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Abstract

The demand for low carbon economy and limited fossil resources for energy generation

drives the research on renewable energy sources and the key technology for utilisation

of renewable energy sources: power electronics. Innovative inverter topologies and

emerging WBG semiconductor based devices at 600 V blocking class are the enabling

technologies for more efficient, reliable and accessible photovoltaic based electricity

generation.

This thesis is concerned with the impact of WBG semiconductor based power devices

on residential scale PV inverter topologies in terms of efficiency, volume reduction and

reliability. The static and dynamic characterisation of the Si and WBG based devices

are carried out, gate drive requirements are assessed and experimental performance

comparison in a single phase inverter is discussed under wide range of operating

conditions. The optimisation of GaN HEMT based single phase inverter is conducted

in terms of converter efficiency, switching frequency and converter volume. The long

term mission-profile based analysis of GaN and Si based devices is conducted and

impact of WBG devices under low and high switching frequency conditions in terms

of power loss and thermal loading are presented. Finally, a novel five-level hybrid

inverter topology based on WBG devices is proposed, simulated and experimentally

verified for higher power applications.
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Scientific Contribution

Emerging wide-bandgap (WBG) power semiconductor devices at 600 V blocking class

have been gaining attention from power electronic converter developers with special

focus on the application for renewable energy systems. The focus of this thesis is

the state-of-the-art inverter topologies and impact of WBG devices at 600 V blocking

class on residential scale PV systems.

The first contribution of this thesis is benchmarking of emerging WBG power semi-

conductor devices at 600 V blocking class, SiC MOSFET and GaN HEMT, and com-

parison to Si based devices including static and dynamic characterisation, gate drive

requirements and performance evaluation in a single phase inverter. The benchmark-

ing of devices has shown that GaN HEMT has excellent switching and conduction

properties at low current conditions with negligible temperature dependency, but a

relatively higher complex gate driver design is required for safe operation and the

design has a strong impact on switching losses. The performance results of WBG

devices in single phase inverter shows that SiC and GaN devices provide performance

enhancement over Si under wide load, temperature and switching frequency condi-

tions. In terms of switching performance, GaN HEMT has the best performance

among three technologies and allows high efficiency at high-frequency applications.

The robust performance provides optimisation of system volume and weight by chang-

ing switching frequency and heat sink temperature, without compromising system

efficiency.

The second contribution is the investigation of impact of the GaN HEMT devices

to a PV inverter in terms of power loss, converter efficiency, heat sink and output

filter volume, and thermal stress reliability analysis based on a real-field mission

profile. The excellent switching and conduction performance of GaN HEMT under

different load and heat sink temperature conditions results in very high efficiency and

low power cell loss. It is shown that combined heat sink and output filter volume

can be reduced by increasing the heat sink temperature from 50 ◦C to 80 ◦C, and

increasing the switching frequency from 16 kHz to 64 kHz, without compromising the
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efficiency of the system. The mission-profile based analysis of the GaN HEMT based

inverter shows that GaN HEMT based system has significantly lower thermal stress

in comparison to Si IGBT based system at both low and high switching frequency

conditions. The reduced thermal stress brought lower junction temperature variation

and reduced mean temperature across most stress device throughout the year.

The final contribution of this work is introduction of a novel five-level hybrid in-

verter topology based on SiC MOSFETs dedicated for renewable energy systems and

high power applications, such as variable speed drives or propulsion systems. The

results showed that proposed topology provides higher efficiency in comparison to

state-of-the-art hybrid topology 5L-ANPC, especially at lighter load conditions. The

functionality of the topology was verified experimentally with 650 V SiC MOSFETs

in a 12 kW single phase prototype under different load and heat sink temperature

conditions.
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Chapter 1

Introduction

The ever-increasing demand for energy, limited fossil resources and the need for car-

bon footprint reduction have raised the awareness for change of the energy production,

consumption and management strategies. The aim of creating a low carbon economy

with sustainable energy generation and consumption while maintaining energy secu-

rity has been one of the top priorities for developed and developing countries. The

United Kingdom (UK) government, European Union (EU) and United States (US)

government have published reports where the importance of low carbon economy and

reduction of greenhouses gases have been emphasised, and the increased share of re-

newable energy sources in electricity generation in the short and long terms has been

promised [1], [2].

The renewable energy sources such as wind and photovoltaic (PV) have been at the

centre for renewable energy generation. The amount of installed wind power has been

increasing rapidly since 1999 and wind power is the major renewable energy source in

the world due to increase of wind turbine size and efficiency. In some countries such

as Denmark, the aim is to achieve 100 % non fossil-based power generation system

by 2050, thanks to large potential of wind along with other renewable sources [3].

In addition to wind power, photovoltaic power has seen strong interest since 2004

and the cumulative installed capacity has increased by factor of 107, from 2000 to

2
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2013 [4]. There are several PV farms in Spain, Germany and Portugal with installed

power higher than 40 MW. One of the reasons for increase of PV power penetration

to electricity production is the reduction of PV panel price (40 % reduction in 2008)

and the other one is advancements in power electronic system, which is the enabling

technology for renewable energy systems. Along with high power installations of

PV farms, residential scale PV systems have been adopted by the grid users by the

subsidies from governments and local authorities in order to reduce the residential

electrical energy usage from grid, and potentially feed energy to other users [5].

The share of residential energy generation is increasing rapidly and as mentioned

in the previous paragraph, power electronic systems are the enabling technologies

for renewable power systems. The power electronic converters provide efficient and

flexible connection of residential PV systems to the grid by providing grid synchro-

nisation, maximum power point tracking, anti-islanding and input voltage boosting.

As the power generated from a PV panel has to be processed with a power elec-

tronic converter, the efficiency and reliability of the converter plays a key role in the

overall performance of the system [6]. Therefore, the power electronics research has

been focussed on development of systems with higher efficiency and reliability to im-

prove overall performance of the system, reduce cost, increase energy generation and

therefore enhance the adoption of PV systems in electrical energy generation.

Two topics have received special attention for residential PV converter development:

1) Converter topologies and 2) Wide-bandgap (WBG) based power semiconductor

devices. Innovative converter topologies have been proposed, tailored for PV systems,

which provide higher efficiency and lower component count [6]. Moreover, emerging

WBG based power semiconductor devices have superior properties in comparison to

state-of-the-art Silicon (Si) based power semiconductor devices, and the development

of WBG based power devices and penetration to power conversion systems have been

announced by US government and European research platforms as one of the priorities

in energy research [7], [8]. Hence there is a clear need to assess the impact of emerging

WBG power devices in state-of-the-art PV converter topologies to understand the

impact of emerging technologies in PV systems.
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1.1 Research Objectives

The objective of this work is to investigate the impact of emerging WBG power

devices on the design, volume, performance and reliability of highly efficient single

phase PV inverters.

In this process the following aspects are considered:

• Comparison of state-of-the-art half-bridge and full-bridge based inverter topolo-

gies for residential scale transformerless PV systems.

• Benchmarking of Si and WBG based power devices at 600 V blocking class

which are suitable for high efficient single-phase inverters. The benchmarking

includes the discussion of devices structures, gate drive requirements, static and

dynamic characterisation, and application in PV inverter topologies.

• Experimental performance evaluation of residential scale single phase invert-

ers with Si and WBG devices under wide range of operation conditions (e.g.

switching frequency, output power and heat sink temperature).

• Optimisation of WBG device based residential scale single phase inverter in

terms of inverter volume, switching frequency and efficiency.

• Mission-profile based reliability-driven assessment of WBG and Si devices in a

residential scale PV inverter under long term operating conditions.

• Transfer of knowledge gained about WBG devices to higher power applications,

such as multilevel inverters.
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1.2 Thesis Outline

The thesis is structured as follows.

Chapter 2 introduces the present status and the background of PV system architec-

tures. PV cell characteristics, and historical background of PV system architectures

have been discussed. Grid requirements for the power converters that is used in PV

systems have been presented and the impact of these requirements on converter archi-

tectures has been discussed in terms of isolation, efficiency and user safety. Review

of full-bridge and half-bridge based state-of-the-art PV inverter topologies, which

eliminates common-mode current generation, has been presented including inverter

operation principles, and comparison in terms of component count and complexity.

This chapter ends with simulation based benchmark and analysis of the reviewed

topologies in a single phase, grid connected scenario.

In Chapter 3, material properties of Si and WBG materials, and state-of-the art power

devices are discussed. The material properties of Si and WBG are compared and the

benefits of WBG materials for power devices in terms of blocking and conduction

capability are discussed. The material comparison is followed by discussion of power

diodes and controlled devices at 600 V blocking class.

In Chapter 4, benchmark of Si and WBG devices in PV inverters is presented. The

benchmarking starts with static and dynamic characterisation of 600 V devices under

different current and heat sink temperature conditions. Furthermore, gate driver

requirements for Si and WBG devices are evaluated. This is followed by performance

evaluation of a T-type inverter with Si and WBG devices under different switching

frequency, output power and heat sink temperature conditions.

In Chapter 5, a Gallium Nitride (GaN) based PV inverter is analysed to explore the

benefits of GaN devices in PV inverters in terms of efficiency, converter volume reduc-

tion (heat sink and output filter) and mission-profile based reliability. The discussion

starts with the description of the inverter and test setup, followed by experimental
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results including efficiency and power loss under different switching frequency, heat

sink temperature and load conditions. This is followed by loss breakdown under dif-

ferent temperature and switching frequency conditions to evaluate performance of

devices and influence of static and dynamic losses to power cell efficiency. Further-

more, the impact of GaN devices on converter volume is assessed in terms of heat

sink and output filter volume. Finally, evaluation of GaN HEMTs and Si IGBTs is

presented considering real-field long-term PV mission profiles (e.g., ambient temper-

ature and solar irradiance) to assess the thermal loading and performance of devices

in a three-phase grid-connected configuration.

In Chapter 6, potential benefits of WBG devices at higher power applications is ex-

plored. The chapter starts with the review of five-level multilevel topologies, with

special focus on hybrid topologies. The review is followed by introduction of a new

five-level hybrid inverter, which is suitable for WBG based applications with high ef-

ficiency. The details of the proposed topology including switching states and commu-

tation scheme are presented and followed by the simulation results including efficiency

comparison with respect to state-of-the-art hybrid topology 5L-ANPC. Finally, the

experimental results based on 12 kW prototype are presented discussed.

In Chapter 7, conclusions and future works are discussed.



Chapter 2

Review of PV Inverter Topologies

The industrialised economies have been demanding cheap and reliable energy re-

sources in order to produce levels of energy that cannot be achieved by human or

animal muscle power since the beginning of industrial revolution. Fossil based natu-

ral resources such as coal and petroleum have been widely exploited for this purpose,

despite the undesirable side effects such as air pollution and climate change. In 20th

century, nuclear based energy production was introduced as an alternative to fossil

based resources, but has been recently considered as an unsustainable solution due to

safety and political problems. As a result of environmental concerns about fossil fuels,

and safety and political concerns about nuclear resources, renewable sources such as

photovoltaic, wind and hydro-electric have gained popularity in late 20th century [9].

As 2012, 19% of world’s total energy consumption has been provided by renewable

sources [10].

Photovoltaic (PV) energy is a key renewable energy resource along with hydro and

wind, and as of 2013, the global installed PV capacity has been over 138 GW with

a potential of 160 TWh energy generation every year. In addition to the current-

installed capacity, the worst case scenario for annual PV installation until 2018 is

expected to be around 35 GW [4]. Even with the worst case scenario, there is a

strong demand for energy generation with PV systems, where power electronic con-

7
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verters are vital components for realisation of this demand. The intermittent nature

of photovoltaic and wind resources require an interface system (e.g. power electronic

converter) between the power grid and the source for two reasons: 1) maximum uti-

lization of the source and 2) satisfying the requirements of the power grid. Therefore,

renewable power generation is one of the main focus areas of highly efficient and

reliable power electronic systems.

In this chapter, first, single stage and double stage PV converter systems are pre-

sented. The main advantages and drawbacks of each configuration are discussed.

Then some specific aspects of modern inverter systems such as common-mode (CM)

current requirements and transformerless topologies are discussed. The review of sin-

gle phase transformerless topologies that are designed to eliminate CM current and

deliver high efficiency are presented. Finally, efficiency and overall comparison of

topologies based on simulation results is presented.

2.1 PV System Architectures

Photovoltaic panels are used in PV based energy generation systems and are formed

by series and/or parallel connected PV cells, which are silicon based pn junctions with

large surface area, depending on output power, voltage and current requirements at

specified solar irrandiance and ambient temperature. The output of a PV panel

is direct current (DC) and variable in terms of output current, voltage and power.

Therefore the output of PV panel has to be controlled for operating at maximum

available power and converted to alternating current (AC) for grid connected appli-

cations. Within this context,the power electronic converters must cater for two main

functionalities: 1) maximisation of energy utilisation by means of Maximum Power

Point Tracking (MPPT) control; 2) integration with the AC grid by converting the

generated electricity from DC to AC (i.e., using DC-AC inverters) in a grid-friendly

manner. That is to say, a certain amount of demands to PV systems should be

taken into account in the planning, design, and operation phases such as PV panel
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characteristics, ambient operating conditions and grid regulations.

The model and characteristics of most common PV cell technologies are presented in

Fig. 2.1a and 2.1b respectively [11]. The model and characteristics show that a PV

cell operates as a constant DC current source up to maximum power point (MPP)

and the cell has to be operated at MPP in order to maximise the energy generation

at any ambient temperature and solar irradiance. The output dependence of a PV

cell to solar irradiance and ambient temperature is presented in Fig. 2.2a and 2.2b

respectively. During steady state operation, the ripple voltage at the output of the

PV cell should be minimised in order to minimise power variation and maximise

energy generation. The studies show that ripple voltage at the output of PV cell

(VPV ) should be below 8.5% for achieving 98% utilization ratio [11].

iSC id

iPV

VPV

(a)

iSC

vOC

IPV

VPV
PPV

(iMPP, vMPP) 

pMPP

MPP

(b)

Figure 2.1: (a) PV cell model and (b) PV cell characteristics.

According to [12], the relation between output voltage and current of a PV cell

presented in Fig. 2.1a can be expressed as:

iPV = ipv,cell − i0,cell
[
exp

( q · vPV
a · k · T

)
− 1
]

(2.1)

where ipv,cell is the current generated by the incident light, i0,cell is the leakage cur-

rent of the diode, q is the electron charge, k is the Boltzmann constant, T is the

temperature of pn junction and a is the diode ideality constant.
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Figure 2.2: PV cell characteristics with respect to (a) solar irradiance and (b) ambient
temperature.

On the other hand, integration of the PV system to AC grids is regulated and con-

trolled by grid operators based on national grid legislations. The national grid leg-

islations are based on the international standards set by international bodies such

as IEEE (Institute of Electrical and Electronic Engineers) and IEC (International

Electrotechnical Commission). Most relevant IEC standards for grid-connected PV

systems are IEC 61727 ”Photovoltaic (PV) Systems - Characteristics of the Utility

Interface”, IEC 61000 Electromagnetic Compatibility (EMC) and IEC 62116 ”Utility-

interconnected photovoltaic inverters - Test procedure of islanding prevention mea-

sures”. IEC 61727 lays down the requirements for interconnection of PV systems

to the utility distribution system including power quality, response to abnormal grid

conditions such as voltage deviations and frequency deviations [13]. IEC 62116 de-

fines the test procedure for evaluation of the performance of anti-islanding measures

for grid-connected PV systems [14]. Finally, IEC 61000 deals with the limitations of

harmonic currents injected to the systems where IEC 61000-3-2 covers for devices up

to 16 A per phase [15] and IEC 61000-3-3 covers limitations of voltage fluctuations

and flickers impressed on the grid [5], [16]. A summary of some standards regarding

interconnections of PV systems to the grid is presented in Tables 2.1. In addition to

Table 2.1, current harmonic limits for class A devices, such as solar inverters, with

less than 16 A output current are presented in Table 2.2. It is clear that the grid has

strict harmonic regulations in order to minimise the impact of the inverter to other

equipment connected to the grid. It should be noted that the parameters presented
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Issue IEC 61727 [13]

Nominal power 10 kW
Harmonic Currents (3-9) 4%
(Order -h) Limits (11-15) 2%

(17-21) 1.5%
(23-33) 0.6%

Maximum THD 5%
Power factor at 50% rated power 0.90
DC current injection Less than 1.0% of rated output current
Voltage range for nominal operation 85% - 110%

(196 V - 253 V)
Frequency range for nominal operation 50 ± 1 Hz

Table 2.1: Grid requirements for interconnections of PV systems to the grid [11].

IEC 61000-3-2 [15]

Odd Harmonics Even Harmonics
Order h Current [A] Order h Current [A]
3 2.30 2 1.08
5 1.14 4 0.43
7 0.77 6 0.30
9 0.40 8 ≤ h ≤ 40 0.23 × 8 / h
11 0.33
13 0.21
13 ≤ h ≤ 39 0.15 × 15 / h

Table 2.2: Current harmonic limits for Class A devices.

in Table 2.1 and 2.2 apply to regions where IEC regulations are set as standard.

Therefore, performance and design of the PV systems must be compatible with the

requirements of installed PV array and also requirements from grid operator in the

installed region.

Based on the requirements of PV panels and AC grids, various PV systems have been

developed throughout the years. Here four main concepts are considered: centralised,

string, multi-string and ac-module technologies shown in Fig. 2.3.
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Figure 2.3: Historical overview of PV systems [11].

2.1.1 Centralised Technology

Development of the electricity generation from PV cells started with centralised in-

verter technology. In centralised technology, large number of PV modules are con-

nected in series and parallel in order to achieve required DC link voltage and power

rating. According to required DC link voltage, PV cells are connected in series to

form the string with required voltage capacity, and in order to achieve required power

level, the strings are connected in parallel with string diodes in series to avoid cur-

rent flow between strings. The centralised converter has severe limitations such as

high voltage cables between strings, maximum power point mismatch between PV

modules and losses in string diodes. The centralised converter was generally based

on line commutated converter topologies that suffer from high current harmonics and

low power quality.
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2.1.2 String Technology

With the advancement in Insulated-Gate Bipolar Transistor (IGBT) and Metal-

Oxide-Semiconductor Field-Effect Transistor (MOSFET) technologies up to 1000 V

blocking class, self-commutated (fully controlled) topologies gained interest in PV

systems as string inverters in order to overcome relatively high harmonics generated

by line-commutated converters (i.e. thyristor based converters), high voltage cabling

between strings, maximum power point mismatch and string diode losses. The num-

ber of series connected PV modules can also be reduced with string technology by

using a DC-DC converter between PV string and an inverter, or a line-frequency

transformer at the output of the inverter. The string approach has higher efficiency

and reduced cost due to removal of string diodes, separate MPPT applied to each

string and modular production [5], [11].

2.1.3 Multi String and AC-Module Technologies

Multi string and AC-module technologies in Fig. 2.3 are considered the next-generation

concepts for PV inverter systems that will overcome the challenges of the centralised

and the string technologies such as operating point mismatch between PV cells, sin-

gle point of failure that can disable an entire PV string, and can provide flexible

PV voltage and power ratings. In multi string configuration, a DC-DC converter is

used for each string for maximum power point control and stepping up the PV string

voltage to the main DC bus voltage where as the inverter is responsible for feeding

the generated power to the AC grid. This configuration allows further expansion of

the system by adding new PV string with a DC-DC converter to the existing PV

structure. Therefore it provides a flexible design with high efficiency. On the other

hand, AC-module technology is proposed as a plug and play concept where one large

PV module is connected to a DC-DC converter and an inverter. This configuration

removes the mismatch losses between PV modules since each module is controlled by

a single converter and therefore each module can be connected directly to grid. The
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system provides simplicity and ease of use for the users that do not have knowledge

of electrical installations. The main challenges for AC-module are achieving high

voltage amplification ratio with high efficiency in the DC-DC converter due to low

output voltage of single PV module (5 V ∼ 20 V), and high power density with high

efficiency. Therefore, novel converter topologies, power device and passive technolo-

gies are required along with mass production of the inverters in order to make the

technology viable. In addition to this, the stability of the grid and harmonic content

in the grid caused by multiple inverters working in parallel are the challenges with

AC module technology [17].

2.1.4 Current Status of String Technology

Although the system structures presented in Fig. 2.3 are different, the architecture

is eventually the same, with different power ratings based on PV module configura-

tion. Due to the limitations of multi string and AC-module technologies, and high

efficiency and simplicity against centralised technology, string is the most popular

technology for PV systems. Different power electronics based systems and converter

topologies based on single-staged, double-staged, and with or without galvanic isola-

tion have been proposed in literature for string technology based PV systems in order

to comply with grid requirements, which are mentioned earlier while maximising PV

energy generation. Different converter topologies and system structures based on

single and double-staged conversion systems are published and reviewed in literature

[11, 18, 19], whereas the aforementioned power electronics converters are widely uti-

lized. Fundamental structures of single stage and double stage conversion systems

with and without isolation transformer are presented in Fig. 2.4. The traditional

solution with multiple conversion stages and galvanic isolation as shown in Fig. 2.4a

provide flexibility in PV module design and maximum user safety with the penalty

of increased system cost and efficiency. Isolation transformer or line frequency trans-

former (LFT) provide galvanic isolation of PV module from grid and can also provide

step-up of generated output voltage at lower PV output voltage. In double-staged

conversion, a DC-DC converter is responsible for stepping up the PV output voltage
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and maximum power point tracking, where the LFT can be used to provide galvanic

isolation and elimination of ground leakage current. The ground leakage current is

caused by the voltage variation across the parasitic capacitance between the PV panel

and the earth connection, and the source of voltage variation is the common-mode

voltage variation at the output of the inverter, which will be explained in detail in

Section 2.1.5. Single stage inverter in Fig. 2.4c is the first designs of grid-connected

inverters featured a line-frequency transformer for the coupling to the mains. In re-

cent converters, high-frequency transformer coupling or transformerless inverters are

preferred, as shown in Fig. 2.4d, due to higher system efficiency and lower system

cost.

PV
DC

DC AC

DC

GridLFT

(a) Double Stage

PV
DC

DC AC

DC

Grid

(b) Double Stage without LFT

PV
AC

DC

GridLFT

(c) Single Stage

PV
AC

DC

Grid

(d) Single Stage without LFT

Figure 2.4: Conversion stages for grid-connected PV systems.

2.1.5 Common Mode Current

Single stage transformerless inverters for string technology have gained interest due

to mentioned advantages such as high efficiency and simplicity. The main problem

that arises with transformerless topologies is due to the photovoltaic panels’ para-

sitic capacitance between the panel and the earth connection , that causes ground

leakage current to flow into the grid [20, 21, 22]. This effect is extremely detrimen-

tal for the power quality and can cause the disconnection of the inverter due to the

residual current device; Figs. 2.5 and 2.6 show the path of the ground leakage cur-
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Figure 2.5: Common-mode current path for full-bridge inverter.
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Figure 2.6: Common-mode current path for half-bridge inverter.
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rent for well-known full-bridge and half-bridge topologies. The main reason of the

ground leakage current is the voltage variation across stray capacitance of PV panel

with respect to ground, Cleak1−2. Voltage variation across Cleak1−2 is determined by

common-mode voltage at the output of the converter and high frequency variation of

common-mode voltage can cause large amount of current flowing through the earth

connection. The ground current in distribution systems is limited by the grid oper-

ators and international standards in order to provide safe operation for end users.

As the leakage current circuit is completed via the earth connection of the system,

generated leakage current can flow through the users’ body in residential systems and

can be fatal for users or the people living nearby the PV system. German safety

standard VDE 0126-1-1 ”Automatic Disconnection Device between a Generator and

the Public Low-Voltage Grid” limits maximum permissible leakage RMS current to

300 mA, including active monitoring of fault current with sensitivity down to 30 mA

[5, 23]. Leakage current performance of PV inverters has been analysed in detail

in the literature and an analytical calculation of leakage current for PV inverters is

presented in [21]. The differential voltage VDM and common mode voltage VCM1 at

the output of the full-bridge in Fig. 2.5 and half-bridge in Fig. 2.6 topologies can be

calculated as follow:

VDM = VAN − VBN = VAB (2.2)

VCM1 =
VAN + VBN

2
(2.3)

and according to [21], total common mode voltage (VCMt) after the line inductors Lf1

and Lf2 can be calculated as:

VCMt = VCM1 + VCM2 (2.4)

where
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VCM2 = VDM
Lf2 − Lf1

2 · (Lf2 + Lf1)
(2.5)

Therefore, the total common-mode voltage is:

VCMt = VCM1 + VDM
Lf2 − Lf1

2 · (Lf2 + Lf1)
(2.6)

Equation 2.6 can be used to calculate common mode voltage at the output of the

inverter for each switching state (e.g. +VDC , −VDC , 0). By using the variation of

common mode voltage between switching states and value of parasitic capacitance

Cleak in Fig. 2.5 and 2.6, common mode current flowing through the earth can be

calculated. Total output inductance is distributed equally among filter inductors

Lf1 and Lf2 in full-bridge based topologies in order to cancel out the VCM2 in Eq.

2.6. On the other hand, in half-bridge based topologies, the inductance of L2 is

minimised and the total inductance is reflected on Lf1 in order to minimise the

common mode voltage variation at neutral point B. In the literature, it is stated

that the parasitic capacitance between PV panel and earth can vary between nano

farads and micro farads, depending on installation, weather conditions and panel

characteristics [24]. Therefore, large common mode currents can flow to earth with

transformerless topologies where the common-mode voltage varies with respect to the

switching state.

2.2 Review of Single Phase PV Inverter Topolo-

gies

In this section, the most popular single phase PV inverter topologies based on full-

bridge and half-bridge architectures are presented. Various topologies have been

introduced, specifically for transformerless string inverters for minimising ground

leakage current and maximising efficiency. The review begins with introduction of
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full-bridge inverter with three different modulation schemes: bipolar, unipolar and

hybrid modulations, and continues with full-bridge derived topologies with 3-level

voltage output. Furthermore, 3-level half-bridge based topologies are discussed and

finally, the efficiency performance of the inverters are compared according to Euro-

pean and American efficiency standards with standard Si IGBTs and Si diodes.

2.2.1 Full-Bridge Derived Topologies

2.2.1.1 Full-Bridge Inverter with Bipolar and Unipolar Modulation

The full-bridge inverter is one of the most popular single phase topologies and has been

widely used in various applications where single phase DC-AC or AC-DC conversion

is required. The schematic of full-bridge is presented in Fig. 2.7. Devices S1-S4 are

rated at full DC-link voltage VDC and can be modulated in order to achieve two-level

or three-level output voltage by using bipolar, unipolar or hybrid modulation. For

full-bridge based topologies, the DC-link voltage VDC can be in the range of 350-

400 V for regions such as Europe where RMS grid voltage VGrid is 230 V. Output

differential and common mode voltages with respect to each switching state for these

three modulation schemes are presented in Table. 2.3. The common-mode voltage

at the output of the inverter is calculated with respect to Eq. 2.6 with the equal

inductance of Lf1 and Lf2.

S1

S2

CDC VGrid

Lf1

Lf2

PV

S4

S3

Figure 2.7: Full-bridge inverter.
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PWM waveforms for bipolar and unipolar modulation schemes are presented in Fig.

2.8. During bipolar modulation, S1-S4 and S2-S3 device pairs are switched simul-

taneously and output voltage is varied between +VDC and −VDC . Due to bipolar

variation of output voltage across filter inductor and hard switching of two devices at

each switching instant, low efficiency with high filtering requirement is expected with

this modulation scheme. On the other hand, in unipolar modulation, during positive

half of the output voltage, the voltage is varied between +VDC and 0, and during neg-

ative half, the output voltage is varied between −VDC and 0. For 0 voltage instants,

0P or 0N in Table 2.3 can be used during positive and negative halves of output volt-

age respectively. In comparison to bipolar modulation, the output voltage has three

level rather than two and only one switch is subject to hard switching during change

of output voltage. In addition to this, the effective switching frequency at the output

of the inverter is twice the switching frequency. In comparison to bipolar modulation,

for same switching frequency and output current ripple, the required filter inductance

will be four times smaller. Due to these reasons, the expected efficiency with unipolar

modulation is higher than bipolar modulation. In hybrid modulation, one of the legs

is switched at switching frequency while the other leg is switched at grid frequency

in order to achieve three level output voltage. The effective switching frequency at

the output of the inverter is equal to switching frequency and provides high efficiency

due to lower switching frequency in one leg.

However, from Table 2.3, with unipolar and hybrid modulation, it can be seen that the

common mode voltage varies during transition from +VDC and −VDC to 0P and/or

0N states, therefore high frequency ground leakage current will flow through the PV

system. In conclusion, low efficiency, large filter requirement of bipolar modulation

and high ground leakage current of unipolar and hybrid modulation make full-bridge

inverter unattractive for transformerless single phase systems and full-bridge based

topologies have been derived that combines low filtering requirements, high efficiency

along with minimised ground leakage current.
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Bipolar Modulation

Output State S1 S2 S3 S4 VDM VCMt

+VDC 1 0 0 1 +VDC +VDC/2
−VDC 0 1 1 0 −VDC +VDC/2

Unipolar Modulation

Output State S1 S2 S3 S4 VDM VCMt

+VDC 1 0 0 1 +VDC +VDC/2
0P 1 0 1 0 0 +VDC
0N 0 1 0 1 0 0
−VDC 0 1 1 0 −VDC +VDC/2

Hybrid Modulation

Output State S1 S2 S3 S4 VDM VCMt

+VDC 1 0 0 1 +VDC +VDC/2
0P 1 0 1 0 0 +VDC
0N 0 1 0 1 0 0
−VDC 0 1 1 0 −VDC +VDC/2

Table 2.3: Switching states for full-bridge inverter with bipolar and unipolar modu-
lation scheme.

2.2.1.2 H5 Inverter

H5 inverter is one of the first derived topologies from full-bridge inverter for trans-

formerless PV systems and schematic of the inverter is presented in Fig. 2.9. In

H5, S5 switch has been introduced at the high side of DC-link in order to decouple

the output of the inverter from PV module when the output state of the inverter is

zero. The additional decoupling switch S5 is rated at full DC-link voltage VDC . It

was mentioned that the common mode voltage in a full-bridge inverter with unipolar

modulation varies when the output state goes to zero; therefore, by decoupling the

output of the inverter from during zero state, the common-mode voltage can be kept

constant and ground leakage current can be minimised. S5 switch also prevents reac-

tive power exchange between CDC and Lf1(2).The switching states for H5 inverter are

presented in Table 2.4. Hybrid modulation scheme is implemented for this converter

where S1 (S3) are switched at grid frequency, and S5 and S4 (S2) are switched at

inverter switching frequency as shown in Fig. 2.10. Three level voltage is achieved

without doubling effective switching frequency at the output, as for unipolar modu-
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Figure 2.8: PWM signals for (a) bipolar modulation and (b) unipolar modulation.
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Figure 2.9: H5 inverter.

lation. The major drawbacks of this converter are the addition of S5 to the system

and the fact that three switches are conducting during active states of the inverter,

resulting in increase in conduction losses [5]. The topology has been patented and

used in commercial PV inverters [25].
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Output State S1 S2 S3 S4 S5 VDM VCMt

+VDC 1 0 0 1 1 +VDC +VDC/2
0P 1 0 0 0 0 0 +VDC/2
0N 0 0 1 0 0 0 +VDC/2
−VDC 0 1 1 0 1 −VDC +VDC/2

Table 2.4: Switching states for H5 inverter.

S1

S2

S3

S4

S5

T/2 T

VOUT

Figure 2.10: PWM Signals for H5 inverter.

2.2.1.3 HERIC Inverter

Highly Efficient and Reliable Inverter Concept (HERIC) in Fig. 2.11 is another full-

bridge derived transformerless PV topology. The topology has been patented and

also commercialised for string PV systems [26]. In HERIC inverter, elimination of

ground leakage current is achieved by decoupling of PV module from the grid with

by AC bypass switch, formed by S5 and S6 rated at full DC-link voltage VDC . The

function of AC bypass switch in HERIC is same as DC bypass switch in H5 inverter.

The switching states for HERIC are presented in Table 2.5 and represented in Fig.

2.12. In HERIC, full-bridge switches S1-S4 are switched at switching frequency where

AC bypass switches S)5 and S6 are switched at grid frequency. Three level output

voltage waveform is achieved by two switches switching at switching frequency and

one at grid frequency, like in H5 inverter. The effective output switching frequency

is equal to switching frequency and two devices are in conduction at any switching
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state.
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Figure 2.11: HERIC inverter.

Output State S1 S2 S3 S4 S5 S6 VDM VCMt

+VDC 1 0 0 1 0 1 +VDC +VDC/2
0P 0 0 0 0 0 1 0 +VDC/2
0N 0 0 0 0 1 0 0 +VDC/2
−VDC 0 1 1 0 1 0 +VDC +VDC/2

Table 2.5: Switching states for HERIC inverter.

2.2.1.4 H6 Inverter

The H6 architecture, shown in Fig. 2.13, was first proposed in [27]. In comparison to

the H5 topology, an additional switch S6 in the lower rail of the DC Link is present.

D1 and D2 diodes in H6 are optional devices that do not conduct current but ensure

fixing common-mode voltage to VDC/2 in case of an asymmetric switching behaviour

in the full-bridge. In [28], it is mentioned that in topologies such as H5 and HERIC,

the VAN and VBN voltages presented in Fig. 2.5 cannot be clamped to VDC/2 during

freewheeling period and therefore their levels depend on the parasitic parameters of

the freewheeling path. If the asymmetrical commutation occurs, the common-mode

voltage will not be equal to VDC/2 and therefore high common-mode voltage variation

will occur at the output. D1 and D2 also limit the blocking voltage of S1 and S6 to
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Figure 2.12: PWM Signals for HERIC inverter.

half of DC-link voltage VDC/2. The switching states of H6 inverter is presented in

Table 2.6 and PWM signals are presented in Fig. 2.14. During the positive half cycle

of the output voltage, S1 and S4 are on, and S5-S6 are switched complementary with

S2-S3 at switching frequency. During the negative half cycle of the output voltage,

S2 and S3 are on, and S5-S6 are switched complementary with S1-S4 at switching

frequency. During zero state, the output current is divided into S1-S3 and S2-S4.

With unity power factor operation, only S1 and S6 are subject to hard switching at

switching frequency and four devices are in conduction during active output states.

S1
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CDC1

VGrid

Lf1

Lf2

PV

S4

S3

S5

CDC2

S6

D1

D2

Figure 2.13: H6 inverter.

In [24], an alternative modulation strategy named UniTL was proposed for driving
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Standard Modulation [27]

Output State S1 S2 S3 S4 S5 S6 VDM VCMt

+VDC 1 0 0 1 1 1 +VDC +VDC/2
0 1 1 1 1 0 0 0 +VDC/2

−VDC 0 1 1 0 1 1 +VDC +VDC/2

UniTL Modulation [24]

Output State S1 S2 S3 S4 S5 S6 VDM VCMt

+VDC 1 0 0 1 1 1 +VDC +VDC/2
0P 1 0 0 1 0 1 0 +VDC/2
0N 0 1 0 1 1 0 0 +VDC/2
−VDC 0 1 1 0 1 1 +VDC +VDC/2

Table 2.6: Switching states for H6 inverter.
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Figure 2.14: PWM signals for (a) standard and (b) UniTL modulation.
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this topology. The main advantage of this strategy respect to the one proposed in

[27] is that the effective output current ripple is at twice the switching frequency.

The H-bridge legs are driven by different duty cycles (S1 and S3): this means that

the free-wheeling will happen in both the upper and lower parts of the H-bridge,

thus effectively doubling the output voltage frequency. A dead time exists between

the commutations of the complementary pairs (S1-S2 and S3-S4). The DC decoupling

transistors are switched off at the beginning of each free-wheeling phase. In particular

S5 is switched off when the output current free-wheels in the upper part of the H-

bridge, when the current free-wheels in the lower part, S6 device is to be switched off.

As a matter of fact, a lead-lag time between the commutations of the DC decoupling

and H-bridge transistors can be adopted to reduce the common mode voltage [28].

Although four devices are conducting in active states, the H6 topology with UniTL

PWM scheme promises higher efficiency in comparison to full-bridge with unipolar

and bipolar modulations due to lower switching losses. A theoretical loss analysis of

these inverter is presented in [24].

2.2.2 Half-Bridge Derived Topologies

2.2.2.1 Neutral Point Clamped (NPC) Inverter

Neutral point clamped (NPC) inverter has been introduced in [29] showing lower

dV/dt, switch stress and reduced filter requirements by providing three level out-

put voltage waveform and commutation at half of DC link voltage in comparison to

conventional two-level half-bridge inverter, presented in Fig. 2.6. The DC link of

the inverter is formed by two series capacitors that equally share DC link voltage.

The neutral wire of the grid is connected to the mid-point of the DC voltage source,

whereas phase wire is connected to filter inductor Lf . The NPC inverter schematic

for single-phase system is presented in Fig. 2.15.

The inverter is formed by four series connected active switches S1-S4 and two clamping

diodes D1 and D2, connected to neutral point of DC link capacitors CDC1 and CDC2.
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Figure 2.15: Neutral-point-clamped (NPC) inverter.

All of the active switches and diodes are rated at half of DC link voltage VDC/2.

Consequently, it is possible to use power devices at the 600 V class for grid-connected

applications, where the DC link voltage is within a range of 650-1000 V. The switching

states of NPC inverter is presented in Table 2.7. The outer switches S1 and S4 are

switched at switching frequency while inner switches S2 and S3 are switched at grid

frequency in order to achieve three level output voltage. NPC inverter requires double

input voltage in comparison to full bridge topologies and unbalanced switching losses

between outer switches S1(4) and inner switches S2(3). The total common mode voltage

VCMt is expressed in Eq. 2.6 as the summation of common mode voltage at the output

of the inverter VCM1 and across the filter inductors VCM2 . The value of VCM1 and VCM2

at each switching state for calculation of VCMt are also presented in Table 2.7. It can

be seen that the VCM1 and VCM2 vary with respect to the change output voltage, but

the common mode voltage VCMt is fixed to +VDC/2. Therefore it can be concluded

that the asymmetrical placement of output filter inductor provides constant VCMt

and any inductance introduced to neutral point connection will lead to variation of

common mode voltage and increase in leakage current according to Eq. 2.6.
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Output State S1 S2 S3 S4 VDM VCM1 VCM2 VCMt

+VDC 1 1 0 0 +VDC/2 +3VDC/4 −VDC/4 +VDC/2
0P 0 1 0 0 0 +VDC/2 0 +VDC/2
0N 0 0 1 0 0 +VDC/2 0 +VDC/2
−VDC 0 0 1 1 −VDC/2 +VDC/4 +VDC/4 +VDC/2

Table 2.7: Switching states for NPC inverter.
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S3

S4

VOUT

T/2 T

Figure 2.16: PWM signals for NPC inverter.

2.2.2.2 Active Neutral Point Clamped (ANPC) Inverter

Active neutral point clamped (ANPC) inverter is a member of half-bridge neutral

point clamped inverter family and it was introduced in [30], [31] as an alternative

to the neutral point clamped (NPC) inverter for improved loss balancing and bet-

ter utilization of semiconductor chip areas in the inverter. Replacing diodes in the

NPC inverters with active switches provides additional zero states, and at the same

time different modulation strategies can be applied with a flexible utilization of the

redundant switching states.

The topology has been discussed thoroughly for industrial drive applications in litera-

ture [32, 33, 34, 35]. The schematic of converter is presented in Fig. 2.17. As it can be

observed, the ANPC inverter is formed by 6 active switches S1-S6 in order to achieve

a three-level output voltage, and the power devices are rated at a half of the DC-link

voltage VDC/2. Same as NPC inverter, it is possible to use power devices at the 600
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Figure 2.17: Active neutral-point-clamped (ANPC) inverter.

Output State S1 S2 S3 S4 S5 S6 VDM VCMt

+VDC 1 0 1 1 0 0 +VDC/2 +VDC/2
0P 0 1 1 0 0 0 0 +VDC/2
0N 0 0 0 1 1 0 0 +VDC/2

0PN 0 1 1 1 1 0 0 +VDC/2
−VDC 0 1 0 0 1 1 −VDC/2 +VDC/2

Table 2.8: Switching states for ANPC inverter.

V class for grid-connected applications. The switching states for ANPC inverter are

presented in Table 2.8. The redundant states in zero output voltage can be utilized

in PWM schemes in order to balance the switching losses. Same as NPC inverter,

the output has three voltage levels, common mode voltage is fixed to +VDC/2 and

introduction of inductance to neutral point connection can lead to increased ground

leakage current.

Different modulation strategies have been discussed for the ANPC inverter in order to

achieve a balanced switching loss distribution or doubling of the effective switching

frequency at the output [36]. Solutions proposed in [32, 33, 34, 35] are limited to

the use of Si devices and were optimised for IGBTs as well as for MOSFETs. A

modulation strategy based on reverse conduction capability of SiC MOSFETs has
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Figure 2.18: PWM signals for (a) conventional modulation and (b) optimised modu-
lation for reverse conduction capability.

been introduced in [37], [38]. The positive voltage is applied to the output by turning-

on S1 and S3 and the output current flows through the two devices in series. During

the positive active-state, S4 ensures an equal DC-link voltage sharing between S5 and

S6 without conducting any current. The transition from positive active-state to zero-

state is accomplished by switching S1 off, and then simultaneously switching S2 and

S5 on, and thus the current is divided in two parallel paths: S2-S3 and S4-S5. Same

commutation scheme is used for complementary switches during the negative active-

state and the zero-state. This modulation method ensures low conduction losses at

zero-states, with the penalty of asymmetrical switching loss distribution. At unity

power factor operation, which is required at steady state operation by standards [5],

the outer switches (S1 and S6) are subject to switching losses. In other cases where the

output voltage and the output current have different polarity, complementary inner

switches (S2(3) and S5(4)) are subject to switching losses. Therefore the distribution

of switching losses are dependent on power factor. The conventional and reverse

conduction optimised PWM signals are presented in Fig. 2.18.
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2.2.2.3 T-Type Inverter

T-Type inverter, also known as Neutral Point Piloted (NPP) or Bi-directional Switched

Neutral Point Clamped (BSNPC) inverter, is a member of neutral-point-clamped in-

verter topologies with three output voltage levels [39], [40]. It is one of the interesting

topologies for single-phase three-level inverter systems and is used in commercial

products [5]. The schematic of the converter and switching strategy signals are pre-

sented in Fig. 2.19 and Table 2.9 respectively. Switches that are forming the half

bridge S1 and S4 are rated at VDC and bi-directional switch S2 and S3 are rated

at VDC/2. Control and implementation of T-type converter in various applications

such as renewable converters and fault-tolerant systems are discussed in literature

[41, 42, 43, 44, 45, 46]. The switching strategy for this topology is published in [47]

and PWM signals are presented in Fig. 2.20. The commutation of output current

takes place between S1 and S2 in the positive half and between S3 and S4 in the

negative half wave. S3 is completely on during positive half and S2 is completely on

during negative half of the output current in order to utilize the reverse conduction

capability of power devices such as MOSFETs and High Electron Mobility Transistors

(HEMTs). In this setup, S1 and S4 switches have to withstand full-DC link voltage

VDC , S2 and S3 switches have to withstand half of DC-link voltage VDC/2. Like in

NPC and ANPC inverter, same common mode analysis can be carried out and can

be seen that common mode voltage at the output of the inverter is fixed to +VDC/2.

Output State S1 S2 S3 S4 VDM VCMt

+VDC/2 1 0 1 0 +VDC/2 +VDC/2
0 0 1 1 0 0 +VDC/2

−VDC/2 0 1 0 1 −VDC/2 +VDC/2

Table 2.9: Switching states for T-Type inverter.
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Figure 2.19: T-Type inverter.
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Figure 2.20: PWM signals for T-Type inverter.
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2.3 Simulation-Based Benchmark and Analysis

The presented transformerless inverter topologies are simulated in a grid connected

system in order to evaluate the efficiency performance under wide load range with

state-of-the-art Si IGBT and Si diodes. Infineon 650V IGBT IKP20N60H3 and 1200V

IGBT IKW25N120H3 with antiparallel Si diodes have been used for efficiency eval-

uation [48], [49]. The considered grid connection arrangement is presented in Fig.

2.21, and converter, grid and output filter parameters for the simulation model are

presented in Table 2.10. Single stage LC filter has been used in order to keep the

Total Harmonic Distortion (THD) less than 5% and comply with grid requirements

in Table 2.1. The inductance and capacitance values have been selected in order to

set inductor ripple current to 20 % of maximum output current and cut-off frequency

of the LC filter to 10 times of output ripple frequency fOUT . According to these

assumptions, Filter 2 in Table 2.10 is used for full-bridge inverter with bipolar modu-

lation and Filter 1 is used for the rest of the topologies. Finally, the grid inductance

is estimated as 40 µH, which is a reasonable value for low voltage grid systems.

+
−

AC

DC

VGridVDC

Cf

Lf Lg

Rf

Figure 2.21: Grid connected string inverter.

The maximum output power POUTMAX
for each inverter is 2.5 kW and the input DC

link voltage for full bridge and NPC topologies is 400 V and 800 V respectively in order

to feed power to 230 Vrms, 50 Hz European grid system. The switching frequency is

chosen to be 16 kHz or 32 kHz depending on topology in order to provide fixed 32 kHz

output ripple current across filter inductor Lf . The dead time between complementary
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Converter Parameters
VDC [V] POUTMAX

[W] fsw [kHz] fOUT [kHz] Th [◦C] tdt [ns]
400/800 2500 16/32 32 50 500

Grid Parameters Filter 1 Filter 2
Lg [H] VGrid [V] fGrid [Hz] Lf [H] Cf [F] Lf [H] Cf [F]

40µ 230 50 1m 2.7µ 2m 1.5µ

Table 2.10: Simulation conditions for full-bridge and neutral point clamped based
inverters.

switching devices is set to 500 ns and the heat sink temperature for power devices is

fixed to 50 ◦C. Power losses across each semiconductor has been measured in order

to asses power cell performance for each inverter under same operating conditions.

Simulations have been carried out with PLECS R© Standalone tool [50], [51]. The

acronyms for the topologies are presented in Table 2.11 and the comparison of main

parameters of each topology is presented in Table 2.12.
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Figure 2.22: Efficiency comparison of full bridge and neutral point clamped based
inverters under different load conditions.
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Topology Acronym

Full-bridge inverter with bipolar modulation FB BP
Full-bridge inverter with unipolar modulation FB UP
Highly efficiency and reliable inverter concept HERIC
Neutral point clamped inverter NPC
Active neutral point clamped inverter ANPC

Table 2.11: Acronyms for the simulated topologies presented in Table 2.12

Full-Bridge Derived Half-Bridge Derived

Topology FB BP FB UP H5 HERIC H6 NPC ANPC T-Type

DC-Link Voltage 400 V 400 V 400 V 400 V 400 V 800 V 800 V 800 V
Input Capacitor 1500 µF 1500 µF 1500 µF 1500 µF 1500 µF 3000 µF 3000 µF 3000 µF
Ipk−pk = 20%in each each each
Vpk−pk = 3%Vin
Input Capacitor Energy 120 J 120 J 120 J 120 J 120 J 480 J 480 J 480 J
Switching Frequency 32 kHz 16 kHz 32 kHz 32 kHz 32 kHz 32 kHz 32 kHz 32 kHz
Output Inductor Lf 2 mH 1 mH 1 mH 1 mH 1 mH 1 mH 1 mH 1 mH
Output Capacitor Cf 2.7 µF 1.5 µF 1.5 µF 1.5 µF 1.5 µF 1.5 µF 1.5 µF 1.5 µF
Number of Switches 4 4 5 6 6 4 6 4
Number of Diodes 0 0 0 0 2 2 0 0
Switch Voltage Rating 600 V 600 V 600 V 600 V 600 V 600 V 600 V 2×1200 V

2×600 V
Switch Current Rating 6.94 A 7.11 A 2×7.70 A 2×6.49 A 2×7.12 A 2×6.4 A 2×6.42 A 2×6.49 A

2×6.47 A 2×4.14 A 2×9.15 A 2×7.6 A 2×6.5 A 2×4.16 A
1×9.15 A 2×2.83 A

Diode Voltage Rating 600 V 600 V 600 V 600 V 600 V 600 V 600 V 2×1200 V
2×600 V

Diode Current Rating 3.34 A 2.95 A 2×4.17 A 2×4.14 A 2×2.9 A 2×4.16 A 2×2.83 A 2×4.16 A
2×0.3 A 2×1.4 A

Power Cell Efficiency 97.94% 98.39% 97.99% 98.39% 97.62% 98.39% 98.46% 98.25%
at Full Load

Table 2.12: Comparison table for different inverter topologies.
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The efficiency curves of each inverter under various load conditions excluding gate

driver and auxiliary supply losses are presented in Fig. 2.22 and semiconductor loss

breakdown of each inverter at 2.5 kW output power is presented in Fig. 2.24. The

ANPC topology has the highest efficiency among 8 topologies and is followed by NPC,

full-bridge with unipolar modulation (FB UP), HERIC and T-Type topologies. As

it is mentioned before, full-bridge inverter with unipolar modulation is not suitable

for transformerless applications due to high ground leakage current, but it has been

presented in order to compare with other presented topologies. It is clear that number

of devices in conduction plays a significant role in the efficiency of the inverter at high

output power values. Apart from FB BP, all of the topologies achieve higher than 98

% efficiency under wide load range and show promising performance for string based

transformerless inverter systems.

The efficiency of the inverters under partial loads are critical as most of the PV sys-

tems operate at partial loads throughout the year due to variation of solar irradiance

and ambient temperature. In Europe, the European Union (EU) defined the standard

for inverter efficiency considering efficiencies between 5 % and 100 % with different

weight factors and is presented in Eq. 2.7 [52]. On the other hand, California Energy

Commission (CEC) defined inverter efficiency with different weight factors for loads

between 10 % and 100 %, and is presented in Eq. 2.8 [53].

ηEURO = 0.03 ·η5%+0.06 ·η10%+0.13 ·η20%+0.10 ·η30%+0.48 ·η50%+0.20 ·η100% (2.7)

ηCEC = 0.04 ·η10%+0.05 ·η20%+0.12 ·η30%+0.21 ·η50%+0.53 ·η75%+0.05 ·η100% (2.8)

Finally, the loss breakdown in Fig. 2.24 provides valuable information about how

the semiconductor losses affect efficiency of different topologies. H6 topology suffers

from high number of conducting switching during active states and has the highest

conduction losses among 8 topologies. On the other hand, T-Type inverter suffers

from switching losses of 1200V IGBTs as it is the only topology that uses 1200V

switches for grid connected application.

According to Eq. 2.7 and Eq. 2.8, efficiencies of the simulated inverters have been

calculated and presented in Fig. 2.23. For all of the simulated inverters, efficiency
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Figure 2.23: Efficiency comparison of full-bridge and half-bridge derived inverters
based on EU and CEC efficiency definitions.
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Figure 2.24: Semiconductor loss breakdown for each converter at 2.5 kW output
power.
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is higher with EU formula but the relative comparison does not change for both EU

and CEC cases. ANPC inverter has the highest efficiency among all topologies and

is followed by HERIC, NPC, T-Type, H5 and H6.

2.4 Conclusions

In this chapter, historical overview of PV systems, grid requirements for PV in-

verters, comparison of PV systems with different conversion stages, ground leakage

current requirements and challenges for transformerless inverter topologies have been

discussed. State-of-the-art transformerless inverters based on full-bridge and NPC

topologies for string PV systems have been presented. Presented inverters have been

simulated with conventional Si based power devices and single-phase grid connection

in order to assess the performance under different load conditions. The results show

that transformerless topologies can achieve very high efficiency (> 98 %) and can

maximise the energy generation from PV module under wide load conditions. The

loss comparison of topologies showed that ANPC topology has the highest efficiency

among eight topologies due to high switching and conduction performance under wide

load range.



Chapter 3

Wide-Bandgap Power Devices

Wide-bandgap (WBG) materials (e.g. SiC, GaN, diamond) are considered strong can-

didates to replace silicon (Si) for semiconductor development due to superior material

properties. Since the introduction of the first Si based solid-state switches, it took

almost half a century for the first wide-bandgap based power device (SiC Schottky-

barrier diode) to become commercially available. With SiC based devices, introduc-

tion of SiC Schottky-barrier diode is followed by fully-controlled power switches at

blocking voltage range above 600 V such as MOSFETs, and normally-on and off

Junction Field-Effect Transistors (JFETs). With GaN based devices, 600 V verti-

cal diodes were produced as samples but discontinued due to commercial reasons

(expensive substrate and strong competition from SiC Schottky-barrier diode) and

the development resources were focused on HEMTs. These devices in SiC and GaN

show superior switching and conduction performance over wide temperature range

in comparison to Si based IGBTs and therefore have been considered as promising

solution for high-efficient inverters for transformerless PV systems. In this chapter,

properties of WBG materials, and state-of-the-art WBG power devices are discussed

and compared with their counterparts.

40
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3.1 Wide-Bandgap Material Properties

Silicon is the well established material for the fabrication of power semiconductor

devices since the introduction of thyristors and diodes in 1950s. Due to device pro-

duction process improvements and device optimisation over the years, the intrinsic

material properties of Si are becoming the limiting factor for the performance of power

devices and therefore power converters to further drive evolution according to indus-

trial expectations [54], [55]. Along with work on super junction device development

[56], a lot of effort is spent on device development with wide-bandgap materials such

as silicon carbide (SiC) and gallium nitride (GaN). In this section, properties of WBG

materials with Si is compared and the impact on device properties such as switching,

conduction and blocking performances are discussed.

An ideal power switch is desired to perform with zero conduction loss, zero switching

loss and infinite voltage blocking capability to achieve high performance in power

converters. Therefore, the material that is used to develop power devices should

have the properties to satisfy these three requirements as much as possible. In solid

materials, electrons are located around the atom at different energy bands. The

top energy band and the next lower band are called conduction band and valence

band respectively. The current conduction in a material is achieved by electrons in

conduction band moving from one atom to another. The break of an electron also

creates a hole in the valence band of the atom and leaves it positively charged. The

holes can also move in the materials in the opposite direction of of electrons and

contribute to current conduction. It should be noted that the mobility of electrons

are higher than holes.

Simplified energy bands for metal, semiconductor and insulator are illustrated in Fig.

3.1. The valance and conduction band in semiconductors and insulators are separated

by a bandgap Eg. The Eg represents the amount of energy to break the electrons out

of the bonds in valence band and move them to conduction band, or vice versa. For

metals, the conduction and valence bands are overlapped, thus the Eg does not exist.

For semiconductors, the conduction band is almost empty and the bandgap varies de-
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Property Si 4H-SiC GaN Diamond

Bandgap, Eg [eV] 1.12 3.26 3.39 5.47
Dielectric Constant, εr 11.8 9.7 9.0 5.7
Electric Breakdown Field, Ecrit [MV/cm] 0.23 2.2 3.3 5.6
Electron Mobility, µn [cm2/V·s] 1400 950 1500 1800
Saturated electron drift velocity, vsat [×107 cm/s] 1 2 2.5 2.7
Thermal Conductivity, λ [W/cm·K] 1.5 3.8 1.3 22
Baliga’s Figure of Merit [BFoM ] 1 500 2400 9000

Table 3.1: Material properties of Si and WBG materials [55], [59].

pending on the properties of semiconductor material. Semiconductor materials allow

thermal excitation of electrons into their conduction band below their melting point.

Therefore the requirements of a power switch (conduction, blocking and switching)

can be satisfied with semiconductor materials. [57], [58].
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Figure 3.1: Simplified energy diagram of solid metal, semiconductor and insulators.

Within semiconductor materials, the family of materials which require more than 1.7

eV to 2.5 eV bandgap energy to move an electron from valence band to conduction

band or vice versa are called wide-bandgap semiconductors. Some key material prop-

erties of popular WBG materials SiC (4H-SiC polytype), GaN, diamond, and Si are

presented in Table 3.1. It can be seen that the bandgaps of SiC, GaN and Diamond

are about 3 to 5 times higher than the bandgap of Si. This means that higher energy

temperature is required to break the bond of an electron and move it from one band

to another.

Wide-bandgap materials have naturally lower intrinsic carrier concentration ni in

comparison to Si, due to the higher Eg. ni depends exponentially on Eg and tem-

perature, and, as the leakage current of devices is proportional to ni and n2
i , WBG

based devices can operate at much higher temperatures with same leakage current in

Si based devices or at the same temperature with Si much lower leakage current. The
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Figure 3.2: Leakage currents in a P-i-N diode under reverse bias voltage [57].

ni has also an impact on on-state performance of power devices. The built-in poten-

tial across the forward biased pn junction caused by space charge region (depletion

region) at thermal equilibrium is defined as:

Vbi =
k · T
q
· ln(

Na ·Nd

n2
i

) (3.1)

where Na and Nd are acceptor and donor densities, k is Boltzmann constant, T is

temperature, q is elementary charge. Although the built-in voltage does not represent

the total voltage drop, it has a strong contribution in conduction losses. Therefore the

built-in potential is important for calculation of on-state performance of power devices

[57]. As the pn junction is reverse biased in blocking mode, the depletion region is

extended to withstand the reverse bias voltage. In this case, the leakage current for a

reverse biased pn junction is formed by two components: 1) space-charge generation

current and 2) diffusion current [57]. The leakage current in a P-i-N rectifier where

i region is low doped n layer to form the depletion region wD is illustrated in Fig.

3.2. For space-charge generation current, any electron-hole pairs generated within

depletion region are swept out as shown in Fig. 3.2. According to [57], the additional

component to the space-charge generation is the diffusion current caused by minority

carriers in p+ and n regions. Any minority carriers generated in the proximity of the

junction can diffuse to the depletion region boundary and get swept to the opposite

side of the junction by the electric field across the depletion region.

In this case, the total leakage current per unit area in a P-i-N diode is summation of

diffusion current in p+ layer JDiff−p+, space charge current JSC and diffusion current
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in n layer JDiff−n, and is given by:

JLT = JDiff−p+ + JSC + JDiff−n (3.2)

JLT =
q ·Dn · ni2

Ln ·NAP+

+
q · (2d) · ni

τSC
+
q ·Dp · ni2

Lp ·NDN+

(3.3)

As it is shown with the built-in voltage drop in Eq. 3.1 and leakage current under

reverse bias in Eq. 3.3, the ni has strong impact on on-state and blocking performance

of a power device. While the leakage current is reduced in proportion to ni and ni
2,

the built-in voltage is increased.

The second advantage of wider bandgap is a higher electric breakdown field Ecrit,

which is the maximum field that can be applied across the semiconductor before

avalanche breakdown. The one-dimensional reverse biased P-i-N diode with non

punch through (NPT ) and punch through (PT ) designs are presented in Fig. 3.3.

In NPT based design, the electrical field starts and terminates at the low doped n

region with a triangular field distribution. In PT based design, the electrical field is

has a trapezoidal shape across low doped i region and terminated at the junction of

p+ and n layers. The advantage of PT design is reduction of the length depletion

region wD by reducing the doping density and increasing the electrical field across

the region for same blocking voltage. With different semiconductor materials, as the

Ecrit increases, it is possible to make thinner devices for same blocking voltage.

The breakdown voltage VBR for a non punch through device in Fig. 3.3 can be

calculated as [59]:

VBR = 0.5 · wdrift · Ecrit (3.4)

where wdrift is drift region thickness. The Ecrit of SiC and GaN is approximately 10

times and 15 times higher than Si respectively. This means the drift region can be

10 and 15 times thinner in comparison to Si. The thickness of the drift region can be

expressed as a function of doping density Nd, and Ecrit with the following equation

[60]:

wdrift =
Ecrit · ε0 · εr

q ·Nd

(3.5)



3.1. WIDE-BANDGAP MATERIAL PROPERTIES 45

x

E(x)

V(x)

p+ i n

w
D

x

NPT

PT

Figure 3.3: Electric field and voltage across depletion region in a P-i-N diode.

where ε0 is permittivity of vacuum and εr is dielectric constant of semiconductor

material. It can be seen that with the change from Si to SiC and GaN, the doping

density in the drift region has to be increased by 100 and 225 times respectively for

same blocking voltage. The increased doping density has a strong impact on on-state

resistance of the drift region. By combining Eq. 3.4 and 3.5, the relation between Na

and Ecrit can be expressed as:

Nd =
Ecrit

2 · ε0 · εr
2 · q · VBR

(3.6)

The resistance of the drift region ron is defined in [61] as:

ron =
wdrift

q · µn ·Nd

(3.7)

where µn is the electron mobility. According to [61], by using Eq. 3.4 and 3.6, Eq.

3.7 can be linked to εr, µn and Ecrit and VBR with the following equation:

ron =
4 · V 2

BR

ε0 · εr · µn · Ecrit3
(3.8)

It is clear that drift region resistance is dependent on material properties presented in

Table 3.1 along with required breakdown voltage. Based on Eq. 3.8, in [62], Baliga’s
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figure of merit BFoM is defined and presented in Table 3.1 for Si and WBG materials:

BFoM = εr · µn · E3
crit (3.9)

BFoM provides information about the conduction losses with respect to material

properties in unipolar devices. From Table 3.1, it can be seen that BFoM of WBG

materials are significantly larger than Si. In other words, if BFoM is taken into

account for comparison of materials, on-state resistance of a unipolar device based

on GaN and SiC can be decreased by factor of 2400 and 500 in comparison to Si

based unipolar device at same blocking voltage. This does not mean that a chip size

reduction by factor of 2400 and 500 is realistic due to increased loss density. The

same amount of power can not be dissipated in 2400 or 500 times smaller chip due

to thermal restriction [59].

3.2 State-of-the-Art WBG Power Devices

In this section, different devices structures at 600 V blocking voltage range are dis-

cussed and compared in terms of physical structure. The discussion starts with diodes

including Si and SiC based, and continues with state-of-the-art fully controlled dis-

crete switches that are suitable for residential scale PV systems.

3.2.1 P-i-N Diode and Schottky Barrier Diode

3.2.1.1 Si P-i-N Diode

The P-i-N diode is based on the principle of pn junction and is designed to handle

large conduction current and blocking voltage in power electronic converters. The

structure of a P-i-N power diode is presented in Fig. 3.4. The structure consists of

three layers excluding metal contacts: p+ layer, n− layer and n+ substrate. The n+

substrate is a highly doped n layer and n− epitaxial layer is grown with specified
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Figure 3.4: P-i-N diode structure

thickness. Then, the pn junction is formed by diffusion of p+ on n− to complete the

P-i-N structure.

The n− layer provides high voltage capability to P-i-N diode and does not exist in

low-power diodes. The depletion layer is formed across n− layer and therefore the

thickness of the n− layer (low-doped base region) is determined by the breakdown

voltage of the diode. For a specific breakdown voltage, the n− layer can be dimen-

sioned with two different designs: 1) Non-punch through NPT , 2) Punch through

PT . The electrical field distribution for these two types are presented earlier in Fig.

3.3. In NPT diodes, the electric field distribution is triangular shaped and the length

of n− layer is longer than depletion layer length. Therefore, the depletion layer is

contained almost entirely in n− layer. In PT diodes, the thickness of n− layer can be

reduced by reducing doping density of the layer and increasing the maximum electric

field. In this case, the depletion region is longer than n− layer and is terminated

at n+ layer with trapezoidal electric field distribution across depletion region. In

PT diodes, although n− layer is shorter than in NPT diodes, it has higher ohmic

resistivity due to reduced doping. However, high resistivity does not have significant

impact on the operation of the diode as the drift region in the diode is shorted by

conductivity modulation. Due to short drift region, PT devices have smaller on-state

voltage in comparison to NPT diodes [58]. Vertical structure is preferred in power

devices as shown in Fig. 3.4 in order to maximise the cross-sectional area for current

flow while minimising the junction to case thermal resistance. For high voltage, high

current applications, the high voltage capability can be achieved by designing drift

region thickness with respect to Na and Ecrit and the high current capability can be
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achieved by paralleling vertical cells to achieve desired on-state performance.

The on-state performance of P-i-N diode is dominated by the conduction loss across

lightly doped drift region. If a forward voltage applied to P-i-N diode, a part of the

voltage is used at the junctions to reduce potential steps and also to raise the injected

carrier density in the base region. And the remaining part is used to provide an ohmic

voltage drop over n− layer. Therefore, the on-state voltage of a P-i-N diode can be

expressed by the following equation:

V = VD +Ron · ID (3.10)

where VD is the on-state threshold voltage, Ron is on-state resistance and ID is diode

forward voltage [58], [60]. Si is the preferred material as WBG materials (e.g. SiC)

has high on-state threshold voltage in P-i-N structure due to lower ni (Eq. 3.1).

With SiC in P-i-N diode, high conduction losses will occur, although the drift region

thickness can be reduced due to higher Ecrit.

The switching performance of P-i-N diode is determined by the turn-off transient that

includes reverse recovery charge Qrr and junction capacitance. During conduction of

P-i-N diode, excess carrier charges fill the drift region due to conduction modulation,

which is explained in the previous paragraphs, and these charges have to be removed

before expanding the depletion region for blocking the reverse voltage. After removal

of the excess carrier charges in drift region, the voltage across the diode will rapidly

rise to the blocking voltage dominated by the DC-link voltage in inverter applications.

In a half-bridge application, the reverse recovery charge of a diode will cause switching

loss in the blocking diode and also additional turn-on losses across the complementary

switch due to increase turn-on current caused by the reverse recovery current. The

turn-off energy caused by reverse recovery current Err is expressed in [58] with the

following equation:

Err =
1

2
· Lσ · I2RRM +

1

2
· VDC · IRRM · tf (3.11)

where Lσ is stray inductance in the commutation loop, IRRM is maximum reverse

recovery current, VDC is diode blocking voltage and tf is fall time of reverse recovery
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current from IRRM to zero. The Lσ can be rewritten in terms of rate of change of

current in the diode and Eq. 3.11 can be rewritten as:

Err =
1

2
· VDC · IRRM · ts +

1

2
· VDC · IRRM · tf =

1

2
· IRRM · trr · VDC (3.12)

Err = Qrr · VDC (3.13)

where ts is rise time of recovery current from zero to IRRM and trr is total recovery

time. It can be seen that the recovery losses are directly proportional to Qrr and

therefore in high frequency applications it is crucial to have diodes with low Qrr for

minimum switching losses. To make the Eqs. 3.11 and 3.12 more meaningful, IRRM ,

ts and tf parameters can be linked to forward current amplitude IF and rate of fall of

forward current dIF/dt. The relation between Qrr, trr and dIF/dt are given in diode

datasheets for different ambient temperatures to estimate reverse recovery loss. The

physics-based models for turn-off losses in power diodes are discussed thoroughly in

literature to link the Qrr, trr and dIF/dt [63, 64, 65].

3.2.1.2 SiC Schottky Barrier Diode

The alternative structure to P-i-N diode for power diodes is Schottky barrier diode

(SBD). SBD is a unipolar device and only one type of carrier is used for current

conduction. SBD diodes typically achieve smaller on-state threshold voltage in com-

parison to P-i-N diodes due to higher reverse saturation current. The drift region

thickness and on-state resistance for NPT design are presented in Eqs. 3.5 and 3.8.

respectively. It can be seen from Eq. 3.8 that the on-state resistance is proportional

to V 2
BR and inversely proportional to E3

crit. The on-state voltage drop across SBD

is dominated by on-state threshold voltage across the metal-semiconductor interface

and the voltage drop across drift region on-state resistance. Although the on-state

threshold voltage is smaller than in P-i-N diode, the absence of conductivity mod-

ulation increases the ohmic resistance of drift region during forward conduction. In

addition to high on-state resistance, the leakage current under reverse bias is inversely

proportional to on-state threshold voltage, which are both functions of Schottky bar-

rier height. In order to avoid large leakage current, high Schottky barrier height is
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required which will increase the on-state threshold voltage. Therefore, SBD structure

with Si is feasible up to 100-200 V blocking voltage range [57, 58, 60].

n+ Substrate

Cathode

n- Drift Layer

Anode

Schottky Metal

Metal

Figure 3.5: SiC based planar Schottky barrier diode structure.

The disadvantage of SiC in P-i-N structure can be avoided with SBD due to lower

on-state threshold voltage. In addition to this, it is possible to achieve high voltage

SBD with reasonable drift region resistance. There are two main reasons for this:

1) Drift region length with SiC is smaller due to higher Ecrit, 2) the doping density

can be higher due to smaller ni as shown in Table 3.1. The structure of a SiC based

planar SBD is presented in Fig. 3.5. The structure consists of a Schottky metal

contact at anode which forms Schottky junction with n− layer. Like in P-i-N diode,

n− layer is the drift layer and provides high voltage blocking capability and n+

layer is highly doped region. SBD utilises the difference between potential energies of

electrons in different materials, in this case between an n− doped semiconductor and

the Schottky metal in Fig. 3.5. The depletion region is formed at Schottky junction

with negatively charged Schottky metal and positively charged n− layer. Eventually,

the depletion region will become large enough that the flow of electrons will reach

thermal equilibrium. It should be noted that only majority carriers are involved in

this process and due to this reason SBD is a unipolar device. p doped materials can

also be used to form SBD but n doped materials are preferred due to higher mobility

of electrons in comparison to holes [58], [66].

The SBD has better switching performance in comparison to P-i-N diode due to

absence of minority carrier. Therefore, during switch off there will be reverse current

due to junction capacitance only. It should be noted that this current may not be

negligible due to reduced length of depletion region (e.g., higher capacitance for a
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given cross section) in SBD with SiC [60].

3.2.2 SiC MOSFET

The power MOSFET is a unipolar voltage controlled device through a gate terminal

and is formed by npn and pnp structures. Two types of MOSFET can be formed with

this alternating structure: enhancement (npn) and depletion (pnp) mode MOSFETs.

The enhancement mode MOSFET uses p-type layer as the channel of the device and

is formed as npn structure. On the other hand, depletion mode MOSFET utilises

n-type layer as the channel and is formed as pnp structure. The enhancement mode

devices are normally-off and use electrons as majority carriers. Furthermore, depletion

mode devices are normally-on and use holes as majority carriers. As the electrons have

almost three times higher mobility in comparison to holes and normally-off devices are

preferred in power electronics due to safety and controllability concerns, enhancement

mode MOSFETs are preferred over depletion mode MOSFETs for power applications.

Vertical MOSFETs are popular as high power electronics switches, like vertical diodes,

for maximum utilisation of semiconductor area. Typical structure of an enhancement

mode vertical power MOSFET is presented in Fig. 3.6. The MOSFET is formed

by four layers of n-type and p-type materials. n+ layer at drain is the highly-doped

substrate which is used for growth of other layers. After formation of n+ substrate,

n− layer is grown epitaxially and then p and n+ layers are diffused. The n− layer

is the drift region that contains the depletion region to withstand the desired drain-

source voltage during off-state. Finally, the device structure is completed by growth

of gate oxide and deposition of gate, source and drain metallisation.

The gate oxide insulates the gate from the p and n− layers, therefore there is no

minority carrier injection to control the current flow between drain and source of

the MOSFET. It can be seen in Fig. 3.6 that the p layer is shorted to the source

metallisation at the edges of the device. This connection provides two functions during

the normal operation of MOSFET: 1) The npn structure forms a parasitic bipolar
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Figure 3.6: Vertical enhancement mode MOSFET structure.

junction transistor (BJT) and the connection of p layer to source shorts the base of

BJT to the emitter. This connection ideally prevents any false turn-on during the

blocking mode. At the connection, the doping can be increased by p+ implantation to

reduce BJT base resistance. 2) On the other hand, the direct connection of p layer to

the source forms a parasitic P-i-N body diode between the source and the drain of the

MOSFET. Moreover, it can be seen that the n− drift layer overlaps with gate oxide.

This overlap enhances the conductivity of the n− drift region under the gate during

conduction. As the parasitic BJT is kept off by low resistance connection to the

source, the breakdown voltage of the MOSFET is defined by the breakdown voltage

of the body diode formed by n+, n− and p layers. Three major parasitic capacitances

CGS, CGD and CDS are formed in a power MOSFET between gate, source and drain

pads. The gate-source capacitance can be considered constant while gate-drain and

drain-source capacitances are dependent on the drain-source voltage due to move of

depletion region, depending on voltage across drain and source .

As it is mentioned earlier, the p layer connection to source metallisation forms a P-

i-N diode across drain and source of the MOSFET. The diode has a poor reverse

recovery performance in comparison to P-i-N or Schottky barrier diodes for the same

blocking voltage, as the p and n− layers are optimised for minimum Ron and minimum

base resistance for parasitic BJT. Despite this, the diode can be used as an anti-

parallel diode during dead time in synchronous rectification applications. The reverse

conduction capability of the MOSFET is utilised by turning-on the channel after
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certain dead time. Therefore, the body diode of the MOSFET can be used to conduct

only during dead time between switching transitions of complementary switches and

when body diode is used, the complementary switch will be subject to higher turn-on

current due to reverse recovery charge of the the body diode.

The conductivity of the channel in MOSFET, consequently drain-source current, is

controlled by gate-source voltage. When a positive gate-source voltage is applied, the

positive voltage induces positive charge on the gate oxide. This positive charge on

gate oxide repels the majority carrier holes in the p region and exposes the negatively

charged acceptors. Further increase of the positive gate-source voltage begins to

attract free electrons along with repelling free holes. When the gate-source voltage

is large enough, the amount of free electrons in the region will be equal to the holes

in the bulk body of p layer. These free electrons form the ”inversion” layer which

is highly conductive and have the same electrical properties as an n type material.

Threshold gate-source voltage of a MOSFET is defined as the beginning of formation

of inversion layer in an enhancement mode MOSFET [58], [60].

As no minority carriers are involved in the formation of the inversion layer, MOSFET

is a majority carrier device and this brings significant benefits in terms of switching

performance. During turn-on and turn-off, the gate does not source or sink minor-

ity carriers and this leads to increase in switching speed. The switching speed is

determined by CGS and CGD capacitors as they need to be charged and discharged

during switching transients by gate drive circuit. In a half-bridge configuration, the

switching energy of a MOSFET can be determined by the following equations:

ESwitch = Eon + Eoff (3.14)

Eon =
1

2
· VDS · (IDS + IRRM) · tri +

1

2
· VDS · (IDS +

2

3
· IRRM) · tfv (3.15)

Eoff =
1

2
· VDS · IDS · trv +

1

2
(VDS + Vpk) · IDS · tfi (3.16)

where IRRM is the reverse recovery current of complimentary switch, tri is rise time

of device current, tfv is fall time of device voltage, VDS is drain-source voltage and

IDS is drain-source current, trv is rise time of device voltage, tfi is fall time of device

current and Vpk is the voltage drop caused by commutation loop inductance [58].
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On the other hand, the absence of the minority carriers eliminates the offset volt-

age during conduction but leads to increased channel and drift region resistance at

higher currents in comparison to bipolar devices [57]. The on-state voltage drop of a

MOSFET can be calculated by the following equation:

Von = Ron · IDS (3.17)

where Ron is the on-state resistance of the MOSFET when the device is turned-on.

The on-state resistance in a high voltage power MOSFET is dominated by resistance

of the low doped n− layer. Similar to Eq. 3.7, the resistance of the low doped n−
layer can be calculated with the following equation [58]:

Rn− =
wB

q · µn ·ND · A
(3.18)

where A is the cross-section of the region. As the blocking voltage of MOSFET in-

creases, the on-state resistance increases. Due to this reason, MOSFET structure is

not viable above 600∼650 V blocking voltage range with Si. Super-junction MOS-

FETs at 600V class can also be counted as alternative device type due to good on-state

performance. However, non-linear behaviour of output capacitance of super-junction

devices places large transient load on the complementary switch and extensive reverse

recovery charge increases turn-on losses in hard-switching topologies [67], [68].

At this point, WBG materials such as SiC become attractive solutions in comparison

to Si in MOSFET structure for high voltage devices due to the benefits explained in

Section 3.1. Specifically, SiC based unipolar devices are very attractive due to lower

intrinsic carrier density and high electric breakdown field. These two properties allow

higher doping density in drift region with thinner drift region thickness. Therefore the

limitation of high drift layer resistance with Si above 600 V breakdown voltage can

be overcome with SiC. The vertical SiC MOSFET has a similar structure as the Si

version in Fig. 3.6. The SiC MOSFETs are currently commercially available between

600 V and 1700 V blocking voltage range and used in various applications, that will

be discussed later.

For Si, the bipolar junction transistor (BJT) and MOSFET have complementary char-

acteristics that are desired in power electronics. BJT is a bipolar device and has high
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Figure 3.7: Vertical IGBT structure.

conduction performance due to presence minority carriers during device conduction

with the penalty of high power driving requirement and low switching speed. On the

other hand, MOSFET is a unipolar device which has very high switching speed with

low power driving requirement due to absence of minority carriers with the penalty

of low conduction performance. The attempts to combine the best properties of BJT

and MOSFET structures lead to introduction of Insulated-Gate Bipolar Transistor

(IGBT) for high voltage power electronics. The vertical cross section of a generic

n-channel IGBT is presented in Fig. 3.7. The structure of a vertical IGBT is very

similar to vertical MOSFET presented in Fig. 3.6 apart from the additional p+ in-

jecting layer at the collector of IGBT. The n+ buffer layer is not essential in the

operation of IGBT and is not used in some design. However, The n+ buffer layer

provides a punch through design in the drift region with trapezoidal electric field

distribution and therefore the drift layer with n+ can be thinner in comparison to

non punch through design without n+ buffer layer.

The IGBT is a voltage controlled device with the same configuration as MOSFET.

When the gate-emitter voltage exceeds threshold voltage, inversion layer begins to

form across p body region and the drain and source are connected through n channel.

The channel provides the drift current flow same in MOSFET. At the same time,the

current flow through the inversion layer causes hole injection from the p+ layer at the

collector side to the p layer. The holes move by diffusion and drift through the n−
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drift layer. As soon as the holes reach p layer, they attract the free electrons at n+

layer at the emitter and combine. The minority and majority carriers are involved

in current conduction through the n− layer and reduces drift layer resistance. The

on-state voltage drop across IGBT can be expressed by the following equation:

V = Von +Ron · ICE (3.19)

where Von is the on-state threshold of the IGBT caused by the pn junction at the

collector and Ron is the drift layer resistance. During the on-state operation of IGBT,

the parasitic thyristor across collector and emitter can be false activated and the

controllability of IGBT through the gate can be loss. This process is called ”latchup”.

During injection of holes from p+ region, the holes will be attracted to the electrons

flowing through the inversion layer and a lateral flow holes through p layer can occur.

This lateral flow will create a positive voltage drop at the boundary of p layer and

n+ layer at the emitter. If the voltage drop is large enough, it will attract substantial

amount of electrons from n+ region and will turn-on the parasitic thyristor. The

thyristor can only be turned-off by removal of charge with reverse current and large

conduction time can destroy the IGBT.

The switching performance of the IGBT is affected by minority carriers and during

turn-off, these charges have to be extracted from the device which causes tail currents

at turn-off. This tail current causes additional power loss across the devices and the

turn-off energy can be estimated by the following equation:

Eoff =
1

2
· VCE · IC · trv +

1

2
· (VCE + Vpk) · IC · tfi +

1

2
· Itail · VCE · ttail (3.20)

where VCE is IGBT collector-emitter voltage, IC is collector current, trv is rise time of

VCE, Vpk is the voltage overshoot caused by stray inductance, tfi is fall time of collector

current, Itail is maximum tail current and ttail is the decay time of tail current from

maximum to zero. Apart from the tail current loss part, the turn-off loss equation is

same as for MOSFET in Eq. 3.16. The turn-on loss can be approximated with the

same loss equation for MOSFET Eq. 3.15 [58], [60].
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3.2.3 GaN HEMT

GaN is particularly attractive as a WBG material for high frequency, high voltage

applications (e.g. grid connected systems where 600 V or 1200 V devices are utilised)

due to large critical electric field and high electron mobility, as shown in Table 3.1.

Due to lack of high quality free-standing GaN substrates and also high cost of GaN,

manufacturers have grown GaN on foreign substrates such as SiC and Si. Particu-

larly Si is the most popular material due to lowest cost technology and GaN on silicon

can be processed by standard manufacturing lines. The lack of availability of GaN

substrate and non-conductive epitaxial layer between GaN and substrate lead to de-

velopment of lateral power devices, unlike in Si and SiC based power devices. Among

different device structures, high electron mobility transistor (HEMT) is the most pop-

ular structure for lateral power devices due to its excellent switching and conduction

performance [55, 69, 70]. Recently, due to advancements in material processing tech-

nology, vertical GaN devices on GaN and Si substrates have been published by device

manufacturers [70]. In [71], vertical GaN P-i-N diode is presented on GaN substrate

with 1700 V blocking capability. In addition to this, various MOSFET and JFET

based vertical GaN devices are presented in [72, 73, 74, 75] with voltage blocking

capability higher than 600 V, but they are still at development stage and the vertical

GaN technology is not as advanced as lateral GaN technology at this stage.

In literature, lateral depletion and enhancement mode devices have been presented but

due to same reasons as in MOSFETs, enhancement mode devices gained popularity in

GaN HEMTs. The structure of a lateral enhancement mode GaN HEMT is presented

in Fig. 3.8. The presented structure is proposed by Panasonic in [76] and is currently

used in their power devices with 600 V blocking rating. The device is grown on a

Si substrate with buffer layer containing GaN/AlN multilayer on the substrate to

provide strain relief between GaN and Si. The principal feature of the structure of

lateral GaN HEMT is the intrinsic AlGaN and intrinsic GaN heterojunction. The

interface between i-AlGaN and i-GaN forms a high-mobility electron layer called ”two-

dimensional electron gas” (2DEG) [55], [76]. Therefore a natural channel is formed

between drain and source terminals of the device. Because of natural formation of the
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Figure 3.8: Enhancement mode GaN HEMT structure.

2DEG channel, HEMT is a naturally depletion mode device. With the introduction

of p-doped AlGaN or GaN beneath the gate terminal, the channel under the gate

can be fully depleted at 0 V gate-source voltage and therefore an enhancement mode

device can be formed. With the proposed structure in Fig. 3.8, HEMT is operated as

a field-effect-transistor when the applied gate-source voltage is between gate-source

threshold voltage Vgsth and forward built-in voltage Vf of the pn junction formed

by p-AlGaN and 2DEG. Above Vf , the holes are injected as minority carriers to the

channel from p-AlGaN to enhance on-state performance. During on-state, the number

of accumulated holes at the channel is equal to the number of electrons that flow from

the source due to charge neutrality at the channel. The drain-source bias moves the

accumulated electrons from the channel with high mobility while the injected holes

stay beneath the gate pad as the electron mobility is minimum two times higher than

hole mobility [70], [76].

Although there is no physical body diode in GaN HEMT, there is a reverse conduction

mechanism for enhancement mode and depletion mode HEMT. Due to the symmetry

of the device, the reverse conduction will start when gate-drain voltage exceeds the

gate-drain threshold voltage Vgdth . According to [70], the required voltage to activate

reverse conduction is:

Vgd = Vgs − Vds > Vgdth (3.21)

Generally the gate-drain threshold voltage Vgdth is equal to gate-source threshold
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voltage Vgsth . Therefore, the voltage drop across source and drain will be:

Vsd = Vgdth − Vgs + Id ·Rsdrev (3.22)

where Rsdrev is the effective channel resistance during reverse conduction. The GaN

devices have low threshold voltage like SiC MOSFET and due to this, negative voltage

during turn-off is recommended for safe operation. Eq. 3.22 shows that negative Vgs

during turn-off will increase the on-state voltage drop across the device. Additional

anti-parallel diode may provide improvement for reverse conduction but will increase

the output capacitance of the device and will slow down the switching speed [70].

In synchronous rectification, as discussed in SiC MOSFET, this high conduction loss

will only occur during dead time instants and therefore large on-state losses can be

minimised by keeping dead time minimum and turning on the channel during reverse

conduction. The conduction and switching losses of the device can be calculated using

Eqs. 3.14, 3.15, 3.16 and 3.17 which have been presented for MOSFET.

3.3 Conclusion

In this chapter, fundamental properties of wide-bandgap materials are introduced and

compared with Si, which has been the dominating material in power semiconductor

devices. State-of-the-art WBG and Si power devices including P-i-N diode, SBD,

IGBT, MOSFET and HEMT have been presented, operation principles have been

explained. The benefits of WBG material properties on device characteristics have

been discussed. It is clear that GaN is the promising material for WBG power device

development. The maturity of material processing for SiC provided the opportunity to

introduce vertical MOSFETs. On the other hand, the lack of availability of conductive

substrates for GaN lead to development of lateral power devices, such as HEMTs.

Both technologies have superior switching performance in comparison to Si based

devices which will be discussed in the next chapter.



Chapter 4

Si, SiC and GaN Device

Benchmark in PV Inverters

In this chapter, benchmark of Si, SiC and GaN devices at 600 V blocking class in

terms of static, dynamic, gate drive performance and application in a three-level in-

verter is presented. The chapter starts with static and dynamic characterisation of

the devices under different load and temperature conditions. It should be noted that

Si MOSFET is not considered due to high on-state resistance at 600 V blocking class.

On the other hand, super-junction MOSFETs at 600V class can also be counted as

alternative device type due to good on-state performance. However, as mentioned in

the previous chapter, non-linear behaviour of output capacitance of super-junction

devices places large transient load on the complementary switch and extensive re-

verse recovery charge increases turn-on losses in hard-switching topologies [67], [68].

The static characterisation begins with on-state comparison Si P-i-N, SiC SBD and

SiC P-i-N (body diode of SiC MOSFET) and followed by comparison of Si IGBT,

SiC MOSFET and GaN HEMT. The static performance is followed by assessment of

gate drive complexity and loss analysis for three device technologies. For dynamic

performance analysis, switching performance of Si IGBT, SiC MOSFET and GaN

HEMT under different current and temperature conditions are presented. The dy-

60
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namic performance analysis is followed by literature review about application and

impact of WBG devices in power electronic systems, including inverters and DC/DC

converters. Finally, the benchmark of devices in three level inverter T-type, which was

discussed in Chapter 2 is presented. The converter is tested under various tempera-

ture, switching frequency and output load conditions in order to assess the impact of

performance wide-bandgap devices under different operating conditions. Efficiency

results under different load, switching frequency and heat sink temperature are pre-

sented for three device technologies.

4.1 Static and Dynamic Characterisation of 600 V

Devices

As it is mentioned in the Section 3.2.1, the P-i-N and Schottky diodes are used in half-

bridge configurations in PV inverter applications and operated as anti-parallel diodes

with fully controlled switches. In this section, the conduction performance of an anti-

parallel Si P-i-N diode and a discrete SBD at similar current rating is evaluated. The

main parameters of these two devices are presented in Table 4.1. Si P-i-N diode and

SiC SBD have 600 V reverse voltage blocking capability and similar pulse current

ratings. They are both packaged as discrete devices in TO-220 and SiC SBD has

a planar Schottky barrier structure. Although the test conditions are different for

reverse recovery charge Qrr measurement, the datasheets show that SiC SBD has

approximately 11 times smaller reverse recovery charge in comparison to Si P-i-N

diode. This will have significant impact on the turn-on current of the complementary

switch, which will be shown in Si IGBT switching performance evaluation.

In terms of controlled switches, three different active devices: Si IGBT, SiC MOSFET

and GaN HEMT are compared in terms of conduction and switching performance at

different case temperatures. The parameters of these devices are presented in Table

4.2. In order to simplify the comparison, collector and emitter terms used for Si IGBT

can be replaced with drain and source terms used for GaN HEMT and SiC MOSFET.
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Infineon ROHM
Si P-i-N SiC SBD
IKP20N60H3 SCS120AG

Vds 600 V 600 V
IF 20 A @ Tcase = 25oC 20 A @ Tcase = 98oC

10 A @ Tcase = 100oC
IFpuls

80 A 76 A
VF @ 25◦C 1.65 V @ 10 A 1.5 V @ 20 A
Qrr 390 nC 35 nC

@ VR = 400 V @ VR = 400 V
@ di/dt = 1000 A/µs @ di/dt = 380 A/µs

Tjmax 175 ◦C 150 ◦C
Device Package TO-220-3 TO-220-2

Table 4.1: Si P-i-N diode and SiC SBD parameters

The SiC MOSFET that is used in this work is commercially available and the only

SiC MOSFET device at 600 V blocking class at the time of publication. On the other

hand GaN HEMT is available as samples from Panasonic and the only normally-off

GaN HEMT device at 600 V blocking class at the time of publication as well. The

distributor cost for single purchase in Table 4.2 shows that GaN HEMT and SiC

MOSFET are 14 and 4 times more expensive than Si IGBT respectively. It should

be noted that the price of WBG devices are dynamic at the time of publication

due to ongoing device development, manufacturing volume and limited number of

manufacturers. Therefore the cost analysis based on existing device cost may not be

conclusive to evaluate the cost impact of WBG devices in renewable energy systems

at this stage. It is expected that SiC devices will always be more expensive than Si

and GaN based devices, but the benefits of SiC can be derived in other aspects of the

system.

Comparison table shows that GaN HEMT has smallest continuous current capability

at 25 ◦C with 15A. One reason for limited current capability of GaN HEMT is the

maximum power dissipation capability of the package at 25 ◦C, which is half of SiC

MOSFET and Si IGBT due to insulated tab. In terms of conduction performance,

GaN HEMT and SiC MOSFET do not have offset voltage during conduction like

Si IGBT and the on-state resistance of GaN-HEMT is approximately half of SiC
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MOSFET at room temperature. On the other hand, drain current at 100 ◦C case

temperature is 20 A for SiC MOSFET and Si IGBT, and 11 A for GaN HEMT. It is

clear that Si IGBT has to be de-rated significantly in order to operate at high ambient

temperatures. At 150 ◦C case temperature and 20 A device current, the voltage drop

of across GaN HEMT, SiC MOSFET and Si IGBT is 3 V, 3.5 V and 2.2 V respectively.

On-state voltage drops at different case temperatures show that Si IGBT has the best

conduction performance at high case temperature values and GaN HEMT has the

best conduction performance at ambient temperature. The device datasheets show

that SiC and GaN devices have very stable switching loss performance over different

junction temperatures unlike Si IGBT. This property makes wide-bandgap devices

interesting at high switching frequencies with high case temperatures. Regarding gate

requirements, it is clear that GaN HEMT has the minimum gate drive requirement

among these three devices due to smallest gate charge. Gate driver requirements

will be discussed in the Section 4.1.2 in detail. The output capacitances Coss are

similar for all three devices and the reverse transfer capacitance Crss of GaN HEMT

is approximately 8 times and 20 times smaller than SiC MOSFET and Si IGBT

respectively.

4.1.1 Static Characterisation

The discussed diode and power switch technologies in Section 3.2 are evaluated in an

experimental setup in order to understand switching and conduction performance of

each device and potential benefits in PV inverter systems under different load current

and ambient temperature conditions.

The test setup for the conduction performance measurement is presented in Fig. 4.1.

The devices are in TO-220 package with plastic backside for GaN HEMT and metal

backside for Si IGBT, SiC MOSFET and SiC SBD. The device under test (DUT)

is placed on a temperature controlled heat sink where the temperature of the heat

sink is controlled independently from DUT power dissipation by using power resistors

for heating and fans for cooling. At each measurement, a single device is placed in
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Panasonic ROHM Infineon
GaN HEMT SiC MOSFET Si IGBT
PGA26C09DV SCT2120AF IGP20N60H3

Vds 600 V 650 V 600 V
Ids (25 ◦C) 15 A 29 A 40 A
Ids (100 ◦C) 11 A 20 A 20 A
RDS−on (25 ◦C) 71 mΩ @ 8 A 120 mΩ @ 10 A N/A
VCE−sat (25 ◦C) N/A N/A 1.95 V
Ciss 272 pF @ 10 V 1200 pF @ 500 V 1100 pF @ 25 V
Coss 199 pF @ 10 V 90 pF @ 500 V 70 pF @ 25 V
Crss 32 pF @ 10 V 13 pF @ 500 V 32 pF @ 25 V
Qg 12 nC @ 3.6 V 61 nC @ 18 V 120 nC @ 15 V

6.5 nC @ 3.2 V
Vth 1.2 V 1.6 V 4.1 V
Vgs -10 to 4.5 V -6 to 22 V ±20 V
Tjmax 150 ◦C 175 ◦C 175 ◦C
PDiss (25 ◦C) 83 W 165 W 170 W
rjc 1.5 ◦C/W 0.7 ◦C/W 0.88 ◦C/W
Device Package TO-220D TO-220AB TO-220-3
Distributor Cost e29.42 e8.55 e2.19
(Single Purchase)

Table 4.2: GaN HEMT, SiC MOSFET and Si IGBT parameters.

the centre of the heat sink to avoid hotspots closer to power resistors and the rec-

ommended constant gate-source bias is applied to GaN HEMT, Si IGBT and SiC

MOSFET with an auxiliary DC power supply. Controlled current source is used to

pass a DC current through device under various case temperature conditions in or-

der to evaluate temperature dependency of the on-state performance. The on-state

voltage drop across the device is measured with a precision multimeter. The heat

sink temperature is varied between 50 ◦C and 80 ◦C as lower heat sink temperature

values will increase the heat size and cost significantly, and higher heat sink temper-

ature (> 100 ◦C) will push the devices to operate closer to recommended maximum

junction temperature Tjmax , which is between 150 ◦C and 175 ◦C for power devices

with conventional packaging.
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Figure 4.1: Test setup for conduction performance analysis.

4.1.1.1 Si P-i-N, SiC SBD and SiC P-i-N

The static on-state performance of Si P-i-N, SiC SBD and SiC P-i-N diode, which

is the body diode of SiC MOSFET in Table 4.2, up to 30 A continuous current are

presented in Fig. 4.2. Although SBD structure provides lower on-state threshold

voltage VD in comparison to P-i-N structure in Si, the VD for Si P-i-N is around 0.61

V and for SiC SBD is around 0.802 V. The VD decreases to 0.543 V for Si P-i-N and

to 0.755 V as the temperature increases from 50 ◦C to 80 ◦C. The on-state threshold

voltage of SiC P-i-N diode is around 2.63 V and drops down to 2.55 V as temperature

increases from 50 ◦C to 80 ◦C. It is clear that SiC P-i-N has significantly higher on-

state threshold voltage than Si P-i-N and SiC SBD counterparts due to lower ni in

SiC, which was discussed in Chapter 3 and shown in Eq. 3.1. On the other hand, the

negative temperature dependency of P-i-N in Si and SiC structure is clear at higher

current value with the reduction of on-state voltage while the SiC SBD shows positive

temperature dependency. The SiC SBD has smaller voltage drop in comparison to

Si P-i-N above 2.5 A device current and this shows that the conduction performance

will not be compromised in exchange of lower Qrr. The impact of Qrr with Si P-i-N

and SiC SBD will be shown in Si IGBT section, and impact of Qrr with SiC P-i-N

will be shown in SiC MOSFET section.
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Figure 4.2: On-state characteristic of Si P-i-N diode, SiC SBD and SiC P-i-N diode.
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Figure 4.3: On-state characteristic of Si IGBT with 15 V gate-emitter voltage.

4.1.1.2 Si IGBT, SiC MOSFET and GaN HEMT

The static on-state performance of Si IGBT, SiC MOSFET and GaN HEMT are

presented for different current and temperature conditions, based on the test setup

discussed at the beginning of this section. The gate voltage for Si IGBT is fixed to

15 V as the recommended gate-emitter turn-on voltage. The on-state characteristic

is presented in Fig. 4.3. It can be seen that the on-state threshold voltage is around

0.5 V and the device has positive temperature dependency.

SiC MOSFET on-state characteristic is presented in Fig. 4.4 with recommended 20
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Figure 4.4: On-state and body diode characteristic of SiC MOSFET with 20 V gate-
source voltage.

V gate-source turn-on voltage for channel conduction and -3.3 V for body diode con-

duction. It is shown that the body diode has significant amount of voltage drop in

comparison to reverse conduction and the on-state threshold voltage for the body

diode is around 3 V. The absence of on-state threshold voltage with MOSFET brings

significant benefit at low current values and Fig. 4.4 shows that good reverse con-

duction capability of SiC MOSFET can provide reduction in component count by

eliminating anti-parallel diodes in power converters, which is strictly required for Si

IGBTs due to unidirectional current conduction capability.

The on-state and reverse conduction characteristics of GaN HEMT with different

gate-source voltages are presented in Fig. 3.8. It should be noted that the Vth of GaN

HEMT is three times smaller than Si IGBT and 1.33 times smaller than SiC MOSFET

with narrower Vgs limits, as shown in Table 4.2. The recommended gate-source voltage

during turn-on for GaN HEMT is 3.2 V. Same as SiC MOSFET, there is no on-

state threshold voltage which brings reduced on-state losses at lower current ratings.

The device has positive temperate dependency and the on-state voltage increases

from 2.5 V to 3.2 V at 20 A continuous DC current when heat sink temperature

is increased from 50 ◦C to 80 ◦C. In terms of reverse conduction, the synchronous

rectification capability is presented due to symmetry of the device discussed in the

previous sections. When the gate voltage is reduced to 0 V, the source-drain voltage
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Figure 4.5: On-state and reverse conduction characteristics of GaN HEMT with dif-
ferent gate-source voltages.

has to overcome the threshold voltage for the start of current conduction, which is

around 1.2 V in this case. It can be seen that this value is equal to the gate threshold

of the device Vth in Table 4.2. As the gate-source voltage is brought to negative values,

the on-state voltage increases to overcome the negative gate-source voltage and Vth.

This shows that although negative gate-source is recommended for GaN HEMT due

to low Vth, it will cause large voltage drop across the device during dead time instants.

Therefore, dead time should be kept to minimum to avoid excessive conduction losses,

specifically at high switching frequencies where dead time can become a significant

portion of the switching period.

Finally, the on-state characteristic of Si IGBT, SiC MOSFET and GaN HEMT at

80 ◦C are plotted in Fig. 4.6 in order to compare the device forward conduction

performance. It is clear that SiC MOSFET and GaN HEMT have better on-state

performance up to 15 A due to on-state threshold voltage of Si IGBT. The smaller on-

state resistance Ron of Si IGBT brings benefit above 15 A and at 20 A, the on-state

voltage drop of SiC MOSFET and GaN HEMT is approximately 1.5 times higher

than on-state voltage drop of Si IGBT.
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Figure 4.6: Comparison of on-state characteristic of Si IGBT, SiC MOSFET and
GaN HEMT at 80 ◦C case temperature.

4.1.2 Gate Driver Requirements

The devices presented in the previous section require different gate-source voltages for

turn-on and turn-off. In addition to this, they also have different dynamic character-

istics; therefore bespoke gate-drivers have to be designed for each device technology.

The schematics and gate waveforms for each device are presented in Fig. 4.7. The

gate driver loss Pg for SiC MOSFET and Si IGBT can be calculated as:

Pg = Vg·Qg·fs (4.1)

Where Vg is rail-to-rail gate driver voltage, Qg is cumulative gate charge and fs

is switching frequency. SiC MOSFET and Si IGBT are easy to drive in terms of

gate configuration but both devices are generally operated with positive and negative

voltages for safety reasons and faster switching. SiC MOSFET requires around +19V

to +21V for fast turn-on and minimum conduction loss; and -3V to -5V for better noise

immunity during turn-off. On the other hand, Si IGBT is driven with symmetrical

voltage such as ±15V or ±18V for similar reasons with SiC MOSFET. For these two

devices, two isolated power supplies or an isolated power supply with two outputs

are required. The turn-on and turn-off paths for these devices can be separated with
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Rgate(turn−off), optional external gate-source capacitance Cgs(ext) can be included as

it can be seen in Fig. 4.7c, in order to achieve optimum switching speed and avoid

false turn-on due to reverse transfer capacitance [77].

GaN HEMT from Panasonic requires continuous gate current during conduction in

order to enhance the conduction performance by injecting minority carriers to the

channel, as discussed in Chapter 3. Therefore the gate driver losses can be calculated

as follow:

Pg = Vg·(QCs +QCg)·fs +Rgate·Ig2·D (4.2)

Where QCs is the total charge across series connected capacitor Cs in GaN gate driver,

QCg is total charge across gate capacitance Cg including reverse transfer capacitance,

Rgate is the gate resistor that provides continuous gate current Ig and D is duty cy-

cle in a switching period. Series connected capacitance Cs provides inrush current

during switching and also negative voltage during turn-off in order to prevent false

turn-on due to low threshold voltage of GaN HEMT. The accumulated charge across

Cs should be larger than QCg in order to reach required voltage level across GaN

HEMT during turn-on and the capacitance value of Cs will determine the turn-off

negative voltage. Rgate resistor is defined by continuous gate current, which is 2

mA (manufacturer recommendation) at 3.2 V gate-source voltage, and supply volt-

age. Rgate(turn−on) is determined according to maximum gate driver current, supply

voltage and recommended limits (300 mA in this case). The maximum gate current

should not exceed 2 A according to manufacturer application note and 300 mA is the

recommended peak gate current to achieve adequate switching performance.

In GaN HEMT gate driver, Rgate is selected as 4.5 kΩ in order to limit continuous

gate current to 2 mA with 12 V rail-to-rail gate driver voltage and 3.2 V gate-source

voltage. For determining Rgate(turn−on) and Cs values, at first, Rgate(turn−on) is selected

as 47Ω in order to provide 300mA gate charging current along with Rgate. Then, the

series capacitor Cs is selected as 3.84 nF according to following equation in order to
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Figure 4.7: Gate driver schematics and waveforms: (a) GaN HEMT gate driver, (b)
GaN HEMT gate waveform, (c) SiC MOSFET and Si IGBT gate driver, (d) SiC
MOSFET gate waveform, (e) Si IGBT gate waveform.

provide approximately -6.5 V (4V(neg)) during turn-off for safe operation and speed

up turn-on transient:

Cs =
Qg

Vg − Vgs −4V(neg)
(4.3)

By using datasheet values, the gate drive loss for each device at different switching

frequencies can be calculated. The comparison of gate drive loss with respect to

switching frequency is presented in Fig 4.8. For GaN HEMT, the duty cycle is taken

as 0.64 and the gate-source (emitter) voltage, gate charge for all devices are taken

as shown in Table 4.2. The comparison in Fig. 4.8 shows that GaN HEMT has
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Figure 4.8: Gate loss comparison of single Si IGBT, SiC MOSFET and GaN HEMT.

minimum gate loss among three device technologies. With GaN HEMT, the static

losses dominate at low switching frequencies and has clear advantage in high switching

frequencies in comparison to both SiC MOSFET and Si IGBT.

The gate current requirement and noise immunity are important factors for selection

of gate driver IC and therefore size of the IC package. High speed switching for SiC

MOSFET and Si IGBT requires small gate resistance and therefore high peak current.

Two different gate drive ICs are presented in Fig. 4.7a and 4.7c. Gate drive optocou-

pler (ACPL-P346) in Fig. 4.7a provides isolation with 70kV/s common-mode noise

rejection (CMR) and totem pole arrangement in the same package but the continuous

peak current capability is limited to 3A. The main advantage of this IC is the isolation

with single package, minimum external component requirement and small footprint

in the printed circuit board. On the other hand, limited current capability means it

is not suitable for high speed switching devices with large gate charge. For SiC MOS-

FET and Si IGBT, in Fig. 4.7c, a gate drive interface optocoupler with high CMR

has to be used for signal isolation and a high current non-isolated gate driver IC is

used for driving the power switch. In this configuration, ACPL-4800 interface IC with

30kV/s CMR is used for signal isolation and IXDN609SI with 9A current capability is

used for gate drive circuit. Although this configuration provides higher peak current

with commercial ICs, the footprint of gate driver circuit increases significantly and

component count on the board also increases in comparison to the option in Fig. 4.7a.
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Moreover, isolated gate drive supply for both configurations is provided by isolated

DC/DC converters with minimum 1kV isolation rating and low isolation capacitance

(e.g. IH0512S-H for +12V supply) in order to minimize common-mode current cir-

culation. The complexity of gate driver is an important factor, which significantly

impacts both manufacturing and testing, especially in large volume applications, from

a cost point of view.

4.1.3 Dynamic Characterisation

The switching test setup for evaluation of Si IGBT with Si P-i-N and SiC SBD, SiC

MOSFET and GaN HEMT at different current ratings and heat sink temperature is

presented in Fig. 4.10. The setup is configured as the well known double pulse test

circuit, discussed in [78], which is formed by a half-bridge leg, output inductor and

a DC-link formed by a DC power supply, electrolytic capacitors Cele for keeping the

DC link voltage fixed at 350 V and decoupling capacitors Cfilm for minimisation of

commutation loop stray inductance Lstray and delivering pulsed power. Like in static

characterisation, the same temperature controlled heat sink is used for evaluation at

different heat sink temperatures. To begin the switching loss analysis, the DC link is

charged to 350 V, which is the nominal voltage for devices at 600 V blocking voltage

range with 700 V DC link in three-level half bridge based and 350 V DC link in full

bridge topologies, discussed in Chapter 2. After charging DC link to 350 V, DUT1 is

turned-on to charge the load inductor LLoad to the desired current value where turn-

on and turn-off switching energies will be calculated. When inductor current reaches

desired value, DUT1 is turned-off and the LLoad current begins to free-wheel through

DUT2. After certain time (around 10 µs), DUT1 is turned-on again to calculate the

turn-on switching loss at the same current value with the assumption of negligible

current reduction in LLoad during free-wheeling. Main waveforms for double pulse

test are presented in Fig. 4.9. As it can be seen from Fig. 4.9, the switching energy

for a specific device can be obtained with this configuration at desired output current

and heat sink temperature with double pulse applied to a single switch. During

free-wheeling of LLoad current, the DUT2 can be turned on after certain dead time
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Figure 4.9: Double pulse test waveforms for switching loss calculation.

for devices with reverse conduction capability in order to reduce the voltage drop

across the inductor and also losses in the free-wheeling device. For the high voltage

measurement, high bandwidth (400 MHz) different probes have been used in order

to capture fast switching transients. The device current is measured at the source

pin of DUT1 with a 30 MHz Rogowski current probe in order not to add extra stray

inductance to the commutation loop. The temperature of the heat sink is measured

with a thermocouple.

The switching performance analysis is based on the double test setup presented in Fig.

4.10. Four different experiments have been conducted for the analysis of switching

performance of Si, SiC and GaN devices. During the experiments, the measurement

system and test layout are kept constant in order to avoid inconsistency between

results. The gate drives that have been used for Si IGBT, SiC MOSFET and GaN

HEMT are discussed in detail in Section 4.1.2, which is the previous section in this

chapter.
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Figure 4.10: Double pulse test configuration for switching analysis of Si, SiC and GaN
devices.

Dynamic characterisation begins with Si IGBT. The collector-emitter voltage VCE

and current ICE waveforms of Si IGBT for turn-on and turn-off transitions at 350 V

DC link, 30 A load current and 60 ◦C heat sink temperature are presented in Figs.

4.11a and 4.11b respectively. The switching results are presented with Si P-i-N diode

and SiC SBD to show the impact of the anti-parallel diode on the losses of the com-

plementary switch. The results in Fig. 4.11a shows that the smaller Qrr of SiC SBD

leads to smaller peak current in Si IGBT during turn-on with approximately 2.5 A

peak current difference. In addition to reduction in peak current, the amount of time

for Si IGBT reaching from peak current to steady state load current is significantly

reduced with SiC SBD, which is also a result of reduced Qrr in the anti-parallel diode.

During turn-off in Fig. 4.11b, there is not a significant difference between two con-

figurations in terms of voltage overshoot caused by rate of change of current dICE/dt

and commutation loop stray inductance LStray. With SiC SBD, it is clear that the

ringing at ICE is smaller. It should be noted that with Si P-i-N diode at turn-off in

Fig. 4.11b, the clamp of voltage overshoot to 425 V with slightly higher dICE/dt can

be due to dynamic avalanche at the P-body junction of the IGBT [79]. Based on

the switching waveforms, the switching energy of Si IGBT with Si P-i-N diode and

SiC SBD are calculated and plotted with respect to collector-emitter current at 60

◦C heat sink temperature, heat sink temperature at 30 A collector-emitter current
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and heat sink temperature at 16 A collector-emitter current in Figs. 4.12a, 4.12b and

4.12c respectively. It can be seen in Fig. 4.12a that at high current values, SiC SBD

reduces turn-on losses of Si IGBT by factor 1.2. In terms of temperature dependency,

the turn-on losses increase by 1.12 times as the heat sink temperature is increased

from 50 ◦C to 80 ◦C with Si P-i-N diode. On the other hand, with SiC SBD, the loss

increase only by 1.034 times under same operating conditions. As the turn-off loss

is independent from diode performance, the increase in power loss with temperature

increase is 1.12 times for both conditions.
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Figure 4.11: Switching waveforms for Si IGBT with Si Diode and SiC SBD: a) Turn-on
transition b) Turn-off transition.

The next device to be evaluated is SiC MOSFET. The drain-source voltage VDS and
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current IDS waveforms for turn-on and turn-off transitions at 350 V DC link, 30 A

load current and 60 ◦C heat sink temperature are presented in Figs. 4.13a and 4.13b

respectively. As it is mentioned earlier, the synchronous rectification capability of the

MOSFET is utilised and no external SiC SBD diode is used. The turn on IDS in Fig.

4.13a shows the impact of Qrr of SiC MOSFET body diode and at turn-off instant

in Fig. 4.13b, there is no sign of tail current which can be seen in Si IGBT in Fig.

4.11b. Based on the switching waveforms, the switching energy of SiC MOSFET

is calculated and plotted with respect to drain-source current at 60 ◦C heat sink

temperature and heat sink temperature at 30 A and 16 A drain-source current in

Figs. 4.14a and 4.14b respectively. It is clear that the turn-on and turn-off switching

energies increase linearly with load current but Fig. 4.14b shows one of the interesting

aspects: temperature in-dependency of switching performance of SiC MOSFET. As

the heat sink temperature is increased from 50 ◦C to 80 ◦C, the turn-on energy is

reduced by a factor of 1.056 where turn-off energy stayed constant.

Finally, switching performance of the GaN HEMT is presented in the same structure

with Si IGBT and SiC MOSFET before comparison of these three technologies. The

drain-source voltage VDS and current IDS waveforms for turn-on and turn-off tran-

sitions at 350 V DC link, 30 A load current and 60 ◦C heat sink temperature are

presented in Figs. 4.16a and 4.16b respectively. Same as SiC MOSFET, reverse con-

duction capability of GaN HEMT is utilised in the double pulse configuration and no

external diode is used. As it is mentioned earlier, the negative voltage during turn-off

is recommended for GaN HEMTs due to low gate-source threshold voltage and this

increases the required charge to be delivered during turn-on to the input capacitance

Ciss along with the increased conduction loss during dead time. Therefore, the turn-

on loss will be influenced by the applied negative gate-source voltage. The switching

waveforms in 4.16a and 4.16b are presented for two conditions: 1) Normal operation

where the device is turned-off with -6 V voltage and turned-on when gate-source volt-

age is equal to -4 V (labelled as ”GaN HEMT”), 2) Zero voltage turn-on operation

where the device is turned-off with -6 V but turned on when gate-source voltage is

equal to 0 V (labelled as ”GaN HEMT-z”). The gate-source voltage waveform il-

lustration is presented in Fig. 4.15 to clarify these two conditions. It can be seen
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from Fig. 4.16a that the applied negative voltage slows down the turn-on transition

and during turn-off due to same operating conditions, the VDS and IDS waveforms

overlap for both cases. The impact of the negative voltage becomes more apparent

with the calculation of switching energies with respect to drain-source current and

heat sink temperature. The switching energy results are presented in Figs. 4.17a and

4.17b with respect to drain-source current at 60 ◦C heat sink temperature and heat

sink temperature at 16 A drain-source current respectively. Fig. 4.17a shows that

turn-on switching energy can increase up to three times with negative voltage at high

IDS conditions. On the other hand, regarding temperature dependency in Fig. 4.17b,

the turn-on energy increases by a factor of 1.06 for both conditions and the turn-off

energy decreases by a factor of 1.03 with the temperature increase from 50 ◦C to 80

◦C.

To give an overall dynamic performance comparison, the turn-on and turn-off switch-

ing performance of Si IGBT, SiC MOSFET and GaN HEMT are plotted together

in order to give an overall comparison with respect to device current and heat sink

temperature. The turn-on and turn-off switching energies for three devices are pre-

sented in Figs. 4.18a and 4.18b with respect to device current at 60 ◦C heat sink

temperature respectively. The temperature dependency of the turn-on and turn-off

switching energies at 16 A device current for three devices are presented in Figs 4.19a

and 4.19b respectively. It is clear that GaN has the lowest turn-on and turn-off

losses independent from heat sink temperature unless high negative voltage is main-

tained before turn-on transition. The temperature in-dependency of SiC MOSFET

and GaN HEMT provides the possibility of reduction of heat sink volume without

compromising device performance.
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Figure 4.12: Turn-on and turn-off switching loss of Si IGBT with Si Diode and SiC
SBD: a) 60 ◦C ambient temperature, b) 30 A collector-emitter current and c) 16 A
collector-emitter current
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Figure 4.13: Switching waveforms for SiC MOSFET: a) Turn-on transition b) Turn-off
transition.
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Figure 4.14: Turn-on and turn-off switching loss of SiC MOSFET: a) 60 ◦C ambient
temperature b) 30 A and 16 A drain-source current.

Figure 4.15: Illustration of applied gate-source drive voltage waveform for GaN
HEMT.
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Figure 4.16: Switching waveforms for GaN HEMT: a) Turn-on transition b) Turn-off
transition.
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Figure 4.17: Turn-on and turn-off switching loss of GaN HEMT: a) 60 ◦C ambient
temperature b) 16 A collector-emitter current.
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Figure 4.18: Switching loss comparison of Si IGBT, SiC MOSFET and GaN HEMT:
a) Turn-on at 60 ◦C ambient temperature b) Turn-off at 60 ◦C ambient temperature.
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Figure 4.19: Switching loss comparison of Si IGBT, SiC MOSFET and GaN HEMT:
a) Turn-on at 16 A device current b) Turn-off at 16 A device current.
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4.2 Overall Comparison

The static and dynamic performance of Si, SiC and GaN based devices under different

current and temperature conditions has been presented. Finally, gate drive design

and loss analysis for Si IGBT, SiC MOSFET and GaN HEMT are presented and dis-

cussed. The results of the comparison is summarised in Table 4.3. The GaN HEMT

has excellent switching and conduction properties at low current conditions with neg-

ligible temperature dependency, but a complicated gate driver design is required for

safe operation and the design has a strong impact on switching losses. On the other

hand, SiC MOSFET has similar on-state performance in comparison to GaN HEMT

below 15 A device current and shows significantly better switching performance than

Si IGBT without any temperature dependency. The gate driver design is simpler in

comparison to GaN HEMT but the required driving voltage is different from conven-

tional Si devices, therefore additional effort is required in the design process. Finally,

Si IGBT has the best conduction performance at high current ratings as expected but

suffer from high switching losses due to intrinsic properties of Si and minority carrier

charges. WBG devices can be used in reverse conduction mode with careful design

in terms of dead time duration and applied negative gate voltage, and anti-parallel

diodes can be therefore eliminated in inverter designs which are required in Si IGBT

based designs.

Panasonic ROHM Infineon
GaN HEMT SiC MOSFET Si IGBT
PGA26C09DS SCT2120AF IGP20N60H3

On-State Performance at low current +++ ++ - - -
On-State Performance at high current - - - + +++
Switching Performance Performance +++ ++ - - -
Temperature Dependency +++ +++ -
Gate Drive Complexity - - - - - +++
Reverse Conduction + +++ - - -

Table 4.3: Overall Comparison of Si IGBT, SiC MOSFET and GaN HEMT.
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4.3 WBG Devices in Power Electronic Converters

WBG devices gain immediate attention in power electronic community due to superior

switching and conduction properties in comparison to Si as shown in the first section

of this chapter. In this section, a brief literature review of applications of WBG

devices and their benefit in in power converters are presented.

The literature review clearly shows that SiC and GaN devices are promising advance-

ments in power semiconductor technology that can enable very high efficiencies and

very high power density by increased switching frequencies [80]. Application of SiC

devices in renewable energy converters has been widely discussed in literature and

papers show the potential of achieving very high efficiency figures with SiC devices

for photovoltaic applications specifically. Performance of SiC JFET devices for PV

applications is discussed in detail in [81, 82, 83]. In [81], designed converter achieved

98.8 % peak efficiency and in [82], HERIC converter with SiC devices achieved 99 %

peak efficiency. According to [83], overall losses in a PV inverter can be halved by

just replacing Si IGBTs with SiC JFETs.

Normally-off GaN HEMTs have been introduced by Panasonic at 600V. In [84], GaN

HEMTs are implemented in a DC/DC converter for maximum power point tracking

for PV applications and converter operated with 98.59 % peak efficiency at 48 kHz

switching frequency. Same devices have been used in different applications such as

resonant LLC DC/DC converter, three phase inverter and synchronous buck converter

that show the high switching and conduction performance of the devices in different

operating conditions [85, 86, 87]. In [85], GaN devices are operated at 1MHz switching

frequency in LLC resonant converter and achieved 96.4 % efficiency at 1 kW output

power. In [86], GaN devices are used at low frequency three phase inverter and

the inverter achieved 99.3% efficiency at 900 W output power and 16kHz switching

frequency. Normally-on GaN HEMTs at 600V voltage class with and without cascode

structure are discussed in [88] and [89] for hard-switching topologies. Performance

improvement in a synchronous buck topology is presented in [88] and it is shown

that smaller reverse recovery charge and output capacitance of GaN HEMT lead to
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reduction in turn-on losses and up to 2 % efficiency improvement in comparison to

Si MOSFET. The current collapse phenomena for 600V normally-on GaN HEMT is

presented in [89] and although the device is statically rated at 600 V, the experimental

results are presented up to 50-60 V due to increase in on-state voltage drop during

dynamic testing.

The GaN and SiC devices at 600 V blocking class gained more attention from re-

searches with the announcement of Little Box Challenge [90] in 2015, sponsored by

Google and IEEE Power Electronics Society where the aim of the challenge is to de-

sign a 2 kVA, single phase inverter with more than 3 kW per litre power density and

95 % efficiency based on weighted CEC weighted efficiency in Eq. 2.8. The developed

converter is expected to comply with EMI regulations as well. Various full-bridge

topologies have been compared including soft-switching and hard switching topolo-

gies based on enhancement mode GaN HEMT and SiC MOSFET [91], [92]. The

switching frequency of the converters range between 100 kHz to 200 kHz to reduce

output filter size while keeping the inverter efficiency above 95 %. A multilevel in-

verter topology based on 200 V GaN devices and achieving MHz effective switching

frequency at the output of the inverter is presented in [93]. In addition to inverter

applications, active power decoupling converters to eliminate electrolytic capacitors

in single phase inverters have been also discussed and realised with these WBG de-

vices. The comparison of various topologies based on high frequency switching WBG

devices is presented in [94] and [95].

4.4 Benchmark of 600 V Devices in T-Type In-

verter

In order to evaluate the performance of the devices in a converter system, the T-Type

topology is selected as the application. T-Type is an inverter topology based on half-

bridge configuration and presented in Section 2.2.2.3. The topology is attractive as

a three-level inverter solution with low conduction losses, low component count and
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high efficiency. It is shown in Chapter 2 that T-Type has high efficiency in comparison

to full-bridge derived topologies and currently used commercial residential scale PV

systems. The topology requires 4 active switches where two of them S1 and S4 are

used as half bridge and S2 and S3 are used as a bi-directional switch. In this study,

the bi-directional switch formed by S2 and S3 in Fig. 2.19 is tested with Si, SiC and

GaN devices at 600 V blocking class, presented in the previous sections. The test

setup for the evaluation of the devices is explained in the next section, followed by

presentation and discussion efficiency performance and switching performance under

different conditions. Similar results have been obtained in H6 inverter, which is a

full-bridge topology and discussed in Chapter 2, and presented in Appendix A.

4.4.1 Test Setup

The converter parameters are listed in Table 4.4 and a schematic of the test setup is

shown in Fig. 4.20. Converter parameters are based on single phase grid connected

inverters. PPA 5530 precision power analyser from N4L is used to measure voltage,

current and power factor at the input and output of the converter and overall effi-

ciency. The efficiency measurements exclude gate driver losses. The voltage at the

output is measured before the filter inductor Lf in order to exclude winding and core

losses of output filter inductors from performance analysis. The accuracy of the anal-

yser reduces with respect to signal frequency and is around 2% at 200 kHz. Therefore

the measurements as carried out inevitably characterized by some degree of inaccu-

racy, but as the inaccuracy is the same for all type of devices, it is expected that the

error should always be in the same direction and should not affect the comparative

analysis.

Two heating resistors are mounted to the heat sink with equal distance to power

devices and a cooling fan is placed directly at the cooling fins of heat sink for control

of case temperature of devices. The resistors generate additional heat at light load and

cooling fan cools down power devices at heavy load conditions. By properly setting

the required amount of heat generation including device losses and heat removal,
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the heat sink temperature can be controlled independently from converter operation

point. For each load and switching frequency condition, the heat sink temperature

is independently set between 50 ◦C and 80 ◦C in order to evaluate the performance

of the devices under different load, frequency and temperature conditions. By this

arrangement, temperature of the heat sink can be made independent from load and

switching frequency.

Gate driver board and power cell are shown in Fig. 4.21a and 4.21b respectively. High

frequency film capacitors are placed closed to switches in parallel with electrolytic

capacitors in order to provide minimum voltage overshoot across devices and output

inductor Lf is formed by two off the shelf 500 µH inductors connected in series

and mounted on power plane PCB. The DC link capacitance is selected to ensure the

voltage variation across DC link is less than 5%. The gate driver is designed according

to requirements in the previous section to provide high switching speed performance

for SiC, Si and GaN devices. The board is directly soldered on the device pins in

order to minimize the gate loop stray inductance and the gate signals are provided

through a fibre optic link by FPGA board that can provide high frequency sinusoidal

PWM modulation.

Parameter Value

PMAX 2.5 kW

VDC 700 V

VOUT 230 V

Lf 1 mH

CDC 4 mF

fs 16 kHz to 160 kHz

Dead− time 400 ns

S1, S4 CREE CMF2120D

Panasonic PGA26A10DV

S2, S3 ROHM SCT2120AF

Infineon IGP20N60H3

600 V SiC SBD CREE C3D20060

Th 50 ◦C to 80 ◦C

Table 4.4: Converter Parameters and Test Conditions



4.4. BENCHMARK OF 600 V DEVICES IN T-TYPE INVERTER 91

+
−

Lf RLoadVDC

T-Type
Inverter

Power
Analyzer

Figure 4.20: Test setup for T-Type inverter.

4.4.2 Experimental Results

4.4.2.1 Efficiency Performance

The power cell efficiency with three different semiconductor technologies is presented

in this section. The efficiency analysis at 16 kHz and 32 kHz at 50 ◦C heat sink

temperature is presented in Fig. 4.22 for Si IGBT, SiC MOSFET and GaN HEMT. It

is clear that by just replacing Si IGBT with GaN HEMT or SiC MOSFET, significant

improvements in efficiency can be achieved due to superior switching properties of

wide-bandgap devices. The performance difference between silicon and wide-bandgap

devices becomes clearer at 32 kHz. The converter achieved peak efficiency 99.2 % with

GaN HEMTs at 16 kHz switching frequency and 50 ◦C heat sink temperature. At

16kHz, SiC MOSFET and GaN HEMT brings up to 0.6 % and 1.45 % efficiency

improvement respectively and at 32 kHz, these values increase to 0.75 % and 1.6

% due to poor switching performance of Si IGBT in comparison to wide-bandgap

technologies.

The performance of the devices at different switching frequencies and heat sink tem-

peratures are presented in Fig. 4.23a and 4.23b. Fig 4.23a shows the comparison of

SiC and GaN solutions up to 64 kHz switching frequency and between 60 ◦C and 80 ◦C

heatsink temperatures at 2.5 kW output power. The results show that GaN solution

proves a robust performance under different temperature conditions and complete
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Figure 4.21: Single phase T-type inverter: (a) gate driver and (b) power cell.
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Figure 4.22: Efficiency comparison at: (a) 16 kHz and (b) 32 kHz switching frequen-
cies at 50 ◦C heatsink temperature.
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SiC solution has less than 0.5 % efficiency variation at 64kHz switching frequency.

Fig. 4.23b shows a similar efficiency comparison versus heatsink temperature at 16

kHz and 32 kHz switching frequencies at 2.5 kW output power for three different

device technologies. It is clear that SiC and GaN devices show good performance

under different ambient temperatures due to wide-bandgap device properties [80].

Finally, due to best performance among all three devices, inverter based on GaN

is tested up to 160kHz at various load conditions in order to evaluate switching

performance of the inverter. The results are presented in Fig. 4.24. The efficiency

results show that SiC and GaN based T-type inverter can perform with high efficiency

up to 2.5 kW output power and up to 160 kHz switching frequency. The efficiency

remains above 97 % above 2.2 kW output power. In order to fully understand the

trend of efficiency curves at different switching frequencies, the main contributors to

power cell losses should be discussed. According to [96], there are three main loss

components occurring in a power electronic system and the total loss PLosst can be

expressed as follow:

PLosst = k0 + k1 · POUT + k2 · POUT 2 (4.4)

where ko is the component that represents losses that are independent of the output

power such as auxiliary systems, drive circuits for the power transistors, capacitive

switching losses, etc. The k1 · POUT term represents the losses that increase linearly

with output power such as conduction losses due to forward voltage drop of power

semiconductors (e.g. bipolar devices) and linearly current dependent switching losses.

The last term k2 · POUT 2 in Eq. 4.4 corresponds to ohmic losses such as conduction

losses of unipolar devices and losses in capacitors due to equivalent series resistance.

Therefore, in a power electronic system with only k0 losses, the efficiency will increase

gradually with increase of output power. With only k1 ·POUT term, the efficiency will

be constant at any load condition as the losses change linearly with output power.

Finally with only k2 ·POUT 2 term, the efficiency will reduce gradually with the increase

of POUT due to quadratic relation between losses and output power.

It can be seen from Fig. 4.24 that at low switching frequencies such as 16 kHz and 32

kHz, the efficiency increases gradually up to 1500 W and then reduces slightly with
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respect to increase of output power. From these two curves, it can be concluded that

at low switching frequencies and light load conditions, the k0 and k1 · POUT terms

in Eq. 4.4 dominate the efficiency performance. As the output power increases, the

quadratic term k2·POUT 2 begins to dominate the efficiency curves. At higher switching

frequencies such as 128 kHz and 160 kHz, it can be seen that the efficiency of the

power cell reduces drastically at light load conditions (below 1500 W). The reason

for the reduction of this efficiency drop can be linked to increased share of mainly k0,

and k1 ·POUT terms in the total loss of the inverter. As the capacitive switching losses

increase linearly with switching frequency and power loss PLosst is dominated by k0 at

light load conditions. On the other hand, beyond 1500 W, the k1 · POUT term, which

is linked to switching losses, dominates the performance of the power cell instead of

ohmic losses, unlike in low switching frequency conditions. Therefore, the efficiency

of the power cell continues to increase to a steady level with increased output power.

4.4.2.2 Switching Performance

The theoretical conduction loss analysis of T-type inverter has been discussed thor-

oughly in [97] and equations can be found in Eqs. 4.5, 4.6, 4.7 and 4.8. The theoretical

conduction loss can be calculated with respect to experimental conditions (e.g. tem-

perature, modulation index, output power) in order to extract switching losses from

experimental efficiency results. Therefore switching and conduction performance of

Si, SiC and GaN can be compared at different switching frequency and heat sink

temperature cases. The converter total, theoretical conduction and switching loss

comparisons at 2.5 kW output power, different heat sink temperatures, and 32 kHz

switching frequency for Si, SiC and GaN based configurations are presented in Fig.

4.25. Switching losses dominate the total losses for SiC and Si based configurations.

On the other hand, GaN based configuration shows significant reduction in total loss

due to high switching performance of GaN devices at different heat sink temperature

values.
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Figure 4.23: Efficiency vs switching frequency comparison at different heatsink tem-
peratures for (a) SiC and GaN , and (b) efficiency vs temperature comparison for
SiC, GaN and Si at 16 kHz and 32 kHz switching frequencies.
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Figure 4.24: Efficiency versus output power of SiC + GaN inverter at 50 ◦C heatsink
temperature and between 16 kHz and 160 kHz switching frequencies.

Theoretical conduction loss analysis of the T-type converter is as follow [97]:

Pc−S1,4 =
vo,SMÎOUT

4π
[sin (φ) + (π − φ) cos (φ)]

+
ro,SMÎ2OUT

4π

[
8

3
cos4

(
φ

2

)] (4.5)

Pc−D1,4 =
vo,DMÎOUT

4π
[sin (φ) + φcos (φ)]

− ro,DMÎ2OUT
2

[
4

3π
sin4

(
φ

2

)] (4.6)
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π
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4
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]
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ro,S Î2OUT
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[
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(
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Pc−D2,3 =
vo,DÎOUT

π

[
1− M

4
(2sin (φ)− (2φ− π) cos (φ))

]
+
ro,DÎ2OUT

4

[
1− 4M

3π

(
1 + cos2 (φ)

)] (4.8)
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Figure 4.25: Loss breakdown for GaN, SiC and Si based converter at 1.3 kW output,
32 kHz switching frequency: (a) total power device loss, (b) conduction loss, (c)
switching loss.
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4.5 Conclusion

In this chapter, the benchmark of state-of-the-art Si, SiC and GaN devices is pre-

sented in terms of static, dynamic, gate drive and converter efficiency. With static,

dynamic and gate driver analysis, it is shown that GaN HEMT has excellent switch-

ing and conduction properties at low current conditions with negligible temperature

dependency, but relatively higher complex gate driver design is required for safe op-

eration and the design has a strong impact on switching losses. The results with

T-Type inverter show that SiC and GaN devices provide performance enhancement

over Si under wide load, temperature and switching frequency conditions. In terms of

switching performance, GaN HEMT has the best performance among three technolo-

gies and allows high efficiency at high-frequency applications. Performance evaluation

of three device technologies show that WBG devices, specifically GaN HEMT provide

robust performance under wide temperature, switching frequency conditions.



Chapter 5

GaN HEMT Based ANPC Inverter

The dynamic, static, gate drive and application benchmarking of WBG devices in

Chapter 4 showed that GaN HEMT is the most promising device despite the relatively

higher complex gate drive circuitry. The on-state performance of GaN HEMT is

better than Si IGBT and SiC MOSFET and the switching performance is the best

among three devices, independent from case temperature. The efficiency results with

T-Type inverter also were aligned the dynamic and static characterisation results

with achieving highest power cell efficiency when GaN HEMT is used in the system.

Due to these reasons, ANPC topology, which is a member of half-bridge topologies

presented in Chapter 2, is selected as the topology to explore benefits of GaN HEMT

in PV inverters.

In this chapter, a fully GaN HEMT based ANPC inverter is analysed to explore

the benefits of GaN HEMT devices in PV inverters in terms of efficiency, converter

volume reduction (heat sink and output filter) and mission-profile based reliability.

The discussion starts with the description of the inverter and test setup, followed

by experimental results including efficiency and power loss under different switching

frequency, heat sink temperature and output load conditions. This is followed by loss

breakdown under different temperature and switching frequency conditions to evalu-

ate performance of devices and influence of static and dynamic losses to power cell

100
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efficiency. Furthermore, the impact of GaN devices on converter volume is assessed in

terms of heat sink and output filter volume. Finally, evaluation of GaN HEMTs and

Si IGBTs is presented considering real-field long-term PV mission profiles (e.g., ambi-

ent temperature and solar irradiance) to assess the thermal loading and performance

of devices in a three-phase grid-connected configuration.

5.1 ANPC Inverter and Test Setup

The operation principle of ANPC inverter has been discussed in detail in Chapter 2.

The selected PWM scheme for the GaN HEMT based ANPC prototype is presented

in 2.18b where the synchronous rectification capability is utilised during zero state

conduction. The topology provides six different switching states (two for active-

states +VDC/2 and −VDC/2, four for zero-states) for IGBT-based applications. The

schematic of the single phase topology with possible commutation loops that can be

used for commutating the output current between positive state and upper and lower

neutral states formed by S2 − S5 are presented in Fig. 5.1. The switching states

and commutation schemes are discussed thoroughly for loss balancing and better

utilisation of Si IGBTs. In literature, parallel conduction of S2, S3, S4 and S5 has

not been considered as a switching state due to difficulty of the parallel conduction

of IGBTs [31]. With respect to any selected switching strategy, S1 or S3 may be

subject to switching losses for positive output voltage and positive output current.

In the selected switching strategy presented in Fig. 2.18b, S1 and S6 switches will

be subject to switching losses at positive and negative halves of the output waveform

respectively with unity power factor operation. The total commutation inductance

formed by the commutation loop stray inductance Lσ and the DC-link capacitor self-

inductance LDC1 has to be minimised for reducing voltage overshoots and switching

losses. The self-inductance of DC-link capacitor can be minimised by paralleling

high frequency capacitors (e.g., ceramic, film) and commutation loop inductance by

placing conductors that carry opposing currents in adjacent layers to induce magnetic

field self-cancellation.
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Figure 5.1: Commutation loops in ANPC from positive to neutral states: (a) positive
state to upper neutral state (b) positive state to lower neutral state.

Based on these principles, the prototype PCB has been designed in order to minimise

the commutation loop between commutating switches S1-S5, S1-S2, and S6-S3, S6-S4.

The PCB consists of four layers with 0.2 mm FR4 insulation between layers and 1

µF, 400 V CeraLink capacitors from TDK as decoupling capacitors CDC1 and CDC2,

shown in Fig. 5.1 [98]. The constructed single phase prototype is shown in Fig.

5.2. and the PCB layer layouts are presented in Figs. B.1 - B.4 in Appendix B.

The prototype is housing the fibre optic receivers for transfer of PWM signals from

FPGA board, individual isolated gate drivers for each switch with the same structure

presented in Fig. 4.7a, film decoupling capacitors and temperature controlled heat

sink which consists of two heating resistors mounted at the sides of the heat sink and

two cooling fans for independent control of device case temperature from switching

frequency and output load.

The setup for the converter evaluation is illustrated in 5.3 and test parameters are

presented in Table 5.1. The inverter is powered by a DC power supply with electrolytic

DC link decoupling capacitors. An RL load configuration is used for evaluation of

performance under different load conditions. Efficiency and losses of power cell is

measured by Yokogawa WT3000E precision power analyser, which has 0.01% power
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Figure 5.3: Test setup for GaN HEMT based ANPC inverter.
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Parameter Value

PMAX 2 kW

VDC 700 V

VOUT 230 V

Lf 1.6 mH

CDC 4 mF

fs 16 kHz to 160 kHz

Dead− time 400 ns

S1 − S6 Panasonic PGA26C09DV

Th 50 ◦C to 80 ◦C

Table 5.1: Converter Parameters and Test Conditions

accuracy [99]. The PWM signals are generated by an FPGA development platform

and transferred to the board via fibre optic cables. The modulation index is kept

fixed and the load is changed through the resistive load bank.

5.2 Experimental Results and Loss Analysis

The inverter is tested at 120 different operating points to evaluate the performance

with 4 different heat sink temperatures (50 oC, 60 oC, 70 oC and 80 oC), 5 switching

frequencies (16 kHz, 32 kHz, 64 kHz, 128 kHz and 160 kHz) and 6 output load

conditions (300 W to 2 kW). The efficiency and power loss of the inverter at 50

oC heat sink temperature under various load and switching frequency conditions are

presented in Fig. 5.4. The superior switching performance of GaN HEMTs provide

very high efficiencies (above 99 %) at low switching frequencies. The efficiency of

the power cell reduces gradually due to increase in switching loss as the switching

frequency is increased, and the efficiency stays above 97 % under wide load region at

128 kHz. In terms of power loss, as the switching frequency of the inverter is increased

by a factor of 4 (16 kHz to 64 kHz), the power loss increases only by a factor of 1.5.

If the switching frequency is increased 128 kHz (increase by factor of 8), the losses

increase by a factor of 2.
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The efficiency and power loss curves with respect to switching frequency at 2 kW

output power are presented in Figs. 5.5a and 5.5b respectively. The efficiency de-

creases linearly with increase of switching frequency from 98.5 % to 96.5 % at 50 oC

case temperature. The temperature dependency of the efficiency is presented in Fig.

5.6 at 2 kW output power and 5 different switching frequencies. The results in Figs.

5.5a and 5.5b show that the performance of the power cell has minimum dependency

to heat sink temperature within the test conditions and high efficiency can be main-

tained with increased switching frequency. The increase of switching frequency and

heat sink temperature allows the designer to reduce the output filter and heat sink

volume, which will be discussed in the following sections.
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Figure 5.4: Performance of GaN HEMT based ANPC power cell versus output power
at 50 oC heat sink temperature: a) efficiency, b) power loss.



5.2. EXPERIMENTAL RESULTS AND LOSS ANALYSIS 107

Switching Frequency [kHz]
16 32 48 64 80 96 112 128 144 160

E
ff

ic
ie

nc
y 

[%
]

96

96.5

97

97.5

98

98.5

99

50oC
60oC
70oC
80oC

(a)

Switching Frequency [kHz]
16 32 48 64 80 96 112 128 144 160

Po
w

er
 L

os
s 

[W
]

20

30

40

50

60

50oC
60oC
70oC
80oC

(b)

Figure 5.5: Performance of GaN HEMT based ANPC power cell versus switching
frequency at 2 kW output power: a) efficiency, b) power loss.
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Figure 5.6: Performance of GaN HEMT based ANPC power cell versus heat sink
temperature at 2 kW output power: a) efficiency, b) power loss.
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Figure 5.7: Efficiency of GaN based ANPC power cell versus output power for 16 kHz
and 64 kHz switching frequencies at different heat sink temperatures.

5.2.1 Loss Breakdown

The breakdown of overall power cell loss in terms of conduction and switching losses is

conducted to evaluate the dominant loss component at different switching frequency

and heat sink temperature conditions. In order to separate conduction and switching

losses for each operating point, conduction losses with respect to output load, dead-

time and heat sink temperature are calculated based on the on-state performance of

GaN HEMT, which was discussed in Chapter 4. Then, the calculated conduction loss

value is subtracted from experimental power cell loss value for each operating point,

which is presented in the previous section, to obtain the total switching loss.

The conduction losses are calculated based on sinusoidal approximated output voltage

and current, excluding switching ripple current and harmonics. The approximated

output voltage and current waveforms for this analysis are illustrated in Fig. 5.8a.

The PWM switching waveforms for the selected modulation scheme (see Fig. 2.18b)

including dead-time tdt between complimentary devices are presented in Fig. 5.8b.

An arbitrary phase shift φ between output voltage and current is shown to derive

conduction loss equations for any power factor condition. The output current in Fig.

5.8a can be expressed as:

i(t) = ÎOUT · sin(ωt− φ) (5.1)
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Figure 5.8: a) Approximated output voltage and current waveforms for loss analysis
and b) PWM signals for ANPC inverter with dead time.
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where ÎOUT is the output current amplitude. The conduction time of each device can

be expressed by duty cycle D. The duty cycle for active states (+VDC/2 or −VDC/2)

Dactive can be expressed as [38]:

Dactive(t) = M · sin(ωt) (5.2)

where M is the modulation index varying between 0 and 1. Therefore the duty cycle

for zero states Dzero can be calculated as follow:

Dzero(t) = 1−M · sin(ωt) (5.3)

The on-state voltage drop across and therefore conduction loss at active state can be

calculated as follow:

von(t) = RDS · i(t) (5.4)

Pconda =
1

2π

∫ π

0

i(t) · von(t) ·Dactive(t) · d(ωt) (5.5)

Pconda =
Î2OUT ·RDS ·M

2π
·
(

1 +
cos(2φ)

3

)
(5.6)

where RDS is on-state resistance at given temperature. Similarly the conduction loss

at zero state can be calculated:

Pcondz =
1

2π

∫ π

0

i(t) · von(t) ·Dzero(t) · d(ωt) (5.7)

Pcondz =
Î2OUT ·RDS

2π
·
(
π

2
+M ·

(
1 +

cos(2φ)

3

))
(5.8)

As it is shown in Fig. 5.8b, there is dead time between complementary switches S1-

S2,5 and S6-S3,4 to avoid shoot through. After the conducting device is turned off, the

complementary device will start conducting the output current in reverse conduction

mode with higher on-state losses during dead-time. As shown in Chapter 4, GaN

HEMT devices have diode like conduction characteristic in reverse conduction mode

when gate-source voltage is below threshold of the device. Therefore, the on-state

voltage drop across GaN HEMT, vdt, during dead time can be expressed with the

following equation:

vdt(t) = Vf + ÎOUT ·RDS · sin(ωt− φ) (5.9)
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where Vf is on-state threshold voltage and can be neglected when the device is turned-

on. Based on Eq. 5.9, the dead time conduction loss for 0 to φ region in Fig. 5.8a

is:

Pdt1−bp
=

1

2π

∫ φ

0

vdt(t) · i(t) · tdt · 2 · fsw · d(ωt) (5.10)

Pdt1−bp
= tdt·fsw

π

[
Vf · ÎOUT − Vf · ÎOUT · cos(−φ) + Î2OUT ·RDS

(
φ
2
− 1

4
sin(2φ)

)]
(5.11)

Pdt1−up =
1

2π

∫ φ

0

vdt(t) · i(t) · tdt · 2 · fsw · d(ωt) (5.12)

Pdt1−up =
tdt · fsw
π

[
Î2OUT ·RDS

(
φ

2
− 1

4
sin(2φ)

)]
(5.13)

where Pdt1−bp
corresponds to dead time conduction loss when the gate-source voltage

is below threshold and Pdt1−up corresponds to dead time conduction loss when the

device is turned-on. Similarly, the dead time conduction loss for φ to π region in Fig.

5.8a is:

Pdt2−bp
=

1

2π

∫ π

φ

vdt(t) · i(t) · tdt · 2 · fsw · d(ωt) (5.14)

Pdt2−bp
= tdt·fsw

π

[
−Vf ·ÎOUT

2
(cos(π − φ)− 1) +

Î2OUT ·RDS

4

(
π−φ
2

+ 1
4
sin(2φ)

)]
(5.15)

Pdt2−up =
1

2π

∫ π

φ

2 · vdt(t) · i(t) · tdt · 2 · fsw · d(ωt) (5.16)

Pdt2−up =
tdt · fsw
π

[
Î2OUT ·RDS

4

(
π − φ

2
+

1

4
sin(2φ)

)]
(5.17)

Dead time tdt also means reduction of conduction time as the applied total gate pulse

time is reduced by dead time duration. The reduction of power loss in a switch can

be calculated as follow:

Pdtred =
1

2π

∫ π

0

RDS · Î2OUT · sin2(ωt− φ) · tdt · fsw · d(ωt) (5.18)

Pdtred =
tdt · fsw ·RDS · Î2OUT

4
(5.19)

The absence of Vf can be seen in Eqs. 5.18 and 5.19 as the reduction occurs when the

device is turned-on. The conduction cases for switches S1, S2 and S3 for unity and zero

power factor cases are presented in Fig. 5.9 based on Fig. 5.8b. The Control Signal

represents the PWM signal before applying dead time to the gate signal, Pdtred is the
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reduction in conduction loss expressed in Eq. 5.19, PcondSx
is the total conduction

loss across specified switch, PcondON
is the conduction loss when the specified device

is turned-on and Pdtx−bp
is the dead-time loss when gate voltage is below threshold

as presented in Eqs. 5.11 and 5.15. It can be seen from Figs. 5.9a and 5.9b that

S1 only conducts during the positive voltage output in ANPC inverter. The actual

control signal is reduced by introduction of dead-time and the total loss PcondS1
is

equal to PcondON
at unity power factor as the output voltage VOUT is clamped to zero

state during dead-time and no current flows through S1. At 0 power factor, during

dead time, the output current IOUT flows through S1 and VOUT is clamped to VDC/2.

Therefore the PcondS1
is equal to sum of PcondON

and Pdt1−bp
. For arbitrary power

factor, the total conduction loss across S1 PcondS1
can be expressed by using Eq. 5.6,

5.11 and 5.19, as:

PcondS1
= Pconda + Pdt1−bp

− Pdtred (5.20)

With similar approach, the conduction loss of S2 for arbitrary power factor can be

calculated. As the S2 conducts at both positive half and negative half of output

voltage, the total conduction loss of S2 can be calculated as the sum of positive half

conduction loss PS2+ and negative half conduction loss PS2−:

PcondS2
= PS2+ + PS2− (5.21)

where PS2+ and PS2− are defined as follow:

PS2+ =
Pcondz

4
+ Pdt2−bp

− Pdtred
4

(5.22)

PS2− =
Pcondz

4
+ Pdt2−up −

Pdtred
4

(5.23)

The only difference between PS2+ and PS2− is the dead-time conduction losses Pdt2−bp

and Pdt2−bp
. As it can be seen from Figs. 5.9c and 5.9d, Pdt2−bp

corresponds to reverse

conduction dead time losses at the positive half of the output when the device is

turned-off, and Pdt2−up corresponds to increased conduction time in PcondON
at the

negative half of the output voltage. It should be noted that Pcondz and Pdtred are

divided by 4 as the output current is divided into two parallel conduction paths: S2-

S3 and S4-S5. Similarly, according to Figs. 5.9e and 5.9f, the conduction loss of S3
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Figure 5.9: Conduction instants of switches in ANPC inverter: a) S1 switch when
power factor is equal to 1, b) S1 switch when power factor is equal to 0, c) S2 switch
when power factor is equal to 1, d) S2 switch when power factor is equal to 0, e) S3

switch when power factor is equal to 1, f) S3 switch when power factor is equal to 0.
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for arbitrary power factor can be calculated as:

PcondS3
= PS3+ + PS3− (5.24)

where PS3+ and PS3− are conduction losses at positive half and negative half of output

voltage respectively. At positive half of the output voltage, S3 is completely on and

therefore will at both active and zero states. Based on PcondS1
in Eq. 5.20 and PS2+ in

Eq. 5.22 and considering that S3 is turned-on at dead time instants, the conduction

loss of S3, PS3+, can be expressed as:

PS3+ = Pconda +
Pcondz

4
+ Pdt1−up + Pdt1−up −

5 · Pdtred
4

(5.25)

At the negative half of output voltage, as shown in Figs. 5.9c, 5.9d, 5.9e and 5.9f,

the loss profile of S3 is same as the loss profile of S2 at the positive half of output

voltage. Therefore, based on Eq. 5.22, PS3− is:

PS3− =
Pcondz

4
+ Pdt2−bp

− Pdtred
4

(5.26)

With symmetrical output current and voltage waveforms (e.g. no DC offset, no

overmodulation), the total conduction loss Pcondt in one fundamental cycle can be

calculated as:

Pcondt = 2 ·
(
PcondS1

+ PcondS2
+ PcondS3

)
(5.27)

The loss figures for five different switching frequencies and four different heat sink

temperatures at 1.3 kW output power in terms of total, switching and conduction

losses are presented in Figs. 5.10a, 5.10b and 5.10c respectively. As it is shown

in previous section, the total loss increases with respect to increase in switching

frequency, and it can be seen in Fig. 5.10c that main contributor to this is the

increase in switching loss. At low switching frequencies such as 16 kHz and 32 kHz,

the total power cell loss is dominated by conduction loss. At 64 kHz, the switching

loss is at the same range with conduction loss and dominates the total power cell loss

at 128 kHz and 160 kHz switching frequencies. The switching loss is independent from

heat sink temperature and the conduction loss increase gradually with the increase

of RDS. One thing to note in Fig. 5.10b is the increase of conduction loss with the

increase of switching frequency. This is due to the increase of proportion of dead time

in a switching period which increases the dead-time losses linearly in Eqs. 5.11, 5.13,

5.15 and 5.17 with tdt · fsw term.
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Figure 5.10: Loss breakdown for GaN based ANPC converter at 1.3 kW output: (a)
total power device loss, (b) conduction loss, (c) switching loss.
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5.3 Impact on Converter Volume

The overall efficiency analysis under various output power, switching frequency and

heat sink temperature conditions shows that GaN HEMTs can be used to design

inverters at high frequency, high heat sink temperature in order to reduce heat sink

volume and output inductor volume without compromising the efficiency. In this sec-

tion, the impact of high performance of GaN HEMTs on heat sink volume and output

filter volume is investigated. The impact analysis is based on following assumptions:

• Cooling system is based on natural air convection.

• Single stage LC output filter is used.

• Converter output power is rated at 2000W.

5.3.1 Heat Sink Design

The heat sink volume analysis is based on calculation of required thermal resistance

rhr for heat sink at maximum output power, between 16 kHz and 160 kHz switching

frequencies, and between 50◦C and 80 ◦C heat sink temperatures. The maximum

heat sink temperature is limited to 80 ◦C, as the higher heat sink temperature con-

dition may lead to exceeding maximum allowed junction temperature, which is 150

◦C for GaN HEMT devices. The thermal network for ANPC inverter is illustrated

in Fig. 5.11 where Tj is junction temperature, Th is heat sink temperature, Ta is

room temperature (chosen as 25 ◦C), Ploss is power loss across a single device, rjc is

junction-to-case thermal resistance, rch is chase-to-heat sink thermal resistance and

rhr is required thermal resistance of the heat sink. The junction temperature for a

device Tjx and required heat sink thermal resistance rhr can be calculated as follow:

Sx : Tjx = Plossx ·
(
rjclossx + rchlossx

)
+ Th (5.28)
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Figure 5.11: Thermal network for ANPC inverter.

rhr =
Th − Ta
Pt

(5.29)

where Pt is total power device loss and x can be replaced with device number 1 to

6. Calculated rhr then can be used to calculate volume of heat sink based on natural

air convection. The volume of various extruded naturally cooled heat sinks against

heat sink thermal resistance are presented in Fig. 5.12 [100]. Based on the results,

curve fitting is applied to minimum heat sink volume available at given rhr value and

presented in Eq. 5.30. By using rhr from Eq. 5.29 in Eq. 5.30, volume of extruded

naturally cooled heat sink can be calculated for different device case temperature,

ambient temperature and power loss.

V olheatsink = 286.71 · r−1.468
hr

(5.30)

Based on Eqs. 5.29 and 5.30, the calculated heat sink volume with respect to switching

frequency for different heat sink temperatures is presented in Fig. 5.13. It can be

seen that the heat sink volume increases with the increase of switching frequency. The

heat sink volumes at 16 kHz for 50 oC and 80 oC are 202 cm3 and 76 cm3 respectively.

As the switching frequency is increased to 160 kHz, the heat sink volume goes up to
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Figure 5.12: Commercial naturally cooled heat sink volumes [100].
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Figure 5.13: Heat sink volume versus switching frequency at different heat sink tem-
peratures.

851 cm3 (increase by factor of 4.21) and 290 cm3 (increase by factor of 3.81) for these

two temperature conditions. The increase in heat sink temperature from 50 oC to 80

oC provides heat sink volume reduction by factor of 2.66 at 16 kHz, and by factor of

2.93 at 160 kHz switching frequencies. The impact of heat sink volume reduction in

overall volume will be discussed after output filter design.
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5.3.2 Output Filter Design

Grid connected power inverters must have an output filter in order to minimize the

injected harmonics to the grid that are caused by high switching frequency. Passive

filters are usually chosen in grid connected applications due to its simplicity and high

performance. The size of the filter depends on number of stages and order of the

filter. One of the most common type of filter is second order single stage LC filter

at considered power range and presented in Fig. 5.14 [101]. Lgrid in Fig. 5.14 is the

impedance of the grid after point of common coupling and can depend on the length

of grid cables, connected loads and sources to the grid. In addition to the output

filter, EMI filter should be included in the final inverter design to comply with grid

operator requirements. However, it is shown in previous results with GaN HEMT and

SiC MOSFET that the variation in switching frequencies that can be achieved with

WBG devices is very broad based on the experimental results. Therefore even if an

optimum value has been suggested, a number of consideration on the control would

have to be entered to finalise the study. EMI filter re-design appears meaningful

mainly after evaluating the impact of WBG device on output filter and heat sink

volume.

Passive component and output filter volume is inversely related to switching fre-

quency. Therefore, it is interesting to analyse the trade-off between increased power

losses due to increased switching frequency and reduction in filter volume. To begin

the analysis, based on Fig. 5.5b, the expression that defines loss of the power cell

PLossGaN
with respect to switching frequency fsw at 2000W output power and variable

heat sink temperature can be written as:

PLossGaN
= ktGaN

(0.23015fsw + 15.6352) (5.31)

where ktGaN
is:

ktGaN
= 0.002855 · Th + 0.85725 (5.32)

and fsw is in kHz.

In this study, single stage LC filter, which is the common type differential output
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Figure 5.14: Grid connected single-phase T-type inverter.

filter for power converters at this power range, is considered [101]. The design of

LC filter starts with calculation of filter inductance Lf for defined maximum output

ripple current by using 5.33. Calculated Lf is then used in 5.34 in order to calculate

output capacitance:

Lf =
VDC

8 ·∆IOUT · fs
(5.33)

Cf =
1

(2π · fs)2 · Lf · Attreq
(5.34)

Where VDC is DC link voltage, ∆IOUT is output current ripple, fs is switching fre-

quency and Attreq is required attenuation of the filter [101], [102]. The required

attenuation is chosen as 0.01 in order to provide adequate damping at switching fre-

quency and keep the resonance frequency far away from inverter switching frequency.

Output current ripple ∆IOUT is chosen as 20% of peak output current for limiting

maximum power device switching current and keeping inverter output current rip-

ple in reasonable level. Based on Eqs. 5.33 and 5.34, calculated inductance and

capacitance values for different switching frequencies are presented in Table 5.2.

By using inductance and capacitance values in Table 5.2, volume of the LC filter can

be calculated with area-product approach for inductor, and capacitor volume constant
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Switching Frequency 16 kHz 32 kHz 64 kHz 128 kHz 160 kHz

Inductance Lf [mH] 2.2 1.1 0.556 0.278 0.222
Capacitance Cf [µF] 4.45 2.225 1.11 0.556 0.445

Table 5.2: Inductance and capacitance values for output filter at different switching
frequencies.

for capacitor. After [103], the area-product Ap and volume of a power inductor can

be calculated as:

Ap =

[ √
1 + γ ·Ki · Lf · Î2

Bmax ·Kt ·
√
ku ·∆T

] 8
7

(5.35)

V olL = kL · Ap
3
4 (5.36)

where γ is ratio of iron loss to copper loss (is taken to be 0.03 or less for AC inductors

with small high frequency flux ripple), Bmax is maximum flux density in inductor core,

Ki is current waveform factor (Irms/Î), Kt is 48.2×103, Î is peak inductor current, ku

window utilization factor (based on window fill factor, proximity and skin effects) and

kL is inductor volume constant. Maximum flux density is based on performance factor

of ferrite material (f×Bmax) N87 in [104]. In this case flux density is kept at the level

to achieve fixed core losses at different switching frequencies. Maximum temperature

rise ∆T is chosen as 60 ◦C with natural cooling and without any heat sink in order

to keep current density in the windings high enough while keeping maximum core

temperature within recommended operating temperature limits. The maximum flux

density for fixed core losses is approximated with the following equation:

Bmax =

0.35 mT fsw <25 kHz

|1.111·104 · f−0.3104
sw − 132.3| · 10−3 mT 25 kHz< fsw <200 kHz

(5.37)

Based on the calculated area-product value, the core with the higher closest area-

product value to the calculated is selected for each switching frequency condition.

After selection of the core from manufacturer data book in [104], the required air-gap

in the magnetic flux path can be calculated as follow:

lg =
Estored · µ0

B2
max · Ae

(5.38)
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where Ae is effective core area, which is specified by the core manufacturer, and Estored

is the maximum stored energy in the core:

Estored = 0.5 · Lf · Î2 (5.39)

The reluctance of the magnetic path R is then calculated with the assumtion that

the permability of the core is much higher than vacuum (µr >> µ0):

R =
lg

Ae · µ0

(5.40)

With the calculation of the reluctance, the required number of turns for required filter

inductance can be calculated as follow:

N =
√
Lf ·R (5.41)

Based on the calculated of window utilisation factor from [103], number of turns and

skin effect in the windings, number of litz wires can be calculated and the appropriate

wire thickness can be selected.

The next step in volume analysis of LC filter is the selection of filter capacitor. The
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Switching Frequency 16 kHz 64 kHz 128 kHz

Inductor Volume [cm3] 266.3 141.7 96.4
Capacitor Volume [cm3] 20.2 5.1 4
Total Volume [cm3] 286.5 146.8 100.4

Table 5.3: Inductor, capacitor and total volume for output filter at 16, 64 and 128
kHz switching frequencies.

volume of filter capacitor can be calculated by the following equation:

V olC = kc · Cf · Vnom2 (5.42)

Where Vnom is nominal voltage of capacitor and kc is capacitor volume constant in

cm3/ (V 2F ). A survey is conducted to evaluate the volume of capacitors for grid

connected output filter applications (X2 type) and the capacitor volume constant of

different capacitors from different manufacturers are presented in Fig. 5.15. It can be

seen that the kc varies for different manufacturers and also capacitance values. The

MKP339-X2 series is selected as it has the lowest kc over wide range of capacitance

[105]. The kc for MKP339-X2 series is approximated as 60.

The inductor and capacitor volumes for each switching frequency case in Table 5.2

are calculated using Eqs. 5.33 - 5.42. Based on the calculation results, three filter

cases have been realised for 16 kHz, 64 kHz and 128 kHz switching frequencies. The

realised filters are presented in Fig. 5.16 and the inductor volume, capacitor volume

and total filter volume values are presented in Table 5.3. It should be noted that

the calculated exact capacitance value according to Eq. 5.34 cannot be purchased,

therefore the closest values to the ones presented in Table 5.2 (4.7 µF for 16 kHz, 1

µF for 64 kHz and 680 µF for 128 kHz) are used.

The comparison of the calculated and realised volumes for the inductor, capacitor

and total filter are presented in Fig. 5.18. It can be seen that the calculated values

for inductor and capacitor are well matched with the realised filter. In Fig. 5.18, it is

also shown that the total filter volume is dominated by the inductor volume and the

rate of volume reduction for inductor reduces beyond 64 kHz. The total filter volume

can be reduced by factor of 2 with the increase of switching frequency from 16 kHz
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Figure 5.16: Designed LC filters for three different switching frequencies: a) 16 kHz
b) 64 kHz and c) 128 kHz.
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to 64 kHz. The factor of reduction increases to 2.86 as the switching frequency is

increased to 128 kHz. There are two reasons for reduction in rate of reduction beyond

64 kHz: 1) The increase of core size as the core losses is aimed to be kept constant,

2) The reduction of fill factor in winding area due to increase of skin effect. The skin

effect causes increase in number of wires in parallel and reduction in wire diameter to

achieve low AC resistance at given switching frequency with desired current density

in the winding.

The performance of the designed filter inductors are evaluated at 1.6 kW output

power at their designed switching frequencies: 16 kHz, 64 kHz and 128 kHz. The

output power is kept constant for each test condition by slight increase in modulation

index due to fixed dead time and the heat sink temperature is kept at 30 oC. The

fundamental output current waveform, switching ripple and the loss results for three

operating cases are presented in Figs. 5.17a, 5.17b and 5.17c respectively. It can be

seen that the peak to peak ripple current at the output is almost constant for three

operating conditions and below the design limit (∆IOUT ). The loss results in Fig.

5.17c shows that the efficiency of the power cell or the filter is not compromised with

reduction of output filter size. The filter inductor loss is almost constant at 64 kHz

and 128 kHz, and smaller than at 16 kHz due to reduced number of turns.

In order to include the temperature and power cell loss impact to the volume reduction

analysis, the filter volume, heat sink volume and the total volume of filter and heat

sink volume are presented with respect to switching frequency at different heat sink

temperatures in Figs. 5.19a, 5.19b and 5.19c. It can be seen that heat sink volume

is almost equal to filter volume at 32 kHz, 50 oC and dominates the total volume

beyond 32 kHz in Fig. 5.19a. When the heat sink temperature is increased to 80

oC, as shown in Fig. 5.19b, the filter and heat sink volume crosses around 64 kHz.

The overall comparison in Fig. 5.19c shows that the increased heat sink temperature

can bring significant volume reduction at switching frequencies above 64 kHz and low

heat sink temperatures such as 50 oC and 60 oC can lead to increase in overall volume

as the heat sink dominates the total volume.
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Figure 5.17: Output current waveform with designed inductor at 1.6 kW output power
and 16 kHz, 64 kHz and 128 kHz switching frequencies: a) fundamental waveform,
b) switching ripple, c) total, power cell and inductor loss.
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Finally total volume is plotted with respect to switching frequency and heat sink

temperature in Fig. 5.20a, and with respect to power cell loss at different heat sink

temperatures in Fig. 5.20b to give an overall summary of impact of GaN HEMT

performance in heat sink and output filter volume. It can be seen in Fig. 5.20a that

the increase of switching frequency leads to increase of total volume at low heat sink

temperatures due to increase in heat sink size, and at high heat sink temperatures,

increase of switching frequency beyond 64 kHz does not lead to significant decrease

in total volume. Contrary, above 128 kHz the total volume starts to increase again

due to heat sink volume. In terms of the comparison of total volume and power loss,

Fig. 5.20b shows that at 50 ◦C, increase of power loss by factor of 1.6 times (16 kHz

to 64 kHz) leads to increase in total volume by 1.16 times. On the other hand, at 80

◦C, increase of power loss by factor of 1.5 times (16 kHz to 64 kHz) leads to decrease

in total volume by 1.22 times. Therefore, it can be seen that the optimum operating

point to minimise the total volume with minimum impact on inverter efficiency is 64

kHz switching frequency with 80 ◦C heat sink temperature.
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Figure 5.19: Filter, heat sink and total volume versus switching frequency: a) at 50
◦C heat sink temperature, b) at 80 ◦C heat sink temperature and c) total volume
versus switching frequency at four different heat sink temperature.
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Figure 5.20: a) Total volume versus switching frequency and heat sink temperature,
b) total volume versus power cell loss.
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5.3.3 Dead Time Impact

Dead time between commutating switches S1-S2,5 and S6-S3,4, where both switches

are turned-off, is introduced in order to avoid shoot through. During dead-time, the

control of output voltage is lost and the output voltage can be clamped to +VDC/2,

-VDC/2 or 0 depending on the direction of current. The effect of dead-time becomes

severe at higher switching frequencies and lower modulation index values. The har-

monic analysis and compensation of dead-time effect for voltage source converters

have been studied in [106] ,[107]. In this work, it is defined as 400 ns but the switch-

ing results of SiC and GaN in Chapter 4 show that the dead-time for wide-bandgap

devices can be as small as 100 ns due to high switching speeds.

In order to evaluate the effect of dead-time in ANPC inverter with GaN HEMT, the

inverter is run at 128 kHz switching frequency at three different dead time values:

186 ns, 300 ns and 400 ns. The output voltage and current waveforms for 186 ns

and 400 ns at maximum output power for 1.5 fundamental cycle is presented in

Fig. 5.21a. The zoomed section of the zero-crossing of the output waveforms in

Fig. 5.21a is presented in Fig. 5.21b and it can be seen that increase in dead time

increases the distortion in current waveform increases. The reason for this distortion

is due to elimination of output voltage pulses in Fig. 5.21b with duty ratio of less

than 0.0512 and 0.0238 for 400 ns and 186 ns dead-times respectively. The blanking

in the output current increases the THD and therefore output filter requirements.

The variation of output current THD with respect to dead-time is presented in Fig.

5.22a. It is clear that minimum dead-time value has to be used with SiC and GaN

devices regardless efficiency concerns in order to utilize high switching performance

that allows reduction in filter volume. Finally, the impact of dead time to overall

power cell loss is presented in Fig. 5.22b for three different dead time conditions. It

can be seen that the additional power loss due to increased dead time is negligible

in light load conditions. However, above 1200 W output power, the power loss starts

to differentiate for different dead time values and the difference in power loss can be

up to 3.7 W at 1830 W output power, which corresponds to approximately 0.2 %

efficiency difference.
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Figure 5.21: Effect of different dead time values a) fundamental period, b) zoomed
at zero crossing.
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5.4 Mission Profile Based Analysis

In addition to high efficiency of WBG devices presented in Chapter 4 and previous

section of this chapter, high reliability is required for PV inverters in order to extend

lifetime of the system and therefore energy generation [108], and as a consequence to

reduce the cost of energy. Commercial PV inverters are generally offered with a 25

year performance warranty, and also considered as the most vulnerable components

in a PV system [109]. It is known from field data that a majority of the failure mech-

anisms for PV inverters are related to mean temperature variations and temperature

swings [110]; therefore long-term mission-profile plays a key role in reliability and

assessment of thermal performance of the inverter [111], [112]. During design pro-

cess, real-field operating conditions (e.g., ambient temperature and solar irradiance)

have to be considered for reliability-oriented approaches, as different conditions may

unevenly stress the components within the system. As shown in Chapters 3 and 4,

emerging SiC and GaN power devices have different electrical and thermal properties

from Si devices due to inherent differences in material, chip size and packaging prop-

erties [113]. Therefore, it is essential to evaluate the long-term performance of the

system for better understanding the benefits as well as the drawbacks of using WBG

devices in PV systems. In such a way, the applications of WBG devices can further

be paved away.

In this section, a reliability-oriented comparison of the Si IGBT with GaN HEMT

for ANPC based PV system is thus presented. The dynamic and static comparison

of Si IGBT and GaN HEMT have been discussed in Chapter 4. First, the converter

topology and overall system are presented, followed by a mission-profile oriented

analysis in terms of thermal loading and reliability estimation of the considered power

electronic converters. Simulation results of the converter based on GaN and Si devices

are presented in Section 5.4.1 regarding efficiency, annual energy generation, loss

distribution and thermal loading.

The schematic of the studied converter for a double-stage three-phase grid-connected

PV system is presented in Fig. 5.23. As it can be observed, each leg of the 3L-ANPC
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Figure 5.23: Grid-connected three-phase double-stage 3L-ANPC inverter with an
LCL filter in PV applications

inverter is formed by 6 active switches (S1-S18 of three legs) in order to achieve a three-

level phase output voltage with respect to the neutral point N, and the power devices

(S1-S18) are rated at half of the DC link voltage VDC . Consequently, as discussed

earlier, it is possible to use GaN HEMT devices at 600 V class for three-phase grid-

connected applications, where the DC link voltage is within a range of 650-1000 V.

In this configuration, a DC-DC converter between the PV strings and the 3L-ANPC

inverter is adopted in order to flexibly maximize the energy production (i.e., MPPT

control) as well as to extend the operating hours of the PV systems (e.g., in the case

of weak solar irradiance). The power delivered by the DC/DC converter is then fed to

the 3L-ANPC inverter, while the DC-link voltage is usually maintained as constant

by controlling the output current of the inverter. Normally, for the PV system, it

should inject high-quality grid currents at unity power factor operation, and thus the

modulation schemes applied to the 3L-ANPC inverter should be specially designed.

In this study, same modulation scheme presented in Fig. 5.8b is used.

The PV system and converter parameters considered in this study are presented in

Table 5.4. As the DC/DC converter between PV strings and the 3L-ANPC inverter

that is shown in Fig. 5.23 is responsible from the MPPT control, it is assumed

that the conversion efficiency of 99 % can be achieved by the MPPT control of the

converter in the following. Recent advances in SiC MOSFETs show that efficiency
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Table 5.4: Converter and System Parameters

Parameter Value

Input DC Link Voltage (VDC) 800 V
Input Power (Pin) @ 25 ◦C, 1000 W/m2 3 kW
Switching Frequency (fsw) 16 kHz & 128 kHz
DC Link Capacitor (CDC1 − CDC2) 1500 µF
Output Filter Inductor (Lf ) 3.6 mH
Output Filter Capacitor (Cf ) 2.35 µF
Output Filter Capacitor (Lg) 4 mH
Grid Phase-to-Phase Voltage (Vph−ph) 400 Vrms
PV Module BP 365
PV String Configuration 46 module in series
DC/DC (MPPT) Efficiency (ηMPPT ) 99 %

Evaluated Devices
PGA26C09DS
IGP20N60H3

higher than 99 % is feasible for DC/DC converters in PV applications [114]. A

single PV string, formed by 23 PV modules, is considered to deliver 3 kW power at

the standard test conditions (i.e., 25 ◦C ambient temperature and 1000 W/m2 solar

irradiance). The power of the PV panel with respect to solar irradiance at different

ambient temperatures is presented in Fig. 5.24. It can be seen from Fig. 5.24 that

the input power Pin can go up to 5.5 kW at -25 ◦C and 1500 W/m2 theoretically,

and therefore maximum total rating of the converter is selected as 6 kW in order to

operate at a wide range of ambient temperature and solar irradiance. The inverter

is operated at 16 kHz switching frequency for Si IGBTs; while at 16 kHz and 128

kHz for GaN HEMT devices for evaluation of the performance of GaN HEMT based

inverter at low and high switching frequencies in comparison to the Si IGBT based

inverter. Selection of 128 kHz for high frequency application of the GaN HEMTs is

determined by the experimental performance of GaN HEMTs shown in Section 5.2,

where the junction temperature of most stressed devices is close to their limits, and

the efficiency is still above 97 %. Additionally, it is shown in [115] that by moving to

very high switching frequencies (e.g. beyond 100 kHz), 70 % reduction in EMC filter

volume can be achieved for GaN HEMTs.

The thermal loading of the power electronic devices, which is the combination of
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dynamic and static temperature variation across power device, is still the major

lifetime affecting factor, which is an essential part for reliability analysis. Hence,

a thermal model of a single device is presented in Fig. 5.25. The device thermal

network consists of thermal impedances between device junction and device case

(Zth(jc)), case and heat sink (Zth(ch)), and heat sink and ambient (Zth(ha)). As the

thermal parameters of GaN HEMT are not clearly indicated in the device datasheet,

thermal characterisation has been conducted to calculate the thermal impedance of

the device. The thermal impedance of the device and the curve fit based on the

Foster equation is presented in Fig. 5.26. The Foster network is formed by 5 series

connected RC networks to model the experimentally measured thermal impedance.
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Based on manufacturer datasheet of the Si IGBT and thermal measurement results

for the GaN HEMT in Fig. 5.26, Foster network parameters for junction-to-case

impedance are presented in Table 5.5. Obtained Foster network parameters are

transferred to the Cauer network in the simulation environment for accurate ther-

mal modelling. Notably, the device thermal model is implemented along with the

electrical model (see Fig. 5.23) in order to obtain the thermal performance with re-

spect to converter instantaneous loading conditions, which are highly dependent on

the solar and ambient temperature profiles and in return affect the semiconductor

switch properties. As mentioned in Chapter 4, the package of GaN HEMT is fully

insulated and due to this reason there is no need for additional insulation between

the backside of the package and the heat sink. However for Si IGBTs, thermally-

conductive insulator with 0.57 ◦K/W thermal resistance and 4 kV breakdown voltage

is considered for isolation of discrete devices from common heat sink [116]. The com-

mon heat sink for the devices is modelled as a simple RC circuit. There are two

reasons for this simplification: 1) The analysis in this study focuses on the thermal

profile analysis of steady-state device junction temperature and the heat sink will not

have significant effect on thermal loading comparison, 2) Simplification of heat sink

model leads to acceleration of long-term mission profile simulations. Junction tem-

perature comparisons will be presented over an annual mission profile by simulations

in Section 5.4.1.
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Table 5.5: Thermal parameters for Si IGBT, Si Diode and GaN HEMT.

Impedance Zth(j−c)
i 1 2 3 4 5

Si IGBT Rthi [◦K/W] 0.07041042 0.3070851 0.3198984 0.1871538 -
τi [s] 0.000096 0.00068 0.01084623 0.06925485 -

Si Diode Rthi [◦K/W] 0.4398 0.6662 0.4734 0.3169 -
τi [s] 0.00013 0.0011 0.0071 0.04629 -

GaN HEMT Rthi [◦K/W] 0.01167 0.03065 0.2246 0.2413 0.6661
τi [s] 0.00009676 0.002868 0.04835 1.284 11.46

It is necessary to evaluate the performance of power electronic systems in long-term

operation along with short-term operation, as the long-term operation profiles can

have significant impact on efficiency, reliability and lifetime of the entire system [110].

For short-term evaluation, time-based simulation tools or prototype based experi-

ments can be conducted to assess the performance but both of these approaches are

not suitable for long-term evaluation due to constraints of time, computational and

financial resources. Therefore an efficient method is required to evaluate the long-

term performance (see Figs. 5.28 and 5.29) [110], [111]. The long term PV mission

profile consists of solar irradiance level (Si) and ambient temperature (Ta). In this

study, a real-field annual PV mission profile data (i.e., solar irradiance level and am-

bient temperature) in Aalborg, Denmark is considered. The measured annual solar

irradiance and ambient temperature data are presented in Fig. 5.27.

Realisation of the long-term mission profile based analysis is presented in Fig. 5.28.

The first step of this analysis is to obtain the maximum power (Pm) operation points

with respect to the PV module output voltage (vpv) for the PV string specified in

Table 5.4, based on the measured different solar irradiance (Si) and ambient temper-

ature (Ta). Then maximum power and operation voltage is fed into the short-term

simulation model in order to obtain power loss (Ptot) and temperature profile (Tj) for

each switching device in correspondence to an individual operation point (e.g., Pm =

3 kW, Vpv = 400 V for the case of 25 ◦C and 1000 W/m2). The maximum output

power of the PV panel with respect to solar irradiance and ambient temperature is

presented in Fig. 5.24. The losses and temperature performance are finally curve-

fitted with respect to the entire solar irradiance and ambient temperature spectrum
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Figure 5.27: An annual mission profile used in this thesis: (a) solar irradiance and
(b) ambient temperature profile in Aalborg.
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in such a way to link a specific mission profile with the power electronic converter

(electrical behaviour). It should be pointed out here that the MPPT control (dc-dc

converter) efficiency has been assumed to 99%, since the focus of the work is not on

the MPPT control.

The detailed structure of the multi-disciplinary analysis method can be seen in Fig.

5.29. Short-term simulation model consists of two domains: thermal model and elec-

trical model, which are linked via the power device model. In the electrical model,

device blocking voltage Voff and on-state current Ion are calculated based on the

operating point Pin and then transferred to the power device model in order to cal-

culate switching and conduction losses. The calculated loss data then fed to thermal

model along with ambient temperature Ta from mission profile to calculate the junc-

tion temperature Tj and to the electrical model for calculation of the total converter

losses. In addition to electrical parameters, the thermal model also feeds the device

junction temperature Tj to the power device data in order to calculate the device

losses with respect to device temperature. The calculated device loss Ploss is then

used in the electrical model to evaluate converter efficiency and in the thermal model

to recalculate junction temperature Tj. This bidirectional data exchange between dif-

ferent simulation domains provide results that can be used for better understanding

the thermal and electrical performance, enabling the multi-disciplinary evaluation of

the implemented modulation scheme, power devices and converter topologies. The

conduction and switching data of Si IGBT and GaN HEMT are obtained from the

performed static and dynamic benchmarking of the devices at different heat sink

temperatures in Chapter 4.

5.4.1 Simulation Results

The simulations based on the approach explained in details in the previous section

are carried out on a single phase 3L-ANPC inverter with the assumption of a bal-

anced three phase grid system and operation. In this case, the analysis results can be

extended to the three-phase 3L-ANPC converter shown in Fig. 5.23. Input power,
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total conduction losses and total switching losses are recorded for converter perfor-

mance evaluation according to the multi-disciplinary approach. In addition to this,

power losses, mean and maximum junction temperatures for each device are recorded

for device in order to evaluate the loss distribution, thermal stress and behaviour of

each power switch in a single 3L-ANPC leg. In the beginning of this section, overall

inverter performance is presented including inverter loss breakdown, annual power

loss and cumulative energy loss for Si IGBT and GaN HEMT based scenarios. These

results are followed by the thermal stress comparison of each power device including

the power loss distribution, mean junction temperature and junction temperature

variation for most stressed devices in the specific configuration.

5.4.1.1 Overall Power Loss and Energy Generation

The annual power loss and cumulative energy loss of three-phase 3L-ANPC inverter

with Si IGBTs at 16 kHz, and with GaN HEMTs at 16 kHz and 128 kHz are presented

in Fig. 5.30. As it is expected from the results presented in Chapter 4 and previous

sections of this chapter, the GaN-based 3L-ANPC inverter has higher efficiency, and

therefore less power losses throughout the year in comparison to those of the Si IGBT

based 3L-ANPC inverter. The cumulative energy loss for the Si IGBT based inverter

is around 29.51 kWh, and in contrast, for the GaN-based inverter at 16 kHz and 128

kHz is 6.05 kWh and 21.87 kWh, respectively. At the switching frequency of 128 kHz,

although the GaN HEMTs are switched 8 times more than Si IGBTs, the associated

additional energy losses due to the increased switching frequency is 54% of the total

energy losses of the Si IGBT based inverter. The average electricity price in Denmark

in 2014 for household consumers is 0.304 e/kWh [117]. Without considering thermal

benefits of reduced converter losses, if the feed-in tariff is assumed to be same as the

utility tariff, it can be concluded that the GaN HEMT based inverter at 16 kHz will

bring additional e7.13 to the owner in comparison to the Si IGBT based inverter. At

128 kHz, the GaN HEMT based inverter will not bring significant operation income

to the owner, whereas will provide reduction in initial system cost saving due to the

reduction in cooling and output filtering requirements, as shown in Chapter 4 and
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Figure 5.30: Estimated annual power losses and cumulative energy loss of the ANPC
inverter based on different technologies using the mission-profile analysis approach:
(a) annual power losses and (b) cumulative energy losses.

previous sections of this chapter.

Conduction and switching loss breakdown of the Si and GaN based inverter phase leg

are presented in Fig. 5.31. With respect to four different ambient temperatures and

at maximum solar irradiance for the given ambient temperature profile. At 16 kHz

switching frequency, the conduction losses are dominating the overall converter losses

for the Si IGBTs. Meanwhile, the losses reduce with respect to the temperature

increase due to the reduction in the input power and relatively small temperature

dependence of conduction performance of Si IGBTs at low collector current levels as

presented in Chapter 4, despite the fact that switching losses increase according to

ambient temperature. On the other hand, the switching losses of the GaN HEMT
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based inverter leg is negligible at 16 kHz and the total losses are dominated by the

conduction losses. The switching losses increase as the switching frequency is moved

from 16 kHz to 128 kHz in Fig. 5.31b and 5.31c, but the overall loss of the phase leg

is still less than Si IGBT based inverters, as it is shown in Fig. 5.31a. As the size of

heat sink volume is inversely proportional to required thermal resistance rhr as shown

in Eq. 5.29, the heat sink volume of the GaN HEMT based inverter at 128 kHz will

still be smaller than that in the case of the Si based inverter. Therefore, heat sink

can still contribute to system level cost saving for the GaN based inverter at a very

high switching frequency.

5.4.1.2 Thermal Stress Comparison

The applied modulation scheme, which is used in this work and presented earlier in

Fig. 5.8b, provides low conduction losses with the penalty of uneven loss distribution

in the 3L-ANPC phase leg at unity power factor operation. During the positive half

cycle of the output voltage, S1 is subject to hard switching and also conducts during

active state, while S3 conducts during positive and zero states, and S2 only conducts

during zero states. Therefore, it is expected to see highest power losses across S1 or

S3 switches depending on the device switching, conduction performance and inverter

switching frequency. The loss distributions for upper devices in the 3L-ANPC -

phase leg-A in Fig. 5.23 are presented in Fig. 5.32 for Si and GaN. In the Si-based

inverter, due to the unity power factor operation, antiparallel diodes D2 and D3 only

conduct during positive and negative zero states. Although S3 has higher conduction

losses than S1, S1 has the highest losses in the inverter leg due to the switching loss

contribution presented in Fig. 5.31 (a). On the other side, for the GaN based inverter

at 16 kHz and 128 kHz in Fig. 5.32b and 5.32c, the loss distributions among S1 and

S3 vary with respect to the selected switching frequency. High switching performance

of the GaN HEMTs shows the impact at 16 kHz by keeping power losses of S1 almost

same with S3. By increasing the switching frequency to 128 kHz, switching losses

become significant in overall losses (Fig. 5.31c), resulting in that S1 has the highest

power loss in the inverter leg.
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Figure 5.31: Semiconductor total, conduction, and switching losses per phase leg of
the ANPC inverter based on: (a) Si IGBT technology with a switching frequency
of 16 kHz, (b) GaN HEMT technology with a switching frequency of 16 kHz, and
(c) GaN HEMT technology with a switching frequency of 128 kHz, where different
ambient temperatures with the maximum solar irradiance level are considered.
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Figure 5.32: Loss distribution of the ANPC inverter based on: (a) Si IGBT tech-
nology with a switching frequency of 16 kHz, (b) GaN technology with a switching
frequency of 16 kHz, and (c) GaN technology with a switching frequency of 300 kHz,
where different ambient temperatures with the maximum solar irradiance level are
considered.
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As the devices with highest power losses and therefore the thermal stress in each

configuration are identified, further thermal performance analysis can be conducted

on these devices based on the annual mission profile. Mean junction temperature (Tj)

and junction temperature variation (∆Tj) for devices with the highest thermal stress

are presented in Fig. 5.33a and 5.33b, respectively. The mean junction temperature

of S1 in a Si IGBT based inverter is the highest among three configurations, while

the mean junction temperature of S1 in the GaN HEMT based inverter with 16

kHz switching frequency is lowest. The mean junction temperature is affected by the

ambient temperature, shown in Fig. 5.27. The mean junction temperature follows the

ambient temperature trend throughout the year and can show significant variations

based on the solar irradiance and ambient temperature. Regarding the junction

temperature variations, S1 in a Si IGBT based inverter with 16 kHz has the highest

temperature variation across the junction of the device. On the other hand, the

junction temperature variation across S1 in a GaN HEMT based inverter at 16 kHz

and 128 kHz is very small during winter, and has a similar performance during warm

months to that of S1 in a Si IGBT inverter due to the increased conduction losses.

It should be noted that the light loading of the inverter throughout the year, due to

solar irradiance profile in Fig. 5.27 lead to low junction temperature variations.

It can be seen from Fig. 5.33 that the long term mean junction temperature and

junction temperature fluctuations are irregular profiles with varying frequencies and

amplitudes. In order to make the results more meaningful, cycling counting methods

can be applied to the mean junction temperature and junction temperature variation

data. The number of cycles at each temperature level is dependent to mission profile,

thermal and electrical models as it is explained in the previous sections. Rainflow

is one of the cycle-counting methods to identify full and half cycles within irregular

profiles, and is chosen in this study. It has been used in calculation of lifetime of power

modules based on device solder temperature profiles [118]. The histograms of mean

junction temperature (Tj) and junction temperature variations (∆Tj) are presented

for the most stressed devices are presented in Fig. 5.34a and 5.34b, respectively.

Replacing Si IGBTs with GaN HEMTs at 16 kHz switching frequency reduces the

number of cycles of at higher mean junction temperatures. On the other hand, the
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Figure 5.33: Thermal loading profiles for the most stressed devices in 3L-ANPC
inverter through a year: (a) mean junction temperature and (b) junction temperature
variation.
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GaN HEMTs with 128 kHz switching frequency have increased Tj in comparison to

GaN HEMT at 16 kHz and Si IGBT. In terms of ∆Tj, at higher temperatures, the

number of cycles is higher at 20 ◦C but the number of cycles at higher temperatures

is still lower than Si IGBT.

The Coffin-Manson model for conventional power modules indicates that number

of failures in a power module is only dependent on the temperature cycles, cycle

amplitude ∆Tj and mean junction temperature Tj [119]. Therefore, with adequate

device packaging models for the GaN HEMTs and Si IGBTs, lifetime consumption

of the power devices at different switching frequencies can be calculated and then

an optimisation between reliability, efficiency and system volume can be achieved.

Despite the fact that the lifetime of the devices is not calculated in this work, it

is clear that GaN HEMT based inverter has lower thermal stress in comparison to

Si IGBT based inverter. Although the replacement of Si with GaN does not bring

significant energy savings to the user with given grid tariff, it can bring system level

savings from heat sink and output filter, and reduced thermal stress.
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Figure 5.34: Rainflow counting results for the thermal loading profiles shown in Fig.
5.33 under a yearly mission profile: (a) mean junction temperature and (b) cycle
amplitude.
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5.5 Conclusions

In this chapter, the impact of GaN HEMT to a PV inverter in terms of power loss,

converter efficiency, heat sink and output filter volume, and thermal stress based

on a mission profile is discussed. It is shown that the GaN HEMT has excellent

switching and conduction performance under different load and heat sink temperature

conditions that results in very high efficiency and low power cell loss. Therefore, the

combined heat sink and output filter volume can be reduced by increasing the heat

sink temperature from 50 ◦C to 80 ◦C and increasing the switching frequency from

16 kHz to 64 kHz, without compromising the efficiency of the system. In addition to

this, the mission-profile based analysis of the inverter with real field annual solar data

from Aalborg, Denmark showed that GaN HEMT based system has significantly lower

thermal stress in comparison to Si IGBT based system at both low and high switching

frequency conditions. Although the replacement of Si IGBT with GaN HEMT in

the system does not bring significant operational income due to low grid tariff and

operating conditions (solar irradiance and loading of the system throughout the year),

it brings lower junction temperature variation and reduced mean temperature across

most stress device throughout the year. Regarding the power semiconductor devices

cost and impact on overall cost of the system, the reduction in device cost for WBG

devices has taken place over the last few years and the final cost will be to a large

extent decided by market acceptance (i.e, volume of sales).



Chapter 6

WBG in Higher Power

Applications

The evaluation and benchmarking of WBG devices in Chapters 4 and 5 showed that

conduction performance and switching performance of devices at 600 V blocking class

provide excellent performance under wide output load, switching frequency and heat

sink temperature conditions at residential scale applications. The analysis of GaN

HEMT based inverter in Chapter 5 showed that heat sink and output filter volume

reduction is possible with WBG based power cell design by operating at higher heat

sink temperature and switching frequency conditions without compromising power

semiconductor performance. Due to these reasons, specifically SiC MOSFETs are

considered to be excellent solution for high power (> 1 MW) applications due to

higher thermal conductivity of SiC in comparison to Si and GaN. Higher thermal

conductivity allows higher power dissipation for same temperature difference between

junction and case, or lower temperature difference between junction and case for same

power dissipation. At high power applications such as marine, drive or drilling ap-

plications, multilevel topologies are preferred due to lower output voltage harmonics,

lower voltage stress across power semiconductor devices and reduced filtering require-

ments. Various applications of SiC MOSFETs have been presented in literature for

153
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high power, high voltage applications [120], [121]. In this chapter, a new five-level

hybrid inverter, which is suitable for WBG based applications with high efficiency, is

presented. The chapter starts with the review of five-level multilevel topologies, with

special focus on hybrid topologies. Then, the details of the proposed topology includ-

ing derivation of the topology, available switching states and commutation scheme

are presented in Section 6.2. The simulation results including efficiency comparison

with respect to state-of-the-art hybrid topology 5L-ANPC is presented in Section 6.3.

Finally, the experimental results based on 12 kW prototype are presented in Section

6.4 and discussed.

6.1 Review of Five-Level Inverter Topologies

Multilevel inverters have been discussed in literature as good candidates for high

power conversion systems (> 1 MW), such as marine propulsion systems, variable

speed drives and HVDC systems, due to improved output voltage distortion, reduced

voltage stress across power semiconductors and reduced filtering requirements [122],

[123]. The first multilevel converter designs were based on neutral point clamped

(NPC) and flying capacitor (FC) oriented topologies. These two approaches have

been proposed for three and higher number of voltage levels. At high number of

voltage levels (five and more), NPC based inverters suffer from high semiconductor

count, high conduction losses and asymmetrical semiconductor switching loss. On

the other hand, FC based topologies require complex control schemes for balancing

flying capacitors and high energy storage in floating capacitors [122], [124]. Due to

the limitations of NPC and FC based topologies for high number voltage levels (five

and above), various hybrid topologies have been introduced [125]. The aim of hybrid

topologies is minimisation of number devices and energy storage while maximising

number of output voltage levels and maintaining high efficiency.

One of the most popular hybrid topologies is five-level active neutral point clamped

(ANPC) inverter that has been discussed and analysed in depth in the previous
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Figure 6.1: 5L-ANPC inverter.

chapters of this thesis. The analysed three-level ANPC topology is extended to five-

level ANPC (5L-ANPC) in [126, 127, 128] and presented in Fig. 6.1. 5L-ANPC is

formed by 12 active switches and a floating capacitor Cf1 , where Cf1 voltage is fixed

to E. By using the floating capacitor and neutral point, five voltage levels (+2E,

+E, 0, -E, -2E) can be achieved between the output (OUT ) and neutral point (N).

Similar hybrid five-level topology based on two floating capacitors Cf1−2 and 14 active

switches has been introduced in literature [129]. The topology is presented in Fig.

6.2. The floating capacitor voltages are kept at one fourth of DC link voltage and

the inductor Lf1 is used for limiting inrush current between DC link capacitors and

floating capacitors due to voltage variation across floating capacitors. Another hybrid

multilevel inverter concept called ”Stacked Multicell Converter” (SMC) is discussed

in [130], [131]. The concept is based on increasing number of voltage levels at the

output of the converter by introducing floating capacitor and active switch based

cells. Five-level inverter based on SMC approach is presented in Fig. 6.3. In all three

inverters presented in Fig. 6.1, 6.2 and 6.3, active devices are rated at one fourth of

DC link voltage E.
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6.2 Proposed Inverter Topology

The static characterisation results of SiC MOSFET and GaN HEMT in Figs. 4.4 and

4.5 in Chapter 4 show that the on-state characteristic of WBG devices have positive

temperature dependency. Positive temperature dependency provides the opportunity

for conduction of devices in parallel with equal current sharing. The benefit of parallel

conduction of WBG devices have been presented in Chapter 5 where high efficiency in

ANPC topology is presented with parallel conduction of GaN HEMTs at zero states.

In addition to this, the loss breakdown of power cell in Fig. 5.10 clearly indicates

that the conduction losses dominate the power cell loss in a WBG based inverter

up to high switching frequencies (64 kHz in this case). Therefore it is beneficial to

reduce the conduction losses in WBG based high power multilevel topologies where

switching frequency is usually low due to high power output and increased number

of output voltage levels. The presented five-level topologies in the previous section

do not utilise parallel conduction of devices due to their nature and the motivation

in this work is to utilise low switching loss performance of WBG devices in multilevel

topologies while reducing the conduction losses.

The proposed five-level inverter topology is based on a hybrid configuration of neutral-

point-clamp and floating capacitors. The topology is named as ”Efficient and Dense

Architecture: EDA5” and filed for patent application [132]. The topology is formed

by 16 active switches S1-S10, two floating capacitors Cf1−2 and two DC-link capacitors

CDC1−2 . The schematic of EDA5 is presented in Fig. 6.4. Each switch in the converter

is rated at E, one-fourth of the total DC link voltage 4E. The charge state of floating

capacitors Cf1−2 is controlled by utilizing redundant states in order to keep capacitor

voltages at E for five-level voltage waveform (2E, E, 0, −E and −2E) between output

of the converter (OUT ) and neutral point (N) of input DC-link capacitors CDC1−2 .
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Figure 6.4: Proposed five-level inverter topology: EDA5

6.2.1 Switching States

The switching states of the converter are presented in Table 6.1. Series connected

switches such as SX1 and SX2 are switched on and off simultaneously, and therefore

are represented as a single switch SX in the switching state table. Single state is

available for +2E and −2E output voltage levels while two states are available for

+E and −E output voltage levels and three states are available for zero output

state. The two switching states for +E and −E levels are achieved by introducing

floating capacitors to the path of output current IOUT . Depending on the polarity

of output current and voltage, the floating capacitors are charged or discharged. In

Table 6.1, the switching states EC and ED define the charging and discharging states

respectively for floating capacitors at unity power factor operation and inverter mode.

For zero output voltage, three possible paths can be used: 1) upper path 0P formed

by S3, S7 and S9, 2) lower path 0N formed by S4, S8 and S10, 3) parallel path 0X

formed by simultaneous conduction of upper path 0P and lower path 0N . The main

benefit of parallel zero state path 0X is the reduction of conduction losses in the
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State S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

+2E 1 0 0 0 1 0 0 0 0 0
+EC 1 0 1 0 0 0 0 0 1 0
+ED 0 0 0 0 1 0 1 0 0 0
0P 0 0 1 0 0 0 1 0 1 0
0N 0 0 0 1 0 0 0 1 0 1
0X 0 0 1 1 0 0 1 1 1 1
−ED 0 0 0 0 0 1 0 1 0 0
−EC 0 1 0 1 0 0 0 0 0 1
−2E 0 1 0 0 0 1 0 0 0 0

Table 6.1: Switching States

power cell during low modulation indexes or higher DC link voltages, where zero

state conduction is dominant.

The current paths for four different switching states during positive half of output

voltage for inverter mode are presented in Fig. 6.5. It can be seen from Figs. 6.4

and 6.5 that four devices are in conduction during all switching states except zero

state 0X where the output current is divided into two zero state branches. Charge or

discharge state can be selected during +E and −E states in order to fix the floating

capacitor voltage to the half of DC link capacitor voltage. For example, during unity

power factor operation for inverter mode, at +EC state, switches S1, S3 and S9 are

turned-on in order to apply +E state to the output by subtracting floating capacitor

voltage E from DC link capacitor voltage +2E while charging the floating capacitor.

During +ED state, the voltage across floating capacitor is applied to the output of

the converter by turning-on S5 and S7 switches. The ”charging” or ”discharging”

status of a switching state can be defined by polarity of output voltage and direction

of output current.

6.2.2 Commutation Scheme

The commutation procedure between switching states, which are presented in Table

6.1, has to be determined for transition of continuous output current from one state to
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Figure 6.5: Current paths for +2E, +EC , +ED and 0P states during positive half of
output voltage.

another. The possible commutation schemes for the positive half of the output voltage

for positive and negative output current are presented in Fig. 6.6. The blue and red

curves for VOUT represents output voltage with positive and negative output currents

respectively. Due to the nature of the topology, suitable commutations can be realised

between +2E and +EC−D or +EC−D and 0P states. The commutation between +EC

and +ED is not possible without clamping the output to another voltage state. In the

first commutation scenario from +2E to +EC in Fig. 6.6 (a), S9 switch is turned-on

first, and after the dead-time period tdt, S5 is switched-off and finally S3 switch is

turned-on. Depending on the direction of output current, the output voltage changes

from +2E to +EC state after tdt or 2tdt. Commutation schemes in Fig. 6.6 (b), (c) and

(d) have similar structure with Fig. 6.6 (a), and all of the schemes can be realised by

applying logic gates to PWM signals coming from the controller. With WBG devices,

the antiparallel diodes can be eliminated and reverse condcution capability can be

utilised to reduce the component count without compromising system efficiency.
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6.3 Simulation Results

The proposed topology is simulated in PLECS at inverter mode for evaluation of

functionality and efficiency comparison with 5L-ANPC topology. The simulation

conditions and converter parameters are presented in Table 6.2. Medium voltage drive

systems have been considered as the case study for the evaluation of the topology.

Higher power and DC link voltage have been chosen to show the functionality and

suitability for these systems. Due to limited current rating of WBG devices at 600

V and below blocking class, commercial 650 V, 70 A SiC MOSFET with trench

structure from ROHM has been used in order to achieve 1 kV DC link voltage with

12 kW output power [133]. Switching and conduction losses of switches at various

operating conditions are calculated based on datasheet parameters at 60 ◦C junction

temperature. Switching frequency is fixed to 10 kHz, and RL load with fixed 1.5 mH

filter inductance is used to achieve continuous load current. The output voltage and

current waveforms at 7 kW output power are presented in Fig. 6.7. Modulation index

is set to 0.72. It is proven that the converter can achieve five-level output waveform

successfully by controlling floating capacitor voltages.

Under same operating conditions, floating capacitor voltages for Cf1 and Cf2 capac-

itors are presented in Fig. 6.4. The floating capacitor voltages are controlled by

individual charge/discharge controllers for each capacitor where main DC link and

floating capacitor voltages are measured and compared. Schematic of the imple-
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Figure 6.7: Simulated output voltage and current waveforms.



6.3. SIMULATION RESULTS 163

Table 6.2: Simulation and Converter Parameters

Parameter Symbol Value
Input Voltage VDC 1 kV
Output Power POUT 12 kW

Output Inductor Lf 1.5 mH
Output Voltage VOUT 1.5 kV

Switching Frequency fsw 10 kHz
SiC MOSFET

Switching Device S1−10 650 V, 70 A
SCT3030AL

Junction Temperature Tj 60 ◦C
Total Floating Capacitance Cf 200 µF

mented control system is presented in Fig. 6.8. Each floating capacitor Cf1−2 is

charged or discharged depending on whether the voltage across the floating capacitor

is higher than half of the corresponding DC link capacitor CDC1−2 . Floating capacitor

voltages with respect to DC link capacitor voltages are presented in Fig. 6.9. It can

be seen that the capacitor voltages are exceeding limits excessively at certain time of

operation. The reason for that is the floating voltage controller is forcing the output

control signal, which determines charge or discharge state for each capacitor, to be

changed during 2E, 0 or opposite half of output signal with respect to each floating

capacitor by using the OR gate and DQ flip-flop presented in Fig. 6.8. As it is men-

tioned in commutation scheme section, the commutation of output current cannot

happen between charging and discharging states and this approach prevents commu-

tation between these two E states. The state of charge of each floating capacitor is

dependent on load current and switching frequency. Therefore, the control of float-

ing capacitor voltage with the implemented controller can be improved by increasing

switching frequency and increase of capacitance for same load conditions. It can also

be seen from Fig. 6.9 that the main DC link capacitors have 50 Hz ripple at steady

state. The low frequency voltage variation in NPC based topologies is investigated

in the literature, specifically for three phase systems and DC link voltage control can

also be implemented to overcome this problem [134].

In order to evaluate efficiency performance of proposed topology, 5L-ANPC is simu-
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Figure 6.8: Floating capacitor voltage control scheme used in simulation and experi-
mental validation.
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Figure 6.9: Simulated Cf1 and Cf2 floating capacitor voltages.

lated under same operating conditions in Table 6.2. Two operation scenarios for the

converters are considered: 1) Voltage controlled mode operation where modulation

index is fixed and output current is varied, 2) Current controlled mode where out-

put current is fixed and modulation index is varied. The efficiency results of single

phase power cells for voltage source and current source operation are presented in

Figs. 6.10 and 6.11 respectively. The results in Fig. 6.10 for voltage source operation

show that proposed topology has approximately the same efficiency with 5L-ANPC

under wide load range. As presented in Fig. 6.11, during current source operation,

the performance gap between proposed topology and 5L-ANPC is increased at light

load conditions due to reduced conduction and switching losses at lower modulation

index.

The power cell losses for both operation modes have been analysed and presented

in Figs. 6.12 and 6.13 for voltage source and current source operation respectively.

With voltage source mode, the switching and conduction losses increase linearly and

exponentially with respect to output power for both topologies. Although the con-
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Figure 6.13: Power cell loss comparison with current controlled mode operation.

duction losses are similar, the proposed topology has better switching performance

in comparison to 5L-ANPC. The difference between switching losses is the reason for

the efficiency difference between two topologies shown in Fig. 6.10. In current source

mode, the proposed topology has a significant advantage over 5L-ANPC under light

load conditions due to reduced conduction and switching losses. This shows that

proposed topology can operate with higher efficiency at higher DC link voltage and

lower modulation index conditions.
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Table 6.3: Prototype Parameters

Parameter Symbol Value
Input Voltage VDC 1 kV
Output Power POUT 12 kW

Switching Frequency fsw 10 kHz
ROHM SiC MOSFET

Switching Device S1−10 600 V, 70 A
SCT3030AL

Output Filter Inductor Lf 1.5 mH

6.4 Experimental Results

Experimental validation of the proposed hybrid inverter topology is completed by a

12 kW single phase prototype. The prototype test parameters are presented in Table

6.3 and photo of the prototype can be seen in Fig. 6.14. The system can be extended

to three phase by stacking single phase building blocks. Single phase building block

consist of DC link film capacitors, floating capacitors, DC link and floating capac-

itor voltage sensors, gate drivers, switches and turn-off snubbers. DC link voltage

sensors are used to control the floating capacitor voltage by charge/discharge con-

trol implemented in DSP+FPGA control platform. Discrete SiC MOSFETs without

anti-parallel diodes are implemented with RC snubbers in order to achieve dynamic

and static voltage sharing between series connected MOSFETs presented in Fig. 6.4.

Power plane is formed by 6-layer PCB with 140 µm copper on each layer for minimum

parasitic inductance between commutating switches and minimum conduction losses.

The voltage sharing across the devices S1, S51 , S52 and S53 at 1 kV DC link voltage is

presented in Fig. 6.15. It can be seen that each devices is subject to 300 V including

the voltage overshoots due to parasitics and the voltage sharing among the devices is

successful.

The inverter output voltage and current waveforms at 7 kW output power conditions

are presented in Fig 6.16. The experimental results show that proposed topology

successfully operates with an inductive load up to 7 kW output power. At 7 kW
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Figure 6.16: Experimental output voltage and current waveforms at 7 kW output
power.
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Figure 6.17: DC link and floating capacitor voltages at 7 kW output power.

output power, it can be seen that output current is distorted slightly due to volt-

age variation across floating capacitors Cf1 and Cf2 . The floating capacitor voltage

with respect to DC link capacitor voltage is presented in Fig 6.17 at 7 kW output

power condition. Although the average voltage of floating capacitor is fixed to half of

DC link capacitor voltage 250 V for both load conditions, the peak-to-peak voltage

variation across floating capacitor is increased to with the increase of output current.

The reason for the large variation at high output power is the sensor accuracy and

limitations of control board. Due to control board limitations (sample, hold and pro-

cessing delays), the update rate for floating capacitor control is limited to 1 kHz and

the effect of low update frequency makes voltage fluctuation more severe at higher

output current conditions. This can be solved by implementing the capacitor voltage

control in the FPGA rather than DSP.
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Figure 6.18: Efficiency of the prototype at 1 kV DC link voltage and 0.8 modulation
index.

Finally, efficiency figure of the prototype power cell at 1 kV DC link voltage, 0.8

modulation index and different heat sink temperatures is presented in Fig. 6.18. The

power cell efficiency curve includes DC link capacitor and power switch losses; and

total efficiency curve includes power cell losses and output inductor losses. It can

be seen that the prototype power cell can achieve 98.38 % peak efficiency with SiC

MOSFETs. The main objective of the prototype is demonstration of the functionality

of EDA5 topology at high voltage and high power conditions. The efficiency of the

prototype can be further improved by optimising RC snubbers to minimise switching

loss.

6.5 Conclusion

In this chapter, a novel five-level hybrid inverter topology for renewable energy sys-

tems and high power applications has been presented including description switching

states and commutation scheme. The proposed topology is compared with state-of-

the-art hybrid multilevel topologies in simulation. Simulation results show that EDA5

provides higher efficiency in comparison to 5L-ANPC, especially at lighter load con-

ditions. The functionality of the topology has been verified experimentally with a 12

kW single phase prototype.



Chapter 7

Conclusion and Future Works

7.1 Conclusion

The demand for low carbon economy and limited fossil resources for energy generation

drive the research on renewable energy sources and the key technology for utilisation

of renewable energy sources: power electronics. Innovative inverter topologies and

emerging WBG based semiconductor devices at 600 V blocking class are the enabling

technologies for more efficient, reliable and accessible renewable energy sources for

electricity generation.

This thesis has investigated the state-of-the-art inverter topologies and WBG devices

at 600 V blocking class for residential scale PV systems. The review of the inverter

topologies and current status of PV systems were presented in Chapter 2. The WBG

material properties and state-of-the-art WBG devices were discussed in Chapter 3.

The benchmarking of WBG devices including static and dynamic characterisation,

gate drive requirements and performance evaluation in T-Type inverter were pre-

sented in Chapter 4. The benchmarking of devices has shown that GaN HEMT has

excellent switching and conduction properties at low current conditions with negli-

gible temperature dependency, but a relatively higher complex gate driver design is
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required for safe operation and the design has a strong impact on switching losses.

The performance results of WBG devices in T-Type inverter shows that SiC and

GaN devices provide performance enhancement over Si under wide load, tempera-

ture and switching frequency conditions. In terms of switching performance, GaN

HEMT has the best performance among three technologies and allows high efficiency

at high-frequency applications. Performance evaluation of three device technologies

show that WBG devices, specifically GaN HEMT provide robust performance under

wide temperature, switching frequency conditions.

The impact of GaN HEMT to a PV inverter in terms of power loss, converter ef-

ficiency, heat sink and output filter volume, and thermal stress based on a mission

profile was discussed in Chapter 5. The switching and conduction performance of

GaN HEMT under different load and heat sink temperature conditions resulted in

very high efficiency and low power cell loss. It was shown that combined heat sink

and output filter volume can be reduced by increasing the heat sink temperature from

50 oC to 80 oC, and increasing the switching frequency from 16 kHz to 64 kHz, with-

out compromising the efficiency of the system. The mission-profile based analysis of

the GaN HEMT based inverter showed that GaN HEMT based system has signifi-

cantly lower thermal stress in comparison to Si IGBT based system at both low and

high switching frequency conditions. The reduced thermal stress brought lower junc-

tion temperature variation and reduced mean temperature across most stress device

throughout the year.

In Chapter 6, a novel five-level hybrid inverter topology for renewable energy systems

and high power applications based on SiC MOSFET was presented. The proposed

topology was compared with state-of-the-art hybrid multilevel topologies in simula-

tion. Simulation results showed that proposed topology provides higher efficiency in

comparison to 5L-ANPC, especially at lighter load conditions. The functionality of

the topology was verified experimentally with 650 V SiC MOSFETs in a 12 kW single

phase prototype under different load and heat sink temperature conditions.
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7.2 Future Works

There are a few points which can be investigated further:

• The recently introduced GaN devices in low inductance packages from GaN

Systems and Infineon can be included to the benchmarking of WBG devices.

These devices were not available at the time of this research project but should

be considered as the competitors of the evaluated devices in this thesis. The

semiconductor manufacturing and packaging technology is constantly evolving

with introduction of WBG materials and the emerging devices to the market

come with their own challenges (e.g. cooling, design of PCB layout, gate cir-

cuitry) and benefits (e.g. better static and dynamic performance, improved

reliability).

• The GaN HEMT based optimisation based in Chapter 5 is based on conventional

output inductor design and naturally cooled heat sink. The optimisation can

be extended further with planar inductors, which have higher power density

and performance at higher switching frequencies, and forced cooled heat sink

designs to maximise the volume reduction.

• EMI filter design is an important aspect of high switching frequency inverters

and EMI filter volume can be a significant portion of the total inverter volume.

Therefore EMI filter should be considered in the final volume optimisation.

• Loss balancing techniques can be applied to GaN HEMT based ANPC inverter

in order to reduce the thermal stress across S1 and S6 switches, and therefore

improve the reliability of the system.

• This thesis has taken into account hard switching topologies for WBG devices.

The results with GaN HEMT showed that the switching losses dominate the

overall power loss beyond 100 kHz. The switching frequency of the power cell

can be pushed beyond 160 kHz with soft switching topologies where the contri-

bution of switching losses to the overall power cell loss can be minimised.



7.2. FUTURE WORKS 174

• The dynamic and static voltage balancing across series connected SiC MOS-

FETs in Chapter 6 was achieved with RC snubbers. The balancing can be

also achieved with gate drive circuitries, which are introduced for Si IGBTs to

eliminate the use of RC snubbers.
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Appendix A

Performance Benchmark in H6

Inverter

The second inverter that is used to evaluate the device performance is H6, presented

in Section 2.2.1.4. H6 is a member of full-bridge inverter family and provides high

efficiency as a transformerless PV inverter topology and requires 6 active devices

where S1 to S4 are used to form a full-bridge inverter, and S5 and S6 are used to

decouple the grid from PV panel at zero states for minimisation of CM current. In this

study, Si IGBT, SiC MOSFET and GaN HEMT has been used in all devices S1− S6

to evaluate the performance of the converter under different test conditions and assess

the benefits of WBG devices in full-bridge based topologies. Same as the analysis in

T-Type inverter, the study starts with description of the test setup, followed by the

efficiency performance under different load and heat sink temperature conditions and

concluded with the loss breakdown at 40 kHz with three different devices.

A.0.1 Test Setup

A commercial converter [135] in Fig. A.1a embedding the H6 bridge with UniTL

PWM modulation is used to evaluate the performance of the 650 V SiC MOSFET

193
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Parameter Value

PMAX 1.5 kW
VDC 400 V
VOUT 230 V
Lf 750 µH each
Cf 5 µF
CDC 1.5 mF
fsw 10 to 40 kHz

Si IGBT Deadtime 1 µs
SiC MOSFET Deadtime 250 ns
GaN HEMT Deadtime 266 ns

ST STGW35HF60WD
S1 − S6 ROHM SCT2120AF

Panasonic PGA26A10DS
Th 60 to 100 ◦C

Table A.1: Converter Parameters and Test Conditions

and 600 V GaN HEMT devices in comparison to 600 V Si IGBTs. This converter

features a Freescale MC56F8323 DSP for grid connected control of the converter.

The output LC filter is composed of two inductors Lf = 750 µH and a Cf = 5 µF

capacitor. The converter parameters are presented in Table A.1. The experimental

setup is shown in Fig. A.1b, corresponding to the schematic of Fig. 2.13, where

converter is powered through a controlled DC power supply. The schematic of test

setup is presented in Fig. A.2. Same in T-Type test, power analyser is used to extract

power cell losses which correspond to semiconductor losses in the system. The isolated

gate drives provide 0-18 V gate signal for SiC devices and 0-15 V for Si IGBTs. Input

DC link voltage of the converter is fixed to 400 V and output grid voltage is 230 Vrms

with 50 Hz grid frequency. In order to decouple the device case temperature from the

load, a full controllable heat sink is used where the temperature of the heat sink can

be controlled independently from the load by cooling fans and heating resistors.
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(a)

(b)

Figure A.1: Single phase H6 inverter: (a) prototype and (b) test bed.
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Figure A.2: Test setup for H6 inverter.

A.0.2 Experimental Results

A.0.2.1 Efficiency Performance

The efficiency of the converter is assessed with three semiconductor technologies: Si

IGBT, SiC MOSFET and GaN HEMT. During the assessment, heat sink, switch-

ing frequency and output load are varied for evaluation of device performance under

different conditions independent from each other. The Si and SiC and GaN based

configurations are tested up to 1.5 kW input power. Total converter efficiency in-

cluding relay, auxiliary power supply and filter losses; and power cell efficiency which

includes only DC link and semiconductor losses at 60 ◦C heat sink temperature for

Si, SiC and GaN devices are presented in Fig. A.3 for 10, 20 and 40 kHz switching

frequencies.

The total efficiency results for Si, SiC and GaN based configurations in Fig. A.3a show

that SiC and GaN based configurations have up to 1 % higher efficiency in comparison

to Si based configuration. The efficiency gap between Si and wide-bandgap devices

increases as the switching frequency is increased from 10 kHz to 20 kHz and 40 kHz,

especially at higher load conditions. At 40 kHz and 1 kW output power, GaN and

SiC based H6 inverters achieved 96.5 % total efficiency where Si based H6 inverter

has 95.4 % total efficiency. From Fig. A.3, the total efficiency difference between
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wide-bandgap based inverters and Si based inverter is due to superior performance

of power cell with GaN HEMT and SiC MOSFET in comparison to Si IGBT. GaN

and SiC devices provide 98.5 % power cell efficiency at 40 kHz, 1 kW output power

where Si based power cell can reach 97.2 % power cell efficiency.

The performance of the devices at different switching frequencies and heat sink tem-

peratures are presented in Fig. A.4 and A.5. Fig A.4 shows the comparison of Si,

SiC and GaN solutions up to 40 kHz switching frequency and between 60 ◦C and

100 ◦C heat sink temperatures at 1.5 kW output power. The results show that

GaN solution proves a robust performance with power cell efficiency higher than 98

% under different temperature and switching frequency conditions. SiC based solu-

tion provides more than 97.8% efficiency under different temperature and switching

frequency conditions. Both solutions provide robust performance with respect to in-

creased switching frequency. On the other hand, in Fig. A.4a, it can be seen that

increased switching frequency and ambient temperature has significant impact on in-

verter performance with Si IGBTs. Fig. A.5 shows a similar efficiency comparison

versus heat sink temperature at 10, 20 and 40 kHz switching frequencies at 1.5 kW

output power for three different device technologies. It is clear that SiC and GaN

device show good performance under different ambient temperatures due to wide-

bandgap device properties discussed in Chapter 3.

A.0.2.2 Switching Performance

Based on the power cell efficiency curves presented in previous section, the breakdown

of semiconductor losses in terms of switching and conduction can be conducted on the

inverter with respect to different heat sink temperature conductions. The conduction

loss of each switch in H6 inverter with respect to modulation index M and the load

angle θ are can be calculated based on active and zero state conduction equations for

bipolar and unipolar devices:

Pc−actbp = Im · Vf ·
M

4
· cos(θ) +

I2m ·Rce ·M
2π

· (1 + cos(2θ)) (A.1)
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Figure A.3: Efficiency comparison at: (a) 10 kHz, (b) 20 kHz and (c) 40 kHz switching
frequencies at 60 oC heatsink temperature.
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Figure A.4: Efficiency comparison of (a) Si IGBT, (b) SiC MOSFET and (c) GaN
HEMT based H6 inverter at 1 kW output power and different switching frequencies.
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Figure A.5: Efficiency comparison of (a) Si IGBT, (b) SiC MOSFET and (c) GaN
HEMT based H6 inverter at 1.5 kW output power and different heatsink tempera-
tures.
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Pc−zerobp = Im ·Vf ·(
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M ·

(
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1
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· cos(2θ)

)
2π

 (A.4)

where Im is peak value of output current, M is modulation index and θ is load angle,

which can be approximated as 0 for grid connected single phase PV inveters. For SiC

MOSFET and GaN HEMT based configurations where reverse conduction capability

of devices is utilised, the conduction losses for the devices are:

Pc−S5,6 = 2 · Pc−actup (A.5)

Pc−S1,2,3,4 = Pc−actup + Pc−zeroup (A.6)

Therefore, total conduction losses in H6 inverter based on WBG devices can calculated

as:

Pc−totalup = 4 · Pc−S1,2,3,4 + 2 · Pc−S5,6 (A.7)

For Si IGBT based configuration, the conduction losses for the devices are:

Pc−S5,6 = 2 · Pc−actbp (A.8)

Pc−S1,2 = Pc−actbp + Pc−zerobp (A.9)

Pc−S3,4 = Pc−actbp (A.10)

Pc−D3,4 = Pc−zerobp (A.11)

The total conduction loss for Si IGBT based H6 inverter can be calculated as:

Pc−totalbp = 2 · Pc−S1,2 + 2 · Pc−S3,4 + 2 · Pc−D3,4 + 2 · Pc−S5,6 (A.12)

The on-state parameters of the devices such as on-state resistance Rds, Rce or Rak and

threshold voltage Vf are linked to heat sink temperature based on device datasheet
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parameters in order to calculate the conduction losses. The modulation index can be

calculated with respect to RMS value of output voltage and input DC link voltage.

Based on the experimental results, the devices total, conduction and switching losses

at 1.3 kW output power and 40 kHz switching frequency for Si, SiC and GaN based

converter are presented in Figs. A.6a, A.6b and A.6c respectively. The total is lowest

in GaN based inverter as presented in the efficiency curves and the conduction loss in

Fig. A.6b. The results show the advantage of WBG devices at low current rating due

to absence of on-state threshold voltage discussed in Chapter 3. With 230 V output

RMS voltage, the peak current is approximately 8 A. When the conduction loss is

subtracted from total loss, the switching loss data for each technology under different

heat sink temperature values is obtained. Although the conduction loss of SiC and

GaN devices increase with the increase of heat sink temperature, the switching losses

remain constant and due to this reason, the converter performance with GaN and SiC

is not affected by heat sink temperature increase as much as the case with Si IGBT.

A.0.3 Grid Connection

The dead-time between complementary switches in order to avoid shoot through

in a half-bridge configuration introduces additional harmonics when the total dead-

time becomes significant in a switching period, in other words with high switching

frequency. In this setup, the dead-time is set as 1 µs for Si IGBT and 250 ns for SiC

MOSFETs. The output current and voltage waveforms for both cases are presented

in Fig. A.7. The results in Fig. A.7a show that with Si IGBT, output current is

distorted at zero-crossings due to low modulation index and large dead-time. On

the other hand, for SiC MOSFET based inverter with the same load and switching

frequency conditions in Fig. A.7b, the distortion at the zero-crossing is minimised

due to reduced dead-time between complementary switches.
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Figure A.6: Loss breakdown for GaN, SiC and Si based converter at 1.3 kW output,
40 kHz switching frequency: (a) total power device loss, (b) conduction loss, (c)
switching loss.
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(a)

(b)

Figure A.7: Grid voltage and current waveforms with (a) Si IGBTs and (b) SiC
MOSFETs at 40 kHz switching frequency (CH1: Grid current 5 A\div, CH1: Grid
voltage 100 V\div).



Appendix B

PCB Design for GaN HEMT

Based ANPC Inverter

205



APPENDIX B. PCB DESIGN FOR GAN HEMT BASED ANPC INVERTER 206

Figure B.1: Top layer layout for GaN HEMT based ANPC power cell.
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Figure B.2: Inner Layer 1 layout for GaN HEMT based ANPC power cell.
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Figure B.3: Inner Layer 2 layout for GaN HEMT based ANPC power cell.
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Figure B.4: Bottom Layer layout for GaN HEMT based ANPC power cell.


