ua
l 

Total  81.72 19.80 77.67 19.16 74.24 16.01 74.04 15.27 78.28 14.43 

H+C 101.52 96.83 90.25 89.31 92.71 

S
ea

so
n 

A
ve

ra
ge

 Winter 15.63 0.00 14.98 0.00 14.43 0.00 14.46 0.00 15.22 0.00 
Spring 1.69 0.97 1.51 0.93 1.46 0.86 1.43 0.80 1.54 0.78 

Summer 0.00 5.61 0.00 5.43 0.00 4.45 0.00 4.26 0.00 4.01 
Autumn 9.92 0.03 9.39 0.03 8.86 0.02 8.80 0.02 9.34 0.02 

Long Form - LongF_2FA 

 LongF_2FA_01 LongF_2FA_02 LongF_2FA_03 LongF_2FA_04 LongF_2FA_05 

 

     
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 20.95 0.00 19.76 0.00 18.71 0.00 18.70 0.00 19.94 0.00 
Feb 14.55 0.00 13.64 0.00 13.01 0.00 13.01 0.00 14.19 0.00 
Mar 10.58 0.00 9.77 0.00 9.41 0.00 9.35 0.00 10.20 0.00 
Apr 4.05 0.05 3.46 0.05 3.26 0.04 3.17 0.02 3.58 0.01 
May 0.64 0.84 0.48 0.82 0.43 0.76 0.38 0.65 0.35 0.55 
Jun 0.03 2.35 0.03 2.22 0.03 2.05 0.02 1.89 0.01 1.77 
Jul 0.00 6.69 0.00 6.25 0.00 5.02 0.00 4.79 0.00 4.46 
Aug 0.00 6.79 0.00 6.50 0.00 5.17 0.00 4.99 0.00 4.33 
Sep 0.00 2.74 0.00 2.62 0.00 2.11 0.00 2.01 0.00 1.63 
Oct 0.68 0.09 0.55 0.10 0.51 0.09 0.45 0.07 0.50 0.03 
Nov 9.64 0.00 8.68 0.00 8.00 0.00 7.87 0.00 8.95 0.00 
Dec 19.14 0.00 17.90 0.00 16.86 0.00 16.80 0.00 18.10 0.00 

A
nn

ua
l 

Total  80.27 19.55 74.27 18.56 70.22 15.25 69.75 14.41 75.83 12.79 

H+C 99.82 92.83 85.47 84.17 88.62 

S
ea

so
n 

A
ve

ra
ge

 Winter 15.36 0.00 14.39 0.00 13.71 0.00 13.69 0.00 14.78 0.00 
Spring 1.57 1.08 1.32 1.03 1.24 0.95 1.19 0.85 1.31 0.78 

Summer 0.00 5.41 0.00 5.13 0.00 4.10 0.00 3.93 0.00 3.48 
Autumn 9.82 0.03 9.05 0.03 8.46 0.03 8.37 0.02 9.19 0.01 

Long Form - LongF_1F 

 LongF_1F_01 LongF_1F_02 LongF_1F_03 LongF_1F_04 LongF_1F_05 

 
     

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 24.40 0.00 22.63 0.00 21.62 0.00 18.87 0.00 20.78 0.00 
Feb 16.78 0.00 15.46 0.00 14.82 0.00 14.02 0.00 15.86 0.00 
Mar 12.08 0.00 10.83 0.00 10.31 0.00 10.38 0.00 11.85 0.00 
Apr 4.70 0.02 3.85 0.00 3.60 0.00 3.79 0.00 4.90 0.00 
May 0.89 0.96 0.59 0.62 0.50 0.29 0.10 0.00 0.02 0.00 
Jun 0.05 3.03 0.02 2.43 0.01 1.64 0.00 0.00 0.00 0.00 
Jul 0.00 7.36 0.00 6.38 0.00 4.93 0.00 0.00 0.00 0.00 
Aug 0.00 7.18 0.00 6.43 0.00 5.02 0.00 0.08 0.00 0.00 
Sep 0.00 2.97 0.00 2.68 0.00 2.00 0.00 0.00 0.00 0.00 
Oct 1.20 0.07 0.79 0.04 0.66 0.01 0.01 0.00 0.00 0.00 
Nov 11.52 0.00 10.05 0.00 9.42 0.00 7.24 0.00 9.14 0.00 
Dec 22.54 0.00 20.66 0.00 19.68 0.00 16.46 0.00 18.45 0.00 

A
nn

ua
l 

Total  94.16 21.60 84.88 18.58 80.62 13.88 70.86 0.08 80.99 0.00 

H+C 115.76 103.46 94.50 70.94 80.99 

S
ea

so
n 

A
ve

ra
ge

 Winter 17.75 0.00 16.31 0.00 15.58 0.00 14.42 0.00 16.16 0.00 
Spring 1.88 1.34 1.48 1.02 1.37 0.64 1.30 0.00 1.64 0.00 

Summer 0.00 5.84 0.00 5.16 0.00 3.98 0.00 0.03 0.00 0.00 
Autumn 11.75 0.02 10.50 0.01 9.92 0.00 7.90 0.00 9.20 0.00 
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Long Form - LongF_2FB 

 LongF_2FB_01 LongF_2FB_02 LongF_2FB_03 LongF_2FB_04 LongF_2FB_05 

 
     

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 22.04 0.00 20.39 0.00 19.44 0.00 19.01 0.00 20.50 0.00 
Feb 15.42 0.00 14.16 0.00 13.54 0.00 13.25 0.00 14.72 0.00 
Mar 11.59 0.00 10.48 0.00 10.07 0.00 9.85 0.00 10.96 0.00 
Apr 4.72 0.04 3.91 0.04 3.72 0.03 3.59 0.02 4.18 0.00 
May 0.88 0.73 0.64 0.71 0.59 0.68 0.55 0.56 0.50 0.42 
Jun 0.05 2.07 0.04 1.95 0.04 1.86 0.03 1.64 0.03 1.43 
Jul 0.00 6.36 0.00 5.74 0.00 4.91 0.00 4.51 0.00 3.90 
Aug 0.00 6.70 0.00 6.28 0.00 5.34 0.00 4.99 0.00 3.91 
Sep 0.00 3.00 0.00 2.85 0.00 2.43 0.00 2.28 0.00 1.61 
Oct 0.71 0.12 0.54 0.12 0.52 0.12 0.45 0.10 0.53 0.04 
Nov 10.01 0.00 8.68 0.00 8.08 0.00 7.75 0.00 8.97 0.00 
Dec 19.97 0.00 18.23 0.00 17.30 0.00 16.85 0.00 18.43 0.00 

A
nn

ua
l 

Total  85.39 19.03 77.08 17.69 73.30 15.38 71.34 14.09 78.82 11.31 

H+C 104.41 94.77 88.68 85.44 90.13 

S
ea

so
n 

A
ve

ra
ge

 Winter 16.35 0.00 15.01 0.00 14.35 0.00 14.04 0.00 15.39 0.00 
Spring 1.88 0.95 1.53 0.90 1.45 0.86 1.39 0.74 1.57 0.62 

Summer 0.00 5.35 0.00 4.96 0.00 4.23 0.00 3.93 0.00 3.14 
Autumn 10.23 0.04 9.15 0.04 8.63 0.04 8.35 0.03 9.31 0.01 

Long Form - LongF_3FB 

 LongF_3FB_01 LongF_3FB_02 LongF_3FB_03 LongF_3FB_04 LongF_3FB_05 

 

     
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 22.74 0.00 21.35 0.00 20.60 0.00 20.25 0.00 21.50 0.00 
Feb 16.08 0.00 15.03 0.00 14.54 0.00 14.29 0.00 15.56 0.00 
Mar 12.47 0.00 11.56 0.00 11.24 0.00 11.06 0.00 12.07 0.00 
Apr 5.48 0.02 4.81 0.02 4.67 0.02 4.56 0.02 5.17 0.02 
May 1.19 0.52 0.94 0.51 0.90 0.50 0.86 0.47 0.79 0.44 
Jun 0.05 1.59 0.05 1.51 0.05 1.47 0.05 1.36 0.04 1.28 
Jul 0.00 6.01 0.00 5.51 0.00 4.92 0.00 4.62 0.00 4.22 
Aug 0.00 6.64 0.00 6.30 0.00 5.59 0.00 5.33 0.00 4.53 
Sep 0.00 3.24 0.00 3.13 0.00 2.79 0.00 2.67 0.00 2.09 
Oct 0.69 0.13 0.56 0.13 0.55 0.12 0.51 0.11 0.55 0.09 
Nov 10.26 0.00 9.15 0.00 8.66 0.00 8.37 0.00 9.27 0.00 
Dec 20.39 0.00 18.93 0.00 18.19 0.00 17.81 0.00 19.12 0.00 

A
nn

ua
l 

Total  89.35 18.17 82.39 17.12 79.39 15.41 77.75 14.59 84.08 12.67 

H+C 107.51 99.51 94.80 92.34 96.75 

S
ea

so
n 

A
ve

ra
ge

 Winter 17.09 0.00 15.98 0.00 15.46 0.00 15.20 0.00 16.38 0.00 
Spring 2.24 0.71 1.93 0.68 1.87 0.66 1.82 0.62 2.00 0.58 

Summer 0.00 5.30 0.00 4.98 0.00 4.43 0.00 4.21 0.00 3.61 
Autumn 10.45 0.04 9.55 0.04 9.13 0.04 8.90 0.04 9.65 0.03 
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Table Appendices 8: Section 7.3. Compact form – Above Ground, Basement and Basement 
with Courtyard - heating and cooling results 

Compact Form – Above Ground 

 CompF_Abv_01 CompF_Abv_02 CompF_Abv_03 

 
   

Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 17.99 0.00 16.63 0.00 16.54 0.00 
Feb 12.46 0.00 11.91 0.00 12.61 0.00 
Mar 8.74 0.00 8.29 0.00 9.35 0.00 
Apr 3.10 0.06 2.68 0.00 3.50 0.00 
May 0.38 0.94 0.13 0.24 0.05 0.00 
Jun 0.02 2.42 0.00 1.16 0.00 0.00 
Jul 0.00 6.09 0.00 3.21 0.00 0.10 
Aug 0.00 5.87 0.00 3.10 0.00 0.26 
Sep 0.00 2.03 0.00 1.02 0.00 0.00 
Oct 0.62 0.06 0.24 0.00 0.00 0.00 
Nov 8.58 0.00 7.29 0.00 6.72 0.00 
Dec 16.64 0.00 15.06 0.00 14.50 0.00 

A
nn

ua
l 

Total  68.53 17.47 62.22 8.73 63.29 0.36 
H+C 86.00 70.95 63.65 

S
ea

so
n 

A
ve

ra
ge

 Winter 13.06 0.00 12.28 0.00 12.84 0.00 
Spring 1.17 1.14 0.94 0.47 1.18 0.00 

Summer 0.00 4.66 0.00 2.44 0.00 0.12 
Autumn 8.61 0.02 7.53 0.00 7.07 0.00 

Compact Form - Basement 

 CompF_Bsmt_01 CompF_Bsmt_02 CompF_Bsmt_03 

 
   

Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 17.09 0.00 17.14 0.00 17.04 0.00 
Feb 12.18 0.00 12.42 0.00 13.13 0.00 
Mar 8.74 0.00 8.72 0.00 9.80 0.00 
Apr 3.22 0.04 3.01 0.00 3.88 0.00 
May 0.28 0.80 0.12 0.22 0.03 0.00 
Jun 0.02 2.07 0.00 1.13 0.00 0.00 
Jul 0.00 4.58 0.00 3.10 0.00 0.08 
Aug 0.00 4.28 0.00 2.98 0.00 0.22 
Sep 0.00 1.56 0.00 0.96 0.00 0.00 
Oct 0.54 0.04 0.26 0.00 0.00 0.00 
Nov 8.32 0.00 7.85 0.00 7.28 0.00 
Dec 15.76 0.00 15.60 0.00 15.03 0.00 

A
nn

ua
l 

Total  66.15 13.38 65.12 8.39 66.19 0.30 

H+C 79.53 73.51 66.49 

S
ea

so
n 

A
ve

ra
ge

 Winter 12.67 0.00 12.76 0.00 13.32 0.00 
Spring 1.17 0.97 1.04 0.45 1.30 0.00 

Summer 0.00 3.47 0.00 2.35 0.00 0.10 
Autumn 8.21 0.01 7.90 0.00 7.44 0.00 

Compact Form – Basement with Courtyard - 01Crt 

 CompF_01Crt_01 CompF_01Crt_02 CompF_01Crt_03 

 
   

Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 16.56 0.00 16.88 0.00 16.98 0.00 
Feb 11.64 0.00 11.96 0.00 12.06 0.00 
Mar 8.29 0.00 8.56 0.00 8.64 0.00 
Apr 2.90 0.05 3.08 0.05 3.14 0.05 
May 0.29 0.82 0.28 0.81 0.28 0.81 
Jun 0.02 2.11 0.02 2.09 0.02 2.08 
Jul 0.00 4.67 0.00 4.62 0.00 4.61 
Aug 0.00 4.41 0.00 4.34 0.00 4.32 
Sep 0.00 1.64 0.00 1.59 0.00 1.58 
Oct 0.50 0.05 0.52 0.04 0.53 0.04 
Nov 7.76 0.00 8.10 0.00 8.21 0.00 
Dec 15.22 0.00 15.55 0.00 15.65 0.00 

A
nn

ua
l 

Total  63.18 13.75 64.97 13.55 65.52 13.48 

H+C 76.93 78.52 79.00 

S
ea

so
n 

A
ve

ra
g

e 

Winter 12.16 0.00 12.47 0.00 12.56 0.00 
Spring 1.07 0.99 1.13 0.98 1.15 0.98 

Summer 0.00 3.58 0.00 3.52 0.00 3.50 
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Autumn 7.83 0.02 8.06 0.01 8.13 0.01 

Compact Form – Basement with Courtyard - 02Crt 

 CompF_02Crt_01 CompF_02Crt_02 CompF_02Crt_03 

 
   

Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 16.61 0.00 17.45 0.00 17.03 0.00 
Feb 11.88 0.00 12.62 0.00 12.31 0.00 
Mar 8.26 0.00 8.86 0.00 8.62 0.00 
Apr 2.68 0.00 3.03 0.00 2.93 0.00 
May 0.13 0.24 0.13 0.23 0.12 0.23 
Jun 0.00 1.15 0.00 1.13 0.00 1.14 
Jul 0.00 3.18 0.00 3.13 0.00 3.12 
Aug 0.00 3.09 0.00 3.02 0.00 3.01 
Sep 0.00 1.01 0.00 0.98 0.00 0.97 
Oct 0.24 0.00 0.25 0.00 0.26 0.00 
Nov 7.29 0.00 7.87 0.00 7.74 0.00 
Dec 15.06 0.00 15.84 0.00 15.49 0.00 

A
nn

ua
l 

Total  62.14 8.66 66.05 8.48 64.49 8.47 

H+C 70.81 74.53 72.96 

S
ea

so
n 

A
ve

ra
ge

 Winter 12.25 0.00 12.98 0.00 12.65 0.00 
Spring 0.94 0.46 1.05 0.45 1.02 0.45 

Summer 0.00 2.43 0.00 2.37 0.00 2.37 
Autumn 7.53 0.00 7.99 0.00 7.83 0.00 

Compact Form – Basement with Courtyard - 03Crt 

 CompF_03Crt_01 CompF_03Crt_02 CompF_03Crt_03 

 
   

Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 16.52 0.00 16.84 0.00 16.89 0.00 
Feb 12.59 0.00 12.91 0.00 13.00 0.00 
Mar 9.32 0.00 9.60 0.00 9.69 0.00 
Apr 3.52 0.00 3.73 0.00 3.82 0.00 
May 0.04 0.00 0.03 0.00 0.03 0.00 
Jun 0.00 0.00 0.00 0.00 0.00 0.00 
Jul 0.00 0.09 0.00 0.09 0.00 0.08 
Aug 0.00 0.25 0.00 0.23 0.00 0.22 
Sep 0.00 0.00 0.00 0.00 0.00 0.00 
Oct 0.00 0.00 0.00 0.00 0.00 0.00 
Nov 6.72 0.00 7.07 0.00 7.21 0.00 
Dec 14.50 0.00 14.83 0.00 14.90 0.00 

A
nn

ua
l Total  63.22 0.35 65.01 0.32 65.54 0.30 

H+C 63.56 65.33 65.84 

S
ea

so
n 

A
ve

ra
ge

 Winter 12.81 0.00 13.12 0.00 13.20 0.00 
Spring 1.19 0.00 1.25 0.00 1.28 0.00 

Summer 0.00 0.12 0.00 0.11 0.00 0.10 
Autumn 7.07 0.00 7.30 0.00 7.37 0.00 
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Table Appendices 9: Section 7.3. Long form – Above Ground, Basement and Basement with 
Courtyard - heating and cooling results 

Long Form – Above Ground 

 LongF_Abv_01 LongF_Abv_02 LongF_Abv_03 

 
   

Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 18.69 0.00 16.53 0.00 16.28 0.00 
Feb 13.12 0.00 11.70 0.00 12.28 0.00 
Mar 9.73 0.00 8.45 0.00 9.35 0.00 
Apr 3.86 0.04 2.90 0.00 3.55 0.00 
May 0.65 0.73 0.26 0.27 0.16 0.00 
Jun 0.04 1.94 0.00 1.17 0.00 0.00 
Jul 0.00 5.28 0.00 3.34 0.00 0.25 
Aug 0.00 5.37 0.00 3.55 0.00 0.58 
Sep 0.00 2.21 0.00 1.51 0.00 0.16 
Oct 0.63 0.09 0.20 0.02 0.00 0.00 
Nov 8.66 0.00 6.58 0.00 5.70 0.00 
Dec 17.05 0.00 14.61 0.00 13.88 0.00 

A
nn

u
al

 Total  72.42 15.65 61.23 9.86 61.18 0.99 
H+C 88.08 71.09 62.18 

S
ea

so
n 

A
ve

ra
ge

 Winter 13.85 0.00 12.22 0.00 12.63 0.00 
Spring 1.52 0.90 1.06 0.48 1.23 0.00 

Summer 0.00 4.29 0.00 2.80 0.00 0.33 
Autumn 8.78 0.03 7.13 0.01 6.53 0.00 

Long Form - Basement 

 LongF_Bsmt_01 LongF_Bsmt_02 LongF_Bsmt_03 

 
   

Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 17.95 0.00 17.54 0.00 17.28 0.00 
Feb 12.97 0.00 12.74 0.00 13.32 0.00 
Mar 9.74 0.00 9.34 0.00 10.27 0.00 
Apr 3.99 0.03 3.56 0.00 4.33 0.00 
May 0.45 0.62 0.23 0.23 0.13 0.00 
Jun 0.03 1.71 0.00 1.11 0.00 0.00 
Jul 0.00 4.08 0.00 3.15 0.00 0.20 
Aug 0.00 3.97 0.00 3.24 0.00 0.48 
Sep 0.00 1.64 0.00 1.34 0.00 0.09 
Oct 0.54 0.06 0.23 0.02 0.00 0.00 
Nov 8.46 0.00 7.60 0.00 6.73 0.00 
Dec 16.32 0.00 15.67 0.00 14.93 0.00 

A
nn

u
al

 Total  70.45 12.10 66.91 9.09 66.99 0.77 
H+C 82.55 75.99 67.76 

S
ea

so
n 

A
ve

ra
ge

 Winter 13.55 0.00 13.21 0.00 13.62 0.00 
Spring 1.49 0.79 1.26 0.45 1.49 0.00 

Summer 0.00 3.23 0.00 2.58 0.00 0.26 
Autumn 8.44 0.02 7.83 0.01 7.22 0.00 

Long Form – Basement with Courtyard - 01Crt 

 LongF_01Crt_01 LongF_01Crt_02 LongF_01Crt_03 

 
   

Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 16.78 0.00 17.43 0.00 17.64 0.00 
Feb 11.76 0.00 12.44 0.00 12.65 0.00 
Mar 8.71 0.00 9.27 0.00 9.46 0.00 
Apr 3.30 0.04 3.64 0.03 3.77 0.03 
May 0.48 0.67 0.46 0.64 0.46 0.64 
Jun 0.03 1.76 0.03 1.73 0.03 1.72 
Jul 0.00 4.24 0.00 4.16 0.00 4.13 
Aug 0.00 4.24 0.00 4.08 0.00 4.04 
Sep 0.00 1.83 0.00 1.72 0.00 1.69 
Oct 0.47 0.08 0.51 0.07 0.52 0.06 
Nov 7.31 0.00 7.93 0.00 8.15 0.00 
Dec 15.15 0.00 15.81 0.00 16.02 0.00 

A
nn

u
al

 Total  64.00 12.85 67.52 12.43 68.71 12.31 
H+C 76.85 79.95 81.02 

S
ea

so
n 

A
ve

ra
ge

 Winter 12.42 0.00 13.05 0.00 13.25 0.00 
Spring 1.27 0.82 1.38 0.80 1.42 0.80 

Summer 0.00 3.44 0.00 3.32 0.00 3.28 
Autumn 7.65 0.03 8.08 0.02 8.23 0.02 
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Long Form – Basement with Courtyard - 02Crt 

 LongF_02Crt_01 LongF_02Crt_02 LongF_02Crt_03 

 
   

Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 16.37 0.00 17.02 0.00 17.23 0.00 
Feb 11.54 0.00 12.21 0.00 12.43 0.00 
Mar 8.30 0.00 8.87 0.00 9.06 0.00 
Apr 2.86 0.00 3.21 0.00 3.34 0.00 
May 0.26 0.26 0.24 0.25 0.24 0.24 
Jun 0.00 1.15 0.00 1.13 0.00 1.12 
Jul 0.00 3.30 0.00 3.22 0.00 3.19 
Aug 0.00 3.48 0.00 3.34 0.00 3.31 
Sep 0.00 1.50 0.00 1.40 0.00 1.38 
Oct 0.19 0.02 0.21 0.02 0.22 0.02 
Nov 6.45 0.00 7.07 0.00 7.29 0.00 
Dec 14.51 0.00 15.15 0.00 15.37 0.00 

A
nn

u
al

 Total  60.48 9.70 63.99 9.36 65.18 9.26 
H+C 70.18 73.34 74.43 

S
ea

so
n 

A
ve

ra
ge

 Winter 12.07 0.00 12.70 0.00 12.91 0.00 
Spring 1.04 0.47 1.15 0.46 1.19 0.45 

Summer 0.00 2.76 0.00 2.66 0.00 2.63 
Autumn 7.05 0.01 7.48 0.01 7.62 0.01 

Long Form – Basement with Courtyard - 03Crt 

 LongF_03Crt_01 LongF_03Crt_02 LongF_03Crt_03 

 
   

Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 16.12 0.00 16.76 0.00 16.98 0.00 
Feb 12.12 0.00 12.79 0.00 13.00 0.00 
Mar 9.20 0.00 9.79 0.00 9.98 0.00 
Apr 3.52 0.00 3.95 0.00 4.10 0.00 
May 0.15 0.00 0.13 0.00 0.12 0.00 
Jun 0.00 0.00 0.00 0.00 0.00 0.00 
Jul 0.00 0.24 0.00 0.21 0.00 0.21 
Aug 0.00 0.56 0.00 0.52 0.00 0.51 
Sep 0.00 0.15 0.00 0.12 0.00 0.11 
Oct 0.00 0.00 0.00 0.00 0.00 0.00 
Nov 5.57 0.00 6.20 0.00 6.42 0.00 
Dec 13.78 0.00 14.42 0.00 14.63 0.00 

A
nn

u
al

 Total  60.46 0.95 64.04 0.85 65.23 0.82 
H+C 61.41 64.89 66.05 

S
ea

so
n 

A
ve

ra
ge

 Winter 12.48 0.00 13.11 0.00 13.32 0.00 
Spring 1.22 0.00 1.36 0.00 1.41 0.00 

Summer 0.00 0.32 0.00 0.28 0.00 0.27 
Autumn 6.45 0.00 6.87 0.00 7.02 0.00 
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APPENDIX 4 

This appendix displays all Chapter 8 simulation results, as monthly, seasonal and 

annual energy loads. 

Table Appendices 10: Section 8.1. – Slope Forms heating and cooling results 
Slope Forms - F01 

 F01_00° F01_05° F01_10° F01_15° F01_20° 

      
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 24.40 0.00 23.66 0.00 23.22 0.00 22.82 0.00 22.41 0.00 
Feb 16.78 0.00 16.19 0.00 15.92 0.00 15.60 0.00 15.33 0.00 
Mar 12.08 0.00 11.55 0.00 11.34 0.00 11.03 0.00 10.78 0.00 
Apr 4.70 0.02 4.40 0.01 4.27 0.00 4.07 0.00 3.90 0.00 
May 0.89 0.96 0.80 0.86 0.76 0.72 0.68 0.61 0.63 0.47 
Jun 0.05 3.03 0.04 2.84 0.03 2.56 0.02 2.35 0.02 2.08 
Jul 0.00 7.36 0.00 7.01 0.00 6.53 0.00 6.17 0.00 5.70 
Aug 0.00 7.18 0.00 6.88 0.00 6.51 0.00 6.16 0.00 5.75 
Sep 0.00 2.97 0.00 2.86 0.00 2.71 0.00 2.55 0.00 2.36 
Oct 1.20 0.07 1.07 0.06 0.97 0.05 0.90 0.04 0.81 0.03 
Nov 11.52 0.00 11.03 0.00 10.61 0.00 10.36 0.00 10.03 0.00 
Dec 22.54 0.00 21.81 0.00 21.30 0.00 20.92 0.00 20.49 0.00 

A
nn

ua
l 

Total  94.16 21.60 90.55 20.52 88.43 19.09 86.40 17.87 84.40 16.40 

H+C 115.76 111.07 107.52 104.27 100.79 

S
ea

so
n 

A
ve

ra
ge

 Winter 17.75 0.00 17.13 0.00 16.83 0.00 16.48 0.00 16.17 0.00 
Spring 1.88 1.34 1.75 1.24 1.69 1.10 1.59 0.99 1.52 0.85 

Summer 0.00 5.84 0.00 5.58 0.00 5.25 0.00 4.96 0.00 4.60 
Autumn 11.75 0.02 11.30 0.02 10.96 0.02 10.73 0.01 10.45 0.01 

Slope Forms - F02 

 F02_00° F02_05° F02_10° F02_15° F02_20° 

      
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 25.69 0.00 24.92 0.00 23.33 0.00 22.28 0.00 21.62 0.00 
Feb 17.42 0.00 17.05 0.00 16.41 0.00 16.02 0.00 15.70 0.00 
Mar 11.75 0.00 11.35 0.00 10.84 0.00 10.79 0.00 10.71 0.00 
Apr 4.12 0.05 3.86 0.00 3.41 0.00 3.31 0.00 3.18 0.00 
May 0.60 1.55 0.49 0.79 0.25 0.03 0.14 0.00 0.07 0.00 
Jun 0.03 4.40 0.01 3.01 0.00 0.89 0.00 0.05 0.00 0.00 
Jul 0.00 9.71 0.00 7.33 0.00 3.89 0.00 1.92 0.00 1.07 
Aug 0.00 9.02 0.00 6.79 0.00 3.66 0.00 1.86 0.00 1.10 
Sep 0.00 3.14 0.00 2.14 0.00 0.72 0.00 0.09 0.00 0.00 
Oct 1.25 0.05 1.08 0.00 0.63 0.00 0.37 0.00 0.23 0.00 
Nov 12.40 0.00 11.95 0.00 10.81 0.00 10.12 0.00 9.60 0.00 
Dec 24.04 0.00 23.27 0.00 21.48 0.00 20.30 0.00 19.53 0.00 

A
nn

ua
l 

Total  97.29 27.92 93.97 20.05 87.17 9.19 83.33 3.92 80.64 2.17 

H+C 125.21 114.02 96.37 87.25 82.81 

S
ea

so
n 

A
ve

ra
ge

 Winter 18.29 0.00 17.78 0.00 16.86 0.00 16.36 0.00 16.01 0.00 
Spring 1.58 2.00 1.45 1.27 1.22 0.31 1.15 0.02 1.08 0.00 

Summer 0.00 7.29 0.00 5.42 0.00 2.76 0.00 1.29 0.00 0.72 
Autumn 12.56 0.02 12.10 0.00 10.98 0.00 10.26 0.00 9.79 0.00 

Slope Forms - F03 

 F03_00° F03_05° F03_10° F03_15° F03_20° 

      
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 23.54 0.00 22.77 0.00 22.35 0.00 21.31 0.00 20.48 0.00 
Feb 16.01 0.00 15.44 0.00 15.24 0.00 14.79 0.00 14.51 0.00 
Mar 11.02 0.00 10.50 0.00 10.29 0.00 9.90 0.00 9.82 0.00 
Apr 3.97 0.03 3.68 0.01 3.54 0.00 3.26 0.00 3.20 0.00 
May 0.63 1.23 0.54 0.95 0.48 0.65 0.34 0.12 0.26 0.00 
Jun 0.03 3.61 0.02 3.08 0.01 2.51 0.00 1.23 0.00 0.30 
Jul 0.00 8.08 0.00 7.17 0.00 6.19 0.00 4.20 0.00 2.52 
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Aug 0.00 7.56 0.00 6.73 0.00 5.84 0.00 4.03 0.00 2.50 
Sep 0.00 2.75 0.00 2.39 0.00 1.98 0.00 1.12 0.00 0.44 
Oct 1.18 0.05 1.04 0.02 0.94 0.01 0.67 0.00 0.48 0.00 
Nov 11.31 0.00 10.81 0.00 10.50 0.00 9.72 0.00 9.16 0.00 
Dec 21.97 0.00 21.22 0.00 20.77 0.00 19.62 0.00 18.69 0.00 

A
nn

ua
l 

Total  89.66 23.31 86.02 20.36 84.13 17.18 79.61 10.70 76.59 5.76 

H+C 112.97 106.38 101.31 90.31 82.35 

S
ea

so
n 

A
ve

ra
ge

 Winter 16.86 0.00 16.24 0.00 15.96 0.00 15.33 0.00 14.94 0.00 
Spring 1.54 1.62 1.41 1.35 1.34 1.05 1.20 0.45 1.15 0.10 

Summer 0.00 6.13 0.00 5.43 0.00 4.67 0.00 3.12 0.00 1.82 
Autumn 11.49 0.02 11.02 0.01 10.74 0.00 10.01 0.00 9.44 0.00 

Slope Forms - F04 

 F04_00° F04_05° F04_10° F04_15° F04_20° 

      
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 26.90 0.00 26.04 0.00 25.59 0.00 24.83 0.00 23.77 0.00 
Feb 18.61 0.00 17.96 0.00 17.68 0.00 17.21 0.00 16.86 0.00 
Mar 13.13 0.00 12.55 0.00 12.27 0.00 11.81 0.00 11.61 0.00 
Apr 5.07 0.02 4.72 0.01 4.53 0.00 4.19 0.00 4.06 0.00 
May 0.93 1.09 0.82 0.88 0.74 0.65 0.61 0.40 0.47 0.02 
Jun 0.05 3.50 0.03 3.10 0.02 2.66 0.01 2.13 0.00 0.66 
Jul 0.00 8.36 0.00 7.64 0.00 6.90 0.00 6.06 0.00 3.70 
Aug 0.00 7.97 0.00 7.34 0.00 6.67 0.00 5.91 0.00 3.76 
Sep 0.00 2.99 0.00 2.72 0.00 2.42 0.00 2.05 0.00 1.01 
Oct 1.41 0.05 1.25 0.03 1.14 0.01 0.94 0.00 0.63 0.00 
Nov 13.02 0.00 12.43 0.00 12.06 0.00 11.46 0.00 10.62 0.00 
Dec 25.03 0.00 24.18 0.00 23.69 0.00 22.90 0.00 21.66 0.00 

A
nn

ua
l Total  104.17 23.97 99.99 21.72 97.72 19.32 93.96 16.55 89.69 9.14 

H+C 128.14 121.71 117.04 110.51 98.83 

S
ea

so
n 

A
ve

ra
ge

 Winter 19.55 0.00 18.85 0.00 18.51 0.00 17.95 0.00 17.42 0.00 
Spring 2.02 1.54 1.86 1.33 1.77 1.10 1.60 0.84 1.51 0.23 

Summer 0.00 6.44 0.00 5.90 0.00 5.33 0.00 4.67 0.00 2.82 
Autumn 13.16 0.02 12.62 0.01 12.30 0.00 11.77 0.00 10.97 0.00 

Slope Forms - F05 

 F05_00° F05_05° F05_10° F05_15° F05_20° 

      
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 27.90 0.00 26.65 0.00 26.66 0.00 25.33 0.00 24.51 0.00 
Feb 19.36 0.00 18.47 0.00 18.57 0.00 17.99 0.00 17.63 0.00 
Mar 13.64 0.00 12.95 0.00 12.90 0.00 12.45 0.00 12.28 0.00 
Apr 5.30 0.01 4.96 0.01 4.84 0.00 4.50 0.00 4.37 0.00 
May 0.99 1.07 0.90 0.87 0.81 0.48 0.59 0.04 0.47 0.00 
Jun 0.06 3.51 0.04 3.09 0.02 2.30 0.00 0.83 0.00 0.24 
Jul 0.00 8.50 0.00 7.68 0.00 6.41 0.00 4.07 0.00 2.78 
Aug 0.00 8.11 0.00 7.40 0.00 6.20 0.00 4.07 0.00 2.89 
Sep 0.00 2.99 0.00 2.72 0.00 2.12 0.00 1.09 0.00 0.56 
Oct 1.49 0.04 1.32 0.03 1.21 0.00 0.81 0.00 0.59 0.00 
Nov 13.58 0.00 12.77 0.00 12.69 0.00 11.63 0.00 11.04 0.00 
Dec 26.02 0.00 24.78 0.00 24.75 0.00 23.24 0.00 22.34 0.00 

A
nn

ua
l 

Total  108.34 24.22 102.86 21.79 102.45 17.52 96.54 10.10 93.23 6.47 

H+C 132.57 124.65 119.97 106.64 99.70 

S
ea

so
n 

A
ve

ra
ge

 Winter 20.30 0.00 19.36 0.00 19.38 0.00 18.59 0.00 18.14 0.00 
Spring 2.12 1.53 1.97 1.32 1.89 0.93 1.70 0.29 1.61 0.08 

Summer 0.00 6.53 0.00 5.93 0.00 4.91 0.00 3.08 0.00 2.08 
Autumn 13.70 0.01 12.96 0.01 12.88 0.00 11.89 0.00 11.33 0.00 
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Table Appendices 11: Section 8.2. –Split Levels heating and cooling results 
Split Levels – SplitLevel01 

 SplitLevel01_00° SplitLevel01_05° SplitLevel01_10° SplitLevel01_15° SplitLevel01_20° 

 
     

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 25.79 0.00 24.94 0.00 23.30 0.00 22.44 0.00 21.71 0.00 
Feb 17.54 0.00 17.16 0.00 16.42 0.00 16.20 0.00 15.82 0.00 
Mar 11.88 0.00 11.54 0.00 10.90 0.00 11.05 0.00 10.87 0.00 
Apr 4.20 0.04 4.03 0.00 3.47 0.00 3.51 0.00 3.33 0.00 
May 0.62 1.47 0.55 0.65 0.27 0.03 0.17 0.00 0.08 0.00 
Jun 0.03 4.28 0.01 2.66 0.00 0.87 0.00 0.02 0.00 0.00 
Jul 0.00 9.50 0.00 6.76 0.00 3.85 0.00 1.69 0.00 0.97 
Aug 0.00 8.83 0.00 6.29 0.00 3.63 0.00 1.66 0.00 1.00 
Sep 0.00 3.05 0.00 1.92 0.00 0.71 0.00 0.06 0.00 0.00 
Oct 1.28 0.04 1.12 0.00 0.65 0.00 0.41 0.00 0.24 0.00 
Nov 12.50 0.00 12.00 0.00 10.79 0.00 10.27 0.00 9.71 0.00 
Dec 24.14 0.00 23.28 0.00 21.44 0.00 20.45 0.00 19.63 0.00 

A
nn

u
al

 Total  97.99 27.21 94.62 18.28 87.23 9.10 84.50 3.43 81.41 1.97 
H+C 125.20 112.90 96.33 87.93 83.38 

S
ea

so
n 

A
ve

ra
ge

 Winter 18.40 0.00 17.88 0.00 16.87 0.00 16.57 0.00 16.14 0.00 
Spring 1.62 1.93 1.53 1.10 1.25 0.30 1.23 0.01 1.14 0.00 

Summer 0.00 7.13 0.00 4.99 0.00 2.73 0.00 1.14 0.00 0.66 
Autumn 12.64 0.01 12.13 0.00 10.96 0.00 10.37 0.00 9.86 0.00 

Split Levels – SplitLevel02 

 SplitLevel02_00° SplitLevel02_05° SplitLevel02_10° SplitLevel02_15° SplitLevel02_20° 

 
     

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 26.98 0.00 26.49 0.00 25.37 0.00 24.39 0.00 24.15 0.00 
Feb 18.52 0.00 18.35 0.00 17.63 0.00 17.45 0.00 17.37 0.00 
Mar 12.72 0.00 12.62 0.00 11.94 0.00 12.16 0.00 12.15 0.00 
Apr 4.64 0.03 4.64 0.00 4.15 0.00 4.49 0.00 4.53 0.00 
May 0.73 1.23 0.72 0.64 0.51 0.43 0.35 0.17 0.36 0.09 
Jun 0.04 3.86 0.02 2.64 0.00 2.06 0.00 1.20 0.00 0.90 
Jul 0.00 9.09 0.00 7.03 0.00 5.88 0.00 3.67 0.00 3.15 
Aug 0.00 8.59 0.00 6.67 0.00 5.58 0.00 3.48 0.00 2.99 
Sep 0.00 3.00 0.00 2.12 0.00 1.65 0.00 0.95 0.00 0.75 
Oct 1.28 0.04 1.23 0.00 0.95 0.00 0.64 0.00 0.61 0.00 
Nov 12.98 0.00 12.77 0.00 11.88 0.00 11.28 0.00 11.16 0.00 
Dec 25.12 0.00 24.64 0.00 23.44 0.00 22.31 0.00 22.04 0.00 

A
nn

u
al

 Total  103.01 25.84 101.49 19.11 95.87 15.59 93.07 9.47 92.36 7.89 
H+C 128.85 120.59 111.46 102.55 100.25 

S
ea

so
n 

A
ve

ra
ge

 Winter 19.41 0.00 19.15 0.00 18.31 0.00 18.00 0.00 17.89 0.00 
Spring 1.80 1.71 1.80 1.09 1.55 0.83 1.61 0.45 1.63 0.33 

Summer 0.00 6.90 0.00 5.27 0.00 4.37 0.00 2.70 0.00 2.30 
Autumn 13.13 0.01 12.88 0.00 12.09 0.00 11.41 0.00 11.27 0.00 

Split Levels – SplitLevel03 

 SplitLevel03_00° SplitLevel03_05° SplitLevel03_10° SplitLevel03_15° SplitLevel03_20° 

 
     

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 27.12 0.00 26.40 0.00 25.91 0.00 24.58 0.00 23.79 0.00 
Feb 18.67 0.00 18.17 0.00 18.03 0.00 17.52 0.00 17.28 0.00 
Mar 12.85 0.00 12.45 0.00 12.34 0.00 12.11 0.00 12.21 0.00 
Apr 4.70 0.01 4.50 0.00 4.42 0.00 4.16 0.00 4.33 0.00 
May 0.74 1.13 0.68 0.90 0.63 0.42 0.40 0.15 0.30 0.12 
Jun 0.04 3.72 0.03 3.24 0.01 2.18 0.00 0.77 0.00 0.56 
Jul 0.00 8.88 0.00 8.03 0.00 6.20 0.00 3.62 0.00 2.09 
Aug 0.00 8.40 0.00 7.60 0.00 5.92 0.00 3.55 0.00 2.15 
Sep 0.00 2.93 0.00 2.58 0.00 1.84 0.00 0.90 0.00 0.74 
Oct 1.33 0.04 1.22 0.02 1.10 0.01 0.69 0.01 0.47 0.01 
Nov 13.12 0.00 12.67 0.00 12.36 0.00 11.51 0.00 11.02 0.00 
Dec 25.25 0.00 24.53 0.00 23.99 0.00 22.51 0.00 21.61 0.00 

A
nn

u
al

 Total  103.82 25.11 100.65 22.37 98.80 16.58 93.48 9.01 91.01 5.67 
H+C 128.93 123.03 115.38 102.49 96.69 

S
ea

so
n 

A
ve

ra
ge

 Winter 19.55 0.00 19.01 0.00 18.76 0.00 18.07 0.00 17.76 0.00 
Spring 1.83 1.62 1.74 1.38 1.69 0.87 1.52 0.31 1.55 0.23 

Summer 0.00 6.74 0.00 6.07 0.00 4.65 0.00 2.69 0.00 1.66 

Autumn 13.23 0.01 12.81 0.01 12.49 0.00 11.57 0.00 11.03 0.00 
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Split Levels – SplitLevel04 

 SplitLevel04_00° SplitLevel04_05° SplitLevel04_10° SplitLevel04_15° SplitLevel04_20° 

 
     

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 27.07 0.00 26.30 0.00 25.74 0.00 24.35 0.00 23.56 0.00 
Feb 18.61 0.00 18.12 0.00 17.90 0.00 17.42 0.00 17.17 0.00 
Mar 12.80 0.00 12.40 0.00 12.20 0.00 12.14 0.00 12.22 0.00 
Apr 4.67 0.02 4.47 0.00 4.32 0.00 4.29 0.00 4.66 0.00 
May 0.73 1.16 0.67 0.84 0.59 0.43 0.35 0.22 0.26 0.11 
Jun 0.04 3.77 0.02 3.13 0.01 2.14 0.00 1.12 0.00 0.79 
Jul 0.00 8.96 0.00 7.83 0.00 6.10 0.00 3.35 0.00 2.54 
Aug 0.00 8.48 0.00 7.44 0.00 5.81 0.00 3.28 0.00 2.49 
Sep 0.00 2.96 0.00 2.50 0.00 1.77 0.00 1.01 0.00 0.77 
Oct 1.30 0.03 1.18 0.01 1.04 0.01 0.61 0.00 0.42 0.00 
Nov 13.05 0.00 12.54 0.00 12.19 0.00 11.28 0.00 10.80 0.00 
Dec 25.20 0.00 24.42 0.00 23.81 0.00 22.25 0.00 21.37 0.00 

A
nn

ua
l 

Total  103.48 25.39 100.13 21.76 97.81 16.24 92.70 8.98 90.47 6.71 

H+C 128.86 121.89 114.05 101.69 97.18 

S
ea

so
n 

A
ve

ra
ge

 Winter 19.49 0.00 18.94 0.00 18.61 0.00 17.97 0.00 17.65 0.00 
Spring 1.81 1.65 1.72 1.33 1.64 0.86 1.55 0.45 1.64 0.30 

Summer 0.00 6.80 0.00 5.92 0.00 4.56 0.00 2.55 0.00 1.93 
Autumn 13.18 0.01 12.71 0.00 12.35 0.00 11.38 0.00 10.86 0.00 

Split Levels – SplitLevel05 

 SplitLevel05_00° SplitLevel05_05° SplitLevel05_10° SplitLevel05_15° SplitLevel05_20° 

 
     

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 28.32 0.00 25.85 0.00 26.81 0.00 25.63 0.00 24.85 0.00 
Feb 19.63 0.00 18.11 0.00 18.79 0.00 18.49 0.00 18.03 0.00 
Mar 13.52 0.00 12.60 0.00 12.87 0.00 13.03 0.00 12.72 0.00 
Apr 4.92 0.01 4.73 0.00 4.52 0.00 4.82 0.00 4.71 0.00 
May 0.73 0.98 0.71 0.59 0.56 0.39 0.34 0.23 0.28 0.09 
Jun 0.03 3.53 0.02 2.43 0.01 2.00 0.00 1.21 0.00 0.77 
Jul 0.00 8.89 0.00 6.89 0.00 6.09 0.00 3.82 0.00 2.94 
Aug 0.00 8.43 0.00 6.66 0.00 5.83 0.00 3.72 0.00 2.90 
Sep 0.00 2.81 0.00 2.16 0.00 1.72 0.00 1.15 0.00 0.79 
Oct 1.31 0.03 1.10 0.02 1.02 0.01 0.60 0.01 0.48 0.00 
Nov 13.76 0.00 12.39 0.00 12.80 0.00 12.05 0.00 11.59 0.00 
Dec 26.35 0.00 23.90 0.00 24.77 0.00 23.42 0.00 22.63 0.00 

A
nn

ua
l 

Total  108.58 24.68 99.41 18.77 102.15 16.04 98.39 10.14 95.30 7.48 

H+C 133.26 118.18 118.19 108.53 102.78 

S
ea

so
n 

A
ve

ra
ge

 Winter 20.49 0.00 18.85 0.00 19.49 0.00 19.05 0.00 18.53 0.00 
Spring 1.89 1.51 1.82 1.01 1.69 0.80 1.72 0.48 1.66 0.29 

Summer 0.00 6.71 0.00 5.24 0.00 4.55 0.00 2.90 0.00 2.21 
Autumn 13.81 0.01 12.46 0.01 12.86 0.00 12.03 0.00 11.57 0.00 
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Table Appendices 12: Section 8.3. – Slope Building Design heating and cooling results 
 Slope Building Design - SlopeBD01 

 SlopeBD01_00° SlopeBD01_10° SlopeBD01_20° SlopeBD01_30° SlopeBD01_40° SlopeBD01_50° 

 
      

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 27.58 0.00 24.68 0.00 22.79 0.00 21.92 0.00 21.49 0.00 21.26 0.00 
Feb 19.06 0.00 17.49 0.00 16.78 0.00 16.34 0.00 16.15 0.00 16.06 0.00 
Mar 12.94 0.00 12.05 0.00 12.10 0.00 11.90 0.00 11.78 0.00 11.80 0.00 
Apr 4.48 0.01 4.08 0.00 4.57 0.00 4.64 0.00 4.58 0.00 4.61 0.00 
May 0.57 1.03 0.32 0.37 0.21 0.17 0.15 0.02 0.12 0.00 0.10 0.00 
Jun 0.02 3.67 0.01 1.57 0.00 0.75 0.00 0.26 0.00 0.02 0.00 0.00 
Jul 0.00 9.11 0.00 4.56 0.00 2.17 0.00 1.35 0.00 0.72 0.00 0.34 
Aug 0.00 8.48 0.00 4.40 0.00 2.22 0.00 1.45 0.00 0.87 0.00 0.50 
Sep 0.00 2.69 0.00 1.40 0.00 0.88 0.00 0.50 0.00 0.23 0.00 0.08 
Oct 1.24 0.03 0.63 0.02 0.27 0.01 0.15 0.00 0.08 0.00 0.04 0.00 
Nov 13.54 0.00 11.56 0.00 10.33 0.00 9.75 0.00 9.41 0.00 9.25 0.00 
Dec 25.77 0.00 22.60 0.00 20.48 0.00 19.56 0.00 19.08 0.00 18.82 0.00 

A
nn

ua
l 

Total  105.20 25.02 93.41 12.32 87.53 6.19 84.41 3.58 82.68 1.84 81.95 0.93 

H+C 130.22 105.73 93.72 87.98 84.52 82.88 

S
ea

so
n 

A
ve

ra
ge

 Winter 19.86 0.00 18.07 0.00 17.22 0.00 16.72 0.00 16.47 0.00 16.37 0.00 
Spring 1.69 1.57 1.47 0.65 1.59 0.31 1.60 0.09 1.57 0.01 1.57 0.00 

Summer 0.00 6.76 0.00 3.45 0.00 1.75 0.00 1.10 0.00 0.61 0.00 0.31 
Autumn 13.52 0.01 11.60 0.01 10.36 0.00 9.82 0.00 9.52 0.00 9.37 0.00 

 Slope Building Design - SlopeBD02 

 SlopeBD02_00° SlopeBD02_10° SlopeBD02_20° SlopeBD02_30° SlopeBD02_40° SlopeBD02_50° 

 
      

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 27.61 0.00 26.64 0.00 24.77 0.00 23.00 0.00 22.32 0.00 22.10 0.00 
Feb 19.15 0.00 18.39 0.00 17.65 0.00 16.96 0.00 16.73 0.00 16.65 0.00 
Mar 13.35 0.00 12.67 0.00 12.31 0.00 12.22 0.00 12.04 0.00 12.06 0.00 
Apr 4.97 0.00 4.56 0.00 4.35 0.00 4.66 0.00 4.57 0.00 4.59 0.00 
May 0.82 0.83 0.68 0.73 0.41 0.20 0.20 0.10 0.11 0.00 0.10 0.00 
Jun 0.04 3.09 0.02 2.89 0.00 1.11 0.00 0.57 0.00 0.02 0.00 0.00 
Jul 0.00 8.10 0.00 7.74 0.00 3.73 0.00 1.86 0.00 0.72 0.00 0.34 
Aug 0.00 7.90 0.00 7.55 0.00 3.79 0.00 1.94 0.00 0.87 0.00 0.50 
Sep 0.00 2.84 0.00 2.68 0.00 1.23 0.00 0.76 0.00 0.22 0.00 0.08 
Oct 1.22 0.03 1.06 0.02 0.57 0.01 0.22 0.00 0.08 0.00 0.04 0.00 
Nov 13.10 0.00 12.43 0.00 11.18 0.00 10.11 0.00 9.64 0.00 9.48 0.00 
Dec 25.49 0.00 24.51 0.00 22.47 0.00 20.51 0.00 19.77 0.00 19.52 0.00 

A
nn

ua
l 

Total  105.75 22.80 100.97 21.61 93.72 10.07 87.88 5.23 85.27 1.82 84.53 0.92 

H+C 128.56 122.58 103.79 93.11 87.09 85.45 

S
ea

so
n 

A
ve

ra
ge

 Winter 20.04 0.00 19.24 0.00 18.24 0.00 17.39 0.00 17.03 0.00 16.94 0.00 
Spring 1.94 1.31 1.75 1.21 1.59 0.44 1.62 0.22 1.56 0.01 1.56 0.00 

Summer 0.00 6.28 0.00 5.99 0.00 2.92 0.00 1.52 0.00 0.60 0.00 0.31 
Autumn 13.27 0.01 12.67 0.01 11.41 0.00 10.28 0.00 9.83 0.00 9.68 0.00 

 Slope Building Design - SlopeBD03 

 SlopeBD03_00° SlopeBD03_10° SlopeBD03_20° SlopeBD03_30° SlopeBD03_40° SlopeBD03_50° 

 

      
Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 27.40 0.00 27.04 0.00 26.81 0.00 25.08 0.00 24.93 0.00 25.00 0.00 
Feb 19.01 0.00 18.75 0.00 18.63 0.00 17.62 0.00 17.59 0.00 17.83 0.00 
Mar 13.59 0.00 13.38 0.00 13.15 0.00 12.44 0.00 12.43 0.00 12.77 0.00 
Apr 5.36 0.00 5.25 0.00 5.01 0.00 4.72 0.00 4.74 0.00 4.99 0.00 
May 1.07 0.71 1.03 0.64 0.89 0.41 0.81 0.12 0.80 0.08 0.89 0.05 
Jun 0.07 2.67 0.06 2.54 0.03 2.07 0.02 1.02 0.01 0.81 0.02 0.58 
Jul 0.00 7.36 0.00 7.12 0.00 6.45 0.00 4.26 0.00 3.81 0.00 3.23 
Aug 0.00 7.50 0.00 7.25 0.00 6.60 0.00 4.46 0.00 3.99 0.00 3.42 
Sep 0.00 3.02 0.00 2.90 0.00 2.52 0.00 1.54 0.00 1.31 0.00 1.05 
Oct 1.22 0.05 1.17 0.04 1.01 0.02 0.84 0.00 0.84 0.00 0.86 0.00 
Nov 12.65 0.00 12.41 0.00 12.11 0.00 11.08 0.00 11.03 0.00 11.14 0.00 
Dec 25.04 0.00 24.67 0.00 24.38 0.00 22.66 0.00 22.53 0.00 22.56 0.00 

A
nn

ua
l 

Total  105.40 21.31 103.76 20.50 102.03 18.07 95.27 11.41 94.91 9.99 96.04 8.33 

H+C 126.71 124.26 120.09 106.68 104.89 104.37 

S
ea

so
n 

A
ve

ra
ge

 Winter 20.00 0.00 19.72 0.00 19.53 0.00 18.38 0.00 18.32 0.00 18.53 0.00 
Spring 2.17 1.13 2.12 1.06 1.98 0.83 1.85 0.38 1.85 0.29 1.96 0.21 

Summer 0.00 5.96 0.00 5.76 0.00 5.19 0.00 3.42 0.00 3.03 0.00 2.57 
Autumn 12.97 0.02 12.75 0.01 12.50 0.01 11.53 0.00 11.47 0.00 11.52 0.00 
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 Slope Building Design - SlopeBD04 

 SlopeBD04_00° SlopeBD04_10° SlopeBD04_20° SlopeBD04_30° SlopeBD04_40° SlopeBD04_50° 

 

      
Heating Cooling Heating Cooling Heating Cooling Heating Heating Cooling Heating Cooling Heating 

M
on

th
ly

 

Jan 23.76 0.00 23.36 0.00 23.15 0.00 22.26 0.00 21.93 0.00 21.77 0.00 
Feb 16.61 0.00 16.32 0.00 16.19 0.00 15.65 0.00 15.61 0.00 15.62 0.00 
Mar 11.92 0.00 11.69 0.00 11.59 0.00 11.08 0.00 11.11 0.00 11.21 0.00 
Apr 4.59 0.01 4.47 0.01 4.42 0.01 4.05 0.00 4.09 0.00 4.17 0.00 
May 0.82 0.46 0.78 0.44 0.76 0.43 0.60 0.25 0.58 0.11 0.58 0.07 
Jun 0.04 1.76 0.04 1.69 0.03 1.58 0.01 1.10 0.01 0.67 0.00 0.56 
Jul 0.00 6.07 0.00 5.85 0.00 5.55 0.00 4.42 0.00 3.24 0.00 2.67 
Aug 0.00 6.46 0.00 6.23 0.00 5.89 0.00 4.84 0.00 3.65 0.00 3.05 
Sep 0.00 2.45 0.00 2.35 0.00 2.19 0.00 1.78 0.00 1.24 0.00 0.98 
Oct 0.79 0.03 0.75 0.03 0.74 0.03 0.53 0.02 0.45 0.00 0.43 0.00 
Nov 10.69 0.00 10.44 0.00 10.34 0.00 9.58 0.00 9.29 0.00 9.17 0.00 
Dec 21.50 0.00 21.11 0.00 20.91 0.00 19.94 0.00 19.55 0.00 19.35 0.00 

A
nn

ua
l Total  90.70 17.25 88.96 16.60 88.11 15.68 83.68 12.40 82.62 8.90 82.29 7.34 

H+C 107.95 105.56 103.80 96.08 91.52 89.64 

S
ea

so
n 

A
ve

ra
ge

 Winter 17.43 0.00 17.12 0.00 16.97 0.00 16.33 0.00 16.22 0.00 16.20 0.00 
Spring 1.82 0.74 1.76 0.71 1.74 0.67 1.55 0.45 1.56 0.26 1.58 0.21 

Summer 0.00 4.99 0.00 4.81 0.00 4.54 0.00 3.68 0.00 2.71 0.00 2.24 
Autumn 10.99 0.01 10.77 0.01 10.66 0.01 10.01 0.01 9.76 0.00 9.65 0.00 

 Slope Building Design - SlopeBD05 

 SlopeBD05_00° SlopeBD05_10° SlopeBD05_20° SlopeBD05_30° SlopeBD05_40° SlopeBD05_50° 

 

      
Heating Cooling Heating Cooling Heating Cooling Heating Heating Cooling Heating Cooling Heating 

M
on

th
ly

 

Jan 21.41 0.00 20.73 0.00 20.35 0.00 19.86 0.00 19.57 0.00 19.54 0.00 
Feb 15.04 0.00 14.55 0.00 14.35 0.00 14.04 0.00 13.92 0.00 14.00 0.00 
Mar 11.07 0.00 10.67 0.00 10.56 0.00 10.28 0.00 10.16 0.00 10.16 0.00 
Apr 4.52 0.04 4.26 0.04 4.20 0.04 3.95 0.03 3.78 0.03 3.63 0.01 
May 0.76 0.69 0.68 0.68 0.65 0.65 0.55 0.61 0.47 0.55 0.34 0.41 
Jun 0.03 2.09 0.03 1.99 0.03 1.90 0.03 1.78 0.03 1.57 0.01 1.36 
Jul 0.00 6.70 0.00 6.28 0.00 5.70 0.00 5.34 0.00 4.84 0.00 4.39 
Aug 0.00 6.90 0.00 6.54 0.00 6.00 0.00 5.71 0.00 5.28 0.00 4.89 
Sep 0.00 2.77 0.00 2.63 0.00 2.40 0.00 2.32 0.00 2.17 0.00 2.03 
Oct 0.68 0.08 0.60 0.08 0.56 0.07 0.48 0.07 0.40 0.07 0.23 0.05 
Nov 9.94 0.00 9.41 0.00 9.15 0.00 8.66 0.00 8.19 0.00 7.73 0.00 
Dec 19.49 0.00 18.77 0.00 18.36 0.00 17.79 0.00 17.38 0.00 17.16 0.00 

A
nn

ua
l 

Total 82.95 19.26 79.70 18.24 78.22 16.76 75.63 15.87 73.90 14.51 72.79 13.13 

H+C 102.21 97.94 94.98 91.50 88.40 85.92 

S
ea

so
n 

A
ve

ra
ge

 Winter 15.84 0.00 15.32 0.00 15.09 0.00 14.72 0.00 14.55 0.00 14.57 0.00 
Spring 1.77 0.94 1.66 0.90 1.63 0.86 1.51 0.81 1.43 0.72 1.32 0.59 

Summer 0.00 5.45 0.00 5.15 0.00 4.70 0.00 4.46 0.00 4.10 0.00 3.77 
Autumn 10.04 0.03 9.59 0.03 9.36 0.02 8.98 0.02 8.66 0.02 8.37 0.02 
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Table Appendices 13: Section 8.4. - Configurations heating and cooling results 
 Configurations - Confg01 

 Confg01_00° Confg01_10° Confg01_20° Confg01_30° Confg01_40° Confg01_50° 

 
      

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 29.15 0.00 26.20 0.00 24.62 0.00 24.09 0.00 23.75 0.00 23.54 0.00 
Feb 20.22 0.00 18.72 0.00 18.15 0.00 17.97 0.00 17.83 0.00 17.76 0.00 
Mar 13.69 0.00 12.69 0.00 12.73 0.00 12.79 0.00 12.69 0.00 12.71 0.00 
Apr 4.72 0.01 4.07 0.00 4.24 0.00 4.51 0.00 4.42 0.00 4.48 0.00 
May 0.57 1.00 0.22 0.33 0.15 0.16 0.12 0.05 0.09 0.00 0.08 0.00 
Jun 0.02 3.76 0.00 1.56 0.00 0.70 0.00 0.41 0.00 0.09 0.00 0.00 
Jul 0.00 9.60 0.00 4.86 0.00 2.17 0.00 1.49 0.00 0.89 0.00 0.51 
Aug 0.00 8.93 0.00 4.64 0.00 2.21 0.00 1.58 0.00 1.02 0.00 0.66 
Sep 0.00 2.74 0.00 1.34 0.00 0.84 0.00 0.63 0.00 0.35 0.00 0.17 
Oct 1.27 0.03 0.54 0.02 0.20 0.01 0.12 0.00 0.06 0.00 0.03 0.00 
Nov 14.36 0.00 12.40 0.00 11.36 0.00 11.05 0.00 10.75 0.00 10.60 0.00 
Dec 27.23 0.00 24.02 0.00 22.26 0.00 21.68 0.00 21.29 0.00 21.06 0.00 

A
nn

ua
l 

Total  111.22 26.07 98.85 12.76 93.72 6.09 92.32 4.17 90.88 2.36 90.27 1.34 

H+C 137.28 111.61 99.81 96.49 93.24 91.61 

S
ea

so
n 

A
ve

ra
ge

 Winter 21.02 0.00 19.20 0.00 18.50 0.00 18.28 0.00 18.09 0.00 18.01 0.00 
Spring 1.77 1.59 1.43 0.63 1.46 0.29 1.54 0.15 1.50 0.03 1.52 0.00 

Summer 0.00 7.09 0.00 3.61 0.00 1.74 0.00 1.23 0.00 0.76 0.00 0.45 
Autumn 14.28 0.01 12.32 0.01 11.28 0.00 10.95 0.00 10.70 0.00 10.57 0.00 

 Configurations - Confg02 

 Confg02_00° Confg02_10° Confg02_20° Confg02_30° Confg02_40° Confg02_50° 

 
      

Heating Cooling Heating Cooling Heating Cooling Heating Heating Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 26.98 0.00 25.10 0.00 24.73 0.00 24.87 0.00 24.86 0.00 24.86 0.00 
Feb 18.94 0.00 17.77 0.00 17.88 0.00 18.48 0.00 18.63 0.00 18.71 0.00 
Mar 13.42 0.00 12.57 0.00 12.56 0.00 13.50 0.00 13.76 0.00 13.91 0.00 
Apr 5.10 0.02 4.61 0.01 4.41 0.00 5.23 0.00 5.49 0.00 5.64 0.00 
May 0.74 0.90 0.54 0.64 0.28 0.18 0.23 0.11 0.28 0.06 0.32 0.03 
Jun 0.04 2.99 0.03 2.32 0.00 1.05 0.00 0.61 0.00 0.41 0.00 0.28 
Jul 0.00 8.20 0.00 6.36 0.00 4.12 0.00 2.37 0.00 1.82 0.00 1.48 
Aug 0.00 7.95 0.00 6.25 0.00 4.23 0.00 2.51 0.00 1.98 0.00 1.65 
Sep 0.00 2.77 0.00 2.27 0.00 1.39 0.00 0.76 0.00 0.62 0.00 0.54 
Oct 1.10 0.06 0.77 0.05 0.39 0.01 0.28 0.01 0.27 0.00 0.27 0.00 
Nov 13.18 0.00 11.92 0.00 11.13 0.00 11.08 0.00 11.14 0.00 11.20 0.00 
Dec 24.97 0.00 23.01 0.00 22.36 0.00 22.28 0.00 22.25 0.00 22.23 0.00 

A
nn

ua
l 

Total  104.48 22.88 96.32 17.89 93.73 10.98 95.95 6.37 96.69 4.89 97.14 3.98 

H+C 127.36 114.22 104.71 102.31 101.57 101.13 

S
ea

so
n 

A
ve

ra
ge

 Winter 19.78 0.00 18.48 0.00 18.39 0.00 18.95 0.00 19.08 0.00 19.16 0.00 
Spring 1.96 1.30 1.73 0.99 1.56 0.41 1.82 0.24 1.92 0.15 1.99 0.10 

Summer 0.00 6.30 0.00 4.96 0.00 3.25 0.00 1.88 0.00 1.47 0.00 1.22 
Autumn 13.08 0.02 11.90 0.02 11.29 0.00 11.21 0.00 11.22 0.00 11.23 0.00 

 Configurations - Confg03 

 Confg03_00° Confg03_10° Confg03_20° Confg03_30° Confg03_40° Confg03_50° 

 
      

Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 23.77 0.00 22.60 0.00 22.12 0.00 22.11 0.00 22.32 0.00 22.15 0.00 
Feb 16.79 0.00 16.00 0.00 15.83 0.00 16.07 0.00 16.59 0.00 16.63 0.00 
Mar 12.02 0.00 11.42 0.00 11.35 0.00 11.52 0.00 12.15 0.00 12.22 0.00 
Apr 4.63 0.02 4.22 0.02 4.26 0.01 4.14 0.01 4.61 0.00 4.70 0.00 
May 0.61 0.77 0.47 0.73 0.38 0.58 0.25 0.34 0.22 0.25 0.19 0.09 
Jun 0.03 2.41 0.02 2.23 0.02 1.91 0.01 1.21 0.01 0.84 0.00 0.51 
Jul 0.00 7.22 0.00 6.30 0.00 5.51 0.00 4.16 0.00 2.78 0.00 1.94 
Aug 0.00 7.11 0.00 6.29 0.00 5.58 0.00 4.36 0.00 3.10 0.00 2.32 
Sep 0.00 2.44 0.00 2.27 0.00 1.99 0.00 1.45 0.00 1.16 0.00 0.87 
Oct 0.89 0.05 0.70 0.05 0.54 0.05 0.29 0.04 0.18 0.03 0.11 0.01 
Nov 11.60 0.00 10.78 0.00 10.41 0.00 10.14 0.00 9.95 0.00 9.61 0.00 
Dec 21.93 0.00 20.71 0.00 20.18 0.00 20.00 0.00 19.97 0.00 19.67 0.00 

A
nn

ua
l 

Total  92.27 20.02 86.93 17.89 85.09 15.64 84.53 11.57 86.00 8.16 85.29 5.73 

H+C 112.29 104.81 100.73 96.10 94.16 91.02 

S
ea

so
n 

A
ve

ra
ge

 Winter 17.53 0.00 16.67 0.00 16.43 0.00 16.57 0.00 17.02 0.00 17.00 0.00 
Spring 1.75 1.07 1.57 0.99 1.55 0.84 1.47 0.52 1.61 0.37 1.63 0.20 

Summer 0.00 5.59 0.00 4.95 0.00 4.36 0.00 3.32 0.00 2.35 0.00 1.71 
Autumn 11.47 0.02 10.73 0.02 10.38 0.02 10.14 0.01 10.03 0.01 9.80 0.00 
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 Configurations - Confg04 

 Confg04_00° Confg04_10° Confg04_20° Confg04_30° Confg04_40° Confg04_50° 

 
      

Heating Cooling Heating Cooling Heating Cooling Heating Heating Cooling Heating Cooling Heating 
M

on
th

ly
 

Jan 25.68 0.00 24.85 0.00 23.90 0.00 22.98 0.00 22.56 0.00 22.35 0.00 
Feb 17.96 0.00 17.41 0.00 17.09 0.00 16.89 0.00 16.88 0.00 16.84 0.00 
Mar 12.59 0.00 12.23 0.00 12.14 0.00 12.21 0.00 12.38 0.00 12.44 0.00 
Apr 4.60 0.02 4.41 0.01 4.36 0.00 4.62 0.00 4.77 0.00 4.86 0.00 
May 0.64 0.86 0.59 0.77 0.40 0.40 0.27 0.09 0.18 0.05 0.18 0.02 
Jun 0.03 2.82 0.03 2.64 0.01 1.48 0.00 0.63 0.00 0.36 0.00 0.23 
Jul 0.00 7.62 0.00 6.95 0.00 4.71 0.00 2.62 0.00 1.52 0.00 1.13 
Aug 0.00 7.52 0.00 6.84 0.00 4.77 0.00 2.84 0.00 1.78 0.00 1.34 
Sep 0.00 2.70 0.00 2.53 0.00 1.73 0.00 1.10 0.00 0.65 0.00 0.50 
Oct 0.98 0.06 0.90 0.05 0.58 0.03 0.25 0.00 0.12 0.00 0.11 0.00 
Nov 12.33 0.00 11.86 0.00 11.27 0.00 10.41 0.00 9.85 0.00 9.68 0.00 
Dec 23.66 0.00 22.84 0.00 21.79 0.00 20.65 0.00 20.03 0.00 19.76 0.00 

A
nn

ua
l 

Total  98.47 21.61 95.12 19.79 91.55 13.11 88.29 7.28 86.76 4.37 86.21 3.22 

H+C 120.08 114.91 104.66 95.57 91.13 89.43 

S
ea

so
n 

A
ve

ra
ge

 Winter 18.74 0.00 18.17 0.00 17.71 0.00 17.36 0.00 17.27 0.00 17.21 0.00 
Spring 1.76 1.23 1.67 1.14 1.59 0.63 1.63 0.24 1.65 0.14 1.68 0.08 

Summer 0.00 5.95 0.00 5.44 0.00 3.74 0.00 2.18 0.00 1.32 0.00 0.99 
Autumn 12.32 0.02 11.87 0.02 11.21 0.01 10.44 0.00 10.00 0.00 9.85 0.00 

 Configurations - Confg05 

 Confg05_00° Confg05_10° Confg05_20° Confg05_30° Confg05_40° Confg05_50° 

 
      

Heating Cooling Heating Cooling Heating Cooling Heating Heating Cooling Heating Cooling Heating 

M
on

th
ly

 

Jan 21.96 0.00 21.62 0.00 20.95 0.00 20.04 0.00 20.18 0.00 20.03 0.00 
Feb 15.76 0.00 15.51 0.00 15.05 0.00 14.54 0.00 14.90 0.00 14.92 0.00 
Mar 11.70 0.00 11.50 0.00 11.14 0.00 10.79 0.00 11.23 0.00 11.29 0.00 
Apr 4.88 0.01 4.77 0.01 4.51 0.01 4.31 0.00 4.70 0.00 4.74 0.00 
May 0.80 0.35 0.76 0.35 0.68 0.34 0.52 0.26 0.52 0.09 0.48 0.05 
Jun 0.04 1.14 0.03 1.13 0.03 1.08 0.02 0.91 0.01 0.54 0.00 0.42 
Jul 0.00 4.54 0.00 4.45 0.00 3.99 0.00 3.19 0.00 2.32 0.00 1.89 
Aug 0.00 4.90 0.00 4.77 0.00 4.35 0.00 3.55 0.00 2.65 0.00 2.18 
Sep 0.00 1.75 0.00 1.69 0.00 1.56 0.00 1.37 0.00 1.00 0.00 0.79 
Oct 0.76 0.03 0.74 0.03 0.61 0.03 0.43 0.02 0.32 0.00 0.26 0.00 
Nov 10.33 0.00 10.13 0.00 9.63 0.00 8.95 0.00 8.88 0.00 8.65 0.00 
Dec 19.93 0.00 19.60 0.00 18.89 0.00 17.91 0.00 17.93 0.00 17.70 0.00 

A
nn

ua
l 

Total 86.14 12.72 84.66 12.43 81.49 11.35 77.51 9.30 78.66 6.61 78.08 5.34 

H+C 98.87 97.09 92.85 86.81 85.26 83.42 

S
ea

so
n 

A
ve

ra
ge

 Winter 16.47 0.00 16.21 0.00 15.71 0.00 15.12 0.00 15.43 0.00 15.41 0.00 
Spring 1.90 0.50 1.85 0.50 1.74 0.48 1.62 0.39 1.74 0.21 1.74 0.16 

Summer 0.00 3.73 0.00 3.63 0.00 3.30 0.00 2.70 0.00 1.99 0.00 1.62 
Autumn 10.34 0.01 10.15 0.01 9.71 0.01 9.10 0.01 9.04 0.00 8.87 0.00 

Configurations - Confg06 
 Confg06_00° Confg06_10° Confg06_20° Confg06_30° Confg06_40° Confg06_50° 

 
      

Heating Cooling Heating Cooling Heating Cooling Heating Heating Cooling Heating Cooling Heating 

M
on

th
ly

 

Jan 26.15 0.00 25.80 0.00 24.66 0.00 23.51 0.00 22.42 0.00 22.36 0.00 
Feb 18.30 0.00 18.05 0.00 17.47 0.00 17.11 0.00 16.57 0.00 16.70 0.00 
Mar 12.80 0.00 12.61 0.00 12.22 0.00 12.27 0.00 12.04 0.00 12.22 0.00 
Apr 4.71 0.01 4.60 0.01 4.29 0.01 4.53 0.01 4.52 0.00 4.70 0.00 
May 0.67 0.74 0.64 0.74 0.45 0.50 0.32 0.32 0.24 0.24 0.23 0.07 
Jun 0.03 2.68 0.03 2.66 0.02 1.73 0.01 1.00 0.01 0.78 0.00 0.42 
Jul 0.00 7.55 0.00 7.42 0.00 5.38 0.00 3.30 0.00 2.22 0.00 1.57 
Aug 0.00 7.41 0.00 7.25 0.00 5.38 0.00 3.43 0.00 2.44 0.00 1.77 
Sep 0.00 2.46 0.00 2.39 0.00 1.72 0.00 1.16 0.00 1.00 0.00 0.72 
Oct 1.07 0.04 1.04 0.04 0.72 0.04 0.39 0.03 0.20 0.02 0.14 0.00 
Nov 12.59 0.00 12.38 0.00 11.64 0.00 10.93 0.00 10.11 0.00 9.99 0.00 
Dec 24.13 0.00 23.79 0.00 22.57 0.00 21.28 0.00 20.05 0.00 19.93 0.00 

A
nn

ua
l 

Total 100.45 20.91 98.94 20.52 94.03 14.76 90.35 9.25 86.19 6.70 86.28 4.56 

H+C 121.35 119.46 108.79 99.61 92.89 90.84 

S
ea

so
n 

A
ve

ra
ge

 Winter 19.08 0.00 18.82 0.00 18.12 0.00 17.63 0.00 17.01 0.00 17.10 0.00 
Spring 1.80 1.15 1.76 1.14 1.58 0.75 1.62 0.44 1.59 0.34 1.64 0.16 

Summer 0.00 5.81 0.00 5.69 0.00 4.16 0.00 2.63 0.00 1.89 0.00 1.35 
Autumn 12.60 0.01 12.40 0.01 11.64 0.01 10.87 0.01 10.12 0.01 10.02 0.00  
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Table Appendices 14: Section 8.5. – Different Cross Sections heating and cooling results 
Cross Section – CrossSec01 

 CrossSec01_00° CrossSec01_30° CrossSec01_40° CrossSec01_50° 

 
    

Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 21.75 0.00 20.39 0.00 20.25 0.00 20.18 0.00 
Feb 15.16 0.00 14.59 0.00 14.69 0.00 14.77 0.00 
Mar 10.72 0.00 10.46 0.00 10.64 0.00 10.79 0.00 
Apr 3.92 0.00 3.83 0.00 3.93 0.00 4.05 0.00 
May 0.57 0.33 0.50 0.12 0.48 0.03 0.49 0.02 
Jun 0.02 1.55 0.01 0.60 0.01 0.24 0.01 0.17 
Jul 0.00 5.96 0.00 3.00 0.00 1.93 0.00 1.47 
Aug 0.00 6.35 0.00 3.41 0.00 2.35 0.00 1.86 
Sep 0.00 2.38 0.00 1.19 0.00 0.76 0.00 0.56 
Oct 0.54 0.03 0.38 0.02 0.30 0.00 0.29 0.00 
Nov 9.62 0.00 8.75 0.00 8.54 0.00 8.50 0.00 
Dec 19.62 0.00 18.19 0.00 17.95 0.00 17.85 0.00 

A
nn

ua
l 

Total  81.92 16.60 77.11 8.33 76.79 5.32 76.92 4.07 

H+C 98.52 85.44 82.10 80.99 

S
ea

so
n 

A
ve

ra
ge

 Winter 15.88 0.00 15.15 0.00 15.19 0.00 15.25 0.00 
Spring 1.50 0.63 1.45 0.24 1.47 0.09 1.52 0.06 

Summer 0.00 4.90 0.00 2.53 0.00 1.68 0.00 1.29 
Autumn 9.93 0.01 9.11 0.01 8.93 0.00 8.88 0.00 

Cross Section – CrossSec02 

 CrossSec02_00° CrossSec02_30° CrossSec02_40° CrossSec02_50° 

 
    

Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 21.57 0.00 20.14 0.00 19.97 0.00 19.79 0.00 
Feb 15.00 0.00 14.38 0.00 14.44 0.00 14.45 0.00 
Mar 10.61 0.00 10.34 0.00 10.49 0.00 10.59 0.00 
Apr 3.88 0.00 3.81 0.00 3.92 0.00 4.03 0.00 
May 0.56 0.39 0.50 0.23 0.48 0.10 0.49 0.05 
Jun 0.02 1.68 0.02 0.81 0.01 0.52 0.01 0.34 
Jul 0.00 6.05 0.00 3.11 0.00 2.27 0.00 1.75 
Aug 0.00 6.41 0.00 3.47 0.00 2.56 0.00 2.02 
Sep 0.00 2.42 0.00 1.19 0.00 0.83 0.00 0.62 
Oct 0.56 0.03 0.41 0.02 0.35 0.01 0.32 0.00 
Nov 9.52 0.00 8.61 0.00 8.40 0.00 8.31 0.00 
Dec 19.47 0.00 17.97 0.00 17.71 0.00 17.50 0.00 

A
nn

ua
l 

Total  81.20 16.99 76.17 8.84 75.77 6.30 75.48 4.78 

H+C 98.19 85.00 82.07 80.26 

S
ea

so
n 

A
ve

ra
ge

 Winter 15.73 0.00 14.95 0.00 14.97 0.00 14.94 0.00 
Spring 1.49 0.69 1.44 0.35 1.47 0.21 1.51 0.13 

Summer 0.00 4.96 0.00 2.59 0.00 1.89 0.00 1.46 
Autumn 9.85 0.01 8.99 0.01 8.82 0.00 8.71 0.00 

Cross Section – CrossSec03 

 CrossSec03_00° CrossSec03_30° CrossSec03_40° CrossSec03_50° 

 
    

Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 21.87 0.00 20.69 0.00 20.50 0.00 20.37 0.00 
Feb 15.27 0.00 14.69 0.00 14.75 0.00 14.79 0.00 
Mar 10.82 0.00 10.54 0.00 10.65 0.00 10.73 0.00 
Apr 3.99 0.00 3.91 0.00 3.97 0.00 4.02 0.00 
May 0.59 0.38 0.53 0.25 0.51 0.09 0.49 0.04 
Jun 0.02 1.61 0.02 1.09 0.01 0.60 0.01 0.37 
Jul 0.00 5.90 0.00 3.92 0.00 2.82 0.00 2.18 
Aug 0.00 6.29 0.00 4.26 0.00 3.15 0.00 2.49 
Sep 0.00 2.36 0.00 1.58 0.00 1.10 0.00 0.82 
Oct 0.57 0.03 0.46 0.02 0.39 0.01 0.34 0.00 
Nov 9.68 0.00 8.97 0.00 8.74 0.00 8.59 0.00 
Dec 19.73 0.00 18.52 0.00 18.26 0.00 18.07 0.00 

A
nn

u
al

 Total  82.55 16.58 78.33 11.11 77.79 7.77 77.41 5.90 
H+C 99.13 89.44 85.56 83.31 

S
ea

so
n 

A
ve

ra
ge

 Winter 15.99 0.00 15.31 0.00 15.30 0.00 15.30 0.00 
Spring 1.53 0.66 1.49 0.45 1.50 0.23 1.51 0.14 

Summer 0.00 4.85 0.00 3.25 0.00 2.36 0.00 1.83 
Autumn 10.00 0.01 9.32 0.01 9.13 0.00 9.00 0.00 
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Cross Section – CrossSec04 

 CrossSec04_00° CrossSec04_30° CrossSec04_40° CrossSec04_50° 

 
    

Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 22.04 0.00 20.96 0.00 20.74 0.00 20.55 0.00 
Feb 15.39 0.00 14.81 0.00 14.85 0.00 14.83 0.00 
Mar 10.92 0.00 10.59 0.00 10.67 0.00 10.72 0.00 
Apr 4.04 0.00 3.93 0.00 3.98 0.00 4.02 0.00 
May 0.59 0.45 0.54 0.29 0.51 0.13 0.50 0.06 
Jun 0.02 1.79 0.02 1.22 0.01 0.73 0.01 0.47 
Jul 0.00 6.00 0.00 4.39 0.00 3.31 0.00 2.66 
Aug 0.00 6.31 0.00 4.64 0.00 3.55 0.00 2.89 
Sep 0.00 2.34 0.00 1.64 0.00 1.17 0.00 0.89 
Oct 0.59 0.03 0.50 0.02 0.42 0.01 0.38 0.00 
Nov 9.82 0.00 9.17 0.00 8.95 0.00 8.79 0.00 
Dec 19.92 0.00 18.83 0.00 18.54 0.00 18.31 0.00 

A
nn

ua
l 

Total  83.32 16.93 79.34 12.21 78.67 8.89 78.10 6.98 

H+C 100.25 91.56 87.56 85.08 

S
ea

so
n 

A
ve

ra
ge

 Winter 16.11 0.00 15.45 0.00 15.42 0.00 15.37 0.00 
Spring 1.55 0.75 1.50 0.51 1.50 0.28 1.51 0.18 

Summer 0.00 4.88 0.00 3.56 0.00 2.68 0.00 2.15 
Autumn 10.11 0.01 9.50 0.01 9.31 0.00 9.16 0.00 

Cross Section – CrossSec05 

 CrossSec05_00° CrossSec05_30° CrossSec05_40° CrossSec05_50° 

 
    

Heating Cooling Heating Cooling Heating Cooling Heating Cooling 

M
on

th
ly

 

Jan 21.95 0.00 20.80 0.00 20.56 0.00 20.41 0.00 
Feb 15.33 0.00 14.70 0.00 14.72 0.00 14.74 0.00 
Mar 10.90 0.00 10.53 0.00 10.62 0.00 10.71 0.00 
Apr 4.05 0.01 3.93 0.00 3.99 0.00 4.05 0.00 
May 0.60 0.44 0.55 0.37 0.53 0.21 0.51 0.12 
Jun 0.02 1.64 0.02 1.29 0.01 0.90 0.01 0.68 
Jul 0.00 5.87 0.00 4.28 0.00 3.14 0.00 2.49 
Aug 0.00 6.25 0.00 4.61 0.00 3.47 0.00 2.77 
Sep 0.00 2.33 0.00 1.67 0.00 1.18 0.00 0.91 
Oct 0.59 0.03 0.49 0.03 0.43 0.01 0.38 0.00 
Nov 9.74 0.00 9.04 0.00 8.82 0.00 8.66 0.00 
Dec 19.81 0.00 18.65 0.00 18.34 0.00 18.14 0.00 

A
nn

ua
l Total  82.99 16.58 78.71 12.25 78.02 8.91 77.62 6.98 

H+C 99.56 90.96 86.93 84.60 

S
ea

so
n 

A
ve

ra
ge

 Winter 16.06 0.00 15.34 0.00 15.30 0.00 15.29 0.00 
Spring 1.56 0.70 1.50 0.55 1.51 0.37 1.52 0.27 

Summer 0.00 4.82 0.00 3.52 0.00 2.60 0.00 2.06 
Autumn 10.05 0.01 9.39 0.01 9.20 0.00 9.06 0.00 

 


