A generalised model of electrical energy demand from small household appliances

Sancho-Tomás, A., Sumner, M. and Robinson, Darren (2017) A generalised model of electrical energy demand from small household appliances. Energy and Buildings, 135 . pp. 350-366. ISSN 1872-6178

Full text not available from this repository.


Accurate forecasting of residential energy loads is highly influenced by the use of electrical appliances, which not only affect electrical energy use but also internal heat gains, which in turn affects thermal energy use. It is therefore important to accurately understand the characteristics of appliance use and to embed this understanding into predictive models to support load forecast and building design decisions. Bottom-up techniques that account for the variability in socio-demographic characteristics of the occupants and their behaviour patterns constitute a powerful tool to this end, and are potentially able to inform the design of Demand Side Management strategies in homes.

To this end, this paper presents a comparison of alternative strategies to stochastically model the temporal energy use of low-load appliances (meaning those whose annual energy share is individually small but significant when considered as a group). In particular, discrete-time Markov processes and survival analysis have been explored. Rigorous mathematical procedures, including cluster analysis, have been employed to identify a parsimonious strategy for the modelling of variations in energy demand over time of the four principle categories of small appliances: audio-visual, computing, kitchen and other small appliances. From this it is concluded that a model of the duration for which appliances survive in discrete states expressed as bins in fraction of maximum power demand performs best. This general solution may be integrated with relative ease with dynamic simulation programs, to complement existing models of relatively large load appliances for the comprehensive simulation of household appliance use.

Item Type: Article
RIS ID: https://nottingham-repository.worktribe.com/output/840351
Keywords: Electrical appliances; Stochastic modelling; Markov chain; Occupant behaviour; Demand side management; Cluster algorithm; Residential energy use; Energy planning
Schools/Departments: University of Nottingham, UK > Faculty of Engineering > Department of Architecture and Built Environment
University of Nottingham, UK > Faculty of Engineering > Department of Electrical and Electronic Engineering
Identification Number: https://doi.org/10.1016/j.enbuild.2016.10.044
Depositing User: Eprints, Support
Date Deposited: 02 Feb 2017 10:45
Last Modified: 04 May 2020 18:30
URI: https://eprints.nottingham.ac.uk/id/eprint/40257

Actions (Archive Staff Only)

Edit View Edit View