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ABSTRACT 

 

OZONE FUMIGATION EFFECTS ON BACTERIAL AND ANTHRACNOSE 

DEVELOPMENT ON BELL PEPPER (Capsicum annuum L.) AND ITS EFFECT ON 

FRUIT QUALITY 

  

 Bacterial contamination and anthracnose development on bell pepper pose a 

threat to food safety and food security. Bacteria contamination by pathogenic species 

can be a fatal outbreak and risking worldwide population. Meanwhile, anthracnose 

development on bell pepper can contribute to substantial product loses which will 

substantially affect world economy and food availability. Current postharvest treatment 

such as the use of chlorine and fungicide poses harmful effects on human and 

environment due to the production of carcinogenic by-products. This leads to urgency to 

develop a safe postharvest treatment which leads to the objective of this study to 

develop a new postharvest treatment; ozone fumigation which has high potential to 

reduce bacterial contamination and anthracnose development on bell pepper. Ozone 

fumigation treatment is safe to human and environment and very practical. This 

technology is promising hence, worth to study.  

This study investigated the effect of ozone fumigation on 1) growth of Escherichia 

coli O157, Salmonella enterica sv. Typhimurium and Listeria monocytogenes; selected 

pathogens that contributed to food poisoning in fruit 2) development of anthracnose 

disease on bell pepper caused by Colletotrichum capsici 3) activity of defense related 

enzymes 4) antioxidant capacity of bell pepper 5) physico-chemical, physiology and 
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sensory qualities of bell pepper. Antibacterial studies was conducted on fresh cut bell 

pepper with treatments of 0, 1, 3, 5, 7 and 9 ppm ozone for 0.5, 3, 6 and 24 h at 18 - 

20˚C, 95% RH. The results showed that ozone reduced growth of E. coli O157, 

Salmonella Typhimurium and L. monocytogenes populations where optimal dosage was 

9 ppm ozone for 6 h. This ozone dosage resulted in 2.89, 2.56 and 3.06 log reduction of 

E. coli O157, Salmonella Typhimurium and L. monocytogenes populations, respectively. 

Scanning electron micrograph showed that the bacterial population was inactivated by 

disrupting the cell structure which leads to cell lysis.  

 Ozone also reduced anthracnose development on bell pepper. Colletotrichum 

capsici, the causal agent of anthracnose on bell pepper was treated with 0, 1, 3, 5, 7 

and 9 ppm ozone for 24, 72 and 120 h. The results showed that exposure to 7 ppm 

ozone for 72 h had the highest inhibition in disease incidence (34.8%) and disease 

severity (41.2%). This inhibition was non-significantly different to fruit exposed to 3, 5 

and 9 ppm ozone for 72 h. The inhibition was due to effect of ozone on mycelia 

morphology where ozone inhibited mycelia development by inducing hyphae branching. 

Besides, the ozone dosage also significantly reduced spore production (31.6%) and 

spore germination (100%).  Increasing ozone dosage by prolonging the exposure to 120 

h induced fungal sporulation and had no significant effect on disease development.  

 Reduction in anthracnose disease development was correlated with activity of 

plant defense enzymes. Increase in activity of plant defense enzymes such as 

phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD) and 

β-1,3-glucanase was found to reduce variation in disease incidence on bell pepper. 

Optimal enzyme activity was observed from exposure to 3 ppm ozone for PAL, PPO 
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and β-1,3-glucanase and 3 and 5 ppm ozone for POD. This showed that ozone inhibit 

disease incidence on fruit by stimulating the activity of plant defense enzymes as well 

as reducing mycelia elongation, spore germination and spore production.  

Analysis on antioxidant content and antioxidant capacity of bell pepper showed 

ozone dosage of 3 ppm ozone for 72 h was the most effective dose to induce fruit 

ascorbic acid (26.6%) and total phenol content (15.2%) which reflect antioxidant 

capacity (15.3%) of bell pepper. Further increase in ozone concentration reduced fruit 

antioxidant content and its capacity. Analysis on fruit β-carotene content showed 

negative correlation with fruit antioxidant capacity hence, suggested that β-carotene 

may not be the major antioxidant in the bell pepper under study. 

 The increase in fruit antioxidants from exposure to 3 ppm ozone for 72 h reduced 

fruit oxidative status (malondialdehyde (MDA) content) and resulted in no oxidative 

damage. This maintained fruit ripening progress similar to control as indicated by fruit 

respiration, colour development, soluble solid concentration and titratable acidity. The 

ozone dosage also maintained fruit water content similar to control hence, maintaining 

its firmness during storage. Meanwhile, exposure to higher ozone dosage; 7 and 9 ppm 

ozone for 72 h; increased cell oxidative status which resulted in oxidative damage as 

observed in high MDA content and increase in membrane permeability. This enhanced 

ripening progress as indicated by progressive colour development, increase in soluble 

solid concentration and reduction in titratable acidity and firmness. This quality 

deterioration negatively affected fruit flavour hence, not preferred by the panellist.   

Thus, under current observation, this study showed exposure to 3 ppm ozone for 

72 h reduced populations of foodborne pathogen, decreased anthracnose development, 
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increased plant defense enzyme as well as enhanced its antioxidant capacity. It can be 

used as an alternative to chlorine and fungicide and eliminate the risk of producing 

harmful by-products. Ozone treatment is also very practical where it can be installed in 

truck or shipping container which allows the treatment to be carried out during transport. 

This reduces fruit handling time and labour cost.  
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CHAPTER 1  

 

INTRODUCTION 

 

Bell pepper is one of the important commercial vegetables and it is consumed for 

its high potential of health functionality. It has high antioxidant content such as ascorbic 

acid, carotenoids and phenolic compounds (Alvarez-Parrilla et al., 2010; Tan et al., 

2012). Consumption of bell pepper reduces the risk of degenerative diseases such as 

cancer, cardiovascular disease, cataract, diabetes and neurological disorder such as 

Alzheimer’s and Parkinson’s (Deepa et al., 2007; Sun et al., 2007). Bell pepper is 

extensively used as salad and condiment and its demand is growing due to its wider 

use in fast food industry (Castro et al., 2011). Besides, consumer motivation to 

consume high nutritive fruit and vegetable as healthy diet also increased bell pepper 

demand (Castro et al., 2011; Tan et al., 2012). This is coherent with its growing 

production where it reached 31 million tonnes, valued at USD 14 billion in 2012 

(FAOSTAT, 2014). This indicates the significant influence of bell pepper in agricultural 

industry. 

Bell pepper cases related to foodborne poisoning is increasing coherent with its 

growing demand. Contamination by pathogenic bacteria was reported on whole fruit 

(Larsen, 2013), fresh cut fruit (Clark, 2016) as well as frozen bell pepper (Grabowski, 

2016). Bacterial contamination on bell pepper has sickened 14 people in 2013 and has 

resulted in withdrawal of 30,200 pounds of fresh bell peppers (Larsen, 2013). 
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Contaminated fresh cut and frozen bell pepper were also withdrawn from markets 

(Grabowski, 2016). Without immediate detection and action taken to stop distribution of 

the contaminated products, these contaminations would cause fatal outbreaks which 

can result in miscarriages and deaths. As bell pepper is preferably consumed raw or 

fresh cut, fresh cut bell pepper has high risk of bacterial contamination which therefore 

poses a threat to food safety. Therefore, this requires an effective measure to control 

the contamination.  

Another major problem encountered by bell pepper is fungal disease 

development, particularly anthracnose.  The disease is caused by Colletotrichum 

species, being C. capsici is the most prevalent in Asia (Harp, 2008).  It infects immature 

bell pepper in field and remains latent (Edirisinghe et al., 2012).  Disease symptom of 

anthracnose appears during postharvest storage as the fruit ripen (Edirisinghe et al., 

2012). Therefore, early disease prevention is difficult to be implemented.  

Anthracnose development on bell pepper is currently controlled by application of 

fungicide such as Maneb (manganese ethylenebisdithiocarbamate) (Lewis Ivey et al., 

2004). It is however, had carcinogenic, mutagenic and teratogenic effects hence, has 

been banned in Korea and Russia (United Nations, 2005). Meanwhile, bacterial 

contamination on fruit is currently controlled by application of chlorinated water (López-

Gálvez et al., 2010). It is however, poses high risk of producing carcinogenic by-

products such as trihalomethanes (THMs)(Stauffer, 2004) (Gibbons and Laha, 1999). 

Therefore, development of safe and effective postharvest treatment to control both 

fungal disease and bacterial contamination is needed for a sustainable agriculture.  
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A novel approach to control bacterial and fungal growth on fruit is by the use of 

ozone. It is a triatomic oxygen molecule (O3) which can be commercially produced from 

the reaction of oxygen molecules (O2) with atomic oxygen (O) using corona discharge 

(Forney, 2003). It has high oxidizing capacity which is 1.5 times higher than chlorine 

(Forney, 2003). It has the potential to oxidize microbial cell membrane, proteins, DNA 

and other cell components due to its high affinity towards compounds containing oxygen 

(O), nitrogen (N), sulphur (S), phosphorus (P) and carbon-carbon (C-C) double bonds 

(Forney, 2003). This affects cell differentiation and energy production hence, leads to 

cell death. In comparison to fungicide and chlorine, ozone produces environmental 

friendly by-product which is oxygen molecules (Gabler et al., 2010). Its application has 

been approved by the U.S. Food and Drug Administration (FDA) in 2001 to be utilized 

during food treatment and food storage either in aqueous or gaseous form (Lake, 2001). 

Published studies have reported on the effect of ozone on several bacterial 

species such as Salmonella sp. (Selma et al., 2008b), Listeria innocua (Fan et al., 

2007), Staphylococcus aureus and Bacillus subtilis (Thanomsub et al., 2002). The 

reports showed that the effectiveness of ozone treatment is depending on bacterial 

species. Therefore, it is crucial to specifically study the effectiveness of ozone on 

selected pathogenic foodborne bacteria such as E. coli O157, Salmonella Typhimurium 

and L. monocytogenes. The insights help to establish a postharvest treatment to control 

bacterial contamination on bell pepper.  

Published studies have also reported on the effect of ozone on several fungal 

species such as Penicillium sp. (Palou et al., 2003), Botrytis cinerea (Ozkan et al., 

2011), Alternaria alternata (Tzortzakis et al., 2008) and Aspergillus sp. (Antony-Babu 
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and Singleton, 2009). Antifungal effect of ozone was also reported on Colletotrichum 

sp., the anthracnose causal agent, including Colletotrichum acutatum (Yun et al., 2006) 

Colletotrichum gloeosporioides (Barbosa-Martinez et al., 2002) and Colletotrichum 

lindemuthianum (Treshow et al., 1969). These reports showed different effectiveness of 

ozone where it is largely influenced by the fungal species and the fungal response 

toward oxidative stress of ozone. To our knowledge, there has no report on the effect of 

ozone on C. capsici, the main causal agent of anthracnose in bell pepper. Therefore, 

there is a need to study the effect of ozone on the fungal species considering its large 

influence on postharvest loss of bell pepper. (J. Chen et al., 2016) 

Ozone also has the potential to elicit plant defense enzymes such as PAL, PPO, 

POD and β-1,3-glucanase. Published studies showed ozone induced activity of PAL in 

bell pepper (Chen et al., 2016), PPO in hot pepper (Sachadyn-Król et al., 2016), POD in 

pear (Zhao et al., 2013b) and β-1,3-glucanase in tobacco (Ernst et al., 1992). The 

response towards ozone however, varies depending on the fruit species and ozone 

dosage. Exposure to inappropriate ozone dosage may reduce the activity of these 

enzymes hence, weaken plant defense against disease. For example, Chen et al. 

(2016) reported that exposure to high ozone dosage, 6420 ppm ozone for 15 min, 

reduced PPO activity in bell pepper. This suggests each commodity has to be applied 

with an appropriate ozone dosage. Therefore, the response of bell pepper towards 

ozone has to be investigated. (Z. Zhao et al., 2013b) 

Ozone also has the potential to enhance fruit phytochemical content and 

antioxidant capacity. The effects of ozone on fruit phytochemical content such as 

phenolic compounds, ascorbic acid and β-carotene has been studied on kiwi (Minas et 
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al., 2010), tomato (Rodoni et al., 2010), guava and pineapple (Alothman et al., 2010). 

The studies reported that the fruit showed variation in response where ozone can be 

stimulating or reducing fruit phytochemical content (Alothman et al., 2010; Rodoni et al., 

2010; Minas et al., 2010). The response largely depended on fruit commodity and 

ozone dosage. To our knowledge, there are limited studies on the effect of ozone on 

phytochemical content of bell pepper. Therefore, it is crucial to investigate the effect of 

ozone on phytochemical content and antioxidant capacity of bell pepper. This will give 

insights on the fruit response towards ozone exposure and its potential to enhance 

phytochemical content in bell pepper.  

Considering the potential of ozone to reduce bacterial growth and fungal 

development as well as its potential to stimulate fruit phytochemical content, it is a 

positive approach to study the effect of ozone on bacterial contamination, anthracnose 

development and phytochemical content of bell pepper. This would investigate its 

potential to reduce microbial development on fruit and the fruit response towards ozone 

in terms of phytochemical content, physical and chemical qualities. The outcome from 

this study would give insights on the potential of ozone treatment to reduce disease 

development and maintain quality of bell pepper during storage. This will provide a 

potential alternative to the farmers to use a safe and sustainable postharvest treatment 

to replace chlorine and fungicides. This leads to the objectives of this study:  

� to determine the effect of ozone on pathogenic foodborne bacteria, E. coli O157, 

Salmonella Typhimurium and L. monocytogenes on fresh cut bell pepper 

� to investigate the effect of ozone on C. capsici and anthracnose development on 

bell pepper 
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� to study the effect of ozone on plant defense enzymes such as PAL, PPO, POD 

and β-1,3-glucanase 

� to evaluate the effect of ozone on antioxidant content of bell pepper such as 

ascorbic acid, phenolic compounds and β-carotene   

� to investigate the effect of ozone on physical, biochemical and physiological 

quality of bell pepper 
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CHAPTER 2  

 

REVIEW OF LITERATURE 

 

2.1 Overview of bell pepper 

 

2.1.1 Taxonomy of Capsicum genera 

 

 In 1700, a French botanist, Joseph Pitton de Tournefort described pepper 

species and named the genus as Capsicum. Capsicum which derived from Latin words 

of ‘capsa’ means satchel (Bosland and Votava, 2000). Capsicum genus belongs to 

Solanaceae family, a flowering plant which also comprises of other economically 

important crops such as potatoes, tomatoes and tobacco (Figure 2.1).  

Modern science described Capsicum genus as flowering plants with three or 

more pedicles, smooth or toothed calyx margin, non-pulpy fruit and have pungency 

characteristic of capsaicin components (Andrews, 1995). It is categorized into five 

domesticated species which are purple flowered species; pubescens and white flowered 

species; annuum, chinense, baccatum and frutescens (Andrews, 1995) (Figure 2.2). In 

exception for bell pepper, a single mutation in capsaicin gene losses its ability to 

produce capsaicin compounds which have pungency characteristic (Bosland and 

Votava, 2000). This therefore, contributes to the ‘sweet’ flavour of bell pepper.  
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Kingdom : Plantae 

Division : Angiospermae 

Class : Dicotyledonese 

Subclass : Metachlamydeae 

Order : Tubiflorae 

Family : Solanaceae 

Tribe : Solaneae 

Subtribe : Solaninae 

Genus : Capsicum 

Species : pubescens / annuum / chinense / baccatum / frutescens 

Figure 2.1: Taxonomy of Capsicum genera (Adapted from: Andrews, 1995) 

 

C. annuum is unique compared to other species by the presence of 2 pairs of 

acrocentric chromosomes in their DNA structure unlike other Capsicum species with 1 

pair of acrocentric chromosome (Andrews, 1995). C. annuum can be divided into two 

major groups; 1) the pungent species such as jalapeno, cayenne and serrano peppers 

2) the non-pungent or sweet species such as bell, Cuban and pimiento peppers 

(Bosland and Votava, 2000) (Figure 2.3).  

Bell group of C. annuum has a characteristic of rectangular pod. It has the largest 

number of cultivar such as ‘California wonder’, ‘Waki’, ‘Walter’, ‘Zamboni’, ‘Robusta’, 

‘Camelot’ and ‘King Arthur’(Bosland and Votava, 2000; Fox et al., 2005; Villavicencio et 

al., 1999) . It can be found in various of colours including green, purple, yellow and  
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      Capsicum annuum          Capsicum chinense 

  

         Capsicum baccatum          Capsicum frutescens 

 

Capsicum pubescens 

Figure 2.2: Five domesticated species of Capsicum genera (McMullen and Livsey, 
2012) 

 

white which ripen to red, orange, green and brown, depending on cultivar (Bosland and 

Votava, 2000). It has sweet or non-pungent taste and valued for its bright colour, flavour 

and phytochemical content (Fox et al., 2005).  
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Pungent Capsicum annuum 

   

              Cayenne                                  Jalapeno        Serrano  
 

Non-pungent Capsicum annuum 

   

      Bell    Cuban       Pimiento 

Figure 2.3: Pungent and non-pungent group of C. annuum (Hultquist and Hultquist, 
2011) 

 

2.1.2 Physiology of bell pepper 

 

C. annuum varies in terms of their physiology. It can either be climacteric or non- 

climacteric, depending on the cultivar. For example, C. annuum species of chili 
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 (cv. Chooraehong) has climacteric physiology where it shows a dramatic increase in 

respiration rate (Gross et al., 1986). On the other hand, chili (cv. Changjiao) has non-

climacteric physiology with no climacteric increase in respiration pattern and it does not 

respond to ethylene application (Lu et al., 1990).  

Variation in C. annuum physiology is also observed in bell pepper. For instance, 

bell pepper (cv. Yolo Wonder) has non-climacteric pattern in both respiration and 

ethylene production (Villavicencio et al., 1999) while bell pepper (cv. Maor) displays no 

climacteric pattern in respiration but climacteric pattern in ethylene production (Lurie, 

1986). Furthermore, some cultivars displayed climacteric peak at mature green stage 

while other cultivars has the climacteric peak as ripened. Therefore, it is difficult to 

clearly classify the physiology pattern of bell pepper.  

Bell pepper undergo changes in colour during ripening which turn from green to 

variety of colours such as red, orange and yellow, depending on cultivar (Figure 2.4). 

Bell pepper are commonly harvested at physiologically mature green stage when the 

fruit pod reaches typical size with thick pericarp wall and will not significantly increase in 

size if left to ripe on plant (Fox et al., 2005). Fruit harvested at physiologically mature 

stage only undergo slight changes in colour after harvest, producing fruit with chocolate 

or partially colour fruit (Fox et al., 2005). Full colour fruit are obtained when left to ripe 

on plant and have sweeter taste, improved aroma and higher nutritional attributes. 

However, harvesting fruit at ripe stage would add extra cost to farmers due to extended 

ripening time and risk of damage from disease or insect (Fox et al., 2005). Besides, ripe 

fruit also has shorter shelf life and more susceptible to physical injury than green fruit  
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Figure 2.4: Ripeness stage of bell pepper (Source; Cantwell, 1996) 

 

(Fox et al., 2005). Therefore, bell pepper is commonly harvested at physiologically 

mature green stage (stage 1 – Figure 2.4). 

 

2.1.3 Pepper production and consumption  

 

Pepper is mostly produced in Asia, primarily in China which accounted for 52% of 

world total production (Figure 2.5). This is followed by Mexico, Turkey and Indonesia. 

Pepper production has positive growth every year where it increased from 10 million 
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Figure 2.5: Production share of peppers by region (Source: FAOSTAT, 2014) 

 

tonnes, valued at USD 5 billion in 1990 to 31 million tonnes, valued at USD 14 billion in 

2012 (Figure 2.6) (FAOSTAT, 2014). This shows the increasing demand of pepper 

throughout the years which possibly due to increase use of chillies and peppers in fast 

food industry and as a replacement for artificial flavour. Besides, it is also due to 

awareness for a healthy diet by consuming pepper as a source of vitamin C.  

Trading pattern of peppers is also increasing since year 1990 to 2011 (Figure 

2.7) being Mexico is the largest exporter with 699,000 tonnes in 2011 and United States 

is the largest importer with 779,000 tonnes. Meanwhile, India was reported to has the 

highest consumption pattern followed by Bangladesh, United States and China (TIPS 

and AusAID, 2005).  
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Figure 2.6:  World total production and net production value of peppers (Source: 
FAOSTAT, 2014) 

 

Malaysia is also a producer of peppers. Its production is however, relatively small 

compared to its neighbours, China and Indonesia. The highest production of peppers in 

Malaysia was reported in 2009 with production of 35,000 tonnes. The production 

decreased to 28,000 tonnes in 2011 and increased to 29,000 tonnes in 2012. Export of 

peppers from Malaysia started in 2008 with 7,800 tonnes and increased to 9,000 tonnes 

in 2012. Meanwhile, Malaysia imported 42,000 tonnes of peppers in 2008 and 40,000 

tonnes in 2012 to support its high consumption pattern which has the highest annual 

growth in consumption after United States (TIPS and AusAID, 2005). This shows 

Malaysia has a large market for peppers and it would be a valuable sector for 

agricultural industry to invest. Apart from fulfilling the local demand, this would enhance 

its export potential hence can be a source of income for the country.  
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Figure 2.7: World import and export quantity of peppers (Source: FAOSTAT, 2014) 

 

 

2.1.4 Nutritive quality of bell pepper 

 

Bell pepper is extensively consumed for its high antioxidant content. It contains 

high level of antioxidant such as vitamin A and C as well as other vitamins including 

vitamin B1 (thiamine), B2 (riboflavin), B3 (niacin) and K (Table 2.1) (Bosland and Votava, 

2000). In comparison to other vitamin C-rich fruit, bell pepper provides up to six times 

more vitamin C compared to orange (Bosland and Votava, 2000). Besides, serving of a 

medium size bell pepper provides 180% of Vitamin C recommended daily allowance 

(RDA) (Bosland and Votava, 2000). Bell pepper is also a good source of vitamin A 

where daily requirement of vitamin A can be obtained from half tablespoon of red  
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Table 2.1: Nutritional constituents in 1.9 kg of green bell pepper (Bosland and Votava, 
2000) 

Nutritional constituents Quantity  Nutritional constituents Quantity 

Water (%) 93  Na (mg) 3.0 

Energy (kcal) 25  Vitamin K (mg) 195 

Protein (g) 0.9  Vitamin A (IU) 530 

Fat (g) 0.0  Vitamin B6 (mg) 0.16 

Carbohydrate (g) 5.3  Vitamin B1 (mg) 0.09 

Fibre (g) 1.2  Vitamin B2 (mg) 0.05 

Ca (mg) 6.0  Vitamin B3 (mg) 0.55 

P (mg) 22.0  Vitamin C (mg) 128 

Fe (mg) 1.33    

 

 

pepper (Bosland and Votava, 2000). In addition to the antioxidant content, bell pepper 

also provides carbohydrates, fibre, potassium, iron and calcium (Bosland and Votava, 

2000).  

Bell pepper is used in culinary for its bright colour as well as to enhance food 

flavour (Sun et al., 2007; Tan et al., 2012). However, its application in cooking reduced 

its Vitamin C content by 30% (Bosland and Votava, 2000). Meanwhile, for dried bell 

pepper, it may loss all of its phytochemical contents (Bosland and Votava, 2000). 

Therefore, it is best to be consumed raw. Concurrently with the awareness to consume 



 

39 
 

 

fresh and minimally processed fruit and vegetables, consumption pattern of bell pepper 

increased and commonly consumed salad (Wright, 2002). This allows the consumers to 

obtain optimal antioxidant benefit from bell pepper.  

Consumption of bell pepper helps to reduce the risk of various degenerative 

diseases such as cancer, cataract, cardiovascular, diabetes, Alzheimer’s and 

Parkinson’s (Deepa et al., 2007). This is due to its high antioxidant content which 

potentially detoxifies harmful oxidative compounds in the body (Tan et al., 2012). 

Therefore, dietary with bell pepper is a natural measure to prevent the degenerative 

diseases.  
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2.2 Bell pepper postharvest issues 

 

2.2.1 Bacterial contamination 

 

Bacterial contamination on fruit has been an issue for more than a century. The 

contamination source could be faeces from wild and domestic animals which 

contaminated irrigation water or unhygienic cultivation area (Yuk et al., 2006). 

Pathogenic bacteria in improperly processed manure could also contribute to 

contamination during preharvest stage. An example of bacterial contamination at 

preharvest stage was reported by Ganeshan and Neetoo (2015) where 37% of the 

harvested bell pepper was contaminated with Salmonella sp.  At postharvest stage, 

contamination could occur from unhygienic handling procedures and improper storage 

area. Fruit flies could be a vector in transmitting the pathogenic bacteria at both pre- 

and postharvest stage (Heaton and Jones, 2008). Leon-Felix et al (2010) reported that 

15% of packed bell pepper were contaminated with fecal coliforms. This shows bacterial 

contamination could occur at every stage; from cultivation until storage stage; hence a 

proper treatment is required to disrupt the contamination pathway before the produce 

reaches consumer. (Ganeshan and Neetoo, 2015) 

Bacterial contamination was reported in whole, fresh cut and frozen fruit. Irregular 

fruit surface such as carrot and cantaloupe can harbor bacterial growth hence 

escalating the risk of food poisoning (Stine et al., 2005). Fruit with smooth surface such 

as bell pepper and tomato could also contribute to food poisoning as certain bacterial 

species such as Salmonella sp. is capable to attach to the fruit surface (Fernandes et 
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al., 2014). In addition, the presence of wounds, crevices and cracks on fruit surface, 

allows bacterial cells to multiply inside fruit tissues hence escalating the risk of food 

poisoning (Selma et al., 2007). Fresh cut fruit posed higher risk of food poisoning as the 

porous fruit tissues has high tendency to harbour bacteria and presence of fruit juices 

would promote bacterial growth. Contamination on cut fruit could be from cross-

contamination during cutting process and handling and storage procedures (Selma et 

al., 2008a). A major bacterial contamination on cut fruit was reported recently where 

30,000 cases of fresh cut products including bell pepper was withdrawn from market 

due to contamination by Listeria sp. (Staff, 2016). This had substantial negative 

economic impact on farmers, wholesalers, retailers and posed a significant threat to 

consumers. (León-Félix et al., 2010) 

 

2.2.2 Fungal disease 

 

Fungal disease is a major problem affecting bell pepper and can result in 

massive postharvest loss. The main fungal disease affecting bell pepper is anthracnose, 

which is caused by Colletotrichum sp. including C. capsici (Syd.) Butl. & Bisby, C. 

gloeosporioides (Penz) Sacc. C. coccodes (Wallr.) and C. acutatum Simmonds (Tomás-

Callejas et al., 2012), being C. capsici is the most prevalent in Asia (Harp, 2008).  

Anthracnose is acquired from source of inoculum such as fungal spores on plant debris 

and infested seed (Elizaquível et al., 2012). The fungal pathogenesis is initiated by 

germ tube and apressoria formation which penetrates fruit tissues and allows hyphae 

development. The hyphae then secrets thermostable toxin that further degrades the fruit 
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tissues and contributes to its symptoms; circular, sunken and water soaked lesions 

(Figure 2.8) (Chanchaichaovivat et al., 2007; Phoulivong, 2011) . The lesion then 

expands throughout the fruit producing soft lesions with dark colour (Phoulivong, 2011). 

Fungal acervuli then develops on the lesion and produces mass of black conidia 

(Chanchaichaovivat et al., 2007). As the disease symptoms only develop during 

ripening stage, particularly during postharvest storage period, the disease development 

is difficult to control.   

 

 

Figure 2.8: Anthracnose symptom on bell pepper (Source: Ontario Ministry of 
Agriculture Food and Rural Affairs, 2009) 

 

Prevalence of anthracnose on bell pepper has caused massive loss to its 

production. In Unites States, anthracnose was reported to be contributing agent for 

production loss in bell pepper where it was reported in several states including Ohio and 
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Florida (Lewis Ivey et al., 2004). Anthracnose was also reported in Trinidad, Brazil and 

was claimed to contribute to 50% product loss (Ramdial and Rampersad, 2015). 

Meanwhile, bell pepper in Japan was also infected by anthracnose and it involved multi-

prefectures including Shimane, Hyogo, Chiba, Toyama, and Nagano (Kanto et al., 

2014). The prevalence of bell pepper worldwide is increasing hence, an effective 

postharvest treatment is required to reduce the postharvest loss.  
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2.3 Current postharvest technology  

 

2.3.1 Application of chlorine  

 

Bacterial contamination on fruit is commonly controlled by the use of chlorine, in 

the form of sodium hypochlorite (NaClO) (López-Gálvez et al., 2010). Chlorine 

inactivates bacterial cells by the action of hypochlorous acid (HOCl) which disrupts 

bacterial cellular processes such as nucleic acid activity, molecule transport system and 

respiration (Gibbons and Laha, 1999). Chlorine also inactivates viruses by disrupting 

virus’ protein coats (Gibbons and Laha, 1999). 

Chlorinated water of sodium hypochlorite is used at concentration of 100 ppm to 

sanitize fresh cut fruit (An et al., 2007). The solution has limited efficacy and increase in 

its concentration to improve effectiveness is limited by regulation (An et al., 2007). 

Besides, sodium hypochlorite also produces carcinogenic by-products such as 

trihalomethanes (THMs) which includes trichloromethane (CHCl3), tribromomethane 

(CHBr3), bromodichloromethane (CHCl2Br) and dibromochloromethane (CHClBr2) 

(Stauffer, 2004).  These by-products are produced from chemical reaction of chlorine 

with organic compounds such as humic and fulvic acid present in water (Gibbons and 

Laha, 1999). They were reported to promote rectal and bladder cancer and may also 

contribute to spontaneous abortions and low birth weight in pregnancy (Gibbons and 

Laha, 1999). These major health issues limit the application of sodium hypochlorite as a 

postharvest treatment. 
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Chlorine in the form of chlorine dioxide (ClO2) was developed as an alternative to 

sodium hypochlorite. Chlorine dioxide is allowed at be used up to 3 ppm and it has 

higher efficacy compared to sodium hypochlorite (López-Gálvez et al., 2010). It was 

reported to be effective against E. coli, Salmonella sp., L. monocytogenes, moulds and 

yeasts on fruit (Fu et al., 2007). Its application was reported to produce negligible level 

of THMs by-products (López-Gálvez et al., 2010), but the risk of producing the 

carcinogenic by-products cannot be omitted. Besides, chlorine dioxide was reported to 

cause discolouration on lettuce after its application at concentration of 1 ppm for 15 min 

(López-Gálvez et al., 2010). This negatively affects cosmetic look of the vegetables 

hence not suitable to be used as a postharvest treatment. These drawbacks therefore, 

limit chlorine dioxide application.  

 

2.3.2 Application of fungicides 

 

Fungal disease on bell pepper is controlled by application of fungicide where in 

the case of anthracnose on bell pepper, fungicides such as Maneb (manganese 

ethylenebisdithiocarbamate), Flint (trifloxystrobun), Quadris (azoxystrobin) and Cabrio 

(pyraclostrobin) are used (Lewis Ivey et al., 2004). Maneb (Group M3 fungicide) is an 

ethylene bisdithiocarbamates (EBDCs) fungicide. It attacks multiple fungal biochemical 

sites that disrupts fungal biochemical processes hence, inhibits its proliferation 

(Fungicide Resistance Action Comittee, 2012). Meanwhile, Flint, Quadris and Cabrio 

are strobilurin fungicides. They attack fungal mitochondria and interfere with fungal 

respiration system (Fungicide Resistance Action Comittee, 2012). This inhibits fungal 
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disease development. Quadris was reported to be effective to control anthracnose in 

peppers (Harp, 2008). Its efficacy was however, found to be inconsistent (Lewis Ivey et 

al., 2004).  

Application of fungicide can lead to development of fungal resistance species, 

particularly from the use of specific target fungicide such as strobilurin fungicide. This 

fungicide specifically attacks Quinone binding site of fungal mitochondria and was 

reported to induce resistance in Alternaria solani (Pasche et al., 2004). Besides, 

Benomyl was also reported to induce fungal resistance such as in Colletotrichum 

gloeosporioides (Maymon et al., 2006) and Botrytis cinerea (Washington et al., 1992). 

This requires the use of fungicide at higher concentration which is costly and harmful to 

the environment.  

Fungicide also negatively affects human and the environment. For example, 

Triazole inhibits fungal development by disrupting fungal sterol synthesis. However, it 

also reacts with male reproduction system (Goetz et al., 2009). This causes reduction in 

testosterone production level hence, contributes to infertility (Goetz et al., 2009). 

Meanwhile, Captafol has threatening effect on freshwater invertebrates and bird 

reproduction system. It is therefore has been banned in United States, Australia,  

Thailand and Korea (United Nations, 2005). Besides, Maneb is banned in Korea and 

Russia due to its carcinogenic, mutagenic and teratogenic effects (United Nations, 

2005). These negative effects posed from the application of fungicides limits its 

application. This also shows application of fungicide is not a sustainable approach for 

agriculture industry.  
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2.3.3 Low temperature storage 

 

Low temperature storage is the most common postharvest treatment applied on 

bell pepper by storing the fruit at 7 – 12°C (Biosecurity Australia, 2009; Bosland and 

Votava, 2000). This postharvest treatment is applied during fruit storage and 

transportation where trucks with cold storage facility are used for domestic 

transportation and refrigerated containers are used for international distribution 

(Biosecurity Australia, 2009).  

Low temperature storage improves fruit shelf life by reducing fruit enzymatic 

activities. This includes decreasing the rate of starch and sucrose degradation in 

carbohydrate metabolism as well as pectin degradation in cell wall hydrolysis (Bosland 

and Votava, 2000).  Besides, low temperature also decreases fruit respiration and 

transpiration hence, reduces water loss (Bosland and Votava, 2000). This delays fruit 

ripening and preserves fruit firmness and colour degradation. Furthermore, low 

temperature may inhibit fungal and bacterial growth hence would reduce disease 

development.  

Storage at temperature lower than its optimal (7 – 12°C) induces imbalanced 

metabolism and results in chilling injury (Bosland and Votava, 2000). This causes 

development of sunken discoloured spots, pitting and pericarp softening which increase 

its susceptibility to decay (Bosland and Votava, 2000; Vicente et al., 2005). Meanwhile, 

storage at temperature below fruit freezing point causes freezing of tissue water and 

formation of intracellular ice. The loss of free water causes desiccation and imbalance 
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cellular reaction. Besides, the intracellular ice may disrupt fruit cell structure and the fruit 

unable to restore its metabolism or structures even after thawing (Wills et al., 2007). 

With a proper control of temperature, storage at 7-12°C is a good postharvest treatment 

for bell pepper. This postharvest treatment may extend its shelf-life for up to 2 to 3 

weeks (Bosland and Votava, 2000). 

 

2.3.4 Modified Atmosphere Packaging (MAP) 

 

Modified Atmosphere Packaging (MAP) is another postharvest treatment used to 

maintain bell pepper quality during storage. It is used to export bell pepper into United 

State (Wills et al., 2007). It uses polyethylene bags to create low oxygen environment 

around the fruit which inhibits fruit respiration (Wills et al., 2007). Low oxygen 

environment also inhibits fungal growth hence, reduces postharvest decay. Besides, 

MAP also reduces fruit transpiration and reduces water loss (Wills et al., 2007). This 

delays fruit ripening and hence, prolongs its shelf life.  

Application of MAP needs to be carefully monitored by considering fruit 

respiration rate and level of oxygen and carbon dioxide used and released by the fruit. 

Appropriate bag needs to be used for the right commodity where diffusion of oxygen 

into the bag should be higher than its consumption by fruit. Meanwhile, carbon dioxide 

should diffuses out from the bag at higher rate than its production by the fruit (Kader, 

2002). In order to apply this treatment, parameters such as thickness of bag, 

temperature storage and arrangement of the fruits need to be carefully monitored. This 

is to ensure appropriate oxygen and carbon dioxide content to avoid anaerobic 
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respiration and carbon dioxide injury which could deteriorate fruit quality hence reduce 

its storage life.  

 

2.3.5 Other postharvest technology in development 

 

Limitations and safety issues pose by current postharvest treatment lead to 

development safe and green alternatives. This includes utilization of antagonistic 

microorganisms such as yeasts. The antagonistic microorganisms compete with 

spoilage fungus for space and nutrients hence, inhibits fungal development (Nantawanit 

et al., 2010). It also secrets hydrolytic enzymes which disrupt  fungal cell wall 

(Nantawanit et al., 2010). Besides, the antagonists also induce fruit natural defense 

system and increase fruit antioxidant capacity (Nantawanit et al., 2010). This increases 

fruit resistance against pathogen. Examples of antagonist are Pichia guilliermondii and 

Aureobasidium pullulans which were used to control proliferation of C. capsici 

(Nantawanit et al., 2010) and Botrytis cinerea and Peniillium expansum, respectively 

(Abano and Sam-Amoah, 2012). Its application is safe, biodegradable and cost 

effective. However, antagonists are inefficient to inhibit wide-range of spoilage fungus 

and may not be able to survive during postharvest storage (Abano and Sam-Amoah, 

2012). Therefore, this limits its application as a postharvest treatment. Besides, the idea 

to apply microorganism on fruit is not well accepted by consumers.   

Another potential alternative to replace current postharvest treatment is by the 

use of organic fungicides such as chitosan, seed powder of yam bean and plant derived 

biochemical components such as hinokitiol and saponin which are derived from Hinoki 
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tree and pepper cayenne, respectively (Bautista-Banos and Lucca, 2004). These 

natural fungicides inhibit microbial growth by oxidizing microbial cell membrane, 

disrupting their biochemical process and altering their DNA (Bautista-Banos and Lucca, 

2004). Efficacy of these natural fungicides was reported against a variety of spoilage 

fungus including C. gloeosporioides, Aspergillus niger, B. cinerea and Monilinia 

fructicola (Bautista-Banos and Lucca, 2004). However, organic fungicide such as plant 

essential oil is ineffective at low concentration and exhibits phytotoxic effect at high 

concentration (Plotto et al., 2003). This reduces its efficiency hence limits its application 

as a postharvest treatment.   
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2.4 Novel postharvest technology: Ozone fumigation 

 

2.4.1 Overview of ozone fumigation technology 

 

Ozone, triatomic molecule of oxygen (O3) is a naturally occurring gas that 

accommodates the stratosphere layer of atmosphere (Forney, 2003). It is a potent 

oxidizing agent with an oxidation potential of 2.09 V which is the highest oxidizing 

potency after fluorine (F), chlorine trifluoride (ClF3), atomic oxygen (O) and hydroxyl free 

radical (•OH) (Forney, 2003). In comparison to chlorine, ozone has 1.5 times higher 

oxidizing capacity suggesting better efficacy in disease control (Forney, 2003).  

Ozone can be commercially produced by applying high voltage energy through 

narrow gap of electrode (Gabler et al., 2010) (Figure 2.9). This energy movement 

discharges corona which subsequently excites electrons in molecular oxygen (O2) and 

results in splitting of the oxygen molecule to atomic oxygen (O). The reactive atomic 

oxygen then reacts with molecular oxygen (O2) producing triatomic oxygen molecule or 

ozone (O3) (Figure 2.9) (Forney, 2003). Ozone is a highly unstable compound where it 

decomposes back to oxygen and no harmful by-products are produced (Gabler et al., 

2010). Therefore, ozone was approved by U.S. Food and Drug Administration (FDA) in 

2001 to be utilized during food treatment and food storage either in aqueous or gaseous 

form (Lake, 2001). 

Stability of ozone is influenced by several factors such as temperature, organic 

matter and pH. Ozone is more stable at low temperature where its shelf-life can be 

extended to 6 min at 4C̊ compared to 3 min at 20C̊ (Forney, 2003). Ozone shelf-life is 
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Figure 2.9: Schematic diagram of oxygen transformation into ozone molecule by corona 
and its decomposition to oxygen after reaction with organic matter 
 

also influenced by availability of organic matter which serves as a reactant and 

decomposes the ozone (Palou et al., 2001). Besides, surrounding pH also affects ozone 

shelf life where pH 10 causes instantaneous ozone decomposition (Forney, 2003).  

Ozone can be applied either in aqueous or gaseous form. Application of aqueous 

ozone was reported to reduce Shigella sonnei (Selma et al., 2007) and Escherichia coli 

O157:H7 (Ölmez and Akbas, 2009) populations on lettuce. However, its efficacy is 

highly susceptible towards pH change and presence of organic matter in the water 

(Forney, 2003). This contributes to inconsistency in its efficacy hence, limits its 

application. Besides, the use of water may introduce cross-contamination when used 

with large volumes of produce (Tomás-Callejas et al., 2012). The risk of cross-

contamination is escalated by reconditioning and recycling of water as recommended by 

U.S Department of Agriculture (USDA), because of economic and environmental factors 
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(Tomás-Callejas et al., 2012). This leads to development of gaseous ozone treatment 

which could alleviate some of these challenges.  

Application of ozone in gaseous form is more promising due to its higher stability 

compared to aqueous ozone. The use of air in gaseous ozone omitted the influence of 

pH and organic content of water in its application. However, the efficacy of gaseous 

ozone is influenced by relative humidity of air where humid environment improves its 

efficacy (Han et al., 2002).  

Application of gaseous ozone is practical where ozone generators can be 

installed in an enclosed chamber where gaseous ozone can be directly exposed to the 

fruit (Forney et al., 2007). Besides, gaseous ozone also can be distributed through 

Teflon tube which allows its application in a large storage room (Palou et al., 2003). 

Gaseous ozone can be applied at low temperature (7̊C) hence, it is expected to improve 

its efficiency in extending fruit storage life. The practicality of gaseous treatment also 

allows this technology to be installed in storage container during transport. This will 

create a conducive environment during transportation which can inhibit disease 

development and ripening progress. As this treatment can be applied during 

transportation, it reduces postharvest processing time as well as labour.  

 

 

2.4.2 Ozone fumigation and microbial proliferation 

 

Ozone has the potential to inhibit bacterial growth and reduce fungal 

development due to its strong oxidizing property. It reactively attacks compounds 
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containing oxygen (O), nitrogen (N), sulphur (S), phosphorus (P) and carbon-carbon (C-

C) double bonds such as microbial cell membrane, amino acid, protein and reducing 

agent such as NADPH (Forney, 2003; Keutgen and Pawelzik, 2008). This degrades 

microbial cell membrane integrity and leads to cell lysis. Besides, ozone also affects 

microbial cellular metabolism by inactivating biologically important enzymes such as 

thiokinases, acyl-CoA-thioesterase, and acyltransferases (Forney, 2003). Ozone also 

affects microbial cellular redox potential by altering glutathione enzyme function hence, 

hampering microbial proliferation (Forney, 2003).  This multiple mode of action of ozone 

to inactivate microorganism allows its use on wide range of microbial species. This 

minimizes the risk of developing microbial resistance species. This is an advantage of 

using ozone in comparison to fungicides such as Flint, Quadris and Cabrio which has 

the potential to develop microbial resistance species.  

 

2.4.2.1 Bacterial proliferation 

 

Ozone has the potential to inactivate wide range of bacterial species due to its 

capability to attack bacterial cell membrane. Its antibacterial activity was reported on 

various bacterial species including Salmonella sp. (Selma et al., 2008b), Listeria 

innocua (Fan et al., 2007), Staphylococcus aureus and Bacillus subtilis (Thanomsub et 

al., 2002). This allows ozone to be a universal antibacterial agent which is an advantage 

property for a postharvest treatment.  
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The efficacy of ozone however, varies depending on bacterial species. For 

example, exposure to 2.2 ppm ozone for 1 min effectively reduced 5.6 log10 colony 

forming unit (CFU) of Shigella sonnei population (Selma et al., 2007) but only reduced 

1.2 log10 CFU of L. monocytogenes population on lettuce (Ölmez and Akbas, 2009). 

The differences in the efficacy could be due to differences in cell membrane 

components of different bacterial cells as ozone uses cell membrane as an entry 

pathway. Besides, this is also could be due to different response by the bacteria 

towards oxidative stress of ozone.   

Antibacterial activity of ozone is also influenced by other factors such as 

surrounding relative humidity (RH). Ozone is more effective at high RH where exposure 

to 2 ppm ozone for 25 min at 90% RH reduced 1.94 log10 CFU of L. monocytogenes 

population while treatment at 60% RH only reduced 0.97 log10 CFU of the population 

(Han et al., 2002). Efficacy of ozone is also affected by other factors such as inoculum 

concentration, temperature, pH and ozone demand status where low inoculum 

concentration (Thanomsub et al., 2002), high temperature (Steenstrup and Floros, 

2004), high pH (Fan et al., 2007)  and low ozone demand status (Kim et al., 1999) 

increase ozone efficacy.  Therefore, these factors have to be carefully controlled while 

applying ozone treatment in order to get the optimal efficacy.  
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2.4.2.2 Fungal proliferation 

 

Ozone also has the potential to inactivate wide range of fungal species. This 

includes blue mold, Penicillium italicum, green mold, Penicillium digitatum (Palou et al., 

2003), grey mold, Botrytis cinerea (Minas et al., 2010), brown rot causal agent, Monilinia 

fructicola (Palou et al., 2002) and food spoilage agent, Aspergillus sp. (Antony-Babu 

and Singleton, 2009). Ozone was also reported to reduce anthracnose disease caused 

by C. acutatum (Yun et al., 2006) C. gloeosporioides (Barbosa-Martinez et al., 2002), C.  

coccodes (Tzortzakis et al., 2008) and C. lindemuthianum (Treshow et al., 1969). This 

allows ozone to be applied to various commodities with different fungal diseases.   

Efficacy of ozone in reducing fungal disease varies depending on fungal species. 

For example, exposure to 0.3 ppm ozone for 144 h inhibited approximately 50% of B. 

botrytis mycelia growth (Minas et al., 2010) but had no significant effect on Alternaria 

alternate (Tzortzakis et al., 2008). Meanwhile, exposure to 0.05 ppm ozone effectively 

inhibited  C. coccodes spore germination (Tzortzakis et al., 2008) but stimulated 

Sphaerothecafuliginea spore germination (Khan and Khan, 1998). The variation in 

antifungal effect can be due to variation in cell membrane components or fungal 

response towards oxidative stress of ozone.    
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2.4.3 Ozone fumigation and chemical contaminants 

 

Ozone has the potential to disinfect chemical contaminant on fruit such as 

fungicide and pesticide residues. This is due to its strong oxidizing property which 

oxidizes and decomposes the toxic chemicals into unstable compounds which then 

undergo isomerisation, dimerization or protonation in order to achieve a stable state 

(Ikehata and Gamal El-Din, 2005). The unstable products may be further oxidized by 

ozone which transforms the products into lower oxidation state. This oxidation process 

may occur repetitively until the toxic chemicals are completely oxidized and 

decomposed into harmless compounds (Ikehata and Gamal El-Din, 2005).  

 The efficacy of ozone to decompose chemical contaminants was reported on 

grapes where exposure to 10 ppm ozone for 1 h reduced fenhexamid, pyraclostrobin, 

pyrimethanil and cyprodinil content on fruit surface by 68.5, 100.0, 83.7 and 75.4%, 

respectively (Gabler et al., 2010). Meanwhile, ozone was also reported to decompose 

insecticides such as imidacloprid (Bourgin et al., 2011). Therefore, the application of 

ozone on fruit as a postharvest treatment not only inhibits microbial proliferation but also 

sanitizes the fruit from toxic chemicals. This is an advantage of ozone compared to 

other postharvest treatment such as low temperature and MAP.  

 

2.4.4 Ozone fumigation and ripening processes 

 

Oxidative effect of ozone also affects fruit respiration, ethylene production and 

ripening process, depending on the commodity. For example, in carrot, exposure to 10 
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ppm ozone for 10 min reduced its respiration rate during storage hence prolonged the 

storage life (Chauhan et al., 2011). The ozone treatment however, caused transient 

increase in respiration of tomatoes (Rodoni et al., 2010). The variation in response is 

possibly due to different susceptibility of the commodity toward ozone exposure. The 

effect of ozone on fruit respiration and ethylene production has to be carefully monitored 

as it will affect fruit ripening progress.  

 Oxidation action of ozone is capable to decompose ethylene molecules produced 

by fruit. This was reported by Palou et al. (2001) as ozone application reduced 57.1% of 

ethylene content in export container. This prevents stimulation action of ethylene on fruit 

ripening hence prolongs fruit shelf-life. This is very crucial as accumulation of ethylene 

in storage box highly stimulate fruit ripening process. This is very important particularly 

for climacteric fruit where ethylene influences its ripening progress. (Palou et al., 2001) 

 

 

2.4.5 Ozone fumigation and fruit antioxidant content 

 

Oxidizing effect of ozone has stimulating effect on fruit antioxidant content such 

as phenolic compounds, ascorbic acid and β-carotene. This was reported by Alothman 

et al. (2010), where exposure to 0.72 mmol ozone for 20 min enhanced fruit phenolic 

content of pineapple and banana by 15.7 and 14.7%, respectively. The stimulating 

effect of ozone was also reported in kiwi after exposure to 0.3 ppm of ozone for 144 h 

(Minas et al., 2010). This could be due to increase in the activity of PAL which 

responsible for flavonoids or phenol biosynthesis (Emiliani et al., 2009). (Alothman et al., 2010), 
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 Ozone was also reported to enhance fruit ascorbic acid content where exposure 

to 0.35 ppm ozone for three days increased ascorbic acid content in strawberry (Pérez 

et al., 1999). This could be due to the inhibition action of ozone on ascorbate 

peroxidase and ascorbate oxidase enzymes; the main enzymes involve in ascorbic acid 

decomposition (Pérez et al., 1999). In contrary, ozone reduced ascorbic acid content in 

lettuce (Ölmez and Akbas, 2009), pineapple, guava and banana (Alothman et al., 2010). 

This could be due to the scavenging effects of ozone and its induced reactive 

compounds on ascorbic acid (Alothman et al., 2010).  

 Variation in the response of fruit antioxidant content towards ozone suggested 

that this parameter has to be carefully controlled. Ozone can be a stimulant to the 

antioxidant content hence can improve fruit phytochemical content. This improves its 

potential phytochemical transfer. However, ozone can also have negative effect on the 

antioxidant content which reduced its photochemical value. This undesirable effect has 

to be avoided when applying a postharvest treatment.  

 

 

2.4.6 Ozone fumigation and fruit defense system 

 

Ozone also influences fruit defense system by affecting activity of certain 

enzymes such as PPO and POD. For example, ozone was found to inhibit PPO activity 

in celery where  exposure to 0.18 ppm ozone for 5 min reduced the PPO activity by 

70.1% (Zhang et al., 2005). Decrease in PPO activity reduces fruit defense against 

pathogen attack as PPO is responsible for production of antimicrobial compounds such 
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as quinone and lignin (Zheng et al., 2011). This is an undesirable effect of ozone. 

However, decrease in PPO activity reduces fruit browning  which is a positive attribute 

to the fruit quality (Ölmez and Akbas, 2009). Therefore, the level of PPO in a fruit has to 

compromise between defence towards fungal disease and its cosmetic look. (N. Zhao et al., 2013a) 

On the other hand, ozone was reported to increase POD activity where exposure 

to more than 1 ppm ozone enhanced POD activity in pear (Zhao et al., 2013). This 

shows that ozone has triggered fruit defense mechanism. This increases biosynthesis of 

quinone and lignin (Wang et al., 2009). Quinone is toxic to fungal cell wall while lignin 

provides as a physical barrier to inhibit fungal proliferation in fruit tissue (Zheng et al., 

2011). This reduces disease development and subsequent quality degradation.  

 Ozone was also reported to affect activity of pathogenesis-related enzymes such 

as chitinase (CHI) and β-1,3-glucanase where exposure to 0.15 ppm ozone for 5 h 

significantly increased CHI and β-1,3-glucanase activity in tobacco (Ernst et al., 1992). 

Similar stimulating effect of ozone on CHI and β-1,3-glucanase was reported in spring 

barley plants (Plessl et al., 2005). The pathogenesis-related enzymes; CHI and β-1,3-

glucanase, pose antimicrobial property where the enzymes hydrolyze fungal chitin and 

β-1,3-glucan of fungal cell wall, respectively (Schraudner et al., 1992). This prevents 

fungal proliferation on fruit hence improves fruit quality.  

 Variation in the effects of ozone on the different defense related enzymes 

suggested that ozone can either improve or weaken fruit defense system. The variation 

in the fruit response depends on the fruit species in encountering the oxidative stress of 

ozone. Therefore, each commodity has to be carefully studied in their response towards 
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ozone treatment. A treatment which can improve fruit defense system would 

consequently reduce disease development hence, extends fruit storage life.  

 

 

2.4.7 Ozone fumigation and fruit physico-chemical quality 

 

The effect of ozone on diseases, ethylene, respiration, antioxidant level and 

defense related enzymes influences fruit physical and biochemical qualities. Antifungal 

and antibacterial effect of ozone reduced disease development on fruit hence improves 

fruit physical quality (Tzortzakis et al., 2008). Meanwhile, the effect of ozone on defense 

related enzymes improves fruit defense against fungal invasion which also restricts 

disease development (Schraudner et al., 1992). This improves fruit physical quality and 

extends fruit storage life.  

 The effect of ozone on ethylene and respiration influences fruit acidity and sugar 

content. Degradation of ethylene and reduction in fruit respiration by ozone delays fruit 

ripening hence, reduces degradation of starch into sugars (Hong et al., 2012). 

Meanwhile, it also reduces utilization of organic acid in fruit hence, preserves fruit 

biochemical property (Hong et al., 2012). This delays fruit senescence hence reduces 

postharvest losses.  

 Ozone may also negatively affect fruit physical quality, particularly from exposure 

to excessive dosage of ozone which could contribute to physical injuries such as rind 

discolouration, bleaching or browning. These ozone induced injuries were observed in 

carrot where exposure to 0.05 ppm for 2 months induced discolouration of fruit tissue 
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(Hildebrand et al., 2008). Further increase in ozone dosage resulted in brown 

discolouration near to its periderm and subsequently pitting and bleaching of the carrot 

tissues (Hildebrand et al., 2008). Ozone induced injury was also observed by the 

appearance of rachis injury in grape (Gabler et al., 2010) and by epidermis browning in 

papaya (Ong et al., 2012). This suggested each commodity has different susceptibility 

towards ozone and produces different toxicity symptoms. Therefore, ozone with the 

right dosage has to be applied to a specific commodity in order to avoid ozone induced 

injuries. 

 In conclusion, with the increasing demand of bell pepper worldwide and its high 

value for phytochemical content, a sustainable postharvest treatment are needed to 

reduce postharvest loss and extend its storage life. Ozone treatment is a promising 

technology with the potential to reduce fungal diseases and bacterial contamination as 

well as stimulate phytochemical content of the fruit.  This reduces senescence progress, 

extends fruit storage life and increases the potential phytochemical transfer to 

consumer. This multiple benefits of ozone is an advantage of ozone compared to other 

postharvest treatment such as low temperature refrigeration and MAP. Meanwhile, in 

terms of safety aspect, ozone provides an obvious benefit compared to fungicide and 

chlorine where it does not produce carcinogenic by-products, does not induce microbial 

resistant species and safe for environment. These advantages of ozone provide a 

promising technology to have a sustainable treatment for agricultural industry.   

 Practicality of gaseous ozone treatment allows the treatment to be applied to a 

large number of fruit as the gas can be easily distributed either to a container or a room. 

This reduces the processing time and labour hence, reduces the processing cost. This 
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will definitely benefits farmers, distributors and agricultural industry. The practicality of 

gaseous ozone treatment also allows the treatment to be incorporated into 

transportation system by installing ozone fumigation system into truck or shipping 

container. This allows ozone treatment to be applied during transportation hence, 

reduces processing time as well as labour. The development of this technology will 

definitely improve postharvest treatment system by reducing postharvest loss and 

improving food security.  
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CHAPTER 3  

 

EFFECT OF OZONE FUMIGATION ON  

BACTERIAL CONTAMINATION ON FRESH CUT BELL PEPPER 

 

3.1 Introduction 

 

Bacterial contamination on fruit can contribute to food poisoning which can be a 

fatal outbreak. It has been an issue for more than a century. It affected more than 48 

million people per year in United States, involving 3,000 deaths and 128,000 

hospitalizations, at the cost of USD 50 billion (Bermúdez-Aguirre and Barbosa-Cánovas, 

2013; Scharff, 2012). This is a massive threat to food safety and jeopardizing 

consumer’s health. It also contributed to economic loss as the contaminated products 

were recalled from market hence affected farmers, distributor and supplier (Bermúdez-

Aguirre and Barbosa-Cánovas, 2013).   

Incidence of food poisoning is associated with consumption of minimally 

processed or fresh cut fruit and vegetables (Alexopoulos et al., 2013). Its prevalence is 

increasing in coherent with consumer preference for healthy diet and ready-to-eat (RTE) 

products (Bermúdez-Aguirre and Barbosa-Cánovas, 2013). Particularly for fresh cut 

fruit, bacterial contamination introduced by pickers, packagers or during any stage of 

food production can multiply inside fruit tissues hence, poses high risk of food 

poisoning. This is a major concern for bell pepper with increasing demand to be 

consumed raw or fresh cut 
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 Bacterial species that are commonly associated with food poisoning are E. coli 

O157, Salmonella Typhimurium and L. monocytogenes. This is due to prevalence of the 

former two and fatality of the latter (Elizaquível et al., 2012). The contamination is due to 

animal and human sources along the pre- and postharvest processes including 

contaminated irrigation water, improperly processed manure and unsanitized handling 

area (Yuk et al., 2006). Outbreak of E. coli O157 and Salmonella Typhimurium was 

reported every year since 2009 where it was associated to consumption of organic 

spinach, romaine lettuce, hazelnut, cantaloupe and tomatoes (Centers for Disease 

Control and Prevention, 2012). These incidences led to hospitalizations and deaths due 

to severe diarrhea, abdominal cramp and vomiting. Outbreak of L. monocytogenes was 

less prevalent but accounted for the highest percentage of hospitalization and death 

due to its fatality (Elizaquível et al., 2012).  

Pepper is a recognized vehicle for foodborne pathogens. Similarly to tomato, its 

smooth surface allows attachment of certain pathogenic bacteria hence permits their 

transmission. This contributed to Salmonella outbreak in Mexico on chilli peppers in 

2008 which has sickened 1400 people (Gage, 2008). Bell pepper was also reported to 

be a vehicle for foodborne pathogens as Salmonella sp. was detected on red and green 

bell peppers in 2013 (Larsen, 2013). Besides, L. monocytogenes was detected on fresh 

cut bell pepper in United States recently hence, leads to withdrawal of the products in 9 

states (Clark, 2016). The prompt actions of the related bodies have prevented potential 

injuries and deaths. However, the risk of food poisoning carried by bell peppers cannot 

be omitted.  
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 The risk of food poisoning caused by these pathogens being bell peppers as the 

transmission vehicles substantially affected food safety. This leads to the urgency of a 

safe and effective sanitization treatment to reduce microbial load on fruit hence, reduces 

the risk of food poisoning. This leads to the objectives of this study to:  

1. assess the effect of ozone fumigation on in vitro population of E. coli O157, 

Salmonella Typhimurium and L. monocytogenes  

2. investigate the effect of ozone fumigation on in vivo population of E. coli O157, 

Salmonella Typhimurium and L. monocytogenes  on fresh cut bell pepper 

3. to evaluate the effect of ozone fumigation on the pathogens’ morphology 
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3.2 Materials and Methods 

 

3.2.1 Ozone fumigation chamber 

 

Ozone fumigation was conducted in air-tight polycarbonate chambers (112 x 47.5 

x 42.5 cm) equipped with 12 V fans (Figure 3.1). Ozone was generated using MedKlinn 

Professional Series Ozone Generator and its concentration was monitored using an 

ozone sensor (Model OEM-2 Eco-Sensor, Inc.), controlled using a process controller 

(Model K3MA-J, OMRON Corp.) and calibrated against an ozone analyser (Model 

IN2000-L2-LC, In USA, Inc.) (Ong et al., 2012). Temperature and relative humidity 

inside the chambers were monitored using a data logger (Model U14 LCD Logger, 

HOBO®, USA) and were maintained at 18 - 20°C and 95% relative humidity (RH), 

respectively. Ozone concentration was set using the process controller (1.0 ppm to 10.0 

ppm) and ozone concentration was monitored continuously using the ozone sensor.  

The chambers were placed in a room equipped with a charcoal ozone scrubber. Ozone 

generator was turned off prior opening and chambers were only opened after ozone 

concentration was less than 0.3 ppm, the Threshold Limit Value - Short Term Exposure 

Limit (TLV-STEL) set by the United States Occupational Safety and Health 

Administration (US-OSHA) (Palou et al., 2002). Protective mask (Half Facepiece 

Respirator, Brand 3M, USA) was used in case of ozone exposure. 
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Figure 3.1: Schematic diagram of air-tight ozone chamber equipped with fans, ozone 
generator, ozone sensor, ozone controller and temperature and humidity meters 
  

 

3.2.2 Fruit material 

 

Bell pepper (Capsicum annuum cv. ‘Zamboni’) were harvested at physiologically 

matured, green stage (maturity index 1 (Figure 2.4)) from commercial farm in Cameron 

Highland, Pahang. Fruit of uniform size (≈150 g fruit-1), free of physical damage and 

fungal infection were cleaned and rinsed with distilled water three times and air dried to 

remove surface water.  
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3.2.3 Preparation of inocula 

 

 Clinical isolates of E. coli O157 and L. monocytogenes obtained from Faculty of 

Veterinary Medicine, Universiti Putra Malaysia (UPM) and commercially available 

Salmonella Typhimurium ATCC® 14028 were used in this study. The identity of the 

bacterial species was re-confirmed through Gram staining and inoculation onto selective 

and differential media such as MacConkey Agar with Sorbitol (SMAC, Pronadisa), 

Xylose Lysine Deoxycholate Agar (XLD, Oxoid) and PALCAM Listeria Selective Agar 

(PC, Fluka Analytical), respectively.  

 Growth curves for E. coli O157, Salmonella Typhimurium and L. monocytogenes 

were prepared by inoculating 1 ml of 1 x 107 colony forming units (CFU) ml-1 cultures 

into 50 ml of nutrient broth (NB, Merck, pH 7.0). The cultures were statically incubated 

at 37°C for 24 h and bacterial concentration was estimated using a Biochrom Libra S12 

Spectrophotometer at A600 (Appendix A 3.1 – 3.3). Cultures at early stationary stage 

were used for in vitro and in vivo assays.  

 

3.2.4 Screening of antibacterial activity of ozone  

 

Freshly prepared bacterial cultures were serially diluted with ¼ strength of 

Ringer’s solution (RS, Merck, pH 7.0) to achieve a range from 200 to 300 CFU plate-1 

on nutrient agar (NA, Merck, pH 7.0) using spread plate method. The inoculated plates 

were incubated at room temperature for 1 h at room temperature to allow bacterial 
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attachment before ozone exposure. Screening of antibacterial activity of ozone was 

determined by exposing the inoculated agar plates (with lids removed) to ozone at 

concentrations of 0 (control), 0.1, 0.5, 1.0, 5.0 and 9.0 ppm, for exposure times of 0.25, 

0.5, 3, 6, 18 and 24 h at 18 - 20°C and 95% RH. Following ozone exposure, the plates 

were incubated at 37°C for 24 h for E. coli O157 and Salmonella Typhimurium and 48 h 

for L. monocytogenes. Number of colony forming unit (CFU) for each treatment was 

determined using a Galaxy 230 colony counter (Rocker Scientific Co. Ltd.) and 

antibacterial activity of ozone towards each bacterial strain was calculated and 

presented in percentage as below (Fan et al., 2002). The results presented indicated 

the percentage of bacterial colonies inactivated by ozone under the current set of 

experiment.  

Antibacterial activity (% CFU) = (
N0 − 	N

N0
) × 100 

N = microbial load of samples 

N0 = microbial load of control  

 

3.2.5 In vitro antibacterial assay 

 

 Based on the screening result, in vitro antibacterial assay was conducted by 

exposing the inoculated plates (with lids removed) to ozone at concentrations of 0 

(control), 0.1, 0.3. 0.5 and 1.0 ppm, for exposure times of 0.5, 3, 6 and 24 h at 18 - 20°C 

and 95% (RH). The treated plates were incubated as in section 3.2.4 and antibacterial 

activity of ozone (%) towards each bacterial strain was calculated as in section 3.2.4.  
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3.2.6 In vivo antibacterial assay 

 

Fruit of bell pepper as described in section 3.2.2 were used. Bell pepper plugs 

(1.13 cm2, approximately 1 g) were prepared using a 1.2 cm cork borer. The plugs were 

used as an experimental form of fresh cut fruit (Abadias et al., 2011). Fresh cut were 

used in this experiment as bacterial contamination is more prevalent in fresh cut rather 

than whole fruit. The plugs were dipped into freshly prepared bacterial inoculum (1 x 104 

CFU ml-1) for 1 min and air-dried in the biosafety cabinet for 1 h to allow bacterial 

attachment.  

 The inoculated bell pepper plugs were then aseptically transferred to ozone 

chambers and exposed to ozone at concentrations of 0.0 (control), 0.1, 0.3, 0.5 and 1.0 

ppm for 0.5, 3, 6 and 24 h at 18 - 20°C and 95% RH. Following ozone exposure, the bell 

pepper plugs were transferred to control chambers (0.0 ppm ozone) until the end of 

incubation period of 24 h. 

Bacterial cells were recovered from the bell pepper plugs by homogenizing with 9 

ml of sterile ¼ strength Ringer’s solution (RS, Merck, pH 7.0) in a sterile plastic bag and 

aliquots were serially diluted (10-fold dilution) and spread plated onto selective and 

differential media; SMAC, XLD and PALCAM media for E. coli, Salmonella Typhimurium 

and L. monocytogenes, respectively. The plates were incubated at 37°C for 24 h for E. 

coli O157 and Salmonella Typhimurium and 48 h for L. monocytogenes. Number of 

CFU for each treatment was quantified using the colony counter and microbial reduction 

was expressed in log reduction using the following equation modified from Alexandre et 

al. (2011)). (Alexandre et al., 2011).   
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Microbial Log Reduction (log CFU ml-1) = log (N ⁄ N0) 

N = microbial load of samples 

N0 = microbial load of control  

 

 In vivo antibacterial assay was repeated using higher ozone concentration.  The 

inoculated bell pepper plugs were exposed to ozone at concentrations of 0.0 (control) 

1.0, 3.0, 5.0, 7.0 and 9.0 ppm for 0.5, 3, 6 and 24 h at 18 - 20°C and 95% RH.  Bacterial 

cells were recovered and microbial reduction (log reduction) was calculated.  

 

3.2.7 Microscopic evaluation: Environmental scanning electron microscopy 

(ESEM) 

 

1 ml of 1 x 103 CFU ml-1 of the bacterial cultures were freshly prepared and their 

extracellular matrix was removed by washing the cultures with 1 x Phosphate Buffer 

Saline pH 7.2 for 3 times. The bacterial cells were inoculated onto a sample stub and 

exposed to 0.5 and 1.0 ppm ozone for half hour. The cells were then viewed using a 

Scanning Electron Microscope (Quanta 400F ESEM) in ESEM mode using Gaseous 

Secondary Electron Detector (GSED) at 20.0 kV and photographs were taken with 

30,000X magnification.  
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3.2.8 Statistical analysis 

 

The experiments were carried out using a Completely Randomized Design (CRD) 

with three replicates using three ozone chambers. In vitro experiment was conducted 

using five technical replicates (agar plates) while in vivo experiment comprised of three 

technical replicates of 20 fresh cut plugs. The experiment was repeated thrice and data 

for antibacterial activity were transformed prior to analysis. Data were analyzed using 

Statistical Analysis Software (SAS, version 9.1.3, SAS Institute Inc., USA). Analysis of 

variance (ANOVA) was performed with P < 0.05 significance level and differences in 

data means were analyzed using Duncan’s Multiple Range Test (DMRT).  
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3.3 Results and Discussion 

 

3.3.1 Screening of antibacterial activity of ozone 

(Fan et al., 2007) 

Screening of antibacterial activity of ozone was conducted to select a range of 

effective ozone concentration and exposure time to reduce bacterial colonies on agar 

plates under current set of experiment. Table 3.1 - Table 3.3 showed the percentage of 

E. coli O157, Salmonella Typhimurium and L. monocytogenes colonies inactivated by 

ozone. The results showed that interaction of ozone concentration and exposure time 

significantly reduced (P < 0.0001, Appendix B 3.1 – 3.3) colonies of E. coli O157, 

Salmonella Typhimurium and L. monocytogenes inoculated on agar plates. Increase in 

ozone concentration and exposure time increased antibacterial activity. This result was 

supported by Fan et al. (2007) where increase in ozone concentration and exposure 

time also increased antibacterial activity on Listeria innocua. This could be due to the 

effect of ozone on cell membrane which subsequently leads to cell death (Forney, 

2003). In comparison to L. monocytogenes colony in this study, the ozone antibacterial 

activity on L. innocua was reported to be lower. This was demonstrated from exposure 

to 0.1 ppm ozone for three hour where the treatment  reduced 57% of L. innocua colony 

on agar plates but reduced 75% reduction of L. monocytogenes colony  (Fan et al., 

2007). This could be due to differences in bacterial resistancy towards ozone.  
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Table 3.1: The effect of ozone concentration and exposure time on E. coli O157 colonies at 18 - 20C̊, 95% RH. 

Ozone concentration (ppm) 
 Exposure time (hour) 

0 0.25 0.5 1 3 6 18 24 

 ------------- Antibacterial activity of ozone on E. coli O157 colonies (%) ------------- 

0.0 (control) 0.0i 0.0i 0.0i 0.0i 0.0i 0.0i 0.0i 0.0i 

0.1 0.0i 57.0i 56.0i 42.0h 42.3h 66.9g 67.4g 69.3g 

0.5 0.0i 44.7h 46.0h 93.3a-f 94.7a-e 97.7a 96.7ab 97.2ab 

1.0 0.0i 88.8f 90,.6d-f 95.8a-d 96.2ab 97.1ab 97.5a 97.5a 

5.0 0.0i 89.9e-f 90.8c-f 95.6a-d 95.7a-d 96.6ab 96.6ab 96.5ab 

9.0 0.0i 89.1f 91.7b-f 96.8ab 95.0a-d 96.6ab 96.0a-c 97.1ab 

Antibacterial activity of ozone is the percentage of bacterial colonies compared to control after ozone treatment. The data 
presented is the data after transformation. 
Values are interaction effect of ozone concentration and exposure time on antibacterial activity. Means across rows and 
columns followed by same letter are not significantly different using DMRT (P < 0.05).   
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Table 3.2: The effect of ozone concentration and exposure time on Salmonella Typhimurium colonies at 18 - 20C̊, 95% 
RH. 

Ozone concentration (ppm) 
 Exposure time (hour) 

0 0.25 0.5 1 3 6 18 24 

 ----- Antibacterial activity of ozone on Salmonella Typhimurium colonies (%) ----- 

0.0 (control) 0.0g 0.0g 0.0g 0.0g 0.0g 0.0g 0.0g 0.0g 

0.1 0.0g 0.7g 1.0g 9.72f 10.2ef 24.1d 23.3d 24.0d 

0.5 0.0g 13.1ef 15.3e 73.7c 74.7c 92.5a 93.6a 94.1a 

1.0 0.0g 82.3b 84.4b 90.3a 91.3a 94.9a 95.8a 95.6a 

5.0 0.0g 81.4b 80.3b 91.2a 93.9a 95.0a 94.0a 94.4a 

9.0 0.0g 82.5b 82.9b 94.2a 92.9a 95.0a 95.6a 95.5a 

Antibacterial activity of ozone is the percentage of bacterial colonies observed after ozone treatment. The data presented 
is the data after transformation. 
Values are interaction effect of ozone concentration and exposure time on antibacterial activity. Means across rows and 
columns followed by same letter are not significantly different using DMRT (P < 0.05).   
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Table 3.3: The effect of ozone concentration and exposure time on L. monocytogenes colonies at 18 - 20ºC, 95% RH. 

Ozone concentration (ppm) 
 Exposure time (hour) 

0 0.25 0.5 1 3 6 18 24 

 ---------- Antibacterial activity of ozone on L. monocytogenes colonies (%) -------- 

0.0 (control) 0.0d 0.0d 0.0d 0.0d 0.0d 0.0d 0.0d 0.0d 

0.1 0.0d 42.3c 44.6c 74.0b 74.8b 94.2a 94.5a 96.5a 

0.5 0.0d 90.9a 93.5a 95.3a 95.0a 95.3a 95.4a 95.6a 

1.0 0.0d 93.0a 95.0a 95.8a 95.7a 95.6a 94.1a 96.1a 

5.0 0.0d 92.2a 95.2a 96.3a 94.2a 94.7a 96.2a 95.8a 

9.0 0.0d 94.3a 95.2a .95.7a 95.6a 93.8a 95.8a 95.6a 

Antibacterial activity of ozone is the percentage of bacterial colonies observed after ozone treatment. The data presented 
is the data after transformation 
Values are interaction effect of ozone concentration and exposure time on antibacterial activity. Means across rows and 
columns followed by same letter are not significantly different using DMRT (P < 0.05).   
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Results from this screening experiment showed that optimal antibacterial activity 

on E. coli O157 colony was achieved from exposure to 0.5 ppm ozone for 1 h. 

Meanwhile, the optimal antibacterial activity was achieved from exposure to 0.5 ppm 

ozone for 6 h for Salmonella Typhimurium. Increase in ozone concentration to 1.0 ppm 

ozone for shorter exposure time, 1 h, resulted in comparable antibacterial activity.   

Lower ozone dosage; 0.1 ppm for 6 h, resulted in optimal antibacterial activity on L. 

monocytogenes colonies. This is comparable to antibacterial activity from exposure to 

0.5 ppm ozone for 0.25 h. These optimal dosages resulted in high antibacterial activity 

which is 93.3, 92.5 and 94.2% antibacterial activity for E. coli O157, Salmonella 

Typhimurium and L. monocytogenes respectively. Increase in ozone concentration or 

exposure time from these optimal ozone dosages had no significant effect on the 

antibacterial activity. Therefore, based on the optimal dosage obtained for each bacteria 

species in this experiment, ozone concentrations of 0.0 (control), 0.1, 0.3. 0.5 and 1.0 

ppm, for exposure times of 0.5, 3, 6 and 24 h were selected to determine the effect of 

ozone on the three different bacterial species. 

 

3.3.2 Effect of ozone on in vitro bacterial population  

 

In vitro assay showed that colonies of E. coli O157, Salmonella Typhimurium and 

L. monocytogenes on agar plates were significantly reduced (P < 0.0001, Appendix B 

3.4 – 3.6) by interaction of ozone concentration and exposure time (Figure 3.2). 

Increase in ozone concentration and exposure time for three to six hours increased 

ozone antibacterial activity. Effectiveness of ozone reached a plateau when exposure 
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time was prolonged to 24 hours. This could be due to the presence of dead bacterial 

cells layer on top of living bacterial cells which protected the living cells from oxidation 

action of ozone (Mossel et al., 1996). This would prevent the ozone molecules to have 

in contact with the living cells hence allow the living cells to grow and multiply. This 

reduced the effectiveness of ozone. These results were in line with Fan et al. (2007) 

where the highest death rate of L. innocua cells was observed in less than 2 h and the 

rate reached a plateau after 4 h. This suggested that optimum effect of ozone on agar 

plate was achieved with short term exposure of less than 6 h. (Fan et al., 2007) 

The results showed optimal antibacterial activity was achieved from exposure to 

0.3 ppm for 3 h for E. coli O157, 0.3 ppm for 6 h for Salmonella Typhimurium and 0.1 

ppm for 3 h for L. monocytogenes. Further increase in ozone concentration and 

exposure time had no significant effect (P > 0.05). Different ozone dosages were 

required to achieve the optimal activity where Salmonella Typhimurium required the 

highest dosage. This showed that the bacterial species had different resistance to 

ozone where Salmonella Typhimurium was more resistant, followed by E. coli O157 and 

L. monocytogenes.   
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Figure 3.2: The effect of ozone concentration and exposure time (c x t) on colonies of 
(a) E. coli O157, (b) Salmonella Typhimurium and (c) L. monocytogenes. Bars with the 
same letters are not significantly different using DMRT, (n = 3, P < 0.05).  

0.0 ppm ozone
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3.3.3 Effect of ozone on in vivo bacterial population  

 

Ozone concentration (0.1, 0.3, 0.5 and 1 ppm ozone) significantly reduced (P < 

0.0001, Appendix B 3.7 – 3.9) E. coli O157, Salmonella Typhimurium and L. 

monocytogenes population on fresh cut bell pepper ( 

Figure 3.3). Increase in ozone concentration resulted in higher reduction in 

bacterial population. The highest reduction was observed from exposure to 1 ppm 

ozone for 6 h which reduced 1.69, 1.59 and 2.01 log reduction of E. coli O157, 

Salmonella Typhimurium and L. monocytogenes populations, respectively. The 

reduction on E. coli O157 and Salmonella Typhimurium populations did not meet 

requirement for an antimicrobial agent with minimal reduction of 2 log microbial 

population (Torlak et al., 2013). Therefore, the treatment was repeated using higher 

ozone concentration; 1, 3, 5, 7 and 9 ppm ozone; to achieve better control of microbial 

population.  

Application of higher ozone concentration, 1, 3, 5, 7 and 9 ppm ozone for 0.5, 3, 

6 and 24 h significantly reduced (P < 0.0001, Appendix 3.10 – 3.12) E. coli O157, 

Salmonella Typhimurium and L. monocytogenes populations on fresh cut bell pepper 

(Figure 3.4). Increase in ozone concentration increased the reduction of bacterial 

population where exposure to 9 ppm ozone resulted in the highest antibacterial activity. 

Antibacterial activity of ozone was also enhanced as exposure time increased up to 6 h. 

Further increase to 24 h had no effect on the antibacterial activity. Optimal bacterial 

reduction was achieved from exposure to 9 ppm ozone for 6 h which reduced 2.89, 2.56 
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Figure 3.3: The effect of ozone concentration and exposure time (c x t) on populations 
of (a) E. coli O157, (b) Salmonella Typhimurium and (c) L. monocytogenes on bell 
pepper plugs. Bars with the same letters are not significantly different using DMRT, (n = 
3, P < 0.05). 

(a) 

(b) 

(c) 



 

83 
 

 

Ozone concentration:

0.5 3 6 24

L
o

g 
R

e
du

ct
io

n 
(C

F
U

 g
-1

)

0

1

2

3
0 ppm (Control) 
1 ppm
3 ppm
5 ppm
7 ppm
9 ppm

a
ab

abcde

cdefg
efg

fgh

abcd

cdefg
defg

gh
fgh
efg

bcdef

fgh
fgh
bcdef

abc

fgh

h
gh

i i i i

0.5 3 6 24

L
og

 R
ed

uc
tio

n 
(C

F
U

 g
-1

)

0

1

2

3 a a
abab abc

def
efg

ghi

de
efg

fgh

cd

efg

i
ghi

j
hi
ghi

def
bcd

kkkk

Exposure time (hours)

0.5 3 6 24

L
o

g 
R

e
du

ct
io

n 
(C

F
U

 g
-1

)

0

1

2

3

a ab

defg

ghi

efg

fghi

def

ij

def

hij

k

abc

fgh

bcd

fghi

cde

ghi

jk

fghi

jk

l ll l

 
 

Figure 3.4: The effect of ozone concentration and exposure time (c x t) on populations 
of (a) E. coli O157, (b) Salmonella Typhimurium and (c) L. monocytogenes on bell 
pepper plugs. Bars with the same letters are not significantly different using DMRT, (n = 
3, P < 0.05). 
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and 3.06 log reduction of E. coli O157, Salmonella Typhimurium and L. monocytogenes 

populations, respectively. This meets the requirement for an antimicrobial agent (Torlak 

et al., 2013). In comparison to in vitro study, higher ozone dosages were required to 

achieve optimal antibacterial activity in fresh cut bell pepper. This could be due to the 

structure of fruit cells which protects the bacterial cells from oxidation action of ozone 

and allows the bacteria to multiply inside the cells. Besides, fresh cut bell pepper may 

have organic juices and natural antioxidant which may protect the bacterial population 

from ozone oxidation. These factors reduces the effectiveness of ozone hence, higher 

ozone dosages were required to achieve optimal antibacterial activity in fresh cut bell 

pepper compared to in vitro study.   

In line with in vitro assay, Salmonella Typhimurium showed the highest 

resistance to ozone followed by E. coli O157 and L. monocytogenes. Salmonella 

Typhimurium showed the highest resistance towards ozone could be due higher density 

of  its cell membrane with higher content of phospholipid components, such as 

phosphatidylethanolamine and phosphatidylglycerol, compared to that of E. coli O157 

(Ames, 1968; Heinrichs et al., 1998). This increased the rigidity of the cell wall and 

provided extra protection for the cell membrane against ozone (Alexopoulos et al., 

2013).  

In spite of the presence of a peptidoglycan layer in L. monocytogenes cell walls, 

a Gram positive bacterium, the cell wall was very susceptible to ozone action. This was 

due to low degree of cross-linking of the cell wall (Navarre and Schneewind, 1999), 

which reduced its rigidity hence increased its susceptibility to ozone. This was 

supported by Restaino et al., (1995) who found L. monocytogenes was more 
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susceptible to ozone than Gram negative bacteria, such as E. coli, Salmonella 

Typhimurium and Pseudomonas aeruginosa. (Restaino et al., 1995) 

Reduction in bacterial population on fresh cut bell pepper was also reported by 

Horvitz and Cantalejo (2012) where exposure to 0.7 ppm ozone for 5 mins resulted in 

0.1 log reduction in aerobic mesophilic bacteria population. This reduction is very 

minimal compared to our results. This could be due to the lower ozone concentration 

and shorter exposure time used. Increase in ozone concentration and exposure time 

would increase microbial reduction in the fresh cut bell pepper.  

 When compared the optimal antibacterial activity achieved in this study to other 

commodities, higher efficacy of microbial reduction was observed from ozone treatment 

on whole tomato where a 2 log reduction was achieved from application of 5 ppm ozone 

for 3 min (Bermúdez-Aguirre and Barbosa-Cánovas, 2013). This could be due to the 

smooth surface of whole tomato compared to the porous surface of cut bell pepper 

(Bermúdez-Aguirre and Barbosa-Cánovas, 2013). Besides, the effectiveness of ozone 

in reducing bacterial population on cut fruit may be reduced due to organic juices 

(Alexopoulos et al., 2013), lignin and suberin (Aquino-Bolaños and Mercado-Silva, 

2004), which are released or produced by fruit at cut surface. These compounds 

negated antibacterial activity of ozone hence, reduced its effectiveness to penetrate 

inner tissue of the fruit. 

Optimal antibacterial activity observed for E. coli O157 in this study was similar to 

the reduction in E. coli O157 population on lettuce (2.31 log reduction), from application 

of 1 ppm  chlorine dioxide gas for 15 min (Singh et al., 2002). This chlorine gas 

application, however, caused discoloration to the lettuce (Singh et al., 2002). 
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Meanwhile, similar reduction in L. monocytogenes population was achieved with the use 

of a lower ozone dosage in aqueous ozone treatment; exposure to 4.5 ppm aqueous 

ozone for 3.5 min on lettuce, where it resulted in 2.5 log reduction of total population 

(Ölmez and Akbas, 2009). This showed that the aqueous ozone treatment has higher 

efficacy compared to gaseous treatment conducted in this study. This could be due to 

the nature of the leafy vegetable used, which has smooth surfaces compared to porous 

surface of cut bell pepper.  

The antibacterial activity of gaseous ozone obtained in this study demonstrated the 

potential for its application for fruit sanitization without the use of water, hence 

eliminating the high possibility of cross contamination in the aqueous treatment. In 

comparison to aqueous treatment, gaseous ozone treatment is more stable as it is not 

affected by the presence of organic matter and pH of the water used in aqueous 

treatment (Forney, 2003).  

 

3.3.4 Effect of ozone on bacterial morphology 

 

ESEM study revealed that morphology of E. coli O157, Salmonella Typhimurium 

and L. monocytogenes was affected by ozone (Figure 3.5). Bacterial cells treated with 

ozone had disrupted structure which is indicated by angular and irregular structure. This 

is in contrast to control cells which has smooth and oval structure. Similar results were 

also reported on Geobacillus stearothermophilus, Bacillus stearothermophilus  

 

 



 

87 
 

 

 

 

 

Figure 3.5: Scanning electron micrographs of control (a) E. coli O157, (b) Salmonella 
Typhimurium and (c) L. monocytogenes. Micrographs shows bacterial cells exposed to 
0 (left), 0.5 (middle) and 1.0 (right) ppm ozone for 0.5 hour. Note that the cells of control 
bacterial cultures were intact (IC) while the cells of treated bacterial cultures were 
disrupted (DC). 
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(Mahfoudh et al., 2010) and Staphylococcus aureus (Thanomsub et al., 2002) where 

ozone disrupted the bacterial structure. This shows that ozone attacked bacterial cell 

membrane and may result in cell death observed in in vitro and in vivo experiments.  

The irregular bacterial structure observed in ozone treated cells could be due to 

oxidative action of ozone and its decomposition products such as •OH, •OOH and H2O2 

on double bonds of unsaturated phospholipid of cell membrane (Forney, 2003). These 

oxidative agents are usually neutralized by defence enzymes such as catalase 

produced by bacteria to protect the cells from oxidative damage (Buchmeier et al., 

1995). High oxidative stress however, perturbed the equilibrium between the defence 

enzymes and oxidative stress.  This led to accumulation of reactive oxygen species, 

which progressively attacked the cell membrane. The lipid peroxidation by ozone led to 

formation of lipid hydroperoxides (LOOH), which leads to subsequent chain reaction of 

lipid degradation (Forney, 2003). This increased membrane fluidity, reduced its integrity, 

disrupted cell osmotic balance and lead to cell wall rupture, cellular leakage, excessive 

nutrient loss and subsequent cell death (Al-Haddad et al., 2005; Torlak et al., 2013). 

Inactivating bacterial cells by disrupting cell membranes is an effective mechanism as it 

does not lead to microbial resistance and ozone or its induced reactive products do not 

need to permeate into the cells to be effective (Torlak et al., 2013).    

Ozone and its decomposed products also inactivated bacterial cell by oxidizing 

sulfhydryl groups and amino acids of enzymes or proteins (Al-Haddad et al., 2005; 

Torlak et al., 2013). It decomposed the proteins to smaller peptides, changed its 

conformation and subsequently inactivated the protein (Torlak et al., 2013). Ozone also 

disrupted bacterial DNA by changing its secondary structure (Hunt and Marinas, 1999) 
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or introducing mutation (Torlak et al., 2013), which altered genetic coding. The 

inactivation of protein and disruption of DNA altered bacterial cellular metabolism and 

subsequently lead to cell death.  

In conclusion, the in vitro and in vivo experiments showed ozone reduced E. coli 

O157, Salmonella Typhimurium and L. monocytogenes populations on agar plates and 

fresh cut bell pepper by disruption of the bacterial cell membrane which leads to cell 

lysis. From the in vivo experiment, the optimal dosage to reduce the bacterial 

populations on fresh cut bell pepper was 9 ppm ozone for 6 h (Figure 3.4). This ozone 

dosage resulted in 2.89, 2.56 and 3.06 log reduction of E. coli O157, Salmonella 

Typhimurium and L. monocytogenes populations, respectively. This showed the 

potential of ozone fumigation to be used as a sanitization treatment to reduce microbial 

load on fresh cut fruit before reaching the consumer. 
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CHAPTER 4  

 

EFFECT OF OZONE FUMIGATION ON  

ANTHRACNOSE DEVELOPMENT ON BELL PEPPER 

 

4.1 Introduction 

 

Anthracnose is a devastating disease affecting bell pepper which resulted in 

huge economic loss to producing countries. It is commonly observed on ripe fruit 

(usually red in bell pepper, depends on cultivar) hence, classified as ripe-rot pathogen 

(Alexopoulos et al., 2013). After 1998 however, anthracnose outbreak was observed on 

bell pepper harvested at green stage and the disease was reported every year since 

then (Lewis Ivey et al., 2004). This disease spread profusely and contributed up to total 

loss in bell production in Ohio, United States (Lewis Ivey et al., 2004). Besides, 

anthracnose also caused massive loss in bell pepper production in Trinidad, Brazil 

(Ramdial and Rampersad, 2015) and Japan (Kanto et al., 2014).  

Anthracnose in bell pepper is caused by several Colletotrichum species including 

C. capsici. C. gloeosporioides. C. coccodes and C. acutatum (Tomás-Callejas et al., 

2012) where C. capsici is the most prevalent species in Asia (Harp, 2008).  Occurrence 

of C. capsici on bell pepper was first reported in Mississippi, United States in 1994 (Roy 

et al., 1997). The prevalence of this pathogen is increasing and was reported to be the 

main causal agent (72%) for bell pepper anthracnose in Trinidad (Ramdial and 

Rampersad, 2015). This Colletotrichum species is the most severe species due to its 
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resistant genotype (Ratanacherdchai et al., 2007). Therefore, an effective postharvest 

treatment is required to control its proliferation in order to reduce fruit losses. This leads 

to the objectives of this study to:  

1. evaluate the effect of ozone on mycelia growth, spore production and spore 

germination of C. capsici  in vitro 

2. evaluate the effect of ozone on disease incidence, disease severity and spore 

production caused by C. capsici on bell pepper 
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4.2 Materials and Method 

 

4.2.1 Isolation and identification of Colletotrichum capsici 

 

4.2.1.1 Isolation of C. capsici from bell pepper 

 

Bell pepper with anthracnose symptoms (black-brown, circular and sunken 

lesions) were collected from Pasar Semenyih, Semenyih, Selangor, Malaysia. Diseased 

tissues were inoculated onto Potato Dextrose Agar (PDA, Merck, pH 7.0) and incubated 

at 25°C for 9 days. 

 

4.2.1.2 Macro- and microscopic identification of C. capsici 

 

Putative C. capsici (white greyish radial mycelia that turned to a grey greenish 

colour with age; aerial mycelium was white or grey and acervulus was dark brown or 

black) was sub-cultured to obtain pure cultures. The cultures were further identified 

under an optical microscope (Model: Eclipse 80i, Nikon Corp.).  Cultures produced 

fungal hyphae that were hyaline, septate and branched and spores that were one-

celled, hyaline, smooth walled and sickle shaped ranging from 17 - 18 x 3 - 4 µm were 

selected (Chanchaichaovivat et al., 2007). The C. capsici culture was maintained on 

PDA and continuously sub-cultured onto fresh PDA to maintain pathogenicity of the 

culture. 
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4.2.1.3 Pathogenicity assay 

 

Fruit (section 3.2.2) were surface sterilised with 0.5% sodium hypochlorite and 

rinsed with sterile distilled water. Equatorial of the fruit was artificially injured and 

applied with 50 µl of 1 x 105 spores ml-1, which were estimated using a 0.0025 mm2 

Neubauer Improved haemocytometer (Hirschmann EM Techcolor, Germany). Control 

fruit was inoculated with sterile distilled water. The inoculated fruit were then incubated 

at room temperature and symptoms were recorded after four days. Pathogenicity of C. 

capsici was confirmed as black brownish, circular and sunken lesions were observed. 

The C. capsici cultures were re-isolated onto PDA to confirm according to Koch’s 

postulates (Roy et al., 1997).  

 

4.2.2 Screening of antifungal activity of ozone  

 

Fungal mycelia plugs (5.0 mm diameter) from periphery of actively growing C. 

capsici cultures were inoculated onto PDA, pH 7.0. The mycelium was exposed to 

ozone at concentrations of 0 (control), 0.1, 0.5, 1.0, 5.0 and 9 ppm for exposure times of 

0.5, 1, 3, 6, 12, 24, 48, 72 and 120 h at 18 - 20°C and 95% RH with Petri plate lids 

removed to allow air circulation. Following ozone exposure, the cultures were incubated 

in duplicate clean air chambers (0 ppm ozone) at 18 - 20°C, 95% RH until the end of 

incubation period (total of 9 days). Radial mycelia growth was recorded and antifungal 

activity was calculated by comparing the growth of treated mycelium with the control 

and expressed in percentage (Minas et al., 2010).  
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Antifungal activity (%) = (
Mc −  Mt

Mc
 ) × 100 

Mt = Mycelia growth of treated cultures 

Mc = Mycelia growth of control cultures 

 

4.2.3 In vitro antifungal assay on C. capsici  

 

4.2.3.1 Antifungal assay on mycelia of C. capsici  

 

4.2.3.1.1 Measurement of radial mycelia development 

 

The effect of ozone on radial mycelia development was carried out based on 

screening result. Fungal mycelia plugs (5.0 mm diameter) from periphery of actively 

growing C. capsici cultures were inoculated onto PDA, pH 7.0 and the mycelium was 

exposed to ozone at concentrations of 0 (control), 1, 3, 5 and 7 and 9 ppm for exposure 

times of 24, 72 and 120 h at 18 - 20°C and 95% RH with Petri plate lids removed to 

allow air circulation. Following ozone exposure, the cultures were incubated in duplicate 

clean air chambers (0 ppm ozone) at 18 - 20°C, 95% RH until the end of incubation 

period (total of 9 days). Radial mycelia growth was recorded and antifungal activity was 

calculated by comparing the growth of treated mycelium with the control and expressed 

in percentage as in section 4.2.2 (Minas et al., 2010).  
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4.2.3.1.2 Analysis of mycelia structure using Environmental scanning electron 

microscopy (ESEM) 

 

Following the period for treatment and clean-air incubation (total of 9 days), agar 

plugs (19.63 mm2) adjacent to the mycelium colony (with mycelia developed under 

ozone) were carefully removed using a 5.0 mm cork borer without disturbing the fungal 

structure. The culture plugs were viewed under a scanning electron microscope (Model: 

Quanta 400F ESEM, FEI, USA) using ESEM mode to study the effect of ozone on 

fungal mycelium development (Antony-Babu and Singleton, 2011).  

 

4.2.3.2 Quantification of C. capsici spore production 

(Antony-Babu and Singleton, 2011) 

C. capsici sporulation was determined according to Antony-Baby and Singleton 

(2011). Following the period of treatment and clean-air incubation (total of 9 days), agar 

plugs (117.78 mm2) adjacent to the mycelial colony (mycelia grown under ozone 

treatment) were carefully sampled using a 5.0 mm cork borer. The plugs were incubated 

in 5 ml distilled water with continuous agitation at 250 rpm for 18 hours to produce spore 

suspension. Concentration of the spore suspension was estimated using a 0.0025 mm2 

Neubauer Improved haemocytometer.  
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4.2.3.3 Antifungal assay on spore of C. capsici 

 

4.2.3.3.1 C. capsici spore germination test 

 

Spore suspensions were prepared by agitating 8 days old C. capsici cultures with 

sterile distilled water and detached fungal hyphae fragments were removed by filtering 

the suspension through a cheese cloth. Concentration of the spore suspensions was 

adjusted to 1 x 105 spores ml-1 using a 0.0025 mm2 Neubauer Improved 

haemocytometer and 100 µl were then evenly spread onto PDA pH 7.0. The plates with 

removed lids were exposed to ozone treatment at 18 - 20°C and 95% RH with Petri 

plate lids removed to allow air circulation. Following ozone treatment, the spores were 

incubated in a clean air chamber (0 ppm ozone) at 18 - 20°C and 95% RH for 72 hours 

and viewed under a Universal Zoom Microscope (Model: Multi-Purpose Zoom 

Microscope Multizoom AZ100, Nikon Corp.) using 40X magnification. For each 

treatment, 100 spores were viewed and number of germinated spores were recorded 

(Minas et al., 2010). The number of germinated spores obtained was compared with the 

control and spore germination percentage was calculated as below; 

Spore germination (%) = (
Nt

Nc
 ) × 100 

Nt = Number of germinated spore in treated cultures 

Nc = Number of germinated spore of control cultures 
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4.2.3.3.2 Analysis of spore structure using Environmental scanning electron 

microscopy (ESEM) 

 

A spore suspension (1 x 105 spores ml-1) of C. capsici was prepared and treated 

as previously described in section 4.2.3.3.1. The fungal spores were exposed to ozone 

at concentrations of 0 (control), 1, 3, 5, 7 and 9 ppm  for 24 h at 18 - 20°C and 95% RH. 

Following the ozone exposure, agar plugs (19.63 mm2) were carefully removed and 

viewed using a scanning electron microscope (Model: Quanta 400F ESEM, FEI, USA) 

under ESEM mode to determine the effect of ozone on spore morphology.  

 

4.2.3.3.3 Quantification of spore intracellular H2O2  

 

Intracellular H2O2 is an ozone decomposition product. Quantification of spore 

intracellular H2O2 gives an indication of ozone oxidation level on the spore cells. 

Intracellular H2O2 was measured according to Chen and Dickman (2005). A spore 

suspension (1 x 105 spores ml-1) of C. capsici was prepared and treated as described in 

section 4.2.3.3.1. The spores were then washed with 10 mM potassium phosphate 

buffer, incubated in 10 µM 2,7-dicholorodihydrofluorescein diacetate (DCHF-DA) for 5 

min, washed with potassium phosphate buffer twice and analysed under a  fluorescence 

microscope (Model: Multi-Purpose Zoom Microscope Multizoom AZ100, Nikon Corp.). 

For each treatment, 100 spores were viewed and the number of fluorescence spores 

(indicating the presence of H2O2) was compared with the control and the percentage of 

spores with intracellular H2O2 was calculated as below; 
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Spore with intracelllular H2O2 (%) = (
Nt

NT
 ) × 100 

Nt = Number of fluorescence spore in treated cultures 

NT = Total number of spore of control cultures 

 

4.2.4 In vivo antifungal assay on artificially inoculated bell pepper 

 

4.2.4.1 Assessment of anthracnose severity and incidence  

(Chanchaichaovivat et al., 2007) (C. Chen and Dickman, 2005) 

In vivo analysis was carried out according to Chanchaichaovivat et al., (2007). 

Fruit (section 3.2.2) were artificially injured with 5.0 mm cork borer and 50 µL of 1 x 105 

spore ml-1 spore suspension as described in section 4.2.3.3.1, were inoculated onto the 

injured tissues, ensuring uniform inoculation on each wound.  

The inoculated fruit were then exposed to ozone at concentrations of 0 (control), 

1, 3, 5 and 7 and 9 ppm for exposure times of 24, 72 and 120 h at 12°C and 95% RH. 

Following ozone treatment, fungal cultures were incubated in duplicate clean air 

chambers (0 ppm ozone), at 12°C (Controlled Environment Chamber, Model ECR, 

Brand RISHA) until the end of storage period, 21 days. Disease incidence (percentage 

of fruit with anthracnose symptoms out of total number of fruit) and disease severity 

(wound diameter (lesion diameter)) were recorded at the end of storage period. The 

ability of ozone to inhibit fungal growth was compared.  

  



 

99 
 

 

Disease incidence (%) = (
Nt

NT
 ) × 100 

Nt = Number of fruit with anthracnose symptoms 

NT = Total number of fruit 

 

4.2.4.2 Quantification of C. capsici spore production on fruit  

(Tzortzakis et al., 2008) 

In vivo spore production analysis was conducted according to Tzortzakis et al., 

(2008). Following ozone treatment and clean air storage as previously described, fruit 

were agitated with 100 mL Tween 80 (0.1%) at 120 rpm for 20 min to displace C. 

capsici spores from fruit tissues. The spore suspension was then centrifuged at 2000×g 

(Model: 5810 R, Eppendorf, UK) for 10 min and pellet of C. capsici spores were 

recovered and diluted into 1 ml distilled water. Concentration of the spore suspensions 

was then estimated using a 0.0025 mm2 Neubauer Improved haemocytometer.  

 

4.2.5 Statistical analysis 

 

The experiments were carried out following a Completely Randomized Design 

(CRD) with three replicates using three different ozone chambers. In vitro experiments 

was conducted using five technical replicates (agar plates) while in vivo analysis was 

conducted three technical replicates each containing 20 fruits. The experiment was 

repeated thrice and data was analysed separately to check for homogeneity. Data of in 

vitro spore germination and intracellular H2O2 were transformed prior to analysis. Data 



 

100 
 

 

were analysed using Statistical Analysis Software (SAS, version 9.1.3, SAS Institute 

Inc., USA). Analysis of variance (ANOVA) was performed with P < 0.05 significance 

level and differences in data means were analysed using DMRT.  
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4.3 Results and Discussion 

 

4.3.1 Isolation and identification of C. capsici 

(Hang, 2008) 

C. capsici was isolated from infected bell pepper and the macroscopic and 

microscopic morphology are as described by Hang (2008). The isolated C. capsici has 

white greyish radial mycelia that turned to grey greenish with age. Meanwhile, aerial 

mycelium was grey and acervulus was dark brown. Microscopic observation showed 

that the fungal hyphae was hyaline, septate and branched while the spores were one-

celled, hyaline, smooth walled and sickle shaped with size ranging from 3 – 4 µm x 16 – 

25 µm (Figure 4.1). This characteristic microscopic features of C. capsici is a distinct 

characterization from other Colletotrichum species; C. gloeosposoides and C. acutatum, 

which has long elongated shape spores with blunt end (former) and sharp end (Iater) 

(Than et al., 2008). Therefore, it is reliable to characterize Colletotrichum species based 

on their microscopic spore. In this experiment, C. capsici was successfully re-isolated 

hence proved that it was the causal agent of anthracnose on the bell pepper.  
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Figure 4.1: Macro- and microscopic morphology C. capsici (a) grey mycelia with dark 
brown acervuli on PDA; (b) hyaline, branched and septate hyphae under optical 
microscope (Magnification: 400X); and (c) one celled, sickle shaped spores with size 
ranging from 3 – 4 µm x 16 – 25 µm under optical microscope (Magnification: 400X) 
  

(a) (b) 

(c) 
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4.3.2 Pathogenicity of the isolated C. capsici 

 

Pathogenicity of the isolated C. capsici was confirmed as bell pepper inoculated 

with C. capsici spores produced anthracnose symptoms; black brownish sunken lesions 

(Figure 4.2). In contrast to control fruit which inoculated with sterile distilled water where 

no disease symptoms were observed. The sunken lesion of C. capsici infected fruit was 

observed on day 1 and lesion was continuously growing to cover the fruit. On day 12 

after inoculation, the fruit tissues were soft and watery. Koch’s postulates were 

confirmed as C. capsici was recovered from the infected fruit (Roy et al., 1997).  

 

 

Figure 4.2: Pathogenicity assessment of the isolated C. capsici. The isolated C. capsici 
was pathogenic as (a) bell pepper inoculated with sterile distilled water (control) showed 
no anthracnose symptom while (b) bell pepper inoculated with C. capsici spore showed 
anthracnose symptom. 

 

 

(a) (b) 
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4.3.3 Screening of antifungal activity of ozone  

 

Screening of antifungal activity showed ozone treatment reduced fungal mycelia 

growth (Table 4.1). Interaction of ozone concentration and exposure time had significant 

effect (P < 0.0001, Appendix B 4.1) on the antifungal activity. The interaction effect of 

ozone concentration and exposure time showed exposure to 9.0 ppm ozone for 72 h 

had the highest antifungal activity on C. capsici radial mycelia growth. Referring to this 

screening result, a range of ozone concentration; 0.0 (control), 1.0, 3.0, 5.0, 7.0 and 9.0 

ppm, for exposure times of 24, 72 and 120 h; was selected to conduct an in vitro assay 

on the effect of ozone on C. capsici growth.  These ozone dosages were selected to 

obtain optimal antifungal activity of ozone. Exposure time was selected from 24 to 120 h 

to suit the potential of ozone treatment to be incorporated into transportation or storage 

system. This allows ozone treatment to be carried out during transportation hence, 

reduces the fruit handling time. This would be a new development for ozone treatment 

in postharvest technology.   

  



 

105 
 

 

Table 4.1: Antifungal activity of ozone on C. capsici mycelia growth 

Ozone concentration (ppm) 

Exposure time (hour) 

0 0.5 1 3 6 12 24 48 72 120 

----- Antifungal activity of ozone on C. capsici mycelia growth (%) ----- 

0.0 (control) 0.0j 0.0j 0.0j 0.0j 0.0j 0.0j 0.0j 0.0j 0.0j 0.0j 

0.1 0.0j 2.6h-j 2.7h-j 1.8ij 2.8h-j 3.0h-j 3.2h-j 3.9g-j 4.7d-j 4.9d-j 

0.5  0.0j 1.8ij 2.3h-j 3.5h-j 2.9h-j 3.5h-j 3.9g-j 4.6d-j 7.2c-i 5.5c-j 

1.0  0.0j 3.0h-j 3.3h-j 3.6h-j 6.2c-j 6.0c-j 7.5c-h 9.1c-h 10.9b-d 3.9g-j 

5.0  0.0j 3.1h-j 4.1f-j 4.4d-j 5.7c-j 6.5c-j 12.1bc 10.9b-e 15.6b 3.0h-j 

9.0  0.0j 3.3h-j 2.6h-j 3.9g-j 5.1d-j 4.8d-j 10.6b-f 12.0bc 29.9a 3.8g-j 

Antifungal activity of ozone is the percentage of mycelia growth compared to control after ozone treatment. 
Values are interaction effect of ozone concentration and exposure time on antibacterial activity. Means across rows and 
columns followed by same letter are not significantly different using DMRT (P < 0.05). 
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4.3.4 Effect of ozone on in vitro C. capsici growth  

 

4.3.4.1  Effect of ozone on mycelia of C. capsici 

 

4.3.4.1.1 Effect of ozone on mycelia development 

 

Interaction of ozone concentration and exposure time significantly affected (P < 

0.0001, Appendix B 4.2) C. capsici mycelia growth (Figure 4.3). The highest mycelia 

inhibition was achieved from exposure to 7 ppm ozone for 72 h. Increase in ozone 

concentration or exposure time showed a reduction in mycelia inhibition. This could be due 

to oxidation effect of ozone and its induced reactive compounds on fungal cell membrane 

(Forney, 2003).  Ozone and its induced reactive compounds such as hydrogen peroxide 

and superoxide radicals may reactively oxidize lipids and proteins components of fungal 

cell membrane (Keutgen and Pawelzik, 2008). This disrupted the fungal cell membrane 

hence restricted mycelia development. (Minas et al., 2010)  

Exposure to ozone dosage higher than the optimal dosage (7 ppm for 72 h), 

resulted in reduction in mycelia inhibition. This could be fungal response towards high 

ozone dosage where the ozone dosage stimulated mycelia growth. This finding was 

supported by Minas et al. (2010) where reduction in mycelia inhibition was also observed 

in Botrytis cinerea exposed to ozone longer than 24 h. Meanwhile, Oktarina et al. (2012) 

also showed reduction in mycelia inhibition as Rhizopus species; Rhizopus oryzae, 

Rhizopus stolonifera and Rhizopus microsporus var. chinensis were exposed to higher 

ozone dosage. The study reported that the fungal species respond differently towards 
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ozone where reduction in mycelia inhibition was observed after ozone exposure was 

exposed to more than 4, 9 and 13 days, respectively (Oktarina et al., 2012). This 

suggested that different fungal species respond differently towards ozone and an optimal 

ozone dosage is required to obtain maximum mycelia inhibition.  
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Figure 4.3: The effect of different ozone concentration and exposure time on in vitro C. 

capsici radial mycelia growth after 9 days incubation at 18 - 20°C, 95% RH, under ozone 
treatment and subsequent clean air incubation. Error bars are the standard error values. 
Bars with different letters are significantly different using DMRT (P < 0.05). Values are 
mean of three replicates. 
 

4.3.4.1.2 Effect of ozone on structure of C. capsici mycelia under ESEM 

 

Scanning electron micrograph of C. capsici mycelia showed ozone affected the 

mycelia structure (Figure 4.4 – Figure 4.5). Exposure to ozone for 24 h resulted in more  
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Figure 4.4: Scanning electron micrograph (magnification: 3000X) of C. capsici mycelia 
exposed to 24, 72 and 120 hours to different ozone concentration; (from left to right) 0 
(control), 1 and 3 ppm ozone.  I) Note the mycelium was highly branched (HB) and has 
more complex mycelia network with exposure to ozone. II) Note exposure to 72 hours of 
ozone resulted in highly branched mycelia with retarded growth (HB/R). III) Note exposure 
to 3 ppm ozone for 120 hours induced sporulation with abundance of spore acervuli on 
mycelium. The spores produced however, has abnormal morphology (AS).  
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Figure 4.5 Scanning electron micrograph (magnification: 400X) of C. capsici mycelia 
exposed to 24, 72 and 120 hours to different ozone concentration; (from left to right) 5, 7 
and 9 ppm ozone.  I) Note the mycelium was highly branched (HB) and has more complex 
mycelia network with exposure to ozone. II) Note exposure to 72 hours of ozone resulted 
in highly branched mycelia with retarded growth (HB/R). III) Note exposure to 5 ppm 
ozone for 120 hours induced sporulation with abundance of spore acervuli on mycelium. 
The spores produced however, has abnormal morphology (AS). IV) Note exposure to 7 
and 9 ppm ozone for 120 hours produced clumped structures (CS), presumably fungal 
spores severely disrupted by ozone.   
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dense and highly branched mycelia compared to control. The effect of ozone on mycelia 

structure was more apparent as the mycelia were exposed to ozone for 72 and 120 h. This 

is evident from the extremely compact and highly branched structure of the mycelia. 

Similar finding was observed on Aspergillus nidulans exposed to 0.2 ppm  ozone for 8 

days (Antony-Babu and Singleton, 2009) and A. niger exposed to H2O2 where compact 

and retarded growth of mycelia was observed (Kreiner et al., 2003). This could be due to 

oxidation of fungal cell membrane by the oxidative agents, ozone and H2O2. Besides, it 

could also be due to fungal response to reduce hyphae surface area (Kreiner et al., 2003). 

This would decrease its oxygen intake hence reduce the toxicity effect of ozone on the 

cells. This reduced hyphae elongation hence restricted fungal growth. This could reduce 

fungal growth on fruit hence reduced disease development and subsequently prolonged 

fruit storage life. 

 ESEM micrograph also revealed that exposure to 3, 5, 7 and 9 ppm ozone for 120 h 

induced spore production as observed from abundance of acervuli and spores on the 

mycelia. The increase in spore production was also observed in Alternaria oleraceae  

cultures exposed to 0.6 ppm ozone (Treshow et al., 1969) and certain fungi species 

exposed to 110 ppm ozone (Kuss, 1950). This could be the fungal survival response upon 

exposure to high ozone dosage. This study also revealed that the spores produced during 

ozone treatment had disrupted or abnormal structures as evident from their irregular 

shape. This was most prevalent on cultures exposed to 7 and 9 ppm ozone for 120 h 

where abundance of clumped masses was observed. This is probably due to the oxidation 

action of ozone and its reactive decomposition products on spore cell membrane which 

disrupted the spore integrity. The mycelia under this condition may continuously sporulate 



 

111 
 

 

under clean air storage and produce viable fungal spores. These fungal spores may 

germinate during clean air storage and result in reduction in mycelia inhibition as observed 

in section 4.3.4.1.1. 

 

4.3.5 Effect of ozone on C. capsici spore production  

C. capsici spore production was significantly affected (P < 0.0001, Appendix B 4.3) 

by interaction of ozone concentration and exposure time (Figure 4.6). Exposure to ozone 

for 24 and 72 h had no effect on C. capsici spore production. Increase in ozone 

concentration to 3 ppm ozone for 120 h increased spore production where it resulted in the 

highest spore production. Further increase in ozone dosage to 5, 7 and 9 ppm ozone for 

120 h however, reduced C. capsici spore production.  

Figure 4.6 showed that exposure to high ozone dosage (3, 5, 7 and 9 ppm ozone 

for 120 h) induce C. capsici spore production. This is in agreement to ESEM micrograph of 

C. capsici mycelia (Figure 4.5) where abundant of spores were observed in cultures 

exposed to 3, 5, 7 and 9 ppm for 120 h. The increase in spore production when exposed 

to high ozone dosage was also reported in A. nidulans and A. ochraceus where exposure 

to 200 ppm ozone increased the fungal spore production compared to exposure to lower 

ozone concentration, 0.2 ppm ozone (Antony-Babu and Singleton, 2009).  This indicated 

that the fungal cultures sporulate at higher rate when exposed to high oxidative stress. 

This could be due to increase in conidiophore respiration which results in premature 

sporulation (Roushdy et al., 2011). This increased spore production as observed in the 

result.   
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Figure 4.6: The effect of different ozone concentration and exposure time (c x t) on in vitro 

C. capsici spore production after 9 days incubation at 18 - 20°C, 95% RH, under ozone 
treatment and subsequent clean air incubation. Error bars are the standard error values. 
Bars with different letters are significantly different using DMRT (P < 0.05). Values are 
mean of three replicates 
 

 

In this study, reduction in spore production was observed in mycelia exposed to 5, 7 

and 9 ppm ozone for 120 h compared to 3 ppm ozone for 120 h. This could be due to the 

disrupted and abnormal shape of spores as observed in ESEM. The disrupted spore 

structure resulted in clumped masses under strong ozone dosage (7 and 9 ppm ozone for 

120 h) and did not have the unique sickle shape of C. capsici spores which therefore was 

not considered in the spore production analysis. This contributed to the decrease in 

number of spore observed in cultures exposed to 5, 7 and 9 ppm ozone for 120 h 

compared to mycelium exposed to 3 ppm ozone for 120 h.  
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The mycelia exposed to ozone for 120 h may continuously sporulate under clean air 

incubation after ozone exposure. This resulted in hyphae elongation and mycelia growth. 

This contributed to reduction in mycelia inhibition observed in cultures exposed to ozone 

for 120 h in mycelia development analysis (Figure 4.3). Therefore, these results suggested 

that an appropriate ozone dosage is required to reduce mycelia growth but not induce 

sporulation. In this study, we found that exposure to 7 and 9 ppm ozone for 72 h 

decreased C. capsici mycelia growth but did not induce sporulation. This could be the best 

treatment for anthracnose on bell pepper.  

 

4.3.5.1 Effect of ozone on spore of C. capsici  

 

4.3.5.1.1 Effect of ozone on germination of C. capsici spore 

 

Germination or viability of C. capsici spores was significantly affected (P < 0.0001, 

Appendix 4.4) by ozone concentration (Table 4.2). Increase in ozone concentration up to 3 

ppm ozone significantly reduced spore germination where it resulted in nearly total 

inhibiton. Further increase in ozone concentration to 5, 7 and 9 ppm ozone or exposure 

time to 72 and 120 h had no effect on the spore germination.  

This experiment showed that C. capsici spores were highly susceptible to ozone as 

exposure to 1 ppm ozone for 24 h reduced 95.1% of spore germination. Further increase 

in ozone dosage resulted in total inhibition. Lower inhibition effect of ozone was observed 

in C. coccodes and A. alternata spores as exposure to 1 ppm  ozone for 24 h only reduced 

approximately 88 and 60% of the spore germination (Tzortzakis et al., 2008). This  
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Table 4.2: The effect of ozone concentration and exposure time (c x t) on in vitro C. capsici 
spore germination percentage after 72 h incubation at 18 - 20°C, 95% RH, under ozone 
treatment and subsequent clean air incubation. 

 Exposure time  

Ozone concentration 24 hours* 72 hours* 120 hours* Mean†  

 -In vitro C. capsici spore germination (%)-  

0 ppm (control) 8.2 ± 0.2 a 8.2 ± 0.2 a 8.2 ± 0.2 a 8.2 ± 0.0 a 

1 ppm 0.4 ± 0.2 b 0.0 ± 0.0 c 0.0 ± 0.0 c 0.1 ± 0.0 b 

3 ppm 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c 

5 ppm 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c 

7 ppm 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c 

9 ppm 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c 

Mean‡  1.4 ± 0.0 a 1.4 ± 0.0 a 1.4 ± 0.0 a  

In vitro C. capsici spore germination percentage is the percentage of C. capsici spores 
germinated after 72 hours incubation at 18 - 20ᵒC, 95% RH. The data presented are data 
after transformation. 
*Values are interaction effect of ozone concentration and exposure time on C. capsici 
spore germination. Means across rows and columns followed by same letter are not 
significantly different using DMRT (P < 0.05). 
†Values are effect of ozone concentration on C. capsici spore germination. Means across 
rows followed by same letter are not significantly different using DMRT (P < 0.05). 
‡ Values are effect of exposure time on C. capsici spore germination. Means across 
columns followed by same letter are not significantly different using DMRT (P < 0.05). 

  



 

115 
 

 

variation in spore susceptibility towards ozone could be due to differences in spore 

membrane composition (Palou et al., 2001; Tzortzakis et al., 2008). In comparison 

between C. capsici and C. coccodes and A. alternata, C. capsici spore membrane may 

have lower degree of cross-linking and less density of phospholipid content which may 

contribute to its high susceptibility towards oxidation of ozone. 

 

 

4.3.5.1.2 Effect of ozone on C. capsici spore under ESEM 

 

 ESEM micrograph of C. capsici spore showed ozone affected the spore structure. 

Spores exposed to ozone (1, 3, 5, 7 and 9 ppm ozone) were unviable and unable to 

germinate (Figure 4.7).  Besides, the treated spores had disrupted structure as indicated 

by their crooked surface. In contrast to the treated spores, untreated spores had 

germinated and produced mycelia.  

The disrupted structure of ozone treated spores showed that ozone oxidized the 

spore cell wall, reduced integrity of the cell and may contribute to the unviability of the 

spore. This finding was supported by Roushdy et al. (2011) where similar spore disruption 

was observed on Aspergillus brasiliensis spore where ozone damaged the spore cell wall 

which could result in leakage of the spore cellular contents. Besides, ozone also disrupted 

cell wall structure of Fusarium fujikuroi spore which resulted in crooked surface as 

reported in this study (Kang et al. 2015). The mode of action of ozone on the spore was 

possibly by attacking lipid contents of spore cell wall (He and Häder, 2002). The disruption 

of spore structure affected its viability and contributed to inhibition of spore germination 



 

116 
 

 

observed in Table 4.2. These results suggest that ozone works as an antifungal by 

inhibiting spore germination. This mechanism would reduce fungal source of inoculum 

hence restrict further infection.  
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Figure 4.7: Scanning electron micrograph (magnification: 5000X) of C. capsici spores 
exposed for 24 h to (a) 0 (control), (b) 1, (c) 3, (d) 5, (e) 7 and (f) 9 ppm  ozone.  Control 
spores have germinated producing mass of mycelia hence, picture of the spores cannot 
be obtained. Thus, not included in the result. Note that control spores germinated 
producing mycelia while ozone-treated spores did not germinate and has disintegrated 
and disrupted structure (DS). 

(a) (b) 

(d) (c) 

(e) 
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4.3.5.1.3 Effect of ozone on intracellular H2O2 of C. capsici spore  

 

Effect of ozone on C. capsici spore was further confirmed by production of 

intracellular H2O2, an ozone decomposition product. This would indicate the level of ozone 

oxidation on the spore cells. Intracellular H2O2 of C. capsici spore was significantly 

affected (P < 0.0001, Appendix 4.5) by ozone concentration where exposure to 1 ppm 

ozone caused 98% of the spore to produce intracellular H2O2 (Table 4.3). Increase in 

ozone concentration to 3, 5, 7 and 9 ppm ozone and exposure time to 72 and 120 h did 

not further increase production of intracellular H2O2. (C. Chen and Dickman, 2005) 

Production of intracellular H2O2 was detected using oxidant-sensitive probe DCHF-

DA. It is a product of ozone decomposition and therefore can be used as an indication of 

ozone oxidation on fungal cells (Chen and Dickman, 2005). Table 4.3 showed that spores 

exposed to ozone dosage of 1 ppm ozone for 24 h or higher, increased production of 

intracellular H2O2. Similar result was reported on C. gloeosporoides exposed to 1.5 ppm 

ozone for 24 h where it increased 82.9% of spore intracellular H2O2 compared to untreated 

spores (Ong and Ali, 2015). This indicated that ozone oxidized the spore cell wall (as 

observed in Figure 4.7) and permeated into the spore cell. This allowed ozone to oxidize 

fungal cellular components which could result in cell death. This contributed to spore 

unviability obtained in Table 4.2.  
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Table 4.3:  The effect of ozone concentration and exposure time (c x t) on in vitro C. 

capsici spore with intracellular H2O2 at 18 - 20°C, 95% RH 

 Exposure time  

Ozone concentration 24 hours* 72 hours* 120 hours* Mean†  

 - C. capsici spore with intracellular H2O2 (%)-  

0 ppm (control) 13.4 ± 2.3c 15.4 ± 4.6b 18.8 ± 2.4b 16.3 ± 0.9 b 

1 ppm 97.5 ± 5.1a 99.8 ± 5.4a 98.2 ± 3.6a 98.0 ± 0.9 a 

3 ppm 99.8 ± 3.1a 96.1 ± 3.9a 96.1 ± 4.2a 96.8 ± 0.9 a 

5 ppm 98.4 ± 5.3a 99.0 ± 4.6a 97.2 ± 4.5a 97.8 ± 0.9 a 

7 ppm 99.1 ± 3.8a 99.8 ± 5.2a 98.5 ± 3.1a 98.1 ± 0.9 a 

9 ppm 97.2 ± 5.1a 96.5 ± 4.3a 97.3 ± 4.4a 97.0 ± 0.9 a 

Mean‡  83.7 ± 0.6 a 83.9 ± 0.6 a 84.5 ± 0.6 a  

In vitro C. capsici spore with intracellular H2O2 is the percentage of fluorescence spores 
after ozone treatment 
*Values are interaction effect of ozone concentration and exposure time on C. capsici 
spore germination. Means across rows and columns followed by same letter are not 
significantly different using DMRT (P < 0.05). 
†Values are effect of ozone concentration on C. capsici spore germination. Means across 
rows followed by same letter are not significantly different using DMRT (P < 0.05). 
‡ Values are effect of exposure time on C. capsici spore germination. Means across 
columns followed by same letter are not significantly different using DMRT (P < 0.05). 
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4.3.6 Effect of ozone on in vivo C. capsici growth  

 

4.3.6.1 Effect of ozone on disease incidence and disease severity 

 

Ozone concentration and exposure time significantly reduced (P < 0.0013, 

Appendix B 4.6) disease incidence on bell pepper ( 

Table 4.4).  Ozone concentration of 1, 3, 5, 7 and 9 ppm ozone reduced 

anthracnose incidence on bell pepper. Increase in ozone concentration to more than 1 

ppm however, had no effect on disease incidence. Meanwhile, exposure time of 72 h had 

the highest inhibition in disease incidence. Increase in exposure time to 120 h increase 

disease incidence.  

 Severity of anthracnose on bell pepper significantly affected (P < 0.05, Appendix B 

4.7) by interaction of ozone concentration and exposure time (Table 4.5). The highest 

inhibition in disease severity was observed from exposure to 7 ppm ozone for 72 h 

(41.2%). The inhibition is comparable to exposure to 1, 3, 5 and 9 ppm ozone for 72 and 9 

ppm ozone for 24 h. Increase in ozone dosage by prolonging exposure time to 120 h 

increased disease severity.  

In agreement to in vitro results, exposure to 7 ppm ozone for 72 hours resulted in 

the highest inhibition in disease incidence (34.8%) and disease severity (41.2%). 

Reduction in fungal disease incidence by ozone was also reported on kiwi exposed 0.3 

ppm ozone for four months where stem-end rot incidence was reduced by 56%. The 

higher percentage of disease control achieved, compared to our results, could be due to  
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Table 4.4: The effect of concentration and exposure time (c x t) on disease incidence 
percentage (%) on bell pepper after 21 days storage at 12°C, 95% RH, under ozone 
treatment and subsequent clean air incubation. 

 Exposure time  

Ozone concentration 24 hours* 72 hours* 120 hours* Mean†  

 ------------ Disease incidence (%) -------------  

0 ppm (control) 94.4±5.6a 94.4±5.6a 94.4±5.6a 94.4±3.9a 

1 ppm 88.9±5.6a 72.2±5.6abc 77.8±5.6abc 79.6±3.9b 

3 ppm 83.3±9.6ab 61.1±5.6bc 77.8 ±5.6abc 74.1±3.9b 

5 ppm 77.8±5.6abc 61.1±11.1bc 83.3±9.6ab 74.1±3.9b 

7 ppm 77.8±5.6abc 55.6±5.6c 77.8±5.6abc 70.4±3.9b 

9 ppm 72.2±5.6abc 61.2±5.6bc 83.3±9.6ab 72.2±3.9b 

Mean‡  82.4±2.8a 67.6±2.8b 82.4±2.8a  

Disease incidence is expressed as percentage of anthracnose incidence on inoculated bell 
pepper after 21 days storage at 12ᵒC, 95% RH.  
*Values are interaction effect of ozone concentration and exposure time on C. capsici 
spore germination. Means across rows and columns followed by same letter are not 
significantly different using DMRT (P < 0.05). 
†Values are effect of ozone concentration on C. capsici spore germination. Means across 
rows followed by same letter are not significantly different using DMRT (P < 0.05). 
‡ Values are effect of exposure time on C. capsici spore germination. Means across 
columns followed by same letter are not significantly different using DMRT (P < 0.05). 
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Table 4.5: The effect of ozone concentration and exposure time (c x t) on disease severity 
(lesion diameter (mm)) on bell pepper after 21 days storage at 12°C, 95% RH, under 
ozone treatment and subsequent clean air incubation. 

 Exposure time  

Ozone concentration 24 hours* 72 hours* 120 hours* Mean†  

 ------------ Disease severity (mm)-------------  

0 ppm (control) 38.8± 0.2a 38.8±0.2a 38.8±0.2a 38.7±0.8a 

1 ppm 35.1±1.6ab 29.3±1.6cde 31.3±1.5ab 32.9±0.8b 

3 ppm 33.6±1.6bc 27.5±1.6de 33.6± 0.9ab 31.9±0.8bc 

5 ppm 31.6±1.6bcd 25.8±1.5e 33.1± 1.9ab 30.6±0.8bc 

7 ppm 31.3±1.6bcd 25.3±1.6e 31.6± 0.3ab 30.4±0.8bc 

9 ppm 29.3±1.6cde 26.3±1.7e 35.1± 1.6ab 30.2±0.8c 

Mean‡  33.2±0.6a 28.8±0.6b 35.3±0.6c  

Disease severity is anthracnose lesion diameter (mm) on inoculated bell pepper after 21 
days storage at 12ᵒC, 95% RH.  
*Values are interaction effect of ozone concentration and exposure time on C. capsici 
spore germination. Means across rows and columns followed by same letter are not 
significantly different using DMRT (P < 0.05). 
†Values are effect of ozone concentration on C. capsici spore germination. Means across 
rows followed by same letter are not significantly different using DMRT (P < 0.05). 
‡ Values are effect of exposure time on C. capsici spore germination. Means across 
columns followed by same letter are not significantly different using DMRT (P < 0.05). 
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longer exposure time applied. Besides, Botrytis cinerea, the causing agent for stem-end 

rot disease in kiwi may have lower resistancy towards ozone compared to C. capsici in this 

study. Therefore, it resulted in higher inhibition in disease incidence. The inhibition in 

disease incidence and disease severity could be due to oxidation action of ozone on 

fungal mycelia as observed in in vitro assay. Exposure to ozone resulted in compact and 

highly branched mycelia which retarded the mycelia growth. The ozone dosage also 

reduced fungal spore germination rate hence, contributed to the reduction in disease 

incidence and disease severity observed.  

Increase in exposure time to 120 h resulted in reduction in disease control.  This 

could be stimulating effect of ozone mycelia growth and spore production as observed in 

in vitro experiments. Besides, it could also be due to enhanced ripening progress as 

indicated by progressive colour change (from green to red) in the treated fruit (Figure 4.8).  

This could be due to strong oxidative stress from the ozone treatment. The strong 

oxidative stress enhanced ripening and senescence progress and weakened fruit disease 

resistance hence reduced disease control (Nigro et al., 2000; Terry and Joyce, 2004). 

Similar findings were observed on papaya exposed to 1.6 ppm ozone where higher 

disease incidence was obtained when exposed to 144 h compared to 96 h (Ong et al., 

2012). The strong ozone dosage disrupted papaya cell structure hence reduced its 

resistance towards disease.  This negative effect of oxidative stress on fruit disease 

resistance was also reported in a study using UV-C in strawberry. The study reported that 

higher disease incidence in fruit exposed to higher UV-C dose (1.0 KJ m-2) compared to 

lower dose (0.5 KJ m-2) (Nigro et al., 2000).  
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Figure 4.8: The effect of ozone fumigation at different ozone concentration; 0, 1, 3, 5, 7, and 9 ppm ozone for 24, 72 and 
120 h; on anthracnose disease development on bell pepper on day 21 at 12°C, 95% RH. 
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4.3.6.2 Effect of ozone on C. capsici spore production on bell pepper 

 

Ozone treatment significantly affected (P = 0.023, Appendix B 4.8) C. capsici 

spore production on bell pepper (Table 4.6). The highest reduction in fungal spore 

production was observed from exposure to 5 ppm ozone for 72 h (37.4%). The 

reduction is comparable with spore production from exposure to 3, 7 and 9 ppm 

ozone for 72 h. Meanwhile, exposure to high ozone dosage, 7 and 9 ppm for 120 h 

induced spore production.  

Reduction in fungal spore production was also observed peach inoculated 

with Monilinia fructicola and Botrytis cinerea where exposure to 0.3 ppm ozone for 4 

weeks reduced the fungal sporulation rate (Palou et al., 2002). The reduced 

sporulation rate would inhibit disease progression hence extended its storage life. 

This is coherent with findings in Table 4.5 where reduction in disease severity was 

observed in fruit exposed to 3, 5, 7 and 9 ppm ozone for 72 h.  

Enhanced sporulation rate observed in this experiment (exposure to 7 and 9 

ppm ozone for 120 h) could be due to increase in conidiophore respiration under 

high oxidative stress which results in premature sporulation. This was in line with 

spore production assay on agar plate (section 4.3.5). The high rate of spore 

production could provide a source of infection for disease progress. The spores 

could germinate to produce hyphae and mycelia which enhance disease severity 

and could infect nearby fruits hence increase disease incidence. This suggests that 

ozone dosage of 3, 5, 7 and 9 ppm ozone for 72 h is an effective to reduce C. capcisi 

sporulation but not ozone dosage of 7 and 9 ppm ozone for 120 h.  



 

126 

 

 

Table 4.6: The effect of ozone concentration and exposure time (c x t) on C. capsici 
spore production on bell pepper after 21 days storage at 12°C, 95% RH, under 
ozone treatment and subsequent clean air incubation. 

 Exposure time  

Ozone concentration 24 hours* 72 hours* 120 hours* Mean†  

 -C. capsici spore production (1x106 spores ml-1)-  

0 ppm (control) 1.23±0.09bcd 1.23±0.09bcd 1.23±0.09bcd 1.23±0.06a 

1 ppm 1.25±0.11bcd 1.00±0.11def 1.53±0.11ab 1.25±0.06a 

3 ppm 1.21±0.08bcd 0.85±0.10ef 1.46±0.11abc 1.17±0.06a 

5 ppm 1.15±0.11cde 0.77±0.10f 1.54±0.10ab 1.15±0.06a 

7 ppm 1.00±0.09def 0.84±0.10ef 1.59±0.09a 1.14±0.06a 

9 ppm 1.09±0.08def 0.88±0.11ef 1.62±0.11a 1.20±0.06a 

Mean‡  1.15±0.04a 0.9±0.04b 1.15±0.04c  

In vivo C. capsici spore production is expressed as 1 x 106 spores per ml of spore 
suspension prepared, produced on inoculated bell pepper after 21 days storage at 
12ᵒC, 95% RH.  
*Values are interaction effect of ozone concentration and exposure time on C. 

capsici spore germination. Means across rows and columns followed by same letter 
are not significantly different using DMRT (P < 0.05). 
†Values are effect of ozone concentration on C. capsici spore germination. Means 
across rows followed by same letter are not significantly different using DMRT (P < 
0.05). 
‡ Values are effect of exposure time on C. capsici spore germination. Means across 
columns followed by same letter are not significantly different using DMRT (P < 
0.05). 
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In conclusion, under the current set of experiment, ozone treatment reduced 

anthracnose development on bell pepper where exposure to 7 ppm ozone for 72 h 

resulted in lowest disease incidence (34.8%) and disease severity (41.2%). This 

inhibition was comparable to fruit exposed to 3, 5 and 9 ppm ozone for 72 h. The 

reduction in disease development was due to synergistic effect of ozone action on 

mycelia morphology, spore production and spore germination as the ozone dosage 

inhibited mycelia development and reduced spore production and spore germination.  
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CHAPTER 5  

 

EFFECT OF OZONE FUMIGATION ON  

ACTIVITY OF DEFENSE RELATED ENZYMES 

 

5.1 Introduction 

 

 Plant has evolved a defense mechanism in response to harmful effect of biotic 

(fungal, bacterial and viral attacks) and abiotic stresses (low temperature, osmotic 

and oxidative stresses). A part of plant defense mechanism involves induction of 

defense related enzymes such as PAL, PPO, POD and β-1,3-glucanase (Asghari 

and Aghdam, 2010). These enzymes have direct or indirect involvement to 

encounter the stresses. For example, β-1,3-glucanase inhibits fungal development 

by hydrolyzing fungal cell wall (Cota et al., 2007). Meanwhile, POD decomposes 

hydrogen peroxide to reduce fruit oxidative stress (Wang, 1995). PAL involves 

indirectly in plant defense by being the key enzyme to produce secondary 

metabolites with antifungal and antioxidant properties (Nigro et al., 2000).   

 Enzyme regulation in respond to biotic and abiotic stresses improves plant 

defense to maintain fruit quality. For instance, the induction of PAL and β-1,3-

glucanase activities during pathogen invasion restricts pathogen development in fruit 

tissue hence, decreases disease development (Cota et al., 2007; Nigro et al., 2000). 

Meanwhile, high expression of PAL, PPO and POD activities during storage at low 

temperature detoxifies fruit tissue from oxidative stress hence, prevents chilling injury 

(Asghari and Aghdam, 2010;  Wang, 1995).  Therefore, regulation of these inducible 
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enzymes is important in order to reduce fruit quality deterioration and extends its 

storage life. 

 Strengthening plant defense system by manipulating the inducible enzymes is 

a promising strategy to maintain fruit quality. Elicitors such as active microorganisms 

(i.e: yeast) (Xu et al., 2008) and chemical treatment (i.e: methyl jasmonate) (Fung et 

al., 2004) were introduced to induce the enzyme activity hence, improved fruit 

quality.  Ozone is one of the promising treatments to induce the defense related 

enzyme and was reported in pear (Zhao et al., 2013b) and tobacco (Schraudner et 

al., 1992). The fruit response to ozone varies depending on commodity as well as 

maturity stage and ozone dosage (Salvador et al., 2006). The knowledge on the 

effect of ozone on the inducible enzymes is scarce while their potential to improve 

fruit quality by improving fruit resistance against pathogen is promising. This leads to 

the objectives of this study to: (Z. Zhao et al., 2013b) 

1.  evaluate the effect of ozone on bell pepper antioxidant enzymes such as 

phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase 

(POD) 

2. investigate the effect of ozone on bell pepper pathogenesis-related enzyme 

which is β-1,3-glucanase  

3. evaluate the effect of inducible defense enzyme on anthracnose development 

on bell pepper 
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5.2 Materials and Method 

 

5.2.1 Fruit material 

 

Fruit material was prepared as described in section 3.2.2.  

 

5.2.2 Ozone exposure 

 

Fruit was inoculated as described in section 4.2.4.1 and exposed to ozone at 

concentrations of 0 (control), 1, 3, 5 and 7 and 9 ppm for exposure time of  72 h at 

12°C and 95% RH. Following the ozone treatment, fruit were incubated in duplicate 

clean air chambers (0 ppm ozone) until the end of storage period, 21 days. 

 

5.2.3 Assessment of anthracnose incidence 

 

Disease incidence was assessed according to the method in section 4.2.4.1.  

 

5.2.4 Determination of phenolic metabolism enzymes 

 

5.2.4.1 Crude enzyme preparation 

 

Enzyme assay was conducted by the method described by Zheng et al. 

(2011). Briefly, 1 g of fruit tissue was homogenized in 5 ml 0.05 M phosphate buffer 

(pH 6.8) and centrifuged at 10 000×g for 5 min at 4ºC. The crude enzyme was then 

subjected to PAL, PPO and POD assays. (Zheng et al., 2011)  
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5.2.4.2 Phenylalanine ammonia lyase (PAL) assay 

 

PAL (E.C 4.3.1.5) activity was determined using L-phenylalanine as a 

substrate. Briefly, a reaction mixture containing 500 µl of enzyme extract, 2 ml of 0.2 

M boric acid buffer and 1 ml of 0.02 M L-phenylalanine was prepared. The enzyme 

reaction was carried out at 30ºC for 1 h and absorbance at 290 nm was measured 

using UV-Vis Spectrophotometer. PAL activity was expressed as U g-1 FW.  

 

5.2.4.3 Polyphenol oxidase (PPO) assay 

 

PPO (E.C 1.10.3.1) activity was determined using catechol as a substrate. 

Briefly, a reaction mixture containing 200 µl of enzyme extract, 2 ml of 0.05 M 

phosphate buffer, pH 6.8 and 1 ml of 0.1 M catechol. Absorbance at 420 nm was 

measured using UV-Vis Spectrophotometer. PPO activity was expressed as U g-1 

FW.  

 

5.2.4.4 Peroxidase (POD) assay 

 

POD (E.C 1.11.1.7) activity was determined according to (Liu et al., 2007). 

The activity was determined using guaiacol as a substrate. A reaction mixture 

containing 0.1 ml enzyme extract and 2 ml of 8 mM guaiacol, pH 6.4 was prepared. 

The enzyme reaction was carried out at 30ºC for 30 min and stopped by the addition 

of 24 mM hydrogen peroxide. The production of tetraguaiaccol by POD was 

determined by measuring absorbance at 460 nm using UV-Vis Spectrophotometer. 

POD activity was expressed as U mg-1 FW.  
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5.2.5 Determination of pathogenesis-related (PR) enzyme  

 

5.2.5.1 β-1,3-glucanase assay 

 

β-1,3-glucanase (E.C 3.2.1.39) assay was determined using laminarin as a 

substrate. Briefly, enzyme extract was prepared by homogenizing 1 g of fruit tissue 

with 5 ml of 0.1 M acetic acid buffer, pH 5.0 and centrifuged at 10,000×g for 5 min at 

4ºC. A reaction mixture containing 100 µL of enzyme extract and 50 µL of 0.4% 

laminarin was prepared and the reaction was conducted at 37ºC for 1 h. The 

reaction was stopped by addition of 200 µl of 1% 3,5-dinitrosalicylic acid and boiled 

for 5 min. The reaction mixture was cooled in ice and absorbance at 500 nm was 

measured using UV-Vis Spectrophotometer. β-1,3-glucanase activity was expressed 

as U g-1 FW.  

 

5.2.6 Statistical analysis 

 

 The experiments were carried out with a Completely Randomized Design 

(CRD) and three replicates per treatment using three different ozone chambers, 

each containing 20 fruits. The experiments were repeated thrice and data was 

analysed separately to check for homogeneity. The results were analyzed using 

Statistical Analysis Software (SAS, version 9.1.3, SAS Institute Inc., USA). Analysis 

of variance (ANOVA) was performed with P < 0.05 significance level and differences 

in data means were analyzed using DMRT. 
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5.3 Results and Discussion 

 

5.3.1 Effect of ozone on disease development 

 

Anthracnose development was monitored during storage until maximum 

acceptable weight loss of 7% was reached by the fruit. This was reported after 21 

days in preliminary results, thus the experiment was kept at 21 days. Storage after 

this time period produced fruit below the acceptable market standard. The results 

showed the disease development was significantly affected (P < 0.0001, Appendix B 

5.1) by ozone concentration and storage time (Figure 5.1). Disease incidence 

increased with time in storage where it reached 94% in control fruit at the end of 

storage period. Significant reduction in disease development was observed from day 

6 where slower rate of disease development was observed in the treated fruit. 

Increase in ozone concentration reduced disease development where exposure to 7 

ppm (38.8%) ozone had the lowest disease incidence. It is comparable to fruit 

exposed to 3 (33.3%), 5 (33.33%) and 9 (33.2%) ppm ozone. 

Inhibition of disease development observed in this experiment could be due to 

direct effect of ozone on fungal development as discussed in previous Chapter 4. 

This includes the effect of ozone on mycelia elongation, spore production and spore 

germination. The antifungal effect of ozone on C. capsici inhibited disease 

development in the treated fruit compared to control fruit. However, reduction in 

disease progress in fruit could also be due to induction of plant defense enzymes 

such as PAL, PPO, POD and β-1,3-glucanase. The effects of ozone on these 

enzymes are discussed in the next section.  
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Figure 5.1: Effect of different ozone exposure on disease incidence on bell pepper 
during three days treatment and 18 days storage at 12°C, 95% RH; vertical bars 
indicate standard errors; means of three replicates; DMR test at P < 0.05. 

 

5.3.2 Effect of ozone on phenolic metabolism enzymes 

 

5.3.2.1 Phenylalanine ammonia lyase (PAL) activity 

 

Activity of PAL of bell pepper significantly increased (P < 0.0001, Appendix B 

5.2) after exposure to 1, 3 and 5 ppm ozone (Figure 5.2). The highest PAL activity 

was observed from exposure to 3 ppm ozone which increased by 44.1% of PAL  
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Figure 5.2: The effect of different ozone exposure on phenylalanine ammonia lyase 
(PAL) activity of bell pepper during three days treatment and 18 days storage at 
12°C, 95% RH; vertical bars indicate standard errors; means of three replicates; 
DMR test at P < 0.05 

 

activity compared to control, immediately after exposure. Exposure to 7 and 9 ppm 

ozone minimally increased PAL activity with no significant difference with control. 

Fruit exposed to 1 and 3 ppm ozone had higher PAL activity until the end of storage 

period. 

PAL is a key enzyme of phenylpropanoid pathway which catalyzes the 

production of trans-cinnamate from L-phenylalanine (Benkeblia, 2000). This step is 

the first process for downstream processing of secondary metabolites such as 



 

136 

 

 

phenolic compounds, lignin and phytoalexin, which involve in plant defense response 

and restriction of pathogen growth (Wang et al., 2009). Activity of PAL is influenced 

by several factors such as hormone (Nigro et al., 2000; Terry and Joyce, 2004), 

wounding (An et al., 2007), pathogen attack (El Ghaouth et al., 2003; V. 

Ramamoorthy et al., 2002) and abiotic stress (El Ghaouth et al., 2003; Nigro et al., 

2000). (J. Chen et al., 2016). 

Exposure to abiotic stress such as ozone induced PAL activity as observed in 

this study. This was also reported in bell pepper exposed to 6420 ppm ozone for 15 

mins (Chen et al., 2016). This showed that ozone induced formation of reactive 

oxygen species in fruit cells causing an oxidative burst which triggered fruit first line 

of defense and induced PAL activity (Asghari and Aghdam, 2010;  Zhao et al., 

2013b). The activation of fruit first line of defense through stimulation of PAL activity 

was also reported in mango irradiated with 2.5 and 4.9 kJ m-2UV-C (González-

Aguilar et al., 2007), peach irradiated with 7.6 kJ m-2UV-C (El Ghaouth et al., 2003) 

and pear irradiated with 5.0 kJ m-2UV-C (Li et al., 2010). Stimulation of oxidative 

stress through application of 0.5 mM salicylic acid also induced PAL activity as 

reported in sweet cherry (Qin et al., 2003) and kiwi fruit (Poole et al., 1996). This 

showed that oxidative stress of ozone may have similar effects with UV-C and 

salicylic acid on fruit where it involves induction of PAL activity.  

Figure 5.2 showed the threshold dose of ozone on PAL activity was 3 ppm 

ozone. Exposure to higher ozone dosage, 5, 7 and 9 ppm ozone has reduced PAL 

activity compared to 3 ppm ozone. The diminish PAL activity after exposure to a 

certain threshold dose was also reported in strawberry irradiated with UV-C stronger 

than 0.05 kJ m-2 (Nigro et al., 2000). This showed that exposure to oxidative stress 

beyond its threshold limit reduced fruit capacity to stimulate PAL activity. This could 
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be due to the strong oxidative stress which may have weaken fruit defense system 

(Nigro et al., 2000). Therefore, exposure to 3 ppm ozone for 72 h is the most 

effective dosage to induce PAL activity in bell pepper.  

PAL activity in bell pepper was negatively correlated (r = -0.6743, P < 0.0001) 

with disease incidence (Figure 5.3). Using coefficient of determination value (r2 = (-

0.6743)2 x 100 = 45%), it was observed that PAL activity contributed to 45% of the 

variation in disease incidence in Figure 5.1. This may be due to the induction of fruit 

resistance by PAL where increase in PAL activity resulted in decrease in variation of 

disease incidence. This showed that in addition to the effect of ozone on fungal 

elongation and spore germination as discussed in Chapter 4, the decrease in 

disease incidence in fruit exposed to 3 ppm ozone (33.3%) could also be due to the 

stimulating effect of ozone on PAL activity. Meanwhile, reduction in disease 

incidence in fruit exposed to 7 ppm ozone could be mainly due to the effect ozone on 

fungal growth or other enzymes but not PAL as PAL activity was not induced in this 

fruit. Similar pattern between PAL and disease incidence was also observed in 

strawberry irradiated with 0.25 and 0.5 kJ m-2 UV-C where the treatment increased 

fruit PAL activity to 25% and 119% and resulted in reduction in disease incidence for 

30% and 60% (Nigro et al., 2000). Besides, increase in PAL activity was also 

reported to reduce B. cinerea development on tomato (Zheng et al., 2011) and pear 

(Li et al., 2010). The induction in fruit resistance by PAL was probably due to 

production of antifungal compounds such as phytoalexin and phenol which inhibited 

fungal growth hence reduced disease development (Li et al., 2010; Nigro et al., 

2000). Subsequently, this would increase fruit quality and extend fruit storage life.  
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Figure 5.3: Relationship between PAL activity and disease incidence (%) in bell 
pepper 

 

 The effect of ozone on PAL activity could be due to changes in gene 

expression level. The effect could be similar to the effect of UV-C irradiation on 

peach. As reported by El Ghaouth et al. (2003), increase in PAL activity after 

exposure to 7.6 kJ m-2 UV-C was due to upregulation of PAL gene. This resulted in 

accumulation of PAL RNA transcript which translated into increase in PAL activity (El 

Ghaouth et al., 2003).  (El Ghaouth et al., 2003) 

Under the current observation, it can be suggested that the induced activity of 

PAL involved in resistance against anthracnose. The increase in PAL activity is 

responsible for the reduction in disease development in the treated bell pepper.  
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5.3.2.2 Polyphenol oxidase (PPO) activity 

 

Activity of PPO in bell pepper was significantly affected (P < 0.0001, Appendix 

B 5.3) by ozone treatment. Immediately after treatment, exposure to 1 and 3 ppm 

ozone enhanced fruit PPO activity where fruit exposed to 3 ppm ozone had the 

highest PPO activity where it was increased by 43.9% (Figure 5.4). The increase in 

PPO activity after ozone treatment resulted in elevated level of PPO activity until the 

end of storage period. The induction effect of ozone on PPO activity was also 

observed in hot pepper exposed to 2 ppm ozone for 3 h where PPO activity was 

increased by 9.7% (Sachadyn-Król et al., 2016). The induction is lower compared to 

our results obtained in this study as the fruit were only exposed for 3 h compared to 

3 days in our study. Similarly to the results obtained in this experiment (Figure 5.4), 

the induction was probably fruit first line of defense in response to oxidative burst of 

ozone (Asghari and Aghdam, 2010). This first line of defense or termed as ROS 

avoidance genes increased PPO activity through induction of alternative oxidase 

(AOX) enzyme (Fung et al., 2004). As an antioxidant enzyme, the induction in PPO 

activity increased fruit antioxidant capacity to neutralize reactive oxygen species 

such as H2O2 resulted from ozone decomposition (Asghari and Aghdam, 2010).This 

would consequently reduce cell oxidative state hence minimizes oxidative damage.  

Our results showed that exposure to 7 and 9 ppm ozone reduced the PPO 

activity where significant reduction in PPO activity was observed from day 3 and day 

6, respectively. This resulted in reduced PPO activity during storage. This negative 

effect of high ozone concentration on PPO of bell pepper was also reported by Chen 

et al.  (2016) where the author exposed bell pepper to a very high ozone  

 



 

140 

 

 

 

 

Days

0 3 6 9 12 15 18 21

P
P

O
 a

ct
iv

ity
 (

U
 g

-1
 p

ro
te

in
)

0.00

0.05

0.10

0.15

0.20

0.25

0 ppm ozone
1 ppm ozone
3 ppm ozone
5 ppm ozone
7 ppm ozone
9 ppm ozone

StorageOzone exposure
 

Figure 5.4: The effect of different ozone exposure on polyphenol oxidase (PPO) 
activity of bell pepper during three days treatment and 18 days storage at 12°C, 95% 
RH; vertical bars indicate standard errors; means of three replicates; DMR test at P < 
0.05. 

 

 

concentration, 6420 ppm ozone for 15 min. This reduced the fruit PPO activity by 

14.3%. The reduction is however, lower than bell pepper exposed to 9 ppm ozone 

for 3 days (26.0%). This could suggest that high ozone concentration but short 

exposure time would cause less PPO activity reduction compared to low ozone 
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concentration but long exposure time. The reduction in PPO activity observed in the 

fruit could be due to oxidation of amino acids or disulfide bonds of PPO by reactive 

oxygen species induced by ozone (Fu et al., 2007). The strong ozone dosages 

produced high level of reactive oxygen species which altered PPO conformation 

hence resulted in enzyme inactivation (Fu et al., 2007). Besides, reduction in PPO 

activity may also be due to the effect of ozone on availability of its precursor such as 

flavonoid. The reduction in PPO activity reduced fruit capacity to produce quinone, 

an antimicrobial compounds which therefore, weakened plant defense system 

against diseases. However, for other commodity such as apple, the reduction in PPO 

activity is desirable as it reduced production of quinone, a browning compound which 

reduced the fruit cosmetic look. (J. Chen et al., 2016) 

PPO activity in bell pepper was negatively correlated (r = -0.2866, P = 0.0005) 

with disease (Figure 5.5). Using coefficient of determination value (r2 = (-0.2866)2 x 

100 = 8%), it was observed that PAL activity contributed to 8% of the variation in 

disease incidence in Figure 5.1. This indicated that increase in PPO activity slightly 

resulted in decrease in variation in disease incidence, particularly for fruit exposed to 

3 ppm ozone where PPO activity was increased by 43.9%. PPO may reduce disease 

incidence by catalyzing oxidation reaction of phenolic compounds, commonly 

produced in polypropanoid pathway to quinone (Nguyen et al., 2004). Quinone 

covalently modified cellular molecules of pathogen which resulted in cell death 

hence, limiting pathogen progression in fruit tissue (Thipyapong et al., 2007). 

Quinone also modified plant protein via alkylation which reduced its bioavailability to 

pathogen (Thipyapong et al., 2007). Besides, PPO enhanced formation of lignin  
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Figure 5.5: The relationship between PPO activity and disease incidence (%) in bell 
pepper 

 

 

which provides as a physical barrier in inhibiting pathogen proliferation (Zheng et al., 

2011). Therefore, the reduction in disease development in bell pepper could be due 

to induction of PPO activity. 

The negative relationship between PPO activity and disease incidence (Figure 

5.5) also indicated that the reduction in PPO activity in fruit exposed to 7 and 9 ppm 

ozone should increase the disease incidence. However, no increment in disease 

incidence was observed in fruit exposed to 7 and 9 ppm ozone (Figure 1). This could 

be due to the effect of ozone on fungal growth and spore germination as discussed 

in Chapter 4 which compensates reduction in PPO activity.  This shows that both, 
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antimicrobial activity of ozone and its effects on PPO activity influence disease 

reduction in bell pepper.  

 

 

5.3.2.3 Peroxidase (POD) activity 

 

Ozone treatment significantly affected (P < 0.0001, Appendix B 5.4) fruit POD 

activity where exposure to 1, 3 and 5 ppm ozone significantly increased POD 

activity, immediately after ozone exposure (Figure 5.6). The increase in POD activity 

resulted in elevated level of POD activity throughout the storage period. The highest 

POD activity was observed from exposure to 3 and 5 ppm ozone on day 9 and the 

POD activity gradually decreased during subsequent storage. The result showed 

threshold dose on POD activity is at 5 ppm ozone as increase in ozone 

concentration to 7 and 9 ppm ozone showed a reduction. 

Induction in POD activity by ozone was also observed in hot pepper exposed 

to 2 ppm ozone for 3 h (Sachadyn-Król et al., 2016) where PPO activity was induced 

by 48.0%. Ozone also induced POD activity in pear where exposure to 1.9 ppm 

ozone for 1 h every day for 8 days induced around 50% of the fruit PPO activity 

(Zhao et al., 2013b). The increase in POD activity in response to ozone was also fruit 

first line of defense to reduce H2O2 level in fruit tissue induced by ozone (Asghari 

and Aghdam, 2010;  Wang, 1995). POD catalyzes decomposition of H2O2 and 

produces free radicals such as hydroxyl radicals, OH- (Apel and Hirt, 2004; C. Y. 

Wang, 1995). The reaction is accompanied by oxidation of phenolic compounds to 

quinone and formation of lignin which improved fruit defense against pathogen attack  
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Figure 5.6: The effect of different ozone exposure on peroxidase (POD) activity of 
bell pepper during three days treatment and 18 days storage at 12°C, 95% RH; 
vertical bars indicate standard errors; means of three replicates; DMR test at P < 
0.05. 
 

(Apel and Hirt, 2004). The increase in POD activity also could protect the fruit from 

oxidative damage such as peroxidation due to high level of H2O2 induced by ozone. 

This would maintain fruit quality hence extending fruit storage life. 

POD activity in bell pepper was negatively correlated (r = -0.3507, P < 0.0001) 

with disease incidence (Figure 5.7). Using coefficient of determination value [(-

0.3507)2 x 100 = 12%], it was observed that POD activity contributed to 12% of the 
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variation in disease incidence in Figure 5.1. This suggested that increase in POD 

activity, particular in fruit exposed to 3 ppm ozone may slightly reduce variation in 

disease development in the fruit. The role of POD to reduce pathogen development 

was also reported in chitosan treated tomato where the treatment increased fruit 

POD activity for 36.6% and decreased Botrytis cinerea development on fruit by 

28.6%. (Wang et al., 2009). POD may reduce disease development by catalyzing the 

production of quinone and induces formation of lignin (Wang et al., 2009). This would 

restrict pathogen growth in fruit tissue. 

 

 

Figure 5.7: Relationship between POD activity and disease incidence (%) in bell 
pepper 

 

The changes in POD activity observed after ozone treatment could be 

regulated at gene expression level. The reactive oxygen species produced from 
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ozone decomposition may oxidize components of POD signaling pathway hence 

alters the gene expression (Apel and Hirt, 2004). Besides, the reactive oxygen 

species may also alter gene expression by modifying activity of POD transcription 

factors (Apel and Hirt, 2004). The correlation between POD gene expression and its 

enzyme activity was reported in peach (Xu et al., 2008).  

 

5.3.3 Pathogenesis-related (PR) enzyme 

 

5.3.3.1 β-1,3-glucanase activity 

 

Activity of β-1,3-glucanase was significantly affected (P < 0.0001, Appendix B 

5.5) by ozone treatment (Figure 5.8). Immediately after ozone exposure, β-1,3-

glucanase activity was induced in all treatments; 1, 3, 5, 7 and 9 ppm ozone. The 

increase in β-1,3-glucanase activity was optimal after exposure to 3 ppm ozone 

where further increase in ozone concentration to 5, 7 and 9 ppm had no significant 

effect. The stimulating effect of ozone on β-1,3-glucanase activity was transient 

where the increase in β-1,3-glucanase activity was only observed until day 6 (1 ppm 

ozone), day 9 (3 ppm ozone) and day 12 (5, 7 and 9 ppm ozone). Further storage 

had no significant effect on β-1,3-glucanase activity.  

β-1,3-glucanase belongs to PR-2 family and one of the most well-

characterized pathogenesis-related enzyme in plant (Goñi et al., 2010). It is a 

hydrolytic enzyme which hydrolyzes β-1,3-glucan, polymer constructing fungal cell 

wall(Cota et al., 2007). This inhibits fungal progression in fruit tissue. It is commonly 

associated with fruit hypersensitive response (HR) which induced by pathogen  
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Figure 5.8: The effect of different ozone exposure on β-1,3-glucanase activity of bell 
pepper during three days treatment and 18 days storage at 12°C, 95% RH; vertical 
bars indicate standard errors; means of three replicates; DMR test at P < 0.05. 

 

invasion in fruit tissue (Van Loon and Van Strien, 1999). It is also induced in 

response to abiotic stress such as chemical treatment and oxidative stress (Kesari et 

al., 2010; Schraudner et al., 1992).  

The induction in β-1,3-glucanase activity observed in this study showed that 

oxidative stress of ozone acted as an elicitor to increase β-1,3-glucanase activity.  

The eliciting effect of ozone on β-1,3-glucanase activity was also observed in 

tobacco exposed to more than 0.1 ppm ozone for 5 h (Schraudner et al., 1992). The 
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author also showed that the stimulating effect of ozone on β-1,3-glucanase activity 

was cultivar dependent where β-1,3-glucanase activity in resistant cultivar (Bel W3) 

was induced to a lesser extent than sensitive cultivar (Bel B) (Schraudner et al., 

1992). Besides, oxidative stress of UV-C irradiation also induced β-1,3-glucanase 

activity as reported in peach and pear treated with 7.6 (El Ghaouth et al., 2003) and 

5 kJ m-2 UV-C (Li et al., 2010), respectively. This suggested that UV-C triggers 

similar defense mechanism as ozone where it involves upregulation of β-1,3-

glucanase activity. The induction of β-1,3-glucanase could be the fruit hypersensitive 

response towards oxidative stress. This would increase fruit resistance against 

pathogen attack hence reduced disease development.  

 The transient pattern of eliciting effect of ozone on β-1,3-glucanase activity 

observed in this study was also reported in tobacco exposed to 0.15 ppm ozone for 5 

h (Ernst et al., 1992) and pear exposed to 5 kJ m-2 UV-C (Li et al., 2010). This 

showed that fruit β-1,3-glucanase activity was only induced in response to stress. 

The persistency of β-1,3-glucanase activity can be improved by prolonging the 

treatment exposure time. This was reported in tobacco which had more persistent 

level of β-1,3-glucanase activity in tobacco exposed for 48 hours than 5 hours (Ernst 

et al., 1992).  

β-1,3-glucanase activity in bell pepper was negatively correlated (r = -0.7245, 

P < 0.0001) with disease incidence (Figure 5.9). Using coefficient of determination [(-

0.7245)2 x 100 = 52%] it was observed that β-1,3-glucanase activity contributed to 

52% of the variation in disease incidence in Figure 5.1. This suggested that β-1,3-

glucanase activity observed in the treated fruit is moderately associated with  
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Figure 5.9: Relationship between β-1,3-glucanase activity and disease incidence (%) 
in bell pepper 

 

reduction in variation in disease development of anthracnose. The high level of β-

1,3-glucanase activity in fruit exposed to 3, 5, 7 and 9 ppm after exposure to ozone 

may help in reducing anthracnose development in Figure 5.1. Similar pattern was 

observed in barley grown at double ambient ozone where the treatment induced β-

1,3-glucanase in barley by 66.7% but reduced fungal growth by 45.5% (Plessl et al., 

2005). Besides, treatment of UV-C (5 kJ m-2) also reported to increase β-1,3-

glucanase activity in pear which associated with decrease of fungal disease caused 

by Monilinia fructicola (Li et al., 2010). The enzyme may reduce disease 

development by hydrolyzing β-1,3-glucan of fungal cell wall hence, lead to fungal cell 

death. 

r = -0.7245
P < 0.0001

β-glucanase activity (U g-1 protein)

1 2 3 4 5 6 7

D
is

e
a

se
 in

ci
d

e
n

ce
 (

%
)

0

20

40

60

80

100

120



 

150 

 

 

The stimulating effect of ozone on β-1,3-glucanase activity could be regulated 

at gene expression level. Ozone may affect gene expression similarly to UV-C 

irradiation where oxidative stress of UV-C has activated the corresponding genes 

and resulted in upregulation of β-1,3-glucanase mRNA. The upregulation of β-1,3-

glucanase mRNA was observed in peach irradiated with 7.6 kJ m-2 UV-C (El 

Ghaouth et al., 2003). This increased the fruit β-1,3-glucanase activity in respond to 

UV-C irradiation.  

Oxidative stress of ozone may also affect activity of other enzyme such as 

superoxide dismutase (SOD), catalase (CAT), gluthathione peroxidase (GPX), and 

ascorbate peroxidase (APX). These enzymes are part of ROS avoidance gene which 

is fruit second line of defense against oxidative stress (Fung et al., 2004). These 

enzymes react in respond to ozone as SOD dismutate superoxide anion, O2-, the 

reactive oxygen species induced by ozone decomposition, to H2O2 while CAT, GPX 

and APX detoxify H2O2 to water (Apel and Hirt, 2004). However, SOD, CAT and APX 

of bell pepper was not responsive to oxidative stress of chilling injury, methyl 

jasmonate and methyl salicylate. This was reported by (Fung et al., 2004) where the 

oxidative stresses dramatically induced ROS avoidance gene (AOX) which involve in 

fruit first line of defense (PAL, PPO, POD and β-1,3-glucanase), but not ROS 

scavenging gene (SOD, CAT and APX). This indicated that bell pepper mainly used 

its first line of defense (ROS avoidance gene) to encounter oxidative stress 

enzymatically.   

In conclusion, ozone treatment affected fruit PAL, PPO, POD and β-1,3-

glucanase where the effect was dose dependent. Threshold limit was observed in 

the effect of ozone on PAL (3 ppm ozone), PPO (3 ppm ozone) and POD activities (5 

ppm ozone) where increase in ozone dosage beyond their threshold reduced the 
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enzyme activities. Meanwhile, optimal β-1,3-glucanase activity was observed after 

exposure to 3 ppm ozone where further increase in ozone dosage had no significant 

effect on the enzyme activity. The results also showed β-1,3-glucanase had the 

highest correlation with anthracnose disease incidence in bell pepper, where it 

contributed to 52% of the variation in disease incidence. This is followed by PAL, 

POD and PPO.  
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CHAPTER 6  

 

EFFECT OF OZONE FUMIGATION ON  

ANTIOXIDANT CONTENT AND CAPACITY 

 

6.1 Introduction 

 

 Bell pepper is a highly nutritive fruit which is consumed for its high vitamin C 

content. It also contains other phytochemicals including carotenoid and phenolic 

compounds (Alvarez-Parrilla et al., 2010). It has low sodium and calories contents 

hence, increases its efficiency in supplying the effective antioxidant to consumer 

(Wright, 2002). Therefore, bell pepper can be a major source of antioxidant in order 

to prevent diseases such as cancer, cardiovascular disease and neurological 

disorder.  

Application of postharvest treatment such as UV-C (Promyou and 

Supapvanich, 2012), salicylic acid (Huang et al., 2008) and ozone (Zhao et al., 

2013b) was reported to have stimulating effect on fruit antioxidant content. This 

approach can be used to increase antioxidant content in bell pepper hence, improve 

its potential antioxidant transfer to consumer. The effect of the postharvest treatment 

on fruit antioxidant varies depending on the response of fruit commodity towards the 

postharvest treatment applied.  This is related to fruit defense mechanism in 

response to oxidative stress. 

The effect of ozone on antioxidant activity of fruit greatly depends on ozone 

dosage. Previous studies reported that different commodity respond differently 
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towards ozone dosage where ozone can have positive or negative effects on fruit 

antioxidant content (Jin-Hua et al., 2007; Keutgen and Pawelzik, 2008; Minas et al., 

2010). This greatly influenced fruit functionality which is an important criteria for bell 

pepper. This leads to the objectives of this study to: 

1. evaluate the effect of different ozone concentration on antioxidant of bell 

pepper such as phenolic compound, ascorbic acid and β-carotene  

2. investigate the effect of different ozone concentration on bell pepper 

antioxidant capacity during storage 

3. determine major antioxidant of bell pepper which is correlated with its 

antioxidant capacity 
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6.2 Materials and Method 

 

6.2.1 Fruit material 

 

Fruit material was prepared as described in section 3.2.2.  

 

6.2.2 Ozone exposure 

 

Fruit was exposed to ozone as described in section 5.2.2 

 

6.2.3 Determination of antioxidant 

 

6.2.3.1 Total phenol content 

 

Total phenol content was determined using Folin Ciocalteau (FC) 

spectrophotometric method, adopted from (P. K. Ramamoorthy and Bono, 2007). 

Briefly, 5 g of fruit tissues were homogenized in 50 ml of 80% methanol, centrifuged  

at 10,000 rpm for 15 min at 5ºC and filtered using Whatman filter paper (pore size 11 

µm).  0.1 ml of filtrate was then mixed with 0.5 ml of Folin reagent, 1.5 ml of 7% 

Na2CO3 and 7.9 ml of distilled water. The reaction mixture was incubated at 37ºC for 

2 h and absorbance at 765 nm was measured using UV-Vis Spectrophotometer. The 

absorbance obtained was measured against a blank at 765 nm. A standard curve 

was prepared using Gallic acid stock solution (Appendix B 6.1). Total phenolic 

content was expressed in mg of gallic acid equivalent g-1 of fresh weight of fruit 

sample.  
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6.2.3.2 Ascorbic acid concentration 

 

 Ascorbic acid concentration was determined according to the method of 

Ranggana (1986). 10 g of fruit tissue from equatorial region was homogenized with 

90 ml of 3% HPO3 + 8% glacial acetic acid, filtered using Whatman filter paper (pore 

size 11 µm)  and 100 ml of filtrate were titrated with 2,6-dichlorophenol indophenol 

(DCPIP) dye (containing 2.49 mM NaHCO3) until pink colour persisted for 15 sec. 

Standardization of DCPIP dye was determined prior to analysis by titrating 1 g l-1 

ascorbic acid (dissolved in 3% HCl) against the prepared DCPIP dye to obtain the 

dye factor (Dye factor = 0.5 per titre value). Ascorbic acid content was calculated 

using the following equation and expressed in mg of ascorbic acid in 100 g of fruit 

sample.  

AA �mg 100 g-1� = 
Dye factor × Ts × Vs× 100

Ws × As
 

Ts = Titre value of standard (ml) 

Ws = Weight of sample (10 g) 

Vs = Volume of sample (100 ml) 

Va= Volume of aliquot (100 ml) 

 

6.2.3.3 β-carotene concentration 

 

β-carotene concentration was determined according to (Georgé et al., 2011). 

Briefly, 10 g of fruit tissue were homogenized in 50 ml acetone, filtered using 

Whatman filter paper (pore size 11 µm). The fruit tissues were re-extracted with 30 
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ml acetone and the filtrates were combined as an extract. The extract was mixed 

with 75 ml petroleum ether and washed three times with distilled water to remove 

water content. The remaining water was removed with anhydrous sodium sulphate 

and final volume of the extract was made up to 100 ml with petroleum ether. 

Absorbance of the extract was measured at 450 nm and 503 nm using UV-Vis 

Spectrophotometer. The absorbance obtained was measured against a blank at 450 

and 503 nm. β-carotene concentration was determined using the following equation 

and result was expressed in µg ml-1.  

β -carotene �µg ml-1�= 4.624 × A450 – 3.091 × A503	 

 

6.2.3.4 Determination of antioxidant capacity using Ferric 

Reducing/Antioxidant Power Assay (FRAP Assay) 

 

Antioxidant capacity using FRAP assay was estimated according to (Alothman 

et al., 2010). Briefly, 20 µL of methanolic extract from total phenolic analysis was 

added with 200 µL of freshly prepared FRAP reagent (2.5 ml of 10 mM 2,4,6-

tripyridyl-s-triazine (TPTZ) in 40 mM HCl, 2.5 ml of 20 mM FeCl3.6H2O and 25 ml of 

0.3 M acetate buffer, pH 3.6) and incubated for 4 min in dark. Absorbance of the 

reaction mixture was measured at 593 nm using UV-Vis Spectrophotometer. The 

absorbance obtained was measured against a blank at 593 nm. A standard curve 

was prepared using Fe(II)SO4 stock solution (Appendix B 6.2). Antioxidant capacity 

was expressed as the concentration of antioxidant having a ferric reducing activity 

equivalent to 1 mg g-1 FeSO4 of fresh weight of fruit sample.  
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6.2.4 Statistical analysis 

 

 The experiments were carried out with a Completely Randomized Design 

(CRD) and three replicates per treatment using three different ozone chambers, 

each containing 20 fruits. The experiment was repeated thrice and data was 

analyzed separately to check for homogeneity. The results were analyzed using 

Statistical Analysis Software (SAS, version 9.1.3, SAS Institute Inc., USA). Analysis 

of variance (ANOVA) was performed with P < 0.05 significance level and differences 

in data means were analyzed using DMRT.  
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6.3 Results and Discussion 

 

6.3.1 Effect of ozone on fruit antioxidant capacity 

 

Ozone treatment significantly affected (P = 0.0335) fruit antioxidant capacity 

to reduce ferric ions to ferrous ions (Figure 6.1, Appendix B 6.1). Immediately after 

ozone treatment, exposure to 3 ppm ozone enhanced fruit antioxidant capacity by 

26%. The antioxidant capacity gradually decreased during storage but maintained at 

elevated level compared to control. Increase of ozone dosage to 5, 7 and 9 ppm 

ozone resulted in diminish antioxidant capacity compared to 3 ppm ozone.  

Exposure to 1 and 3 ppm ozone acted as an elicitor which enhanced fruit 

antioxidant capacity and maintained the elevated level during storage. This 

stimulating action of oxidative stress was also observed in kiwi fruits treated with 0.3 

ppm ozone for 3 days where the antioxidant activity was increased by 2.8% (Minas 

et al., 2010). This is lower compared to results obtained in our study where exposure 

to 3 ppm ozone for 3 days induced 26.0% of bell pepper antioxidant capacity. This 

could be due to higher ozone concentration used and different response between 

kiwi and bell pepper towards ozone. The increase in antioxidant capacity could be 

due to oxidative stress of ozone and its decomposed products which triggered 

synthesis of antioxidants. This is a mechanism to reduce and balance oxidative 

stress and critical for cell survival (Lim et al., 2009). Exposure to the stimulating 

doses of ozone, 1 and 3 ppm ozone, reduced antioxidant capacity loss during 

storage, producing fruit with 33.0 and 46.7% higher antioxidant capacity compared to 

control.  
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Figure 6.1: Effect of different ozone exposure on antioxidant activity of bell pepper 
during three days treatment and 24 days storage at 12°C, 95% RH; vertical bars 
indicate standard errors; means of three replicates; DMR test at P < 0.05 
 

Reduced level of fruit antioxidant capacity in fruit exposed to 7 and 9 ppm 

ozone indicated reduction in fruit antioxidant content. This could be a toxicity 

symptom of ozone on bell pepper. Similar symptom was observed in tomato where 

reduction in antioxidant capacity was observed when exposed to UV-C higher than 8 

kJ m-2 (Liu et al., 2012). This indicates that the threshold dose for antioxidant 

capacity in tomato is 8 kJ m-2 UV-C while the threshold dose for antioxidant capacity 

in bell pepper under study is 3 ppm ozone, The reduction in antioxidant capacity in 

fruit exposed to ozone higher than its threshold dose could be due to the strong 

oxidative stress caused by the high dosage of ozone and UV-C. This perturbed 
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antioxidant-oxidative stress equilibrium hence resulted in reduced level of 

antioxidant. The reduction in fruit antioxidant content and capacity may reduce fruit 

defense against oxidative stress during ripening hence, accelerating senescence. 
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5.3.1 Effect of ozone on fruit antioxidant content 

 

5.3.1.1 Total phenolic content 

(Minas et al., 2010). 

Total phenol analysis showed ozone treatment significantly affected (P < 

0.0001, Appendix 6.2) fruit phenolic content (Figure 6.2). Similarly to the effect of 

ozone on antioxidant capacity, 3 ppm ozone had a stimulating effect on phenolic 

content of bell pepper where it was increased by 15.6% immediately after treatment. 

The phenolic content gradually decreased during storage but maintained at higher 

level compared to control. Increase in ozone concentration reduced fruit phenolic 

content and exposure to 9 ppm ozone significantly reduced fruit phenolic content by 

11.6%. This resulted in fruit with low phenolic content at the end of storage period.  

Fruit phenolic compounds are fruit secondary metabolites including 

antioxidants, structural polymers and compounds involved in non-specific defense 

mechanisms (Cuadra-Crespo and del Amor, 2010). This study showed that exposure 

to 3 ppm ozone stimulated the production of phenolic compounds in bell pepper. 

This finding was supported by Minas et al. (2010) where phenolic content in kiwi fruit 

increased by 5.1% after exposure to 0.3 ppm ozone for 3 days. This increase is 

lower compared to bell pepper exposed to 3 ppm ozone for 3 days in this study. This 

was possibly due to lower ozone concentration applied and different response of 

different commodity towards ozone exposure. Ozone also induced phenolic 

compounds in tomato where exposure to 10 ppm for 6 days was reported to 

increased phenolic content by 45.5% (Rodoni et al., 2010). The increment is higher  
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Figure 6.2: Effect of different ozone exposure on total phenol content of bell pepper 
during three days treatment and 24 days storage at 12°C, 95% RH; vertical bars 
indicate standard errors; means of three replicates; DMR test at P < 0.05. 
 

 

compared to our results. This could be due to higher ozone concentration and longer 

exposure time applied. The stimulating effect of ozone on fruit phenolic content could 

be due to the increase in phenolic acids and flavonoids contents which is triggered 

by high oxidative state of fruit apoplast caused by ozone (Tan et al., 2012). The 

phenolic compounds may scavenge reactive compounds of ozone to protect the 

cells from oxidative chain reaction (Tan et al., 2012). This was due to their structure 

with high tendency to donate a single electron to free radicals (Huang et al., 2008; 
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Tan et al., 2012). The upregulation of phenolic antioxidant maintained equilibrium 

between production and scavenging activity of reactive oxygen species in fruit cell. 

This is crucial to prevent oxidative damage such as lipid autoxidation and 

subsequent cell death.  

Reduction in fruit total phenol content after exposure to 9 ppm ozone 

indicated that ROS equilibrium in the cells was perturbed by the strong ozone 

dosage. Fruit phenolic antioxidants may have been negated by ozone-reactive 

compounds hence, resulted in its depletion. This could be a toxicity symptom of 

ozone on bell pepper. Similar toxicity symptom was also observed on fresh cut 

guava where reaction with 0.77 ppm ozone reduced 46.0% of its total phenolic 

content (Alothman et al., 2010). The higher reduction in the total phenolic content 

reported could be due to fresh cut fruit was used in that experiment compared to 

whole fruit in our study. The fresh cut fruit may be more susceptible to ozone 

oxidation hence, resulted in higher reduction in total phenolic content. This 

weakened fruit defensive response against oxidative stress during ripening hence, 

further reduced fruit total phenol during storage (Tan et al., 2012). This resulted in 

significant reduction (P < 0.05) in fruit phenol content at the end of storage period. 

The effect of ozone on fruit total phenol content was similar to its effect on 

antioxidant capacity. Phenolic content in bell pepper was positively correlated (r – 

0.8291, P < 0.001) with antioxidant capacity (Figure 6.3). Using coefficient of 

determination value [(-0.8291)2 x 100 = 69%], it was observed that PAL activity 

contributed to 69% of the variation in antioxidant capacity in Figure 6.1. This  
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Figure 6.3: The correlation between antioxidant capacity of bell pepper measured by 
FRAP assay and its total phenol content 
 

 

suggested that the increase in antioxidant capacity could be due to the increase in 

phenolic content in the fruit. This also suggested that phenolic compound is one of 

the major antioxidant in bell pepper under study. 

 

5.3.1.2 Ascorbic acid content 

 

Ascorbic acid content in bell pepper was significantly affected (P < 0.0177, 

Appendix B 6.4) by ozone treatment. Immediately after treatment, exposure to 3 ppm 

ozone increased fruit ascorbic acid content by 15.9% (Figure 6.4). The ascorbic acid  
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Figure 6.4: Effect of different ozone exposure on ascorbic acid content of bell pepper 
during three days treatment and 24 days storage at 12°C, 95% RH; vertical bars 
indicate standard errors; means of six replicates; DMR test at P < 0 

 

content gradually decreased during storage. The stimulating effect on fruit ascorbic 

acid content observed in this study was also reported in pepper treated with 1 mM 

H2O2 (Bayoumi, 2008), UV-C at 254 nm for 10 min (Sakaldaş and Kaynaş, 2010) and 

1.0% chitosan (Xing et al., 2011) where the ascorbic acid content was increased by 

approximately 100.0, 51.9 and 54.5%, respectively. This showed that ozone may 

have reacted similar to the other oxidizing agents (H2O2, UV-C and chitosan) where 

it induced defense response of pepper by inducing ascorbic acid content. Ozone 

may cause oxidative burst and trigger nonenzymatic ROS scavenging mechanism. 
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This may induce the level of ascorbic acid by upregulating ascorbate-gluthathione 

cycle enzymes such as monodehydroascorbate reductase (MDAR) and 

dehydroascorbate reductase (DHAR) (Apel and Hirt, 2004; Forney, 2003). This 

increased the level of reduced ascorbate to neutralize ozone and its induced reactive 

compounds which therefore, maintained the cell oxidative status.  This also 

increased fruit ascorbic acid content and its phytochemical value where in our case, 

fruit exposed to 1 and 3 ppm had high ascorbic acid content by 12.3% and 22.7%, 

respectively.  

Exposure to 9 ppm ozone displayed toxicity effect where reduction in ascorbic 

acid content was observed on day 6. Further reduction was observed during 

subsequent storage. The toxicity effect of ozone was also reported on  fresh cut 

pineapple and guava after exposure to 0.76 ppm ozone which reduced 46 and 67% 

of their ascorbic acid content, respectively (Alothman et al., 2010). High oxidative 

stress of the ozone dosage perturbed the equilibrium of ascorbate-gluthathione cycle 

where oxidized form of ascorbate exceeded the reduced form (Apel and Hirt, 2004). 

This reduced ascorbic acid content and resulted in its depletion.  

The low level of ascorbic acid in fruit may act as a pro-oxidant which produced 

H2O2 in a reaction with oxygen (Fry, 1998). The H2O2 then produced hydroxyl radical 

(OH•) from its reaction with traces of metal compounds such as Fe2+ and Cu2+ 

through Haber-Weiss reaction (Apel and Hirt, 2004; Gaetke and Chow, 2003; 

Sakihama et al., 2002). This pro-oxidant property was also observed in fruit phenolic 

compounds which undergo similar reaction in contact with metal (Sakihama et al., 

2002). Hydroxyl radical is a highly reactive radical and its accumulation increased 
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fruit oxidative stress. This leads to subsequent oxidative chain reaction such as lipid 

and DNA degradation (Apel and Hirt, 2004; Sakihama et al., 2002).  

Ascorbic acid obtained in this study was positively correlated (r = 0.972, P = < 

0.0001) with antioxidant capacity (Figure 6.5). Using coefficient of determination 

value [(0.972)2 x 100 = 94%], it was observed that ascorbic acid activity contributed 

to 94% of the variation in disease incidence in Figure 6.1. This suggested that the 

increase in antioxidant capacity could be strongly due to the increase in ascorbic 

acid content. This suggested ascorbic acid is also the major antioxidant in bell 

pepper. 

 

 

Figure 6.5: The correlation between antioxidant capacity of bell pepper measured by 
FRAP assay and its ascorbic acid content 

r = 0.9724
P < 0.0001
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Our results (Figure 6.3 and Figure 6.5) showed that fruit phenolic compounds 

and ascorbic acid are the major antioxidant in bell pepper and may worked co-

operatively to detoxify harmful effect of ozone and its induced reactive compounds. 

Phenolic compounds may protect ascorbic acid from oxidative decomposition 

(Forney, 2003; Huang et al., 2008; Sakihama et al., 2002). Meanwhile, ascorbic acid 

may restore phenolic compounds oxidized by free radicals by reducing oxidized form 

of phenolic compounds such as phenoxyl radical of tocopherol (Forney, 2003). This 

restored availability of phenolic compounds in cells. Due to the dependent 

characteristic of phenolic compound and ascorbic acid on one another, similar 

responses to ozone were observed for both compounds . 

 

5.3.1.3 β-carotene content 

 

β-carotene content analysis showed ozone concentration and exposure time 

had significant (P < 0.0001, Appendix B 6.5) effect on fruit β-carotene content while 

no significant effect was observed from their interaction (Figure 6.6). Exposure to 1 

ppm ozone increased fruit β-carotene content while exposure to 5, 7 and 9 ppm 

ozone reduced β-carotene content. No significant effect was observed from 

exposure to 3 ppm ozone.  

β-carotene is orange and red pigments which are localized in chloroplast and 

chromoplast. It is an antioxidant with scavenging property to neutralize free radicals 

in order to balance cell oxidative status (Wolbang et al., 2010).  It is also a precursor 

in biosynthesis of vitamin A (Wolbang et al., 2010). Our results (Figure 6.6) showed  
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Figure 6.6: Effect of different ozone exposure on β-carotene content of bell pepper 
during three days treatment and 24 days storage at 12°C, 95% RH; vertical bars 
indicate standard errors; means of three replicates; DMR test at P < 0.05. 

 

 

that ozone induced β-carotene content in bell pepper treated with 1 ppm ozone. The 

stimulating effect on β-carotene content was also reported in bell pepper exposed to 

6.6 kJ m-2 UV-C where the β-carotene content was increased by 57.1% (Promyou 

and Supapvanich, 2012). This showed that ozone and UV-C triggered similar 

response on bell pepper where β-carotene was induced. As an antioxidant, increase 

in β-carotene content is a result of ROS scavenging mechanism in fruit second line 

of defense. The antioxidant scavenged oxidative burst caused by oxidative agent 

such as ozone hence, protecting the cells from oxidative damage. This also 
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increased fruit β-carotene content hence added the phytochemical value to the fruit. 

This improves potential phytochemical transfer to consumer hence reduces the risk 

of oxidative related disease. Besides, it also improved vision and immune system as 

a result from the benefit of vitamin A.  

Reduction in fruit β-carotene content in fruit exposed to 5, 7 and 9 ppm ozone 

could be a phytotoxic effect of ozone. Similar phytotoxic effect was also observed in 

bell pepper treated with 7 kJ m-2 UV-C where the fruit β-carotene content was 

reduced by 17.1% (Vicente et al., 2005). The author only determined the effect of 

UV-C at one concentration (7 kJ m-2) and no comparison was made to lower UV-C 

dosage. However, in comparison to a study by Promyou and Supapvanich (2012), 

exposure to lower UV-C dosage, 6.6 kJ m-2 increased β-carotene in bell pepper. This 

could indicate that UV-C and ozone affect β-carotene of bell pepper in similar pattern 

where it increased when exposed up to a threshold dose and decreased when 

exposed to higher dose. In comparison to another commodity, ozone was also 

reported to reduce lutein, another naturally occurring carotenoid, content in tomato 

(Tzortzakis et al., 2007). The author reported that exposure to 0.05 ppm ozone for 1 

day increased tomatoes lutein content approximately by 45%. Increase in ozone 

dosage either by increase of ozone concentration to 1.0 ppm or extending the 

exposure to 6 days however, reduced the fruit lutein content by approximately 45 

and 66%, respectively (Tzortzakis et al., 2007). Similarly to our results, this 

suggested that the carotenoid content was induced at low ozone dosage but reduced 

as ozone dosage exceeded its threshold. (Promyou and Supapvanich, 2012) 

β-carotene content obtained in this study was negatively correlated (r = -

0.4704, P = 0.0003) with antioxidant capacity (Figure 6.7). This suggested that the  
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Figure 6.7: The correlation between antioxidant capacity of bell pepper measured by 
FRAP assay and its β-carotene content 

 

increase in variation in fruit antioxidant capacity was not due to increase in β-

carotene content. Therefore, β-carotene may not be the major antioxidant in bell 

pepper under study. 

This study showed phytotoxic effect of ozone on β-carotene was observed at 

lower dosage (5 ppm ozone) than total phenolic (7 ppm ozone) and ascorbic acid 

content (9 ppm ozone). This suggested that β- carotene was more susceptible to 

ozone oxidation than ascorbic acid and phenolic compound. The high susceptibility 

of β-carotene was due to its molecular structure which has high affinity towards 

hydroxyl radical (OH•), the most reactive radical compound (Henry et al., 2000). 
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Oxidation of β-carotene by hydroxyl radical produced β-carotene radical which then 

degraded to unsaturated and conjugated aldehydes and dialdehydes (Henry et al., 

2000).  

In conclusion, this study showed that bell pepper triggered its defense system 

by utilizing ROS avoidance and ROS scavenging mechanism to encounter oxidative 

stress of ozone. This resulted in the increase in fruit antioxidants such as phenolic 

compounds, ascorbic acid and β-carotene. This subsequently enhanced fruit 

antioxidant capacity which benefits the consumer. Besides, we also found that the 

stimulating dosages of ozone on fruit antioxidants are 1 and 3 ppm for total phenolic 

content and 1 ppm ozone for β-carotene. The antioxidants then underwent natural 

reduction during storage. This therefore, suggesting that bell pepper is best 

consumed immediately after ozone treatment with the stimulating dosage in order to 

obtain optimal antioxidant content. In the case of fruit total phenol and ascorbic acid 

contents, the stimulating effect of ozone compensated their natural reduction during 

storage hence, producing fruit with higher antioxidant content during storage 

compared to untreated fruit. This increased the fruit functionality and its efficacy of 

antioxidant transfer to consumer.  

Referring to the effect of ozone on fruit inducible enzymes which are PAL, 

PPO, POD and β-glucanase (Chapter 5), this showed bell pepper utilized its ROS 

avoidance and non-enzymatic ROS scavenging mechanisms to encounter oxidative 

stress of ozone. These mechanisms work cooperatively in response to oxidative 

stress of ozone. The eliciting effect of ozone on fruit defense system increased its 

resistance to biotic and abiotic stress during storage.  
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CHAPTER 7  

 

EFFECT OF OZONE FUMIGATION ON  

PHYSICO-CHEMICAL, PHYSIOLOGY  

AND SENSORY QUALITIES 

 

7.1 Introduction 

 

Physical quality, biochemical quality and physiology of fruit are an important 

aspect which determines the overall quality of a fruit hence, influencing consumer 

selection process. Apart from diseases and blemishes, the main problem affecting 

bell pepper is the loss of texture and firmness. This is one of the main criteria 

influences consumer selection  where a firm and crispy texture are preferred than 

soft texture (Wright, 2002). Colour of bell pepper also influences consumer selection 

where solid colour fruit is preferred than partially colour fruit (Fox et al., 2005). 

These physical qualities are correlated with fruit biochemical status, 

physiology and ripening progress. Parameters such as respiration rate, soluble solid 

concentration and titratable acidity reflect fruit physiology and biochemical quality. 

Postharvest treatments which induced abiotic stress in fruit has the potential to 

influence the parameters hence may reduce fruit ripening progress and improve fruit 

quality. For example, chlorine dioxide (ClO2) (Jin-Hua et al., 2007), hydrogen 

peroxide (H2O2) (Bayoumi, 2008) and UV-C (Vicente et al., 2005) were reported to 

improve quality of peppers.  
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 By manipulating the strong oxidizing property of ozone, gaseous ozone 

treatment has the potential to influence fruit ripening progress and subsequently its 

physical quality. Therefore, this chapter evaluates the effect of ozone on fruit 

physico-chemical quality. The objective includes to; 

1. determine the effect of the ozone dosage on bell pepper chemical quality such 

as titratable acidity, total soluble solid, chlorophyll content and cell oxidative 

level  

2. investigate the effect of the ozone dosage on bell pepper respiration and 

ethylene production 

3. evaluate the effect of the ozone dosage on consumer perception on quality of 

bell pepper in terms of appearance, colour, aroma, flavour and overall 

acceptability  

  



 

175 

 

 

7.2 Materials and Method 

 

7.2.1 Fruit material 

 

Fruit material was prepared as described in section 3.2.2.  

 

7.2.2 Ozone exposure 

 

Fruit was exposed to ozone as described in section 5.2.2 

 

7.2.3 Determination of physical quality 

 

7.2.3.1 Fruit colour 

 

 Fruit colour at two opposite sides of the fruit equator was measured using a 

colourimeter (Model: Miniscan XE Plus, HunterLab, USA), which was calibrated with 

standard black and white tiles. Values for L*, a * and b* were recorded every three 

days and values for chroma (C*) and hue angle (h°)  were calculated using the 

following equations (Xing et al., 2011):  

C* = (a*2 + b*2)1/2 

h° = tan-1 b* / a*  
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7.2.3.2 Weight loss 

 

 Fruit weight loss was determined by weighing the fruit on a digital balance 

(Model GF-6100, A&D Co. Ltd., Japan) before the ozone treatment and every three 

days until the end of the storage period. Same fruit was used throughout the 

experiment. Percentage of weight was then calculated.   

Weight loss �%�=
(Wi – Wf) 

Wi
 × 100 

Wi = Initial fruit weight 

Wf = Final fruit weight 

 

7.2.3.3 Fruit firmness 

 

 Fruit firmness was determined using an Instron texture analyzer (Instron 

2519-104, MA), equipped with an eight mm plunger tip. Fruit pieces, 2.5 x 2.5 cm, 

were cut from the equatorial region and firmness was determined by applying force 

with a constant speed of 20 mm min-1. Two fruit pieces were sampled per fruit. 

Sampling was done every three days and maximum force required to penetrate 

through the fruit was recorded and results were expressed in Newton (N). 

 

7.2.3.4 Membrane permeability 

 

Membrane permeability was determined according to the method of (Xing et 

al., 2011). Briefly, ten fruit discs, including epidermis (≈ 0.059 cm3) were sampled 

from equatorial region using 0.5 cm cork borer, washed with distilled water, dried on 
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filter paper, placed in a flask with 30 ml distilled water, shaken at 25°C on an orbital 

shaker (Model S1500, Bibby Scientific Limited, UK) for 30 min and boiled for 10 min. 

Electrical conductivity of the solution was measured using a conductivity meter 

(Model: Eutech Cond 6+, Thermo Fisher Scientific Inc., USA) before and after boiling 

and percentage leakage was calculated. Sampling was done every three days. 

Relative leakage rate �%� = 
 ELi – ELf

ELf
 × 100 

ELi = Initial electrolyte leakage 

ELf = Final electrolyte leakage 

 

7.2.4 Determination of chemical quality 

 

7.2.4.1 Soluble solids concentration 

 

Soluble solid concentration (SSC) was determined using a Palette digital 

refractometer (Model: PR-32α, Atago Co, Ltd. Japan). 10 g of fruit tissue from 

equatorial region were homogenized in 40 ml distilled water, centrifuged at 5500 rpm 

for 5 min and SSC of the supernatant was determined using the refractometer 

calibrated with distilled water. Sampling was done every three days. The reading 

was recorded and multiplied by the dilution factor.  

 

7.2.4.2 Titratable acidity 

 

Titratable acidity (TA) was determined based on malic acid content according 

to the method of Fox et al. (2005). Two drops of phenolphthalein were added to 5 mL 
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of supernatant from the SSC analysis and titrated with 0.1 % NaOH until the solution 

turned pink. The malic acid content was determined by measuring volume of NaOH 

used and multiplying it by the dilution factor and molecular weight of malic acid 

(134.09 g mol-1). Sampling was done every three days. 

Titratable acidity �%� = 
VNaOH × Vf × MWmalic acid

Ws × Vu × 1000
 ×100 

VNaOH = Volume of 0.1% NaOH used (ml) 

Vf = Volume of fruit juice made in SSC analysis (50 ml) 

Vu = Volume of sample used in TA (5 ml) 

MWmalic acid = Molecular weight of malic acid (134.09 g mol-1) 

Ws = Weight of sample used in SSC analysis (10 g) 

 

7.2.4.3 Chlorophyll content 

 

Chlorophyll concentration was determined according to the method of (Xing et 

al., 2011). 1 g of fruit tissue from equatorial region was homogenized with 10 ml 80% 

acetone, centrifuged at 5500 rpm for 5 min and absorbance of the supernatant was 

measured at 646.6, 663.6 and 750 nm using a UV-Vis spectrophotometer. 

Absorbance at 646.6 and 663.6 nm were corrected by subtracting with absorbance 

at 750 nm. Sampling was done every three days and chlorophyll content was 

calculated using the following equation. Results are expressed as µg g-1 fresh weight 

of fruit sample.  

Total chlorophyll (µg g-1) = (17.76 × A646.6)+ (7.34 × A663.6� 
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7.2.4.4 Malondialdehyde (MDA) content 

 

 MDA content which represents TBARS content was determined according to 

(Xing et al., 2011). Briefly, 5 g of fruit tissues were homogenized in 50 ml of 10% 

trichloroacetic acid (TCA) and centrifuged at 5579×g for 30 min at 4°C. 1 ml of the 

supernatant was mixed with 3 ml of 0.5% thiobarbituric acid (TBA) (dissolved in 10% 

TCA), incubated at 95°C for 30 min and quickly cooled in ice bath. Absorbance of the 

reaction mixture was measured at 532 nm and subtracted from absorbance at 600 

nm using UV-Vis Spectrophotometer. Sampling was done every three days and 

MDA content was calculated using the following equation. The results were 

expressed in µmol MDA equivalents g-1 of fresh weight of fruit sample. 

MDA content �µmol g-1� = 
(A532 – A600) × Ve × Vf × 1000

Vi × Ws × 155
	 

Ve = volume of extract (50 ml) 

Vf = volume of reaction mixture (4 ml) 

Vi = volume of extract in reaction mixture (1 ml) 

Ws = weight of sample used (5 g) 

 

7.2.5 Determination of respiration and C2H4 production 

 

7.2.5.1 Respiration 

 

 Fruit respiration or CO2 production was determined according to (Forney et 

al., 2007). Briefly, two fruit were sealed in 500 ml container and incubated for one 

hour at room temperature (25-26º). 1 ml of head space gas was then sampled and 
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injected into a gas chromatograph (Model: Clarus 500, Perkin Elmer Inc, USA) 

equipped with a stainless steel column, 30 m x 0.530 mm (Porapak R 80/100) and a 

thermal conductivity detector (TCD). Helium was used as a carrier gas at a flow rate 

of 20 ml min-1 and temperature of oven, injector and TCD was set at 60°C, 100°C 

and 200°C respectively. 1 ml of CO2 gas standard (Scotty gases, Beltifonte, USA) 

was used for calibration. Fruit respiration was measured every three days and the 

CO2 production was expressed in ml kg-1 h-1.  

 

7.2.5.2 C2H4 production 

 

 C2H4 production by fruit was determined according to the method of Forney et 

al. (2007) with modifications. Briefly, two fruit were sealed in a 500 ml container and 

incubated for one hour at room temperature (25-26º), after which 1 ml of head space 

gas was sampled and injected into a gas chromatograph (Model: Clarus 500, Perkin 

Elmer Inc, USA) equipped with a stainless steel column, 30 m x 0.530 mm (Porapak 

R 80/100) and a flame ionization detector (FID). Nitrogen was used as a carrier gas 

and temperature of the oven, injector and FID was set at 150°C, 200°C and 200°C 

respectively. One ml of C2H4 gas standard (Scotty Gases, USA) was used for 

calibration. Ethylene production was measured every three days and expressed as 

µl kg-1 h-1. 

 

7.2.6 Sensory evaluation 

 

 Sensory evaluation of bell pepper was performed at day 19 of storage using a 

Hedonic scale rating (Whangchai et al., 2006). Fruit tissues (5 cm x 5 cm) from 
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equatorial region were sampled and coded in random numbers. 20 panelists were 

asked to evaluate the criteria by allotting values; 1-extreme dislike, 3-dislike, 5-

acceptable, 7-good and 9-excellent. The samples were rated based on appearance, 

colour, texture, aroma, flavour and overall acceptability.   

 

7.2.7 Statistical analysis 

 

 The experiments were carried out with a Completely Randomized Design 

(CRD) and three replicates per treatment using three different ozone chambers, 

each containing 20 fruits. The experiment was repeated thrice and data was 

analysed separately to check for homogeneity. The results were analyzed using 

Statistical Analysis Software (SAS, version 9.1.3, SAS Institute Inc., USA). Analysis 

of variance (ANOVA) was performed with P < 0.05 significance level and differences 

in data means were analyzed using DMRT.  
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7.3 Results and Discussion 

 

7.3.1 Bell pepper physical quality  

 

7.3.1.1 Colour 

 

Ozone concentration and storage time significantly affected (P < 0.0001, 

Appendix B 7.1) colour lightness (L*) of bell pepper (Figure 7.1). Significant change in 

colour lightness was observed from day 12 where the epidermis colour changed to 

lighter colour until the end of storage period. Exposure to 1 and 3 ppm ozone 

retained fruit colour lightness similar to control where no significant changes were 

observed. Increase in ozone concentration to 5, 7 and 9 ppm enhanced colour 

lightness producing fruit with lighter colour.  

Colour vividness or chroma (C*) was significantly affected (P = 0.0022, 

Appendix B 7.2) by interaction of ozone concentration and storage time (Figure 7.2). 

At the end of storage period, fruit exposed to 1 and 3 ppm ozone had comparable 

colour vividness compared to control. Meanwhile, exposure to 5, 7 and 9 ppm ozone 

enhanced fruit colour vividness producing fruit with more vivid colour.  

Perceived colour or hue angle (h°) was significantly affected (P < 0.0001, 

Appendix B 7.3) by ozone concentration and storage time (Figure 7.3). Significant 

changes in colour hue angle were observed from day 6 where reduction in colour 

hue angle was observed until the end of storage period. Exposure to 7 and 9 ppm 

ozone enhanced progression of colour which significantly reduced colour hue angle 

producing fruit with yellowish hue. Exposure to 1, 3 and 5 ppm ozone retained colour 

hue angle similar to control.   
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Figure 7.1: Effect of different ozone exposure on L* value of fruit colour during three 
days treatment and 18 days storage at 12°C, 95% RH. Vertical bars indicate 
standard errors; means of three replicates; DMR test at P < 0.05. 

 

Fruit epidermis colour is measured using a colorimeter to quantify colour 

using CIELAB system by measuring three colour coordinates; L* (lightness), a* 

(red/green) and b* (yellow/blue) (Pathare et al., 2013). These colour coordinates was 

expressed in CIELCH system to quantify chroma (C*), vividness of a colour and hue 

angle (h°), the perceived colour which is ranging from 0°/360°  (red), 90° (yellow), 

180° (green) to 270° (blue) (Pathare et al., 2013). These attributes are easily  
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Figure 7.2: Effect of different ozone exposure on C* value of fruit colour during three 
days treatment and 18 days storage at 12°C, 95% RH. Vertical bars indicate 
standard errors; means of three replicates; DMR test at P < 0.05. 

 

correlated with human perception towards colour. Bell pepper (cv. Zamboni) 

used in this study is a red variety bell pepper. The fruit was harvested at mature 

green stage which turned to yellow and then red during ripening. Figure 7.1 – 7.3 

show L*, C* and hº values of fruit exposed to 1 and 3 ppm ozone was similar to 

control. This is similar to the findings reported by Glowacz et al. (2015) where  
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Figure 7.3: Effect of different ozone exposure on h° value of fruit colour during three 
days treatment and 18 days storage at 12°C, 95% RH. Vertical bars indicate 
standard errors; means of three replicates; DMR test at P < 0.05. 

 

exposure to 0.1 and 0.3 ppm for 7 and 14 days had no effect on L*, C* and hº values 

of the fruit. This suggested the treatments had no effect on fruit colour development, 

pigmentation or ripening progress. The treatments maintained fruit ripening 

progression similar to control during storage. (Glowacz et al., 2015) 

Significant progression of colour (L*, C* and hº values) was observed in fruit 

exposed to high ozone dosage, 7 and 9 ppm ozone. It resulted in fruit with yellow 

and reddish hue (62.16 – 63.79º). The increase in colour progression was also 

observed in bell pepper treated with 1 ppm aqueous ozone when the exposure time 

was increased from 1 min to 3 and 5 min (Horvitz and Cantalejo, 2012). This is an 
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indication of stimulated progression of ripening. Exposure to higher ozone dosage 

(either by increase in ozone concentration or exposure time) may produce stronger 

oxidative stress hence, increase fruit respiration and lipid peroxidation (Hodges, 

2003). This increased ripening and colour development as observed.  

Enhanced progression of colour in fruit treated with 7 and 9 ppm ozone could 

be a phytotoxic effect of ozone on bell pepper. This symptom differs from phytotoxic 

symptoms observed on papaya (Ong et al., 2012) and carrot (Hildebrand et al., 

2008) which resulted in epidermis browning after exposure to 4 ppm ozone for 6 

days and 0.05 ppm ozone for 2 months, respectively. The epidermis browning could 

be resulted from necrosis of cells near to lenticels which are the main entry of ozone 

into the cells (Forney, 2003). In contrast to bell pepper with less lenticels (Torlak et 

al., 2013), ozone has no selective entry into the cells hence, oxidation activity 

occurred evenly on the epidermis and resulted in the enhanced colour progression. 

Besides, epidermis of bell pepper is protected by surface cuticle layer (Maalekuu et 

al., 2006), which prevented the cells from strong oxidation activity and subsequent 

cell necrosis. This reduced susceptibility of bell pepper to ozone.  

Minimal changes observed in the perceived colour (hº) of fruit treated with 1, 3 

and 5 ppm ozone retained most of their green colour (Figure 7.4). These fruit are 

more preferred by consumer than partially coloured fruit (7 and 9 ppm ozone treated 

fruit) (Fox et al., 2005). This concluded that exposure to 1, 3 and 5 ppm ozone 

retained consumer perception or buying preference toward bell pepper while 

exposure to higher ozone concentration reduced their buying preference.  
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Figure 7.4: Epidermis colour of bell pepper after exposure to (a) 0 ppm (control) (b) 1 
ppm (c) 3 ppm (d) 5 ppm (e) 7 ppm and (9) ppm ozone. The pictures were taken on 
day 21, in storage at 12°C, 95% RH. 
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7.3.1.2 Weight loss 

 

Ozone treatment significantly affected (P < 0.0001, Appendix 7.4) fruit weight 

loss (Figure 7.5). Exposure to 5, 7 and 9 ppm ozone increased fruit weight loss 

where significant weight loss was observed from day 18 (5 ppm ozone) and day 3 (7 

and 9 ppm ozone). At the end of storage period, the treatments increased fruit 

weight loss by 18.5, 36.6 and 55.3%, respectively. Meanwhile, exposure to lower 

ozone concentration, 1 and 3 ppm ozone, had no effect on fruit weight loss where 

the fruit weight was similar to control until the end of storage period.  
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Figure 7.5: Effect of different ozone exposure on weight loss of bell pepper during 
three days treatment and 24 days of storage at 12°C, 95% RH; vertical bars indicate 
standard errors; means of three replicates; DMR test at P < 0.05. 
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Weight loss during storage is crucial for fruit physical quality, particularly bell 

pepper. Weight loss occurred due to water loss in transpiration through stomata and 

lenticels on fruit epidermis (Díaz-Pérez et al., 2007). The rate of transpiration is 

influenced by environmental factors such as temperature and relative humidity (Díaz-

Pérez et al., 2007). Weight loss also occurred due to fruit respiration, a process of 

converting organic reserves to energy (Hong et al., 2012). Respiration occurs in all 

living cells to sustain energy requirement and affected by factors such as 

temperature, pathogen attack and oxidative stress.  

Bell pepper is highly susceptible to water loss due to its hollow structure which 

limits its capacity to store water (Maalekuu et al., 2005). Besides, its large surface 

area relative to weight increased water loss in transpiration (Díaz-Pérez et al., 2007). 

This is in contrast to fruit with low surface area to weight ratio such as guava. 

Transpiration in fruit can be reduced by storing at low temperature, where in the case 

of bell pepper is at 7 to 12ºC (Tan et al., 2012). Storage at temperature below 7̊C 

induces chilling injury which leads to rapid weight loss and subsequent shriveling 

and quality degradation (Xing et al., 2011).  

Exposure to 1 and 3 ppm ozone maintained fruit weight loss comparable to 

control during storage. These findings are similar to bell pepper exposed lower 

ozone concentration but longer exposure time, 0.1 and 0.3 ppm for 14 days 

(Glowacz et al., 2015). This showed that prolong exposure time to 14 days have 

similar effect on fruit weight loss. The treatments maintained fruit transpiration similar 

to control. This could be due to the presence of cuticle layer on bell pepper surface 

which protect the epidermis from oxidation activity of ozone (Maalekuu et al., 2005). 
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The fruit reached maximum acceptable weight loss (7%) on day 21, where prolonged 

storage exceeded the threshold and not suitable for market.   

Increased weight loss in fruit exposed to 5, 7 and 9 ppm ozone reduced its 

storage life. The treated fruit reached their maximum acceptable weight loss three 

days earlier than control. This could be due to oxidation of surface cuticle layer by 

the strong ozone doses (Forney, 2003; Skog and Chu, 2001). Degradation of the 

protective layer exposed fruit cell to ozone oxidation. This may lead to lipid 

peroxidation which reduces cell membrane integrity and cell water retention hence, 

increases transpiration and weight loss. Ozone and its induced free radicals also 

increased respiration by upregulating electron transport chain at mitochondria which 

subsequently increased the loss of water (Tiwari et al., 2002). This resulted in 

wrinkle and surface pitting which were observed at the end of storage period.  

Effects of ozone on weight loss were also observed in peach. This was 

reported by Palou et al. (2002) where exposure to 0.3 ppm ozone for 5 weeks 

increased 22.2% of weight loss. In comparison to bell pepper, peach does not have 

cuticle layer to protect the cell epidermis from the action of ozone hence, more 

susceptible to water loss. In contrast to bell pepper which has hollow structure, 

peach however has solid structure hence has higher capacity to retain its water 

content. These factors may influence their response to ozone in terms of weight loss.  

 

7.3.1.3 Fruit firmness 

 

Ozone treatment significantly affected (P < 0.0001, Appendix B 7.5) fruit 

firmness (Figure 7.6). Exposure to 1 and 3 ppm ozone had no significant effect on 

fruit firmness. The fruit firmness was maintained similar to control until the end of  
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Figure 7.6: Effect of different ozone exposure on firmness of bell pepper during three 
days treatment and 24 days storage at 12°C, 95% RH; vertical bars indicate 
standard errors; means of three replicates; DMR test at P < 0.05. 

 

storage period. Exposure to 5, 7 and 9 ppm ozone reduced fruit firmness. Significant 

reduction in fruit firmness was observed from day 18 (5 and 7 ppm ozone) and day 

15 (9 ppm ozone) until the end of storage period. 

Fruit firmness was quantified using a texture analyser which measured force 

required to penetrate the fruit per surface area. It is related to fruit texture hence, 

influence fruit storage life and consumer acceptance. Firmness of fruit naturally 

decreased during storage. This was due to the loss of water content in cells during 

transpiration and respiration hence, cell turgidity and firmness.  
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Treatment of 1 and 3 ppm ozone had no effect on fruit firmness. Similar 

response was also observed in bell pepper exposed to 0.1 and 0.3 ppm for 14 days 

(Glowacz et al., 2015). This indicated that prolong ozone exposure to 14 days with 

lower ozone concentration, 0.1 and 0.3 ppm, produces similar oxidation stress on 

bell pepper where it had no effect on fruit firmness. Similar findings was reported in 

carrot, where ozone dosage of 2.2 ppm ozone for 15 min had no effect on the fruit 

firmness (Barbosa-Martinez et al., 2002). This suggested that oxidative stress of the 

treatments had no effect on cell membrane integrity. This maintained fruit capacity to 

retain water hence, maintained fruit weight loss comparable to control (Figure 7.5).  

Exposure to higher ozone concentration, 5, 7 and 9 ppm ozone reduced fruit 

firmness. Decrease in fruit firmness as exposed to higher ozone dosage was also 

observed in bell pepper exposed to 1 ppm aqueous ozone when the exposure time 

was increased from 1 min to 3 min (Horvitz and Cantalejo, 2012). The higher 

oxidative stress from high ozone dosage reduced fruit firmness. This could be due to 

the increase in loss of water as discussed in section 7.3.1.2. Besides, reduction in 

fruit firmness could be due to oxidizing effect of ozone and its decomposition 

products (hydrogen peroxide, single oxygen, hydroxyl and other free radicals) on 

unsaturated fatty acids of cell membrane and sulfhydryl groups of membrane 

proteins (Forney, 2003). This lipid peroxidation led to formation of lipid 

hydroperoxides (LOOH) which lead to subsequent chain reaction of lipid degradation 

(Forney, 2003). This further reduced cell membrane integrity and cell water retention 

which hence, reduced its firmness.  
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7.3.1.4 Membrane permeability 

 

Ozone concentration and storage time significantly affected (P < 0.0001, 

Appendix B 7.6) fruit membrane permeability (Figure 7.7). Fruit membrane 

permeability increased during storage, producing fruit with high electrolyte leakage. 

The effect of ozone concentration on membrane permeability was dose dependent. 

Exposure to low ozone concentration, 1 and 3 ppm ozone had no effect to 

membrane permeability while exposure to high ozone concentration, 5, 7 and 9 ppm 

ozone increased membrane permeability.  
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Figure 7.7:  Effect of different ozone exposure on membrane permeability of bell 
pepper during three days treatment and 24 days storage at 12°C, 95% RH; vertical 
bars indicate standard errors; means of three replicates; DMR test at P < 0.05. 

 

Fruit membrane permeability quantified relative ion content in apoplastic 

space of fruit cell (Xing et al., 2011). It indirectly measured cell leakage which 

indicates cell membrane integrity or damage as a result of lipid peroxidation (Xing et 

al., 2011). Fruit membrane permeability gradually increased during storage. This was 

an indication of ripening which due to increase of cell oxidative stress (Hodges, 

2003). Increase of membrane permeability during ripening was also observed in 

pepper (Xing et al., 2011) and melon (Hodges, 2003). (Plażek et al., 2000) 

Membrane permeability of fruit exposed to 1 and 3 ppm ozone was not 

affected by the treatments. This suggested the oxidative stress of the treatment did 

not affect cell membrane lipid integrity hence, indicating a balanced oxidative status 

in the cell. This could be due to enhanced production of fruit antioxidants such as 

ascorbic acid and phenolic compounds as discussed in Chapter 6. The antioxidants 

neutralized oxidative activity of ozone and its induced free radical, reduced cell 

oxidative level and subsequent lipid peroxidation. This maintained the fruit 

membrane integrity and permeability similar to control. Therefore, the cell maintained 

its capability to retain water and preserved its firmness similar to control (Figure 7.6).  

Increase in membrane permeability in fruit exposed to 5, 7 and 9 ppm ozone 

indicated the high level of cell oxidative stress as a result of the treatments. This is in 

agreement with findings reported by Plazek et al. (2000) where increase in ozone 

dosage by prolonging exposure time from 6 days 12 days increased membrane 

permeability of barley leaves exposed to 180 ppm ozone. The stronger ozone 

dosage may has encountered physical barrier of cuticle layer of fruit or leaves and 
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diffused into cell apoplast (Forney, 2003; Skog and Chu, 2001). The high reactivity of 

ozone and its induced free radicals disrupted antioxidant-oxidative stress balance, 

resulted in depletion of antioxidants such as ascorbic acid and phenolic compounds 

(Chapter 6) and excess of reactive free radicals. This led to decomposition of 

unsaturated fatty acids and degradation of membrane integrity. Subsequently, it 

increased cell membrane permeability and resulted in loss in cellular 

compartmentation (Skog and Chu, 2001). This will affect other physical qualities 

such as firmness and weight loss.  

 

7.3.2 Bell pepper chemical quality 

 

7.3.2.1 Soluble solids concentration (SSC) 

 

Ozone concentration and storage time significantly affected (P < 0.0023, 

Appendix B 7.7) fruit soluble solid concentration (SSC) (Figure 7.8). Fruit SSC 

increased during storage where significant increase was observed from day 6 until 

the end of storage period. In the effect of ozone concentration, exposure to 1, 3 and 

5 ppm ozone had no effect on fruit SSC. Increase in ozone concentration to 7 and 9 

ppm significantly enhanced accumulation of soluble solid producing fruit with higher 

SSC.  

Soluble solid concentration are concentration of total sugar, soluble mineral 

and organic acid in fruit (Barboni et al., 2010). SSC of bell pepper gradually 

increased during storage The increase in fruit SSC was a result of biosynthesis of 

polysaccharides and sugar (Antoniali et al., 2007). Being a non-climacteric fruit, no 

climacteric peak was observed in SSC of bell pepper.  
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Figure 7.8: Effect of different ozone exposure on soluble solid concentration of bell 
pepper during three days treatment and 24 days storage at 12°C, 95% RH; vertical 
bars indicate standard errors; means of three replicates; DMR test at P < 0.05. 

 

No significant changes in SSC of fruit exposed to 1, 3 and 5 ppm indicated 

that oxidative stress of the ozone treatment had no effect on biosynthesis of sugar 

during storage. Similar findings was also observed from application of 0.3 ppm 

ozone for 14 days on bell pepper (Glowacz et al., 2015) and 2.2 ppm ozone for 45 

min on mango (Barbosa-Martinez et al., 2002). Application of other oxidizing agent 

was also reported to have no effect on SSC of bell pepper as observed from 

application of 50 ppm ClO2 on bell pepper (cv. Longrum) for 40 days (Jin-Hua et al., 

2007), application of 14 kJ m-2 UV-C on bell pepper (cv. Zafiro) (Vicente et al., 2005) 
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and application of 15 mM H2O2on white pepper (Bayoumi, 2008). These results 

suggested that the particular dosage of oxidative agents did not affect fruit 

biosynthesis of polysaccharides. This may maintain fruit ripening progress and other 

associated physical and chemical qualities such as weight loss, firmness, respiration 

and titratable acidity.  

Increase in SSC in fruit exposed to 7 and 9 ppm ozone indicated high rate of 

polysaccharide biosynthesis. Increase in SSC upon exposure to ozone was also 

observed in strawberry exposed to 0.7 ppm ozone for 7 days (Kute et al., 1995). This 

leads to accumulation of sugar and was an indication of high progression of ripening. 

In our case, the high progression of ripening is in agreement with enhanced colour 

development observed in fruit exposed to 7 and 9 ppm ozone observed in Figure 7.1 

– Figure 7.3 

 

7.3.2.2 Titratable acidity 

 

Fruit titratable acidity was significantly affected (P < 0.0001, Appendix 7.8) by 

interaction of ozone concentration and storage time (Figure 7.9).  Fruit titratable 

acidity decreased during storage. Significant decrease was observed in fruit exposed 

to 5, 7 and 9 ppm on day 15 (5 ppm ozone) and day 12 (7 and 9 ppm ozone). This 

produced fruit with lower acidity compared to control. Exposure to 1 and 3 ppm 

ozone had no effect on fruit titratable acidity where it was maintained similar to 

control during storage.  

Titratable acidity measured organic acid content such as malic acid, citric acid 

and tartaric acid in fruit. Malic acid, the main organic acid in bell pepper gradually 

decreased during storage as a result of its utilization in respiration. Significant 
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Figure 7.9: Effect of different ozone exposure on titratable acidity of bell pepper 
during three days treatment and 24 days storage at 12°C, 95% RH; vertical bars 
indicate standard errors; means of three replicates; DMR test at P < 0.05 

 

reduction in titratable acidity of fruit exposed to 5, 7 and 9 ppm ozone could be due 

to oxidative stress. This finding was supported by Horvitz and Cantalejo (2012) 

where exposure to 200 ppm ClO2 increased titratable acidity of bell pepper. The 

strong oxidative stress by ClO2 and ozone in this study may cause tissue injuries 

which subsequently increase fruit respiration and increased reduction in organic 

acid, the substrate in respiration process (Horvitz and Cantalejo, 2012). This 

stimulated ripening progress in 5, 7 and 9 ppm ozone treated fruit hence explained 

their enhanced colour development (Figure 7.1 – Figure 7.3). This leads to faster 
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senescence and quality deterioration as the fruit has higher weight loss (Figure 7.5) 

and softer texture (Figure 7.6). 

Exposure to lower ozone dosage (1 and 3 ppm ozone) maintained fruit 

titratable acidity similar to control, indicating comparable ripening progress. Similar 

results were also observed in bell pepper exposed to 0.7 ppm ozone for 5 mins 

where no significant changes were observed (Horvitz and Cantalejo, 2012). This 

suggested that the ozone dosages maintained fruit respiration rate and the treatment 

had no effect on reduction in organic acid and ripening progress. This is in 

agreement with colour development (Figure 7.1 – Figure 7.3) and firmness (Figure 

7.6) of the fruit, which are comparable to control. This slower reduction in titratable 

acidity of fruit exposed to 1 and 3 ppm may also responsible to maintain the elevated 

level of ascorbic acid observed in Chapter 6 (Huang et al., 2008).  

In contrast to our results, oxidative effect of ClO2 was reported to have 

inhibitory effect on pepper ripening progress where  exposure to 50 ppm ClO2 for 40 

days was reported to decrease the reduction of titratable acidity in bell pepper (Jin-

Hua et al., 2007). The author claimed that this could be due to the inhibitory effect of 

ClO2 on methionine (Met) metabolism which reduced bell pepper respiration (Jin-

Hua et al., 2007). This pattern was however not observed in ozone in this study. This 

suggested that the decrease in reduction of titratable acidity could be a characteristic 

effect of ClO2 on bell pepper but was not observed from exposure to ozone.  

 

7.3.2.3 Chlorophyll content 

 

Fruit chlorophyll content was significantly affected (P < 0.0001, Appendix B 

7.9) by ozone concentration and storage time (Figure 7.10). Fruit chlorophyll content  
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Figure 7.10: Effect of different ozone exposure on chlorophyll content of bell pepper 
during three days treatment and 24 days storage at 12°C, 95% RH; vertical bars 
indicate standard errors; means of three replicates; DMR test at P < 0.05. 

 

reduced during storage where significant reduction was observed from day 9 till the 

end of storage period. Effect of ozone concentration of chlorophyll content was dose 

dependent. Exposure to 1 and 3 ppm had no effect on fruit chlorophyll content while 

exposure to higher ozone concentration, 5, 7 and 9 ppm ozone reduced fruit 

chlorophyll content. 

Fruit chlorophyll is a green pigment localized in chloroplast (Sun et al., 2007). 

It is an important molecule to absorb light energy in photosynthesis process. It also 

acts as a radical scavenger which increase fruit total antioxidant capacity (Alvarez-
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Parrilla et al., 2010). During ripening, chlorophyll is degraded with the synthesis of 

chromoplast pigments (Deepa et al., 2007). This is correlated with the loss of green 

pigmentation during ripening. (Fox et al., 2005) 

Chlorophyll content obtained in this study was positively correlated (r = 0.854, 

P = < 0.0001) with colour hue angle (Figure 7.11). Using coefficient of determination 

value [(0.854)2 x 100 = 72%], it was observed that chlorophyll content contributed to 

72% of the variation in colour hue angle in Figure 7.3. This suggested that reduction 

in colour hue angle or colour development observed in bell pepper could be due to 

reduction in chlorophyll content. This finding was supported by Fox et al. (2005) who 

studied the correlation between colour and antioxidant content of bell pepper. 

 

 

Figure 7.11: The correlation between hue angle (h°) of fruit colour and its chlorophyll 
content 
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 Exposure to 1 and 3 ppm ozone had no significant effect on fruit chlorophyll 

content and colour development. This indicated that the treatments had no effect on 

the fruit ripening progress and did not cause significant tissue injury which can lead 

tissue browning.  Meanwhile, significant loss of chlorophyll content in fruit exposed to 

5, 7 and 9 ppm ozone explained their enhanced colour changes observed in colour 

analysis (Figure 7.1 – Figure 7.3). Similar finding was reported by Nunes and Emond 

(1999) where increase in chlorine dosage from 50 to 200 ppm chlorine resulted in 

reduction in chlorophyll content of bell pepper. High chlorophyll degradation was also 

observed from application of UV-C higher than 10 ppm (Jin-Hua et al., 2007). This 

could be due to ozone and UV-C oxidation by-products such as superoxide radical 

(O2-) produced by the oxidizing agents (ozone, chlorine and UV-C) which was 

reported to involve in chlorophyll a degradation (Jin-Hua et al., 2007; Sakaki et al., 

1983). Therefore, our results suggested that ozone treatment higher than 5 ppm 

ozone is not suitable for bell pepper which can result in colour degradation.  

 The enhanced chlorophyll loss in fruit exposed to 7 and 9 ppm ozone could 

also due to their low antioxidant content as reported in Chapter 6. The fruit has low 

capability in scavenging free radicals induced by ozone hence, led to accumulation 

of free radicals in the cells. This could lead to high progress of chlorophyll 

degradation.  In contrast to fruit treated with 1 and 3 ppm ozone, the stimulating 

effect of ozone on the fruit antioxidant content reduced free radicals content in the 

cells which indirectly protecting chlorophyll from degradation. (Nunes and Emond, 

1999) 
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7.3.2.4 Malondialdehyde (MDA) content 

 

Fruit malondialdehyde (MDA) was significantly affected (P < 0.0001, Appendix 

7.9) by ozone concentration and storage time (Figure 7.12). Fruit MDA gradually 

increased during storage where significant increase was observed immediately after 

ozone treatment until the end of storage period. In the effect of ozone concentration, 

exposure to 1 and 3 ppm ozone reduced fruit MDA content. Meanwhile, increase in 

ozone concentration to 5, 7 and 9 ppm ozone enhanced production of MDA in fruit 

cells.  
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Figure 7.12: Effect of different ozone exposure on TBARS content of bell pepper 
during three days treatment and 24 days storage at 12°C, 95% RH; vertical bars 
indicate standard errors; means of three replicates; DMR test at P < 0.05. 
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MDA is a degradation product of unsaturated phospholipid by reactive oxygen 

species (Tan et al., 2012). It is used as an indicator of membrane injury and 

membrane integrity due to lipid peroxidation (Hong et al., 2012). MDA reacted with 

thiobarbituric acid (TBA) which yielded a chromophore and quantified 

spectrophotometrically (Xing et al., 2011).  

Reduction in MDA content in fruit exposed to 1 and 3 ppm ozone suggested 

the reduced extend of lipid peroxidation. This could be due to the high antioxidant 

capacity in 1 and 3 ppm ozone treated fruit (Chapter 6) which was induced in 

response to oxidative stress of ozone. The antioxidants protected membrane 

phospholipid from oxidative action of ozone and its induced free radicals hence, 

reduced the production of MDA.  

Exposure to high ozone concentration, 5, 7 and 9 ppm ozone enhanced 

production of MDA. Similar results were observed in strawberry (cv. Elsanta) grown 

under exposure to 140 ppm ozone where the MDA content was enhanced by 42.4% 

(Keutgen and Pawelzik, 2008). This could be a result of lipid peroxidation by ozone 

or its induced radicals on unsaturated phospholipid of cell membrane (Hong et al., 

2012). The reaction also produced lipid hydroperoxides which lead to a series of 

redox reaction hence, contributed to further degradation of cell membrane (Forney, 

2003). This increased membrane fluidity and integrity which subsequently increased 

water loss and fruit firmness. In contrast to strawberry (cv. Elsanta), exposure to 140 

ppm ozone had no effect on its MDA content (Keutgen and Pawelzik, 2008). This 

could be due to stimulation of fruit antioxidant content in response to oxidative stress 

of ozone as observed in fruit exposed to 1 and 3 ppm ozone in this study. This 
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suggested that the effects of ozone on fruit antioxidant content influence cell 

membrane integrity and subsequently physical quality of the fruit.   

 

7.3.3 Bell pepper gaseous exchange response 

 

7.3.3.1 Respiration  

 

Fruit respiration was significantly affected (P < 0.0010, Appendix B 7.11) by 

ozone concentration and storage time. Immediately after ozone exposure, fruit 

respiration was increased. The increment was transient where it gradually decreased 

during storage. Effect of ozone concentration on fruit respiration was found to be 

dose dependent. Exposure to 1 and 3 ppm ozone had no effect on fruit respiration 

while increase in ozone concentration to 5, 7 and 9 ppm significantly enhanced fruit 

respiration.  

CO2 is a product of respiration process which can be an indicator of fruit 

respiration. Being a non-climacteric fruit, respiration rate of bell pepper gradually 

decreased and no climacteric peak was observed during storage. No significant 

effect observed in respiration of 1 and 3 ppm ozone treated fruit. This was also 

reported on peach exposed to 0.3 ppm for 3 weeks (Palou et al., 2002). This 

suggested that the ozone treatments maintained fruit respiration similar to control 

and had no effect fruit ripening. 

Increment in respiration of fruit exposed to 5, 7 and 9 ppm ozone was 

transient where the respiration rate reduced to normal rate during storage.  A similar 

transient increase was also observed in tomato exposed to 10 ppm ozone for 10 min 

(Rodoni et al., 2010) and carrot exposed to 1 ppm ozone for more than 5 days in  
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Figure 7.13: Effect of different ozone exposure on respiration rate of bell pepper 
during three days treatment and 24 days storage at 12°C, 95% RH; vertical bars 
indicate standard errors; means of three replicates; DMR test at P < 0.05. 

 

combination with 1-MCP (Forney et al., 2007) where the fruits recovered their normal 

respiration rate after the treatments were stopped. This suggested that the particular 

dosage of oxidative stress induced by ozone and its free radicals increased fruit 

respiration rate during treatment but the effect did not retain during subsequent 

storage.  

The increase in fruit respiration rate could be due to upregulation of electron 

transport chain at mitochondria (Tiwari et al., 2002). This would also increase 
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production of H2O2 by mitochondria which  may lead to accumulation of the radicals 

which further increase the cell oxidative level (Tiwari et al., 2002). This could 

negatively affect membrane integrity, water retention and subsequently fruit physical 

quality of the fruit as previously discussed. This explained the loss of firmness, 

weight loss and significant colour change in fruit exposed to 7 and 9 ppm ozone. 

Besides, the increase in respiration also increased organic acid degradation hence 

resulted in decrease in organic acid content as observed in titratable acidity assay 

(section 7.3.2.2). 

 

7.3.3.2 Ethylene production 

 

Ethylene production in bell pepper was significantly affected (P < 0.0142, 

Appendix 7.12) by ozone concentration and storage time while their interaction had 

no significant effect (Figure 7.14). Ethylene production decreased during storage and 

significant reduction was observed from day 12 until the end of storage. In the effect 

of ozone concentration, exposure to 7 and 9 ppm increased fruit ethylene production. 

Meanwhile, exposure to 1, 3 and 5 ppm ozone had no effect on fruit ethylene 

production.  

Ethylene is a plant hormone which is responsible in regulating fruit maturation 

and ripening. It stimulates biochemical processes resulting in fruit colour 

development, reduction in firmness and other physico-chemical changes associated 

with ripening (Saltveit, 1999). Fruit such as bell pepper has low ability to produce 

ethylene and may have no response to ethylene exposure. The results showed that 

the effect of ozone on fruit ethylene production was dose dependent. Exposure to 1,  
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Figure 7.14: Effect of different ozone exposure on ethylene production of bell pepper 
during three days treatment and 24 days storage at 12°C, 95% RH; vertical bars 
indicate standard errors; means of three replicates; DMR test at P < 0.05. 

 

3 and 5 ppm ozone had no effect on ethylene production. This was also observed in 

peach exposed to 0.3 ppm ozone for 3 weeks (Palou et al., 2002). The ozone 

dosage may not trigger fruit ethylene production pathway hence, had no effect on 

total ethylene production. 

Increase in ozone concentration to 7 and 9 ppm stimulates production of 

ethylene. The stimulating effect of oxidative stress on ethylene production was also 
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observed in strawberry exposed to UV-C higher than 0.5 kJ m-2 UV-C (Nigro et al., 

2000). The oxidative stress level induced by the treatments may have triggered 

ethylene production in bell pepper and strawberry, respectively. However, the 

increase in ethylene production did not influence fruit ripening progress as 

strawberry and bell pepper are both non-climacteric fruit.  

Meanwhile, in tomato, ozone was found to have inhibitory effect on its 

ethylene production after exposure to 1 ppm ozone and 104 cm-3 negative ions (Jin et 

al., 1989). The author claimed that it could be due to inhibition action of ozone on 

ethylene biosynthesis (Jin et al., 1989). This inhibition pattern was not observed in 

bell pepper under study. This could be due to differences in ethylene production 

pathway of different fruit and nature of fruit in response to oxidative stress of ozone.  

 

7.3.4 Sensory evaluation 

 

Sensory evaluation was performed to evaluate consumer perception on 

appearance, colour, aroma, flavour and overall acceptability on control and treated 

bell pepper. The results showed no significant (P > 0.05) difference was observed 

from panelist perception on the appearance, colour, aroma, flavour and overall 

acceptability of the treated fruit compared to control (Figure 7.15). Fruit exposed to 9 

ppm ozone however, received the lowest rating in terms of all attributes 

(appearance, colour, aroma, flavour and overall acceptability). This could be due to 

the increase in colour changes, decrease in firmness and high progression of fruit 

ripening progress. 
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Figure 7.15: Effect of different ozone exposure on fruit appearance, colour, texture, 
aroma, flavour and overall acceptability after three days treatment and 19 days 
storage at 12°C, 95% RH. 

 

Significant difference (P < 0.05) was observed in flavour of fruit exposed to 1 

(6.11-good) and 3 (6.33-good) ppm ozone compared to fruit exposed to 9 ppm 

ozone (4.33-fair). The significant deterioration in flavor of fruit exposed to 9 ppm 

could be due the loss of its sweetness and fruity taste. This could be due to oxidation 

of ozone or its induced radicals on sugar and several lipid derivatives such as (E)-2-

hexen-1-ol which associated with flavour of bell pepper (Eggink et al., 2012). This 

reduced its sensory quality hence less preferred by the panelists.  
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Fruit exposed to 3 ppm ozone had slightly higher rating compared to control in 

all attributes; appearance, colour, aroma, flavour and overall acceptability. This 

showed that stimulating effect of ozone on the fruit antioxidant content (total phenol 

and ascorbic acid) had no negative effect on the fruit quality. This therefore, did not 

affect consumer preference. Meanwhile, Tzortzakis et al. (2007) reported that the 

panelist significantly preferred ozone treated fruit (0.15 ppm ozone for 7 days) based 

on appearance and sensory, compared to non-treated fruit. This suggested that 

ozone may have improved the fruit physical quality and sensory quality hence, more 

preferred by the panelist. (Tzortzakis et al., 2007) 

In conclusion, the effect of ozone on fruit physico-chemical quality was dose 

dependent and related to cell oxidative level and fruit defense system in 

encountering the oxidative stress of applied ozone dosage. Application of low ozone 

dosage (1 and 3 ppm) induced fruit defense system to neutralize the applied 

oxidative stress which resulted in no significant symptom of oxidative damage (MDA 

content and cell membrane permeability). This maintained fruit ripening progress 

similar to control as indicated by fruit respiration, colour development and titratable 

acidity. The ozone dosage also maintained fruit water content similar to control 

hence, maintained its firmness during storage.  

Strong oxidative stress from application of high ozone dosage, particularly 7 

and 9 ppm ozone, resulted in cell oxidative damage as observed in high MDA 

content and increase in membrane permeability. This enhanced ripening progress of 

the fruit as indicated by progressive colour development and reduction in titratable 

acidity, weight loss and firmness. The progressive colour change was also due to 

progressive chlorophyll degradation by ozone. This quality deterioration negatively 

affected fruit flavour hence, not preferred by the panelist.   



 

212 

 

 

CHAPTER 8  

 

CONCLUSION 

 

Ozone fumigation showed multiple effects on bell pepper which are by 

reducing microbial growth as well as increasing its antioxidant property. The effect of 

ozone on microbial growth was observed from significant reduction in E. coli O157, 

Salmonella Typhimurium and L. monocytogenes populations on fresh cut bell 

pepper. Optimal antibacterial activity of ozone was achieved from exposure to 9 ppm 

ozone for 6 h where it meets the criteria for an antimicrobial agent to reduce a 

minimum of 2 log microbial population. Ozone reduced the bacterial populations by 

introducing cell lysis which subsequently resulted in cell death.  

The effect of ozone on microbial growth was also observed from its antifungal 

property which reduced anthracnose development on bell pepper. Optimal antifungal 

property of ozone was achieved from exposure to 3, 5, 7 and 9 ppm ozone for 72 h. 

The reduction was due to synergistic effect of ozone action on mycelia morphology, 

spore production and spore germination as the ozone dosage restricted mycelia 

development and reduced spore production and spore germination.  

The reduction in disease development was correlated to eliciting effect of 

ozone on plant defense enzymes such as PAL, PPO, POD and β-1,3-glucanase. 

Increase in the enzyme activity may contribute to the decrease in disease incidence. 

Exposure to 3 ppm ozone for 72 h was the most effective dosage where it enhanced 

activity of all of the tested enzymes; PAL, PPO, POD and β-1,3-glucanase activities. 

These enzymes were induced as a fruit first line of defense mechanism to encounter 
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oxidative stress introduced by ozone. The increase in production of these enzymes 

may help in reducing fungal growth on fruit.  

Ozone dosage of 3 ppm ozone for 72 h was also the most effective dosage to 

induce fruit antioxidant property. The ozone dosage enhanced fruit ascorbic acid and 

total phenolic contents by 15.9 and 15.6%, respectively. This was due to activation of 

both, first and second line of fruit defense mechanisms. The increase in antioxidant 

contents enhanced fruit antioxidant capacity hence, increased its functionality and 

efficacy of antioxidant transfer to consumer. 

The stimulating effect of the effective ozone dosage (3 ppm ozone for 72 h) 

on fruit defense system reduced fruit oxidative status and resulted in no cell oxidative 

damage indicated by low MDA content and cell membrane permeability. This 

maintained fruit ripening progress similar to control as indicated by fruit respiration, 

colour development and titratable acidity. The ozone dosage also maintained fruit 

water content similar to control hence, maintained its firmness during storage.  

Application of higher ozone dosage; 7 and 9 ppm ozone for 72 h; perturbed 

the equilibrium between ozone-induced reactive compounds and fruit antioxidant. 

This reduced fruit ascorbic acid and total phenol contents and hence, fruit antioxidant 

capacity. The imbalance redox potential increased cell oxidative status which 

resulted in oxidative damage as observed in high MDA content and increase in 

membrane permeability. This enhanced fruit ripening progress as indicated by 

progressive colour development and reduction in titratable acidity and firmness. This 

quality deterioration negatively affected fruit flavour hence, not preferred by the 

panelist.   

Thus, under current observation, the findings of these studies showed ozone 

dosage of 3 ppm for 72 h was effective to reduce microbial growth as well as 
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increase fruit antioxidant capacity.  These findings however, need commercial scale 

study to validate its efficiency at larger scale. Besides, study of the effect of ozone on 

enzyme and antioxidant activities on fungal infected fruit should be conducted to give 

insight on fruit mechanism in response to simultaneous stress from both, biotic and 

abiotic stresses. Gene expression study also should be conducted to understand 

gene regulation in response to oxidative stress of ozone.  

Considering safety and environmental friendly aspect of ozone, ozone 

treatment has the potential to be used as an alternative to chlorine and fungicide to 

control bacterial contamination and anthracnose development. The treatment also 

improves phytochemical content of the fruit hence, increases phytochemical transfer 

content of the fruit. Besides, ozone treatment is very practical where it can be 

incorporated into truck or shipping container. This allows the treatment to be carried 

out during transportation hence, reduces time and labour for postharvest treatment. 

However, a study comparing the effectiveness of ozone and chlorine or fungicide in 

reducing disease development and maintaining fruit quality during storage needs to 

be conducted. 
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APPENDICES 

APPENDIX-A 

A 3.1: Standard curve of E. coli O157 growth used for bacterial inoculum preparation 
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A 3.2: Standard curve of Salmonella Typhimurium growth used for bacterial inoculum 

preparation 
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A 3.3: Standard curve of Listeria monocytogenes growth used for bacterial inoculum 

preparation 
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A 6.1: Gallic acid standard curve for total phenolic 

y = 0.1066x + 0.0038
R2 = 0.9969
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A 6.2: Ferrous sulphate standard curve for FRAP analysis 

y = 0.9257x + 0.0071
R2 = 0.9932
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APPENDIX –B 

B 3.1 Analysis of variance for screening of antibacterial activity using different 

concentration of ozone and exposure time on E. coli O157 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 140527.65 28105.53 3663.17 < 0.0001 

Exposure time (T) 7 84389.52 12055.65 1571.29 < 0.0001 

C x T 35 35884.70 1025.28 133.63 < 0.0001 

Error 96 736.56 7.67   

Corrected Total 143 261538.43    

 

B 3.2 Analysis of variance for screening of antibacterial activity using different 

concentration of ozone and exposure time on Salmonella Typhimurium 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 165202.77 33040.55 3694.291 < 0.0001 

Exposure time (T) 7 64274.208 9182.01 1026.262 < 0.0001 

C x T 35 40729.47 1163.70 1031.11 < 0.0001 

Error 96 858.61 8.94   

Corrected Total 143 27106.93    

 

B 3.3 Analysis of variance for screening of antibacterial activity using different 

concentration of ozone and exposure time on L. monocytogenes 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 132393.70 26478.74 2780.81 < 0.0001 

Exposure time (T) 7 92246.98 13178.14 1383.97 < 0.0001 

C x T 35 26553.02 258.66 79.67 < 0.0001 

Error 96 914.11 9.52   

Corrected Total 143 252107.81    
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B 3.4 Analysis of variance for in vitro antibacterial activity using different 

concentration of ozone and exposure time on E. coli O157 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

4 71202.77 17800.69 386.41 < 0.0001 

Exposure time (T) 3 23151.14 7717.11 167.52 < 0.0001 

C x T 12 13424.29 1118.69 24.28 < 0.0001 

Error 40 1842.66 46.07   

Corrected Total 59 109621.05    

 

B 3.5 Analysis of variance for in vitro antibacterial activity using different 

concentration of ozone and exposure time on Salmonella Typhimurium 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

4 88140.47 22035.12 3158.20 < 0.0001 

Exposure time (T) 3 13479.85 4493.28 644.00 < 0.0001 

C x T 12 10817.95 901.49 129.21 < 0.0001 

Error 40 279.08 6.98   

Corrected Total 59 112717.36    

 

B 3.6 Analysis of variance for in vitro antibacterial activity using different 

concentration of ozone and exposure time on L. monocytogenes 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

4 90081.12 22520.28 952.89 < 0.0001 

Exposure time (T) 3 1273.93 424.64 17.97 < 0.0001 

C x T 12 3595.60 299.63 12.68 < 0.0001 

Error 40 945.35 23.63   

Corrected Total 59 95896.01    
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B 3.7 Analysis of variance for in vivo antibacterial activity after exposure to 0, 0.1, 

0.3, 0.5 and 1 ppm ozone for 0.5, 3, 6 and 24 h on E. coli O157 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

4 12.41 3.10 60.42 < 0.0001 

Exposure time (T) 3 0.29 0.10 1.86 0.1521 

C x T 12 0.36 0.03 0.58 0.8441 

Error 40 2.05 0.05   

Corrected Total 59 15.11    

 

B 3.8 Analysis of variance for in vivo antibacterial activity after exposure to 0, 0.1, 

0.3, 0.5 and 1 ppm ozone for 0.5, 3, 6 and 24 h on Salmonella Typhimurium 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

4 18.02 4.50 135.70 < 0.0001 

Exposure time (T) 3 0.34 0.11 3.39 0.0270 

C x T 12 0.22 0.02 0.55 0.8676 

Error 40 1.33 0.03   

Corrected Total 59 19.9    

 

B 3.9 Analysis of variance for in vivo antibacterial activity after exposure to 0, 0.1, 

0.3, 0.5 and 1 ppm ozone for 0.5, 3, 6 and 24 h on L. monocytogenes 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

4 21.13 5.29 286.86 < 0.0001 

Exposure time (T) 3 0.73 0.24 13.28 < 0.0001 

C x T 12 0.80 0.07 3.64 0.0010 

Error 40 0.74 0.02   

Corrected Total 59 23.4    
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B 3.10 Analysis of variance for in vivo antibacterial activity after exposure to 0, 1, 3, 

5, 7 and 9 ppm ozone for 0.5, 3, 6 and 24 h on E. coli O157 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 42.24 8.45 338.77 < 0.0001 

Exposure time (T) 3 1.72 0.57 22.99 < 0.0001 

C x T 15 0.40 0.03 1.07    0.4082 

Error 48 1.20 0.02   

Corrected Total 71 45.55    

 

B 3.11 Analysis of variance for in vivo antibacterial activity after exposure to 0, 1, 3, 

5, 7 and 9 ppm ozone for 0.5, 3, 6 and 24 h on Salmonella Typhimurium 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 49.88 9.98 83.84 < 0.0001 

Exposure time (T) 3 2.15 0.72 6.03    0.0004 

C x T 15 0.57 0.04 0.32    0.9903 

Error 48 5.71 0.12   

Corrected Total 71 58.32    

 

B 3.12 Analysis of variance for in vivo antibacterial activity after exposure to 0, 1, 3, 

5, 7 and 9 ppm ozone for 0.5, 3, 6 and 24 h on L. monocytogenes 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 55.81 11.16 239.40 < 0.0001 

Exposure time (T) 3 4.02 1.34 28.77 < 0.0001 

C x T 15 0.95 0.06 1.36    0.2051 

Error 48 2.24 0.05   

Corrected Total 71 63.03    
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B 4.1 Analysis of variance for screening of ozone antifungal activity using different 

concentration of ozone and exposure time on radial mycelial growth of C. capsici  

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

6 1276.82 212.80 19.15 < 0.0001 

Exposure time (T) 8 1389.14 173.64 15.63 < 0.0001 

C x T 48 1471.79 30.66 2.76 < 0.0001 

Error 126 1400.24 11.01   

Corrected Total 188 5537.98    

 

B 4.2 Analysis of variance for ozone antifungal activity using different concentration 

of ozone and exposure time on in vitro C. capsici radial mycelial growth  

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 2467.09 493.42 38.92 < 0.0001 

Exposure time (T) 2 1828.69 914.34 72.12 < 0.0001 

C x T 10 2278.52 227.85 17.97 < 0.0001 

Error 36 456.40 12.68   

Corrected Total 53 7030.71    

 

B 4.3 Analysis of variance for ozone antifungal activity using different concentration 

of ozone and exposure time on in vitro C. capsici spore production  

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 1.23 0.25 9.01 < 0.0001 

Exposure time (T) 2 1.31 0.65 23.99 < 0.0001 

C x T 10 2.08 0.21 7.63 < 0.0001 

Error 36 0.99 0.27   

Corrected Total 53 5.61    
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B 4.4 Analysis of variance for ozone antifungal activity using different concentration 

of ozone and exposure time on in vitro C. capsici spore germination  

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 535.14 101.03 7276.88 < 0.0001 

Exposure time (T) 2 0.05 0.02 1.73    0.1911 

C x T 10 0.24 0.02 1.73    0.1106 

Error 36 0.50 0.01   

Corrected Total 53 505.98    

 

B 4.5 Analysis of variance for production of intracellular H2O2 by C. capsici spore 

after exposure to different concentration of ozone and exposure time  

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 49584.31 9916.86 1433.02 < 0.0001 

Exposure time (T) 2 6.68 3.34 0.48    0.6211 

C x T 10 66.55 6.65 0.96    0.4921 

Error 36 249.13 6.92   

Corrected Total 53 49906.67    

 

B 4.6 Analysis of variance for anthracnose incidence on bell pepper after exposure 

to different concentration of ozone and exposure time 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 3544.24 708.85 5.10    0.0012 

Exposure time (T) 2 2633.74 1316.87 9.48    0.0005 

C x T 10 1131.69 113.17 0.81    0.6164 

Error 36 5000.00 138.89   

Corrected Total 53 12309.67    
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B 4.7 Analysis of variance for anthracnose severity on bell pepper after exposure to 

different concentration of ozone and exposure time 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 4.73 0.95 16.01 < 0.0001 

Exposure time (T) 2 3.95 1.97 33.43 < 0.0001 

C x T 10 1.25 0.13 2.12   0.0488 

Error 36 2.13 0.06   

Corrected Total 53 12.05    

 

B 4.8 Analysis of variance for C. capsici spore production on bell pepper after 

exposure to different concentration of ozone and exposure time 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 0.08 0.02 0.54    0.7460 

Exposure time (T) 2 2.98 1.49 48.84  < 0.0001 

C x T 10 0.75 0.08 2.47    0.0230 

Error 36 1.10 0.03   

Corrected Total 53 4.91    

 

B 5.1 Analysis of variance for disease incidence of anthracnose on bell pepper 

during storage after exposure to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 10937.81 2187.56 26.57 < 0.0001 

Storage time (T) 7 85379.30 12197.04 148.13 < 0.0001 

C x T 35 3313.61 94.67 1.15 0.2923 

Error 96 7904.45 82.34   

Corrected Total 143 107535.18    
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B 5.2 Analysis of variance for fruit phenylalanine ammonia lyase (PAL) activity during 

storage after exposure to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 855.85 171.17 263.05 < 0.0001 

Storage time (T) 7 1728.66 246.95 379.50 < 0.0001 

C x T 35 319.38 9.13 14.02 < 0.0001 

Error 96 62.47 0.65   

Corrected Total 143 2966.36    

 

B 5.3 Analysis of variance for fruit polyphenol oxidase (PPO) activity during storage 

after exposure to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 0.20 0.04 920.52 < 0.0001 

Storage time (T) 7 0.03 0.00 90,83 < 0.0001 

C x T 35 0.03 0.00 22.70 < 0.0001 

Error 96 0.00 0.00   

Corrected Total 143 0.26    

 

B 5.4 Analysis of variance for fruit peroxidase (POD) activity during storage after 

exposure to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 0.42 0.08 129.72 < 0.0001 

Storage time (T) 7 0.06 0.01 12.76 < 0.0001 

C x T 35 0.07 0.00 3.02 < 0.0001 

Error 96 0.06 0.00   

Corrected Total 143 0.61    
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B 5.5 Analysis of variance for fruit β-1,3-glucanase activity during storage after 

exposure to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 21.37 4.27 27.52 < 0.0001 

Storage time (T) 7 116.49 16.64 107.16 < 0.0001 

C x T 35 20.05 0.57 3.69 < 0.0001 

Error 96 14.91 0.16   

Corrected Total 143 172.83    

 

B 6.1 Analysis of variance for fruit antioxidant capacity measured by FRAP during 

storage after exposure to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 3.69 0.74 100.62 < 0.0001 

Storage time (T) 9 3.09 0.34 46.78 < 0.0001 

C x T 45 0.51 0.01 1.54    0.0335 

Error 120 0.88 0.01   

Corrected Total 179 8.17    

 

B 6.2 Analysis of variance for fruit total phenol content during storage after exposure 

to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 22.57 4.51 216.82 < 0.0001 

Storage time (T) 9 9.39 1.04 50.10 < 0.0001 

C x T 45 3.20 0.07 3.42 < 0.0001 

Error 120 2.50 0.02   

Corrected Total 179 37.66    
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B 6.4 Analysis of variance for fruit ascorbic acid content during storage after 

exposure to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 35656.17 7131.23 105.23 < 0.0001 

Storage time (T) 9 56654.48 6294.94 92.89 < 0.0001 

C x T 45 4996.67 111.04 1.64 < 0.0177 

Error 122 8267.35 67.77   

Corrected Total 181 107974.46    

 

B 6.5 Analysis of variance for β-carotene content during storage after exposure to 

different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 0.02 0.00 35.82 < 0.0001 

Storage time (T) 9 0.08 0.01 66.40 < 0.0001 

C x T 45 0.00 0.00 0.82    0.7734 

Error 120 0.02 0.00   

Corrected Total 179 0.12    

 

B 7.1 Analysis of variance for fruit colour lightness (L*) during storage after exposure 

to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 171.94 34.39 6.3 < 0.0001 

Storage time (T) 9 1087.52 120.84 23.29 < 0.0001 

C x T 45 298.60 6.64 1.28    0.1475 

Error 120 622.61 5.19   

Corrected Total 179 2180.66    
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B 7.2 Analysis of variance for fruit colour vividness (C*) during storage after 

exposure to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 120.01 24.00 4.95    0.0004 

Storage time (T) 9 877.22 97.47 20.11 < 0.0001 

C x T 45 424.91 9.44 1.95    0.0022 

Error 120 581.49 4.85   

Corrected Total 179 2003.64    

 

B 7.3 Analysis of variance for fruit colour hue angle (h°) during storage after 

exposure to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 1881.76 376.35 5.94 < 0.0001 

Storage time (T) 9 33669.27 3741.03 59.03 < 0.0001 

C x T 45 1064.81 23.66 0.37    0.9998 

Error 120 7605.17 63.38   

Corrected Total 179 44221.01    

 

B 7.4 Analysis of variance for fruit weight loss during storage after exposure to 

different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 107.99 21.60 153.78 < 0.0001 

Storage time (T) 9 2291.95 254.66 1813.21 < 0.0001 

C x T 45 33.54 0.75 5.31 < 0.0001 

Error 120 16.85 0.14   

Corrected Total 179 2450.34    
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B 7.5 Analysis of variance for fruit firmness during storage after exposure to different 

ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 203.10 40.62 31.93 < 0.0001 

Storage time (T) 9 1081.93 120.21 94.51 < 0.0001 

C x T 45 158.90 3.53 2.78 < 0.0001 

Error 120 152.64 1.27   

Corrected Total 179 1596.57    

 

B 7.6 Analysis of variance for fruit membrane permeability during storage after 

exposure to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 3629.83 725.97 42.43 < 0.0001 

Storage time (T) 9 34199.47 3799.94 222.10 < 0.0001 

C x T 45 680.28 15.12 0.88    0.6761 

Error 120 2053.14 17.11   

Corrected Total 179 40562.73    

 

B 7.7 Analysis of variance for fruit soluble solid concentration (SSC) during storage 

after exposure to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 0.20 0.04 3.99   0.0022 

Storage time (T) 9 5.33 0.59 58.19 < 0.0001 

C x T 45 0.23 0.01 0.51    0.9943 

Error 120 1.22 0.01   

Corrected Total 179 6.99    
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B 7.8 Analysis of variance for fruit titratable acidity during storage after exposure to 

different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 0.96 0.19 36.05 < 0.0001 

Storage time (T) 9 6.21 0.69 129.23 < 0.0001 

C x T 45 0.46 0.01 1.93    0.0025 

Error 120 0.64 0.01   

Corrected Total 179 8.28    

 

B 7.9 Analysis of variance for fruit chlorophyll content during storage after exposure 

to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 14705.92 2941.18 40.67 < 0.0001 

Storage time (T) 9 34042.05 3782.45 52.30 < 0.0001 

C x T 45 3888.26 86.41 1.19    0.2223 

Error 120 8678.14 72.32   

Corrected Total 179 61314.36    

 

B 7.10 Analysis of variance for fruit malondialdehyde (MDA) content during storage 

after exposure to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 0.01 0.00 61.21 < 0.0001 

Storage time (T) 9 0.05 0.00 128.11 < 0.0001 

C x T 45 0.00 0.01 1.01    0.4644 

Error 120 0.00 0.00   

Corrected Total 179 0.06    
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B 7.11 Analysis of variance for fruit respiration during storage after exposure to 

different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 0.20 0.04 4.50    0.0009 

Storage time (T) 9 1.94 0.22 24.89 < 0.0001 

C x T 45 0.13 0.00 0.33    1.0000 

Error 120 1.04 0.01   

Corrected Total 179 3.31    

 

B 7.12 Analysis of variance for fruit ethylene production during storage after 

exposure to different ozone concentration 

S.O.V d.f S.S M.S F. Value Pr > F 

Ozone concentration 
(C) 

5 0.87 0.17 2.99    0.0141 

Storage time (T) 9 9.08 1.01 17.29 < 0.0001 

C x T 45 0.50 0.01 0.19    1.0000 

Error 120 7.00 0.06   

Corrected Total 179 17.45    
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APPENDIX-C 

C 7.1: Evaluation form for sensory analysis   

Hedonic Scale Rating 
 
 

Product: _________________Variety: _______________Date: ________________ 

Name of panelist: __________________________Signature:__________________ 

 

 
Instructions: (Please read the instructions carefully before filling blanks.) 
 

1. This is sensory analysis form for the evaluation of different treatments. 
2. Please follow the numerical system for scoring the samples.  

 
1DDDDDDDDDDDDD Extreme dislike 
3DDDDDDDDDD........  Dislike  
5DDDDDDDDDDDD.. Acceptable 
7DDDDDDDDDDDD.. Good 
9DDDDDDDDDDDD.. Excellent  
 

3. Please do not disturb the sequence of the samples provided.  
4. Please rinse your tongue before testing next sample, with the water provided.  

 
Sample No. Appearance Colour Texture Aroma Flavour Overall acceptability 

336       

352       

358       

375       

421       

429       

600       

664       

753       
 


