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Abstract	
Genome-wide association studies of human lung function and Chronic 

Obstructive Pulmonary Disease have identified a highly significant and 

reproducible signal on 4q24. It remains unclear which of the two 

candidate genes within this locus may regulate lung function: GSTCD, a 

gene with unknown function, and/or INTS12, a member of the Integrator 

Complex which is currently thought to mediate 3’end processing of small 

nuclear RNAs. An interrogation of bioinformatic datasets showed that in 

lung tissue, 4q24 polymorphisms associated with lung function correlate 

with INTS12 but not neighboring GSTCD expression. In contrast to the 

previous reports in other species, a minor alteration of small nuclear RNA 

processing was observed following INTS12 depletion. RNA sequencing 

analysis of knockdown cells instead revealed dysregulation of a core 

subset of genes relevant to airway biology and a robust downregulation 

of protein synthesis pathways. Consistent with this, protein translation 

was decreased in INTS12 knockdown cells. In addition, chromatin 

immunoprecipitation and sequencing experiments demonstrated 

INTS12 binding throughout the genome, which was enriched in 

transcriptionally active regions. Finally, INTS12 regulome was defined 

which includes genes belonging to the protein synthesis pathways. 

INTS12 has functions beyond the canonical snRNA processing and 

evidence is presented showing that it regulates translation by directly 

controlling the expression of genes belonging to protein synthesis 

pathways. This thesis provides a detailed analysis of INTS12 activities 

on a genome-wide scale and contributes to the understanding of biology 

behind the genetic association for lung function at the 4q24.     
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Imagination is more important than knowledge. 

For knowledge is limited to all we now know and 

understand, while imagination embraces the 

entire world, and all there ever will be to know 

and understand. 

 
Albert Einstein 
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1.1	Overview	
According to the World Health Organization, chronic respiratory 

diseases such as asthma or Chronic Obstructive Pulmonary Disease 

(COPD) are one of the leading causes of population morbidity and 

mortality (Mathers et al. 2008). Worldwide there are approximately 500 

million people suffering from obstructive lung disease. Asthma is a 

chronic inflammatory disorder associated with airway hyper 

responsiveness and reversible airway obstruction. COPD on the other 

hand is characterized by irreversible airway obstruction, and one or both 

of emphysema and chronic bronchitis. Although asthma and COPD are 

considered a public health problem in both developed and developing 

countries, most asthma and COPD related deaths occur in low income 

countries (Lozano et al. 2012). Both diseases are life-threatening and 

currently not curable. If patients are well managed and given the 

appropriate treatments, their quality of life and life expectancy are 

improved. Nevertheless, the ultimate objective of the research carried 

out by the respiratory community is to be able to treat patients having 

chronic respiratory diseases by reversing the underlying 

pathophysiology. In order to do this successfully, it will be necessary to 

develop novel therapeutic agents and strategies targeting the underlying 

cascade of biological events leading to disease.  

Functional genomics has the potential to accelerate the discovery of 

pathways involved in the pathogenesis of chronic respiratory diseases. 

The development of high-throughput genotyping and next generation 

sequencing (NGS) accompanied by development of the necessary 

bioinformatic tools has allowed for massive and successful undertakings 

to identify genetic variation predicting respiratory disease status or lung 

function (Mardis, 2011) and has started to pave the way to understand 

the functional basis of some of these signals. If applied effectively it 

should result in the identification of new targets for therapeutic 

intervention and generation of novel functional hypotheses that can be 

verified experimentally. Genetic studies of human lung function have 

identified a highly significant and reproducible signal on 4q24. The 
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mechanistic basis for this association has not been elucidated. Integrator 

Complex subunit 12 (INTS121) has the potential biological role in normal 

lung function and development of lung disease as it is located in an 

replicated locus for genetic variability in lung function and risk of COPD 

at 4q24.  

This chapter describes the historical and current genetic studies that 

have investigated respiratory phenotypes as well as in silico, in vitro and 

in vivo approaches to facilitate the biological and therapeutic translation 

of these findings. As the focus of the thesis is on INTS12 and its protein 

product, genetic data which have demonstrated its association with lung 

function parameters as well as its canonical biological functions are 

reviewed.     

1.2	Genetics	of	lung	function	and	COPD	
The last 10 years has seen a dramatic increase in the number of studies 

examining the genetic basis of lung function measures and COPD due 

to the development of relatively inexpensive platforms for genotyping 

subjects on a genome wide basis with adequate coverage to permit 

genetic association signals to be detected. This has also been facilitated 

by the formation of international consortia (International HapMap, 2005; 

Genomes Project, 2012) providing a large number of samples and thus 

adequate statistical power, leading to a number of genome-wide 

association studies (GWAS) publications on a range of respiratory 

related phenotypes. GWAS were preceded by linkage analyses that had 

a limited success, while the very initial studies were concerned with 

heritability estimations. 

1.2.1	Definition	of	lung	function	and	COPD	phenotypes		

Before considering genetics, the phenotypic manifestation of COPD and 

lung function needs to be addressed. There are multiple measurements 

which can be made to assess lung function however the most commonly 

used are forced vital capacity (FVC) and forced expiratory volume in the 

                                            
1 Genes are referred in italics (e.g. INTS12) while mRNA and protein are not referred 
in italics (e.g. INTS12)  
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first second (FEV1). These are measurements with a general consensus 

regarding their derivation using spirometry (Miller et al. 2005). FVC is the 

volume of air that can be expired forcibly after full inspiration and is 

reduced in conditions that either limit inspiration or cause air trapping. 

FEV1 is the volume of air expelled in the first second of a maximal forced 

expiration from a position of full inspiration. FEV1 is reduced when airway 

obstruction is present. This is defined as <80% of the predicted value 

based on age, gender and height (FEV1 (Percent Predicted)). However, 

these are not independent variables and any condition that reduces vital 

capacity affects FEV1. As in a healthy individual 70% of FVC is expelled 

in the first second, airway obstruction is defined as a FEV1/FVC ratio of 

less than 0.7. Therefore, reduced FEV1/FVC defines airway obstruction, 

while FEV1 grades its severity (Rabe et al. 2007).  On the other hand, 

forced expiratory flow between 25% and 75% of vital capacity (FEV25-

75%) and FEV25-75%/FVC indices have been controversial in terms of value 

and relative diagnostic sensitivity. Some studies suggest that FEV25-75% 

is a sensitive index of airway obstruction (Lebecque et al. 1993; Simon 

et al. 2010), while other studies suggest this index is of limited value in 

this regard (Ciprandi et al. 2012).  

COPD is a leading cause of death and chronic morbidity throughout the 

world. Three in every thousand people are diagnosed with COPD each 

year and the incidence increases rapidly with age (Afonso, Verhamme, 

Sturkenboom, and Brusselle, 2011). COPD has previously been defined 

and graded using the GOLD criteria (Table 1.1; Hurd and Pauwels, 2002; 

Pauwels et al. 2001) which have been updated to consider symptoms 

and frequency of exacerbations ((GOLD), 2015). The clinical 

presentation of COPD is diverse (Hansen et al. 2007; Pellegrino et al. 

2005). It is a progressive disabling condition characterised by airway 

limitation that is not reversible. Typical symptoms include dyspnea, 

chronic cough or sputum production but spirometry is considered to be 

a gold standard method for the diagnosis of COPD (Rabe et al. 2007). 

This is largely due to the fact that the clinical presentation of these 

conditions varies greatly between individuals highlighting COPD as a 

heterogeneous condition. Although cigarette smoking is a major risk 
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factor for the development of COPD, only 15 to 20% of smokers manifest 

clinically significant COPD (Zhou et al. 2013). Inflammatory processes 

of COPD are located in central airways and are connected to increased 

mucous production, reduced ciliary clearance and a disrupted airspace 

epithelial barrier. Inflammation is typically long-term and is therefore 

called chronic bronchitis. Emphysema is a sub-phenotype of COPD and 

is characterized by enlargement of distal airspaces due to the 

destruction of the airway walls (i.e. parenchymal destruction) (Hemminki 
et al. 2008).  

Classification of severity of airway limitation in COPD based on post-
bronchodilator FEV1 

In patients with FEV1/FVC < 0.7 

GOLD 1 Mild FEV1 ≥ 80% predicted 

GOLD 2 Moderate 50% ≤ FEV1 < 80% predicted 

GOLD 3 Severe 30% ≤ FEV1 < 50% predicted 

GOLD 4 Very severe FEV1 < 30% predicted 

Table 1.1: GOLD standards of airway limitation severity in COPD. 

1.2.2	Familial	aggregation	of	spirometric	measures	and	COPD	in	

families	
Familial aggregation studies provide diverse but not completely 

consistent evidence implicating genetic factors in lung function 

phenotypes. An early twin study of 127 monozygotic and 141 dizygotic 

twin pairs by Hubert et al. demonstrated that FEV1 and FVC measures 

show heritability estimates to be above 70%, which suggested that most 

of the variation observed in the studied population is caused by genetic 

factors (Hubert et al. 1982). Redline et al. reported that monozygotic 

twins reared together showed intra-pair correlations of pulmonary 

function ranging from 0.5 to 0.7, while dizygotic twins reared together 

had correlations approximately one-half the magnitude of those for the 

monozygotic twins suggesting the presence of a significant genetic 

component (Redline et al. 1987). Subsequent cross-sectional studies 

report heritability ranging as high as 85% for FEV1, 91% for FVC, and 

45% for FEV1/FVC ratio (Lewitter et al. 1984; Coultas et al. 1991; 

McClearn et al. 1994; Wilk et al. 2000; Ober et al. 2001). Moreover, 
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heritability of lung function measures was also found to be consistent 

through time (Lewitter et al. 1984). A more recent study by Hukkinen et 

al. revealed heritability estimates of 32% and 36% for FEV1, 41% and 

37% for FVC, while 46% and 16% for FEV1/FVC ratio at baseline and at 

later follow-up, respectively (Hukkinen et al. 2011). The same group also 

found that differences in environmental effects explained 60 to 70% of 

observed variation suggesting spirometry measures to be complex 

phenotypes, where the individual variation is strongly affected by 

environment.  

Silverman et al. have shown that the risk of COPD is approximately 2-3 

higher in smokers who have a first degree relative affected by COPD 

suggesting the presence of genetic factors contributing to COPD 

pathogenesis (Silverman et al. 1998). In agreement with these 

estimations McCloskey et al. found that the odds ratio of having COPD 

if a sibling has the disease is approximately five (McCloskey et al. 2001). 

Hemminki et al. reported that singleton siblings and twins have much 

higher risks of emphysema and chronic bronchitis than their parents 

(Hemminki et al. 2008). Considering the fact that both siblings and 

partners usually share roughly the same environment, the study was 

able to provide genetic epidemiological evidence for a heritable aetiology 

in COPD. The heritability of chronic bronchitis which is one of the main 

conditions underlying COPD, was evaluated at 40% (Hallberg et al. 

2008). Recently, Zhou et al. reported the first estimate of emphysema 

heritability at 25% (Zhou et al. 2013). Taken together these studies 

demonstrate a significant familial aggregation of lung function, and other 

COPD related phenotypes which have motivated research efforts to 

identify genetic variants predisposing to airway obstruction. 

1.3	 A	 brief	 historical	 overview	 of	molecular	 genetics	 and	

functional	studies	in	pulmonary	physiology	

1.3.1	The	discovery	of	α-1-antitrypsin	(A1AT)	deficiency	

The first gene linked to emphysema was the SERPINA1 encoding serine 

protease α1-antitrypsin (A1AT). A1AT is a member of the serine 
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protease inhibitor superfamily (SERPINS) and phylogenetic analyses 

indicate its evolutionary conservation in higher animals, nematodes, 

insects, plants, and viruses (Irving et al. 2000). The path that led to the 

discovery of A1AT deficiency as a risk factor for emphysema has a long 

history. It began with studies by Fermi and Pernossi in 1894 and later by 

Pugliese and Coggi in 1897 that noted protease inhibitor activity of the 

human plasma due to its preventative action upon trypsin. It took half a 

century to isolate the main inhibitor responsible for antiprotease activity 

which was named A1AT because of its location in the α1-globulin fraction 

and its ability to inhibit trypsin (initial discoveries described in 

Janciauskiene et al. 2011). In 1963, Laurell and Eriksson reported that 

patients with pulmonary lesions suffering from severe respiratory 

deficiency had markedly reduced levels of A1AT (Laurell and Eriksson, 

2013; re-print of original publication). They noted that some patients 

were relatives and attributed their clinical pathology to potential ‘inborn 

error’. At a later date, Eriksson gathered a substantial collection of A1AT 

cases including their families providing comprehensive evidence of the 

link between A1AT deficiency and emphysema (Eriksson, 1965). 

Subsequently, Lieberman showed that serum deficiency of A1AT is 

greater in homozygotes and heterozygotes with the susceptibility allele 

than in individuals with the normal “healthy” allele (Lieberman, 1969). 

The susceptibility variant was called the Z allele and it was concluded 

that it predisposes to pulmonary emphysema. The plasma levels of 

A1AT in individuals that have at least one copy of the Z allele is 

approximately 10 to 15% of the normal levels (Eriksson, 1965). Taking 

all these studies together it became accepted that A1AT homoeostasis 

is necessary for pulmonary health and that A1AT imbalance may lead to 

pathological decline in lung function due to excessive protease activity 

in the airways. Many genetic variants of A1AT were identified some of 

which altered the plasma levels of A1AT while others were structural in 

nature (DeMeo and Silverman, 2004).  

Later studies revealed that although most patients with A1AT deficiency 

suffer from emphysema, this deficiency occurs in only 1 to 3 % of the 

COPD population (Stoller and Aboussouan, 2005). Therefore, despite 
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the unprecedented genetic, molecular and mechanistic advances in the 

understanding of A1AT deficiency as related to emphysema, it is still not 

clear what the underlying biological processes giving rise to COPD are 

in the majority of patients. Current therapeutic strategies to treat A1AT 

deficiency include preventative measures (e.g. smoking cessation) and, 

in some countries, A1AT replacement therapy (Petrache, 2009).  

1.3.2	Genetic	mapping	of	lung	function	genes:	linkage	analyses	

Genetic mapping is the process of localization of genomic loci 

harbouring genetic variation which can contribute to the phenotypic 

variation of either a continuous or dichotomous trait. The biggest 

advantage of genetic mapping is the fact that it can be performed in a 

hypothesis free fashion without any prior knowledge about the gene’s 

biological functions. Therefore, it allows the unbiased discovery of 

candidate disease susceptibility genes. The underlying principle of 

genetic mapping is the identification of association between a 

recognized genetic marker (i.e. polymorphic variant whose genomic 

location is known in advance) and the phenotype. If a particular marker 

is showing correlated segregation with a trait it is said that this marker is 

in linkage with the ‘causative variant’ associated with the trait under 

study. Typically, linkage studies for human traits involve genotyping 

families that contain multiple affected individuals for 300-400 

microsatellite markers, such as short tandem repeats (STR), that span 

the whole genome and testing for co-segregation of a trait and marker 

alleles (Lander and Schork, 1994).  

The distance between two genetic markers can be estimated by 

measuring the number of recombination events between them, 

measured as a recombination fraction (q). The closer two loci are, the 

lower the probability that they will be separated during meiosis. The 

relationship between recombination fraction (q) and map distance is that 

q equal to 0.1 corresponds to 10cM and, although variable, 1cM roughly 

corresponds to one megabase of DNA in the human genome (Kheirallah 

et al. 2016).  
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The statistical significance of the linkage is commonly measured by the 

LOD score, which is the logarithm to the base of ten of the ratio of the 

data's likelihood given linkage to the likelihood of no linkage (Morton, 

1955). A LOD score of 3.3 corresponds to a P value of 5 x 10-5, which is 

the recommended threshold for genome-wide scans (5% false positives 

at this stringency). A LOD score of 2.2 (P = 7 x 10-4) is suggestive of 

linkage, 3.6 (P = 2 x 10-5) corresponds to significant linkage and a score 

of 5.4 (P = 3 x 10-7) is a highly significant linkage (Kheirallah et al. 2016). 

There have been several studies that performed genome-wide linkage 

scans to reveal susceptibility loci for airway obstruction and these 

studies focused on both lung function measures as well as COPD 

diagnosis. The first study to do linkage analysis for COPD related 

phenotypes was by Silverman et al. (Silverman, Mosley et al. 2002). 

These analyses were performed on pedigrees ascertained through 

severe and early-onset COPD without A1AT deficiency. Following the 

criterion of significant linkage as LOD score above 3.3, no loci showed 

significant linkage. However, another study by Silverman et al. in the 

same year, focused exclusively on spirometry measures and significant 

evidence for association to FEV1/FVC was demonstrated on 

chromosome 2q with LOD score of 4.12 at 222 cM (Silverman, Palmer 

et al. 2002). Restricting the analysis to smokers increased the statistical 

significance of linkage suggesting gene-by-smoking interaction as 

contributing to disease development. None of the other markers tested 

for association with FEV1/FVC had a LOD score above 3.3. FEV1 did not 

show any evidence of linkage (based on LOD score). Again, restricting 

the analysis to smokers increased the LOD scores suggesting gene-by-

smoking interaction as contributing to disease development. Other 

linkage studies for lung function and COPD phenotypes are summarized 

in Table 1.2. These studies were problematic due to lack of sufficient 

replication leveraging independent clinical cohorts.  
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Locus Measure LOD score Reference 

Chr.12 at 35cM  FEV25%-75% 5.03 DeMeo et al. (2004) 

Chr.6 at 184cM FEV1 5 Wilk et al. (2003) 

Chr.2q FEV1/FVC 4.42 Palmer et al. (2003) 

Chr.2 at 229cM FEV1/FVC 4.13 DeMeo et al. (2004) 

Chr.2 at 221cM FEV25%-75%/FVC 4.12 DeMeo et al. (2004) 

Chr.4 at 28cM FEV1/FVC 3.5 Wilk et al. (2003) 

Chr.12 at 35cM FEV25%-75%/FVC 3.46 DeMeo et al. (2004) 

Chr.12 at 36cM FEV1/FVC 3.26 DeMeo et al. (2004) 

Table 1.2: Summary of linkage studies for lung function and COPD phenotypes. 
Overall, linkage studies have had a limited success in investigating 

association of genetic variants to lung function and COPD. This is 

probably due to a fact that linkage analyses, although highly effective in 

studying monogenic disorders (such as cystic fibrosis), are not optimal 

and do not have the power to identify multiple common variants of 

modest effect sizes important in complex diseases and traits. 

Importantly, the late onset of COPD makes it difficult to perform family 

based studies in large numbers of subjects limiting this kind of study 

design and approach. 

1.3.3	 Translation	 of	 genome	 wide	 linkage	 scans	 to	 candidate	

genes	
DeMeo et al. performed a follow-up study to identify the most likely 

causative gene behind the FEV1/FVC linkage signal on chromosome 2q 

(Silverman, Palmer, et al. 2002; DeMeo et al. 2006). This was achieved 

by interrogating the transcriptomic profiling with genetic approaches. 

DeMeo et al. hypothesised that genes that appear to be differentially 

expressed at different stages of embryonic lung development would 

have a role in lung embryogenesis, which would in turn explain the 

observed linkage peak for chromosome 2. The limitation of this approach 

is that a gene that is differentially expressed during lung development 

does not show this gene to play a per se role in lung development. 

DeMeo et al. used a mouse microarray dataset to measure the 

differential expression of genes located within the linkage interval. The 
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serpin peptidase inhibitor, clade E, member 2 (SERPINE2) gene was 

found to have the greatest change in expression across the 

developmental time series. Therefore, SERPINE2 was taken forward for 

further investigation. Researchers also had other reasons to pursue this 

path, including the fact that SERPINE2 encodes a cellular and 

extracellular matrix-associated serine protease inhibitor known to be 

involved in coagulation, fibrinolysis and protease homeostasis which is 

also true for A1AT.  

Leveraging a lung microarray dataset from a population of COPD 

subjects and healthy controls, SERPINE2 expression was found to be 

significantly correlated with various respiratory parameters such as lung 

hyperinflation and post bronchodilator FEV1 (DeMeo et al. 2006). 

Immunohistochemistry (IHC) was used to demonstrate SERPINE2 

expression in both mouse and human lung tissue. Positive staining was 

demonstrated in healthy, emphysematous, and asthmatic lungs. 

However, SERPINE2 expression was only moderately increased in 

COPD (1.25-fold difference) and the observed effect did not meet the 

5% false discovery rate. Crucially, although Zhu et al. provided an 

independent and strong replication of genetic association of SERPINE2 

as a susceptibility gene for COPD, Chappell et al. did not replicate an 

association of 5 single nucleotide polymorphisms (SNPs) of the 

SERPINE2 gene with COPD (Chappell et al. 2006; Zhu et al. 2007). 

SERPINE2 is ~64kb in size and some of the 5 genotyped SNPs are not 

in strong linkage disequilibrium (LD). This suggests the presence of 

homologous recombination hotspots within the SERPINE2 gene 

(Chappell et al. 2006). Therefore, relying on 5 variants to replicate a 

genetic association is limiting since it may miss those SNPs that are 

driving the observed association but are not in linkage with genotyped 

SNPs. Zhu et al. used 25 SNPs in their replication of SERPINE2 

association with COPD and this highlighted the need to use a sufficient 

number of genotyped variants in order to properly examine a given gene 

(Zhu et al. 2007).  

What can be learned from these studies is the fact that although common 

haplotypes may appear to be associated with a given trait, in different 
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populations the same SNPs may not be associated with the same 

phenotypes. This complex pattern of association is not surprising in 

multifaceted diseases or traits such as COPD and lung function 

measures, and points towards the importance of conducting functional 

studies aiming at assessing the effect of SNP variation on gene function 

or expression. It is particularly intriguing that, as is the case for 

SERPINE2, a region of the gene shows association with a given 

phenotype but another region of the same gene may not be associated 

at all. More recently it was identified that SNPs within SERPINE2 were 

associated with airway wall thickness as well as SERPINE2 levels in the 

human lung (Dijkstra, Postma, et al. 2015).   

The starting point for another study by DeMeo et al. was a publicly 

available microarray dataset of differentially expressed probe sets in 

human lung tissue stratified by lung function measures (DeMeo et al. 

2009). Genomic regions appearing as differentially expressed were LD 

tagged and 889 SNPs from identified haplotypes were selected for 

association testing with COPD. Among these, 71 SNPs were significant 

at a nominal level (i.e. without correction for multiple comparisons) and 

taken forward for replication in a separate population. A stringent 

threshold of significance was established and only SNPs present on the 

iron regulatory protein 2 gene (IREB2) met the statistical significance. 

Finally, IREB2 mRNA and protein expression were shown to be 

significantly increased in lung tissue samples from COPD subjects in 

comparison to healthy controls implicating IREB2 as a COPD 

susceptibility gene. Therefore, DeMeo et al. firstly combined 

transcriptomics as well as genomics to inform the candidate COPD 

SNPs selection, and secondly followed this by a genetic association 

study, finally showing up-regulation of the putative gene in a disease 

state. Although IREB2 may act as a marker for COPD, at this stage it is 

not clear whether its levels are causal in relation to COPD pathogenesis 

or whether it is simply an epiphenomenon of other COPD mechanisms.  

In addition to candidate genes from linkage regions there have been a 

large number of candidate gene studies in COPD (Sandford et al. 2002; 

Wood and Stockley, 2006; Hersh et al. 2008). Many of these suffered 
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from limited coverage of the genetic variation in target genes and small 

sample sizes thus limiting interpretation due to the lack of replication 

(Hardin, 2014). Of note, a well powered study (8,300+ subjects) using a 

candidate gene approach identified association between SNPs in the 

matrix metalloprotease 12 gene (MMP12) and both FEV1 and COPD risk 

(Hunninghake et al. 2009).  

1.3.4	Genome-wide	association	studies		

The advent of GWAS is attributable to advances in genotyping 

technology (Syvanen, 2005), the Human Genome Project (Lander et al. 

2001; Venter et al. 2001) and the completion of the HapMap project 

(International HapMap, 2005). The basic rational of GWAS is similar to 

that of linkage scans: hundreds of thousands of SNPs in large 

populations are assayed to determine the co-occurrence of these 

variants with disease symptoms or with certain trait distribution (Pearson 

and Manolio, 2008). Importantly, these SNPs are selected to capture the 

maximum information on the human genome by using optimised panels 

that tag haplotype blocks. This is made possible by our improved 

understanding of the human genome, thanks to the initiatives such as 

HapMap (International HapMap, 2005). Since GWAS is a population-

based approach, most GWAS have concentrated on looking for 

association with common variants (>5% allele frequency) and they are 

less well designed to evaluate low allele frequency variants (Hirschhorn 

and Daly, 2005). This is in contrast to family-based linkage approaches 

which are ideally suited for detecting rare genetic variants of large or 

moderate phenotypic effects. However, GWAS generally offer greater 

resolution and more power in association mapping.  

GWAS rely on appropriate reconstruction of haplotypes based on a 

population data however results may be misleading if this reconstruction 

is erroneous. This is because investigators may use one SNP (also 

known as tag or sentinel SNP) as a proxy for a number of other SNPs 

present on the same haplotype. Importantly, the boundaries of haplotype 

blocks vary between populations of different ancestries which 

complicates cross-sectional comparison of studies that leveraged 
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different ethnic populations (International HapMap, 2005). GWAS can be 

conducted in a hypothesis free fashion without any prior knowledge 

about trait or gene function. Nevertheless, as in any association 

mapping, they can only identify SNPs in LD with causal SNPs but cannot 

pinpoint the causal SNP or gene (Hirschhorn and Daly, 2005). It is critical 

to remember that mere association does not imply causation and that a 

significantly associated SNP located in one gene may be tagging the 

causative variant present elsewhere on a completely different gene. 

Thus it is advantageous to refer to common haplotypes rather than 

individual SNPs as associated with any particular phenotype of interest. 

GWAS typically examine association with 500,000+ common 

polymorphisms spanning the entire genome in cases and controls which 

therefore requires very stringent statistical thresholds (e.g. P < 5 x 10-8) 

to limit the risk of type I error.  

1.4	The	landscape	of	GWAS	for	lung	function	measure	FEV1	

and	COPD	
Individual GWAS of lung function measures have identified a number of 

candidate SNPs potentially involved with human lung function measures 

and risk of COPD. Notably, between 2006 and 2010 there were several 

small GWAS utilizing high throughput SNP genotyping for association 

mapping with lung function and COPD. These studies identified several 

genetic loci underlying these traits including haplotypes containing 

Hedgehog Interacting Protein (HHIP), nicotinic acetylcholine receptor 

3/5 (CHRNA3/5) and Family with sequence similarity 13, member A 

(FAM13A) (Cho et al. 2010; Pillai et al. 2009; Wilk et al. 2009; Wilk et al. 

2007). Importantly, while these studies demonstrated the potential to 

identify novel lung function and COPD loci using GWAS approaches, it 

was clear that greater statistical power was required to identify genes 

with confidence indicating the need for very large population sizes. 

This led to the use of meta-analyses, i.e. analysing the results of many 

separate GWAS to increase study power for novel candidate gene 

discovery. A key component of these meta-analyses is the use of 
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imputation whereby genetic variation is not directly genotyped on the 

specific genotyping platform, but can be inferred with a measurable 

degree of confidence using reference genomes. These are now 

available from the HapMap project and subsequently the 1,000 and 

10,000 genomes initiatives (Marchini and Howie, 2010). This approach 

makes possible the combining of genotyping data generated on a 

diverse number of genotyping platforms from individual studies making 

meta-analysis a feasible approach.  

Whilst there have now been a number of such studies, the first two of 

these studies was the SpiroMeta and Charge consortia that investigated 

FEV1 as well as FEV1/FVC and were published in 2010 (Hancock et al. 

2010; Repapi et al. 2010). These studies had large discovery and 

replication samples.  In SpiroMeta study the sample sizes were 20,288 

in the discovery population and 21,209 in the replication population. 

Imputation resulted in testing for 2.5 million genotyped and imputed 

SNPs.  

1.4.1	 Meta-analyses	 of	 Forced	 Expiratory	 Volume	 in	 the	 first	

second		
In the SpiroMeta study (Repapi et al. 2010) four loci were reported as 

reaching genome wide significance for FEV1 including common variants 

at both known and novel loci (Figure 1.1):  

• 2q35 locus in linkage with Tensin 1 (TNS1) 

• 4q24 locus near Glutathione S-Transferase, C-Terminal Domain 

Containing (GSTCD), Intergrator Complex Subunit 12 (INTS12), 

and nephronectin (NPNT) 

• 5q33 locus in proximity to 5-Hydroxytryptamine (Serotonin) 

Receptor 4 (HTR4)  

• 4q31 locus containing HHIP 

The Charge consortium (Hancock et al. 2010) using a large discovery 

population of 20,890 subjects also showed genome-wide association 

with FEV1 at the INTS12/GSTCD/NPNT locus as well as describing 

additional signals. 
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Figure 1.1: Example of manhattan plot of association results for FEV1. Plot 
ordered by chromosome position. SNPs with −log10P > 5 are indicated in red. The 
four loci indicated by arrows showed association with FEV1 (P < 5 × 10−8) in the 
meta-analysis. Reproduced from Repapi et al. 2010. 
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1.4.2	 Genome-wide	 association	 studies	 and	 meta-analyses	 in	

COPD	
In addition to associations with FEV1, unsurprisingly, these SNPs have 

also been associated with COPD susceptibility (Brehm et al. 2011; 

Castaldi et al. 2011; Chen et al. 2015; Cho et al. 2010; Cho et al. 2012; 

Kim et al. 2014; Pillai et al. 2009; Soler-Artigas, Loth et al. 2011; Van 

Durme et al. 2010; Wilk et al. 2012). Moreover, recent studies have 

identified more refined and disease specific SNP associations in COPD 

subtypes including emphysema (Kong et al. 2011; Pillai et al. 2010), 

COPD exacerbations (Pillai et al. 2010), mild-moderate COPD (Hansel 

et al. 2013), moderate-severe COPD (Cho et al. 2014) and chronic 

bronchitis (Lee et al. 2014). 

Numerous COPD susceptibility regions have been identified. SNPs with 

the lowest P values studied (P ≤ 1 x 10-9) were near FAM13A (Cho et al. 

2010; Cho et al. 2012; Cho et al. 2014), HHIP (Cho et al. 2014; Van 

Durme et al. 2010), CHRNA3 (Cho et al. 2014; Pillai et al. 2009), 

Succinate Dehydrogenase Complex Assembly Factor 3 (SDHAF3) (Kim 

et al. 2014), RAS oncogene family member (RAB4B) (Cho et al. 2012) 

and hydroxylysine kinase (HYKK) (Wilk et al. 2012). There is a significant 

overlap between SNPs associated with FEV1 and COPD. These include 

TNS1’s haplotype SNP rs2571445 (Repapi et al. 2010; Soler-Artigas, 

Wain, et al. 2011), many SNPs at the 4q24 INTS12/GSTCD/NPNT 

haplotype locus (Castaldi et al. 2011; Soler-Artigas, Loth et al. 2011), 

HHIP’s haplotype SNP rs12604628 (Soler-Artigas, Loth et al. 2011), 

HTR4’s haplotype SNP rs3995090 (Repapi et al. 2010; Soler-Artigas, 

Loth et al. 2011). Also, different SNPs within the haplotype of 

Transforming Growth Factor, Beta 2 (TGFB2) were identified (Cho et al. 

2014; Soler-Artigas, Wain, et al. 2011), as well as different SNPs in 

HTR4’s haplotype (Hancock et al. 2010; Soler-Artigas, Wain, et al. 2011; 

Wilk et al. 2012). 

1.4.3	 INTS12’s	 haplotype	 associates	 with	 pulmonary	 function	

and	COPD			
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The effects of genetic variants at 4q24 on lung function have high 

statistical significance. In the Repapi et al. study the magnitude of effect 

on FEV1 of INTS12/GSTCD/NPNT haplotype sentinel SNP was 52mL 

per alternative allele change which is equivalent to about 3 years of FEV1 

decline in the non-smoking population (Figure 1.2; Repapi et al. 2010). 

The sentinel SNP for this locus (rs10516526) was also significantly 

associated with FVC but had no visible effect on FEV1/FVC, suggesting 

the correlation to be specifically for expiration parameters rather than for 

the relationship between them. Interestingly, Repapi et al. found that 

smoking exposure adjustment does not attenuate the observed 

association in INTS12/GSTCD/NPNT locus (Repapi et al. 2010), 

implying a limted role of smoking in driving the association. As 

mentioned, INTS12/GSTCD/NPNT locus association with FEV1 was also 

reported by Hancock et al. (Figure 1.2; Hancock et al. 2010).  

Later, Soler-Artigas et al. tested the hypothesis that loci previously 

associated with lung function are also associated with COPD (Soler-

Artigas, Loth et al. 2011). In this study researchers looked at five 

previously reported sentinel SNPs, including INTS12/GSTCD/NPNT 

haplotype’s rs10516526 variant, between 2890 COPD cases and 13,862 

controls. Results showed that the INTS12/GSTCD/NPNT locus 

represented by rs10516526 is significantly associated with COPD 

disease status in GOLD stage 3 or 4. Similar study by Castaldi et al. 

demonstrated similar association between INTS12/GSTCD/NPNT 

haplotype tagged by rs4235415 with COPD (Castaldi et al. 2011). More 

recently, two new meta-analyses by Soler-Artigas et al. and Wain et al. 

have again reported the association of INTS12/GSTCD/NPNT locus with 

FEV1 (Soler-Artigas et al. 2015; Wain et al. 2015). The identified 

association signal represents a linked haplotype that is ~600x103 – 

1000x103 base pairs (bp) long. However, an additional novel signal is 

thought to have been identified at 4q24 locus and thought to be 

independent from the INTS12/GSTCD haplotype and thus it has been 

argued that there are three independent signals in this region (Wain et 

al. 2015). 
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Figure 1.2: Regional association of FEV1 at 4q24. Statistical significance of each 
SNP is shown on the −log10 scale as a function of chromosome position (NCBI 
build GRCh36). The sentinel SNP at each locus is shown in blue. The correlations 
(r2) of each of the surrounding SNPs to the sentinel SNP are indicated by colours 
with red being r2>0.8, orange being r2>0.5, yellow r2>0.2, grey being r2<0.2, and 
white being unknown. The top plot is of the SpiroMeta consortium, while the 
bottom plot is of the Charge consortium. Reproduced from Repapi et al. and 
Hancock et al. (Repapi et al. 2010, Hancock et al. 2010). 
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Successful replication of 4q24 region association leveraging different 

population cohorts suggests that at least one gene within this locus is 

somehow connected with lung function and/or COPD pathogenesis. 

However genetic epidemiology approaches alone cannot isolate the 

causative gene. INTS12 is a candidate lung function gene by virtue of 

being in strong LD with all sentinels SNPs leveraged by mentioned 

GWAS meta-analyses investigating the genetic basis of FEV1. For 

example, in the case of SpiroMeta consortium, correlation coefficients 

(r2) between rs10516526 and large subset of intronic and promoter SNPs 

for INTS12 is greater than 0.8 (Figure 1.2).  

1.4.4	Refining	COPD	SNP	associations	

The identification of SNPs associated with COPD susceptibility, GOLD 

stages and COPD sub-types have been aided by utilising data collected 

in several worldwide initiatives such as COPDGene® (Regan et al. 2010), 

Evaluation Of COPD Longitudinally to Identify Predictive Surrogate 

Endpoints (ECLIPSE) (Villar Álvarez et al. 2008), and National 

Emphysema Treatment Trial (NETT) (Criner et al. 2011) studies, which 

provide large datasets of clinical, computed tomography (CT) and 

spirometric information on COPD subjects. These studies are continuing 

to investigate the underlying genetic and heritable factors of COPD (e.g. 

using data collected from over 10,000 individuals in the case of 

COPDgene). With the use of CT scans, COPDGene® seeks to 

accurately classify COPD based on the pathology observed and 

understand how the disease may differ from person to person. 

Furthering our understanding of the genetics underlying clinical features 

of COPD, Cho et al. published findings using these cohorts (Cho et al. 

2015). By completing a GWAS of CT imaging phenotypes, five genetic 

loci were found to be associated with emphysema-related phenotypes, 

one locus associated with airway-related phenotypes and two loci with 

gas trapping (Cho et al. 2015). The finding that genetic variants 

associated with both lung function and COPD risk also associate with 

emphysema is of critical importance as this not only provides greater 

confidence that this locus is a true association but also begins to help 



Chapter 1 – General Introduction 

 35 

dissect the altered biological mechanisms that may underlie the 

association. 

1.4.5	Copy	number	variation	in	lung	function	and	COPD	

In addition to SNPs potentially contributing to human lung function and 

COPD susceptibility, copy number variation (e.g. duplication or deletion 

of regions of genomic DNA) is also an important area of study, with at 

least 4% of the genome harbouring copy number variants (Conrad et al. 

2010). In 2011, Lee et al. performed a GWAS of copy number variation 

to test for associations with lung function measures in the Korean cohort 

(Lee et al. 2011). Interestingly, TNS1 and HTR4 showed evidence of 

correlation with FEV1 and FVC when leveraging copy number variation. 

These genes have previously been identified in SNP association studies 

indicating that different kinds of genetic markers (e.g. point mutations vs 

duplications) can be in LD with the causative variant thus showing similar 

associations (Lee et al. 2011; Hancock et al. 2010; Repapi et al. 2010). 

Recent work in a European cohort however, did not support these copy 

number variation associations for lung function measures or COPD 

susceptibility (Wain et al. 2014).  

1.4.6	 The	 missing	 hereditability	 and	 the	 promise	 of	 whole	

genome	sequencing	associations	

Using the approaches outlined above, to date, ~50 distinct lung function 

loci have been identified (Tang et al. 2014, Soler-Artigas et al. 2015, 

Repapi et al. 2010, Soler-Artigas, Loth et al. 2011, Hancock et al. 2010, 

Wain et al. 2015, Hancock et al. 2012). However, it is estimated that they 

explain only a modest proportion of the additive polygenic variance with 

4% for FEV1, 5.5% for FEV1/FVC and 3.2% for FVC (Repapi et al. 2010; 

Hancock et al. 2010). There are several reasons for this gap also known 

as “missing hereditability”.  

As mentioned, GWAS focus on common polymorphisms with minor 

allele frequency greater than 5% and spanning a small fraction of the 

human genome. However other forms of genetic variation may be 

important, particularly rare variation and structural variation (Lee et al. 
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2014). Therefore, common SNPs either individually or taken together 

typically may only explain only a small fraction of phenotypic variance. 

Leveraging larger population sizes could improve the determination of 

the true underlying genetic variance that accounts for phenotypic 

variance in lung function measures and COPD by identifying additional 

loci that contribute to these phenotypes.  

Klimentidis et al. applied a method developed in the animal breeding field 

to estimate the heritability of the three main lung function measures 

FEV1, FVC, and FEV1/FVC (Klimentidis et al. 2013). From their all-SNP-

inclusive analysis that considered all the genotyped SNPs variants, they 

found that heritability using SNP data are nearly identical to estimates 

based on pedigree information ranging from 0.50 for FEV1 to 0.66 for 

FEV1/FVC. However, based on to the formal definition of heritability 

(Wray and Visscher, 2008), it is possible to say that only variants in 

strong LD with causative variants should be included in the heritability 

calculation.  

Ultimately whole genome sequencing associations with lung function 

measures are likely to help refine the proportion of to the phenotypic 

variation that is hereditary. More generally, whole genome sequencing 

associations are likely to improve our understanding of lung function and 

COPD genetics by capturing the entire genetic variation including not 

only point mutations but also copy number variants such as 

chromosomal translocations, deletions and insertions. Moreover, whole 

genome sequencing has the potential of being able to determine the 

actual haplotype block boundaries in the studied population without the 

need for imputation as it is currently implemented in GWAS. The 

decrease in the costs of DNA sequencing has made this a viable 

possibility (Kheirallah et al. 2016).   

1.5	In	silico	approaches	in	translational	studies	
Despite GWAS successes in mapping lung function and COPD 

susceptibility loci, there is an obvious gap between these genetic 

findings and their functional and mechanistic translation (Visscher et al. 
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2012; Kheirallah et al. 2016). Over 90% of SNPs identified in GWAS of 

a range of human traits have been found to localize outside protein-

coding regions and this has limited the rate of their functional translation 

(Maurano et al. 2012). This is also true for lung function and COPD 

associations. Therefore, it has been suggested that lung function and 

COPD associated variants are likely to be involved in normal and 

aberrant regulation of gene expression. Providing more general support 

for this, various GWAS SNPs were found to be enriched in chromatin 

regulatory features (Maurano et al. 2012) and over-represented in eQTL 

studies (Nicolae et al. 2010; Luo et al. 2015; Obeidat et al. 2015). Since 

gene expression signatures are cell type specific and dependent on 

developmental stage, epigenetic mechanisms, and environmental 

factors, it makes interpretation of putative SNPs identified in GWAS 

challenging. SNPs located within intergenic regions are particularly 

difficult to interpret. In silico approaches to functionally translate genetic 

findings can facilitate interpretation and help in the generation of testable 

hypotheses.  

1.5.1	The	Encyclopaedia	of	DNA	Elements	(ENCODE)	project	
In silico translational approaches have become possible due to the 

widespread availability of regulatory information on the human genome 

generated from a diverse set of tissue and cell types. The Encyclopaedia 

of DNA Elements (ENCODE) project have taken a critical and leading 

role in this field. This initiative was launched in 2003 by the United States 

National Human Genome Research Institute (NHGRI) as a follow up to 

Human Genome Project (Consortium, 2007). This project involves a 

worldwide consortium and the data generated can be accessed through 

public databases. The main motivation for ENCODE project was that the 

mere sequence of a reference haploid genome only provides the 

physical context of hereditary information and is difficult to interpret 

without an additional layer of regulation that determines how the cell 

reads the genetic code. Also, because only 1.5% of the genome codes 

for protein (Ohno, 1972), the project aimed at increasing our 

understanding of the remaining component of the genome which 
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traditionally was inadequately understood. Surprisingly, one of the 

ENCODE project accomplishments was to demonstrate that 80% of the 

genome is “associated with at least one biochemical function” (Maher, 

2012). The ENCODE project passed through a pilot phase (Consortium, 

2007), and currently is in the data production phase. 

1.5.2	 Integrating	 human	 genome	 regulatory	 information	 with	

candidate	loci	
The fundamental basis behind all translational in silico approaches is 

that trait associated SNPs should lie within a functionally annotated 

region. These functional annotations involve biological or chemical 

events typically identified via high throughput techniques (Schaub et al. 

2012). For instance, in the hypothetical locus displayed in Figure 1.3, six 

SNPs are in strong LD as demonstrated by an r2 close to 1. Out of these 

polymorphisms, SNP 1 was the genotyped sentinel SNP and hence had 

the most significant P-value in the association study. However, SNP 1 

does not associate with any of the available regulatory annotations 

making this SNP unlikely to be driving the observed association signal. 

On the other hand, SNP 6 associates with a DNaseI hypersensitive site 

(DHS), a ChIPseq identified transcription factor (TF) binding site as well 

as being at a critical nucleotide of this TF motif signature which makes 

this SNP much more promising functional candidate. SNP 4 only 

associates with a DNaseI hypersensitive site while SNP 3 is also in a cis-

eQTL for a given gene. Thus if we were to follow systematic approach 

we could prioritize polymorphisms in this region from the ‘most 

functional’ to ‘least functional’. As in this example, Schaub et al. report 

that in the majority of associations the SNP most strongly supported by 

functional annotation is not the sentinel SNP from GWAS but a SNP in 

LD with the sentinel SNP (Schaub et al. 2012). 

There are numerous regulatory features and patterns of gene regulation 

both of which are cell type specific and may vary at various stages of 

development. Below in sections 1.5.3 to 1.5.8, elements that can be 

considered for overlapping with GWAS loci and the possible underlying 
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biological mechanisms that may be responsible for the genetic 

association are summarised. 

 

Figure 1.3: Combining GWAS-associated locus with human genome regulatory 
annotation. Reproduced from Schaub et al. (2012). 

1.5.3	Transcription	Factor	binding	sites			

The definition of a TF is a protein that binds to genomic DNA in a 

sequence-specific manner and controls the rate of gene transcription 

(Latchman, 1997). TFs can act either individually or as cofactors to 

promote or repress recruitment of RNA polymerase to specific genes, 

thus acting as an activator or suppressor of gene expression (Lee and 

Young, 2000). A critical characteristic of TFs is that they contain a DNA-

binding domain which mediates the binding of TF to its cognate 

sequences (Ptashne and Gann, 1997).  

The current method of choice to identify TF binding sites is ChIPseq (Adli 

and Bernstein, 2011). In ChIPseq proteins are captured while attached 

to DNA by cross-linking with formaldehyde and the TF of interest is 

immunoprecipitated using a specific antibody. DNA is purified from the 
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precipitated protein and sequenced by the shotgun approach using next-

generation sequencing (NGS). Reads are then aligned to the reference 

genome and from then on sequence reads are referred to as sequence 

tags. An enrichment of tag density over a particular region suggests that 

particular site to be the binding site of the TF. Mock immunoprecipitation 

using non-specific antibody may be used as a control in ChIPseq 

experiments however the current recommendation of the ENCODE 

consortium is to use ‘input control’ instead (Landt et al. 2012). Input 

control is a sequenced DNA without immunoprecipitation to account for 

local read distribution biases.  

Demonstrating the specificity of antibody is pivotal and can be validated 

by either Western blotting (WB) or immunofluorescence (IF) combined 

with protein knockdown or knockout in the cells (Landt et al. 2012). 

Several computational approaches have been devised to analyse 

ChIPseq data, the most popular of which are Model-based Analysis 

(MACS) (Zhang et al. 2008), Spatial Clustering for Identification of ChIP-

Enriched Regions (SICER) (Xu et al. 2014) and HOMER (Heinz et al. 

2010) toolkits. However, many more programs have been devised for 

ChIPseq analyses (Bailey et al. 2013).  

For a given GWAS signal locus, a TF binding onto a SNP variant is highly 

indicative of this variant being functional. Schaub et al. has shown that 

TF binding is the most enriched functional element in GWAS loci when 

compared to the rest of investigated regulatory elements (Schaub et al. 

2012). This finding is highly indicative of the complex nature of 

phenotypes that were thus far studied by GWAS. One possible scenario 

for a mechanism behind the genetic association signal is that the 

causative variant is controlling the expression of the nearby gene which 

encodes a TF (Figure 1.4). Different levels of TF in turn affect the 

expression of TF’s regulome (i.e. the set of genes regulated by the TF) 

which contains genes belonging to molecular pathways important for the 

investigated phenotype.  
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Figure 1.4: One possible mechanism driving a genetic association signal via TF 
activity. Reproduced from Knight (2014). 

1.5.4	Post-translational	histone	tail	modifications	

Mapping of histone tail modifications and incorporating them onto GWAS 

loci is another in silico approach that can be used to help with the 

interpretation of non-coding variants. Establishing histone modification 

sites is similar to establishing TF binding sites. Antibodies specific for 

various kinds of histone modifications are used for ChIPseq analyses. 

Post-translational histone tail modifications such as histone 3, lysine 4 

trimethylation (H3K4me3), H3K27me3, or H3K36me3 act as epigenetic 

signals regulating gene expression and chromatin modelling (Bannister 

and Kouzarides, 2011). Thus these modifications act in epigenetic 

control of gene expression and associate with different gene activities. 

For example, H3K4me3 mark tends to highlight actively transcribed loci 

while H3K27me3 associates with the silenced X-chromosome in females 

(Gibney and Nolan, 2010). Histone modifications are also used to 

identify the location of other functional elements such as enhancers 

(Shlyueva et al. 2014). However, the above list is not exhaustive of all 

possible histone modifications. As it is the case for other regulatory 
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elements, patterns of histone modifications vary depending on the cell 

type necessitating the use of datasets from tissues relevant for the 

phenotype of interest.  

It is possible that patients with genetic susceptibility for COPD may have 

the predisposition for low lung function due to some developmental 

abnormality. Epigenetic mechanisms were shown to play a central role 

in embryological development and organogenesis (Kiefer, 2007). 

Therefore, aberrant resetting of epi-marks could be due to inappropriate 

levels of effector molecules responsible for their resetting. Because the 

majority of SNPs in GWAS studies are non-coding and abnormal gene 

regulation is thought to play a predominant role in disease pathogenesis, 

epigenetic control is likely to take a central stage in functional translation 

of GWAS findings. 

1.5.5	Other	regulatory	elements	
DHS are locations of regulatory DNA based on NGS of genomic DNA 

sensitive to cleavage by DNaseI. These sites mark the accessible 

chromatin and overlay the majority of known regulatory elements 

including promoters, enhancers, silencers, insulators and imprint control 

regions. DHS show evidence of recent functional evolutionary constraint. 

Interestingly, DHS in pluripotent and immortalised cells show higher 

mutation rates than that observed in highly differentiated cells (Thurman 

et al. 2012). Genomic sequences showing conservation of DNA across 

the species are likely to be functional. Although approximately only 

~1.5% of the genome is protein coding, about ~8% is under purifying 

selection and hence likely to be directly functional (Rands et al. 2014). 

Genome-wide DNA methylation profiling through bisulfite conversion 

followed by NGS is another high throughput approach to detect a mark 

important in regulation of gene expression (Li and Tollefsbol, 2011). The 

effects of DNA methylation are context dependent but they generally 

associate with silencing of genes in cis, especially if it relates to the 

methylation status at the CpG islands (Deaton and Bird, 2011). Finally, 

regions associated with short and long non-coding RNA involved in 

diverse regulatory roles can be identified through RNA sequencing 
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(RNAseq) where a cDNA library is prepared with e.g. ribosomal RNA 

depletion protocol. 

A useful software tool for rapid preliminary examinations of candidate 

GWAS loci is the Broad Institute’s HaploReg (Ward and Kellis, 2012). 

This software allows for the exploration of annotations of the genome at 

particular variants representing haplotype blocks. Information on 

haplotype blocks is based on the 1000 Genomes Project (Genomes 

Project et al. 2012). Linked SNPs can be visualized along with sequence 

conservation, chromatin annotation from the ENCODE project, the effect 

of SNPs on gene expression from eQTL studies, as well as the effect of 

SNPs upon putative regulatory motifs.  

1.5.6	Overview	of	unbiased	analyses	of	genomic	feature	overlaps	

It should be noted that a large degree of non-functional overlap between 

GWAS loci and functional elements can be anticipated. Therefore, it is 

important to use an unbiased approach when investigating intersections 

to determine which overlaps are potentially functional and which 

overlaps are expected by chance. Several different bioinformatic 

approaches have been developed to assess the significance of overlaps 

and are outlined below. 

In Fisher’s exact test the number of overlaps and number of intervals 

unique to each feature are calculated and the test of significance is 

performed given the intervals coverage and the genome size (Fisher, 

1945; Quinlan and Hall, 2010). On the other hand, the Jaccord statistic 

measures the ratio of the number of intersecting base pairs between two 

regions to the number of base pairs in the union of these regions 

(Favorov et al. 2012). The final statistic ranges from 0 to 1, where 0 

represents no overlap and 1 represents complete overlap. Permutation-

based approaches take reference and test regions as input and calculate 

the observed number of overlaps between the reference and test. Test 

regions are then assigned to random regions with the possibility of 

masking certain parts, such as non-mappable repetitive regions of the 

human genome. The number of overlaps between shuffled test regions 

and reference are re-calculated multiple times and the distribution of 
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random overlaps are compared to the observed (Diez-Villanueva et al. 

2015). Therefore, permutation-based approaches are based on 

simulation. 

1.5.7	Expression	quantitative	trait	loci	approaches	

The identification of SNPs as eQTL raises the possibility of those SNPs 

being functionally relevant and potentially causative. The most 

commonly used approach is to study transcript eQTLs where different 

human primary cells, cell lines or tissues have been characterised for 

both mRNA expression and have been genotyped on GWAS platforms. 

To date, eQTL studies have relied on microarray based technology with 

common microarrays utilizing probes located at the 3’UTR regions in 

order to target areas common to all annotated gene isoforms. On the 

other hand, exon arrays were designed by implementing probes 

targeting individual exons (Majewski and Pastinen, 2011). Exon array 

datasets can be ‘noisy’ due to short probe design and probe hybridization 

signal saturation thus have various analytical challenges (Kwan et al. 

2008). Resolution at a splicing level has been achieved by custom arrays 

targeting splice-junctions (Calarco et al. 2007). Nevertheless, because 

of limitations of a priori gene annotation knowledge as well as complexity 

of design and analysis, microarrays are gradually being replaced by 

RNAseq technology (Majewski and Pastinen, 2011). RNAseq provides 

a more accurate estimation of known or unknown transcript abundance 

and in a larger dynamic range (Wang et al. 2009).  

eQTL analyses particularly reinforce the notion that the observed 

association signal relates to the expression of either near-by (cis-QTLs) 

or distant (trans-QTLs) genes (Figure 1.5). Although these variants are 

sometimes said to ‘control’ the gene expression, the QTL SNP may not 

be controlling these outcomes but rather be in LD with the truly functional 

SNP. Nevertheless, mapping gene expression as a QTL trait is a 

powerful way to identify markers correlated with differential gene 

expression at a population level and can be used to prioritize SNPs or 

genes in GWAS loci (Rockman and Kruglyak, 2006).  
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Obeidat et al. utilised the lung tissue eQTL dataset (n=1,111) from Hao 

et al. to investigate the genetic association signals identified in the 

SpiroMeta-Charge GWAS meta-analyses of both FEV1 and FEV1/FVC 

(Obeidat et al. 2015; Hao et al. 2012). This study compared 468,300 cis 

and 16,677 trans-eQTL SNPs identified in the lung with the 2,419,122 

SNPs interrogated in the SpiroMeta-Charge consortium papers (Repapi 

et al. 2010; Hancock et al. 2010). The analyses identified a significant 

enrichment for both cis and trans-eQTL variants at those loci. More 

specifically, for the 6615 SNPs identified as associated with FEV1, 3413 

(i.e. 52%) were also cis-eQTL SNPs. Obeidat et al. study is an example 

of leveraging eQTL approaches to enhance the understanding of biology 

behind GWAS association signals (Obeidat et al. 2015).  

Mapping the RNAseq reads to the reference genome followed by 

counting the number of SNP-specific reads allows for a detection of 

allele-specific expression (ASE). It is based on the ability to split the 

reads depending on the parental chromosome they align to (Figure 1.6). 

ASE detection is a unique feature of RNAseq and there are major 

technical challenges in the reliable measurement of ASE (Sun and Hu, 

2013).  
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Figure 1.5: An illustrative hypothetical example of the cis-eQTL and trans-eQTL 
together with their associated per-genotype gene’s read counts. On the left hand 
side we can see the example of cis-eQTL where allele C associate with low gene 
expression while allele G associates with high gene expression. A heterozygous 
individual with both alleles is ASE. On the right hand side we can see the example 
of trans-eQTL where allele T associate with low gene expression while allele A 
associates with high gene expression. In contrast to cis-eQTL, trans-eQTL is not 
showing ASE in a heterozygous individual. Reproduced from Sun and Hu 2013. 
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Figure 1.6: A practical example of ASE. Instead of counting total reads per gene, 
in determination of ASE, exonic (therefore sequenced) SNPs are imputed with 
not transcribed target (genotyped) SNP and read counts are performed per 
haplotype. Difference in read counts between the haplotype, as is the case for 
individual 1, is indicative of ASE. Reproduced from Sun and Hu 2013. 

 

1.5.8	Summary	of	in	silico	approaches	in	the	translational	efforts	

In silico approaches to facilitate the translation of genetic association 

analyses can be useful in providing both variant and gene specific 

information regarding the regulation in these loci. This approach can be 

effectively used to generate novel hypotheses about the potential genes 

or variants contributing to the phenotypic variation but alone they do not 

constitute enough evidence. Ultimately these hypotheses ought to be 

validated in in vitro or, preferably, in in vivo models. Candidate regulatory 

variants, identified through overlap with publically available functional 

element annotations require experimental testing using a diverse range 

of methods in order to have confidence in the observed effects.   
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1.6	In	vivo	methods	to	translate	GWAS	findings	

1.6.1	Establishing	an	expression	profile	of	specific	genes	in	the	

human	adult	lung	
Once a potentially causative gene has been identified, it is essential that 

the expression profile for this gene, at both mRNA and protein levels, is 

established in relevant human tissue. Analysing expression at cellular 

and subcellular levels may support a priori evidence about gene function 

and additional insight can be derived by comparing expression between 

healthy and disease states and during different developmental stages. 

IHC is a widely used tool to characterize protein expression in human 

tissues. In addition to providing information on protein localization within 

cells, IHC can be utilized to assess the level of protein expression based 

on staining intensity. The human protein atlas, a publically available 

database, encompasses the protein expression of 44 normal human 

tissues (Uhlen et al. 2005). In addition to identifying protein expression 

in normal human tissues it is important to consider whether protein 

expression changes in disease. The key questions are whether the 

protein expression increases or decreases and whether the change in 

expression can be used as a biological or prognostic marker.  

There are a range of other models to study human lung tissue, the most 

obvious being primary cell culture which has widely been used to look at 

responses in airway structural cells. The limitation of these models is the 

lack of context, as typically these are cultures of a single cell type. To 

get around this issue, other approaches have been developed including 

the use of the human lung explant model and the human precision cut 

lung slice (PCLS) model (Wohlsen et al. 2003; Hackett et al. 2008). The 

human lung explant model can be used for a wide range of applications 

including the identification of regulatory mechanisms defining the 

expression profile of specific or global gene expression e.g. in the 

presence of environmental triggers such as cigarette smoke, or infection 

such as respiratory syncytial virus. In the PCLS model, fresh lung tissue 

is thinly sliced and bronchial contractions can be measured in normal 

and diseased human lung in the presence and absence of stimuli or 
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drugs which can provide insight into the role of specific genes or sets of 

genes in airway contraction.  

1.6.2	Defining	a	role	for	lung	function	associated	genes	in	human	

lung	development	
Data from the lung function GWAS meta-analyses suggest many of the 

identified genes may be of importance in foetal or early lung 

development as the majority of the associations were still present when 

these analyses were restricted to the paediatric cohorts (Repapi et al. 

2010). It is therefore important to question whether spatial or temporal 

expression of these genes early in human life and/or throughout 

childhood may be related to or predict lung function and disease later in 

adult life.  

1.6.2.1	Overview	of	lung	organogenesis	

Lung development has five in utero stages, with development continuing 

postnatally. Organogenesis occurs during the first two stages of lung 

development: embryonic and pseudoglandular. During the embryonic 

stage of lung development (4 - 8 weeks) formation of the major airways 

occurs with the lung primordium (~day 30) subdividing into the two main 

bronchi (~day 33). The trachea and bronchi continue to develop and the 

pulmonary vein and artery are also formed by this time. Lung buds 

differentiate from each bronchi into the pseudoglandular stage of 

development (6 - 17 weeks). Terminal bronchioles, neural networks and 

blood vessels continue to develop producing conducting airways. By the 

end of the pseudoglandular stage, pneumocyte precursors are present 

as an epithelium. During the canalicular, saccular and alveolar stages of 

development, rapid differentiation occurs. At the canalicular stage of 

development, respiratory bronchioles are formed and Type II 

pneumoctyes differentiate into Type I pneumocytes. Surfactant is 

produced by Type I pneumocytes from the 25th week post conception. 

The level of surfactant increases until birth. At the saccular stage, the air 

spaces expand and alveolar ducts are formed. At the alveolar stage, 

alveolar sacs are formed through secondary septation and 

alveolarization which continues after birth up to around 8 years of age 
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with the generation of new, and growth of the existing alveoli. Lung 

volume continues to increase with skeletal growth, and reaches a 

maximum between 25 and 35 years of age (Figure 1.7; Moore and 

Persaud, 2003). 

 

Figure 1.7: A graphical outline of human lung development. 

Apart from genes with prior evidence for a role in human development 

(e.g. PTCH1 and HHIP), little is known about the role and expression of 

lung function associated genes during lung development (Bellusci et al. 

1997; Miller et al. 2004; Pepicelli et al. 1998). The gene expression 

omnibus is a publically available resource containing large microarray, 

and more recently RNAseq, datasets which can be used by the scientific 

community. The Human Developmental Biology Resource (HDBR) is an 

additional source of human embryonic and foetal tissue samples within 

the UK with samples ranging from 3 – 20 weeks post-conception 
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(http://www.hdbr.org/). HDBR can be used to assess lung function 

associated genes’ protein IHC staining in a range of airway relevant 

tissues. As an example of using these resources, Hodge et al. and 

Obeidat et al. reported that whilst INTS12 expression did not change 

throughout the development of the lungs, GSTCD expression 

significantly decreased and HTR4 expression increased with rising foetal 

age throughout the pseudoglandular and canalicular stages (Hodge et 

al. 2013; Obeidat et al. 2013).  

Although these findings are interesting, as it was mentioned before, a 

gene that is differentially expressed during lung development does not 

demonstrate this gene to play a direct role in lung development which 

may be showed by combining mutagenesis approaches altering 

candidate gene expression and assessment of lung development. 

Therefore, a major limitation of human tissue based approaches is that 

they are naturally restricted by lack of access to longitudinally obtained 

tissue samples and are often observational rather than mechanistic in 

nature. This has led to the extensive use of mice to define genetic 

mechanisms and interrogate the roles of specific genes in vivo, 

particularly using transgenic knockout mice.  

1.6.3	Mouse	models	for	respiratory	research	and	the	translation	

of	genetic	findings	

1.6.3.1	Complete	gene	knockout	models	

To functionally characterize genes identified from human lung function 

GWAS, animal models are a useful tool to better understand the role of 

a given gene within the whole organism and the lung (Dawkins and 

Stockley, 2001). The use of mice in research has always been a 

controversial issue, and a full understanding of both advantages and 

disadvantages to the study of human health and disease are essential. 

It is interesting to note that although the chromosomal make up in mice 

is different to humans with mice having 20 pairs of chromosomes rather 

than 23, 99% of mouse genes have human orthologues and the order of 

genes between the two organisms is the same. Many complex human 

diseases are shared in mice and humans, however drug development 
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using pre-clinical rodent models has been limited in translation success 

and this is particularly true in the respiratory field. Review by Edwards et 

al. focussed on asthma research and highlighted the potential over-

reliance on animal models as a contributing factor to the lack of new 

drugs coming to the clinic (Edwards et al. 2015). Also, respiratory 

research in the mouse has its own specific considerations. For instance, 

the basic anatomy of mice’s and human’s lungs is different, with the 
make-up of the lung lobes and branching markedly different. 

Despite these considerations it is beyond doubt that the use of mice in 

basic physiology research has provided dramatic advances in the 

understanding of the role of specific genes in mammalian physiology. In 

2011, the approach of gene deletion to understand gene function was 

given a major boost by the formation of The International Mouse 

Phenotyping Consortium (IMPC) which is a world-wide resource built 

from previous programmes including The European Mouse Disease 

Clinic and Mouse Genetics Project, and has the vision to build a 

comprehensive catalogue of the functions of every gene in the 

mammalian genome (Brown and Moore, 2012). This is to be achieved 

by the generation and extensive phenotyping of ~20,000 knockout mice 

with removed protein coding genes in a systematic, standardized way. 

As the IMPC expands, more data will become available for GWAS 

relevant genes making this a useful resource. While we have focussed 

here on IMPC, it is of course important to note that many transgenic 

strains of mice have been generated in individual laboratories. Critically, 

if global gene knockout is lethal, there is a possibility to delete genes in 

a tissue specific manner. This can be, for instance, achieved in 

doxycycline or tetracycline regulated systems (Gunther et al. 2002; 

Shockett et al. 1995).   

1.6.3.2	Examples	of	gene	knockout	mouse	models	in	respiratory	research	

Recent work has focused on gaining insight into whether candidate lung 

function gene HTR4 plays a functional role in pulmonary physiology 

(House et al. 2015). Knockout of HTR4 resulted in no difference in the 

histology of lungs of HTR4-null mice and wildtype mice. Furthermore, 
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there was no difference in the lung volume or body weight of these mice. 

House et al. hypothesized that noncoding variants in HTR4 may exert 

trans-regulatory effects. They identified that HTR4-deficient mice had a 

higher baseline lung resistance and increased methacholine-induced 

airway hyper-responsiveness (AHR) compared to wild type littermates, 

however these effects were modest. The HTR4-deficient mice were also 

more sensitive to serotonin-induced AHR. Interestingly, challenges with 

bacterial lipopolysaccharide (LPS), bleomycin (which promotes lung 

fibrosis) and house dust mite to mimic an asthma phenotype were also 

performed. The pulmonary function and cytokine profiles of HTR4-

deficient mice only modestly differed from their wild-type counterparts in 

these models. This was observed with reduced IL1b responses in HTR4 

knockout following LPS instillation in the lungs. Thus, the group provided 

some evidence for a causal relationship between GWAS identified HTR4 

and pulmonary function, with alterations in baseline lung function and 

increased AHR in HTR4-null mice but no differences in lung histology 

(House et al. 2015).  

GWAS have identified a number of polymorphisms in the Advanced 

Glycation End Product-Specific gene (AGER) with the pivotal 

nonsynonymous SNP appearing to be in exon 3 rs2070600 (Gly82Ser, 

(C/T)) which is associated with emphysema (Cho et al. 2015). AGER 

deficient mice when exposed to cigarette smoke appeared to be 

modestly protected from the emphysema like phenotype that developed 

in the lung including airspace enlargement when compared to wild type 

littermate controls (Sambamurthy et al. 2015). This protection was at 

least in part thought to be driven by a reduction in the influx of neutrophils 

into the airways in AGER knockout mice. Therefore, Sambamurthy et al. 

have taken a purely observational association study suggesting AGER 

to harbour a variation contributing to emphysema into a causal 

relationship demonstrating the power of this approach (Sambamurthy et 

al. 2015).   
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1.7	In	vitro	approaches	using	human	cells	to	translate	GWAS	

findings	
This sections focus on the use of human in vitro models to further define 

and translate genetic association signals. 

1.7.1	Choosing	the	cell	type	to	work	with	

It is important to use cell types relevant to the phenotype of interest in 

order to avoid misleading biological interpretations. Currently available 

regulatory genome annotations have been generated in diverse sets of 

primary cells and immortalized cell lines (Consortium, 2007), each with 

its advantages and disadvantages. In the coming years annotations of 

un-differentiated and differentiated embryonic cells are likely to rise in 

prominence due to the likely developmental basis of many of the traits 

for which genetic association studies have been conducted. Similarly, 

the use of induced pluripotent stem cells (iPSCs) to re-generate lineages 

of differentiated human cells has a potential, especially as cells can be 

derived from individuals of a known genotype. 

Primary cells are most representative of the human tissues from which 

they were isolated. However, their phenotype is often context specific 

and when removed from the body may alter in phenotype. Therefore, 

care is needed in interpretation and the use of these cells. Isolation of 

primary cells or precursor stem cells is inevitably more challenging than 

the use of immortalised cell lines. Obtaining primary human bronchial 

epithelial cells is achieved by bronchoscopy which is invasive for the 

patient and requires local anaesthesia. It is also difficult to obtain a 

homogenous population of cells and this may require additional sorting 

of cells by flurescence-based preparative procedures. 

There are a number of immortalised cell lines which are often used in 

respiratory research. Immortalised cell lines have been well 

characterized by public consortia. Some of these cell lines were shown 

to retain the properties of the original primary cells from which they were 

derived (Bocchini et al. 1992), although it is not advisable to assume that 

a cell line has the same gene expression signature as the original 

unmodified cells and this should be examined on a case-by-case basis. 
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Different chromosomal re-arrangements, alteration of chromatin, DNA 

methylation as well as histone methylation patterns may be observed in 

cell lines (Masters, 2000). For example, BEAS2B-R1 cells, which are 

frequently used as a model by those interested in bronchial epithelial cell 

biology, have 68 chromosomes (unpublished observation; Ian Sayers et 

al.). These transformations may lead to artificial biochemical activities 

and misleading genome annotation. The advantage of cell lines is their 

ease of propagation allowing access to a large numbers of cells for 

analyses.  

If it is not clear what kind of cell type to utilize, a de novo identification of 

target cells may be applied (Maurano et al. 2012). In this approach 

annotations from all possibly available cell types are systematically 

integrated into GWAS loci and cell types showing prominent enrichment 

of the considered functional element can be deemed relevant for the 

phenotype of interest. This approach can be used if no extensive a priori 

knowledge about the studied phenotype is available. For example, 

Maurano et al. identified IL-17 producing T helper cells as a target cell 

type for Crohn’s disease using this method (Maurano et al. 2012). This 

method can in principle be applied to any phenotype for which a genetic 
association study has been undertaken.  

1.7.2	Investigating	non-coding	loci	
In addition to the approaches discussed above, there are many in vitro 

tools which can be used by researchers wishing to functionally 

investigate non-coding candidate variants. Luciferase or green 

fluorescent protein (GFP) reporter assays can be used for studying 

transcriptional and post-transcriptional gene regulation by directly 

measuring the functional activity of the controlling elements. Causative 

inferences can then be made by applying mutagenesis to the candidate 

regulatory regions. Electrophoretic Mobility Shift Assays (Hellman and 

Fried, 2007) are also used to screen nuclear extract or DNA sequences 

for specific protein-DNA binding activity.  
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1.7.3	 The	 spatial	 organization	 of	 chromosomes:	 chromosome	

conformation	capture	
Studying the spatial organization of chromosomes is crucial if we are to 

understand the regulation of gene expression. Because of the epistatic 

effects of genetic variants on the expression of distant genes (Hemani et 

al. 2014), the emergence of a new tool called Capture-C may prove to 

be useful in elucidating these relationships (Hughes et al. 2014). 

Capture-C is a further development of chromosome conformation 

capture (3C) which is used to analyse the organization of chromosomes. 

It utilizes oligonucleotide capture technology, 3C and high-throughput 

sequencing and hence enables researchers to interrogate interactions 

at hundreds of selected loci at high resolution in a single assay. 

Therefore, this method can provide mechanistic evidence linking genetic 

variants to genes. 

This approach has been used to examine the HHIP locus. This led to the 

hypothesis that the mechanism underlying the association was at least 

in part due to alterations in regulatory mechanisms. Zhou et al. formally 

tested this hypothesis and by using a combination of chromosome 

conformation capture, ChIP - quantitative Polymerase Chain Reaction 

(qPCR) and reporter based assays they identified a long range enhancer 

in the HHIP gene in the same region as the sentinel SNP associated with 

lung function (Zhou et al. 2012). The authors went on to further 

demonstrate that the COPD risk haplotype was associated with reduced 

reporter activity suggesting a causative mechanism leading to reduced 

HHIP expression as observed in lung tissue isolated from COPD 

patients. 

1.7.4	Studying	protein	coding	candidate	genes		

With an established candidate protein-coding gene, the traditional assay 

used for the characterization of the gene function is the gene knockdown 

using small interfering RNA (siRNA) or short hairpin RNA (shRNA) in a 

range of relevant human cell lines or primary cells. These methods are 

particularly useful when little is known about the gene function and may 

be used for hypothesis generation. Portelli et al. have overexpressed the 
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asthma associated gene, urokinase plasminogen activator receptor 

gene (uPAR) in human bronchial epithelial cells and observed increased 

proliferation as a result of this manipulation which was suggested to 

contribute to airway remodelling (Portelli et al. 2014). This fits well with 

the observation of elevated levels of PLAUR (uPAR encoded protein) in 

the airway epithelium in asthma patients and association of PLAUR 

levels with worsening prognosis and increased disease aggressiveness 

in other diseases such as cancer and COPD (Stewart, Nijmeh et al. 

2012; Ivancso et al. 2013; Smith and Marshall, 2010). However, it is 

difficult to infer completely the functional role of the gene with an 

overexpression approach and gene depletion is potentially more 

informative from this perspective. There are commercially available 

siRNAs for many of the genes implicated from GWAS approaches which 

can be used in cell biology experiments, although appropriate controls 

are essential as off target effects of transfection are possible (Echeverri 

et al. 2006). 

1.7.4	 Generating	 novel	 functional	 hypotheses	 through	

expression	profiling	and	pathway	analyses	
Although algorithms taking significant GWAS variants as input and 

pathways likely to be affected in the phenotype of interest as output have 

been developed, these algorithms had a relatively limited success in 

generating hypotheses about the biological basis behind considered 

phenotypes (Wang et al. 2010). This is largely due to the complex nature 

of the human genome where various epistatic events between alleles 

are likely to occur. Also, in numerous cases, GWAS signals lie within a 

large region containing no annotated genes. In these situations, it is often 

the case that a genetic variant is within an enhancer element and has an 

effect on the expression of a gene distant to its own location. Therefore, 

without the understanding of the inter-genomic interactions it is hard to 

infer what pathways may be dysregulated in a disease state. 

With a candidate gene prioritized it is possible to generate novel 

hypotheses by combining the manipulation of the expression of the gene 

of interest with global transcript expression profiling. For that purpose, 
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RNAseq has advantages that out way microarray based approaches 

such as greater dynamic range, the possibility of novel splice variant 

discovery (Wang et al. 2014), identification of differentially expressed 

genes at individual isoform resolution, identification of differential 

splicing, identification of coding sequence differential expression and 

even differential promoter usage (Trapnell et al. 2012). 

Having performed a differential gene expression analysis in the 

presence of approaches to target the gene of interest pathway analysis 

may then be applied. In the classical pathway analysis approach called 

over-representation analysis (ORA) the first step requires a creation of 

an input list of genes that are differentially expressed under the 

considered experimental condition. This list of genes is based on an 

arbitrary chosen statistic of significance such false discovery rate (FDR) 

below 5%. Then, input genes that are part of the pathway are counted. 

This process is repeated using appropriate background of genes (such 

as all protein-coding genes). Lastly, every pathway is tested for over 

representation in the list of input genes using hypergeometric, chi-square 

or binomial distribution (Huang et al. 2009). The same principles apply 

for Gene Ontology (GO) analyses but instead of counting the number of 

genes per pathway, genes are counted per GO term.  

It has been argued that the ORA approach is limited in its ability to 

identify biologically-meaningful pathways that vary between 

experimental conditions or phenotypes (Huang et al. 2009). Firstly, in 

ORA genes that are differentially expressed at FDR above the statistical 

threshold of significance, are not included in the analysis, and hence this 

method could miss biologically important genes that do not fulfil the 

criteria of arbitrary decided statistical significance (e.g. genes that are 

differentially expressed at a P<0.051). Secondly, over-represented 

pathways are identified based on gene-counts alone and the analysis 

does not account for quantitative gene expression changes.  

These limitations are addressed by gene set enrichment analysis 

(GSEA). In contrast to ORA, GSEA approach uses all available 

information regarding gene expression and computes an enrichment 

score for the gene sets based on effect size or other ranking statistics. 
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The objective of GSEA is to, given a priori defined gene set as well as 

gene-expression-ranked gene list, determine whether members of gene 

sets are randomly distributed throughout ranked lists, or primarily found 

at the top or bottom of the ranked list (Subramanian et al. 2005). GSEA 

calculates the enrichment score by walking down the ranked list of 

genes, increasing a running-sum statistic when a gene is in the gene set 

and decreasing it when it is not. A commonly employed ranking algorithm 

is a signal-to-noise ranking where average gene expression in of-interest 

“reference” condition is subtracted from the average expression in the 

other condition divided by the sum of variances. Therefore, genes are 

ranked from most upregulated with least conditional variability through 

genes with moderate changes in gene expression at greatest expression 

variability to most downregulated genes with least variability (relative to 

the “reference” condition). Hence, in enrichment score calculation, the 

magnitude of the increment depends on the strength of differential gene 

expression and its biological variation.  

The limitation of GSEA is the assumption that genes and pathways are 

independent from each other, which is not necessarily true considering 

the complexity of cellular networks. Also, because both GSEA and ORA 

are based on a priori defined gene sets, both these approaches are 

limited by the quality of gene set definition. For instance, if majority of 

genes assigned to a particular gene set are erroneous then the identified 

dysregulated pathway will be flawed as well. Therefore, it is advisable to 

use the most up-to-date pathway or GO definitions that are community 

curated and adjusted with each new scientific publication. Finally, it is 

recommended to validate each result with another analysis, for instance 

by testing if the identified dysregulated pathways with one gene 
depletion method agree with another gene depletion method.       

The analyses mentioned above can help in the prioritization of functional 

in vitro assays that may be performed following the experimental gene 

expression manipulation. This approach has its advantages over 

choosing functional read-out assays on an arbitrary basis. With evidence 

of pathway or GO term dysregulation, a functional assay related to the 
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discovered dysregulation can be performed. For example, with evidence 

of dysregulation in cellular proliferation genes it is worth testing for cell 

proliferation with one of the available DNA replication assays. Having 

determined gene functions in in vitro models, researchers can further 

hypothesise about possible relationships between phenotype and the 

identified perturbed pathways (Figure 1.8).  

 

Figure 1.8: A workflow of systematic gene function discovery through 
combination of transcriptomics, pathway analysis, hypothesis generation and 
final biological validation. 

As an example, the in vitro suppression of a specific gene using shRNA 

followed by global gene analyses in human cell lines has provided a 

novel insight into the role of lung function and COPD associated gene 

HHIP in possible pathway-analysis-inferred bronchial epithelial function 

(Zhou et al. 2013). In this study, HHIP was targeted by shRNA in BEAS-

2B airway epithelial cell lines followed by gene expression microarray 

analyses identifying 296 differentially expressed genes. Subsequent 

pathway analyses identified a particular enrichment for extracellular 

matrix proteins and genes associated with cell growth providing a 

potential insight into how HHIP may be involved in lung homeostasis. 

Importantly, a subset of genes was validated using additional qPCR in 

both BEAS-2B and primary human airway epithelial cells and shown to 



Chapter 1 – General Introduction 

 61 

be differentially expressed in COPD patients’ lung samples versus non-

disease controls (Zhou et al. 2013).    

1.7.5	The	promise	of	genome	editing	tools	

It has been suggested that the emergence of genome editing is a ‘game 

changer’ in scientists’ attempt to meaningfully translate genetic 

association findings (Sander and Joung, 2014). These methods allow 

editing any genomic sequence by inserting, excluding or modifying 

sequences in any mammalian cell type or even embryological cells to 

study the effect on model organisms. Importantly, genome editing allows 

simultaneous disruption of a multitude of genes or regulatory elements 

at once, thus allowing the investigation of allele interactions or 

synergistic effects. This is a huge step forward considering the difficulties 

of achieving this with traditional RNAi-based approaches, as well as the 

polygenic character of the majority of phenotypes. Also, it is possible to 

use these technologies to study the effects of genetic disruptions on 

lineage-specific cellular differentiation. For that purpose, using totipotent 

or pluripotent stem cells (or iPSCs generated via epigenetic 

reprogramming of mature cells) shows great potential promise. It was 

recently shown that genome editing can be used not only to knockout 

genes but also to induce their expression from endogenous promoters 

(Konermann et al. 2015) or for completely other purposes such as 

modifying epigenetic marks (Gilbert et al. 2013; Maeder et al. 2013; Mali 

et al. 2013). As mentioned, this can be achieved over multiple loci and 

has the advantage of recapitulating the transcription at the endogenous 

genomic template in opposition to recombinant overexpression 

constructs which may not be representative of the endogenous situation. 

The two most popular genome editing techniques are Transcription 

activator-like effector nucleases, abbreviated as TALENs (Miller et al. 

2011), and clustered regularly interspaced short palindromic repeats 

(CRISPR) in association with RNA-guided Cas9 nuclease (CRISPR-

Cas9 system) (Sander and Joung, 2014). 

TALENs are composed of a nuclease domain fused to a protein DNA-

binding domain. The nuclease cleaves the genomic DNA in a non-
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specific manner but the DNA-binding domain confers the needed 

specificity. This domain is engineer-able to recognize specific DNA 

sequences and essentially has properties similar to TF capable of 

activating gene expression (hence the name transcription activator-like 

effectors molecule). The engineered nuclease binds and causes a 

double-strand break to DNA. Then non-homologous end-joining or 

homology-directed repair are activated, thus allowing editing of target 

sites (Joung and Sander, 2013). CRISPR-Cas9 systems are alternative 

to TALENs and have improved cleavage efficiency and easier 

implementation at a reduced cost. In contrast to TALENs, Cas9 nuclease 

is guided to a target site by a RNA molecule. Therefore, in this case, 

there is no need to design custom proteins for DNA binding. Konermann 

et al. leveraged CRISPR-Cas9 system to induce the expression of 

multitude of genes and this is possible because the entire complex can 

be provided with distinct effector domains such as activator domains, 

repressor domains or domains altering the epigenetic mark (Konermann 

et al. 2015; Gilbert et al. 2013; Maeder et al. 2013; Mali et al. 2013). In 

those circumstances the Cas9 endonuclease is catalytically inactivated 

(dCas9). These modified CRISPR-Cas9 constructs can be effectively 

used to control the activity of candidate regulatory elements or genes 

that contain significant GWAS signal variants. Introduction into somatic 

cells can be achieved with typical transfection while introduction into 

model organisms can be accomplished with injection into the model 

organism zygote. As with traditional RNAi-based approaches genome 

editing can occur with off target effects and the current challenges are to 

minimize these to provide more robust interpretation (Ga et al. 2013).  

A new avenue in genome editing technology has recently emerged with 

light-inducible transcriptional effectors (LITEs) (Konermann et al. 2013). 

LITE modules consist of the light-sensitive photoreceptor cryptochrome 

2 (CRY2) that is fused to TALEN DNA-binding domain, however, 

theoretically the concept can be applied to the CRISPR-Cas9 system as 

well. Authors have combined TALEN domain, light-sensitive CRY2 

protein CIB1 and its co-partners obtained from Arabidobsis in order to 

induce gene expression by exposure to the light at sites determined by 
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specificity of DNA-domain binding. Variable levels of increases in mRNA 

expression were observed and this was accompanied by an increase in 

protein level. The construct allows for reversible modulation of gene 

transcription and epigenetic marks in spatially and temporally sensitive 

manners via the exposure to light (Konermann et al. 2013). This study is 

essentially a proof of concept that overexpression using this unique 

technique may be possible and it was shown to be applicable both in 

vitro and in vivo. This new technique offers great opportunity for 

biologists studying gene regulation and gene function in their genetic 

translation efforts, however further experiments are required to 

determine the specificity of the method and whether it can be used on a 
routine basis.  

1.8	 Inferred	 biology	 of	 reproducibly	 associated	 lung	

function	genes	
As already mentioned, INTS12 is within a region with a statistically 

significant evidence of genetic association with lung function and COPD 

(see section 1.4.2). Crucially, expression of INTS12 is high in the human 

bronchial epithelium (Obediat et al. 2013). The known INTS12 genomic 

variation can alter the translated INTS12 protein length (Table 1.3). 

Although it is not entirely clear whether the potential contribution of 

INTS12 variation to pulmonary function is driven via protein coding or 

non-coding influences, the latter is being suggested to be the 

predominant case. Therefore, the leading hypothesis is that different 

INTS12 expression levels may contribute to differences in lung function 

or lung pathology.  
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Transcript size (bp) Protein size (aa) Source Known IDs 

1975 462aa Ensembl, NCBI ENST00000451321 

Variant 1 

1927 462aa Ensembl, NCBI ENST00000394735 

Variant 2 

1710 462aa Ensembl ENST00000340139 

1502 444aa Ensembl ENST00000618810 

995 88aa Ensembl ENST00000416543 

726 132aa Ensembl ENST00000420368 

653 159aa Ensembl ENST00000503746 

569 18aa Ensembl ENST00000515819 

562 88aa Ensembl ENST00000433009 

542 57aa Ensembl ENST00000510876 

644 No protein Ensembl ENST00000493425 

1927 – 1975 237 Obeidat et al. 2013 Variant 3 

Table 1.3: Known INTS12 mRNA variants and their corresponding proteins. 
Information from National Centre for Biotechnology Information (NCBI), Ensembl 
database and Obeidat et al. 2013. The schematic of INTS12 protein can be seen 
in Figure 2.7. 
This hypothesis is supported by an observation that there is a weak but 

statistically significant positive correlation between lung INTS12 

expression and FEV1 (Percent Predicted) (Figure 1.9; Obeidat et al. 

2013). Therefore, lower INTS12 levels in the lung associate with poorer 

lung function and vice versa. Moreover, in diverse tissue types, SNPs 

associated with lung function are cis-eQTLs for INTS12 expression. The 

examination of INTS12/GSTCD/NPNT haplotype has detected eQTL 

effects for INTS12 but neither for GSTCD nor NPNT in non-lung tissues 

such as liver, brain, and blood (Obeidat et al. 2013). In the lung, the 

eQTL effect had a greater effect size for INTS12 expression than for 

GSTCD expression albeit not significant when correcting for multiple 

comparisons (Hao et al. 2012). More recently it was reported that in the 

lung the significant eQTL effect at INTS12/GSTCD/NPNT haplotype can 

be detected for NPNT expression which was overlooked in previous 

publication despite using the same publically available microarray 

dataset (Hao et al. 2012; Obeidat et al. 2015).  
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Figure 1.9: INTS12 mRNA levels positively correlate with FEV1 (Percent 
Predicted). Reproduced from Obeidat et al. 2013. 

However, relying on entire lung tissue to measure gene expression and 

detect eQTL is challenging due to heterogeneous nature of lung tissue. 

Therefore, although there may be an eQTL effect detected in a lung 

relevant cell type (e.g. airway smooth muscle cells) this effect is likely to 

be masked in a combined gene expression signatures of pooled cell 

types constituting lung tissue. For example, a study by Li et al. was able 

to prioritize genes at asthma susceptibility loci via eQTL approach by 

using human bronchial epithelial cells but often was unable to detect 

eQTL effects in bronchial epithelial lavage consisting of not only 

epithelial cells but a whole range of other cells (Li et al. 2015). Hence 

there are good scientific motives that argue for performing eQTL 

investigations in homogenous cell types.  
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Not only >90% of GWAS associations are non-coding (Maurano et al. 

2012), but recently Obeidat et al. reported that eQTLs are significantly 

enriched at respiratory loci further giving credit to the idea that 

associations are largely driven by differences in gene expression 

(Obeidat et al. 2015). Interestingly, genes that were prioritized at 

respiratory loci using lung eQTL approach were tested via ORA method 

(see section 1.7.4) and were found to be enriched for developmental 

pathways (Obeidat et al. 2015). This goes hand-in-hand with what was 

said about significant GWAS signals for lung function being detected not 

only in adults but also in paediatric subjects. Also, the critical role of 

INTS12 for mammalian development is demonstrated by the fact that 

homozygous INTS12 knockout mouse models show pre-weaning 

lethality (Obeidat et al. 2013).   

1.8.1	Integrator	Complex	and	its	subunit	12	
INTS12 encodes Integrator Complex subunit 12, a protein that was 

initially discovered as the smallest member of INTScom (Baillat et al. 

2005). Chen et al. identified Asunder and CG4785 as additional core 

members of the INTScom (Chen et al. 2012). Currently it is believed that 

INTScom has about ~14 subunits (Stadelmayer et al. 2014). Initially 

Baillat et al. were investigating the composition of deleted in split 

hand/split foot 1 (DSS1), the product of candidate gene for split 

hand/split foot syndrome (Baillat et al. 2005). To determine the identity 

of DSS1 they developed HeLa cell lines stably expressing a Flag-tagged 

DSS1. DSS1 was purified through anti-Flag affinity purification and the 

eluate was separated on a gel and each protein was analysed using 

mass spectrometry. Investigators found DSS1 to be a component of 

multiple distinct complexes and identified proteins corresponding to 

uncharacterized human open reading frames. Almost all DNA fragments 

predicted from these polypeptides were found to be conserved in 

metazoans. This approach identified 12 subunits of the INTScom, 

including INTS12, in physical association with RNA polymerase 2 

(RNAPII) (Baillat et al. 2005).  
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INTS1, INTS3, INTS6, INTS7, INTS8, INTS11 and INTS12 were found 

to bind to RNAPII C-terminal domain (CTD). More recently, Stadelmayer 

et al. and Yamamoto et al. found negative elongation factor (NELF) to 

interact with INTScom proteins and this observation was not abolished 

after DNase and RNase treatment suggesting direct protein-protein 

interaction between INTScom and NELF (Stadelmayer et al. 2014, 

Yamamoto et al. 2014). Sequence investigation revealed INTS11 and 

INTS9 to have high sequence similarity to cleavage and polyadenylation 

specificity factor 73 (CPSF-73) and CPSF-100. CPSF-73 and CPSF-100 

belong to the superfamily of zinc-dependent β-lactamases. CPSF-73 

functions as the pre-mRNA 3’-end-processing endonuclease (Mandel et 

al. 2006). The same catalytic domain predicted to function as an RNA-

specific endonuclease is present in INTS11 molecule (Baillat et al. 

2005). The rest of Integrator members displayed little similarity with 

proteins involved in mRNA processing. The canonical function of 

INTScom is snRNA 3’end formation, also known as snRNA processing 

(Baillat et al. 2005; Ezzeddine et al. 2011; Chen et al 2012; Chen et al. 

2013; see section 1.8.4).  

1.8.2	Small	nuclear	RNAs		

snRNA genes are part of the un-translated fraction of the human 

genome. Their mature transcripts are highly abundant, non-

polyadenylated species and function within the cell nucleus (Matera et 

al. 2007). They are exported to the cytoplasm where they pair with 

proteins to form ribonucloproteins (RNP) (Egloff et al. 2008). With the 

exception of U7 snRNP, which plays a role in histone pre-mRNA 

processing, the rest of the snRNPs form the core of the spliceosome that 

removes intronic sequences from the pre-mRNA transcripts. snRNAs 

that we know about thus far are U1, U2, U4, U4atac, U5, U6, U6atac, 

U7, U11, and U12 (Matera et al. 2007). There are multiple gene copies 

of these snRNAs in the human genome presumed to have occurred 

through ancestral gene duplications. Some of these copies are thought 

to be transcriptionally silent (i.e. are pseudogenes).  
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snRNA genes have an snRNA encoding site (i.e. the site that is 

incorporated into mature snRNA), a TATA-less promoter containing 

distal sequence element (DSE) and snRNA-specific proximal sequence 

element (PSE), as well as an snRNA-specific 3’box located 9-19bp 

downstream of the cleavage site (Figure 1.10). High conservation of 

elements within snRNA promoters is a characteristic feature of snRNAs 

throughout the animal kingdom (Ezzaddine et al. 2011). The primary 

transcripts of snRNA genes extend beyond the 3’box element and 

sequences after the box display poor conservation in their paralogs even 

if occurring in the same species (Egloff et al. 2008). 

 

Figure 1.10: The architecture of snRNA genes (A) and the structure of processed 
U7 snRNA (B). Reproduced from Egloff et al. and Matera et al. (Egloff et al. 2008, 
Matera et al. 2007). 

1.8.3	Functional	role	of	INTScom	in	RNA	polymerase	II	pause	and	

release			
Because INTScom was found stably accompanying RNAPII, Baillat et al. 

hypothesised that INTScom might mediate an RNAPII-dependent 

transcription (Baillat et al. 2005). However, their experiments have 

shown that depletion of INTScom subunits did not alter mRNA levels of 

protein coding proto-oncogene FOS. Furthermore, Baillat et al. were 

unable to detect INTScom subunits at its promoter using ChIP-PCR 
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(Baillat et al. 2005). This led researchers to investigate the potential role 

of INTScom in mediating transcription of non-protein coding genes. As 

snRNA processing is mediated through RNAPII’s CTD (Hernandez 

2001; Uguen, 2003), Baillat et al. wanted to test whether INTScom is 

recruited to snRNA genes (Baillat et al. 2005). Hence promoter and 3’box 

regions of U1 and U2 snRNAs were examined for the presence of 

INTScom subunits and RNAPII. ChIP of HeLa nuclear extracts using 

RNAPII and INTS10 antibodies followed by elution and PCR 

amplification of fragments corresponding to U1 or U2 resulted in equally 

strong positive signals around the promoter and 3’box of these snRNA 

genes. No signal was detected at histone H3 or GAPDH protein-coding 

genes. 

These data have been superseded by more recent studies by Gardini et 

al. (Gardini et al. 2014). Gardini et al. found that some INTScom proteins 

are present near TSS of protein coding genes displaying RNAPII 

pausing. It is thought that ChIPseq data demonstrating higher RNAPII 

enrichment at the TSS relative to the gene bodies is largely due to 

pausing phenomenon where RNAPII awaits signals to begin active gene 

transcription. Prototypical examples of genes with this property are 

immediate early genes (IEGs) and therefore were tested for INTS11, 

INTS1, and INTS9 binding. Interestingly, Gardini et al. found these 

subunits near the TSS of some IEGs in contrast to what was previously 

reported by Baillat et al. (Gardini et al. 2014, Baillat et al. 2005). This lack 

of consistency was explained by saying that the antibodies that were 

used for ChIP in Baillat et al., although efficient in precipitating snRNA 

genes due to their multiple copies present in the human genome, were 

incapable of robust precipitation at non-repetitive protein coding genes 

(Gardini et al. 2014). Another plausible explanation is that single 

INTScom subunit may not be representative of the binding pattern of 

other subunits. In Baillat et al. binding near FOS was tested by using 

antibody against INTS10 whereas in Gardini et al. binding to the same 

gene was tested by using antibodies against INTS11, INTS1, and INTS9 

(Gardini et al. 2014, Baillat et al. 2005). Therefore, comparison between 

these two studies is not straightforward and raises the possibility that 
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individual INTScom subunits display variable binding patterns arguing 

against a constant association between them on a genome-wide basis.    

Epidermal growth factor (EGF), a potent stimulator of IEG response, was 

used to test the binding profile of INTS11, INTS1, and INTS9 and there 

was a robust increase in their occupancy near TSS and gene bodies as 

a result of EGF treatment of HeLa cells as shown by ChIP-PCR and 

exemplified by INTS11 ChIPseq. Occupancy decreased 40 to 60 min 

after EGF induction (Gardini et al. 2014).   

Through microarray analysis validated by RNAseq, Gardini et al. have 

shown that RNAi depletion of INTS1 and INTS11 resulted in diminished 

EGF mediated response of IEG genes suggesting INTScom to be critical 

for transcriptional activation of these genes (Gardini et al. 2014). Then 

INTS11 depletion was combined with RNAPII ChIPseq and it 

demonstrated INTS11 requirement for polymerase pause release over 

EGF responsive genes. It was also shown that INTS11 depletion results 

in diminished 5’-end recruitment of key components of super elongation 
complex (SEC) onto three EGF responsive genes (Gardini et al. 2014).  

Finally, some of these functional requirements were demonstrated in D. 

melanogaster S2 cells. The classical genes displaying RNAPII pause 

release phenomenon are heat shock response genes. Therefore, the 

localization of fly’s INTS9 and INTS12 was tested over bodies of heat 

shock response gene HSP70Aa and their occupancy was increased 

near TSS and over the gene body following the heat shock treatment, 

implying some conservation of this function. However, more experiments 

are warranted to establish such conservation. Interestingly, despite 

increased INTS9 and INTS12 occupancy over HSP70Aa, the gene 

upregulation following the heat shock was attenuated (Gardini et al. 

2014). 

Concurrently to Gardini et al. study, Stadelmayer et al. also reported that 

INTScom subunits control RNAPII pause and release (Gardini et al. 

2014, Stadelmayer et al. 2014). In contrast to Gardini et al. where this 

phenomenon was investigated in a model set of genes traditionally 

associated with RNAPII pausing, Stadelmayer et al. created a transgenic 



Chapter 1 – General Introduction 

 71 

cell line containing HIV-1 long terminal repeat (LTR) in conjunction with 

luciferase reporter gene. LTR leads to RNAPII pausing and premature 

termination after synthesis of short RNA, the TransActivation Response 

element (TAR). Genome occupancy over this inserted element was 

tested by ChIP-PCR and demonstrated RNAPII, INTS3, INTS11, and 

INTS3 enrichment over TAR, i.e. where rapid transcriptional termination 

and pausing typically occurs. An interesting observation is the opposite 

activity of INTS3 and INTS11 on RNAPII pausing. The presence of 

INTS3 correlates with low RNAPII density at the TSS and increased 

RNAPII in gene bodies however its knockdown reduces RNAPII 

occupancy over gene bodies. In contrast, INTS11 knockdown increases 

RNAPII occupancy over gene bodies but not over termination sites 

(Stadelmayer et al. 2014). Therefore, as far as INTS11 is concerned, 

Stadelmayer et al. observations agree with Gardini et al. observations at 

the TES but disagree at the gene bodies (Gardini et al. 2014, 

Stadelmayer et al. 2014).  

1.8.4	Functional	requirement	for	INTScom	in	snRNA	biogenesis		

As previously mentioned, the canonical function of INTScom is snRNA 

processing (Baillat et al. 2005; Ezzeddine et al. 2011; Chen et al. 2012; 

Chen et al. 2013). Baillat et al. suggested a possible mechanistic 

explanation of snRNA processing, fundamentally involving INTScom in 

the process. According to them INTScom “is loaded on the RNAPII at 

the promoter, traveling with it along the gene and cleaving the nascent 

primary transcript, most likely by recognizing the 3’box” (Figure 1.11; 

Baillat et al. 2005). 
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Figure 1.11: Baillat et al. hypothesis on snRNA biogenesis. It states that INTScom 
associates with CTD of RNAPII following its phosphorylation which initiates this 
association, recognizes 3’box on emerging pre-snRNA and INTS11 or INTS9 
finally cleaves pre-snRNA yielding processed snRNA. Reproduced from Baillat 
et al. 2005. 

To test this hypothesis Baillat et al. depleted INTS1 and INTS11 (Baillat 

et al. 2005). INTS11 was suspected to be the complex’s cleaving engine 

due to its similarity to CPSF-73. Depletion of either INTS11 or INTS1 

resulted in pronounced accumulation of the U1 and U2 misprocessed 

transcripts but no change in the GAPDH transcripts. To directly examine 

the catalytic activity of INTS11, researchers developed cell lines 

expressing a mutant INTS11 predicted to abrogate the catalytic activity 

of its β-lactamase domain that is thought to cleave primary snRNA 

transcripts. The mutated tag-INTS11 was validated for association with 

RNAPII and the rest of the INTScom subunits as well as with the U1, U2 

promoters and 3’box. After the positive validation, mutated INTS11 

overexpression resulted in a processing defect of U1 and U2 suggesting 

INTS11 as an snRNA cleaving component of INTScom (Baillat et al. 

2005). However, INTS9 is equally likely to play such a role in INTScom 

activity as it shares sequence similarity to CPSF-73 and CPSF-100. In 

fact, INTS9 depletion also resulted in pronounced misprocessing of 

exogenous U7 snRNA (Ezzeddine et al. 2011).  
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1.8.4.1	Diversification	of	INTScom	dependent	functions	via	snRNA	pathway	

Given the fact that snRNAs form the core of the spliceosome complex 

and that INTScom is required for 3’end processing of snRNAs, it was 

anticipated that the knockdown of INTScom members may result in the 

disturbance of intron removal. Hence it is not surprising that the loss of 

INTScom resulted in reporting of diverse yet specific range of 

phenotypes. For instance, Otani et al. have shown that the expression 

levels of INTS6 and INTS11 were increased in preadipocytes in the 

period when the cells were differentiating into adipocytes, while they 

were reduced to basal levels after complete differentiation (Otani et al. 

2013). Subsequently it was demonstrated that the knockdown of INTS6 

and INTS11 results in the inhibition of differentiation into mature 

adipocytes. It was also shown that silencing of INTS4 leads to defects in 

the formation of Cajal bodies (Takata et al. 2012). It has also been 

suggested that the induced downregulation of INTS5, INTS9, and 

INTS11 in zebrafish causes impaired haematopoiesis due to aberrant 

splicing of smad1 and smad5 via a dominant negative form of these 

transcripts (Tao et al. 2009). Finally, various INTScom subunits were 

shown to be required for ciliogenesis (Jodoin, Shboul et al. 2013). It is 

thought that the primary mechanism behind these observations is the 

alteration of snRNA 3’-end formation affecting the splicing of mRNAs 

belonging to genes of particular functional groups explaining the specific 

phenotypic effects. 

It is important to realize that the functional activities of INTScom were 

often inferred by a targeted depletion of single or a small number of its 

subunits which were considered to be representative of INTScom as a 

whole. It remains unclear whether all INTScom subunits are required for 

some of these processes, especially that there is variability in the relative 

contributions of various complex members to snRNA processing 

(Ezzeddine et al. 2011, Chen et al. 2012) and ciliogenesis (Jodoin, 

Shboul et al. 2013). It is possible that despite physical association of 

INTScom subunits, individually they may have distinct and different 

functions. Thus functional inference of the activities of single INTScom 
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subunits ought to be determined by their respective specific silencing. 

These functional activities may also vary between different species.     

1.8.5	Functional	roles	for	INTS12	in	nuclear	dynein	dynamics		

Jodoin, Sitaram et al. showed that not all INTScom subunits are required 

for perinuclear dynein stability (Jodoin, Sitaram et al. 2013). 

Researchers sought to determine whether Asunder, a key regulator of 

cytoplasmic dynein localization and a core member of INTScom 

identified by Chen et al. derives its separate functions from an 

independent or a common activity (Jodoin, Sitaram et al. 2013; Chen et 

al. 2013). By relying on RNAi approach they found that INTS12 

knockdown in HeLa cells results in a decrease of nuclear-envelope-to-

cytoplasm dynein ratio and an increase of the peak dynein on a nuclear 

envelope in ~80% of cells transfected with siRNA. The same was true 

for the majority of other INTScom proteins, except INTS7 and INTS10. 

Depletion of CPSF30 that is involved in polyA synthesis and 3'end 

formation of mRNAs, did not alter perinuclear dynein. Researchers thus 

concluded that the observed effect is not secondary to a general 

disruption of RNA processing but rather is specific to snRNA processing 

(Jodoin, Sitaram et al. 2013). 

1.8.5.1	Subcellular	localization	and	expression	of	INTS12	

Another interesting aspect of work by Jodoin, Sitaram et al. is the 

investigation of INTScom members’ subcellular localizations (Jodoin, 

Sitaram et al. 2013). Researchers fused GFP onto individual INTScom 

proteins to visualize their location. It turns out that based on their location 

INTScom subunits can be divided into three categories: predominantly 

cytoplasmic, predominantly nuclear and evenly distributed between 

nucleus and cytoplasm. INTS12 falls into the nuclear category. 

Interestingly, INTS12 was the only INTScom member that had an 

exclusively nuclear localization, i.e. 100% of cells had INTS12 present in 

the nucleus (Jodoin, Sitaram et al. 2013). The predominantly nuclear 

localization of INTS12 was also reported by Obeidat et al. (Obeidat et al. 

2013). In this study immunohistochemical staining of normal and COPD 

adult lung tissue revealed INTS12 expression to be confined to the 
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nucleus of epithelial cells and pneumocytes. Furthermore, mRNA 

analyses found INTS12 to be expressed in a range of airway cell types, 

with the highest expression in human bronchial epithelial cells. 

1.8.6	 The	 known	 biology	 of	 Glutathione	 S-Transferase	 C-Terminal	

Domain	Containing	

Just like INTS12, GSTCD is in strong linkage with SNPs associated with 

lung function and COPD. Little is known about the molecular or cellular 

function of GSTCD gene. As the name implies, it has a GST motif which 

is present in other proteins as well. A homology search revealed that 

Eukaryotic Translation Elongation Factor 1, Titin and Chloride 

intracellular channel protein are the closest matching proteins. 

Interestingly, Titin proteins are important in striated muscle contraction, 

while Chloride channels have a role in number of respiratory conditions 

including Cystic Fibrosis (Obeidat et al. 2013). Importantly, in contrast to 

INTS12, although lung function SNPs are not eQTLs for GSTCD, this 

gene is differentially expressed between the pseudoglandular and 

canalicular stages of lung development. Considering the possible 

developmental basis of respiratory traits this makes GSTCD an 

interesting candidate to follow. Nevertheless, this thesis concentrated on 

INTS12 studies.  

1.9	Introduction	summary	
As GWAS and particularly GWAS meta-analyses involve increasingly 

larger population sizes and improved integration of the genome 

(including rare sequence variation) continue to identify novel loci for a 

large number of human traits there is a pressing need to develop 

technologies to translate these findings. This functional understanding is 

critical to move from genetics to translational medicine identifying 

potentially novel targets for therapeutic intervention. This is particularly 

important in diseases such as COPD where the current medicines 

provide relief from symptoms but do not address the underlying 

progression of the disease. This translation has been significantly 

facilitated by recent developments in the areas outlined in this 
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Introduction but particularly in the functional annotation of the genome, 

mapping chromatin interactions, cell and tissue eQTLs, transgenic mice 

and more recently genome editing approaches. While all of these 

approaches have a role to play, it is the careful experimental design 

using the most appropriate systems that is critical to interpretation. As 

genome editing technologies become routine, efficient and scalable 

these methodologies are going to play a pivotal role in the investigation 

of gene and single variants both in vivo and in vitro. 

INTS12 is within 4q24 locus at the centre of reproducible association 

signal for lung function and encodes a protein that is a member of 

INTScom consisting of ~14 subunits. This complex was shown to stably 

accompany RNA polymerase II (POLII) and at a molecular level has 

been implicated in small nuclear RNA (snRNA) and Cajal body 

biogenesis, perinuclear dynein dynamics and recently with POLII pause 

and release. At the functional level, targeted knockdown and 

mutagenesis experiments demonstrated INTScom to be necessary for 

mouse adipogenesis, zebrafish haemopoiesis as well as human primary 

ciliogenesis. The relative contribution and requirement for each 

INTScom subunit in these processes is unclear at this time.  

What is known directly about the function of INTS12 is that in 

D.melanogaster S2 cells it is necessary for snRNA processing and POLII 

pause release. In human cells, INTS12 was shown to be required for the 

maintenance of perinuclear dynein and primary ciliogenesis (Jodoin, 

Sitaram et al. 2013; Jodoin, Shboul et al. 2013), however these 

observations could not have been replicated by independent silencing 

experiments. Interestingly, Chen et al. demonstrated that in the fly, the 

evolutionary conserved plant homeodomain (PHD) motif of INTS12 is 

dispensable for snRNA processing while N-terminal subdomain is both 

necessary and sufficient for this processing to occur (Chen et al. 2013). 

This suggests the existence of important and unrealized functions for this 

gene which require further elucidation. More importantly, even though 

few functions have been identified for INTS12, no studies have 

addressed by which molecular mechanisms these functions are 

implemented.  
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1.10	Aims		
The overarching aim of this thesis is to provide a greater insight on the 

function and genome-wide regulatory properties of INTS12 in primary 

human bronchial epithelial cells using some of methods outlined in this 

chapter. The key objectives of this thesis can be stated as follows: 

1. To further test the hypothesis that the variable expression of 

INTS12 is a plausible driver of association signal for lung function 

at 4q24 locus using a lung specific eQTL dataset. 

2. To develop the tools to silence INTS12 expression in human 

primary bronchial epithelial cells. 

3. To design the necessary qPCR assays and evaluate the 

contribution of INTS12 to human snRNA processing. 

4. To predict molecular and/or cellular functions of INTS12 through 

combination of gene knockdown and genome-wide RNAseq 

profiling (hypothesis-free study). 

5. To test the predicted functions by using relevant assays. 

6. To provide mechanistic insight into the observed differential gene 

expression changes by combining RNAseq and INTS12 

chromatin immunoprecipitation followed by sequencing 
(ChIPseq) data. 
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A range of high throughput and functional readout techniques were used 

as part of this thesis and they are described below. Issues in relation to 

data analyses and theoretical background of the methods are also 

considered.  

2.1	Cell	culture	methods	
Basal undifferentiated human bronchial epithelial cells (HBECs) 

obtained from three donors were purchased from Lonza© (Berkshire, 

UK) and used throughout this project (see Appendix for specification of 

donor demographics and experiments in which their respective cells 

were used). Cells were cultured in Bronchial Epithelial Cell Growth 

Medium (BEGM™) prepared by addition of bovine pituitary extract (0.4 

% v/v), hydrocortisone (0.1 % v/v), hEGF (0.1 % v/v), epinephrine (0.1 

% v/v), transferrin (0.1 % v/v), insulin (0.1 % v/v), retinoic acid (0.1 % 

v/v), triiodothyronine (0.1 % v/v), and GA-1000 (0.1 % v/v) to BEBM 

Basal Medium (500ml, Lonza©).  

To ensure availability of the same passage of cells for further 

experiments, cells were batch frozen down. Thus passage 2 (P2) HBECs 

were grown adhered to 75cm2 culture flask (T75) until ~95% confluent. 

Cells were then incubated in trypsin/EDTA at 37oC for ~5min and re-

suspended in a culture media (i.e. passaged). Finally, freezing mixture 

composed of 10% dimethyl sulfoxide (DMSO) BEGM was used to 

quickly transfer 250,000 of cells into a sterile cryovial which was stored 

at -80oC for ~24 hours (h) followed by long term storage in liquid nitrogen. 

All subsequent experiments were performed by using these stocks of 

passage 3 (P3) HBECs. Cells were brought up from liquid nitrogen by 

thawing a cryovial at room temperature (RT) and pouring the entire vial 

content into 20ml of BEGM and growing cells on T75 for ~24h after which 

the growth medium was replaced. Prior to specific experiments cells 

were grown at 37oC with 5% CO2 until ~95% confluent with BEGM media 

change every 48h. All HBECs were characterized for expression of 

epithelial markers by either Lonza (Berkshire, UK) or internally (Stewart, 

Torr et al. 2012).    
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2.1.1	Haemocytometer	counts	

Haemocytometer-based cell counts were used to determine cell 

concentrations prior to cell seeding or to assess cell number in different 

experimental conditions. Concentration was defined as the number of 

cells per ml of cell suspension.  Cells were diluted to a suitable 

suspension so that once in the chamber, the cells were uniformly 

distributed and not overlapping each other.  A cover slip was cleaned 

and placed over the haemocytometer and 10µl of cell suspension was 

added to fill the chamber. The suspension fills the chamber by capillary 

action. The grid is divided into 9 squares, each with a surface area of 

1mm2. The depth of the chamber is 0.1mm giving a total volume of 

0.1mm3 for each square. Cells were counted in the two squares and 

averaged, giving a number of cells in 0.1mm3 volume.  This number was 

then multiplied by 104 to give a final cell count per ml.  

2.2	RNA	interference		

2.2.1	RNA	interference	and	off	target	effects	

RNA interference (RNAi) is extensively used in functional gene studies. 

RNAi is a gene silencing system where small interfering RNAs (siRNA) 

and microRNAs (miRNAs) play a central stage (Jackson and Linsley, 

2010). miRNAs are endogenous non-coding RNA used by eukaryotic 

cells for post-transcriptional regulation of gene expression. These RNAs 

are transcribed and processed in the nucleus by enzymes Drosha and 

Pasha. After the export to the cytoplasm pro-miRNAs are processed by 

enzyme Dicer yielding double stranded ~21-22 base pairs (bp) long 

mature miRNA. One of the strands is called the guide strand and this 

strand is incorporated onto RNA-induced silencing complex (RISC) to 

guide silencing complex to target mRNA to promote translation arrest or 

mRNA cleavage (Bartel et al. 2009). siRNAs on the other hand are 

exogenous and in nature they are introduced into eukaryotic cells by an 

invading virus as Dicer substrate RNA (D-siRNA). This D-siRNA is 

enzymatically cleaved by RNase-III class endoribonuclease Dicer, 

generating ~21-22bp long siRNA (Jackson and Linsley, 2010). As it is 
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the case for miRNAs, siRNA’s guide strand binds to RISC and ensures 

that activated catalytic component of RISC, Argonate, cleaves the 

mRNA complementary to the guide strand. The passenger strand is 

degraded upon incorporation of guide strand onto RISC.  

Therefore, siRNAs and miRNAs share similar machinery downstream of 

their initial processing. In addition to their specific silencing property 

conferred via sequence complementarity, siRNAs may generate off-

target effects (Jackson et al. 2003). miRNA-like off-targeting is driven by 

partial complementarity to other mRNA sequences and this limitation is 

inherent to any siRNA used in knockdown experiments. Other off-target 

effects include oligonucleotide or delivery vehicles disruptions resulting 

in innate immune responses. These limitations of the RNAi mediated 

knockdown approach makes it imperative to carefully design functional 

experiments looking at the effect of gene silencing on the phenotype.  

RNAi techniques are used to selectively knockdown specific mRNA 

transcripts within a cell in order to investigate the function of the protein 

or, in case of non-coding genes, the function of the transcript. Commonly 

employed techniques are transfections of either siRNAs or Dicer 

substrate siRNA (D-siRNAs; Amarzguioui et al. 2006). siRNAs are 

chemically synthesised 21bp long RNAs and therefore bypass the need 

for enzymatic processing by mimicking Dicer products. However, in this 

project, 25bp long D-siRNA molecules were used for gene knockdown 

in which 25bp substrates are processed by Dicer into 21bp long siRNA 

followed by their incorporation into RISC complex. Dicer-Substrate 

duplexes provide two critical improvements over the use of traditional 

21bp siRNA designs. D-siRNA takes advantage of the natural 

processing by Dicer producing 10-fold higher potency and specificity 

than the shorter 21bp siRNA forms. D-siRNA duplexes also evade the 

mammalian interferon response when expressed in mammalian cells 

(Amarzguioui et al. 2006). 
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2.2.2	D-siRNA	transfections	experimental	optimizations	

2.2.2.1	 Determination	 of	 FuGENE6®	 and	 INTERFERin®	 transfection	

efficiencies	

The first step in any RNAi gene silencing experiment is the optimization 

of siRNA or D-siRNA delivery into the cells. Therefore fluorescent Cy3 

labelled scrambled siRNA (excitation max 556nm, emission max 570nm; 

Ambion Life Technologies, cat. num. AM4621) as well as FuGENE6®  

(Promega cat. num. E2691) and INTERFERin® (Polyplus cat. nu. 406-

10) transfection reagents were purchased and used in order to compare 

their transfection efficiencies. Cells were imaged using epifluorescent 

microscopy (see section 2.4.1). INTERFERin® is a cationic polymer that 

binds to anionic D-siRNAs creating a complex that interacts with 

negatively charged heparan sulfate proteoglycans on the outer cell 

membrane and is introduced to cytoplasm by endocytosis with the actin 

involvement (Jelena Vjetrovic, personal communication, 17th April 2014). 

FuGENE6® transfects DNA or RNA in a process called lipofection 

whereby cationic lipids bind to the negative molecules and fuse with the 

cell membrane or undergo endocytosis (Jacobsen et al. 2004). 

Concentration of the transfection reagents was 2µl/ml while Cy3-D-

siRNA concentrations where 10nM, 50nM, and 100nM. These 

concentrations were chosen because the cell florescence is hardly 

visible below 10nM even with excellent transfection efficiency and at this 

stage the objective was to compare FuGENE6® and INTERFERin® 

transfection efficiencies. The experiment was performed in three 

independent biological replicates (i.e. using different cell vials of the 

same donor and at different times).  

2.2.2.2	 Validation	 of	 RNAi	 functionality	 and	 prioritization	 of	 D-siRNAs	

targeting	INTS12		

Having determined the desired transfection reagent and conditions, the 

next step was to demonstrate RNAi functionality using a known effective 

D-siRNA. Hypoxanthine Phosphoribosyltransferase 1 (HPRT1) positive 

control duplex transfected as per manufacturer’s recommendation was 

used for this purpose (OriGene cat. num. SR302223A). Following 
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successful suppression of HPRT1, three different INTS12 targeting D-

siRNAs (OriGene cat. num. SR311359; Table 1 of Appendix) were 

tested for specific gene knockdown. D-siRNAs A, B and C were found to 

be complementary to exons 6, 7-8, and 8 respectively when aligned 

against canonical mRNA variant 1 (NM_020395.3; Figure 2.1). INTS12 

D-siRNA were transfected at 10nM and INTS12 expression was tested 

by PCR (see section 2.3.5) 48h after the initiation of knockdown. On the 

basis of obtained results, D-siRNAs A and C were taken forward for 

further optimizations. Because off-target effects were shown to be 

increased at the higher D-siRNA doses (Jackson et al. 2003), 

knockdown efficiency was tested at 0.1nM, 1nM and 10nM D-siRNA 

concentrations in order to determine the lowest concentration yielding 

the desired level of INTS12 knockdown (again 48h after the initial 

transfection). On the basis of obtained results, 1nM D-siRNA 

concentration using 1µl/ml of transfection reagent were chosen for 

subsequent functional experiments to reduce the severity of off target 

effects.  
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Figure 2.1: INTS12 variant 1 mRNA sequence (NM_020395.3) showing exon-exon 
arrangement, start site (green ATG), stop site (red TAA) and coloured 
complementary D-siRNA targeting sites (A, B, C).  
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2.2.2.3	Final	optimized	gene	knockdown	protocols	

The effects of INTS12 knockdown were examined 48h and 120h post 

initiation of RNAi in order to test the acute and sustained effects of 

silencing on cellular function and gene expression. In the case of 48h 

protocol, cells were transfected at day 0 and lysed at day 2, while in the 

120h protocol cells were transfected at day 0 and day 3 with final lysis 

and/or functional readouts performed at day 5. In all the experiments 

cells were transfected with 1nM of D-siRNA A and C as well as 

scrambled non-specific D-siRNA control (see section 2.2.2.2). In 

addition, some cells were left un-transfected. Transfections were 

performed with INTERFERin© at 1µl/ml.    

2.3	Fundamental	molecular	biology	methods	

2.3.1	Gel	electrophoresis	

Electrophoresis is the movement of charged molecules in an electric field 

used to separate DNA or RNA molecules based on their molecular size. 

The electrophoretic mobility depends on a number of variables among 

which the most important are net molecular charge, size and shape of 

the molecules, strength of the electrical field as well as density of sieve-

like matrix. Anions, i.e. negatively charged molecules, move towards 

positive anode while cations, i.e. positively charged molecules, migrate 

towards negative cathode. Highly charged molecules move faster than 

those with lesser charge. Smaller molecules migrate faster than large 

molecules due to frictional resistance of the matrix. Shape of the 

molecule also affects its migratory rate, e.g. linear DNA has a lesser 

mobility than circular DNA. Mobility also increases with the increasing 

field voltage but there are practical limitations in using high electrical field 

strength because of heating effects. DNA size standard ladder is 

typically run in parallel to other samples to roughly estimate the size of 

the separated molecules. For visualization purposes, gels contain a DNA 

and RNA intercalating ethidium bromide (EB) which highlights their 

location when exposed to ultraviolet light (UV) (Lodish et al. 2004).  
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Depending on the expected molecular weight of electrophoresed 

molecules, electrophoresis was carried out in 1 to 2% (w/v) agarose gel. 

Every agarose gel contained 5 x 10-3 % (v/v) of stock EB (Gibco, cat. 

num. 15585-011) resulting in its final concentration of 0.5µg/ml. In order 

to be able to load the samples and visualize the progress of 

electrophoresis, 6 x orange-g dye was mixed with samples in a 1:6 ratio. 

The final volume of the loaded sample was 15µl. Electrophoresis was 

run between 50mA and 150mA and stopped when orange-g dye 

migrated across ~80% of gel. Gel was exposed to UV light using Gel 

Doc system (Syngene).  
 

2.3.2	RNA	extraction	and	deoxyribonuclease	I	treatment	
Total RNA was extracted from cells using GenEluteTM Mammalian Total 

RNA Miniprep Kit (Sigma-Aldrich© cat. num. RTN70). First, cells were 

lysed and homogenized in a lysis buffer containing guanidine 

thiocyanate and β-mercaptoethanol (β-ME) to ensure thorough 

denaturation of macromolecules and inactivation of RNases. Throughout 

this project this initial step was performed by adding 300µl of lysis buffer 

per each well of 6-well plate and lysates were pooled from two wells into 

single 1.5ml Eppendorf tube representing a particular experimental 

condition. Lysates were stored for a minimum of 24h before proceeding 

to the next step of the procedure. After thawing, the lysates were spun 

through a filtration column for 2min at 13200 (13.2k) rotation per minute 

(rpm) which removes the major contaminants as well as cellular debris 

and equal volume of 70% ethanol was added to the filtrate. The addition 

of ethanol causes RNA to bind when the lysate is spun through a silica 

membrane column in a microcentrifuge tube. Contaminants were 

washed away during a series of washes and then silica membrane 

column was treated with 1 in 8 diluted neat deoxyribonuclease I (DNaseI) 

(Sigma-Aldrich©, conc. 1unit/µl, cat. num. DNASE70) in order to aid the 

removal of genomic DNA (gDNA).  Finally, RNA was eluted in 50µl 

elution solution. RNA yield was determined on NanoDrop 2000 UV-Vis 

Spectrophotometer (Thermo-Scientific©). Prior to total RNA extraction 
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the workspace and pipettes were thoroughly cleaned with RNase Away 

solution (Invitrogen©, cat. num. R60001).         

2.3.3	Quality	control	of	total	RNA	

For critical experiments RNA integrity was assessed on Agilent 2100 

bioanalyzer using RNA LabChip® kit. Briefly, this instrument allows 

electrophoretic separation of RNA macromolecules on microfabricated 

chips. After electrophoresis the RNA fragments are detected via laser 

induced fluorescence detection, generating an electropherogram and a 

gel-like image. The process of determining RNA integrity is 

algorithmically standardized in order to remove individual interpretation 

in RNA quality control (QC). Software algorithm takes into account the 

entire electrophoretic trace into account and classifies eukaryotic total 

RNA into RNA Integrity Number (RIN) based on a numbering system 

from 1 to 10, with 1 being the most degraded profile and 10 being the 

most intact. For some experiments RNA QC was performed by running 

RNA through 1.5% (w/v) agarose gel at 55-100mA (see section 2.3.1 for 

more details on gel electrophoresis). The 2:1 ratio of 28S to 18S 

ribosomal RNA (rRNA) bands and lack of smearing was considered to 

represent intact RNA.  

2.3.4	Complementary	DNA	synthesis	by	reverse	transcription	

Principally, total RNA was converted into complementary DNA (cDNA) 

to measure gene expression by leveraging a viral reverse transcriptase 

(RT) enzymatic reaction. For this purpose, the SuperScript™ First-

Strand Synthesis System for RT-PCR kit (Invitrogen, cat. num.11904-

018) was used. Prior to the reverse transcription reaction, RNA was 

treated with DNaseI (Invitrogen, cat. num. 18068-015) for a second time 

to ensure complete removal of any remaining traces of gDNA. DNaseI 

digestion reaction was performed for each RNA sample in 0.5ml 

Eppendrof tube in a final volume of 10µl containing 1µl of digestion 

buffer, 1µl of DNaseI, and various quantities of RNase/DNase-free water 

(Sigma, cat. num. 95284), and RNA samples depending on RNA 

concentration. Generally, it was ensured to have 1µg of total RNA per 
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RT positive (RT+) reaction and equivalent amount per RT negative (RT-

) reaction. All the samples had the same amount of RNA in order to 

normalize differences in gene expression driven by differences in RNA 

yield. DNaseI digestion was carried out at RT for 15min. DNase I was 

inactivated by the addition of 1µl of 25 mM ethylenediaminetetraacetic 

acid (EDTA) followed by incubation at 65oC for 10min. cDNA synthesis 

reaction was initiated by using random hexamers priming, and therefore 

the generated cDNA represents the total RNA content rather than mRNA 

pool only, as it is the case for polyT oligo priming. In addition to 1µl of 

random hexamers the final reaction mix contained 1µl of 10mM 

deoxynucleotides mix (dNTP), 2µl of 10X RT reaction buffer, 4µl of 

25mM MgCl2, 2µl of 0.1M dithiothreitol (DTT) and 1µl of 

ribonucleaseOUT (RNaseOUT). The RT+ samples contained 1µl of RT 

enzyme and 2.5µl of RNase/DNase-free water while RT- samples 

contained 3.5µl of RNase/DNase-free water. Prior to the addition of RT 

enzyme, samples were equilibrated on thermocycler at 25oC for 10min. 

cDNA synthesis reaction was started at 25oC for 10min followed by 42oC 

for 50min, and 70oC for 15min. Finally, 1 µL of RNase H was added and 

incubated for 20min at 37oC. Samples were stored at -20oC.  

2.3.5	 Quantitative	 real	 time	 and	 end	 point	 polymerase	 chain	

reactions	
Polymerase chain reaction (PCR) is a molecular method whereby a 

fragment of DNA can be amplified more than trillion fold. In the end point 

PCR this amplification is performed using a pre-determined number of 

cycles and the final PCR product is visualized by gel electrophoresis. 

The size of this product can be estimated based on the relative-to-ladder 

location of the DNA band and sequenced following purification from the 

gel. It may be possible to compare quantities of the amplified fragment 

by end point PCR but this is not recommended because after certain 

number of cycles the quantity of DNA reaches plateaux and therefore is 

not comparable between the conditions. This issue is addressed by the 

real time PCR where the quantity of the amplified product is monitored 
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in a real time. Therefore, the differences in the starting DNA material can 

be quantified based on the rates of the amplifications (Bustin et al. 2009).  

2.3.5.1	Principles	of	polymerase	chain	reaction				

The basic set up of PCR includes DNA template containing region to 

amplify, two primers that are complementary to the 3’ ends of each of 

the sense and anti-sense strand of the DNA target, Taq polymerase 

capable to withstand temperature as high as 98oC, deoxynucleoside 

triphosphates (dNTPs) which are the building-blocks from which the 

DNA polymerase synthesizes a new DNA strand, bivalent cations such 

as Mg2+ or Mn2+, monovalent K+ and buffer providing a suitable 

environment for the amplification. PCR consists of series of repeated 

temperature changes whereby DNA copying can occur.  

There are three main steps in the PCR reaction: denaturation, annealing 

and extension. In the denaturation step the DNA is heated to 94 – 98oC 

causing DNA melting by disrupting hydrogen bonds resulting in the 

separation of complementary strands into single strands. During the 

annealing step the temperature is lowered to 50 – 65oC in order to allow 

the forward and reverse primers to hybridize to the appropriate DNA 

templates. PCR assay specificity is conferred thanks to primers’ 

complementarity to target sequences. Finally, extension occurs at 72 - 

80oC during which polymerase adds dNTPs complementary to the 

template in 5’ to 3’ direction. These steps are repeated in a cyclical 

fashion allowing coping of specific section of DNA (Figure 2.2). PCR 

works not only with gDNA but equally well with cDNA.   
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Figure 2.2: PCR is possible by a repeated process of denaturation, annealing and 
elongation yielding millions of copies of amplified DNA fragment. 
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2.3.5.2	Chemistries	of	real	time	polymerase	chain	reactions	

Real time PCR is referred to as quantitative PCR (qPCR) because it 

allows for either absolute or comparative quantification of starting DNA 

material. There are two main qPCR chemistries that make continuous 

monitoring of produced DNA copies possible, each with its advantages 

and disadvantages: the DNA binding dyes and probe-based designs.		

DNA binding dyes such as SYBR® Green have a very low level of 

fluorescence when unbound which increases by 1000 fold after binding 

to the double stranded DNA (dsDNA). As PCR amplification increases 

the quantity of dsDNA, the fluorescence signal increases proportionally 

(Figure 2.3). The advantage of this approach is the ease of 

implementation, whereas the main disadvantage is the fact that reaction 

specificity is determined solely by the utilized primers, as fluorescence 

intensity increases regardless of the sequence identity of amplified DNA. 

Thus primers should be designed to avoid non-specific binding as much 
as it is possible.  

This limitation of SYBR® Green qPCR assay is addressed by running a 

dissociation curve at the end of PCR run. The purpose of the dissociation 

curve is to determine if anything other than the gene of interest was 

amplified in the qPCR reaction. In the dissociation curve analysis 

amplicon is subject to an increase in temperature peaking at 90oC, with 

fluorescence measurement taken throughout. As SYBR® Green dye 

binds exclusively to dsDNA, continuous dissociation of the two DNA 

strands will result in a decrease of the fluorescence. A plot of the 

negative first derivative of the fluorescence versus temperature displays 

distinct peak corresponding to the melting temperature (Tm) of DNA 

product or multiple peaks if multiple PCR products of varying length were 

generated. A single peak provides the evidence for qPCR reaction 

specificity. Therefore, the underlying assumption of this method is that 

different PCR products have different rates of dissociation from SYBR® 
Green during a temperature increase.  

On the other hand, in the case of probe-based assay, such as TaqMan, 

in addition to the primers, a probe annealing between forward and 
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reverse primers is designed. This probe is conjugated with fluorochrome 

plus a quencher. When the probe is intact, the fluorochromic 

wavelengths are not released because quencher prevents this from 

occurring. However, when probe is degraded by DNA polymerase as it 

moves along the DNA template synthesising the daughter strand, the 

fluorescent signal can be detected (Figure 2.3). Hence, the main 

advantage of TaqMan qPCR is increased level of specificity, provided by 

not just primers but also by probe. Also, multiple probes can be labelled 

with different reporters allowing for parallel profiling of multiple targets in 

a single PCR reaction (multiplex qPCR). The disadvantage of probe-

based approach is the need for probe design and lower time and cost 

efficiencies when compared to SYBR® Green qPCR.   

 
Figure 2.3: In SYBR® Green the dsDNA binding dye, binds to the DNA as 
amplification progresses increasing the fluorescence signal (A), while in TaqMan 
qPCR fluorescence is produced after DNA polymerase degrades a probe with 
attached fluorochrome and quencher (B). 
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2.3.5.3	qPCR	data	analysis	

In the process of qPCR analysis, a fluorescence threshold is established 

in order to compare the PCR cycle numbers (Ct) between the samples. 

Throughout this thesis the qPCR thresholds were initially established 

either algorithmically by the analysis software (Stratagene®) or manually, 

and kept the same in any subsequent experiments for consistency. The 

fundamental idea behind the analysis is that samples with lower quantity 

of starting target material would reach the threshold after more cycles 

then the samples with higher quantity and thus will have lower Ct values 
(Figure 2.4).  

There are two main qPCR data analysis approaches: the absolute 

quantification and the relative quantification. In case of absolute 

quantification, the absolute quantity of the target can be quantified by 

using a calibration curve. Calibration curve can be generated by using 

samples of known quantities of target cDNA and measuring their 

equivalent Ct values. The relationship of template quantity to Ct values 

is linear and the best fit curve can then be used to determine the quantity 

of target cDNA in unknown samples. However, the more popular method 

for estimating differential gene expression is the relative quantification 

method also known as ΔΔCt method (Livak, 2001). Briefly, the Ct value 

of a housekeeping gene (Ct housekeeper) is subtracted from the Ct value of 

target gene (Ct target) yielding ΔCt for each considered sample (ΔCt sample 

A = Ct target sample A - Ct housekeeper sample A). Then one of the experimental 

conditions is considered a control with an assumed average expression 

of 1, where the rest of the samples are compared to this control. To do 

this the average of ΔCt values of the control samples is calculated (ΔCt 

average control) first. Then ΔΔCt value for each individual sample is 

calculated by subtracting ΔCt average control from ΔCt sample A ( ΔΔCt sample A = 

ΔCt sample A - ΔCt average control). The relative expression is finally calculated 

as 2 - ΔΔCt sample A. Thus according to this formula the two underlying 

assumptions are that the PCR assay efficiency is ~100% and that the 

housekeeper expression is relatively constant across the experimental 

conditions. It is important to test these assumptions because if not 
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fulfilled may result in flawed results. Housekeeper normalization is 

particularly important in in vivo animal model experiments where gene 

expression is compared between different animals as RNA input 

normalization for cDNA synthesis reaction is not enough to compare 

differences in gene expression. Because ΔCt average control is subtracted 

from each control ΔCt values the ΔΔCt for controls is ~0 and therefore 

relative expression 2 – ΔΔCt is ~1 while relative expressions of the rest of 

samples represent fold changes versus control. 

 
Figure 2.4: In qPCR the sample with a lower quantity of starting template (sample 
3) reaches the threshold after more cycles than the sample of higher quantity of 
starting template (sample 1).   

2.3.5.4	Design	and	validation	of	SYBR®	Green	and	TaqMan	qPCR	assays	

Both SYBR® Green and TaqMan qPCR assays were used in this project. 

Some assays were designed in-house and thus were tested and 

validated for ~100% amplification efficiency. Housekeeping gene assays 

were pre-designed and commercially obtained TaqMan oligos (Life 

Technologies; Table 2 of Appendix). Some SYBR® Green assays were 

also pre-designed and commercially obtained (Sigma-Aldrich; Table 3 of 

Appendix).  
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When designing the primers, the following rules (Dieffenbach et al. 1993) 

were followed where possible to produce optimum qPCR primers and 

probes: 

• Tm should be 55-80oC. Tm was calculated according to the 

approximation formula Tm=4(G+C) + 2(A+T).  

• The annealing temperature should be approx. 5oC less than the 

lowest Tm of the primer pair. 

• Each primer should be between 17 - 28bp long. 

• The content of G and C bases should be between 35 - 60%. 

• The 3’ end of the primer should end with G, C, CG or GC to 

increase priming efficiency. 

• Runs of more than 3bp of C or G at the 3’ end of the primer should 

be avoided as this could result in formation of primer dimers. 

• Self-complementarity score should be less than 7 as higher 
scores may result in secondary structures such as hairpins. 

The designed primers were checked on Primer3Plus 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) to 

check for primer length, Tm, proportion of GC content and self-

complementarity indices. NCBI Primer-Blast 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) was used to test 

primers specificity by blasting against NCBI Transcript Reference 

Sequences. 

In this thesis the relative qPCR quantification method was used in 

determining gene expression. Assay efficiency was calculated using a 

calibration curve analysis on Stratagene® analysis software where 

qPCR measurement was performed over 2-fold dilution series cDNA 

template, starting from 1µg of neat cDNA obtained from un-treated P3 

HBECs obtained from donors 195307 and 7F3206 (D195307 and 

7F3206 respectively). Because in an ideal PCR reaction there is a 

perfect doubling of target amplicon every cycle, an assay efficiency of 

100% means that there is roughly 1 Ct difference between samples of 

the 2-fold dilution series. Formally, the program performs a simple 

regression to find the slope of line relating cDNA quantitates to the Ct 
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values. Because of this relationship the slope can be directly used in 

assay efficiency calculation leveraging 2-fold dilution series as follows:  

% efficiency = (2(–1/slope) – 1) * 100% 

In a 10-fold dilution series, efficiency is calculated according to the same 

formula with the exception of number 2 which is substituted for number 

10.  

qPCR amplifications and monitoring were carried out on 96-well plate 

using Stratagene® fluorescence detection machine (model Mx3005P). 

For TaqMan assays the final volume of qPCR mix per single well was 

20µl consisting of 2µl of cDNA template, 6.4µl of DNase and RNase free 

water, 0.6µl of forward primer (final conc. 0.3µM), 0.6µl of reverse primer 

(final conc. 0.3µM), 0.4µl of probe (final conc. 0.1µM), and 10µl of x2 

TaqMan master mix (Applied Biosystems, cat. num. 4369542). For 

SYBR® Green assays the final volume of qPCR mix per single well was 

25µl consisting of 5µl of cDNA template, 6.4µl of DNase and RNase free 

water, 0.5µl of forward primer (final conc. 0.25µM), 0.5µl of reverse 

primer (final conc. 0.25µM), and 12.5µl of x2 Brilliant III Ultra-Fast 

SYBR® Green master mix (Agilent, cat. num. 600882). The precise 

quantity of cDNA used in these reactions depends on the total RNA yield 

from the RNA extraction step, as equal amounts of RNA ought to be 

added to cDNA syntheses tubes. Typically, in an ideal experiment the 

neat concentration of cDNA used for qPCR is 1µg/ml. In TaqMan assays, 

the 2µl of template is prepared by 1:5 dilution, yielding 0.001 % (w:v) 

final cDNA concentration in a single PCR well. Similarly in SYBR® Green 

assays, the 5µl of template is also prepared in a 1:5 dilution making the 

final concertation to be 0.008 % (w:v). RT+ samples were always run in 

triplicate while RT- samples were run in triplicates and duplicates. Every 

qPCR ran had a water only control to account for possible 

contaminations. TaqMan qPCR reactions were run according to the 
following thermal programme: 

• 2 minutes at 50˚C 

• 10 minutes at 95˚C 

• 15 seconds at 95˚C (40 cycles)  
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• 1 minute at 60˚C (40 cycles) 

On the other hand, SYBR® Green reactions were run according to the 

following programme: 

• 3 minutes at 95˚C   1 cycle 

• 10 seconds at 95˚C    

• 20 seconds at 60˚C 

 
• 1 minute at 95˚C   

• 30 seconds at 55˚C 

• 30 seconds 95˚C 

2.3.6	Automated	dideoxy	DNA	sequencing		
Dideoxy DNA sequencing, also known as Sanger sequencing, is a 

molecular method in which the identity and order of DNA bases can be 

determined (Sanger et al. 1977). According to this method DNA 

sequencing in essence is a primed DNA synthesis reaction carried in the 

presence of dNTPs and dideoxynucleotides (ddNTPs) in a ratio of 4:1. 

Because ddNTPs are missing the 3` hydroxyl group, which is required 

for DNA chain extension, the synthesis reaction is prematurely ended. 

Therefore, after the reaction, multiple DNA fragments are generated 

depending on the DNA template and the incorporated ddNTP. In the 

automated version of the technique, each of the four ddNTPs is labelled 

with a different fluorophore and therefore can be differentiated and 

detected by laser exposure following capillary gel electrophoresis 

(Figure 2.5). Sanger sequencing has been superseded by NGS (see 

section 2.5) but is still widely used for validation of NGS results and for 

obtaining long contiguous DNA sequence reads (>500 bp).  

40 cycles 

1 cycle 
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Figure 2.5: Automated Sanger sequencing procedure. 

2.3.6.1	PCR	amplicon	purification	and	automated	dideoxy	DNA	sequencing	

procedure	

In this thesis automated Sanger sequencing of cDNA was used to 

validate RNA sequencing by NGS (RNAseq; see section 2.5.1) findings 

and to check the sequence identity of cloned DNA constructs. 

Electrophoresed PCR products were visualized on UV station, cut out of 

the agarose gel using a sharp scalpel and were purified using a 

StrataPrep® DNA Gel extraction Kit (Agilent Technologies, cat. num. 

400766) following manufacturer’s instructions. The Terminator v3.1 

Cycle Sequencing Kit (Applied Biosystems, cat. num. 4337456) was 

used in the sequencing reactions. The following reagents were added 

per sequencing reaction: 1.5μl Big Dye termination mix, 1μM primer, 2μl 

sequencing buffer, 30ng purified PCR product template and DNase and 

RNase free water up to 10μl total volume. Samples were incubated at 

PCR thermal cycler according to the following program:  

• 96oC for 30s 

• 50oC for 15s      25 cycles 

• 60oC for 4min 

• 4oC hold to stop the reaction  
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Finally, DNA was precipitated, dried and sequenced at core sequencing 

facility using 3130xl ABI PRISM Genetic Analyzer (Life Technologies). 

For precipitation 62µl of DNA precipitation mix composed of 50µl of 

ethanol (100%), 10µl of DNase and RNase free water and 2µl of Sodium 

Acetate (NaOAc; 3M) was added to each tube. The samples were mixed 

by flicking and left on the bench at room temperature for 20min. The 

samples were centrifuged at 13.2 x 1000rpm for 1 hour. The 

supernatants were removed and discarded, by setting the pipette to 100 

µl and entering the pipette into the tube on the opposite side to the DNA 

pellet. 250 µl 70% ethanol was added to each tube and the samples were 

centrifuged at 13.2 x 1000rpm for 10min. The resulting supernatants 

were removed and discarded in two lots by setting the pipette to 200µl. 

The DNA pellets were dried at 95oC with the lids of the tubes open and, 

finally, samples were submitted for sequencing.  

2.3.7	 INTS12	 construct	 cloning	 and	 DNA	 plasmid	 transfection	

optimizations	
Molecular DNA cloning refers to a set of experimental methods used to 

assemble a recombinant DNA molecules and to direct their replication, 

transcription and, if encoding a protein, translation inside the cells. In this 

project transient INTS12 overexpression was used in parallel to its 

knockdown in order to test the effect of this manipulation on gene 

expression. NCBI’s INTS12 mRNA variant 2 (NM_001142471.1) as well 

as novel naturally-occurring variant 3 with premature stop codon 

(Obeidat et al. 2013) were PCR amplified, sequenced by Sanger 

reaction and cloned into pcDNA3.1 backbone plasmid with expression 

driven from CMV promoter. Variant 2 encodes canonical INTS12 protein 

sequence, while variant 3 encodes a smaller version of the protein that 

misses serine rich compositional bias. Constructs were maxi prepped 

(Qiagen, cat. num. 12302) in order to have enough DNA material for cell 

biology experiments. The constructs were named pcDNA3.1-INTS12_v2 

and pcDNA3.1-INTS12_v3 for the variants 2 and 3 respectively (Figure 

2.6).  
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Figure 2.6: Naturally occurring INTS12 variants 2 and 3 were cloned into 
overexpression constructs. The constructs were named pcDNA3.1-INTS12_v2 
and pcDNA3.1-INTS12_v3 respectively.  
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pEGFP-N1 plasmid containing GFP open reading frame (ORF) was 

used to optimize FuGENE6® mediated transfection. Cells were 

quantitatively tested for transfection efficiency by treating with 2µg/ml, 

1µg/ml and 0.5µg/ml of plasmid DNA in 3:2 and 3:1 FuGENE6® to 

construct ratios. The ratios are volume-to-total-mass and therefore if the 

quantity of DNA used was 2 µg, than 3:1 ratio implies using 6µl of 

FuGENE6®. Appropriate volumes of FuGENE6® were added to BEGM 

media and incubated for 5min at RT followed by addition of DNA. The 

mixture was incubated for 15min and added to freshly replaced media 

as appropriate. After 48h cells were washed with PBS (Oxoid, cat num. 

BR0014), fixed with 4% formaldehyde (Sigma-Aldrich, cat. num. 252549) 

and stained for 5-10min with 1µg/ml of 4',6-diamidino-2-phenylindole 

(DAPI) for dsDNA staining. Cells were imaged epifluerescently using 

DAPI and GFP exposures with 100x magnification (see section 2.4.1). 

Mean GFP fluorescence was quantified per a field using Volocity image 

measurement tool. The optimal transfection conditions of 2µg/ml of DNA 

using 3:1 ratio were used for INTS12 overexpression experiments.  

2.4	Cell	microscopy	
Cell microscopy refers to various imaging techniques used to visualize 

cells or biological molecules. In this thesis light microscopy was used 

primerily to check cells for overall confluency. Immunofluorescence (IF) 

and epifluorescent microscopy were used to determine the subcellular 

protein localization as well as to validate gene knockdown on the protein 

level. IF is a semi-quantitative technique which may be used to compare 

levels of protein expression between experimental conditions, albeit it is 

of lower sensitivity then Western blotting (WB) which is better suited for 

this purpose. Also, by IF alone it is not possible to ascertain the protein’s 

molecular weight and therefore there is less certainty in the assay’s 

specificity. However as outlined in the Introduction, according to the 

ENCODE, IF in combination with RNAi-mediated knockdown can be 
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used to demonstrate antibody specificity as well as successful protein 

silencing (Landt et al. 2012).  

2.4.1	Immunofluorescence	and	epifluorescent	microscopy					

There are two classes of IF: direct and indirect. In direct IF the antibody 

used to detect a particular protein of interest is attached to fluorophore 

detected on epiflurescent microscope. On the other hand, in indirect IF 

which was used in this project, the antibody used to detect the protein is 

known as primary antibody and it is not conjugated. A secondary 

antibody carrying the fluorophore is applied to bind onto the primary 

antibody. This is possible because an antibody consisting of four 

polypeptide chains has two predominant parts: a variable region, which 

recognizes the protein’s antigen, and constant region, which makes up 

the structure of the antibody molecule and which can be recognized by 

another antibody. In some cases, cell membrane permeabilization is 

required to allow antibody’s access to intracellular proteins. A procedure 

of blocking with milk or goat serum is applied in order to minimize the 

degree of non-specific binding.  

Primary antibodies can be either monoclonal or polyclonal. Polyclonal 

antibodies are produced by different B cell lineages raised against a 

specific antigen, each identifying a different epitope. In contrast, 

monoclonal antibodies are produced by identical clones of B cells that 

came from the same parent cell thus generating antibodies of 

monovalent affinity targeting the same epitope (Lipman et al. 2005). 

Imaging cells transfected with fluorescent molecules or stained with 

fluorescent antibodies can be achieved with epifluorescent microscope. 

In epifluorescent microscopy, the sample is shined with a specific, 

desired, bandwidth of wavelengths and then the weaker emitted light is 

used detect the excited molecules.  

2.4.1.1	Immunofluorescence	procedure		

Indirect IF often requires experimental optimization of primary and 

secondary antibodies for optimal imaging results. After a series of 

optimizations, a final procedure was developed. Cells were grown on 8-

chamber glass slides seeding 8000 cells onto each chamber and were 
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left un-treated or were transfected with INTS12 and scrambled D-siRNAs 

as described previously (see section 2.2.2). After reaching 50-100% 

confluence (observed confluency depending on the condition) cells were 

washed x3 with PBS (Oxoid, cat num. BR0014) and fixed with PBS 

diluted 4% formaldehyde (Sigma-Aldrich, cat. num. 252549) for 15min at 

RT. Cells were washed x3 with PBS and permeabilized with 0.15% Triton 

X-100 for 10min at RT. Then, cells were washed x3 with PBS and 

incubated in block solution consisting of 10% goat serum diluted by 1% 

bovine serum albumin PBS solution for 30min at RT. Finally, cells were 

washed x3 with PBS and incubated for ~24h at 4oC with 1µg/ml of raised 

in rabbit IgG polyclonal anti-human-INTS12 antibody (Sigma Prestige 

Antibodies, cat. num. HPA035772) and 1µg/ml of general rabbit IgG 

isotype control (Abcam, cat. num. 171870). Next day, after PBS wash 

15µg/ml of secondary goat anti-rabbit-IgG conjugated with rhodamine 

(TRITC) fluorophore was incubated for 1h at RT. Cells were left on 

agitating rack and protected from light during this time. After that cells 

were washed x3 with 0.05% (v/v) PBS-Tween and incubated for 5-10min 

with 1µg/ml of DAPI for dsDNA staining. Lastly, cells were washed x3 

with 0.05% (v/v) PBS-Tween, mounted and epifluorescently imaged on 

epifluorescent microscope using DAPI and TRITC exposures. It was 

ensured to keep the same exposures across the conditions to avoid 

differences in the fluorescence intensity driven by different exposures. 

Cells were magnified 200 times unless specified differently.  

2.5	RNA	next	generation	sequencing	
RNAseq by NGS is thought to have revolutionized the field of 

transcriptomics because of the wealth of analytical information 

generated, including transcriptome assembly, differential gene 

expression, differential expression of individual mRNA isoforms, 

differential splicing, and differential promoter use (Wang et al. 2009). The 

critical advantage of RNAseq over tilling array approaches is a greater 

dynamic range in estimating gene expression, i.e. accurate estimation of 

highly and lowly expressed genes, and less technical variability between 
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biological experiments (Majewski and Pastinen, 2011). Microarray and 

RNAseq derived gene expression correlate fairly well for medium levels 

of expression (correlation coefficient of 0.5), but correlation is low for 

genes with either very high (correlation coefficient of 0.2) or very low 

(correlation coefficient of 0.1) expression (Wang et al. 2009).  

In typical RNAseq experiment, the first step is isolation of RNA species 

of interest (such as mRNA) and its conversion into a library of cDNA 

fragments. mRNA enrichment by poly(A) selection is frequently 

employed for the estimation of expression of protein coding genes, 

however ribosomal RNA depletion method has increased in prominence 

due to its ability to assess the entire transcriptome and not just a subset 

of protein coding genes. Sequencing adaptors are subsequently added 

to each cDNA fragment and its sequence is recovered by NGS.  

In NGS, vast numbers of short reads are sequenced in a single stroke 

(Illumina®). Briefly, reads are attached to the sequencing platform by 

using the attached adaptors. PCR is carried out to amplify each read, 

creating a spot with many copies of the same read. This step is 

necessary as otherwise base calling is hardly detectable. Fluorescently 

labelled nucleotides are added to the slide together with DNA 

polymerase. Complementary strands of the reads are denatured by 

heating the platform and polymerase then adds the labelled nucleotides 

generating coloured fluorescent signal detected by imaging, indicating 

which base has been added. As the bases have a terminator, the 

extension cannot occur continuously but rather happens one at the time 

to allow for the monitoring of the process. The terminators are chemically 

removed allowing the next base to be added and the whole process is 

repeated until the entire sequence is retrieved (Figure 2.7). The depth of 

sequencing refers to the total number of sequenced reads with greater 

depth implying greater number of sequenced reads. Ribosomal RNA 

depleted library typically requires greater depth of sequencing because 

of the substantial number of reads derived from ribosomal RNA 
attenuating the signal of other genes.    
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Figure 2.7: Illumina® NGS procedure. After sequencing library preparation, reads 
are attached to the sequencing platform and PCR amplified. Sequencing is 
commenced by the addition of fluorescently labelled nucleotides and DNA 
polymerase which adds the bases one at a time allowing for monitoring of 
sequencing (A). An example of continuous imaging (9 bases) of part of NGS 
platform. T, G, C, and A nucleotides are labelled with greed, blue, red and orange 
dyes respectively. The imaged colour indicates the identity of the added 
nucleotide (B). 

2.5.1	RNAseq	experiments	

INTS12 knockdown was initiated and total RNA was extracted as 

described before (see sections 2.2.2.3 and 2.3.2 respectively). 

Sequencing samples were ensured to have RIN scores ≥ 8 (see section 

2.3.3). There were four experimental conditions performed in three 

independent biological replicates (i.e. using different cell vials of the 

same donor and at different times): 

• Un-transfected P3 HBECs  

• P3 HBECs transfected with scrambled D-siRNA 

• P3 HBECs transfected with INTS12 D-siRNA A 

• P3 HBECs transfected with INTS12 D-siRNA C 

Transcriptomic profiling was performed at 48h post initiation of 

knockdown using D7F3206 cells and 120h post initiation of knockdown 
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using D195307. Sequencing library was prepared with Illumina TruSeq 

RNA Sample Prep Kit v2. mRNA was poly-A selected by capturing total 

RNA samples with oligo-dT coated magnetic beads. The mRNA was 

then fragmented and randomly primed. cDNA was synthesised using 

random primers. Finally, ready-for-sequencing library was prepared by 

end-repair, phosphorylation, A-tailing, adapter ligation and PCR 

amplification. Paired-end sequencing was performed on the Illumina© 

HiSeq2000 platform using TruSeq v3 chemistry over 100 cycles yielding 

approximately 40 million reads per sample stored in raw FASTQ files 

used for subsequent analyses. 

2.6	Chromatin	immunoprecipitation		
ChIP is a method used to assess the binding profile of proteins 

interacting with gDNA. It can be used to decipher protein’s binding sites 

in basal conditions or to study differential binding due to experimental 

manipulations. It can also be used to study specific histone 

modifications. This technology has been used for accurate and high-

resolution mapping of the protein-gDNA interaction loci that are 

important in the understanding of many processes in development and 

disease. Briefly, in ChIP experiments the first step is the fixing of proteins 

to their cognate gDNA sequences by crosslinking by formaldehyde 

treatment. Then gDNA is IPed with antibody targeting a protein of 

interest. After precipitation DNA is isolated and can be tested by PCR or 

NGS approaches thus being ChIP-PCR and ChIPseq respectively. 

ChIPseq, in contrast to ChIP-PCR allows for genome-wide profiling of 

gDNA interacting proteins at ~10-50bp resolution accuracy (Figure 2.8; 

Park et al. 2009). A plethora of downstream analyses can be performed 

on ChIPseq dataset e.g. identification of candidate genes regulated by 

the protein, co-occupancy with other regulatory elements and 

conservation analyses (see section 2.8.2). INTS12 ChIPseq was 

performed, primarily but not exclusively, to determine whether INTS12 

binding is enriched upon genes identified as differentially expressed 

following INTS12 knockdown. ChIP-PCR was utilized to technically 
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validate the binding profiles identified in ChIPseq by testing the 

enrichment at three positive sites and one negative site.  

 

Figure 2.8: ChIPseq experiment procedure: protein fixing, IP, sequencing, and 
read mapping.  

2.6.1	 INTS12	 chromatin	 immunoprecipitation	 sequencing	

procedure			
HBECs from two different donors (D195307 and D7F3158) were fixed 

with formaldehyde solution for 15 min. Formaldehyde solution contained 

11% formaldehyde (Sigma cat. num. F-8775), 0.1M sodium chloride 

(Sigma cat. num. S5150-1L), 1mM EDTA (pH 8.0; Sigma cat. num. 

03690-100ML), 50mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES; pH 7.9; Applichem cat. num. A6906,0125). Fixation was 

quenched with 0.125 M glycine (Sigma cat. num. G-7403-250G). 

Chromatin was isolated by the addition of lysis buffer (Active Motif ChIP-

IT® ChIPseq kit, cat. num. 53041), followed by disruption with a Dounce 

homogenizer (Active Motif ChIP-IT® ChIPseq kit, cat. num. 53041) to 

allow for efficient chromatin preparation. Lysates were sonicated and the 

DNA sheared to an average length of 300-500bp. Genomic DNA regions 

of interest were isolated using 4 µg of antibody against INTS12 (Sigma 

cat. num. HPA03577) following manufacturer’s specifications (Active 

Motif ChIP-IT® ChIPseq kit, cat. num. 53041). Complexes were washed, 

eluted from the beads with SDS buffer, and subjected to RNase and 

proteinase K treatment. Crosslinks were reversed by incubation 

overnight at 65oC, and ChIP DNA was purified by phenol-chloroform 

extraction and ethanol precipitation. Pellets were re-suspended and the 

resulting DNA was quantified on a NanoDrop 2000 spectrophotometer 

(Thermo-Scientific©). Extrapolation to the original chromatin volume 

allowed quantitation of the total chromatin yield. 30µg chromatin of each 
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sample was precleared with protein A agarose beads (Invitrogen cat. 

num. 15918-014). Unprecipitated genomic DNA (i.e. input control) was 
prepared from a pool of equal aliquots of the 2 samples.  

Illumina© sequencing libraries were prepared from the ChIP and Input 

DNAs by the standard consecutive enzymatic steps of end-polishing, dA-

addition, and adaptor ligation. After a final PCR amplification step, the 

resulting DNA libraries were sequenced on Illumina© NextSeq 500 

Illumina© sequencing machine yielding approximately 40 million single-

end 75bp raw reads FASTQ files per two ChIP samples from each donor 

cells and one input control of both donors. Raw files were used for 

subsequent bioinformatic analyses. 

2.6.1.1	The	choice	of	the	antibody	

The same antibody used in IF was also used in ChIP protocol. Therefore, 

ENCODE criteria were followed for its validation by combining IF with 

gene knockdown (see section 3.6.1.3.2). Disappearance of nuclear 

signal in cells treated with D-siRNA indicated its specificity (Figure 2.22). 

Moreover, antibody was validated for ChIPseq due to passing a pilot 

experiment by generating sufficient number of unique reads were 

sequenced using it (see section 6.3.1). 

2.6.2	INTS12	chromatin	immunoprecipitation	polymerase	chain	

reaction	
INTS12 peak regions used for qPCR validation were prioritized based 

on ChIPseq signals observed on the genome browser. The following 

three positive and one negative binding regions were chosen for ChIP-

PCR validation, based on hg19 (GRCh37) sequence and RefSeq 

annotation:  

• ACTB TSS -145 (145 bps upstream gene’s TSS)  

• NBPF1 TSS +108 (108 bps downstream gene’s TSS)    positive  

• POR TSS -154 (154 bps upstream gene’s TSS) 

• Untr12 (region Chr12: 61667747 – 61667824)     negative  
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PCR primers were designed as described before (see section 2.3.5.4 

and Table 4 of Appendix) to span the above regions. qPCR reactions 

were carried out in triplicate on above specified genomic regions upon 

500 times diluted precipitated gDNA (i.e. final DNA quantity was 12.5 ng) 

from each donor and input control using SYBR Green Supermix (Bio-

Rad, cat. num. 1708880). The raw qPCR Ct values were converted into 

the number of binding events detected per 1000 cells according to the 

manufacturers of ChIP-PCR kit specifications (Active Motif ChIP-IT® 

qPCR analysis kit, cat. num. 53029).   

2.7	Statistical	considerations		
Data were grouped from multiple experiments and are expressed as the 

mean ± standard error of the mean (SEM). Unless otherwise specified, 

statistical significance was assessed by ordinary one-way ANOVA 

followed by Fisher’s Least Significant Difference test (Hayter, 1986). 

Results were considered significant when P<0.05 (Table 2.1). For high 

throughput analyses the nominal P values were corrected for multiple 

comparisons using Benjamin-Hochberg false discovery rate (FDR) 

correction to minimize the risk of type I error (Benjamini and Hochberg, 

1995). 
P values Donation 

>0.05 ns 

<0.05 * 

<0.01 ** 

<0.001 *** 

<0.0001 **** 

Table 2.1: Used star indications of statistical significance.   

2.8	Bioinformatic	analyses	

2.8.1	RNAseq	analyses	

Once the cDNA fragments have been sequenced, the first task in the 

RNAseq data analysis is to evaluate the quality of sequenced reads. For 

that purpose FastQC is often used 
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(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Although 

Illumina© high throughput sequencing provides highly accurate 

sequencing data, poor quality reads are possible. The primary errors are 

substitution errors and these errors rise in frequency at the 3’ ends of the 

reads. One way to investigate sequence quality is to visualize the quality 

scores (Q-scores) which can be generated by FastQC. Q-scores 

express error probability. In particular, it serves as a compact way to 

communicate small error probabilities. Mathematically, the probability 

that is A not true, P(~A), is expressed by a Q-score , Q(A), according to 

the relationship: 

Q(A) =-10 log10(P(~A)) 

Therefore the relationship between quality score is as follows: 

• If quality score is 10 then error probability is 0.1 

• If quality score is 20 then error probability is 0.01 

• If quality score is 30 then error probability is 0.001 

• If quality score is 40 then error probability is 0.001 

Q-scores are assigned by sequencing machine and it is generally 

acceptable to use raw reads data for subsequent analyses without any 

data trimming if the average Q-scores per base are above 28 (Conesa 

et al. 2016). RNAseq tools fall into three categories: (1) programs used 

for read alignment, (2) programs used for transcriptome assembly, which 

as far as end result is concerned, is equivalent to the process of genome 

annotation, and (3) programs used for individual transcript and gene 

quantification.  

After initial data QC, the next step is to map (i.e. align) short reads to the 

reference genome or to assemble reads to contigs before genomic 

alignment. Several mapping programs have been developed with an aim 

to identify, for each short read in the dataset, all the locations in a 

reference genome that show perfect or near perfect matching. The 

differences among the alignment programmes lay in the algorithm 

design and therefore computational efficiency. Bowtie is among the top 

fastest short-read aligners (Langmead et al. 2009), Maq can make the 

use of reads quality scores (Li, Ruan et al. 2008), while SeqMap 
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considers insertions and deletions (Jiang and Wong, 2008). Read 

mapping is a relatively straightforward task for reads derived from non-

splice or non-polyadenylation sites as, for each read, there is only one 

correct result given the reference genome and number of mismatches 

allowed. These reads produce un-gapped alignments. Poly(A) tails can 

be identified simply by the presence of multiple As or Ts at the end of 

some reads. For large transcriptomes, alignment is complicated by the 

fact that some reads map to multiple locations of the genome. This can 

be addressed by proportionally assigning them based on the number of 

reads mapped to their neighbouring unique sequences (Mortazavi et al. 

2008). Alternatively reads aligning to multiple locations can be discarded 

if they map to more than previously specified threshold. This threshold 

is determined on an arbitrary basis.  

The greatest computational challenge is related to aligning reads derived 

from mRNA splice junctions. Because spliced alignment is critical in 

RNAseq analysis this task has attracted much research effort in recent 

years (Engström et al. 2013). Bowtie is an example of splice-aware 

aligner capable of producing spliced alignments in addition to un-gapped 

alignments. Splice alignment is implemented in a two-step approach in 

which initial read alignments are analysed to infer splice junctions and 

these junctions are used to guide the final alignment (Langmead et al. 

2009). Bowtie can use existing gene annotation to inform spliced-read 

placement and in this case alignment results are highly specific to a 

particular version of the transcriptome. Spliced alignments are critical for 

correct placing of exon-intron boundaries. Alignment information is used 

for transcriptome assembly, again, typically in the context of reference 

annotation (i.e. it is a Reference Annotation Based Transcript). Although 

it is possible to perform differential gene expression without 

transcriptome assembly, it has been suggested that the failure to look 

for new transcripts can bias expression estimates and reduce accuracy 

(Trapnell et al. 2010). Predicted annotation and genome sequence are 

used to compare read counts between loci for differential gene 

expression analysis.  
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2.8.1.1	Tuxedo	pipeline	

Tuxedo tool kit for RNAseq analysis contains all the categories of 

programs used in RNAseq analysis (Trapnell et al. 2012). This pipeline 

can serve multiple purposes but the main one is to compare 

transcriptome profiles between two biological conditions such as wild-

type versus mutant or control versus knockdown experiments (Figure 

2.8). First, reads from the considered conditions are aligned to the 

reference genome by TopHat. TopHat uses Bowtie for read mapping and 

therefore can produce spliced alignments. The next step in the workflow 

is the transcriptome assembly with Cufflinks. The algorithm takes 

mapped reads information and assembles overlapping reads into contigs 

as it would have been done for de novo genome assembly. Smaller 

contigs contained within larger contigs and derived from different exons 

can be differentiated thanks to the spliced alignments (Figure 2.9). 

Assembled contigs are used to identify ‘incompatible’ fragments that 

must have originated from differently spliced isoforms. These 

incompatible fragments are determined based on irreconcilable spliced 

alignment. Fragments are then connected if they are compatible and 

their spliced alignments overlap in the genome. Therefore, the paths 

through the fragments are sets of mutually compatible fragments that 

could be merged into complete isoforms. Isoforms are finally assembled 

from the overlap graph. In this process, Cufflinks implements Dilworth’s 

Theorem which states that the number of mutually incompatible 

fragments is the same as the minimum number of isoforms needed to 

explain all the fragments.  

Transcriptome assembly is performed on individual sample basis and all 

the assemblies are merged into one unified and final genome annotation 

using Cuffmerge utility (Figure 2.9). When using reference annotation to 

guide assembly, Cuffmerge performs Reference Annotation Based 

Transcript assembly. If an isoform did not receive enough coverage, 

Cufflinks may not have recovered it and contigs derived from that isoform 

will not be linked due to other fragments being missed. However, when 

Cufflinks assemblies are unified the entire isoform may be reconstructed. 
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Cuffmerge will merge contigs if they overlap, and agree on splicing (i.e. 

are not mutually incompatible).  

In order to perform differential gene expression, the alignment file and 

the merged predicted assembly are fed to Cuffdiff, which calculates 

normalized expression levels and tests the statistical significance of 

observed changes in read counts between the loci specified in the 

annotation. Gene expression values are normalized for gene length, as 

raw read counts are higher for longer genes and therefore are not 

comparable unless normalized for gene size. Expression is also 

normalized for library size because differences between the conditions 

in library size can yield non-biological differences in gene expression. 

Gene expression is represented as fragments per kilobase per million 

reads (FPKM) units for paired-end sequencing which includes 

adjustments for both the gene length and library size rendering 

expression values comparable. Reads per kilobase per million reads 

(RPKM) is used for singe-end sequencing but it is the same as FPKM. 

The mathematical formula for FPKM was introduced by Mortazavi et al. 

(Mortazavi et al. 2008) and it is as follows: 

𝐹𝑃𝐾𝑀𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =
𝑋	𝑓𝑒𝑎𝑡𝑢𝑟𝑒

𝑁	𝑙𝑖𝑏𝑟𝑎𝑟𝑦 ∗ 𝐿	𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ∗ 10
7 

Thus FPKM value per considered genomic feature (FPKMfeature) is 

calculated by dividing the total mappable reads aligning to the feature 

divided by a product of total reads in sequencing library (Nlibrary) and the 

number of bases constituting the feature (Lfeature) multiplied by 109. 

Cuffdiff performs quantifications and differential expression analyses on 

individual isoform level and gene expression is simply the sum of FPKM 

values of its individual isoforms. Because a read from a shared exon 

could have come from one of several isoforms a simple counting 

procedure will not suffice for that purpose. Therefore both Cufflinks and 

Cuffdiff implement a linear statistical model to estimate an assignment 

of abundance to each transcript that explains the observed reads with 

maximum likelihood (Figure 2.9; Trapnell et al. 2010; Trapnell et al. 
2012).  
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Figure 2.9: An overview of the tuxedo pipeline for RNAseq analysis approach. 
Reads are first mapped to the genome with TopHat. These mapped reads are 
provided as input to Cufflinks, which produces one file of assembled fragments. 
Assembly files per each of the available conditions and replicates are then 
merged using reference transcriptome annotation as a guide into a unified 
annotation for further analysis. Predicted annotation is then used for differential 
read count analysis performed by Cuffdiff (A). For transcriptome assembly 
overlapping reads are assembled into contigs which can be considered to be 
exons. Contig assembly considers spliced alignments and therefore can 
separate between fragments. Fragment pairs are tested for compatibility based 
on relative locations of spliced alignments, i.e. whether spliced alignments are 
within other spliced alignment indicating a separate isoform origin (B). For 
isoform abundance estimation, gene expression can be determined at individual 
isoform resolution level based on a statistical model in which the probability of 
observing each fragment is a linear function of the abundances of the transcripts 
from which it could have originated explaining the observed reads with maximum 
likelihood (C). Reproduced from Trapnell et al. (Trapnell et al. 2010 and Trapnell 
et al. 2012). 
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Cuffdiff can also perform additional analyses beyond mere differential 

gene or isoform expression. For example, by grouping transcripts into 

biologically meaningful groups, Cuffdiff identifies genes with evidence of 

differential promoter usage or differential expression of coding 

sequences and can also identify genes with varying isoform abundances 

providing evidence of differential splicing per gene. 

2.8.1.1.1	Tuxedo	pipeline	datatypes	and	commands	

RNAseq analyses were completed on Linux Ubuntu 12.04 LTS (64-bit) 

run on remotely-accessed computer with 126 GB of RAM memory. All 

the program tools of Tuxedo pipeline were installed according to the 

developer instructions. 

i) Reads alignment to reference genome and initial QC 

Raw reads are saved as a FASTQ file which in essence is a text file 

containing all the reads’ sequences. Raw files were tested for quality on 

java implementation of FastQC. There were two FASTQ files per sample 

because sequencing was pair ended. TopHat alignment was executed 

with the general command shown below. In it, the –p parameter specifies 

the number of cores to be used in the alignment (it is arbitrary and 

depends on the available computer processing units), -G parameter 

specifies the path to genome annotation, -o parameter specifies the 

name of output folder, genome is the base name for Bowtie indexed 

genome, and there are two compressed raw read files per RNAseq 

sample because the sequencing is paired. Reference file is saved in GTF 

format. Reference genome used was GRCh37 (also known as hg19) and 

its equivalent annotation was taken from Ensembl database. Both the 

reference genome sequence and annotation were downloaded from 

Illumina’s iGenomes repository of model organisms 

(https://support.illumina.com/sequencing/sequencing_software/igenom
e.html).        

tophat –p 2 –G <path_to_annotation>/genes.gtf –o 

output_folder 

<path_to_Bowtie_indexed_genome>/genome_prefix 
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<path_to_compressed_raw_data>/_1_reads.fastq.gz 

<path_to_compressed_raw_data>/_2_reads.fastq.gz 

This command generates a folder with binary accepted_hits.bam 

alignment file and other files including read alignment statistics. 

ii) Individual transcriptome assemblies  

Cufflinks transcriptome assemblies on individual RNAseq samples were 

performed by executing the common shown below. The critical element 

of the Cufflinks assembly is provision of binary BAM file alignment 

containing un-gapped and spliced alignment information. This alignment 

file was created by TopHat and is found in the TopHat output folder. Thus 

alignment file is per sequenced RNAseq sample. The purposes of –p 

and –o parameters are the same as specified in the TopHat alignment 

stage.   

cufflinks –p 2 –o output_folder 

<path_to_alignment_file>/accepted_hits.bam 

This command generates a folder with transcripts.gtf predicted 

transcriptome annotations per RNAseq sample.  

iii) Final transcriptome merging 

Final transcriptome assemblies were merged into a final and unified 

assembly by merging the predicted GTF annotations generated on 

individual sample basis. First, a list of paths to predicted GTF assemblies 

(transcripts.gtf files that were generated per sample by Cufflinks) 

was typed in a column-wise fashion in a text file named 

gtf_out_list.txt. Then Cuffmerge command shown below was 

executed. The –g parameter specifies the path to the reference 

annotation which was also used during the alignment. The –s parameter 

specifies the path to the fasta-type sequence of reference human 
genome (i.e. not the indexed genome sequence).  
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cuffmerge –p 10 –g 

<path_to_reference_annotation>/genes.gtf –s 

<path_to_fasta_genome_sequence>/genome.fa 

gtf_out_list.txt 

This command yields final merged.gtf transcriptome assembly file.    

iv) Differential analyses 

Differential RNAseq analyses were performed using merged.gtf 

assembly and accepted_hits.bam alignments. The general 

command is shown below. Alignments representing biological replicates 

of the same condition are grouped together by typing the replicate 

alignments one after another separated by comma. The two blocks of 

conditions that are being compared are separated by a space. Predicted 

genome annotation generated by Cuffmerge is supplied to the Cuffdiff 
differential analyses. 

cuffdiff –p 7 

<path_to_predicted_annotation>/merged.gtf 

<condition_X_sample_1>/accepted_hits.bam, 

<condition_X_sample_2>/accepted_hits.bam, 

<condition_X_sample_3>/accepted_hits.bam 

<condition_Y_sample_1>/accepted_hits.bam, 

<condition_Y_sample_2>/accepted_hits.bam, 

<condition_Y_sample_3>/accepted_hits.bam 

The output files contain the information about differential gene 

expression analysis as well as other information such genes with 

evidence of differential splicing or differential promoter usage. 

Comparisons were performed between un-transfected cells and cells 

transfected with scrambled D-siRNA (UTvsNC), cells transfected with 

scrambled D-siRNA and INTS12 D-siRNA A (NCvsA), and cells 
transfected with scrambled D-siRNA and INTS12 D-siRNA C (NCvsC). 
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2.8.1.1.2	Identification	and	visualization	of	novel	splice	variants	

The Cuffmerge generated novel gene transfer format (GTF) annotation 

file was compared to Ensembl GTF annotation by using Cuffcompare. 

The command used is shown below.  

cuffcompare –r 

<path_to_reference_annotation>/genes.gtf –i 

<path_to_predicted_annotation>/merged.gtf  

The generated refmap file was used to ascertain which of the predicted 

mRNA isoforms were matching the isoforms annotated in the reference 

annotation and which isoforms are novel. All the predicted variants were 

visualized by SpliceGrapher using 

gene_model_to_splicegraph.py and plotter.py functions as 

specified in the SpliceGrapher user’s guide 
(http://splicegrapher.sourceforge.net/userguide.html).   

2.8.2	ChIPseq	analysis	pipeline	
The aim of ChIPseq experiment analysis is to gain an adequate number 

of mappable reads aggregated at the binding regions. In that context, a 

mappable read is defined as a read that maps (i.e. aligns) to a unique 

location in the genome. The popular alignment programs typically allow 

for two mismatches when aligning these reads. On the other hand, non-

redundant reads are the mappable reads that occur only once in the 

entire dataset. Redundant reads are also known as duplicates and in 

contrast to RNAseq where such reads may have been derived 

biologically because of differences in gene transcription, in ChIPseq they 

are presumed to be generated artificially as a result of PCR amplification 

on NGS platform. Before any large-scale production run of a ChIPseq 

experiment it is desirable to conduct a pilot experiment where a small 

number of reads is generated (Ma and Wong, 2011). This dataset can 

be used to assess the overall success of pilot ChIPseq. For a pilot 

experiment to be deemed successful (a) percentage of uniquely 

mappable reads ought to achieve at least 8
9
 of total reads, and (b) 
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percentage of non-redundant reads should be greater than 50% of the 

total mappable reads (Ma and Wong, 2011). 

As it is the case with RNAseq analysis, the first step in ChIPseq analysis 

is mapping reads to the reference genome. This can be achieved with 

any of the available read alignment tools that were mentioned before 

(see section 2.8.1). The next step is concerned with background 

estimation. Although in ChIPseq a considerable fraction of reads would 

have originated from ChIP fragments, a significant proportion are 

nonspecific. These could have originated for a number of reasons such 

as library contamination, PCR amplification selection yielding redundant 

reads, nonspecific antibody binding or image processing sequencing 
errors.  

Knowledge about the background rate is pivotal for the assessment of 

statistical significance of the enrichment of binding regions. There is no 

obvious way to ascertain which read is derived from a true ChIP fragment 

or is part of background noise but a signal read is considered as such if 

it falls within enriched regions, while background read would fall outside 

enriched region. Therefore, peak calling, i.e. identification of binding 

sites, is a signal-over-noise detection problem. In each called peak 

region, the fold change of the ChIP signal intensity to the control signal 

intensity is used as a local estimate of the signal-to-noise ratio (Zhang et 

al. 2008). The input (i.e. no-ChIP) control sample is often used to 

differentiate between true read distribution enrichment and random 

noise.  

The general consensus highlights the importance of conducing biological 

replicates of ChIPseq assays to assess biological reproducibility and 

thus to have confidence in the identified binding sites and to, potentially, 

perform subsequent analyses on the subset of reproducible binding sites 

(Landt et al. 2012; Figure 2.10). Alternatively, if peak regions show good 

biological reproducibility, one may use one ChIPseq sample as the 

representative (Landt et al. 2012), and this method was followed in this 

thesis. After obtaining the list of binding sites, the biological implications 

of these bindings can be preliminarily grasped by asking what are the 
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genomic annotations associated with the binding and thus get an idea 

about potential functions of peak regions. The considered annotations 

can be for example promoter annotations or phylogenetic conservation. 

Binding sites may also be used for de novo discovery of candidate DNA 
motif which may act as molecular signatures for a binding event.   

 

Figure 2.10: An outline of ChIPseq analysis pipeline with two biological 
replicates.  

2.8.2.1	Commands	and	data	types	

As with RNAseq analyses, ChIPseq analyses were completed on Linux 

Ubuntu 12.04 LTS (64-bit) run on remotely-accessed computer with 126 

GB of RAM memory. The necessary programs were installed as 

specified by their developers.  
i) Reads alignment to reference genome and initial QC 

As it was the case for RNAseq samples, ChIPseq raw FASTQ file were 

first quality evaluated using FastQC. Reads were aligned to the human 

genome version hg19 using the BWA (alignment via Burrows-Wheeler 

transformation) algorithm version 0.6.1-r104 with default settings (Li and 
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Durbin 2009). Duplicate reads were retained. Reads aligning to more or 

equal to two locations were held as well, with a single location decided 

randomly. The general commands used for the alignment are shown 

below and prefix is the bwa-indexed reference genome. Bwa samse 

command was run after bwa aln command using the sai file 

generated in the first step as argument in the second step. 

bwa aln prefix in.fastq 

bwa samse prefix in.sai in.fastq 

The information about the alignment was obtained with Qualimap 

version 2.1. The general command used for that purpose was 

qualimap bamqc –bam <bam_file>. The number of reads aligning 

to multiple locations in the genome (multi hits rate) was obtained by 

repeating the alignment with Bowtie (Langmead et al. 2009) using 
bowtie –m 1 –S –q 

<path_to_Bowtie_indexed_genome>/genome_prefix 

in.fastq out.bam command. The –m 1 parameter specifies that 

reads aligning to more than one location are excluded and the output 

from the alignment specifies the number and proportion of reads of this 

category.   

ii) Read duplicate removal 

Read duplicates were removed prior to further analyses due to their 

artefactual origin during sequencing on NGS platform. Although 

duplicated reads are removed automatically by the peak caller, 

duplicates were removed from BAM alignment files in order to draw 

average plots for different genomic features or genes. Read duplicates 

were removed using samtools with a command shown below. 

samtools rmdup –s in.bam out.bam  

iii) Peak calling 

INTS12 peak calling was performed using the second generation of 

model-based analysis of ChIP-Seq (MACS), i.e. MACS2 (Zhang et al. 
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2008). ChIP samples were compared to input control when determining 

signal over background noise. Peak calling was performed with a 

multiple comparisons corrected P value of less than 0.05 considered as 

significant. Larger dataset of the two submitted BAM files (i.e. one 

belonging to ChIP sample and the other belonging to input control) was 

scaled down towards the smaller dataset. Generated fragment pileup 

signal was normalized per million reads and therefore was normalized 
for library size. The general command used is shown below. 

macs2 callpeak -t ChIPsample.bam -c inputControl.bam 

-n <name_of_prefix> --outdir <name_of_out_dir> -f BAM 

-g hs -q 0.05 -B --SPMR --call-summits 

iv) Creation of input-and-library-normalized WIG files 

Alignment BAM file is too large to be handled by downstream 

visualization programs. Therefore, is has to be converted into WIG files 

which contain signal information without read sequence identity 

significantly reducing file size. Before a WIG coverage file was created, 

a bedGraph coverage signal file was made using MACS2’s bedGraph 

compare function (bdgcmp) with fold-enrichment-above-control 

normalization to the input sample and total library size. This is possible 

because during the MACS2 peak calling, the ChIP signal track was 

generated with library normalization. This was achieved using the 

general command shown below. In it, <name>_treat_pileup.bdg 

and <name>_control_lambda.bdg were generated during MACS2 

peak calling procedure while –m FE indicates that normalization is 

based on fold enrichment.  

macs2 bdgcmp -t NAME_treat_pileup.bdg -c 

NAME_control_lambda.bdg -o <signal_track>_FE.bdg -m 

FE 

The above command generated a bedGraph file which was 

subsequently converted into WIG track at 100bp resolution using signal 

step with no missing data algorithm. Thus, areas with zero coverage 



Chapter 2 – Materials and methods 

 123 

were written in the output file. This was achieved using Perl language 

script bedgraph_to_wig.pl written by Sebastien Vigneau 

(https://sebastienvigneau.wordpress.com/2014/01/10/bigwig-to-

bedgraph-to-wig/). 

v) Peak annotation analysis 

Peak regions in BED format were annotated using the HOMER toolkit 

(Heinz et al. 2010) and the Cis-regulatory Element Annotation System 

(CEAS; Shin et al. 2009). HOMER annotation was implemented when 

peak file was uploaded onto online ChIPseek platform which was used 

as the ChIP data visualization and manipulation tool (Chen et al. 2014). 

The CEAS algorithm was implemented not only to precisely annotate the 

peaks but also to investigate the genome wide distribution of these peaks 

in comparison to genome-background distribution, which is calculated 

from the WIG signal and BED region data, and to investigate the 

genome-wide average INTS12 binding profiles. Therefore, the WIG file 

had to be inputted into the CEAS programme together with BED regions. 

The general CEAS command is shown below. In it, -g hg19.refgene 

is SQLite3 database file with pre-compiled UCSC hg19 genome 

annotation (downloaded from 

http://liulab.dfci.harvard.edu/CEAS/download.html), -b parameter 

specifies MACS2 outputted BED binding sites, -w parameter specifies a 

continuous input and library size normalized WIG signal, --bg 

parameter indicates estimation of genome background from regions with 

WIG signal coverage outside binding sites, --pf-res parameter 

specifies the signal resolution in WIG file which in this case is 100 bases.  

ceas –g hg19.refgene –b NAME_peak_regions.bed –w 

NAME_signal_track.wig --bg --pf-res 100 

vi) Average binding plots, heatmaps and motif analyses  

The average profiles for all the genes were generated as part of CEAS 

pipeline. However, class specific average gene profiles were generated 

with ngs.plot (Shen et al. 2014) using BAM alignments after duplicates 
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removal. The plots were drown with comparison to input control. The 

command depends on whether the visualization is centred on TSS or 

entire gene body and whether an entire gene list or subsets of genes are 

to be plotted. Motif enrichment analysis was performed with MEME suit 
(Ma et al. 2014). 

vii) Other analyses 

Other ChIPseq analyses were performed details of which are specified 
in results chapters.  

2.8.3	 Pathway	 analyses	 using	 Gene	 Set	 Enrichment	 Analysis	

approach	
Pathway analysis using INTS12 knockdown RNAseq data was 

performed in order to aid functional hypothesis generation. In this case 

what is meant by pathway analysis is identification of physiological 

pathways that are dysregulated following the experimental manipulation. 

GSEA method instead of ORA analysis approach was utilized for this 

purpose due to mentioned limitations of the latter approach. The 

advantages and disadvantages of GSEA and brief description of the 

pathway enrichment testing method was described before (see section 

1.7.4). The utilized gene ranking algorithm was signal-to-noise based on 
the following formula:  

𝑚𝑒𝑎𝑛<=>?@A@=>B − 𝑚𝑒𝑎𝑛<=>?@A@=>D
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛<=>?@A@=>B + 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛<=>?@A@=>K	

 

Thus genes were ordered based on magnitude of change in gene 
expression normalized by variability in expression.   

2.8.3.1	GSEA	RNAseq	workflow	

Traditionally GSEA was used using microarray differential gene 

expression analyses. However, it is applicable to any quantitative high 

throughput gene expression method. Therefore, GSEA RNAseq 

workflow was developed and is outlined below. The workflow makes use 

of self-written scripts using Python programming language. A number of 

computational challenges were encountered in the analysis, including 
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the need to separate genes amalgamated into single loci during 

transcriptome assembly and dealing with genes occurring multiple times 
in the expression dataset. 

2.8.3.1.1	Determination	of	normalized	gene	expression	on	individual	sample	

basis			

GSEA requires the generation of gene expression spreadsheet where 

columns represent the sample and rows represent the gene. Hence, the 

first step in the analysis is the estimation of FPKM expressions for each 

locus in the human genome for each individual sample. This was 

achieved by leveraging (i) accepted_hits.bam per sample read 

alignments generated by TopHat, (ii) merged.gtf predicted genome 

annotation file generated by Cuffmerge. Alignments and genome 

annotation file were input into Cuffnorm on sample basis using the 

general formula shown below. The sample_sheet.txt file that is used 

in the command contains paths to the alignment files and corresponding 

sample names.  

cuffnorm -o sample -p 5 --use-sample-sheet 

<path_to_predicted_annotation>/merged.gtf 

sample_sheet.txt 

Cuffnorm counted the number of reads that aligned to each locus and 

normalized the count of reads yielding FPKM expression values for each 
feature.  

2.8.3.1.2	Preparation	of	expression	dataset	for	GSEA	

During transcriptome assembly novel genes were discovered. These 

were excluded from subsequent GSEA because they do not have gene 

names as of yet and hence cannot be searched for in pathway analyses. 

A tab delimited text file was created containing FPKM data per gene 

locus per biological replicate samples. Separate files were made for 

each condition. Then Cuffnorm generated gene attribute file was used to 

assign gene names to each locus id. At this stage the dataset contains 

multiple genes amalgamated into single loci and the same gene names 
occurring multiple times in the dataset.  
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A program named gene.perXLOC_exp_parser.py was written to 

parse and prepare files for GSEA. It reads the gene names in the second 

column and does the following: splits genes into separate rows if they 

happen to occur in the same raw separated by comma and assigns the 

same expression values per each separated gene because they share 

the same locus id. The rows that do not require separation are simply 

outputted. Crucially, the program is capable of ignoring the newly 

discovered genes.  

Newly generated expression files were merged into one expression 

matrix where the first column represents gene name while subsequent 

columns represent individual samples. This file had to be further 

processed in order to identify gene names that occurred multiple times. 

Cuffmerge not only assigns different gene names to the same locus due 

to close proximity and read coverage over these genes, but also may 

assign the same gene name to different loci due to distinct TSS of the 

same gene.  

In order to identify gene names that occurred multiple times and create 

an updated expression matrix with single FPKM per gene a new program 

called expression_Table_parser.py was written. This program 

identifies genes occurring multiple times in the dataset and sums their 

respective FPKM values. Summation of expression values is preferable 

because averaging may significantly skew the data if there is a big 

difference in FPKM values across loci of the same gene. On the other 

hand using maximum expression only may result in a loss of important 

data. The limitation of summation approach is that genes that have 

multiple locus ids assigned, may be over-represented due to the possibly 

that the same reads may be counted additional times: the same reads 

could be contributing to the FPKM values of different loci belonging to 

the same gene. However, this bias is going to be introduced in all the 

samples because the same predicted annotation is used in all the 

samples and thus should cancelled out during differential gene 

expression analysis.  
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2.8.3.1.3	 Identification	of	pathway	gene	names	and	 further	expression	data	

preparation		

Although the prepared expression dataset can be used in GSEA, it is 

advisable to further pre-process the file to only include the genes that 

are present in the pathway database to be investigated for enrichment in 

the ranked list of differentially expressed genes. In GSEA procedure, if 

a gene belonging to the pathway is not present in the list then penalty is 

applied onto the enrichment score (see section 1.7.4) resulting in its 

reduction. But it is unreasonable to reduce the enrichment score due to 

the absence of gene in ranked gene list if the gene is not present in the 

pathway database.  

In order to remove those genes from expression matrix that were not 

present in the pathway database, two programs were written. The first 

program named pathway_database_parser.py takes pathway 

database information and creates a text file with a list of genes that occur 

in the entire database. If a gene is part of more than two sets then it is 

outputted only once. The second program named 

genes_extraction_from_my_exp_Table.py is used to pull out 

pathways database gene names from the generated gene expression 

dataset with all the associated expression values. Having generated the 

final gene expression matrix, the GSEA phenotype file was prepared as 

required by algorithm developers. 

2.8.3.1.4	GSEA	analysis	

Important GSEA parameters are gene set maximum size and gene set 

minimum size. If a set would have a size larger or smaller than the 

specified parameters it would be excluded from the analysis. As all the 

pathways are to be investigated it was necessary to identify the largest 

and smallest gene sets. In order to accomplish that another program 

named max_min_pathway_genes_counter.py was written. This 

program takes gene sets file as input and prints out the maximum and 

minimum gene set sizes. As of December 2014, the maximum pathway 

size in curated pathways database 

(http://software.broadinstitute.org/gsea/msigdb/collections.jsp#C2) has 
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1,972 genes while minimum pathway size has 5 genes and these 

parameters were set accordingly. Significance of pathway enrichment 

was calculated using 1000 gene list permutations. Pathways with 

Benjamin and Hochberg corrected P-value (Benjamini and Hochberg, 
1995) below 0.05 were considered significant.  

2.9	Functional	assays	
Functional assays following gene knockdown were selected in a 

systematic approach based on the identified dysregulated pathways. 

Thus the outcomes of interest were in vivo protein synthesis and cell 

proliferation.   

2.9.1	Measurement	of	radioactive	amino	acid	incorporation	into	

protein	by	a	filter-paper	disk	method	
The purpose of radioactive amino acid incorporation assay is to measure 

the incorporation of radiolabelled 35S-methionine into newly synthesized 

protein. This method allows for a quantitative measurement of total 

protein synthesis and has the advantages of being performed without 

modification of the cells to be studied (Wong et al. 2010). However, its 

disadvantage lies in the inability to distinguish between the differences 

in rates of protein synthesis at different stages of translation such as 

initiation, elongation or termination (Esposito and Kinzy, 2014). Because 

protein synthesis measurement is affected by cell number it is critical to 

ensure similar cell densities between the conditions that are being 

compared. Thus, the number of cells seeded onto the reading plate was 

optimized to equilibrate the number of cell across the experimental 

conditions. Cell number is reflected by total protein concentration and 

therefore Bradford reaction (Bradford, 1976) is carried out together with 

protein synthesis measurement and its reading used in data 

normalization.  
2.9.1.1	Protein	synthesis	assay 
The effect of INTS12 knockdown on protein synthesis was examined 

120h post initiation of RNAi (see section 2.2.2.3) in collaboration with Dr 

Cornelia de Moor based at the University of Nottingham. Because cell 
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counts (see section 2.9.2) revealed one cell cycle difference over 120h 

period in INTS12 silenced cells versus not silenced cells, cell density 

used for un-transfected and scrambled D-siRNA conditions was 50% 

less than in both INTS12 D-siRNA conditions in order to minimize the 

effects of cell density on protein synthesis measurement.  

Experiment was performed on 24-well plate, where 6,150 cells were 

added onto un-transfected and scrambled D-siRNA wells while 12,300 

cells were added onto the two anti-INTS12 D-siRNA conditions. After 

gene knockdown the culture medium was removed and washed with 

PBS twice, taking off residual PBS with a fine pipette tip. 10 μCi/ml 

Tran35S label (Perkin Elmer, cat. num. NEG772002MC) was added in 

warm methionine and cysteine free DMEM with glutamine and placed in 

the 37ºC incubator for ~15 min. Then, the radioactive medium was 

quickly removed with a P1000 pipette, washed three times with cold PBS 

and the plate was placed on ice. The remaining PBS was removed with 

a P200 pipette and 50μl of 1x passive lysis buffer (Promega, cat. num. 

E1941) was added per well. The buffer was swirled to distribute the lysis 

buffer evenly and no scraping was applied. At this point, the 24-well 

plates were frozen at -20ºC for several days. Rectangles of Whatman® 

3MM paper (Fisher Scientific) were cut of roughly 8mm by 12mm. 

Prepared paper was numbered with pencil according to the experimental 

condition. The piece of paper was stuck through a pin and mounted on 

the cardboard well clear of the surface. A 96-well plate suiTable for 

spectrophotometric absorption reading at 595nm was obtained. Four 

replicates of 10µl of 1x passive lysis buffer were put to reliably obtain the 

background reading. The 24-well plates were taken out of -20ºC freezer 

and left to thaw out. Holding the 24-well plate at an angle, 10 µl of the 

lysates were collected and spot on the appropriate filter. The same tip 

was used to collect another 10µl and was put onto 96-well plate for 

Bradford assay readings as appropriate. Then, 250µl of Coomassie 

Bradford Protein Assay Reagent (Thermo Scientific, cat. num.1856209) 

was added to each of the wells in the 96 well spec plate and read at 595 

nm. The results were exported to Excel file and saved. For up to forty 

eight filters, 250ml of 10% (w/v) trichloroacetic acid (TCA) solution was 
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prepared in water from a 100% stock. A pinch of cysteine and methionine 

was added to 10% (w/v) TCA and swirled. 125ml of this solution was 1:2 

diluted in water to obtain a final 5% (w/v) TCA solution. Whatman filters 

were dropped into the 125ml of 10% (w/v) TCA solution in a glass beaker 

and swirled for ~2-3 min. The 10% (w/v) TCA was poured into a waste 

bottle. 125 ml of the 5% (w/v) TCA solution was poured over the filters 

and swirl for another ~5 min. 5% (w/v) TCA solution was disposed of in 

waste bottle. 125 ml of the 5% (w/v) TCA solution was poured over the 

filters again, swirled for a ~2-3 min and the 5% (w/v) TCA was poured 

into a waste bottle. The filters were washed three times with 50ml 

methylated 96% ethanol taking care to wash the whole beaker. The 

filters were pinned again to dry for ~1h. The emitting radiation was 

measured on the scintillator. A scintillation counter is an instrument for 

detecting and measuring ionizing radiation by using the excitation effect 

of incident radiation on a scintillator material, and detecting the resultant 

light pulses. 2 ml of Ecoscint liquid (National Diagnostics, nat. num. LS-

273) was placed into counting bottles. The dry filters were put in and 

radioactivity counts per methionine (CPM) counting were performed for 

2 min (Esposito and Kinzy, 2014; Wong et al. 2010).  

2.9.1.2	Protein	synthesis	calculations	

Bradford assay background was subtracted from sample readings. For 

each replicate, the CPM readings were divided by the background 

corrected Bradford measurements yielding a measure of incorporation 

per amount of total protein (defined as “specific activity”).  

2.9.2	An	assessment	of	proliferative	capacity	

Proliferative capacity was assessed by comparing cell counts at the 

beginning and at end of the experiment. Cells were subjected to INTS12 

silencing using 120h protocol (see section 2.2.2.3). After 120h cells were 

washed with cell culture grade PBS, treated with trypsin/EDTA at 37oC 

for ~10min to allow all the cells to detach and were re-suspended in 1ml 

of culture media. Samples were coded and mixed to perform counting 

without knowledge of the condition. Conditions were decoded later. Cell 

counts were performed on haemocytometer (see section 2.1.1) in 
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triplicate per each condition, averaged and total cell counts estimates 

derived accordingly. 
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3.1	Introduction		
As described in detail in Chapter 1, there is substantial genetic evidence 

implying the existence of genetic variation at the INTS12/GSTCD/NPNT 

4q24 haplotype as a contributor to variation in lung function parameters 

and risk of developing COPD (Repapi et al. 2010, Hancock et al. 2010, 

Castaldi et al. 2011, Wain et al. 2015). Due to the physical linkage of 

genes in close vicinity, these GWAS are not capable of identifying causal 

genetic variants and genes. Moreover, correlation does not imply 

causation (Aldrich, 1995) and therefore additional layers of information 

are required to prioritize likely genes influencing the considered 

phenotypes. Claims for causality require functional studies where 

candidate genes or single polymorphisms are experimentally 

manipulated with a demonstrable effect on either the lung function trait 

directly, or on molecular pathways of relevance to pulmonary health. 

This Chapter sets out to (1) prioritize the likely gene at 4q24 locus whose 

variable expression contributes to lung function and/or COPD 

phenotypes, (2) investigate the type of molecular evolution of the 

identified candidate gene, (3) assign putative functions to this gene via 

a homology searches, (4) explore the functional annotation of the lung 

function implicated region, and (5) develop the experimental tools to 

study the candidate lung function in vitro.  

3.1.1	Candidate	lung	function	gene	prioritization	at	4q24	locus		

If the leading hypothesis is that altered levels of gene expression in 

specific allele carriers are responsible for population differences in lung 

function, then the critical point is whether SNPs associated with lung 

function are also predicting the candidate gene expression (i.e. whether 

trait correlated alleles are eQTLs for a particular candidate gene). This 

is the leading hypothesis for the INTS12/GSTCD/NPNT locus because 

although premature stop codon variants have been identified (Table 1.3; 

NCBI gene bank) no non-synonymous mutants are known to exist for 

INTS12, GSTCD or NPNT. These genes are central in the GWAS signal 

for lung function and risk of COPD because of their linkage to 4q24 

sentinel SNPs used in association studies.   
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Obeidat et al. have argued that out of INTS12, GSTCD and NPNT, 

INTS12 is the most likely gene whose expression contributes to 

phenotypic differences in lung function due to widespread cis-eQTL 

effects upon INTS12 expression observed in diverse tissue types 

(Obeidat et al. 2013). Importantly, INTS12 cis-eQTL SNPs are also 

associated with lung function in SpiroMeta-CHARGE studies (Repapi et 

al. 2010, Hancock et al. 2010). However, no significant INTS12 cis-eQTL 

effect was detected in lung tissue using a 1,111 lung specimens 

microarray dataset (Hao et al. 2012). On the other hand, the same 

dataset provides evidence for cis-eQTL on NPNT expression. Although 

some SNPs within the gene bodies of INTS12 and NPNT are in relatively 

weak linkage disequilibrium (r2<0.2; Repapi et al. 2010, Hancock et al. 

2010) the two genes have been suggested to represent independent 

lung function signals (Wain et al. 2015).  

Therefore, it may be more appropriate to talk about INTS12/GSTCD and 

NPNT as separate loci and as such, although in the light of the Hao et 

al. study (Hao et al. 2012) NPNT is worth pursuing for functional studies, 

the nature of the INTS12/GSTCD signal still requires an explanation and 

gene prioritization using lung and other eQTL resources. Importantly, it 

is of pivotal importance to test whether SNPs correlating with poorer lung 

function also correlate with lower or higher gene expression and vice 

versa. The lack of observable effect in the data set used by Hao et al. 

could be due to inherent heterogeneity in microarray datasets (Zhao et 

al. 2014). As RNAseq has been demonstrated to outweigh microarray in 

terms of technical reproducibility (Zhao et al. 2014), lung RNAseq eQTL 

dataset would be advantageous to look for evidence of SNP-INTS12-

GSTCD expression correlations. Moreover, both genes are expressed in 

a range of human airway cell types making them good candidates for 

further exploration.      

3.1.2	 Computational	 molecular	 evolution	 and	 homology	

searches	

Natural selection plays the fundamental role in shaping the genetic 

variation on a population level and in speciation. Computational 
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molecular evolution is the science of evolution of DNA, RNA and protein 

molecules and studies the causes and mechanisms of molecular 

adaptions. This discipline has numerous applications and in the context 

of this thesis some of its methods were used to explore the modes of 

evolution of candidate lung function gene. Additionally, homology 

searchers were performed to assign putative gene functions. These 

approaches have traditionally been used to explore putative biological 

roles based on the principles of “form dictates function” (Gish and States 

1993) and “evolutionary conservation indicates importance”. 

3.1.2.1	dN/dS	ratio	test	

A set of aligned homologous ORF DNA sequences can be used to infer 

whether a protein molecule has been evolving positively, negatively or 

neutrally (Mugal et al. 2013). This is achieved by comparing the rate of 

non-synonymous changes per non-synonymous sites (dN) relative to 

rate of synonymous changes per synonymous sites (dS). Figure 3.1 

below demonstrates the idea of non-synonymous and synonymous sites 

due to genetic code redundancy. For example in CTA codon encoding 

leucine the third position is considered a synonymous site because 

whether nucleotide A is mutated into C, G or T it will always encode the 

same amino acid. On the other hand the second position is considered 

a non-synonymous site as whether nucleotide T is mutated into G, C or 

A it will always produce a different amino acid. The first position of this 

codon is considered 8
9
 synonymous and L

9
 non-synonymous as mutation 

of C into A or G results in isoleucine and valine respectively whereas 

mutation into T results in leucine. The total number of non-synonymous 

or synonymous sites is simply the summation of their respective counts 

including the fractions. Therefore, e.g. if out of nine bases six are non-

synonymous then we can expect 67% probability of random amino acid 

change.  

The numbers of observed non-synonymous and synonymous changes 

are determined directly from the sequence and thus dN and dS express 

the significance of non-synonymous and synonymous changes relative 

to number of changes expected in completely stochastic system (i.e. a 



Chapter 3 – In silico approaches and methods development 
 

 136 

system where changes occur randomly). If a particular stretch of ORF 

DNA sequence was evolving neutrally during the time between ancestral 

to the modern versions of the protein then the rate of silent changes 

should equal the rate of non-silent changes hence dN/dS ratio would be 

~1. A dN/dS ratio greater than 1 (dN/dS > 1) implies that there has been 

more non-synonymous changes than synonymous changes and 

therefore there has been evolutionary pressure to escape from the 

ancestral sequence. This typically occurs when a protein adapts to a new 

environment and advantageous mutation arises and spreads in the 

population. A dN/dS ratio smaller than 1 (dN/dS < 1) suggests there has 

been more silent mutations than protein changing mutations, i.e. the 

protein was constrained due to negative selection pressure. This 

typically occurs when a protein is required to maintain its function.  

dN/dS test can be performed in a statistically stringent way by, e.g. 

computing the P-value of data given the hypothesis of neutral evolution 

(Nei and Gojobori, 1986). Critically, when the test is performed over the 

whole sequence it could result in underestimate of positive selection as 

variety of domains that constitute the protein may undertake different 

functions. Thus it is possible to compare regions within the protein, which 

is known as sliding dN/dS test, or test evolution on a codon-by-codon 

basis which requires ancestral sequence reconstruction (Pond and Frost 

et al. 2005). The set of sequences used for dN/dS test ought to share a 

common ancestral gene or else the results would be spurious.  
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Figure 3.1: Non-synonymous and synonymous sites due to the redundancy of 
genetic code. As there are 20 naturally occurring amino acids and genetic code 
contains 61 amino acid encoding codons plus 3 stop codons, some codons are 
redundant coding for the same amino acid. Based on that some codon sites are 
defined as non-synonymous and some are defined as synonymous depending 
on whether their mutation alters the encoded amino acid. A site may be partially 
synonymous and partially non-synonymous if some changes are protein 
changing and vice versa.   
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3.1.2.2	Homology	searches	

A protein or DNA sequence of unknown role having significant similarity 

to other sequence of known function is likely to have it as well, because 

biological activities of the protein depend on its sequence which 

determines its function. However, it is important to remember that such 

an observation does not guarantee a particular functionality because 

among the duplicated genes there is a level of redundancy allowing for 

otherwise detrimental mutations to be accumulated. As other copies 

acquire changes, new and different functions can be created (Ohta 

2006).   

Although these similar proteins may or may not be homologues because 

non-ancestral proteins could have undertaken a convergent sequence 

evolution, the principle still holds true. Whether the proteins are truly 

homologous is determined arbitrary through setting a threshold percent 

identity or similarity and expected value (E-value) of the BLAST search 

(Gish and States 1993). With sufficiently significant E-value from BLAST 

search limited to the same species it may be possible to identify paralogs 

and hence a set of genes belonging to the same family. Paralogs and 

non-homologous highly similar proteins are likely to perform similar 

function.  

3.1.3	Aims	and	Objectives	

The aim of this chapter is to “bridge the gap” between a purely 

observational association to a systematic in silico gene prioritization 

strategy for further functional investigations. This will be achieved firstly 

by leveraging publically available RNAseq-based lung cis-eQTL dataset 

from the Genotype-Tissue Expression project in which cis window was 

defined as 1MB around the gene’s TSS in both directions (Lonsdale et 

al. 2013). Lung function SNPs predicting the relevant gene expression 

were analysed on Broad Institute’s HaploReg v4.1 (see section 1.5.5) for 

functional annotation. Similar protein identification was undertaken to 

assign candidate molecular function to nominee lung function gene. 

dN/dS test using diverse metazoan sequences was run to understand 

the molecular evolution of the gene and identify functionally important 
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protein domains. Finally, the necessary tools to study the prioritized gene 

function were optimized.  

3.2	Lung	eQTL	analyses	
The most recent studies in the UK Biobank population (Wain et al. 2015) 

have shown that there are at least 3 independent association signals 

within 4q24 locus: one located over the gene for Tet Methylcytosine 

Dioxygenase 2 (TET2), one over the gene NPNT, and a third peak 

situated over the genes GSTCD and INTS12. Upon closer examination 

of originally published regional plots of this region (Figure 1.2) it appears 

that the linkage between INTS12/GSTCD and NPNT as well as TET2 is 

less than 0.2 (i.e. r2<0.2) reaffirming the independent associations 

observed in UK Biobank population. Thus each of the three signals ought 

to be considered separately, each requiring a functional explanation of 

the genetic contribution of candidate genes to lung function phenotypes. 

The focus of this thesis is the signal observed at INTS12/GSTCD and 

therefore the question is which of the two genes, is the most likely 

contributor to lung function.  

As mentioned, the leading hypothesis is that altered levels of these 

genes in specific allele carriers are responsible for population differences 

in lung function. Although these effects may be mediated in trans, the 

more likely scenario is that SNPs at the associated locus control the 

near-by gene expression and therefore cis-eQTLs are the focus of this 

Chapter. In order to answer the above question, a lung specific RNAseq 

based dataset was used to test whether lung function SNPs are 

predictive of INTS12 or GSTCD expression. As discussed in Chapter 1 

it is important to use a relevant tissue or cell type as patterns of gene 

expression differ significantly between various tissues and cell types and 

hence the reason for using the lung datasets in these in silico 

explorations. Thus although it is possible that e.g. immune cell defect or 

a blood vessel defect through development may be relevant, the focus 

of this Chapter is in determining lung specific effects. 
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3.2.1	 Lung	 function	 SNPs	 significantly	 predict	 INTS12	 but	 not	

GSTCD	expression	in	the	relevant	tissue		
In the lung eQTL GTEx resource (n=278), there were 248 SNPs at or 

near 4q24 that were significant cis-eQTLs for INTS12 expression after 

multiple comparisons correction. Among these, 30 SNPs showed 

significant association for lung function in the SpiroMeta consortium 

study (Table 3.1; Repapi et al. 2010). On the other hand, none of the 

variants at or near 4q24 showed significant association with GSTCD 

expression (Table 3.1). Upon inspection it became apparent that SNPs 

correlated with lower FEV1 were associated with lower INTS12 

expression. In favour of this observation is a similar result presented by 

Obeidat et al. (Obeidat et al. 2013). However, eQTL datasets leveraged 

by them were based non-lung tissue profiles, as no significant correlation 

was observed between lung function SNPs and either INTS12 or 

GSTCD expression in whole lung microarray dataset (Hao et al. 2012). 

Therefore, the herein presented data are of added value because are 

based on the lung specific gene expression.  
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SNP FEV1  

P-value 

INTS12 

eQTL  

P-Value 

INTS12 eQTL  

FDR 

INTS12 

effect 

size 

GSTCD 

eQTL  

P-value 

GSTCD 

eQTL  

FDR 

GSCD 

effect 

size 

rs11732650 6.83E-09 3.33E-07 0.000397993 -0.53 0.989632 1 0.00 

rs11722225 7.08E-09 3.33E-07 0.000397993 -0.53 0.989632 1 0.00 

rs11726124 6.63E-09 3.33E-07 0.000397993 -0.53 0.989632 1 0.00 

rs11728716 8.44E-09 3.33E-07 0.000397993 -0.53 0.989632 1 0.00 

rs17036090 3.84E-08 1.48E-06 0.000397993 -0.51 0.947098 1 0.01 

rs11735851 1.90E-09 1.71E-06 0.000397993 -0.51 0.84487 1 0.02 

rs17036225 3.33E-09 1.72E-06 0.000397993 -0.51 0.846924 1 0.02 

rs11736859 2.86E-09 1.73E-06 0.000397993 -0.51 0.847786 1 0.02 

rs11727745 5.47E-09 1.73E-06 0.000397993 -0.51 0.847958 1 0.02 

rs10516528 6.27E-09 1.73E-06 0.000397993 -0.51 0.850201 1 0.02 

rs17036139 1.25E-09 1.73E-06 0.000397993 -0.51 0.850201 1 0.02 

rs11727189 3.38E-09 1.73E-06 0.000397993 -0.51 0.850201 1 0.02 

rs11728044 1.95E-09 1.73E-06 0.000397993 -0.51 0.850201 1 0.02 

rs11733225 2.34E-09 1.73E-06 0.000397993 -0.51 0.850201 1 0.02 

rs11733654 0.0358 1.73E-06 0.000397993 -0.51 0.850201 1 0.02 

rs10516525 1.44E-09 1.73E-06 0.000397993 -0.51 0.850201 1 0.02 

rs11724839 1.79E-09 1.73E-06 0.000397993 -0.51 0.850201 1 0.02 

rs10516526 6.67E-10 1.73E-06 0.000397993 -0.51 0.850201 1 0.02 

rs17036142 1.11E-09 1.73E-06 0.000397993 -0.51 0.850201 1 0.02 

rs12374256 1.88E-09 2.97E-06 0.000658031 -0.52 0.816732 1 0.03 

rs11097901 6.32E-09 4.58E-06 0.000953622 -0.47 0.849082 1 0.02 

rs7676975 6.75E-09 4.93E-06 0.000953622 -0.43 0.821606 1 0.02 

rs10050333 7.22E-09 4.97E-06 0.000953622 -0.43 0.819258 1 0.02 

rs10050159 7.23E-09 4.97E-06 0.000953622 -0.43 0.819258 1 0.02 

Table 3.1: Lung function 4q24 SNPs from the SpiroMeta study (Repapi et al. 2010) 
are lung cis-eQTLs for INTS12 but not GSTCD expressions. Effect size is defined 
as the slope of linear regression line relative to reference allele normalized as an 
expression of 1. Data obtained from Genotype-Tissue Expression project 
(Lonsdale et al. 2013). 
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3.2.2	 In	 lung	 tissue	 INTS12	 expression	 is	 higher	 than	 GSTCD	

expression	
Interestingly, out of 51 tissues INTS12 expression in the lung is among 

the top 13 highest tissue expressions (Figure 3.2). On the other hand, 

lung GSTCD expression is among the top 19 tissue expressions implying 

its higher expression in other tissue types (Figure 3.3). Moreover, the 

expression of INTS12 in the lung is five times higher in comparison to 

GSTCD (n=278; P<0.0001, Figure 3.4). To provide validation for the 

latter observation the analysis was performed leveraging an independent 

RNAseq lung profiling GEO dataset (Kim et al. 2015) in which INTS12 

expression also appears to be five times higher in comparison to GSTCD 

(n=91; P<0.0001, Figure 3.5). 

 
Figure 3.2: INTS12 expression in the lung is among top 13 tissues with highest 
expressions. Box plot belonging to the lung data is highlighted in the red box.  
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Figure 3.3: GSTCD expression in the lung is among top 19 tissues with the 

highest expression. Box plot belonging to the lung data is highlighted in the 

red box.  
Figure 3.4: Lung INTS12 expression is five times higher than GSTCD (P<0.0001; 
Mann-Whitney) in Genotype-Tissue Expression dataset.  
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Figure 3.5: Lung INTS12 expression is five times higher than GSTCD (P<0.0001; 
Mann-Whitney) in Kim et al. dataset (Kim et al. 2015).  

3.2.3	Summary	of	lung	eQTL	prioritization	strategy	
The initial eQTL analyses in multiple non-lung tissues found the 

strongest evidence supported the hypothesis that altered expression of 

INTS12 underlies association signal for lung function at 4q24 (Obeidat 

et al. 2013). However, no subsidiary evidence for this conclusion was 

produced using a lung specific gene expression utilising microarrays 

(Hao et al. 2012). To explore this in more detail, a lung eQTL RNAseq-

based dataset (Lonsdale et al. 2013) was used to further test the 

hypothesis that INTS12 expression underlies lung function signal at 

4q24.  

The overall evidence from the RNAseq study appears to be in favour of 

this hypothesis. Lung functions SNPs significantly predict INTS12 but not 

GSTCD expression (Table 3.1) and alleles associated with lower 

expression correlate with worse lung function. The discrepancy between 

lung microarray (Hao et al. 2012) and RNAseq (Lonsdale et al. 2013; 

Kim et al. 2015) datasets was probably due to inherently higher technical 

heterogeneity of the microarrays in comparison to RNAseq, potentially 

resulting in a loss of statistical significance in the array analyses. This 

inconsistency was observed despite the fact that the sample size in the 
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microarray study (n=1111, Hao et al. 2012) was five times larger than in 

the RNAseq study (n=278, Lonsdale et al. 2013). Moreover, Hao et al. 

array-based study is from “diseased” lungs of people undergoing surgery 

which could have been an additional source of heterogeneity. In 

contrast, the RNAseq eQTL dataset is largely from “healthy” individuals 

that died in unexpected circumstances, such as victims of road traffic 

accidents (Lonsdale et al. 2013).  Overall, it is possible to say that out of 

INTS12 and GSTCD, it is the former gene that seems to be the likely 

contributor to lung function variability and thus was prioritized for 

functional studies. 

3.3	Lung	INTS12	cis-eQTL	focused	exploratory	analyses	
Lung INTS12 cis-eQTL SNPs that are also genome-wide significant for 

lung function (Table 3.1) belong to the same haplotype. Based on the 

data obtained from 1000 genomes project, in the Northern and Western 

European CEU population all of them except rs17036142, rs10516528, 

and rs17036090 have r2=1. These three variants are still in strong 

linkage with the rest of the SNPs (r2>0.8, Figure 3.6). Due to their strong 

linkage it is not possible to ascertain which one is potentially causal in 

relation to INTS12 expression. Thus the entire haplotype can be said to 

associate with both lung function and INTS12 levels.  
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Figure 3.6: Regional LD structure of the INTS12 cis-eQTL SNPs. All the SNPs 
shown on Table 1 except the three indicated have r2=1 and thus belong to the 
same haplotype associated with both lung function and INTS12 expression. This 
regional plot was generated using Broad Institute’s SNP annotation and proxy 
search tool (SNAP). 

3.3.1	 HaploReg	 analysis	 indicates	 potential	 regulation	 of	

expression	effects	of	the	INTS12	cis-eQTL	SNPs	
To provide initial functional translation of these SNPs, HaploReg tool 

(Ward and Kellis, 2012) was used with an aim to identify the likely 

functional variants and to test whether any of the alternative alleles are 

changing the gene expression by regulating TF DNA binding domains. 

90% of the identified 228 INTS12 eQTL SNPs fall within regions enriched 

for epigenetic marks such as H3K4me1, H3K27ac. 14% of the SNPs are 

within accessible chromatin region. Crucially, more than 80% of the 

variants change the molecular signature of protein binding domains 

previously characterized as regulators of gene expression, such as 

forkhead box P (FOXP3), or ABI five binding protein (AFP1) (Table 3.2). 

Overall, these preliminary exploratory analyses give further credit to the 

hypothesis that lung function and INTS12 cis-eQTL SNPs are having an 

effect on the phenotype via regulation of INTS12 expression.  
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Table 3.2: Subset of HaploReg exploratory in silico analysis output for lung 
function and INTS12 cis-eQTL SNPs indicates potential regulatory effects of 
these SNPs. 

3.4	 In	 silico	 attempt	 to	 assign	 putative	 INTS12	 functions	

through	paralog	identification		
Identification of INTS12 paralogs was undertaken to try and assign a 

putative function to INTS12 in order to guide subsequent experimental 

studies. A full length protein sequence (NP_001135943.1), containing N-

terminal, PHD, and serine rich subdomains (Figure 3.7), was blasted 

against the NCBI’s Homo sapiens RefSeq protein database. 

Surprisingly, no strong evidence suggests that INTS12 has any paralogs 

in the human genome as all the hits have alignment scores below 80 

(Figure 3.8). Moreover, hits span only a small fraction of the query 

protein thus the entire INTS12 sequence appears to be unique. 

Nevertheless, some hits do show sequence similarity which is confined 

to the PHD domain (Figure 3.8). Importantly, this domain is annotated 

as a putative zinc and histone H3 binding site implying possible 

epigenetic roles for INTS12. Table 3.3 shows the proteins that appeared 

as top hits in this search. The general consensus molecular function of 

these proteins is regulation of gene expression and a role in epigenetic 

modifications. PHD domains can regulate gene expression through 

regulation of chromatin structure and dynamics and are considered 

epigenetic effectors (Bienz, 2006).  

SNP ref alt Chromatin_Marks DNAse Motifs
rs11732650 G C E008,H3K27ac_Enh;E011,H3K27ac_Enh;E015,H3K27ac_Enh;E016,H3K27ac_Enh;E049,H3K27ac_Enh;E061,H3K27ac_Enh;E026,H3K4me1_Enh;E049,H3K4me1_Enh;E059,H3K4me1_Enh;E061,H3K4me1_Enh;E074,H3K4me1_Enh;E129,H3K4me1_Enh;E026,H3K4me3_Pro;E049,H3K4me3_Pro;E113,H3K4me3_Pro;E049,H3K9ac_ProE059 Crx_1;GR_disc5;Gsc;Obox3;Otx2;Pitx3;ZNF263_disc1
rs11722225 T C E003,H3K4me1_Enh;E010,H3K4me1_Enh;E012,H3K4me1_Enh;E014,H3K4me1_Enh;E016,H3K4me1_Enh;E019,H3K4me1_Enh;E020,H3K4me1_Enh;E024,H3K4me1_Enh;E028,H3K4me1_Enh;E052,H3K4me1_Enh;E053,H3K4me1_Enh;E054,H3K4me1_Enh;E073,H3K4me1_Enh;E088,H3K4me1_Enh;E120,H3K4me1_Enh;E121,H3K4me1_Enh;E003,H3K9ac_Pro;E121,H3K9ac_Pro;E006,H3K27ac_Enh;E008,H3K27ac_Enh;E011,H3K27ac_Enh;E012,H3K27ac_Enh;E014,H3K27ac_Enh;E016,H3K27ac_Enh;E020,H3K27ac_Enh;E058,H3K27ac_Enh;E089,H3K27ac_Enh;E120,H3K27ac_Enh;E121,H3K27ac_Enh;E053,H3K4me3_Pro;E054,H3K4me3_Pro;E067,H3K4me3_Pro0 CEBPB_known4
rs11726124 A G E003,H3K4me1_Enh;E010,H3K4me1_Enh;E012,H3K4me1_Enh;E014,H3K4me1_Enh;E016,H3K4me1_Enh;E019,H3K4me1_Enh;E020,H3K4me1_Enh;E024,H3K4me1_Enh;E028,H3K4me1_Enh;E052,H3K4me1_Enh;E053,H3K4me1_Enh;E054,H3K4me1_Enh;E073,H3K4me1_Enh;E088,H3K4me1_Enh;E120,H3K4me1_Enh;E121,H3K4me1_Enh;E003,H3K9ac_Pro;E121,H3K9ac_Pro;E006,H3K27ac_Enh;E008,H3K27ac_Enh;E011,H3K27ac_Enh;E012,H3K27ac_Enh;E014,H3K27ac_Enh;E016,H3K27ac_Enh;E020,H3K27ac_Enh;E058,H3K27ac_Enh;E089,H3K27ac_Enh;E120,H3K27ac_Enh;E121,H3K27ac_Enh;E053,H3K4me3_Pro;E054,H3K4me3_Pro;E067,H3K4me3_Pro;E108,H3K4me3_Pro0 .
rs11728716 G A E107,H3K4me1_Enh;E108,H3K4me1_Enh;E108,H3K27ac_Enh0 SP2_disc1;STAT_known1;STAT_known2
rs11735851 G A E006,H3K4me1_Enh;E096,H3K4me1_Enh;E113,H3K4me1_Enh0 AP-2rep;CEBPB_disc2
rs17036225 A G E015,H3K27ac_Enh 0 AFP1;Pou5f1_known2
rs11736859 C T 0 0 .
rs11727745 T G 0 0 Arid3a_2;Foxp1;HNF1_6;HNF1_7;Pax-4_5;Pou1f1_1;Pou5f1_disc2;Sox_15;Sox_2;Sox_4
rs10516528 G T E014,H3K4me1_Enh;E053,H3K4me1_Enh;E015,H3K27ac_Enh;E016,H3K27ac_Enh;E018,H3K9ac_Pro0 Brachyury_2;Cphx;Eomes;TATA_known3;TBX5_1;TBX5_3
rs17036139 G A E004,H3K9ac_Pro;E011,H3K9ac_Pro;E014,H3K9ac_Pro;E016,H3K9ac_Pro;E020,H3K9ac_Pro;E025,H3K9ac_Pro;E049,H3K9ac_Pro;E052,H3K9ac_Pro;E063,H3K9ac_Pro;E066,H3K9ac_Pro;E067,H3K9ac_Pro;E068,H3K9ac_Pro;E069,H3K9ac_Pro;E083,H3K9ac_Pro;E088,H3K9ac_Pro;E101,H3K9ac_Pro;E108,H3K9ac_Pro;E126,H3K9ac_Pro;E127,H3K9ac_Pro;E009,H3K4me1_Enh;E010,H3K4me1_Enh;E013,H3K4me1_Enh;E016,H3K4me1_Enh;E018,H3K4me1_Enh;E025,H3K4me1_Enh;E028,H3K4me1_Enh;E037,H3K4me1_Enh;E044,H3K4me1_Enh;E045,H3K4me1_Enh;E049,H3K4me1_Enh;E052,H3K4me1_Enh;E054,H3K4me1_Enh;E055,H3K4me1_Enh;E056,H3K4me1_Enh;E057,H3K4me1_Enh;E058,H3K4me1_Enh;E061,H3K4me1_Enh;E066,H3K4me1_Enh;E068,H3K4me1_Enh;E077,H3K4me1_Enh;E085,H3K4me1_Enh;E087,H3K4me1_Enh;E088,H3K4me1_Enh;E114,H3K4me1_Enh;E115,H3K4me1_Enh;E116,H3K4me1_Enh;E117,H3K4me1_Enh;E118,H3K4me1_Enh;E120,H3K4me1_Enh;E126,H3K4me1_Enh;E127,H3K4me1_Enh;E014,H3K4me3_Pro;E016,H3K4me3_Pro;E048,H3K4me3_Pro;E101,H3K4me3_Pro;E116,H3K4me3_Pro;E119,H3K4me3_Pro;E038,H3K27ac_Enh;E056,H3K27ac_Enh;E058,H3K27ac_Enh;E116,H3K27ac_Enh;E120,H0 AP-3;Pou2f2_known1;Pou2f2_known10
rs11727189 G T E037,H3K27ac_Enh;E050,H3K27ac_Enh;E055,H3K27ac_Enh;E047,H3K4me1_Enh;E054,H3K4me1_Enh;E062,H3K4me1_Enh;E071,H3K4me1_Enh;E074,H3K4me1_Enh;E096,H3K4me1_Enh;E098,H3K4me1_Enh;E110,H3K4me1_Enh;E110,H3K9ac_Pro0 ERalpha-a_disc4;GR_disc6;STAT_disc7
rs11731417 A G E061,H3K27ac_Enh 0 YY1_disc2
rs11727735 A G E001,H3K4me3_Pro;E002,H3K4me3_Pro;E003,H3K4me3_Pro;E007,H3K4me3_Pro;E008,H3K4me3_Pro;E009,H3K4me3_Pro;E010,H3K4me3_Pro;E011,H3K4me3_Pro;E012,H3K4me3_Pro;E014,H3K4me3_Pro;E015,H3K4me3_Pro;E016,H3K4me3_Pro;E017,H3K4me3_Pro;E018,H3K4me3_Pro;E019,H3K4me3_Pro;E020,H3K4me3_Pro;E023,H3K4me3_Pro;E025,H3K4me3_Pro;E026,H3K4me3_Pro;E028,H3K4me3_Pro;E033,H3K4me3_Pro;E040,H3K4me3_Pro;E043,H3K4me3_Pro;E044,H3K4me3_Pro;E047,H3K4me3_Pro;E048,H3K4me3_Pro;E049,H3K4me3_Pro;E051,H3K4me3_Pro;E052,H3K4me3_Pro;E053,H3K4me3_Pro;E054,H3K4me3_Pro;E055,H3K4me3_Pro;E057,H3K4me3_Pro;E058,H3K4me3_Pro;E063,H3K4me3_Pro;E065,H3K4me3_Pro;E066,H3K4me3_Pro;E068,H3K4me3_Pro;E071,H3K4me3_Pro;E075,H3K4me3_Pro;E082,H3K4me3_Pro;E084,H3K4me3_Pro;E085,H3K4me3_Pro;E087,H3K4me3_Pro;E088,H3K4me3_Pro;E092,H3K4me3_Pro;E101,H3K4me3_Pro;E102,H3K4me3_Pro;E111,H3K4me3_Pro;E114,H3K4me3_Pro;E115,H3K4me3_Pro;E116,H3K4me3_Pro;E117,H3K4me3_Pro;E118,H3K4me3_Pro;E119,H3K4me3_Pro;E120,H3K4me3_Pro;E121,H3K4me3_Pro;E123,H3K4me3_Pro;E125,H3K4me3_Pro;E127,H3K4me3_Pro;E128E091;E120;E123Hoxa10;Hoxa5_2;Irf_known5;Maf_disc2;RFX5_disc3
rs11723225 C T E061,H3K27ac_Enh 0 Mef2_known4;NF-kappaB_disc3;STAT_disc7;TATA_disc7
rs10516527 A G 0 0 IRC900814;Rhox11
rs11733287 G A E027,H3K4me1_Enh;E102,H3K4me1_Enh;E076,H3K9ac_Pro0 Foxj1_1;Foxj1_2;Foxq1;HNF1_7;Mrg_1;Mrg_2;RREB-1_2;Tgif1_2
rs11726569 A G E002,H3K4me3_Pro;E039,H3K27ac_Enh;E041,H3K27ac_Enh;E050,H3K27ac_Enh;E063,H3K9ac_Pro;E087,H3K4me1_Enh;E088,H3K4me1_Enh0 CDP_1;Fox;Gfi1b;HNF6;Hoxd8;Pbx-1_1;Pbx-1_4;Sox_16;Sox_3;TCF11::MafG
rs11728044 G C E013,H3K27ac_Enh;E039,H3K27ac_Enh;E041,H3K27ac_Enh;E050,H3K27ac_Enh;E058,H3K27ac_Enh;E102,H3K27ac_Enh;E027,H3K4me1_Enh;E028,H3K4me1_Enh;E087,H3K4me1_Enh;E088,H3K4me1_Enh;E102,H3K4me1_Enh;E110,H3K4me1_Enh;E127,H3K4me1_Enh;E049,H3K9ac_Pro;E063,H3K9ac_Pro0 Cdc5;Nkx3_1
rs11733225 C G E027,H3K4me1_Enh;E102,H3K4me1_Enh;E076,H3K9ac_Pro0 Rhox11
rs11733654 C A E004,H3K4me1_Enh;E011,H3K4me1_Enh;E013,H3K4me1_Enh;E026,H3K4me1_Enh;E027,H3K4me1_Enh;E028,H3K4me1_Enh;E044,H3K4me1_Enh;E049,H3K4me1_Enh;E052,H3K4me1_Enh;E054,H3K4me1_Enh;E055,H3K4me1_Enh;E061,H3K4me1_Enh;E076,H3K4me1_Enh;E078,H3K4me1_Enh;E087,H3K4me1_Enh;E088,H3K4me1_Enh;E092,H3K4me1_Enh;E103,H3K4me1_Enh;E109,H3K4me1_Enh;E111,H3K4me1_Enh;E120,H3K4me1_Enh;E121,H3K4me1_Enh;E011,H3K27ac_Enh;E013,H3K27ac_Enh;E026,H3K27ac_Enh;E037,H3K27ac_Enh;E055,H3K27ac_Enh;E058,H3K27ac_Enh;E061,H3K27ac_Enh;E119,H3K27ac_Enh;E120,H3K27ac_Enh;E121,H3K27ac_Enh;E127,H3K27ac_Enh;E026,H3K4me3_Pro;E111,H3K4me3_Pro;E121,H3K4me3_Pro;E129,H3K4me3_Pro;E027,H3K9ac_Pro;E088,H3K9ac_Pro;E120,H3K9ac_Pro;E121,H3K9ac_Pro0 HNF1_7;SRF_known3
rs10516525 T C E061,H3K4me1_Enh;E119,H3K9ac_Pro 0 Hoxa10;Hoxb13;Hoxb9;Zfp105
rs11724839 T G E025,H3K9ac_Pro;E038,H3K9ac_Pro;E049,H3K9ac_Pro;E062,H3K9ac_Pro;E067,H3K9ac_Pro;E083,H3K9ac_Pro;E043,H3K4me1_Enh;E047,H3K4me1_Enh;E050,H3K27ac_Enh;E055,H3K27ac_Enh;E056,H3K27ac_Enh;E129,H3K27ac_Enh0 NRSF_disc1
rs10516526 A G E003,H3K4me1_Enh;E007,H3K4me1_Enh;E010,H3K4me1_Enh;E013,H3K4me1_Enh;E014,H3K4me1_Enh;E016,H3K4me1_Enh;E018,H3K4me1_Enh;E019,H3K4me1_Enh;E024,H3K4me1_Enh;E027,H3K4me1_Enh;E028,H3K4me1_Enh;E058,H3K4me1_Enh;E061,H3K4me1_Enh;E119,H3K4me1_Enh;E126,H3K4me1_Enh;E127,H3K4me1_Enh;E013,H3K27ac_Enh;E014,H3K27ac_Enh;E015,H3K27ac_Enh;E119,H3K27ac_Enh;E127,H3K27ac_Enh;E129,H3K27ac_Enh;E014,H3K4me3_Pro;E119,H3K9ac_ProE005;E008;E022;E028;E059;E091;E092.
rs17036142 T C E019,H3K9ac_Pro;E023,H3K9ac_Pro;E025,H3K9ac_Pro;E026,H3K9ac_Pro;E047,H3K9ac_Pro;E049,H3K9ac_Pro;E052,H3K9ac_Pro;E066,H3K9ac_Pro;E068,H3K9ac_Pro;E069,H3K9ac_Pro;E074,H3K9ac_Pro;E088,H3K9ac_Pro;E108,H3K9ac_Pro;E119,H3K9ac_Pro;E120,H3K9ac_Pro;E125,H3K9ac_Pro;E127,H3K9ac_Pro;E023,H3K4me1_Enh;E025,H3K4me1_Enh;E026,H3K4me1_Enh;E027,H3K4me1_Enh;E028,H3K4me1_Enh;E036,H3K4me1_Enh;E045,H3K4me1_Enh;E049,H3K4me1_Enh;E050,H3K4me1_Enh;E051,H3K4me1_Enh;E052,H3K4me1_Enh;E053,H3K4me1_Enh;E054,H3K4me1_Enh;E055,H3K4me1_Enh;E056,H3K4me1_Enh;E057,H3K4me1_Enh;E058,H3K4me1_Enh;E061,H3K4me1_Enh;E066,H3K4me1_Enh;E068,H3K4me1_Enh;E078,H3K4me1_Enh;E087,H3K4me1_Enh;E108,H3K4me1_Enh;E114,H3K4me1_Enh;E115,H3K4me1_Enh;E117,H3K4me1_Enh;E119,H3K4me1_Enh;E120,H3K4me1_Enh;E121,H3K4me1_Enh;E122,H3K4me1_Enh;E125,H3K4me1_Enh;E126,H3K4me1_Enh;E127,H3K4me1_Enh;E128,H3K4me1_Enh;E129,H3K4me1_Enh;E023,H3K4me3_Pro;E025,H3K4me3_Pro;E030,H3K4me3_Pro;E050,H3K4me3_Pro;E051,H3K4me3_Pro;E052,H3K4me3_Pro;E057,H3K4me3_Pro;E058,H3K4me3_Pro;E101,H3K4me3_Pro;E1160 .
rs12374256 G A E027,H3K9ac_Pro;E110,H3K9ac_Pro 0 Foxp3;SIX5_known1;ZEB1_known3
rs11097901 C T E001,H3K4me1_Enh;E004,H3K4me1_Enh;E011,H3K4me1_Enh;E012,H3K4me1_Enh;E013,H3K4me1_Enh;E016,H3K4me1_Enh;E023,H3K4me1_Enh;E025,H3K4me1_Enh;E026,H3K4me1_Enh;E028,H3K4me1_Enh;E037,H3K4me1_Enh;E044,H3K4me1_Enh;E049,H3K4me1_Enh;E052,H3K4me1_Enh;E053,H3K4me1_Enh;E054,H3K4me1_Enh;E055,H3K4me1_Enh;E061,H3K4me1_Enh;E065,H3K4me1_Enh;E067,H3K4me1_Enh;E069,H3K4me1_Enh;E076,H3K4me1_Enh;E078,H3K4me1_Enh;E080,H3K4me1_Enh;E087,H3K4me1_Enh;E088,H3K4me1_Enh;E092,H3K4me1_Enh;E103,H3K4me1_Enh;E108,H3K4me1_Enh;E109,H3K4me1_Enh;E111,H3K4me1_Enh;E117,H3K4me1_Enh;E119,H3K4me1_Enh;E120,H3K4me1_Enh;E121,H3K4me1_Enh;E126,H3K4me1_Enh;E129,H3K4me1_Enh;E004,H3K27ac_Enh;E011,H3K27ac_Enh;E013,H3K27ac_Enh;E017,H3K27ac_Enh;E026,H3K27ac_Enh;E037,H3K27ac_Enh;E049,H3K27ac_Enh;E055,H3K27ac_Enh;E058,H3K27ac_Enh;E061,H3K27ac_Enh;E065,H3K27ac_Enh;E078,H3K27ac_Enh;E079,H3K27ac_Enh;E080,H3K27ac_Enh;E092,H3K27ac_Enh;E102,H3K27ac_Enh;E108,H3K27ac_Enh;E111,H3K27ac_Enh;E119,H3K27ac_Enh;E120,H3K27ac_Enh;E121,H3K27ac_Enh;E127,H3K27ac_Enh;E128,H3K27ac_Enh;E129E006;E017;E028;E055;E056;E059;E088;E100;E119;E120;E121;E125;E126;E128.
rs7676975 A T E015,H3K27ac_Enh;E089,H3K27ac_Enh;E120,H3K27ac_Enh;E121,H3K27ac_Enh;E052,H3K4me1_Enh;E109,H3K4me1_Enh;E120,H3K4me1_Enh;E121,H3K4me1_Enh;E120,H3K9ac_Pro;E121,H3K9ac_Pro;E121,H3K4me3_Pro0 Cphx;Irf_known4
rs10050333 T A E003,H3K4me1_Enh;E012,H3K4me1_Enh;E019,H3K4me1_Enh;E020,H3K4me1_Enh;E024,H3K4me1_Enh;E026,H3K4me1_Enh;E028,H3K4me1_Enh;E052,H3K4me1_Enh;E053,H3K4me1_Enh;E054,H3K4me1_Enh;E057,H3K4me1_Enh;E058,H3K4me1_Enh;E088,H3K4me1_Enh;E110,H3K4me1_Enh;E120,H3K4me1_Enh;E121,H3K4me1_Enh;E006,H3K27ac_Enh;E058,H3K27ac_Enh;E089,H3K27ac_Enh;E120,H3K27ac_Enh;E121,H3K27ac_Enh;E053,H3K4me3_Pro;E054,H3K4me3_Pro;E121,H3K9ac_Pro0 INSM1
rs10050159 G A E003,H3K4me1_Enh;E012,H3K4me1_Enh;E014,H3K4me1_Enh;E019,H3K4me1_Enh;E020,H3K4me1_Enh;E024,H3K4me1_Enh;E028,H3K4me1_Enh;E052,H3K4me1_Enh;E053,H3K4me1_Enh;E054,H3K4me1_Enh;E057,H3K4me1_Enh;E058,H3K4me1_Enh;E088,H3K4me1_Enh;E110,H3K4me1_Enh;E120,H3K4me1_Enh;E121,H3K4me1_Enh;E006,H3K27ac_Enh;E058,H3K27ac_Enh;E089,H3K27ac_Enh;E120,H3K27ac_Enh;E121,H3K27ac_Enh;E053,H3K4me3_Pro;E054,H3K4me3_Pro;E121,H3K9ac_Pro0 LUN-1;TATA_known5
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Figure 3.7: Human INTS12 protein sequence (NP_001135943.1) with highlighted 
PHD finger domain (yellow) and serine rich compositional bias domains (green) 
(A) as well as features of human INTS12 protein molecule (B). 

   
Figure 3.8: Full length INTS12 protein sequence (NP_001135943.1) BLASTP 
against a database of Homo sapiens non-redundant protein sequences shows 
the homology to be exclusively within the PHD domain. PHD domain appears as 
a putative zinc and histone H3 binding site. 
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INTS12 PROTEIN BLAST HITS SUMMARIES 

PHD finger protein 1 
isoform a and b   

This gene encodes a Polycomb group protein. The protein is a component 
of a histone H3 lysine-27 (H3K27)-specific methyltransferase complex, and 
functions in transcriptional repression of homeotic genes. The protein is 
also recruited to double-strand breaks, and reduced protein levels results 
in X-ray sensitivity and increased homologous recombination. Multiple 
transcript variants encoding different isoforms have been found for this 
gene. [provided by RefSeq, May 2009] 

PHD finger protein 21A 
isoform a and b  

The PHF21A gene encodes BHC80, a component of a BRAF35 (MIM 
605535)/histone deacetylase (HDAC; see MIM 601241) complex (BHC) 
that mediates repression of neuron-specific genes through the cis-
regulatory element known as repressor element-1 (RE1) or neural 
restrictive silencer (NRS) (Hakimi et al., 2002 [PubMed 
12032298]).[supplied by OMIM, Nov 2010]. 

sp110 nuclear body protein 
isoform a and c   

The nuclear body is a multiprotein complex that may have a role in the 
regulation of gene transcription. This gene is a member of the 
SP100/SP140 family of nuclear body proteins and encodes a leukocyte-
specific nuclear body component. The protein can function as an activator 
of gene transcription and may serve as a nuclear hormone receptor 
coactivator. In addition, it has been suggested that the protein may play a 
role in ribosome biogenesis and in the induction of myeloid cell 
differentiation. Alternative splicing has been observed for this gene and 
three transcript variants, encoding distinct isoforms, have been identified. 
[provided by RefSeq, Jul 2008] 

histone-lysine N-
methyltransferase 2A 
isoform 1 and 2 precursor   

This gene encodes a transcriptional coactivator that plays an essential role 
in regulating gene expression during early development and 
hematopoiesis. The encoded protein contains multiple conserved 
functional domains. One of these domains, the SET domain, is responsible 
for its histone H3 lysine 4 (H3K4) methyltransferase activity which mediates 
chromatin modifications associated with epigenetic transcriptional 
activation. This protein is processed by the enzyme Taspase 1 into two 
fragments, MLL-C and MLL-N. These fragments reassociate and further 
assemble into different multiprotein complexes that regulate the 
transcription of specific target genes, including many of the HOX genes. 
Multiple chromosomal translocations involving this gene are the cause of 
certain acute lymphoid leukemias and acute myeloid leukemias. Alternate 
splicing results in multiple transcript variants.[provided by RefSeq, Oct 
2010] 

metal-response element-
binding transcription factor 
2 isoform a, b and c   

No description available 

bromodomain adjacent to 
zinc finger domain protein 
2B isoform a   

No description available 

Table 3.3: Details of proteins showing similarity to human INTS12’s PHD domain 
provide evidence for putative chromatin and gene regulatory roles. 
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3.5	INTS12	phylogenetic	analyses	
Orthologous INTS12 protein sequences were obtained from six model 

metazoan species (Homo sapiens, Drosophila melanogaster, Mus 

musculus, Bos taurus, Xenopus laevis and Danio rerio) and aligned. As 

can be seen in Figure 3.9, there appears to be a good degree of overlap 

between sequence dissimilarity and divergence time since the split from 

the common ancestor (Table 3.4, Hedges et al. 2006). When the 

alignment was performed using a richer dataset of 66 metazoan species, 

the conservation appeared to be more widespread providing qualitative 

evidence of a negative selection operating on INTS12 protein (Figure 

3.10) as evolution was probably preserving some crucial function. 

Intriguingly, in only Monodelphis domestica opossum species INTS12 

appears to have fusion sequence attached to the N-terminal domain 

explaining the gap in conservation observed towards its N-terminus.  

Ensembl’s phylogenetic reconstruction of orthologous gene sequences 

generated a tree in agreement with the universal tree of life (Forterre 

2015); e.g. rodents and primates formed separate clades. Most of the 

genes used in this phylogenetic reconstruction are horizontally inherited 

orthologues from the last common metazoan ancestor. There were two 

duplications events during INTS12 molecular evolution yielding two 

paralogs in Rabbit and Microbat species. Moreover, INTS12 gene 

sequence has not been identified in Caenorhabditis elegans worm and 

Saccharomyces cerevisiae yeast genomes. 
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Figure 3.9: Metazoan INTS12 protein conservation in model organisms: the size 
and shades of blue colour in the matrix indicate percent sequence identity 
between each of the species’ INTS12 protein sequences. 
 

	 Homo sapiens Mouse Bovine Frog Zebrafish Fly 

Human N/A      

Mouse 90.9 N/A     

Bovine 97.5 97.5 N/A    

X.laevis 
Frog 

355.7 355.7 355.7 N/A   

Zebrafish 429.6 429.6 429.6 429.6 N/A  

Fly 847 847 847 847 847 N/A 

Table 3.4: The pairwise time lapse since the split from the common ancestor of 
the indicated species in millions of years (Hedges et al. 2006) reflects percent 
similarity between these species. 
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Figure 3.10: Conservation of INTS12 protein sequence in 66 metazoan species. 
The magenta shades of colour show evidence of negative selection even beyond 
the annotated protein domain. Monodelphis domestica opossum INTS12 appears 
to have fusion sequence attached to the N-terminal domain. 
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3.5.1	dN/dS	ratio	test	

To provide quantitatively robust interpretation to the observed INTS12 

protein sequence conservation (see section 3.5) a codon-based dN/dS 

ratio test was performed. In particular, it is an attempt to answer the 

question of which codon sites in the alignment are subject to positive or 

negative selection. To achieve that the Single-Likelihood Ancestor 

Counting (SLAC) method was used (Pond and Frost et al. 2005). Briefly, 

in this method given a particular phylogeny and maximum likelihood 

reconstructed ancestral sequence one aims to quantify the dN and dS 

parameters per each codon via counting procedure similar to the one 

outlined above (see section 3.1.2.1) by treating the reconstructed 

ancestral sequence as known. The ancestral sequence is a character 

state at the root of the neighbour-joining tree (Saitou and Nei, 1987) 

which is chosen to maximize the probability of the observed multiple 

sequence alignment (Page, 1999).  

Using this approach there was 1 positively selected site and 374 

negatively selected sites at P<0.1 which is the default statistical 

threshold in the SLAC programme (Pond and Frost et al. 2005). Thus 

out of the 374 codons with evidence of purifying selection 10% may have 

evolved neutrally, and there is 10% chance that the codon with evidence 

of positive selection is a false positive. Based on these observations and 

the fact there were 680 codon sites after multiple sequence alignment, it 

appears that ~55% of INTS12 protein was constrained by natural 

selection from changing while ~45% was evolving neutrally. The PHD 

domain, N-terminal and C-terminal subdomains look to be particularly 

under strong purifying selection (Figure 3.11). The positively selected 

codon number 191 is present within N-terminus. However, the strength 

of this selection is only ~1-fold above the neutral evolution hypothesis 

(dN/dS ~ 2.1). Overall, the average dN/dS value of INTS12 ORF is 0.197 

and this quantification agrees with qualitatively detected sequence 

conservation.   
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Figure 3.11: Quantitative assessment of INTS12 molecular evolution using a 
repertoire of metazoan open reading frames. The ratio of non-synonymous 
changes to synonymous changes (dN/dS) is shown throughout the protein. 
dN/dS approaching zero indicate strong and significant conservation (n=66 
species): red colour P<0.1, blue colour P>0.1. P-value represents the probability 
of observed dN/dS ratio given the null the hypothesis of neutral evolution. 
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3.6	 Development	 and	 optimization	 of	 methods	 to	 study	

INTS12	function	in	in	vitro	HBEC	model	
A considerable part of this thesis was devoted to the development and 

optimization of necessary tools to study INTS12 function. Because 

INTS12 expression is higher in the human bronchial epithelium than 

other airway structural cells (Obeidat et al. 2013), studies were 

concentrated on this cell type. Thus an in vitro HBEC model was used 

and initial experiments focused on the optimization of exogenous D-

siRNA transfection into the cells and validation of gene knockdown on 

mRNA and protein levels. The necessary prerequisite for that was the 

optimization of quantitative INTS12 qPCR and qualitative 

immunofluorescence assays. A range of housekeeping genes 

expression was tested in the utilized model. Additionally, recombinant 

transient plasmid transfections were optimized for the INTS12 
overexpression experiments. 

3.6.1	INTS12	targeting	D-siRNAs	transfection	optimization	and	

validation	

	3.6.1.1	Validation	of	INTS12	qPCR	assay	

Prior to the measurement of INTS12 expression in D-siRNA transfected 

cells, it was necessary to establish a reliable INTS12 qPCR assay as 

INTS12 levels are the primary outcome measure after silencing. 

Premiers and probe were designed (see section 2.3.5.4) and their 

sequences can be found in the Appendix (Table 5 of Appendix). 300000, 

30000, 3000, 300, 30 copies of pcDNA3.1-INTS12_v2 construct (see 

section 2.3.7) were prepared in triplicate. The precise number of 300000 

plasmid copies was determined by (i) calculating the mass of a single 

plasmid molecule, (ii) calculating the mass of plasmid containing the 

required number of copies. Plasmid mass was calculated according to 

the following formula where m stands for mass and n stands for number 

of plasmid copies (Applied Biosystems): 

𝑚 = 𝑛 ∗ 1.096 ∗ 10PL8 
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The volume of plasmid containing the required mass and thus 300000 

copies was determined based on the stock concentration. Stock plasmid 

concentration was measured spectrophotometrically on NanoDrop 2000 

instrument (Thermo-Scientific©). The rest of samples were produced in 

10-fold dilution series. The generated samples were used to run qPCR 

reaction as described in Chapter 2 (see section 2.3.5.4). INTS12 assay 

fluorescence threshold was established at 0.1 and technical replicate 

values showed little variability (Figures 2.12 and 2.13). Standard curve 

gradient was -3.564 thus within the desirable range of -3.1 to -3.6 

(Stratagene) and the correlation between Ct values and number of 

plasmid copies was 0.997 implying predictability of the two variables. 

The assay efficiency was computed to be 90.8% and therefore the assay 

could be reliably used in INTS12 expression measurements.    

 
Figure 3.12: qPCR amplification plots showing the accumulation of product in 
real time. For 100% efficient assay condition the average Ct difference between 
samples in 10-fold dilution series is log210, i.e. ~3.32. As it can be seen the 
difference in the plots reaching the threshold is close to this value. 
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 Figure 3.13: INTS12 calibration curve showing the relationship between Ct 
values and number of plasmid copies. The individual red dots represent the 
individual technical replicates and appear to be close to each other indicating 
low technical variability. The intercepted lines above the main slope are assay’s 
upper and lower limits of 95% confidence interval. 

3.6.1.2	D-siRNA	transfections	optimization	

Initial attempts to knockdown INTS12 expression by FuGENE6® 

mediated transfection were unsuccessful (data not shown). Two main 

variables might have been responsible for this failure: either D-siRNAs 

were not introduced into the cells or the utilized sequences are not 

effective in knocking down INTS12 mRNA.  

In order to address the first possibility, fluorescently labelled Cy3-D-

siRNA was transfected using FuGENE6® and INTERFERin® reagents in 

three biological replicates. Prior to imaging, cells were DAPI stained. No 

cells appeared to be fluorescent in the non-treated condition suggesting 

the absence of auto-fluorescence. No fluorescence was observed in any 

of the transfection reagents alone. Transfecting with FuGENE6® at 

10nM, 50nM and 100nM Cy3-D-siRNA did not result in any detectable 

fluorescence (n=3; Figure 3.14). In fact, FuGENE6® transfected cells 

looked identical to non-treated and reagent only conditions. On the other 
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hand the vast majority of cells transfected with INTERFERin® appear 

fluorescent. Based on the qualitative assessment of images there seems 

to be a correlation between each DAPI nuclear staining and red Cy3 

fluorescence indicating good transfection efficiency. Although the 

intensity of fluorescence in the cells was dose dependent, the number of 

transfected cells appeared to be the same for 10nM, 50nM and 100nM 

Cy3-D-siRNA concentrations. Importantly the same amount of 

transfection reagent was used in these experiments. Various 

concentrations of Cy3-D-siRNA were used in order to test the 

aforementioned dose dependency. As INTERFERin® showed much 

higher transfection efficiency than FuGENE6® it was taken forward for 

subsequent experiments.  
 

Reagent Condition DAPI channel Cy3 channel 

FuGENE6® Non-treated 

  

INTERFERin® Non-treated 

  

FuGENE6® Reagent 

only 

  

INTERFERin® Reagent 

only 
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FuGENE6® 10nM Cy3-

D-siRNA 

  

INTERFERin® 10nM Cy3-

D-siRNA 

  

FuGENE6® 50nM Cy3-

D-siRNA 

  

INTERFERin® 50nM Cy3-

D-siRNA 

  

FuGENE6® 100nM 

Cy3-D-

siRNA 

  

INTERFERin® 100nM 

siRNA 

  

Figure 3.14: Representative images of three biological replicates showing DAPI 
and Cy3 channelled cells transfected with 10nM, 50nM and 100nM Cy3-D-siRNA 
concentrations using FuGENE6® and INTERFERin® reagents and their respective 
controls. Cells were imaged 24h after the initial D-siRNA transfections. 



Chapter 3 – In silico approaches and methods development 
 

 160 

3.6.1.2.1	Demonstration	of	RNAi	functionality	

Having established INTERFERin® as the transfection reagent of choice 

and optimized the transfection conditions, a validated HPRT1 positive 

control D-siRNA was used to demonstrate the functionality of RNAi in in 

vitro HBEC model. HPRT1 D-siRNA transfection was performed at the 

manufacturer’s recommended concentration of 10nM. Cells transfected 

with HPRT1 D-siRNA had HPRT1 levels attenuated by 88% relative to 

cells transfected with scrambled D-siRNA control (P<0.001, n=3; Figure 

3.15), demonstrating functionality of RNAi in the utilized model. This 

observation was qualitatively validated by end-point PCR reaction after 

28 cycles (Figure 3.16) using primers against canonical HPRT1 

transcript sequence 

 
Figure 3.15: HPRT ∆Ct expression. HBECs transfected for 48h with 10nM positive 
control HPRT1 D-siRNA yield 88% reduction in HPRT1 expression (n=3). 
Statistical tests were performed comparing to scrambled D-siRNA control: 
***P<0.001. Individual ∆Ct gene expressions are relative to the mean of 
scrambled D-siRNA condition. Error bars represent standard error of the mean.  
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Figure 3.16: HPRT expression by end product PCR and gel electrophoresis. 
Reduction in HPRT1 expression in D-siRNA transfected cells is apparent in end 
point PCR analysis after 28 cycles. The expected amplicon size of 141bp is seen 
in cells transfected with scrambled D-siRNA (NC) but not positive control HPRT1 
D-siRNA (siRNA) (n=2).   

3.6.1.3	Optimizing	INTS12	knockdown	

Three different INTS12 D-siRNAs were transfected into HBECs in order 

to test their respective silencing efficiencies at 10nM dose. Initial studies 

were performed to identify a suitable housekeeper gene to account for 

differences in input RNA and differences in cDNA synthesis efficiencies. 

The genes chosen were glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) and transferrin receptor (TfR). Their expression was quantified 

on the samples from INTS12 knockdown experiments. As GAPDH had 

a more constant expression across the experimental conditions than 

TfR, it was chosen for the gene expression normalization in subsequent 

experiments. In fact, TfR levels were significantly increased in two out of 

three D-siRNAs (P<0.01, n=4; Figure 3.17) rendering it inappropriate 

reference for gene expression normalization in this experimental model. 

GAPDH normalized ΔΔCt INTS12 expression in HBECs transfected with 

three D-siRNAs was decreased by 80±9%, 29±9%, 69±9% (P<0.05, 

n=4; Figure 3.18). As desirable knockdown was defined as >80%, D-

siRNA A and C were taken forward for further optimizations.  
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Figure 3.17: TfR and GAPDH ∆Ct expressions in INTS12 silenced HBECs. Cells 
were transfected at 10nM D-siRNAs concentration and gene expression was 
assessed 48h after the start of RNAi (n=4). Statistical tests were performed 
comparing to scrambled D-siRNA control: **P<0.01, ****P<0.0001. Individual ∆Ct 
gene expressions are relative to the mean of scrambled D-siRNA condition. Error 
bars represent standard error of the mean. 

 

Figure 3.18: INTS12 ΔΔCt levels in HBECs transfected with three D-siRNAs at 
10nM for 48h. Statistical tests were performed comparing to scrambled D-siRNA 
control: *P<0.05, ***P<0.001. Individual ∆∆Ct gene expressions are GAPDH 
normalized and relative to the mean of scrambled D-siRNA condition. Error bars 
represent standard error of the mean. 
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3.6.1.3.1	Minimizing	off-target	effects	by	testing	silencing	efficiency	at	a	range	

of	concentrations	

As described in Chapter 2, the likelihood of off-target effects in D-siRNA 

induced knockdown experiments increases with the dose of D-siRNA 

(see section 2.2.1). Therefore, it is of importance to try minimizing off-

targeting by using the lowest possible concentration of D-siRNA 

(Jackson and Linsley, 2010). Thus the experimental optimization of D-

siRNA knockdown experiments is concerned with achieving a trade-off 

between sufficient silencing and low D-siRNA dose, as lower D-siRNA 

concentrations imply less efficient knockdown.  

HBECs were transfected with the chosen D-siRNAs at 0.1nM, 1nM and 

10nM concentrations and INTS12 expression was compared relative to 

scrambled D-siRNA transfected at 10nM. Control condition was 

performed only at 10nM concentration for the simplicity of experimental 

design, and although may not be the ideal for like-to-like comparisons 

against 0.1nM and 1nM doses, the higher concentration in the control is 

preferable for a more likely non-specific inhibition of INTS12 at the higher 

scrambled D-siRNA concentration.  

Relative to negative control, INTS12 levels were reduced by 67±6%, 

77±6% and 78±6% for D-siRNA A and by 63±9%, 73±9%, and 58±10% 

for D-siRNA C at 0.1nM, 1nM, and 10nM concentrations respectively. 

(P<0.01, n=3; Figure 3.19). Considering these results, it is preferable to 

use 1nM concentration in silencing experiments, as in D-siRNA A 

transfection 0.1nM dose did not reach the desired degree of knockdown 

and on average there is only a slight improvement in knockdown 

between 1nM and 10nM dose. As far as D-siRNA C is concerned, 1nM 

dose achieved a better knockdown than both 0.1nM and 10nM doses. 

Therefore, 1nM concentration was chosen for all subsequent 

experiments.   
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Figure 3.19: INTS12 ΔΔCt levels in HBECs transfected with D-siRNAs A and C at 
a range of concentrations for 48h. Statistical tests were performed comparing to 
scrambled D-siRNA control: *P<0.05, ***P<0.001. Individual ∆∆Ct gene 
expressions are GAPDH normalized and relative to the mean of scrambled D-
siRNA condition. Error bars represent standard error of the mean. 

3.6.1.3.2	Qualitative	demonstration	of	INTS12	protein	knockdown	

Studies that investigated the relationship between mRNA and protein 

levels have reported correlation coefficients ranging from 0.4 to 0.8 

(Maier et al. 2009). Since the correlation between the two types of 

molecules is not always strong (i.e. not >0.8), due to multiple factors 

such as translational efficiency or protein turnover, it is generally 

preferable to measure levels of protein in addition to mRNA molecules. 

Although densitometry based quantification via Western blot is a 

commonly used technique for this purpose, IF may also be used. The 

advantage of WB over IF is the possibility to ascertain the molecular 

weight of the detected protein however discrepancy between expected 

and actual weight could occur due to post-translational modifications. On 
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the other hand, according to ENCODE criteria, although IF cannot tell 

the molecular weight of detected protein it can be reliably used for 

specific detection when combined with D-siRNA knockdown (Landt et al. 

2012): the disappearance of signal in knockdown condition indicates 

specific detection.  

In this thesis the latter approach was used to (I) determine the INTS12 

sub-cellular localization as well as to (II) qualitatively demonstrate 

INTS12 protein knockdown in addition to its mRNA-based quantification. 

The reason IF instead of WB was relied on, is because WB attempts 

were unsuccessful due to the detection of multiple bands falling outside 

the required molecular weight. However, there was a dominant band at 

the expected position (Figure 3.20). The presented WB data do not show 

differences in band densities between scrambled D-siRNA and D-siRNA 

A and C probably due to lack of sufficient assay sensitivity to detect 

change 48h since the knockdown initiation. The detection of multiple 

bands in addition to the predicted one based on molecular weight of 

INTS12 is problematic for the confirmation of antibody specificity. 

However, the subsequent IF data in combination with gene knockdown 

demonstrate its suitability and specificity for assessment of protein 

depletion and ChIPseq (Figure 3.21, Figure 6.2, Figure 6.3) as per 

ENCODE criteria (Landt et al. 2012).  

The INTS12 IF procedure described in Chapter 2 (see section 2.4.1) was 

optimized for primary antibody concentration, secondary antibody 

concentration and blocking step. The primary anti-INTS12 antibody used 

in the IF partly recognizes PHD and N-terminal domains. As homology 

searches against the database of human proteins revealed the 

uniqueness of N-terminal domain (see section 3.4) it provides supportive 

in silico evidence of antibody specificity.   
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Figure 3.20: WB of INTS12 in HBECs. The top panel represents a housekeeping 
beta-actin protein expression. The predicted beta-actin band of a molecular 
weight of 42kDa is indicated by red arrow. Beneath is the panel of WB results for 
INTS12. Although multiple banks can be seen a band of predicted molecular 
weight of 49kDa is indicated by red arrow. Each column corresponds to a lysate 
obtained from HBECs grown under particular experimental condition. Columns 
1, 2, 3, 4 correspond to conditions un-transfected, scrambled D-siRNA, D-siRNA 
A and D-siRNA C respectively using the day 2 protocol. Samples 5, 6, 7, 8 are 
from a different biological replicate experiment and are presented in the same 
order.  

3.6.1.3.2.1	INTS12	is	localized	in	the	nucleus	of	HBECs	and	other	cell	types	

As described in section 1.8.5, INTS12 was categorized as being a 

nuclear protein. In fact, out of all systematically tested INTScom 

subunits, INTS12 was the only member that was found exclusively in the 

nucleus, i.e. 100% of tested cells had INTS12 localized in the nucleus 

(Jodoin, Sitaram et al. 2013). Other INTScom subunits had a more 

diffuse localization or were found only in the cytoplasm. For example, 

100% of tested cells had INTS2 localized in the cytoplasm. These 
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observations indicate that although INTScom subunits were purified in a 

complex association (Baillat et al. 2005) it is possible for them to be 

physically distant from each other (Jodoin, Sitaram et al. 2013) and thus 

potentially have distinct functions.  

Having optimized the INTS12 IF procedure the technique was used to 

test INTS12 localization in HBECs. In agreement with its nuclear 

localization observed in HeLa cells (Jodoin, Sitaram et al. 2013), in lung 

tissue epithelial cells and pneumocytes (Obeidat et al. 2013) as well as 

in 44 normal human tissues from the human protein atlas dataset (Uhlen 

et al. 2005), INTS12 appeared to be a nuclear protein based on the 

agreement between INTS12 and dsDNA DAPI staining (n=4, Figure 

3.21). 
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Figure 3.21: Nuclear localization of INTS12. In HBECs INTS12 has a nuclear 
localization based on the correspondence between INTS12 and dsDNA DAPI 
staining. Experiment was performed in four biological replicates. Representative 
images of three biological replicates are shown. Isotype control exposed cells 
were negative for staining. Cells were imaged at the same magnification. 

3.6.1.3.2.2	HBECs	treated	with	INTS12	D-siRNA	are	depleted	of	INTS12	protein	

In order to test INTS12 knockdown on the protein level, HBECs were 

treated with D-siRNAs A and C using the same conditions as those used 

in the functional experiments. As observed before, in un-transfected and 

scrambled D-siRNA transfected cells, INTS12 appeared localized in the 

nucleus. On the other hand, cells treated with INTS12 silencing D-

siRNAs had a marked reduction in this specific nuclear staining (n=2; 

Figure 3.22) implying not only a quantified and successful knockdown on 

the mRNA level, but also qualitatively assessed and demonstrated 

knockdown on the protein level. In fact, INTS12 depleted cells stained 

for INTS12 looked like un-transfected cells exposed to isotype control. 
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As staining was reduced in INTS12 silenced cells this also demonstrates 

specific affinity of the used antibody, according to the ENCODE criteria 

(Landt et al. 2012) 
Cond INTS12 / isotype control staining  

Biological replicate 1 Biological replicate 2 

Un-trans 

cells 

  

Scramble 

D-siRNA 

  

INTS12 

D-siRNA  

  

Isotype 

control 

  

Figure 3.22: INTS12 protein depletion in INTS12 D-siRNA transfected HBECs. 
Immunofluorescence shows INTS12 to have a nuclear localization in un-transfected and 
scrambled D-siRNA transfected cells. Nuclear signal is reduced in INTS12 D-siRNA 
transfected cells and is comparable to isotype control exposed cells.  
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3.6.2	 Optimizing	 transient	 recombinant	 INTS12	 constructs	

transfections	
In addition to the knockdown approach for gene function discovery and 

studies, overexpression approach was used to test a specific hypothesis 

about the regulatory properties of INTS12 (see section 7.1.1). In order to 

transfect two recombinant INTS12 constructs, pEGFP-N1 plasmid 

containing GFP ORF was used to optimize FuGENE6® mediated 

transfection as described in Chapter 2. Transfection efficiency was 

qualitatively compared between cells transfected with different plasmid 

DNA concentrations and reagent volume to total recombinant DNA mass 

ratios.  

Transfection efficiency appeared to increase proportionally with the 

concentration of recombinant DNA and was much improved when using 

3:1 rather than 3:2 ratio (Figure 3.23). Therefore, the optimal DNA 

concentration and ratio were determined to be 2µg/ml and 3:1 

respectively. Thus HBECs were transfected with constructs pcDNA3.1-

INTS12_v2 encoding full length canonical protein as well as pcDNA3.1-

INTS12_v3 encoding a truncated protein using the optimized conditions 

and had 710 (not significant) and 995 (P<0.07) fold increases in INTS12 

mRNA levels respectively (Figure 3.24). It is important to note that 

although an increase in INTS12 expression on the mRNA level has been 

detected, it is currently unclear whether this is accompanied by an 

increase in protein as well. As it is possible that variable levels of mRNA 

may not correlate with protein, future efforts aiming at further elucidating 

the effect of INTS12 overexpression should confirm induced protein 

expression. 
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Cond  Images  

(GFP over DAPI)   Concentration Ratio 

0.5 µg/ml 3:1 

 

1 µg/ml 3:1 

 

2 µg/ml 3:1 

 

0.5 µg/ml 3:2 

 

1 µg/ml 3:2 

 

2 µg/ml 3:2 

 

Figure 3.23: Optimizing recombinant DNA transfection into HBECs. Qualitative 
assessment of DNA concentration and reagent ratio variables determined 2µg/ml 
using 3:1 ratio to have the optimal transfection efficiency and therefore were 
used for INTS12 overexpression construct transfections. GFP channel was laid 
over DAPI channel. 
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Figure 3.24: Transient transfection of overexpression constructs results in at 
least 700 fold increases in INTS12 mRNA levels of v2 and v3 variant transfected 
cells relative to empty vector transfected cells. There was 42% and 7% chance of 
observing such increase in expression given the null hypothesis of no difference 
in expression for variants v1 and v2 respectively. 
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3.7	Discussion	

The overarching aims of this Chapter were to identify a likely gene of 

4q24 locus contributing to lung function, bioinformatically explore this 

gene by investigating its molecular evolution and to develop the 

experimental tools for its in vitro study (Figure 3.25).  

 

Figure 3.25: An overview of bioinformatics and experimental tools development 
discussed in this Chapter. 

The 4q24 locus has been reproducibly associated with lung function 

parameters and it is currently believed that there are three independent 

signals in this region, which include one signal at the INTS12/GSTCD 

locus. Relying on systematic in silico gene prioritization strategy, this 

chapter provided up-to-date evidence implying variants which predict 

INTS12 expression also contribute to the population variation in lung 

function. Despite the physical closeness of INTS12 and GSTCD genes, 

SNPs associated with lung function in the SpiroMeta study (Repapi et al. 

2010) are also predictive of INTS12 but not GSTCD expression (Table 

3.1). Importantly, SNPs correlated with lower expression were risk 

factors for lower lung function. Interestingly, lung INTS12 levels are 5 

times higher than GSTCD (Figures 3.4 and 3.5) and INTS12 expression 

in the lung is among top 13 tissues with highest expressions whereas 
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GSTCD expression is higher in greater number of other tissues (Figure 

2A and 2B). Lung function and cis-eQTL INTS12 SNPs effectively 

represent a linked haplotype (Figure 3.6) and thus it is not possible to 

ascertain which ones are causal in relation to either gene expression or 

lung function.  

Although INTS12 and GSTCD have been suggested to be co-ordinately 

expressed (Obeidat et al. 2013), the observation of eQTL effect on only 

one gene in this locus contradicts the co-ordinated expression 

hypothesis. The rationale behind this deduction is that provided two 

genes are oppositely transcribed and sharing the same promoter, as it 

has been argued for INTS12 and GSTCD (Obeidat et al. 2013), then 

these genes are likely to be having common regulatory signatures where 

causative SNPs occur. Thus the prediction is that cis-eQTL effect holds 

true for both genes. The absence of SNP-to-gene lung expression 

correlation for GSTCD but its presence for INTS12, raises the possibility 

that there are potentially multiple promoters or enhancer elements 

separately regulating the two genes. Puzzlingly, supplemental analysis 

revealed that these genes also appear to be co-ordinately expressed in 

the Genotype-Tissue Expression project (r=0.3; P<0.0001; Lonsdale et 

al. 2013) as well as Kim et al. datasets (r=0.3; P<0.01; Kim et al. 2015) 

albeit the strength of their correlation is much weaker than previously 

reported (r=0.8; P<0.0001; Obeidat et al. 2013). These findings point 

towards the complexity of INTS12 and GSTCD regulation and provide 

reason for further exploration. 

INTS12 eQTL SNPs fall within regions annotated with DNA binding 

domains for a range of regulators of gene expression, further supporting 

the leading hypothesis that altered expression of INTS12 may be 

responsible for differences in lung function (Table 3.2). A protein BLAST 

search indicates the lack of INTS12 paralogs in the human repertoire of 

proteins, although some proteins have sequence similarity to the gene’s 

PHD domain functionally implicated in chromatin and gene regulation 

(Table 3.3). Indeed, Ensembl database reports the existence of INTS12 

orthologues and two paralogs in Rabbit and Microbat only.  
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It is not fully clear whether PHD fingers have a common function (Bienz, 

2006). Interestingly, there are no INTS12 orthologues in neither simple 

multicellular Caenorhabditis elegans nor in unicellular Saccharomyces 

cerevisiae, suggesting this gene to be functionally important in 

multicellular organisms in which multiple tissues differentiation occurs as 

INTS12 orthologues have been identified only in those kinds of 

organisms. An INTS12-wide evolutionary analysis revealed that this 

gene was under negative selection, i.e. constrained from mutating, 

presumably to maintain a critical cellular or developmental function 

(dN/dS=0.197). A codon-by-codon selection analysis has shown that 

PHD domain, N-terminal and C-terminal subdomains are particularly 

under strong purifying selection. Intriguingly, out of these three regions 

only N-terminal subdomain was shown to be required and sufficient for 

INTS12 canonical function of snRNA processing in fly cells (Chen et al. 

2013), i.e. PHD and C-terminal domains are dispensable for this activity. 

Therefore, in light of their strong conservation the snRNA processing 

dispensable parts of the protein require functional explanation. 

Moreover, it suggests the existence of additional, possibly multiple, roles 

for this gene.  

As INTS12 expression is higher in the bronchial epithelium relative to 

other airway cells (Obeidat et al. 2013), the HBEC model was chosen for 

the functional studies. A series of experiments were carried out in order 

to study the prioritized INTS12 function and have successfully (i) 

optimized INTERFERin®-mediated transfection of exogenous 

fluorescent D-siRNAs into HBECs, (ii) demonstrated functionality of 

RNAi in the model using validated positive control D-siRNA, (iii) 

demonstrated a >80% INTS12 mRNA knockdown at the lowest possible 

concentration of two independent D-siRNAs, (iv) qualitatively 

demonstrated near complete INTS12 protein depletion and its nuclear 

localization, (v) optimized FuGENE6®-mediated transfection of 

recombinant DNA construct and (vi) used these transfection conditions 

to profoundly overexpress v2 and v3 INTS12 construct variants. In 

conclusion an in silico based evidence was produced indicating the 

probable contribution of INTS12 to pulmonary function and the 
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necessary experimental tools were optimized and set the scene for all 

subsequent functional studies. 
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4.1	Introduction	
As described in the Chapter 1, INTS12 protein is a member of the 

INTScom complex. INTScom was shown to stably accompany POLII 

and at a molecular level has been implicated in small nuclear RNA 

(snRNA) and Cajal bodies biogenesis (Baillat et al. 2005, Takata et al. 

2012), perinuclear dynein dynamics (Jodoin, Sitaram et al. 2013) and 

with POLII pause and release (Gardini et al. 2014, Stadelmayer et al. 

2014). It is unclear whether all the INTScom subunits or a subset of 

subunits are involved in the above processes. At the functional level, 

targeted knockdown and mutagenesis experiments demonstrated 

INTScom to be necessary for adipogenesis (Otani et al. 2013) and 

haemopoiesis (Tao et al. 2009). 

Because expression of INTS12 is high in the human bronchial epithelium 

compared to smooth muscle and peripheral blood mononuclear cells 

(Obeidat et al. 2013), further studies were concentrated predominantly 

on this cell type. What is known directly about the function of INTS12 is 

that in D.melanogaster S2 cells it is necessary for snRNA processing 

(Ezzeddine et al. 2011, Chen et al. 2012, Chen et al. 2013), and POLII 

pause release (Gardini et al. 2014). In HeLa cells, INTS12 was shown to 

be required for the maintenance of perinuclear dynein (Jodoin, Sitaram 

et al. 2013). The general consensus regarding canonical INTS12 

function is that it is primarily involved in snRNA processing but no 

evidence of this function has been shown in the human models. 

Therefore, the aim of the work described in this chapter was to 

investigate the potential role of INTS12 in the snRNA processing 

pathway using human in vitro HBEC model and compare the results to 

what was elsewhere observed in Drosophila cells.  

4.1.1	Integrator	Complex	subunit	12	contribution	to	Drosophila	

small	nuclear	RNA	processing	
Ezzeddine et al. used the U7-GFP reporter construct to determine the 

role of INTS12 in snRNA processing (Ezzeddine et al. 2011; see section 

1.8.4). There was some ambiguity around the importance of INTS12 in 

this process. One set of data presented, showed a weak GFP signal, but 
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another set of data showed a strong signal after INTS12 knockdown, 

using different controls but otherwise under the same conditions 

(Ezzeddine et al. 2011). Western blotting has shown the lowest GFP 

band density in the INTS12 silenced cells compared to the rest of the 

INTScom subunits knockdowns, except INTS3 and INTS10 that were not 

implicated in processing at all (Ezzeddine et al. 2011). qPCR results 

revealed some level of endogenous misprocessed snRNAs in INTS12 

silenced cells (Ezzeddine et al. 2011). As an example, the level of fold 

increase in U1 misprocessed transcript relative to control for INTS12 

silenced cells was almost the same as for INTS10, which was not 

implicated in snRNA processing.  

Chen et al. worked on Drosophila S2 cells and confirmed the previous 

finding of INTS3 and INTS10 being dispensable for snRNA processing 

(Chen et al. 2012). In this study INTS12 was used as a GFP-reporting 

positive control and a reference for relative GFP levels. Western blots 

and qPCR analyses of INTS12 depleted samples showed significant 

misprocessing of endogenous U1 and U5 but not as high as in INTS9 

depleted samples (Chen et al. 2012).  

In another study, Chen et al. asked which of the INTS12 domains are 

implicated and which are dispensable in snRNA processing (Chen et al. 

2013). First, they have demonstrated that in S2 cells knockdown of 

INTS12 results in positive signal using U7-GFP and U4-GFP reporters 

(Chen et al. 2013) as well as in accumulation of endogenous 

misprocessed U1, U2, U4, U5 snRNAs (Figure 4.1; Chen et al. 2013). 

Misprocessed U6 was not detected in INTS12 depleted cells because 

U6 is transcribed by RNA polymerase III (RNAPIII) and INTScom is not 

recruited onto this polymerase. To identify INTS12 domains responsible 

for correct pre-snRNA cleavage researchers devised an RNAi-rescue 

model where endogenous INTS12 is knocked down and snRNA 

processing is restored through introduction of RNAi-resistant wild type 

INTS12 (INTS12*). The group was successful in showing that there is a 

dose-dependent response in processing, depending on the 

concentration of transfected INTS12* after full knockdown of the 

endogenous form (Chen et al. 2013). 
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Figure 4.1: INTS12 knockdown resulted in increased levels of endogenous 
misprocessed U1, U2, U4, and U5 but not U6 snRNAs. Reproduced from Chen et 
al. 2013. 

Having validated GFP reporting of misprocessing assay, Chen et al. 

produced RNAi-resistant and truncated forms of INTS12 and looked at 

processing efficiency of these truncations (Chen et al. 2013). 

Surprisingly, the well-conserved PHD domain was found to be 

dispensable for snRNA processing and not able to rescue INTS12 

depletion. However, an N-terminal microdomain between 15th and 45th 

residue of D. melanogaster INTS12 was required for INTScom snRNA 

processing activity. This N-terminal microdomain has 83% sequence 

similarity with its human orthologue counterpart (Figure 4.2).  

The fact that INTS12 PHD domain is dispensable for snRNA processing 

suggests that the protein is more than likely to be involved in other 

processes unrelated to snRNA processing in D. melanogaster cells and 

probably in another species. Although PHD domains typically bind to 

histone H3 and the presence of a stable nucleosome between DSE and 

PSE elements of snRNA genes has been reported (Stünkel et al. 1997), 

the weight of evidence argues for the lack of histones within snRNA 

genes (Chen et al. 2013), indicating possible genome binding 

independent from snRNA genes.  
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Figure 4.2: Level of human and Drosophila INTS12 orthology: pairwise alignment 
of human and fly INTS12 N-terminal microdomain that was found both necessary 
and sufficient for exogenous snRNA processing appears to have 50% of residues 
identical while 85% of residues have similar biochemical properties. The degree 
of sequence identity and similarity between the full length proteins is 26% and 
42% respectively.  

4.1.2	 Appraisal	 of	 data	 suggesting	 INTS12	 requirement	 for	

snRNA	processing		
Overall the evidence purporting to suggest that INTS12 is required for 

snRNA processing is not consistent. Considering the data from 

Ezzaddine et al. the effect of knockdown of various INTScom subunits 

on endogenous snRNA processing, it is possible to say that INTS12 has 

a relatively minor role in D. melanogaster INTScom activity in 

comparison to other subunits. When using U7-GFP reporter system for 

monitoring snRNA misprocessing the data is inconsistent as INTS12 

knockdown sometimes resulted in a GFP signal, while sometimes did 

not result in GFP expression. Crucially, immunoblotting for GFP 

following the knockdown of various INTScom subunits suggests that 

INTS12 has a negligible role within INTScom as an important component 

of snRNA processing machinery. 

It is worthy to point that in all available studies that investigated the role 

of INTS12 in endogenous snRNAs processing the underlying 

assumption is that the relative levels of misprocessed snRNAs is an 

accurate proxy of INTScom activity. It is not entirely clear why that may 

be the case since increased levels of immature snRNAs may be 

observed due to increased transcription and not just misprocessing. 

Therefore, there is no way to know from the published data whether 

investigators have induced the transcription of these snRNAs or 

observed genuine misprocessing.  

However, the general prediction still holds true that if snRNA processing 

occurs, significant increase in the levels of immature snRNAs is 
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expected and there are no obvious reasons to suppose that the rates of 

general gene transcription vary between control and test conditions. If it 

is accepted that levels of immature snRNAs are a proxy for INTScom 

activity then it is possible to say that INTS12 play some but moderate 

role in the INTScom activity and inconsistencies in the available data 

warrant more investigations. Finally, all the studies looking at the role of 

INTS12 in snRNA processing were performed on D. melanogaster cells 

and nothing is known about the requirement of INTS12 in snRNA 

processing in human cells, despite other INTScom members shown to 

be involved so in HeLa model (Baillat et al. 2005). 

4.1.3	Aims	and	Objectives	

The overall objective of this chapter is to assess whether INTS12 is 

required for endogenous snRNA processing in primary human lung cells. 

Thus the fundamental question is whether this biological function is 

conserved between human and D. melanogaster species since the split 

of their common ancestor or whether this function was acquired or lost 

in each lineage independently. This path of thinking follows the 

parsimony principle which asserts that simple scientific explanation that 

fits the evidence is preferable than complex explanation (Farris, 2008). 

Therefore, preservation of snRNA processing in both species would 

imply functional inheritance from common ancestral organism as it is a 

simpler explanation than two independent evolutions of this function. In 

particular the aim of this chapter was to repeat the INTS12 knockdown 

experiment of Chen et al. but using a human cell model rather than the 

D. melanogaster model and compare results to Figure 4.1 (Chen et al. 

2013). 

4.2	Materials	and	Methods	
INTS12 silencing in HBECs was performed according to the 120h 

knockdown protocol (see section 2.2.2.3). Total RNA was extracted and 

cDNA synthesised as described before (see sections 2.3.2 and 2.3.3). 

qPCR assays targeting U1, U2, U4 and U5 snRNA misprocessed 

transcripts were designed (see section 2.3.5.4) such that forward primer 
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spans the U coding site (i.e. incorporated into the spliceosome) while the 

reverse primer spans the U non-coding site (i.e. not incorporated into the 

spliceosome) which physically is present downstream of the coding site 

(Figure 4.3). Developed primers (Table 6 of Appendix) were validated 

bioinformatically and experimentally (see below). SYBR® Green qPCR 

reactions were carried out (see section 2.3.5.4) using these primers on 

the test samples in order to assess the functional requirement of INTS12 

in processing of U1, U2, U4, and U5 snRNAs.  

 

Figure 4.3: Design principles of snRNA processing. Forward primer ‘a’ anneals 
to the U snRNA coding site while primer ‘b’ is complementary to the site 
downstream of cleavage site rending the assay specific for primary (immature) 
snRNA transcript. Reverse primer ‘b’ may partially overlaps with 3’box element 
or be downstream of 3’box element. Reproduced from Hata and Nakayama 2007. 

4.2.1	Development	and	validation	of	primary	U1,	U2,	U4,	and	U5	

snRNA	qPCR	assays	
In the human genome there are multiple copies of genes and 

pseudogenes belonging to the same species of single U snRNA. These 

genes and pseudogenes are believed to be paralogs that have arisen 

through gene duplications (O’Reilly et al. 2012). For example, there are 

at least 14 genes and pseudogenes for U1 snRNA in the human 

genome. It turns out that most of them, including the pseudogenes, 

produce fully functional transcripts (O’Reilly et al. 2012). In other snRNA 

species the pseudogenes are not transcriptionally active. It is difficult to 

ascertain beforehand which copies of the genes or pseudogenes are 

expressed and therefore it is advantageous to design the qPCR assay 

such that it can detect most of the paralogous genes. For illustration, 

Figure 4.4 shows the multiple sequence alignment of human paralogous 
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U1 snRNA genes and pseudogenes. As it can be seen, there is a very 

good conservation of U1 coding site (position 1 to 168 which is 

incorporated into spliceosome) between all human U1 genes and 

pseudogenes. However, the conservation is poor beyond the coding 

sites, having less than 34% of sequence identity (Figure 4.4). The same 

situation is true for U2, U4, and U5 snRNA loci (data not shown). This 

simple observation suggests that the multiple copies of the same snRNA 

species have functional roles and thus are likely to be expressed. Also 

the fact that the fragments downstream of the coding site are not under 

strong evolutionary conservation suggests that these sites, including the 

canonical 3’box, are functionally less important. 
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Figure 4.4: Conservation of paralogous human U1 snRNA genes and 
pseudogenes. Strength of the blue colour and the height of consensus columns 
per residue show the evolutionary conservation. The coding site ends at the 
annotated residue number 168. The sequence appears well conserved within 
(91% sequence identity) the coding site but poorly (33% sequence identity) 
conserved downstream of the coding site making the design of common assay 
a formidable challenge.  
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4.2.1.1	Primer	design		

Although it may be possible to design a forward primer common to all 

copies of the considered snRNA, the sequence divergence beyond the 

coding site means that it is impossible to design a working reverse primer 

that would anneal to all possible immature transcripts. Nevertheless, 

primers were designed to detect as much as possible of the immature 

transcripts (Table 4.1). Primer sequences were blasted on NCBI primer 

blast site (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) using 

immature U snRNA sequence as PCR template and NCBI Transcript 

Reference Sequences limited to H. sapiens as database to test for 

specificity. The rest of parameters were set at default settings. Primer 

pairs for all snRNAs were found to be specific to input template as no 

other targets were found in the selected database. Important primer 

parameters were ensured to be as close as possible to the preferable 

range (see section 2.3.5.4).  

4.2.1.2	qPCR	assay	validation	

The primary U1, U2, U4 and U5 SYBR® Green qPCR assays were 

validated on 1:2 serially diluted cDNA starting with neat sample originally 

prepared through cDNA synthesis reaction using 1µg of total RNA 

obtained from basal P3 HBECs (see section 2.3.4). Thus the expected 

difference in Ct values between each sample in the series of dilutions is 

1 for 100% efficient assay. Assay specificity was tested by dissociation 

curve analysis (see section 2.3.5.2) and by checking the size of 

generated PCR product versus the expected size by agarose gel 

electrophoresis (see section 2.3.1).  

4.2.1.3	 Assessment	 of	 snRNA	 processing	 following	 INTS12	 depletion	 in	

HBECs	

Levels of misprocessed snRNAs were calculated using ΔΔCt method of 

qPCR analysis (see section 2.3.5.3). Expression was represented as 

relative to scrambled D-siRNA condition and was GAPDH normalized 

(see section 3.6.1.3).     
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Annotated snRNA gene / pseudogene sequence snRNA 
species 

>RNU1-1 (NR_004430.2) 
ATACTTACCTGGCAGGGGAGATACCATGATCACGAAGGTGGTTTTCCCAGG
GCGAGGCTTATCCATTGCACTCCGGATGTGCTGACCCCTGCGATTTCCCCA
AATGTGGGAAACTCGACTGCATAATTTGTGGTAGTGGGGGACTGCGTTCGC
GCTTTCCCCTGACTTTCTGGAGTTTCAAAAACAGACTGTAC 

U1 snRNA 

>RNU1-4 (NR_004421.1) 
ATACTTACCTGGCAGGGGAGATACCATGATCACGAAGGTGGTTTTCCCAGG
GCGAGGCTTATCCATTGCACTCCGGATGTGCTGACCCCTGCGATTTCCCCA
AATGTGGGAAACTCGACTGCATAATTTGTGGTAGTGGGGGACTGCGTTCGC
GCTTTCCCCTGACTTTCTGGAGTTTCAAAAACAGACCGTAC 
>RNU1-3 (NR_004408.1) 
ATACTTACCTGGCAGGGGAGATACCATGATCACGAAGGTGGTTTTCCCAGG
GCGAGGCTTATCCATTGCACTCCGGATGTGCTGACCCCTGCGATTTCCCCA
AATGTGGGAAACTCGACTGCATAATTTGTGGTAGTGGGGGACTGCGTTCGC
GCTTTCCCCTGACTTTCTGGAGTTTCAAAAACAGACCGTAC 
>RNU2-1 (NR_002716.3) 
ATCGCTTCTCGGCCTTTTGGCTAAGATCAAGTGTAGTATCTGTTCTTATCA
GTTTAATATCTGATACGTCCTCTATCCGAGGACAATATATTAAATGGATTT
TTGGAGCAGGGAGATGGAATAGGAGCTTGCTCCGTCCACTCCACGCATCGA
CCTGGTATTGCAGTACCTCCAGGAACGGTGCACCCCCTCCGGGGATACAAC
GTGTTTCCTAAAAGTAGAGGGAGGTAAGAGACGGTAGCACCTGCGGGGCGG
CTTGCACGCCGAGTGCCTGTGACGCGCCGGCTTAACTTAACTGCTTCCCTG
AAGTACCTTGAGGTTCCTGATGTGCGGGCGGTAGACGGTAGGCTTATGCGG
CACGCTGTCG 

U2 snRNA 

> RNU4-1 (NR_003925.1)  
AGCTTTGCGCAGTGGCAGTATCGTAGCCAATGAGGTCTATCCGAGGCGCGA
TTATTGCTAATTGAAAACTTTTCCCAATACCCCGCCGTGACGACTTGCAAT
ATAGTCGGCACTGGCAATTTTTGACAGTCTCTACGGAGACTGAATTTTCTT
GCAGTTGAACAACAGAGGCTT 

U4 snRNA 

> RNU5A-1 (NR_002756.2) 
ATACTCTGGTTTCTCTTCAGATCGCATAAATCTTTCGCCTTTTACTAAAGA
TTTCCGTGGAGAGGAACAACTCTGAGTCTTAACCCAATTTTTTGAGGCCTT
GCTTTGGCAAGGCTATATGTGGTAATCCAACAATAGAAATTATTT 

U5 snRNA 

Table 4.1: The binding sites onto various snRNA genes and their paralogous 
copies for forward (RED) and reverse (PINK) primers. Mature U1 snRNA is shown 
in bold. 3’box is shown in green for U1 and U2 as no recognizable 3’box sequence 
was observed in either U4 or U5 snRNA genes. 
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4.3	Results	

4.3.1	snRNA	processing	assays	validation	

On average there was 1 Ct difference between each sample of the 1:2 

dilution series.  Thus assay efficiencies associated with the designed 

primers were 89±9%, 75±5%, 104±11% and 95±4% for U1, U2, U4 and 

U5 snRNA assays respectively (n=3). In general, more diluted samples 

appear to have greater technical variability as the assay is approaching 

the limit of reliable detection (Figure 4.5). Dissociation curve analysis of 

the amplified PCR amplicons produced a single distinctive peak 

providing evidence for a generation of single amplicon indicating reaction 

specificity (Figure 4.6). PCR products were electrophoresed with DNA 

ladder to test their size and compare to the predicted size. All the 

amplicons appeared to have the predicted size for U1 and U5 snRNAs 

(within acceptable electrophoresis assay margin). U4 and U2 snRNAs 

were close to the predicted ladder albeit slightly off (Figure 4.7). This 

could have been due to redundancy of snRNA genes with multiple 

transcriptionally active loci presumed to be pseudogenes, as explained 

in section 4.2.1 and exemplified in Figure 4.4. The U4 and U5 DNA 

amplicons were isolated from gel and sequenced by Sanger reaction. In 

correspondence with observed gel electrophoresis result, the generated 

U5 sequence had 98% identity with reference NCBI sequence 

(X01691.1) after a BLAST search. On the other hand, U4 presented 

evidence of presence of more than one set of reaction products that were 

seen on sequencing chromatogram. This supports the hypothesis that 

heterogeneity of U4 product comes from sequences beyond the snRNA 

coding site (similarly to what is seen for U1 in Figure 4.4) and that 

different U4 loci are being expressed. The U1 and U2 amplicons were 

not sequenced. Overall, it is possible to say that the overall evidence 

shows that the developed qPCR assays aimed at measuring 

misprocessed U1, U2, U4 and U5 snRNAs are reliable for ΔΔCt method 

of analysis.   
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snRNA 
species 

Calibration curve Assay 
efficiency 

U1 

 

89±9% 

U2 

 

75±5% 

U4 

 

104±11% 

U5 

 

95±4% 

Figure 4.5: Experimental validation of the efficiency of the designed primary 
snRNA primers. The intercepted lines above the main slope are its upper and 
lower limits of 95% confidence interval. Greater number of samples in 1:2 dilution 
series is different between some assays and is indicative of assay’s range of 
detection. For example, U1 assay has 7 samples whilst U2 assay has 4 samples 
as U1 assay can reliably measure target levels with less than 1ng of cDNA, while 
U2 assay’s limit is 10ng of cDNA 
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U1 U2 

  
U4 U5 

  
Figure 4.6: Dissociation curve analysis of PCR amplified snRNA amplicons.

 

Figure 4.7: The location of amplified primary snRNAs amplicons relative to the 
DNA ladder after 40 PCR cycles. The cDNA template used was representative of 
total RNA content of P3 un-treated HBECs.  
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4.3.2	INTS12	plays	a	modest	role	in	snRNA	processing	in	human	

bronchial	epithelial	cells	
As mentioned, given previous observations in D. melanogaster 

suggesting a role for INTS12 in processing of U1, U2, U4 and U5 

snRNAs, initial studies set out to determine if the major functional and 

regulatory role for INTS12 in HBECs involved snRNA processing. 

Transfection of primary cultures of HBECs with D-siRNAs A and C 

produced 91±2% and 82±3% knockdown respectively (Figure 4.8; 

P<0.0001, n=6). In contrast to findings in D. melanogaster cells (Figure 

5), no significant effects on U1 processing were seen. A role for INTS12 

on U2 processing was found, with increases in U2 immature product by 

2.58±0.58 fold and by 2.64±0.59 for D-siRNAs A and C respectively 

(Figure 4.9, P<0.05, n=6). However, in keeping with the lack of effect on 

U1 processing, no significant effects of INTS12 knockdown on 

processing of U4 and U5 snRNAs were observed. These data suggest 

that whilst INTS12 may play a minor role in U2 processing, it does not 

have a major general role in HBEC snRNA processing.  

 

Figure 4.8: INTS12 ∆∆Ct expression in HBECs transfected with D-siRNA A and C. 
Statistical tests were performed comparing to scrambled D-siRNA control: 
****P<0.0001. Individual ∆∆Ct gene expressions are GAPDH normalized and 
relative to the mean of scrambled D-siRNA condition. Error bars represent 
standard error of the mean. 
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Figure 4.9: ΔΔCt fold changes of misprocessed snRNAs. Statistical tests were 
performed comparing to scrambled D-siRNA control: *P<0.05. Individual ∆∆Ct 
gene expressions are GAPDH normalized and relative to the mean of scrambled 
D-siRNA condition. Error bars represent standard error of the mean. 
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4.4	Discussion	
A direct comparison of effects of INTS12 depletion on snRNA processing 

in human and D. melanogaster S2 cells provides evidence only for a role 

in U2 snRNA processing. Thus although it appears that in the fly INTS12 

plays a general role in processing snRNA, this does not appear to be the 

case in human cells. Possible explanations for this difference include a 

loss of a common ancestral function of INTS12 in the lineage leading to 

human species or snRNA processing activity may have been acquired 

in the lineage leading to fly species. Both hypotheses are equally 

parsimonious but in the light of minimal role of INTS12 in U2 snRNA 

processing in HBECs, the former hypothesis seems more likely. 

Although the presented evidence shows INTS12 to have a modest role 

in human snRNA processing, it is not possible to exclude the possibility 

that other INTScom members are important in delivering this molecular 

function. This is especially crucial in the light of data showing a more 

prominent role for INTS1, INTS4 and INTS9 in Drosophila snRNA 

processing (Ezzedine et al. 2011). Human orthologues of these genes 

could be required more fundamentally for 3’end formation of snRNAs 

and further studies are warranted to address this question. Moreover, in 

relation to results in human cell presented in this Chapter, data 

purporting to imply that the knockdown of Drosophila INTS12 impairs 

snRNA processing are not consistent (Ezzedine et al. 2011, Chen et al. 

2012) highlighting the demand to carefully interpret aforementioned fly 

and human findings. 

As mentioned in Chapter 3, cross metazoan sequence analysis of 

INTS12 proteins revealed high levels of conservation, particularly of the 

INTS12’s PHD motif. The minor role in snRNA processing in human cells 

and strong conservation suggests the existence of additional functions 

for INTS12. Furthermore, the evolutionary constrained PHD finger is 

dispensable for snRNA processing even in D. melanogaster implying 

other possible functions for this protein even in this organism (Chen et 

al. 2013).  



Chapter 4 – Functional role of INTS12 in human snRNA processing 
 

 194 

Therefore, it is possible to say that the potential contribution of INTS12 

to lung function phenotypes is unlikely to be driven via snRNA 

processing pathway. At the initial stages of this thesis the guiding 

hypothesis was that genetically determined deficiency of INTS12 activity 

leads to compromising splicing of mRNAs enriched for genes known to 

be critical for pulmonary health (e.g. SERPINA1). This may provide 

biological explanation of INTS12 contribution to lung function. However, 

it is improbable that allele carriers with low INTS12 expression contribute 

to altered lung function through snRNA misprocessing. As INTS12’s 

PHD domain appeared to be homologous to a large family of PHD 

fingers (Table 3.3) whose functions lie in the control of chromatin and 

nucleosomes and where they act as epigenetic regulators of gene 

expression (Bienz, 2006), the next step in this thesis was to examine the 

genome-wide regulatory properties of INTS12. RNAseq was used to 

identify cellular networks whose homeostasis may become disrupted as 

a result of INTS12 knockdown aiding the generation of gene function 

hypotheses.   
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5.1	Introduction	
The dispensability of the evolutionary conserved INTS12 PHD motif 

domain for snRNA processing strongly suggested existence of other 

unrealized INTS12-specific molecular and/or cellular functions (see 

Chapter 3). This is true for D. melanogaster S2 cells in which INTS12 

was shown to be moderately required for snRNA processing (for critical 

appraisal of scientific literature of studies that investigated INTS12 

requirement for snRNA processing see section 4.1.2). However, it is 

even more relevant in human cells in the light of the data presented in 

Chapter 3, where entire endogenous INTS12 appears to be dispensable 

for snRNA processing among 75% of the tested snRNA species. The 

key questions are, why does INTS12 show so much evolutionary 

constraint, and why is it necessary for mammalian development as 

shown by pre-weaning lethality in homozygous mouse models (Obeidat 

et al. 2013)?  

Beyond the canonical function, in the HeLa cell model INTS12 was 

shown to be involved in perinuclear dynein dynamics (Jodoin, Sitaram et 

al. 2013). Interestingly, in a separate study, Jodoin, Shboul et al. 

reported that INTS12 was also implicated in the maintenance of 

epithelial cell ciliary function which is thought to arise from a common 

process controlling both perinuclear dynein as well as primary cilia 

(Jodoin, Shboul et al. 2013). Dyneins generate force and movement on 

microtubules in a wealth of cellular processes including cell division 

(Roberts et al. 2013). Thus a pool of dynein molecules is present in the 

nucleus and INTScom, including INTS12, was shown to be required for 

its maintenance near the nuclear membrane (hence the name 

perinuclear dynein). Jodoin, Sitaram et al. proposed a human relevant 

cell model in which INTScom mediates 3’-end processing of snRNA, 

which in turn affects the splicing machinery required for normal 

processing of mRNAs encoding key regulators of cytoplasmic dynein 

localization (Jodoin, Sitaram et al. 2013). Thus when INTScom is 

compromised, the production of critical transcripts is reduced leading to 

a reduction of perinuclear dynein. However, this seems unlikely to be the 
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case for INTS12 considering the above mentioned minor role for INTS12 

in snRNA processing. In fact, despite finding several thousand genes 

with evidence of differential splicing in HeLa cells depleted of INTS11, 

researchers were unable to detect enrichment for gene sets related to 

dynein–dynactin subunits or adaptor proteins in overrepresentation 

analysis (Jodoin, Sitaram et al. 2013). This highlighted the need for 

further studies of INTScom activities.  

Although it is possible that what is driving INTS12 conservation is its 

requirement for the perinuclear dynein maintenance, the sequence 

homology search described in Chapter 3 suggests that it may also have 

epigenetic and gene regulatory roles (Table 3.3) beyond the function 

discovered by Jodoin, Sitaram et al. (Jodoin, Sitaram et al. 2013). For 

example, INTS12’s PHD has similarity to histone-lysine N-

methyltransferase 2A, a known epigenetic modifier. The studies 

described in this chapter concentrated on trying to elucidate potential 

genome-wide regulatory properties of INTS12 as well as their possible 

relationship to lung function.       

5.1.1	 Systematic	 INTS12	 function	 discovery	 –	 aims	 and	

objectives	

As mentioned in Chapter 1, one way to hypothesise about gene function 

is by measuring global gene expression following controlled and 

experimental perturbation of the gene. The observed transciptomic 

signature can then be used to test whether cellular homeostasis has 

been altered and what pathways may have been responsible for this 

alteration. Phenotypic assays may then be chosen based on these 

findings. The aim of this Chapter is to use the hypothesis-free GSEA 

method (Subramanian et al. 2005; see section 1.7.4) in combination with 

INTS12 depletion to accomplish the task of gene function discovery. 

Technical and biological validation of the data is also presented. A more 

candidate-driven approach was also relied on by comparing the acute 

versus longer term transcriptomic responses due to INTS12 knockdown 

with a goal of identifying genes important in lung biology. Based on the 

transcriptomic data, functional phenotypic assays were chosen and used 
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to quantitatively measure the relevant phenotype in INTS12 depleted 

cells. Moreover as part of NGS-based RNAseq, novel INTS12 mRNA 

variants have been identified and tested by PCR and Sanger sequencing 

for their validation. 

5.2	Materials	and	Methods	

5.2.1	RNAseq	
INTS12 silencing in HBECs was performed according to the 48h and 

120h knockdown protocols (see section 2.2.2.3). For main RNAseq and 

functional analyses the effects of INTS12 depletion were assessed 120h 

after initiation of interference. To compare the acute and chronic 

transcriptomic responses to knockdown, RNAseq profiling was also 

performed 48h after the initiation of interference (see section 2.5.1). 

There were four experimental conditions: un-transfected cells, cells 

transfected with scrambled D-siRNA control, and cells transfected with 

D-siRNAs A and C. Each experimental condition was performed in three 

independent biological replicates. As mentioned before, the 48h and 

120h experiments were performed upon two different donors, keeping 

the donor the same within each time point. The rationale behind that is 

having confidence in a list of genes that are reproducibly detected as 

differentially expressed after 48h as well as 120h. The genes that appear 

dysregulated in this manner can be called “core subset regulome of 

INTS12”, as their regulation is observed in different donors and different 

times.   

5.2.2	RNAseq	and	Pathway	Data	Analysis	

The quality of raw FastQ files (100 base pairs) was assessed on FastQC. 

Tuxedo analysis pipeline was used for RNAseq analysis (Trapnell et al. 

2012; see section 2.8.1.1): (i) TopHat’s (v2.0.1254) Bowtie2 read 

alignment was performed upon hg19 build, (ii) Cufflinks (v2.2.1) 

transcriptome assembly was performed on individual sample basis and 

merged by Cuffmerge (v2.2.1) using reference-based assembly, (iii) 

Cuffdiff (v2.2.1) differential gene expression was performed using 

Cuffmerge-predicted annotation. Loci with Benjamin-Hochberg 
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corrected P value (Benjamin and Hochberg, 1995) below 0.05 were 

considered significant. Transcriptomic comparisons were performed 

comparing scrambled D-siRNA to each anti-INTS12 D-siRNA and 

comparing un-transfected cells with scrambled D-siRNA transfected 

cells in order to account for off-target and mere transfection effects 

respectively. 

5.2.2.2	 General	 methodology	 in	 the	 identification	 of	 reproducibly	 and	

INTS12-specifically	perturbed	genes	and	pathways		

In order to perform pathway analyses, FPKM expression values were 

obtained for each gene per individual RNAseq sample using Cuffnorm 

(v2.2.1). Loci containing multiple amalgamated genes were separated 

into individual genes and had assigned the equivalent expression 

values, while genes occurring multiple times on the dataset had their 

expression values summated using in-house written python script (see 

section 2.8.3.1).  

GSEA approach (Subramaniana et al. 2005) using 4722 curated gene 

sets including 1320 canonical pathway definitions from the Molecular 

Signatures Database (Kanehisa and Goto, 2000; Croft et al. 2014; Glaab 

et al. 2010; accessed Dec 2014) was used, comparing scrambled D-

siRNA to each INTS12 D-siRNA and comparing un-transfected cells with 

scrambled D-siRNA transfected cells. To provide internal replication and 

account for off-target effects (Jackson and Linsley, 2010), GSEA 

analyses were performed separately following treatment with either D-

siRNA A or C, comparing scrambled D-siRNA treated cells to INTS12 

depleted cells. Additionally, un-transfected cells were compared with 

scrambled D-siRNA treated cells to account for pathways that may be 

altered following treatment with non-specific D-siRNA as artefacts of the 

experimental exposure rather than being causally related to the gene 

knockdown. Pathways with Benjamin-Hochberg corrected P value below 

0.05 were considered significant (Benjamini and Hochberg, 1995). Gene 

sets reproducibly perturbed by both D-siRNAs (FDR<0.05) but not 

affected by scrambled D-siRNA treatment (FDR>0.05) were shortlisted 
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and finally top dysregulated pathways were identified relying on 

normalized enrichment score sorting. 

Results of the pathway analysis were displayed in a Cleveland’s plot 

using ggplot2 R package (version 2.10, http://ggplot2.org/) while 

pathway heatmaps were drawn using heatplus R package (Ploner, 

2015). Boxplots were drawn using build-in R function. Pearson’s 

correlations of gene expression were calculated using hmisc R package 

and drawn using ggplot2.  

5.2.2.2.1	Identification	of	INTS12	depletion	deregulated	subset	of	genes		

Comparison of acute and chronic transcriptomic responses to INTS12 

knockdown aimed at identifying core subset of genes significantly 

differentially expressed in 48h and 120h time points respectively. The 

rational of the analysis was similar to pathway analysis, i.e. genes were 

shortlisted if there were reproducibly dysregulated in both INTS12 D-

siRNAs but not in scrambled D-siRNA. Genes that were dysregulated in 

both INTS12 D-siRNAs in a given direction while in the opposite direction 

in the scrambled D-siRNA sample were also included. Core subset of 

genes was identified by determining the common genes between the 

48h and 120h significant gene lists.   

5.2.3	qPCR	

Pre-developed qPCR primers (Table 3 of Appendix) were used for 

SYBR® Green qPCR assays as described in Chapter 2 (see section 

2.3.5.4). Technical validation of RNAseq findings was performed using 

at least three cDNA replicates derived from total RNA used for 120h 

RNAseq experiment (hence using D195307). Biological validation of 

target genes was performed upon different donor cells (D7F3206) with 

at least three biological cDNA replicates. In accordance with the chosen 

housekeeper (see section 3.6.1.3), gene expression was GAPDH 

normalized and analysed using the ΔΔCt method (see section 2.3.5.3).    

5.2.4	Functional	assays	

Rates of protein synthesis were measured as described before (see 

section 2.9.1). Cell proliferation was assessed by comparing total cell 
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counts at the beginning and at end of the knockdown experiment as 

described before (see section 2.9.2). 

5.2.5	mRNA	splice	variant	assembly	and	validation	

In order to elucidate the genetic architecture of INTS12 locus, Cuffmerge 

generated novel gene transfer format (GTF) annotation files (containing 

genomic coordinates of the splice variants) from 48h and 120h RNAseq 

datasets were compared to Ensembl GTF annotation of hg19 build by 

using Cuffcompare (v2.2.1). The average FPKM isoform expressions in 

the basal un-transfected HBECs was obtained from the 48h Cuffdiff 

dataset and used to quantify the relative abundances of each of the 

individual isoforms. Splicing graphs depicting novel and known splice 

transcripts were generated using SpliceGrapher (v0.2.457). The 

sequences of novel INTS12 variants were retrieved using predicted 

genome annotation (GTF files) and reference human genome sequence 

(hg19 build) via gtf_to_fasta feature of Cuff package. The general 

command used was: 
gtf_to_fasta annotation.gtf genome.fa out_file 

Forward and reverse primers were designed (Table 5.1; see section 

2.3.5.4) in order to verify the existence of these three novel INTS12 

variants. Two unique and novel splice junctions specific for individual 

isoform were leveraged and primers were designed to span these splice 

junctions. Among the assembled INTS12 variants, only these variants 

had two unique splice junctions that would enable their specific PCR 

amplification. Forward primer was common for all three isoforms while 

reverse primers were isoforms specific. 40 cycles PCR reaction was run 

upon the two different 48h (D7F3206) and 120h (D195307) donors’ basal 

HBECs cDNA (see section 2.3.5.1), amplicons were electrophoresed, 

cut and extracted from a gel, and sequenced by Sanger sequencing (see 

section 2.3.6.1). Thus the identity of the novel variants was verified by 

comparing the actual band size to the predicted band size and by 

comparing RNAseq-derived sequence from Sanger sequencing-derived 

sequence. As part of the novel variant analysis it was necessary to 

access a specific genomic region given specific coordinates. This was 
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achieved with samtools using the following command, where the 

genome.fa is the hg19 fasta sequence of human genome: 
samtools faidx genome.fa 4:[5’coord]-[3’coord] 

Novel INTS12 isoform 
target ID 

Oligo Sequence 

TCONS_57,56,54 Forward 5’-GTGGATGTCTTGACTTCTGT-3’ 

TCONS_57 Reverse 5’-GAACGGTGTCCCTAAGG-3’ 

TCONS_56 Reverse 5’-GAGATTGCCAGGCGTTTGCAATG-3’ 

TCONS_54 Reverse 5’-CGGAACGGTGTCCCTAAG-3’ 

Table 5.1: Sequences of the designed forward and reverse primers used to 
amplify the novel INTS12 splice variants. All three assays share the same forward 
primer and thus specificity is conferred by the reverse primer. Target ID 
correspond to the isoforms seen elsewhere in this thesis. 

5.3	Results	

5.3.1	Quality	control	of	sequencing	data	

Before proceeding with RNAseq-derived identification of dysregulated 

pathways and genes it is important to ensure that the raw sequencing is 

of good quality. Therefore, the 48h and 120h RNAseq raw sequencing 

library was used to evaluate the median Q-score throughout the 

sequenced read body (see section 2.8.1 for explanation of the meaning 

of Q-scores). As there were four experimental conditions, each 

performed in three biological replicates there was a total of 12 samples 

in the 48h and 120h datasets. Since the reads were sequenced in sense 

and antisense directions (i.e. paired-end sequencing) there were two 

FastQ files per sample. Thus there was a total 48 files for the quality 

assessment and the representative results are shown in the Figure 6.1 

below.  

As it can be seen all median base calls in all the samples had quality 

score above 28 and this is true for both the 120h and 48h datasets 

(Figure 6.1). Therefore, the probability of error throughout the read is 

less than 0.2%. As the chance of sequencing error is low, the raw reads 
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were not trimmed from their 3’-end, were the quality of sequencing tends 

to decrease, and thus were directly aligned to the genome. Indeed, when 

the libraries were Bowtie2 aligned, the alignment rate was >70% for all 

the samples (Table 5.2) and the proportion of mappable reads which 

aligned to multiple locations was less 3% throughout the datasets. A 

survey of best practices for RNAseq data analysis has shown that in an 

“ideal experiment” we should expect between 70 and 90% of reads to 

map onto the human genome (Conesa et al. 2016). Thus the gapped 

and un-gapped BAM alignment file was suitable for Cufflinks and 

Cuffmerge transcriptome assemblies, Cuffnorm FPKM absolute gene 

expression quantification, and Cuffdiff differential gene expression 

analyses.  

 

Figure 5.1: Representative Q-scores of RNAseq libraries. All FastQ files had 
median scores above 28 throughout the read length and in both sense and anti-
sense directions. The panel represents the 120h dataset, while the bottom panel 
represents the 48h dataset. 
 



Chapter 5 – Inferring gene and pathway dysregulation in INTS12 depleted HBECs 
 

 204 

RNAseq 
dataset 

Replicate Samples Percent of mappable reads 
(concordant pair alignment rate) 

120h dataset Replicate 1 Un-transfected 83.1% 
Scrambled D-siRNA 83.6% 

D-siRNA A 82.7% 
D-siRNA C 85.7% 

Replicate 2 Un-transfected 86.0% 
Scrambled D-siRNA 83.6% 

D-siRNA A 83.4% 
D-siRNA C 84.9% 

Replicate 3 Un-transfected 83.7% 
Scrambled D-siRNA 86.6% 

D-siRNA A 82.7% 
D-siRNA C 84.9% 

48h dataset Replicate 1 Un-transfected 81.6% 
Scrambled D-siRNA 85.2% 

D-siRNA A 83.2% 
D-siRNA C 82.0% 

Replicate 2 Un-transfected 82.1% 
Scrambled D-siRNA 83.6% 

D-siRNA A 82.2% 
D-siRNA C 80.5% 

Replicate 3 Un-transfected 77.6% 
Scrambled D-siRNA 75.4% 

D-siRNA A 77.1% 
D-siRNA C 71.7% 

Table 5.2: Alignment rates in RNAseq samples. The slightly lower rates of 
replicate 3 in 48h dataset may have ccured because of RNA degradation, but are 
still suitable for analysis according to the survey of RNAseq sample alignments 
(Conesa et al. 2016).  

5.3.2	Differential	transcriptome	analysis	reveals	regulation	of	a	

core	subset	of	genes	relevant	to	airway	biology	

In order to identify a core subset of genes that are significantly regulated 

by INTS12 the acute versus longer term transcriptomic responses due 

to depletion were compared. RNAseq profiling was performed 48h and 

120h after RNA interference (RNAi). After 48h the levels of knockdown 

were 74±1% and 78±2%, whilst after 120h, 89±1% and 80±2% for D-

siRNAs A and C respectively (FDR<0.05; Figure 5.2). After accounting 

for off-target and transfection effects there were 67 and 1939 

differentially expressed genes by INTS12 knockdown at 48h and 120h 

time points respectively (FDR<0.05; Figure 5.3 and Figure 5.4). These 

include differentially expressed genes by D-siRNA A and D-siRNA C in 

given direction but in opposite direction by scrambled D-siRNA. Thus, 

sustained knockdown resulted in a differential expression of ~30 times 

more genes than what was observed in acute response to knockdown 

(Figure 5.5). For those genes showing altered levels at both time points, 
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the magnitude of change was greater at 120h post initiation of RNAi 

(Figure 5.6) for all except one (Figure 5.7). Crucially the direction of 

differential expression for this set of genes is the same in the 

independent D-siRNAs treatments and at both time points (Figure 5.7, 

Table 5.2). Greater number of differentially expressed genes at 120h 

(Figure 5.2) relative to 48h (Figure 5.3) can be attributed to sustained 

knockdown having more pronounced effect on INTS12 regulome than in 

acute response to gene knockdown. It important to note that the number 

of differentially expressed genes only in scrambled D-siRNA is lower at 

120h than at 48h suggesting that these are non-specific effects of 

transfection reagent. 

 
Figure 5.2: INTS12 knockdown at 48h and 120h post RNAi. Cuffdiff statistical 
tests were performed comparing to scrambled D-siRNA control and were FDR 
corrected for multiple comparisons: ***FDR<0.001. 
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Figure 5.3: Venn diagrams of significantly deregulated genes at 48h. 46 
reproducibly deregulated genes plus 21 genes deregulated in all three 
comparisons but in opposite direction in INTS12 knockdown conditions when 
compared to un-transfected vs. scrambled D-siRNA analysis were shortlisted 
from 48h dataset (total 67). 

 
Figure 5.4: Venn diagrams of significantly deregulated genes at 120h. 1660 
reproducibly deregulated genes plus 279 genes deregulated in all three 
comparisons but in opposite direction in INTS12 knockdown conditions when 
compared to un-transfected vs. scrambled D-siRNA analysis were shortlisted 
from 120h dataset (total 1939).  
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Figure 5.5: Comparison of 48h and 120h transcriptomic responses to INTS12 
knockdown reveals dysregulation of key genes of importance for pulmonary 
physiology. Sustained depletion resulted in greater fold changes in respective 
expression in the same direction in both D-siRNAs treatments. The two gene sets 
contain 39 common genes of relevance to airway biology, i.e. shown to be 
important and/or critical to lung function and health based on the survey of 
literature data. D-siRNA A differential expression data shown. 

 
Figure 5.6: Box plot of log2 fold changes of 39 genes significantly deregulated at 
48h and 120h using D-siRNA A. Sustained depletion resulted in greater fold 
changes of gene expression. 
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Figure 5.7: Log2 fold changes of 39 genes significantly deregulated at 48h and 
120h using D-siRNA A. Genes have greater effect sizes in 120h response for all 
except one. 
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(Makinde et al. 2007), interleukin 1 receptor 1 (IL1R1) (Frank et al. 2008) 

and IL6, IL8, IL1B, IL1A (Grutters et al. 2003, Heinzmann et al. 2004, Xie 

et al. 2009, Falfan-Valencia et al. 2012). IL6 had the greatest reduction 
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with respiratory syncytial virus (Qin et al. 2015) (Table 5.3). Interestingly, 

several polymorphisms in linkage with LEP are associated with lung 

function (van den Borst et al. 2011). LEP blood concentration was also 

shown to negatively correlate with lung function (Eising et al. 2013). 

Crucially, LEP upregulation has been validated in an additional donor 

HBECs depleted of INTS12 (Figure 5.8). These findings give support to 

the hypothesis that the altered expression of INTS12 in population 

studies is driving the genetic association signal for lung function.  
48h and 120h 

consensus genes 
MEAN FOLD CHANGES ± SEM 

48h 120h 
Scrambled 
vs D-siRNA 

A 

Scrambled 
vs D-siRNA 

C 

Scrambled vs 
D-siRNA A 

Scrambled vs 
D-siRNA C 

LEP 4.92 ± 2.12 19.14 ± 11.33 36.72 ± 14.81 32.06 ± 14.13 
AC005863.1 3.83 ± 0.88 4.70 ± 1.29 9.15 ± 0.45 5.36 ± 0.81 
OLFML2A 1.71 ± 0.13 2.54 ± 0.55 7.69 ± 0.81 2.63 ± 0.39 

SESN3 2.94 ± 0.23 1.95 ± 0.07 6.54 ± 0.62 2.49 ± 0.47 
TNS1 2.61 ± 0.33 5.27 ± 1.71 6.05 ± 0.40 5.97 ± 0.60 
NEK7 2.39 ± 0.15 2.23 ± 0.23 5.38 ± 0.33 3.78 ± 0.18 

MAN1A1 1.79 ± 0.09 2.01 ± 0.17 5.09 ± 0.59 2.58 ± 0.15 
MAF 2.81 ± 0.17 4.87 ± 0.69 4.41 ± 0.36 5.37 ± 0.54 
BMF 4.26 ± 1.12 3.76 ± 0.86 7.06 ± 3.86 7.93 ± 5.21 

SCPEP1 1.51 ± 0.04 1.51 ± 0.11 3.56 ± 0.15 1.21 ± 0.06 
PBXIP1 1.86 ± 0.09 2.07 ± 0.14 3.32 ± 0.24 2.22 ± 0.04 
CBX1 2.00 ± 0.08 2.20 ± 0.08 2.86 ± 0.09 3.24 ± 0.15 

ENDOD1 1.78 ± 0.05 1.77 ± 0.10 2.85 ± 0.20 2.93 ± 0.26 
SGK1 1.61 ± 0.02 1.53 ± 0.08 2.69 ± 0.21 1.85 ± 0.12 

HSPB1 1.63 ± 0.10 1.43 ± 0.11 2.67 ± 0.31 1.43 ± 0.02 
RNF152 1.55 ± 0.07 1.81 ± 0.15 2.42 ± 0.05 1.89 ± 0.02 

SERPINA1 2.93 ± 0.47 2.89 ± 0.56 2.44 ± 0.34 2.77 ± 0.36 
PGAM1 1.65 ± 0.09 1.69 ± 0.16 2.34 ± 0.01 1.94 ± 0.05 
ASPH 1.56 ± 0.07 1.61 ± 0.13 2.31 ± 0.02 2.26 ± 0.05 

MAMDC2 2.61 ± 0.13 3.42 ± 0.59 2.48 ± 0.48 5.12 ± 0.59 
SHROOM2 1.69 ± 0.15 1.95 ± 0.18 2.29 ± 0.04 1.72 ± 0.03 

EPHB2 1.54 ± 0.13 2.07 ± 0.07 2.22 ± 0.01 2.54 ± 0.13 
ITGB6 1.95 ± 0.17 2.74 ± 0.53 2.08 ± 0.06 3.86 ± 0.31 
IL1R1 2.13 ± 0.06 1.95 ± 0.03 2.06 ± 0.09 1.60 ± 0.17 
TGFBI 2.00 ± 0.13 2.75 ± 0.20 1.89 ± 0.04 5.62 ± 0.66 

SLITRK6 1.80 ± 0.10 2.45 ± 0.55 1.79 ± 0.13 2.57 ± 0.37 
PNRC2 1.60 ± 0.04 1.51 ± 0.05 1.25 ± 0.08 1.31 ± 0.12 

PHACTR3 0.44 ± 0.04 0.58 ± 0.15 0.41 ± 0.01 0.51 ± 0.09 
IL8 0.44 ± 0.01 0.50 ± 0.11 0.38 ± 0.04 0.18 ± 0.01 

CRCT1 0.37 ± 0.06 0.58 ± 0.10 0.36 ± 0.04 0.56 ± 0.05 
CNOT6 0.59 ± 0.03 0.62 ± 0.01 0.37 ± 0.01 0.53 ± 0.01 

LIF 0.43 ± 0.06 0.41 ± 0.05 0.35 ± 0.07 0.33 ± 0.03 
KRT80 0.57 ± 0.02 0.36 ± 0.03 0.31 ± 0.05 0.32 ± 0.05 
CXCL3 0.42 ± 0.05 0.34 ± 0.06 0.26 ± 0.02 0.21 ± 0.03 

IL1B 0.54 ± 0.07 0.38 ± 0.04 0.16 ± 0.00 0.31 ± 0.00 
CXCL5 0.52 ± 0.09 0.45 ± 0.08 0.16 ± 0.03 0.33 ± 0.04 

IL1A 0.56 ± 0.06 0.65 ± 0.08 0.09 ± 0.01 0.47 ± 0.02 
IL6 0.33 ± 0.05 0.48 ± 0.06 0.03 ± 0.01 0.19 ± 0.05 

Table 5.3: Deregulation of a core subset of genes due to INTS12 knockdown. The 
table is showing the mean fold changes of consensus significantly differentially 
expressed genes after 48h and 120h since the D-siRNA A and C transfections. 
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Figure 5.8: qPCR expression profiling of LEP expression in additional donor 
cells. LEP is significantly upregulated in validation donor HBECs depleted of 
INTS12. Statistical tests were performed comparing to scrambled D-siRNA 
control: *P<0.05, ****P<0.0001. Individual ∆∆Ct gene expressions are GAPDH 
normalized and relative to the mean of the scrambled D-siRNA condition. No 
significant difference was observed between un-transfected and scrambled D-
siRNA transfected cells. 
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5.3.3	 Differential	 pathway	 analysis	 identifies	 dysregulation	 of	

protein	 synthesis	 and	 collagen	 formation	 pathways	 following	

INTS12	knockdown	
Transcriptomic profiling of cells sustainably depleted of INTS12 (i.e. 

120h dataset) revealed a set of 1660 genes which were altered in 

expression following treatment with both D-siRNA A and C (Figure 5.4). 

279 genes deregulated in all three comparisons but in opposite direction 

in INTS12 knockdown conditions when compared to un-transfected vs. 

scrambled D-siRNA analysis were also shortlisted yielding a total of 

1939 genes (Figure 5.5). 

To interpret this large number of gene expression changes, GSEA 

approach was used as described in section 5.2.2. Using this method 

three pathways were upregulated and eight pathways were 

downregulated (Figures 5.9, 5.10). Collagen formation and extracellular 

matrix organization pathways were the top two upregulated pathways 

(defined by normalized enrichment scores) in D-siRNA A and D-siRNA 

C analyses (Figures 5.9, 5.10, 3.12). The top two downregulated 

pathways were cytosolic tRNA aminoacylation and PERK regulated 

gene expression, which is a sub-pathway of the unfolded protein 

response (Figure 5.9, 5.10, 5.11). Significant downregulation of other 

protein metabolism related pathways, including unfolded protein 

response, activation of genes by transcription factor 4 (ATF4) (Figure 

5.10) and glycine, serine and threonine metabolism pathways (Figure 

5.10) was observed. ATF4 expression was reduced by 70±5% and 

45±2% in D-siRNA A and C transfected cells when compared to 

scrambled D-siRNA transfected cells respectively (FDR<0.05). As it is 

has been reported that ATF4 knockout cells have impaired expression 

of genes involved in resistance to oxidative stress and amino acid 

transport (Harding et al. 2003), this suggests an impact on integrated 

stress response (Marciniak et al. 2006) caused by INTS12 knockdown. 

Importantly, dysregulation of the above pathways was not observed 

when comparing un-transfected cells with scrambled D-siRNA cells.  
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Figure 5.9: Cleveland’s plot showing the GSEA results of D-siRNA A analysis. 
The shade of colour indicates statistical significance of enrichment after multiple 
testing correction. The size of dot reflects the number of statistically significant 
differentially expressed gene. The location of the dot on the X-axis reflects the 
enrichment score. 

 
Figure 5.10: Cleveland’s plot showing the GSEA results of D-siRNA C analysis. 
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D-siRNA A analysis D-siRNA C analysis 

 

FDR ≈ 0.0004; NSE ≈ -2.05 

 

FDR ≈ 0.00009; NSE≈ -2.10 

 

FDR ≈ 0.002; NSE≈ -1.95 

 

FDR ≈ 0.00006; NSE≈ -2.12 

 

FDR ≈ 0.003; NSE ≈ -1.90 

 

FDR ≈ 0.004; NSE≈ -1.92 
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FDR ≈ 0.004; NSE≈ -1.89 

 

FDR ≈ 0.003; NSE ≈ -1.94 

 

FDR ≈ 0.003; NSE ≈ -1.91 

 

FDR ≈ 0.03; NSE ≈ -1.72 

 

FDR ≈ 0.006; NSE ≈ -1.86 

 

FDR ≈ 0.0001; NSE ≈ -2.10 
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FDR ≈ 0.03; NSE ≈ -1.72 

 

FDR ≈ 0.02; NSE ≈ -1.79 

 

FDR ≈ 0.01; NSE ≈ -1.80 

 

FDR ≈ 0.03; NSE ≈ -1.74 

Figure 5.11: Enrichment plots of reproducibly downregulated pathways 
(FDR<0.05) in D-siRNA A and C analyses showing the distribution of enrichment 
scores per gene set throughout the signal-to-noise ranked gene list with 
indicated statistical significance and normalized enrichment score of their 
respective downregulations.  The FDR and normalized enrichment score (NSE) 
values were rounded up to one and three significant figure respectively.    
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D-siRNA A analysis D-siRNA C analysis 

 

FDR ≈ 0.01; NSE ≈ 1.87 

 

FDR < 0.00001; NSE ≈ 2.42 

 

FDR ≈ 0.03; NSE ≈ 1.78 

 

FDR < 0.00001; NSE ≈ 2.40 

 

FDR ≈ 0.04; NSE ≈ 1.74 

 

FDR ≈ 0.05; NSE ≈ 1.64 

Figure 5.12: Enrichment plots of reproducibly upregulated pathways (FDR<0.05) 
in D-siRNA A and C analyses.  
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5.3.3.1	Consistency	and	robustness	of	identified	pathways	dysregulation 
The main rationale for the presented analysis was to identify pathways 

genuinely dysregulated due to INTS12 depletion. Thus, as mentioned 

above, pathways with evidence of perturbation in two independent 

INTS12 targeting D-siRNAs and not dysregulated in scrambled D-siRNA 

are of primary interest. Equally importantly, it is crucial to test whether 

the observed effects are consistent in the different treatments (i.e. 

whether genes appear to have similar molecular signature in the D-

siRNA A and D-siRNA C) and how robust are the downregulation and 

upregulation responses.  

As far as the latter point is concerned, it is possible to say that among 

the identified dysregulation of 11 pathways, downregulated pathways 

tended to show more robust effects than upregulated pathways due to 

lesser inter-experimental variability (Figure 5.13 and 5.14), greater 

magnitude of effect (Figure 5.15) and larger number of significantly 

dysregulated pathways (Figures 5.9 and 5.10). Overall, the molecular 

signatures of upregulated pathways appear more variable and less 

reproducible than downregulated pathways. Moreover, the genes 

belonging to the downregulated pathways appear clearly more localized 

at the bottom of the signal-to-noise ranked list (see section 2.8.3) while 

genes belonging to the upregulated pathways appear more distributed 

throughout the ranked list (Figure 5.11 versus Figure 5.12).  

The leading edge in the GSEA analysis is a core subset of pathway 

genes present before the enrichment plot curve starts descending for the 

upregulated pathways (Figure 5.12) or after enrichment plot curve starts 

ascending for downregulated pathways (Figure 5.11). Thus these genes 

are considered to be mostly contributing to the enrichment score and 

hence are predominantly responsible for pathway dysregulation 

(Subramanian et al. 2005). By comparing the leading edges in the D-

siRNA A and D-siRNA C it is also possible to determine the consistency 

and robustness of a particular pathway perturbation.  

Through examination of these leading edges, it appeared that for the 

downregulated pathways with the exception of NOD-like receptor 

signalling, the genes mostly contributing to pathway downregulation in 
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D-siRNA A were very well represented in the D-siRNA C (Table 5.4). On 

the other hand, genes contributing to the enrichment of upregulated 

pathways in D-siRNA A analysis were notably less represented in the 

leading edge of D-siRNA C (Table 5.4). For example, in the cytosolic 

tRNA aminoacetylation pathway 93% of genes contributing to pathway 

downregulation in D-siRNA A also contributed to pathway 

downregulation in D-siRNA C and vice versa. As far as collagen 

formation is concerned 81% of genes that contributed to pathway 

upregulation in D-siRNA A also contributed to pathway upregulation in 

D-siRNA C, while only 57% of genes that contributed to pathway 

upregulation in D-siRNA C were represented in the leading edge of D-

siRNA A. 
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Unfolded protein response (REACTOME) 

 

Activation of genes by ATF4 (REACTOME) 
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Figure 5.13: Heatmaps of genes belonging to downregulated pathways. Samples 
were clustered by unsupervised hierarchical clustering and resulted in 
clustering of three biological replicate samples of each of the four conditions: 
un-transfected cells (UT), cells transfected with scrambled D-siRNA control (NC), 
cells transfected with anti-INTS12 D-siRNA A (A) and cells transfected with anti-
INTS12 D-siRNA C (C). Green and red colours on the Z-scale indicate lower and 
higher expression respectively.   
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Figure 5.14: Heatmaps of genes belonging to upregulated pathways. Samples 
were clustered by unsupervised hierarchical clustering where green and red 
colours on the Z-scale indicate lower and higher expression respectively. 
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Figure 5.15: Box plots representing log10 of fragment per kilobase per million 
reads (FPKM) expression values of genes belonging to the dysregulated 
pathways due to INTS12 knockdown. The downregulation effects are more 
robust than upregulation effects, due to lesser inter-experimental variability, 
greater magnitude of effect and larger number of significantly dysregulated 
pathways. Cytosolic tRNA aminoacetylation and PERK regulated gene 
expression, both important in protein metabolism and integrated stress 
response were suppressed in both D-siRNA treatments which was not observed 
in scrambled D-siRNA treated cells. Stars indicate the significance of pathway 
dysregulation in GSEA. 
 
 
 
 
 
 
 
 



Chapter 5 – Inferring gene and pathway dysregulation in INTS12 depleted HBECs 
 

 226 

Pathway Percent of D-siRNA A 
leading genes represented 
in D-siRNA C edge 

Percent of D-siRNA C 
leading genes represented 
in D-siRNA A edge 

UPREGULATED PATHWAYS 
Collagen formation 

(REACTOME) 

81% 57% 

Extracellular matrix 

organization (REACTOME) 

86% 54% 

Aldosteron regulated sodium 

reabsorption (KEGG) 

73% 65% 

DOWNREGULATED PATHWAYS 

Activation of genes by ATF4 

(REACTOME) 

92% 92% 

Cytosolic tRNA 

aminoacylation 

(REACTOME) 

92% 92% 

Aminoacyl tRNA biosynthesis 

(KEGG) 

100% 94% 

NOD-like receptor signalling 

pathway (KEGG) 

71% 83% 

Table 5.4: Representation of D-siRNA A leading edge genes in the leading edge 
of D-siRNA C and vice versa. Shown results for representative pathways.    

5.3.3.2	 Technical	 and	 biological	 validation	 of	 identified	 pathway	

dysregulation	

In order to validate the RNAseq data, four genes from the top two 

downregulated pathways (cytosolic tRNA aminoacetylation and PERK 

regulated gene expression; see section 5.3.2) were selected: methionyl-

tRNA synthetase (MARS) and glycyl-tRNA synthetase (GARS) genes 

from the tRNA synthetases pathway and ATF4 and asparagine 

synthetase (ASNS) genes from the PERK pathway. qPCR technical 

validation of RNAseq findings was performed using three biological 

cDNA replicates derived from total RNA used in sequencing thus were 

upon the same RNA samples. Differences in gene expression between 

each experimental condition derived from RNAseq data were compared 

to the differences obtained from the qPCR data. Analysis revealed 

Pearson correlation of log2 of differences in gene expression derived 

from RNAseq and qPCR estimates to be 0.99 (P<0.0001; Figure 5.16).  
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In addition, biological validation was tested by repeating the INTS12 

knockdown experiment using different donor cells, in at least three 

biological replicates. This set of experiments replicated the 

downregulation of these genes at a statistically significant level (except 

for MARS which appears downregulated when comparing its expression 

in D-siRNA A relative to scrambled control but did not reach statistical 

significance) albeit with a different effect size (P<0.05; Figure 5.18). The 

differences in the magnitude of changes observed can be attributed to 

the different efficiencies of INTS12 knockdown in the discovery and 

validation donors: INTS12 was suppressed by 72% and 86% in the 

validation donor for D-siRNA A and C respectively versus 93% and 85% 

in the discovery donor for D-siRNA A and C respectively (Figure 5.17). 

In it notable that in validation donor not only all the target genes 

appeared downregulated but also the magnitude of change 

corresponded to the level of INTS12 knockdown, i.e. there is a greater 

magnitude of change observed in D-siRNA C where INTS12 silencing 

was greater than in D-siRNA A. Interestingly, in the validation donor 

experiment, INTS12 expression was significantly upregulated in 

scrambled D-siRNA treatment relative to un-transfected control 

suggesting donor specific responses of INTS12 to non-specific  

knockdown. This effect was mirrored by MARS and GARS in a significant 

manner, implying that these genes are upregulated as a result of 

treatment to scrambled D-siRNA just as it was observed for INTS12. 

However, it is possible to say that the data for validation donor supports 

the observations seen in discovery donor as target genes are 

downregulated in INTS12 knockdown conditions relative to scrambled 

D-siRNA, making their upregulation in scrambled D-siRNA irrelevant for 

validation purposes.   
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Figure 5.16: Technical validation of RNAseq findings by qPCR. Differences in 
gene expression derived from RNAseq strongly and significantly correlate with 
differences in gene expression derived from qPCR. Validation assays were 
performed on the same samples that were used for RNAseq study. 

 
Figure 5.17: INTS12 expression in the discovery and validation donors. In the 
discovery donor INTS12 knockdown was greater in D-siRNA A than in D-siRNA 
C. On the other hand, in the validation donor INTS12 knockdown was greater in 
D-siRNA C than in D-siRNA A.  Statistical tests were performed comparing to 
scrambled D-siRNA control: *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
Individual ∆∆Ct gene expressions are GAPDH normalized and relative to the 
mean of the scrambled D-siRNA condition. 

−4

−2

0

2

−4 −2 0 2
qPCR_log2FC

R
N
A
s
e
q
_
lo
g
2
F
C

Pearson correlation = 0.9887
P <0.0001

Un-t
ran

sfe
cte

d

Scra
mble

d D
-si

RNA

D-si
RNA A

D-si
RNA C

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

*** **

D
iscovery donor

INTS12

0.0

0.2

0.4

0.6

0.8

1.0

1.2

**** ****

Un-t
ran

sfe
cte

d

Scra
mble

d D
-si

RNA

D-si
RNA A

D-si
RNA C

INTS12

Validation donorE
x
p
re
ss
io
n

E
x
p
re
ss
io
n ***

ns



Chapter 5 – Inferring gene and pathway dysregulation in INTS12 depleted HBECs 
 

 229 

 
Figure 5.18: Biological validation of downregulation of genes belonging to 
cytosolic tRNA aminoacylation and PERK pathways in additional donor cells. 
ASNS and ATF4 expressions, representing PERK pathway, were qPCR assayed 
and had significantly reduced expression in discovery donor cells, as well as 
validation donor cells, with the exception of MARS in D-siRNA A condition. 
Statistical tests were performed comparing to scrambled D-siRNA control: 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Individual ∆∆Ct gene expressions are 
GAPDH normalized and relative to the mean of the scrambled D-siRNA condition. 
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that INTS12 depletion would affect the cells capacity to proliferate. Cell 

counts revealed 25±13% and 48±4% decrease of proliferation in cells 

treated with D-siRNAs A and C respectively (P<0.05; Figure 5.20). It is 

possible to say that the observed reduction in protein synthesis can be 

causally attributed to INTS12 knockdown because (1) it is observed 

following specific manipulation of gene level (2) it is seen in two 

independent D-siRNAs targeting this genes, (3) it is not seen in 

scrambled D-siRNA control. However, it still remains to be elucidated 

whether this causal relationship between INTS12 and protein synthesis 

is direct or indirect, and Chapter 6 will shed light on this issue. Although 

it could be the case that INTS12 reduction activates apoptotic or 

cytotoxic processes which then effect protein synthesis, these 

phenotypic outcomes have not been measured. It remains speculative 

whether they are contributory and this still does not invalidate the theory 

emphasizing causal contribution of INTS12 to protein production. From 

a survey of RNAseq data generated in this thesis it appears that caspase 

3 and caspase 7, the key effector molecules in the apoptotic pathway, 

are not dysregulated due to INTS12 depletion, making the role of 

apoptotic pathway very questionable. Thus, these data identify a novel 

and significant unrecognised role for INTS12 in regulation of cellular 

protein synthesis and proliferation.  
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Figure 5.19: Amino acid incorporation measured by counts per methionine (CPM) 
in 120h since the start of RNAi radiolabelling experiment. Statistical tests were 
performed comparing to scrambled D-siRNA control: *P<0.05, ***P<0.001. 
Individual CPM values are normalized to the amount of total protein and are 
shown as relative to the mean of the un-transfected condition. No significant 
difference was observed between un-transfected and scrambled D-siRNA 
transfected cells.  
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Figure 5.20: HBEC counts at the beginning and at the end of 120h INTS12 
knockdown experiment. Statistical tests were performed comparing to 
scrambled D-siRNA control: *P<0.05, ***P<0.001. No significant difference was 
observed between un-transfected and scrambled D-siRNA transfected cells. 
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5.3.5	 Using	 RNAseq,	 end-point	 PCR	 and	 Sanger	 sequencing	 to	

decipher	the	genetic	architecture	of	INTS12	locus	
In this thesis, the RNAseq datasets were used not only to understand 

the transcriptomic dynamics following INTS12 depletion, but also to 

uncover splicing at the INTS12 locus. Figure 5.21 compares 

transcriptome assemblies for INTS12 locus leveraging the 48h and 120h 

RNAseq datasets. 5 novel variants were discovered based on the 48h 

dataset while 2 new variants were discovered based on the 120h 

dataset. Since in these experiments INTS12 was targeted by D-siRNA 

knockdown and silencing efficiency was improved at day 5, there were 

more reads available for the assembly at day 2 and hence the quality of 

this assembly was better due to higher sequencing depth at the INTS12 

locus. Nevertheless, importantly, novel variants detected at day 5 are 

represented at day 2 as well (starred in Figure 5.21).  
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Figure 5.21: Comparison of INTS12 mRNA isoform assemblies at 48h (day 2, left 
side) and at 120h (day 5, right side). Despite the differences in sequencing depth 
between these two datasets, the 2 novel variants discovered at 120h are 
represented in the 48h dataset in which 5 novel variants were uncovered 
(indicated by stars). 
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There is an expected and acceptable discrepancy at the 5’ end of the 

first exon (starts from right hand side on Figure 5.12) as indicated by 

slightly different coordinate on the X-axis. These are due to random 

coordinate estimation at the end of exons with no reads spanning the 

splice junction (Trapnell et al. 2010). However, the variants do agree in 

terms of internal exons as splice junction data is available for them. 

Because 48h data is more reliable in terms of transcriptome assembly 

for this gene due to higher depth of sequencing, it was taken forward for 

obtaining isoform sequences that were used as templates in primer 

design.       

Figure 5.22 shows the new isoforms chosen for targeting by PCR (in red 

boxes) and their two unique novel splice junctions indicated. As it can be 

seen, these isoforms have a common forward primer and are 

differentiated by the reverse primer. These isoforms are among the least 

common INTS12 variants in basal HBECs (<1% out of the total pool of 

INTS12 isoforms; Figure 5.22). The predicted sequences of target 

isoforms are shown in Figure 5.23 while predicted amplicon sizes are 

shown in Table 5.5. 

 
Figure 5.22: Novel INTS12 splice variants chosen for PCR and sequencing 
validation (in red boxes) are shown with indicated splice sites to which forward 
and reverse primers align. Relative abundances of each isoform are shown in 
table next to the figure and are rounded-up to two decimal places. 
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TCONS_00194954 
CGTACTATGTGCATGTATTACATTGGCAATGTAGGAAAAGTGAGCAATGTGAGAAAAAATATTGTATTAAGCACCAGGAGAGTTCACAATTTATTGGAAAA
AGATATACCCTTAAATAATTGAAATGAGGTGATAAAAAAGGTAAAGATATAATATGAAGTATGATAAATCAATTAGGAAAATCCATTGATATGAGAAATCAA
TAATGAAAAAATAATTTTGAAAAAGATGAAATAATTGGGAGGGAGAGGGAGAGTCAGTTGAAATGGGGCTAGCACAGAAAATGAACACCCAGAATACGG
GGAGGAAAATAGAAAACTATGTTGGGTCGTCCCTGCCGCCACATAAGGCACCTCATTCATCAGGATCAACTCTTGGGGCTTTGCTAGAAGATGAACTAT
TTCTTTTTCCTTAAATTCACAGATGCTTTCAATCTTCTGAAGATCTCATTGAGAACCAGTCATTCTAATCATTGTTTTCACACACTATGGAAATCATTAGAAT
AAAAATGTTGAAGATTGATTTAAAATGAAAGTTTCCAAGTTTTGTTATATAATATTTAGCATTTTAAGGTAAGAAACAATAGAAATTTGATTATGAAGACTTT
TATTAAATTACAGTGTATTACAGATTATATCATAATAATAAGCCTTTCATCTTTAGGCTAATATGATACAAAAACCTACTTGGCCACATTACTTCTTGAGTTT
CTTTTGGGCAGCTTTCTTCTTGACCATCTGTAATCGCTTCATAGCATTGAGCTGTGATTCTTGTGAAGTTGGGCCTTTAAGGGATGCTGAGGGAGAGCTG
CTGGATTCTGAAGTAGTTTTGCTGGTAGTACTTCCACTAGGTCCTGATGTTCCACTATTTCCATTCCCACTTAGTTGGCTGCTGCTTCCTGGAACTAAACT
ACTTGGACTAGGAAGACCTACTTTGCTGACATTGTCACAACTAACTGAGCGACTAAGGCCAGTTTTACCCAAGGTTAGAGGTGGAGGTGGTTTTAAAGG
TACAGTGGGCGTAGTGCTGTTATTGGAACCTATTTTGGAACCTATTCCACCTTTGGATGATGTTGCCAGACCAGTCAAACCCACAGGTTTCTGGTTAGCT
GACGAAGTAGCAGGTTTCCCAGTATTGTTTTGTGTTGTTGAACTCAATTTTGCTGTTGAAGGACCAGCAGAGGAAGTTTTGGCTGCAAAAGCTGCCCATC
CAGTTAAGCCACTAGTTACTGACGAGGAAACGCTGGCACTAGAAGAATTTCCTGAAATAACTGTGGATGTCTTGACTTCTGTTCTCTTAAACGCTAGAAA
AGTTGTCTCTTGTTTCAGTTTAGTTTCTGGTTTCTTAACCAATGGATCTTTGACAGCTGGAGTTACAGAAACAACTGCAGGGGCTGGTTTCTGCGGTGGT
TTCTGAGTTTTTTGAGCCATTCTTTTCATTTGTCTGGTACATCGGGCACAATACCACACCAGGCGAGGGTCATTCGCTTCCTTGTCTGTCACCTGGGGTT
TATGACAATCTCGGTGGTAGAGATTATGGCACTCCTGACATTCTACTAATTGATTGCCAGATGCCACCATCATTTGCCTACAAACAACGCAGGCCAATCC
CATCTCCATGGCAAAATCATCAGCACTGGTCTCCTCAAAACTGGAAAGGTCAGCCATAGGTAAATCCTTGCTACTTTGGACAGTAATGGGAGATGACTGT
GTTTCTGGTTTCTCCAATCTAGGTTTCTTTGGAATATCAACTCCTTCAGTGATGTCTGATTTCATTTTATCAGCAGGTCTCTTTTCAGCTTCCTTCTTTACCT
TTTCAGTTGTGAGGACCTTGCCATTATTATTACCAGAAGGAAGACTGGATGATATTTTGGGCTCTTGCTTAATGGAAATGTTTTTTGTGCTTGAAATTTTG
GGTGGCTCCACATCCTTTTGAGATGGACGGTAACTGGAATCAATGCCCCGAGCCAAAGATTCATCAAGCAGTGCTTTTAGCTTTTCAGCAGAATCTTTAC
TCTTTGAATGCAAGAAACCTAGTGCTTTCAAAAAAATGGGATCAAGTTCCAAGTTCACAGTAGCAGCCATTGCAAACGCCTGGCAATCTCAAAAGAAGTC
CAAAGTTGATCATATGCACGTGCCCCAGATGAAGGAAACAGAAACTGTTCACATAGAGTGCAGTATTATCGTTGCCATTTCATAATGGCTCTAAAAAACT
TTGTTCTTCATGACTTCGCAAGCTCTTGCAACCCCTTCCAATAAACATTATTTTAAAGATGCTGCCTTTTTCATTCCTCCACTGAGTTCTTGGTTCTGGATA
ACACTGATACCTTAGGGACACCGTTCCGCCCCGCCCTGCCGATCCGTCTGTTCCCGGTGGTCCCTTCGGAAACGGTTCCCGCACTGGCCGGCTCCGA
AAGCAGGAAAACAAAGGTTCCCACAGTAGGGGCGGGGGAAACGTTTGGCAGTGCGACAGTAGGAAGTGACGTTACTTCCCTTTTTCCGGTCCGCCGG
ATTATGAATGACGGCCGGCGCGAGTATTTTCCACATAAGGTGGCTGTCGTTTTTCTCCTGGCGTCTGTGGAGGCGAGTGGTCTGCGGGCAGCAGCTCC
CAGAGGCAGCCTTGGAATTCCAGCTCGGACTGGGCGGGAAGGCGCAGGCGGCCCAGGTCGCCGACACGCTCACGCACCCTCCCTGCCTGGCCGCG
CCTCTGCGACCAGGTAAAGAGGGCGCTCGGGCCGCCGGCTTCTCAGCCTCCGCGACCCCCTAAGAACTGGTCTTTTCTTCGGGGGTCTGCAGGGCTG
AGGATGCG 

TCONS_00194956 
CGTACTATGTGCATGTATTACATTGGCAATGTAGGAAAAGTGAGCAATGTGAGAAAAAATATTGTATTAAGCACCAGGAGAGTTCACAATTTATTGGAAAA
AGATATACCCTTAAATAATTGAAATGAGGTGATAAAAAAGGTAAAGATATAATATGAAGTATGATAAATCAATTAGGAAAATCCATTGATATGAGAAATCAA
TAATGAAAAAATAATTTTGAAAAAGATGAAATAATTGGGAGGGAGAGGGAGAGTCAGTTGAAATGGGGCTAGCACAGAAAATGAACACCCAGAATACGG
GGAGGAAAATAGAAAACTATGTTGGGTCGTCCCTGCCGCCACATAAGGCACCTCATTCATCAGGATCAACTCTTGGGGCTTTGCTAGAAGATGAACTAT
TTCTTTTTCCTTAAATTCACAGATGCTTTCAATCTTCTGAAGATCTCATTGAGAACCAGTCATTCTAATCATTGTTTTCACACACTATGGAAATCATTAGAAT
AAAAATGTTGAAGATTGATTTAAAATGAAAGTTTCCAAGTTTTGTTATATAATATTTAGCATTTTAAGGTAAGAAACAATAGAAATTTGATTATGAAGACTTT
TATTAAATTACAGTGTATTACAGATTATATCATAATAATAAGCCTTTCATCTTTAGGCTAATATGATACAAAAACCTACTTGGCCACATTACTTCTTGAGTTT
CTTTTGGGCAGCTTTCTTCTTGACCATCTGTAATCGCTTCATAGCATTGAGCTGTGATTCTTGTGAAGTTGGGCCTTTAAGGGATGCTGAGGGAGAGCTG
CTGGATTCTGAAGTAGTTTTGCTGGTAGTACTTCCACTAGGTCCTGATGTTCCACTATTTCCATTCCCACTTAGTTGGCTGCTGCTTCCTGGAACTAAACT
ACTTGGACTAGGAAGACCTACTTTGCTGACATTGTCACAACTAACTGAGCGACTAAGGCCAGTTTTACCCAAGGTTAGAGGTGGAGGTGGTTTTAAAGG
TACAGTGGGCGTAGTGCTGTTATTGGAACCTATTTTGGAACCTATTCCACCTTTGGATGATGTTGCCAGACCAGTCAAACCCACAGGTTTCTGGTTAGCT
GACGAAGTAGCAGGTTTCCCAGTATTGTTTTGTGTTGTTGAACTCAATTTTGCTGTTGAAGGACCAGCAGAGGAAGTTTTGGCTGCAAAAGCTGCCCATC
CAGTTAAGCCACTAGTTACTGACGAGGAAACGCTGGCACTAGAAGAATTTCCTGAAATAACTGTGGATGTCTTGACTTCTGTTCTCTTAAACGCTAGAAA
AGTTGTCTCTTGTTTCAGTTTAGTTTCTGGTTTCTTAACCAATGGATCTTTGACAGCTGGAGTTACAGAAACAACTGCAGGGGCTGGTTTCTGCGGTGGT
TTCTGAGTTTTTTGAGCCATTCTTTTCATTTGTCTGGTACATCGGGCACAATACCACACCAGGCGAGGGTCATTCGCTTCCTTGTCTGTCACCTGGGGTT
TATGACAATCTCGGTGGTAGAGATTATGGCACTCCTGACATTCTACTAATTGATTGCCAGATGCCACCATCATTTGCCTACAAACAACGCAGGCCAATCC
CATCTCCATGGCAAAATCATCAGCACTGGTCTCCTCAAAACTGGAAAGGTCAGCCATAGGTAAATCCTTGCTACTTTGGACAGTAATGGGAGATGACTGT
GTTTCTGGTTTCTCCAATCTAGGTTTCTTTGGAATATCAACTCCTTCAGTGATGTCTGATTTCATCTTTTCAGTTGTGAGGACCTTGCCATTATTATTACCA
GAAGGAAGACTGGATGATATTTTGGGCTCTTGCTTAATGGAAATGTTTTTTGTGCTTGAAATTTTGGGTGGCTCCACATCCTTTTGAGATGGACGGTAAC
TGGAATCAATGCCCCGAGCCAAAGATTCATCAAGCAGTGCTTTTAGCTTTTCAGCAGAATCTTTACTCTTTGAATGCAAGAAACCTAGTGCTTTCAAAAAA
ATGGGATCAAGTTCCAAGTTCACAGTAGCAGCCATTGCAAACGCCTGGCAATCTCAAAAGAAGTCCAAAGTTGATCATATGCACGTGCCCCAGATGAAG
GAAACAGAAACTGTTCACATAGAGTGCAGTATTATCGTTGCCATTTCATAATGGCTCTAAAAAACTTTGTTCTTCATGACTTCGCAAGCTCTTGCAACCCC
TTCCAATAAACATTATTTTAAAGATGCTGCCTTTTTCATTCCTCCACTGAGTTCTTGGTTCTGGATAACACTGATACCTTAGGGACACCTGGAATCGCAGG
AGAAAAGGCTCCGATTCCAAACCAATCAAGTGGCTGAAAGCTGACAGCAAACACTTAGAAAAGGAATGTCAATCCTTTGATCAAAGCATCACACATCGAA
GTCCTAGAATGGGGGATGGTCCTTGACAGGGGAGCCAAAAGATGAGAGACAATGAGGGAGCTACGTAGAGAAGTCACTAAAACCCTCCGACAAAGTCC
GAGGCAGGATTCCAAGTCCCTTGTCCCTAGACCTAGAAATATGCTCGGTCCGCATGTCCCGGCCCGCAACTCCCTCGGAGGAAGCACAGTCCTCACTG
AAAGGGGAGAGCAGTCAGTCTAGGGCACGCAACCGCCCGTAAATTATGATTCCCCTTGAGGAGCGAGGAAACTAATACCCCACGTAGCTACTCTCCCA
CCTCGCTCCTGGCGCGGGGGTCTCGAGCCTCCAGGAGGCCAGGAGCAGAGTCGCTCAGCATAACTCACCGTTCCGCCCCGCCCTGCCGATCCGTCT
GTTCCCGGTGGTCCCTTCGGAAACGGTTCCCGCACTGGCCGGCTCCGAAAGCAGGAAAACAAAGGTTCCCACAGTAGGGGCGGGGGAAACGTTTGGC
AGTGCGACAGTAGGAAGTGACGTTACTTCCCTTTTTCCGGTCCGCCGGATTATGAATGACGGCCGGCGCGAGTATTTTCCACATAAGGTGGCTGTCGTT
TTTCTCCTGGCGTCTGTGGAGGCGAGTGGTCTGCGGGCAGCAGCTCCCAGAGGCAGCCTTGGAATTCCAGCTCGGACTGGGCGGGAAGGCGCAGGC
GGCCCAGGTCGCCGACACGCTCACGCACCCTCCCTGCCTGGCCGCGCCTCTGCGACCAGGTAAAGAGGGCGCTCGGGCCGCCGGCTTCTCAGCCTC
CGCGACCCCCTAAGAACTGGTCTTTTCTTCGGGGGTCTGCAGGGCTGAGGATGCG 

TCONS_00194957  
CGTACTATGTGCATGTATTACATTGGCAATGTAGGAAAAGTGAGCAATGTGAGAAAAAATATTGTATTAAGCACCAGGAGAGTTCACAATTTATTGGAAAA

AGATATACCCTTAAATAATTGAAATGAGGTGATAAAAAAGGTAAAGATATAATATGAAGTATGATAAATCAATTAGGAAAATCCATTGATATGAGAAATCAA

TAATGAAAAAATAATTTTGAAAAAGATGAAATAATTGGGAGGGAGAGGGAGAGTCAGTTGAAATGGGGCTAGCACAGAAAATGAACACCCAGAATACGG

GGAGGAAAATAGAAAACTATGTTGGGTCGTCCCTGCCGCCACATAAGGCACCTCATTCATCAGGATCAACTCTTGGGGCTTTGCTAGAAGATGAACTAT

TTCTTTTTCCTTAAATTCACAGATGCTTTCAATCTTCTGAAGATCTCATTGAGAACCAGTCATTCTAATCATTGTTTTCACACACTATGGAAATCATTAGAAT

AAAAATGTTGAAGATTGATTTAAAATGAAAGTTTCCAAGTTTTGTTATATAATATTTAGCATTTTAAGGTAAGAAACAATAGAAATTTGATTATGAAGACTTT

TATTAAATTACAGTGTATTACAGATTATATCATAATAATAAGCCTTTCATCTTTAGGCTAATATGATACAAAAACCTACTTGGCCACATTACTTCTTGAGTTT

CTTTTGGGCAGCTTTCTTCTTGACCATCTGTAATCGCTTCATAGCATTGAGCTGTGATTCTTGTGAAGTTGGGCCTTTAAGGGATGCTGAGGGAGAGCTG

CTGGATTCTGAAGTAGTTTTGCTGGTAGTACTTCCACTAGGTCCTGATGTTCCACTATTTCCATTCCCACTTAGTTGGCTGCTGCTTCCTGGAACTAAACT

ACTTGGACTAGGAAGACCTACTTTGCTGACATTGTCACAACTAACTGAGCGACTAAGGCCAGTTTTACCCAAGGTTAGAGGTGGAGGTGGTTTTAAAGG

TACAGTGGGCGTAGTGCTGTTATTGGAACCTATTTTGGAACCTATTCCACCTTTGGATGATGTTGCCAGACCAGTCAAACCCACAGGTTTCTGGTTAGCT

GACGAAGTAGCAGGTTTCCCAGTATTGTTTTGTGTTGTTGAACTCAATTTTGCTGTTGAAGGACCAGCAGAGGAAGTTTTGGCTGCAAAAGCTGCCCATC

CAGTTAAGCCACTAGTTACTGACGAGGAAACGCTGGCACTAGAAGAATTTCCTGAAATAACTGTGGATGTCTTGACTTCTGTTCTCTTAAACGCTAGAAA

AGTTGTCTCTTGTTTCAGTTTAGTTTCTGGTTTCTTAACCAATGGATCTTTGACAGCTGGAGTTACAGAAACAACTGCAGGGGCTGGTTTCTGCGGTGGT

TTCTGAGTTTTTTGAGCCATTCTTTTCATTTGTCTGGTACATCGGGCACAATACCACACCAGGCGAGGGTCATTCGCTTCCTTGTCTGTCACCTGGGGTT

TATGACAATCTCGGTGGTAGAGATTATGGCACTCCTGACATTCTACTAATTGATTGCCAGATGCCACCATCATTTGCCTACAAACAACGCAGGCCAATCC

CATCTCCATGGCAAAATCATCAGCACTGGTCTCCTCAAAACTGGAAAGGTCAGCCATAGGTAAATCCTTGCTACTTTGGACAGTAATGGGAGATGACTGT

GTTTCTGGTTTCTCCAATCTAGGTTTCTTTGGAATATCAACTCCTTCAGTGATGTCTGATTTCATTTTATCAGCAGGTCTCTTTTCAGCTTCCTTCTTTACCT

TTTCAGTTGTGAGGACCTTGCCATTATTATTACCAGAAGGAAGACTGGATGATATTTTGGGCTCTTGCTTAATGGAAATGTTTTTTGTGCTTGAAATTTTG
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GGTGGCTCCACATCCTTTTGAGATGGACGGTAACTGGAATCAATGCCCCGAGCCAAAGATTCATCAAGCAGTGCTTTTAGCTTTTCAGCAGAATCTTTAC

TCTTTGAATGCAAGAAACCTAGTGCTTTCAAAAAAATGGGATCAAGTTCCAAGTTCACAGTAGCAGCCATTGCAAACGCCTTAGCACTTCAGTAGAAAGT

GTGCCACCCCCACCTCCATCTTAAGTCACCTCTCAAGTTTCAGTTTTTCCTGCACATTCCCTCAACAAAACTAGAAGTTTCACTGTTACATAGCCCAAAAA

CATTCTGTACTTATTTGTAATATTAATCACACTGTTAATTATGTAAATAATCTTTCTTTCTCATTAGAATGTAAGTTCCATGAAGGCAGGCAGTGGATTGGT

CTTGCCTACTGTTGTAACCCCTGTCTGGCAGAGTTCCTGGCAATCTCAAAAGAAGTCCAAAGTTGATCATATGCACGTGCCCCAGATGAAGGAAACAGA

AACTGTTCACATAGAGTGCAGTATTATCGTTGCCATTTCATAATGGCTCTAAAAAACTTTGTTCTTCATGACTTCGCAAGCTCTTGCAACCCCTTCCAATA

AACATTATTTTAAAGATGCTGCCTTTTTCATTCCTCCACTGAGTTCTTGGTTCTGGATAACACTGATACCTTAGGGACACCGTTCCGCCCCGCCCTGCCG

ATCCGTCTGTTCCCGGTGGTCCCTTCGGAAACGGTTCCCGCACTGGCCGGCTCCGAAAGCAGGAAAACAAAGGTTCCCACAGTAGGGGCGGGGGAAA

CGTTTGGCAGTGCGACAGTAGGAAGTGACGTTACTTCCCTTTTTCCGGTCCGCCGGATTATGAATGACGGCCGGCGCGAGTATTTTCCACATAAGGTG

GCTGTCGTTTTTCTCCTGGCGTCTGTGGAGGCGAGTGGTCTGCGGGCAGCAGCTCCCAGAGGCAGCCTTGGAATTCCAGCTCGGACTGGGCGGGAAG

GCGCAGGCGGCCCAGGTCGCCGACACGCTCACGCACCCTCCCTGCCTGGCCGCGCCTCTGCGACCAGGTAAAGAGGGCGCTCGGGCCGCCGGCTT

CTCAGCCTCCGCGACCCCCTAAGAACTGGTCTTTTCTTCGGGGGTCTGCAGGGCTGAGGATGCG 
Figure 5.23: Predicted sequences of the novel INTS12 mRNA variants. 
Alternating colours indicate different exons while bold indicates the forward and 
reverse primer sites.  
 

Isoform ID Amplicon size 

TCONS_00194957 1330 bp 

TCONS_00194956 796 bp 

TCONS_00194954 1072 bp 

Table 5.5: The predicted amplicon sizes corresponding to the novel INTS12 mRNA 
variants 

5.3.5.1	End-point	PCR	validation	

Figure 5.24 shows the image of the electrophoresis gel for the amplified 

novel INTS12 mRNA products. Water and RT- samples had no DNA 

amplicons detected. TCONS_00194954 was detected in all RT+ 

samples and the bands are at expected position relative to the ladder 

(aligned above 1000 below 1100). TCONS_00194956 was detected in 

all RT+ samples and bands are relatively close to the expected position 

of ~800bps (aligned above 800 below 900). TCONS_00194957 was 

detected in two RT+ samples out of the three (both donors) and bands 

are relatively close to the expected position of 1330bps (aligned above 

1000 below 1200). Nevertheless, TCONS_00194956 and 

TCONS_00194957 variants, in contrast to TCONS_00194954, are a 

little off their expected position. Interestingly, bands intensities 

correspond to the percent abundance of total pool found: 

TCONS_00194956 had the highest abundance followed by 

TCONS_00194954, followed by TCONS_00194957 (Figure 5.22). 
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Figure 5.24: Gel electrophoresis of novel INTS12 mRNA variants following their 
PCR amplification. 

5.3.5.2	Sequence	verification	of	the	amplicons	

The sequence of novel variants was determined by Sanger reaction and 

was compared to the predicted sequence obtained from the RNAseq 

analysis. This is particularly important in the light of slight discrepancy 

between the expected and actual band sizes observed for 

TCONS_00194956 and TCONS_00194957 variants.  

5.3.5.2.1	TCONS_00194954	analysis	

There was 96% identity between these two sequences. The difference 

is mostly due to sequencing error at the 3’ end of Sanger sequence as 

perfect alignment is observed within the sequences. The lack of the 

alignment at the 5’ of the sequences is because the sequence of the 

primer is not retrieved in Sanger sequencing (Figure 5.25). Therefore, it 

is possible to say that there is an agreement between the RNAseq 

predicted and Sanger sequencing determined sequence of 

TCONS_00194954 variant. Thus not only was this variant validated by 

PCR by aligning at the expected position after gel electrophoresis 

(Figure 5.24) but verified on a sequence level as well.   
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T54_RNA_seq     GTGGATGTCTTGACTTCTGTTCTCTTAAACGCTAGAAAAGTTGTCTCTTGTTTCAGTTTA 
T54_PCR         ---------------------------------CACAAGGTTGTCTCTTGTTT-AGTTTA 
                                                  . **.************** ****** 
 
T54_RNA_seq     GTTTCTGGTTTCTTAACCAATGGATCTTTGACAGCTGGAGTTACAGAAACAACTGCAGGG 
T54_PCR         GTTTCTGGTTTCTTAACCAATGGATCTTTGACAGCTGGAGTTACAGAAACAACTGCAGGG 
                ************************************************************ 
 
T54_RNA_seq     GCTGGTTTCTGCGGTGGTTTCTGAGTTTTTTGAGCCATTCTTTTCATTTGTCTGGTACAT 
T54_PCR         GCTGGTTTCTGCGGTGGTTTCTGAGTTTTTTGAGCCATTCTTTTCATTTGTCTGGTACAT 
                ************************************************************ 
 
T54_RNA_seq     CGGGCACAATACCACACCAGGCGAGGGTCATTCGCTTCCTTGTCTGTCACCTGGGGTTTA 
T54_PCR         CGGGCACAATACCACACCAGGCGAGGGTCATTCGCTTCCTTGTCTGTCACCTGGGGTTTA 
                ************************************************************ 
 
T54_RNA_seq     TGACAATCTCGGTGGTAGAGATTATGGCACTCCTGACATTCTACTAATTGATTGCCAGAT 
T54_PCR         TGACAATCTCGGTGGTAGAGATTATGGCACTCCTGACATTCTACTAATTGATTGCCAGAT 
                ************************************************************ 
 
T54_RNA_seq     GCCACCATCATTTGCCTACAAACAACGCAGGCCAATCCCATCTCCATGGCAAAATCATCA 
T54_PCR         GCCACCATCATTTGCCTACAAACAACGCAGGCCAATCCCATCTCCATGGCAAAATCATCA 
                ************************************************************ 
 
T54_RNA_seq     GCACTGGTCTCCTCAAAACTGGAAAGGTCAGCCATAGGTAAATCCTTGCTACTTTGGACA 
T54_PCR         GCACTGGTCTCCTCAAAACTGGAAAGGTCAGCCATAGGTAAATCCTTGCTACTTTGGACA 
                ************************************************************ 
 
T54_RNA_seq     GTAATGGGAGATGACTGTGTTTCTGGTTTCTCCAATCTAGGTTTCTTTGGAATATCAACT 
T54_PCR         GTAATGGGAGATGACTGTGTTTCTGGTTTCTCCAATCTAGGTTTCTTTGGAATATCAACT 
                ************************************************************ 
 
T54_RNA_seq     CCTTCAGTGATGTCTGATTTCATTTTATCAGCAGGTCTCTTTTCAGCTTCCTTCTTTACC 
T54_PCR         CCTTCAGTGATGTCTGATTTCATTTTATCAGCAGGTCTCTTTTCAGCTTCCTTCTTTACC 
                ************************************************************ 
 
T54_RNA_seq     TTTTCAGTTGTGAGGACCTTGCCATTATTATTACCAGAAGGAAGACTGGATGATATTTTG 
T54_PCR         TTTTCAGTTGTGAGGACCTTGCCATTATTATTACCAGAAGGAAGACTGGATGATATTTTG 
                ************************************************************ 
 
T54_RNA_seq     GGCTCTTGCTTAATGGAAATGTTTTTTGTGCTTGAAATTTTGGGTGGCTCCACATCCTTT 
T54_PCR         GGCTCTTGCTTAATGGAAATGTTTTTTGTGCTTGAAATTTTGGGTGGCTCCACATCCTTT 
                ************************************************************ 
 
T54_RNA_seq     TGAGATGGACGGTAACTGGAATCAATGCCCCGAGCCAAAGATTCATCAAGCAGTGCTTTT 
T54_PCR         TGAGATGGACGGTAACTGGAATCAATGCCCCGAGCCAAAGATTCATCAAGCAGTGCTTTT 
                ************************************************************ 
 
T54_RNA_seq     AGCTTTTCAGCAGAATCTTTACTCTTTGAATGCAAGAAACCTAGTGCTTTCAAAAAAATG 
T54_PCR         AGCTTTTCAGCAGAATCTTTACTCTTTGAATGCAAGAAACCTAGTGCTTTCAAAAAAATG 
                ************************************************************ 
 
T54_RNA_seq     GGATCAAGTTCCAAGTTCACAGTAGCAGCCATTGCAAACGCCTGGCAATCTCAAAAGAAG 
T54_PCR         GGATCAAGTTCCAAGTTCACAGTAGCAGCCATTGCAAACGCCTGGCAATCTCAAAAGAAG 
                ************************************************************ 
 
T54_RNA_seq     TCCAAAGTTGATCATATGCACGTG-CCCCAGATGAAGGAAACAGAAACTGTTCACATAGA 
T54_PCR         TCCAAAGTTGATCATATGCACGTGCCCCCAGATGAAGGAAACAGAAACTGTTCACATAGA 
                ************************ *********************************** 
 
T54_RNA_seq     GTGCAGTATTATCGTTGCCATTTCATAATGGCTCT-AAAAAACTTTGTTCTTCATGACTT 
T54_PCR         GTGCAATATTATCGCTGCCATTTCATAATGGCTCTAAAAAAACTTTATCATTCATGACTT 
                *****.********.******************** **********.*. ********** 
 
T54_RNA_seq     CGCAAGCTCTTGCAACCCCTTCCAATAAACATTATTTTAAAGATGCTGCCTTTTTCATTC 
T54_PCR         CCCAAGCTCTTGCAACCCCTTCCAATAAACAT--ATTTAAAGATGCTGAATATTCATTCC 
                * ******************************   *************  * **.  *.* 
 
T54_RNA_seq     CTCCACTGAGTTCTTGGTTCTGGATAAC-----ACTGATACCTTAGGGACACCG----TT 
T54_PCR         TTCCTACTGAGTCCTGATTCTGGATTACGAGTGATAAGCAAAAAAGAAACACTATATCTG 
                .***  . .. **.**.******** **     *. ...*    **..****..    *  
 
T54_RNA_seq     CCG 
T54_PCR         TCA 
                .*. 

Figure 5.25: Multiple sequence alignment of RNAseq predicted and Sanger 
sequencing sequenced TCONS_00194954 variant   
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5.3.5.2.2	TCONS_00194956	analysis	

There appeared to be sequence discrepancy inside the alignment which 

meant that the sequence of amplified DNA is different than that of 

isoform sequence found via RNAseq (Figure 5.26). Importantly, the 

length of the Sanger sequenced isoform is larger than the one identified 

via RNAseq approach and this goes hand in hand with the observation 

that the DNA band appears slightly larger than expected on the agarose 

gel. Interestingly, the ‘insert sequence’ observed in amplified DNA falls 

precisely between exons 4 and 5 (Figure 5.27). Therefore, Sanger 

sequencing data provided evidence for either misplacing of exon 

boundaries or a missed exon between exons 4 and 5. 
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T56_RNA_seq     GTGGATGTCTTGACTTCTGTTCTCTTAAACGCTAGAAAAGTTGTCTCTTGTTTCAGTTTA 
T56_F_PCR       ---------------------------------CAACAAGTTGTCTCTTGTTT-AGTTTA 
                                                  .* **************** ****** 
 
T56_RNA_seq     GTTTCTGGTTTCTTAACCAATGGATCTTTGACAGCTGGAGTTACAGAAACAACTGCAGGG 
T56_F_PCR       GTTTCTGGTTTCTTAACCAATGGATCTTTGACAGCTGGAGTTACAGAAACAACTGCAGGG 
                ************************************************************ 
 
T56_RNA_seq     GCTGGTTTCTGCGGTGGTTTCTGAGTTTTTTGAGCCATTCTTTTCATTTGTCTGGTACAT 
T56_F_PCR       GCTGGTTTCTGCGGTGGTTTCTGAGTTTTTTGAGCCATTCTTTTCATTTGTCTGGTACAT 
                ************************************************************ 
 
T56_RNA_seq     CGGGCACAATACCACACCAGGCGAGGGTCATTCGCTTCCTTGTCTGTCACCTGGGGTTTA 
T56_F_PCR       CGGGCACAATACCACACCAGGCGAGGGTCATTCGCTTCCTTGTCTGTCACCTGGGGTTTA 
                ************************************************************ 
 
T56_RNA_seq     TGACAATCTCGGTGGTAGAGATTATGGCACTCCTGACATTCTACTAATTGATTGCCAGAT 
T56_F_PCR       TGACAATCTCGGTGGTAGAGATTATGGCACTCCTGACATTCTACTAATTGATTGCCAGAT 
                ************************************************************ 
 
T56_RNA_seq     GCCACCATCATTTGCCTACAAACAACGCAGGCCAATCCCATCTCCATGGCAAAATCATCA 
T56_F_PCR       GCCACCATCATTTGCCTACAAACAACGCAGGCCAATCCCATCTCCATGGCAAAATCATCA 
                ************************************************************ 
 
T56_RNA_seq     GCACTGGTCTCCTCAAAACTGGAAAGGTCAGCCATAGGTAAATCCTTGCTACTTTGGACA 
T56_F_PCR       GCACTGGTCTCCTCAAAACTGGAAAGGTCAGCCATAGGTAAATCCTTGCTACTTTGGACA 
                ************************************************************ 
 
T56_RNA_seq     GTAATGGGAGATGACTGTGTTTCTGGTTTCTCCAATCTAGGTTTCTTTGGAATATCAACT 
T56_F_PCR       GTAATGGGAGATGACTGTGTTTCTGGTTTCTCCAATCTAGGTTTCTTTGGAATATCAACT 
                ************************************************************ 
 
T56_RNA_seq     CCTTCAGTGATGTCTGATTTCAT------------------------------------C 
T56_F_PCR       CCTTCAGTGATGTCTGATTTCATTTTATCAGCAGGTCTCTTTTCAGCTTCCTTCTTTACC 
                ***********************                                    * 
 
T56_RNA_seq     TTTTCAGTTGTGAGGACCTTGCCATTATTATTACCAGAAGGAAGACTGGATGATATTTTG 
T56_F_PCR       TTTTCAGTTGTGAGGACCTTGCCATTATTATTACCAGAAGGAAGACTGGATGATATTTTG 
                ************************************************************ 
 
T56_RNA_seq     GGCTCTTGCTTAATGGAAATGTTTTTTGTGCTTGAAATTTTGGGTGGCTCCACATCCTTT 
T56_F_PCR       GGCTCTTGCTTAATGGAAATGTTTTTTGTGCTTGAAATTTTGGGTGGCTCCACATCCTTT 
                ************************************************************ 
 
T56_RNA_seq     TGAGATGGACGGTAACTGGAATCAATGCCCCGAGCCAAAGATTCATCAAGCAGTGCTTTT 
T56_F_PCR       TGAGATGGACGGTAACTGGAATCAATGCCCCGAGCCAAAGATTCATCAAGCAGTGCTTTT 
                ************************************************************ 
 
T56_RNA_seq     AGCTTTTCAGCAGAATCTTTACTCTTTGAATGCAAGAAACCTAGTGCTTTCAAAAAAATG 
T56_F_PCR       AGCTTTTCAGCAGAATCTTTACTCTTTGAATGCAAGAAACCTAGTGCTTTCAAAAAAATG 
                ************************************************************ 
 
T56_RNA_seq     GGATCAAGTTCCAAGTTCACAGTAGCAGCCATTGCAAACGCCT-GGCAATCTC- 
T56_F_PCR       GGATCAAGTTCCAAGTTCACAGTAGCAGCCATTGCAAACGCCTGGGCAATCTCA 
                ******************************************* *********  
Figure 5.26: Multiple sequence alignment of RNAseq predicted and Sanger 
sequenced sequence of TCONS_00194956 revealed an insert sequence 
highlighted in red. 
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CGTACTATGTGCATGTATTACATTGGCAATGTAGGAAAAGTGAGCAATGTGAGAAAAAATATTGTATTAAGCACCAGGAGAGTTCACAATTTATTGGAAAA

AGATATACCCTTAAATAATTGAAATGAGGTGATAAAAAAGGTAAAGATATAATATGAAGTATGATAAATCAATTAGGAAAATCCATTGATATGAGAAATCAA

TAATGAAAAAATAATTTTGAAAAAGATGAAATAATTGGGAGGGAGAGGGAGAGTCAGTTGAAATGGGGCTAGCACAGAAAATGAACACCCAGAATACGG

GGAGGAAAATAGAAAACTATGTTGGGTCGTCCCTGCCGCCACATAAGGCACCTCATTCATCAGGATCAACTCTTGGGGCTTTGCTAGAAGATGAACTAT

TTCTTTTTCCTTAAATTCACAGATGCTTTCAATCTTCTGAAGATCTCATTGAGAACCAGTCATTCTAATCATTGTTTTCACACACTATGGAAATCATTAGAAT

AAAAATGTTGAAGATTGATTTAAAATGAAAGTTTCCAAGTTTTGTTATATAATATTTAGCATTTTAAGGTAAGAAACAATAGAAATTTGATTATGAAGACTTT

TATTAAATTACAGTGTATTACAGATTATATCATAATAATAAGCCTTTCATCTTTAGGCTAATATGATACAAAAACCTACTTGGCCACATTACTTCTTGAGTTT

CTTTTGGGCAGCTTTCTTCTTGACCATCTGTAATCGCTTCATAGCATTGAGCTGTGATTCTTGTGAAGTTGGGCCTTTAAGGGATGCTGAGGGAGAGCTG

CTGGATTCTGAAGTAGTTTTGCTGGTAGTACTTCCACTAGGTCCTGATGTTCCACTATTTCCATTCCCACTTAGTTGGCTGCTGCTTCCTGGAACTAAACT

ACTTGGACTAGGAAGACCTACTTTGCTGACATTGTCACAACTAACTGAGCGACTAAGGCCAGTTTTACCCAAGGTTAGAGGTGGAGGTGGTTTTAAAGG

TACAGTGGGCGTAGTGCTGTTATTGGAACCTATTTTGGAACCTATTCCACCTTTGGATGATGTTGCCAGACCAGTCAAACCCACAGGTTTCTGGTTAGCT

GACGAAGTAGCAGGTTTCCCAGTATTGTTTTGTGTTGTTGAACTCAATTTTGCTGTTGAAGGACCAGCAGAGGAAGTTTTGGCTGCAAAAGCTGCCCATC

CAGTTAAGCCACTAGTTACTGACGAGGAAACGCTGGCACTAGAAGAATTTCCTGAAATAACTGTGGATGTCTTGACTTCTGTTCTCTTAAACGCTAGAAA

AGTTGTCTCTTGTTTCAGTTTAGTTTCTGGTTTCTTAACCAATGGATCTTTGACAGCTGGAGTTACAGAAACAACTGCAGGGGCTGGTTTCTGCGGTGGT

TTCTGAGTTTTTTGAGCCATTCTTTTCATTTGTCTGGTACATCGGGCACAATACCACACCAGGCGAGGGTCATTCGCTTCCTTGTCTGTCACCTGGGGTT

TATGACAATCTCGGTGGTAGAGATTATGGCACTCCTGACATTCTACTAATTGATTGCCAGATGCCACCATCATTTGCCTACAAACAACGCAGGCCAATCC

CATCTCCATGGCAAAATCATCAGCACTGGTCTCCTCAAAACTGGAAAGGTCAGCCATAGGTAAATCCTTGCTACTTTGGACAGTAATGGGAGATGACTGT

GTTTCTGGTTTCTCCAATCTAGGTTTCTTTGGAATATCAACTCCTTCAGTGATGTCTGATTTCAT…CTTTTCAGTTGTGAGGACCTTGCCATTATTATTACC

AGAAGGAAGACTGGATGATATTTTGGGCTCTTGCTTAATGGAAATGTTTTTTGTGCTTGAAATTTTGGGTGGCTCCACATCCTTTTGAGATGGACGGTAA

CTGGAATCAATGCCCCGAGCCAAAGATTCATCAAGCAGTGCTTTTAGCTTTTCAGCAGAATCTTTACTCTTTGAATGCAAGAAACCTAGTGCTTTCAAAAA

AATGGGATCAAGTTCCAAGTTCACAGTAGCAGCCATTGCAAACGCCTGGCAATCTCAAAAGAAGTCCAAAGTTGATCATATGCACGTGCCCCAGATGAA

GGAAACAGAAACTGTTCACATAGAGTGCAGTATTATCGTTGCCATTTCATAATGGCTCTAAAAAACTTTGTTCTTCATGACTTCGCAAGCTCTTGCAACCC

CTTCCAATAAACATTATTTTAAAGATGCTGCCTTTTTCATTCCTCCACTGAGTTCTTGGTTCTGGATAACACTGATACCTTAGGGACACCTGGAATCGCAG

GAGAAAAGGCTCCGATTCCAAACCAATCAAGTGGCTGAAAGCTGACAGCAAACACTTAGAAAAGGAATGTCAATCCTTTGATCAAAGCATCACACATCG

AAGTCCTAGAATGGGGGATGGTCCTTGACAGGGGAGCCAAAAGATGAGAGACAATGAGGGAGCTACGTAGAGAAGTCACTAAAACCCTCCGACAAAGT

CCGAGGCAGGATTCCAAGTCCCTTGTCCCTAGACCTAGAAATATGCTCGGTCCGCATGTCCCGGCCCGCAACTCCCTCGGAGGAAGCACAGTCCTCAC

TGAAAGGGGAGAGCAGTCAGTCTAGGGCACGCAACCGCCCGTAAATTATGATTCCCCTTGAGGAGCGAGGAAACTAATACCCCACGTAGCTACTCTCC

CACCTCGCTCCTGGCGCGGGGGTCTCGAGCCTCCAGGAGGCCAGGAGCAGAGTCGCTCAGCATAACTCACCGTTCCGCCCCGCCCTGCCGATCCGT

CTGTTCCCGGTGGTCCCTTCGGAAACGGTTCCCGCACTGGCCGGCTCCGAAAGCAGGAAAACAAAGGTTCCCACAGTAGGGGCGGGGGAAACGTTTG

GCAGTGCGACAGTAGGAAGTGACGTTACTTCCCTTTTTCCGGTCCGCCGGATTATGAATGACGGCCGGCGCGAGTATTTTCCACATAAGGTGGCTGTC

GTTTTTCTCCTGGCGTCTGTGGAGGCGAGTGGTCTGCGGGCAGCAGCTCCCAGAGGCAGCCTTGGAATTCCAGCTCGGACTGGGCGGGAAGGCGCA

GGCGGCCCAGGTCGCCGACACGCTCACGCACCCTCCCTGCCTGGCCGCGCCTCTGCGACCAGGTAAAGAGGGCGCTCGGGCCGCCGGCTTCTCAG

CCTCCGCGACCCCCTAAGAACTGGTCTTTTCTTCGGGGGTCTGCAGGGCTGAGGATGCG 

Figure 5.27: RNAseq predicted sequence of TCONS_00194956 with indicated 

location (…) of the missing bit of the sequence.5.3.5.2.2.1	 Refinement	 of	

TCONS_00194956	structure	

In order to examine the origin of additional sequence observed by 

Sanger sequencing but not observed by RNAseq, the genomic 

sequence between the coordinates 4:106614643-106616709 

representing the region between the exons 4 and 5 was obtained. 

Multiple sequence alignment of exon 4.1 and region 4:106614643-

106616709 was performed and revealed a missing 36 base sequence 

that is adjacent to exon 5. Thus transcriptome assembler misplaced the 

splice junction and the true coordinates of TCONS_00194956’s exon 5 

is 36 bases away from the junction inferred from RNAseq (Figure 5.28 

and Table 5.6). The final isoform size is 832bp and therefore considering 

this information it is possible to say that DNA band aligned in its expected 

position relative to the DNA ladder (Figure 5.24). 
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CGTACTATGTGCATGTATTACATTGGCAATGTAGGAAAAGTGAGCAATGTGAGAAAAAATATTGTATTAAGCACCAGGAGAGTTCACAATTTATTGGAAAA

AGATATACCCTTAAATAATTGAAATGAGGTGATAAAAAAGGTAAAGATATAATATGAAGTATGATAAATCAATTAGGAAAATCCATTGATATGAGAAATCAA

TAATGAAAAAATAATTTTGAAAAAGATGAAATAATTGGGAGGGAGAGGGAGAGTCAGTTGAAATGGGGCTAGCACAGAAAATGAACACCCAGAATACGG

GGAGGAAAATAGAAAACTATGTTGGGTCGTCCCTGCCGCCACATAAGGCACCTCATTCATCAGGATCAACTCTTGGGGCTTTGCTAGAAGATGAACTAT

TTCTTTTTCCTTAAATTCACAGATGCTTTCAATCTTCTGAAGATCTCATTGAGAACCAGTCATTCTAATCATTGTTTTCACACACTATGGAAATCATTAGAAT

AAAAATGTTGAAGATTGATTTAAAATGAAAGTTTCCAAGTTTTGTTATATAATATTTAGCATTTTAAGGTAAGAAACAATAGAAATTTGATTATGAAGACTTT

TATTAAATTACAGTGTATTACAGATTATATCATAATAATAAGCCTTTCATCTTTAGGCTAATATGATACAAAAACCTACTTGGCCACATTACTTCTTGAGTTT

CTTTTGGGCAGCTTTCTTCTTGACCATCTGTAATCGCTTCATAGCATTGAGCTGTGATTCTTGTGAAGTTGGGCCTTTAAGGGATGCTGAGGGAGAGCTG

CTGGATTCTGAAGTAGTTTTGCTGGTAGTACTTCCACTAGGTCCTGATGTTCCACTATTTCCATTCCCACTTAGTTGGCTGCTGCTTCCTGGAACTAAACT

ACTTGGACTAGGAAGACCTACTTTGCTGACATTGTCACAACTAACTGAGCGACTAAGGCCAGTTTTACCCAAGGTTAGAGGTGGAGGTGGTTTTAAAGG

TACAGTGGGCGTAGTGCTGTTATTGGAACCTATTTTGGAACCTATTCCACCTTTGGATGATGTTGCCAGACCAGTCAAACCCACAGGTTTCTGGTTAGCT

GACGAAGTAGCAGGTTTCCCAGTATTGTTTTGTGTTGTTGAACTCAATTTTGCTGTTGAAGGACCAGCAGAGGAAGTTTTGGCTGCAAAAGCTGCCCATC

CAGTTAAGCCACTAGTTACTGACGAGGAAACGCTGGCACTAGAAGAATTTCCTGAAATAACTGTGGATGTCTTGACTTCTGTTCTCTTAAACGCTAGAAA

AGTTGTCTCTTGTTTCAGTTTAGTTTCTGGTTTCTTAACCAATGGATCTTTGACAGCTGGAGTTACAGAAACAACTGCAGGGGCTGGTTTCTGCGGTGGT

TTCTGAGTTTTTTGAGCCATTCTTTTCATTTGTCTGGTACATCGGGCACAATACCACACCAGGCGAGGGTCATTCGCTTCCTTGTCTGTCACCTGGGGTT

TATGACAATCTCGGTGGTAGAGATTATGGCACTCCTGACATTCTACTAATTGATTGCCAGATGCCACCATCATTTGCCTACAAACAACGCAGGCCAATCC

CATCTCCATGGCAAAATCATCAGCACTGGTCTCCTCAAAACTGGAAAGGTCAGCCATAGGTAAATCCTTGCTACTTTGGACAGTAATGGGAGATGACTGT

GTTTCTGGTTTCTCCAATCTAGGTTTCTTTGGAATATCAACTCCTTCAGTGATGTCTGATTTCATTTTATCAGCAGGTCTCTTTTCAGCTTCCTTCTTTACCT

TTTCAGTTGTGAGGACCTTGCCATTATTATTACCAGAAGGAAGACTGGATGATATTTTGGGCTCTTGCTTAATGGAAATGTTTTTTGTGCTTGAAATTTTG

GGTGGCTCCACATCCTTTTGAGATGGACGGTAACTGGAATCAATGCCCCGAGCCAAAGATTCATCAAGCAGTGCTTTTAGCTTTTCAGCAGAATCTTTAC

TCTTTGAATGCAAGAAACCTAGTGCTTTCAAAAAAATGGGATCAAGTTCCAAGTTCACAGTAGCAGCCATTGCAAACGCCTGGCAATCTCAAAAGAAGT

CCAAAGTTGATCATATGCACGTGCCCCAGATGAAGGAAACAGAAACTGTTCACATAGAGTGCAGTATTATCGTTGCCATTTCATAATGGCTCTAAAAAAC

TTTGTTCTTCATGACTTCGCAAGCTCTTGCAACCCCTTCCAATAAACATTATTTTAAAGATGCTGCCTTTTTCATTCCTCCACTGAGTTCTTGGTTCTGGAT

AACACTGATACCTTAGGGACACCTGGAATCGCAGGAGAAAAGGCTCCGATTCCAAACCAATCAAGTGGCTGAAAGCTGACAGCAAACACTTAGAAAAGG

AATGTCAATCCTTTGATCAAAGCATCACACATCGAAGTCCTAGAATGGGGGATGGTCCTTGACAGGGGAGCCAAAAGATGAGAGACAATGAGGGAGCT

ACGTAGAGAAGTCACTAAAACCCTCCGACAAAGTCCGAGGCAGGATTCCAAGTCCCTTGTCCCTAGACCTAGAAATATGCTCGGTCCGCATGTCCCGG

CCCGCAACTCCCTCGGAGGAAGCACAGTCCTCACTGAAAGGGGAGAGCAGTCAGTCTAGGGCACGCAACCGCCCGTAAATTATGATTCCCCTTGAGGA

GCGAGGAAACTAATACCCCACGTAGCTACTCTCCCACCTCGCTCCTGGCGCGGGGGTCTCGAGCCTCCAGGAGGCCAGGAGCAGAGTCGCTCAGCAT

AACTCACCGTTCCGCCCCGCCCTGCCGATCCGTCTGTTCCCGGTGGTCCCTTCGGAAACGGTTCCCGCACTGGCCGGCTCCGAAAGCAGGAAAACAA

AGGTTCCCACAGTAGGGGCGGGGGAAACGTTTGGCAGTGCGACAGTAGGAAGTGACGTTACTTCCCTTTTTCCGGTCCGCCGGATTATGAATGACGGC

CGGCGCGAGTATTTTCCACATAAGGTGGCTGTCGTTTTTCTCCTGGCGTCTGTGGAGGCGAGTGGTCTGCGGGCAGCAGCTCCCAGAGGCAGCCTTG

GAATTCCAGCTCGGACTGGGCGGGAAGGCGCAGGCGGCCCAGGTCGCCGACACGCTCACGCACCCTCCCTGCCTGGCCGCGCCTCTGCGACCAGGT

AAAGAGGGCGCTCGGGCCGCCGGCTTCTCAGCCTCCGCGACCCCCTAAGAACTGGTCTTTTCTTCGGGGGTCTGCAGGGCTGAGGATGCG 

Figure 5.28: Sanger sequencing corrected and validated sequence of 
TCONS_00194956. 

EXON 
NUMBER 

EXON COORDINATES EXONS SIZE  

1 106603195 106604474 1280 

2 106607849 106607995 147 

3 106613133 106613292 160 

4 106614456 106614643 188 

5 106616709 – 36 = 106616673 106616825 117+36 = 153 

6 106621007 106621171 165 

7 106629076 106630265 1190 

Table 5.6: The final coordinates of TCONS_00194956 isoform with corrected 
coordinates of exon 5. Exon size calculated as (stop coordinate – start 
coordinate) + 1. 
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5.3.5.2.3	TCONS_00194957	analysis		

As it was observed for TCONS_00194956 the identity of RNAseq and 

Sanger sequencing derived sequences were not the same due to 

sequence discrepancy within the sequence while there was a perfect 

alignment at each side of discrepancy region (Figure 5.29 and Table 

5.7). From the examination of discrepancy region it appeared that the 

DNA amplicon had missing exon 7 because the sequences surrounding 

the discrepancy region perfectly corresponded to exon 6 and exon 8, i.e. 

the transcriptome assembler inserted an exon that do exist in this novel 

variant.   
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T57_RNA_seq     GTGGATGTCTTGACTTCTGTTCTCTTAAACGCTAGAAAAGTTGTCTCTTGTTTCAGTTTA 
T57_F_PCR       ACAG-----------------------------TAGAAAGTTGTCTCTTGTTT-AGTTTA 
                ...*                              ..***************** ****** 
 
T57_RNA_seq     GTTTCTGGTTTCTTAACCAATGGATCTTTGACAGCTGGAGTTACAGAAACAACTGCAGGG 
T57_F_PCR       GTTTCTGGTTTCTTAACCAATGGATCTTTGACAGCTGGAGTTACAGAAACAACTGCAGGG 
                ************************************************************ 
 
T57_RNA_seq     GCTGGTTTCTGCGGTGGTTTCTGAGTTTTTTGAGCCATTCTTTTCATTTGTCTGGTACAT 
T57_F_PCR       GCTGGTTTCTGCGGTGGTTTCTGAGTTTTTTGAGCCATTCTTTTCATTTGTCTGGTACAT 
                ************************************************************ 
 
T57_RNA_seq     CGGGCACAATACCACACCAGGCGAGGGTCATTCGCTTCCTTGTCTGTCACCTGGGGTTTA 
T57_F_PCR       CGGGCACAATACCACACCAGGCGAGGGTCATTCGCTTCCTTGTCTGTCACCTGGGGTTTA 
                ************************************************************ 
 
T57_RNA_seq     TGACAATCTCGGTGGTAGAGATTATGGCACTCCTGACATTCTACTAATTGATTGCCAGAT 
T57_F_PCR       TGACAATCTCGGTGGTAGAGATTATGGCACTCCTGACATTCTACTAATTGATTGCCAGAT 
                ************************************************************ 
 
T57_RNA_seq     GCCACCATCATTTGCCTACAAACAACGCAGGCCAATCCCATCTCCATGGCAAAATCATCA 
T57_F_PCR       GCCACCATCATTTGCCTACAAACAACGCAGGCCAATCCCATCTCCATGGCAAAATCATCA 
                ************************************************************ 
 
T57_RNA_seq     GCACTGGTCTCCTCAAAACTGGAAAGGTCAGCCATAGGTAAATCCTTGCTACTTTGGACA 
T57_F_PCR       GCACTGGTCTCCTCAAAACTGGAAAGGTCAGCCATAGGTAAATCCTTGCTACTTTGGACA 
                ************************************************************ 
 
T57_RNA_seq     GTAATGGGAGATGACTGTGTTTCTGGTTTCTCCAATCTAGGTTTCTTTGGAATATCAACT 
T57_F_PCR       GTAATGGGAGATGACTGTGTTTCTGGTTTCTCCAATCTAGGTTTCTTTGGAATATCAACT 
                ************************************************************ 
 
T57_RNA_seq     CCTTCAGTGATGTCTGATTTCATTTTATCAGCAGGTCTCTTTTCAGCTTCCTTCTTTACC 
T57_F_PCR       CCTTCAGTGATGTCTGATTTCATTTTATCAGCAGGTCTCTTTTCAGCTTCCTTCTTTACC 
                ************************************************************ 
 
T57_RNA_seq     TTTTCAGTTGTGAGGACCTTGCCATTATTATTACCAGAAGGAAGACTGGATGATATTTTG 
T57_F_PCR       TTTTCAGTTGTGAGGACCTTGCCATTATTATTACCAGAAGGAAGACTGGATGATATTTTG 
                ************************************************************ 
 
T57_RNA_seq     GGCTCTTGCTTAATGGAAATGTTTTTTGTGCTTGAAATTTTGGGTGGCTCCACATCCTTT 
T57_F_PCR       GGCTCTTGCTTAATGGAAATGTTTTTTGTGCTTGAAATTTTGGGTGGCTCCACATCCTTT 
                ************************************************************ 
 
T57_RNA_seq     TGAGATGGACGGTAACTGGAATCAATGCCCCGAGCCAAAGATTCATCAAGCAGTGCTTTT 
T57_F_PCR       TGAGATGGACGGTAACTGGAATCAATGCCCCGAGCCAAAGATTCATCAAGCAGTGCTTTT 
                ************************************************************ 
 
T57_RNA_seq     AGCTTTTCAGCAGAATCTTTACTCTTTGAATGCAAGAAACCTAGTGCTTTCAAAAAAATG 
T57_F_PCR       AGCTTTTCAGCAGAATCTTTACTCTTTGAATGCAAGAAACCTAGTGCTTTCAAAAAAATG 
                ************************************************************ 
 
T57_RNA_seq     GGATCAAGTTCCAAGTTCACAGTAGCAGCCATTGCAAACGCCTTAGCACTTCAGTAGAAA 
T57_F_PCR       GGATCAAGTTCCAAGTTCACAGTAGCAGCCATTGCAAACG-------------------- 
                ****************************************                     
 
T57_RNA_seq     GTGTGCCACCCCCACCTCCATCTTAAGTCACCTCTCAAGTTTCAGTTTTTCCTGCACATT 
T57_F_PCR       ------------------------------------------------------------ 
                                                                             
 
T57_RNA_seq     CCCTCAACAAAACTAGAAGTTTCACTGTTACATAGCCCAAAAACATTCTGTACTTATTTG 
T57_F_PCR       ------------------------------------------------------------ 
                                                                             
 
T57_RNA_seq     TAATATTAATCACACTGTTAATTATGTAAATAATCTTTCTTTCTCATTAGAATGTAAGTT 
T57_F_PCR       ------------------------------------------------------------ 
                                                                             
 
T57_RNA_seq     CCATGAAGGCAGGCAGTGGATTGGTCTTGCCTACTGTTGTAACCCCTGTCTGGCAGAGTT 
T57_F_PCR       ------------------------------------------------------------ 
                                                                             
 
T57_RNA_seq     CCTGGCAATCTCAAAAGAAGTCCAAAGTTGATCATATGCACGTGCCCCAGATGAAGGAAA 
T57_F_PCR       CCTGGCAATCTCAAAAGAAGTCCAAAGTTGATCATATGCACGTGCCCCAGATGAAGGAAA 
                ************************************************************ 
 
T57_RNA_seq     CAGAAA--CTGTTCACATAGAGTGCAGTATTATCGTTGCCATTTCATAATGGCTCTAAAA 
T57_F_PCR       CAGAAAACTGTTTCACATAGAGTGCAGTATTATCGTTGCCATTTCATAATGGCTCTAAAA 
                ******  .  ************************************************* 
 
T57_RNA_seq     AACTTTGTTCTTCATGACTTCGCAAGCTCTTGCAACCCCTT-CCAATAAACATT-ATTTT 
T57_F_PCR       AACTTTGTTCTTCATGACTTCGCAAGCTCTTGCAACCCCTTCCCATTAAACATTAATTTT 
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                ***************************************** *** ******** ***** 
 
T57_RNA_seq     AAAGATGCTGCCTTTTTCATTCCTCCACTGAGTTCTTGGTTCTGG-ATAACACTGATA-C 
T57_F_PCR       AAAGATGCTGCCTTTTCATTCCTCCCACTGAGTTCTTGGTCTTGGAATAACACTGATACC 
                ****************.  *.*..****************..*** ************ * 
 
T57_RNA_seq     CTTAGGGACACCGTTC------ 
T57_F_PCR       CTTAAGGGGACCACCCGTTTCA 
                ****.**. ***...*       

Figure 5.29: The multiple sequence alignment of RNAseq predicted and Sanger 
sequenced sequence of TCONS_00194957 revealed a discrepancy between the 
two. This mis-inserted region appears to be an additional exon and is highlighted 
in red.  

5.3.5.2.3.1	Refinement	of	TCONS_00194957	structure	

Based on the above observation the coordinates of TCONS_00194957 

can be refined and this implies the absence of exon 7. The updated 

sequence has a length of 1070bp. In context of this information the 

observed alignment of DNA amplicon relative to the ladder is as 

expected (Figure 5.24). 
EXON 

NUMBER 
EXON COORDINATES EXONS SIZE  

1 106603195 106604474 1280 

2 106607849 106607995 147 

3 106613133 106613292 160 

4 106614456 106614643 188 

5 106616673 106616825 153 

6 106621007 106621171 165 

8 106629076 106629319 244 

9 106629795 106630265 471 

Table 5.7: The final coordinates of TCONS_00194957 isoform with missing exon 
7. Exon size calculated as (stop coordinate – start coordinate) + 1. 
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5.4	Discussion	
In Chapter 4 data was presented showing a minor effect of INTS12 

knockdown on snRNA processing in a HBEC model. Therefore, it is 

possible to say that allele carriers with low INTS12 expression, hence at 

risk of lowered lung function (Obeidat et al. 2013), are unlikely to have 

decreased levels of INTS12 to an extent resulting in snRNA 

misprocessing. Thus it may be difficult to argue that the potential effects 

of INTS12 on lung function occur exclusively via snRNA processing 

pathway. It is thus necessary to identify other biological pathways that 

may be underpinning the predisposition to low pulmonary function and/or 

COPD. Moreover, as mentioned in Chapters 3 and 4, the evolutionary 

conserved INTS12’s PHD is disposable for Drosophila’s snRNA 

processing (Chen et al. 2013) strongly suggesting presence of other still 

unrealized activities.   

RNAseq gene expression profiling following INTS12 depletion was used 

in the experiments described in this chapter, to provide insight on the 

regulatory properties of this gene. Therefore, hypothesis-free approach 

(Kheirallah et al. 2016) was relied on in order to generate new functional 

hypotheses about INTS12 function. Following knockdown with two D-

siRNAs, marked downregulation of pathways critical in protein synthesis 

and forming part of the integrated stress response was observed. The 

top two downregulated pathways in the two independent D-siRNAs were 

the tRNA amino acetylation and PERK regulated gene expression. 

Although, from a respiratory perspective, interesting pathways appeared 

to be upregulated after INTS12 knockdown (e.g. collagen formation and 

extracellular matrix deposition) (Suki, 2005), these pathways show less 

robust effects than the downregulated pathways owning to effect sizes, 

degree of variance and reproducibility. Thus subsequent functional 

experiments were guided by the effects observed upon the 

downregulated pathways.  

The RNAseq derived differences in gene expression correlated very 

strongly with qPCR derived differences in expression, technically 

validating the sequencing findings. Genes belonging to the key 
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downregulated pathways were also biologically validated in additional 

donor cells, again showing downregulation following INTS12 depletion. 

The weaker effect size in the validation donor can be attributed to the 

lesser efficiency of INTS12 knockdown. It is important to note that the 

key genes selected from PERK regulated gene expression and tRNA 

synthatases pathways have been convincingly show to have reduced 

expression as a result of INTS12 knockdown on the mRNA but not 

protein level. Future work may aim at showing this effect upon the 

proteins as well.  

To further investigate the functional importance of these observations, 

additional experiments were undertaken which showed that suppression 

of INTS12 reduces protein synthesis. As doubling of protein content is 

necessary for cell division, a decrease in proliferative capacity was also 

seen. Intriguingly, the decrease of total cell numbers in D-siRNAs A and 

C conditions respectively at the end of the experiment, mirrored the 

observed reduction in protein translation. Thus the observed molecular 

signature impacted the relevant phenotypes, demonstrating INTS12 as 

a regulator of genes forming part of translational pathways. These novel 

data suggest as yet unrecognized function of INTS12 in regulating 

cellular translation in humans and possibly in other species as well.  

It has been hypothesised that the mechanisms involved in the early 

human lung development may alter lung function and predispose to 

COPD later in life (Probert et al. 2015). Although a subset of lung function 

associated genes show evidence of differential expression between 

various stages of embryonic pulmonary tissue formation (Kheirallah et 

al. 2016; Miller et al. 2016), there is still an incomplete understanding of 

the molecular mechanisms behind normal respiratory system 

development and how the alterations therein contribute to disease 

pathophysiology. Given that there is no homologous INTS12 in 

unsegmented C. elegans or unicellular S. cerevisiae, strong 

conservation and lethal effect of its knockout in M. musculus (Obeidat et 

al. 2013), this gene may have been important for the evolution of 

metazoan tissue differentiation and specialization.  
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It therefore seems plausible that INTS12 regulates lung development or 

repair. Thus genetically determined levels of INTS12 may in part account 

for the genetic association signal seen for lung function parameters via 

a developmental pathway. At this stage, it is not entirely clear how 

differences in the rates of protein synthesis may be responsible for the 

population variance in lung function or predisposition to COPD. It may 

be the case that individuals with slow collagen synthesis during lung 

development are vulnerable to low lung function later in life. Interestingly, 

in INTS12 depletion experiment, collagen formation and extracellular 

matrix organization pathways were upregulated which perhaps is 

activated as compensatory mechanism to cope with reduced collagen 

production. These conjectures require further investigation to be either 

falsified or ascertained.    

INTS12 knockdown for 48h and 120h resulted in reproducible 

dysregulation of core subset of genes important in airway biology. Of 

particular interest is LEP which had 4.51 and 29.16-fold upregulation 

relative to control in D-siRNA A condition at 48h and 120h time points 

respectively. LEP genetically associates with the same lung function 

parameter as INTS12 (Wain et al. 2015, van den Borst et al. 2011) albeit 

weaker than what was reported for 4q24 locus. Crucially LEP levels 

negatively correlate with lung function (Eising et al. 2013). It might be the 

case that reduced levels of INTS12 in specific allele carriers are 

responsible for elevated expression of LEP which may in turn account 

for reduced lung function. Again, although these causal hypotheses 

provide biological understanding of the genetic association signal for 

pulmonary function, they still require further exploration.  

Finally, three novel INTS12 mRNA variants were discovered using 

RNAseq datasets and these were doubly validated by end point PCR 

and Sanger sequencing. Out of these novel variants, one agreed with 

Sanger sequence and aligned at the expected position on the 

electrophoresis gel while the other two had some discrepancy between 

RNAseq and Sanger inferred internal structures. The misplacing of 

splice junctions for these two variants is not surprising considering the 

lower sequencing depth at the INTS12 locus caused by targeted 
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knockdown. Relying on Sanger sequence the true structures of new 

mRNAs were refined.  
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6.1	Introduction	
The work described in the previous chapters shows that INTS12 has a 

moderate role in snRNA processing (see Chapter 4) and that it 

predominantly regulates protein synthesis pathways (see Chapter 5) 

which is a previously unrecognized function for this gene. It is also 

possible to say that although INTS12’s PHD motif domain is dispensable 

for snRNA processing in Drosophila this is likely to be true for other 

species. Therefore, the negative selection experienced by this particular 

part of the protein cannot be attributed to snRNA processing activity and 

requires an explanation.  

In the light of data by Jodoin, Sitaram et al. it may be the case that this 

conservation is due to a role for INTS12 in the maintenance of 

perinuclear dynein (Jodoin, Sitaram et al. 2013) but equally likely it may 

be preserved due to a role in the positive regulation of protein synthesis 

pathways, because the lower the levels of INTS12 the lesser the rate of 

protein synthesis (see Chapter 5). Protein synthesis forms a key part of 

cellular translation and is necessary for life, i.e. without adequate protein 

synthesis the cell is not capable to sustain core processes. Therefore, 

the key question is how is it that INTS12 brings about its regulation of 

protein synthesis related pathways, which showed most prominent 

disruption in the pathway analyses? It is not possible to answer this 

question relying merely on the data presented in Chapter 5, as although 

the disruption in translational homeostasis was observed, it is unclear 

what the mechanism behind this observation is.  

One possible scenario is that INTS12 levels dictate an output of some 

unknown process, which in turn triggers a cascade of reactions leading 

to the disruption of protein synthesis. Alternatively, INTS12 may be a 

direct regulator of genes belonging to protein synthesis pathways, thus 

downregulation of these pathways would be considered primary rather 

than secondary epiphenomena (Figure 6.1). These two schemes provide 

an explanation of molecular mechanisms leading to repression of protein 

synthesis following INTS12 depletion. 
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Figure 6.1: Is INTS12 a direct regulator of protein synthesis pathways, or is their 
dysregulation a secondary epiphenomenon? 

It is clear from the literature that INTS12 is a nuclear protein (see section 

1.8.5.1) and this has been confirmed by work presented in this thesis as 

well (Chapter 3). Initially it was thought that the nuclear localization of 

this protein is because of a role in snRNA processing which occurs in 

the nucleus (see section 1.8.4). In the first studies researchers failed to 

detect INTScom proteins near genes other than snRNAs (Baillat et al. 

2005). However latter studies leveraging immunoprecipitation antibodies 

with improved antigen affinities, succeeded in detecting a subset of 

INTScom protein at the promoters of protein coding genes displaying 

POLII pausing which was increased following EGF stimulation (Gardini 

et al. 2014). This has been shown with INTS1 and INTS11 but it is 

unclear at this stage whether these two INTScom members are 

representative of all the INTScom proteins.  

In Drosophila INTS12 has been detected by ChIP-PCR near the TSS of 

the gene coding for HSP70Aa and this binding was increased due to 

heat shock treatment (heat shock responsive genes are a classical 

model displaying POLII pausing in Drosophila and hence why HSP70Aa 

was chosen to test for INTS12 binding). Although these observations are 

promising for studying the genome-wide binding of INTS12, it cannot be 

a priori presumed that either INTS1 or INTS11 binding represents 

INTS12 binding nor that the human homolog of Drosphila’s HSP70Aa 

would display INTS12 promoter localization. This is particularly important 

in the light of the moderate and minor roles for INTS12 in snRNA 

processing in fly and human cells respectively (see Chapter 4).  

Moreover, if there is a plentiful amount of binding between INTS12 and 

the genome, this binding might underpin the differential gene expression 
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effects observed following INTS12 depletion. More generally it is not 

clear what would be the relationship between transcription and INTS12 

binding properties. Last but not least, although INTS12’s PHD domain is 

a putative histone H3 binding protein, based on the sequence similarity 

data, its co-localization with histone marks has not been explored before. 

5.1.1	Aims	and	objectives						

The aim of this Chapter is to functionally study the genome-wide binding 

properties of INTS12 in order to provide mechanistic insight into the 

effect of INTS12 knockdown on the identified target genes. As ChIPseq 

for INTS12 has not been performed before, the data from a pilot 

experiment is going to be presented first, as a proof of concept that 

INTS12 ChIPseq can yield enough depth to infer its binding sites. Then 

INTS12 binding characterization by investigating its interaction with fixed 

features (Marnetto et al. 2014) and cell-type-specific regulatory elements 

of the human genome (see section 1.5; Jiang and Pugh, 2009; Madrigal 

and Krajewski, 2012) will be shown. Finally, in order to understand the 

relationship between transcription in general and transcriptional 

dynamics following INTS12 depletion, the generated RNAseq (see 

Chapter 5) and ChIPseq datasets are going to be combined. 

6.2	Materials	and	Methods	

6.2.1	ChIPseq	and	ChIP-PCR	

The detailed description of ChIPseq and ChIP-PCR experimental 

procedures is present in Chapter 2 (see sections 2.6.1 and 2.6.2 for 

ChIPseq and ChIP-PCR respectively). 

6.2.2	ChIPseq	data	analysis	

Reads were aligned to hg19 using BWA (Li and Durbin 2009) using 

default settings. Artefactual read duplicates were removed using 

samtools prior to further analyses. MACS INTS12 peak calling was run 

on each donor separately comparing ChIPseq samples to input control 

(Zhang et al. 2008). Calling was performed with a multiple comparisons 

corrected P value of less than 0.05 considered as significant. Generated 
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fragment pileup signal was normalized to library size. Fragment pileup 

was converted to wig files based on fold enrichment above input 

background for each donor. To compare peak metrics between two 

donor samples, overlapping intervals were grouped into active regions 

which are defined by the start coordinate of the most upstream binding 

interval and the end coordinate of the most downstream interval in both 

samples, i.e. it is the union of the overlapping intervals. In locations 

where only one sample has an interval, this interval defines the active 

region.  ChIP signal at these active regions was compared between the 

two donor samples and correlation drawn and calculated by ggplot2 and 

rcmdr R packages respectively.  

Intervals from representative donor were annotated, percentage of total 

INTS12 binding sites falling on the fixed annotated genomic features as 

well as enrichment over meta-gene body were determined using CEAS 

package (Shin et al. 2009). Enrichment over various gene classes, 

expressed and not expressed genes, and differentially and non-

differentially expressed genes following INTS12 depletion was drawn 

using the ngs.plot package (Shen et al. 2014). Genes were defined as 

expressed or silenced based on un-transfected HBECs data in D195307. 

Genes were determined as differentially expressed or silent relying on 

the sustained knockdown RNAseq dataset. BETA was used to predict 

the regulatory function (Wang et al. 2013). Gene classes were retrieved 

using Ensembl’s BioMart tool. HOMER and MEME were used for de 

novo identification of enriched DNA motif at INTS12 binding sites (Heinz 

et al. 2010, Machanick et al. 2011). TomTom was used to compare de 

novo identified motif to a set of currently known motifs (Gupta et al. 

2007). Details about the used commands can be found in Chapter 2 (see 

section 2.8.2.1).  

6.2.2.1	Epigenetic	data	from	ENCODE	

Airway epithelial cells specific epigenetic and CTCF ChIPseq datasets 

were obtained from ENCODE data repository (ENCBS417ENC; 

www.encodeproject.org) and analysed as INTS12 ChIPseq datasets 

with the only difference that broad region calling was used for the 
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epigenetic marks. Percent of overlap between INTS12 intervals and 

ENCODE intervals and its statistical significance was determined using 

regioneR R package (Gel et al. 2016) using random permutation test. 

Correlation of ChIPseq signals was performed using cistrome package 
(Liu et al. 2011).  

6.2.2.2	An	assessment	of	pilot	ChIPseq	experiment	

For the purpose of determining the proportion of uniquely mapped and 

nonredundant reads the pilot sequencing library was aligned with the 

option of retaining only read tags that have only one hit. This was 

achieved with bowtie aligner (which is used internally by TopHat 

program) with the command shown below. In it, -m 1 specifies that 

reads with only one hit on the genome are retained, -S specifies the 

output to be in SAM format, -q specifies the input to be in FASTQ 

format, /path_to/ is the path to prebuilt bowtie indexes.  
bowtie –m 1 –S –q path_to_bowtie_genome_index/hg19 

INTS12_reads.fastq INTS12_reads.sam 

6.3	Results	

6.3.1	Pilot	INTS12	ChIPseq		

Before any large-scale production run of a ChIPseq experiment, it is 

desirable to conduct a pilot experiment (Ma and Wong, 2011). The 

purpose of pilot experiment is to provide valuable data for quality control 

prior to large-scale production run which may consume big amounts of 

material and sequencing machine time. This is particularly important for 

INTS12 for which a ChIPseq assay has never been run before. 

Previously it has been demonstrated that a polyclonal INTS12 antibody 

was specific for INTS12 by immunocytochemistry of bronchial epithelial 

cells in combination with knockdown (Chapter 3), as INTS12 nuclear 

signal completely disappeared in cells treated with D-siRNAs. According 

to ENCODE, an antibody is deemed appropriate for ChIPseq if either it 

is shown to be specific via a Western blot or by IF provided it is performed 
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in combination of gene depletion (Landt et al. 2012). Thus the tested 

antibody was used for the pilot INTS12 ChIPseq experiment.  

For a pilot ChIPseq experiment to be considered successful (a) the 

sequencing depth ought to yield a total number of reads in the range of 

millions rather than thousands (b) percentage of uniquely mappable 

reads should achieve at least one-third of total reads, (c) percentage of 

nonredundant reads should be greater than 50% of the total mappable 

reads, and (d) upon visual inspection of the binding it is possible to 

observe distinctive punctuate or broad peaks (Ma and Wong 2011). 

Uniquely mappable reads are those reads that align to a single unique 

location in the genome while nonredundant reads are those that do not 

have exact sequence copy replicas. A high proportion of redundant 

reads indicate the artefactual source of the library as redundant reads in 

the ChIPseq dataset are more likely to be PCR artefact generated as 

part of NGS protocol (Ma and Wong 2011). In contrast, RNAseq read 

duplicates may come from increased levels of gene expression. 

6.3.1.1	Evaluation	of	pilot	INTS12	ChIPseq	experiment	

A total of 8,351,750 single-ended reads were generated in the pilot 

INTS12 ChIPseq experiment. Since the median quality score is above of 

28, i.e. within the green area, for every base position the probability of 

error throughout the read is less than 0.2% (Figure 6.2). Therefore, 

unaltered raw reads were used for subsequent read mapping. The 

general consensus is to limit the manipulation of raw library data as much 

as possible (Williams et al. 2016). In order to quantify the proportion of 

unique reads in the library dataset, reads were aligned with the option of 

retaining only those that have single alignment location (see section 

6.2.2.2). 

Based on the reported statistics it appeared that 87% of mappable reads 

are unique (Figure 6.3, Table 5.1). In order to determine the 

nonredundant rate, alignment file was inputted to MACS (see section 

2.8.2.1) and its output revealed that 90% of reads are nonredundant 

(Table 5.1). The pattern of binding was examined on the genome 

browser and revealed distinctive punctuate and broad binding near the 
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TSS of four key downregulated genes following INTS12 depletion 

(Figure 6.4). Thus, overall it is possible to say that pilot INTS12 ChIPseq 

experiment was successful according to all the criteria outlined in section 

6.3.1. Therefore, full scale INTS12 ChIPseq experiment in two donor 

cells and input control was proceeded with.   

 
Figure 6.2: Quality scores of pilot INTS12 ChIPseq reads library. 

 
Figure 6.3: Original bowtie-reported statistics about the ChIPseq alignment. 
Reads with alignments suppressed due to –m are those reads that would have 

aligned to more than one location otherwise. 

 



Chapter 7 – General discussion 
 

 259 

 

 

 
Figure 6.4: Genome browser views of INTS12 binding near differentially 
expressed genes GARS, MARS, ASNS, ATF4 (shown in this order) reveals 
distinctive punctuate and broad pattern of binding.  

Number of 
raw reads 

Number of mappable 
reads and percent of 
total library 

Number of unique 
reads and percent 
of total aligned 

Number of nonredundant 
reads and percent of total 
aligned  

8,351,750 6,028,490 (72%) 5,234,672 (87%) 5,427,524 (90%) 

Table 6.1: Inferred relative proportion of uniquely mapped and nonredundant 
reads. 
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6.3.2	ChIPseq	deep	sequencing	of	INTS12		

6.3.2.1	Pre	and	post	alignment	data	quality	control	

Although the pilot INTS12 ChIPseq yielded 90% nonredundant and 87% 

uniquely mappable tags out of 8,351,750 raw reads, it is important to test 

these and other quality indices in the deep sequencing INTS12 ChIPseq 

as well. The ChIPseq procedure (see section 2.6.1) resulted in the 

generation of three raw FASTQ files: (1) FASTQ file for INTS12 ChIPseq 

from D195307 (2) FASTQ file for INTS12 ChIPseq from D7F3158 (3) 

FASTQ file for input control which is a sonicated, un-precipitated 

genomic DNA prepared from a pool of equal aliquots of the 2 donor 

samples. Negative sample is used for the determination of background 

signal noise. The quality of raw files was assessed and this revealed that 

reads had median quality scores above 28 across entire read length in 

all three files (Figure 6.5). As the probability of sequencing error is very 

low, just as was the case for the pilot library, untrimmed datasets were 

used for subsequent analyses.  
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Sequencing quality graph Sample 

 

 
D195307 

 

 
D7F3158 

 

 
Input 

control 
 

Figure 6.5: Sequencing quality graphs for INTS12 ChIPseq and input control 
samples 
There was a total of 37,142,070; 47,776,470; 42,932,683 reads in the 

ChIPseq libraries of D195307, D7F3158 and input control samples 

respectively. Out of these, approximately 77-78% aligned to the genome 

and around 12% failed to align for all the samples (Table 6.2). Out of 

aligned reads 14.18%, 13.31%, and 5.46% were redundant duplicates 
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for D195307, D7F3158 and input respectively. The multi-hits rate was 

approximately 12-13% for all the samples. Based on these alignment 

statistics it is possible to say that ChIPseq samples are comparable for 

the downstream analyses. The similarity in multi-hits rate between input 

control and INTS12 ChIPseq samples suggest that reads aligning to 

multiple locations are not specific to INTS12 binding but rather are part 

of the background genome noise. However, there is a noticeable ~10% 

difference between the number of redundant reads of the two INTS12 

ChIPseq samples and input control (Table 6.2).  

As some differences in the library size was observed, tag counts were 

normalized to the library size in order to be able to compare signals 

between the samples. Overall, these quality indices are within the 

acceptable range outlined in section 6.3.1 rendering the samples 

suitable for downstream analyses. Importantly there is an equivalent 

depth between input and ChIPed samples, which is a crucial factor in 

ChIPseq experiment design (Sims et al. 2014). 
Sample Number of raw 

reads 
Number of 
mappable 
reads and 
percent of total 
library 

Number of 
unique reads 
and percent of 
total aligned 

Number of 
nonredundant 
reads and 
percent of total 
aligned  

D195307 37,142,070 29,085,938 

(78.31%) 

25,847,261 

(88.87%) 

23,820,417 

(81.90%) 

D7F3158 47,776,470 37,436,461 

(78.36%) 

33,086,311 

(88.38%) 

31,079,421 

(83.02%) 

Input control 42,932,683 33,205,103 

(77.34%) 

28,915,395 

(87.08%) 

30,860,044 

(92.94%) 

Table 6.2: Quality control indices of INTS12 ChIPseq samples and input control. 

6.3.2.2	Coverage	as	additional	quality	control	

Coverage depth is defined as the average number of times a nucleotide 

is represented in a collection of aligned sequence tags and is used to 

quantify how well the genome is interrogated in a particular sequencing 

library (Sims et al. 2014). For example, a mean x1 coverage is 

interpreted that on average one base is covered by at least one 

sequence tag for a given genomic interval.  
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The coverage of INTS12 and input control ChIPseq libraries were 

obtained with Qualimap (see section 2.8.2.1). In sample D195307, the 

coverage for autosomes varied between 0.62 and 1.08. Autosomes had 

coverage fluctuating close to 1. For chromosomes X, Y and 

mitochondrial, the coverage was 0.38, 0.24 and 73.07 respectively. In 

sample D7F3158, the coverage for autosomes varied between 0.81 and 

1.38 and most of the autosomes had coverage well above 1. For 

chromosomes X, Y and mitochondrial the coverage was 0.5, 0.32 and 

65.9 respectively. On the other hand, in input control sample the 

coverage for autosomes varied between 0.74 to 1.1 and most of the 

autosomes had coverage just below 1. For chromosomes X, Y and 

mitochondrial the coverage was 0.49, 0.37, and 526.61 respectively.  

The coverage for D7F3158 appears slightly better than coverage for 

D195307. The ENCODE project’s guidelines for ChIPseq experiments 

suggest that factor experiments should use at least 20 million reads in 

the mammalian cells (Landt et al. 2012). Thus given the facts that on 

average every nucleotide in the genome is interrogated with at least one 

tag, the pattern of coverage fluctuation is similar across the samples, 

and library size exceeding the ENCODE project recommendations it is 

possible to say that binding sites can be reliably inferred using this 

ChIPseq datasets (Landt et al. 2012, Ma and Wong 2011).   

6.3.2.3	 Characterization	 of	 INTS12	 binding:	 peak	 calling	 and	 inter-donor	

reproducibility	

INTS12 peak calling, i.e. identification of INTS12 binding sites, was 

performed using the second generation of MACS (Zhang et al. 2008). 

The BAM files used in peak calling had redundant tags removed (see 

section 2.8.2.1). ChIPed samples were compared to input control and 

peak calling was performed with a multiple comparisons corrected FDR 

less or equal to 0.05 considered significant. Larger dataset of the two 

submitted BAM files was scaled down towards the smaller dataset and 

the generated fragment pileup signal, i.e. ChIPseq signal, was 

normalized per million reads to account for differences in the size of the 

library as mentioned in section 6.3.2.1. The above analysis resulted in 
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identification of 70,772 and 51,377 INTS12 binding sites in donors 

D195307 and D7F3158 respectively (Figure 6.6).  

In order to compare the biological reproducibility of identified binding 

sites, the respective hg19 coordinates of identified binding sites were 

tested for their intersection using on-line ChIPseek tool (Chen et al. 

2014). From this analysis it appeared that 88% of D7F3158 peaks were 

also discovered in D195307. On the other hand 55% of D195307 peaks 

were also discovered in D7F3158. Therefore, it is possible to say 

D7F3158 peaks are largely a subset of D195307 peaks, although some 

of the binding observed in D7F3158 did not occur in D195307 (Figure 

6.6).  

 

 
Figure 6.6: Genomic intersection of D195307 and D7F3158 binding sites reveals 
that 88% of D7F3158 peaks were also discovered in D195307 while 55% of 
D195307 peaks were also discovered in D7F3158.  

It is important to note that although the total number of sequence tags in 

D7F3158 cells was greater than total number of sequence tags in 

D195307 cells, more peaks were identified in D195307 and their 

statistical significance was greater in D195307 in comparison to 

D7F3158 (Figure 6.7). This is clearly reflected in the strength of ChIPseq 

signal observed in the genome browser (Figure 6.8). An inter-donor 
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association test of ChIPseq signal was performed in active regions (see 

section 6.2.2). The use of active regions is necessary because the 

locations and lengths of binding sites are rarely exactly the same when 

comparing different samples. The association of the binding signal in 

these regions demonstrated a Pearson’s correlation of 0.85 implying 

strong biological reproducibility (P<0.0001; Figure 6.9).  

 
Figure 6.7: Comparison of the density of –log10(FDR) of enriched peak regions in 
D195307 and D7F3158 shown in red and pale blue respectively. The averages are 
denoted by dashed lines. Left side of the density bars show that overall greater 
number of sites in D195307 has as significant enrichment as in D7F3158. The 
average of statistical significance values is greater in D195307 (red line) than in 
D7F3158 (pale blue line) despite a greater number of sequence tags in D7F3158 
library. 
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Figure 6.8: ChIP-PCR validation of ChIPseq findings. Three ChIPseq positive 
sites (POR, ACTB, NBPF1) shown in green boxes and one negative site (Untr12) 
shown in blue box were selected for ChIP-PCR testing to determine the number 
of binding events detected per thousand cells of donor D195307 (denoted D1) 
and donor D7F3158 (denoted D2). ChIP-PCR results corresponded well with 
ChIPseq data seen on the genome browser. 
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Figure 6.9: Biological reproducibility of genome-wide INTS12 binding ChIPseq 
signal. Correlation ChIPseq signals observed in D195307 (donor 1 on the figure) 
cells and D7F3158 (donor 2 on the figure) cells in active regions revealed a 
Pearson’s correlation of 0.85 (P<0.0001). 

6.3.2.4	ChIP-PCR	validation	of	ChIPseq	findings	

In order to validate ChIPseq findings, three positive sites and one 

negative site were selected for technical validation by ChIP-PCR in each 

ChIP sample (see section 2.6.2). The number of binding events per 

thousand cells derived from ChIP-PCR corresponded well with the 

ChIPseq signal observed in genome browser validating our sequencing 

results (Figure 6.8). 

6.3.2.5	 Association	 of	 INTS12	 binding	 sites	 with	 fixed	 elements	 of	 the	

genome 
As INTS12’s PHD motif domain shows homology with epigenetic 

regulators of gene expression (Table 3.3) and the fact that in Drosophila 

it is dispensable for snRNA processing (Chapter 4), the next aim was to 

investigate the interaction of identified INTS12 binding sites with fixed 

features (Marnetto et al. 2014), e.g. gene locations; and cell-type-
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specific regulatory elements of the human genome (Jiang and Pugh, 

2009; Madrigal and Krajewski, 2012), e.g. histone modification marks. 

The purpose of this analysis is to provide insights into its potential 

functions. For simplicity of data presentation, ChIPseq profile from 

D195307 was considered representative because of the greater number 

of binding sites detected (Figure 6.6), the improved quality of INTS12 

binding observed in terms of strength of ChIP signal (Figure 6.8) as well 

as higher statistical significance of the enrichment (Figure 6.7).  

A genome-wide analysis revealed that the three main fixed genomic 

features associated with INTS12 binding were intron, intergenic regions, 

and promoter (TSS±3000bp) which occupied 37%, 31% and 17% of the 

total binding sites respectively in donor D195307 (Figure 6.10). Thus 

contrary to the expectation, binding was not limited purely to the 

promoter regions. It is worth to point out that 75% of all promoter binding 

occurred proximally to TSS (deined as within TSS±1000bp). Indeed, a 

gene-centric analysis over a meta-gene body, i.e. collection of hg19 

RefSeq genes, revealed INTS12 binding to be in close proximity to the 

TSS (Figure 6.11), mirroring the binding pattern of POLII in HeLa cells 

(Gardini et al. 2014). However, a widespread distribution of binding was 

observed in both donors (Figure 6.12).  

The key question was whether this binding reflects gene-relevant 

regulatory roles or non-specific binding. A correlation analysis of INTS12 

binding sites with number of annotated genes and with total nucleotide 

length of each chromosome was then performed in an attempt to answer 

this question. INTS12 binding in both donors correlated very well with 

the number of genes (Pearson correlations of 0.93 and 0.95 for donors 

D195307 and D7F3158 respectively; Figure 6.13). Correlations with 

chromosome length were notably weaker (Pearson’s correlations of 0.73 

and 0.63 for donors D195307 and D7F3158 respectively; Figure 6.13). 

Despite promoters being the least associated feature among the top 

three most enriched elements, because INTS12 correlated more with 

gene number than with chromosome length, it is possible to say that 

binding is more likely to reflect gene-relevant regulatory roles rather than 

mere random binding distribution between the genes.  
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Figure 6.10: Percentage of INTS12 binding sites falling on the fixed annotated 
genomic features in the first (left) and second (right) donor. 

 
Figure 6.11: Gene-centric analysis of INTS12 binding in the first donor across the 
gene bodies of all the known human genes shows clear localization near the TSS. 
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Figure 6.12: INTS12 ChIPseq regions and peaks over the human genome in first 
(D195307) and second (D7F3158) donor cells. Although there is a greater spread 
of INTS12 peak heights in donor D195307 than in donor D7F3158, suggesting 
stronger binding in that donor, the overall distribution looks reproducible 
between the donors.    
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Figure 6.13: Relationship of INTS12 binding to the gene number per each 
chromosome and chromosome length. Analysis of binding versus number of 
genes revealed Pearson’s correlations of 0.93 and 0.95 in the first (D195307) and 
second (D7F3158) donor respectively. Instead, correlations of binding sites and 
chromosome length are weaker being 0.73 and 0.63 for the first and second 
donor respectively.  
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6.3.2.5.1	The	average	pattern	of	INTS12	binding	varies	between	different	gene	

classes	

Since the believed canonical function of INTS12 is processing of 

snRNAs (Baillat et al. 2005, Chen et al. 2013) the initial prediction was 

that it would be primarily enriched over the bodies of snRNA genes and 

less so for the other gene classes. The widespread distribution of 

INTS12 binding (Figure 6.12), in combination with the overall minor 

snRNA processing impairment due to INTS12 knockdown (Chapter 4), 

implied a potential regulatory role in expression of other genes and 

hence INTS12 binding enrichment over other gene classes was 

examined.  

Among protein coding, snRNA, small nucleolar RNA (snoRNA), 

microRNA, and long intergenic RNA (lincRNA) genes; protein coding 

and snRNA genes show the highest enrichment with different patterns 

of binding over these two main gene classes (Figure 6.14). For protein 

coding genes the peak binding is proximal to the TSS while for snRNA 

genes the binding is enriched downstream to the TES suggesting there 

may be distinct functional activities of INTS12 depending on the class of 

the genes where INTS12 binding occurs. Enrichment near TES for 

snRNA genes is in agreement with its putative role as part of snRNA 

processing machinery which occurs simultaneously to nascent 

transcription of 3’box element (Baillat et al. 2005).  

However, 95% confidence intervals, and therefore error margins, 

surrounding the mean enrichment is much greater over the snRNA 

rather than protein coding genes, probably due to the higher number of 

protein-coding genes to which INTS12 binds in comparison to snRNA 

genes. This observation further supports the hypothesis that INTS12 has 

additional roles beyond snRNA processing and is in agreement with the 

observed molecular signatures described in Chapter 5. Interestingly, in 

contrast to snRNA loci, for long intergenic RNA genes the peak binding 

is near the TSS as it is the case for the protein coding genes. 
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Figure 6.14: Comparison of INTS12 binding in first donor across the gene bodies 
of protein coding, snRNA, snoRNA, lincRNA, and microRNA genes. The pattern 
of localization differs between the gene classes suggesting distinct INTS12 
activities depending on the type of the transcribed gene. The top two classes 
with highest enrichment were protein coding and snRNA genes which had peak 
summits near TSS and TES for the former and latter group respectively. Coloured 
shadows around the average plots indicate the 95% confidence interval of the 
plot. 

6.3.2.6	Association	of	INTS12	binding	with	specific	regulatory	elements	

In addition to investigating association with fixed genomic features, the 

other aim was to test INTS12’s binding localizations relative to specific 

regulatory elements identified in bronchial epithelial cells. As mentioned 

in Chapter 1, this kind of element is much more mobile and variable 

depending on the cell type. Thus, in order to draw valid conclusions 

regarding the co-localization of these elements and INTS12 binding, 

HBECs-relevant datasets ought to be used because INTS12 binding was 

profiled in this cell type. Although bioinformatic searches indicate 

INTS12’s PHD motif domain to be a candidate nucleosomal histone tail 

binding protein (Chapter 3) no direct experimental evidence exists. 

Moreover, the weight of evidence argues for a general deficiency of 

histones within snRNA genes and within the snRNA promoter (Pavelitz 
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et al. 2008; Egloff et al. 2009). Consequently, the INTS12 PHD finger is 

unlikely to be coupling INTScom to the snRNA promoter via histone 

binding. To understand to potential importance of epigenetic histone 

modifications for INTS12 biology, the intersection of its representative 

binding with reference localizations of H3K4me3, H3K36me3, and 

H3K27me3 histone modifications using per-chromosome randomization 

test (Gel et al. 2016) was investigated.  

On a genome-wide scale, H3K4me3 had the highest enrichment with 

58% of INTS12 binding co-localizing (Z-score=348; Figure 6.15). 

H3K36me3 co-localized with 21% of INTS12 binding sites (Z-score=13; 

Figure 6.15). H3K27me3 overlapped with 4% of INTS12 binding sites 

which was less than expected by chance (Z-score=-11; Figure 6.15). 

H3K4me3 is associated with the promoters of actively transcribed genes, 

while H3K36me3 is enriched in the body of such genes (Bannister and 

Kouzarides, 2011). On the other hand, H3K27me3 marks silenced 

regions (Gibney and Nolan, 2010). Therefore, these data provide 

supporting evidence of recruitment of INTS12 into loci epigenetically 

marked as transcriptionally active, which may be modulated via its 

binding to histone 3 and recognition of H3K4me3 modification. This is 

further supported by the observation that 96% of INTS12 binding 

occurred in the vicinity of DNaseI accessible chromatin signature (Z-

score=223; Figure 6.15) (Thurman et al. 2014).  



Chapter 7 – General discussion 
 

 275 

        
Figure 6.15: Percent of total INTS12 binding sites overlapping with HBEC-specific 
regulatory elements. Data from the first donor is shown as a representative of 
the two donors tested. Colour indicates the Z-score of the distance between the 
observed overlap and the mean of distribution of random overlap permutations. 
Negative Z-score implies that the observed overlap is less than expected by 
chance. Higher Z-score implies larger distance to the mean of distribution in a 
randomization test. Within P<0.05 the minimum Z-score in random permutation 
walk is 8, 6, 4, 7 and 3 for H3K4me3, H3K36me3, H3K27me3, DNaseI, and CTCF 
respectively. The two features most prominently localizing with INTS12 are 
H3K4me3 (Z-score=348) and DNaseI (Z-score=223) both marking 
transcriptionally active regions.     

Interestingly, INTS12 peak regions, defined as ±500bp in both directions 

from the peak summit, show stronger conservation when compared with 

neighbouring regions, defined as ±2500bp in both directions from the 

peak summit (Figure 6.16). INTS12 also overlapped with CTCF insulator 

protein among 60% of its binding sites (Z-score=264; Figure 6.15), and 

INTS12 binding sites appeared more evolutionary conserved than CTCF 

binding sites (Figure 6.16).  
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Figure 6.16: Evolutionary conservation of INTS12 binding sites in vertebrates. 
The figure is showing the phastocons score derived from multiple sequence 
alignment of vertebrate genomes, across the binding sites of INTS12 (red) and 
CTCF protein (blue). INTS12 sites appear to have higher conservation in close 
proximity to the peak summit approx. 250bp in each direction, in comparison to 
the more distal locations. In contrast CTCF binding locations are more conserved 
>80bp in each direction. Also, overall INTS12 binding sites are more conserved 
than the binding of CTCF. 
In addition to testing the relationship between cross-binding of INTS12 

and specific mobile element sites (Figure 6.15) the overall correlation of 

their ChIPseq signals on a genome-wide scale was also examined 

(Figure 6.16). In agreement with initial observations, INTS12 signal most 

strongly correlated with accessible chromatin (Pearson correlation of 

0.83) followed by H3K4me3 (Pearson correlation of 0.74). H3K36me3, 

CTCF and H3K27me3 had weaker correlations of 0.61, 0.58, and 0.06 

respectively. As gene-centric analysis revealed INTS12 binding to be 

enriched near the TSS (Figure 6.11) the correlation of ChIPseq signals 

at the promoters defined as TSS±3000bp was also examined. In this 

analysis the strongest correlation was observed between INTS12 and 

H3K4me3 (Pearson correlation of 0.8) outweighing the correlation 

between INTS12 and DNaseI (Pearson correlation of 0.73). Correlations 
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with H3K36me3, CTCF and H3K27me3 were weak at the promoters 

being 0.3, 0.3, and -0.29 respectively.    

 
Figure 6.17: Cross-correlations of INTS12 and HBEC specific regulatory 
elements ChIPseq signals on a genome-wide scale and in the promoter regions 
(TSS±3000bp). On genome-wide scale the strongest correlation is with DNaseI, 
while in promoter regions the strongest correlation is with H3K4me3 mark. 

6.3.2.7	INTS12	binding	in	the	light	of	literature	data	

It has been suggested that a role of INTScom in POLII pause release is 

conserved between human and Drosophila (Gardini et al. 2014), 

however this hypothesis has not been explored experimentally for 

INTS12. If it is the case that this function is conserved, then a human 

homologue of the fly gene displaying the pause release phenomenon 

ought to show enrichment of INTS12 binding near its TSS. HSP70Aa is 

a classical heat shock response fly gene displaying the POLII pause 

release phenomenon and INTS12 was shown not only to bind in close 

proximity to its TSS but also to have increased binding following heat 

shock treatment (Chapter 1). It is thus worth asking whether INTS12 

binding near human orthologue of HSP70Aa is similarly conserved.  

As it can be seen on Figure 6.18, human INTS12 appears to be highly 

enriched near the TSS of HSPA1A, which is the human orthologue of 

Drosophila’s HSP70Aa. This can be observed in both donors but not in 

the input control (Figure 6.18). This finding gives preliminary support to 

the above mentioned conservation hypothesis. On the other hand, the 

first study that uncovered INTScom recruitment to snRNA but not 
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protein-coding genes (Baillat et al. 2005) differs in this respect from the 

data presented herein. In addition to the fact that on a genome-wide 

scale INTS12 binding shows at least equal, if not improved, enrichment 

near TSS of protein coding genes relative to TES of snRNA genes 

(Figure 6.14), a closer look-up into the binding near GAPDH was 

performed. GAPDH was used by Baillat et al. as a control protein-coding 

gene lacking INTScom binding, in contrast to U1 and U2 snRNA genes 

which were highly enriched for INTScom binding (Baillat et al. 2005). 

Therefore, INTS12 binding near GAPDH was examined. High 

enrichment near the TSS and consecutive broad peaks towards the 

5’end from the gene’s TSS were detected (Figure 6.19). Interestingly 

there is a noticeable binding within the GAPDH gene body.  

The discrepancy between these and Baillat et al. data may have arisen 

from differences between the HeLa and HBEC model systems, or lower 

immunoprecipitation yield in Baillat et al. study which was not sufficient 

to detect INTS12 binding in proximity to protein coding genes. 

Alternatively, non-INTS12 INTScom subunits that were precipitated in 

Baillat et al. study do not correspond to INTS12 binding (Baillat et al. 

2005). 

 
Figure 6.18: INTS12 binding near HSPA1A recapitulates the binding observed in 
fly’s orthologous HSP70Aa giving preliminary credit to the hypothesis of 
conservation of INTS12 functional role in POLII pause release.  
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Figure 6.19: INTS12 binding near GAPDH disagrees with what was reported for 
INTScom binding near the same gene in HeLa model. 

6.3.2.8	Combination	of	ChIPseq	and	RNAseq	reveals	INTS12	regulome	

As INTS12 depletion resulted in downregulation of key protein synthesis 

pathways (Chapter 5) which appeared to alter cell phenotype through 

repression of cellular translation and proliferation (Chapter 5), a question 

was raised asking whether these effects were exerted due to direct 

regulation or were a secondary epiphenomenon (Figure 6.1). In order to 

identify INTS12’s regulome, i.e. the set of genes directly regulated by 

INTS12, RNAseq expression data was combined with ChIPseq binding 

data.  

Because INTS12 showed the highest enrichment with DNaseI and 

H3K4me3 sites, both marking active transcription, and poor correlation 

with H3K27me3, which marks silenced loci, the key query is whether 

these observations agree with gene expression signatures detected in 

basal HBECs. Indeed, INTS12 appeared to have approx. 8-fold higher 

enrichment of binding near TSS of expressed genes, i.e. having greater 

than zero FPKM in at least one biological replicate, than genes which 

are not expressed, i.e. having zero FPKM in three biological replicates 

(Figure 6.20). Using these criteria there were 14766 and 5129 protein 
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coding genes which were switched on and off respectively. Importantly, 

the magnitude of binding corresponded well with the degree of gene 

expression (Figure 6.21).  

 
Figure 6.20: INTS12 binding is enriched at transcriptionally active genes as log2 
of binding signal versus input control. The ChIPseq signal was compared 
between the sets of expressed and silenced genes in basal HBECs of D195307. 
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Figure 6.21: Comparison of INTS12 binding vs. corresponding gene expression 
in basal HBECs. Genes were ordered based on the level of INTS12 ChIPseq signal 
in D195307. The same sorted gene list was used to evaluate their transcription in 
basal un-transfected HBECs of the same donor where red colour indicates higher 
expression derived from read counts on the corresponding gene bodies.   

To further investigate this, genes were divided into three groups, namely 

those which were upregulated, downregulated or not differentially 

expressed following INTS12 knockdown. Sustained depletion dataset 

using D195307 was leveraged to define these groups, with genes 

significantly (FDR<0.05) dysregulated in D-siRNA A and C treatments 

included in the classification but excluding genes altered by scrambled 

D-siRNA. There were 868, 1248, and 48156 genes in the upregulated, 

downregulated and those with no evidence of differential expression 

groups respectively. Crucially, the ChIPseq dataset that was overlaid 

upon the RNAseq dataset was from the representative D195307 cells 

and therefore both omic datasets were generated using the same donor. 

INTS12 ChIPseq Gene expression
Replicate 1 Replicate 2 Replicate 3
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On average there was 6-fold, 8-fold and 1.6-fold enrichment of INTS12 

binding above genome background for upregulated, downregulated and 

not differentially expressed genes respectively (Figure 6.22). Thus of the 

total number of downregulated and upregulated genes 92% and 85% of 

genes show evidence of INTS12 binding near their TSSs, while only 23% 

of genes that had no evidence of differential expression showed this 

localization (Figure 6.23).  

 
Figure 6.22: Average INTS12 binding profile for differentially expressed genes 
and genes with no evidence of differential expression following INTS12 depletion 
in RNAseq. Differentially expressed genes show higher enrichment of binding 
than not differentially expressed genes, with observable binding bias for 
downregulated genes explaining more robust effects observed upon 
downregulated pathways.  
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Figure 6.23: Heatmap of INTS12 binding for differentially expressed genes and 
genes with no evidence of differential expression following INTS12 depletion. 
Out of total number of downregulated and upregulated genes, 92% and 85% of 
genes show evidence of INTS12 binding. In comparison, 23% of genes with no 
evidence of differential expression show evidence of INTS12 binding.   

To provide validation for these findings the regulatory potential of 

INTS12 for each gene based on evidence of binding and significance of 

differential expression following depletion by either D-siRNA A or D-

siRNA C was calculated. The ranked list of genes based on their 

regulation versus cumulative fraction of genes for a given regulatory 

potential score was plotted (Figure 6.24; Wang et al. 2013). The sets of 

upregulated and downregulated genes had significantly higher 

regulatory potential scores than ‘static’ genes (P<0.001) indicating that 

genes with evidence of near promoter (TSS±1000bp) INTS12 binding 

were contributing to altered expression following INTS12 depletion. 

However, a stronger bias for downregulated genes was observed in both 

average binding plot (Figure 6.23) and regulatory potential analysis 

(Figure 6.24), explaining larger effect sizes in gene expression changes 

and greater number of dysregulated pathways meeting the statistical 

significance observed among downregulated pathways in the pathway 

analysis (Chapter 5).  Moreover INTS12 was seen to bind to TSS of 4 

key genes selected for technical and biological validation of their 
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downregulation following INTS12 depletion (Figure 6.4) implying INTS12 

contribution to their altered expression. 

 
Figure 6.24: Prediction of the activating and repressive function of INTS12. The 
cumulative fraction of genes is plotted against the regulatory potential, based on 
significance of representative D-siRNA A differential expression and ChIPseq 
evidence of binding near genes’ TSS. INTS12 depletion was equally likely to 
induce or suppress gene expression in Kolmogorov-Smirnov test but >90% of 
downregulated genes had a higher regulatory potential than upregulated genes 
explaining the more robust effects observed on downregulated pathways. 

6.3.2.9	Motif	enrichment	and	its	distribution	analysis	

Having identified INTS12’s regulome the next objective was to test for 

potential DNA recognition signatures. De novo differential motif 

enrichment analysis was performed (Heinz et al. 2010) comparing 

enrichment at binding sites versus the random background and this 

identified an enrichment for a xTGAxTCAx signature among 20% and 

12% of binding sites which occurred only among 6% and 4.78% of 
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background genome sequences for the D195307 and D7F3158 donors 

respectively (Figure 6.25; P<10-900). To provide validation for the 

identified motif, a non-differential de novo search analysis was 

performed leveraging a distinct algorithm (Machanick et al. 2011) and 

the same motif signature was recapitulated in both donors (Figure 6.26; 

P<2x10-98).  

 
Figure 6.25: The identified motif signature using HOMER’s differential 
enrichment algorithm (P<10-900). 

 
Figure 6.26: Independently identified motif using MEME’s non-differential 
enrichment algorithm (P<2x10-98). 

The identified sequence was compared to currently known motifs (Gupta 

et al. 2007) and was found to be identical to a motif previously identified 

as enriched among activator protein 1 (AP1) binding sites (Hull et al. 

2013). AP1 is a heterodimeric transcription factor known to regulate 

transcription in response to inflammatory stimuli (Hess et al. 2004). 

Interestingly, this signature was also described to be enriched among 

the binding sites of activating transcription factor 3 (ATF3), nuclear basic 

leucine zipper (BATF) as well as jun dimerization protein 2 (JDP2) (Wang 

et al. 2012). BATF mediates dimerization with members of the jun 

proteins acting as a negative regulator of ATF transcriptional axis 

(Dorsey et al. 1995). ATF3 is involved in the cellular stress response 

processes, and JDP2 is ATF3’s paralogue (Weidenfeld-Baranboim et al. 

2009). Among other nuclear proteins resembling INTS12 enriched motif 

are nuclear factor erythroid 2 (NFE2) and Fos-related antigen 2 (FOSL2) 

(Consortium, 2007). In conclusion, the de novo identified motif in the 
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INTS12 ChIPseq dataset appears to be a common signature in a diverse 

range of regulators of gene transcription. 

6.3.2.9.1	Distribution	analysis	of	the	enriched	INTS12	signature		

Central motif enrichment analysis can potentially identify whether the 

studied protein shows evidence of direct or cooperative DNA binding 

based on the probability distribution of the enriched motif among its 

binding sites (Machanick and Bailey, 2011). This approach was used to 

test the most likely binding pattern of INTS12. Although the motif appears 

to be centrally distributed, the site probability is relatively broad (±158bp 

from the peak summit) suggesting that much of the binding via the 

identified motif occurs in cooperation with other molecules including 

those sharing the identified common signature (Figure 6.27).    

 
Figure 6.27: Probability distribution of INTS12 binding enriched DNA motif 
TGAxTCA across the sites at which it is present. Position at zero represents peak 
summit and motif appears to be centrally enriched 158bp in each direction from 
this summit. The site probability curve is very broad indicating indirect or 
cooperative binding to the DNA. The figure shows the motif, its central 
enrichment P-value and the width of the enriched region.  

6.4	Discussion	
The data presented in Chapter 5 showed that there is molecular and 

phenotypic evidence to suggest that INTS12 is a regulator of pathways 
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important in protein synthesis. This Chapter began with a key question 

of whether translational misbalance due to INTS12 depletion is a 

secondary epiphenomenon or a direct primary response. In an attempt 

to provide an answer to this question and to get an insight on the 

regulatory roles of INTS12, a ChIPseq approach was performed for this 

protein. As a proof of principle, pilot ChIPseq was conducted and showed 

that INTS12 displays enough genome binding to yield high quality reads 

for factor analysis. Moreover, INTS12 antibody was shown to be specific 

by IF in combination with gene knockdown. Based on that finding, 

INTS12 ChIPseq was performed and the data obtained analysed 

separately as well as in combination with RNAseq data.  

Examination of binding association with fixed features of the human 

genome revealed the highest enrichment at intron, intergenic and 

promoter regions. However, gene-centric analysis revealed a clear 

localization near the TSS. Sub-setting genes into protein coding, 

lincRNA, snRNA, snoRNA, and microRNA showed that binding differed 

between these classes. Interestingly, the highest enrichment was 

observed for protein coding and snRNA genes with peak summits near 

TSS and TES respectively. A higher enrichment near TES for snRNA 

genes goes hand-in-hand with the proposed INTS12 canonical role in 

snRNA processing. On the other hand, enrichment near TSS for protein 

coding genes suggests INTS12 to be having a different functional role 

over this class of genes implying INTS12 to be pleiotropic.  

Co-localization and ChIPseq signal correlations were also performed for 

HBEC relevant features as INTS12 binding was profiled in this cell type. 

On a genome-wide scale and within promoter regions INTS12 showed 

prominent associations with DNaseI and H3K4me3, both marking 

actively transcribed regions. In agreement with this observation, INTS12 

was more highly recruited to expressed genes than silent loci and the 

degree of binding corresponded well with the magnitude of basal gene 

expression. DNA motif analysis revealed enrichment for a common 

signature enriched at binding sites of other regulators of gene 

expression. Motif distribution analysis indicated cooperative binding of 

INTS12, however this remains to be further explored experimentally. 
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Finally, INTS12 ChIPseq experiments showed a statistically rigorous 

preferential enrichment for TSS of genes with evidence of differential 

expression following INTS12 depletion identifying a set of genes directly 

regulated by INTS12.  

Thus coming back to the initial question, it is possible to say that INTS12 

is likely to be a direct regulator of pathways important in protein synthesis 

because (i) gene expression changes induced by knockdown can be 

causally attributed to the deficiency in INTS12 levels as INTS12 was 

experimentally manipulated (ii) INTS12 TSS binding is enriched for these 

differentially expressed genes. In other words, INTS12’s regulome was 

defined and comprises genes belonging to the translational pathways. 

Interestingly, binding was biased towards the downregulated pathways: 

90% of downregulated genes had higher regulatory potential scores than 

upregulated genes and the remaining 10% of genes had as high 

regulatory scores as upregulated genes, explaining a more robust effect 

seen upon the downregulated pathways in pathway analysis. Taken 

together these data suggest a key role for INTS12 in regulating gene 

expression with a prominent role for protein synthesis pathways. 
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The studies described in this thesis were designed in an attempt to 

understand the biological mechanisms behind a previously identified 

genetic association signal for lung function at 4q24 using some of the in 

silico, in vitro, and in vivo approaches described in Chapter 1. This locus 

harbours genetic variation strongly and reproducibly associated with 

lung function parameters and risk of COPD (Repapi et al. 2010, Hancock 

et al. 2010, Castaldi et al. 2011, Wain et al. 2015).  The most recent 

study has shown that there are at least three independent association 

signals within this locus, one located over the gene TET2, one over the 

gene for NPNT, and a third peak situated over the genes for GSTCD and 

INTS12 (Wain et al. 2015). This thesis sought to understand the 

functional basis for the GSTCD/INTS12 region signal. Analysis of lung 

eQTL dataset (Lonsdale et al. 2013) suggested INTS12 may be involved 

in the phenotypic manifestation of altered lung function or pathogenesis 

of COPD (see Chapter 3). Therefore, the key question to answer is how 

might variation in the expression of INTS12 contribute to these 

phenotypes? To help answer this question, work was undertaken aiming 

to illuminate the molecular and cellular functions of this candidate gene 

in the lung. This was achieved using both hypothesis driven (described 

in Chapter 4) and hypothesis free approaches (described in Chapter 5 

and 6). 

7.1	Thesis	conclusions	
The challenge in the post-GWAS era is the identification of causal 

genetic variants contributing to the variation of the considered trait. 

Because association does not imply causation, it does not follow that 

variants with the most significant P-values are the key ones. As outlined 

in Chapter 1, one possible approach to address this challenge is to map 

other variants in strong linkage with the highly significant variant in order 

to reconstruct an entire haplotype with an evidence of association. Such 

a block can then be intersected with the available functional annotation 

in this region which may pinpoint the possible functional variant. It is 

important to keep in mind that this method does not prove that a 
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particular genetic variant associated with a particular functional 

annotation to be causative. It merely raises the likelihood that this variant 

is contributory. More conclusive studies require experimental 

manipulation of a variant or expression of candidate gene linked to the 

putative variant controlling its transcription and/or translation.   

eQTL analyses in a range of tissues (Obeidat et al. 2013) and human 

lung (Table 3.1) provide evidence that the genetic association signal for 

lung function and risk of COPD at 4q24 (Repapi et al. 2010, Hancock et 

al. 2010, Castaldi et al. 2011, Wain et al. 2015), may in part be due to 

altered expression of INTS12. This was further supported by results 

presented in Chapter 3 of this thesis which showed that, in human lung, 

a subset of SNPs tagging the above mentioned 4q24 haplotype, are 

genome-wide significant for lung function and are eQTLs for INTS12 but 

not neighbouring GSTCD.  

The first aim of this thesis was to investigate the potential role of INTS12 

in contributing to lung function via the snRNA processing pathway. As 

the specific INTS12 requirement for snRNA 3’end formation was 

demonstrated in Drosophila only, its potential contribution to this activity 

was tested in HBECs. Out of four snRNA genes only one showed 

evidence of misprocessing following INTS12 depletion (Chapter 4). In 

the light of the fact that across the metazoans PHD of INTS12 is very 

well conserved (Chapter 3) and that it is dispensable for snRNA 

processing in the fly cells (Chapter 4), it was conjectured that INTS12 

has novel, yet to be defined functions. Given that there is no homologous 

INTS12 gene in C.elegans and S.cerevisiae genomes, but strong 

conservation in mammals and a lethal effect of its knockout in 

M.musculus (Obeidat et al. 2013), INTS12 may be important for the 

evolution of metazoan tissue differentiation and specialization. 

Moreover, INTS12 has sequence similarity to regulators of gene 

expression (Chapter 3). Thus the second aim of the thesis was to 

uncover novel functions and regulatory properties of INTS12 that are 

important in cell homeostasis using a hypothesis free approach. 

Following knockdown with two D-siRNAs, marked downregulation of 

pathways critical in protein synthesis was observed (Chapter 5). To 
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further investigate the functional importance of this, additional 

experiments were undertaken and showed that suppression of INTS12 

affects the relevant cell phenotype by reducing the rate of protein 

synthesis and proliferation (Chapter 5). As part of the RNAseq analysis 

three novel INTS12 splice variants were discovered, validated and 

corrected by PCR and Sanger sequencing (Chapter 5). The important 

point learned from the splice analysis was that for the low abundance 

variants there is a risk of erroneous splice junction inference during 

transcriptome assembly as out of novel variants, one agreed with Sanger 

sequence and aligned at the expected position on the electrophoresis 

gel while the other two had discrepancies between RNAseq and Sanger 

inferred structures.  

INTS12 ChIPseq was undertaken in order to delve deeper into the 

possible mechanism behind the observed dysregulation of protein 

synthesis related pathways following gene knockdown. The key question 

was whether observed effects are primary responses or secondary 

epiphenomena. Because INTS12 ChIPseq has not been performed 

before, a pilot experiment was executed. The success of the pilot 

ChIPseq demonstrated that there is enough interaction between this 

protein and genomic DNA for high quality sequencing data to be 

generated. Genome-wide analyses showed INTS12 binding to be high 

at introns, intergenic regions, and promoters. Gene-centric analyses 

revealed INTS12 binding to be near transcriptional start sites. For 

protein-coding genes the peak binding is proximal to the TSS while for 

snRNA genes the binding is enriched downstream to the TES suggesting 

distinct functional activities for INTS12 depending on the class of the 

genes where INTS12 binding occurs. Co-localization studies revealed 

association with accessible chromatin and H3K4me3 both marking 

transcriptionally active regions.  

In agreement with this observation, the degree of binding was found to 

correspond with the magnitude of basal gene expression and binding 

sites were enriched for differentially expressed loci. Crucially, INTS12 

ChIPseq experiments showed a preferential enrichment for TSS of 

differentially expressed genes uncovering INTS12’s regulome which 
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comprises genes forming part of several protein synthesis relevant 

pathways, in particular the tRNA synthetases pathway. RNAseq of 

INTS12 depleted cells and INTS12 ChIPseq taken together, identify a 

significant unrecognised role for INTS12 in protein synthesis regulation 

via direct regulation of genes belonging to protein synthesis relevant 

pathways.  

INTS12 is a member of the INTScom which itself has been shown to be 

implicated in various molecular and cellular processes (Baillat et al. 

2005, Tao et al. 2009, Rutkowski and Warren 2009, Takata et al. 2012, 

Jodoin, Sitaram et al. 2013, Otani et al. 2013, Gardini et al. 2014) but it 

remains unclear whether all INTScom subunits are required for some of 

all these processes. For example, although INTS3 and INTS4 are both 

INTScom members, INTS3 is entirely dispensable while INTS4 is 

fundamentally required for the snRNA processing (Ezzeddine et al. 

2011). What remains to be elucidated is how INTScom perturbations 

yield such specific yet so diverse phenotypes. It has been suggested that 

the mechanism behind that is the alteration of snRNA 3’-end formation 

affecting the splicing of mRNAs belonging to genes of particular 

functional groups explaining the specific phenotypic effects (Tao et al. 

2009, Otani et al. 2013, Jodoin, Sitaram et al. 2013), including the 

maintenance of epithelial cilia (Jodoin, Shboul et al. 2013). For example, 

it has been argued that the induced downregulation of INTS5, INTS9, 

and INTS11 in zebrafish causes impaired haematopoiesis due to 

aberrant splicing of smad1 and smad5 via a dominant negative form of 

Smad transcripts (Tao et al. 2009). However, given the facts that INTS11 

depletion results in a loss of perinuclear dynein whilst there was no 

enrichment for misprocessed transcripts encoding dynein-dynactin 

subunits, adaptor molecules or dynein-binding cassettes in HeLa cells 

(Jodoin, Sitaram et al. 2013) and our own observation of minor effect of 

INTS12 knockdown on snRNA processing concurrent with misbalanced 

protein synthesis in HBECs, it is possible to say that this hypothesis 

seems unlikely in a human model.  

An alternative model for INTScom, where its subunits have different 

activities despite their physical association in the same complex and with 
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POLII, seems more likely to be true. Consequently, individual INTScom 

members are pleiotropic (Rutkowski and Warren, 2009) and have 

distinct functions which may explain the plethora of phenotypes 

observed following INTScom perturbation. Such a hypothesis allows for 

a more specific verifiable prediction then the very generic model 

involving snRNA processing which could account for virtually any cellular 

function or phenotype. Regardless of whether INTS12 is truly involved in 

snRNA 3’-end formation, allele carriers with low INTS12 expression and 

therefore at risk of lowered lung function (Obeidat et al. 2013) are 

unlikely to have decreased levels of INTS12 to an extent resulting in 

snRNA misprocessing. Thus the potential effects of INTS12 on lung 

function may not be explained via snRNA processing pathway. The 

discovered role for INTS12 in translational control suggests that altered 

levels of INTS12 in specific allele carriers may have widespread effects 

on protein synthesis control via gene regulation of relevance to lung 

development and repair; i.e. shown to be important for lung function and 

health based on the survey of literature data. This opens the door for 

possible future recall-by-genotype or gene knockout models that could 

look for this specific outcome. 

7.2	 Pathways	 forward	 –	 preliminary	 explorations	 and	

considerations	

7.2.1	The	effects	of	 full	 length	and	serine-rich	domain	missing	

INTS12	overexpression	on	gene	expression	
Chapter 5 presents evidence that INTS12 depletion in bronchial 

epithelial cells results in a greater number of downregulated rather than 

upregulated pathways (Chapter 5). This observation is in keeping with 

the higher regulatory potential scores among the set of repressed genes 

versus the set of induced genes (Chapter 6). As the gene-centric 

analysis of genome-wide INTS12 binding revealed clear localization in 

proximity to the TSS, one possible molecular mechanistic hypothesis is 

that INTS12 has transcription controlling properties. Consequently, since 
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removal of this nuclear protein resulted in a reduced expression of many 

members the tRNA synthetases pathway including MARS and GARS as 

well as ATF4 and ASNS of the PERK pathway, it follows that these 

genes might be upregulated when INTS12 is overexpressed. Such a 

result would imply that INTS12 is their activator.  

In a preliminary attempt to shed light on this question, a full length and 

truncated INTS12 with a missing serine-rich domain were transiently 

overexpressed (see section 3.6.2). The rational for overexpressing the 

truncated protein is to understand whether this missing part of the protein 

is required for such activation. Surprisingly, overexpression of full length 

INTS12 consistently reduced the expression of these genes although 

this effect was not statistically significant (P>0.05). No effect on the 

MARS, GARS, ATF4 and ASNS expression was observed in cells 

overexpressed with truncated version of INTS12. Future work could 

clarify the effects of INTS12 overexpression on airway cells. One 

possible approach would be to perform global gene expression profiling 

following these manipulations and compare the results to the gene 

expression profiling following gene knockdown. This could provide 

further insights into the regulatory properties of INTS12. It is especially 

worth investigating whether genes that are differentially expressed due 

to INTS12 depletion are dysregulated when INTS12 is overexpressed 

and to compare the effects of full length and truncated variants.   

7.2.1.1	Proposal	of	INTS12	function	hypothesis	

If it is the case that both highly elevated and depleted INTS12 cause 

reduction in the expression of genes belonging to its regulome, it is 

possible that the level of INTS12 has to be very finely tuned, probably 

relative to other factors which it has to bind with, in order to fulfil its 

function. INTS12 could be bridging two protein complexes which is a 

plausible scenario: first considering the fact that it is already part of 

INTScom complex, and secondly it highly associates with K3K4me3 

histone tail modification (Chapter 6) implying a likely physical interaction. 

If the function of INTS12 is to bind INTScom/POLII and certain histone 

tail modifications thus tethering transcriptional complex to the promoters, 



Chapter 7 – General discussion 
 

 296 

then at very low levels of INTS12, no bridging can occur and INTScom 

would not be recruited to the promoter resulting in reduced transcription. 

As the levels of INTS12 rise, more of the INTScom/POLII is recruited to 

the promoters until a plateau is reached, where all suitably modified 

promoter sites have recruited the complex or all available 

INTScom/POLII is bound to promoters. As the levels of INTS12 exceed 

the optimum, dominant negative effects may be starting to exert their 

influence. For instance, promoters may have INTS12 bound without the 

tethering of INTScom/POLII due to compromised biding caused by 

INTS12 overloading. So at high concentrations, INTS12 might become 

a repressor of transcription at target regulome genes. 

7.2.2	In	vivo	approaches		

Up to this point of this thesis all the methods used to study INTS12 

function and understand mechanistic basis for association signal at 4q24 

were either in silico or in vitro. Out of the repertoire of various methods 

described in Chapter 1, I have not used to date an in vivo approach. 

Thanks to the efforts of IMPC (see section 1.6.3.1) there is publically 

available detailed information regarding the characteristics of approx. 

20,000 protein-coding knockout mouse models. This resource was used 

in order to undertake a preliminary exploration of the phenotypic 

manifestations of homozygous and heterozygous INTS12 knockout 

mouse models.  

Interestingly, heterozygous models show a small but significant 

decreased erythrocyte mean cell volume in both males and females 

(P<0.0001). This finding is interesting in the light of fact that INTS5 has 

been implicated in zebrafish haemopoiesis (Tao et al. 2009). The fact 

that models with one copy of INTS12 removed have decreased 

erythrocyte volume suggests that perhaps INTS12 is also required for 

mammalian haematopoiesis and could be used as starting point for 

future studies. Another phenotype that manifests itself in the 

heterozygotes is the marginally increased level of circulating magnesium 

(P<0.0001). However, this has been observed in females only, whereas 

in males circulating magnesium may actually be decreased (P=0.1). It is 
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not clear at this stage why there is such a difference between males and 

females and it may be worth investigating the reasons for this dichotomy. 

The relevance of these findings to the lung is also unclear, and to date 

there are no reported lung phenotypes in heterozygous INTS12 mice. 

On the other hand, the homozygous INTS12 knock out mouse shows 

pre-weaning lethality (Obeidat et al. 2013) suggesting a critical role for 

INTS12 in early development.    

As the expression of MARS and GARS of the tRNA synthetases 

pathway, and ASNS and ATF4 from the PERK pathway were 

downregulated following D-siRNA treatment targeting INTS12, a 

prediction was made that these genes would also have reduced 

expression in the heterozygous INTS12 knockout model. cDNA 

representing the total RNA content of mouse lung was obtained from a 

small number of heterozygous and wild type models and relevant gene 

expression was measured. As expected, there was ~64% reduction in 

INTS12 expression in the animals that had one copy of the gene 

removed but this decrease was not statistically significant (P=0.2). 

However, no effect on the expression of target genes was seen in the 

knockout mouse model (n=2).  

It is possible that such effects cannot be observed with ~50% of gene 

being expressed because one functional copy may be masking the 

functional consequences of the gene removal. Moreover, in the in vitro 

knockdown experiments the degree of INTS12 suppression achieved 

was greater than 80% (Chapter 3). More experiments are warranted to 

ascertain the case as these data can only be considered preliminary 

(n=2). If it is the case that in heterozygous model there is no apparent 

effect on the expression of target genes, both conditional, complete and 

tissue specific INTS12 knockouts could be used instead. Having 

established whether target genes are differentially downregulated in 

either inducible or non-inducible models it would also be worth 

investigating whether the rate of protein synthesis is altered in the lung 

in a manner analogous to the human knockdown experiments (see 

Chapter 5).  One potential issue in such experiments is whether or not 

INTS12 has the same role in murine as in human tissue. The high degree 
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of interspecies sequence homology would support this, although as 

noted earlier the role of INTS12 in Drosophila appears to be significantly 

different than in human cells. 

7.2.2.1	In	vivo	efforts	in	clinical	translation	

Another possible future avenue for further exploration could be a recall-

by-genotype studies where human cells obtained from individuals on a 

known genetic background can be stratified and tested for a possible 

differences in protein synthesis rates. It may be worth testing whether 

cells harbouring alleles associated with lower lung function, and 

therefore lower INTS12 expression, intrinsically have lower rates of 

protein synthesis.    

7.3	Summary		
Lung eQTL analyses suggests INTS12 to be a likely gene whose 

variable expression is contributing to variation in lung function. I 

conclude that INTS12 is a pleiotropic gene with at least two different 

functions depending on the class of genes where its binding occurs. In 

agreement with the canonical function, over snRNA genes INTS12 is 

likely to contribute to their 3’-end formation. However, in contrast to what 

was reported in Drosophila, INTS12 requirement for snRNA processing 

is moderate in HBECs. Gene depletion resulted in dysregulation of a 

core subset of genes of relevance to lung physiology at two time points 

and in two different donors.  Finally, the data presented herein identify a 

significant and previously unrecognized role for INTS12 in protein 

synthesis control via direct regulation of key protein coding genes 

belonging to the related cellular pathways. 
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Donors			
INTS12 knockdown was optimized in HBECs from D7F3206. 48h 

RNAseq experiment was performed upon D7F3206. 120h RNAseq 

experiment was performed upon D195307. Target gene expression 

identified in 120h RNAseq was biologically validated in D7F3206. Protein 

synthesis was performed in D195307. ChIPseq was performed in 

D195307 and D7F3158.  

• D7F3206 was a 50 years old male Caucasian who was a smoker. 

• D195307 was a 19 years old male who was not a smoker. 

• D7F3158 was a 56 years old male Caucasian who was a smoker. 

Tables	
Table 1: The sequences of D-siRNAs used to suppress the INTS12 expression. 

Oligo Sequence 

D-siRNA #A 5’-GGAAUGGAAAUAGUGGAACAUCAGG-3’ 

D-siRNA #B 5’-GGCAAUCAAUUAGUAGAAUGUCAGG-3’ 

D-siRNA #C 5’-GCGUUUAAGAGAACAGAAGUCAAGA-3’ 

 
 
Table 2: Pre-designed TaqMan qPCR assays for housekeeping genes (Life 
Technologies). 

Target gene Cat. num. 

GAPDH 4310884E 

HPRT1 4310890E 

TfR 4331182E 
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Table 3: Pre-designed SYBR® Green qPCR assays (Sigma-Aldrich). 

Target gene Oligo Sequence 

MARS Forward primer 5’-TACCCATTACTGCAAGATCC-3’ 

Reverse primer 5’-CTTGCTGTTTCAGTACAGTC-3’ 

GARS Forward primer 5’-GTGTTAGTGGTCTGTATGAC-3’ 

Reverse primer 5’-GTCTTTAAAACTGGCTCAGG-3’ 

ASNS Forward primer 5’-GATTGGCTGCCTTTTATCAG-3’ 

Reverse primer 5’-AATTGCAAATGTCTGGAGAG-3’ 

ATF4 Forward primer 5’-CCTAGGTCTCTTAGATGATTACC-3’ 

Reverse primer 5’-CAAGTCGAACTCCTTCAAATC-3’ 

LEP Forward primer 5’-TCAATGACATTTCACACACG-3’ 

Reverse primer 5’-TCCATCTTGGATAAGGTCAG-3’  

 
 
Table 4: ChIP-PCR primer sequences.   

Target gene site/primer Primer sequence 

POR forward 5’-CAGGGTCCGAGCTGTAGAAG-3’ 

POR reverse 5’-CCGGCAGAGAAATGAAAGTG-3’ 

NBPF1 forward 5’-CACCTACGCCTCCCAGTACC-3’ 

NBPF1 reverse 5’-GCCTTGGGTTATCCTGACAC-3’ 

ACTB forward 5’-AACTCTCCCTCCTCCTCTTCC-3’ 

ACTB reverse 5’-CCTCTCCCCTCCTTTTGC-3’ 

Untr12 forward 5’-TGAGCATTCCAGTGATTTATTG-3’ 

Untr12 reverse 5’-AAGCAGGTAAAGGTCCATATTTC-3’   

 
 
Table 5: In-house designed TaqMan qPCR assays. 

Target gene Oligo Sequence 

INTS12 Forward primer 5’-CTCCAGCTGTCAAAGATCCATT-3’ 

Reverse primer 5’-GAGAGCTGCTGGATTCTGAAGT-3’ 

Probe  5’-TGGCTGCAAAAGCTGCCCATCCAG-3’ 
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Table 6: In-house designed SYBR® Green qPCR assays. 

Target gene Oligo Sequence 

Immature U1 Forward primer 5’-GATGTGCTGACCCCTGCGATTTC-3’ 

Reverse primer 5’-GTCTGTTTTTGAAACTCCAGAAAGTC-3’ 

Immature U2 Forward primer 5’-TTGCAGTACCTCCAGGAACGG-3’ 

Reverse primer 5’-CAGGGAAGCAGTTAAGTTAAGCC-3’ 

Immature U4 Forward primer 5’-AGCTTTGCGCAGTGGCAGTATCG-3’ 

Reverse primer 5’-AAGCCTCTGTTGTTCAACTGC-3’ 

Immature U5 Forward primer 5’-TACTCTGGTTTCTCTTCAGATCGC-3’ 

Reverse primer 5’-TTCTATTGTTGGATTACCAC-3’ 

Developed	python	programs	
gene.perXLOC_exp_parser.py 
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expression_Table_parser.py 
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pathway_database_parser.py 
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genes_extraction_from_my_exp_Table.py 

 

 

 

 

 

 

 

 

 

 

 



Appendix 
 

 306 

max_min_pathway_genes_counter.py 
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