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One of the principle causes for deviations between predicted and simulated performance

of buildings relates to the stochastic nature of their occupants: their presence, activities

whilst present, activity dependent behaviours and the consequent implications for their

perceived comfort. A growing research community is active in the development and val-

idation of stochastic models addressing these issues; and considerable progress has been

made. Specifically models in the areas of presence, activities while present, shading de-

vices, window openings and lighting usage.

One key outstanding challenge relates to the integration of these prototype models with

building simulation in a coherent and generalizable way; meaning that emerging models

can be integrated with a range of building simulation software. This thesis describes our

proof of concept platform that integrates stochastic occupancy models within a multi agent

simulation platform, which communicates directly with building simulation software. The

tool is called Nottingham Multi-Agent Stochastic Simulation (No-MASS).

No-MASS is tested with a building performance simulation solver to demonstrate the effec-

tiveness of the integrated stochastic models on a residential building and a non-residential

building. To account for diversity between occupants No-MASS makes use of archetypical

behaviours within the stochastic models of windows, shades and activities. Thus providing

designers with means to evaluate the performance of their designs in response to the range

of expected behaviours and to evaluate the robustness of their design solutions; which is

not possible using current simplistic deterministic representations.

A methodology for including rule based models is built into No-MASS, this allows for test-

ing what-if scenarios with building performance simulation and provides a pragmatic basis

for the modelling of the behaviours for which there is insufficient data to develop stochastic

models. A Belief-Desire-Intention model is used to develop a set of goals and plans that an
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agent must follow to influence the environment based on their beliefs about current envi-

ronmental conditions. Recommendations for the future development of stochastic models

are presented based on the sensitivity analysis of the plans.

A social interactions framework is developed within No-MASS to resolve conflicts between

competing agents. This framework resolves situations where each agent may have different

desires, for example one may wish to have a window open and another closed based on

the outputs of the stochastic models. A votes casting system determines the agent choice,

the most votes becomes the action acted on.

No-MASS employs agent machine learning techniques that allow them to learn how to

respond to the processes taking place within a building and agents can choose a strategy

without the need for context specific rules.

Employing these complementary techniques to support the comprehensive simulation of

occupants presence and behaviour, integrated within a single platform that can readily

interface with a range of building (and urban) energy simulation programs is the key

contribution to knowledge from this thesis. Nevertheless, there is significant scope to

extend this work to further reduce the performance gap between simulated and real world

buildings.
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Chapter 1

Introduction

The resources needed to sustain the world’s ever expanding population are reaching new

levels. In 2015, representatives from 195 countries signed an agreement with the aims

of:

“Holding the increase in the global average temperature to well below 2 ◦C

above pre-industrial levels and pursuing efforts to limit the temperature in-

crease to 1.5 ◦C above pre-industrial levels, recognizing that this would signif-

icantly reduce the risks and impacts of climate change;

Increasing the ability to adapt to the adverse impacts of climate change and

foster climate resilience and low greenhouse gas emissions development, in a

manner that does not threaten food production; and

Making finance flows consistent with a pathway towards low greenhouse gas

emissions and climate-resilient development.”

(United Nations, 2015)

It is therefore important to reduce global energy use arising from the contribution of fossil

fuels and the associated emission of greenhouse gasses.

In Europe the energy used within residential sector and the services sector accounted for

41% of the total energy used in 2013 and represented an increase of 5% relative to 1990

levels (Figure 1.1). Building performance simulation is used to model the flows of energy

in buildings and their systems at the design/ retrofit stage, to ensure they not only meet

the demands of the occupants but also allow designers to test strategies for improving

building performance.

1
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Figure 1.1: Energy Used By Sector (European Energy Agency, 2015)
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Although a powerful building (re-)design decision support tool, building performance sim-

ulations can be subject to limitations. Studies have found that buildings may use twice

as much energy as predicted at design stage. Bordass et al. (2001) studied 16 buildings

which were predicted to have low energy use, however real world tests showed they were

not low energy, but used as much as an average building. Under the stringent design and

construction standards imposed by Passivhaus, Blight and Coley (2013) observed that on

average a difference of 21% between simulated and actual energy use. It has been reported

that for high energy buildings such as labs there is on average a factor of 2.5 difference

between predicted and actual energy use (Turner and Frankel, 2008). Baker and Steemers

(2003) found that building design parameters such as the plan, orientation and facade

have been found to cause fluctuations in energy from 2.5 times. System parameters such

boiler efficiency bring fluctuations to 5 times, leaving occupants to account for the other

half of the 10 times fluctuation in energy.

Predicted building performance continues to deviate – sometimes considerably – from

that which is observed post-build. The reasons are many and complex. These can be cat-

egorised as (Chapman et al., 2016): (type I) errors in modelling deterministic phenomena

or indeed the neglect of these phenomena, (type II) errors in the inputs to these deter-

ministic models, (type III) errors in modelling stochastic phenomena or indeed the neglect

of these phenomena, (type IV) errors in the inputs to these stochastic models. Type I

errors might include ignoring thermal storage in the modelling of heat diffusion, assuming

thermophysical properties to be constant in the dynamic modelling of heat diffusion, or

assuming that heat diffuses exclusively in one direction. Type II errors might relate to the

characterisation of the bulk thermophysical properties of building materials, or assuming

that multilayer constructions are perfectly homogenous and known; where as in reality

workmanship is imperfect and unknown. Type III errors can be sub-categorised accord-

ing to whether stochastic perturbations to heat flows in buildings are a) climatic, or b)

human-behavioural in nature. Type IIIa errors might relate to wind pressures across the

envelope and the corresponding impacts on convective heat transfers and infiltration, or

the effects of cloud cover on transmitted shortwave irradiation. Whereas, type IIIb might

relate to occupants’ presence and associated metabolic heat gains, interactions with the

envelope (e.g. windows and blinds), lights, appliances and systems. Finally, type IV errors

relate to the empirical coefficients that are estimated for the models that are structured

to address type III errors and their suitability to the particular context under considera-

tion. Thus, and as with deterministic phenomena, with respect to stochastic phenomena

a distinction is made between the model structure and its ability to capture the underly-

ing stochastic phenomena in principle, and the calibration of this model to a particular

circumstance.
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Using suitable calibration techniques simulations can more accurately represent the ag-

gregate behaviour of a real building, improving predictions to within 6% (Norford et al.,

1994). Using 5 different bespoke models of occupancy, Menezes et al. (2012) managed to

improve their predictive accuracy from a 70% under prediction to a 3% under prediction.

The initial model used basic deterministic schedules with the final model using monitored

data for lighting, appliances and catering equipment. There is clearly a performance gap

that has not been covered by deterministic techniques, this gap can be reduced with ac-

curate representation of real world occupant interactions. But whilst calibration from a

real world building can capture the occupant interactions taking place, it is costly and not

possible at the design stage.

This thesis focuses on the simulation of people within buildings and the effects of their

energy related behaviours on building performance. Building performance simulation soft-

ware such as EnergyPlus (Crawley et al., 2000) and ESP-r (Clarke, 2001) tend to have

deterministic rules governing occupant behaviour. The deterministic rules and schedules

that typically represent occupant interactions within building performance simulation soft-

ware do not necessarily emulate the mean and certainly not the variance observed in real

world behaviours and the performance impacts of them. There have been attempts at

addressing this (Bourgeois et al., 2006) but not in a generic and portable way.

With the objective of addressing these limitations, and following the suggestions of Robin-

son et al. (2011), our approach is to use multi-agent stochastic simulation for modelling

occupant behaviour; to combine stochastic models into a single package that can be used

to support building and urban performance simulation using a range of software. The term

agent has many meanings and has evolved over time. Agents are often described as objects

within programs that control their actions based on their perceptions of the environment

(Huhns and Singh, 1998). Multi-agent simulation is a tool that has been developed primar-

ily in the social sciences to effectively model human interaction (Bonabeau, 2002, Zhang

et al., 2011). Its use in the social sciences has typically been to study behaviours that

emerge from bottom up interactions, allowing the creator to make judgements as to what

has caused these emergent behaviours and whether they correspond with expectation from

social theory. An agent should have the following properties; they should be autonomous,

have social ability, perceive and react to the environment and be proactive with their

choices (Wooldridge and Jennings, 1995). Each agent has rules and behaviours, making

them excellent in principle at modelling group and individual interactions (Axtell, 2000).

This work uses multiple agents to model occupants within buildings, using a combination

of statistical techniques, interaction rules and machine learning.
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1.1 Hypothesis

An effective modelling strategy for simulating occupants in building perfor-

mance simulation is multi-agent simulation. Simulating an occupants’ energy

related behaviours through agents that make use of stochastic models, theory

driven rules, social interactions and machine learning techniques.

To develop and test this hypothesis the following aims are defined:

1. Represent the stochastic nature of occupants energy related behaviours, couple

stochastic models of occupant interactions with building performance simulation.

2. Ensure diversity between occupants is accounted for.

3. Develop theory driven rules using belief-desire-intention techniques for the phenom-

ena for which data are absent or insufficient.

4. Enable agents to communicate through a social interaction framework.

5. Integrate machine learning techniques to enable agents to learn how to react to the

environment to improve their comfort.

This latter is particularly interesting for it may open up the possibility of representing

stochastic behaviours of occupants in building simulation without the need complex data

hungry models.

1.2 Methodological Approach

A multi-agent simulation framework has been developed, which has been named Notting-

ham Multi-Agent Stochastic Simulation (No-MASS). The No-MASS framework integrates

existing stochastic models of occupant interaction into a tool that can be coupled with

building or urban energy performance simulation tools. The coupling allows for simu-

lated occupants to make changes within the simulated building environment and receive

responses arising from the effects of the interactions which may stimulate future interac-

tions. Sensitivity analysis is used to scrutinise the inputs of each stochastic model ensuring

that the models have a significant impact on predicting the building performance results.

Parameters that do not can be removed and the models simplified. Current stochastic

models do not cover all of the energy related behaviours of occupants, therefore a belief-

desire-intention (BDI) rule system is used to model other interactions, supplementing the

data-driven stochastic models. For example switching off the light during sleep. Agents

can have unique desires causing changes within the environment that may be in conflict
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with the desires of other agents. To solve this problem an agent social interaction model

is developed to govern the interactions between agents. For more complex interactions

where BDI rules would be difficult to design, agent machine learning techniques are used,

allowing the agent to learn how to respond to different stimuli.

1.3 Research Structure

The research context, the hypothesis and structure of the work have been set out in Chap-

ter 1. Chapter 2 begins with a review of occupant representations in building performance

simulation and highlights the effects occupant interactions can have on the energy per-

formance of the building. Also explored in Chapter 2, is how occupants are modelled in

the domains of social sciences, economics and computer science, to observe how methods

from these domains can be applied to building performance simulation. Chapter 3 dis-

cusses the proof of principle framework that was developed in response to needs derived

from the literature and describes how the framework interfaces with building performance

simulation. Stochastic models of interaction within the framework are then tested against

a case study using a deterministic representation of occupants for comparison in Chapter

4. As the availability of stochastic models of interactions do not cover every aspect of an

occupant’s interaction with a building, a new approach is integrated into No-MASS for

creating rule based interaction ideas based on an agent belief-desire-intention method is

described and tested in Chapter 5. But often building occupants do not make changes to

the environment without considering the effects on other people, so presented and tested in

Chapter 6 is No-MASS’s approach for handing negotiated social interactions. In Chapter

7 machine learning techniques within agents are demonstrated allowing agents to learn

how to respond to the processes taking place within a building; thus agents can choose

a strategy without the need for context specific rules. Finally, in 8 this thesis closes by

identifying the principle contributions to knowledge arising from this work and a discus-

sion for the scope of augmenting these contributions in the future. The thesis structure is

summarised in Figure 1.2 below.
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Chapter 2

Occupants in Building

Performance Simulation

This thesis focuses on the development and application of a new simulation platform,

conceived to systematically improve upon the representation of type IIIb and associated

type IV errors in building simulation the were identified in Chapter 1. In this endeav-

our, work begins with a quick review of building simulation tools. Then the Empirical

evidence maintaining that human behaviour impacts building’s performance is presented.

In conjunction with this evidence the corresponding progress made in the development of

stochastic models of human behaviour to address these impacts is presented. Finally, the

use of agents to model people in other fields is discussed.

2.1 Building Performance Simulation

There are many building performance simulation tools often with competing algorithms

and methodologies, but they all aim to support the building designer in the testing of

strategies to improve the buildings performance; to reduce energy use whilst maintaining

comfort and ensuring that the design is robust.

In the United States there were initially two government funded building performance

simulation tools that had very similar capabilities (Crawley et al., 2001). DOE-2 and

BLAST both simulated the performance of buildings but had different features that made

one better in some cases and the other better in others, for example BLAST was better at

systems simulation and DOE-2 better at building simulation. They were developed over

many years, making them costly to maintain and so the respective developer teams pooled

their resources, taking the best parts of both tools and developed a single application

9
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named EnergyPlus. EnergyPlus can simulate surface/ air heat transfers and included a

building systems manager to manage heating ventilations and air conditioning (HVAC),

electrical equipment, air loops and photovoltaics (PV). Now a more comprehensive open

source building systems simulation platform, it has been extensively tested, and is well

documented. Made accessible through a range of both free and commercial graphical user

interfaces (GUIs), most notably the DesginBuilder GUI, EnergyPlus is the most widely

used of all available building performance simulation tools.

The ESP-r tool is another building performance simulation tool that simulates heat, mois-

ture and air flow, electrical power flow, HVAC systems and lighting and renewable energy

systems. It can also calculate performance appraisal measures such as life cycle analy-

sis, indoor air quality, thermal comfort and environmental impact (Clarke, 2001). It has

also been extended to simulate occupant interactions using sub hourly occupancy controls

(Bourgeois et al., 2006) and computation fluid dynamics has been integrated. Although

powerful, it is also complicated and unproductive to use by non-experts and, although

open source, is relatively poorly documented, limiting its uptake.

TRNSYS is a modular transient simulation program initially developed for the study of

solar energy systems. The main library consists of 150 models that support weather data

processing, building performance simulation, the simulation of solar thermal processes and

HVAC systems more generally. The library system makes it expandable, however unlike

ESP-r and EnergyPlus it is neither free to use nor open source.

There a many other building simulation tools and because they often perform well in

some areas and poorly in others comparisons between their ability to simulate the per-

formance of buildings are difficult. Crawley et al. (2008) highlight that the terminology

used throughout the different simulation tools make it difficult to compare their abilities,

however they make a good attempt at doing so. These tools although useful, our work

focuses on reducing the extent of the deviations between the simulated results and the real

world performance of the building.

2.2 Building Performance Deviations

Seligman et al. (1978) concluded from a study of 28 identical houses there were deviations

of 2 to 1 in energy demands which is thought to be primarily caused by behavioural

diversity between occupants; as the houses were themselves identical. In a study of four

identically constructed houses, Bahaj et al. (2007) found that in certain periods of the

year energy demands varied by a factor of six due to occupancy. In their study of 22

identical residential houses in Germany, Maier et al. (2009) have identified a factor of 2



Chapter 2. Occupants in Building Performance Simulation 11

variation in heating demand. Meanwhile, post occupancy evaluations of UK EcoHomes

have found that occupants’ planned behaviour accounts for a variation of 51% in heating

demand between dwellings (Gill et al., 2010). The variations due to occupancy in identical

buildings highlight the difficulty in performing accurate simulations of energy performance.

Design stage estimations can make predictions underperform by more than half. However,

calibrating models so the simulations accurately represent the real building can improved

predictions to within 6% (Norford et al., 1994). Altering the heating controls using an

occupant comfort measure (predicted mean vote), Andersen et al. (2007) found that a

simulated building could vary in energy use by 324% from a low consumption scenario

to a high consumption scenario. Using 5 different bespoke models of occupancy, Menezes

et al. (2012) managed to go from a 70% under prediction of actual energy to a 3% under

prediction. The initial model used basic deterministic schedules with the final model

using monitored occupant data for lighting, number and use of appliances and catering

equipment.

The endeavour to reduce the performance gap by accounting for variability between oc-

cupants has led to models addressing the stochastic nature of occupants’ behaviours, in-

tegrated within building performance simulation software. These range from hard coded

integration in the case of lighting behaviour models in Reinhart’s (2004) Lightswitch2002

algorithm to Haldi and Robinson’s (2011) integration of occupant presence, window and

blind models into CitySim. More recently, Vorger (2014) hard coded models of presence,

activities, approximate use of heating systems, window and blind interaction within the

building simulation software Pleiades+COMFIE. In line with empirical findings, Haldi and

Robinson (2011) found with CitySim that variations in stochastic behaviour accounted for

a factor of two variation in heating demand. Likewise, when comparing an ideal and worst

case occupant scenario to demonstrate the range of influence occupants have, Roetzel et al.

(2011) found that there was a factor of 2 difference in the simulated annual energy use

for both heating and cooling. Bonte et al. (2014) found a similar factor of two variation

arising from the integration of models of blinds, lights, windows, temperature setpoints

and clothing into a building simulation tool.

Although these efforts have usefully demonstrated the potential impact of stochastic be-

haviours (and models of them) on building performance, and that these closely concur

with empirical observations, they are software specific and lack generality. This criticism

was partially addressed by Bourgeois et al. (2006) who developed a general solution for the

integration of lighting, windows and blind models with ESP-r, called Sub-Hourly Occu-

pant Control (SHOCC). But this approach is also software specific and does not support

more complex features.
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In thesis postulates that a comprehensive behavioural modelling framework should sup-

port:

“The definition of archetypes and archetypal behaviours to account for diver-

sity between occupants, social interactions between members of a population

and corresponding implications for their behaviours, and behaviours that are

conditional on others having already been exercised or indeed on proximity to

the building envelope or system, with corresponding implications for interac-

tion probability.”

(Chapman et al., 2016)

2.3 Stochastic Interactions of Occupants

As noted above the endeavour to reduce the performance gap by accounting for variability

between occupants has led to the development of models addressing the stochastic nature

of occupants’ behaviours. Presence within a zone is a requirement for most occupant

interactions within a building. Reinhart (2004) developed a simple stochastic occupancy

model in the Lightswitch2002 algorithm, randomising arrival and departure times by 15

minutes from deterministic schedules. This moved the schedules away from repeated daily

profiles but this is not based on empirical data. Page et al. (2008) used longitudinal

occupant data to build an inhomogeneous Markov chain model to predict the likelihood

of an occupant being present within a zone at a given time of day; although it does not

predict movement between zones and long term absences are poorly represented (eg due to

illness, business trips or vactions). More recently, Wang et al. (2011) built a Markov chain

model for predicting time-dependent transitions between rooms. Chang and Hong (2013)

developed curves of occupant presence based on automated lighting sensors. Finally, Feng

et al. (2015) used these 3 different approaches in an algorithm where occupancy schedules

are derived from Chang and Hong, the number of occupants in a room calculated using

Page et al.’s model and transitions between rooms using Wang et al.’s model. As Page

et al.’s model is the only model to be rigorously validated it remains to be seen how accurate

the other models are. Vorger (2014) developed probability distributions from French survey

data for predicting long term absences due to holidays and sickness. Although the data is

heavily influenced by the French school holidays, the same methodology could be applied

to other locations.

Once occupancy is known presence dependent behaviors can be predicted. The Lightswitch2002

algorithm developed by Reinhart (2004) predicts the probabilistic use of lighting at ar-

rival, during presence and at departure, as a function of minimum indoor illuminance. The
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algorithm also predicts blind usage, but this is based on a deterministic solar threshold

irradiance of 50W/m2. Haldi and Robinson developed two occupant interaction models,

one for windows (Haldi and Robinson, 2009) and one for external shading devices (Haldi

and Robinson, 2010). The shading model uses a hybrid of Markov chains to predict if

they are lowered or raised and a Weibull distribution to predict the opening fraction at

arrival or departure. The window opening model, also uses a hybrid approach. Transitions

in opening status are modelled as a discrete time Markov process, whereas the duration

that a window will remain open is modelled as a continuous time random process using a

Weibull distribution. Both models performed well under validation.

It is also possible to predict the activities that an occupant maybe performing at a given

time. Widén et al. (2009) used time use survey data describing occupants’ activities to

occupants activity dependent use of electrical appliances and their corresponding energy

demand. Widén et al. (2012) expanded on this by building a Markov model to predict

activities from the time use data; the outputs of which he uses in a separate model that

predicts electrical demand from the activity performed. However, this model only predicts

if an activity takes place not when it will start and appliances’ dynamic usage behaviour are

accounted for. Wilke (2013) created a time dependent Markov chain model that predicts

the transition from one activity to another at a given time, coupled with a model to pre-

dict the duration for which this activity survives, from which the load profile is predicted

based on that activity. Appliances are assigned based on household socio-demographic

characteristics using a logistical regression based on an appliance use survey. This model

performs well under validation, but it is complex and computationally expensive. In the

quest for a parsimonious model (one which yields acceptable accuracy for the least compu-

tational cost and complexity), Jaboob (2015) tested a range of modelling strategies, again

using time use survey data, selecting time dependent Markov model of activities.

These models cover a rather comprehensive range of energy related behaviours but there

remain gaps to be filled. Energy related behaviours relating to curtains interactions,

window opening with regard to air quality and noise pollution, etc. To capitalise on the

value of these models and to facilitate the straight forward integration of future models

they should be integrated with a robust multi-agent simulation framework which is itself

integrated with building performance simulation software using an open co-simulation

framework. Achieving this in a coherent and generalised way is important if these models

are to gain widespread use in building performance simulation, which continues to use

outdated deterministic rules and schedules to support building design.
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2.4 Multi-Agent Simulation

Multi-agent simulation has been used to represent people in a variety of areas. Epstein

and Axtell’s (1996) SugarScape simulates a simple society where inhabitants need to eat

resources in an artificial world to survive. Each agent moves around a plane looking for

and consuming sugar based on predetermined rules. These models demonstrated how

societies can develop over time, congregating around areas of resource. The model was

expanded to include sugar and spice as resources that could be traded, from which the

authors showed that the prices of both converged to an equilibrium, as economic theory

would predict. Meanwhile Axelrod (1987) tested agents, employed in combination with

a genetic algorithm, against a prisoner’s dilemma scenario (should you defect against or

cooperate with your accomplice who has the same options). Later, Axelrod and Hamilton

(1984) found that 95% of all populations evolved towards the optimal tit-for-tat strategy,

demonstrating the effectiveness of agents in exploring alternative decisions. Traffic flow

within cities has also been modelled with agents, allowing traffic planners to make informed

decisions to improve congestion (Balmer et al., 2006, Nagel et al., 1999). Each agent in

these scenarios occupies a vehicle, with their own goals and decisions to make. Another

example is city wide disaster scenarios, evaluating traffic flow during an evacuation and

the effects of different city road layouts (Ring, Grid, etc.) on evacuation time (Chen and

Zhan, 2006). Finally, Siebers and Aickelin (2011) models the effects of changes in employee

empowerment on customer satisfaction in shops.

Agent cognition is often based on the belief-desire-intention (BDI) system formulated by

Rao and Georgeff (1995). In this system an agent has beliefs about the current state of

the environment and related desires about what it wants to achieve, they commit to an

intent which is the desire they want to achieve. A plan, made up of a set of actions, is

chosen to realise there intent. This methodology has been used in the context of building

performance simulation, where agents obtain a belief about the state of the current envi-

ronment from a building performance simulation tool. In this vein, Andrews et al. (2011)

combine the Radiance ray tracing tool with agents, to simulate interactions with lighting

and shading. Agents build up their understanding of the environment with data from

Radiance (room illuminance level) then, based on their assigned personal characteristics,

develop plans of actions and act on the plan that maximizes their utility (satisfaction). To

simulate diversity each agent was given an archetype of either green activist, good citizen,

healthy consumer or traditional consumer. These archetypes were developed from ques-

tionnaires administered to building occupants, to better understand their preferred lighting

levels and the energy use they are comfortable with. The agents’ assigned archetype would

effect their desire thus altering their intended method of interaction. Kashif (2014) uses
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a similar approach to predict the use of fridge-freezers, where an occupant would first

perceive their hunger, second conceive a desire based on social normals, household rules

and culture. They then finally perform an action, remove food from the freezer, increasing

the electrical load on the fridge and then cook. These approaches attempt to encapsulate

the human decision making processes involved in each activity. But they can lead to very

complex and unwieldy models that have a weak empirical basis. Paradoxically this is also

their strength, that with relatively little data reasonably reliable aggregate behaviours can

be simulated.

Come what may it is important that empirical studies results have a high degree of cer-

tainty and that agents’ rules and behaviours are grounded with data based on reality

(Gimblett, 2002). In recent years there has been a move from models based on social

theoretical rules and behaviours, to those derived from observation (Janssen and Ostrom,

2006). By using previously developed stochastic models of occupant behaviour it is pos-

sible to predict agent behaviours based on solid empirical evidence. As an alternative to

the BDI approach, Liao et al. (2012) use room occupancy data to inform their agents’

behaviours for the prediction of presence across multiple rooms and occupants. However,

Liao et al. note that for larger numbers of agents, it is often difficult to obtain high quality

data from which to infer reliable rules. The model was also developed for a very specific use

case of university buildings where students and professors have very different schedules.

It has yet to be seen if this method can be applied to other building uses. Furthermore,

these agents do not have the properties (social ability, reactivity and pro-activness) re-

quired by Wooldridge and Jennings (1995) to be formally designated as intelligent agents.

More recently, Langevin et al. (2014) use data taken from a one year study of an air con-

ditioned office to develop rules that allow an agent to proactively restore thermal comfort

based on thermal sensation. These rules allow an agent to make changes to clothing, to

operate windows/fans/heaters and to change set point temperatures. These values are

then parsed to a dynamic building simulation program using the Building Control Virtual

Test Bed (BCVTB). The Langevin agents are only as good as the realism given to the

agent attributes specified for the model (such as clothing levels), the corresponding com-

fort model and the limited thermal inhomogeneity in the simulated indoor environment.

With thermal discomfort as the trigger for a specified behaviour (based on the stationary

ISO 7730 model), an error in the (dis)comfort prediction will inevitably undermine the

faithfulness of the predicted interactions and their consequences. An improvement would

be to more explicitly represent the dynamic relationship between environmental stimuli

and interactions for prediction.

In contrast with previous strategies to model occupants’ behaviour that have tended to

be based either on data-driven stochastic models or BDI rules, integrated with a specific
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dynamic building simulation program, this work proposes a more general framework. The

virtues of both modelling approaches can be combined (data-driven where data is abundant

and BDI where it is not) and interfaced with a range of building simulation programs;

whether at the building or the urban scale. To this end and in the first instance, existing

models of occupants’ activities, metabolic heat gains, use of windows, lights and shading

devices are integrated with a bespoke platform called Nottingham Multi-Agent Stochastic

Simulation (No-MASS). These agents’ interactions are parsed to a building simulation

program, which in turn parses environmental parameters to No-MASS, to impact on future

behaviours. This provides a generic way to integrate existing and future stochastic models,

speeding up time from model development to integration and thus availability of missing

models for use by the broader simulation community, increasing their usefulness. The

remainder of this thesis is dedicated to describing this new framework and evolutions

of it, from population generation, through parameter assignment to simulation (pre and

runtime), and to demonstrating its utility.
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No-MASS

There remain many gaps in our ability to model occupants’ stochastic behaviours (such as

their interactions with heating and cooling systems, hot water devices, curtains, their use

of windows to evacuate pollutants, etc). However there is the availability of a sufficient

core set of rigorously formulated and validated models with which to evaluate the proof

of principle of No-MASS as a platform for addressing type IIIb and IV errors and thus of

evaluating the robustness of buildings’ performance. This chapter introduces No-MASS,

then discuses how it is used in the following chapters, the models included and how it is

implemented. Also described is how it can be connected to other simulation tools through

a generic interface, such as EnergyPlus, and finally explain its inclusion in a leading

commercial building simulation tool, called DesignBuilder.

3.1 Concept

The No-MASS simulation tool was developed in two phases. The first phase (alpha) is

deployed in Chapter 4 to test the effects of stochastic models on buildings, while the second

phase (beta) is used in Chapters 5 to 7.

Alpha Version

The initial family of models integrated with No-MASS includes models of occupants’ ac-

tivities (Jaboob, 2015), presence and corresponding metabolic heat gains (Page et al.,

2008), window interactions (Haldi and Robinson, 2009), shading interactions (Haldi and

Robinson, 2010) and lighting interactions (Reinhart, 2004). These models were chosen

17
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as they have been empirically verified and were readily available. Simulations with No-

MASS follow the process outlined in the conceptual flow-diagram in Figure 3.1. A num-

ber of pre-processes are first performed. Initially an agent population is created, with

each agent assigned a profile that influences their subsequent behaviours. For example,

socio-demographic characteristics influence the applicable probabilities with which time

dependent activities will be predicted; likewise, the probability of being present at a given

time step and the corresponding location. This maybe the agents’ office when occupying

(and sleeping in) a non-residential building or their bedroom for sleeping when occupying

a residential building. These characteristics and the subsequent modelling of activities

is constrained in the present prototype version of No-MASS to cases of adults that act

independently but whose activity choices may be influenced by the composition of the

household. For example, couples may have different activity profiles than single adults liv-

ing alone and elderly agents may perform different actions at different times compared with

younger adults: there is a greater chance that an elderly retired occupant will be present

and cook during the day, whereas a younger occupant will more likely be out at work.

The profiles are defined through a simulation input file, that contains the characteristics

of each agent.

Once the agents are defined a pre-process of those models that do not utilise transient

environmental inputs, such as models that depend on time only, is run. A distinction

between residential and non-residential buildings is made. For residential buildings the

activity that an agent will perform and the corresponding location at each time step

is processed; whereas in non-residential buildings, a separate presence model is used to

calculate whether an agent is present in a given zone at each time step. Once these pre-

processes are complete EnergyPlus is called to simulate the building’s energy flows for the

first time step. At the end of each subsequent time step, No-MASS is called by EnergyPlus.

Environmental conditions are parsed from EnergyPlus to No-MASS, which then uses these

to predict our agents’ behaviours. Each agent is called independently and at random. For

residential buildings the pre-processed activity and location for the present timestep is

retrieved and used to calculate the metabolic gains for that agent and location. In non-

residential buildings only the pre-processed presence is retrieved to calculate metabolic

gains. Next agents’ interactions with shading devices, windows and lighting are predicted.

The outputs from all models are then parsed back to EnergyPlus, which resolves the energy

consequences of these interactions when simulating the building’s energy flows during the

next time step, so that there is no within timestep iteration. This process continues until

the end of the simulation period.
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Figure 3.1: No-MASS Flow Diagram of alpha version



Chapter 3. No-MASS 20

Beta Version

These core models integrated with the core version provide us with a rigorous and useful

starting point, regarding the modelling of occupants’ stochastic behaviours that impact

on the buildings performance. However not all such stochastic phenomena are covered. In

response Figure 3.2 gives an overview of an extension of the alpha version: a beta version

of No-MASS with two new models included, the first a social interaction framework and

the second a heating setpoint model.

As noted earlier, No-MASS builds an agent population, assigning a profile to each member

dependent on the input parameters supplied in the No-MASS configuration file. These

profiles are made up of the stochastic model coefficients for windows and shading, or in the

case of the presence and activity model the probabilities of being in a state at a given point

in time. However now an improved activity model is implemented, this allows occupant

profiles to be defined through social demographical characteristics, these alter when and

where the agent will be present in a household (Jaboob, 2015). These demographical

characteristics consist of the agents age range, marital status, whether they are employed,

their family configuration, education level and gender. A retired person will spend more

time at home during the day then a professional below the age of 60, a student will sleep

and wake later.

The use of shades, windows, lights and heating system setpoints are modelled via a so-

cial interaction framework; which allows communication with other occupants, creating a

conflict resolution mechanism and co-operative strategy. A voting system is used to allow

agents to voice how they wish to interact with the environment, if the other agents in the

zone agree an interaction takes place. Unlike the alpha version the social interaction model

allows the stochastic models for window, shading and lighting have been moved inside the

agents themselves. A benefit of this is that each agent can be given a different set of co-

efficients for each model meaning more diversity between agents. Belief-Desire-Intention

(BDI) rules are applied, allowing rules to be integrated where data-driven stochastic mod-

els are not available. Outputs from the building solver and other models such as activities

are used as inputs to deterministic rules, thus allowing No-MASS to be extended beyond

the stochastic models. Finally, an agent reinforcement learning model has been introduced

that can model either heating system setpoints or window interactions. Agents learn how

to interact in a way that keeps discomfort to a minimum based on the temporal spacial

restraints of the environment.
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3.2 Implementation

No-MASS was built from the ground up, having tested a number of current multi-agent

simulation development platforms, including Repast Simphony and Anylogic. Although

these platforms are very useful they come with significant overheads, typically requiring a

large library of graphical user interface routines to be imported, making it more difficult

to package a No-MASS equivalent with simulation tools such as EnergyPlus and the De-

signBuilder interface to it. C++ was chosen as the development language as it is simple

to integrate with EnergyPlus (Crawley et al., 2001), our chosen building simulation tool is

also developed in C++. Using the same language allows for easy communication between

the two tools. EnergyPlus developed by the US Department of Energy, is well tested,

well documented and open source; allowing us to readily understand how to connect to it.

There are also two interfaces that allow other tools to interact with it, without altering

the EnergyPlus source code. The first is through the building controls virtual test bed

(BCVTB) and the second is through the Functional Mockup Interface (FMI) (Nouidui

et al., 2013). The No-MASS platform connects to EnergyPlus using FMI, which is an

open standard so that No-MASS could in principle be integrated with any other FMI

compliant simulation tool. This is chosen over the BCVTB as it allows direct commu-

nication through C++ double precision arrays using predefined calling points, whereas

BCVTB requires calls over sockets adding complexity and slowing the processing time.

The calling points are well documented, with No-MASS only using the initialise function,

the receive an array of doubles function for the environmental variables and the send an

array of doubles function for the occupant interactions. The array of values that No-MASS

receives at each time step is defined in the XML file ModelDescription.xml. At the begin-

ning of the time step the following environmental variables are received: horizontal sky

illuminance, rain status, outdoor air dry-bulb temperature, zone air temperature, zone

humidity, indoor radiant temperature and indoor illuminance. Returned to EnergyPlus

are the number of occupants in a zone, their metabolic gains, appliance gains, the window

status, the blind shading fraction, the lighting status and the heating setpoint. Due to

the window, shading and location/presence models used within No-MASS a sub-hourly

timestep is recommended (ie. 5 minutes), as longer timesteps may overestimate the impli-

cation of the occupant interactions. For example the response time to an agent opening

a window may be short with the room cooling in just a few minutes. An agent can only

respond at the next time step, if the timesteps are not sufficiently short in length, the

open window may over cool the room. Figure 3.3 shows the effects of different simulation

timesteps on the performance of the simulation on a non-residential monozone building.

The timestep choice will have a differing impact depending on the complexity of the build-

ing and the occupants simulated.
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Figure 3.3: Time step sensitivity analysis, using a single zone non-residential building,
highlighting the effects of different time steps when using No-MASS, 100 replicates each

No-MASS has been developed as both a Linux shared object and as a Microsoft Windows

dynamic link library. Figure 3.4 shows how the system connects to EnergyPlus. In the

same way that EnergyPlus reads in the building configuration and weather data from the

IDF file and the EPW file, No-MASS reads in data from an XML file called NoMass-

Config.xml. This file contains information about the occupants that is used to build the

agent population, and the subsequent processing of an agent activity profile (a series of

parameters defining the the socio-demographic characteristics of the agent, ie. gender,

age, income level, etc) that is used to calculate the probability of an activity taking place

at each timestep, as well as the bedroom or office that this agent will assigned to during

the corresponding activity (eg. the bedroom while sleeping). It also defines the window
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and shading model coefficients for each model, allowing for diversity between occupants

and models to be represented as needed.

Figure 3.4: EnergyPlus, FMU Data Flow Diagram

3.3 Integration

3.3.1 EnergyPlus

EnergyPlus is typical in its use of deterministic rules that represent occupant interactions

within buildings. The types of interactions that can be set are limited to single event driven

procedures, for example if x happens at time t do y. Heating setpoints in Energyplus are

determined by a combination of temporal (the time and date) and comfort related eg.

air temperature, operative temperature, thermal comfort (Fanger’s predicted mean vote)

and humidity parameters. An example of a schedule defining the heating setpoints would
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be:
Schedule : Compact,

Kitchen Heating SP Sch,

Temperature,

Through : 31 Dec,

For : Weekdays,

Until : 05 : 00, 12,

Until : 10 : 00, 18,

Until : 17 : 00, 12,

Until : 23 : 00, 18,

Until : 24 : 00, 12;

This describes the heating setpoints for the kitchen zone for weekdays throughout the year

heating the zone to 18◦C between 5am to 10am and 5pm to 11pm, and to 12◦C otherwise.

For window openings the interactions are set in a similar schedule format, albeit with

more parameters to choose from (including air temperature, enthalpy, constant, thermal

comfort (ASHRAE 55 adaptive and CEN 15251 adaptive), adjacent temperature and

adjacent enthalpy). Shading interactions are enabled through a schedule then set through

a single setpoint value, either a temperature for heating or cooling, or solar irradiance

incident either at the window or on the horizontal plane. Lights are set though a fraction

schedule where the values are a fraction of the design level to allow for dimming. Presence

within a zone is also set through schedule of the fraction of the total number of occupants

that can occupy a zone.

Functional Mockup Interface (FMI)

No-MASS couples with EnergyPlus through the open FMI standard, a generic program-

ming interface that allows other programs to interface to EnergyPlus to extend its func-

tionality. It provides a description of how information can be passed from EnergyPlus at

runtime to a functional mockup unit (FMU) which can then make calculations, the results

of which are parsed back to EnergyPlus. These results are then used by EnergyPlus for

future calculations.

An FMU consists of:

• The FMU Library (Windows Dynamic Link Library, Linux Shared Object)

• A Model Description File
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• Any Other Configuration Files

The library file contains the programmed equations, in a programming language that

supports C interfaces. When the No-MASS source code is compiled it is in the form of

the library file. No-MASS works as both a Windows dynamic link library or a Linux

Shared object. It can also be compiled on Macintosh computers; however EnergyPlus

does not support FMI on Macintosh computers so no testing has been conducted on the

MacOS.

FMI works using a simple data exchange methodology (Figure 3.5). At each timestep

EnergyPlus sends a set of predefined variables (x) to the FMU (e.g. Zone Mean Air

Temperature and/or Site Rain status). The FMU performs a calculation on the values

and returns a set of results (y) to EnergyPlus (e.g. occupant location and/or shade

status). These return values can be made to overwrite EnergyPlus values for the next

timestep.

Figure 3.5: No-MASS Data Flow Diagram

Within EnergyPlus there are three types of external interface that can be written to:

ExternalInterface : FunctionalMockupUnitImport : To : V ariable

ExternalInterface : FunctionalMockupUnitImport : To : Schedule

ExternalInterface : FunctionalMockupUnitImport : To : Actuator

No-MASS uses the schedules and actuators to write values to EneryPlus, overwriting the

predefined deterministic rules, at each timestep. The flow of processing from EnergyPlus

to the FMU is given in Figure 3.6.
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Figure 3.6: FMI Interface Flow Diagram

EnergyPlus starts, reads in its configuration file, and determines that it needs to run a

simulation for use with an FMU. EnergyPlus then searches for the FMU, in this case No-

MASS, and extracts the information it needs to communicate with the FMU. For each run

period the FMU is initialised by calling the initialise method of the FMU. Then at each

timestep EnergyPlus calls the FMU, setting the variables in the FMU by passing an array

of double precision values defined in the model description XML file. Then EnergyPlus

calls the FMU do step method where the FMU performs any calculations (see Figure 3.1

for the processes inside No-MASS). To receive the return values EnergyPlus calls the get

double precision array method in the FMU and receives an array of double precision values

back, as specified in the model description XML file. Once all timesteps are completed

the FMU is terminated and the simulation is ended.
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DesignBuilder

Figure 3.7: Main DesignBuilder interface

.

DesignBuilder provides access to EnerygPlus through an easy-to-use interface that serves

more than 3500 customers in 80 different countries. Their main market sectors are ser-

vices engineers, building simulation experts, architects (technical), energy assessors (UK),

LEED, BREEAM, Green Star assessors, university R&D and teaching. To enable re-

searchers and early adopters to use and test No-MASS, GUI components controlling No-

MASS were integrated with the DesignBuilder GUI (See Appendix A for screen shots of the

tool in use). In this way No-MASS can now in principle be used by any building designer

without the need to know the complexities of EnergyPlus, FMI, and No-MASS.

The steps in developing and simulating a No-MASS compliant model are as follows: Using

the DesignBuilder GUI a building is designed. A user can then enable the No-MASS

occupants in the simulation configuration dialogue. Once enabled on the main occupant

activity screen there are a choice of occupant templates. There are predefined sets of

occupants for offices or residential buildings (eg. family with children, working professional,

students, retired, etc.) that can be chosen. Each set of occupants can be further edited

allowing different combinations of presence, activities, shades and windows profiles to be

defined. The current limitations of the GUI are that it does not allow for agent learning

and as of yet BDI rules have not been added.

This tool allows for quick and easy setup of complex building types with differing stochastic

occupants. A designer can now test the building against a range of different use cases, with
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occupants simulated as agents and interactions based on real world empirical, validated

models and data.





Chapter 4

Data Driven Stochastic Models,

Coupled with Building

Performance Simulation

No-MASS couples stochastic models of occupant interaction with building simulation, the

process of which was described in the previous chapter. This chapter describes how these

models work and the effects they have on building performance. The models are also

analysed in terms of their inputs to ensure that each has a significant effect on building

performance.

4.1 Stochastic Models

Activity model

The activity model (Jaboob, 2015) predicts the time-dependent probability that one of

a set of ten activities will be performed in the home. These activities include sleeping,

passive, audio/visual, IT, cooking, cleaning, metabolic, washing appliance use, personal

washing and absence from the building. The activities were derived from the UK Time

Use Survey (TUS) data 2000-2001 (Gershuny and Fisher, 2013). Jaboob’s work was to

better predict activity-dependent use of energy in homes. The data was filtered into

10 activities, those within the home aggregated into a set of nine meta activities, with

activities taking place outside of the home aggregated into a single activity, out of the

home. This formulation of 10 energy-related activities reduced the risk of over-fitting in

their model. Most of these activity aggregates are self-explanatory, however some are

31
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less so. The activity passive refers to occasions when an occupant is awake, but not

physically active; whereas metabolic refers to when an occupant is awake and physically

active. After implementing and testing a number of different prediction methodologies

Jaboob (2015) found that modelling the activities as a time-dependent Bernoulli process

using multinomial logistic regression was the most parsimonious (good predictions and

least computationally expensive) approach.

P (x, t) =
exp(Aj(x, t))

ΣN
j=1exp(Aj(x, t))

, j = 1, . . . , N (4.1.1)

and

Aj(x) = αj +
n∑
k=1

βjkxjk (4.1.2)

Where, t is time, N corresponds to the total number of activities, n the number of pre-

dictors, and x the predictors describing the observation, each associated with a slope

coefficient βjk, and αj is the intercept. As the probabilities are only dependent on time it

is possible to generate a 10 by 24 matrix giving the probability of performing each activity

at a given hour; though the corresponding model can also be re-called within the hour for

sub-hourly simulation timesteps. Models can also be estimated for subpopulations of the

time use survey dataset from which they are derived, to give probabilities that depend

for example on age, employment status, season or day of the week. No-MASS accounts

for diversity through a choice of sub-models, for the activity model a range of occupants

defined through social demographical characteristics can be chosen, these alter when the

where the agent will be present in a household. A retired person will spend more time at

home during the day then a professional below the age of 60. The sub-model used for each

agent is assigned when the agent population is generated. This model is pre-processed,

assigning a state to each timestep within the simulation. This is achieved by drawing a

random number for each timestep for each agent. Where that number falls within the

range of probabilities for that hour, the corresponding activity is assigned to the relevant

agent. These are then stored for retrieval at run time.

Note that this process is only considered for residential buildings and does not apply to

the simulation of non-residential buildings, for which the corresponding time use survey

data is not available. Jaboob (2015) also provides predictions for secondary activities,

for example audio/ visual while cooking. However these have not yet been integrated;

currently No-MASS infers location, clothing level and metabolic rate from the activity

model, thus there would be no energy related consequences of the second action.
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Agent States

During a simulation our (residential) agents are assigned one of ten activity-dependent

states. No-MASS uses a state machine, which is a way of defining programmatically

the states an agent may be in and the possible transitions from each state to the next.

Dependent on the state, values of certain parameters are modified; in this thesis the values

in Table 4.1 are used for all agents, although they can be changed as required depending

on simulated building configuration and occupant type. These values are taken from ISO

7730 (ISO, 2005). In the case of the more constrained environments of non-residential

buildings a metabolic rate is set to 116 and clothing level (clo) to 1.

State Location Clothing level (clo) Metabolic rate (W/m2)

Sleeping Bedroom 2.55 46

Passive Living Room 0.7 58

Audio/Visual Living Room 0.7 70

IT Office 0.7 116

Cooking Kitchen 0.7 116

Cleaning Kitchen 0.7 116

Washing self Bathroom 0.3 116

Washing appliance Kitchen 0.7 116

Metabolic Living Room 0.7 93

Absent NA NA NA

Table 4.1: Agent states with corresponding locations and values

Presence and Location

Within No-MASS there are two methods for calculating presence within a building, the

choice of which depends on the type of building. For residential buildings, presence (or

rather absence) is predicted directly by the activity model (as noted above). Furthermore,

based on the activity being performed [or the agent’s state], a location can be inferred.

For example, if the agent is in the sleeping state it can be assumed that they are in their

bedroom. But this may not always hold true. For example, if an agent is predicted to

sleep during the day (and retired folk do this with relatively higher probability) they

may do so in the living room. Thus, in the future there may be need for archetype-

dependent assignment probabilities to account for such eventualities. To allocate agents to

a zone within EnergyPlus an external schedule of occupancy for each zone is defined in the

EnergyPlus configuration file. EnergyPlus then assumes that a value for each schedule will

be received by its external interface at each time step. For the simulation of non-residential
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buildings a presence model (Page et al., 2008) predicts when an occupant is present within

their office, based on an inhomogeneous Markov chain, using a mobility parameter µ and

a time-dependent profile of the probability of presence P(t) as input. Since this model

uses no environmental parameters, it may be run as a pre-process, generating a sequence

of presences and absences for each agent. These are deduced by calculating the transition

probability at each time step, either from absent to present:

T01(t) =
µ− 1

µ+ 1
· P (t) + P (t+ 1) (4.1.3)

Or present to present:

T11 =
P (t) − 1

p(t)
·

µ− 1

µ+ 1
· P (t) + P (t+ 1)

 +
P (t+ 1)

p(t)
(4.1.4)

Where the mobility parameter is by default held constant at an empirically determined

value of µ = 0.11 (though this should in the future be assigned from a distribution that

depends on the type of workplace; as in the case for p(t)). The other two transitions,

present to absent and absent to absent are simply T10 = 1 − T11 and T00 = 1 − T01. Long

term absences due to illnesses, vacations or work related business trips are not presently

stochastically predicted. Although the TUS data (Gershuny and Fisher, 2013) has data

on people while at work, at the current point in time there no empirically validated model

using this data for presence in a non-residential building. The TUS data is a snapshot in

time and does not include longitudinal sickness, vacation or work trip data over the course

of a year.

Metabolic gains

Metabolic gains are calculated using Fanger’s PMV model, as described in ISO 7730 (ISO,

2005), based on the standard physical (air temperature, radiant temperature, relative air

velocity and relative humidity) and personal (clothing level and metabolic rate) param-

eters. With the exception of an assumed relative air velocity of 0.1 m/s, the physical

parameters are supplied by EnergyPlus; whereas the state-dependent personal parameters

are as defined in table 4.1 (with external work taken to be 0W). As EnergyPlus takes

a single metabolic rate for all agents within a zone, an average for all agents present in

the zone is calculated. This is set within EnergyPlus through the zone activity schedule,

which multiplies this average gain by the number of present occupants to determine the

total metabolic heat gain for all occupants.
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Window Actions

Haldi and Robinson (2009) compared twelve window opening models and found the most

effective at predicting window openings in offices to be a hybrid model, this was later

validated against residential buildings Schweiker et al. (2012). This hybrid model first

predicts transitions in opening status using a presence-dependent Markov chain and then in

the cases of transitions to the open state, predicts the duration for which the window stays

open using a Weibull distribution. The probability of transition in window opening state,

from i to j(i, j = 0, 1) is calculated using a logistic regression model of the form:

Pij(x1, . . . , xn) =
exp(α+ Σn

k=1βkxk)

1 + exp(α+ Σn
k=1βkxk)

(4.1.5)

The predictors x at arrival are indoor temperature, outdoor temperature, absence duration

and rain presence. During occupancy they are indoor temperature, outdoor temperature,

length of presence and rain presence, whilst at departure the predictors are indoor tem-

perature, daily mean outdoor temperature, length of departure and a dummy parameter

to represent whether the window is on the ground floor (which reduces the probability of

windows being left open at night). With the exception of the presence-related parameters

and the ground floor parameter the values of these predictors are supplied by EnergyPlus

via the Functional Mockup Interface. No-MASS calculates the occupants’ presence as

well as the future presence and past absence durations when needed. Absence duration

is computed within No-MASS by rewinding the array of chains of presence and absence

from the current timestep; and the opposite for the duration of departure. The ground

floor parameter is given as an input to No-MASS at runtime as a boolean value per zone,

set to true if the zone is at ground level otherwise false. This is defined in an simulation

configuration file described in implementation section (3.2) as it can not be supplied by

EnergyPlus. By default the regression coefficients α, βk in equation 4.1.5 are estimated

from data relating to an aggregate population (i.e. using all empirical data for all mem-

bers of the population surveyed), so that each agent uses the same values to predict the

probability of a transition. The parametric probability density functions of the Weibull

distribution describing window opening survival time takes the form:

λα(λt)α−1exp(−(λt)α) (4.1.6)

where the shape is log(1/α) = 0.871 and the scale is:

λ = 1/exp(a+ bθout) (4.1.7)
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and a = 2.213, b = 0.173 and θout is the outdoor temperature supplied by Energy-

Plus.

At any given time-step, determine whether a zone is unoccupied. If so, the window opening

status is unchanged; otherwise five further cases are considered: 1) If the occupant arrives

and the window is closed a random number is drawn. 1a) If this is greater than the

probability for opening it the window is kept closed; otherwise the window is opened. 1b)

Upon opening survival duration is calculated (the period of time that the window will

remain open) from the Weibull distribution. This is decremented at each subsequent time

step until the survival duration reaches 0 and the window is closed. 2) If the occupant

arrives and the window is open, follow the same steps as in case 1b. 3) For intermediate

presence a random number is drawn from a uniform distribution and if this is greater than

the corresponding probability for opening, keep the window closed. Otherwise, a survival

duration is calculated and step 1b is implemented. 4) If occupants vacate the zone and the

window is closed, predict whether the window will be opened as they leave. On the other

hand, if the window is open, predict whether the window will be closed. In each case a

random number is drawn, if this is below the corresponding transition probability (open to

closed / closed to open), the state is changed; otherwise the state stays the same. Within

EnergyPlus an external schedule for windows is created, setting the value to be either 1

for fully open or 0 for fully closed for each time step (in the future it would be useful to

include predictions of opening proportion, based for example on the model described in

Schweiker et al. (2012)).

External Shading Actions

The shading action model (Haldi and Robinson, 2010) predicts lowering and raising prob-

abilities, which are also based on Markov chains. Upon an agents’ arrival the first step

in this model is to determine the probability with which a raising or lowering action will

take place:

Pact(Ein, BL) =
exp(a+ binEin + bLBL)

1 + exp(a+ binEin + bLBL)
(4.1.8)

Where Ein is the indoor illuminance supplied by EnergyPlus, at a suitable daylight refer-

ence point within the zone and BL is the unshaded fraction at the previous time-step. If the

shade is lowered or raised then predict whether the shade is fully raised or lowered:
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Pfullact(Egl,hor, BL) =
exp(a+ boutEgl,hor + bLBL)

1 + exp(a+ boutEgl,hor + bLBL)
(4.1.9)

The regression parameters (bin,bL and bout), taken from Haldi and Robinson (2010), are

also estimated using data for an aggregate population. If the shades are only partially

raised or lowered, their fractions are drawn from a Weibull distribution:

f(∆B) = λα(λ∆B)a−1exp(−(λ∆B)α) (4.1.10)

where α = 1.708 and

λ =
1

exp(−2.294 + 1.522BL,init)
(4.1.11)

Otherwise, shading remains unchanged. A similar process but with different probabilistic

models occurs whilst occupants are present. Although the model relates to a specific

building design, group of occupants and shading system, the work conclusively found that

the driving variables for the shading actions are local stimuli on the workplane, which

directly links visual comfort, visual variables and actions. Thus should be applicable to

a range of buildings where occupants are affected by visual discomfort. The outcomes

from these models allow us to set the shading fraction in EnergyPlus. The current version

of EnergyPlus (8) only allows shades to be either fully open or fully closed. As such, it

does not provide a function to overwrite an external shade fraction value from an external

interface such as No-MASS. The EnergyPlus source code was altered to provide a function

that reduces the radiation transmitted through the window in proportion to the fraction

that the shade was closed, this function can now be accessed from an external interface at

each timestep (see Appendix B for the source code changes).

Lighting

The prediction of the use of lights within No-MASS is based on the Lightswitch-2002

algorithm (Reinhart, 2004). Indoor illuminance E of the zone is taken from EnergyPlus

for the current time step and compute the probability of turning the lights on when the

agent arrives or whilst they are present, and thus whether this action takes place. The

switch on probability is calculated as:

P =
a+ c

1 + exp[−b(log10(E) −m)]
(4.1.12)
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where for arrival a = −.0175, b = 4.0835, c = 1.0361,m = 1.8223 and while present

a = 0.0027, b = 0.017, c = −64.19 and m = 2.41. When all agents vacate the zone

predict whether the lights will be turned off, as a function of the anticipated duration of

their absence, calculated by forward-winding from the time of departure until the time

of return. In the range 0.5 < D ≤ 12, where D in the duration of departure in hours,

the probability of turning lights off at departure is described to a good approximation

by:

P = 0.268 ∗ ln(D) + 0.259 (4.1.13)

For absences below 0.5 hours assume that lights remain on, where as for absences exceeding

12 hours the lights are assumed to be turned off (Pigg et al., 1996). The consequent lighting

status (on-off) is set within EnergyPlus at each timestep as a lighting schedule for each

zone within the building.

4.2 Case Study

To demonstrate the application of No-MASS and its coupling with EnergyPlus two differ-

ent buildings in two locations are examined. A hypothetical house and shoe box office are

located in both Geneva, Switzerland and in Nottingham, UK. Results from No-MASS are

compared to the results arising from standard deterministic schedules and rules for the

relevant house/ office typology (or template) used by the DesignBuilder interface. The

layouts of the buildings are shown in Figure 4.1.

Figure 4.1: Residential ground floor (left), Residential 1st floor (middle), Office (Right)

Details such as heating set-points, glazing ratios, etc. are given in Tables 4.2 and 4.3. For

simplicity, both buildings adopt the same constructions as in Table 4.4. The weather files

are taken from DesignBuilder giving the locations Geneva, Switzerland (+46◦25′, 6◦13′)

and a location about 40 miles Nottingham, UK (+53◦28′,−1◦0′) called Finningley. The
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stochastic models for windows and shading integrated into No-MASS have also been hard-

coded within CitySim and tested with Geneva weather data (Haldi and Robinson, 2011).

The results of which provided a visual comparison for initial testing. The weather data was

taken from EnergyPlus weather files, of which the closest to the University Of Nottingham

is the weather data at Finningley airport, UK. Thus providing two different climates to

simulate No-MASS against. The fractional occupancy schedule for the office on weekdays

are: [0.0] 00:00 until 07:00, [0.25] until 08:00, [0.5] until 09:00, [1.0] until 12:00, [0.75]

until 14:00, [1.0] until 17:00, [0.5] until 18:00, [0.25] until 19:00, [0.0] until 24:00. Inter-

actions with external shades and lights operate on the same schedule; the windows open

when occupants are present and the indoor temperature exceeds 24◦ C. In Nottingham

only heating demand is considered, whereas in Geneva cooling demand is also considered.

Yearly simulations are performed throughout this thesis, unless otherwise stated.

Zone
Area

[m2]

Volume

[m3]

Gross Wall

Area[m2]

Glazing

ratio%

Lighting

[W/m2]

Setpoint

Temp[c]

Livingroom 13 46 36 7 7.5 21

Halldownstairs 4 15 6 0 5 20

Kitchen 15 52 39 8 15 18

Bathroom 3 10 12 11 7 18

Hall 4 19 10 0 5 18

Residential Of-

fice

3 12 13 10 5 22

Second bedroom 9 34 22 15 5 18

Master bedroom 10 37 24 16 5 18

Attic 37 26 7 0 0 -

Total 101 255 172 68 5 -

Table 4.2: Residential Building Zone Details

Zone
Area

[m2]

Volume

[m3]

Gross Wall

Area[m2]

Glazing

ratio%

Lighting

[W/m2]

Setpoint

Temp[c]

Office 11 39 47 6 20 21

Table 4.3: Non-Residential Building Zone Details
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Location Layer Thickness (m) Material

External Wall Outer 0.1 Brick

External Wall 2 0.07 XPS extruded

External Wall 3 0.1 Concrete Block

External Wall Inner 0.01 Gypsum Plaster

U-Value 0.37

Internal Partition Outer 0.02 Gypsum Plaster

Internal Partition 2 0.1 Air Gap

Internal Partition Inner 0.02 Gypsum Plaster

U-Value 2.86

Ground Floor Outer 0.13 Urea Formaldehyde Foam

Ground Floor 2 0.1 Cast Concrete

Ground Floor 3 0.07 Floor Screed

Ground Floor Inner 0.03 Timber Flooring

U-Value 0.26

Floor Outer 0.10 Cast Concrete

U-Value 4.7

Pitched Roof Outer 0.02 Clay Tile

Pitched Roof 2 0.02 Air Gap

Pitched Roof Inner 0.005 Roofing Felt

U-Value 4.97

Table 4.4: Construction Materials

Repeated simulations help us to understand the likely distribution of the output parame-

ters of interest and thus the corresponding robustness of alternative design proposals. But

the extra simulation time needed for replicates can be seen as a weakness, especially with

large models. It is important then to calculate the minimum number of simulations that

need to performed to achieve a cumulative mean convergence graph (Stewart, 2004). To

this end, the heating demand at each simulation is taken and added to a cumulative mean

and plotted, with the results converging on the number of simulation replicates needed.

Figure 4.2 suggests a convergence around 90-100 replicates. A t-test shows that the results

do in fact converge at 100 replicates with a 95% confidence interval. At a 90% confidence

interval the results converge at around 50-60 simulations.
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Figure 4.2: Convergence of mean heating demand: Geneva Office (left) and House
(right), 95% confidence interval

4.3 Comparison of Deterministic Simulation and No-MASS

Depending upon the assumptions made in the choice of deterministic rules and sched-

ules (taken from the defaults in the DesignBuilder tool given to the specified zone type

i.e. kitchen, bedroom, etc.), performance results can deviate significantly from those aris-

ing from the stochastic representation of people. The predicted median heating demand

for our office located in Nottingham obtained using No-MASS was 118.4kWh/m2, com-

pared with 93.3kWh/m2 when assuming deterministic behaviours. Meanwhile, for Geneva

there is a prediction of 103.9kWh/m2 (No-MASS) and 83.8kWh/m2 (deterministic) and

6.3kWh/m2 (No-MASS) and 5.6kWh/m2 (deterministic) for cooling.

Our predicted energy demands are considerably closer in the case of our house. For the

house located in Nottingham for heating a prediction of 68.5kWh/m2 (No-MASS) and

66.1kWh/m2 (deterministic) is made, whilst for the Geneva house there is a predicted

demand of 60.4kWh/m2 (No-MASS) and 58.3kWh/m2 (deterministic) for heating and

2.6kWh/m2 (No-MASS) and 4.9kWh/m2 (deterministic) for cooling.

In this case study the default deterministic rules and schedules assigned to the office build-

ing by DesignBuilder under predict (with respect to that predicted using our empirically

derived stochastic models) the heating demand by 15 to 25kWh/m2. The use of windows

during periods of heating causes the principle increase in demand; as the deterministic

rules would not allow this to happen. The house encloses larger volume of space, so damp-

ening the effects of occupants’ interactions compared to the office, so that interactions per
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zone cause a smaller difference of approximately 2kWh/m2 between the deterministic and

stochastic results. This close agreement also suggests that the deterministic representa-

tion of occupants’ interactions in DesignBuilder is coincidentally close to that predicted

using No-MASS models. No-MASS predicts a lower cooling demand in the house than in

the deterministic representation but a marginally higher demand in the office. The value

difference in both cases is approximately 2kWh/m2.

Repeated stochastic simulations enable the likely range of possible energy demands aris-

ing from occupant interactions (our type IIIb and type IV errors) to be quantified. A

description such as in 90% of our test cases for the Geneva Office the heating demand

ranges from 100kWh/m2 to 110kWh/m2 due to occupant interaction is of more value to

designers. The range of results provided by No-MASS is shown in Figure 4.3, also plotted

is the deterministic value as a point for comparison.

In line with the adaptive principle that upon experiencing discomfort people act in ways

which tend to restore their comfort, it is assumed that in No-MASS our agents interaction

are similarly motivated. Our agents sense their environment calling stochastic models that

predict interactions that are motivated by the agents’ (or strictly speaking the population

from which these model were derived) desire to restore their comfort. It is interesting to

determine whether our agent interactions have been successful. To this end, as aggregation

of thermally discomforting stimuli is made by calculating the degree hours for which a

threshold of 25◦ C has been exceeded, as an indicator of overheating risk (Robinson and

Haldi, 2008). The prediction of which for the Nottingham office is 3% (No-MASS) and

3.5% (deterministic). Predictions for the Geneva office are 15% (No-MASS) and 14%

(deterministic), which in both cases are similar. For the house the percentage of time

above 25◦ C are lower for No-MASS compared to the deterministic case. For the UK a

prediction of 0.01% (No-MASS) and 2% (deterministic), whilst for the Geneva house a

prediction of 6% (No-MASS) and 8.5% (deterministic).

The improved performance here in the case of No-MASS suggests that our empirically

derived stochastic models better emulates occupants’ behaviours (they are more effective)

than the assumed deterministic rules.
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Figure 4.3: Simulation results for yearly heating demand (Boxplot) Stochastic agent
platform 100 replicates, (Circle) Single deterministic simulation

Breaking the simulations down into monthly box plots1 (Figure 4.4) enables us to further

understand the variations in building performance arising from occupants’ interactions

over the course of a year. During January and December the heating demand is higher

for the stochastic simulations, as occupants can interact with the windows at a range of

temperatures (eg. to refresh the indoor air). During the summer months the deterministic

simulations register no heating demands whereas, the stochastic simulations allow the

temperature to drop below the heating setpoint as windows can now be left open over

night and so may have inadvertently cooled the interior. This is shown in Figure 4.5

where during the summer, windows can be open for as much as 20% of the month. The

monthly box plots for the rooms of the house (Figure 4.8) demonstrate that windows are

proportionately more open during the summer months.

1A standardised way of displaying the distribution of data based on five values: minimum, first quartile,
median, third quartile, and maximum
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Figure 4.4: Simulation results for monthly heating demand, (Left) Geneva Office,
(Right) Nottingham Office. (Boxplot) Stochastic agent platform 100 replicates, (Circle)

Single deterministic simulation
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Figure 4.5: Monthly average window state, stochastic 100 replicates, Geneva Office
(Left), Nottingham Office (Right)
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Figure 4.6: Monthly average light state, stochastic 100 replicates, Geneva Office (Left),
Nottingham Office (Right)
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Figure 4.7: Monthly Average external shade opening fractions, stochastic 100 replicates,
Geneva Office (Left), Nottingham Office (Right)
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Figure 4.8: Monthly window and heating usage for the rooms of the Geneva House

4.4 Model Analysis

Relatively few of the stochastic behavioural models, that have been developed thus far,

have been subjected to rigorous and comprehensive validation exercises. Of those that

have, the focus has been on the models’ ability to reproduce observed behaviours, expressed

as discrete states. Through careful parameter selection, the best of these models have

retained a parsimonious number of parameters and their coefficients estimated, for the

purpose of emulating reality. But these models may be more complicated than they need

to be, for the purposes of energy performance prediction or for design decision making

support. It may be that for such purposes less complicated forms of model would suffice.
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In this section seeks to determine firstly whether our stochastic models are useful (have

a significant impact on building performance) and then whether these models really are

parsimonious, as their authors claim them to be; for the purpose of building performance

prediction.

Impact Of Stochastic Models

After performing 100 simulations of a base case simulation including only heat gains of the

occupants from No-MASS, a model is added, either window, shading or lighting and 100

more simulations performed. To test in the first instance whether the models themselves

are useful a t-test is performed between both sets of data, if a significant difference is

observed then the model should be included within No-MASS. Table 4.5 shows that for

both Nottingham and Geneva all models have a significant impact on the simulation

results as the p-value in all cases are below 0.05. Each model should therefore be used

in future building performance simulation. This is by no means an exhausted list of the

occupant interactions that may take place; chapter 5 explores other occupant interactions

that should developed into empirically validated stochastic models and included within

No-MASS.
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Case Location Tested Value Simulation t p-value

House Geneva Cooling Windows model 135 ∼ 0.0

House Geneva Cooling Lights model 1790 ∼ 0.0

House Geneva Cooling Shading model -28.7 ∼ 0.0

House Geneva Heating Windows model 87.2 ∼ 0.0

House Geneva Heating Lights model -1040 ∼ 0.0

House Geneva Heating Shading model -13.4 ∼ 0.0

House Nottingham Heating Windows model 137 ∼ 0.0

House Nottingham Heating Lights model -1730 ∼ 0.0

House Nottingham Heating Shading model -13.6 ∼ 0.0

Office Geneva Cooling Windows model -238 ∼ 0.0

Office Geneva Cooling Lights model 307 ∼ 0.0

Office Geneva Cooling Shading model -86.5 ∼ 0.0

Office Geneva Heating Windows model -43.9 ∼ 0.0

Office Geneva Heating Lights model -263 ∼ 0.0

Office Geneva Heating Shading model -17.8 ∼ 0.0

Office Nottingham Heating Windows model -51.8 ∼ 0.0

Office Nottingham Heating Lights model -350 ∼ 0.0

Office Nottingham Heating Shading model -22.2 ∼ 0.0

Table 4.5: Models included in simulation compared to the base case simulation (degrees
of freedom = 99 and where p-value is ∼ 0.0 it is less than 2.2e-16)

Model Input Parameter Analysis

In this section the form of our chosen models is tested, to determine whether they can

simplified, by removing parameters and observing the affect this has on building energy

demand. Removing parameters from the inputs of the model would mean that fewer vari-

ables are parsed between No-MASS and the building solver, the number of computations

taking place within each model could be reduced, resulting in a decreased simulation time

and that fewer input parameters will be required by them. The latter may be particularly

helpful in the case of parameters that, whilst available in principle, may not be readily

available in practice (eg. precipitation); or which require further data manipulation (eg.

designation of ground floor windows).

To test the affect of removing model parameters on the overall simulation, once again the t-

test is used, but now a base case simulation configuration is created for each full model and

compared to the same configuration but with an input parameter removed. For example,
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create a base case configuration for the house and the office in the Nottingham and Geneva

locations with each utilising the full window opening model and perform 100 simulations.

The window model is altered by removing the ground floor input from the model, 100 more

simulations are run. A t-test is then performed against the yearly heating energy demand

and where required the cooling energy demands. If there is no significant difference (the

null hypothesis cannot be rejected) then the input can be removed, simplifying future

simulations.

Table 4.7 shows that for both buildings the input of rain into the window opening model

has little affect on the heating or cooling of the building so that the rain input can be

removed from future simulations. The duration an occupant is away from the zone for

longer than 8 hours can also be removed as this also has no significant effect. The ground

floor parameter does not have a significant affect on the heating of the house, but does

affect cooling demand. Therefore, for houses that do not have cooling, the ground floor

parameter could be removed. All other input parameters were significant for the window

interaction model.

The shading model inputs and their significance are presented in table 4.8, which shows

that for the office in Geneva heating demand is weakly sensitive to external illuminance

but is significant in Nottingham; whereas workplane illuminance is significant in Geneva

but has little effect in Nottingham. Cooling demand is strongly sensitive to both param-

eters within the house for Geneva and Nottingham. Table 4.9 shows that all inputs to

the lighting model have a significant affect when removed. Both models have few environ-

mental inputs and as each parameter affects energy demands in our case study (albeit not

consistently) their full sets of parameters are retained.
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Window Interactions on Office

Location Tested Value Removed Input t p-value

Geneva Cooling Future Duration 1.1 0.274

Geneva Cooling Ground Floor 3.08 0.0027

Geneva Cooling Indoor Temperature -30.3 ∼ 0.0

Geneva Cooling External Daily Mean Temperature -5.32 6.43e-07

Geneva Cooling External Temperature -30.5 ∼ 0.0

Geneva Cooling Rain 0.264 0.792

Geneva Heating Future Duration 1.51 0.134

Geneva Heating Ground Floor -1.67 0.0982

Geneva Heating Indoor Temperature 16.3 ∼ 0.0

Geneva Heating External Daily Mean Temperature 1.99 0.0496

Geneva Heating External Temperature 8.93 2.3e-14

Geneva Heating Rain -0.327 0.744

Nottingham Heating Future Duration -0.159 0.874

Nottingham Heating Ground Floor -1.63 0.106

Nottingham Heating Indoor Temperature 17.7 ∼ 0.0

Nottingham Heating External Daily Mean Temperature 2.74 0.00736

Nottingham Heating External Temperature 13 ∼ 0.0

Nottingham Heating Rain 0.0572 0.954

Table 4.6: Window Input Parameter Sensitivity Analysis on non-residential building
(degrees of freedom = 99 and where p-value is ∼ 0.0 it is less than 2.2e-16)
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Window Interactions on House

Location Tested Value Removed Input t p-value

Geneva Cooling Future Duration -0.315 0.753

Geneva Cooling Ground Floor 2.77 0.00663

Geneva Cooling Indoor Temperature -20.7 ∼ 0.0

Geneva Cooling External Daily Mean Temperature -8.86 3.31e-14

Geneva Cooling External Temperature -25 ∼ 0.0

Geneva Cooling Rain -0.543 0.589

Geneva Heating Future Duration 1.72 0.0879

Geneva Heating Ground Floor 0.429 0.669

Geneva Heating Indoor Temperature 6.61 1.97e-09

Geneva Heating External Daily Mean Temperature 2.72 0.00777

Geneva Heating External Temperature 6.47 3.82e-09

Geneva Heating Rain 0.723 0.471

Nottingham Heating Future Duration 0.718 0.474

Nottingham Heating Ground Floor -1.16 0.248

Nottingham Heating Indoor Temperature 8.55 1.54e-13

Nottingham Heating External Daily Mean Temperature 2.52 0.0132

Nottingham Heating External Temperature 6.36 6.26e-09

Nottingham Heating Rain -0.00445 0.996

Table 4.7: Window Input Parameter Sensitivity Analysis on residential building (de-
grees of freedom = 99 and where p-value is ∼ 0.0 it is less than 2.2e-16)
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Shade Interaction

Case Location Tested Value Removed Input t p-value

Office Geneva Cooling External Illuminance 2.69 0.00849

Office Geneva Cooling Workplane Illuminance -5.01 2.41e-06

Office Geneva Heating External Illuminance 0.928 0.356

Office Geneva Heating Workplane Illuminance 2.69 0.00842

Office Nottingham Heating External Illuminance -4.61 1.21e-05

Office Nottingham Heating Workplane Illuminance -1.3 0.197

House Geneva Cooling External Illuminance -28.9 ∼ 0.0

House Geneva Cooling Workplane Illuminance -8.55 1.55e-13

House Geneva Heating External Illuminance 57.9 ∼ 0.0

House Geneva Heating Workplane Illuminance 9.93 ∼ 0.0

House Nottingham Heating External Illuminance 46.4 ∼ 0.0

House Nottingham Heating Workplane Illuminance 10.6 ∼ 0.0

Table 4.8: Shade Input Parameter Sensitivity Analysis (degrees of freedom = 99 and
where p-value is ∼ 0.0 it is less than 2.2e-16)

Lights Interaction

Case Location Tested Value Removed Input t p-value

Office Geneva Cooling Workplane Illuminance -60.3 ∼ 0.0

Office Geneva Heating Workplane Illuminance 53.9 ∼ 0.0

Office Nottingham Heating Workplane Illuminance 61.8 ∼ 0.0

House Geneva Cooling Workplane Illuminance -94.9 ∼ 0.0

House Geneva Heating Workplane Illuminance 97.9 ∼ 0.0

House Nottingham Heating Workplane Illuminance 113 ∼ 0.0

Table 4.9: Lights Input Parameter Sensitivity Analysis (degrees of freedom = 99 and
where p-value is ∼ 0.0 it is less than 2.2e-16)

4.5 Conclusion

Coupled with EnergyPlus two test cases were studied, with the range of results being

compared to deterministic representations. Shown through these applications (a single

occupied office building and a house occupied by two adults who do not have children)

No-MASS provides a convenient, comprehensive and rigorous basis for representing oc-

cupants stochastic behaviours in EnergyPlus (and other software using FMI); providing
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designers with means to evaluate the performance of their designs in response to the range

of expected behaviours and thus to evaluate the robustness of their design solutions that

is not possible using current simplistic deterministic representations.

In terms of the usefulness of the models integrated into No-MASS and their composition;

the window, lighting and shading models can significantly effect the simulation results,

although the window model within No-MASS can be simplified. The input parameters

of rain presence and duration of absence from a room at departure and, in the absence

of cooling systems also the ground floor identifier, can each be removed from the window

opening model. This simplifies the calculations taking place, and the processing of inputs

to No-MASS. The other models are already parsimonious in their form for building per-

formance simulation purposes; so removing parameters would adversely effect simulation

results.

A single simulation with No-MASS can add between 1% and 30% onto the annual simu-

lation time depending on the choice of occupant behaviour models used. The number of

occupants will also be a factor in determining the simulation time. Simulating replicates

carries a computational penalty in proportion to the number of replicates, however this

can be handled through hardware acceleration. To improve the accessibility of No-MASS,

it has been integrated into the DesignBuilder graphical user interface used with Energy-

Plus. This will allow users to quickly set up their stochastic occupancy representations for

future simulations with No-MASS, and enables users to take advantage of the simulation

manager that allows for repeated simulations, either locally or in the cloud.

Multi agent simulation also provides a quick and easy way to simulate diverse populations;

it is possible to quickly change input coefficients for each model allowing the ability to test

multiple occupant use cases. This can be done automatically at each simulation iteration,

enabling users to more fully explore the robustness of their design to uncertain future

populations of occupants and the diversity in behaviours amongst members with similar

characteristics.





Chapter 5

Theory Driven Models

As described in the preceding chapters, No-MASS has a core set of rigorous and validated

models, and has been developed into a proof of principle platform to test the stochastic

nature of occupants on building performance simulation. However, this does not account

for occupant interactions that do not have stochastic models developed to test their effect

on building performance. There remain many gaps in our ability to model occupants’

stochastic behaviours, based on a lack of corresponding data. But this need not preclude

us from employing pragmatic rules that would help us to identify types of interactions that

merit further study; or indeed whether simplified agent behaviours may in themselves suf-

fice. For example what if it were possible to test the effects that occupants’ closing of

shades or switching off lights while watching television? Would this impact on the per-

formance of the building? Performing a simulation within No-MASS with this interaction

included would be less costly than collecting the data, building a model and then empiri-

cally validating it. This chapter introduces a belief-desire-intention (BDI) framework as a

research tool to test such what-if scenarios within No-MASS, extending its current features

in a pragmatic way. A selection of what-if scenarios are chosen and implemented within

No-MASS demonstrating the approach, highlighting how sensitive the performance of the

building is to each set of rules, thus illustrating the importance or otherwise of continued

development of stochastic models that are not currently available for use within building

performance simulation.

5.1 Theory

A highly popular methodology for representing an agents reasoning mechanism is the

BDI architecture developed by Bratman (1987). An agent’s beliefs encode the agent’s

55
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understanding of the world, themselves and other agents. This does not have to be a

truth, merely a suitable representation of the agent’s perception of their environment.

The agent’s desires are what they would like to achieve in the world, expressed as goals,

worked out through an internal deliberation and filtering process. An agents intentions

are the desires that an agent has to some extent acted on and structured into plans. An

agent might believe the indoor environment to be warm for example, and correspondingly

desire it to be cooler, leading to the intention to open a window to make this environment

cooler.

BDI assumes an agent commits to a plan (also referred to as a recipe) of multiple intentions,

this can include a long term goal such as choosing to go to a meeting later in the day or a

short term goal to seek shelter when outside in rainfall. This plan needs to be fairly rigid

and in line with the agent’s intentions, it can also be partial. For example a plan to go to

a meeting does not have to include how to get to the meeting, because the environment

that an agent is within may change over time. A changing environment would make

rigid and complete long term plans fairly useless. Georgeff and Lansky (1986) used an

approach built on a BDI architecture that was called the procedural reasoning system

(PRS), it was developed for the reaction control system of a NASA space shuttle. The

system sensed the environment and had beliefs about the environment, an interpreter

would look at the desires of the system and make plans, that would then be pushed to a

process stack. They chose this system as it allowed for partial plans; the system could then

try to implement a plan and react to any changes to the environment as it went along.

Although BDI and PRS are an effective way of agent representing reasoning, there was no

formal definition of how the abstract concepts should be defined within an agent, meaning

there have been many different variations in implementing this approach (D’Inverno et al.,

1998). One approach to implementing BDI theory within an agent is called agent-oriented

programming (Shoham, 1993). This has been developed as an extension to the ideas

of object-orientated programing, but instead of unconstrained objects there are agents

that have parameters that make up an agent’s beliefs, commitments, capabilities etc.

Kinny and Georgeff (1996) expands on a similar methodology to support the design and

implementation of agent systems. This work appears to have more depth, explaining how

inheritance and encapsulation can be used to allow groups of beliefs, goals and plans to

be shared across agents, making it easier to analyse the interactions between plans in

the design phase. With encapsulation it is easy to implement sets of agents with both

similar and differing sets of attributes without re-definition. This approach was used in

the implementation a complex air traffic control systems, with Kinny et al. (1996) arguing

that their methodology allows for fine-grained analysis of systems, as it allows for agent

boundaries that are flexible. There are other agent architectures built on the BDI concept,
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INTERRAP (Fischer et al., 1995), JAM (Huber, 1999), JACK (Busetta et al., 1999) and

Mora et al. (1998); each with there own incremental improvements. For a detailed overview

of early agent architectures see Wooldridge and Jennings (1995). Of most interest in the

present context is the INTERRAP frameworks; which includes multiple layers of BDI

facilitating co-operative planning, local planning and behaviour. Other systems tend to

use a single BDI system, controlling all types of planning and behaviour, whereas the

layered approach could lead to simpler systems, with the logic separated for each part,

improving modularity.

A BDI framework was also used by Rao and Georgeff (1995) to model an air traffic control

system, where multiple agents represented the planes and a global agent the air traffic

controller. However, Rao and Georgeff found the system too abstract to use in practice

and the system did not describe all the processes taking place. They also found that the

option generator (which actions are available) and deliberation phases (which actions to

take) were too slow for use in a real system. For such a system they found it hard to

search for the optimal solution, due to the number of options available for controlling the

planes and the possible solutions available to any situation.

Aside from the complexities of BDI systems, another weakness is their inability to describe

social interactions and the use of learning. However Georgeff et al. (1998) argues that there

is nothing within BDI that specifically makes it poorly suited to social interactions or agent

learning. It is just that up until this point the frameworks did not specifically mention

interactions between agents. BDI has therefore been expanded in ways to include social

interaction, with one such attempt involving an obligation aspect (Broersen et al., 2001).

Beliefs-Obligations-Intentions-Desires (BOID) creates a feedback loop where obligations

can override desires or vice-versa. An obligation is described as a social norm, or the

outside motivational attitudes of the agent. In contrast a desire is the internal attitude of

the agent. An obligation and desire can be at conflict or in co-operation depending on the

type of agent. For example self motivated agents are likely to chose their own beliefs over

that of the group.

Guerra-Hernández (2005) demonstrated how agent learning can be linked to BDI. Given

a plan with a library, an agent will learn what event will be satisfied by the given plan;

meaning that the agent’s beliefs, desires and intentions do not have to be linked before

the system is used. This could lead to unexpected results with agents choosing plans not

initially designed for the situation, but which achieve the goal. This may be interesting

from a research perspective, but in the case of air traffic control or a NASA space shuttle

may not be desired (for example, a suitable learned plan to stop two planes colliding would

be for them to fly very close without touching, this would be an valid solution but would
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make the passengers very uncomfortable). Phung et al. (2005) also introduced a learning

component, drawing from knowledge and history to learn a set of virtual beliefs about the

environment instead of which plans reach each goal; further demonstrating that BDI can

be extended by adding new features.

5.2 No-MASS BDI Architecture

Agents within No-MASS in general handle stochastic phenomena using statistical models

that are estimated from real world empirical data. No-MASS uses a BDI approach to

handle interactions where such data, and thus the corresponding models are not currently

available. In these cases the BDI approach allows agents within No-MASS to sense the

environment though input parameters. Then, when a No-Mass agent is given a set of

beliefs, it can make a plan about how to influence the environment to it’s benefit. This

section outlines our vision for the BDI architecture within No-MASS; a set of beliefs or

knowledge about what the agent will understand about the environment and themselves

is developed; a set of desires that the agent may have about what they want to achieve

is created, finally the intents and plans that an agent can take in the environment are

described. This BDI architecture allows the sensitivity of buildings performance to be

tested against different agent interaction types, creating a rationale for collecting future

data to build empirical models that can replace or indeed reinforce our BDI plans. As

No-MASS has been developed in C++, an object oriented programming language, it is

only appropriate to follow a methodology that combines object oriented understanding

of systems with an agent implementation. Building on the early work of BDI and PRS,

Kinny and Georgeff (1996) and Kinny et al. (1996) set out a methodology and modelling

technique for BDI agents, known as the agent-oriented methodology. Their methodology

describes agents in terms of objects (a definition of a variable that has a set of attributes

and methods). Encapsulation and inheritance is used to define multiple agent types. The

method describes how to go from a set of goals an agent may wish to achieve to the plan

that will describe the agent interactions. No-MASS uses their work as a guide, as it is not

language specific and presents a methodology rather than a specific set of rules to follow;

enabling us to adapt these principles and roles for implementation in No-MASS.

Using the agent oriented approach, agents can be viewed from two viewpoints, internal and

external. The external view consists of the agent model and an interaction model.

• The agent model represents the view of the agents, their instances and when they

come into effect. The current implementation of No-MASS has occupants as agents,
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each occupant is an instance of the agent class and the role it plays begins when the

simulation starts.

• The interaction model describes the responsibilities of the agents, the services that

they provide, their interactions and communication between the system and the

agents.

The interaction model is more complex within No-MASS than the agent model, as the ser-

vices they provide and the responsibilities that they have are complex. The responsibilities

that No-MASS agents holds are; monitoring the environment, responding to certain events

with actions, maintaining comfort (through both proactive and reactive actions) etc. So

far No-MASS includes models for window, shading and lighting interactions, a presence

model for offices and an activity model for residential buildings. Our agents are there-

fore responsible for monitoring the inputs of the models and calculating their responses.

However, other considerations are needed, as these models do not cover all the No-MASS

responsibilities. The BDI approach should work in conjunction with the stochastic models.

For example adding the ability to open the window when cooking in response to a build up

of air irritants. For models that are not included, a view of how occupants interact with

the building environment needs to be included. In computer science a use case diagram is

often used to show the interactions a user may perform with a system. The same technique

is used to highlight how occupants may use a building. In our case these diagrams will

illustrate where occupants may interact with the building (for interactions that are not

yet addressed through stochastic models) and their underlying reasons for that interac-

tion. Any missing responsibilities can then be defined using this diagram. Occupants have

different needs depending on the type of building in question, a residential building use

case diagram is displayed in Figure 5.1 and a non-residential building in Figure 5.2, the

symbology of which is in Table 5.1. For simplicity, there is a focus on interactions that

impact on building energy performance and, as already mentioned, for which No-MASS

has no stochastic models.

Within No-MASS when simulating residential building the stochastic activity model is

used, it has nine activities while present: cooking, cleaning, washing oneself, sleeping, au-

dio/visual, passive, IT, washing appliance and metabolic. The activities cooking, cleaning,

washing oneself and sleeping can involve reactions from occupants to air irritants. For ex-

ample, cooking and cleaning both cause odours that occupants may find unpleasant. While

sleeping an occupant exhales carbon dioxide and odours that can increase in concentration

over time. When washing one’s self steam can build up. These irritants can influence the

occupant’s decision to open of windows. Since the current stochastic window model does
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not consider the air quality of a zone as an input, and no alternative model exists that

does, the BDI approach is employed as to better understand its importance.

Similarly the use of lights and shading by occupants can be influenced by the activity

they are performing at the time. For example, while sleeping an occupant will desire to

have the lights off and the shades closed so they are not disturbed by light during the

early morning hours. During the activity audio/ visual, occupants may wish to close the

curtains due to glare from external sources and perhaps to dim lights if it is night. Since

the stochastic models within No-MASS were developed from data collected from offices,

there is no privacy factor consideration, which can be significant in home environments.

An occupant of a residential building will often close a shading devices during the evening

and night hours to maintain privacy. Similarly while another privacy consideration is

during the washing one’s self (particularly while bathing), windows and maybe shades

closed for modesty reasons.

Our final category of occupant interactions within a residential space related to HVAC

systems and hot water usage. Both are difficult to model with simple rules due to the

complexity of the interaction. First there are both temporal and spacial influences on the

choice of heating setpoints: how soon before an occupant arrives in a zone does the heating

need to be turned on and to achieve the setpoint to satisfy so their comfort requirements.

Similarly after which a duration of anticipated absence should the heater be turned off or

the setpoint reduced by how much? Hot water usage is similarly complex. How much is

used cooking and cleaning? It is possible to link the usage to cooking and washing (both

personal and using appliances) activities, but not easily the quantity used.

Occupant

An actor that has a influence on the system.

IT

An use case of the building, ie. how the occupant will use the building.

An association that an actor can have on a use case.

<extends>

An extend adds functionality to the use case, for example during sleeping

the user may have a light irritation.

Table 5.1: Use Case Diagram Symbology
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Occupant

House

Sleeping

Passive

Audio / 
Visual

IT

Cooking

Cleaning

Washing 
Self

Washing 
Appliance

Metabolic

HVAC
Occupant

CoolingHeating

<extends><extends>

Lights Off

Shades 
Drawn

<extends> <extends>

<extends><extends>

Privacy 
Concerns

<extends>

Air Irritant

Light Irritant

Windows 
Open

<extends><extends>

<extends>

<extends>

Hot Water

<extends>

Figure 5.1: Use case diagram of occupant interactions in residential building
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Occupant

Office

IT

HVAC

Cooling

Heating

<extends>

<extends>

Electric Heat Gains

<extends>

<extends>

Hot Water

Figure 5.2: Use case diagram of occupant interactions in non-residential building

Non-residential buildings such as offices have a reduced set of interactions that can take

place within them. Occupants are either present or absent, so activity dependent BDI rules

are not possible. While present within an office occupants make use of IT equipment, for

which there is a heat gain and a corresponding influence on building energy demand. Use

of these devices does not always mimic presence; often a computer is switched on at arrival,

remaining on during intermediate absences, and turned off at departure. It is possible to

link the devices to an agents first arrival time and their final departure time of the day but

it is less straight forward to predict the fluctuating power demands of the devices between

these times. Occupants may also interact with the HVAC system, but as with residential

building these can be complex. Using a methodology such as BDI to represent a generic

way framework for interacting with HVAC systems would require definition of a large set

of plans that attempt to model all the cognitive processes involved. Complex plans would

tend to render them specific to a given scenario and would not be generic enough to be

applicable beyond these cases. 1

1A better approach that would take into account these complexities for each zone would be agent
learning. This would allow the agents to learn how to heat the environment to minimise some indicator of
their discomfort. This is discussed further in Chapter 6.
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Regarding our BDI framework the following agent responsibilities are defined:

1. To monitor their own state.

2. To monitor the environment.

3. To understand when an activity may cause irritation (discomfort).2

4. To react and communicate any ways in which they wish to reduce discomfort.

5. To understand their presence and communicate any IT equipment used.

Kinny and Georgeff (1996) specifies that once responsibilities are defined, agents should be

decomposed to the service level. Services are activities (not related to the activity model)

that make up the responsibilities and cannot be decomposed further. The services give

understanding as to the information that will be needed in order to run it, the types of

communication with the system, the events that need to be noticed and the actions that

need performing. These are broken down in Table 5.2.

2See Baker and Standeven (1996) who eloquently describe the link between irritability and adaptive
behaviour
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Responsibility Service Noticed Events Actions Communication

1 Monitor Activity State

2

Monitor Lights Request current state Light State

Monitor Window Request current state Window State

Monitor Shade Request current state Shade Fraction

Monitor Environmental Conditions Request current conditions Environmental conditions

(Air temp, humidity, etc.)

Monitor Time Time of Day Request current state System Time

3 Calculate Discomfort Change of Activity

4 Communicate Desires

Light Interaction Light State

Window Interaction Window state

Shade Interaction Shade fraction

5 Use Equipment Presence Equipment Interaction

Table 5.2: Agent Services



Chapter 5. Theory Driven Models 65

To achieve the first responsibility the agent needs to understand the state they are in at

any given time. The second responsibility requires an understanding of the environmental

conditions (air temperature, humidity, etc.) and the state of the device they can interact

with (windows, shades, etc.) and the current time. These values are requested and values

returned through communication with the system. The third responsibility the agent

must know if they are in a state of discomfort based on their activity, eg. in the event

of (attempting to) sleep and the light is on, an agent is uncomfortable and will wish to

turn off the light. The fourth responsibility to communicate their desires back to the

system is in the form of an interaction with a device. Agents could also communicate their

beliefs (i.e. that they are over heating) and then as group decide on a course of action

that would resolve the discomfort for the majority of the population. As No-MASS agents

communicate the actions taken from the stochastic models, for simplicity the same is done

here. Finally, while present the use of appliances needs to be simulated, this is linked to

the presence of the agent within an office.

Once the services have been broken down it is possible to start defining the internal

viewpoint of an agent. Agents have mental attitudes, these are the agent’s beliefs, desires

and intentions. These reflect the informational, motivational and deliberative states of the

agent. With the agent-oriented approach an agent is made up of three theoretical models,

the belief, goal and plan models. The belief model is the agent’s knowledge about the

environment and the actions an agent can perform, they are made up of a belief set. A

belief state is an instance of a belief set (ie. for No-MASS agents the current state of the

environment, a belief state, would be that the window is open, the indoor temperature is

high, etc.). The goal model defines what the agent wants to achieve, for example to have

the lights off while sleeping. The plan model describes how an agent would achieve a goal,

eg. switch light off when entering the activity sleeping.

The Belief Model

The belief model is a belief set and a belief state. The belief state is an instance of a belief

set. The belief set is a set of predicates and functions which are derived from a belief

set diagram and its associations, see Figure 5.3. The BDI framework within No-MASS

required that agents have knowledge of the windows, shades, lights, their current activity

and time of day these are parsed from EnergyPlus and the stochastic models. The agents

have an understanding of the first arrival of the day and which departure is the last of the

day, calculated by forward winding the predicted presence in a zone. Their activity can be

one of the nine activities previously defined by the activity model. From here they know

what their activity was in the previous timestep and if they are not in a given activity,
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allowing an agent to work out if there has been a change in the activity event. A shade

belief is a fraction of the current shade state, and the current irradiance allowing the agent

to lower the shade at a given threshold to maintain privacy. The understanding of a light

is either on or off and a window is either open or closed. The window can also have an

opening duration allowing the agent to set a survival time for how long it will be in its

current state. This requires the Agent to have knowledge of the time. The agents will only

make an interaction a proportion of the time, the agents therefore need to have knowledge

of the percentage of time that an interaction will take place. For example an agent will not

always open the window while cooking, but they may do 10% of the time. The percentages

should be empirically validated against real world data for the building, however for now

the percentage is used to test how sensitive the building’s performance is to the rule. The

derived predicates and functions are in Table 5.3. Each activity will have an associated

interaction, meaning that a transition to an activity can cause an interaction with either

the window, light or shade.

bool DurationOpenLessThan(Time)

Type Status = {open, closed}
Status status = closed
Time DurationOpen

Window

setFraction
irradianceLessOrEqual(bool)

Float fraction
int irradiance

Shade
Type Status = {On, Off}
Status status = Off

Light

setValue

float Value

Percentage 
(Of Time Interaction take place)

bool previousActivity(Status)
bool notActivity(Status)

Type Status = {Cooking, Cleaning, Washing Self, Sleeping, 
Audio/ Visual, Passive, IT, Washing Appliance, Metabolic}
Status status = Sleeping
Float clo = 2.55
Int metabolicRate = 116
Type Zone = {List of Zones}
Zone zone = aZone

Activity

Type Status = {On, Off}
Status status = Off

Appliance

firstArrival(bool)
lastDeparture(bool)

List Presence
Presence

setTime

int time
Time

Figure 5.3: No-MASS belief set diagram
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Predicates Functions

status(Time, Status) Status status(Time)

Percentage(Percentage, Value) Value setValue(Percentage)

status(Window, Status) Status status(Window)

status(Light, Status) Status status(Light)

Fraction(Shade, Fraction) Fraction fraction(Shade)

Bool irradianceLessOrEqual(Shade)

status(Activity, Status) Status status(Activity)

status(Presence, Status) Bool firstArrival(Presence)

Bool lastDeparture(Presence)

status(Appliance, Status)

associated(Percentage, Window)

associated(Percentage, Shade)

associated(Percentage, Light)

associated(Percentage, Appliance)

associated(Activity, Window)

associated(Activity, Shade)

associated(Activity, Light)

associated(Activity, Appliance)

associated(Presence, Appliance)

associated(Time, Window)

Table 5.3: Agent predicates and corresponding functions

The Goal Model

The Goal model consists of a goal set and the goal states. Within No-MASS there are a

number of interactions that will be tested based on the agent’s belief of the environment.

An assumption is made within No-MASS, that an agent wishes to minimise their discom-

fort with regards to light irritants, air irritants and privacy concerns and they may want

to use a computer while working. All goals have a percentage that limits the number of

times that an action will take place.

During the activity sleeping it would be sensible to turn off the lights. Our goals with

regards to light irritants would have a goal state consisting of a set of predicates that have

the following values:
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status(Light,Off)

status(Activity, Sleeping)

Percentage(V alue,%)

(5.2.1)

During the sleeping activity, it may also be sensible to shut the shades

setFraction(Shade, 0)

status(Activity, Sleeping)

Percentage(V alue,%)

(5.2.2)

These goals can be combined into a single goal,

status(Light,Off)

setFraction(Shade, 0)

status(Activity, Sleeping)

Percentage(V alue,%)

(5.2.3)

There are also privacy concerns when washing oneself and an air irritant with regards to

humidity. An agent may wish to open the window, but only for a short time while the

gases expel. A similar situation may occur while sleeping, if there is a build up of CO2 or

other pollutants. The goal set for both situations is therefore:

setFraction(Shade, 0)

status(Activity,WashingSelf)

Percentage(V alue,%)

(5.2.4)

previousActivity(Activity,WashingSelf)

notActivity(Activity,WashingSelf)

status(Window,Open)

DurationOpenLessThan(Window, 1 timestep)

Percentage(V alue,%)

(5.2.5)
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previousActivity(Activity, Sleeping)

notActivity(Activity, Sleeping)

status(Window,Open)

DurationOpenLessThan(Window, 1 timestep)

Percentage(V alue,%)

(5.2.6)

The next goals are for the window opening during cooking due to odours and gases and

then closure of the shade during audio/visual to reduce glare while watching television

during the daytime.

status(Activity, Cooking)

status(Window,Open)

Percentage(V alue,%)

(5.2.7)

setFraction(Shade, 0)

status(Activity, Audio/V isual)

Percentage(V alue,%)

(5.2.8)

Finally, within homes there is a privacy concern in the evenings and over night where it

is desirable to close the shades. The threshold for the privacy concern is defined to be an

irradiance of 50W/m2. The following goal sets are defined within No-MASS.

irradianceLessOrEqual(Shade, 50W/m2)

setFraction(Shade, 0)

V alue(Percentage,%)

(5.2.9)

These sets of goals have been defined for residential simulations. Within the non-residential

settings there is a need for a different set of goals. This will cover the use of appliances while

at work. They will be turned on at the first arrival and stay on until the last departure.

Most occupants will leave their equipment on while they attend meetings or go for lunch.

Our presence belief has a function firstArrival allowing us to ensure the at first arrival any

appliances are turned on. As No-MASS sets all present occupants within non-residential

building to the activity IT, the goal set does this also, see Goal Set 5.2.10. On the final

departure of the day the agent turns the appliances off, see Goal Set 5.2.11.



Chapter 5. Theory Driven Models 70

firstArrival(Presence, True)

status(Activity, IT )

status(Appliance,On)

V alue(Percentage,%)

(5.2.10)

lastDeparture(Presence, True)

status(Appliance,Off)

V alue(Percentage,%)

(5.2.11)

The Plan Model

The plan model consists of sets of plans that are organised using plan diagrams (Kinny

et al., 1996). The symbols used are given in in Table 5.4 and are based on Harel’s (1987)

state charts.

The start of the state sequence, usually triggered by some event such as

moving into an activity state

The exit of the state sequence. When an agent has finished the plan the

agent leaves the state

State

A state of a particular class, that an agent could transition to

Event

A transition event, when an event occurs the agent moves from one state

to another

H

Denotes that a state has a history of its previous status, for example

in Figure 5.4, the privacy state would remember the substate between

timesteps, the shade would stay closed

Table 5.4: State Chart Symbology

In the privacy plan described in Figure 5.4 an agent will enter the state “no light influenced

privacy concern”, and at the event of an irradiance level lower or equal to 50W/m2 and a

the user defined probability occurs the agent would move into the “light influenced privacy

concern” state. The user define probability threshold is set before the simulation, a random

number is drawn and if the random number is greater than the user defined probability
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the event takes place. This mechanism limits the events to only occur a percentage of

the time. If the event was not triggered the agent would stay in the same state. After

the transition into “light influenced privacy concern” state the agent sees that the shade

is open and attempts to move the state of the shade to closed. The agent will remember

their desired window state until the agent sees the irradiance level is greater than 50W/m2

at which point the exit parent state is triggered; opening the shade.

Light Influenced Privacy Concern

Shade 
Open

Shade 
Closed

No Light Influenced Privacy Concern

irradiance <= 50w/m2 
and defined probability

 irradiance > 50w/m2

Enter parent state

Exit parent state

H

Figure 5.4: The light influenced privacy plan, used within the household to achieve goal
5.2.9

Figures 5.5 and 5.6, present plans that occur when the agent is sleeping and they have

Goal Set 5.2.3 applied. Both plans execute in parallel to achieve the goal, removing the

light irritants from the bedroom and achieving privacy. The sleeping window plan (Figure

5.7) is more complex, firing on the transition from the state sleeping to one of the other

eight states. Once the event occurs the window state is set to closed for one timestep and

the window is then closed. This will expel any unwanted gases from the room achieving

Goal Set 5.2.6.
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Sleeping

Shade 
Fraction > 0

Shade 
Fraction = 0

H

Enter parent state
and defined probability

Exit parent state

Figure 5.5: Sleeping privacy plan

Sleeping

Light On Light Off

H

Enter parent state
and defined probability

Exit parent state

Figure 5.6: Sleeping lighting plan

Plans in Figures 5.8 and 5.9 achieve the goals given in Goal Sets 5.2.4 and 5.2.5 respectively.

Shades are closed during the self washing activity. These plans could be joined together

into a single plan, but separate plans will allow for greater flexibility in later iterations

of No-MASS. Figure 5.10 provides the plan achieving Goal Set 5.2.7, opening the window

during cooking and then 5.11 provides the plan for Goal Set 5.2.8, closing the shade during

audio/ visual.
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Not Sleeping

Window 
Close

Window 
Open

After 1 Timestep

Sleeping

Enter parent state
and defined probability

Figure 5.7: Sleeping window plan, the not sleeping state is used to depict any of the
other eight states

Washing Self

Shade 
Fraction > 0

Shade 
Fraction = 0

H

Exit parent state

Enter parent state
and defined probability

Figure 5.8: State diagram washing oneself with privacy consideration
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Not Washing Self

Window 
Closed

Window 
Open

H

After 1 Timestep

Washing Self

Enter parent state
and defined probability

Figure 5.9: Washing self plan to open window once washing has completed, the not
washing self state is used to depict any of the other eight states

Cooking

Window 
Closed

Window 
Open

H

Exit parent state

Enter parent state
and defined probability

Figure 5.10: Window open during cooking plan to remove any odours from the air
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Audio / Visual

Shade 
Fraction > 0

Shade 
Fraction = 0

H

Exit parent state

Enter parent state
and defined probability

Figure 5.11: Plan for deploying shading during the audio/visual state to reduce glare
on the televisions

Appliance use while at work in non-residential buildings requires a plan described by Figure

5.12. While present in the office the agent has the state IT, as this sets their clothing and

metabolic rate for the activity. On entering this state at the first arrival of the day the

agent will turn the appliance from off to on. The history state implies that the agent

will remember this state over time. The agent can leave the office and the appliance will

stay on, then on the final departure of the day the agent will turn all the appliances off,

achieving Goal Sets 5.2.10 and 5.2.11.
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IT

Appliances 
Off

Appliances 
OnH

First Arrival Of Day
and defined probability

Last Exit Of Day
and defined probability

Figure 5.12: Plan for appliance usage during non-residential building use

Integrating the BDI rules within No-MASS allows for the testing of occupant interactions

within simulation software. They can answer what-if scenarios, showing the effects of

different interactions. Sensitivity analysis performed against the different plans allows

recommendations to be made about where to focus future efforts of data collection and

empirically validated stochastic model development. It will highlight which plans have the

greatest effect on the energy demands of the building and which can be discarded as they

have no significant effect.

To test the sensitivity of building performance to each of the above plans, a plan is taken

and executed every-time a goal can be achieved. The overall demands (heating and cooling)

are compared for 100 replicates against a base case (where the plan never runs) using a

t-test. If there is a significant effect the chance of the plan executing is reduced by 1%

and tested again. This is repeated until it is possible to specify how often the plans need

to be executed to influence the performance of the building. This allows descriptions such

as while cooking the occupant can open the window for upto 10% of the time without

influencing the buildings heating demands.

Using the both buildings in Figure 4.1 and set in the Geneva location, the effects of the

rules on building performance are tested. Two occupants are included in each building

and the stochastic models are enabled but can be overridden by the BDI rules.
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5.3 The Influence Of Rule Based Models

The results show that when the plans execute 100% of the time they influence the heating

and cooling demand, with the exception of having the shades drawn while sleeping which

has an insignificant effect. The chance of sleeping during the daylight hours is small and

high during the night, as such little irradiation is blocked during the day, and as there

is little irradiation during the night there is little effect on heating or cooling demands.

Figure 5.13b shows the influence of each goal and their associated plan. As these rules

are effectively deterministic, the interquartile range of each boxplot is similar to that of

running with and without the BDI rules. The rules which effect window openings have the

most influence on building performance, with opening the window during cooking having

the greatest effect.
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(b) Cooling Demands

Figure 5.13: BDI Rules’ Sensitivity Analysis, 100 replicates with the plans executing
100% of the time

All heating demands are the median value of the 100 simulations unless otherwise stated.

The goal 5.2.1, turning the lights out while sleeping, increases the heating demand from

the base case value of 49.7kWh/m2 to 51.3kWh/m2, this is due to the reduction in heat

gains through lighting. Sleeping with the shaded closed (Goal 5.2.2) has a small increase

on heating demand at 50.4kWh/m2; the occupant profiles used have the majority of the

sleep occurring during the night hours, so that little solar radiation is intercepted during

the day. With different profiles this might not be the case. In countries where siestas are

common during the day this goal may have a greater effect. The combined goal (5.2.3)

for sleeping with the shades closed and the lights off increases the heating demand to
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51.7kWh/m2. Closing the shades while showering to aid privacy (Goal 5.2.4) reduces the

heating demand to 49.3kWh/m2 the small difference being due to the short time spent

showering. On the other hand opening the window at the end of showering to expel the

humid air (Goal 5.2.5) causes an increase in heating demand to 59.1kWh/m2. Although

windows are not opened after every shower the sensitivity analysis will show how often they

need to be, to influence building heating demand. The same is true for goals opening the

window when waking (5.2.6) and opening the window while cooking (5.2.7) which increase

heating demand to 70.0kWh/m2 and 146.9kWh/m2 respectively. Goal 5.2.8, closing the

shades during the activity audio visual to reduce glare on the television, decreases heating

demand to 48.9kWh/m2. Privacy concerns causing shades to be shut during the night

(Goal 5.2.9) lowers the heating demand to 46.07kWh/m2. This is due to the shades being

left lowered in the morning. An agent may not wake until after the sun rises and only

then when they enter a zone do they raise the shade.

The influence of the BDI rules on cooling demands are more modest than on heating

demands. When using no BDI rules the base case cooling demand is 20.1kWh/m2. Turn-

ing the lights off while sleeping (5.2.1) reduces cooling demands to 19.3kWh/m2, closing

the shades while sleeping (5.2.2) has no effect with a cooling demand of 20.1kWh/m2

and the effect of the combined goal (5.2.3) is 19.1kWh/m2. Window and shade 5.2.4

(20.4kWh/m2), 5.2.5 (19.2kWh/m2) and 5.2.8 (21.6kWh/m2) have cooling demands that

are close to the base case. Opening the window after sleep (5.2.6) lowers the cooling

demand to 18.1kWh/m2, cooling the bedroom with natural ventilation in the morning.

The same is true for the goal opening the window after cooking (5.2.7), which causes a

large reduction in cooling demand to 14.3kWh/m2. Privacy during the night (Goal 5.2.9)

causes an increase in cooling demands to 24.3kWh/m2; shades are reducing the heat loss

through the window during the night.

Sensitivity analysis of the goals show that a number of the plans need only be executed less

than 5% of the time to have an effect on heating demand. As seen in Table 5.5 Window

related plans (5.2.5, 5.2.6 and 5.2.7) only need to be executed 1% of the time to influence

heating demand and at most 3% of the time to influence the cooling demand. Closing

the shade while sleeping (5.2.2) has no significant effect in this case study. Although the

combined goal of 5.2.3 requires it to be executed 14% of the time for a significant effect on

heating and above 1% of the time for cooling. However this influence is probably due to

the lighting part of the goal (5.2.1), which requires the light to be off at least 11% of the

time to influence heating demand and 3% to influence cooling. Closing the shades while

performing the audio/ visual activity (5.2.8) effects the heating demand when performed

at least 22% of the time and at least 3% of the time for cooling. Privacy during the
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evening causing the shades to be closed for just 1% of the time effect for both cooling and

heating.

Tested Value Goal Percentage of time t df p-value (0.05)

plan needs to execute

for significance

Heating 5.2.1 11 -2.01 99 0.0473

Heating 5.2.2 100 -1.76 99 0.0811

Heating 5.2.3 14 -2.68 99 0.00853

Heating 5.2.4 100 1.19 99 0.236

Heating 5.2.5 1 -2 99 0.048

Heating 5.2.6 1 -8.02 99 2.2e-12

Heating 5.2.7 1 -6.14 99 1.75e-08

Heating 5.2.8 22 3.36 99 0.00109

Heating 5.2.9 1 10.3 99 <2.2e-16

Heating 5.2.10 & 5.2.11 2 3.93 99 0.000159

Cooling 5.2.1 3 2.15 99 0.0343

Cooling 5.2.2 100 0.834 99 0.406

Cooling 5.2.3 1 2.27 99 0.0254

Cooling 5.2.4 4 -2.13 99 0.0352

Cooling 5.2.5 2 2.61 99 0.0103

Cooling 5.2.6 1 4.81 99 5.37e-06

Cooling 5.2.7 3 3.13 99 0.00229

Cooling 5.2.8 3 -3.98 99 0.000132

Cooling 5.2.9 1 -43.2 99 <2.2e-16

Cooling 5.2.10 & 5.2.11 3 -4.95 99 3.06e-06

Table 5.5: BDI Rules’ Sensitivity Analysis

BDI rules for office appliance interaction Goals 5.2.10 and 5.2.11, have a significant effect

on both the heating and cooling demands of the office. When the rule is applied 100%

of the time there is an increase of 2kWh/m2 in heating demand due to the lower usage

of desktop computers, and a decrease of 2kWh/m2 in cooling demands. Figure 5.15

demonstrates the effectiveness of the BDI rules, in this instance without the BDI rule and

using the appliance profile given in DesignBuilder, where from 7am till 8pm the computer

is on; there are times when the stochastic agent is present but not consuming electricity.

Although this may be the case, the BDI rule mimics the stochastic presence profile in

a more realistic fashion. It is unlikely that a computer will use this constant demand
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throughout the day. With BDI rules it would be possible to build in a computer’s energy

saving profile, for example if an occupant is not present and 20 minutes has passed the

computers power state could be reduced, effectively putting the computer into standby

mode.
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Figure 5.14: Box plots of demands due to electrical appliance rules
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Figure 5.15: Stochastic occupancy profile (dashed line) with electrical demand from
computer(s) (solid line)
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5.4 Conclusion

This chapter presents a methodology for including rule based models within No-MASS,

for testing what-if scenarios with building performance simulation and providing a prag-

matic basis for the modelling of the behaviours which there is insufficient data to develop

stochastic models. A BDI methodology is used to develop a set of goals and plans that an

agent must follow to influence the environment, given beliefs about current environmental

conditions. These plans are implemented within No-MASS and tested to examine what

effect the consideration of each individual plan has on the overall building performance

predictions.

In the case of the privacy during the evening, the high t values in this case exemplify

the strong influence this has on building performance when executed just 1% of the time

(see Table 5.5 Goal 5.2.9). The other goal sets of note are the window models, which

influence heating and cooling demand significantly even when only performed for a small

percentage of the time. These results suggest the modelling of these behaviours should be

explored further, through the collection of empirical data and the future development of

validated models simulating them. With the exception of sleeping with the shade closed

our results suggest that models of the other behviours should also be further studied, with

the most behaviours only needing to take place less than four percent of the time to impact

performance.

The office simulation results show the need of BDI rules when linked with stochastic

models, as the generic rules used within EnergyPlus fail to address the stochastic presence

of occupants. The electrical demand profiles fit the occupants much better when they are

defined in terms of presence rather than on a schedule; this would also be the case for other

types of appliances in offices. Other demands can be predicted in this way, for example

modelling appliance transition to standby mode and water usage based either on presence

in offices or activity in houses.

A limitation of the BDI rules implemented are that they are not based on empirical data

and are therefore not a true reflection of reality. However they do give more scope in terms

of the interactions taking place in response to the empirically driven stochastic models.

For example within EnergyPlus it is not currently possible to set the window to open when

someone has awoken based on the activity model within No-MASS. Another limitation is

that large complex unwieldy models will increase simulation time and without empirical

data wont be a true reflection of reality. It is therefore important to consider the trade off

between what needs to be included for valuable results against the impact on simulation

time.
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The BDI methodology is an effective for testing what-if scenarios and should be used to

ensure that occupant interactions have a significant effect on building performance before

spending resources collecting data. It can be used to prove the need for empirical models,

that reduce the gap between simulated and real world results.



Chapter 6

Social Interactions

An agent should be autonomous, have social ability, perceive and react to the environment

and be proactive with their choices (Wooldridge and Jennings, 1995). So far No-MASS

agents can perceive the environment and react to changes within it. They are autonomous

and self interested, however a mechanism for handling conflicts between agents needs to

be integrated. Occupant behaviours where there are no empirically validate models due

to problems with access to data and thus our ability to reduce the performance gap be-

tween observed and simulated energy demands. One of these models is that of the social

interactions between agents, conflicts are arise due to archetypal behaviours. Different

types of occupants will want the windows, blinds or shades open during different condi-

tions. These archetypical behaviours are not covered by the deterministic models and the

stochastic models currently included within No-MASS do not consider social interactions.

To resolve conflicts such as when to open a window, discussions will take place between

the stakeholder parties until a resolution occurs.

6.1 Theory

Game theory has been used to explore different scenarios where different forces interact.

In economic theory these forces can be market forces but the interactions can also be

between sets of people. One early example is Nash Jr (1950), where a game with a

finite set of actions must have an optimal strategy (the Nash equilibrium) for actions if

the other players’ set of actions are known and are not dynamic. Agent simulation has

been used to model interactions between individuals to solve game theory scenarios such

as the prisoner’s dilemma scenario, a game to study whether you should cooperate or

defect against your comrade. If you both defect you both lose, if you cooperate you both

83
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win, but if one defects and the other cooperates the defector wins. Here Axelrod and

Dion (1988) simulated an iterative version of the prisoner’s dilemma and found that the

optimal simulation model configurations were the ones that employed a tit-for-tat strategy.

Axelrod later went on to test this with agents using a genetic algorithm (Axelrod, 1997);

finding that 95% of all populations evolved towards the optimal tit-for-tat strategy. The

problem with the optimal tit-for-tat is that the decisions do not incorporate fairness into

the decision making process. In response, Rabin et al. (1993) created a framework to

include fairness into game theory decision making, where a player’s payoff would be derived

not just from their actions but also from their beliefs about the situation. For example, if

a player thought that their opponent was going to defect they would be willing to sacrifice

their reward to hurt the other player.

Computers have been used to simulate group decision making since the 1960’s. Abelson

and Bernstein (1963) worked on the computer simulation of a community referendum.

They were able to run a number of different configurations of their simulation model

to study differing assumptions and conditions. Computerised individuals were subject

to channels (advertisements) and conversations which would influence the way in which

they would vote. The individuals could influence others in their proximity based on their

idealogical understanding. This understanding was based on what they had learnt during

the previous cycle. The level an individual could be influenced was dependent on a set

of predefined rules. Abelson and Bernstein (1963) ran scenarios to examine their effect

on the results, ie. what if a mayor was introduced with more influence towards one side,

what would happen if this mayor did something controversial, etc.

Researchers in the field of agent based social simulation have used a cognitive theory to

model people, a classic example is the unified theories of cognition. Newell (1994) devel-

oped unified theories of cognition into an example framework, describing the immediate

process of cognition and learning. This has been used as a method to create the Soar agent

system (Wray and Jones, 2006), within which there are three levels; the knowledge level

(a descriptive view of the agent’s understanding), the symbol level (the representation of

that knowledge), and finally the architecture (the fixed mechanisms that define the ways

in which knowledge is accessed and acted on). The Soar agent system has been extended

to include interactions between agents through STEAM (Tambe, 1997). STEAM uses the

understanding of joint intentions (Cohen and Levesque, 1991) where agents who have a

joint understanding of their current state and a shared goal can perform an action as a

group; either one agent performs it or they perform sequential actions to achieve the goal.

This model must adhere to the following requirements: the agents must have a joint goal,

must be willing to co-operate, to agree on how to achieve the goal, and the agents must

understand the viability of their actions (Jennings, 1995). The joint intentions approach
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has a weakness though. When an agent commits to a common goal, what happens when

something goes wrong? Do all the agents continue on the same agreed path, even though

the goal will not be achieved? What happens if one agent believes the goal has been met

or will never be met? In an attempt to resolve this Jennings (1995) built into the model a

concept of joint responsibility, requiring all agents to share why they have a lack of com-

mitment to the persistent goal. This allows the other agents to assess the situation and

decide on remedial actions. Related to the joint intentions method of collaboration is the

SharedPlan approach (Grosz and Kraus, 1996). Agents using the shared plan have their

own beliefs, intentions and goals. Any intentions that may affect other agents need to be

communicated, and these intentions are then meshed into plans of action. This method

allows for agents having partial information about another agent’s understanding, but they

must have sufficient information to allow consensus. Within the SharedPlan formalisation

agents cannot hold intentions that conflict with each other.

The joint responsibility and shared plan methods assume there are common goals between

agents or common actions that can be achieved. However, this is not always the case.

There are times when an agents’ goals are in direct conflict with those of another. In this

case mediation is required to allow them to move towards an optimal solution for both

parties. The PERSUADER program is a system that focuses on resolving labour disputes

(Sycara, 1988). It works through proposals and modification of goals. Goal trade-offs

are searched allowing the PERSUADER to make novel proposals. Agents continually

re-assess their beliefs, so that what may not have been acceptable at one point may be

acceptable later. An initial plan is made, and evaluated against previous plans. If it is

acceptable it is proposed to the agents, who either agree or disagree. Disagreement allows

for discussion between agents, then either modification of the plan or the process starts

again with a new plan created. The argument stage works by changing the agents’ belief

structure. For example, with a wage dispute a company may request a lower wage for the

union, this is against their goals, PERSUADER checks the possible alternatives, finding

that unemployment will achieve the same goal for the company. This approach is worse

for the union and the PERSUADER program highlights this to the union allowing them

to reassess.

Over time the goals of an agent may change. Kraus et al. (1995) builds a time restraint into

the decision making process, where resources are valuable when there is a disagreement

and each agent has a period of time before the resource is no longer useful. The time

constraints alter the decision being reached and can often determine the agreement. For

example, if two agents want access to a resource within a period of time, they can negotiate

an agreement based on the value of the resource and the cost of deliberation. Davis and

Smith (1983) developed a method of negotiation to resolve distributed problem solving.
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Called the contract net, agents bid for tasks agreeing that they will complete one for a

given price and if a contract is agreed for the winner. The framework then distributes

the tasks to the winner of the contract. This has been developed into a multi-agent

system called TRACONET, which allows agents to announce bids for an available task,

the lowest bid over a period of time requires that an agent is committed to completing

the task (Sandholm, 1993). An agent calculates their bid based on a local calculation

of the cost of performing the task; they combine multiple tasks to minimise their costs.

The TRACONET system was developed for transportation agents, with the example of

delivery companies. The cost of the task would be the time to make a delivery and the

deliveries are chained to ensure they end near the start of the next delivery. TRACONET

was further developed allowing agents to assign different levels of commitment to each

task (Sandholm and Lesser, 1995); now agents can back out of a task for a cost if they see

that another agent is committed to the task and they believe that they can get a better

deal elsewhere.

Agents that can learn another’s preferences have been demonstrated to find an optimal

solution to conflict resolutions. In the example of a Bazaar, agents negotiated prices for

products, moving towards a price they would sell or buy at (Zeng and Sycara, 1997).

Both agents have conflicting goals but, if they had a price point that was acceptable to

them both, they could eventually agree. If the buyer and seller could learn the other’s

preferences they came to an agreed price quicker than one that could not learn the other’s

preferences. Shoham and Tennenholtz (1992) presents a method of conflict resolution

called social laws; constraints that should be built into the actions of the agent. They

avoid conflicts and the unnecessary negotiations by removing conflicts from the system

before a simulation takes place. An agent has a choice of actions that can be performed

at a given state, but before taking an action the agent must consider a set of social laws.

These define which actions the agent can take to ensure that no conflicts occur. The

example used by Shoham and Tennenholtz (1992) is of a car turning a corner, the car can

only turn if the driver understands the lights are green and no other car is in the location

that the car will occupy once around the corner. This approach assumes all agents have

the same set of social rules.

The modelling of multi-agent group decisions is either centralised or decentralised. In

the centralised model an agent has a complete understanding of the environment and a

decision is made to maximise global utility, ie. to keep everyone happy. In the decentralised

model each agent communicates, gains an understanding of the environment from their

perspective and makes a decision to maximise their local utility. One method of forcing

decentralised communication is by adding cost to any communication taking place. To

model a multi agent decision process between distributed systems Xuan et al. (2001)
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developed a decision theoretic framework. This relied on each agent having the same goal

to maximise the global utility. Each agent would have an incomplete understanding of the

environment, the agents would only communicate up to the point where the reward would

outweigh the cost of communication. This means that an agent’s beliefs about what action

to take to maximise utility can be changed through the communication process.

The Clarke Tax (Clarke, 1971) has been used to allow agents to come to a consensus and

remove the free rider problem, where an agent may lie about the benefit of a resource to

gain more at a discount. In Ephrati et al’s 1991 system agents declare their preference for

reaching a state from amongst a set of states. If their preferences are the deciding factor

between the voters they are taxed the difference between the sum of preference of the first

and second choice of states. This forces an agent into telling the truth of the true value of

their vote. If they do not and they win through a higher vote they will be taxed higher

for their choice. This method has its drawbacks, it does not consider how the resources

are divided between the winning agents of the vote; on the other hand the voting strategy

is a quick and effective method of arriving at a consensus.

As outlined many of the methods that are used to allow agents to reach a goal, either

in cooperation or in conflict. Within No-MASS a simplified variation of the the voting

mechanism to overcome conflict (Ephrati et al., 1991) is proposed. Then once the agents

are in agreement over which action to take, No-MASS use’s social laws (Shoham and

Tennenholtz, 1992) to decide how the action will take place. For example, agents will vote

on whether they want to open the blind and once votes are cast, they decide how far the

blinds will be opened.

6.2 Implementation

Social interactions are an important consideration when modelling occupants. Decisions

such as opening windows and interacting with shading devices are often discussed between

occupants before an interaction is performed. The current convention of building perfor-

mance simulation tools is to assume that all occupants within a building interact with

the environment at a given set point of a particular variable, i.e. indoor temperature for

windows and internal illuminance for shades. Therefore, there is no need for a conflict

resolution mechanism. But in reality occupants have different beliefs and desires about

how they wish the environment to be. Group interactions with the environment are often

achieved through group mediation, with occupants voicing their concerns about their dis-

comfort. No-MASS agents are self interested. They act based on their beliefs about their

current state of discomfort. Given a set of decisions each agent decides if they would like
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to open or close the window to minimise their discomfort. An agent does not consider the

state of the other agents at this point, if they intend to open a window they must negoti-

ate with the group. But one agent’s intent maybe in direct conflict with an other agent’s

goals and desires. A notable solution to conflict resolution would be a voting system such

as the one employed by Ephrati et al. (1991), which has be demonstrated to be a quick

and effective method for arriving at a consensus. However, as No-MASS agents behave

rationally based on the outputs of the stochastic models our agents do not suffer from

the free rider problem, Ephrati’s system incorporates a tax system on choice to overcome

this.

Occupants may have differing authority to make choices about the environment. Within

No-MASS constraints can be placed on the actions that can be performed during a conflict;

this is achieved through a biased voting system. Some agents can have larger voting

rights than others, these voting rights are called power within No-MASS, these are social

laws built directly into the actions. To demonstrate the mechanism three classes of group

interaction have been chosen; these mimic possible scenarios in the real world; democratic,

biased and authoritarian. Each will be explained and with a demonstration given of how

they can be handled with this voting system.

Agent Agent 1 Agent 2 Agent 3 Agent 4

Democratic 0.25 0.25 0.25 0.25

Biased 0.18 0.18 0.18 0.46

Authoritarian 0 0 0 1

Table 6.1: Agent Voting Power

Our agents and voting weights are given in Table 6.1 for scenarios with a four member

group. The first scenario is the democratic environment in which each agent has equal

voting power for the interactions that they wish to perform. If a single agent wishes to

open a window and another two are present in the zone then the other two can choose to

either side with this agent given their personal preferences, or they can veto the window

opening. In this case there will need to be at least two agent suggesting the window stays

closed to win the vote. In cases where the agents votes are tied a virtual coin toss is

performed to decide the outcome. A random number is drawn, if it is above 0.5 then one

action is performed, if not then the other choice is performed.

In the second scenario, the biased approach, one agent will have the majority of the voting

power as may be found in hierarchical organisations where a group goes along with a

supervisor’s preferences. In most cases the supervisor’s vote will win, however if the other

agents disagree they can pool their voting resources together to veto the action.
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Finally there is the authoritarian scenario where if present one agent has all the power,

the others can perform actions when the leader is not present, but they do not have the

ability to override the agent.

This approach works well in binary cases where the actions are on/ off, such as for the

lighting model. However models such as the external shading interaction model predict

a shade opening fraction. An agent has a choice of actions that they can take to either

raise, lower or keep the shades as they are. Given a set of agents, one could choose

to raise the shade to a percentage and the other lower the shade. In the first instance

the voting mechanism can be used; agents can vote to raise, lower or do nothing to the

shading device. To determine the percentage change that occurs, social laws (Shoham

and Tennenholtz, 1992) are enforced on the agent, removing the need for time consuming

negotiation. A set of two agents choose to raise the shade from its current position but

they both choose to open it to different levels. Here a restriction is imposed on the agents

that they must choose the average of the two. This will satisfy the agents’ need to raise

the blind and allows the simulation to move on (however it may please neither agent).

Within No-MASS agents assess their personal preferences at each timestep for all the

stochastic models, the agents will therefore have to resolve conflicts at each timestep.

This methodology of processing votes does not increase simulation time significantly and

provides a first instance of agent negotiation within buildings; the effects of which will be

discussed later in this chapter.

6.3 Social Interactions And Building Performance

To examine the effectiveness of No-MASS’s simple social interactions framework, a res-

idential building and a non-residential building in Geneva is simulated, as described in

Chapter 4. The residential building is a hypothetical house and the office is a simple shoe

box design. Unless simulated by No-MASS through stochastic models all building char-

acteristics are chosen from templates in DesignBuilder that fit the activity taking place

in a given zone. For all simulations a timestep length of five minutes was chosen. For

simulations testing the social interaction framework the three scenarios already mentioned

are considered, authoritarian, biased and democratic. Each scenario is tested with sets of

agents of sizes between one and four.

Group decisions between agents implies that there are differences between what occupants

desire. No-MASS uses the window model taken from Haldi and Robinson (2009) which

includes coefficients for an aggregate model of a population. Using the aggregate view

used in Chapter 4, the window opening model would not show variation between occupant
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archetypes. However Haldi (2010) presents coefficients estimated for a range of individual

occupants. Integrating these within No-MASS so they can be chosen at run time allows

for the testing of different occupants’ window opening behaviours. It is then possible to

test the effectiveness of our social interaction model against these diverse behaviours. A

box plot presenting the simulated heating demand of each agent window opening model

is given in Figure 6.1. Each simulation consisted of a single person in the non-residential

building, meaning that there are no social interactions taking place. The variation in re-

sults highlights the effects that different occupants could have on a building. There is a

difference of 26kWh/m2 between the largest median heating energy demand (model 13)

and the smallest (model 18). The social interaction framework within No-MASS is used

to demonstrate the effects of social interactions between occupants each allocated their

own behaviour model. One hundred replicates are performed. At the start of each repli-

cate agents’ window models are randomised, testing our case study models against many

possible combinations of occupant. Each agent is given a voting power corresponding to

the simulation scenario; authoritarian, biased and democratic. The scenarios are repeated

up to four times each, with a greater number of occupants occupying the space.

With two agents there is a difference of 4kWh/m2 for the median heating demand between

the two scenarios, with the democratic approach the larger of the two. This could be due

to some indecision between the agents, allowing the windows and shades to be left on

longer over the course of the year. Three agents reduce the variation between scenarios

to 2kWh/m2, the democratic (84.9kWh/m2) heating demand is again the highest, the

authoritarian (84.6kWh/m2) is almost equal. The biased (82.8kWh/m2) scenario is the

lowest. With four agents in the office there is a difference of 2kWh/m2, similar to the three

agent scenario. The heating demands for each scenario are; authoritarian (80.7kWh/m2),

biased (79.8kWh/m2) and for the democratic (78.2kWh/m2). In this scenario the demo-

cratic result has the smallest heating demand, possibly due to indecision amongst the four

agents.

Taking the extreme models from Figure 6.1 and assigning these to two agents. The ex-

treme agents with the model of 18 (81kWh/m2) negotiates a reduced window opening and

therefore lower heating demand than that of model 13 (109kWh/m2). Where model 18

has the greater voting power the median demand (93.8kWh/m2) is slightly reduced than

if model 13 has the greater power (96.4kWh/m2). With equal voting power the result

almost matches the scenario where 13 has the higher power (96.7kWh/m2). When the

agents have equal power the heating demand tends towards that for the occupant that has

the more extreme behaviour: with greater interaction frequency being preferred they still

exert a greater influence than their counterpart. In both, the random model assignment

and the mediation between the extreme cases there is not a large variation. The agents
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successfully negotiate window opening behaviours that represent a compromise between

the two cases. The authoritarian scenarios do move the results towards the more power-

ful agent models, however because of interactions taking place when these agents are not

present their impacts are reduced. Consider that when a powerful agent who prefers it

cooler leaves the room with the window open, the other agent(s) who prefer it warmer

close the window (while it is cooler outside) at the next timestep. This reduces the overall

heating demand to a choice that is between the two extremes.
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Figure 6.1: Heating demand in a non-residential for each individual window opening
model with coefficients estimated for a range of individual occupants (Haldi, 2010) and

assigned to an agent profile
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(d) Four Agents
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fice, all scenarios have two agents, left to right;
model 13 equal power, model 18 equal power,
model 13 has greater power than 18, 18 has
greater power than 13 and both 13 and 18 have

equal power.
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For the residential building the same window models are assigned to a single occupant

occupying the building. The results for each model are given in table 6.3. There is a

smaller spread in the results as expected in the house (as noted in the previous chapter,

the effect of occupants’ interactions are dampened by the larger building volume). As with

non-residential office the largest heating demand arises from the agent that is allocated

model 13; on the other hand model 18 is no longer the smallest, model 14 is now marginally

lower.

The random assignment of models to the three scenarios yields behaviours similar to

those of the non-residential building, except in a few key areas. First with the increasing

number of occupants the authoritarian variation is greater than that of the biased and

democratic results; due to the extreme occupants having the power to execute their beliefs

and dismiss the results of the other agents. In the fourth occupant scenario the median

heating demand are almost equal; authoritarian (45.4kWh/m2), bias (45.1kWh/m2) and

democratic (45.2kWh/m2). Comparing extremes cases of 13 and 14, the results are again

very similar, between the two cases. Once again performance under the equal power

scenario tends towards that of the occupant with the larger heating demand.
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Figure 6.3: Heating demand in a residential for each individual window opening model
with coefficients estimated for a range of individual occupants (Haldi, 2010) and assigned

to an agent profile
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(d) Four Agents
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model 14 equal power, model 13 equal power,
model 14 has greater power than 13, 13 has
greater power than 14 and both 14 and 13 have

equal power.
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6.4 Conclusion

This chapter has demonstrated a method for solving conflicting agent goals through the

use of a vote casting system, where each agent is given a voting power that they can use

to request their desired state of the environment. The social interaction model appears

to perform effectively in mediating the different agent preferences converging to a median

behaviour and corresponding energy performance that is between the two. No-MASS can

now simulate populations of competing occupants in a number of different scenarios. In

the scenarios tested, no major differences are predicted, but this may not be the case if

the agent population was scaled up; particularly in a large open plan office environment

where there may be many competing desires.

By allocating unique stochastic models to individual agents rather than using only ag-

gregated models as in Chapter 4, it is now possible to assign individual models to each

occupant for the activity model, window model, lighting model and the presence model.

It is also possible to define for each occupant the percentage of time each occupant uses a

BDI rule. The social interaction framework handles the interactions between occupants,

either allowing them to agree on a desired outcome or to resolve any conflicts.

However this social interaction framework is not based on empirical evidence. To this

end a dedicated field survey would be useful, to better understand group decision making

dynamics to regulate the indoor environment and to encode this understanding into No-

MASS. If possible this field study should be culturally diverse, the social interactions

taking place in a western country for example may be different to those of an eastern

country.



Chapter 7

Reinforcement Learning

As previously noted developing and rigorously validating stochastic models of occupants

bahaviours is data intensive. Although a BDI framework is a useful companion to such

models in the absence of the data, its use should be restricted to relatively straight for-

ward types of interaction. For more complex interactions, agent learning is a promising

alternative whereby agents to learn from past experiences to take actions in the present

that will effect their comfort in the future. Reinforcement learning is related to dynamic

programming, especially where the problems are defined as Markovian Decision Processes

(MDPs) (Sutton and Barto, 1998). Dynamic programming requires breaking a problem

into sub problems and saving the results. Later, when the same sub problem arrives, rather

than calculate the result the saved value is retrieved. If these problems can be resolved

recursively and if there is a link between the result of the total problem and that of the

sub problems, the function is known as the Bellman equation (Bellman, 1957). MDPs and

dynamic programming allowed researchers to study many optimisation problems (Howard,

1960), where given a state s, an agent may choose an action a, from a set of actions and at

the next state s1, the agent will receive a reward. This allows the agent to take an action

and then make an assessment on the performance of the action at the next timestep based

on the received reward.

7.1 Theory

Reinforcement learning is a trial and error strategy, where an agent in a given state, takes

an action based on its expected reward, arrives at the next state and updates the reward

of the previous state. The reward can be negative if the result is not desired or positive if

it is desired (Minsky, 1961). There are many algorithms that use this methodology, one

97
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of which is a temporal-difference learning algorithm called TD(λ) (Sutton, 1988). TD(λ)

looks at multi-step prediction problems where the predictions over a number of steps

predict a final outcome. At each step it is possible to update predictions regarding the

final outcome at the end of the episode, calculated from the difference between the reward

expected and the reward received. Another is the is Q-learning algorithm developed by

Watkins (1989), where an agent will choose an action in a given state based on a Q quantity,

which is a weighted reward based on the expected highest long term reward. This method

is considered an Off-Policy method, meaning its Q values are updated assuming that the

best action was chosen, even if the best action was not chosen. Another temporal-difference

learning algorithm is called SARSA. This method is an On-Policy version of the Q-learning

algorithm (Rummery and Niranjan, 1994). Here, instead of updating the Q quantity based

on the optimal greedy policy at the previous state, the Q value is updated based on the

current Q value; meaning that the agent continues along the same policy. SARSA tends

to learn the safer policy, where there is a lower risk (least negative reward), whereas Q-

learning learns the optimal policy, the path to the highest reward. R-Learning is another

On-Policy method (Schwartz, 1993). Where instead of considering the total reward, the

goal is to maximise the timestep reward. It adapts the Q-learning method, but instead of

discounting the current Q value based on future rewards it takes the average of the current

reward and the previous maximum Q value as approximators. Schwartz (1993) argues that

this allows the algorithm to converge faster that the Q-learning method for some cases.

Alternatively Tesauro (1995) used a neural network which trained itself, playing the board

game Backgammon to expert level. A neural network consists of a number of networked

nodes that take an input, in this case the position of the board, and predicts the next

best move. This works through a number of hidden weighted network nodes that can

be understood as generic non-linear function approximator. The weights are updated

based on the received reward with a back propagation algorithm. The neural network

methodology has an advantage over Q-learning and other methods, as it can learn much

more complex interactions, since Q-learning is limited by the table space of the Q table

state/action predictions. To overcome this issue, Mnih et al. (2015) developed what they

call a deep Q-network (DQN) where many layers of nodes are used to approximate the

Q-value for a given state and action. This method has allowed agents to learn how to

play many classic computer games at human level or above. These learning algorithms

have been used extensively in the agent simulation literature. For a review of the different

modelling multi agent learning methods please see Babuška et al. (2008).

The Q-learning algorithm has been applied to agents to test the effects of agents shar-

ing either sensory data or learnt policies based on the learning rate (Tan, 1993). Using a
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predator-prey scenario the agents that shared their experiences learnt faster than indepen-

dent agents, they were able to catch their prey in few steps, but they had the extra cost

of the communication and required a larger table space. Nolfi et al. (1994) used a neural

network coupled with a genetic algorithm to allow agents to walk across a grid collecting

food. Instead of supplying a reward at each timestep at each simulation run or episode the

best agent (the one that had collected the most food) would be chosen as the base agent

for the next episode. This allowed the agents to evolve naturally towards agents that col-

lected the most food. An altered version of the Q-learning algorithm was used to simulate

elevator performance (Crites and Barto, 1996). Here, peak rush hour times were modelled,

where each agent was subject to the random arrival times of people in a continue state

space. Crites and Barto (1996) found that this algorithm was able to learn the optimal

solution to reducing the square wait time of a person. It out performed the other state of

the art elevator algorithms at the time. Claus and Boutilier (1998) developed agents that

considered the joint actions of multiple other agents in a co-operative Q-learning strategy

but found that it did not guarantee convergence towards an optimum in their test cases;

but they found that with care of design it was possible in some simpler cases. It is also

important to consider competing learning agents as with Littman (1994), who found that

the Q-learning algorithm was a poor choice for the zero sum Markov game modelled after

soccer. This is because Q-learning finds deterministic policies and every move in the game

had a perfect defence. Littman (1994) suggests a minimax-Q algorithm for probabilistic

situations. Agents using difference approaches were found to converge towards different

polices while playing an iterative version of the prisoner’s dilemma. Q-learning agents

were found to learn more co-operative strategies over neural network learners that learned

non-cooperative strategies (Sandholm and Crites, 1996).

7.2 Implementation

Q-learning (Watkins and Dayan, 1992) allows agents to learn a response from a reward, to

an action. This allows agents to develop an understanding of their preferences over time.

In a Markovian domain an agent learns the best action in a given state, this is achieved by

trying every action in a state and updating the expected reward with the actual reward

for that action. This can be computationally expensive, however it is useful in building

performance simulation as the same methodology can be applied to areas where models

are missing due to lack of data and where there is a clear link between an action and a

driving stimulus. For example, does a chosen action cause comfort or discomfort, increase

the reward if comfort is maintained and decrease if not. The Q Value at state st for action

at is given by the function:
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Qt(st, at) = Qt(st, at) + α(r + γ ∗max(Q(st+1, a)) −Qt(st, at)) (7.2.1)

Where the reward is r, the learning rate, α, is 0 < α 6 1 and the discount Factor, γ is

0 < γ 6 1. The discount factor specifies how soon the agent cares about the reward, ie.

if an agent is myopic, they care about the near term gains, otherwise the agent would

prefer long term rewards. Long term rewards are set closer to 1. The weakness of this

approach is that if there are a large number of states and actions then the size of the table

space is large, meaning that the learning process could become long or the model will not

converge. The table space is the mapping of state to action. Consider indoor temperature

to a heating setpoint, at each possible indoor temperature state there is associated heating

setpoint action. Each indoor temperature from 0 - 30◦C would have a heating setpoint

action from 0 - 30◦C that could be taken. The action chosen is the cell with the highest

value, see Table 7.1. A large table space would make it difficult for an agent to learn

and assess all possible states and corresponding actions. Avoiding this it may be better

to replace the table with a Neural Network as a function approximator as in Tesauro

(1995). However Q-learning is a tried and tested method for single agents who learn by

themselves, and it converges towards an optimal policy making it a suitable choice for No-

MASS. A large table space can be avoided in most spaces, removing the main weakness

of the model.

Indoor Heating Setpoint Action ◦C

Temperature ◦C ... 20 21 22 ...

... ... ... ... ... ...

10 ... 0.1 0.2 0.1 ...

11* ... 0.1 0.4 0.1 ...

12 ... 0.1 0.2 0.1 ...

... ... ... ... ... ...

Table 7.1: Example Q-table table space, (*) indicates current state at 11◦C where the
largest value is an action of 21◦C.

Heating Set Points

Q-learning requires a map from state to action. In building simulation heating setpoints

(for which there is a lack of high quality longitudinal data) are time based allowing a

different setpoint to be set for the time of day. This gives the model its first constraint,

the timestep intervals within building simulation. EnergyPlus simulation timesteps are

often set to sub hourly intervals, however the table space would be large if the agents
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learnt the heating setpoint for every time step. Since Q-learning requires that each action

in each state is evaluated, this would make the learning process computationally expensive.

To keep the table space small a second constraint is placed on the model, limiting the learnt

states to hourly time intervals. The set of states has now been defined, the hours of the

day, but not every day is the same; the heating set points for the working week may differ

from those of the weekend. Rather than learn the optimal action for everyday of the year,

No-MASS agents learn for weekdays and weekends. The final constraint placed on the

states is that heating demand is seasonal, it changes over time based on the season. To

overcome this issue No-MASS agents are set to learn the best action for each month. No-

MASS Q-learning states are therefore the hours of a working weekday and the weekend

for each month. No-MASS now has a set of states that an agent can be in at a given

point in time, next a set of actions that an agent can perform at each state. This is the

heating setpoint, which are constrained to be between the heating setback temperature

and, if relevant, the cooling setpoint temperature.

With the states and actions defined a method of rewarding or punishing the agents when

they perform an action needs to be considered. As the heating set point is linked to

an agent’s comfort, the sensible solution is to reward an agent based on the outputs of

a thermal comfort model; thus allowing them to learn the heating setpoint values that

minimise discomfort at a given point in time. No-MASS currently has a mechanism to

calculates the agent metabolic gains based on ISO:77302005, which also provides the source

code to calculate the Predicted Mean Vote (PMV) of each agent, a thermal sensation scale

from -3 to 3: cold (-3), cool (-2), slightly cool (-1), neutral (0), slightly warm (+1), warm

(+2) and hot (+3). Our agents must also aim to be efficient and not wasteful, agent should

be punished if PMV values are above 0. Conversely if the agent is too cold PMV < −0.5,

the agent is punished once again for having selected a discomforting strategy, so that a

−0.5 < PMV <= 0 obtains a high reward. It is necessary to restrict the heating while

the agent is absent, otherwise an optimal learning policy would be to wastefully leave the

heating on to maintain a temperature that is satisfactory at all times. To overcome this

agents are punished if the heating is above the setback temperature for more than an hour

while the agent is not present. Thus our reward function is:

r = z ∗ (1 ∗ c+ 0.1 ∗ a− 0.1 ∗ b− 0.1 ∗ e) + (1 − z) ∗ (d ∗ 0.1 + (1 − d) ∗ −0.1) (7.2.2)

a, b, c, d, e and z are binary operators where a is 1 when pmv > 0 and the heating setpoint

equals the heating setback, b is 1 when pmv < −0.5, c is 1 when pmv >= −0.5 and

pmv <= 0 and d is 1 when the heating setpoint equals the heating setback and the
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absence length > 1 hour. e is 1 when pmv > 0 and the heating setpoint temperature is

greater than the setback temperature.

For the Q-learning equation (7.2.1) our learning rate α is set to 0.1 as the environment

is non deterministic, as suggested by Sutton and Barto (1998). The discount Factor γ is

0.1, making the agent short sighted, so that they prefer a rewards that are short term for

discomfort to be reduced in the near future. This is not unlike reality; occupants want

to be warm in the near term if they are cold. However an occupant may be long-sighted

and pre-heat an environment, this is accounted for by the d parameter in the reward

function.

The Q-learning method described so far has no exploration over time; choosing a method-

ology of ε−greedy which enables the agents to explore the parameter space. An ε−greedy
policy is the chance of random action taking place over the optimal, Sutton and Barto

(1998) suggest that a value of 0.01 is slower at learning random actions taken but converges

to a better policy than ε = 0.1. Random actions are taken on based to ensure that as

the agent learns all possible actions are tested over time; what may have been optimal at

the start of the learning period may not be at the end. For No-MASS’s heating setpoint

learning a value for ε of 0.01 is set, meaning that 1% of the actions taking place are a

random action.

Window Opening Setpoints

A second approach to test its effectiveness would be to compare it to an existing stochastic

simulation method. Comparing the stochastic window model to one already integrated

within No-MASS is an effective way of evaluating how effective it will be in other situations.

Learning window opening setpoints is more complex than learning heating setpoints. First

the window opening as highlighted in Haldi and Robinson (2009) has more significant

inputs than just the operative temperature that is used to determine the heating setpoints.

Using all the inputs of the stochastic window model would make the number of states an

agent could be in too large for effective convergence. Choosing the internal temperature

to begin with is a good starting point. However when a window is opened the external

temperature will effect the PMV of the agent. This could alter the reward either way, if the

external temperature is lower than the internal, it may lower the PMV, if the external is

higher it may increase the PMV. Including the external temperature as well as the internal

is a rational bases for the agent to learn. With the states of indoor temperature limited to

9 < x < 30, external temperature limited to 9 < y < 30, gives 400 possible states. There

are two possible window actions, open or closed. With this larger table space (compared
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to the heating setpoint model) it may be that all possible combination of interactions can

be considered, but the model may not converge to an optimal solution in all states.

The reward strategy is again based on the PMV of the agent. If the agent is too hot and

the window is closed then a punishment occurs, otherwise a reward. Conversely when an

agent is cold and the window is open the agent is punished, otherwise rewarded. The

reward function is therefore:

r = (0.1 ∗ a− 0.1 ∗ b) (7.2.3)

Where a is a binary operator: if pmv > 0.5 and the window is open or if pmv < −0.5 and

the window closed, a = 1, otherwise it is equal 0. b is also a binary operator: if pmv > 0.5

and the window is closed or if pmv < −0.5 and the window is open a = 1, otherwise a = 0.

The other parameters needed in the Q-learning equation (7.2.1) are kept the same, α, γ

are 0.1 and ε is again 0.01.

The residential building and non-residential building discussed in Chapter 4 are used once

again as a case study. However for simplicity only Geneva is considered. Cooling is not

used as it would influence the learnt heating demand. Operative temperature is used to set

the heating setpoints, in contrast to Chapter 4 where air temperature was used. However

air temperature does not take into account radiant gains, causing learnt temperatures to

be higher than would be expected.

7.3 Agent Learning And Building Performance

Heating Setpoints

Agents should learn the optimal heating setpoints of a building after a period of time.

Choosing a standard learning period, a t-test (P value = 0.05) is performed, comparing

the median value of 100 replicates to the previous years’ 100 replicates until the median

heating demand is no longer significantly different, this occurs at 19 training years. The

running mean for 150 years of simulation is given in Figure 7.1.

After a period of 19 training years a No-MASS agent learns the heating demand profiles

presented in Figure 7.2. For the cooler months, November to March, similar profiles are

learnt. At the end of this heating season in April and October the agents have learnt three

distinctive profiles: heating first thing in the morning, reducing heating, raising around
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lunch, reducing after lunch and increasing again before departure. During the summer

months and September there is no desire by the agents to enable heating.
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Figure 7.1: Heating demand mean convergence for the learning heating setpoint within
the non-residential building



Chapter 7. Reinforcement Learning 105

5 10 15 20

0
5

10
15

20
25

30

hour

S
et

po
in

t (
c)

(a) Janurary

5 10 15 20

0
5

10
15

20
25

30

hour

S
et

po
in

t (
c)

(b) Feburary

5 10 15 20

0
5

10
15

20
25

30

hour

S
et

po
in

t (
c)

(c) March

5 10 15 20

0
5

10
15

20
25

30

hour

S
et

po
in

t (
c)

(d) April

5 10 15 20

0
5

10
15

20
25

30

hour

S
et

po
in

t (
c)

(e) May

5 10 15 20

0
5

10
15

20
25

30
hour

S
et

po
in

t (
c)

(f) June

5 10 15 20

0
5

10
15

20
25

30

hour

S
et

po
in

t (
c)

(g) July

5 10 15 20

0
5

10
15

20
25

30

hour

S
et

po
in

t (
c)

(h) August

5 10 15 20

0
5

10
15

20
25

30

hour

S
et

po
in

t (
c)

(i) September

5 10 15 20

0
5

10
15

20
25

30

hour

S
et

po
in

t (
c)

(j) October

5 10 15 20

0
5

10
15

20
25

30

hour

S
et

po
in

t (
c)

(k) November

5 10 15 20

0
5

10
15

20
25

30

hour

S
et

po
in

t (
c)

(l) December

Figure 7.2: Learnt monthly heating setpoint profiles from 100 replicates within the
non-residential building
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Comparison between the heating demand of the learnt profile and the deterministic heating

setpoint schedules are given in Figure 7.3a. The deterministic setpoint schedules simulated

a median heating demand 5kWh/m2 larger than the learnt schedules. It would be expected

that agents using the learnt schedules would not have their thermal comfort met as they

are using less energy to heat the building. However in Figure 7.3b observe that this is

not the case. Using the learnt profiles the yearly mean percentage of people dissatisfied

(PPD) is within half a percent of the deterministic setpoint schedules with the mean PMV

being closer to zero. The learnt profiles effectively meet the agents energy and comfort

aspirations.
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Figure 7.3: Box plots of 100 replicates for learning heating setpoints within the non-
residential building
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Figure 7.4: Density plot of PMV for learning heating setpoints within the non-residential
building

In the residential building the learnt heating setpoints are similar to those of the determin-

istic case, but for significantly reduced heating demands. This is expected as the learning

mechanism considers agents’ presence. This time after 25 simulations the agents have

learnt a profile for which t-test declares the heating demand has not changed. The heating

profiles for each room at the 25th simulation is given in Figures C.1-C.5. The agents

have learnt that the kitchen and the office rooms do not need to be heated. Looking at

the monthly air temperatures for the rooms (Figure 7.5), the mean air temperature does

not go below 15◦C during January in the kitchen. With typical figures for the month of

January used in the PMV calculation; a metabolic rate at 116W/m2 for cooking, a clo of

1, humidity at 20%, radiant temperature and air temperature at 15 ◦C the PMV would be

-0.17; which is in the comfortable range. However the metabolic rate is possibly too high

in this scenario for cooking. The high random peaks that can be see are from exploration

by the agents. For example in the kitchen the agents set the temperature to 27 ◦C at

7pm in the kitchen in September. For the living room the agents choose a high temper-

ature setpoint for the winter months, 23/24 ◦C, due to the low metabolic rate while in

the activity audio/visual or in the activity passive. During the months June to September

the heating setpoints are low, with the winter months showing heating turned on from

morning to late at night. The bathroom is heated from around 6/7am till 3pm and then

from 9pm till midnight. The bedroom is heated during the night, albeit to maintain a

relatively low setpoints thanks to the insulation afforded by the duvet.
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Figure 7.5: Box plot of monthly mean air temperature (◦C) for the learning heating
setpoints for the residential building

The monthly average air temperature appears to show that the mean air temperature is

kept at an acceptable level for the building occupants. Observations of the time spent at

the different levels of PMV for the year (Figure 7.7b) show that although heating demand

has increased by 14kWh/m2, the agent is only slightly cool 10% of the time and rarely

cooler. Looking at the deterministic schedule the agents are cool 28% of the time and cold

8% of the time. These schedules are therefore a significant improvement for this type of

occupant.
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Figure 7.6: Box plots of 100 replicates for learning heating setpoints within the resi-
dential building
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Figure 7.7: Density plot of PMV for learning heating setpoints within the residential
building

Learning Window Opening Interactions

Comparison of the Q-learning window opening model and that of the stochastic window

opening model shows the effectiveness of the learning methodology as a potentially useful

model in place of stochastic models if no data is available. Figure 7.9a shows that there
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is a significant difference between the heating demands using the Learnt model and the

stochastic model for the non-residential building. The mean PMV is almost equal in both

bases. The density plots of PMV (Figure 7.10) show that the Learnt model lowers the

proportion of time spent above a PMV of 0.5 by 11% compared to that of the stochastic

model. However the Learnt model is over estimating the proportion of time that the

windows are open over the course a year. This may be because the PMV model used

assumes an airflow of 0.1m/s which will not be the case when the window is open. The

airflow could be much higher resulting in a lower PMV. As EnergyPlus does not calculate

local air velocity but takes a user specified value and No-MASS currently has no method

of calculating air velocity, our corresponding PMV predictions will be error. Since window

openings are overestimated it is unsurprising that heating energy demand is corresponding

over estimated; but only by approximately 6%, in the case of the non-residential building.

On balance, the Q-learning model performs well in this case.
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Figure 7.8: Heating demand for mean convergence for learning window interactions
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Figure 7.9: Box plots of 100 replicates for learning window interactions within the
non-residential building
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Figure 7.10: Density plot of PMV for learning window interactions within the non-
residential building
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Figure 7.11: Box plots of the percentage of time the window is open per month for 100
replicates in the non-residential building

In contrast, the residential building’s learnt window opening interactions cause the heating

demand to double in value from 50kWh/m2 using the stochastic model to 104kWh/m2

using the learnt interactions. However, this increase in heating demand does results in

agents spending more time at the PMV neutral state (Figure 7.13). But the boxplots of

monthly demand for each room (Figure 7.14) show that for all zones there is a considerable

overestimate in window usage. This is especially true in the kitchen, where even during

the winter months the windows are open at least 30% of the time; suggests that this

methodology needs further reinforcement. For example it appears that in the case of the

kitchen the agent learns that the windows can be left open and that the heating systems

will nevertheless try to maintain the temperature. To resolve this punishing the agent

when the window is open and the heating is on seems sensible.
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Figure 7.12: Box plots of 100 replicates for learning window interactions within the
residential building
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Figure 7.13: Density plot of PMV for learning window interactions within the residential
building
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Figure 7.14: Box plots of the percentage of time the window is open per month for 100
replicates in the residential building

7.4 Conclusion

Agent learning appears to be an effective way of developing rules for emulating occupants’

comfort stochastic behaviours for cases where data is limited or unavailable. As this work

demonstrates, however, in buildings where occupancy may vary over time and with the

season, a learnt set of heating setpoints may improve the fidelity of predicted building

performance. A good example would be schools or universities, where not all rooms

are used throughout the day but are sporadic, it would be unwise to simulate constant
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heating demands over the day, a better profile would be one learnt based on teaching

schedules.

In the relatively simple case of the non-residential building our agent learning strategy also

effectively simulate the use of windows; but this use is over estimated in the residential case;

windows are open far longer than would be expected. The large table space and the low

likelihood of all states occurring multiple times during a simulation limits the learning rate

and leads to over estimation. Examining the stochastic models the parameters considered

in the model (eg. indoor temperature, external temperature, length of time departure, etc.)

show that there are a number of factors that are significant to consider, which are not in

No-MASS’s Q-learning model. Combining these for different models for arrival, presence

and at departure make it almost impossible to model with the Q-learning methodology. A

better model would be to use a neural network, taking in these parameters to learn how

they effect the reward. This would also overcome the weakness of having to reach every

state with just internal and external temperature as in the Q-learning method.

Nevertheless is would be useful to improve the quality of the reward calculation in this

methodology, wither using an adaptive comfort model, or by adding finesse to the use of

the PMV model, for example to penalise conflicting strategies (eg. of windows open and

heating on) and better representing agents activity metabolic rather and clothing values

(eg whilst cooking and sleeping).





Chapter 8

Conclusion and

Recommendation

In Chapter 1 it was hypothesised that an effective modelling strategy for simulating oc-

cupants in building performance simulation is multi-agent simulation. The No-MASS

framework used agents to integrate a hybrid system of stochastic models, BDI theory, a

social interaction framework and machine learning to model people in buildings. In Chap-

ter 3 the No-MASS framework was described, highlighting how it is a generic interface that

can be linked to other simulation tools that use the open FMI standard for co-simulation.

The effects of the stochastic nature of occupants was then highlighted in Chapter 4, show-

ing how they influence simulated building performance using models of external shading,

window opening, lighting, presence and activities, achieving aim 1. To achieve aim 2, a

mechanism was described for using different occupant profiles for the activity model, al-

lowing No-MASS to handle diversity between occupants. Chapter 5 achieves aim 3, since

No-MASS now also uses a BDI framework to model behaviours for which there is no empir-

ical data to build validated stochastic models. The sensitivity of simulated performance to

these rules show that in some cases there is a clear need for data collection efforts; but also

that the BDI approach is a sound intermediate solution. Agent social interactions and the

effects they cause are described in Chapter 6 for aim 4, also observing the effects of agent

diversity through the use of different window profiles. Finally, aim 5 is achieved in Chapter

6 with the development of machine learning techniques to solve occupant interactions that

do not have data and are too complex to be solved through generic rules.

Employing these complementary techniques to support the comprehensive simulation of

occupants presence and behaviour, integrated within a single platform that can readily

interface with a range of building (and urban) energy simulation programs is the key

contribution to knowledge from this thesis. Nevertheless there is significant scope to

117
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extend this work to further reduce the performance gap between simulated and real world

buildings.

Validating this work against a real world data is difficult since it is difficult to conduct

experiments that isolate individual energy flow pathways in buildings. Nevertheless, it

would be useful to conduct a study similar to that of Blight and Coley (2013), where

No-MASS is tested against a building designed to the passive house standard. These

buildings have stringent designs that must be kept to, reducing our Type II errors, hence

any variations should be due to occupants and or weather conditions.

The BDI models shows that there is a need for more stochastic models, requiring more data

collection especially regarding of window opening behaviours in response to pollutants;

likewise with respect to the lifestyle (eg privacy) related impacts on the use of windows,

lights and shading devices. In the office, as already mentioned, other models that could

included, such as long term absences due to sickness, business trips and holidays; these can

also be applied to the household, as most longer holidays will be away from the home and

sicknesses will be in the home. Models for large appliances and aggregated small appliances

should also be included within No-MASS. Rather than define the agents at each simulation

it would be better to build a system that generates a synthetic population based on the

social demographics of the building to be simulated. This would provide a convenient

basis for evaluating the robustness of a design to diverse populations of occupants.

This work created a social interaction model to demonstrate how conflicting interactions

could be managed, however a field study studying the different types of social interac-

tions and their frequency in different settings would allow the model to be based on real

world data. To our knowledge no such data collection exists with building performance in

mind and it could be used to replace or supplement the social interaction model imple-

mented.

No-MASS is currently generalised for a single building but their is no reason why it cannot

be extended to handle multiple buildings to support integration with tools like CitySim

(Robinson, 2011). Further the same multi agent stochastic simulation methodology could

be used in the simulation of smart grids, with appliances becoming agents, their demand

profiles simulated with stochastic models where data is available and BDI/ agent learning

when not. The appliance could communicate when to turn on using the social interaction

model. The agent appliances would learn the optimal demand profiles for themselves for

a day or week based on machine learning, either Q-learning or neural networks.

Finally the ability to use No-MASS from within the DesignBuilder interface tool is of great

benefit for our work due to the feedback gained from the use of practitioners; however a
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study into the effectiveness of the interface and the integrated models by industry experts

would validate the usability of this work.





Appendix A

DesignBuilder Interface

Workflow

A Building is first designed in the DesignBuilder simulation program. This involves using

the controls to sketch out the vertices of the building, selecting the parameters for the

construction materials and laying out the internal zones. Windows, shades, lighting and

HVAC systems can be altered, however defaults are used for quick simulations. Once

designed the No-MASS agents can be enabled through the modelling options dialogue.

See Figure A.1.

Figure A.1: Design a Building
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The modeling options dialogue allows more advanced options in DesignBuilder to be ac-

cessed. This included the No-MASS agents. It is possible to enable the individual stochas-

tic models and set a seed value for controlling the randomness of the simulations. Once

enabled, in the main dialogue there is an extra selection box where the occupant parame-

ters can be altered. See Figure A.2.

Figure A.2: Enabled detailed occupancy

The occupant detail selection box allows the building occupants to be selected from a

database of available templates for occupants. It is possible to choose on the occupant

templates such as a family of four or an office worker. Over time the user can add to

these creating their own templates for the different buildings they work with. See Fig-

ure A.3.

Figure A.3: Select the occupancy profile
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Editing the occupant templates allows the user to choose the number of occupants that

inhabit the building. They can then assign different profiles to the different occupants.

There are some readily available profiles in the database. For example that of a retired

elderly person, this sets the activity model more time at home during the day. The

occupants power for use in the social interaction framework can also be specified. The

occupant is assigned a zone, either their bedroom in a residential for sleeping, or the office

they work in for a non-residential building. See Figure A.4.

Figure A.4: Edit the occupancy profile

Editing the individual profiles allows the user to choose from the different parameters for

the activity model, shading model and window model. Giving complete control to the end

user on how the occupants will behave, however at this point expert knowledge would be

needed as to what the values of the coefficients should be. See Figure A.5.
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Figure A.5: Edit individual occupants profiles, selecting windows, shades, etc..

Finally, once the user is happy with the occupants defined through the interface a sim-

ulation can be performed. Result are now influence by the No-MASS agents. See Fig-

ure A.6.

Figure A.6: Run a simulation and view the results of stochastic occupancy



Appendix B

EnergyPlus Source Code

Changes

EnergyPlus differences for allowing shading interactions.
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--- EnergyPlus/src/EnergyPlus/DaylightingManager.cc

+++ EnergyPlusNoMass/src/EnergyPlus/DaylightingManager.cc

@@ -5744,7 +5745 ,10 @@

}

+

+ if (SurfaceWindow(IWin). ShadingFractionEMSOn ){

+ VTRatio = VTRatio * SurfaceWindow(IWin). ShadingFractionEMSValue;

+ }

--- EnergyPlus/src/EnergyPlus/SolarShading.cc

+++ EnergyPlusNoMass/src/EnergyPlus/SolarShading.cc

@@ -5180,6 +5197 ,16 @@

CosInc = CosIncAng( TimeStep , HourOfDay , SurfNum2 );

SunLitFract = SunlitFrac( TimeStep , HourOfDay , SurfNum2 );

+ //! Set trans to shading fraction

+ //! EMS Actuator Point: override setting if ems flag on

+ if (SurfaceWindow(SurfNum ). ShadingFractionEMSOn ){

+ SunLitFract = SunLitFract - ( 1 - SurfaceWindow(SurfNum ). ShadingFractionEMSValue );

+ if(SunLitFract < 0.0){

+ SunLitFract = 0.0;

+ }

+ }

+

@@ -9534,6 +9563 ,77 @@

+ voidComputeWinShadeAbsorpFactorsFor(int SurfNum)

+ {

+ int WinShadeCtrlNum; // Window shading control number

+

+ int ConstrNumSh; // Window construction number with shade

+ int TotLay; // Total layers in a construction
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+ int MatNumSh; // Shade layer material number

+ Real64 AbsorpEff; // Effective absorptance of isolated shade layer (fraction of

+ // of incident radiation remaining after reflected portion is

+ // removed that is absorbed

+

+ if ( Surface( SurfNum ).Class == SurfaceClass_Window && Surface( SurfNum ). WindowShadingControlPtr > 0 ) {

+ WinShadeCtrlNum = Surface( SurfNum ). WindowShadingControlPtr;

+ if ( WindowShadingControl( WinShadeCtrlNum ). ShadingType == WSC_ST_InteriorShade

+ || WindowShadingControl( WinShadeCtrlNum ). ShadingType == WSC_ST_ExteriorShade

+ || WindowShadingControl( WinShadeCtrlNum ). ShadingType == WSC_ST_BetweenGlassShade ) {

+ ConstrNumSh = Surface( SurfNum ). ShadedConstruction;

+ TotLay = Construct( ConstrNumSh ). TotLayers;

+ if ( WindowShadingControl( WinShadeCtrlNum ). ShadingType == WSC_ST_InteriorShade ) {

+ MatNumSh = Construct( ConstrNumSh ). LayerPoint( TotLay ); // Interior shade

+ } else if ( WindowShadingControl( WinShadeCtrlNum ). ShadingType == WSC_ST_ExteriorShade ) {

+ MatNumSh = Construct( ConstrNumSh ). LayerPoint( 1 ); // Exterior shade

+ } else if ( WindowShadingControl( WinShadeCtrlNum ). ShadingType == WSC_ST_BetweenGlassShade ) {

+ if ( Construct( ConstrNumSh ). TotGlassLayers == 2 ) {

+ MatNumSh = Construct( ConstrNumSh ). LayerPoint( 3 ); // Double pane with between -glass shade

+ } else {

+ MatNumSh = Construct( ConstrNumSh ). LayerPoint( 5 ); // Triple pane with between -glass shade

+ }

+ }

+ //! Set trans to shading fraction

+ //! EMS Actuator Point: override setting if ems flag on

+ if (SurfaceWindow(SurfNum ). ShadingFractionEMSOn ){

+ Material(MatNumSh ).Trans = SurfaceWindow(SurfNum ). ShadingFractionEMSValue;

+ }

+

+ AbsorpEff = Material( MatNumSh ). AbsorpSolar / ( Material( MatNumSh ). AbsorpSolar

+ + Material( MatNumSh ).Trans + 0.0001 );

+ AbsorpEff = min( max( AbsorpEff , 0.0001 ), 0.999 ); // Constrain to avoid problems with following log eval

+ SurfaceWindow( SurfNum ). ShadeAbsFacFace( 1 ) =

+ ( 1.0 - std::exp( 0.5 * std::log( 1.0 - AbsorpEff ) ) ) / AbsorpEff;
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+ SurfaceWindow( SurfNum ). ShadeAbsFacFace( 2 ) = 1.0 - SurfaceWindow( SurfNum ). ShadeAbsFacFace( 1 );

+ }

+ }

+

+ }

--- EnergyPlus/src/EnergyPlus/WindowManager.cc

+++ EnergyPlusNoMass/src/EnergyPlus/WindowManager.cc

@@ -2886,6 +2890 ,9 @@

if ( ShadeFlag == IntShadeOn || ShadeFlag == ExtShadeOn

|| ShadeFlag == IntBlindOn || ShadeFlag == ExtBlindOn

|| ShadeFlag == BGShadeOn || ShadeFlag == BGBlindOn

|| ShadeFlag == ExtScreenOn ) {

nglfacep = nglface + 2;

+

+ EnergyPlus :: SolarShading :: ComputeWinShadeAbsorpFactorsFor(SurfNum );

+

ShadeAbsFac1 = SurfaceWindow( SurfNum ). ShadeAbsFacFace( 1 );

ShadeAbsFac2 = SurfaceWindow( SurfNum ). ShadeAbsFacFace( 2 );

AbsRadShadeFace( 1 ) = ( SurfaceWindow( SurfNum ). ExtBeamAbsByShade +

SurfaceWindow( SurfNum ). ExtDiffAbsByShade ) * ShadeAbsFac1 +

( SurfaceWindow( SurfNum ). IntBeamAbsByShade +

SurfaceWindow( SurfNum ). IntSWAbsByShade ) * ShadeAbsFac2;



Appendix C

Learnt Heating Setpoint Profiles

For Residential Building

After a training period of 25 years the results converge enough for two years to have the

same heating demand. The setback temperature set to 10◦C. The kitchen has low values,

as the average temperature is approximately 16 ◦C. With the high heat gains in the zone

due to the activity cooking, there is no need for heating during the winter. The office is

also rarely used hence the low heating setpoints.
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Figure C.1: Learnt monthly heating setpoint profiles from 100 replicates, Kitchen
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Figure C.2: Learnt monthly heating setpoint profiles from 100 replicates, Living Room
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Figure C.3: Learnt monthly heating setpoint profiles from 100 replicates, Bathroom
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Figure C.4: Learnt monthly heating setpoint profiles from 100 replicates, Master Bed-
room
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Figure C.5: Learnt monthly heating setpoint profiles from 100 replicates, Residential
Office
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