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Abstract

This thesis is concerned with a real-world multi-shift drayage problem at a
large international port with multiple docks being operated simultaneously.
Several important issues in the drayage problem are identified and a set
covering model is developed based on a novel route representation. The
model adopts an implicit solution representation to reduce the problem
size and aims to find a set of vehicle routes with minimum total cost to
deliver all commodities within their time windows. As accurate travel time
prediction is necessary to construct the vehicle routes, a short-haul travel
time prediction model and an algorithm using real-life GPS data are studied.
The output of the prediction model can be used as an input for the set
covering model.

The set covering model for the multi-shift full truckload transportation
problem can be directly solved by a commercial solver for small problems,
but results in prohibitive computation time for even moderate-sized prob-
lems. In order to solve medium- and large-sized instances, we proposed a
3-stage hybrid solution method and applied it to solve real-life instances at
a large international port in China. It was shown that the method is able

to find solutions that are very close to the lower bounds. In addition, we
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also proposed a more efficient hybrid branch-and-price approach. Results
show the method performed well and is more suited for solving real-life,

large-sized drayage operation problems.
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Chapter 1

Introduction

1.1 Background and Motivation

Freight transportation is of great importance to the economy. It supports
production, trade, and consumption by ensuring the timely provision of
raw materials and consumer products. Freight transportation accounts for
a large proportion of the cost of a product and the national expenditures of
any country [45]. Analysis results suggest that, the volumes of freight traffic
and freight turnover in China are positively correlated with GDP [74].

In China, ports are important gateways for domestic and foreign trade.
According to statistics [3] from the largest (based on throughput) container
ports worldwide in 2015, seven of the top 10 ports in the world are locat-
ed in China. In 2015, the major ports in China handling a total of 212
million TEUs (twenty-foot equivalent unit) increased 4.5% compared with
2014 [2]. This resulted in a highly competitive environment for container
transportation firms that needed to offer high quality, low cost services to

their customers in order to remain profitable.
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The performance of containerised shipping as a whole depends on inter-
modal container transportation [86], which has experienced rapid develop-
ment since the 1980s [131]. It concerns container transportation by multiple
modes (i.e. road, rail, and maritime) within a single transportation chain
[149]. In intermodal container transportation, the longest journey (e.g. be-
tween countries, cities) is usually by sea or rail, while connections between
ports, docks or connections from rural to urban areas mainly rely on truck
drayage (here referred to as drayage). Despite the relatively short distances
compared to maritime or rail hauls, drayage accounts for a large percentage
of origin-to-destination expenses, as transportation per TEU per kilometre
is higher compared with other modes [175].

While freight transportation by truck is indispensable for economic de-
velopment, it also comes with environmental hazards and human health
risks. Drayage trucks powered by diesel engines are a major contributor to
poor air quality [148], as they are typically older and more polluting than
the average long haul truck. Hence, even though it is critical to improve
drayage operations in order to keep costs low, it is also necessary to reduce
their deleterious emissions impacts on the environment.

The study of drayage is relatively new due to the growth of globalised
trade. The term “drayage” was used to describe the overland transport of
cargo to and from barges or rail yards [157]. In a broader sense, drayage
includes regional movements of loaded or empty containers by trucks be-
tween rail yards, shippers, consignees, and equipment yards [142]. A typical

drayage move involves either the pickup of an import container from or de-
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livery of an export container to a terminal. However, the complexities of
the business usually require more than a single drayage trip for each con-
tainer moved, owing to the movement preferences, policies and capabilities
of carriers.

Scheduling for drayage, in essence, is a full truckload vehicle routing
problem (FTLVRP). This is a challenging and time-consuming process, be-
cause the simplest form of truck scheduling is already similar to vehicle
routing problem with pickup and delivery (VRPPD), a well-known NP-hard
combinatorial problem that is very difficult to solve. The difficulty increas-
es if more factors are considered. Besides vehicle capacity and time-related
constraints (e.g. available time and deadline of transporting a container,
working time of driver), the terminal storage facilities and number of trucks
accessing the terminal within a given time slot may also be limited [144].
The complexity of their task leads to inefficiencies, delays and unnecessary
emissions. Reducing these problems is a matter of great importance to the
drayage industry.

The Port of Ningbo-Zhoushan is one of the busiest (based on cargo ton-
nage) ports in China. It handled over 20 million TEUs in 2015, an increase
of 6.36% compared with 2014 [2]. To meet growing service demands, N-
ingbo Port Co., Ltd is making efforts to increase drayage efficiency and
maximise throughput, while at the same time reduce air pollution. Com-
pared with other drayage problems, transport distances in the cross-dock
container shipment problem for the Port of Ningbo are relatively short. An-

other unique concern of the company is that its schedules are shift-based.
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In accordance with labour laws, each truck must return to a depot for driver

changeovers after a shift (12 hours). A schedule typically spans from 4 to

8 shifts in order to maximise efficiency. Due to the unique factors of the

problem, in particular the much longer planning horizons, existing methods

are either not efficient or not applicable.

The real-life problem has the following characteristics:

The unit size of the commodity (container) is equivalent of that of the
trucks. Therefore one unit of a commodity is shipped directly to its

destination without transfers or consolidations.

Schedules are shift based. Each truck has to go back to a depot for
driver changeovers after a shift due to labour law related regulations.

Thus this is a multi-shift vehicle routing problem.

All docks are within a short distance of each other and a unit of any

commodity could be completed within a shift.

The time window for each commodity varies considerably from 1-2

hours, up to 6 shifts.

The total quantities of all the commodities within a planning horizon
can be very large (up to 2000) but the number of distinct physical

nodes is relatively small (less than 10).
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1.2 Thesis Structure

This thesis studies a real-world container inter-dock transportation problem.
In this study, there is a set of docks with short distance (e.g. 5-15 minutes)
between each other and a large number (e.g. 2000) of commodity (container)
transportation demand between these docks within a planning horizon (from
4 shifts to 8 shifts). The container transportation is conducted by truck and
each truck has to go back to a depot for driver changeovers after a shift due
to labour law related regulations. Each commodity has a time window
(i.e. from time when the commodity becomes available to the time when
it has to be delivered to its destination), which varies considerably from 1
to 2 h, up to 6 shifts. Our objective is to minimise the total vehicle travel
distance for transporting a large number of non-consolidatable commodities
between a relatively small number (less than 10) of nodes (docks), satisfying
various time window constraints concerning commodities and drivers. It is a
combinatorial optimisation problem and the real-world problem is very hard
to be solved. The structure of the thesis, in the form of a brief overview of
each of the individual chapters, will be presented in the following.

Chapter 2 introduces several terms and optimisation technologies that
appears in the rest of this thesis. Some technologies which have been suc-
cessful for solving combinatorial optimisation problems are also reviewed
and promising techniques such as genetic algorithm (GA), variable neight-
bourhood search (VNS) and branch-and-price are highlighted.

Chapter 3 firstly provides a detailed description of the problem con-

cerned in this thesis. Secondly, the terms and models of several typical ve-
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hicle routing problems are introduced. Thirdly, we explain where our work
is situated in the broader field of freight transportation research. The prob-
lem is formally defined as a multi-shift full truckload vehicle routing problem
(MFTLVRP). After that, relevant vehicle routing problems that share sim-
ilar properties of our research and their solution methods are highlighted
and reviewed.

In Chapter 4, a set covering model is developed for the problem based on
a novel route representation and a container-flow mapping. A lower bound
of the problem is also obtained by relaxing the time window constraints
to the nearest shifts and transforming the problem into a service network
design problem. Finally, the features and merits of the model are discussed.

As travel times are necessary and important parameters for the set cov-
ering model formulated here, in Chapter 5, we analyse real-life GPS data
were obtained from a container truck fleet at the Port of Ningbo and esti-
mate accurate travel times between different docks. By analysing the data,
we observed an increase in travel time patterns during peak times. This
motivated us to investigate further to try to estimate travel times more ac-
curately and efficiently. We ultimately develop a real-world short-haul travel
time prediction model. The processes of data preparation and variable and
model selection are also illustrated.

Instead of using fixed travel times when generating feasible routes for the
set covering model in practice, this prediction model is suggested to estimate
travel times due to the variability of traffic and driving conditions. Hence,

even though the set covering model studied here is deterministic, its travel
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time parameters can be non-deterministic. The idea of this approach is an
alternative method to other non-deterministic approaches (e.g. stochastic
programming, robust scheduling). Unfortunately, the travel time prediction
model is not integrated with the set covering model for further analysis,
as only limited size of data obtained so that we are not able to obtain a
connected graph with travel time between every pair of docks. For the travel
time parameters used in experiments in Chapter 6 and 7, only part of travel
times were estimated by analysing the GPS data, the rest were estimated
by experience (i.e. travel time suggested by experienced manager in Port).

Chapter 6 presents a hybrid solution method for the set covering model
presented in Chapter 4. In order to evaluate the feasibility and performance
of the model, we applied it to solve real-life instances at the Port of Ningbo.
In addition, test instances with certain features were created in order to
fully assess the approach and to gain knowledge that may not be discovered
from real-life instances. The results are also compared against a reactive
shaking variable neighbourhood search (VNS) and a simulated annealing
hyperheuristic method (SAHH).

The real-life problem has some special features to permit the hybrid
solution method being used. However, in addition to the excessive com-
putational time by the hybrid algorithm, it may become even invalid for
problems that do not possess the features present in this problem. To
address this issue, in chapter 7, a more efficient hybrid branch-and-price
approach is studied. This chapter extends the previous work and presents

a significantly more efficient approach by hybridising metaheuristics (VNS
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and GA) with an hybrid branch-and-price approach.
Chapter 8 provides a summary of the work undertaken in the thesis and
the contributions contained therein. An outline of possible directions for

future research is given.

1.3 Aims and Scope

The drayage problem discussed in this thesis is drawn from a real-world
container inter-dock transportation problem raised in the Port of Ningbo.
The primary objective of this study is to minimise the total vehicle travel
distance for transporting a large number of non-consolidatable commodi-
ties between a relatively small number of nodes (docks), satisfying various
time window constraints concerning commodities and drivers. One of the
unique characteristics of this problem is that schedules are shift based. This
problem will be described in detail in Section 3.2 and formally defined as
a multi-shift full truckload vehicle routing problem (MFTLVRP). Overall,
the aim of this research is to develop models and algorithms for the problem
that: 1. Can be utilised by any large port with multiple docks being op-
erated simultaneously; 2. Should be capable of producing optimised truck

scheduling solutions for the given requirements. Specifically, we want to:

1. Identify potentially important issues in an MFTLVRP;

2. Formulate a practical model that captures the main characteristics of

the MFTLVRP so that it can be used in practice;
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3. Analyse fleet GPS data and estimate accurate travel times between d-
ifferent docks, as travel times are necessary and important parameters

for the model formulated in 2;

4. Investigate both exact and metaheuristics approaches for the model

formulated in 2.

1.4 Contributions

A number of academic publications have been produced as a result of com-
pleting the research presented in this thesis. These publications are listed
in order of the relevant chapter in which this research is contained:

Chapter 4, 6:

e Ruibin Bai, Ning Xue, Jianjun Chen, and Gethin Wyn Roberts. A
set-covering model for a bidirectional multi-shift full truckload vehicle

routing problem. Transportation Research Part B: Methodological,

79(0):134 - 148, 2015.

Chapter 5:

e Ning Xue, Ruibin Bai, and Gethin Wyn Roberts. A Study of Au-
tomated Container Truck Travel Time Prediction Based on Real-life
GPS data Using ARIMA. The Ninth International Conference on Op-
erations and Supply Chain Management, Ningbo, China. 2015. (Best

paper award)

Chapter 7:
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e Ning Xue, Ruibin Bai. A Branch-and-price Approach for the Bidirec-
tional Multi-shift Full Truckload Vehicle Routing Problem. The 8th
International Annual Conference of Chinese Scholars Association for

Management Science and Engineering, Shenyang, China. 2015.

e Ning Xue, Ruibin Bai, Rong Qu, Uwe Aickelin. A Hybrid Branch-
and-price Method for the Multi-shift Full Truckload Vehicle Routing

Problem. Submitted to INFORMS Journal on Computing.



Chapter 2

Optimisation Techniques: An

Overview

2.1 Introduction

In computational complexity theory, the problems are usually classified by
two distinct headings: P and NP. P (standing for polynomial) represents
the class of the problems that are solvable by a deterministic algorithm with
polynomial time complexity. While NP is the class of the problems that can
be solved in polynomial time by a nondeterministic algorithm (NP stands
for non-deterministic polynomial). NP-hard (non-deterministic polynomial-
time hard) is a type of problems that are at least as hard as any problem
in NP [7]. A nondeterministic algorithm is an algorithm that, even for the
same input, can exhibit different behaviors (i.e. solving time and solution)
on different runs, which is opposed to a deterministic algorithm [75].

In combinatorial problems, we look for “an object from a finite (or pos-
sibly countable infinite) set, typically an integer set, permutation, or graph”

[154]. The number of possible solutions in the search space of a combina-

11
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torial problem is usually so large as to forbid an exhaustive search for the
best answer. A typical example of a combinatorial problem is the travelling
salesman problem (TSP), which is NP-hard [123]. The TSP determines the
shortest path that starts from a given city, then passes through all the oth-
er cities and returns to the initial city. A 10-city TSP has around 181,000
possible solutions, however, a 20-city TSP has about 10 quadrillion possi-
ble solutions. This exponential increase in problem size makes some exact
algorithms impractical for solving such large instances. Therefore, one may
apply an approximation approach (heuristics or metaheuristics) that can
obtain satisfactory solution quality within a reasonable computation time.

The truck drayage problem is an NP-hard [123] problem. There is no yet
known polynomial time bounded algorithm that can solve every instance
to optimality. This chapter try to introduce several terms and optimisa-
tion technologies that appears in this thesis. Some technologies which have
been successful for NP-hard combinatorial optimisation problems are also

reviewed and promising techniques are highlighted.

2.2 Exact Methods

Exact methods are able to find the optimal solution and assess its optimality.
The computation time, however, often grows considerably with the instance
size. In general, small or moderate instances can be solved to provable
optimality, but they may suffer in large scale problems, especially those

known to be NP-hard. This section reviews some well-known exact methods
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that include: dynamic programming, branch-and-bound, branch-and-cut,

and branch-and-price.

2.2.1 Linear programming and the simplex method

The development of linear programming (LP) has been ranked among the
most important scientific advances of the mid-20th century [95]. LP uses a
mathematical model to describe a problem and solving it requires finding
the extremum of a linear combination of variables.

A conventional procedure for solving LP problems is the simplex method,
which was developed by George Dantzig in 1947 [50] and has proved to be
an efficient method for solving LP problems. The underlying concepts of
the simplex method are geometric, where each constraint can be interpreted
as a boundary line and the points of intersection are corner-point solutions.
When points fall into a feasible region, they become corner-point feasible
(CPF) solutions. An augmented solution is a solution for the original vari-
ables that has been augmented by the corresponding values of the slack
variables. A basic feasible solution is an augmented CPF solution. The
simplex method is an iterative algorithm with the following steps (see Fig-
ure 2.1):

The processes start by finding an initial CPF solution. The iterative
procedure selects an entering variable (i.e. the variable enters the set of
basic variables) using an optimality condition and selects a leaving variable
(i.e. the variable being replaced leaves the set of basic variables) using

a feasibility condition. The pivot column represents the line (plane) that
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Figure 2.1: Structure of simplex method.

is leaving and the pivot row represents the line (plane) that is entering.
After that, the algorithm checks if the current CPF solution is optimal or
not. If yes, the optimal solution is obtained, otherwise, another iteration is
performed to find a better CPF solution. This is repeated until it is clear
that the current CPF can’t be improved for a better objective value. In this
way, the optimal solution is achieved.

A key step in solving a linear program with the simplex method is the
pivot selection. Methods that make this selection are generally known as a
pivot rules. The two major goals of a pivot rule are: prevent cycling between
states and enhance the speed of search by choosing good edges to traverse.
Good choices can lead to a significant speedup in finding a solution to a

linear program, while poor choices lead to very slow or even nonterminal



CHAPTER 2. OPTIMISATION TECHNIQUES: AN OVERVIEW 15

progress. Dantzig rule is a widely used pivot method.

Take the Dantzig rule as an example: Let a linear program be given
by a canonical tableau. In Figure 2.1, the initialisation stage converts the
problem into an initial system by adding slack variables. Then the initial
system is transformed into a tableau. The value of the objective function is
decreased if the pivot column is selected so that the corresponding entry in
the objective row of the tableau is positive. If all the entries in the objective
row are less than or equal to 0 then no choice of entering variable can be
made and the solution is optimal. The pivot process computes the ratios
between the non-negative entries in the right hand side and the positive
entries in the pivot column. The pivot row is the row with the smallest
non-negative ratio. Pivoting occurs where the pivot row and pivot column
meet.

In addition to the simplex method, there are other (or variants of the
simplex method) algorithms for linear programming, such as the dual sim-
plex method [128], parametric linear programming [179], and interior-point

algorithm [112].

2.2.2 Dynamic programming

Dynamic programming is an important tool for making a sequence of in-
terrelated decisions. The term was introduced by Richard Ernest Bellman
in 1953 [12]. In contrast to the simplex method, which is formed by stan-
dard mathematical formulations, dynamic programming is only a general

program solving concept. Dynamic programming can be applied in many
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fields, such as mathematics, management science, economics, and computer
science for solving complex problems.

The basic idea of dynamic programming is to break a complex problem
into a collection of subproblems and solve each subproblem with a recursive
method. It is a useful technique for making a sequence of interrelated
decisions when the problem can be solved in “stages”. The decisions made in
a stage will affect the decisions at the subsequent stages but are dependent
on each other. One usually follow a backward recursive approach where
the make decisions from the end stages rather than from the beginning
stages. Intermediate solutions are usually saved in a memory-based data
structure (e.g. a table) so that the low efficiency of repetitive computation
in a recursive method is avoided. A dynamic programming algorithm looks
up and compares the previously solved solutions until the best solution is
found.

Stage, state, decision variable and criterion of effectiveness parameters
are common for every dynamic programming problem. Please refer to [13]
for more detailed information about dynamic programming. A high degree
of ingenuity is required to design a recursive algorithm that solves problems
efficiently. Generally, dynamic programming fails to solve large instances
within a reasonable computation time, owing to the recursive structure of

the algorithm.
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2.2.3 Branch-and-bound

Similar with dynamic programming, branch-and-bound only examines a
fraction of the feasible solutions. Branch-and-bound and its variations have
been successfully applied to a variety of combinatorial problems, especially
integer programming problems. This method was first proposed by A.H.
Land in 1960 [119]. Branch-and-bound, as its name suggests, branches
a complex problem into smaller and smaller subproblems and checks the
bound of each subset, then discards the subset if the bound indicates it
cannot contain an optimal solution so that only a small fraction of the
feasible solutions need be examined.

Branching, bounding and fathoming are three basic steps in this algo-
rithm. The branching step divides (branches) a problem into a tree of
subproblems, its nodes corresponding to candidate solutions. This step can
be conducted by setting the branching variable at a fixed value or to specify
a range of values if the number of branching variables is greater than two.
The bounding step computes a bound on how good the solution of a sub-
problem can be. Conventional methods for doing this are LP relaxation and
Lagrangian relaxation [69]. The fathoming step dismisses a subproblem
from further consideration if it indicates that the result cannot contain an
optimal solution or its relaxation has no feasible solutions. Please refer to

[95] and [207] for detailed information about this algorithm.
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2.2.4 Branch-and-cut

After the development of the branch-and-bound approach, another break-
through in operations research is the introduction of the branch-and-cut
method in the 1980s. In fact, cutting plane (cut) algorithms for integer
programming problems were first proposed by Gomory (1963) [84], but the
algorithms were proven ineffective and have since fallen out of use [138].

Branch-and-cut is the branch-and-bound algorithm combined with cut-
ting planes, which is also called row generation. A cut for any linear pro-
gramming program is a new linear constraint that tightens a feasible region
of the linear programming relaxation of a branch-and-bound search. Con-
sequently, the performance of the branch-and-bound algorithm is improved.
Within the branch-and-cut process, if an optimal solution to an LP relax-
ation is infeasible, violated inequalities are found and added to the LP to
cut off the infeasible solution. After that, the LP is re-optimised. Branching
occurs when no violated inequalities can be found [11].

Branch-and-cut was initially limited to pure binary integer programming
problems, but was soon extended to general linear programming problems
where some or all the variables are restricted to integer values. Several types
of cutting plane algorithms have been developed, such as generalised comb
inequalities [145] and disjunctive inequalities [9]. The procedures for identi-
fying violated inequalities also vary by problem, for example, the knapsack
problem [48] and traveling salesman problem [152]. More information about

cutting planes and implementation details can be found in [138].
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2.2.5 Branch-and-price

Branch-and-price focuses on column generation rather than row generation.
Pricing and cutting are complementary procedures for tightening a feasible
region.

The branch-and-price approach integrates branching together with col-
umn generation guided by a pricing problem. Since only a small number of
variables contribute to obtaining the objective value, a subproblem (pricing
problem) is solved to identify the variables worthy of further processing.
This procedure is referred to as column generation. If such columns are
found, the LP is re-optimised until no more such columns can be found.
The branching process occurs as the column generation does not automat-
ically guarantee an integer solution. Cutting planes can also be added in
order to further strengthen the relaxation, and this method is called branch-
price-and-cut (see [56] for a detailed description of the branch-price-and-cut
algorithm).

In the branch-and-price framework, the original problem is decomposed
into a master problem and subproblems. This decomposition scheme is dif-
ferent according to various contextual settings. Application of branch-and-
price has been particularly fruitful in the areas of routing and scheduling
[11]. In many vehicle routing applications solved by column generation,
the subproblem is usually viewed by a shortest path problem with resource
constraints (SPPRC) or one of its variants. The elementary shortest path
problem with resource constraints (ESPPRC) is an extension of the SPPRC

in which all paths are elementary. The ESPPRC is to find the least cost
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elementary path with no repeated nodes between two specified nodes such
that the accumulated quantity of each resource consumed on all arcs in the
path does not exceed its limit [17].

Standard exact approaches for solving the SPPRC and its variants are
dynamic programming, labelling algorithms, branch-and-bound, Lagrangean
relaxation and constraint programming. Among them, dynamic program-
ming is used extensively for generating columns and it is shown to be suc-
cessful with tight resource constraints, but it becomes time consuming with
increasing problem size. Heuristics are adopted for efficiency in solving the
SPPRC approximately. If a graph contains negative costs, which always oc-
cur in the context of column generation, solving the SPPRC might become
more complicated [67]. Extending the SPPRC to an ESPPRC exponentially
increases the problem size and the ESPPRC is proven to be NP-hard [60].

The SPPRC was first introduced in the Ph.D dissertation of Desrochers
as a subproblem of a bus driver scheduling problem [103]. The classic op-
timisation approach for the VRPTW was given in Desrochers et al. (1992)
[54]. Feasible columns were added as needed by solving a SPPRC by consid-
ering time window and capacity constraints using dynamic programming.
The algorithm is capable of optimally solving 100-customer problems. D.
Feillet et al. (2004) [67] proposed an exact solution procedure for the E-
SPPRC, which extended the classical label correcting algorithm originally
developed by Desrochers et al. (1988) [55] for the relaxed (non-elementary)
path version of this problem.

Rousseau et al. (2004) [170] presented a column generation approach
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that solved the elementary shortest path subproblem with constraint pro-
gramming. A more efficient label setting algorithm for solving ESPPRC
with consideration of the state-space augmenting approach was proposed
by Boland et al. (2006) [17], an idea based on Kohl (1995) [111]. Righini et
al. (2007) [167] compared dynamic programming to the branch-and-bound
method and developed a decremental state-space relaxation method. The
implementation and comparison of [17] and [167] can be found at [162].
Irnich et al. (2005) [103] provided a review on the subject. The review
proposed a classification and a generic formulation for SPPRCs, and also
briefly discussed complex modelling issues involving resources, and present-
ed the most commonly employed SPPRC solution methods. A more recent

survey of SPPRCs can be found at [163].

2.3 Heuristics and Metaheuristics

We introduce several exact algorithms that are guaranteed to find the opti-
mal solution in a finite amount of time. These methods are well-studied and
have proven to be valuable in solving many real-life problems, particularly
smaller ones. For large and complex problems, finding optimal solutions
with exact methods is prohibitively time-consuming. In some cases, it is
not important to find the optimal solution as long as the computation time
is reasonable and the solution quality is satisfied. For such cases, people
often resort to heuristic or metaheuristic methods.

A heuristic method (heuristic) can be defined as: “a procedure that is
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likely to discover a very good feasible solution, but not necessarily an optimal
solution for the specific problem being considered [95].” Typical examples of
heuristics are the constructive method, greedy algorithm and local search
algorithm. Heuristics are also referred to as problem-dependent techniques.

Metaheuristics, on the contrary, are problem-independent techniques, as
they are general solution methods for a whole range of problems. A meta-
heuristic can be defined as “a general solution method that provides both
a general structure and strategqy guidelines for developing a specific heuris-
tic method to fit a particular kind of problem [95].” The main framework
of metaheuristics are problem-independent but the actual algorithm imple-
mentation is problem dependent (e.g. parameters, neighbourhoods, etc).
According to the number of solutions, (meta)heuristics can be separated in-
to two classes: single-point and population-based. Single-point algorithms
only keep a single solution at each iteration, while population-based algo-
rithms maintain a population of solutions. Typical examples of single-point
search methods are the basic local search, tabu search, simulated annealing,
and variable neighbourhood search, while the population-based approaches
include genetic algorithms, evolutionary strategies, evolutionary program-
ming, genetic programming, differential evolution, ant colony optimisation
and particle swarm optimisation. Metaheuristics are deemed as advanced
heuristics. For example, the simulated annealing technique may accept a
temporary deterioration of the solution in order to explore a larger solution
space.

Hyperheuristics are a step ahead of metaheuristics. Their main pur-
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pose is to “devise new algorithms for solving problems by combining known
heuristics in ways that allow each to compensate, to some extent, for the
weaknesses of others. They might be thought of as heuristics to choose
heuristics [169].” Differing from the applications of metaheuristics that usu-
ally work with a search space of solutions, hyperheuristics work with a search
space of heuristics [80]. A more detailed description of hyperheuristics can
be found at [169].

In the following, some popular heuristic and metaheuristic methods are

introduced.

2.3.1 Basic local search

Local search is an iterative algorithm that starts with an initial solution and
constantly replaces the current solution with a better neighbourhood solu-
tion until the stopping condition is met or no further improvement can be
found. A neighbourhood of a point is a set of points containing that point
where one can move some amount away from that point without leaving
the set. The initial solution can be generated randomly or by a certain con-
structive heuristic (i.e. a heuristic that starts from an empty solution and
is gradually constructed until a full solution is obtained). Neighbourhood
solutions are usually achieved by moves that transform the current solution
by neighbourhood function(s). The most commonly used stopping condi-
tions are maximum CPU time and maximum number of iterations. Local
search is a commonly used heuristic that improves an initial solution by a

set of local changes, and during the process only one neighbourhood is em-
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ployed. This local search heuristic may fall into the trap of local optimum.
When the choice of the neighbourhood solution is based on a maximising
objective, local search is also known as hill-climbing (or descent for the

minimising objective).

2.3.2 Tabu search

The idea of tabu search (TS) was initially proposed by Glover [77] in 1977
but it was formally introduced by Glover and McMillan in 1986 [78]. A
few years later, Glover further investigated TS (e.g. in 1989 [78] and 1990
[79]). TS is a single-point metaheuristic search method that includes the
local search procedure used for solving combinatorial problems. It is able
to enhance the performance of local search, as it uses memory structures
to store the visited solutions in order to avoid the search process cycling
back to the recently visited local optimum. TS also allows the search to
continue by accepting non-improving moves from the neighbourhood of the
local optimum. Hansen et al. (1986) [89] proposed a similar idea to TS and
named it the steepest ascent mildest descent approach.

Tabu list is a short-term memory that records a limited number of full
or partial solutions (or tabu moves) that are prohibited from being revis-
ited. Tabu tenure restricts the number of iterations of each tabu move. A
long-term memory could also serve to record solution attributes for diver-
sification and intensification in order to explore different neighbourhoods.
There are many methods for implementing these two functions (see [178]).

An example of conducting diversification and intensification is to give penal-
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ties or incentives to the attributes of some solutions in the process of move
selection. Aspiration criteria is adopted to accept promising moves even if
they are restricted by the tabu list. T'S can also incorporate some advanced
concepts, such as surrogate and auxiliary objectives. Please refer to [76] for

more details.

2.3.3 Simulated annealing

Simulated annealing (SA) is another metaheuristic that allows the search
process to escape from the local optimum. This algorithm was proposed by
Metropolis et al. in 1953 [135] and the idea originated from the annealing
process in metallurgy. Similar with TS, SA is a single-point metaheuristic
search method that not only always accepts improving solutions, but also
non-improving solutions depending on a specified probability. The proba-

bility is denoted by P and is calculated by the following equation:
p=e’t>r (2.1)

where ¢ denotes change (i.e. difference between current and candidate ob-
jective values). t is the temperature, which measures the tendency to accept
the candidate. r is a random number between 0 and 1. As in metallurgy,
the SA search process starts with a relatively large value of ¢ in order to
increase the value of P, so that the search goes in relatively random di-
rections. With the cooling of ¢, the search continues but the P decreases
gradually. Therefore, the choice of ¢ controls the degree of randomness. The

selection of appropriate starting temperature, cooling schedule (e.g. linear,
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geometric function), neighbours and stopping criteria is necessary in order

to tune an SA. For more on SA please see [180], [122] and [216].

2.3.4 Variable neighbourhood search

As discussed, the basic local search heuristic may fall into the trap of local
optimum. In order to avoid this, different strategies are adopted for TS
and SA. In contrast, the variable neighbourhood search (VNS) systemati-
cally exploits the idea of neighbourhood change, both in the descent to local
minima and in the escape from the valleys that contain them [140]. The
VNS algorithm is a single-point metaheuristic that contains an initialisation
and an iteration step. According to [90], the initialisation step involves the
selection of a set of neighbourhood structures Ny, k = 1, ..., knae, finding an
initial solution z and choosing a stopping condition. The iteration step con-
tains three processes to change neighbourhood: shaking, local search, and
move decision. The shaking function is a diversification process that gener-
ates a solution randomly from the k;;, neighbourhood 2’ € Ni(z). The local
search process applies a local search method with 2’ as the initial solution,
while the obtained local optimum solution is denoted as z”. The move deci-
sion process decides whether to move the search to the new incumbent x”.
In addition to the basic VNS that employs the first improvement method
with randomisation strategy, there are many variants and extensions of the
VNS: variable neighbourhood descent (VND), reduced VNS (RVNS), and
variable neighbourhood decomposition search (VNDS). More detailed infor-

mation about VNS variants and their applications can be found in [92], [93]
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and [91].

2.3.5 Genetic algorithms

Genetic algorithm (GA) was first developed by Fraser (1960) [70]. They
belong to population-based metaheuristics, meaning that rather than pro-
cessing a single solution at each iteration, GAs work with a set of solutions
simultaneously. Similar to SA, which is inspired by natural phenomena,
GAs originate from the theory of evolution. This theory suggests that off-
spring with advantageous mutations are more likely to survive in order to
cope with the environment. The process is also referred to as survival of the
fittest. In terms of applications in operations research, a feasible solution
corresponds to an offspring (i.e. individual while a number of individuals
are called population) and the natural fitness is equivalent to objective val-
ue. Therefore, GAs tend to generate improving solutions. More specifically,
through iterative evolutions, the current surviving population passes their
genes (features by crossover functions) to their children (new candidate
solutions) who may share the merits of their parents. In addition, advan-
tageous mutations may occur in children so that they process the feature
that their parents do not have and are more likely to survive and spawn the
next generation. However, in order to increase diversity among individuals,
the less fit offsprings could also be selected to survive and act as parents
in future generations. This step can be achieved by selection strategy such
as tournament selection and roulette wheel selection. The algorithm stops

once the termination criteria are satisfied.
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More specifically, the search space of a problem in GA is represented as
a collection of individuals. These individuals are represented by character
strings (or matrices), which are often referred to as chromosomes. The
fitness of an individual is measured with an evaluation function. The part
of the search space to be examined is called the population. Normally, a
genetic algorithm works as follows: First, an initial population is chosen,
and the quality of each individual in this population is determined through a
fitness function. Next, at each iteration, children are generated form some
selected parents through recombinations and mutations. Newly created
individuals are subject to mutations at a small probability, that is, they will
change some of their heriditary distinctions. After that, both the parents
and children go through a selection process to determine whether they can
enter to the next generation successfully based on a selection criterion.

In order to implement a GA, one of the most important decisions is
to decide the solution encoding scheme. Common examples include binary
encoding, path representation, adjacency representation, ordinal represen-
tation and matrix representation. The path representation is probably the
most natural representation of a tour for vehicle routing problems. Howev-
er, the biggest problem of this encoding is the presence of repeating/missing
nodes after crossovers. A feasibility repair procedure is often required to
restore the feasibility.

The operators which generates offsprings are called the crossover opera-
tor and the mutation operator. Mutation and crossover play different roles

in the genetic algorithm. Crossover helps the evolution to pass beneficial
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features to the next generation. Mutation is applied to explore new states
and helps the algorithm to gain new features that may not exist in parents.
By choosing appropriate crossover and mutation operators, the probability
that the genetic algorithm converges to a near-optimal solution in a reason-
able number of iterations is increased. There are many types of crossover
operators that have been designed for various encoding schemes but one-
point, two-point and uniform crossover are commonly used. To implement
one-point crossover, a point on both parents’ strings (depends on encoding
scheme) is selected, a string from beginning of chromosome to the crossover
point is copied from one parent, the rest is copied from the second parent.
Two-point crossover calls for two points to be selected on the parent strings,
string from beginning of chromosome to the first crossover point is copied
from one parent, the part from the first to the second crossover point is
copied from the second parent and the rest is copied from the first paren-
t. The uniform crossover uses a mixing ratio between two parents, unlike
one- and two-point crossover, genes are partially copied from both parents.
Common methods of implementing the mutation operator in permutation
problems are swaps, inversions, and scrambles.

There can be various criteria for stopping a GA. For example, if it is
possible to determine previously the number of iterations needed. But the
stopping criteria should normally take into account the uniformity of the
population, the relationship between the average objective function with
respect to the objective function of the best individual, as well as not pro-

ducing an increase in the objective function of the best individual during a
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fixed number of cycles. For more details about the implementation of GAs
please see [95], [81], [203] and [114].

Population diversity is an important issue in the theory of natural se-
lection and it indicates the difference in structures of individual in a pop-
ulation. It is crucial to the GAs ability to continue fruitful exploration as
it may be used in choosing an initial population, in defining a stopping cri-
terion, and in making the search more efficient throughout the selection of
crossover operators or the adjustment of various control parameters (e.g.,
crossover or mutation rate, population size) [150]. Normally, GA are robust
when the population contains more various individuals (i.e. high popula-
tion diversity), as it will encourage the exploration phase of the GA search
and prevent the population from converging prematurely to local optima
[94]. Population diversity is commonly defined by a diversity metric which
is measured by features such as the individual fitness values, structures, or
the combination of the two [25].

A large amount of work has been devoted to diversity measures, which
includes early study of variance of fitness and uncertainty. Recently, other
measures such as evolution history, distance and measures in the genotype
and phenotype space are also introduced [223]. The genotypic diversity
measures the structural differences between individual genotypes, while the
phenotypic diversity measures the differences in individual phenotypes [10].

Population Diversity can be maintained by a means of ways such as
fitness sharing, deterministic crowding, self-adapting mutation rates, etc.

A recent survey about maintenance of diversity can be found in [87].
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2.3.6 Swarm intelligence metaheuristics

According to Blum et al. (2008) [15], swarm intelligence (SI) is the disci-
pline that “concerns the design of an intelligent multi-agent system by taking
spiration from the collective behaviour of social insects such as ants, ter-
mites, bees, and wasps, as well as from other animal societies such as flocks
of birds or schools of fish.” Sl refers to a general set of algorithms, such as
particle swarm optimisation [106], ant colony optimisation [58], bee colony
optimisation [104], bat algorithm [212], etc. The ant colony optimisation
(ACO) algorithm is a typical example of the SI family.

The ACO algorithm was proposed in 1991 by Marco Dorigo in his PhD
thesis [57] for solving combinatorial optimisation problems. When seeking
food, ants communicate with each other by using pheromones. Initially they
travel independently and lay down pheromone trails from the food source to
their colony. If other ants find the pheromone trails, instead of traveling at
random, they tend to move along the path of pheromones. The pheromone
trails evaporate over time. But during that time, the ants travel shorter
paths to the food and leave pheromone scents. Eventually, the ants find the
shortest path to their food.

ACQO algorithms have been successfully applied to many combinatorial
optimisation problems (e.g. [200] and [146]). ACO can easily to be im-
plemented to handle dynamic operations. For instance, when the graph
changes during the search, the ACO algorithm is changed accordingly to
adapt to the latest graph. Please refer to [182], [58], [59] and [64] for more

details about ACO algorithms, their history and applications in dynamic
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operations. In addition to ACOs, there are many other SI-based algorithms.
The basic concepts of all these algorithms originate from the intelligence of
different swarms in nature, such as: particle swarm optimisation [106], ar-

tificial bee colony algorithm [104] and glowworm swarm optimisation [113].

2.4 Hybridising Exact Methods and Metaheuris-
tics

Recently, many works have been implemented by the hybridisation of op-
timisation approaches. Initially, research mainly focused on hybridisation
of metaheuristics. For example, although the greedy randomised adaptive
search procedure (GRASP) is considered a single-point algorithm, it can
cooperate with path-relinking, which requires maintaining a population of
solutions. Nowadays, an increasing number of hybridisations between meta-
heuristics with exact approaches are being developed. These methods are
able to provide good results as they adopt advantages from both types of
methods.

Dumitrescu et al. (2003) [61] investigated local search approaches that
are strengthened by the use of exact algorithms. This study demonstrates
that hybridisation can serve to solve some linear programming subproblems
in order to reduce the search space for the local search algorithm. The sub-
problems can be the relaxations of integer programming models, and the
optimal solutions of these subproblems are then used to define the search

space for the local search algorithm. Hybridisation is especially useful when
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the neighbourhoods are very large so that the subproblems can guide neigh-
bourhood moves.

Raidl et al. (2005) [160] classified hybridisation of exact algorithms
and (meta)-heuristics into four types shown in Figure 2.2. Collaborative
combinations are high-level combinations as the algorithms are not part
of each other, while integrative combinations are low-level combinations
because one algorithm is embedded within another one.

We briefly introduce the four types of hybridisation and give examples

for each:

[Combinations of Exact Algorithms and Metaheuristics ]

A Y

[ Collaborative Combinations ] [ Integrative Combinations ]
Sequential Execution [ Incorporating Exact Algorithms in Metaheuristics ]
[ Parallel or Intertwined Execution J [ Incorporating Metaheuristics in Exact Algorithms ]

Figure 2.2: Major classification of exact/metaheuristic combinations [160].

Collaborative Combinations - sequential execution: In this type of hy-
bridisation, either the metaheuristic is executed before the exact method,
or vice-versa. For example, when solving a set covering problem, a heuris-
tic is used to generate a set of feasible columns and the exact method is
used to find an optimal solution from the feasible columns. This type of
hybridisation has been successfully applied in solving a variety of difficult
combinatorial optimisation problems such as: travelling salesman problems

[110], production line scheduling problems [39], and multidimensional knap-
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sack problems [193].

Collaborative Combinations - parallel or intertwined execution: Instead
of executing either metaheuristics or exact methods sequentially, this type of
method implements the algorithms in a parallel or intertwined way. Cluster
or multi-processor is used to deploy the parallel implementations. There are
several frameworks proposed to facilitate such implementations: A-Teams
[184], TECHS [52], and MALLBA [5]. These frameworks have been utilised
in many combinatorial optimisation problems, such as: job scheduling prob-
lems solved by A-Teams [33], fuel optimisation problems solved by TECHS
[141], and multidimensional knapsack problems solved by MALLBA [5].
More recently applications can be found at [195] and [115].

Integrative Combinations - incorporating exact algorithms in (meta)-
heuristics: In this type of hybridisation, exact algorithms are subordinate-
ly embedded within (meta)heuristics. For example, the solution of LP-
relaxation and its dual values can be utilised in heuristically guiding neigh-
bourhood search, mutation, and local improvement. This type of combina-
tion has been implemented to solve multi-constrained knapsack problems
[37], glass cutting problems [161], and linear assignment problems [130].

Integrative Combinations - incorporating (meta)heuristics in exact al-
gorithms: This type of hybridisation is analogous with the previous one,
but (meta)heuristics are embedded within exact algorithms. For example,
(meta)heuristics can be used to determine bounds in branch-and-bound al-
gorithms. In addition, in the branch-and-price approach, (meta)heuristics

are often used to search for columns with negative costs. Applications of
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this hybridisation method include graph colouring problems [165], 2D bin
packing [159], and vehicle routing problems [172].

As mentioned, the main motivation behind the hybridisation of (meta)-
heuristics with exact algorithms is to exploit the advantages of both types
of methods. Developing an effective hybrid method is generally a difficult
task, as it requires knowledge of both (meta)heuristics and exact methods.
Moreover, Blum et al. (2011) [16] shows that a hybridisation strategy might
work well for specific problems, but performs poorly for others. Jourdan
et al. (2009) [101] proposed taxonomy of hybridisation methods. A more

recent review of the hybridisation approach can be found at [16].

2.5 Summary

This chapter gives a general overview of the current popular optimisation
techniques which may be promising for the optimisation of the truck drayage
problem studied in this thesis. Exact methods, (meta)heuristic methods,
and hybridisations of them are reviewed. Some methods germane to this
thesis are emphasised.

NP-hard problems are difficult to solve and no polynomial time algo-
rithms are known for solving them optimally. In fact, a majority of combi-
natorial optimisation problems, such as bin packing, knapsack and vehicle
routing problems, are NP-hard. Small instances are usually solved by exact
algorithms, such as linear programming, dynamic programming, branch-

and-bound, branch-and-cut and branch-and-price.
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Exact algorithms can solve a problem optimally, but they are also known
to be time expensive and not recommended to be adopted in solving large
instances. In order to effectively solve large instances, researchers tend to
consider (meta)heuristics. One commonly used classification of metaheuris-
tics is to divide them into two main categories: single-solution algorithms
and population-based algorithms. For example, the first category contains
local search, tabu search, simulated annealing, and variable neighbourhood
search, while the population-based approaches includes genetic algorithms,
ant colony optimisation and practice swarm optimisation. Recently, many
works have been implemented by cooperation (or hybridisation) of exact
and (meta)heuristic approaches.

Previous research related to multi-shift full truckload vehicle routing

problems (MFTLVRPs) is introduced and reviewed in the next chapter.



Chapter 3

The Multi-shift Full Truckload
Vehicle Routing Problem and Its

Literature Review

3.1 Introduction

Real-life vehicle routing problems exhibit a high degree of complexity, owing
to various constraints concerning carrier capacity, route duration, time win-
dows (subject to either customers or carriers), and compatibility between
customer, carrier and commodity. This chapter firstly present the problem
concerned in this thesis. Secondly, we introduce terms and models of sever-
al typical vehicle routing problems. Thirdly, we explained where our work
situated within the broader field of freight transportation research. Final-
ly, relevant vehicle routing problems that sharing similar properties of our

research and their solution methods are highlighted and reviewed.

37
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Figure 3.1: Positions of the container terminals in the port of Ningbo.

3.2 Problem Introduction

This study concerns the operations of container transshipments between
nine different docks located in Port of Ningbo. The objective is to minimise
the total vehicle travel distance for transporting a large number of non-
consolidatable commodities (containers) between a relatively small number
of nodes (docks), satisfying various time window constraints concerning
commodities and drivers. Typical time window constraints are the avail-
able time and deadline for commodities and work shifts for drivers. Thanks
to internationally adopted EDI (Electronic Data Interchange) systems and
GPS (Global Positioning Systems) sensors, the available and deadline times
of commodities are generally known 1 to 2 days in advance with some toler-
able estimation errors. The physical locations of different nodes are shown
in Figure 3.1.

The problem has the following characteristics:
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e The unit size of the commodity is equivalent of that of the trucks.
Therefore one unit of a commodity is shipped directly to its destina-

tion without transfers or consolidations.

e Schedules are shift based. Each truck has to go back to a depot for
driver changeovers after a shift due to labour law related regulations.
For this particular problem, a shift is 12 hours. A schedule typically

spans from 4-8 shifts in order to maximise the efficiency.

e All docks are within a short distance of each other and a unit of any
commodity could be completed within a shift. The service time at
each node (see Table 3.1) (loading time at the source or unloading
time at the destination of a shipment) is comparable to the truck
travel times between nodes. Note that in practice, travel times are

fluctuating with the time of day and will be estimated in Chapter 5.

e The time window for each commodity (i.e. from time when the com-
modity becomes available to the time when it has to be delivered to

its destination) varies considerably from 1-2 hours, up to 6 shifts.

e The total quantities of all the commodities within a planning horizon
can be very large (up to 2000) but the number of distinct physical

nodes is relatively small (less than 10).
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Table 3.1: Container service time on the ports

Port name | Load time | Unload time
BLCT 30 30
BLCT2 30 30
BLCT3 30 30
BLCTYD 40 40
BLCTZS 60 60
DXCTE 5 5
BLCTMS 60 60
ZHCT 180 180
B2SCT 5 5

3.3 Typical Vehicle Routing Problems and Their

Models

As there are many variants of the basic problems owing to differences in real-
life cases and each of them may also have diverse modelling formulations,
we select those that have received a relatively greater amount of attention
in the literature. In general, the formulations can be divided into: vehicle
flow formulations, commodity flow formulations and set-partitioning based

formulations.

3.3.1 VRP

The VRP introduced by Dantzig et al. (1959) [51] is one of the most s-
tudied problems in the field of operations research. Although the original
basic problem has been proposed for over five decades, enthusiasm for VRP
research has not waned and numerous variants of VRP have been proposed
in the literature (see [189], [41], [121] and [120]). A more recent taxonomy

for VRP literature can be found in [63], [116], [108] and [23].
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Vehicle routing problem (VRP) is a generic name given to a whole class
of problems in which a fleet of vehicles based at one or several depots have
to determine a set of routes for a number of geographically dispersed cus-
tomers [1]. The objective of VRP is to satisfy the demands of customers at
minimal cost. VRP is a well-known NP-hard problem of integer program-
ming, as the computational effort required to optimally solve VRP increases
exponentially with problem size.

The difficulty of solving VRPs, for example capacitated vehicle routing
problem (CVRP) (see Section 3.3.1), is rooted in the overlapping of two
well-studied combinatorial problems: travelling salesman problems (TSPs)
and bin packing problems (BPPs). Both are NP-hard. A TSP can be
defined as: a salesman who leaves from the source of product (depot) that
has to visit n — 1 number of cities (exclude the depot) to sell product, visit
each city exactly once, and eventually return to the depot. The objective
is to minimise total travel distance. A TSP is also an NP-hard problem
that can be viewed as the simplest version of a VRP involving only one
uncapacitated vehicle. A BPP, another NP-hard problem, can be defined
as: a set of items with different volumes that has to be packed into a number
of bins so that the number of bins used is minimal. A feasible solution for
the VRP is one or several TSP tours satisfying bin packing constraints (i.e.
the total demand along each of the arcs joining successive copies of the
depot does not exceed vehicle capacity) [1]. Since both TSPs and BPPs are
NP-hard, CVRP are more difficult to be solved than either TSPs or BPPs.

The formulation of TSP and BPP are given below:
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TSP

The travelling salesman problem (TSP) can be defined on a graph G =
(A, V) where A is the arc set and V' is the set of nodes (e.g. city, customer),
{0} is the depot. Let ¢;; be the travelling cost (or distance) between an
arc(i,j), 1, € V. x;; is the decision variable and it equals to 1 if arc (i, j)
is included in the solution and 0 otherwise. The formulation [222] and [49]

of TSP can be described as following:

mlnz Zcijxij (31)

i€V jev
subject to
=1 VieV (32
JjeV
dwy=1 VjeV (33
eV
DY w8 -12<]S|<n—1 VSCV\{0},S#0 (34
i¢s jes

The objective (3.1) is to minimise total travel cost (or distance) and visit
all customers. Constraint (3.2) and (3.3) ensure any node is visited exactly

once. Constraint (3.4) is a sub-tour breaking constraint.

BPP

Given a set of bins L, each bin is associated with a size [; € L. Let V' denote
the set of items and each having a size v; € V. z; is a decision variable, it

equals to 1 if bin j is used and 0 otherwise. Another decision variable is
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x;;, its value is 1 if the item 7 is packed into the bin j and 0 otherwise. The

formulation [222] of BPP can be described as following:

minz 2l ; (3.6)

JjeL
subject to
Zviwij S lj VJ ev (37)
eV
Y wy=1 Viel (3.8)
JjeL
Y @y =Mz <0 VieV (3.9)
4
2 €{0,1} VjeV (3.10)
z;; €{0,1} Vie L \VjeV (3.11)

The objective (3.6) is to pack all the items into a minimal number of
bins. Constraint (3.7) ensures that the total size of items should not exceed
the capacity of each bin. Constraint (3.8) impose that each item must be
packed into exactly one bin. Constraint (3.9) indicates if any item packed
in a bin, then the bin is taken. M is a sufficiently large number. Let
d(v) = 3,y v; denotes the total demand of the item set. Assuming that
each bin is associated with a capacity C, then the trivial BPP lower bound

can be obtained by:

[d(v)/C (3.12)

CVRP

For a single depot VRP, if the vehicle fleet only has capacity constraints,

then the problem is also referred to as a capacitated vehicle routing problem
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(CVRP). The CVRP is the most-studied problem of the VRP family. In the
CVRP, vehicles are identical, based at a depot and, as the name suggests,
capacity restrictions on vehicles are imposed. Given a graph G = (A, V)
where A is the arc set and V' is the set of customers. Let c;; be travelling
cost between an arc(i, j), 4, j € V. x;; is the decision variable and it equals
to 1if the arc (¢, 7) is included in the solution and 0 otherwise. K is the set
of vehicles, each with capacity C'. The formulation of this problem can be

given as following [189]:

min Z Z Cij T4 (313)

i€V jeV

subject to

Y =1 VjeV\{0} (3.14)

ixj —1 VieV\{0} (3.15)
gvxio — K VjeV\{0} (3.16)
gmoj =K VieV\{0} (3.17)
SN < —r]g) VS cV\{0},S#0 (3.18)
o zi; €{0,1} Vi, jeV,i#j (3.19)

The objective (3.13) is to minimise the total vehicle travel distance and
satisfy all transportation demand of customers. Constraint (3.14) and (3.15)
ensure that exactly one arc enters and leaves each node. Constraint (3.16)
and (3.17) impose that for each route, only one arc enters and leaves the
depot. (3.18) is a well-known generalized subtour elimination constraint.

r(S) denote the minimum number of vehicles used to serve set S and it
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can be obtained by the trivial BPP lower bound (3.12). However, solving
(3.18) is practically hard as it has a cardinality growing exponentially in the
n. Alternatively, a series of constraints that have similar function as (3.18)
have been proposed, such as the sub-tour elimination constraint presented

below:

u; denote the load of a vehicle after visiting customer .

3.3.2 VRPTW

Given a set of customers, vehicles, and goods, to solve a vehicle routing
problem with time windows (VRPTW) is to find a set of routes of minimal
total length that start and end at a depot, such that each customer is visited
by exactly one vehicle while also satisfying a number of constraints, such as
time window of visit and vehicle capacity. Time window constraint could
be either hard or soft. In hard time window constraint, a driver is allowed
to wait in case of early arrival but late arrival is not allowed. In soft time
window constraint, a driver is allowed to wait in case of early arrival but
will be punished for late arrival.

The VRPTW is defined on the network G = (V, A), where V is the
set of nodes and A is the set of arcs between nodes. A nonnegative cost,
¢;; is associated with each arc (i,j) € A, which is usually defined as the

Fuclidean distance between a node i and j, but it can be also defined as
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other cost such as consumption of gasoline, travel time etc. The depot is
denoted by two nodes 0 and n+1. A vehicle route is constructed by the set
of arcs starting from node 0 and ending at node n+1. Each node is also
associated with a time window [a;, b;|, where a; denotes the earliest possible
departure time at node ¢ and b; represents the latest possible arrival time
at the node 7. s; denote the service time of the node 7. Let £ and L be
the earliest possible departure time and latest possible arrival time at the
depot respectively, that is, [ag,by] = [ant+1,bni1] = [F,L]. d; represents
transportation demands of the node ¢ and C' is the capacity of a vehicle. K
denotes the vehicle set, decision variables z;j, (7,j) € A,k € K equals to
1 if arc (4, ) is used by the vehicle k and 0 otherwise. Decision variables
wik,t € V, k € K indicates the starting time of service at the node ¢ when
it is serviced by the vehicle k.

The formulation [189] of VRPTW can be described as the following

commodity flow formulation with time window and capacity constraints:

k€K (i,j)€A
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subject to

) mp=1 VieN (323

keK {jeV|(i,j)€A}

Y mp=1 VEkeK (3.24)
{0eV|(0,5)eA}

> mp— Y mu=0 VkeKVjeN (3.25)
{ieV|(i,7)€A} {ieV|(ji)eA}

S Giwnw=1 VK€K  (3.26)
{ieV|(i,n+1)€ A}
Tijp(wi, + 5 +ti; —wy) <0 Ve K, (i,5) € A (3.27)
a Y, wgp<wp<b Y  zy VkEKVieN (3.28)
{jeviGear {jeVIi.j)eA}
E<wy; <L VkeK,ic{0,n+1} (3.29)

odi Y wp<C VEeEK (3.30)

iEN  {jeV|(i,j)eA}

zir €{0,1} Vke K, (i,j) € A (3.31)

The objective (3.22) is to minimise the total vehicle travel distance and
satisfies all the transportation demand of customers and various time win-
dows and capacity constraints. Constraint (3.23) restricts that each cus-
tomer is assigned by only one vehicle. Constraint (3.24) and (3.26) restrict
each vehicle route starting from and ending at the depot. Constraint (3.25)
concerns commodity flows. Constraints (3.27) (3.28) and (3.29) are the time
window constraints regarding to schedule feasibility. Constraint (3.30) limit

vehicle capacities.

3.3.3 m-TSPTW

A travelling salesman problem with time windows (TSPTW) is a VRPTW
involving only one uncapacitated vehicle, while a multiple travelling sales-

man problem with time windows (m-TSPTW) belongs to the special case
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of VRPTW involving m uncapacitated vehicles. The m-TSPTW is a well-
known NP-hard problem; when the number of vehicles is fixed it becomes
an NP-complete problem [139]. We can obtain the commodity flow formu-
lation of the m-TSPTW by simply eliminating the capacity constraint 3.30
from the VRPTW formulation presented in Section 3.3.2. In this section, we
present an alternative formulation that applied for a container truck trans-
portation problem [219]. The objective of this formulation is to minimise
the total travel time.

Given a network graph G = (Vp, Ve, A), where Vp is the depot node
set and Vi is the container node set. V¢ is the collection of container
transportation activities mainly including the activities of pickup and drop
off containers. Vp represents the nodes that vehicles have to initially leave
from and finally return back. When there is only one depot node, then the
problem falls into the m-TSPTW. The problem is called m-TSPTW with
multiple depots when Vp contains more than one depot. Initially, each
depot i has n; vehicles. Let [T4(i),Ts ()] denote the time window of the
node i € Vi and T'(i, ) be the amount of time consumed by the arc (i, 7).
T(i) is the start time of node i € V. Let y; represents the time when a
truck has to serve the container node 7 € Vi». Decision variable z;; is 1 if arc
(4,7) included in a route and 0 otherwise. The problem can be formulated

as a mixed integer programming model as following.

min Y T(i, j)ay (3.32)

(i,7)€A
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d wy<n Vielp (3.33)
JjeVe
7j€EVpUVe 71€VpUVe
> 2y <|Zl -1 VZCVe,Z#¢ (3.35)
i€Z,jez
vy +TE)+T0,7) -y <(1—z5)M VieVe,jelVe (3.37)
;€01 V(i,j)e A (3.38)
y; : real wvariable Vi€ Vo (3.39)

The objective function (3.32) is to minimise the total travel time. Con-
straint (3.33) imposes the number of vehicles. (3.34) is the flow conservation
constraint that ensures that exactly one arc enters and leaves any container
node. (3.35) eliminates sub-tours among container nodes. Z is the subset of
Ve and ¢ is the empty set. (3.36) is the time window constraint. Constraint
(3.37) updated the start time along the route, where M is a sufficiently large

number.

3.3.4 VRPPD

A vehicle routing problem with pickup and delivery (VRPPD) can be de-
fined as: A set of vehicles based at one or multiple depots (terminals) that
has to satisfy a number of transportation requests (picking up goods or
people) from a pick-up point and transport them to a delivery point. The
transportation of people is also referred to as a dial-a-ride problem. The

objective is to finish all requests and minimise total routing costs of vehicles.
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Similar with the VRPTW investigated in Section 3.3.2, a VRPPD involves
several types of constraints, including: 1. Each customer is allowed to be
visited exactly once. 2. Vehicle capacity constraints. As many practical
applications of the VRPPD consider time intervals of service that may be
visited by a vehicle, it is thus useful to present a more general variant of
the problem, which is VRPPD with time windows (VRPPDTW).

Let K denote the set of vehicles. As not all vehicles can service all
requests, each vehicle is associated with a set N = P U D where P is the
set of pick up nodes and D is the set of delivery nodes, P = {1, ....n}, D =
{n+1,...,2n}. Let o(k) and d(k) be the origin and destination of a vehicle
k. Each vehicle is defined on a network Gy = (Vi, Ax), where the Vi, (V, =
Ny U {o(k),d(k)}) is the set of nodes and Ay is the set of arcs between
the nodes. Let C} represents the capacity of a vehicle. Let ¢, and c¢;j
denote the travel time and cost from node 7 to 7 by vehicle k respectively.
Each node is also associated with a time window [a;, b;], where a; denotes
the earliest possible departure time at node ¢ and b; represents the latest
possible arrival time at node i. s; denotes the service time of node i. [;
represents the transportation demand of node 1.

Decision variables i, (i,7) € A,k € K equals to 1 if arc (4, j) is used by
the vehicle & and 0 otherwise. Decision variables Tj,i € V, k € K indicates
the starting time of service at the node ¢ when it is serviced by the vehicle
k. L. provides the load after a vehicle finish service at the node i.

The formulation [189] of VRPPDTW can be described as following:
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subject to
Y mp=1 VieP (3.41)
keK jEN,U{d(k)}
Z Tijke — Z Tjntik = 0 Vke K,ie B, (342)
JENK JENK
Z To(k),jk = 1 Vke K (343)
jeP,U{d(k)}
Z Tijk — Z Tjik = 0 Vke K,j € N, (344)
i€ NLU{o(k)} i€ N U{d(k)}
Z Tid(k),k = 1 Vke K (345)
i1€DiU{o(k)}
Tijk(Tik + 8i +tijr — Tjr) <0 Vk € K, (i,7) € Ay (3.46)
4 <Ty<b; VkeK,icV (3.47)
Tix + Limy1 e < Tn+i,k Vk e K1 € P, (348)
xzyk(sz -+ lj — ij) =0 Vke K, (’L,j) < Ak (349)
OgLn+i7k§Ck_li VkEK,n—i—iEDk (351)
Lo(k),k - O Vk' € K (352)
v € {0,1} Yk € K, (i,7) € Ay (3.53)

The objective function (3.40) is to minimise the total vehicle travel cost.
Constraints (3.41) and (3.42) ensure that each request of pickup and delivery
is conducted by one and by the same vehicle. Constraints (3.43), (3.44) and
(3.45) are commodity flow constraints imposing that each vehicle start from
and return back to the depot. Constraint (3.46) and (3.47) are the time

window constraints with respect to schedule feasibility. Constraint (3.48)
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is the precedence constraint that forces the pickup node to be serviced
before the delivery node. Constraint (3.49) related with the compatibility
requirement between vehicle loads and routes. (3.50) and (3.51) are the
vehicle capacity constraints. Constraint (3.52) express the initial vehicle

load at the depot.

3.3.5 SPP of VRP

The SPP is usually considered as the master problem if SPP is solved by
a decomposition (e.g. column generation) method. Let R denotes the col-
lection of all the feasible routes (or a set of feasible routes maintained by
a column generator) of the network graph G = (V, A). Construction of
R depends on the practical problem. For example, for the VRPTW (see
Section 3.3.2), R is the set of routes with schedules satisfying constraints
(3.24), (3.26), (3.27), (3.28), and (3.29). Each route r € R is associated
with a cost ¢,.. In addition, let a,; be a binary constant that takes value 1
if route r includes node ¢ and takes value 0 otherwise. The binary variable
y, is equal to 1 if the route r is used in the solution and 0 otherwise.

The formulation [55] of SPP can be described as following:

min Z CrYy (3.54)

reR
subject to
Y auy, =1 VieV (3.55)
re€R
Y y,=K VreR (3.56)
reR

v €{0,1} VreRr (3.57)
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The objective function (3.54) is to minimise the total vehicle travel cost.
Constraint (3.55) ensures that each node i is visited only once by the selected

routes. Constraint (3.56) imposes that K routes are selected.

3.3.6 FTPDPTW

A full truckload pickup and delivery problem with time windows (FT-
PDPTW) can be viewed as an extension of VRPPDTW (see Section 3.3.4).
In FTPDPTW, a vehicle carries a single load (full truckload). A fleet of
vehicles has to complete assignments of pick-up and delivery container pairs
with minimal traveling costs and satisfy various time window constraints.
Depending on practical problems, the traveling costs include fixed vehicle
costs (e.g. maintained cost of truck and payment to driver) and variable
costs (e.g. gasoline consumption that is proportional to the travel distance).
In this section, we present a particular case of formulation that applied for
drayage of containers [28]. This model was specifically designed for drayage
operations arising in the context of intermodal container transportation,
but can also be applied to other problems involving full truckload trans-
portation as well. The objective of this formulation is to minimise total
cost including the fixed and travel costs of serving all customers.

The FTPDPTW is defined on a graph G = (Vj, A), where V} is the node
set, {0} is the depot, Vj = VU{0}. Let V be the customer set that includes
delivery customers Vp and pickup customers Vp, that is V =V, U Vp. The

other parameters are summarised in Table 3.2.
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Table 3.2: The list of notations.

o4

Input Parameters

K the set of trucks, k € K
Ciji | the travelling cost of arc (4, j) by truck k.
FC,, | fixed cost of truck k for each route.

E; earliest possible start time of node .
L; latest possible start time of node 1.
S; starting service time of node 1.

d;; | travel time of arc (4, j).

Decision Variables

Ty, | equals to 1 if arc (4, j) is used by vehicle k and 0 otherwise.

b; actual starting service time at node .

The formulation of FTPDPTW can be described as the following [28]:

min Z Z Z Ciijijk —+ Z(Fck Z ijk)

i€Vh jEVo i) kK keK jeV

subject to

JEVO keK
injk—Zxﬂk =0 Vi€ ‘/,/ﬂ e K
% %)

E,<b; <L, YieV

> winbi+si+diy—b;) <0 VieV,jeV
keK
Z IOjkdOj S bj Vj eV
keK
[L’ojk(bZ—FSz—i—dzg—bj) <0 \V/ZE‘/,]?EK
Zxojk <1 VkeK
JjeEV

mijke{ovl} VZ,]GVE),Z#],kIEK

b >0 VieV

(3.58)

(3.59)
(3.60)
(3.61)
(3.62)
(3.63)
(3.64)
(3.65)
(3.66)

(3.67)

The objective function (3.58) is to minimize total routing cost includ-

ing the fixed and travel cost and satisfy all customers. Constraint (3.59)

imposes that each node is visited only once. (3.60) is the flow conservation
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constraint. (3.61) and (3.64) are the time window constraint of customer
location and total travel time of route k. Constraints (3.62) and (3.63) en-
sure the time consistency of b;. Constraint (3.65) enforces that each vehicle

is used at most once.

3.3.7 SNDP

A service network design problem (SNDP) is usually used to solve tacti-
cal planning of freight operations, ensuring optimal utilisation of resources.
Tactical planning of operations mainly involve: the selection of service type,
specification of terminal and routing of freight [45]. Typical applications
of SNDP include less-than-truckload (LTL) problems, express package de-
livery, and container transshipment problems. Consolidations are widely
adopted in order to maximise the utilisation of logistic resources.

Different from the VRPs discussed above, the focus of tactical planning
is more on long-haul transportation, which is freight transportation between
cities, firms and organisations by trains, trucks, barges or any combination
of those modes. In SNDP, carriers usually establish regular service routes
and adjust their characteristics to satisfy the expectations of the most num-
ber of customers. The service thus cannot be tailored for each customer
individually as a carrier usually groups freight of different customers into
certain service types [45]. Furthermore, VRP focuses on door-to-door trans-
portation, while freights are consolidated at and moved between terminals
by various service types in the transportation system of SNDP. The trans-

portation system is constructed by a complex network of terminals, which
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are connected by physical and conceptual links.

A particular frequency-based path formulation is defined on a graph
G = (N, A), where N is a set of nodes and A is a set of arcs. A given set of
service routes R is available. The set of all paths from origin to destination
throughout this network is defined as P. There are two types of decision
variables zF(called a shipment flow variable) and y/ (design variable). There
are also two indicators aj; and f;. The parameters used in the model are

defined in Table 3.3:

Table 3.3: The list of notations.

Input Parameters

K the set of commodities.

o(k) | the origin of commodity, k € K.

d(k) | the destination of commodity, k € K.

s the customer service type, s € S.

d* the demand that has to be transported from origin o(k) to destination
d(k) within the time window of its customer service type s € S.
f the fleet type, f € F.

u! the capacity of fleet type, f € F.

R the set of feasible service routes.

P the set of paths in the network.

R/ | the set of routes that serviced by fleet type f € F.

aj; | equals to 1if arc(i, j) is part of the route r € R, 0 otherwise.

3 equals to 1 if route r € R starts from 7 and -1 when r € R ends in i.
hi the fixed costs of running the service route r € R by vehicle type f € F.
c’; the costs of delivering the one unit of commodity k£ € K in path p € P.

Decision Variables

the flow of commodity k£ is transported through path p € P.
the number of vehicles used to run the service route r € R.

The model can be formulated as following [205]:

minz Z hiyl + Z Z chak (3.68)

feF reRS keK pe Pk
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subject to

Yod ap <y Y wlyla; V(i) eA (3.69)

keK pepk feF reRf
d ab=d* VkeK (3.70)
pePk
d Biyl=0 VieN feF (3.71)
reRf
ay >0 VkeK,pe P (3.72)
y;; >0 and integer Vre R’ feF (3.73)

The objective (3.68) of the model is to finish all commodity transporta-
tion demand at minimal total cost including the fixed and variable flow cost.
Constraint (3.69) restricts commodity flows. Constraint (3.70) imposes that
the demand of each commodity is satisfied. Constraint (3.71) ensures the
balance of demands for each fleet type. This is one of the generic models of

SNDP, for others please refer to [45] and [205].

3.3.8 PVRP

Periodic vehicle routing problems (PVRPs) work on a planning horizon that
usually cover several days where each customer is required to be visited at
least once (or during a specified time window, then the problem becomes
PVRP with time windows) within a planning horizon. A PVRP is different
from a VRP, as the planning horizon is more than a single period. PVRPs
arise naturally from real-world applications, such as waste collection. The
problem can be formally defined on a multigraph G = (V, A), where V is
the node set (V = vy, vy, ..., v,) and A is the arc set (A = v;,v;)". Each

customer ¢ is also associated with a visit combination set C;. k and [ are
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the index of vehicle and day of visit respectively. c¢;jr denotes the cost of
vehicle £ € K travel from node ¢ to node j on day [ € L. x;j is 1 if vehicle
k visits customer 7 immediately after visiting customer ¢ during day [. a,,
is set to 1 if day [ belongs to visit combination r € C;, and y;, is set to 1
if visit combination r € C} is assigned to customer i. The problem can be

formally defined as follows [40]:

min Z Z Z CijklTijkl (374)

i,jEV keK 1€L

subject to
Yye=1 VieV  (3.75)
reC;
DY wiu— Y anyn =0 VieV,VI€L  (3.76)
i€V keK reC;
> @i — > wym=0 ViheVVIeL  (3.77)
eV jev
d wyu<l VkeKVIeL (3.78)
JjeEV
Z GTijn < Qr Yhke K,VIE€L  (3.79)
1,J€EV
Z (Cijit + di)xijy < D Vke KVl e L (3.80)
i,jEV
> wyu<|S|—1 Ve KVIe L, SCV\{0},[5]>2 (3.81)
v, v €S

vim €{0,1} Vi,jeV,Vke KVIeL  (3.82)

yi; €{0,1} VieV,vreC; (3.83)

The objective of this model is to satisfy all customer demands with min-
imal cost. Constraint (3.75) restricts that every feasible combination must
be assigned to each customer. Constraint (3.76) imposes that customers are

visited only during corresponding days. Constraint (3.77) indicates when
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vehicle arrives at a customer on a given day, it also leaves at customer on
the same day. Constraint (3.78) ensures that one and only one vehicle is
used every day. Constraint (3.79) and (3.80) restrict vehicle capacity and

route duration. (3.81) is a sub-tour elimination constraint.

3.3.9 Multi-shift container transshipment formulation

More recently, Chen (2016) [30] proposed a multi-shift container transship-
ment formulation for the study concerned in this thesis and solved it by
hyperheuristic method. The formulation is task based and inspired by the
formulations given by Wang et al. (2002) [208] who proposed a m-TSPTW
based model for full truckload transportation. The model is described be-
low.

In this model, a task is defined as a standard transportation volume that
represents the process of transporting full truck load from their source to
their destination. All container transportation tasks are converted into a
node set N with node 0 and n + 1 denoting the depot of vehicle k. The
fleet size is denoted by K. Each route starts from 0 and ends with n + 1
(same for all vehicles). S = {1,2,...,s,...,|S|} is the consecutive shifts
considered in the problem and Y, and Z; is the time window of shift s.
Let d;; denote the cost of deadheading (i.e. the movement of commercial
vehicles in non-revenue mode for logistical reasons) from node i to node j
and t;; denote the travelling time from ¢ to j. 7; is the truck arrival time
at node ¢, and [; is the time needed to complete the task represented by 1,

including the loading time, transportation time and unloading time. Binary
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variable X;;, indicates whether a task is performed on the arc (7, ) at the
shift s. Each node i has a time window (a;, b;) that constrains the service
time for node <.

Using the above notations, this problem is formulated as a cost minimis-

ing problem:

YY) dyXy. (3.84)

iEN jEN\{i} s€S

subject to

YY) Xiye=1, VjeN\{0,n+1}. (3.85)

s€S5 ieN\{j}
> Xijs= Y Xjme ViEN\{0n+1},s€S. (3.86)
ieN\{j} meN\{j}
Xz’js(TYi +1; + tij — 71]) <0, V(l,j) € A, seS. (387)
X@'Os = 0, Vs € S,Z eN (388)
X(n+1)js = O, Vs € S,j eEN (389)

Y Xgu=K, VseS (3.90)
JEN\{0}
Y X =K, VseS.  (391)

iEN\{n+1}
Xijs(Ys 4 toj) < XijiTh < Xijs(Zs — tigns1) — 1),
Vi,j e N\{0,n+1},s€S  (3.93)

Xijse{lao}a VZ.ENujGNaSESai#j' (394)

The objective is to minimise the total cost due to empty truck movement.
Constraint (3.85) states that each task is served exactly once. Constraint
(3.86) specifies that a task may only be serviced after the previous task is

finished. Constraints (3.85) and (3.86) together ensure arcs in different shifts
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are not connected with each other. Tasks’ time constraint (3.87) enforces the
correct temporal relationship between consecutive tasks. Constraints (3.88)
and (3.89) prohibit movements back to 0 after a truck starts or movements
out from n+ 1 so that the correct route structure is generated. Constraints
(3.90) and (3.91) are the fleet size constraints that ensure the correct number
of trucks are used in the solutions. Constraint (3.92) limits the visiting time
of tasks to their time windows. Constraint (3.93) ensures all start time of
tasks are within the shift time window. Finally, constraint (3.94) defines

the domain of the decision variables X;j,.

3.4 Related Works of The MFTLVRP

The study of freight transportation concerns planning and modelling trans-
portation of commodities under a number of customer requirements. The
planning of a transport system can be classified into three levels: strategic,
tactical and operational planning [205]. Strategic planning is also referred to
as long-term planning, where decisions are made on the design and construc-
tion of a physical network, such as infrastructure and locations of terminals.
Tactical planning is also referred to as medium-term planning that concerns
the design of transportation networks. In contrast to strategic planning, the
study of tactical planning concentrates on optimal utilisation of resources to
provide transportation services to customers, firms, and organisations. This
problem can be usually modelled as a service network design problem (S-

NDP, see Section 3.3.7). Operational planning is also known as short-term
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planning performed by local management, yard masters and dispatchers
[45]. The study of operational planning includes the scheduling of crews,
shipments and vehicles. Please see Crainic et al. (e.g. [44], [47], [46]) for
more about freight transportation problems.

Freight transportation can be also classified into full truckload transport
(FTL), less-than truckload transport (LTL) and express deliveries [205].
Despite numerous research studies on freight transportation, most of them
have focused on consolidation based transportation (LTL and express de-
liveries) and research on the FTL problem is somewhat limited. Among all
the FTL problems, container transport is a special case of the full truck-
load transport problem since containers are both shipment commodities
and transport resources [20]. The container transportation industry is un-
der fierce competition and pressure to improve its efficiency and reduce
energy use and increasingly more studies have been devoted to the opti-
misation of operations at container terminals (see [186], [196], [164], [209]
and [217] for recent examples). Intermodal container transportation expe-
rienced rapid development since the 1980s [131]. In intermodal container
transportation, the connections between ports, docks or terminals mainly
rely on truck drayage, which is also known as drayage problem. In this the-
sis, we study a multi-shift inter-dock container forwarding problem, using
data from a real-life problem faced by the Port of Ningbo. The problem
can be formally defined as MFTLVRP and it is common for any drayage
problem with multiple docks being operated simultaneously.

As mentioned, the study of MFTLVRP is relatively limited despite nu-
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merous publications on other types of freight transport problems. To help
understand the core features of this problem, it is possible to broadly classify
freight transportation into consolidated transport and non-consolidated
transport problems. In consolidated transportation, freights can be split
and shipped via multiple paths of a service network and freights may get
transferred and consolidated along some of the paths. That is, during the
process, some nodes in the service network act as hubs or consolidation
centres and a package may be transported by multiple vehicles before ar-
riving at its destination. In non-consolidated freight transportation, freight
is delivered to its destination directly, in its entirety, by a single vehicle.
For example, in CVRP, a vehicle contains many freights and deliver each
freight to its destination. The role of the vehicle is merely to deliver freights
even though it contains (not consolidated defined here) many freight within
the limitation of vehicle capacity. As each freight is delivered to its des-
tination directly and in its entirety by a single vehicle, CVRP falls into
non-consolidated category.

For both the consolidated and non-consolidated transports, the ship-
ment of freight can be single-directional or bi-directional. In single-
directional transport, each node in the transportation network is either a
supply node or a demand node but not both while the nodes in a bi-
directional transport can both be supplies as well as demands. Table 3.4
gives typical examples for each type of transportation problems.

Single-directional consolidated transportation includes the classical pro-

duction logistics (in which necessary raw materials, parts and sub-parts of



CHAPTER 3. THE MULTI-SHIFT FULL TRUCKLOAD VEHICLE
ROUTING PROBLEM AND ITS LITERATURE REVIEW 64

products are consolidated and transported to the production factories) and
deliveries for fresh produce and hazardous materials that require special
vehicles.

Single-directional, non-consolidated transport problems are studied in-
tensively in the forms of several vehicle routing problem variants [189],
including capacitated vehicle routing problem (CVRP, see Section 3.3.1),
vehicle routing with time windows (VRPTW, see Section 3.3.2), multi-
depot vehicle routing problem (MDVRP), periodic vehicle routing problem
(PVRP, see Section 3.3.8), etc. With regards to bidirectional, consolidated
transportation, service network design research [8] for less-than-truckload
transport, express delivery and postal mail delivery are typical examples. In
terms of the search space and complexity, this category probably represents
the most challenging freight transportation problem due to the huge size of
the search space.

The final category is the bidirectional, non-consolidated transportation.
Typical examples include vehicle routing with pickup and delivery [136], full
truckload transport [126], and container transport which is a special case
of the full truckload transport problem. The problem that is considered in
this study falls into this final category of Table 3.4.

In real-life freight transport, the time window of deliveries can fall in
a wide planning horizon, which could result in very large problem size. In
some problems, the deliveries can be partitioned into several classes depend-
ing on the urgency of deliveries (e.g. half-day, day, two-day parcel delivery).

The planning horizon is thus structured and can be partitioned into multi-



CHAPTER 3. THE MULTI-SHIFT FULL TRUCKLOAD VEHICLE
ROUTING PROBLEM AND ITS LITERATURE REVIEW 65

Table 3.4: A possible classification of freight transportation problems.

Consolidated Non-consolidated
Single- Production supply | CVRP, VRPTW, TSP,
directional chain, Fresh produce | Multi-depot VRP, PVRP
delivery, Hazards

transport, etc.
Bidirectional | Service network design, | Vehicle — routing  with
Postal mail delivery, | pickup and delivery, Ful-
Less-than truckload | 1 truckload  transport
transport (LTL), | (FTL), Container trans-
Express delivery port (Drayage operations),
Dial-a-ride problem, etc.

periods. This type of problem is referred to as a periodic vehicle routing
problem (PVRP).

In MFTLVRP, each commodity has an operation time window defining
its availability time and the delivery deadline. Time constraints require
that both the pickup and delivery operations occur within this time window
for a commodity. In many other vehicle routing problems such as pickup
and delivery problem with time windows problem (PDPTW), two separate
time windows are used, one for pickup and the other for delivery. Note
that for non-time critical full truckload transportation, having one time
window is reasonable since all the terminals (nodes) operate all the time,
and having short time windows for both pickup and delivery does not make
sense, although it is very different for express deliveries which are mostly
for household customers.

To sum up, MFTLVRP belongs to the operational planning level of
freight transportation. It falls into bidirectional and non-consolidated cat-
egory in Table 3.4. Most studies are focusing on single-shift planning hori-

zon, while this problem shares some similarity with periodic vehicle routing
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problem which considers a multi-shift planning horizon.

The MFTLVRP should has the following characteristics:

e The unit size of the commodity (container) is equivalent of that of the

trucks. Thus this is full truck load problem.

e Schedules are shift based. Thus this is a multi-shift vehicle routing

problem.

e All docks are within a short distance of each other and a unit of any

commodity could be completed within a shift.

e Each commodity has an operation time window defining its availabil-

ity time and the delivery deadline.

3.5 Existing Approaches and Experimental S-

tudies

The remainder of this section provides a review of existing research work
for the final bidirectional, non-consolidated transportation research with a

special focus on the container transportation problems.

3.5.1 Vehicle routing problem with pickup and delivery

The vehicle routing with pickups and deliveries (VRPPD) differs from clas-
sic VRP problems (see Section 3.3.1) in that some of the nodes are both
demand and supply nodes and the flow of the freight at these nodes is, there-

fore, bidirectional (both incoming and outgoing). The inherent mixed load-
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ing capacity constraints in VRPPD often lead to increased computational
complexity. A comprehensive review for VRPPD can be found in Berbeglia
et al. (2007) [14]. Research by Min et al. (1989) [136] represents one of the
first scientific studies on VRPPD. The problem was abstracted from a public
library distribution system in Ohio, US and a simple three-phased procedure
that resembles the well-known “cluster-first, routing-second” heuristics was
developed and compared against the real-world manual solution. Pisinger
et al. (2007) [156] proposed a generic adaptive large neighbourhood search
(ALNS) metaheuristic for 4 variants of the VRP problems with competitive
results reported for all variants. The proposed ALNS shares many com-
mon features to the simulated annealing hyperheuristics (Bai et al. (2012)
[8]) that was shown successful for the coursework timetabling and the well-
known bin packing problem. Gabriel et al. (2010) [88] studied a variant of
VRPPD in which the pickups are selective while deliveries are compulsory.
A branch-and-price algorithm was developed which could solve instances
containing up to 50 customers optimally. Derigs et al. (2012) [53] studied
a real-life full truckload routing problem arising in timber transportation
and used a multilevel neighbourhood search method to solve the problem.
Liu et al. (2013) [127] studied a vehicle scheduling problem encountered in
home health care logistics. A genetic algorithm and a tabu search method
were proposed for this problem. The method was tested on the benchmarks
for the VRP with mixed backhauls and time windows (VRPMBTW) a-
gainst existing best solutions and obtained solutions that are better than

the best-known solutions in the literature. Pandelis et al. (2013) [153] s-
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tudied capacitated VRPPD in which finite and infinite-horizon single VRP
with a predefined customer sequence and pickup and delivery is consid-
ered. A special-purpose dynamic programming algorithm that determines
the optimal policy was developed. Zhang et al. (2014) [220] studied time de-
pendent vehicle routing problems with simultaneous pickup and delivery by
formulating this problem as a mixed integer programming model. A hybrid
algorithm that integrates an ant colony algorithm and a tabu search method
was developed and the computational results suggest that the hybrid algo-
rithm outperforms stand-alone ant colony algorithm and tabu search. Chen
et al. (2014) [32] studied the routing problem with unpaired pickup and
delivery with split loads for fashion retailer chains. However, the common
time window constraints are missing. Both a simple heuristic and a variable
neighbourhood search method were proposed. More recently, Avci et al. []
studied a variant of the classical vehicle routing problem, Vehicle Rout-
ing Problem with Simultaneous Pickup and Delivery (VRPSPD). A simple
adaptive local search algorithm (HLS) combines a parameter-free Simulated
Annealing (SA) based approach with Tabu Search (T'S) have been proposed.
It can be seen that due to the NP-Hard nature of the problem, almost all
studies adopted metaheuristics to solve large scale problem instances.
Another type of vehicle routing with pickup and delivery problem that
has been studied specifically is the dial-a-ride (DAR) problem. Kirchler et
al. (2013) [109] proposed a fast algorithm for solving the static Dial-a-Ride
Problem (DARP). A granular tabu Search method has been applied for the

first time to solve this kind of problem. Paquette et al. (2013) [155] de-
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veloped a multi-criteria heuristic embedding a tabu search process in order
to solve DARPs combining cost and quality of service criteria. This is the
first study that handles more than two criteria for this type of problem.
Ferrucci et al. (2014) [68] introduced dynamic pickup and delivery prob-
lem with real-time control (DPDPRC) in order to map urgent real-world
transportation services. A tabu search algorithm was proposed and compu-
tational result showed that newly arriving requests, traffic congestion, and
vehicle disturbances can be efficiently handled by this approach. Braekers
et al. (2014) [21] considered a multi-depot heterogeneous dial-a-ride Prob-
lem (MD-H-DARP) in real life. A exact branch-and-cut algorithm and a
deterministic annealing metaheuristic were developed for solving small and

large problems respectively.

3.5.2 Bidirectional full truckload transport

In bidirectional full truckload transport, commodities are shipped to desti-
nations in their entirety without intermediate stops or transhipment. There-
fore it is different from VRPPD since some of the commodities in VRPPD
go through intermediate nodes before reaching their destinations. Truck
container transport (in intermodal transport, the truck container transport
within short distance is also referred as drayage operations) is a typical ex-
ample of such a problem since the size of a container is usually equivalent to
the capacity of the truck (hence full truckload) and flow of containers (ei-
ther loaded or empty) can be bidirectional. Therefore, the solution methods

for VRPPD cannot directly be used for the truck container transport prob-
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lem or even if some variants are applicable, their performance will not be as
good since important features (e.g. no intermediate stops) are not exploited
fully in the algorithms designed for VRPPD. Even for the truck container
transport problems, different characteristics will lead to different problems.
From the no-free-lunch theorem of [206], we know that it is very hard to
develop a generic algorithm, performing best for all possible instances. In
Section 3.3.6, we also reviewed full truckload pickup and delivery problem
with time windows (FTPDPTW), which is an extension of VRPPD with
time windows that a vehicle carries full truckload. FTPDPTW is usually
applied in the context of intermodal container transportation.

Zhang et al. (2010) [219] proposed a nonlinear model (see Section 3.3.3)
based on a preparative graph for container transportation between ship-
pers, receivers, depots and terminals. A solution method was designed by
improving the time window partitioning scheme used in Wang et al. (2002)
[208] for a multiple travelling salesman problem with time windows (m-
TSPTW). The empirical results for a set of randomly generated instances
indicate that improved performance can be achieved compared with a re-
active tabu method in Zhang et al. (2009) [171]. The method is effective
for small instances but may suffer for large scale problems since the size of
the graph can explode with increase in the number of shipments and nodes.
Similar issues exist for instances with very wide time windows (e.g. time
windows that spans over a few days) due to the time partitioning scheme
adopted in the method.

Nossack et al. (2013) [149] presented a new formulation for the truck
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scheduling problem based on a Full-Truckload Pickup and Delivery Problem
with Time Windows and propose a 2-stage heuristic solution approach. The
results of computational experiments indicate that their 2-stage heuristic
outperforms the time window partitioning method applied by Zhang et al.
(2010) [219] in terms of computational efficiency.

Braekers et al. (2013) [22] investigated a 2-stage deterministic annealing
algorithm for a full truckload transport problem with simultaneous pickup
and delivery nodes. The problem was formulated as an asymmetric m-
TSPTW. Similarly, the problem was tested for a set of randomly generated
instances with commodity time windows ranging between 60 to 240 min,
which is much smaller than those in our problems. Better results were ob-
tained using the algorithm than those given by the method of Zhang et al.
(2010) [219]. Most research studies assumed a constant travel time among
the transportation network which is not always realistic. Therefore, Braek-
ers et al. (2012) [19] studied how time-dependent travel times will affect the
full truckload transport planning and scheduling, in which the optimal de-
parture times become decision variables in addition to the routing variables.
In real-life of drayage operation, shippers may request empty containers to
be delivered while consignees may have empty containers available to be
picked up.

By considering this, Braekers et al. (2014) [21] studied vehicle routes
performing all loaded and empty container transports in the service area
of one or several container terminals during a single day. A bi-objective

approach (minimising the number of vehicles and minimising total distance
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travelled) is considered and it is shown that this method obtained consid-
erably better results than those reported in Braekers et al. (2013) [22].
Sterzik et al. (2013) [181] proposed a single-shift general model for trans-
porting both full and empty containers among multiple nodes (depots, ter-
minals and customers). A tabu search heuristic is developed and tested on
instances that contain up to 5 depots, 3 terminals and 75 loads with an
one-day planning horizon.

The drayage operations problem is a typical case of bidirectional full
truckload vehicle routing problems. Here, we summaries the relevant re-
search on the drayage operation problems which we broadly classify into
three fields: drayage operations with and without relocation requirements
of empty containers, and drayage operations with dynamic situations (e.g.
either the origin or the destination of the container transport is partially

unknown in advance; thus resulting in a dynamic travel time of trucks).

Drayage problem without relocation of empty containers

Wang et al. (2002) [208] model a full truckload pickup and delivery prob-
lem with time windows (FT-PDPTW) as an asymmetric multiple travel-
ling salesman problem with time windows (am-TSPTW) and propose a
time-window discretisation scheme. Similarly, Gronalt et al. (2003) [85]
treat FT-PDPTW as am-TSPTW and develop four different savings based
heuristics. Jula et al. (2005) [96] extend the am-TSPTW model with social
constraints and propose an exact algorithm based on dynamic program-

ming. Moreover, a hybrid method combining dynamic programming and
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genetic algorithms (GAs) is also investigated, as well as an insertion heuris-
tic method. Chung et al. (2007) [38] design several types of formulations
for practical container road transportation problems. The basic problem
is formulated as a multiple travelling salesman problem (MTSP), which is
solved by an insertion heuristic. Namboothiri et al. (2008) [144] apply a
root column generation heuristic to solve a local container drayage prob-
lem. Cheung et al. (2008) [34] analyse a cross-border drayage container
transportation problem which manages individual and composites of multi-
ple resources simultaneously. An attribute-decision model is designed and
solutions are found using an adaptive labelling algorithm. Lai et al. (2013)
[117] propose a new routing problem that can be viewed as a vehicle routing
problem with clustered backhauls (VRPCB). Solutions are obtained with
the famous Clarke-and-Wright algorithm and improved further by a neigh-
bourhood based metaheuristic. Xue et al. (2014) [210] investigate a new
drayage operation mode in which tractors and trailers can be separated
using the processing time of customers. The problem is formulated as a ve-
hicle routing and scheduling problem with temporal constraints and solved
by a tabu search metaheuristic. More recently, Chen (2016) [30] proposed a
multi-shift container transshipment formulation (see Section 3.3.9) for this
research and solved it by a reactive shaking variable neighbourhood search

(VNS) and a simulated annealing hyperheuristic method (SAHH).
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Drayage problems with relocation of empty containers

Efforts to combine the planning of loaded and empty container transports
are made by several authors. Coslovich et al. (2006) [42] analyse a fleet
management problem for a container transportation company by decom-
posing the problem into three subproblems, which are then solved using a
Lagrangian relaxation. Lleri et al. (2006) [99] present a column genera-
tion based approach for solving a daily drayage problem. Smilowitz et al.
(2006) [176] model a drayage operation with empty repositioning choices as
a multi-resource routing problem (MRRP) with flexible tasks. The solu-
tion approach is a column generation algorithm embedded in a branch-and-
bound framework. Imai et al. (2007) [100] formulate a container transporta-
tion problem as vehicle routing problem with full container loads (VRPFC)
and solve it with a subgradient heuristic based on Lagrangian relaxation.
Caris et al. (2009) [28] extend this work and model the problem as a FT-
PDPTW (see Section 3.3.6). A local search heuristic is proposed. The work
is further extended by using a deterministic annealing algorithm suggested
in Caris et al. (2010) [29]. Zhang et al. (2007) [219] improve the time
window partitioning scheme used in Wang et al. (2002) [208] for container
transportation in a local area with multiple depots and multiple terminals.
The results indicate that good performance can be achieved compared with
a reactive tabu search (RTS) method demonstrated in Zhang et al. (2009)
[171]. After that, Zhang et al. (2011) [218] also investigate the single depot
and terminal problem. Again, an RTS is proposed. Vidovic et al. (2011)

[197] extend the problem analysed by Zhang et al. (2010) [219] and Imai
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et al. (2007) [100] to the multi-commodity case and formulate it as a mul-
tiple matching problem. Solutions are obtained via a heuristic approach
based on calculating utilities of matching nodes. Nossack et al. (2013)
[149] present a new formulation for the truck scheduling problem based on
a FT-PDPTW and propose a two-stage heuristic solution approach. More
recently, Braeker et al. (2013) [22] investigate a sequential and an inte-
grated approach to plan loaded and empty container drayage operations.
A single- and a two-phase deterministic annealing algorithm are presented.
This solution approach is further adapted in Braekers et al. (2011) [18] to
take a bi-objective optimisation function into account. The algorithms are

further improved in Brackers et al. (2014) [21].

Drayage problems with dynamic inputs

Some researchers examine drayage operations problem in dynamical situa-
tions. Tjokroamidjojo et al. (2006) [188] investigate dynamic load assign-
ment problems where loads arrive in a dynamic fashion and load informa-
tion becomes available over time. The dynamic problem is repeatedly solved
with the aid of a load assignment optimisation model. Wen et al. (2007)
[204] study a local container vehicle routing problem with variable travelling
time using a GA. Mes et al. (2007) [134] demonstrate real-time scheduling
of full truckload transportation orders with time windows that arrive during
schedule execution using an agent-based approach. The performance of the
solution method is enhanced in Mes et al. (2010) [133].

Most of the aforementioned research work has been trying to formulate
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the drayage problem as some forms of classical vehicle routing problems in
order to exploit the time constraint structures to prune the search space.
However, this type of formulation does not work well for problems where
time related constraints are not very tight and node-based solution repre-
sentations generally lead to unnecessarily large search space, resulting to

inefficient solution methods.

3.5.3 Multi-period vehicle routing problem

In real-life vehicle routing problems, the due dates of deliveries can fall in
a wide planning horizon, which could result in very large problem size. In
some problems, the deliveries can be partitioned into several classes depend-
ing on the urgency of deliveries (e.g. half-day, day, two-day parcel delivery).
The planning horizon is thus structured and can be partitioned into multi-
periods. The adaption of conventional commodity-flow VRPTW formula-
tion is unable to efficiently solve multi-period VRP owing to the sparsity of
the generated graph [124]. To circumvent this difficulty, the original large
problem can be split into many subproblems according to the priority of
deliveries and each subproblem is treated as an independent VRP. Related
work can be found at [62], [36] and [185]. An alternative strategy is proposed
by Letchford et al. (1998) [124] who investigated the rural postman prob-
lem with deadline classes (RPPDC, a variant of TSP where the underlying
network may not form a connected graph) and the flow variables have been
avoided and new valid inequalities are introduced in order to exploit graph

sparsity. Frizzell et al. (1995) [71] studied the split delivery vehicle routing
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problem with time windows (SDVRPTW), where the length of time window
may be too short to meet all customer demands. Therefore, some demands
have to be delivered in the subsequent time slots. Three heuristics for the
problem were developed and implemented. Local search was first introduced
to SDVRPTW by employing the following operators: moving a customer
to a new route and swapping customers between routes. Trudeau et al.
(1992) [190] analysed a stochastic inventory routing problem for heating oil
distribution for a long-time planning horizon covering up to 12 consecutive
weeks. Christiansen et al. (2002) [35] studied a ship scheduling problem
concerned with the pickup and delivery of bulk cargoes within given time
windows. Wide time windows are regarded as multiple time windows. N-
guyen et al. [147] considered the Time-dependent Multi-zone Multi-trip
Vehicle Routing Problem with Time Windows (TMZT-VRPTW), which is
an extension of the VRPTW involving both designing and assigning routes
to vehicles within time synchronization restrictions.

In the area of waste collection and grocery distribution problems, each
customer has to be served with a given periodicity, such as certain times
a week. In practice, the vehicles have to return back to the depot when
the working shift is over or the capacity reaches its limitation. This type of
problem is usually formulated as PVRP model and the aim of the solution
is twofold: to select a visiting schedule for each customer and to find vehicle
routes in each working shift. A review of typical solution methods of PVRP
can be found at [82] and [40] who also proposed a mathematical model

and tabu search heuristic for PVRP. More recent studies of PVRP and its
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variants can be found at [98], [137], [194] and [129].

3.6 Summary

This chapter places the work in context and presents related literature about
MFTLVRPs. Several works for vehicle routing problems, both on optimi-
sation model studies and experimental studies, are reviewed. We introduce
and classify the studies and models that share similarities with our research
with a special focus on both bidirectional full truckload and multi-period
vehicle routing problems.

For truck drayage problems, most of the models employ VRP-style (e.g.
m-TSPTW) formulations that usually produce huge graphs if the number of
tasks is large. Representing each task/customer/load as a node in a graph
is a common practice for VRP-based formulations.

Most of the research work presented has been tried to formulate the
drayage problem as some form of classical vehicle routing problem, trying
to exploit the time constraint structures to prune the search space. However,
this type of formulation does not work well for problems where time relat-
ed constraints are not very tight and node-based solution representations
generally lead to many-to-one mapping (will be discussed in next chapter)
from solution to objective values. To address this issue, we present a novel
set covering integer linear programming model for this research problem in

the next chapter.



Chapter 4

A Set Covering Model and Lower
Bound for the Multi-shift Full
Truckload VRP

4.1 Introduction

This chapter studies a multi-shift full truckload vehicle routing problem
(MFTLVRP) using data from a real-life problem faced by the Port of Ning-
bo. A set covering model is developed based on a novel route representation.
A lower bound of the problem is also obtained by relaxing the time window
constraints to the nearest shifts and transforming the problem into a ser-
vice network design problem. Finally, features and merits of the set covering

model are discussed.

4.2 Problem Description

Because of the distinct features illustrated in above, the problem cannot be

solved by off-the-shelf approaches, such as, vehicle routing problems with

79
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Table 4.1: The list of notations.

Input Parameters

The set of nodes in the transportation network.

A list of time-continuous shifts in the planning horizon.
The s shift in S.

et? The beginning time for shift s.

s The end time for shift s.

d;j The distance between nodes ¢ € V and j € V.

Lij The travel time between nodes i € V and j € V.

® oy <

t; The service time at node j.

té» The loading time at node j.

ty The unloading time at node j.

n The number of trucks available for use.

R Set of feasible truck routes within a shift. Each truck starts
from depot vy and returns to depot before shift ends.

d, The distance of the route r € R.

K A set of commodities to be delivered. Each commodity is
delivered by exactly one truck.

Q(k) | The quantity of the standard commodity k.

o(k) | The origin of the commodity k € K.

d(k) | The destination of the commodity k € K.

o(k) | The available time of the commodity k € K.

7(k) | The deadline or completion time by which the commodity
k € K has to be serviced.

57’?,- A binary constant indicating whether k& can be serviced at
the 7th node in r € R.

e Earliest time that truck route r finishes a service (either a
drop-off or a pickup) at its ith node in shift s.

I The latest time that truck route » may depart from its ¢th
node in shift s.

M A sufficiently large positive number.

Decision Variables

(T The number of times a given route r» € R is used during
shift s and y® € N*.

ks Commodity flow of the ith node of r in s for servicing

commodity k.

pickups and deliveries. Similarly, the problem is different from the classic
service network design problem which is primarily consolidation oriented.
Although our problem shares similar constraints to the inland container
transportation problem studied in Zhang et al. (2010) [219] (see Section

3.3.3), the nature of the constraints are very different. For example, the
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time window of a load in the problem considered in this research spans
from a few hours to up to 3 days (or 6 shifts), compared to a load time
window of between 1 to 4 hours in Zhang et al. (2010) [219]. Therefore,
the time-window partition heuristics will not work for our problems due
to the potentially huge number of sub-loads generated, causing prohibitive
computational time.

When the time window of a load spans several working shifts, determi-
nation of the shift in which this load is serviced forms part of the decisions
to optimise. In addition, the currently studied FTPDPTW such as the one
illustrated in Section 3.3.6, that developed by Caris et al. (2009) [28], is
only able to handle single-shift problem. However, the problem concerned
in this research requires a multi-shift model that is much larger than the
single-shift model adopted in Zhang et al. (2010) [219] and Caris et al.
(2009) [28].

Although there are a number of research studies on full truckload /container
transport problems with several models and algorithms being proposed,
none of them can be effectively used to solve the problem described above.
The reasons are summarised as following: 1) the planning horizon of our
problem is much longer than those in the previous studies. This is because
the time window of shipments in our problem spans from 1 hour to up to 3
days. The time-window partitioning approach will lead to a huge graph that
is prohibitively large to solve. 2) The number of shipments is significantly
larger than the instances tested in the previous studies while the number of

physical nodes is relatively small (i.e. 9). The existing approach mentioned
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above could not exploit these structures explicitly. 3) Finally the operation
in our problem is shift based (each shift is 12 hours). Although a shift can
be interpreted as a time window for truck, its actual width is not neces-
sarily bigger than the time windows of shipments, and inconveniently most
VRP solution methods assumed a bigger truck time window than shipment
time window. These issues lead us to consider a different approach which
can fully exploit the structures of the problem, and hopefully can be more
efficient than the existing approach.

Without losing the generality of the problem, we define the following
shift-based full truckload shipment problem with operation dependent ser-
vice time. A full list of the notations used in our model is given in Table
4.1. Denote G = (V, A) a directed graph with a set of nodes V' (repre-
senting origins and destinations of different commodities) and a set of arcs
A between these nodes. Note that node 0 is the depot from which all ve-
hicles depart at the beginning of the shift. Denote K be the set of all
the commodities to be delivered. Each commodity & € K is defined by
a tuple (Q(k),o(k),d(k),o(k),7(k)), standing for the quantity, origin, des-
tination, available time and deadline respectively. Denote S be a list of
time-continuous shifts in the planning horizon and s be the s-th shift in S.
All trucks have an identical capacity of 1 unit. Therefore, commodities are
shipped directly to their destinations without transfers or consolidation.

Denote t; be the service time at node j. Note that ¢; is dependent on
both the node a vehicle visits and the types of operation (either loading or

unloading) done at this node. Denote té- and t} respectively be the loading
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and unloading time at node j, then we have

4

~

t; if loading operation only at node j

t, = . . . )
J ty if unloading operation only at node 7,

té- + 1t if both loading and unloading at node j.
\

The problem is to find a set of vehicle routes with minimum total costs
to deliver all the commodities within their time windows. Each vehicle route
should depart from the depot at the start of a shift and return to the depot

before the shift ends.

4.3 Feasible Route Generation

For a given directed graph G = (V, A) where V is the set of nodes, repre-
senting different freight forward terminals and A is the set of arcs between
nodes. Let node 0 be the depot. A feasible route is defined as a sequence
of nodes that a truck can cover in a shift. Since no transshipment is per-
mitted in the operation, for any feasible route, we ensure that each node
will have at least one operation (i.e. either loading or unloading) with
some nodes involving both operations simultaneously. Since time taken for
loading/unloading operations is substantial and is comparable to the travel
time between nodes, the service time at each node in a truck route will
depend on actual commodity shipments along the route. The service time
for nodes involving both of the operations will be much bigger than the
service time if only one operation is scheduled at this node. This creates

a very challenging issue for modelling since the service time is no longer a
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constant and depends on the actual solution. To circumvent this problem,
for any node that involves both of the operations, we insert a copy of the
node immediately after it in the route, setting the distance between them
to 0 but an unloading service time for the first copy and a loading time for
the second. In this way, all the routes now have exactly one operation per
node except the depot. Because each unit of commodity shipment involves
exactly two operations (i.e. loading at the source node and then unloading
at the destination node) and a truck would never visit a node without a
service, each of the feasible routes should contain an even number of nodes

(including nodes copies). The following is an example of a feasible route.

0 ———>2 >3 =>4 -—>5 -—->5 ——> 6 ——> 0

depot 1load unload 1load unload 1load unload

In this particular route, a truck departs from the depot and picks up a
commodity of unit quantity from node 2, and unloads the commodity at
node 3. Then the truck picks up another commodity at node 4, drops it off at
node 5. The final commodity delivered by this truck is from node 5 to node 6
before the truck returns to the depot. Therefore, in this route, in addition to
truck movements to and from the depot, the truck movement from node 3 to
node 4 is also empty. At node 5, the truck does both unloading and loading

since it has two copies in the route. Excluding depot, odd numbered nodes
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are loading nodes and even numbered nodes have unloading operations only.
Therefore, the service time of each node will be determined by the index
of the node in the route. For an 0-indexed route, the service time of an
odd-numbered node equals the loading time and even-numbered node has
service time equalling its unloading time. Denote r* be the i-th node in a

feasible route 7 and t,: be the service time at node 7%

(

0 if r¥ is depot,

tyi = tlr . if 7" is an odd-numbered node in 7,

\tjfi if 7* is an even-numbered node in r.
where ti . and t7; are loading and unloading times at node r*. With the route
representation introduced above, we can now develop an integer model as
follows. We will discuss later the algorithm to generate all feasible routes.
Denote R the set of all possible feasible routes within a shift and K
the set of commodities and S the set of shifts within the planning horizon.
Here each commodity k € K represents a number of containers with same
properties defined by tuple {s(k),d(k),o(k),7(k),Q(k)}, standing for its
source, destination, time of arrival at port, deadline for shipment, and its
quantity respectively. Note that in this application, we consolidate the
quantity of commodity so that each truck carries one unit of a commodity
exactly. For the real-life problem under consideration in this thesis, one unit

of a commodity means two small containers (20 foot) or 1 large container

(40 foot).
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The solution can be encoded into two decision variables x’:f and y;. The
first variable defines the commodity flow of the ith node of  in s for servicing
commodity k while the latter defines the frequency of route r being used
in a given shift s. Therefore, a given commodity %k could potentially be
serviced by several arcs of a route in different shifts, subject to constraints
of time windows (o (k), 7(k)) and source-destination pairs being matched up
between the arc and the commodity.

In order to speed up the processing time, one could pre-process all the
possible arcs in each of the feasible routes for a given commodity. For each
of the feasible route » € R and a given shift s € S, a binary variable 5fff is
introduced to indicate whether the ith node in route r of shift s can be used
as the starting service node for commodity k. Therefore, 51’1-5 = 1 means that

the following conditions should be satisfied, otherwise it is set to 0.

imod?2 = 1 (4.2)
= o(k) (4.3)
= d(k) (4.4)
5> o(k)+t (4.5)
ey < T(k) (4.6)

Condition (4.2) indicates that the starting service node must be the node

with loading action. Conditions (4.3) and (4.4) define source and destination

S
) Ut

of commodity for starting service node i. In constraints (4.5) and (4.6)

is the latest departure time from the i-th node of route r in shift s to ensure
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all the subsequent services can be delivered on time. Similarly €’y 1s the
earliest time that a truck can possibly arrive at the (74 1)th node of r during

shift s. [°; and e, can be pre-calculated as follows:

e = et (4.7)
T (43)
ls = 1t° (4.9)
R (410)

where et® and [t® are the beginning and ending time for shift s respectively
and 0 denotes the final node in route 7 (i.e. the depot). Egs. (4.7) and

(4.9) provide initial values for recursive equations (4.8) and (4.10).

4.4 Model Formulation

We now describe our proposed formulation for this problem. Our formu-
lation is similar to the classic set-covering model with additional side con-
straints. The underlining idea is to find a subset of truck routes (from all
possible feasible routes) that sufficiently covers all the transportation de-
mands with a minimum total cost (i.e. distance). Because of the fact that
all shifts are of identical periods and all the trucks must depart from the
depot at the beginning of every shift and return to the depot before the shift
ends, the feasible route set is the same for all shifts, assuming the travel

times and service times are the same at different shifts.
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Our problem can be formulated as finding a subset of all feasible route
R for each of the shifts such that all the tasks are covered (or serviced) on
time and the total routing cost is minimised.

Denote xfff and y; the two decision variables. ¥ is the frequency of route
r used in the s shift in a solution. Variable z¥ denotes, in a given solution,
the commodity flow of the ith node of r in s for servicing commodity k.

The problem can be formally defined as follows:

minZZdry;f (4.11)

subject to

IN

ny n VselS (4.12)

ZZfof = Q(k) VkeK (4.13)
>k
k

ks

rt

IN

y, VierVre R\VselS (4.14)

€ Zt YierVre RVke K,¥seS (4.15)

T

yo € Z' VYreRVseS (4.16)

The objective is to minimise the total distance of all routes used in a
solution. Constraint (4.12) ensures the availability of trucks the company
actually possesses. Constraint (4.13) ensures all the tasks are serviced.
Constraint (4.14) makes sure that the total flow of all commodities does
not exceed the arc capacity.

Different from other VRP-style formulations (e.g. m-TSPTW or FT-
PDPTW) that represent each load as a node in a network (same as Zhang

et al. (2010) [219]), the above model treats commodities as flows to be
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covered by routes. This makes the proposed model advantageous compared
to the other alternative methods. In real-life instances, it is common that
large number of containers arrives with a same S/D pair and a same time
window. For the above model, the complexity of solving a problem instance
with Q(k) = 10 would be similar to the instance with Q(k) = 100. However,
the latter instance would be multitude times harder to solve for Zhang et
al. (2010)’s method [219]. The reason is that our model treat commodities
as flows covered by route, therefore, a route is able to carry as much com-
modity flows as possible with the limitation of route capacity constraint.
However, in Zhang’s method, each container movement is considered as a
node, thus, the graph size is significantly increased.

Nossack et al. (2013) [149] proposed a nonlinear integer programming
model, in which time window constraints are handled explicitly. However,
due to its nonlinear property, the formulation cannot be solved exactly. In
our proposed set covering model, these time window constraints are implic-
itly handled offline during the feasible route generation stage. In this way,
we can handle any forms (linear, nonlinear) of route related constraints,
including nonlinear time window constraints and shift constraints. In fact,
more and tighter constraints are advantageous to this formulation as it can
reduce the size of the feasible route set.

More recently, Jianjun Chen et al. (2016) [30] proposed a multi-shift
container transshipment formulation for this research and solved it by hy-
perheuristic method. The formulation is task based and inspired by the

formulations given by Wang et al. (2002) [208] who proposed a m-TSPTW
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based model for full truckload transportation. As the number of tasks is
equal to (exclude the depot node) the number of nodes in the graph, the
model leads to a huge graph with the increasing number of tasks. For a
modest-sized, 8-shift problem with 1000 tasks, the network would contain
more than 8 million discrete decision variables with the number of con-
straints in the similar order [30]. Representing each task/customer/load as
a node in graph is a common practice for VRP based formulations, indeed,
in most routing and scheduling problems, the customers are located in differ-
ent physical locations and can be visited only once. However, in terms of the
drayage operation problem, the docks normally can be visited many times.
There thus exist multiple optimal solutions as many tasks share an identical
source, destination and time window but they are defined as different nodes
in the graph. Therefore, different from other VRP-style formulations that
represent each load as a node in a network, the set covering model presented
in this study treats physical docks as nodes and commodities as flows to be
covered by routes. In other words, the node representation applied to this
problem enables an arc(i, j) in a route to represent all possible collection of
commodities that: 1. Sharing the same source of node ¢ and destination of
node j. 2. Satisfying time window constraint of delivery.

One of the most helpful benefits of this encoding is the transformation
of a previous m-TSP based non-linear model (e.g. the model proposed by
Chen et al. (2016) [30]) into a linear integer model, so it can be solved using
various integer programming techniques. This was done through hiding

nonlinear time related constraints into the generation of the feasible truck
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Commodityl
Commodity2
Commodity3

Commodityd

Commodity5

Figure 4.1: Example of a routing sharing among 5 commodities.

route set. Figure 4.1 presents a simple example of a feasible truck route
where 0 denotes the depot. For a 0-indexed route node list, odd numbered
nodes are commodity loading nodes (i.e. nodes 1 and 3 in Figure 4.1) while
even numbered nodes are unloading nodes. If a node on a route is involved
with both loading and unloading, a copy of it is created so that the above
rules are maintained.

A second benefit of this solution representation is its capability to han-
dle nonlinear cost functions. For example, the costs of routes could be a
nonlinear, complex function of the distance. It also permits to include var-
ious other constraints related to drivers (e.g. maximum driving distance,

time or preferred terminals).

4.4.1 One-to-one mapping vs. many-to-one mapping

Figure 4.1 illustrates a simple example of this flow assignment scheme (de-
fined by ) on a feasible route being used six times (i.e. y5 = 6).
In this example, commodities 1, 2 and 3 share 6 units of truck capacity

on arc (1, 3) while commodities 4 and 5 share 6 units of capacity on arc (4,
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2). For arc (1,3), there are total of 44+3+2+1 = 10 (i.e. 4 commodityl, 1
commodity2, 1 commodity3 or 3 commodityl, 2 commodity2, 1 commod-
ity3...) possible flow allocations between the three commodities, while for
arc (4,2) the total number of possible flow allocations between commodities
4 and 5 is 5. Therefore, in total, there are 10 x 5 = 50 different flow allo-
cations and all of them result in the same objective value in terms of the
total distance.

The advantages of this solution encoding is clear in this example, be-
cause all these solutions are encoded as one representation in the proposed
encoding scheme. Hence the mapping from the search space to the ob-
jective function is one-to-one and the size of the search space is reduced
significantly. In the case of node-based traditional VRP types of formula-
tions (e.g. those adopted in Zhang et al. (2010) [219], Chen et al. (2016)
[30]), each of these 50 solutions will be represented uniquely, despite all re-
sulting in the same objective value (i.e. many-to-one mapping). This leads

to a significantly larger search space with a plateau.

4.5 A Lower Bound

The VRP belongs to the class of NP-hard problems and the exact model
presented above is only able to solve small problems (e.g. number of com-
modity unit is less than 400) optimally. The lower bound model is thus
developed to provide a guide of optimal solutions and analyse the perfor-

mance of our approaches. Therefore, the function of the lower bound is
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twofold: on one hand, it can be used to determine the nature of instance
data. For example, the unbalanced demand distribution in space and time
nodes would result in a large number of dead-heading of empty trucks. On
the other hand, it evaluates the ability of finding near optimal solutions by
our approaches.

To do this we solve a simplified problem in which the time window
requirements of each shipment (i.e. arrival time and delivery deadline) are
relaxed to the corresponding shift in which the time window lies. For ease
of modelling, we also neglect the empty truck movements from/to the depot
in computing the lower bound. We define v(k) and w(k) respectively be the
shift that commodity k& becomes available and the shift that the delivery
deadline of k lies in. Denote uj; be the flow of commodity k on arc (i, j)
during shift s and vj; be the number of vehicles covering arc (i, j) during
shift s. In addition, the constraint of all trucks returning to the depot is
discarded to exclude the factor of inappropriate depot location. The relaxed

problem can be formulated as the following service network design problem.

min Z Z dijvi; (4.17)

s (i)
subject to
(k) w(k)
DTN uly— >0 > k= o kY (4.18)
s=v(k) J s=v(k) J
wp=> v = 0 VsVi£0 (4.19)
J J

STub <o V(i) Ys  (4.20)
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where constraints (4.18) are the flow conservation constraints, (4.19) are

the truck balance constraints, and (4.20) are the capacity constraints.

4.6 Summary

This chapter presents a set covering integer linear programming model for
a real-life MFTLVRP. The model would significantly reduce the problem
size compared with the VRP-style formulations that are widely adopted for
representing drayage operations problems.

The problem belongs to the class of NP-hard problems and the set cov-
ering model is only able to solve small problems optimally. The lower bound
model is created in order to provide approximately optimal solutions in a
short time and evaluate the performance of solution procedures. In order
to evaluate the feasibility and performance of our model, we applied it to a
number of real-life and artificial instances. The result and solution proce-

dure will be presented in Chapter 6.

4.6.1 The non-deterministic drayage operation problem

In most existing models for VRP, the travel time of each trip is assumed
to be fixed, preventing the resulting schedule from operating as planned
in practice owing to the variability of traffic conditions. To tackle this
situation, many studies have been conducted: 1) to try to set more accurate
travel times; 2) to reschedule during real-time operations when the situation

occurs; 3) to reinforce the robustness of a schedule (e.g. leave sufficient
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buffer time).

As mentioned, the travel times between docks are necessary parame-
ters for the model formulated in Section 4.3. Indeed, travel time is one
of the most essential parameters for the compilation of a vehicle routing
problem. Its accuracy may also affect the on-time probability of a vehicle
schedule [174]. There are many methods that can be adopted to set travel
times. The most commonly used method may be based on the experience
and common sense of human schedulers [73]. Thanks to the advancements
in automatic data collection system technologies (e.g. Automated Vehicle
Location systems (AVL), Global Positioning Systems (GPS)), which are in-
creasingly being installed in transport systems, large amounts of collected
data are available for us to determine more accurate travel times. Examples
include mean time, 85th percentile travel time [72], and mean value plus
the standard deviation [143].

By analysing real-life GPS data obtained from a container truck fleet at
the Port of Ningbo, we observed an increase in travel time patterns dur-
ing peak times. This motivated us to investigate further to estimate travel
times more accurately and efficiently. We ultimately developed a short-haul
travel time prediction model and algorithm using real-life GPS data. In-
stead of using fixed travel times when generating feasible routes for the set
covering model in practice, this prediction model is suggested to estimate
travel times due to the variability of traffic and driving conditions. Hence,
even though the set covering model studied in this chapter is determinis-

tic, its travel time parameters can be non-deterministic. The idea of this
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approach is an alternative method to other non-deterministic approaches
(e.g. stochastic programming approach [174], robust scheduling [198]). As
mentioned, the feasible route set of the model can be handled offline, which
eases its implementation in practice.

The non-deterministic drayage operation problem can be solved by 3
stages: 1) travel time prediction; 2) generation of feasible routes; 3) solve the
set covering model. In real-life, stage 1 and stage 2 need not to be executed
whenever stage 3 is conducted as the travel time parameters obtained from
stage 1 will not significantly change within a short period of time (e.g. 1-
2 weeks). Stage 1 and 2 can be executed only when there is a dramatic
change (e.g. port location, seasonal change) in travel times parameters that
may affect the generation of feasible routes. Reoptimisation of stage 3 may
take place when there are lots of changes that occur to the tasks. For
instance, more than 10% tasks that have been planned cannot be picked up
or delivered as planned. In that case, we remove the tasks that have been
successfully delivered and add new tasks when necessary, then solve stage
3 one more time. If only a few tasks (e.g. less than 10% of total tasks)
cannot be picked up or delivered as planned, we suggest to heuristically
insert (similar to the method applied in Section 6.4) these tasks to other
unfinished routes in order to reduce the burden to the server caused by the
reoptimisation.

In the next chapter, a short-haul travel time prediction model and algo-
rithm using real-life GPS data (the stage 1 that has been discussed in the

previous paragraph) are presented.



Chapter 5

Truck Travel Time Prediction in

Port Drayage Network

5.1 Introduction

Unreliable travel time is regarded as among the most problematic issues in
freight operations [83]. Truck drivers experience unnecessary wait times if
they arrive early and truck queuing causes high diesel engine emissions. De-
lays can incur more problems [157]. The model presented in Chapter 4 relies
on travel times between docks to generate a feasible route set. Therefore,
accurate travel time prediction is necessary and important for this model.
In this chapter, a short-haul travel time prediction model and algorithm
using real-life GPS data is presented. Fleet GPS data used in this work were
obtained from Ningbo Port Co., Ltd. The processes of data preparation,

variable/model selection and data generation are also illustrated.

97
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5.2 Related Literature

Travel time information plays a role of great importance in the field of
transportation and logistics planning, as accurate travel time prediction
is not only crucial for developing intelligent transportation systems (ITS)
that help traffic managers to make decisions and it is also useful for logistics
company managing freight transportation [202].

Much effort has been contributed to short-term traffic forecasting which
has been a crucial part of traffic management since the 1980s. The ability of
rapidly processing traffic data has brought significant development of I'TS
(Intelligent Transportation System) technologies. Short term traffic fore-
casting is concerned with predictions made from a few seconds to possibly a
few hours into the future based on the current and past traffic information
[199]. The advances in new technologies in traffic data collection such as au-
tomatic vehicle identification system, global positioning system and smart
phones have made data for short-term traffic time prediction more rapidly
available. The most commonly used variables for traffic predicting in lit-
erature are traffic flow, occupancy, speed, and travel time [107]. In most
literature the traffic flow parameters dominate the field of traffic forecasting,
but they also exhibit conflicting results when deciding which parameter is
more suitable for traffic predicting. Since the past few decades, travel time
prediction has drawn increasingly more interest, as it is not only an impor-
tant measurement of traffic performance but also a straightforward variable
to inform drivers of the current and future traffic conditions.

Much research effort has been invested in developing accurate and robust
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traffic prediction models and the problems have been treated from various
angles including time-series, pattern recognition, clustering, and regression.
Generally, those models can be classified into parametric, non-parametric
and traffic simulation methods. Parametric methods for traffic prediction
primarily rely on statistical techniques such as autoregressive moving av-
erage models, linear and nonlinear regressions [173]. These techniques try
to detect a function between the past information and the predicted state.
However, these methods are typically sensitive to errors and data quali-
ty. Non-parametric approaches adopt computational intelligent methods
like fuzzy systems, machine learning, and evolutionary computation. Such
techniques can generally handle imprecise data, dealing with the nondeter-
ministic, complex and nonlinear systems but they tend to have efficiency
problems that means there exist a trade-off between accuracy and efficiency.
Micro-simulation imitates real world process of traffic conditions, however
it is easy to draw wrong conclusions if one does not fully understand the
processes of traffic operation in detail [24].

Parametric methods are applied extensively in estimation, prediction
and modelling fields. In the work conducted by Rice et al. (2004) [166], a
linear regression model was developed to predict travel times on freeways
using loop-detector data on flow and occupancy at selected locations in
California. Okutani et al. (1984) [151] employed Kalman filtering theory
to predict short-term traffic volume based on data collected from a street
network in Nagoya city. Average prediction error of their method is found

to be less than 9% and the maximum error is less than 30%. Jula et al.
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(2008) [102] also applied Kalman filtering to predict the travel time be-
tween Los Angeles and West Covina, in California. Ahmed et al. (1979) [4]
first introduced ARIMA (autoregressive integrated moving average) in traf-
fic forecasting. After that, many extensions of ARIMA have been created
for traffic predicting. Yu et al. (2004) [214] introduced a switching ARIMA
model for traffic flow forecasting in Yuetanbei street of Beijing. The author
applied ascending, decreasing and bottom patterns switching ARIMA mod-
els to tackle their problems and it was demonstrated that switching ARIMA
performed better than conventional switching models.

With the development of computational intelligence in transportation
research, a large number of computational intelligent applications have ap-
peared. Karlaftis et al. (2011) [105] discussed differences and similarities
between the statistical method and the neural network method. Lint et al.
(2008) [191] built an online machine learning approach based on extended
Kalman filter model for traffic time prediction on a 7-km 3-lane southbound
freeway in Netherlands by using dual inductive loops data. Coufal et al.
(2003) [43] introduced two new prediction models between Lahti to Heinola,
Finland (28km) using traffic data obtained from traffic camera and induc-
tive loop detectors. The first one is a result of GUHA style data mining
analysis, which is a method of computerised generation of hypotheses based
on given data, and a so called Total Fuzzy Similarity method. The sec-
ond one is a hierarchical model based on neuro-fuzzy modelling. Sun et al.
(2014) [183] combined Multidimensional Scaling with nonlinear regression

Support Vector Machines (SVM) to forecast traffic flow.
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Simulation is a valuable support tooling for evaluating traffic condition-
s. Microscopic and macroscopic are two concepts that are widely adopted
by traffic engineers in traffic forecasting. Mbiydzenyuy et al. (2013) [132]
proposed a travel time prediction method which makes use of a micro-level
simulation, and a set of input GPS data in order to simulate the move-
ment of vehicle. By simulating several journeys along the same route and
according to the principles of Monte Carlo sampling, the method generates
a distribution over the predicted travel time. Hu et al. (2009) [97] applied
two algorithms, the flow based and the vehicle based models, for travel time
prediction based on the concept of simulation assignment models.

Most of the models and techniques discussed above are mainly applied
for passenger cars or similar types of vehicles which are differ from container
trucks as: firstly, the problem concerned in this work is regarding with short-
haul transportation and the travel distance for a truck may not comparable
with the road distance for a passenger car studied before. Secondly, road and
traffic condition of ports is different from urban main road or freeway studied
in previous research. In this research, we specifically study computational
intelligent models and techniques for the prediction of container truck travel
time. The outcomes of this research can be used to produce high quality
robust container truck transportation schedules.

Most literature has been focused on developing forecasting techniques
for urban main road or freeway, however, literature on prediction for real-
world container truck (drayage operations) travel time has been somewhat

limited. In this chapter, a real world short-haul travel time prediction model
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is presented. Fleet GPS data used in this work were obtained from Ningbo
Port Co., Ltd. The processes of data preparation, variable/model selection
and data generation are illustrated. The impact of festival, time of day and
rainfall variables for the predictive model is evaluated. The forecast perfor-
mances by an autoregressive integrated moving average (ARIMA) method,
a neural network (NN) approach and a support vector machine (SVM) mod-
el were also compared. The results indicate that for the traffic data under

drayage operation scenario, ARIMA model consistently performs best.

5.3 Data Preparation

The fleet GPS data contain information of trucks’ license plate, time infor-
mation, location, speed and direction. The ports’” GPS location data record
maximum and minimum of longitude and latitude (shown as the shaded
squares in Figure 5.1) of each port. The travel time is calculated by the dif-
ference between the last timestamp when a truck leaves the source port and
the first timestamp when the truck enters into the destination port. Fig-
ure 5.1 shows truck movement trajectories from port BLCT2 to BLCTMS.
Timestamps at the points in ‘truck figure’ in Figure 5.1 were recorded.
Two problems were encountered when processing the data: Firstly, in
some rare occasions, the positions reported by trucks are not accurate and
their GPS location contains errors more than 30 to 50 meters. It is not a
significant problem if the errors occur during transportation but it would

lead to wrong calculation of travel time if the errors occur at ports’ area.
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Figure 5.1: Truck transport from port BLCT2 to BLCTMS.

The second problem is regarding with ports’ location area which is a rect-
angle with 200-250 meters length and 150-200 meters width. This area is
comparatively small when a truck travel in high speed passing through the
area, as the GPS device installed on truck reports in every 30 seconds so
that it may move out the area without leaving any footprint there when
a truck goes through this area at relatively high speed. The solutions we
adopted for dealing with those problems are to enlarge ports’ area and re-
place original ports’ area to its’ most frequently visited area such as main
road or conjunctions near by them.

After obtaining travel time between different ports based on the method
described above, large and unacceptable standard deviations for the travel
times between ports were observed. Therefore, the reasons are analysed
by selecting and plotting representative trucks’ trajectories, which indicate
travel time abnormally long or short. By analysing trucks’ trajectories, the
following possible reasons were found: Firstly, official or personal business

disturbs drivers and prevents them going directly from one port directly to
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another port. Secondly, drivers occasionally run into traffic problems such
as traffic congestion. Thirdly, drivers choose different routes which could
lead to very different travel times.

To filter out noise, drivers’ experience, civilian navigation system and
experience gained from analysing representative trucks’ trajectories were
adopted in this study. The estimation by the drivers experience provided a
rough time to complete a task. This value is denoted as D;. An upper bound
E; = 1.3*D, is set based on our experience and discussions with the staff and
drivers from Ningbo Port Co., Ltd. Travel time smaller than F; is considered
as guidance value. The civilian navigation system adopted in this work is
AutoNavi, which provides digital map content and navigation solutions in
China. AutoNavi gives us another reference of cost in travel time between
ports. By comparing the reference values with the travel time obtained
by our method, a 10-20% smaller reference value is always observed. This
may be because civilian navigation system is designed for family cars that
usually travel faster than container truck. For example, Figure 5.2 and 5.3
show the distribution of travel time from BLCT to BLCT2 and BLCT3
respectively, X axis in the figure indicates travel time in minutes while Y
axis indicates its probability density function. The travel time suggested by
civilian navigation system between BLCT to BLCT2 and BLCT to BLCT3
are 6 and 39 minutes respectively but the travel time obtained by us shown
in figures are around 8 and 43 minutes respectively.

The container transshipment between the nine nodes are unbalanced.

For example, thousands of transportation records from port BLCT to BLCT?2
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were obtained but from ZHCT to BLCT2 there are only few records (e.g. 5-
20). In order to maintain the quality of data, transportation between ports
with less than 200 records is not considered in this study. Consequently,
the transportation between ports in pairs considered by us for prediction

are given in Table 5.1.
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Figure 5.2: Distribution of travel time from BLCT to BLCT2.
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Figure 5.3: Distribution of travel time from BLCT to BLCTS3.
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Table 5.1: Names of journey for prediction.

Instance | Source | Destination
1 BLCT BLCT2
2 BLCT BLCT3
3 BLCT BLCTMS
4 BLCT BLCTZS
5 BLCT2 BLCT3
6 BLCT?2 BLCTMS
7 BLCT2 BLCTZS
8 BLCT3 BLCTMS
9 BLCT3 BLCTZS
10 BLCTZS | BLCTMS

5.4 Data Analysis

According to previous travel time prediction studies [213] and [125], precip-
itation, time of day and day of week are important variables for formulating
predictive model. Besides, we also would like to investigate how festivals
affect travel times between port transportation. Because the size of data (3
weeks) is limited, the day of week variable is not considered in this work.
Therefore, in this section, the impact of festival, time of day and rainfall
variable are investigated and the qualified variables were also chosen for this

travel time prediction work.

5.4.1 Impact of festivals

Data in this work was obtained from 25th April to 15th May, during this
period, a traditional holiday on May 1st- the International Labour Day was
considered to be a factor for affecting the travel time between ports. Al-
though most employees were having holiday from 1st to 3rd of May, workers
in ports are supposed to stay at work due to the particularity of their work,

thus the holiday will not affect the operation of the truck fleet. In order to
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evaluate impact of this holiday on travel time, the travel time in holiday

against its normal time counterpart is presented.
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Travel time

Figure 5.4: Festival vs. normal-mean travel time.

Figure 5.4 shows the comparison of travel time in festival and normal
time of each port. X axis represents names of ports in pairs and Y axis
shows mean value of corresponding travel time in minutes. In this figure,
part of records show more travel time was taken during the festival (e.g.
BLCT to BLCTMS and BLCTZS to BLCTMS) while others took less travel
time during the festival (e.g. BLCT to BLCT3, BLCT to BLCTZS and
BLCT2 to BLCT3). Therefore, it is not conclusive whether the festival of
the International Labour Day has significant effects on travel time. A two-
tailed t-test was conducted between the two groups of data. P-value of this
test is 0.861 (>0.05), for this reason, the impact of festival is not considered
in the final prediction model. Further studies will be conducted once more

data is obtained.
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5.4.2 Impact of time of day

By considering commuters’ travelling behaviour in Ningbo, a time period
of 6am to 8am, 1lam to 1pm and 4pm to 6pm were chosen as traffic peak
time. Figure 5.5 shows mean value of travel time between ports in peak
and off-peak period. Port names are plotted in horizontal axis as pairs
while mean travel time in minutes are presented in vertical axis. It can be
seen from Figure 5.5 that the mean travel time in peak time of all selected
ports outweighs that of its off-peak counterpart. A two-tailed t-test was
conducted between the two groups of data. P-value of this test is 0.004
(<0.05), therefore a conclusion can be drawn that the peak time would
slow down travel time. After this, the impact of different times of each day
on travel time is also investigated and it shows the travel times fluctuate
over 24 hours each day. For example, Figure 5.6 and Figure 5.7 show how
travel time between BLCT to BLCT3 and BLCT to BLCTZS varies in
different times of day. For each figure, the X axis indicates time of day
in 24 hours and Y axis shows mean value of corresponding travel time in
minutes. It can be seen clearly that increasing travel time patterns appear
in peak time from these two figures. For the fact that different times of day
do have effects on travel time, time of day is considered as a variable for

the prediction model.

5.4.3 Impact of rainfall

In this study, rainfall data was obtained from ACL (air resource laboratory)

which is a research laboratory of NOAA’s Office of Oceanic and Atmospheric
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Figure 5.5: Peak vs. off peak-mean travel time.
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Figure 5.6: Travel time from BLCT to BLCTS3.

Research with interval of three hours. The rainfall data and travel time data
were firstly combined into one dataset and we then compared travel time
between ports with rainfall against no rainfall situations. Figure 5.8 shows
the comparison of travel time with and without rainfall between selected
ports. X axis represents port names as pairs and Y axis shows mean
corresponding travel time in minutes. In this figure, travel times between

some ports are higher in the rainfall (e.g. BLCT to BLCT3 and BLCTZS
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Figure 5.7: Travel time from BLCT to BLCTZS.

to BLCTMS) while travel times of others are lower in rainfall (e.g. BLCT2
to BLCT3, BLCT to BLCTZS). A two-tailed t-test was conducted between
the two groups of data. P-value of this test is 0.975 (>0.05), thus, rainfall
is not considered in the prediction model since it doesn’t have significant

effects on travel time.
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Figure 5.8: Rainfall vs. no rainfall-mean travel time.

After the evaluation of the impact of festival, time of day, and rainfall
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variables on travel time, we draw an initial conclusion (which is limited by
the size of the data available) that festival and rainfall do not have significant
impact on the investigated travel time and they are not considered in our
prediction model. Time of day variable is adopted as prediction variable
due to its impact on travel time. This conclusion differs from previous
research [125] [65] and [215], and the reasons may lie in: Firstly, the problem
concerned in this work is regarding short-haul transportation, and the travel
distance for a truck may not be comparable with the road distance studied
before. Secondly, road and traffic condition of ports are different from urban

main road or freeway studied in previous research.

5.5 Travel Time Forecasting

In this section, a time series data transformation approach is introduced
and a method for travel time prediction is developed. In particular, we
focus on the (autoregressive integrated moving-average) ARIMA. We take
travel time estimation from BLCT to BLCT2 as an example for illustrating

the solution procedures.

5.5.1 Data transformation

As mentioned in Section 5.4.2 the different times of day do have effects
on travel time. The data we obtained are recorded over time and can be
considered time series data. Also, the demand of container transportation

between different docks vary in time. For example, the records of travel
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time from port BLCT to BLCT2 have 50 observations from 12pm to 1pm, 40
observations from lam to 2am, and 220 observations from 3pm to 4pm. This
means the data are not continuous with equal periods, therefore, further
transformation of the raw data has to be conducted. The original travel
time data are transferred into time series data by copying the neighbouring
value and the previous period’s value of the missing data. Missing values’
neighbours or mean value A; are used to fill the data when there is no
observation in time i and A; is calculated in Eq. (5.1). Please note that
A;_; indicates the mean value of travel time one hour ahead of time ¢ and
A;y1 indicates the mean value of travel time one hour after time i. A; is
dependent on its neighbours’s value if there is no observation at time i,

or its value in previous periods if there exist observations at time i. The

notations are listed in Table 5.2.

Table 5.2: Notations used in the method description.

d | Total number of days, d € N*

i Time of Day, i € {1,2,3...,24}

j | The index of day, j < d

Ti; | Travel time in time ¢ of day j

A; | Average travel time of time i.

d
B STy >0
A; = (5.1)

deha ¥ T, =0
Transformation of data would inevitably bring biases. The proposed data
transformation method is able to keep the original shape of data and avoid
introducing significant biases. Take the travel time from BLCT to BLCT?2 as

an example, the statistics of original and transformed data is given in Table
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5.3 which indicate that the minimum and maximum value stay unchanged
and no significant difference between 1st quartile, median, mean of original
and transformed data. The transformed data are more smooth than original

data as the standard deviation reduced from 1.25 to 0.83.

Table 5.3: Original VS. transformed data (BLCT to BLCT?2).

Min. 1st Qu. Median Mean 3rd Qu. Max. S.d.
Original  3.00 4.50 5.9 5.54 6.00 19.02 1.25
Transformed  3.00 5.05 5.48 5.54 594  19.02 0.83

5.5.2 Travel time prediction by ARIMA

Time series models come in three kinds: moving average (MA) models,
autoregressive (AR) models and autoregressive moving average (ARMA)
models. The method studied in this thesis is built upon (autoregressive in-
tegrated moving-average) ARIMA due to the non-stationary (e.g. BLCT2
to BLCTZS time series, see the next paragraph) and stationary property
(e.g. BLCT to BLCT?2 time series) of the data obtained. As its name
interpreted, ARIMA (p,d,q) model is a combination of three terms, an au-
toregressive term (p), a moving-average term (d) and an integrating term
(¢q) [4]. ARIMA(p,d,q) can be transformed into an ARMA((p,q) by differenc-
ing its (d). ARIMA was originally developed for applications in the fields of
business, industry, and economics and have been later applied to time series
applications. There have been numerous attempts to use ARIMA model for
short-term traffic flow forecasting [214].

The time series data has to be stationary before it can be fitted into

ARIMA model directly. Otherwise, we have to adjust it by differencing its
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(d) which is able to convert non-stationary time series to stationary time
series as long as (d) is rightly identified. Time series plot is the most basic
approach to help us determine whether the data are stationary. Another
strategy is by calculating the autocorrelation function (ACF) as well as
partial autocorrelation function (PACF) and checking if the lags die out
quickly. ACF and PACF provide a useful measure of the dependence degree
of a time series at different times. The ACF and PACF of BLCT to BLCT2
are presented in Figure 5.9 which shows the correlation at lag 0 is close to 1
and the lags die out quickly, so we can conclude this time series is stationary.
To confirm with this result, the augmented Dickey-Fuller (ADF) test is also
conducted: the resulted P-value equals to 0.01, which suggests that the
data is stationary. In this study, the time series between some ports are
non-stationary, in which case, stationary series normally can be obtained

by differencing its (d) 1-2 times.
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Figure 5.9: ACF and PACF of BLCT to BLCT2 time series.
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5.5.3 Modeling and model validation

Generally, there are two groups of algorithms that can be used for estimating
model parameters: the preliminary estimation (e.g. Yule-Walker Estima-
tion and Burg’s algorithms) and maximum likelihood estimation. Maximum
likelihood estimation libraries provided by R toolkit was used to obtain es-
timates of the model. After desired time series data are generated by the
method described in Section 5.5.2, the time series data are split into a train-
ing set which accounts for 2/3 of total records and test set which accounts
for the rest 1/3 of total records. Again, we take travel time estimation from
BLCT to BLCT? for illustration and found that ARIMA(2,0,2) model with
AR coefficients of (0.5306,-0.9851) and MA coefficients of (-0.5314, 0.9994)
seems to generate the best results for road section from BLCT to BLCT2.
21 days of predicted traffic time vs. real traffic time from port BLCT to
BLCT2 is shown in Figure 5.11. This figure is an example of how predicted
values fit the real value using ARIMA (2,0,2). The residuals analysis was
conducted to verify the ARIMA(2,0,2) model for road section from BLCT
to BLCT2. Figure 5.10 shows the residuals are random and close to zero
and roughly lie within the bounds from -3 to 3, indicating that overall the
residual time series approximate a zero mean white noise behaviour. Thus
we believe the proposed data transformation and ARIMA model is capable
of forecasting travel time scenarios studied in this thesis. Model accuracy
analysis was conducted and measured by MARE (mean absolute relative

error) and all the results measured by MARE are listed in Table 5.6.
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Time plot of the residual time series (BLCT to BLCT2)
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Figure 5.10: BLCT to BLCT2 model residuals.
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Figure 5.11: Predicted vs. real travel time from BLCT to BLCT2.
5.6 Comparisons with Other Forecasting Meth-

ods

There are different techniques explored for predicting traffic variables such
as time series analysis, artificial neural networks (ANN) and more recently
support vector machines (SVM). However, the studies reported the per-
formance of these predicting techniques are varying due to using different
traffic data. Indeed, the traffic conditions of different areas vary from one

to another. Hence, there is a need to explore the use of ANN and SVM
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for predicting traffic time under drayage operation scenario studied in this

thesis.

5.6.1 Back