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Abstract 

The focus of this study is the potential use of FTIR imaging as a tool for objective 

automated histopathology. The Thesis also reports the use of multivariate statistical 

techniques to analyse the FTIR imaging data. These include Principal Component 

Analysis (PCA), Hierarchical Cluster Analysis (HCA), Multivariate Curve 

Resolution (MCR) and Fuzzy C-Means Clustering (FCM). The development of a 

new PCA-FCM Clustering hybrid that can automatically detect the optimum 

clustering structure is also reported. 

Chapter 1 provides a brief introduction to the use of vibrational spectroscopy to 

characterise biomolecules in tissues and cells for medical diagnosis. 

Chapter 2 details the basic histology of a lymph node before proceeding to present 

imaging results gained from the analysis of both healthy and diseased lymph node 

tissue sections. The ability of each multivariate technique to discriminate different 

tissue types is discussed. In addition, the spectral features that are characteristic for 

each tissue type are reported. The development and application of a new PCA-FCM 

Clustering algorithm that can automatically determine the best clustering structure is 

also described in full. The results indicate that cellular abnormality provides changes 

to both the protein and nucleic acid vibrations. However, similar spectral profiles 

were identified for highly proliferating cells that were contained within reactive 

germinal centres of the lymph node. 
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Chapter 3 provides a short introduction to the histology of the cervlx before 

presenting imaging results that were gained from the analysis of both healthy and 

diseased cervical tissue sections. The ability of each multivariate technique to 

discriminate different tissue types is discussed. In addition, the spectral features that 

are characteristic for each tissue type are described in detail. Novel imaging 

experiments upon exfoliated cervical cells are also presented. It would appear that 

cellular abnormality in cervical tissues and cells affects both the protein and nucleic 

acid features of the spectra. Glycogen and glycoprotein contributions that are 

prevalent in healthy tissues are also absent. 

Chapter 4 details sample preparation methods, the instrumentation and procedures 

used for data acquisition, and the subsequent data processing and multivariate 

techniques applied to analyse the collected spectral datasets. 
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Chapter One 

Introduction 

The focus of this study stems from the great need to reliably improve the diagnosis of 

life threatening diseases, in particular to this research, the progression of cancers. 

Histopathologic evaluation of human tissues (histology) and exfoliates (cytology) are 

now well established techniques for disease identification, and have remained 

relatively unchanged since their clinical introduction [1]. Excised or exfoliated 

material is initially formalin-fixed to prevent its degradation, and subsequently 

prepared onto glass substrates for light microscopic analysis. The identification of 

cellular and extra-cellular components within the tissues and cells are enhanced by 

the addition of dyes that stain different components different colours. These staining 

patterns provide the basis for morphological pattern recognition, allowing a trained 

observer to distinguish healthy and diseased tissue. However, conventional histology 

remains a subjective technique, with significant problems often encountered. These 

include missed lesions, perforation of samples, and unsatisfactory levels of inter- and 

intra-observer discrepancy [2 - 7]. With the unfortunate recent decline in 

recruitment of qualified pathologists and cyto-technicians, there is a strain to 

complete an ever increasing and demanding workload. A less operator-dependent 

and more automated analysis of clinical samples is therefore highly sort. The use of 

Fourier transform infrared (FfIR) spectroscopy as this tool shows promise, with the 

distinct potential to highlight small biochemical changes occurring at the cellular 

level that could predispose cancerous change [8,9]. 
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FTIR spectroscopy is a non-destructive photonic technique that can provide a rapid 

measure of sample chemistry. Covalent bonds within molecules absorb infrared (IR) 

light at different wavelengths dependent upon the atoms in a bond, the type of bond, 

the type of vibration and any inter- and intra-molecular interactions present. The 

intensity of light absorption is further directly related to the concentration of 

molecules [10]. The IR spectrum collected from a sample can therefore provide 

detailed information about the chemical composition of that material. Consequently, 

an IR spectrum collected from human tissues or cells can provide a direct indication 

of cellular biochemistry [11 -13]. Differences within the biochemistry of cells that 

accompany the onset of disease could therefore be characterised by changes within 

the IR spectrum. These spectroscopic differences would be related to changes in the 

concentration and conformational orientation of functional groups associated with 

lipids, proteins, nucleic acids and carbohydrates, the basic building blocks of 

mammalian cells. 

In principle, the application of IR spectroscopy for diagnostic purposes has a number 

of advantages over more established techniques such as PET, CAT and MRI 

scanning. These include speed, sensitivity, flexibility, comparatively low cost and no 

dependence upon the physical state. A number of sampling techniques exist that 

enable spectra to be obtained from a large variety of biological samples, which 

include solids (e.g. bones, teeth), liquids (e.g. body fluids) and tissues [9,14]. The 

introduction of an endogenous chromophore that may potentially disturb the sample 

characteristics is also not required. Furthermore, changes that occur within the 

biochemistry of cells precede any morphological or symptomatic manifestation, thus 
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IR spectroscopy could probe for earlier stages of disease not presently detectable via 

conventional histopathology. 

1.1 IR Spectral Characteristics of Mammalian Cells 

The complexities of biological systems have meant that interpretation of IR spectra 

collected from mammalian cells is not always straight forward. A detailed 

understanding of the infrared-active constituents of these samples is therefore 

required. In principle, the IR spectrum of most tissues can be closely estimated to 

the summation of lipids, proteins and nucleic acid contributions. These individual 

components have many characteristic absorptions that span the mid-infrared region 

(4000 - 400 em-I), with an overlapping of several bands often evident. Only very 

small contributions from carbohydrates are observed within the mid-infrared region 

for most human tissues. However, mammalian tissues that store large quantities of 

carbohydrates in the form of glycogen can give rise to strong absorptions bands 

below 1200 em-I. Investigations to evaluate the contribution of these individual 

constituents to the IR spectrum have been undertaken by several research groups 

[9,14,15,16]. Additional studies that utilise a synchrotron source for enhanced 

spatial resolution have also been reported [17,18]. Spectral bands characteristic for 

these constituents will therefore be discussed utilising spectra collected from a 

typical protein, lipid and polynucleotide [19]. These spectra were collected from dry 

films of material to reduce interference from water and are shown in Figure 1. 

The first spectrum (Figure la) was collected from a typical phospholipid, dimyristoyl 

phoshatidylcholine (DMPC). The most intense bands observed in this spectrum are 
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Figure 1: IR spectra collected from dry films of (a) dimyrisolphosphaicdyclholine 
(DMPC), (b) a polynucleotide and (c) haemoglobin. Adaptedfrom ref [19]. Note all 
subsequent IR spectra are reported from high to low frequency in wavenumber units 
(cm-I). 
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those found within the 3000 - 2800 cm-I region. Such bands are analogous to the IR 

spectra of alkanes, and can be attributed to the symmetric and antisymmetric 

stretching vibrations of CH2 (2852 and 2922 cm-I) and CH3 (2874 and 2956 em-I) 

respectively [20]. The symmetric and antisymmetric stretches for the CH2 groups are 

in the order of 10 - 20 times more intense than those observed for the CH3 stretches. 

This reflects a distinctly larger concentration of CH2 groups present within lipids. 

The position and band width of the CH2 and CH3 stretching absorptions can also 

reveal information regarding the packing of acyl side chains [21,22]. The strong 

absorption band located within the 1800 - 1600 cm-! region is associated with the 

C=O stretching vibration of ester groups. This band is normally located at c.a. 1735 

cm-I, but its frequency can be strongly affected by hydration [21,22]. Between 1500 

- 1250 cm-I a small number of very weak bands are present. The most distinct is that 

located at c.a. 1468 cm-I which is characteristic of the CH2 scissoring vibration. 

Below 1250 cm-! two intense bands are noticeable and arise due to the symmetric 

(c.a. 1085 cm-I) and antisymmetric (c.a. 1225 cm-I) vibration modes of phosphate 

groups (P02) respectively. The frequency of these bands can additionally provide 

insight into head-group hydration [9]. 

The second spectrum displayed in Figure 1 b was alternatively collected from a 

polynucleotide. When initially scrutinising the spectrum it is clearly noticeable that 

absorptions above 1800 cm-I are greatly reduced. The strong CH3 stretching 

absorptions previously observed for phospholipids are no longer present and only 

weak bands for CH2 stretching absorptions are distinguishable. These are likely to 

be characteristic of CH2 vibrations from carbohydrate residues and the C - H 

stretching vibrations of the nucleotide bases. For nucleic acids, two distinct bands 
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can be observed within the 1800 -1600 cm-I region located at 1717 and 1666 cm-I. 

These absorptions are characteristic of the c=o stretching vibrations of purine and 

pyrimidine bases respectively. Below 1500 cm-I a number of sharp but weak 

absorptions are apparent. The major absorption bands again occur from the 

vibrational modes of phosphate (P02) groups. These are associated with the 

phosphodiester linkages of the polynucleotide chain and are assigned to symmetric 

(l085 cm-I) and anti symmetric (1225 em-I) phosphate stretches. 

The third spectrum displayed in Figure 1 c was collected from a typical globular 

protein, human haemoglobin. Again within this spectrum, absorptions above 1800 

cm-1 are negligible. Absorption bands arising from CH2 and CH3 stretching 

vibrations are relatively weak and are likely to reflect small contributions from the 

amino acid side chains. When directly comparing these bands to those observed for 

a phospholipid (Figure 1 a), it can be noted that the relative band intensity ratio for 

these peaks is greatly reduced. This spectral change would substantiate a more equal 

proportion of CH2 and CH3 groups within the protein side chains. Below 1800 cm-1 

a number of strong bands can be observed. The most intense absorption is located at 

c.a. 1650 cm-1 and is more commonly termed the amide I band. This absorption is 

characteristic for the C=O stretching vibration of the amide c=o group. The 

frequency of this band can also be a sensitive marker for the conformation of the 

protein secondary structure [23 - 25]. Two additional amide modes are also 

observed within protein spectra. The amide II absorption band is normally located 

between 1500 - 1560 cm-1
, and is predominately associated with the N - H bending 

vibrations and the C - N stretching vibrations of proteins. In contrast, the amide III 

band is attributed to a complex vibration involving C - N stretching, N - H in plane 
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bending and a significant contribution from CH2 wagging vibrations. These bands 

normally occur between 1350 - 1250 cm- l
• In addition, further important absorption 

bands assigned to the COO- symmetric and antisymmetric stretching vibrations can 

be located at 1580 and 1400 cm-l respectively. These absorptions are associated with 

the amino acids aspirate and glutamate. Collagen, an important structural protein 

found in most connective tissues, also provides a number of characteristic peaks 

within the spectrum [26,27]. Two distinct peaks located at 1030 and 1080 cm- l can 

be observed that are attributed to the C - 0 stretching vibrations of the carbohydrate 

moieties attached to collagen. A further triad of peaks located at 1280, 1240 and 

1204 cm- l are also often observed and can be used to monitor the relative collagen 

concentration within these tissue types [26,27]. 

The spectral region between 2800 - 1800 cm- l is generally free from absorptions due 

to lipids, nucleic acids, proteins and carbohydrates found within mammalian tissue. 

The only exception would be contaminating bands originating from atmospheric 

water and CO2• However, if the spectrometer and surrounding sample area are 

adequately purged these contributions should be negligible. A table displaying the 

main absorption bands found within mammalian tissue is further displayed in Table 

1. These reported frequencies can only be used as a rough guide since several factors 

can cause variation, including sampling type, preparation method, data collection 

procedure and instrumentation sensitivity. A detailed knowledge of both 

spectroscopy and histology is required before an assignment of IR absorptions to 

specific chromophores can be made within mammalian tissue. 
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Absorption Peak Assignment Cellular Constituent 
(em-I) 
3290 Amide A N- H stretch Protein 

3050 Amide B N - H bending 1 st Protein 
overtone 

3010 Olefinic C - H stretch Lipids 

2960-2930 CH3 anti symmetric stretch Lipids, proteins 

2925 -2920 CH2 anti symmetric stretch Lipids, proteins 

2874-2870 CH3 symmetric stretch Lipids, proteins 

2855 -2850 CH2 symmetric stretch Lipids, proteins 

1735 Ester C=O stretch Lipids 

1717 Purine C=O stretch Nucleic acids 

1666 Pyrimidine C=O stretch Nucleic acids 

1655 - 1650 Amide I C=O stretch Proteins (a-helical secondary 
structure) 

1640 -1630 Amide I C=O stretch Proteins (~sheet secondary 
structurel 

1580 COO- anti symmetric stretch Proteins 

1560-1500 Amide II N - H bending Proteins 

1470-1405 CH2 symmetric and aymmetric Proteins, lipids 
bending 

1400 COO- symmetric stretch Proteins 

1380-1250 CH3 symmetric and Proteins, Lipids 
antisymmetric bending 

1280 Amide III of collagen Protein 

1245 -1220 PO£ antisymmetric stretch Nucleic acids, lipids 

1240 Amide III of collagen Proteins 

1204 Amide III of collagen • Proteins 

1155 -1150 c=o stretch of glycogen Carbohydrate 

1085 -1075 C=C stretch of glycogen Carbohydrate 

1028 -1020 C - 0 - H deformation of Carbohydrate 
glycogen 

1080 P02- symmetric stretch Nucleic acids, lipids 

Table 1: Representative frequencies of the major absorptions bands found within 
mammalian tissues and cells. Adaptedfrom ref[l9). 
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1.2 FTIR Microspectroscopy with Multichannel Detectors 

Infrared (lR) spectroscopy is a proven and powerful analytical tool for 

spectrochemical analyses [10,28]. Over the past few decades, advances in 

instrument technology have enabled the rapid acquisition of IR spectra using 

interferometers in reasonably uncomplicated configurations. However, until 

relatively recently, IR spectroscopy has largely been a bulk material technique, since 

the collection of spectra from microscopic sample volumes proved problematic. 

Early IR analyses upon mammalian tissues and cells utilised similar macroscopic 

techniques to assess their biochemical compositions [29-37]. Although these proved 

that to some extent healthy and diseased tissue could be characterised by observed 

spectral differences, a number of complications remained. Spectroscopic results 

could not be directly correlated to cellular pathology since it was impossible to 

establish the types and numbers of cells that were being scrutinised by the technique. 

Since different tissue and cell types provide significantly different spectral profiles, 

contamination from non-diagnostic cells could manifest themselves in the average 

spectrum acquired [35,38,39,40,41]. The correct interpretation and classification of 

these spectra therefore proved problematic. 

The advent of instruments that couple IR spectroscopy and optical microscopy, 

however, now permit the collection of IR spectra from sample volumes in the order 

of20 x 20 x 5 J..lm [10,42]. This would describe an approximate sample thickness of 

5 J..lm at the focal point of the microscope, scrutinising a 20 x 20 J..lm sample area that 

is defined by knife edges or a fixed aperture. The introduction of such instruments 

thus allowed the collection of individual spectra from pure tissue components within 
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sectioned material that could be subsequently correlated to histology, free from 

averaging contaminations. Furthermore, spectral mapping techniques could be used 

to examine larger regions of the sample and allow more precise characterisation of 

different cell types present in the tissue matrix. Such IR maps are collected by 

scanning a sample in a raster pattern through the focal point of a single detector, 

using steps that are the same size as the x and y dimensions of the pixel element [43]. 

Although such experiments are time consuming, work to date using spectral mapping 

of tissue sections, coupled to some form of statistical analysis, has clearly proven that 

FTIR microscopy can discriminate alternative tissue types and disease states 

comparable to conventional histology [44 - 46]. 

Despite the advantages mentioned above for FTIR microscopic mapping using a 

single detector, the technique is still limited in its applicability for automated 

pathology. The collection of FTIR spectral maps from large sample areas is very 

time consuming and can require long computation times for the analysis of the data. 

If we consider the method by which suspicious lesions are conventionally screened 

for disease, a better understanding of the requirements necessary for a spectroscopic 

diagnosis become clear. An example tissue section cut from a diseased prostate will 

be used to help demonstrate these requirements and is shown in Figure 2. 
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(b) 
2 ,mm 

Figure 2: Conventional screening method used in histopathology. A prostate tissue section displaying an adenocarcinoma is used as an 
example. (a) Schematic describing morphological features apparent within healthy and diseased tissue. (b) Photomicrograph captured 
from a H&E stained prostate tissue section c.a. 10 x 10 mm in size. (c) Magnified region from within the tissue section (c.a. 1000 x 1000 Jim 
in size). The morphological patterns within the tissue matrix become more apparent at this resolution. (d) High magnification image of 
region displaying healthy morphological features (c.a. 200 x 200Jlm in size). (e) High magnification image of region displaying malign 
morphological features diagnostic for prostate adenocarcinoma (c. a. 200 x 200Jlm in size). Adapted from ref [68]. 
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As mentioned previously, the morphological patterns or features within stained tissue 

are presently used as a descriptor for disease change. Figure 2a displays the 

characteristic morphological features that accompany both healthy and diseased 

prostate tissue. Clinical screening of such samples relies upon the identification of 

abnormal cells that feature large nucleus to cytoplasm ratios and have tissue 

structures that are uncharacteristic within healthy tissue. A typical tissue section cut 

from a diseased prostate specimen is displayed in Figure 2b and is c.a. lOx 10 mm in 

size. This was stained using a haematoxylin and eosin (H&E) dye that enhances 

contrast between the cellular and extra cellular components of the tissue. At a higher 

resolution (c.a. 15X magnification) the common morphological features 

characteristic of this tissue become more apparent, as shown in Figure 2c. By 

scanning across the sample at this resolution, sites of interest where the tissue 

structure appears abnormal can be located and further scrutinised at a high 

magnification (c.a. 40X magnification) necessary for cellular characterisation. Two 

regions within the tissue section that comprise both healthy and cancerous tissue are 

further shown in Figures 2d and 2e respectively. These were captured at high 

magnification (c.a. 25X magnification) and help elucidate the morphological features 

of the cells within the tissue matrix. As can be seen in both of these images, the size 

of the cells within the tissue range from 5 - 50 Ilm in size. The malignant cells 

shown in Figure 2e are typically IOllm in size and are not structured tightly together 

in a bundle but differentiated in a circular shape. An IR map collected from such a 

region would therefore require spectra to be collected at a spatial resolution of at 

least 20 x 20 Ilm to enable clear and distinct characterisation of these tissue features. 

If we relate this back to the size of the entire tissue section, the limiting capabilities 

of spectroscopic mapping using a single detector becomes clear. The 
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characterisation of one abnormal cell would be equivalent to locating a house 20m 

wide in a 10km radius area. If an IR map was acquired from the entire tissue section 

using a 20 x 20 J.lm spatial resolution, c.a. 250,000 individual IR spectra would be 

collected. Such an analysis would be very time consuming and ultimately 

insufficient for automated pathology. 

Around a decade ago, the first efforts to couple mulitchannel detectors with FTIR 

spectrometers were reported [47-50]. These instruments utilised detector technology 

originally available only to the military for missile guidance systems. The migration 

from single element detectors to focal plane array detectors (FPA) has born a new 

methodology often termed "chemical imaging". By use ofFPA detector systems, the 

time frame previously required to map large spatial areas has been reduced by 

several orders of magnitude and permits the measurement of 4096 spectra in seconds 

to minutes (by use of a 64 x 64 FPA detector, for example). However, the noise 

level of a single spectrum collected from an FP A measurement is worse than that 

recorded from a single detector, since these systems utilise hybrid HgCdTe/Si 

detector technology. In comparison to mapping methods utilised by single detector 

systems, the sample is left in a fixed position under the detector array during data 

collection. Previous challenges of collecting spectra from small sample areas 

through small apertures (diffraction limit) are alleviated in FPA measurements since 

the spatial resolution is given by the effective pixel size of the FPA detector. 

Different pixel spatial resolutions are achieved in this system by changing the 

magnification cassegrain objectives within the microscope. Therefore, limitations of 

spatial resolution are dependent only on the nature of the light used. Schematics 
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(a) CCD Visible Detector 
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Figure 3: Schematics describing the layout and principal of FTIR microscopes coupled to single-channel (a) and multi-channel (b) detectors. Single­
channel detectors require apertures to delineate the sample area examined. Multi-channel detector systems utilise varying magnification cassegrains 
to achieve different spatial resolutions. Two types of multi-channel detection system are presently commercially available. Focal plane array (FPA) 
detector systems utilise hybrid HgCdTe/Si technology for their detection/readout hardware. These range in size from a 64 x 64 to a 256 x 256 array of 
detector elements. Linear array detectors alternatively use HgCdTe technology only, and therefore offer higher detector sensitivity. These usually 
consist of 16 or 32 detector elements arranged in a linear fashion. Adaptedfrom ref [68}. 
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displaying the layout and principle of an IR microscope that are coupled to both a 

single channel and multichannel detector are displayed in Figure 3. In general, the 

acquisition of data using an FPA detector system does not vary greatly from single 

element measurements with a standard interferometer. The most important 

difference is that 4096 detector elements (using a 64 x 64 FPA detector) are read at 

the same time during the spectral acquisition. This process requires a greater amount 

of time than previously needed for a single detector and can be more directly related 

to the ability of the electronics used to read the elements within the FPA detector 

array [51,52]. Although continuous-scan interferometry is the most common form of 

data acquisition used in modem spectrometers, since it provides several advantages 

(Multiplex and Jaquinot) [10,53], the optical retardation is coupled to the time 

domain and thus requires rapid signal detection to prevent data acquisition errors 

[10,54]. Since the rates of data acquisition from FPA detectors are markedly longer, 

a rapid-scan configuration is no longer permissible. Hence a step-scan approach is 

required for accurate data collection with FP A detector systems [47]. In practice, 

this means the moving mirror within the Michelson interferometer no longer moves 

continuously during data acquisition, but conversely waits until each detector 

element has been read before moving to its next position. By collecting data in such 

away, an interferogram from each pixel in the array is collected simultaneously and 

later transformed into an IR spectrum. 

More recently, smal1linear array detector systems have been developed that provide 

a compromise between the multi-channel advantage of large FP A detector systems 

and the high fidelity features of rapid-scan FTIR spectrometry. By using a smaller 

number of detectors a number of advantages are realised. The individual detector 
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elements within the array are significantly smaller when compared to their single 

element counterparts, and employ HgCdTe detector technology alone. In addition, 

since the detector numbers are small, their uniformity is relatively high. Each 

element has its own gold connection used to perform its signal processing, and 

therefore allows all channels to be continuously sampled. Thus detector sensitivity is 

significantly high when compared to FP A systems. Within these systems, the spatial 

resolution is again determined by the optics of the microscope and does not require 

an aperture to delineate the sample area. But these systems offer a very limited 

number of magnifications. For example, the commercially available Perkin Elmer 

Spotlight Imager uses a 16 element linear array detector and can collect spectra from 

pixel sizes of either 25 x 25 J.1m or 6.25 x 6.25 J.1m. This is achieved by use of a Z 

fold tube that dips a 4X magnification mirror into and out of the beam. Similar to 

point mapping using a single detector, the sample is moved Wldemeath the array in a 

raster pattern, building an image one linear element at a time. However, the 

instrument allows IR spectral maps to be collected from samples independent of their 

size or orientation, and rivals FPA-based instruments in data acquisition time with 

significantly lower cost. 

The advent of both FP A and linear array detector systems now permits the rapid 

collection of IR spectroscopic data from spatial resolutions that are in the same order 

of magnitude as a mammalian cell, and from samples sizes close to that 

conventionally scrutinised by histology. Larger and more sensitive detector array 

systems could therefore be utilised for a spectroscopic, non-subjective route toward 

automated pathology. 
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1.3 Non Subjective Analysis of Microscopic IR Maps 

As mentioned above, IR microscopic maps collected from large sample areas can 

contain many thousands of individual spectra. As the amount of pixels within a map 

increases and the spatial resolution is improved, the size and complexity of such 

datasets becomes astronomical. The interpretation of IR spectra collected from 

biological material can also be somewhat subjective and requires a detailed 

understanding of both spectroscopy and histology. Thus the extraction and 

presentation of useful information from these complex datasets presents a unique 

challenge. However, a number of statistical methods that remove this subjectivity 

can be applied to spectroscopic maps. These can provide insight into the individual 

components found within a sample and help elucidate descriptive spectral features. 

A common method of analysing and presenting data from IR microscopic maps is 

. "functional group" mapping. This method utilises parameters such as the peak 

intensity of an absorption band, the integrated intensity of an absorption band and the 

frequency at which an absorption band arises. In addition, an intensity map can also 

be calculated from the ratio of peak or integrated intensities of two separate 

absorption bands. Since the intensity of a functional group can be directly related to 

the concentration of the material giving rise to that absorption, the distribution of this 

species throughout the collected map can be visualised. This is achieved by plotting 

the recorded or calculated intensity at each pixel contained within the map. 

However, care must be taken if the original recorded absorption is used, especially in 

spectra of tissues, since large baseline fluctuations are often observed due to 

scattering effects. Such differences can introduce artefactual changes to the intensity 
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that more closely relate to the variation of the observed sloping baselines. 

Differences in the intensity of absorption bands can also be caused by irregularities 

in sample thickness and cellular density, which must also be taken into consideration. 

To negate such problems it is therefore necessary to pre-treat the data to compensate 

for these observed irregularities. A variety of pre-processing routines can be applied 

to the data that can correct for these changes. In our work, we adopted a 6 base point 

linear interpolation to compensate baseline distortions and subsequently vector 

normalised all spectra to reduce effects from irregular sample thickness (see section 

4.4). By use of such routines, a more accurate distribution of chemical species found 

within analysed tissues can be observed. 

As mentioned in section 1.1, a large number of absorptions can be observed in an IR 

spectrum collected from mammalian tissue. Of particular interest are those arising 

from proteins (e.g. amide I C=O stretching absorption band), lipids (e.g. ester C=O 

stretching absorption band) and nucleic acids of DNA (e.g. purine C=Q stretching 

absorption band). By plotting the intensity of these bands for each spectrum at the 

co-ordinates from which they originate, the distribution of proteins, lipids and 

nucleic acids throughout the sample can be visualised. This type of analysis can 

therefore provide an outline of the general biochemistry found within tissues. The 

usefulness of such an analysis to characterise a lymph node tissue section is 

illustrated in Figures 4 and 5. This tissue section was cut from a malignant lymph 

node that had almost been completely infiltrated by fatty and fibrocollagenous scar 

tissues. However, a few small pockets of remnant cancerous tissue could still be 

found. A white light image of the entire tissue section is displayed in Figure 4a. 

Unfortunately a parallel H&E stained tissue section was not made available for this 
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Figure 4: Spectroscopic analysis of a malignant lymph node. (a) White light image collected from entire lymph node. Tissue types found within the 
mapped area include cancerous cortex (1), collagenous scar (2), andfatty (3) tissues. (b) Total absorbance 1R image ofmapped lymph node. 
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Figure 5: Functional group maps of malignant lymph node. (a) Lipid functional group map calculated from the peak height intensity of the 
absorption band located at 1735 em-I. (b) Protein functional group map calculatedfrom the peak height intensity of the absorption band located at 
J 655 em-I. The colour scale ranges from red indicating spectra with a high intensity for that band, to blue which display a weak intensity. 
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node, but the main types of tissue can still be visualised via contrast in light intensity 

of the tissue regions (Figure 4a). An IR micro-spectral map was collected from the 

entire lymph node. By use of a step size and aperture of 25 J.lm, a total of 66,402 

individual IR spectra were collected from a spatial area of 6900 x 7650 J.lm. The 

total absorbance image constructed for this map is further shown in Figure 4b. 

Two functional groups maps were calculated for this map and are shown in Figures 

Sa and 5b respectively. The first of these, shown in Figure Sa, was calculated using 

the relative intensity of the absorption band located at 1735 cm- t
, which is 

characteristic of the C=O stretching vibration of ester groups in lipids. When 

scrutinising this map, it can be seen that strong contributions from lipids are clearly 

apparent within the infiltrated and pure fatty tissue regions. This would make 

histological sense since these adipose tissues are heavily contributed to by lipids. In 

contrast, the second functional group map, shown in Figure 5b, was calculated using 

the relative intensity of the Amide I band located at 1655 cm- t , which is 

characteristic of proteins. This alternatively highlights regions on the lymph node 

whereby remnant cancerous and fibrocollagenous scar tissue is located. 

Unfortunately the monitoring of nucleic acid distribution in tissue sections can be 

difficult since the intensity of the DNA absorption band located at 1717 cm- t is very 

weak and often absent in most tissues. In this case, only the phosphate (P02") 

symmetric and anti symmetric stretching absorption bands located at 1080 and 1240 

cm-t can be used to analyse the nucleic acid distribution. However, both of these 

absorption bands will contain contributions from the phosphate groups of 

phospholipids. In addition, the amide III absorption bands of collagen can also 

provide a substantial contribution, especially in fibrocollagenous tissues. Thus 
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functional group maps calculated for these bands often provide little useful 

information and are unwise for monitoring nucleic acids. 

Band intensity ratio maps can in some cases provide more detailed information about 

the biochemical composition of tissues since these utilise two individual 

chrompohores. For example, tissue specimens that do not include regions of fatty 

tissue can be more accurately probed for changes in their relative lipid to protein 

ratio by selecting two chromophores for analysis. A good method to estimate these 

changes is to calculate the ratio of the CHz and CH3 stretching vibrations since both 

lipids and proteins give rise to these absorption bands. Within proteins, the amount 

of CH3 and CHz groups in their side chains are nearly equal, whereas lipids typically 

contain 14 - 18 CHz groups and only one CH3 group. Thus calculation of the ratio 

between these stretching vibrations can provide a more accurate analysis to monitor 

protein-rich and lipid-rich regions. As mentioned above, the monitoring of nucleic 

acid distribution is more complex since a number of overlapping bands from 

chromphores characteristic of proteins and lipids can also be present. An alternative 

method of estimating nucleic acid changes is to monitor the ratio of the absorbance 

bands at 1240 and 1204 cm'l. Collagen, an important structural protein apparent in 

most connective tissues, displays absorptions at both these frequencies. In contrast, 

nucleic acids only exhibit an absorption band at 1240 cm'l. A high ratio will 

therefore indicate a high nucleic acid contribution, whereas a low band intensity ratio 

indicates a more significant contribution from collagen. However, this type of 

analysis is again limited to tissues that do not include significant contributions from 

fatty tissues since these also provide an absorption at 1240 cm'l from the phosphate 

groups of phospholipids. 
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As shown in this example, functional group mapping can readily identify the major 

tissue types present in a sample. However, such representations are limited for 

accurate spectroscopic diagnosis since they only allow the distribution of one or two 

chromophores to be identified. However, another branch of chemometrics termed 

multivariate analysis can enable the manipulation and investigation of data that 

contains multiple variables, such as an IR spectrum collected from mammalian 

tissue. These types of analysis have therefore become increasingly used in the 

analysis of tissues and cells because of this advantage. Underlying patterns hidden 

within extensively large and complex datasets can be identified that were previously 

undetectable using univariate or bivariate analyses such as functional group mapping. 

Early experiments that utilised such methods for the analysis of IR spectra collected 

from animal cells were reported by Nauman [55]. In this work, a form of 

unsupervised analysis, termed Hierarchical Cluster Analysis (HCA), was used to 

successfully classify IR spectra collected from different strains of bacteria. These 

types of multivariate analysis do not require any previous knowledge of the sample 

and alternatively search for similarities within the data to characterise them. Up to 

the present time, a multitude of unsupervised methods have been utilised for 

spectroscopic data analysis upon human tissues. These techniques have included 

Principal Component Analysis (PCA) [34,38,43,57], Hierarchical Clustering 

Analysis (HCA) [46,55,58,59,60,61,62], K-Means and Fuzzy C-means Clustering 

(KM, FCM) [63 - 66], and Simulated Annealing Fuzzy C-Means Clustering 

(SAFCM) [67]. These studies indicated that each multivariate technique could to a 

degree, be applied to disease diagnosis using spectroscopic data. 
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Figure 6: a) White light image of entire lymph node tissue section. b) Magnified region displaying jibrocollagenous scar tissue that encapsulates 
small clusters of malignant cortex cells. The JR imaged area (875 x 4300pm) was mapped using a step size and aperture of 25 pm for a total 6020 
individual JR spectra. Tissue types found within the mapped area include cancerous cortex (J), collagenous scar (2), and fatty (3) tissues. (c) False 
colour image constructed from a 4 cluster FCM analysis upon the reduced spectral dataset. Each colour in the image represents a separate cluster of 
spectra that were partitioned in the analysis. 
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To help illustrate the distinct advantages of multivariate analyses, an example of 

FCM clustering analysis upon the same lymph node tissue section detailed above is 

shown in Figure 6. In this experiment, a smaller region of the collected map was 

used for FCM clustering analysis, but still incorporated all the types of tissue present 

in the sample (Figure 6b). The false colour image presented in Figure 6c was 

constructed from a 4 cluster analysis of the reduced dataset. Each colour in the 

image represents a separate cluster of spectra that was partitioned by the analysis. 

By directly comparing the constructed cluster image to the white light image 

captured from the same region, it is clear to see the analysis has been able to 

correctly classify the spectra into groups that match histological diagnosis. The red 

cluster of spectra characterises the cancerous cells located in the central region of the 

remnant nodal tissue. In contrast, fibrocollagenous scar tissue that surrounds these 

cancerous cells is highlighted by the cyan cluster of spectra. The remaining remnant 

nodal tissue scattered across the section is described by the blue cluster of spectra, 

with the invading fatty tissue highlighted by the yellow cluster of spectra. Another 

distinct advantage of such an analysis is that mean average spectra for each cluster 

can easily be calculated and used to help interpret the biochemical differences that 

are occurring between them. Thus spectral features within the IR spectra can be 

identified that could be used for spectroscopic diagnosis. 

In summary, recent advances in IR micro-spectrometers that incorporate array 

detectors has enabled the rapid acquisition of spectral datasets from large clinical 

samples previously thought impossible. The complexity of the data obtained 

requires sensitive forms of statistical analysis to unravel the underlying patterns that 

are present within the datasets. However, information relating to the biochemistry of 
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different pathological states can be assessed and could be used to develop an 

automated spectroscopic method for disease diagnosis. 
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2.1 Introduction 

Chapter Two 

Lymph Node Cancer 

At present, breast cancer is the most common malignancy found among women, with 

high death rates reported in the United Kingdom (13,000 p.a.) and the United States 

of America (40,000 p.a.) [1]. The ability to accurately identify the malignancy is 

crucial for prognosis and preparation of an effective treatment. The current 

preoperative imaging methodologies that are used, such as x-ray mammography and 

ultrasound, rely upon the identification of density changes within tissue. Although 

such techniques can identify areas of tumour growth in breast, they cannot be used to 

reliably diagnose whether the tumours are benign or cancerous in nature. The 

determination of whether a suspicious lesion is malignant necessitates an invasive 

procedure to obtain a tissue biopsy [2]. However, 70-90% of breast biopsies are later 

found to be benign after pathological analysis. An additional tool for diagnosis is the 

assessment of lymph nodes in the ipsilateral axilla. The presence of metastasis is an 

indicator for local disease recurrence and thus a method for identifying patients who 

are at high risk of developing disease that could spread throughout the body. The 

well established procedure to assess lymph node metastases is axillary lymph node 

dissection (ALND). This involves the surgical removal of all lymph nodes that exist 

under the arm. However, this is a rather substantial surgical procedure that can lead 

to several serious side effects, including shoulder dysfunction and lymphoedema [3]. 
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The introduction of mammography screening programmes, together with a greater 

public awareness of breast cancer, have meant that the majority of patients do not 

have axillary lymph node metastases at presentation and would not therefore gain 

benefit from ALND. However it is vitally important to complete accurate staging of 

the malignancy as to negate the possible risk of the disease spreading to other organs. 

Intra-operative diagnosis has become increasingly important with the recent 

introduction of sentinel lymph node biopsy [4]. The sentinel node can be described 

as any lymph node that has a direct lymphatic connection to the tumour, and would 

be the first invaded by cancer spreading from the breast (Figure 1). Surgical studies 

have clearly shown that if cancer cannot be found in the sentinel lymph node, the 

chance of disease being found further down the chain of lymph nodes that drain the 

breast is negligible [4]. Thus accurate analysis of the sentinel lymph node can 

alleviate the necessity to remove all nodes present. 

Breast 
Cancer 

Lymph 
Nodes 

Sentinel 
Lymph 
Node 

Figure 1: Typical location o/lymph nodes that drain lymph from the breast.{5] 
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The Gold Standard of histopathology employed for diagnosis involves the use of 

formalin (10% solution of formaldehyde in water) fixation, wax embedment and 

microscope analysis of multiple tissue sections [6]. This procedure can take several 

days to complete. Alternative techniques have been employed to facilitate faster 

intra-operative diagnosis of sentinel nodes, including imprint cytology [7,8], and 

frozen section assessment [9,10]. The processing of results for these techniques is 

accelerated in comparison to conventional histology involving an analysis time of 

approximately 30-60 minutes. However, both approaches report wide variation in 

their sensitivity to detect cancerous lesions, detection levels as low as 44% and as 

high as 93% when compared against conventional histology [7 - 13]. This would 

indicate that such methodologies do not solve the lymph node screening problem. In 

addition, these techniques are both heavily reliant upon the availability of an 

experienced pathologist. In the UK, this can be a problem in smaller hospitals, 

where there is a dependence upon a general pathologist to examine these types of 

samples and can result in lower accuracies than those reported from specialist clinics. 

However, there is a general lack of consistency between different pathologists that 

puts the reliability of such intra-operative tools into question. 

The problems in lymph node screening highlighted above have resulted in a variety 

of different spectroscopic methods being investigated for diagnosis. Elastic 

scattering spectroscopy (ESS) has been used to analyse lymph nodes [14, 15]. This 

approach is sensitive to the sizes, indices of refraction, and structures of subcellular 

components (Le. nucleus, nucleolus and mitochondria) that can change with the 

progression ofmaJignancy [16]. This method uses short pulses (- IJ.ls) of white light 

(320-920nm) from a xenon lamp via a flexible optical fibre, thus allowing direct 
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topical access to a tissue sample. The scattered light from the upper layers of the 

tissue is propagated to a spectrometer and the spectra produced scrutinised. These 

studies have reported some success in the identification of metastases (cancer) in 

axillary lymph nodes by adopting the multivariate technique. Linear Discriminant 

Analysis (LDA) [17]. However. the assessment of lymph nodes using this approach 

was limited to those that contained heterogeneous patterns of metastatic infiltration 

[18. 19]. Limitations stem from the collection of individual spectra that may not in 

all cases be assigned the correct diagnosis. Spectra were collected from a small 

number of spots across a bivalved lymph node. and histological diagnosis specific to 

each site was not recorded. Instead, spectra were assigned a diagnosis that 

represented the overall condition of the node. It should also be noted that the 

analysis of ESS spectra is an empirical process, and it is not known what features in 

the spectra reflect histological characteristics in the lymph node. 

Recent advances in instrumentation mean that the acquirement of Raman spectra in a 

clinical setting is possible. This technique has proven applications in the assessment 

of complex biological systems. with the ability to characterise molecules within 

biological systems dependent upon the vibrational spectra. For example, Raman 

spectroscopy has been successfully employed in the identification of silicone 

inclusions within axillary lymph nodes. excised from patients that have ruptured 

silicone breast prostheses [20]. This was accomplished by scrutinising the strong 

Raman band produced by silicone, also commonly used as a laboratory calibration 

tool. Raman spectroscopy has also demonstrated an ability to distinguish between 

different tissue types in a number of different organs, including the oesophagus. 

prostate. bladder and breast [21, 22]. Histopathologic assessment of diseased tissues 
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is based upon the identification of architectural changes within the cell nuclei, 

cytoplasm or membrane caused by the progression of malignancy. The ability of 

Raman spectroscopy to identify small biochemical changes in tissue may allow the 

potential detection of malignant change before histological features are present. 

Studies to date have relied upon multivariate analyses to scrutinise Raman spectra 

produced from biological tissues, such as principle component analysis (PCA), linear 

discriminant analysis (LDA), and least-squares fitting algorithms. Multivariate 

techniques have been employed due to the complexity of biological systems, where it 

is more likely the combined change in the overall biochemical constituents of a cell 

to be diagnostic, rather than one single biochemical. These types of analyses (see 

section 4.5) allow the extraction of a number of independently varying components 

that describe the variations within datasets collected, and can be used to differentiate 

between tissue types. A recent pilot study using Raman spectroscopic mapping of 

axillary lymph nodes described the ability of peA to assess the relative presence of 

lipids and carotenoids within nodal tissue sections [23]. The spectra were grouped 

according to histological features, such as histiocytosis, germinal centres, capsule, 

fatty infiltrate and metastatic carcinoma cells. However, these studies emphasised 

the need to collect spectra from a large number of patients with varied diagnoses to 

fully assess the range of pathology present in a node, which will be essential in the 

development of a robust diagnostic model. 

Another factor not addressed by Raman studies, but is also of great importance, is the 

ongoing debate as to whether histopathology is either aiding or hindering the creation 

of diagnostic models. It is quite likely that spectroscopic measurements are 

identifying chemical changes within cells before architectural histological changes 
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are visually present. However, such claims are held back since current 

histopathology techniques are used to assign spectra their diagnosis. This could 

contribute to why such studies have shown varied and imperfect accuracy. 

More recently, FTIR spectroscopic mapping has been utilised to assess inguinal 

lymph nodes [24,25]. This study utilised similar instrumentation as employed in our 

work, whereby large IR spectral images were collected from lymph node tissue 

sections by use of a linear array detector system. The large hyperspectral images 

produced were then scrutinised by unsupervised Hierarchical Cluster Analysis 

(HCA) to construct pseudo colour maps that were hoped to mimick morphological 

and histological architecture. However, the reflective substrates utilised in this study 

appeared to introduce dispersion or reflectance artefacts into the collected IR spectra. 

A significant shift of the bands to lower wavenumbers was noticed. The amide I and 

amide II modes were also distorted and displayed an unusual intensity ratio not 

normally observed for tissue spectra. This artefact occurred predominantly at the 

edges of tissue and at regions of abnormality (colon adenocarcinoma), which 

produce glandular metastases with many voids. Such effects dominated the 

statistical analysis of the IR spectra as the magnitude of the dispersion artefact was 

greater than the subtle spectral changes that are required for tissue characterisation. 

Nevertheless, when the dataset was reduced to only include intensities recorded 

between 1580 - 950 cm-), a significant improvement upon tissue distinction was 

made. Unfortunately spectral characteristics that accompanied cluster membership 

were not detailed. 
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2.2 Histology of Lymph Nodes 

2.2.1 Lymph Node Function 

Lymph nodes are small structured organs found in clusters or chains at sites where 

lymphatic vessels converge and drain an anatomical region, for example in the neck, 

groins, axillae or para-aortic area. They are responsible for two major functions 

within the body. Phagocytic cells or macrophages found within the nodes act as non­

specific filters of micro-organisms and particulate matter, thus preventing their 

presence in the general circulation. In addition, they provide an elegant mechanism 

that facilitates an immune response to an invading exo-genious species. 

Lymphocytes are allowed to interact with new antigens and antigen presenting cells 

(APe's) at an interface between the lymph and blood. By recognising passing 

antigens, lymphocytes within lymph nodes initiate the proliferation of activated cells 

and therefore amplify the immune response of the body by forming clones of 

lymphocytes. 

2.2.2 Basic Structure 

The lymph node is a bean-shaped organ, typically only a few millimetres in length, 

but may dramatically enlarge when functional demands are increased. They are 

protected by a fibrocollagenous capsule from which fibrous trabeculae extend into 

the medulla of the node forming a supportive framework. Afferent lymphatic vessels 

penetrate the convex surface of the gland and drain lymph into the node, while at the 
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hilum, a single efferent lymphatic vessel transports lymph to larger collecting 

peripheral vessels. These larger vessels repeat the filtering process by further 

transporting lymph to nodes located further along the chain before it is allowed to re-

enter the blood stream. Lymph nodes are made up of three main functional inner 

compartments, as shown in figure 2. 

Afferent lymphatics 

Cortex Medullary sinuses 

Lymphoid follicle with germinal centre 

Capsule 

Medullary 
Cord 

Trabecula Vein Artery 
Subcapsular Sinus 

Efferent 
lymphatic 

Figure 2: A schematic o[lymph node anatomy [26]. 

These include: 

• an intricate network of endothelial-lined lymphatic smuses that are 

continuous extensions of the afferent and efferent lymphatic vessels; 

• a parenchymal compartment composed of a medulla, paracortex and 

superficial cortex 
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• an extended network of small blood vessels that include specialised post-

capillary venules that allow circulating lymphocytes to enter the node; 

The overall structural integrity of the node is maintained by a framework of dense 

reticulin fibres, a non-banded form of Type III collagen composed of delicate fibrils 

around 20nm in diameter, which are linked to the inward reaching trabeculae. These 

fibres are laid down by fibroblasts (Figure 3a) and act as supporting mesh for 

lymphocytes located in the cortex and medulla. Common benign variations can 

occur in this supportive structure, which may include capsular thickening and bands 

offibrocollagenous scar tissue (Figure 3b). 

(b) 

Figure 3: a) High power magnification image highlighting reticulin mesh that has 
been stained black in colour. The capsule (Cap), subcapsular sinus (SS), trabecular 
sinus (FS), trabecula (F) and the cortex sinus (CS) can be visualised. b) Lymph node 
displaying a thickened capsule and large areas of collagenous scar tissue that has 
been stained pale pink [26]. 
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2.2.3 Functional compartments of the lymph node 

Antigens, accessory cells and lymphocytes enter the lymph node via the afferent 

lymphatic system, which pierce the outer capsule of the node and drain into the 

subcapsular sinus. From here cells can percolate along the cortical sinuses and hence 

permeate into the superficial cortex or paracortex. However, the majority of 

lymphocytes enter the node via the blood system. The post-capillary venules are 

lined with a special type of endothelium bearing lymphocyte homing receptors 

facilitating their passage into the lymph node. The superficial cortex is dominated by 

B lymphocytes that form spherical aggregations known as primary follicles. These 

contain mainly naIve B cells and a small number of memory cells. However, when 

the follicles are reacting to an antigen presence, only a small number of naIve B cells 

are present around the periphery and are substituted by a congregation of activated B 

cells in the centre. Reacting lymphoid follicles such as these are more commonly 

known as secondary follicles with germinal centres (Figure 4a). Activated B cells 

proliferate at a very fast rate, quickly producing a large population of identical cells 

that recognise the same antigen. 

The paracortex in contrast is populated in the majority by T lymphocytes, which 

continuously move in and out of the region (Figure 5). When activated, these cells 

enlarge to form lyrnphoblasts that proliferate and create expanded clones. These 

activated cells are distributed via the circulation and pass to peripheral sites where 

most of their activity transpires. The final and important production of antibody­

secreting plasma cells is thought to occur when both T and B lymphocytes interact 
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Figure 4: a) Lymph node with reactive germinal centres. b) High power view of 
proliferating B lymphocytes (arrows) in a reactive germinal centre; some show 
mitotic figures (arrowheads) [26]. 

within the paracortex. Plasma cells can then migrate directly into the medulla and 

swiftly pass into the medullary cords, where they can expediently secrete antibodies 

into the efferent lymph. 

The paracortex in contrast is populated in the majority by T lymphocytes, which 

continuously move in and out of the region (Figure 5). When activated, these cells 

enlarge to form lymphoblasts that proliferate and create expanded clones. These 

activated cells are distributed via the circulation and pass to peripheral sites where 

most of their activity transpires. The final and important production of antibody-

secreting plasma cells is thought to occur when both T and B lymphocytes interact 

within the paracortex. Plasma cells can then migrate directly into the medulla and 

swiftly pass into the medullary cords, where they can expediently secrete antibodies 

into the efferent lymph. 
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Figure 5: a) T lymphocytes of the lymph node paracortex with occasional 
interdigitating cells (arrowhead). b) Electron microscopy image of typical T 
lymphocyte [26]. 

Histological features of acute reactive lymphadenitis, in the absence of lymph node 

metastasis, are commonly found among breast cancer patients. These reactive 

changes could result from recent breast biopsies or surgery performed prior to lymph 

node excision. However, they may also occur due to an immune response against the 

primary tumour in the breast. Frequently observed changes include large germinal 

centres that contain multiple mitotic figures and sinus histiocytosis. This latter 

change occurs when the medullary sinuses hypertrophy and fill with tissue-fixed 

macrophages called histiocytes (Figure 6). 

Figure 6: a) Lymph node with marked sinus histiocytosis. b) High power view of 
sinus histiocytosis [26]. 
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2.2.4 Axillary lymph node metastases in breast carcinoma 

In the overwhelming majority of cases, architectural features characteristic of the 

primary tumour in the breast are mirrored in the metastatic invasion of axillary 

lymph nodes (Figure 7). This is so often the case, that discovery of lymph node 

metastasis with a contrasting histology to the primary tumour, may indicate the 

presence of a secondary primary tumour with different invading characteristics. 

Response within the lymph node to metastatic invasion can involve the enlarging of 

secondary follicles with reactive germinal centres, sinus histiocytosis and 

granulation. However, most patients would have previously had a breast biopsy and 

could therefore display acute lymphadenitis as previously described. A more 

common and tumour specific change is the formation of collagenous fibrosis around 

the invading metastatic cells. This reactive change, more commonly termed 

desmoplasia, can lead to a marked thickening of collagen bands that destroy the 

' .. , . 
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Figure 7: a) Invasion oj an axillary lymph node by lobular carcinoma (above) exhibiting 
similar histologicalJeatures to the primary tumour (below) . b) Metastatic ductal carcinoma 
in an axillary lymph node (above) with a similar glandular pattern in the primary tumour 
(below) [26). 
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parenchyma. Early signs of invasive lobular carcinoma appear as single cells or tiny 

clusters that display a random pattern of invasion within the node. These types of 

metastatic cells are often hard to discriminate as on occasion they do not display 

atypical features. In these cases a desmoplastic reaction is absent and large 

metastases exhibit a signet ring differentiation. However, many breast carcinoma 

metastases infiltrate the lymph node via the lymphatics. In tills pattern, initial 

metastases are found in the subcapsular sinus, which in time slowly invades deeper 

into the sinuses before penetrating the parenchyma. 

2.3 Results 

In tills work we have several objectives: 

(i) Assess the feasibility of using vibrational spectroscopy for accurate disease 

diagnosis in lymph nodes. 

(ii) Compare and contrast the ability of unsupervised multivariate analysis 

techniques to discriminate different lymph node tissue types, whether they 

are diseased or healthy in nature. 

(iii) Find the spectral characteristics that are descriptive for each tissue type and 

search for features which could be utilised for future supervised pattern 

recognition 

(iv) Highlight novel developments we have made for improved classification of 

tissue spectra via Fuzzy Clustering. 
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In order to demonstrate this I will: 

(i) Compare and contrast multivariate analysis results that were obtained 

from the examination of an IR spectroscopic dataset collected from 

one particularly interesting lymph node tissue section. 

(ii) Display multivariate IR imaging results from a multitude of different 

lymph nodes 

(iii) Describe experiments undertaken that coalesce IR spectra collected 

from different lymph nodes for a combined tissue classification 

(iv) Chart the novel developments made during this study for improved 

clustering analysis. These will be described via experiments that were 

undertaken upon collected tissue spectra datasets. 

2.3.1 Evaluation of an Axillary Lymph Node Tissue Section using IR 

Multivariate Imaging 

In this section a multitude of different unsupervised multivariate imaging techniques 

have been applied to infrared micro-spectral data collected from a positive lymph 

node tissue section. These techniques include PCA, MCR, FCM Clustering, and a 

newly developed PCA-FCM Clustering hybrid. Results from the multivariate 

imaging techniques are assessed via image quality and comparison to conventional 

histopathology . 

2.3.1.1 Histological architecture of Lympb Node 
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The H&E stained parallel tissue section used for infrared analysis is shown in Figure 

8 and allows the main structure of the node to be identified. An IR image was 

collected from a particularly interesting site on the lymph node where several 

different types of tissue existed, but more importantly displayed areas of both 

cancerous invasion and healthy nodal tissue. Figure 8b shows this examined region 

at higher magnification and allows the easy identi fication of the surrounding capsule, 

cortex and invading breast cancer. In the centre of the cortex, with a lighter 

pigmentation, is a stimulated proliferating secondary follicle or germinal centre. 

Reticular cells that extend into the sinuses can also be seen and characteristically 

form a delicate network between the capsule and trabeculae. A small pocket of fatty 

tissue that normally surrounds the lymph node was also found at the top left comer of 

the imaged area. This has unfortunately been missed in our H&E stained image. 

(a) . 

, , , , , , , 

Figure 8: a) Photomicrograph of the H&E stained parallel lymph node tissue 
section used for IR analysis. b) IR imaged area at high magnification showing 
different tissue types. (I) Capsule, (2) cortex, (3) secondary follicle, (4) reticular 
cells and (5) invading breast cancer tissue. The area (306 x 956 pm) was mapped 
using a pixel size of 6. 25 pm collecting a total of 13,910 individual IR spectra. 
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2.3.1.2 PCA Results 

The collected spectral IR dataset was first subjected to PCA and primary results are 

shown in Figure 9. The three dimensional scatter plot shown in Figure 9 displays all 

spectra in the dataset projected onto the first 3 PCs. Although there is some 

separation of spectra along these new orthogonal axes, there is no clear clustering of 

spectra into separate groups in this new uncorrelated multi-dimensional space. The 

cumulative percentage variance plot in Figure 10 indicates that approximately 97% 

of the total variance in the dataset is now comprised within the first 5 principal 

components. Therefore the overwhelming majority of information regarding the 

patterns within the dataset will be described by these first 5 principal components. 
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Figure 9: A three-dimensional scatter plot oj the tissue section spectra projected 
onto the first 3 pes. 
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Figure 10: Combined individual and cumulative percentage variance plot for the 
first 5 principal components 

False colour weighted images were then created for each of these first 5 PCs, and are 

displayed in Figure 11. The first PC image shown in Figure 11 b clearly 

differentiates between the fatty tissue located at the top left hand comer of the image 

and the remaining other tissue types. The second PC image in Figure 11 c 

demonstrates a greater discrimination between tissue types. Both the germinal centre 

and cancerous tissue show a strong correlation to this component with a red 

pigmentation. In contrast, the capsule and the central region of reticulum, both 

fibrocollagenous tissues, display a more negative correlation and are highlighted by a 

cyan pigmentation. The remaining reticulum and normal cortex tissue that surrounds 

the germinal centre are marked by a yellow colour. Scrutinising the third PC image, 
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Figure 11: IR imaging of a lymph node tissue section by peA. (a) H&E stained 
image of tissue section. (b) - (f) False colour weighted images for principal 
components 1 - 5 respectively. Colour scale ranges from red indicating spectra that 
are very similar to that PC and blue which are greatly dissimilar. 
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shown in Figure lId, the two types of fibrocollagenous tissues are strongly 

correlated to this component displaying a red pigmentation. However, the germinal 

centre also displays a similar correlation to this component. The image does 

however provide a small amount of contrast for the normal cortex tissue that 

surrounds the germinal centre, highlighted by a cyan colour. It is apparent in the 

fourth PC image, displayed in figure 11 e, that some contrast is being made between 

the cancerous (yellow colour) and remaining tissue types. However, within regions 

of both the reticulwn and capsule a similar correlation to this component is found. 

The fifth component image displayed in figure 11 f does not reveal any further 

beneficial information about the tissue section, and provides no useful contrast 

between the tissues types present. Although these false colour weighted images have 

enabled some differentiation between tissue pathologies, PC 1 is the only component 

that can describe a single tissue type. Consequently the future effectiveness of using 

a Linear Discriminant Analysis based upon PCA results would clearly be 

compromised for clear and distinct tissue pathology. But most importantly, there 

was no component that could solely describe the invading cancerous tissue. To rule 

out the possibility that spectral differences between the cancerous tissue and 

remaining tissue types were statistically very small, component images were created 

for the first 25 PCs, accounting for well above 99.99% of the total variance in the 

dataset. These unfortunately gave no further helpful discrimination between tissue 

pathology. 

2.3.1.3 MeR Results 

Before the dataset was SUbjected to MCR analysis, a number of indicator functions 

developed by Malinowski [23] were used to help ascertain the optimal number of 
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factors that best describe the data. These calculations indicated that either a 3 or 5 

component system would best describe the patterns found within the dataset. Taking 

into account the previous PCA analysis, the recommended amount of factors 

appeared reasonable when considering such a high percentage (97%) of the original 

variance was composed by the first 5 PC's alone. Thus both a 3 and 5 component 

MCR analysis was then subjected upon the dataset. The false colour weighted 

images constructed from these analyses are shown in Figure 12. 

The imaging results constructed from a 3 component MCR analysis are shown in 

Figures 12a - c respectively. By use of a colour ranking, pixels on the constructed 

image now reflect the intensity or correlation of each spectrum to that component. 

Examining the first component image in Figure 12b, this clearly differentiates the 

cortex tissue, whether healthy or cancerous in nature (red colouration). The second 

component image, shown in Figure 12c, alternatively marks a region at the top left 

hand comer of the tissue section where fatty tissue exists. This component also 

provides a small amount of contrast between the cancerous and healthy cortex tissue 

(light blue colouration). Finally the third component image shown in Figure 12d 

clearly discriminates the capsule and reticular tissues. Although this analysis has 

provided some discrimination between the three main types of tissue, individual 

components that describe the further subsets of theses tissues (reticulum, secondary 

follicle and cancerous cortex) were not achieved. 

Imaging results constructed from the subsequent 5 component MCR analysis are 

displayed in Figures 12e - i respectively. The first component image constructed 

from the analysis, shown in Figure 12e, now importantly provides more distinct 

contrast between the cancerous cortex (yellow colouration) and remaining tissue 
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types. In contrast, the second component image displayed in Figure 12f now 

provides a component that more exclusively describes the capsule tissue. The third 

component image shown in Figure 12g again highlights the more collagenous tissue 

types that include the capsule and reticulum. A small amount of contrast is also 

provided enabling the visualisation of the secondary follicle (yellow colouration). 

Alternatively, the fourth component image shown in Figure 12h provides 

discrimination between the cortex and remaining tissue types. The fifth and final 

component image displayed in Figure 12i again displays the fatty tissue pocket at the 

top left of the examined area. Although this 5 component analysis has provided an 

additional component that more discretely highlights the cancerous cortex region, 

individual components that provide sole discrimination of the secondary follicle and 

reticular cells is not apparent. To rule out the possibility that an increased factor 

number would extract individual components characteristic for all the tissue types, 

MCR analyses with up to IS factors were undertaken but provided no additional 

beneficial infonnation about the tissue section. 

2.3.1.4 FCM Clustering Results 

The FCM clustering results from the collected spectral dataset are displayed in 

Figure 13 as false colour images, where a given colour in each image describes 

spectra that were grouped together in one cluster. It can be seen that as the amount 

of clusters has been subjectively increased from 2 - 5 (Figure 13b - e), the amount of 

tissue types that can be discriminated is increased. When comparing these clustering 

results to the H&E stained parallel section in Figure 13a, the FCM image created for 

5 clusters displays a good resemblance given that this is from an adjacent tissue 

section and small morphological changes are likely. Each colour within the image 

2-22 



Figure 12: IR imaging of a lymph node tissue section via MCR Analysis. (a) H&E 
stained image of the tissue section. (b) - (d) False colour weighted images 
constructed from a 3 component MCR analysis of the dataset. (e) - (i) False colour 
weighted images constructed from a 5 component MeR analysis of the dataset. Note 
that the colour scale ranges from red indicating spectra that are very similar to that 
component, and blue that is greatly dissimilar. 
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can now be assigned to a specific tissue type. Orange pixels describe the capsule, 

green the reticulwn, maroon the healthy cortex surrounding the germinal centre in 

dark blue, and finally the invading cancerous breast tissue is described by a light blue 

colour. The only misclassification is of spectra that originate from fatty tissue 

located at the top left comer of the image. These have been incorrectly grouped into 

the same cluster as the invading cancerous tissue. Correct clustering of fatty tissue 

spectra into a single group was not achievable via our FCM analysis. This is a direct 

consequence of their position in multi-dimensional PC space, and will be examined 

in greater detail in the discussion. As the amount of clusters is further increased 

from 6 - 8 (Fig 13f - h), these main tissue types are then further subdivided. The 

capsule and reticulum begin to show shared clusters and the formation of a lining 

that surrounds these tissues. This is an understandable result as are very similar in 

biochemistry, both being fibrocollagenous types of tissue. The invading cancerous 

tissue also begins to display a second cluster that may describe tissue with a different 

degree of malignancy, not recognised via conventional histology. When cluster 

numbers were again increased (>8), no further beneficial tissue discrimination could 

be made, with images becoming needlessly complex and hard to interpret. 

2.3.1.5 PCA - FCM Clustering Hybrid Results 

Finally, the collected spectra were subjected to combined PCA - FCM clustering 

analysis, where the dataset is initially compressed via PCA to its first 10 PC' s and 

then clustered via FCM methodology. Although this algorithm consecutively 

performs two different multivariate analyses, the total computation time is 
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Figure 13: IR imaging of a lymph node tissue section via FCM Clustering. (a) H&E 
stained image of the tissue section. (b) - (h) False colour images created using FCM 
Clustering Analysis results. Note cluster numbers were subjectively increased from 
2 - 8. Pixels with the same colour in each image are spectra that were grouped 
together into the same cluster. 
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Figure 14: IR imaging of a lymph node tissue section via PCA-FCM Clustering. (a) 
H&E stained image of the tissue section. (b) - (h) False colour images created using 
PCA-FCM Clustering Analysis results. Note cluster numbers were subjectively 
increased from 2 - 8. Pixels with the same colour in each image are spectra that 
were grouped together into the same cluster. 
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significantly faster than traditional FCM analysis. This is a consequence of 

the dataset now only being described by 10 dimensions rather than a number defined 

by the amount of data points in the collected spectra Results from the analysis were 

again visually displayed as false colour images and are shown in Figure 14. When 

comparing these PCA-FCM images directly with those created via conventional 

FCM clustering, no significant or worrying loss of image quality can be observed. 

Only a very few pixels in each image have been classified differently. This quite 

clearly demonstrates that data compression used in a correct statistical fashion can be 

an effective tool for reduced computation requirements and analysis times. 

2.3.1.6 Spectral Characteristics of Tissue Types 

All results from the 5 PCA-FCM cluster analyses, which displayed a good 

resemblance to the H&E stained parallel tissue section are shown in Figures 15 - 17. 

The three dimensional PCA scatter plot shown in Figure 15b again displays all 

spectra contained within the dataset projected onto the first 3 PC's. However, these 

have now been coloured according to the cluster they belong to. This suggests that 

PCA analysis alone would have difficulty discriminating the different tissue types *-
present, as spectra are very closely packed together in PC space. Another distinct 

advantage of FCM clustering is that mean average spectra for each cluster in an 

analysis can easily be calculated and used to help interpret the biochemical 

differences that are occurring between them. The mean spectra calculated for the 5 

cluster analysis are displayed in Figure 16. At first glance, spectra from the different 

tissue types appear to be very similar, with the most discernable changes occurring 

within the 1800 - 700 cm-) region. When examining this region in greater detail, 
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Figure 17, two main spectral profiles are revealed. The fIrst profile best describes 

the capsule and reticular cell mean spectra. These tissues exhibit strong overlapping 

collagen bands in the 1180 - 1380 cm-I region, with peaks occurring at 1205, 1232, 

1280 and 1335 cm-I respectively. This series of peaks are characteristic of the 

complex vibrations produced by amide III bending and wagging modes in proteins 

[29-31]. An additional collagen peak is found at 1448cm- l
, and is distinctly more 

intense in these tissue types. A marked reduction in the symmetric vibration 

characteristic of phosphodiester groups in nucleic acids located at 1085 cm-I is 

clearly distinguishable and likely to reflect the reduced nucleic acid concentration in 

these cell types. Another definable feature of these tissues is the position of the 

amide I band that occurs later than other tissue types at 1664 em-I. The capsule and 

reticulum spectra are only discernable via small peak intensity variations across the 

spectrum and a change in their amide II / amide I ratio. 

The second spectral profile alternatively describes the cortex, germinal centre and 

cancerous tissue. These spectra display a pronounced symmetric phosphodiester 

vibration at 1085 cm-I, and a more distinguishable anti symmetric vibration at 1240 

cm-I. Previous studies have indicated that the relative intensity of theses bands can 

be descriptive to a cells divisional activity [32-34]. Our results agree with this 

fInding, whereby cancerous and secondary follicle cells that proliferate at a fast rate 

are observed to have high intensity for this band. These spectral changes indicate an 

overall increase in the nucleic acid concentration of these tissue types. Contributions 

from collagen to these spectra are reduced allowing shoulder peaks at 1468 and 1408 
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Figure 15: 5 Cluster PCA-FCM Analysis Results (a) False colour image. (b) Three-dimensional scatter plot o/tissue section spectra projected 
onto the first 3 PCs. Note spectra are coloured according to cluster membership. 
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cm-l to be revealed, likely attributable to CH2 scissoring vibrations in lipids and 

methyl deformations in lipids. Again these three tissue types have only small peak 

intensity changes across the majority of the spectrum, with their most discemable 

differences occurring in the Amide I - Amide II region. Spectra representative of the 

cancerous tissue showed a significant reduction in the amide II/amide I intensity ratio 

when compared to the healthy cortex tissue. This observation is in agreement with 

previous studies examining cervical tissues [35,36], where a reduction in this ratio 

was again identified in diseased tissue. Interestingly, our results further show that 

spectra originating from the secondary follicle have an even greater reduction in their 

amide III amide I ratio. It should finally be noted that the mean spectrum for the 

cancerous tissue also exhibits a small lipid peak at 1744 em-I. This peak is attributed 

to the v(CO) band of the ester group within lipids, and could be an artefact 

introduced by the misclassification of fatty tissue spectra into this cluster. When 

taking into account the large protein content of animal cells, it is not surprising that 

tissue differentiation has been dominated by changes occurring within this spectral 

region. The band position and intensity of these peaks can indicate the relative 

protein concentration and their secondary structure, being the summation of several 

underlying and overlapping bands. 

2.3.1.7 Multivariate Analysis Discussion 

MCR analysis was clearly the least computationally expensive (Table 1), providing 

contrast for a majority of the tissues types present. PCA also took a relatively small 

amount of time to complete its analysis. However it showed poor tissue 

differentiation, with fatty tissue accounting for a very large amount of the total 
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variance contained within the dataset (approximately 60%). This dominance of the 

variance is caused by a dramatic difference in fatty tissue spectral characteristics. 

Techniques Computation Times (mlns) 

PCA 1 

MeR 0.5 

FCM 28 

PCA-FCM 2.5 

Table 1: Computation time comparison between PCA, MCR, FCM and PCA-FCM 
analysis techniques using the same computational hardware. 

These large spectral differences are likely to have caused the analysis to be less 

sensitive to the small spectral differences that occur between the remaining tissue 

types. Although taking a greater amount of time to complete, the FCM analysis 

displayed a marked improvement in tissue discrimination. All tissue spectra could 

be clustered into their histological groups apart from spectra originating from the 

fatty tissue. The reason for this incorrect clustering can be explained by the 

examination of the spectra in multi-dimensional PC space. In Figure 18, the original 

three-dimensional PC plot shown in Figure ISb has been rotated to best describe the 

differences between the outlier fatty tissue (encircled) and remaining tissue spectra. 

Previously work has shown that when using the Euclidean distance to define fuzzy 

cluster membership values, inefficient clustering can occur when the shape of the 

data points in multi-dimensional space is not ideal (spherical) [37-40]. In our dataset 

the first PC is descriptive of the lipid content in the fatty tissue. The small amount of 

spectra collected from this region on the tissue section display a very large natural 

variation in the intensity of these lipid peaks. This has caused the fatty tissue spectra 

to be sparsely distributed along this PC axes and therefore render the FCM clustering 
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less efficient. Unfortunately this has led to the persistent mis-clustering of the fatty 

tissue spectra into the same cluster as the cancerous node spectra (dark-red). A 

possible solution to this problem could be to consider these spectra as a separate 

cluster before multivariate analyses were carried out. This could be achieved by the 

creation of a filtering test that seeks out fatty tissue spectra, looking for large lipid 

peak intensities characteristic of this tissue. 
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Figure 18: Rotated three-dimensional scatter plot of tissue section spectra projected 
onto the first 3 pes. Outlier fatty tissue spectra are encircled. 

Finally, the combined PCA - FCM analysis showed both the enhanced tissue 

discrimination achieved via FCM analysis, but also a greatly improved computation 
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speed without a significant loss of information from the original dataset. Unlike 

Hierarchical Clustering Analysis (HCA), where the memory requirements and 

computation times are excessively large [24,32,33,41], PCA - FCM clustering is an 

exciting technology that can allow high quality analysis in dramatically reduced 

times. 

2.3.2 The Characterisation of a Catalogue of Axillary Lymph Node Tissue 

Sections by use of Infrared Multivariate Imaging 

During this study a multitude of different axillary lymph node tissue sections with 

contrasting histological architectures were examined via IR mapping. The micro­

spectral datasets produced were then further scrutinised by three different types of 

unsupervised multivariate imaging techniques. These include PCA, MCR and a 

newly developed PCA-FCM clustering hybrid. In this section we describe the results 

produced by direct comparison to conventional histology, and thus assess their 

ability to distinguish the contrasting tissue types that exist within the sections 

analysed. 

2.3.2.1 Axillary Lymph Node LNII7 

The first tissue section in our library (named LNII7) was cut from a diseased lymph 

node that displayed multiple areas of invading cancerous tissue. Both the white light 

image of the tissue section and a photomicrograph of its parallel H&E stained section 

are shown in Figures 19a and 19b respectively. An infrared micro-spectral map was 
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Figure 19: a) White light image of entire lymph node tissue section. b) Photomicrograph of the H&E stained parallel section. c) Magnified region 
displaying benign and malign anatomical features. d) IR imaged area (1325 x 2125 pm) mapped using a step size and aperture of 25 pm for a total 
4505 individuallR spectra. Benign (1) & malignant (2) tissues are identifiable via purple and pink colourations respectively. e) White light image of 
mapped area. j) Total absorbance IR image of mapped area. 
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Figure 20: Multivariate Imaging results from malignant lymph node LNII7. 

PCA Panel: (a) Combined individual and cumulative percentage variance plot for the first 5 PC's. (b) -
(f) False colour weighted images for pC's 1 - 5 respectively. Colour scale ranges from red indicating 
spectra that are very similar to that PC, and blue which are greatly dissimilar. 

MCR Panel: False colour weighted images created from a 2 (a-b,) 3 (c-e) and 4([-i) component MCR 
analysis. Colour scale ranges from red indicating spectra that are very similar to that component, and 
blue which are greatly dissimilar. 

FCM Panel: (a) - (d) False colour images created using PCA-FCM clustering analysis results. Note 
cluster numbers were subjectively increased from 2 - 4. Pixels with the same colour in each image are 
spectra that were partitioned into the same cluster. 
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collected from the entire tissue section using a step size and aperture of 25J.lm. 

However, this map contained over 75,000 individual IR spectra. Due to limitations 

of available computer memory and CPU processing speeds, the time required to 

process a map of such magnitude was prohibitive. Therefore, a large section within 

this map, displaying both malignant and benign anatomical features was extracted for 

multivariate analysis. The area chosen for further analysis is shown in Figures 19d-f, 

and samples an area of 1325 x 2125 J.lm for a total of 4505 individual spectra. 

Examining closely the approximated studied area on the H&E stained parallel section 

(Figure 19), it can be seen that the area scrutinised displays a region whereby healthy 

cortex tissue (purple pigmentation) is being infiltrated on various fronts by cancerous 

tissue (Pink: pigmentation). Pockets that contain intermingled cancerous and healthy 

tissues can be located in both the top left and bottom right of the photomicrograph. 

The multivariate imaging results produced for this dataset are shown in Figure 20. 

Each method applied has been allocated an individual panel and only displays 

imaging results that produce meaningful information about the tissue section and the 

technique that was used. 

Examining the PCA panel, it can be seen in figure (a) that over 95% of the total 

variance contained within the dataset is comprised within the first 7 PC's. When 

examining the first PC image displayed in figure (b), it is apparent that this 

component is highlighting areas upon the tissue section where cells are tightly 

packed or very dense (intense red colour). The second PC image shown in figure (c) 

more interestingly appears to highlight regions upon the tissue section where 

cancerous and normal tissue are intermingled and likely to be undergoing malignant 

change (red and cyan colour). In contrast, the third PC image displayed in figure (d) 
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more clearly highlights the cancerous regions of the tissue section (red and yellow 

colour). Both the remaining and subsequent PC images that were constructed gave 

no further beneficial tissue discrimination. i; 

The MCR panel displays the resulting images constructed from a 2, 3 and 4 

component analysis of the same dataset. When comparing these imaging results 

against the H&E stained section, the 4 component system gives the best 

characterisation of the tissue section (images f - i). The first component in the 

analysis (image f), displays areas upon the tissue section where the cells are tightly 

packed. The second component (image g) appears to be characteristic of the 

cancerous tissue and the third (image h) of areas where normal and cancerous tissues 

are intermingled. The final component (image i) reflects areas upon the section 

where the cells are not as tightly packed and therefore less dense. 

The final panel displays images created via PCA-FCM clustering. Images (a) to (c) 

were constructed by subjectively increasing the amount of clusters found by the 

analysis from 2 - 4 respectively. When comparing these directly against the H&E 

stained section, the image constructed from a 3 cluster analysis seems to best mimic 

the histological architecture of the tissue section. The blue cluster of spectra appears 

to be characteristic of the invading cancerous tissue. In contrast, the green cluster of ,....---./ ,--_, __ ' 'J --

spectra can be attributed to the healthy cortex tissue. The final red cluster located in 
...... --.. -.-~- - ._.... "---~ 

the top left and several small pockets around the section is descriptive of areas where 

~~_rm.al tis~~l~d~~c~rous, and likely to be undergoing malignant 

change. The subsequent 4 cluster analysis shown in image (c) partitions the spectra 

surrounding these intermingled areas into a further cluster and could again be 
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descriptive of a further subtype of tissue that is at later or earlier stage of malignant 

change. 

An additional infrared micro-spectral map was collected from the same tissue section 

but at higher spatial resolution. The region examined displayed a more distinct 

boundary between healthy and cancerous tissue and is shown in Figures 21a-f. On 

this occasion the detector array was set to examine the sample with a 6.25 flm pixel 

size. This map contained 5764 individual spectra and sampled an area of 275 x 

818.75 flm. The multivariate imaging results produced from this dataset are shown 

in Figure 22, and again display 3 panels for each individual multivariate method. 

Examining the PCA panel, it can be seen in figure (a) that over 95% of the total 

variance contained within the dataset is comprised within the first 10 PC's, the 

overwhelming majority accounted by the first 5. When studying the first PC image 

shown in figure (b), it would appear that this component highlights the remnant 

healthy nodal tissue that is located at the top of the imaged area (red and yellow 

pigmentation). In contrast, the cancerous invading tissue is marked by a cyan and 

deep blue colouration. The second component image shown in figure (c) again 

appears characteristic of the healthy tissue region (red pigmentation), but additionally 

highlights areas within the cancerous tissue that have a similar strong correlation. 

This component may therefore be diagnostic of healthy tissue that is undergoing 

malignant change, but this conclusion is only speculative. The remaining and 

subsequent PC images do not reveal any further beneficial tissue discrimination. 
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Figure 21: a) White light image of the entire lymph node tissue section. b) Photomicrograph of the H&E stained parallel section. c) Magnified 
region displaying benign and malign anatomical features. d) IR imaged area (275 x 818.75 Jim) mapped using a pixel size of 6.25 Jim for a total of 
5764 individuallR spectra. Benign (I) & malignant (2) tissues are identifiable via purple and pink c%urations respective/y. e) White light image of 
mapped area. j) Total absorbance JR image of mapped area. 
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Figure 22: Multivariate Imaging results from malignant lymph node LNIl7. 

PCA Panel: (a) Combined individual and cumulative percentage variance plot for theftrst 5 PC's. 
(b) - (f) False colour weighted images for pC's I - 5 respectively. Colour scale ranges from red 
indicating spectra that are very similar to that Pc. and blue which are greatly dissimilar. 

MCR Panel: False colour weighted images created fro m a 2 (a-b) and 3 (c-e) component MCR 
analysis. Colour scale ranges from red indicating spectra that are very similar to that component, 
and blue which are greatly dissimilar. 

FCM Panel: (a) - (d) False colour images created using PCA-FCM clustering analysis results. 
Note cluster numbers were subjectively increased from 2 - 5. Pixels with the same colour in each 
image are spectra that were partitioned into the same cluster. 
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The MCR panel displays the resulting images constructed from both a 2 and 3 

component analysis of the same dataset. When comparing these imaging results 

against the H&E stained section, the 3 component system gives the best 

characterisation of the tissue section (images c - e). The first component in the 

analysis (image c), displays areas of cancerous invasion, whereas the second 

component (image d) is descriptive of healthy tissue. The third and final component 

(image e) appears to be characteristic of tightly packed cancerous cells. 

The final panel again displays images created via PCA-FCM clustering. Images (a) 

to (d) were constructed by subjectively increasing the amount of clusters found by 

the analysis from 2 - 5 respectively. When comparing these directly against the 

H&E stained section, the image constructed from a 3 cluster analysis seems to best 

mimic the histological architecture of the tissue section. The green cluster of spectra 

appears to be characteristic of the healthy cortex tissue. In contrast, the red cluster of 

spectra can be attributed to the invading cancerous tissue. The final blue cluster ~ 

located in several small pockets at the bottom of the image describes areas where 

tightly packed cancerous cells exist. The subsequent 4 and 5 cluster analyses 

displayed in images (c) and (d) further partition both the cancerous and healthy tissue 

spectra into additional subsets that may be descriptive of alternative stages of disease 

change. 

2.3.2.2 Axillary Lymph Node LNS7 

The second tissue section in our library (named LN57) was cut from a healthy lymph 

node undergoing benign reactive changes. The reactive change in the lymph nodes 
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architecture was most likely caused by an immune response to the invading primary 

tumour in the breast or from previous surgical procedures such as a biopsy. Both the 

white light image of the tissue section and a photomicrograph of its parallel H&E 

stained section are shown in Figures 23a and 23b respectively. An infrared micro­

spectral map was collected from the entire tissue section using a step size and 

aperture of 25Jlm. However, this map again contained above 50,000 spectra and was 

thus reduced to include the left region of the node that displayed the most prevalent 

reactive changes. The area chosen for further analysis is shown in Figures 23c-e, and 

samples an area of 3250 x 2675Jlm for a total of 13,910 individual IR spectra. The 

multivariate imaging results produced for this dataset are shown in Figure 24. Each 

method applied has been allocated an individual panel and only displays imaging 

results that produce meaningful information about the tissue section and the 

technique that was used. 

Examining the PCA panel, false colour weighted images for the first 5 PC's have 

been constructed and are shown in figures (a) - (e). In this analysis, over 95% of the 

original variance contained within the dataset was now accounted by the first PC 

alone. Studying the constructed image for this component in figure (a), we can see 

that this PC clearly gives contrast between the fatty and remaining nodal tissue of the 

lymph node. Both the second and third PC images shown in figures (b) and (c) 

appear to highlight the capsule tissue of the lymph node. The constructed image for 

the fourth PC shown in figure (d) highlights a small globule of dense fatty tissue 

located at the bottom left of the capsule region. The fifth PC image shown in figure 

(e) and further subsequent PC images reveal no additional information about the 

lymph node. With over 95% of the variance being accounted by the fatty tissue 
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Figure 23: a) White light image of entire lymph node tissue section. b) Photomicrograph of the H&E stained parallel section. c) JR imaged area 
(3250 x 2675 pm) at high magnification. The area was mapped using a step size and aperture of 25 pm for a total of 13, 91 0 individual JR spectra, 
The typical anatomical features of a healthy lymph node undergoing reactive changes can be seen. These include the hypertrophy of the medullary 
sinuses filling with histocytes (1), enlarged and reactive secondary follicles with large germinal centres (2), the lymph node capsule (3) and 
surroundingfatty tissue (4), e) White light image of mapped area, j) Total absorbance lR image of mapped area. 
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Figure 24: Multivariate Imaging results from benign lymph node LN57. PCA Panel: (a) - (f) False colour weighted images jar PC's 1 - 5 respectively. Colour scale ranges 
from red indicating spectra that are very similar to that PC, and blue which are greatly dissimilar. Approximately 98% of the total variance contained within the dataset is 
comprised by the first PC alone.. MCR Panel: (a) - (e) False colour weighted images created from a 5 component MCR analysis. Colour scale ranges f rom red indicating 
spectra that are very similar to that component. and blue which are greatly dissimilar. FCM Panel: (a) - (e) False colour images created using PCA -FCM clustering analysis 
results. Note cluster numbers were subjectively increasedfrom 3 - 7. Pixels with the same colour in each image are spectra that were p artitioned into the same cluster. 
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alone, the sensitivity required for further tissue discrimination has almost certainly 

been affected. 

The MeR panel displays the resulting images constructed from a 5 component 

analysis of the same dataset (images a - e). This 5 component system gave the best 

characterisation of the tissue section when compared to the H&E stained section. 

The first component in the analysis (image a), is representative of all the normal 

nodal tissue, whereas the second component (image b) is again descriptive of 

outlining fatty tissue. Studying the third component (image c), this image clearly 

highlights the capsule tissue of the lymph node. The fourth component (image d) 

again highlights the nodal cortex tissue, but now provides a small amount of contrast 

between the reacting secondary follicles and the medullary sinuses that have 

hypertrophied. Image (e) constructed from the fifth component marks the globule of 

fatty tissue located at the bottom left of the tissue section. 

The final panel again displays images created via PCA-FCM clustering. Images (a) 

to (e) were constructed by subjectively increasing the amount of clusters found by 

the analysis from 3 - 7 respectively. When comparing these directly against the 

H&E stained section, the image constructed from a 7 cluster analysis seems to best 

mimic the histological architecture of the tissue section. The dark blue, royal blue, 

cyan and yellow clusters of spectra appear to characterise the outlining fatty tissue. 

In contrast, the maroon cluster of spectra can be attributed to the lymph node capsule 

tissue. The orange cluster on the other hand highlights regions upon the tissue 

section where highly proliferating secondary follicle are present. The final green 

cluster of spectra located in several small pockets surrounding the secondary follicles 
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is likely to represent the medullary sinuses that have hypertrophied. Subsequent 7 -

10 cluster images revealed no further information about the lymph node and 

proceeded to further partition the fatty tissue spectra into multiple groups. Overall in 

must be noted that the fatty tissue comprised so much natural variation within its 

spectral characteristics that the analysis could only differentiate between the 

secondary follicle and medullary sinuses after the fatty tissue had been partitioned 

into 4 subsets of spectra. 

2.3.2.3 Axillary Lymph Node LNPE 

The third tissue section in our library (named LNPE) was cut from another healthy 

lymph node. This node, however, displayed a typical benign variation that can occur 

within the reticulum support structure, whereby the capsule is thickened and bands of 

fibrocollagenous scar tissue invade into the core of the node. A white light image of 

the entire tissue section and the region chosen for analysis are shown in figures 25a 

to 25d respectively. Unfortunately a parallel H&E stained section was not made 

available for this node, but the main types of tissue can still be visualised via contrast 

in light intensity of the tissue regions (figure 25c). An infrared micro-spectral map 

was collected from a cross section of the node that incorporated all tissue types 

present on tissue section. By use of a step size and aperture of 25 J.lm, a total of 2522 

individual IR spectra were collected from an area of 650 x 242 J.lm. The multivariate 

imaging results produced for this dataset are shown in Figure 26. Each method 

applied has been allocated an individual panel and only displays imaging results that 

produce meaningful information about the tissue section and the technique that was 

used. 
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Examining the PCA panel, it can be seen in figure (a) that over 95% of the total 

variance contained within the dataset was comprised within the first 3 PC's. When 

studying the colour weighted image for the first PC in figure (b), we can see that this 

PC clearly gives contrast between the fatty tissue invading the capsule (blue 

colouration) and the remaining nodal tissue (red colouration). Studying the second 

PC image shown in figure (c), this clearly provides contrast between the tissue 

section itself (red pigmentation) and the region at the top left hand comer of the 

mapped area where no tissue exists. All subsequent PC images do not provide any 

further reliable contrast between the tissue types present. 

The MCR panel displays the resulting images constructed from both a 2 and 3 

component analysis of the same dataset (images a - e). By comparison to the known 

histological tissue types on the section, the 3 component system gave the best 

characterisation of the tissue section. The first component in the analysis (image c), 

is representative of all the normal nodal tissue, whether being cortex or collagenous 

scar tissue. The second component (image d), is descriptive of fatty tissue invading 

the node producing capsular thickening. This component image also shows some 

contrast between the collagenous scar tissue (yellow colouration) and central cortex 

tissue (cyan colouration). Studying the third and final component (image e), this 

clearly highlights the region at the top left of the mapped area where no tissue exists. 

The final panel again displays images created via PCA-FCM clustering. Images (a) 

to (c) were constructed by subjectively increasing the amount of clusters found by 

the analysis from 2 - 4 respectively. When comparing these directly against the 

2-48 



(a) 

.1Sl < f.&SIO W . L i -----

t:4tt ·~,-:::t1.. ' , ... l...::....!!- A"'1..iDrj1!'..!::eRJ 

., 
,; 

tI' ,. 

Figure 25: a) White light image of entire lymph node tissue section. b) Magnified region displaying a typical benign variation that can occur within 
the reticulum support structure of a lymph node, which includes capsular thickening and bands of fibrocollagenous scar tissue. c) 1R imaged area 
(650 x 2425 JIm) mapped using a step size and aperture of 25 JIm for a total 2522 individuallR spectra. Tissue types found within the mapped area 
include cortex (1) , collagenous scar (2), capsule (3) andfatty (4) tissues. d) Total absorbance 1R image of mapped area. 
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Figure 26: Multivariate Imaging results from benign lymph node LNPE. 

PCA Panel: (a) Combined individual and cumulative percentage variance plot for the first 5 PC's. 
(b) - (f) False colour weighted images for PC's I - 5 respectively. Colour scale ranges from red 
indicating spectra that are very similar to that PC, and blue which are greatly dissimilar. 

MCR Panel: False colour weighted images created from a 2 (a-b) and 3 (c-e) component MCR 
analysis. Colour scale ranges from red indicating spectra that are very similar to that component, 
and blue which are greatly dissimilar. 

FCM Panel: (a) - (d) False colour images created using PCA-FCM clustering analysis results. Note 
cluster numbers were subjectively increased from 2 - -I. Pixels with the same colour in each image 
are spectra that were partitioned into the same cluster. 
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known tissue type regions, the image constructed from a 4 cluster analysis seems to 

best mimic the histological architecture of the tissue section. The yellow cluster of 

spectra characterise the central cortex tissue. In contrast, the blue cluster of spectra 

highlights the collagenous scar tissue that is invading into the core of the node. 

Remnant capsule tissue is highlighted by the cyan cluster of spectra, surrounding and 

lining the fatty tissue areas. Unfortunately a small globule of collagenous scar tissue 

has also been partitioned into this cluster (central part of image). However, after 

scrutinising spectra collected from these co-ordinates, it is apparent they have also 

taken on strong lipid characteristics similar to the invaded capsule. The final red 

cluster of spectra highlights fatty tissue that has invaded the capsule of the node. 

2.3.2.4 Axillary Lymph Node LN24 

The fourth tissue section in our library (named LN24) was cut from a malignant 

lymph node that had almost been completely infiltrated by fatty and fibrocollagenous 

scar tissues. However, a few small pockets of remnant cancerous tissue could still be 

found. A white light image of the entire tissue section and the region chosen for 

analysis are shown in figures 27a - c respectively. Unfortunately a parallel H&E 

stained section was not made available for this node, but the main types of tissue can 

still be visualised via contrast in light intensity of the tissue regions (figure 27b). An 

infrared micro-spectral map was collected from a cross section of the node that 

incorporated all tissue types present on the tissue section. By use of a step size and 

aperture of 25 J,lm, a total of 6020 individual IR spectra were collected from a spatial 

area of 875 x 4300 J,lm. The multivariate imaging results produced for this dataset 

are shown in Figure 28. Each method applied has been allocated an individual panel 
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and only displays imaging results that produce meaningful information about the 

tissue section and the technique that was used. 

Examining the PCA panel, it can be seen in figure (a) that over 95% of the total 

variance contained within the dataset was comprised by the first 2 PC's. When 

studying the colour weighted image for the first PC in figure (b), it is apparent that 

this PC clearly provides contrast between the invading fatty (blue colouration) and 

the remaining nodal tissue (red colouration), whether it is cancerous or 

fibrocollagenous. The second PC image shown in figure (c) highlights two small 

pockets of dense fatty tissue (red pigmentation) located above and below the central 

region containing the remnant nodal tissue. The third PC image shown in figure (d) 

again highlights the central area containing the remnant cancerous tissue but now 

provides a small amount of contrast between the malignant cells (red colouration) 

and the fibrocollagenous scar tissue (blue colouration). All subsequent PC images 

provide little tissue discrimination that is useful. 

The MCR panel displays the resulting images constructed from a 2, 3 and 4 

component analysis of the same dataset (images a - i). By comparison to the known 

histological tissue types found in the sample, the 4 component system gave the best 

characterisation of the tissue section. The first component in the analysis (image f), 

discriminates the two small pockets of dense fatty tissue, whereas the second 

component (image g) describes the central region of remnant nodal tissue. A small 

amount of contrast between the cancerous cells (dark red) and surrounding 

fibrocollagenous scar tissue (light red) is provided by this component. In contrast, 

the third component (image h) clearly marks the areas of fatty tissue invasion. The 
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Figure 27: a) White light image of entire lymph node tissue section. b) Magnified region displaying fibrocollagenous scar tissue that encapsulates 
small clusters of malignant cortex cells. The IR imaged area (875 x 4300pm) was mapped using a step size and aperture of 25 pm for a total 6020 
individuallR spectra. Tissue types found within the mapped area include cancerous cortex (I), collagenous scar (2), and fatty (3) tissues. c) Total 
absorbance IR image of mapped area. 
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Figure 28: Multivariate Imaging results from malignant lymph node LN24. 

PCA Panel: (a) Combined individual and cumulative percentage variance plot for the firs t 5 PC 's. 
(b) - (f) False colour weighted images for PC's J - 5 respectively . Colour scale ranges f rom red 
indicating spectra that are very similar to that PC, and blue which are greatly dissimilar. 

MCR Panel: False colour weighted images created from a 2 (a-b), 3 (c-e), and 4 (fl) component 
MCR analysis. Colour scale ranges from red indicating spectra that are very similar to that 
component, and blue which are greatly dissimilar. 

FCM Panel: (a) - (d) False colour images created using PCA -FCM clustering analysis results. Note 
cluster numbers were subjectively increased from 2 - 5. Pixels with the same colollr in each image 
are spectra that were partitioned into the same cllIster. 
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fourth and final component (image i) appears to highlight areas up on the tissue 

section where some remnant nodal tissue remains, although intermingled with fatty 

tissue. 

The final panel displays images created via PCA-FCM clustering. Images (a) to (d) 

were constructed by subjectively increasing the amount of clusters found by the 

analysis from 2 - 5 respectively. When comparing these directly against the known 

tissue type regions, the image constructed from a 4 cluster analysis seems to best 

mimic the histological architecture of the tissue section (image c). The red cluster of 

spectra characterise the cancerous cells located in the central region of the remnant 

nodal tissue. Fibrocollagenous scar tissue that surrounds these cancerous cells is 

highlighted by the cyan cluster of spectra. The remaining remnant nodal tissue 

scattered across the section are described by the blue cluster of spectra, with the 

invading fatty tissue marked by the yellow cluster of spectra. When further 

increasing the amount of clusters found by the analysis, the fatty tissue is partitioned 

into further subsets of spectra 

2.3.2.5 Axillary Lymph Node LNPF 

The fifth tissue section in our library (named LNPF) was cut from a benign lymph 

node that had again been infiltrated by collagenous scar and fatty tissues. A white 

light image of the entire tissue section and the region chosen for analysis are shown 

in figures 29a - c respectively. Unfortunately a parallel H&E stained section was not 

made available for this node, but the main types of tissue can still be visualised via 

contrast in light intensity of the tissue regions (figure 29b). An infrared micro-
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spectral map was collected from a cross section of the node that incorporated all 

tissue types present on the tissue section. By use of a step size and aperture of 25 

J.1m, a total of 1920 individual IR spectra were collected from a spatial area of 500 x 

2400 J.1m. The multivariate imaging results produced for this dataset are shown in 

Figure 30. Each method applied has been allocated an individual panel and only 

displays imaging results that produce meaningful information about the tissue section 

and the technique that was used. 

Examining the PCA panel, it can be seen in figure (a) that over 95% of the total 

variance contained within the dataset was comprised by the first 4 PC's. When 

studying the colour weighted images for the first 5 PC's shown in figures (b) - (f), no 

clear or distinctive tissue differentiation can be made. The analysis again seems 

dominated by the variance contained within the fatty tissue spectra and regions 

where no tissue exists. All subsequent PC images provided no additional or 

insightful information about the area examined. 

The MCR panel displays the resulting images constructed from a 2, 3 and 4 

component analysis of the same dataset (images a - i). By comparison to the known 

histological tissue types found in the sample, the 4 component system gave the best 

characterisation of the tissue section. 

The final panel again displays images created via PCA-FCM clustering. Images (a) 

to (c) were constructed by subjectively increasing the amount of clusters found by 

the analysis from 2 - 4 respectively. When comparing these directly against the 

known tissue type regions, the image constructed from a 4 cluster analysis seems to 
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Figure 29: (a) White light image of entire lymph node tissue section. (b) Magnified region display ing jibrocollagenous scar tissue that surrounds 
benign cortex tissue. The IR imaged area (1920 x 2400pm) was mapped using a step size and aperture of25pmfor a total 6020 individual IR spectra. 
Tissue types found within the mapped area include benign cortex (1), collagenous scar (2), and falty (3) tissues. (c) Total absorbance IR image of 
mapped area. 
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Figure 30: Multivariate Imaging results from benign ly mph node LNPF. 

PCA Panel: (a) Combined individual and cumulative percentage variance plot f or the first 5 PC's. (b) - (f) 
False colour weighted images f or PC's 1 - 5 respectively. Colour scale ranges from red indicating spectra 
that are very similar to that PC, and blue which are greatly dissimilar. 

MCR Panel: False colour weighted images created from a 2 (a-b), 3 (c-e), and 4 (f- i) component MCR 
analysis. Colour scale ranges from red indicating spectra that are very similar to that component, and blue 
which are greatly dissimilar. 

FCM Panel: (a) - (c) False colour images created using PCA -FCM clustering analysis results. Note 
cluster numbers were subjectively increased from 2 - 4. Pixels with the same colour in each image are 
spectra that were partitioned into the same cluster. 
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best mimic the histological architecture of the tissue section (image c). The central 

blue cluster of spectra clearly marks the area where large globules of fatty tissue 

have invaded into the lymph node. Tissue surrounding this fatty region where the 

infiltration is not as complete can be visualised by the red cluster of spectra. 

Collagenous scar tissue that separates this invaded area from the remaining node is 

highlighted by the yellow cluster of spectra, allowing the healthy cortex tissue 

spectra to be visualised with a cyan colouration. When increasing the amount of 

clusters above this number, the analysis further partitions the fatty tissue into 

multiple subsets of spectra. 

2.3.3 The Combined Tissue Classification of Multiple Lymph Node IR Micro­

spectral Datasets via FCM Clustering 

The first two sections of this chapter have demonstrated the ability of unsupervised 

multivariate techniques to discriminate and characterise different tissue types that 

exist in both healthy and diseased lymph nodes. However, these experiments were 

carried out upon IR micro-spectral datasets collected from a single lymph node. To 

fully assess the potential of micro-spectroscopy as a tool for automated pathology, 

natural variation between patients and tissues must also be evaluated. In this section 

we therefore describe experiments that coalesce tissue spectra collected from 

multiple lymph nodes for a combined tissue classification. 

In these experiments, tissue spectra were extracted from IR micro-spectral maps 

collected from three different lymph nodes. Cancerous tissue spectra were extracted 

from datasets of positive lymph nodes LNII5 and LNII7. Spectra were collected 
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from distinct regions upon the tissue sections where only malignant tissue existed. 

Healthy tissue spectra were alternatively collected from benign lymph node LN57. 

These healthy tissue spectra were collected from a region upon the tissue section that 

described an area of reacting secondary follicles. Spectra were extracted from this 

particular region of the lymph node as the secondary follicles comprise highly 

proliferating cells similar to malignant tissue. This would therefore provide a sterner 

test for any subsequent multivariate analyses. The defined regions where tissue 

spectra were collected from each lymph node are shown in figures 31 a - c 

respectively. 

The first experiment undertaken in this study combined healthy tissue spectra 

collected from lymph node LN57 and cancerous tissue spectra from lymph node 

LNII7. This combined dataset was then scrutinised by PCA-FCM clustering 

analysis, specifying a 2 cluster result. The results from this cluster analysis are 

shown in figure 32a, with all spectra projected onto the first two principal component 

dimensions in multi-dimensional space. Healthy lymph node spectra were correctly 

partitioned into the same single cluster illustrated by the green data points, whereas 

the cancerous spectra have been grouped into a separate cluster described by the red 

data points. 

The second experiment alternatively combined the healthy tissue spectra from lymph 

node LN57 with the cancerous tissue spectra from positive lymph node LNII5. 

Again this combined dataset was scrutinised by PCA-FCM clustering analysis, 

specifying a 2 cluster result. The clustering results from this analysis are shown in 
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Figure 31: (a) H&E stained photomicrograph of malignant lymph node LN1l5. (b) 
H&E stained photomicrograph of malignant lymph node LN1l7. (c) H&E stained 
photomicrograph of healthy lymph node LN57. Spectra were extracted from 
previously recorded IR micro-spectral maps, the locations of which have marked 
with black boxes. 
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Figure 32: Clustering results of combined lymph node tissue spectral datasets via 
the peA-FeM Algorithm. (a) Healthy cortex tissue spectraJrom LN57 and malign 
cortex tissue spectra from LN1l7; 2 specified clusters. (b) Healthy cortex tissue 
spectra from LN57 and malign cortex tissue spectraJrom LN1l5; 2 specified clusters. 
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figure 32b, all spectra again projected onto the two first principal component 

dimensions. PCA-FCM analysis again proved successful, partitioning the healthy 

(green data points) and cancerous tissue spectra (red data points) into separate and 

defining clusters. However, a very small number of cancerous tissue spectra were 

misclassified in this instance. 

Although both these analyses proved very successful, the clustering experiments had 

not yet tried to partition tissue spectra of the same diagnosis from different lymph 

nodes into the same group. Therefore, in the third experiment we combined tissue 

spectra from all three datasets and again preceded with a 2 cluster PCA-FCM 

analysis. The clustering result from this analysis is shown in figure 33a, all spectra 

again projected onto the two first principal component dimensions. As shown in the 

diagram, healthy tissue spectra were again correctly clustered into one group (green 

data points), but more importantly the cancerous tissue spectra from the two separate 

lymph nodes were now partitioned into one defining malignant group (red data 

points). 

In an attempt to test the sensitivity of the PCA-FCM clustering approach, we 

repeated the analysis on this dataset but increased the specified number of clusters to 

3. The clustering result from this analysis is shown in figure 33b, all spectra again 

projected onto the first two principal component dimensions. As shown in the 

diagram, the PCA-FCM clustering analysis has on this occasion further partitioned 

the cancerous tissue spectra into two clusters that represent malignant lymph nodes 

LNII5 (red data points) and LNII7 separately (blue data points). This was an 

interesting result as it clearly showed that cancerous tissue spectra exhibited natural 
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variation between alternative lymph nodes and was identifiable by clustering 

techniques. To assess the difference between the spectral characteristics of these two 

cancerous lymph nodes, average spectra for each cluster were calculated and are 

shown in figures 34 and 35 respectively. 

At first glance, spectra from the three different lymph nodes appear to be very 

similar, with the most discernable changes occurring within the finger print region. 

When examining this spectral region in greater detail, as shown in figure 35, all three 

groups of tissue spectra display an almost identical spectral profile. The absence of 

broad overlapping collagen peaks between 1180 - 1380 cm-1 is noticeable [29-31], 

allowing shoulder peaks at 1468 and 1408cm-1 to be revealed, likely attributable to 

CH2 scissoring vibrations in lipids and methyl deformation modes respectively. 

These spectra also display pronounced anti symmetric and symmetric phosphodiester 

vibrations at 1240 cm-1 and 1085 cm-1 respectively [32-34]. If we now consider the 

average spectra from the three lymph nodes in this region, discernable changes can 

be identified between the three clusters. The healthy yet highly proliferating tissue 

spectra from LN57 (green profile) display a strong symmetric phosphodiester band at 

1085 cm-I
, but provides the weakest peak intensity from the 3 tissue clusters. In 

contrast, the cancerous tissue spectra collected from LNII5 (red profile) and LNII7 

(blue profile) display a marked increase in the intensity of this band. In fact both the 

intensity and width of this band for spectra originating from LNII7 are significantly 

increased when compared to the remaining two clusters. These observations are in 

agreement with previous studies that indicated the relative intensity of this band can 

be descriptive to a cells divisional activity [32-34,42,43], with diseased tissues 

displaying a marked intensity increase. Nevertheless, it is apparent from these 

2-64 



(a) 

C ., 
c 
0 
0.. 
E 
0 

0 
CD 
0.. 

'g 
'C 
a... 
~ 
c 

C\I 

(b) 

"E .., 
c 
0 
a. 
E 
0 

U 
CD a. 
'~ 
' S::: 
a... 
~ 
s::: 

N 

-0 .2 

CJ LN67 Normal Node 
-0 . 1 6 • LNII5 CencerOU5 Node 

• LNII7 Cancerous Node • 
• 

-0 . 1 • • 
• • CJ 

C • .~ 

-0 .06 C 
CJ 

C 

• 
• g", 

o • ~ 

~ 0 • • 
0 • 

'" 0 o · • <bc • 
CO B 

• 
0 .06 • • 

• • 
• • •• 0 . 1 

0 . 1~ .Ll------O~. 0~8------O-.~0-6------O-.~04------O~.0~2------~0----~0~.~0~2----~0~. 04~----0~.O~6~--~0-. ~0-8-----0~. 1 

-0 .2 

-0 . 1 6 

-0 . 1 

-0 .05 

0 

0 .06 

0 . 1 

1st Principal Component 

c LN67 Normal Node 

• LNII6 Cancerous Node 
o LNII7 Cancerous Node 

0 

0 c 

[] • 
c • 

• 

• 

• 

• 

o 
00 

• 
• 

0
0 

o 

0 .16L-______ L-______ L-____ ~L_ ____ ~L_ ____ ~~ ____ ~ ______ ~ ______ _J ______ _J ______ ~ 

-0 . 1 -0 .0 8 -0 .06 -0 .04 -0.02 0 0 .02 0 .04 0 .0 6 0 .08 

1st Principe' COlTlponent 

Figure 33: Clustering results oj combined lymph node tissue spectral datasets via 
the PCA-FCM Algorithm, (a) Healthy cortex tissue spectra from LN57 and malign 
cortex tissue spectra from LNJI5 & LNIl7; 2 specified clusters, (b) Healthy cortex 
tissue spectra from LN57 and malign cortex tissue spectra from LNII7 & LNIJ6; 3 
specified clusters. 
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Figure 34: 3 Cluster PCA-FCM Analysis Result. Mean average spectra for each 
cluster in the analysis. 
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spectral changes that there is an overall increase in the nucleic acid concentration of 

cancerous tissue. 

Further spectral changes between the three clusters of tissue spectra can be 

distinguished within the Amide I - Amide II region (1700 - 1500 cm· I
), shown in 

figure 35b. Spectra originating from the cancerous lymph nodes displayed a 

significant reduction in the amide II / amide I peak intensity ratio when compared to 

the healthy tissue spectra. However, a small yet distinctive difference between the 

two cancerous tissue clusters could be observed, with spectra originating from lymph 

node LNII7 displaying a greater reduction in this peak ratio. This observed spectral 

change bares agreement with previous studies examining cervical tissues [35,36], 

where a reduction in this peak intensity ratio was attributed to disease change. 

Taking into account the spectral differences found between the two cancerous lymph 

nodes LNII5 and LNII7, it is apparent that the greatest amount of natural variation 

occurring within the malignant cells of these tissues is that of nucleic acid and 

protein concentrations. An increase in nucleic acid concentration combined with a 

reduction in amide II / amide I peak intensity ratio are strong indicators of disease 

change. The tissue spectra collected from lymph node LNII7 displayed the most 

marked of these spectral changes, and could describe tissue with a more severe 

degree of malignancy when compared to lymph node LNII5. Any future infrared 

spectroscopic study of lymph nodes must consider the natural variation of nucleic 

acid and protein concentrations of malignant cells. Only after this natural variation 

has been fully assessed maya robust model for automated pathology be created. 
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2.3.4 Novel Development of Clustering Algorithms for FTIR Spectroscopic 

Diagnosis of Human Tissues 

2.3.4.1 Application and Assessment of Clustering Techniques for Tissue 

Classification 

In an initial study, the performance of three different clustering techniques for tissue 

spectra classification was assessed. HCA, KM and FCM clustering methods, 

described in section 4.5, were applied to FTIR spectral datasets collected and 

provided by John Chalmers et al. [44]. In this work, point spectra were collected 

from three different oral tissue sections utilising a synchrotron source located at the 

Daresbury SRS laboratory. Seven small datasets were collected in total and 

comprised of IR spectra taken from areas upon tissue sections clinically diagnosed as 

being tumour (abnormal), stroma (healthy connective tissue), early keratinisation and 

necrotic in nature. The hemotoxylin and eosin stained photomicrograph from one of 

the tissue sections cut for the analysis is shown in Figure 36a. Both tumour and 

stromal tissue can be found in this section. These can be identified visually by their 

dark and light staining respectively. The photomicrograph shown in Figure 36b 

displays a magnified region of the parallel tissue section cut from the same specimen 

for spectroscopic analysis. The superimposed dashed white lines on this image 

describe the boundaries between the two tissue types. In the first experiment, five 

single point spectra were recorded from each of the three distinct regions, the 

locations of which are marked by a "+" and numbered 1-5 for the upper tumour 

region, 6-10 for the central stroma layer and 11-15 for the lower tumour region. The 

fifteen FTIR transmission spectra from these positions are recorded as dataset 1, and 
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the corresponding spectra are shown in Figure 37. All datasets in this study were 

collected in a similar fashion from areas upon the tissue sections that described 

multiple tissue pathology. Data pre-processing included water vapour subtraction, 

baseline correction and normalisation. 

In order to facilitate the discrimination of the collected spectra into their respective 

tissue types, Chalmers et al utilised both HCA and PCA analyses to classify spectra 

according to their spectral characteristics [44]. These calculations were performed 

using Infometrix Pirouette® (Infometrix, Inc ., Woodinville, W.A, USA) software 

and data limited within the spectral range 1800 - 900cm-l
. The results from the 

multivariate analyses indicated that the partitioning of spectra into their respective 

Figure 36: (a) Photomicrograph of a H&E stained oral tissue section. Dark and 
light pigmentation describes tumour and stromal tissue respectively. (b) Enlarged 
32x photomicrograph of unstained parallel tissue section used for spectroscopic 
analysis. The upper and lower tumour regions are separated by a stromal layer, the 
boundaries of which are described by a dashed white line. The numbered cross hairs 
indicated the co-ordinates at which each spectrum was collected in the analysis. 
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tissue types was only achievable via additional pre-treatment to the data. These pre-

treatments included mean-centring, variance scaling and the conversion to first-

derivative spectra. However, the effectiveness of such data treatments varied 

according to sample characteristics and the clustering algorithm used. In our 

experiments we applied the three previously mentioned clustering techniques to these 

seven FT-IR spectral datasets without any additional pre-treatment. 

Agglomerative clustering algorithms can use a variety of different linkage methods. 

These provide a measure of similarity between clusters based upon the data held 

within each cluster [41,45]. The main linkage methods include: single link, complete 

link and minimum-variant algorithms (Ward 's algorithm) [46,47]. Other linkages 
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Figure 37: Spectral window displaying FrJR spectra from Dataset 1 (1800-900 cm­
I) . 
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are derivatives of these main methods. In the single link algorithm, the distance 

between two clusters is measured by the two closest data points held within the 

different clusters. By contrast, in the complete link algorithm, the distance between 

two clusters is measured between the two furthest data points within the different 

clusters. The minimum-variant algorithm is distinct from the other two methods as it 

uses a variance analysis approach to measure the distance between two clusters. In 

general, this method attempts to minimise the sum of squares of any two hypothetical 

clusters which can be generated at each step. This is based on the Euclidean distance 

between centroids [41]. Each linkage method can thus provide a different 

agglomerative clustering result. We therefore individually applied each linkage 

method for HCA clustering analysis. The final result achieved by KM and FCM 

clustering techniques can also be sensitive to the initial randomisation step made by 

the algorithms. This can therefore allow the iterative clustering steps to follow 

several different routes to completion. To assess the different clustering distributions 

that may arise from these algorithms, each method was repeated 10 times. The 

amount of clusters identified by each method was set to match the amount of tissue 

types identified clinically. The number of spectra collected from each tissue type 

identified both clinically and via cluster analysis for each dataset is shown in Table 2. 

In Table 2 we can see that in most datasets, the number of spectra that belong to each 

tissue category does not exactly match those identified clinically. These 

discrepancies arise from the misclassification of tumour spectra into the stroma 

cluster and vice versa. For example, in dataset 2, using the hierarchical clustering 

single linkage method, the number of spectra considered as being tumour is 17, while 
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Datasets Tissue types Clinical study 
Hierarchical clustering 

KM FCM 
names Single Complete Ward 

Dataset 1 
Tumour 10 10 10 10 10 10 

Stroma 5 5 5 5 5 5 

Dataset 2 
Tumour 10 17 9 9 9 9 

Stroma 8 I 9 9 9 9 

Dataset 3 
Tumour 8 4 8 7 3 6 4 4 

Stroma 3 7 3 4 8 5 7 7 

Tumour 12 19 12 12 11 19 13 19 11 

Dataset 4 Stroma 7 5 7 7 8 5 6 5 8 

Early keratinisation 12 7 12 12 12 7 12 7 12 

Dataset 5 
Tumour 18 I 18 18 14 17 14 

Stroma 12 29 12 12 16 13 16 

Dataset 6 
Tumour 10 10 10 10 10 10 

Stroma 5 5 5 5 5 5 

Tumour 21 28 17 15 17 18 

Dataset 7 Stroma 14 13 18 20 18 16 

Necrotic 7 1 7 7 7 8 

Table 2: Oral tissue spectra classification results via HCA, KM and FCM methods 
of clustering. The number of spectra classified into each cluster can be directly 
compared to that identified clinically. 

only 1 spectrum is considered as being stroma. We will regard the extra spectra that 

are partitioned into each cluster as the number of disagreements in classification 

compared to clinical diagnosis. These comparison results are displayed in Table 3. 

After repeating each clustering technique 10 times, it can be seen that the KM and 

FCM algorithms obtained more than one clustering result in some datasets. As 

previously mentioned, this is due to a random initialisation step used by both 

algorithms to locate the initial cluster centres. Examining the results shown in 

Tables 2 and 3 in greater detail, the KM technique displays a greater number of 

variations in the clustering result (3 out of 7 datasets) when compared to the FCM 

clustering method (lout of 7 datasets). The frequency of each clustering variation 

for these datasets is further detailed in Table 4. 
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Datasets Tissue types 
Hierarchical clustering 

KM FCM Single Complete Ward names 

Dataset 1 
Tumour 0 0 0 0 0 
Stroma 0 0 0 0 0 

Dataset 2 
Tumour 7 0 0 0 0 
Stroma 0 1 1 1 1 

Dataset 3 
Tumour 0 0 0 0 0 0 0 
Stroma 4 5 3 5 2 4 4 
Tumour 7 3 3 3 7 3 3 7 

Dataset 4 Stroma 5 3 3 4 5 2 4 5 
Early keratinisation 0 0 0 0 0 0 0 0 

Dataset 5 
Tumour 0 0 0 0 0 0 
Stroma 17 0 0 4 1 4 

Dataset 6 
Tumour 0 0 0 0 0 
Stroma 0 0 0 0 0 
Tumour 7 0 0 0 0 

Dataset 7 Stroma 0 4 6 4 2 
Necrotic 1 0 0 0 1 

Table J: Comparison of oral tissue classification via HCA, KM and FCM methods 
of clustering. These are based upon the number of disagreements made in direct 
comparison to clinical diagnosis. 

Datasets KM FCM 
names 

Dataset 3 2/10 3/10 5/10 -
Dataset 4 3/10 3/10 4/10 9/10 11/10 

Dataset 5 SIlO I SIlO -

Table 4: Clustering variations made by KM and FCM analysis. Results are 
displayed as the amount of times each result was reached out of ten repetitions. 

Hierarchical clustering 
KM FCM 

Single Complete Ward 

Average Number of 48 16 16 18.8 19.5 Disagreements 

Table 5: Average number of disagreements made by each clustering technique. 
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In order to further investigate the perfonnance of each clustering method, the average 

number of disagreements for all datasets was calculated, and is shown in Table 5. It 

can be seen that the hierarchical clustering single linkage method displayed the worst 

overall perfonnance, whereas the complete linkage and Ward methods displayed the 

best overall clustering results. However, a major drawback of agglomerative 

techniques is that these methods are computationally expensive. For such 

algorithms, the CPU time required can be scaled to the square of the amount of 

objects in a dataset (proportional to n2, where n is the number of spectra in a dataset) 

[32]. These requirements become more and more important with large datasets 

(n> 1 000), where a great amount of dependence is placed upon searching for the 

global minimum in the distance matrix. The KM and FCM clustering techniques 

gave a similar perfonnance when compared to the Wards agglomerative method. For 

these clustering methods, the computational effort scales in a first-order 

approximation linearly with n. Hence, when compared to hierarchical clustering, 

these techniques will be far less time consuming for extensively large datasets. 

Moreover, although KM has a slightly better perfonnance than FCM, displaying 

slightly fewer disagreements on average, it can bee seen from Table 4 that KM 

exhibits far more variation in its final clustering result than FCM. Therefore, when 

taking all these factors into consideration, the FCM clustering method appears more 

suited for rapid analysis of very large and complex spectroscopic datasets that are 

recorded in this study of human cells and tissues. 

2.3.4.2 A comparison of Fuzzy and Non-Fuzzy Clustering Techniques when 

applied to a large spectral dataset 
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In this study, FCM (Fuzzy) and K-Means (non-Fuzzy) clustering techniques were 

used to cluster an IR spectral dataset collected from a large spatial area of an 

axillary lymph node tissue section. The map or IR image created was composed of 

7497 spectra, a significantly higher number than previously examined, and proves a 

sterner test when assessing the diagnostic ability of each clustering method. In 

previous work, the datasets used in our analysis (seven sets of oral IR tissue spectra) 

had a comparatively small number of spectra, n (n<50). By contrast, the 

experiments reported in this study were carried out upon an IR map where n> 1 000. 

All spectra were recorded using a spectral resolution of 8 cm-I
, over the spectral 

range 4000 -720 cm-I
. Each spectrum therefore comprised 821 data points (4 cm- I 

data point interval). This can alternatively be visualised as 821 different dimensions 

in multivariate space. In this circumstance, the clustering methods have a 

substantially high computational requirement. It is apparent that if we can reduce 

the dimensionality of the original data without losing a significant amount of useful 

information, the performance of the clustering algorithms will be computationally 

more efficient. Principal component analysis was therefore used to reduce the 

dimensionality of the original data [48,49]. The dataset was projected onto its first 

10 principal components and cluster analysis carried out upon the data in these 

dimensions. These first 10 principal components comprised over 99% of the 

variance contained in the original data. Therefore the data had been reduced by 811 

dimensions with a loss of only 1 % of the variance contained in the original data. A 

comprehensive comparison between techniques was achieved by subjectively 

setting the amount of clusters found by the analyses from 2 to 9. Each experiment 

was repeated 10 times to assess any variation in the clustering result. For the KM 

method, the squared Euclidean distance was used as a distance measure; the initial 
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cluster centre positions being randomly selected. In FCM, the fuzziness index m 

was set to a value of 2. For both clustering methods the maximwn number of 

iterations was set to 100. A stop criterion was set to end the analyses when the 

minimum amount of improvement in the cluster density was found to be smaller 

than 10-5
, previously utilised in a nwnber of spectroscopic studies [32,50,51]. 

The IR map used in these experiments is the same as that reported in section 2.3 .1 

and will therefore not be discussed in any great detail. A full description of the 

lymph nodes histological architecture can be found in section 2.3.1.1. The H&E 

stained photomicrograph and total absorbance IR image for the spatial area mapped 

are shown in Figure 38. 

Figure 38: a) Photomicrograph of the H&E stained parallel lymph node tissue 
section. (1) Capsule, (2) cortex, (3) secondary follicle, (4) reticular cells and (5) 
invading breast cancer tissue. b) Total absorbance IR image of same region. 
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Since each spectrum contained in the IR map has a unique spatial x, y position, false­

colour images could now be generated to describe the cluster analysis results as a 

function of their spatial position. By assigning each cluster a colour, these colours 

can then be plotted as pixels at the x, y coordinates from which the spectrum was 

collected. Therefore, pixels with the same colour in the false image are spectra that 

were grouped together into the same cluster. 

During the initial stage of the experiments, the FCM method produced considerably 

varied results. Figure 39 displays the 3 different clustering results that were obtained 

when constraining the algorithm to find 2 clusters. In these examples the FCM 

clustering method performed particularly badly and gave very unstable clustering 

results. The two main tissue types found within this map are fibrocollagenous tissue 

(capsule and reticulum) and the remaining nodal tissue (secondary follicle, invading 

breast cancer, cortex), which have the most distinct of spectral differences. 

However, these tissue types were thoroughly mixed in all clustering results, the least 

being found in the first clustering scenario depicted in Figure 39a. 

Based on this observation, we went back and studied the dataset when projected onto 

its first three principal components, which comprised over 93% of the original 

variance. The ranges of each component were found to be: 

1 st Principal Component 

2nd Principal Component 

3rd Principal Component 

[-0.0075, 0.0751] 

[-0.0117,0.0069] 

[-0.0096,0.0047] 

2-77 



Figure 39: FCM clustering results when constrained to a 2 cluster analysis. (aJ ­
(c) display the three clustering results achieved via the analysis. 

The order of -0.0075 is _10-2 and 0.0751 is 10-1 and so on. Thus their corresponding 

range sizes are 10-1
, 10-2 and 10-2

• The smaller the size of the component range, the 

more compact the data. Therefore, the distance between the data and their ideal 

centres would be smaller. In FCM, the objective function J(U, V) (see equation 9, 

section 4.5.4.2) is proportional to the squared Euclidean distance between each 

datum and the cluster centres. In this case, the squared Euclidean clistances would 

now be even smaller and within the range of 10-1 and 10-4. Hence, a small range size 

may lead to a very small objective function value. When the difference between two 

objective function values is less than the minimum amount of improvement that can 

be made in a further iteration, the algorithm stops the clustering process. Therefore, 

if the minimal amount of improvement was not small enough (i.e. 10-5 in this 

scenario) to allow improvements upon the cluster centre positions, the FCM 

performance is significantly reduced. Due to this finding, we then utilised a value of 
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10.7 as the minimal amount of improvement for the clustering experiments. It was 

found that the performance of the FCM method was significantly improved and now 

achieved stable clustering results for all defined cluster numbers. 

The KM clustering method also displayed a marked improvement in stability after 

this change in methodology, but did however exhibit two clustering structures when 

constrained to a 2 cluster analysis. The cluster structures for both FCM and KM 

methods when constrained to a two cluster analysis are shown in Figure 40. 

Figure 40: Clustering results obtained when conducting a two cluster analysis using 
both KM (a & b) and FeM (c) methods. 

The first clustering structure obtained by the KM method shown in Figure 40a 

clearly separates the fatty tissue and remaining tissue types. The second clustering 

structure found by the KM method shown in Figure 40b is very similar to that 

obtained via the FCM method displayed in Figure 40c. This clustering result 

2-79 



describes two clusters that comprise fibrocollagenous (capsule, reticulum) and nodal 

tissue (cortex, secondary follicle, invading breast cancer). The variation in clustering 

results made by the KM method can be attributed to the positioning of the fatty tissue 

spectra in multidimensional space (see figure 18, section 2.3.1.7). KM clustering is 

very sensitive to outliers in a dataset, and if one data point is assigned to one cluster 

rather than another, the results may substantially distort the distribution of the data. 

The fatty tissue spectra being outliers have therefore distorted the clustering process 

to achieve this clustering structure. 

Figure 41 displays the clustering results achieved via KM and FCM clustering when 

the number of clusters were subjectively increased from 3 - 5. When the number of 

clusters was set to 3 in the KM analysis (see figure 41a) the analysis partitioned the 

spectra into groups that describe fatty tissue (blue), capsule and reticulum (red), and 

nodal tissue whether healthy or diseased (green). In comparison, the three clusters 

found by FCM analysis (see figure 41d) describe cancerous and fatty tissues (red), 

capsule and reticulum (blue), and the secondary follicle (green). In general the FCM 

method clusters the spectra into the three main tissue types present. These include 

cancerous tissue, the secondary follicle containing highly proliferating cells, and 

fibrocollagenous tissue. These clusters are nevertheless partially intermingled; i.e. 

cancerous tissue being mixed with fatty tissue. However, when directly comparing 

the two clustering techniques it is apparent that the FCM method was able to 

differentiate the invading cancerous tissue. 

When the number of clusters is increased to 4 and 5 (see figures 41 b, c, e, f) the KM 

and FCM methods further partition the fibrocollagenous tissues into their individual 
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Figure 41: Clustering results obtained when subjectively increasing the cluster 
number from 3 - 5. (a) - (c) display clustering structures for 3 - 5 clusters via KM 
clustering. (d) - (f) display clustering structures for 3 - 5 clusters via FCM 
clustering. 

2-81 



Figure 42: Clustering results obtained when subjectively increasing the cluster 
number from 6 - 9. (a) - (d) display clustering structures for 6 - 9 clusters via KM 
clustering. (e) - (h) display clustering structures for 6 - 9 clusters via FCM 
clustering. 
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subtypes (capsule and reticulum) and also the cortex tissue spectra into a separate 

cluster. When comparing these cluster images against the H&E stained parallel 

tissue section, it can be seen that the 5 cluster result obtained via the FCM method is 

directly comparable, displaying all tissue types defined via conventional histology. 

However, it is again apparent that the KM method was not able to partition the 

cancerous tissue spectra into a separate cluster. This is a very useful observation and 

could prove to demonstrate that k-means clustering is limited and unsuitable for 

diagnostic purposes. 

Figure 42 displays the clustering results obtained for both KM and FCM methods 

when subjectively increasing the cluster number from 6 - 9. Starting at 6 clusters, 

the K-Means algorithm begins to separate the cancerous and secondary follicle tissue 

spectra (see figure 42a). The FCM algorithm on the other hand has begun to 

partition tissue spectra that exist around the edges of the reticulum and cancerous 

areas that may describe a further subset of cancerous tissue whereby the grade of 

malignancy may not be as severe or far reaching (see figure 42e). When the number 

of clusters is further increased to 7 and 8, both clustering algorithms partition the 

tissue spectra that exist within the capsule into several subsets which includes a layer 

that lines the region. The FCM method also classified more mixed types of tissue 

within the cancerous region (see figures 42b, c, f, g). Finally, when the cluster 

number was increased to 9, the results from both KM and FCM showed more and 

more tissue types being mixed together (see figure 42d and h). These additional 

subsets of tissue spectra characterised by the clustering algorithms may be 

representative of potential subtypes of tissue that can not currently be identified via 
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conventional histopathology and thus be useful for diagnostic purposes. However, 

they could also be attributed to clustering noise. 

In conclusion, the FCM clustering method was far more effective at discriminating 

and further partitioning the cancerous tissue spectra at a much earlier stage in the 

clustering process. However, the fatty tissue spectra were not discemable at any 

stage in the study, no matter how high the cluster number was increased. This again 

highlights that outlier data can often be detrimental to efficient clustering analysis. 

As the number of clusters was increased, more and more information about the tissue 

section was revealed. possibly uncovering further subtypes of tissue presently 

unidentifiable by conventional histopathology. 

2.3.4.3 A fully automated FCM based clustering algorithm 

When using standard FCM algorithms. the number of clusters determined by the 

analysis has to be specified a priori. This can be a disadvantage in many real world 

applications where the correct or 'optimal' number of clusters that best describes a 

dataset is often an unknown measure. However, with the use of cluster validity 

indices, it is possible to discover the 'optimal' number of clusters within a given 

dataset dependent upon the clustering structure [52]. In short, clustering validity is a 

concept to evaluate the quality of each possible clustering structure and thus 

determine the number of clusters that best represents the given dataset. Many 

different cluster validity indices have been proposed for evaluating fuzzy clustering. 

Indices which utilise fuzzy membership values such as the partition coefficient and 

partition entropy have the advantage of being easy to compute [53], but are only 
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useful for a small number of highly separated clusters in multidimensional space. In 

order to overcome these problems, Xie and Beni defined a validity index which 

measures both the compactness and separation of clusters [54]. This validity index 

has been frequently utilised in recent research and has shown the ability to correctly 

define the 'optimal' amount of clusters in several different situations [55,56]. We 

therefore decided to apply this validity index to our FCM algorithms as to determine 

whether such an index could allow a fully automated and accurate classification of 

tissue spectra. 

Pilot studies using the Xie - Beni validity index were again carried out upon the 

seven oral tissue datasets previously described in section 2.3.4.1. By use of the 

traditional FCM method, a recently developed Variable String Length Simulated 

Annealing (VFC-SA) algorithm [57], and a novel developed Simulated Annealing 

Fuzzy Clustering (SAFC) algorithm, the seven datasets were clustered and the results 

compared [37,38]. This was achieved by comparing the final cluster number 

calculated by the automated clustering techniques with clinical diagnosis, and 

scrutinising their resultant validity index values. It was shown that the SAFC 

algorithm produced the best validity index values with improved cluster compactness 

and separation. The algorithm also obtained the same amount of clusters as defined 

by clinical diagnosis in four out of the seven datasets. In the remaining datasets, the 

amount of clusters did differ from those established by histology, identifying an 

excessive number in most cases. This was due to a smaller and thus better validity 

measure being obtained when adopting these clustering structures. These contrasting 

results could be due to a variety of different factors. The additional clusters could be 

diagnostic of further subtypes of tissue that describe different severities of disease or 
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cellular change. But it is also very likely to be a consequence of the small amount of 

spectra contained within these datasets, and thus not sufficiently assessing the natural 

variation that may occur in these types of tissue. A sterner test was therefore 

required to assess the effectiveness of using such a validity measure upon larger 

more complex datasets. Although the simulated annealing clustering process 

performed well on these small datasets, the algorithm can become computationally 

expensive when applied to large datasets where spectra numbers exceed 1000. We 

therefore adopted an FCM based model selection algorithm for automated clustering 

of large spectral datasets. This algorithm is based upon the standard FCM method 

whereby Cmin and Cmax represent the minimal and maximal number of clusters that the 

dataset may contain. The final clustering structure (C) is returned based upon the 

optimal Xie-Beni validity index value (VXB). The algorithm is performed in the 

following steps: 

1) Set Cmin and Cmax 

2) For C=Cmin to Cmax ; 

2.1 Initialise the cluster centres. 

2.2) Apply the standard FCM algorithm and obtain the new centre 

C and new fuzzy partition matrix U. 

2.3) After the FCM reaches its stop criteria, the cluster validity is 

calculated (e.g. VXB). 

3) Return the best data structure (C) that corresponds to the optimal 

cluster validity value (e.g. the minimum VXB). 

In our experiments the values of Cmin and Cmax were set to 2 and 10 clusters 

respectively. To reduce the number of variables involved in the analysis, the first ten 

principal components for each dataset were again calculated and used for clustering. 
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Figure 43: Clustering results of lymph node tissue spectra obtained via the 
automated FCM based model selection algorithm. (a) Positive lymph node LNI15. 
(b) Positive lymph node LNI17. 
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Figure 44: Clustering results of lymph node tissue spectra obtained via the 
Standard FCM Algorithm, (a) Positive lymph node LNJJ5; 3 specified clusters, (b) 
Positive lymph node LNIJ7; 2 specified clusters, In both diagrams, it can be seen 
that a number of spectra have been misclassified into different clinical clusters 
(misclassified spectra have been encircled). 
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In a more comprehensive study, the proposed automated algorithm was applied to a 

number of large spectral datasets that had been collected from a variety of different 

lymph nodes. The results from two particularly interesting positive (cancerous) 

lymph nodes, named LNII5 and LNII7 are shown in Figures 43a and 43b. By 

plotting the original data onto the first two principal component dimensions, which 

incorporate ca. 80% of the original variance, the approximate clustering structure can 

be visualised. 

When studying these plots in more detail, it can be seen that although the algorithm 

has adopted the clustering structure that produces the best cluster validity value, an 

excessive amount of clusters have been identified when compared to clinical 

analysis. In both examples the algorithm identified two clusters that describe the 

cancerous tissue spectra. However, when comparing these clustering results with 

those calculated using the standard FCM algorithm (see Figures 44a and 44b), 

whereby the cluster number was chosen to match clinical diagnosis, it can be seen 

that the automated algorithm was not able to completely segregate the different types 

of tissue spectra into separate clusters. 

Additional studies were carried out upon a variety of different lymph node spectral 

datasets, which included a number of different tissue types. These verified that the 

automated FCM method could give two clustering outcomes. It would either 

produce a clustering structure that matched histological analysis or generate an 

excessive number of clusters that partition the tissue types into multiple groups. 

When further examining the excessive cluster structures, it became apparent that this 

outcome may be due to two main reasons. The first was the cluster validity index 
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itself, where all distances between data points and cluster centres are calculated using 

the Euclidean distance. This could result with inefficient clustering when compared 

to histology if the shape of the clusters differed greatly from the ideal (spherical). 

The second was the possible identification of tissue subtypes. Characteristic IR cell 

signatures that describe different stages of cellular change may have been discovered 

by the clustering process. However, these could also be attributed to the natural 

variation in chemical composition of the clinically defined tissue types. 

Nevertheless, at this stage of study, we would prefer to cluster all tissue spectra with 

the same clinical diagnosis into the same cluster. In order to solve this problem, it is 

required to combine or "merge" the clusters with the same clinical diagnosis 

together. Although the separate clusters could represent different stages of cellular 

change, they may also have similar properties that make them discemable from 

different tissue types. This information is most likely to be held within the IR 

spectra themselves, rather than the clustering structure or cluster validity measures. 

A new method was therefore developed that utilised the chemical information 

contained within the IR spectra of the clusters to successfully merge separated 

clusters together. The detailed mechanism used by this algorithm will not be 

discussed in detail, but can be found in section 4.5.4.4. In short, the FCM based 

automatic selection algorithm initially partitions the spectra into different clusters, 

and then an automated merge method is used to assess the clustering structure. At 

this point the algorithm can either decide to accept the clustering structure or proceed 

to merge similar clusters together using their average spectra until a stop criterion has 

been reached. 
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Figure 45: Clustering results of lymph node tissue spectra obtained via the 
automated FCM based model selection algorithm and combined merge method 
procedure. (a) Positive lymph node LN1l5. (b) Positive lymph node LNll7. 
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This novel fully integrated FCM based merge method algorithm was again applied to 

the extracted spectral datasets collected from positive lymph nodes LNII5 and LNII7. 

The clustering results achieved are shown in figures 45a and 45b respectively. Again 

these have been plotted onto their first two principal components, thus aiding 

visualisation of the clustering structure. It can clearly be seen that in both datasets 

the tissue spectra have now been correctly partitioned into the same amount of 

clusters as defined by histology. The misclassified spectra previously grouped 

incorrectly via the standard FCM algorithm have also now been correctly classified 

into the same tissue type groups. 

This novel clustering method was applied to all of our previously problematic 

infrared spectral datasets for which previous approaches could not obtain the correct 

number of clusters. For each dataset, the proposed method identified the correct 

amount of clusters. It should be noted that after merging clusters a small number of 

spectra were still misc1assified (approximately 1 - 5 spectra per dataset). However, 

the overall clustering accuracy was significantly improved. An additional imaging 

example of the clustering benefits is shown in Figure 46. In this example a large IR 

map was collected from a positive lymph node tissue section and contained 5764 

spectra. The spatial area examined characterised a region upon the tissue section 

where normal nodal tissue was met by invading cancerous tissue. A clear boundary 

between the two tissue types could be seen and is further depicted in the 

photomicrograph shown in Figure 46b. As previously described, the random 

initialisation procedure used by these types of algorithm can lead to different 

clustering structures. The experiments were therefore repeated 10 times and stopped 

after the first part of the new routine, whereby the clustering structure is initially 

2-92 
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cortex 
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Figure 46: Clustering results of an lR map collected from a positive lymph node. 
These were obtained via the automated FCM based model selection algorithm and 
combined merge method procedure. Sampled area was 275pm x 818. 75pm in size. 
(a) Total absorbance lR image. (b) H&E stained photomicrograph of parallel 
tissue section. (c) - (d) Initial clustering structures obtained after FCM based 
selection algorithm. These describe a clustering structure of 5, 6 and 9 clusters 
respectively. (f) Final clustering result obtained via automated merge method 
procedure - this image contains two final clusters of lR spectra. 
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defined by the optimal cluster validity value. Three different clustering structures 

were obtained during this step of the algorithm and are shown in figures 46c - e. 

These false colour images describe the formation of clustering structures that provide 

5, 6 and 9 clusters respectively. All of these initial clustering scenarios describe 

multiple groups for both the normal and cancerous tissue. These additional clusters 

found in the cancerous area could be representative of different sub-classes of 

malignancy not normally recognised via histology. In contrast, the extra clusters 

found in the normal area could be descriptive of normal tissue that is beginning to 

take on cancerous characteristics. However, the identification of such a large 

number of tissue subtypes is highly unlikely. 

It is more plausible that the algorithm is too sensitive to the natural variation 

occurring within the tissue and thus creating an excessive amount of clusters that 

describe these differences. The false colour image shown in Figure 46f displays the 

final clustering result that was reached after the merge method step was applied. 

This clustering structure describes both the cancerous and normal tissue via 

individual clusters and was achieved for all of the initial clustering results. 

In conclusion, the application of classical clustering techniques for accurate tissue 

spectra classification can prove insufficient. This is due in part to the overwhelming 

complexity of biological systems and also to the mechanics of the clustering 

techniques. Conventional unsupervised clustering techniques are limited by the fact 

they require the optimal cluster number to be specified in advance. Although the 

clustering process is an unsupervised procedure, the dictation of the final cluster 

number can prove to render the analysis less efficient, often producing large numbers 
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of misclassified spectra. A novel algorithm has therefore been developed that 

clusters spectral datasets by scrutinising both the potential fmal clustering structures 

and also the spectral characteristics of the clusters themselves. Results indicate the 

successful classification of large tissue spectral datasets that were previously 

incorrectly classified via traditional clustering methods. 

2.4 Conclusions 

In this chapter we have used FTIR imaging to study lymph node tissue sections. To 

summarise the results I have: 

• Demonstrated that frozen sectioning of lymph node tissue specimens does not 

adversely affect the sample characteristics. This preparation method negates 

standard procedures more commonly employed that include paraffin 

embedment and subsequent de-paraffinization. 

• Mounted samples upon BaF 2 substrates that enable transmission spectra to be 

collected from the sample. These were free from contaminating dispersion 

artefacts that are often observed using trans flection sampling methodologies. 

Subsequent multivariate analyses could therefore utilise the full spectral 

range of the data and classify spectra according to spectral features that were 

characteristic of the sample alone. 

• Applied a variety of unsupervised multivariate analysis techniques to the 

collected spectral datasets. A comprehensive and detailed comparison 

between techniques for tissue discrimination was therefore achieved. When 

correlating the results to the known histology of the samples, FCM clustering 

achieved the best tissue characterisation. 
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• Collected spectral datasets from an array of different lymph nodes that 

describe a number of different pathological states and tissue types. The 

spectral characteristics that are descriptive for each tissue type have been 

reported in detail. Diseased or abnormal cells appear to exhibit subtle but 

distinct changes in their protein vibrations and nucleic acid features below 

1400 em-I. It is therefore essential to collect spectra that are free from 

dispersion artefacts or correct for these contaminations, as such spectral 

differences (distortion of the amide I and II absorption bands) would be 

detrimental for accurate tissue discrimination. 

• Reported the successful classification of a dataset comprising tissue spectra 

collected from a number of different lymph nodes. This would verify results 

from similar studies upon human tissues that report smaller spectral 

variations from patient-to-patient than those due to alternate tissue types and 

diagnoses. 

• Charted the development of new FCM clustering algorithms that provide 

improved data analysis. By use of PCA, the dimensionality of the data can be 

reduced without a significant loss of information. Computational 

requirements and data analysis times are significantly reduced without a 

detrimental loss in sensitivity. A novel algorithm that automatically detects 

the optimal amount of clusters that best describes a dataset is also reported. 

Unlike previous automated algorithms, the proposed method utilises both the 

potential final clustering structures and the spectral characteristics of the data 

to define the final cluster number. 
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3.1 Introduction 

Chapter 3 

Cervical Cancer 

Until the early 1990's, cervical cancer was the most common malignancy found 

among women in developing countries [1]. At present, it is estimated that 493,000 

new cases of cervical cancer are diagnosed worldwide each year [2]. In England 

alone, over 2800 new cases of invasive carcinoma and 19,000 cases of carcinoma in 

situ are reported each year [3], leading to a death rate of c.a. 1100 p.a. [4]. However, 

these numbers would be dramatically higher without the present National Health 

Service Screening Program (NHSCSP) [5]. Currently, screening for cervical disease 

is performed via the visual analysis of exfoliated cervical cells by a histopathologist 

(PAP test). Squamous and columnar epithelial cells are collected using an Ayre 

spatula or Cytobrush no from the transformation zone of the cervix, fixed in ethanol, 

and stained using the Papanicolaou stain [6]. The stain colours their nuclei and 

cytoplasm different colours, making it possible to differentiate between healthy and 

abnormal cells using their relative nucleus to cytoplasm ratio. A more definitive 

diagnosis can be made by the examination of biopsy material, whereby samples are 

cut into thin sections and stained. This type of screening can provide a higher 

predictive value than that of the PAP test because the anatomical arrangement of the 

tissue is maintained. Therefore, evaluation of morphological changes occurring 

within the cells can be directly related to the histological architecture of the tissue. 

By use of the PAP test, abnormal cervical smears are classified using a two tier 

system, graded as either low or high grade squamous intraepithelial lesions (LSIL 
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and HSIL). Surgical samples are alternatively classified by a three tier system, 

graded as mild, moderate or severe cervical intraepithelial neoplasia (CIN I, II and 

III). The latter two stages of neoplasia display a high risk of developing into 

carcinoma in situ (CIS) and warrant the removal of abnormal tissue via diathermy or 

laser ablation. Recent studies have also indicated that the presence of human 

papilloma virus (HPV) can be associated with cervical dysplasia and its progression 

to malignancy [7,8]. These viral changes to cervical cells are now utilised as a 

preceding factor for the detection of cervical lesions within PAP smears [9,10]. 

Despite the success of cervical screening programs, the PAP test has limitations. The 

visual analysis and grading of smears employs human judgement that can be 

somewhat subjective. Research undertaken to assess the efficiency of this procedure 

revealed that 53% of patients with invasive carcinoma had previously attended a 

smear test which failed to identify abnormal changes [11]. False negative diagnosis 

rates for the PAP test have been reported to be as low as 1 % and as high as 93% [12-

14]. It has been suggested that several sensible factors may contribute to insufficient 

diagnoses [15]. These include the presence of contamination or inflammation that 

would mask diagnostic cells, poor sampling of the correct region in the cervix and 

poorly controlled technical processes. With the unfortunate recent decline m 

recruitment of qualified pathologists and cyto-technicians, there is a strain to 

complete an ever increasing and demanding workload, with a reported 4.4 million 

PAP smears analysed every year in the UK [16]. Taking into account all these 

factors, the incidence of reported misdiagnoses are understandable considering the 

procedure is so heavily dependent upon correct human judgement. In the modem 
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NHS there is a need for a less operator dependent and more accurate automated 

analysis of cervical smears. 

A variety of different techniques have been examined that aim to eliminate the 

subjective diagnoses currently made during the cytological screening process. A 

popular approach was the use of automated image analysis systems coupled with 

artificial neural networks (ANNs) [17,18]. This technique has recently fallen out of 

favour and been replaced by liquid based cytology (LBC) methods that aim to 

improve the quality of cervical smear presentation upon slides [19,20]. Although 

such LBC techniques improve the cellular presentation, removing unwanted 

contaminates such as inflammatory or blood cells, the slides created are still 

diagnosed via PAP staining and assessed by subjective cytological screening. An 

alternative technique that shows distinct potential is the application of FTIR 

spectroscopy, particularly FTIR imaging. Over the past decade, the application of 

FTIR spectroscopy to disease diagnosis has received a large amount of attention 

since this method is sensitive to biochemical changes that occur within cells and 

could thus identify differences that accompany and precede the onset of disease [21-

27]. However, research to date has emphasised the high degree of heterogeneity 

found within mammalian cells, cervical tissues proving to be one of the most 

complex. The first FTIR spectroscopic studies of cervical cells were undertaken by 

Wong et 01. [28,29] who collected macroscopic spectra from exfoliated cell pellets. 

The authors reported a decrease in the intensity of glycogen bands and an increase in 

the intensity of symmetric (P02-) and anti-symmetric (P02") bands associated with 

nucleic acids for dysplastic and cancerous samples. However, further studies 

undertaken by Cohenford et 01 [30 - 32], McNaugthton et 01 [33 - 36] and Diem et 
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al [37 - 44] indicated that these spectral changes observed by Wong may not be 

related to the number or molecular composition of dysplastic cells, but to 

confounding contributions made by different cell types present within a smear. 

Benign variations such as inflammation, the ratio of non-dividing to dividing cells, 

and the overall divisional activity of the cells can dramatically change the IR 

spectrum collected. As these problems were recognised, it also became apparent that 

other contaminates may effect the spectra, including blood, mucus, micro-organisms 

and semen. It was estimated by Chriboga et al [38] that around 30% of the samples 

they examined were contaminated by blood or mucus making correct interpretation 

of such spectra impossible. Liquid based techniques (LBC) of sample preparation 

have more recently been utilised to minimise spectral contributions from mucins and 

erythrocytes to cell pellet spectra [36]. Leukocytes can also be removed by the 

addition of white cell lysis buffer, but care must be taken not to damage diagnostic 

cells [45]. Glycogen levels may also change throughout the menstrual cycle, where 

it maximises at ovulation, and is known to decrease dramatically after menopause 

[46]. 

In conclusion, the collection of macroscopic spectra from cervical smear pellets can 

lead to spectral features that are not directly correlated to disease change. A detailed 

understanding is therefore required about each cell type present within a smear and 

also the natural variation they exhibit due to differentiation, maturation and stage 

within the mentrual cycle. In this study we have examined both cervical tissue 

sections and individual exfoliated cells to help interpret and assess the spectral 

variations that may occur within exfoliated smear material. 
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3.2 Cervix Histology 

3.2.1 Basic Structure 

As shown in the schematic of the female reproductive system (Figure la), the cervix 

is located at the bottom of the vaginal canal and forms the lower part of the uterus. A 

photomicrograph displaying the three main parts of the uterus is shown in Figure 1 b. 

Both the fundus and body parts of the uterus have similar histological structures and 

are both lined with columnar epithelium. In contrast, the cervix displays two main 

regions where stromal tissue is lined by both columnar and squamous epithelium 

separately. These two regions are more commonly termed the endocervix and 

ectocervix respectively, and display a distinctly different histological architecture. 

As illustrated in the photomicrograph, the cervix is both cylindrical and symmetrical 

in shape, being approximately 3cm in length and 2cm in diameter. Small changes in 

these dimensions can occur after pregnancy whereby the endocervical canal can 

become more barrel shaped. Cervical stroma is primarily composed of 

fibrocollagenous tissue that incorporates some smooth muscle. The proportion of 

each tissue type can vary according to maturation. Both blood and lymphatic vessels 

are often prominent and numerous. 
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Figure 1: The female reproductive .system [47]. a) A diagram displaying a lateral view of female genitalia. The cervix is located at the end of 
the vaginal canal and provides the opening into the uterine body. b) A photomicrograph of a section through the uterus. This clearly shows the 
fundus (j), body (B) and cervix (Cx) parts of the uterus. Note the endometrial cavity (EMC), endocervical canal (ECC) and ectocervix (ECx). 
The smooth muscle of the body contains a small tumour, a leiomyoma (L). 
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3.2.2 Endocervix 

The endocervix is lined with a single layer of tall columnar epithelium that allows 

the secretion of mucus into the endocervical canal. Tissue sections cut both along 

and across the canal have indicated the existence of large invaginations. These 

extend from clefts deep within the stroma that comprise mucus glands. Tubules rise 

from this region to the surface epithelium and provide a large surface area for mucus 

production and secretion. Stained photomicrographs displaying these histological 

features are shown in Figures 2a - b. 

Figure 2: The endocervix {47}. a) A high power photomicrograph displaying a 
cross section of the endocervix. The endocervical canal is lined by a single layer of 
tall columnar mucus-secreting epithelium (E) . b) A low power photomicrograph 
displaying a cross section of the endocervix. Numerous deep invaginations (1) of the 
mucus secreting epithelium extend deep into the cervical stroma and thus greatly 
increases the surface areafor mucus production. 
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The movement of mucin into the endocervical canal is facilitated by ciliated 

columnar epithelial cells that are scattered across the mucus-secreting endocervical 

cells. This transport generally occurs at the upper end of the canal close to the 

endometrium junction. The chemical properties of cervical mucin are subject to 

marked changes during the menstral cycle providing properties that either facilitate 

or deter the movement of spennatozoa. However, the endocervical columnar 

epithelium displays little microscopic variation. 

3.2.3 Ectocervix 

The region at which the cervix protrudes into the vaginal cavity is more commonly 

termed the ectocervix, and is shown in Figure 3a. This part of the cervix is lined 

with non-keratinising, stratified, squamous epithelium, similar to that of the vagina. 

The structure of this epithelium varies with age and honnonal activity. Both before 

puberty and after menopause the epithelium is thin. However, during the 

reproductive years the epithelium thickens due to the release of oestrogens. An 

increased mitotic activity is observed for cells that exist within the basal and 

parabasal layers of the epithelium. The superficial layers of cells display a marked 

increase in both population and size. This histological change characterises the 

accumulation of stored glycogen and lipids within the cytoplasm of these cells. A 

stained photomicrograph illustrating these histological features is shown in Figure 

3b. During times of ovulation, the glycogen content of these cells is maximal with 

some glycogen rich surface cells being shed into the vaginal cavity at the end of the 

ovulation period. These cells can then be broken down by commensal lactobacilli, 

producing lactic acid and restricting bacterial invasion via an acid pH. 

3-8 



Superficial 
--+--...-• •• 

layer 

Intermediate 
layer 

Parabasal 
layer 

8asallayer 

. 
• • ,. 

• • 

Figure 3: The ectocervix. [47J a) Low power photomicrograph of the cervix. The stroma (S) is composed of smooth muscle fibres embedded 
in collagen. The proportions of muscle and fibrous tissue vary according to age. The ectocervix (ECx) is covered with stratified squamous 
epithelium, while the endocervical canal is lined by tall columnar epithelium. The junction between the squamous and columnar epithelium is 
located in the region of the external os. In this example, there is a transformation zone (TZ) o/squamous epithelium which has extended into the 
endocervical canal. Also note the Nabothian foliciles (NF) produced after squamous metaplasia. b) A high power photomicrograph showing 
the squamous epithelium of the ectocervix (E) . 
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3.2.4 Squamo - columnar Junction of Cervix 

The point at which columnar epithelial cells of the endocervix meet squamous 

epithelial cells of the ectocervix is known as the squamo-columnar junction. This 

zone is the site of many important pathological changes that accompany the 

progression of age and the onset of disease. The location of the squamo-columnar 

junction is initially found at the ectocervix's opening called the external os, as shown 

in Figure 4a. During puberty the columnar epithelium extends into the ectocervix 

forming an ectropion or cervical erosion (Figure 4b). This change is again governed 

by hormonal activity and can be markedly increased by a first pregnancy. The 

breakdown of glycogen contained within superficial cells of the vaginal and cervical 

squamous epithelium creates an acidic pH within this region. As a consequence 

squamous metaplasia is induced, and thus creates a transformation zone between the 

endocervical columnar epithelium and ectocervical squamous epithelium (Figure 4c). 

The transformation zone now comprises new squamous epithelium in an area 

previously dominated by columnar epithelium. The size of this zone is thus dictated 

by the original ectropian that invaded into the ectocervix. However, in older women 

the transformation zone often retreats back into the endocervical canal. Another 

invariable consequence of squmaous metaplasia is the obliteration of invaginations 

located close to the external os. Mucin now becomes trapped within the clefts and 

forms spherical cystic masses of inspissated mucus that are lined with flattened 

endocervical mucus-secreting epithelium. These cystic masses are more commonly 

termed Nabothian follicles and are shown in Figure 4c. Further consequences of this 

constant change of epithelium type and junction position can also include the 

development of abnormal epithelium that may progress to cancer. 
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Figure 4: The Squamo-columnar junction of the cervix. [47] a) The squamo-columnar junction is originally situated in the region of the 
external os before puberty. b) At puberty the endocervical epithelium extends distally into the acid environment of the vagina and forms an 
ectropian. c) A transformation zone forms as squamous epithelium regrows over the ectropian. The openings of the crypts may be obliterated 
in the process, and result in the formation of mucus filled Nabothian follicles. 
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3.2.5 Carcinoma of the Cervix 

The most common origin site of cervical carcinoma IS found within the 

transformation zone of the cervical epithelium. An invasive carcinoma is usually 

preceded by histological abnormality that occurs within the squamous epithelial cells 

of this zone. The abnormal cells show a loss in their regular stratified pattern, have a 

high nucleus to cytoplasm ratio, and display a variation in their shape and size with 

an increased mitotic activity. These histological features are classical characteristics 

of malignant tumour cells and are typically linked to invasive activity. However, 

these histological changes may be present for many years before abnormal 

epithelium begins to invade underlying stroma. The progression of abnormal change 

across the squamous epithelium, more commonly termed cervical intraepithelial 

neoplasia (C.I.N), can be characterised into three main stages. These are named mild 

(C.I.N. I), moderate (C.I.N II) and severe (C.I.N. III) neoplasia respectively. It is 

during these stages of abnormal change that the disease is termed carcinoma-in-situ, 

having yet to penetrate the barrier between epithelial and stromal cervix tissue. A 

photomicrograph displaying these malignant histological changes is shown in 

Figures 5a - b. 

The abnormal epithelial cells will eventually breach the basement membrane and 

invade into the cervical stroma, as shown in Figure 6. At this point malignant cells 

can gain access to the lymphatic and blood vessels, enabling their passage around the 

body and formation of multiple tumours. This stage of disease is known as invasive 

carcinoma. 
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Figure 5: Cervical intraepithelial neoplasia. [47] a) A high power photomicrograph displaying an area of moderate cervical neoplasia. Note 
the disorderly development of cells from the basement membrane that exhibillarge nuclei. This histological change in the squamous epithelium 
would normally be termed Cl.N 11. b) A high power photomicrograph of severe cervical neoplasia or Cl.N. Ill. Note the high nucleus to 
cytoplasm ratio of these cells that have now fully infiltrated the squamous epithelium. 
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Diagnosis of the early stages of disease (C.I.N) can be achieved vIa cervical 

cytology. Superficial squamous epithelial cells are scraped fTom the transformation 

zone in the region of the external os. These exfoliated cells are then prepared onto 

slides and examined microscopically for the appearance of abnormal cells. An 

example microscopic area taken from such a slide is shown in Figure 7. Cytological 

features of dysplasia can be noted for the cells that exist toward the centre, displaying 

an increased nuclear to cytoplasmic ratio with darker and more irregular nuclei. 

Healthy squamous cells alternatively display small nuclei and large amounts of 

cytoplasm. The identification of such abnormalities can then allow the rapid 

treatment of these neoplastic regions upon the squamous epithelium. These 

commonly include surgical removal via diathermy or laser ablation, thus preventing 

future development of invasive carcinoma. 

Figure 6: A low power photomicrograph displaying an invasive carcinoma oj the 
cervix [47]. The abnormal cells have now breached the basement membrane and 
are forming tumours within the stroma of the cervix. 
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Figure 7: A high power photomicrograph taken from a small region upon a 
traditionally prepared Pap smear slide. Note the cells at the centre of the image 
displaying features of dysplasia. These include an increased nuclear to cytoplasm 
ratio, with darkened more irregular shaped nuclei. In contra t healthy squamou ' 
epithelial cells display small nuclei and large cytoplasms. From ref [4 j . 

3.3 Resul ts 

In th is work we have the fo llowing objectives: 

(i) Assess the feasibi li ty of using vibrational spectrosc py for accurate 

disease diagnosis of the cervix. 

(i i) Compare and contrast the abi lity of unsupervised multivariate analy is 

techniques to di scriminate different cervical tissue types whether they 

are diseased or healthy in nature. 
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(iii) Establish spectral characteristics that are descriptive for each tissue 

type and seek features that could be used for future supervised pattern 

recognition. 

In order to demonstrate this I will: 

(i) Present results obtained from FTIR microscopic mapping of cervical 

tissue sections that incorporate the transformation zone. This will 

include a comparison of the multivariate techniques used to scrutinise 

the IR micro-spectral datasets produced. 

(ii) Display multivariate IR imaging results from a selection of different 

cervical tissue sections. 

(iii) Compare IR spectra collected from individual healthy squamous 

epithelial cervical cells by use of a synchrotron source. 

(iv) Describe novel experiments whereby FTIR microscopic maps have 

been collected from exfoliated cervical cells by use of a conventional 

source. 

3.3.1 Evaluation of Cervical Tissue Sections using IR Multivariate Imaging 

The overall goal of this research is to develop protocols by which exfoliated cervical 

cells can be scrutinised and diagnosed via FTIR microspectroscopy. In order to gain 

a detailed insight into the various cell types and IR signatures produced by exfoliates, 

it was deemed necessary to fully understand the origin of the major spectral types 

that can be observed. Therefore, we examined tissue sections cut from cervical 
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biopsy material that incorporated the transformation zone via FTIR microscopic 

mapping. This zone is the site of many important pathological changes that 

accompany the progression of age and the onset of disease. A rich understanding of 

the cell types present in this region can thus aid FTIR spectroscopic interpretation of 

cervical exfoliates. A variety of different unsupervised multivariate analysis 

techniques were applied to the IR micro-spectral datasets produced. These include 

PCA, MCR and a novel PCA-FCM Clustering algorithm. The ability of each 

technique to discriminate alternative tissue types was assessed via direct comparison 

to conventional histopathology. 

3.3.1.1 ITIR Multivariate Imaging of Healthy Cervical Tissue Sections 

Ectocervix 

The initial aim of this study was to assess the natural variation in biochemistry that 

may occur within the cells of healthy cervix tissue. Biopsy material was therefore 

collected from a healthy patient that exhibited no previous abnormal cervical smears 

(case C771602). The tissue section that was cut for analysis is shown in Figure 8a 

(white light image) and clearly illustrates the transformation zone whereby squmaous 

epithelium meets columnar epithelium. The first region chosen for analysis is 

displayed in Figures 8b-c respectively, and describes the ectocervix. Unfortunately a 

parallel H&E stained section was not made available for this sample, but the main 

types of tissue can be visualised via contrast in light intensity of the tissue regions. 

These include the underlying stromal or connective tissue and the basal, parabasal, 

intermediate and superficial layers of the squamous epithelium (Figure 8c). Using a 

pixel size 6.25J.1m a total of 4264 individual IR spectra were collected from an area 
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of 650 x 256.25 ~m. The multivariate imaging results produced for this dataset are 

shown in Figure 9. Each method applied has been allocated an individual panel and 

only displays imaging results that produce meaningful information about the tissue 

section and the technique that was used. 

The first panel displays the PCA imaging results. It can be seen that over 97% of the 

total variance contained within the dataset is comprised within the first two PC's of 

the analysis. When studying the colour weighted image for the first PC in Figure (b), 

we can see that this PC clearly gives contrast between the stromal tissue (blue 

pigmentation), parabasal layer (cyan pigmentation) and superficial layer (yellow 

pigmentation) of the squamous epithelium. In addition, the outside region that 

contains no tissue is clearly marked with a red colouration, and a very small amount 

of contrast can be visualised between the underlying stroma (dark blue pigmentation) 

and basal layer of the epithlieum (light blue pigmentation). The second PC image 

shown in Figure (c) provides contrast upon the mapped area that reveals three 

regions. The first region, highlighted by a cyan colour is descriptive of the 

underlying stroma and basal layer of the squamous epithelium. In contrast, the 

second region seen with a dark blue colour describes the parabasal and superficial 

layers of the epithelium. The final region shown with a red colour again highlights 

the area where no tissue exists. Studying the third PC image in figure (d), the stroma 

and superficial layers of the epithelium both display strong correlations with this 

component and are highlighted by a red colouration, which provides contrast to the 

basal and parabasal layers of the epithelium (blue and cyan colours respectively). 

All subsequent PC images provide little information about the tissue but highlight the 
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area that contains no tissue or pixels that are likely to have been half on and ofT the 

tissue. 

The MCR panel displays the resulting images constructed from both a 3 and 4 

component analysis of the same dataset (images a - g). By comparison to the known 

histological tissue types in this region, the 4 component system gave the best 

characterisation of the tissue section. The first component in the analysis (image d), 

is representative of the intermediate and superficial layers of the squamous 

epithelium. The second component (image e) appears to be descriptive of the 

underlying stromal tissue. Examining the third component (image 1), this clearly 

highlights the area whereby no tissue exists found at the right hand side of the image. 

Studying the fourth and final component (image 1). this highlights the basal layer of 

the squamous epithelium and provides a small amount of contrast for the directly 

adjacent parabasallayer (yellow pigmentation). 

The final panel displays images created via PCA-FCM Clustering. Images (a) to (1) 

were constructed by subjectively increasing the amount of clusters found by the 

analysis from 2 - 7 respectively. When comparing these created images directly 

against the known tissue type regions, the image constructed from a 7 cluster 

analysis appears to best mimic the histological architecture of the tissue section 

(image 1). The squamous epithelium is now characterised by individual clusters that 

describe the basal (red), parabasal (dark blue), intennediate (royal blue) and 

superficial (cyan) layers that illustrate the maturation of these epithelial cells. In 

contrast, the yellow cluster of spectra highlights the underlying stromal tissue. The 

final green and brown clusters describe areas where there is no tissue or pixels that 
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Figure 8: a) White light image of entire cervical tissue section. b) White light image of transformation zone. c) Magnified regiun displaying benign 
anatomical features. (1) Underlying connective or stromal tissue, (2) basal layer, (3) parabasallayer, (-I) intermediate layer and (5) superficial layer 
ofsquamous epithelium. d) IR imaged area (650 x 256.25 f.1m) mapped using a pixel size of 6.25 f.1mfor a total -126-1 individuallR spectra. 

3-20 



Pt.-A. (a) 

PC 

M eR 
. . cr] ' 

I ~ 
~ 

~ ~ 
I 

FCM 

(c) ". l'" 

• 

\: I I, 

Ie) , l' 
:· 1, 

3-21 

If) Jr(l .. 

I 
9 

B 

7 

6 

5 

3 

2 

Figure 9: Multivariate Imaging results from benign ectocervix. 

PCA Panel: (a) Combined individual and cumulative percentage variance plot 
for the first 5 pC 's. (b) - (f) False colour weighted images for PC 's I - 5 
resp ectively. Colour scale ranges from red indicating spectra that are very 
similar to that PC, and blue which are greatly dissimilar. 

MCR Panel: False colollr weighted images created from a 3 (a-c) and 4 (d-g) 
compunent MCR analysis. Colour scale ranges from red indicating spectra that 
are very similar to that component, and blue which are greatly dissimilar. 

FCM Panel: (a) - (f) False culollr images created using PCA -FCM clustering 
analysis resliits. Note cluster /llimbers were subjectively increased from 2 - 7. 
Pixels with the same c% llr in each image are spectra thar were parfit iuned illto 
the same cll/ster. 
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lie half on and off the tissue respectively. An additional advantage of the FCM 

clustering technique is that mean average spectra for each cluster in an analysis can 

be easily calculated and used to help interpret the biochemical differences that are 

occurring between them. The mean spectra calculated for the 7 cluster analysis are 

displayed in Figure 10. Although spectral changes are apparent across the entire 

spectrum, the most discernable occur within the spectral range 1800 - 720cm"· 

(Figure 11). The stromal tissue (yellow spectrum) underlying the squamous 

epithelium is comprised mostly of vibrations due to structural proteins (e.g. 

collagen). A triad of peaks within the amide III region at 1205, 1232 and 1280 cm"l 

is characteristic for these tissues, with a small broadening of the amide II peak at 

1550 cm"· also apparent [24,37,49]. The remaining spectral features found between 

1150 and 1700 cm"! are very similar between all spectra and are dominated by the 

spectral features of proteins. However all these peaks within the stromal spectra 

display markedly larger intensities, with the strong peak at c.a. 1450 em"· likely 

attributable to collagen [50]. Weak nucleic acid vibrations at 1030, 1060 and 1080 

em"· are also evident characterising the small amount of nuclear material found 

within this tissue. All tissue sections examined during our investigations display a 

similar pattern for stromal tissue, with the triad of peaks found within the amide III 

region displaying a similar intensity ratio. The basal layer (red spectrum) of the 

squamous epithelium displays a similar spectral profile to the stromal tissue. 

However, these tissue types can be differentiated by examining the relative nucleic 

acid contributions found in the basal layer spectra. These display more prominent 

peaks at 1030, 1060 and 1080 cm"·, demonstrating a greater nucleic acid 

contribution. The different intensity ratio of these peaks can also be used to easily 

discriminate these tissues apart. A decrease in the amide II I amide I ratio is also 
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apparent for basal layer spectra and is likely to reflect a contribution to the amide I 

intensity from a broad underlying DNA peak that displays peak maxima at 1690, 

1655, and 1620cm-l [37]. These observable spectral changes can be related back to 

the histological structures of the two cell types. Stromal tissue cells display very 

small nuclei containing tightly packed DNA and RNA strands. It has been estimated 

in previous studies of liver tissues [42] that dense nuclei such as those of the stromal 

tissue, are so tightly packed that they become almost opaque within the mid infrared 

range. Therefore, contributions from nuclear material to the spectra are negligible. 

In contrast the nuclei of basal layer cells are much larger and may occupy a volume 5 

- 10 times larger. In this scenario the nucleus is far less tightly packed and may 

allow the transmission of light through the nuclear material and become apparent 

within the IR spectrum. The average spectra collected from the parabasal (dark blue 

spectrum), intermediate (royal blue spectrum) and superficial (cyan spectrum) layers 

of the squamous epithelium display similar spectral profiles. These spectral profiles 

can be differentiated from the stromal and basal layer cells by the appearance of 

strong glycogen absorptions. These occur at 1028, 1080 and 1152 cm- l and are 

characteristic of the C-O-H deformation, C-C and C-O stretching modes of 

glycogen respectively [29, 33]. An additional small peak at 938 cm- l is also likely 

attributable to glycogen [36]. As we move across the squamous epithelium from the 

parabasal to the superficial layer we can see a gradual increase in the intensity of the 

glycogen triplet. This quite nicely characterises the maturation of these epithelial 

cells, storing larger quantities of glycogen as they age. Only very small differences 

between the amide II / amide I ratio are observable between these layers. Therefore 

a better method to discriminate these tissue layers would be to use the ratio found 

between the amide I and 1080 cm- l glycogen peaks. The average spectra calculated 
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for pixels that lie both half on and half off the tissue (brown spectrum), and entirely 

off the tissue section (green spectrum) display very strong absorptions due to mucus. 

Similar spectral profiles for pure cervical mucus have been reported previously in the 

literature [37,38], and display a characteristic triplet of peaks at 1060, 1115 and 1145 

cm-I respectively. These peaks can be assigned to the carbohydrate moieties of 

glycoproteins that comprise a major constituent of mucus. The discovery of such 

spectral profiles for pixels that lie off the tissue section would lead to the conclusion 

that a film of mucus must be surrounding the tissue section. This film of mucus is 

likely to have originated from the endocervical columnar epithelial cells, which 

naturally secrete mucus into the cervical canal. 

Endocervix 

The second region chosen for analysis from this tissue section is displayed in Figures 

12a-c respectively, and describes the endocervix. At this part of the transformation 

zone, the underlying stromal tissue is now lined with a single layer of colwnnar 

epithelial cells (Figure 12c). By using a pixel size of 6.25 J.lffi a total of 8806 

individual IR spectra were collected from an area of 462.5 x 743.75 J,1m. The 

multivariate imaging results produced for this dataset are shown in Figure 13. 

The first panel displays the PCA imaging results calculated from this dataset. It can 

be seen that over 95% of the total variance contained within this dataset is now 

comprised within the first five PC's of the analysis. When studying the colour 

weighted image constructed from the first PC in Figure (b), we can see that this PC 

clearly gives contrast between the tissue section (blue colour) and the surrounding 
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Figure 12: a) White light image of entire cervical tissue section b) White light image of transformation zone, c) Magnified region displaying benign 
anatomica/features, (I) Underlying connective or stromal tissue, (2) columnar epithelium and (3) cellular debris, d) JR imaged area (162,5 x 7-13,75 
JIm) mapped using a pixel size of 6,25 JIm for a total of 8806 individual JR spectra, 
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Figure 13: Multivariate Imaging results from benign endocervix. PCA Panel: (a) Combined individual and cumulative percentage variance plot for the first 5 PC 's. (b) - (f) False 
colour weighted images for PC 's I - 5 respectively. Colour scale ranges from red indicating spectra that are very similar to that PC, and blue which are greatly dissimilar. MCR 
Panel: (a) - (e) False colour weighted images created from a 5 component MCR analysis. Colour scale ranges from red indicating spectra that are very similar to that component, 
and blue which are greatly dissimilar. FCM Panel: (a) - (f) False colour images created using PCA-FCM clustering anazysis results. Note cluster numbers were subjective~v 
increasedfrom 3 - 8. Pixels with the same colour in each image are spectra that were partitioned into the same cluster. 
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area where no tissue exists (red colour). This component also provides a small 

amount of contrast between the stromal tissue (dark blue colour) and columnar 

epithelium (cyan colour). The second PC image shown in Figure (c) provides 

contrast for an area off the tissue where a small piece of cellular debris exists (blue 

colour). In a similar fashion, the third component image (Figure d) again highlights 

this small piece of debris, but additionally provides a small amount of contrast for the 

pixels that lie close to or on the edge of the tissue section (dark red pigmentation). In 

comparison, the fourth PC image (Figure e) strongly highlights another piece of 

debris which has settled onto the top of the tissue section (blue pigmentation). This 

component image additionally provides contrast between the columnar epithelium 

(red colour) and the remaining mapped area (yellow colour). The fifth and all 

subsequent PC images provide little information about the tissue section and 

alternatively highlight regions that contain no tissue. 

The MCR panel displays the resulting images constructed from a 5 component 

analysis of the same dataset (images a - e), which gave the best characterisation of 

the tissue section when compared against histology. The first component in the 

analysis (image a) clearly represents the squamous epithelium. However, this first 

component additionally highlights the debris that has settled onto the tissue section. 

The second component (image b) appears to be descriptive of areas where no tissue 

exists. In contrast, the third component (image c) clearly highlights the tissue section 

and provides some contrast between the stromal (yellow pigmentation) and columnar 

epithelium (red pigmentation). It is also noticeable that this component discriminates 

the cellular debris from the remaining tissue section. Examining the fourth 

component (image d), this again clearly highlights the area with no tissue as found by 
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the second component. However, on this occasion the fourth component also shows 

similar intensities for the area where cellular debris exists on the tissue. This is an 

interesting finding as it highlights that the spectra collected from these pixels must 

have spectral features that are both similar to colwnnar epitheliwn (first component) 

and the surrounding area where no tissue is apparent (component 4). The fifth and 

final component (image e) nicely highlights the stromal tissue (red pigmentation) and 

provides contrast between the columnar epitheliwn (yellow pigmentation). 

The final panel displays images created via PCA-FCM Clustering. Images (a) to (0 

were constructed by subjectively increasing the amount of clusters found by the 

analysis from 3 - 8 respectively. When comparing these created images directly 

against the known tissue type regions, the image constructed from a 6 cluster 

analysis appears to best mimic the histological architecture of the tissue section 

(image d). The stromal tissue spectra have been partitioned into two clusters that 

describe both immature (royal blue) and mature (cyan) stromal cells. In contrast, the 

columnar epitheliwn spectra have been partitioned into a single group that are 

characterised by pixels with an orange pigmentation. The spectra collected from 

areas where no tissue exists have alternatively been partitioned into three separate 

clusters (yellow, blue and maroon pigmentation). 

As highlighted previously, an additional benefit of the FCM clustering technique is 

the ability to calculate mean average spectra for clusters produced by the analysis. 

The mean spectra calculated for the 6 cluster analysis are displayed in Figure 14. 

Spectral changes are apparent across the entire spectrum, but the most discernable 

occur within the spectral range 1800 - 720 cm- l (Figure IS). Both the immature 
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Figure 14: 6 Cluster PCA -FCM Analysis Results. Mean average spectra Jor each 
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(blue spectrum) and mature (cyan spectrum) stromal tissue underlying the columnar 

epithelium display very similar spectral profiles. These tissues are again dominated 

by spectral features characteristic of structural proteins and exhibit a triad of peaks 

within the amide III region at 1205, 1232 and 1280 cm"l as observed previously. 

When stromal cells mature they accumulate collagen within the cytoplasm and 

become enlarged. Thus the observed increase in intensity for this triad of peaks and 

the collagen band at 1450 cm"l for mature stromal tissue spectra would make 

histological sense. A broadening of the amide II band is also noticeable with the 

peak maxima shifted to a lower wavenumber at 1536 cm"l. In contrast to squamous 

epithelial cells, the columnar cells mature along the surface of the epithelium and 

produce a single cell layer. Furthermore, glycogen is not accumulated within the 

cytoplasm of these cells. The tissue spectra for columnar cells (orange spectrum), 

therefore, lack the spectral features of glycogen and better resemble the spectral 

profile shown previously for basal layer cells within the squamous epithelium. 

However, discrimination between these tissue types can be achieved by examining 

the 1000 - 1200 cm"1 spectral region. Columnar cells alternatively display a broad 

peak across this region, with a spectral pattern very similar to that previously 

revealed for mucus. This finding would also make histological sense as one of the 

physiological roles of this type of cell is to allow the secretion of mucus into the 

endocervical canal. The cytoplasm of these types of cell therefore appear to contain 

large amounts of glycoproteins opposed to glycogen found within mature squamous 

cells. A similar spectral profile was reported by Chriboga el 01 [39] who examined 

exfoliated endocervical material that was fractioned to only include cells larger than 

5~m but smaller than 12~m. The brown, blue and yellow spectral profiles describe 

the three clusters of spectra that were partitioned from pixels lying off the tissue. As 
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seen previously in our analysis of the ectocervix, the tissue section has been 

surrounded by a film of cervical mucus. The three alternate clusters simply highlight 

a change in the concentration of glycoproteins within the surrounding mucus. 

3.3.1.2 FTIR Multivariate Imaging of Diseased Cervical Tissue Sections 

Ectocervix 

The second aim of this study was to identify spectral variations that may characterise 

biochemical changes within diseased cervical tissue. Biopsy material was therefore 

collected from a patient that had previously exhibited an abnonnal cervical PAP 

smear, displaying high grade intraepithelial lesions (HSIL). H&E stained images 

taken from the directly parallel section used for analysis are shown in Figures 16a - b 

respectively. These clearly illustrate the ectocervix region of the transfonnation zone 

and allow the visualisation of regions upon the squamous epithelium that were 

clinically diagnosed as being healthy and diseased in nature. White light images 

collected from the same region of the analysed tissue section (named CO I 0406) are 

displayed in Figures 16c - d. To assess whether any notable biochemical changes 

were apparent within the directly adjacent healthy squamous epithelial cells, an IR 

map was collected from this region. A magnified image detailing the mapped region 

upon the tissue section is further displayed in Figure 16e. Examining the H&E 

stained images we can again visualise the main tissue types present. These include 

the basal, parabasal, intennediate and superficial layers of the squamous epithelium 

that surround the underlying stromal tissue. Using a pixel size of 10tlm a total of 891 
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individual IR spectra were collected from an area of 720 x 90 Ilm. The multivariate 

imaging results produced for this dataset are shown in Figure 17. 

The first panel displays the PCA imaging results calculated from this dataset. It can 

be seen that over 96% of the total variance contained within this dataset is now 

comprised within the first five PC's of the analysis. When studying the colour 

weighted image constructed from the first PC in Figure (b), we can see that this PC 

clearly gives contrast between the tissue section and the surrounding area where no 

tissue exists. This component also provides a small amount of contrast between the 

superficial layers of the squamous epithelium (cyan colour) and the remaining tissue 

types. The second PC image shown in Figure (c) again highlights the area ofT the 

tissue but alternatively provides contrast for the connective and basal layers of the 

tissue (cyan colour). Subsequent PC images provide linle information about the 

tissue section and alternatively highlight regions that contain no tissue or pixels that 

lie half on and off the tissue section. 

The MCR panel displays the resulting images constructed from both a 3 and 4 

component analysis of the same dataset (images a - g). By direct comparison to 

histology, the overall best characterisation of the tissue section was achieved via the 

3 component analysis. The first component in the analysis (image a) clearly 

represents the underlying connective or stromal tissue (red colour). However, this 

first component additionally provides a small amount of contrast for the remaining 

tissue types. The basal and parabasal layers of the epithelium are highJighted by a 

light red and yellow colouration, whereas the outer layers are more clearly discerned 

via a cyan pigmentation. The second component (image b) appears to be solely 
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Figure 16: a) H&E photomicrograph of entire cervical tissue section. b) H&E photomicrograph of squamous epithelium. c) White light image of 
same region upon analysed tissue section. d) Magnified cross section of squamous epithelium. e) Magnified image of examined region (720 x 90 Jim, 
mapped using a pixel size of 1 0 pm for a total of 891 individual 1R spectra. Both benign and malign anatomical fea tures can be identified including 
J) underlying connective or stromal tissue, (2) basal layer, (3) parabasal layer, ( I) intermediate layer and (5) superficial layer of squamous 

epithelium. 
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Fig ure J 7: Multivariate Imaging results from malign ectocervix. 
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PCA Panel: (a) Combined individual and cumulative percentage variance plot 
'Or the first 5 PC's. (b) - (j) False colour weighted images for pC's 1 - 5 

respectively. Colour scale ranges from red indicating spectra that are very 
similar to that PC, and blue which are greatly dissimilar. 

MCR Panel: False colour weighted images created from a 3 (a-c) and 4 (d-g) 
component MCR analysis. Colour scale ranges from red indicating spectra that 
are very similar to that componellt, alld blue which are greatly dissimilar, 

FCM Panel: (a) - (j) False colour images created using PCA-FCM clustering 
analysis results. Note cluster numbers were subjectively increased fro m 2 - 7. 
Pixels with the same colour in each image are spectra that were partitioned into 
the same cluster. 



descriptive of areas where no tissue exists. In contrast, the third component (image c) 

clearly highlights the tissue section and provides some contrast between the stroma 

(blue), basal (yellow) and superficial layers (red) of the epithelium. 

The final panel displays images created via PCA-FCM Clustering. Images (a) to (f) 

were constructed by subjectively increasing the amount of clusters found by the 

analysis from 2 - 7 respectively. When comparing these created images directly 

against the known tissue type regions, the image constructed from a 7 cluster 

analysis appears to best mimic the histological architecture of the tissue section 

(image f). The squamous epithelium is now characterised by individual clusters that 

describe the basal (light blue), parabasal (maroon), intermediate (yellow) and 

superficial (cyan) layers that illustrate the maturation of these epithelial cells. In 

contrast, the green cluster of spectra highlights the underlying stromal tissue. The 

final blue and red clusters describe areas where there is no tissue or pixels that lie 

half on and off the tissue respectively. 

Mean spectra calculated from the 7 cluster analysis are displayed in Figure 18 (1800 

_ 720 cm-1 spectral region). The overall spectral profiles of the tissue types present 

are very similar to those found previously in healthy cervical tissue. Stromal or 

connective tissue (green spectrum) again displays a pronounced triad of peaks within 

the 1300 - 1200 cm-l spectral region that are characteristic of collagen contributions. 

The basal (light blue spectrum) and parabasal (maroon spectrum) layers of the 

epithelium are discemable via a reduction in the amide II I amide I ratio with little or 

no contribution from glycogen noticeable within the low-frequency window of 1200 

_ 900 cm- l . Higher concentrations of glycogen are again apparent within spectra 
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representative of the intermediate (yellow spectrum) and superficial (cyan spectrum) 

layers of the squamous epithelium. However, these levels are substantially lower 

than those observed in tissue collected from healthy patients, as shown previously. 

The lowering or absence of glycogen in these mature layers of epithelium appears 

consistent among additional diseased tissue sections analysed and has been reported 

in similar studies of cervical tissue [51]. 

The second region examined upon this tissue section incorporated an area of diseased 

squamous epithelium, clinically diagnosed as being CIN II I III. H&E stained 

images taken from the same region of the directly parallel section used for analysis 

are shown in Figures 19a - b respectively. Areas of diseased squamous epithelium 

can be visualised with a dark purple pigmentation. These abnormal cells are more 

cubodial in shape, displaying large round nuclei with scant cytoplasm. White light 

images collected from the same region of the analysed tissue section are displayed in 

Figures 19c - d. A magnified image detailing the mapped region upon the tissue 

section is further displayed in Figure 1ge. Using a pixel size of 1 0 Jlm a total of 605 

individual IR spectra were collected from an area of 486 x 90Jlm. The multivariate 

imaging results produced for this dataset are shown in Figure 20. 

The first panel displays the PCA imaging results calculated from this dataset. It can 

be seen that the overwhelming majority of the total variance contained within this 

dataset is now comprised by the first five PC's of the analysis. When studying the 

colour weighted image constructed from the first PC in Figure (b), we can see that 

this PC clearly highlights the area where no tissue exists. In contrast, the second PC 

image shown in Figure ( c) highlights the tissue section itself. The third PC image 
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Figure 18: 7 Cluster PCA -FCM Analysis Results. Spectral window displaying mean spectra between 1800 - 720cm-' . 
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Figure 19: a) H&E photomicrograph oj entire cervical tissue section. b) H&E photomicrograph ofmalign squamous epithelium. c) White light image 
of same region upon analysed tissue section. d) Magnified image oj examined region (-186 x 90 Jim) mapped using a pixel size of 1 OJim Jor a total of 
605 individuallR spectra. Both benign and malign anatomical features can be identified including (1) underly ing connective or stromal tissue and (2) 
malign squamous epithelium rCIN 11 / 11]), 
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Figure 20: Multivariate Imaging results from malign ectocervix. 

PCA Panel: (a) Combined individual and cumulative p ercentage variance plot 
for the first 5 PC's. (b) - (f) False colour weighted images for PC 's I - 5 
resp ectively. Colour scale ranges from red indicating spectra that are very 
similar to that PC, and blue which are greatly dissimilar. 

MCR Panel: False colour weighted images created from a 3 (a-c) and 4 (d-g) 
component MCR analysis. Colour scale ranges from red indicating spectra that 
are very similar to that component, and blue which are greatly dissimilar. 

FCM Panel: (a) - (f) False colour images created /Ising PCA -FCM clustering 
analysis results. Note clus ter numbers were subjectively increased from 2 - 7. 
Pixels with the same colour in each image are spectra that were partitioned into 
the same cluster. 



provides a greater amount of tissue contrast and appears to highlight the underlying 

connective tissue in yellow and the diseased squamous epithelium with a cyan 

colour. Subsequent PC images appear confused and provide no real infonnation 

about the tissue section that is beneficial for tissue discrimination. 

The MCR panel displays the resulting images constructed from both a 3 and 4 

component analysis of the same dataset (images a - g). By direct comparison to 

histology, the overall best characterisation of the tissue section was achieved via the 

4 component analysis. The first component in the analysis (image d) provides a 

small amount of contrast for the underlying stromal tissue displaying a yellow and 

red colouration. However, the outlying pixels off the tissue are also highlighted with 

the same intensity. Both the second (image e) and third (image f) component images 

appear to highlight the region upon the mapped area where no tissue exists. In 

contrast, the fourth and final component (image g) more distinctly characterises the 

diseased squamous epithelium with a bright red and yellow colouration. 

The final panel displays images created via PCA-FCM Clustering. Images (a) to (f) 

were constructed by subjectively increasing the amount of clusters found by the 

analysis from 2 - 7 respectively. When comparing these created images directly 

against the known tissue type regions, the image constructed from a 6 cluster 

analysis appears to best mimic the histological architecture of the tissue section 

(image e). The diseased squamous epithelium is characterised by three separate 

clusters. The orange cluster of spectra describe the basal layer, the yellow the 

intennediate and superficial layers, and the blue colour highlights a small cluster of 

spectra grouped within the superficial layer. In contrast, the underlying stromal 
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tissue is characterised by two clusters coloured maroon and light blue. The final 

cyan cluster of spectra characterises the region upon the map where no tissue existed. 

Mean spectra calculated from the 6 cluster analysis are displayed in Figure 21 (1800 

- 720 cm"1 spectral region). At first glance the spectral profiles of the different tissue 

types found in this map are very similar. However, distinct spectral differences are 

noticeable at frequencies below 1200 cm"l. Since these tissue layers appear free of 

glycogen contribution, it is reasonable to assume that these differences are most 

likely due to vibrations of phosphate (P02") groups contained \\ithin RNA and DNA. 

The average spectra that describe the diseased squamous epithelium (orange, yellow 

and blue spectra) all display pronounced symmetric phosphate bands at 1080 cm"l, 

which is likely to describe the increased nucleic acid concentration within these 

abnormal cells. As we move across the epithelium the intensity of this band 

increases and is coupled with a gradual reduction in the amide II I amide I ratio. This 

pattern may indicate that the blue cluster of spectra describes a group of cells that are 

distinctly more abnormal or malignant than those surrounding them. Both the 

symmetric and antisymmetric phosphate bands (1080 and 1240 cm"1 respectively) 

appear more intense than the methyl and methlene deformation modes (1450 - 1350 

cm"l) in these spectra, an observation not previously seen in our analysis of healthy 

squamous tissue. These findings are in agreement with early studies upon exfoliated 

cervical cells [52], and more recent tissue mapping experiments undertaken by Diem 

and coworkers [53]. The two clusters that describe the underlying stromal tissue 

(maroon and light blue clusters) are discernable via a significantly larger amide II I 

amide I ratio that is coupled with a smaller nucleic acid contribution to the spectra. 

The average spectrum that describes the region off the tissue section (cyan colour) is 
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noticeably noisy, but does however reveal an outline that bares both tissue and 

cervical mucus characteristics. 

Endocervix 

In addition to the more common squamous carcinoma that originates within the 

ectocervix, a second type of malignancy can be found within the cervix named 

adenocarcinoma. This type of malignancy originates '\\ithin the endocervix whereby 

columnar epithelium is infiltrated and replaced by abnormal cells. To again establish 

whether any marked biochemical changes are apparent with the onset of this type of 

disease, biopsy material was collected from a patient that had exhibited such 

abnormal changes in previous smear and tissue section screenings. lI&E stained 

images taken from the directly parallel section used for analysis are shown in Figures 

22a - b respectively. These clearly illustrate the endocervix region of the 

transformation zone and allow the visualisation of regions clinically diagnosed as 

being diseased in nature. A white light image collected from the same region of the 

analysed tissue section (named CI00406) is displayed in Figure 22c. A magnified 

image detailing the mapped region upon the tissue section is further displayed in 

Figure 22d. Examining the H&E stained image in Figure 22b we can again visualise 

the main tissue types present. These include diseased columnar epithelium, healthy 

connective or stromal tissue and a small pocket of red blood cells. Using a pixel size 

of 10 ~m a total of 2397 individual IR spectra were collected from an area of 414 x 

450~m. The multivariate imaging results produced for this dataset are displayed in 

Figure 23. 
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The first panel displays the PCA imaging results calculated from this dataset. It can 

be seen that the overwhelming majority of the total variance contained within this 

dataset is now comprised by the first five PC's of the analysis. When studying the 

colour weighted image constructed from the first PC in Figure (b), we can see that 

this PC marks areas upon the tissue section where holes are prevalent. In contrast, 

the second PC image displayed in Figure (c) appears more confused. Again the holes 

within the tissue are highlighted intensely with a red colouration, but the majority of 

the tissue section, including the adenocarcinoma, is now given contrast with a yellow 

colour. However, the regions where blood cells exist are not correlated highly with 

this component and are given a deep blue colour. The third PC image displayed in 

Figure (d) marks both the red blood cells and the region of adenocarinoma with a 

yellow colour. The remaining nonnal connective tissue displays a poor correlation to 

this component and is highlighted in blue. The fourth PC image (e) again highlights 

the majority of the tissue section with a yellow colouration. but does however give 

clear contrast for the red blood cells (cyan colour). The fifth (f) and subsequent PC 

images constructed by the analysis did not provide any further beneficial tissue 

discrimination and were dominated by spectra collected at areas where no tissue 

existed. 

The MCR panel displays the resulting images constructed from a 4 component 

analysis of the same dataset (images a - d). which gave the best characterisation of 

the tissue section when compared against histological diagnosis. The first 

component in the analysis (image a) nicely highlights the connective or stromal 

tissue within the mapped area with a red and yellow colouration. The second 

component (image b) alternatively marks regions where no tissue exists (red colour). 
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In contrast, the third component in the analysis (image c) clearly marks the small 

pockets of red blood cells found within the tissue matrix. The fourth and final 

component (image d) highlights the central region of adenocarcinoma with a dark red 

colour, but does however mark several areas within the normal connective tissue 

with a similar correlation. 

The final panel displays images created via PCA-FCM Clustering. Images (a) to (f) 

were constructed by subjectively increasing the amount of clusters found by the 

analysis from 2 - 7 respectively. When comparing these created images directly 

against the known tissue type regions, the image constructed from a 4 cluster 

analysis appears to best mimic the histological architecture of the tissue section 

(image c). The diseased columnar epithelium or adenocarcinoma is characterised by 

the red cluster of spectra, whereas the healthy stromal tissue spectra have been 

grouped into the yellow cluster. Blood cells and spectra collected from areas where 

holes within the tissue are apparent have alternatively been partitioned into the cyan 

and blue clusters respectively. When the number of clusters found by the analysis 

were increased above this level, the stromal tissue was further partitioned into 

multiple groups (images d - f). 

The mean spectra calculated for the adenocarcinoma, red blood cells and stromal 

tissue are displayed in Figure 24 (1800 - 720 em· l spectral region). The stromal 

tissue spectra again display strong collagen characteristics, with a triad of peaks 

within the amide III region (1205, 1232 and 1280 em-' respectively) and an intense 

band at 1450 cm-' attributed to the methyVmethylene deformation mode from amino 

acid side chains [51]. The blood cell spectra also display a similar spectral profile. 
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However, notable differences can be found within the amide modes, whereby the 

blood cells display a larger amide II / amide I ratio and a distinct broadening of the 

amide II band. In contrast, a dramatic decrease in the amide II / amide I ratio is 

found for spectra originating from the adenocarcinoma (red spectrum), which also 

displays a marked reduction when compared to the healthy columnar epithelium seen 

in earlier experiments (Figure 13). Strong mucin bands seen previously are also not 

apparent in the spectrum and are replaced by a more defined nucleic acid peak found 

at c.a. 1080 cm"l. Since these types of cells do not actively store collagen we may 

assume that the strong band at 1240 cm"1 is more likely attributable to the 

antisymmetric vibration of phosphate (P02) groups found in RNA and DNA. 

3.3.1.3 Discussion and Conclusions 

The application of FTIR spectroscopy as a diagnostic tool for cervical dysplasia has 

to date been limited by the high degree of heterogeneity found among exfoliated 

cervical cells [31,34,38,]. Only a small number of studies have been conducted that 

methodically assess the natural variation found within these cell types. However, 

these investigations were carried out upon cultured cell lines [41] that do not ideally 

mimic conditions within the body, and cells isolated from peripheral blood (34], 

which can still include a diverse variety of cervical cell types. The successful 

partitioning of individual cell types found within cervical smear material is hard to 

achieve and has been attempted previously by fractioning the cells by their relative 

cell size [39]. However, such a process could never be appropriate for cervical 

screening as diagnostic cells often range in size dependent upon their site of origin 

within the cervix. Thus a more appropriate method to assess spectral differences 
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Figure 24: 4 Cluster PCA-FCM Analysis Results. Spectral window displaying mean spectra between 1800 - 720cm-' . Only mean spectra calculated 
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found between alternate cell types is to analyse tissue section material. This method 

enables anatomical and histological features to be easily identified and further 

scrutinised by FTIR spectroscopic imaging. To aid the discrimination between 

different tissue types found within the sections analysed, often unattainable using 

univariate images alone, a variety of multivariate statistical techniques have been 

applied and contrasted. 

The construction of principal component images from the collected tissue datasets 

gave varied sensitivity for tissue discrimination. This type of multivariate imaging 

appears sensitive only to large spectral variations found between spectra and 

consequently provided limited tissue characterisation when compared to histological 

diagnosis. For example, the construction of PC images for healthy squamous 

epithelium (figure 9) gave rise to a number of components that enabled contrast 

between tissue pathology, since these spectra displayed marked spectral differences 

that accompanied alternate tissue pathology. However, a similar analysis carried out 

upon healthy squamous epithelium but taken from a diseased tissue section (figure 

15), gave poor tissue discrimination as the analysis was dominated by large spectral 

variations occurring at pixels that lied off the tissue section. MCR imaging 

alternatively gave a more consistent number of factors that best described the major 

tissue types found within the datasets analysed. Acceptable contrast was made 

between the tissue pathologies present and individual factors could be assigned to 

individual tissue components. However, the application of PCA-FCM cluster 

imaging to the same datasets gave marked improvement upon tissue discrimination 

and allowed the major tissue types present to be partitioned into further subsets that 

mimicked histological characterisation more directly. By calculating mean average 
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spectra for the clusters produced, apparent biochemical changes between alternate 

tissue pathology could be directly assessed. 

The adoption of a vector normalisation approach in our pre-processing routine 

appeared distinctly beneficial, allowing both the amide modes to be included in our 

multivariate analysis, which consequently proved an important region for tissue 

discrimination. A large degree of tissue classification was based upon variations that 

were identified between the intensity and positions of the amide I and amide II 

bands. These differences are likely to reflect changes in relative protein 

concentration and secondary structures. Within the healthy squamous epithelium, 

vibrations below 1300 cm- l appeared most beneficial for tissue discrimination, 

glycogen content increasing with cell maturity. Spectra collected from areas of eIN 

displayed a distinct lack of glycogen and alternatively exhibited pronounced 

symmetric and anti symmetric phosphate (POi) bands at 1080 and 1240 cm -I. These 

variations were additionally coupled with a distinct reduction in the amide III amide 

I band intensity ratio. Similar spectral differences were identified within cells of 

adenocarcinoma, where the once prevalent mucin peaks found in healthy columnar 

epithelium were replaced by pronounced nucleic acid bands. Taking into account 

exfoliated cervical smear material is routinely collected from both these regions of 

the cervix, it is apparent that spectroscopic diagnosis of cell pellets would be greatly 

hindered by both glycogen and glycoprotein contributions to the collected spectra. 

These findings highlight the need for a cell preparation method that can allow 

analysis of single exfoliated cervical cells, if infrared spectroscopic diagnosis of such 

samples is to be successful. 
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In conclusion, IR multivariate imaging can accurately reproduce the morphological 

and histological architecture of the cervix, allowing both healthy and diseased tissues 

to be identified. With the advent of detector array systems it has become feasible to 

collect in excess of 10,000 individual spectra from a tissue section measuring I x I 

mm2, a size close to that conventionally scrutinised via histopathology. A large 

tissue spectra databank could therefore be collected from alternate pathological states 

and enable the construction of a robust supervised pattern recognition method for 

automated spectroscopic diagnosis. Although we have shown that IR multivariate 

imaging can provide both accurate histological and biochemical information about 

the tissues analysed, with the distinct potential to discover earlier diseased states not 

identifiable via conventional histology, the time required to both collect and display 

the information is still a limiting factor. However, given the recent and expected 

rapid advance in both detector array and computer technology, a spectroscopic 

diagnostic tool for tissue section analysis appears plausible. 

3.3.2 Multivariate Analysis of IR Imaging Results from Additional Cervical 

Tissue Sections 

During this study multiple cervical tissue sections were analysed to help assess 

whether inter patient natural variation could produce markedly different spectral 

characteristics and thus render a spectroscopic method of diagnosis unattainable. 

However, the mean cluster spectra calculated from different patients with similar 

histopathology appear very similar. These results confirm previous findings by both 

Lasch et 01. [54] and Wood et 01. [53]. who reported smaller patient to patient 
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variations than those observed for different tissue types and histological diagnoses. 

In this section I will display multivariate imaging results obtained from multiple 

cervical tissue sections. Only results gained via PCA-FCM cluster analysis will be 

discussed. 

3.3.2.1 Cervical Tissue Section C19154 

The first tissue section in our library, named C 19154, was cut from a benign cervical 

biopsy and incorporated the entire transformation zone. This enabled a map to be 

collected from the entire region and characterise cells originating from both the ecto 

and endo cervix. A white light image of the entire tissue section and the region 

chosen for analysis are shown in figures 25a and 25d. Photomicrographs collected 

from the parallel H&E stained section for the same regions are displayed in figures 

25b - c respectively. These allow the main tissue types to be visualised. which 

include a nabothian follicle surrounded by columnar epithelium, the endocervical 

canal of the cervix lined with columnar epithelium. squamous epithelium and the 

underlying connective tissues. By use of a step size and aperture of 2S J,lm. a total of 

11,305 individual IR spectra were collected from a spatial area of 2375 x 2975 Ilm. 

The multivariate imaging results produced for this dataset are shown in Figures 26 

and 27. 

Figure 27 displays false colour images created via PCA-FCM Clustering and the 

H&E stained image from the same region to allow direct comparison. Images (b) to 

0) were constructed by subjectively increasing the amount of clusters found by the 

analysis from 2 - 10 respectively. When comparing these constructed images 
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directly against the known tissue type regions, the image constructed from a 9 cluster 

analysis appears to best mimic the histological architecture of the tissue section 

(image i). All major tissue types are characterised within this image allowing the 

squamous epithelium (maroon), columnar epithelium that line nabothian follicles 

(cyan), columnar epithelium of the endocervical canal (yellow and light blue) and 

connective tissue (orange) to be identified. However, further subsets of spectra have 

been identified for the connective tissue. Cells that surround the columnar 

epithelium that line the nabothian follicles have been partitioned into a single group 

(dark cyan), those cells that directly underlie both types of epithelium and are highly 

nucleated (red), and finally those cells existing deeper within the cervix (blue). The 

outside region where no tissue exists has been characterised by the green cluster of 

spectra. The differentiation of tissue types was based on variations found within the 

band positions, intensities and half widths of the amide modes and the low frequency 

region of the collected spectra « 1200 cm-I
). Columnar epithelium was dominated 

by contributions from glycoproteins (mucin), with those cells lining the endocervical 

canal displaying markedly increased concentrations. Squamous epithelium was 

alternatively dominated by glycogen contributions, displaying the characteristic 

glycogen triplet of peaks. Connective tissues were discriminated via their increased 

collagen contributions to the spectrum, and further subdivided by their nucleic acid 

concentrations and amide II / amide I peak intensity ratio. However. the analysis did 

struggle in separating the basal cell spectra of the squamous epithelium from the 

columnar epithelium that lined the nabothian follicles, even when cluster numbers 

were increased above this level. But these two types of cell do share very similar 

spectral profiles as reported previously, and their individual characterisation does not 

adversely affect the diagnostic information gained from the analysis. 
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Figure 25: a) White light image of entire tissue section. b) H&E photomicrograph of entire parallel tissue section. c) H&E photomicrograph of 
mapped region displaying benign anatomical features. (1) Connective or stromal tissues, (2) nabothian f ollicles, (3) columnar epithelium and (-I, 
squamous epithelium. d) White light image of same region upon analysed tissue section. e) IR imaged area (23 75 x 29 75 pm) mapped using a step size 
and aperture of2SI'mfor a total II ,30S individuallR spectra. 
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Figure 26: Multivariate Imaging reslIJtsfrom benign cervicaltisslle seclion CJ9J5-1. PCA Panel: (a) - (e) False colollr lI'eighled images/or PC's 1 - 5 respeclively. 
Colollr scale ranges from red indicalillg spectra Ihal are very similar 10 Ihat PC, and blue which are greally dissimilar. MCR Panel: (a) - (d) False colollr 
weighted images created from a 4 componenl MCR analysis. Colour scale ranges from red indicaling speclra Ihal are very similar 10 Ihal component, and blue 
which are greatly dissimilar. 

3-57 



FCM 
(a) 

Figure 27: PCA-FCM Imaging results from benign cervical tisslle section C 1915-1.FCM Panel: (a) - (j) False colour images created /Ising FCM clustering 
analysis results. Note cluster numbers were subjectively increased/rom 2 - 10. Pixels with the same colour in each image are spectra that were partitioned into the 
.'lame cluster. 
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Moderate to large concentrations of glycogen were found within the squamous 

epithelium, which was coupled to the absence of metabolically active cells that 

commonly show reduced amide II / amide I ratios and pronounced nucleic acid 

bands. Therefore spectroscopic analysis of the tissue section can verify the absence 

of malignant cells. 

3.3.2.2 Cervical Tissue Section C22727 

The second tissue section in our library, named C22727, was collected and prepared 

from a patient who had revealed CIN characteristics within her previous smear 

screenings. However, upon analysis of the parallel stained tissue section that was cut 

for histological comparison, regions of CIN could not be located within the 

squamous epithelium. Although the absence of malignant cells was unfortunate, 

spectroscopic analysis could be used to assess the squamous epithelium and possibly 

identify pre-malignant changes that may accompany the onset of disease. A white 

light image of the entire tissue section and the region chosen for analysis are shown 

in figures 28a and 28c. Photomicrographs collected from the parallel II&E stained 

section for the same regions are displayed in figures 28b and 28d respectively. These 

allow the main tissue types to be visualised, which include the squamous epithelium 

and the underlying connective tissue. When additionally examining the white light 

image of the region chosen for spectroscopic analysis (figure 28c), a fold within the 

tissue section is also revealed that is likely to have originated during sectioning. By 

use of a pixel size of 6.25 JIm a total of 8439 individual IR spectra were collected 

from a spatial area of 543.75 x 606.25 JIm. The multivariate imaging results 

produced for this dataset are shown in Figures 29 and 30. 
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Figure 30 displays false colour images created via PCA-FCM Clustering and the 

H&E stained image from the same region to allow direct comparison. Images (b) to 

0) were constructed by subjectively increasing the amount of clusters found by the 

analysis from 2 - 10 respectively. When comparing these constructed images 

directly against the known tissue type regions, the image constructed from a 9 cluster 

analysis appears to best mimic the histological architecture of the tissue section 

(image i). All major tissue types are characterised within this image allowing the 

squamous epithelium (royal blue), connective tissues (orange and green) and area of 

tissue folding (light blue) to be revealed. Within this anruysis, the superficiru 

squamous epithelium appeared to be contaminated by cervical mucus, displaying 

increased mucin bands as the layers approached the edge of the tissue (dark blue, 

maroon, yellow and red clusters respectively). Spectra collected from areas upon the 

mapped region where no tissue was apparent were partitioned into the cyan cluster 

and displayed characteristics of pure cervical mucus. These findings highlight a 

possible drawback with frozen sectioning, all sections anruysed to some extent 

revealing a surrounding cervical mucus layer. However, this was the only section 

that revealed the distinct contamination of areas deep within the tissue section. 

Problematic pixels that surround the tissue section and obtain strong characteristic 

mucin bands could feasibly in the future be identified and systematically removed 

from the analysis. The subsets of connective tissue spectra were separated via their 

amide II I amide I peak intensity ratio, the tissues directly underlying the squamous 

epithelium displaying a reduced value (green). However, the most important finding 

of the analysis was the distinct lack of glycogen found within the histologically 

diagnosed healthy squamous epithelium. These cells instead displayed a slightly 

reduced amide II I amide I peak intensity ratio when compared to glycogenated 
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Figure 28: a) White light image oj entire tissue section. b) H&E photomicrograph oj entire parallel tissue section. c) H&E photomicrograph oj 
mapped region displaying malign anatomical Jeatures. (1) Connective or stromal tissues and (2) squamous epithelium. d) White light image oj same 
region upon analysed tissue section. e) JR imaged area (5 -13.75 x 606.25 pm) mapped using a pixel size oJ 6. 25 pmJor a total oJ8-139 individuallR 
spectra. 
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Figure 29: Multivariate Imaging results from benign cervical tissue section C22727. PCA Panel: (a) - (e) False colour weighted images/or PC's 1 - 5 respectively. 
Colour scale ranges from red indicating spectra that are very similar to that PC, and blue which are greatly dissimilar. MCR Panel: (a) - (e) False colour weighted 
images created from a 5 component MCR analysis. Colour scale ranges from red indicating spectra that are very similar to that component, and blue which are 
greatly dissimilar. 
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Figllre 30: PCA-FCM Imaging results from benign cervical tissue section C22727. FCM Panel: (a) - (j) False colour images created using FCM clustering 
analysis results. Note cluster numbers were subjectively increased/rom 2 - 10. Pixels with the same colour in each image are spectra that were partitioned into the 
.wme c1u.'iter. 
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squamous cells, with symmetric and anti symmetric phosphate bands appearing more 

prevalent similar to basal cell spectra. These identified spectral differences were also 

observed within healthy squamous tissue lying close to regions of CIN in previous 

analyses (figures 15 and 16). Thus spectroscopic analysis of such tissue sections 

could allow the detection of small but distinct biochemical changes that accompany 

earlier stages of malignant change. 

3.3.2.3 Cervical Tissue Section C19490 

The third tissue section in our library, named C19490, was collected and prepared 

from a patient who had revealed no abnonnal characteristics within her previous 

smear screenings. White light images of the entire tissue section and the region 

chosen for analysis are shown in figures 31 a-b. Unfortunately no II&E stained 

images were made available for this tissue section, but the major tissue components 

can be visualised via small light intensity differences. These include both the mature 

and immature layers of the squamous epithelium and the underlying connective 

tissues. By use of a step size and aperture of 25f.UTl, a total of 8103 individual IR 

spectra were collected from a spatial area of 2775 x 1825 f.UTl. The multivariate 

imaging results produced for this dataset are shown in Figures 32 and 33. 

Figure 33 displays false colour images created via PCA-FCM Clustering and the 

white light image from the same region to allow direct comparison. Images (b) to G) 

were constructed by subjectively increasing the amount of clusters found by the 

analysis from 2 - 10 respectively. When comparing these constructed images 
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Figure 31: a) White light image displaying region of squamous epithelium. b) White light image of mapped area displaying benign anatomical 
features. (1) Connective or stromal tissues and (2) squamous epithelium. c) Total absorbance image a/mapped area (2775 x 1825 Jim) using a step 
size and aperture of25Jimfor a 10lal 8103 individual JR speclra. 
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Figure 32: Multivariate Imaging results from benign cervical tissue section CJ9490. PCA Panel: (a) - (e) False colollr weighted images/or PC's J - 5 respectively. 
Colour scale ranges from red indicating spectra that are very similar to that PC. and blue which are greatly dissimilar. MCR Panel: (a) - (d) False colollr weighted 
images created from a 4 component MCR analysis. Colour scale ranges from red indicating spectra that are very similar to that component. and blue which are 
greatly dissimilar. 
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Figure 33: PCA-FCM Imaging results from bel/igl/ cervical tisslle section C19490. FCM Panel: (aj - (jj False colour images created IIsing FCM clustering 
analysis results. Note cluster numbers were subjectively increased/rom 2 - 10. Pixels with the same colollr ill each image are spectra that were partitiuned intu the 
same cluster. 
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directly against the known tissue type regions. the image constructed from a 7 cluster 

analysis appears to best mimic the histological architecture of the tissue section 

(image g). All major tissue types are characterised within this image allowing the 

superficial (cyan) and basal (blue) layers of the squamous epithelium to be easily 

recognised. These were partitioned via the presence or absence of glycogen peaks 

within the tissue spectra. Connective tissues were partitioned via their increased 

collagen contributions and subdivided dependent upon their amide II I amide I ratio. 

indicative of protein abundance and secondary structure changes. The remaining 

clusters identified spectra that were collected from regions ofT the tissue but lie on 

areas rich with (light blue and green) or absent of (maroon) cervical mucus. In 

conclusion. large concentrations of glycogen were found within the squamous 

epithelium with no spectral differences identified that could suggest cancerous 

change. Thus in this case. spectroscopic analysis could confinn the absence of 

malignant or pre-malignant biochemical changes to the cells of the squamous 

epithelium. 
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3.3.3 IR Microscopic Analysis of Individual Exfoliated Cervical Cells by use of 

a Synchrotron Source 

Early experiments undertaken during this study focused toward the collection of IR 

spectra from individual exfoliated squamous epithelial cervical cells. Conventional 

smear samples were collected at a specialist colposcopy clinic (Derby City General 

Hospital) and prepared onto reflective substrates via liquid based cytology (LBC) 

methods. Such techniques produce a monolayer cellular presentation upon the 

substrates and thus enable the collection of IR spectra from individual cells. 

However, the recommended preservative solution used in this process, PreservCyt®, 

produced inconsistent spectral artefacts that were problematic for reliable cell 

characterisation. A splitting of the amide I band was evident in some spectra, a 

finding inconsistent with parallel microscopic studies upon cervical tissue sections 

(figure 7, section 4.1.3.1). An alternative preservative solution, 70% ethanol, was 

thus adopted having gained support in earlier literature [33]. This solution did not 

produce the spectral artefacts observed previously with PreservCyt® and still 

provided cellular presentation that was suitable for spectroscopic analysis of 

individual cells (figure 8, section 4.1.3.2). All results presented in this section were 

collected from exfoliated cervical cells prepared in this manor. 

Cervical smear samples collected in this study originated from two different 

categories of patient prognosis. The first group of patients were classed as being low 

risk having shown no previous abnormal smears. In contrast, the second group of 

patients had shown mild dysplasia (C.I.N I) in previous smear screenings and were 

classed as being high risk. Prepared samples were examined at the Daresbury SRS 
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Laboratory, where up to 100 spectra were collected from individual cells on each 

slide. A co-ordinate reference system was utilised to later relocate and diagnose the 

cells examined via conventional cytological PAP staining. Unfortunately all cells 

examined during the analyses were later classed by cytology as being normal in 

nature, showing no dysplastic characteristics. However, natural biochemical 

variation of squamous epithelial cells could be assessed. At this point in our study 

we were unable to scrutinise the collected spectra via MCR and FCM multivariate 

analyses since we were still developing our algorithms and their applications at that 

time. Therefore multivariate analysis was undertaken by use of Pirouette®, a 

proprietary piece of software developed by Infometrix (Woodinville, W.A., USA). 

This enabled the collected spectra to be analysed via Hierarchical Cluster Analysis 

(HCA), a multivariate method of data analysis described in full in section 4.5.4. 

Spectra collected from the same slide were compiled into single datasets and 

analysed collectively by this technique. All datasets examined via HeA displayed 

similar results and partitioning of spectra. An example dendrogram from one such 

analysis is shown in Figure 34. 

Examining the agglomerative dendrogram produced by the analysis (Figure 34), it 

appears the collected spectra have been partitioned into two main groups that are 

negatively correlated to each other (similarity index is below 0). By "cutting" the 

dendrogram at this point, we reveal two main clusters of spectra that are now 

highlighted by red and pink colours respectively. By classing the data in such a way, 

all spectra can now be plotted into a spectral window and coloured according to their 

cluster membership (Figure 35). 
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Figure 34: HCA Dendrogram of the spectral data et collected from a high risk 
patient (Cervical slide IR03-0008). The analysis lVas re 'Iriclcd to only include 
values in the spectral range 1800 - 900 cm-' . Data pre-processin included amide 11 
peak maxima normalisation and mean centring. Clu tering wa a hieved b u 'C of a 
Euclidean distance metric and a group average linkage method. 
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Figure 35: Spectral window displaying the two main lu ter formed via H If , Th 
red cluster represents spectra that are glycogen rich, wherea . the pink clu ler 
characterises glycogen absent spectra, 
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Figure 36: Spectral window displaying the mean spectra calculatedfrom the two main clusters partitioned via HCA . The red cluster represents 
spectra that are ~/ycogen rich, whereas the pink cluster characterises glycogen absent spectra. 
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By plotting the spectra in such a way, spectral similarities apparent for data held 

within the same cluster, and dissimilarities with those partitioned into different 

clusters can be identified. When studying the spectra more closely. it is apparent 

they have been partitioned by spectral differences occurring below 1200 cm"l. To 

aid further characterisation of the two distinct spectral profiles, mean average spectra 

for each cluster were calculated and are shown in Figure 36. 

The first cluster of spectra, which I have named Type 1, is clearly defined by a triplet 

of peaks commonly associated with glycogen. These display peak maxima at -

1150, 1075 and 1020 cm"1 and correspond to the c-o stretch, C-C stretch and C-O-H 

deformation modes respectively. A significant broadening of the 011 stretching 

region is also apparent for all Type 1 spectra, which most likely reflects an increased 

degree of intermolecular hydrogen bonding in the cells. A large variation in the peak 

position of this band was noticeable between spectra and may have been influenced 

by contributions from atmospheric water vapour. However, great care was taken to 

eliminate such contributions by use of a purge ring that flushed the sample area with 

dry air. Therefore, it is more likely that this band shift is caused by an increased 

level of glycogen in the spectrum. The CII stretching region of the spectrum is also 

poorly resolved and only allows the antisymmetric methyl stretches to be identified. 

again likely to be caused by high levels of glycogen. When resolution was enhanced 

in this region, the relative peak intensities of the methyl and methylene stretches 

were observed to be very similar. This would suggest that these types of cells are not 

significantly contributed to by lipids, where it is more common to find an increased 

intensity for the methylene band [55]. The remainder of the spectrum is dominated 

by protein contributions with pronounced amide I and amide II bands found at 1648 
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and 1540 cm-I respectively. The symmetric and antisymmetric bending modes 

associated with the methyl groups of protein side chains (1450 - 1350 em-I) could 

also be identified. However, when glycogen band intensities were observed to be 

larger than those recorded for the amide bands, the anti symmetric stretch became 

almost irresolvable, indicating glycogen absorbance in this region. Finally, in the 

majority of Type 1 spectra, an additional peak at 935 cm-I was also observed. This 

band has only been docwnented in the literature by Wood et al. [33,56], who was 

unable to provide a peak assignment. However, this peak is likely to be attributed to 

glycogen after a similar band was observed in a study of pure glycogen [57]. 

The second cluster of spectra, which I have named Type 2, is clearly differentiated 

by the disappearance of the glycogen triplet. The distinct absence of glycogen within 

the spectrum provides a clearer region below 1300 cm-I that allows both the 

symmetric and anti symmetric phosphate bands (POi) associated with nucleic acids 

to be identified (1080 and 1240 cm-1 respectively). However, both band intensities 

are relatively weak and are likely to reflect a small contribution to the spectra from 

the nuclei of the cells. There is a clear sharpening of the OH band and an appearance 

of a shoulder peak that can only be speculated as the N-H stretches of proteins. The 

CH stretching region is also much more resolved, with four definable bands observed 

in most spectra, attributed to the symmetric and antisymmetric methyl and methylene 

modes respectively. When comparing these observations with those seen previously 

in Type 1 spectra, it would indicate that glycogen normally contributes strongly in all 

these regions of the spectrum. The remainder of the spectrum is again dominated by 

protein bands very similar to those of Type 1 spectra, with only small differences 

found between the amide II I amide I band intensity ratio. 
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When directly comparing the spectral datasets collected from low risk and high risk 

patients, only a small difference in the percentage of Type 1 to Type 2 spectra were 

observed, with high risk patients displaying a small but increased number of Type 2 

spectra. Similar spectral profiles were observed in early macroscopic studies of 

cervical smear cell pellets [28,29] that correlated the disappearance of glycogen 

bands with the onset of cervical dysplasia. However, the results from our study upon 

single healthy squamous epithelial cells would indicate that such assumptions, 

although provocative, may have reached incorrect conclusions. A much larger 

natural variation in the cellular composition of these cells was observed. with a 

majority of the spectra dominated by glycogen contributions. When directly 

comparing the two spectral profiles for Type 1 and Type 2 spectra, it is apparent that 

glycogen can mask spectral features in many regions of the spectrum, especially 

below 1200 em-I, rendering this region inadequate for diagnostic purposes. The 

original location of these cells within the squamous epithelium is also likely to have 

contributed to the spectral changes we have observed. Both our own parallel studies 

upon cervical tissue sections, and those of other groups [38,53], have correlated 

distinct spectral changes that couple healthy squamous cell maturation. Thus 

glycogen absent spectra presented in this study, although unlikely, may have been 

collected from cells incorrectly sampled from the basal layer of the squamous 

epithelium, where glycogen contributions are negligible. However, glycogen content 

within squamous cells has also been shown to differ greatly throughout the menstrual 

cycle and can be reduced in women taking monophasic oral contraception [46]. In 

conclusion, the collection of IR spectra from individual healthy squamous epithelial 

cells has proved that a distinctly larger amount of natural biochemical variation is 
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occurring within these cells than originally thought. Spectral features of bands below 

1200 cm-1 are notably masked by contributions from glycogen rendering this region 

inadequate for diagnostic purposes alone. Therefore. additional spectral differences 

observed above this region for dysplastic or malignant cells would need to be used in 

combination with glycogen absence for an effective diagnostic marker. 

3.3.4 Novel Experiments whereby FfIR Microscopic Maps were collected 

from Exfoliated Cervical Cells and have been analysed by Multivariate 

Imaging 

After our early point mapping experiments upon single exfoliated cells it became 

apparent that the abundance and appearance of abnormal cells was often negligible 

and sparsely orientated around the sample spot. Several attempts were made to 

screen the unstained samples before spectroscopic analysis and thus identify 

abnormal cells. By use of a green light filter that extenuated the nuclei of the cells. a 

histopathologist microscopically scrutinised the samples and chose cells he thought 

appeared abnormal. However. after staining it became evident that these attempts 

had failed with only healthy squamous cells again being identified. Therefore, in our 

second phase of experiments we focused toward the collection of large infrared maps 

in an attempt to increase the cell number and sample area analysed. Regions upon 

the sample spot were randomly chosen and areas between 1000 - 5000 J.1m2 were 

mapped, incorporating vast numbers of individual cells (~ 10,000). In a compromise 

to achieve F,ood signal to noise spectra with reasonable collection times (=5 6hrs), 16 
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interferograms per pixel (25 x 25 J.1m sample area) were coadded over the spectral 

range 4000 - 720 cm-'. Ifwe take into consideration our earlier findings upon single 

exfoliated cells and parallel studies upon cervical tissue sections, it is likely similar 

methods of data collection upon smear samples will be necessary for spectroscopic 

diagnosis. This method enables the collection of individual spectra from cells that 

are free from contaminating artefacts associated with macroscopic studies, and could 

allow the spectroscopic classification of all cell types present in the sample. 

In this section I will report results taken from one particularly interesting map 

collected from an abnormal smear. In contrast to early cervical smear experiments, 

this sample was collected from a patient who had displayed high grade dysplasia in 

previous screenings. A white light image of the prepared sample spot is displayed in 

Figure 37a, and a magnified image of the area that was mapped is sho\\n in 37b. A 

small amount of clumping among cells is noticeable, but in general individual cells 

can be visualised. The infrared map collected from this area consisted of 6400 

individual IR spectra and was collected from an area of 2000 x 2000 J,1m. After data 

collection was complete the sample was conventionally PAP stained, and the region 

analysed by IR diagnosed by a histopathologist. Stained images taken from the same 

area are shown in Figures 38 - 41, which further characterise the main cell types 

present. Glycogen rich and glycogen absent healthy squamous cells have been 

encircled by blue and yellow colours respectively. In contrast, squamous cells 

diagnosed as showing low grade and high grade characteristics of dysplasia have 

been encircled by the green and red colours respectively. Inflammatory cells or 

polymorths are also present in the sample and have been encircled by a black colour. 
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Figure 37: Abnormal cervical smear displaying cells diagnosed as having high grade dysplastic changes. (a) White light image collected from (he 
entire sample spot. (b) White light image collectedfrom the lR mapped area. 
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Figure 38: Abnormal cervical smear displaying cells diagnosed as having high grade dysplastic changes. (a) PAP stained image collectedfrom the 
JR mapped area. (b) Magnified PAP stained image taken from the bottom left region o/the area examined via IR mapping. Healthy glycogen rich 
(blue), healthy glycogen absent (yelloll~, inflammatory (black) and high grade dysplastic (red) squamous cells can be visualised. 
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Figure 39: Abnormal cervical smear displaying cells diagnosed as having high grade dysplastic changes. (a) PAP stained image collected from the 
lR mapped area. (b) Magnified PAP stained image taken/rom the bottom right region of the area examined via IR mapping. Healthy glycogen rich 
(blue), healthy glycogen absent (yellow) and high grade dysplastic (red) squamous cells can be visualised. 
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Figure 40: Abnormal cervical smear displaying cells diagnosed as having high grade dysplastic changes. (a) PAP stained image collected from the 
fR mapped area. (b) Magnified Pap stained image taken from the top left region of the area examined via JR mapping. Healthy glycogen rich (blue). 
healthy glycogen absent (yellow). inflammatory (black) and high grade dysplastic (red) squamous cells can be visualised. The region labelled (1) 
displays a group of contrasting cell types that lie in close proximity or have been clumped. These include both inflammatory (black) and high grade 
dysplastic (red) squamous cells. 
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Figure 41: Abnormal cervical smear displaying cells diagnosed as having high grade dysplastic changes. (a) PAP stained image collected from the 
IR mapped area. (b) Magnified PAP stained image taken from the boltom left region of the area examined via IR mapping. Healthy glycogen rich 
(blue), healthy glycogen absent (yello\l~, inflammatory (black), low grade dysplastic (green) and high grade dysplastic (red) squamous cells can be 
visualised. The region labelled (1) displays a group of contrasting cell types that lie in close proximity or have been clumped. These include both 
injlammatory (black) and high grade dysplastic (red) squamous cells. 
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Figure 42: Total absorbance image o/ the collected JR map (-1000 - _0 m-I) . The 
red coloured cross hairs labelled J - 3 indicate the original 10 ation.· 0 the Mac'" 
blue and red spectra in Figure 43 respectively. 

When initially scrutinising the data contained within the map it be am pp r nt th t 

some spectra displayed a broad spectral featur c ntred at - _ 0 m-I bet\ een the 

amide I and C-H stretching region. Three e ampl pe tr I hi biting thi fe ture ar 

di splayed in Figure 43 . A total absorbance image fi r the c lie ted map i wn In 

Figure 42 and further allows the co-ordinate f th e tra ted p tra t b I tcd. 

The red coloured cross hairs labelled 1 - 3 in Figur 42 indi at th riginal I 

of the black, blue and red spectra in Figur 43 r imil r b lin 

distorting features have been observed in ingle clip ctra c li e tcd fr m human 
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oral mucosa cells [58]. It is now believed that Mie-type scattering from tightly 

packed nuclei are responsible for these broad, undulating features, which are 

superimposed upon the spectral absorption features of the cells [58]. Scattering 

curves were calculated for spherical particles that mimicked the nucleus size of the 

cells examined. These were then subtracted from spectra that exhibited such 

undulating features to reveal reasonably straight baselines. 

Since these distorting baseline features were not consistent for all spectra in our map, 

possibly associated with a change in nucleus size between cell spectra, correction via 

scattering curve subtraction is not feasible. If an incorrect subtraction was made it 

would most likely introduce another artefact into the spectrum. To avoid baseline 

distortions adversely affecting subsequent multivariate analysis, spectra were cut to 

only include data found between 1800 - 720 cm'!, since this region of the spectrum 

did not appear as badly effected. 

The spectral dataset was only subjected to PCA-FCM cluster analysis. since this 

technique had provided the best characterisation of cell types found within tissue 

section maps. A variety of data pre-processing routines were applied to assess their 

effects upon subsequent clustering and classification of cell spectra. Our first 

clustering experiments utilised our conventional data pre-processing technique, 

whereby all spectra are baseline corrected and subsequently vector nonnalised. 

However, on this occasion a 2 base point linear interpolation was applied to all 

spectra between 1800 and 720cm'!. By requesting the analysis partition spectra into 

two clusters, it was hoped that background and cellular pixels contained in the map 

would be grouped into definable clusters. Unfortunately this was not the case and 
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Figure 43: Spectra extractedfrom collected map that display spurious baseline properties. Note the broad spectral {eature centred at - 2000 em-I. 
The co-ordinates from which these spectra were extracted are indicated in Figure 42. 
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cluster membership appeared confused. The cluster image constructed from this 

analysis is shown in Figure 44b. By directly comparing the cluster image to the total 

absorbance image in Figure 44a, we can clearly see that background and cellular 

spectra have not been partitioned into separate clusters as hoped. When the cluster 

number established by the analysis was increased, in the expectation that a multiple 

number of clusters may represent the background pixels, images only became more 

confused. 

Figure 45: Total absorbance image of the collected IR map (4000 - 720 em-I). The 
red coloured cross hairs labelled J - 2 indicate the original locations of the black 
and blue spectra in Figures 46 and 47 respectively. 
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Figure 44: PCA-FCM cluster imaging of abnormal cervical smear. (a) Total absorbance image of area IR mapped (-1000 - 720 cm-'). (b) False 
colour image constructed from a 2 cluster PCA-FCM analysis. Note that cluster membership does not mimic cellular presentation upon the slide. A 
large number of background spectra have been partitioned into the same cluster as cellular spectra. 
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When investigating the data both before and after our data pre-processing routine, it 

became clear why insufficient separation of the background spectra was being made. 

Two example spectra that originated from a cellular and background pixel are shown 

both before and after data pre-processing in Figures 46 and 47 respectively. A total 

absorbance image for the collected map is shown in Figure 4S and further allows the 

co-ordinates of the extracted spectra to be located. The red coloured cross hairs 

labelled 1 - 2 in Figure 4S indicate the original locations of the black and blue 

spectra in Figures 46 and 47 respectively. When we examine the spectra before data 

pre-processing in Figure 46, we assume that clustering would be able to partition 

these types of spectra into separate groups since they are distinctly different. The 

cellular spectrum (black colour) exhibits a floating baseline with distinct absorption 

features characteristic of the cell, whereas the background spectrum (blue colour) 

displays a flat noisy baseline characteristic of conventional sample background 

subtraction. However, after our data-pre-processing routine (Figure 47) the 

background spectrum is distinctly different. The spectrum now lies at -o.S a.u. and 

has effectively been amplified by the normalisation process. Therefore features 

previously characteristic of noise have now been amplified to levels that could be 

incorrectly classified as peaks by the multivariate analysis. It now became clear that 

separation of background pixels must take place before baseline correction and 

normalisation procedures. This would enable only cellular spectra to be scrutinised 

by subsequent multivariate analyses. An FCM based filtering technique was thus 

developed to partition the background spectra. Before baseline correction and vector 

normalisation routines were employed, the raw spectra contained within the map 

were scrutinised by a 2 cluster FCM analysis. The resulting false colour image 
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Figure 46: A background and cellular spectrum extracted from the collected map. The co-ordinates fro m which these spectra were extracted are 
indicated in Figure 45. 
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Figure 47: A background and cellular spectrum extracted from the collected map after baseline correction and vector normalisation. The co­
ordinates from which these spectra were extracted are indicated in Figure -15. Note the amplification of noise within the background spectrum that 
has rendered PCA-FCM cluster analysis less effective for the partitioning of these spectra. 
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Figure 48: A two cluster PCA-FCM analysis upon the raw spectra contained within the map. a) Pap stained image of mapped region. b) False 
colour image constructed from a 2 cluster PCA-FCM analysis of the raw spectra. Note the cellular spectra have been partitioned into the red cluster 
and the background spectra into the blue cluster. 
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constructed from this analysis is displayed in Figure 48b. By direct comparison to 

the PAP stained image collected from the same region in Figure 48a. it shows this 

analysis was able to successfully partition the two types of spectra. Those spectra 

collected from points of cellular presence that displayed good signal to noise were 

partitioned into one group, and those that originated from background regions were 

partitioned into a separate group. This now enabled the background spectra to be 

filtered from any subsequent data pre-processing and PCA-FCM analysis. The 

cellular spectra were now processed via our conventional routines of baseline 

correction and vector normalisation before undergoing PCA-FCM cluster analysis. 

The cluster imaging results constructed from these analyses are displayed in Figures 

49(b) - (h). When directly comparing these cluster images against the PAP stained 

image of the same region (Figure 49a), it appears the 4 cluster analysis provides 

some correlation to the cell types present. The orange cluster of spectra appears 

characteristic of healthy glycogen rich cells, whereas the cyan and maroon clusters 

seem to distinguish glycogen absent cells. However, a large amount of 

misclassification of polymorth spectra into these two clusters is also apparent. The 

cells diagnosed as displaying high grade dysplastic characteristics have alternatively 

been partitioned into the green cluster of spectra. But again a large amount of 

misclassification is noticeable with some polymorth spectra being partitioned into the 

same cluster. When cluster numbers were subjectively increased. the partitioning of 

spectra into more definable groups was not achieved and provided confusing results 

when correlated to histological diagnosis. However. after scrutinising the mean 

spectra calculated from the 4 cluster analysis, shown in Figure 50, it becomes clear 

that an additional distorting artefact is apparent in some spectra. Both the mean 

spectrum calculated for the cyan and red clusters display a distorted band shape. 
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Figure 49: IR imaging of cervical smear map via PCA-FCM Clustering. (a) PAP stained image of mapped area. (b) - (h) False colour images 
constructed using PCA-FCM Clustering Analysis results. Note the cluster numbers were subjectively increased from 2 - 8. Pixels with the same 
colour in each image are spectra that were partitioned into the same cluster_ Additional data pre-processing included the initial jiltering of 
background spectra via a 2 cluster FCM analysis. The remaining cellular spectra were then separately clustered using PCA-FCM analysis. 
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Figure 50: 4 Cluster PCA-FCM Analysis Results. Mean average spectra calculatedfrom each cluster in the analysis. 
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Peak maxima of some bands have been shifted toward lower wavenumber by up to 

30 cm-I . The amide I / amide II band intensity ratio also appears distorted, the bands 

now displaying relatively similar intensities uncharacteristic of tissue spectra. 

Similar dispersive band shapes have been identified previously for transflection 

spectra that were collected from the edges of tissue sections mounted on the same 

reflective substrates [59,60]. It is believed that the distorting artefact present in these 

spectra is caused by the superposition of dispersive and absorptive line shapes. The 

cause of this negatively contributing dispersive line shape was not discussed, but is 

believed to originate from rays of light that are far from the normal and thus strongly 

diffracted. These effects are apparent more so in spectra with very small absorbance. 

similar to those collected from individual cells. An algorithm to correct for these 

contaminations has been proposed by Diem and co-workers [60]. and relies upon the 

transformation of a spectrum back into time (mirror displacement) domain by a 

complex reverse fast Fourier transform (FIT). This back transformation produces a 

"real" and "imaginary" interferogram. These are then separately forward 

transformed into the frequency domain to yield the pure reflective and absorptive 

components. A corrected spectrum with reduced artefact can thus be constructed by 

calculating a power spectrum from the reflective and absorptive components [60]. 

The correction algorithm can also be applied to undistorted spectra, which is 

particularly important since all spectra contained within a dataset must be uniformly 

pre-treated before multivariate analyses. We have collaborated with Diem and co­

workers and used their correction algorithm for our work. This was further applied 

to our raw collected data. To demonstrate the effect of the dispersion algorithm. 

three cellular spectra have been extracted from our dataset. These include two 

spectra that were strongly contaminated by a reflection artefact. and one weakly 
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distorted spectrum. Both the raw and corrected spectrum for the three extracted 

spectra are displayed in Figures 52 and 53 respectively. A tota l absorbance image 

for the collected map is shown in Figure 51 and further allows the co-ordinates of the 

extracted spectra to be located. The red coloured cross hairs labelled I - in Figure 

51 indicate the original locations of the two strongly contaminated pectra ( pectrum 

1 & 2) and the weakly distorted spectrum (Spectrum 3) respecti ely. 

Figure 51: Total absorbance image oj the collected JR map (-1000 - 720 em-I) . The 
red coloured cross hairs labelled J - 3 indicate the origina//ocation oj pectra J -
3 in Figures 52 - 54 respectively. 
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When examining the raw spectra in Figure 52, contamination from dispersion is 

noticeable with a clear shift in band shapes and intensities not observed in 

undistorted spectra. A large downward pointing feature at - t 700 cm"· is also 

apparent and is thought to be due to the reflective component. Because of the 

reflective components negative intensity, the amide I band is shifted to a much lower 

wavenumber and a decrease in the intensity of this band is also observed. A similar 

feature is apparent in the weakly distorted spectrum shown in Figure 53. After 

correction of these contaminated spectra, the amide I peak is now observed at c.a. 

1650 cm"·, a more normal frequency for this band. The amide I I amide II band 

intensity ratio is also close to that normally observed for undistorted spectra. 

However, a broadening of the OH stretch region is apparent in all corrected spectra 

and does not appear comparable to those observed for undistorted spectra. The 

corrected spectra also display unusual baselines below 900 em"· and above 2000 cm" 

When scrutinising further corrected spectra contained in the dataset, these 

spurious baseline features, which reach far up into high absorbance values, are 

inconsistent among spectra. A more unusual feature can be distinguished in the 

corrected spectrum of the weakly distorted spectrum (Figure 53). Within this 

spectrum, the band intensity ratio for the glycogen triplet of peaks has been altered, 

with peaks displaying maxima that are very close in intensity. This is never normally 

seen in undistorted spectra. But in general, the spectral features found between 1800 

_ 900 cm"} appear closer to those observed for undistorted spectra. 

To assess whether the use of this algorithm could improve subsequent multivariate 

analyses, it was applied to the entire spectral dataset. After correction, the spectra 

were cut to only include intensities recorded within the 1800 - 900 em"· region and 
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Figure 52: Comparison of raw and corrected pec/ra. (a) pe trum I. (b) 
Spectrum 2. The raw !Jpectra display strongly di torted band hape . ote the shift 
of peak maxima toward lower wavenumbers by as much a 30 cm-' . The amide 1 / 
amide 11 band intensity ratio also appears distorted. After correction for di per 'ion 
a shift in the band position and intensities j noticeable. However, it al 0 apparent 
that the band shape above 2000 cm-' and below 900 cm-' i not comparable to that 
observed for undistorted spectra. The co-ordinate /rom whi h th . pe tra were 
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Figure 53: Comparison of raw and corrected Spectrum 3. Note the mall hift of 
peak maxima for the amide 1 band and the broadened OH stretch region f ur the 
corrected spectrum. The glycogen triplet of peaks al 0 appear effe ted with a 
change in the peak intensity ratio noticeable. The co-ordinate from ... "hich the 
spectrum was extracted are indicated in Figure 51 by the ro hair lab lied 3. 

baseline corrected using a 2 base point linear interp lation between th tart and nd 

data points. All spectra were then uniformly vector normali ed b fi rc und rg mg 

PCA-FCM cluster analysis. The cluster imaging re ult n tru ted fr m the 

analyses are displayed in Figures S4(b) - (h). When directl omparing the c lu ter 

images against the PAP stained image of the arne r gi n (Figure 54a), it app ar n 

this occasion the 4 cluster analysis provides b ner c rrelati n t the II typ 

present. The orange cluster of spectra appear charact ri tic of health glyc gen rich 

cells, whereas the cyan cluster of spectra is more di tincti of gl gen ab ent ell . 

Some misclassification has been made with a number f p lymorth petra being 
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Figure 54: IR imaging of cervical smear map via PCA-FCM Clustering. (a) PAP stained image of mapped area. (b) - (h) False colour images 
constructed using PCA -FCM Clustering Analysis results. Note the cluster numbers were subjectively increased from 2 - 8. Pixels with the same 
colour in each image are spectra that were partitioned into the same cluster, Additional data pre-processing included the application of a dispersion 
correction algorithm to all spectra and the initial filtering of background spectra via a 2 cluster FCM analysis. The remaining cellular spectra were 
then separately clustered using PCA-FCM analysis. 
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partitioned into the cyan cluster for glycogen absent cells. IIowever, when compared 

to the number of misclassifications observed previously without dispersion 

correction, this has been significantly reduced. The cells diagnosed as having high 

grade or low grade dysplastic characteristics were partitioned into the maroon cluster 

.of spectra. Some misclassification of polymorth spectra into the same cluster is 

evident. Finally the green cluster of spectra appears to highlight polymorth cells. 

The mean average spectrum calculated for each cluster in the analysis is displayed in 

Figure 55. Similar spectral profiles are observed in tissue section mapping 

experiments as reported previously. The healthy squmaous cells are characterised by 

two main groups. Those that are rich with glycogen (orange cluster) display a triplet 

of peaks at c.a. 1150, 1075 and 1020 cm-I that correspond to the C-O stretch, C-C 

stretch and C-O-H deformation modes respectively. In contrast. healthy squamous 

cells that are absent of glycogen (cyan cluster) display a more resolved region below 

1200 em-I. This allows the symmetric phosphate (P02l band at 1080 em-I to be 

revealed characteristic of nucleic acids. However, the intensity of this band is 

relatively weak when compared to the amide I and amide II modes located at within 

the 1700 - 1500 cm-t region. This difference is likely to reflect a large contribution 

from proteins in these types of cells. Abnormal cells diagnosed as being high grade 

or low grade dysplasia's have a similar spectral profile. But in contrast to healthy 

cells, the symmetric and antisymmetric phosphate bands located at 1080 and 1240 

cm- t are very pronounced and have a relatively high contribution to the spectrum 

when compared to the amide band intensities. This is likely to reflect a larger 

contribution from nucleic acids in abnormal squamous cells, a finding which 

correlates to previous work upon unhealthy tissue sections. The average spectrum 
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Figure 55: -I Cluster PCA-FCM Analysis Results after dispersion correction. Mean average spectra calculatedfrom each cluster in the analysis. 
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for polymorths (green cluster) is hard to interpret since the spectrum still appears 

distorted. The amide I and amide II modes are again shifted to lower wavenumber 

and display similar band intensities, an uncharacteristic feature for cellular spt.'Ctm. 

However, it appears as though there is a strong nucleic acid contribution to these 

spectra. If we consider that polymorth cells are c.a. 1 - 10 JU1l in size and are 

comprised almost entirely by nuclei, it is not surprising that large nucleic acid 

contributions are present. The distortion observed in these spt.'Ctra from dispersive 

line shapes is also understandable considering a 2S x 2S J.1m spatial resolution was 

utilised. Unless a multiple number of polymorths were clumped together in a group, 

the sampling area would not be entirely filled and could thus allow stray light to 

contribute to the spectrum collected. 

In conclusion, the spectroscopic diagnosis of exfoliated cervical cells remains a 

complex goal. The introduction of LBC techniques for sample preparation, which 

provide monolayer cellular presentation upon substrates, has enabled spectroscopic 

analysis of single cells. This step is vitally important since macroscopic spectra 

collected from exfoliated cervical cell pellets are prone to feature contaminating 

artefacts from non-diagnostic cells. However, care must be taken when preserving 

the exfoliated cells. If smear material is stored within common medical preservative 

solutions such as formalin or methanol, the protein structures within cells can 

become changed. This change in protein structure is manifested within spectra by a 

movement in the frequency or a splitting of the amide I band, which renders 

spectroscopic diagnosis impossible. From our method development experiments, we 

believe a 24% ethanol solution provides the best preservation of cells for 

spectroscopic applications, with little or no spectral artefacts present. Until relatively 
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recently, the collection of spectral maps from large spatial areas was very time 

consuming. This was achieved by scanning a sample in a raster pattern through the 

focal point of a single detector, using steps that were the same size as the x and y 

dimensions of the pixel element. However, the advent of highly sensitive linear 

array detector systems that are coupled to rapid stage motion has enabled the 

collection of much larger spectral maps within reasonable collection times. This 

type of data acquisition appears ideal for the examination of exfoliated cell smears, 

where cell populations are vast and diagnostic cells often sparsely orientated around 

the sample area. During our study, we opted to use a 25 x 25 J.1m pixel size to enable 

large sample areas to be examined within reasonable collection times. Although this 

data acquisition method permitted the collection of spectra from up to 10,000 cells, it 

appears it may have also introduced dispersion artefacts into the spectra. When the 

sample area is not entirely filled by cellular material it is possible stray light could 

contaminate the spectrum. Spectra collected from pixels that encompass very small 

cells or lied upon the edges of large cells or clumps appear to be most effected by 

this contamination. The application of a dispersion correction algorithm did improve 

the appearance of these distorted spectra within the 1800 - 900 em'· region. 

However, unusual artificial artefacts were introduced at other points of the spt.."Ctrum, 

with a distinct broadening of the OH stretch region and unusual baselines evident. 

The use of a smaller sampling area (i.e. 6.25 x 6.25 J,lm) could reduce the number of 

these distorted spectra and allow very small cells to be scrutinised, which are often 

those displaying dysplasia. But this would in turn significantly reduce the size of the 

region that could presently be examined and increase the collection time required. 

The presence of a single cell exhibiting dysplasia provides an abnormal diagnosis by 

a histopathologist. It is therefore very important a significantly large cell population 
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is examined. At present, linear array detector systems are not capable of providing 

such sensitivity, but it is reasonable to believe future systems could achieve this. The 

reflective substrates utilised for these experiments may also be limiting, since 

dispersion artefacts observed in these transflection spectra have not been seen 

previously in our transmission experiments upon BaF2 substrates. Thus exfoliated 

cell preparation upon transmission substrates, although expensive, may provide 

spectra that are not as strongly contaminated by dispersion artefacts. A system that 

utilises large BaF2 blocks and include multiple sample spots is feasible. These could 

then be washed after spectroscopic diagnosis and re-used, since collected image data 

could be stored within medical records rather than sample slides. 

Despite the contaminating features present within the spectra, the main types of cell 

could be identified via PCA-FCM cluster imaging. Glycogen rich, glycogen absent 

and highly dysplastic cells were identified via distinct spectral changes that 

characterise each cell type. But a high degree of misclassification is also apparent 

and presently limits the statistical confidence of cell diagnosis via spectroscopy. 

These misc1assifications were caused in part by dispersion contamination to the 

collected spectra. But in addition, polymorth and dysplastic cells display very 

similar spectral profiles, both having large contributions from nucleic acids. 

3.4 Conclusions 

In this chapter we have used FTIR imaging to study cervical tissue sections and 

exfoliated single cells. To summarise the results I have: 
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• Demonstrated that frozen sectioning of cervical tissue specimens does not 

adversely affect the sample characteristics. This preparation method negates 

standard procedures more commonly employed that include paraffin 

embedment and subsequent de-paraffinization. 

• Assessed a number of different liquid based techniques for the preparation of 

cervical smear material. The use of ethanol as a preservative appears to 

provide good cellular presentation upon reflective substrates without any 

substantial cell damage or change in the biochemical make up of the cells. 

• Mounted tissue section samples upon BaF2 substrates that enable 

transmission spectra to be collected. These were free from contaminating 

dispersion artefacts that are often observed using transflection sampling 

methodologies. Subsequent multivariate analyses could therefore utilise the 

full spectral range of the data and classify spectra according to spectral 

features that were characteristic of the sample alone. 

• Applied a variety of unsupervised multivariate analysis techniques to the 

collected spectral datasets. A comprehensive and detailed comparison 

between techniques for tissue discrimination was therefore achieved. When 

correlating the results to the known histology of the samples, FCM clustering 

achieved the best tissue characterisation. 

• Collected spectral datasets from an array of different cervical tissue sections 

that describe a number of different pathological states and tissue types. The 
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spectral characteristics that are descriptive for both healthy and unhealthy 

squamous and columnar epithelium are reported in detail. Diseased or 

abnormal cells exhibit distinctive spectral changes. Contributions from 

glycogen and giycoproteins are absent and replaced by more pronounced 

nucleic acid features below 1400 cm-I
. The protein absorption bands also 

display changes with cellular abnormality. It is therefore essential to collect 

spectra that are free from dispersion artefacts or be able to correct for these 

contaminations, as such spectral differences (distortion of the amide I and II 

absorption bands) would be detrimental for accurate tissue discrimination. 

• Demonstrated that FTIR imaging can be used to examine and classify 

exfoliated cervical cells in conditions similar to that found in real c)1010gy. 

However, the use of reflective substrates appears to introduce dispersive 

artefacts to the collected spectra. These contaminating features limit the 

statistical confidence for accurate spectroscopic diagnosis. Efforts were 

made to correct for these contaminations by use of a dispersion artefact 

reduction algorithm, which did substantially improve the spectral maps. But 

problematic artificial components were introduced into some spectra by an 

overcompensation of the correction algorithm. Further experiments are 

therefore required to determine the best parameters for data acquisition and to 

assess the spectral variations that accompany both healthy and abnormal 

smear material. 
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Chapter 4 

Experimental Section and Method Development 

4.1 Sample Preparation 

4.1.1 Tissue Sample Collection and Preparation 

Human tissue specimens were collected from both the lymph node and cervix for 

spectroscopic analysis. The biopsy material was collected under the approval of the 

Research Ethics Committee at either Gloustershire Royal or Derby City Ilospitals. 

Cervical samples were obtained by either cone biopsy or hysterectomy. The lymph 

node samples were collected during routine surgical resection for breast cancer. The 

lymph nodes examined in this study existed toward the end of the chain of nodes. 

This allowed conventional histological diagnosis, using the sentinel and immc..-diatdy 

adjacent lymph nodes. The tissue specimens collected, both cervical and lymph node, 

were then mounted onto acetate paper and immediately snap frozen in liquid nitrogen 

to maintain their biochemical condition. Tissue sections from the specimen were 

then prepared using a freezing-microtome, producing 7Jlm thick sections which were 

suitable for spectroscopic analysis (Figure 1). These were then placed onto BaF2 

disc and stored in a cryovial ready for spectroscopic data collection. The remainder 

of the tissue specimen was then treated in the conventional way for histology t 

allowing a parallel tissue section to be cut for comparative analysis by a consultant 

histopathologist. A variety of different tissue sections were examined in this thesis, 

4-1 



and ranged from those diagnosed as being completely benign, to positive sections 

almost entirely infiltrated by malignant tissue. 

Biopsy block 

Backing 
paper 

Discard 

7~m slice for 
spectroscopy 

7~m slice for 
histological 
grading 

Figure 1. A schematic representation of the process used for fro:en sectioning. 
Biopsy material was placed onto acetate paper and immediately snap fro:en. By use 
of a freezing microtome, 7 pm thick tissue sections were then cui for subsequent 
spectroscopic or histological analysis. 

4.1.2 Exfoliated Cell Sample Preparation 

Methods for preparing exfoliated cells for cytological screening have come under 

great scrutiny over the past decade. The standard method introduced by the National 

Health Service Cervical Screening Program (NHSCSP) utilised the Papanicolaou 

(PAP) smear test [1 - 2]. A pap smear was carried out by a GP or nurse at a primary 

care or community clinic. Cervical cells were collected using a wooden disposable 
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spatula device, spread across a glass slide, and subsequently fixed. The slides 

produced were then transported to a hospital laboratory to be stained for examination 

by a cytologist. At the time of our initial experiments, this was still the method of 

choice used by all hospital laboratories in the UK. However, this procedure 

presented several problems to both the cytologist and spectroscopist. The samples 

created often contained a number of unwanted characteristics making them 

insufficient for effective diagnosis. They displayed varying thickness across the 

slide with large areas of cell clumping and the formation of debris from cells that 

were damaged or broken apart. Contamination of samples \\ith blood and 

inflammatory cells were also apparent in some cases, again making them hard to 

interpret by a cytologist. In terms of spectroscopic analysis, locating and scrutinising 

an individual cell by infrared microscopy, which could later be diagnosed, was often 

hard to achieve. To overcome this problem a different method named Liquid Based 

Cytology (LBC) was investigated and has gained large support in subsequent 

literature [3,4]. The technique was initially introduced in the Untied States in 1991 

[5], and enabled a monolayer coverage of cells to be achieved when analysing fine 

needle biopsy and body fluid material. After its initial success it finally gained 

approval for clinical use in PAP smear analysis during 1996 in the USA [6]. A 

distinct advantage of the LBC method is the ability to create more homogenous 

samples that enable a larger proportion of the sample to be analysed. This in tum 

allows multiple tests to be carried out on an individual sample [7]. Most importantly. 

pilot studies have shown the technique can allow increased sensitivity and specificity 

for the detection of pre-cancerous lesions [7-9]. 
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Current methods that use LBC technology include: (i) ThinPrep; (ii ) urePath ; (iii) 

Cytoscreen and (iv) Lebonard Easy Prep. ThinPrep and SurePath LBC sy tern were 

examined in this Thesis, since these techniques represent the two leading methods 

presently being adopted by local medical councils around the UK and nited tate . 

Both systems enable monolayer cell coverage upon glass slides, but utili c diffe rent 

techniques to achieve th is. At present neither system ha been id ntifi ed a th 

leading or preferred technique for sample preparation with many clinics in the A 

providing both for patient choice. 

4.1.2.1 ThinPrep Sample Preparation 

This method involves the use of apparatus developed in the U that pro ide a emi-

automated (T2000) or fully automated (T3000) slide pro sor tern ( t c 

Corporation, USA) as shown in Figure 2. 

(a) 

t\\\( (b) 

Figure 2: Pictures of the apparatus u ed for thin pr 'P work a Thin Pr p 2000 
Slide Processor. b) Internal features of the thin prep in Irumenl. Taken from r if 
[lO). 
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The method can be characterised by the following 5 steps: 

Step 1: A gynaecological sample is collected USlDg a broom-type or 

cytobrush/spatula cervical sampling device (for example, Cervex® Rovers Diagnostic 

Devices, USA). The central bristles of the device are inserted far enough into the 

cervical space enabling cells from the endocervix to be obtained. The side bristles 

sweep cells from the ectocervix and transformation zone. 

Step 2: Instead of smearing the exfoliated cells onto a slide the sampling device is 

rinsed into a transport vial containing PreservCyt®, a preservative 54% methanol 

based liquid that additionally lyses any red blood cells present. 

Step 3: At the laboratory, the vial is then placed into the ThinPrep 2000 slide 

processor. A disposable polycarbonate filter is gently dipped into the cellular 

suspension and spins to create a current that breaks up blood, disperses mucus, and 

thus separates unwanted debris. The sample is then thoroughly mixed to create a 

more homogenous sample for analysis. 

Step 4: A negative pressure pulse is used to draw fluid through the filter and collect 

a thin, even layer of cellular material. The instrument constantly monitors the rate of 

flow through the filter during the collection process to ensure uniformity thus 

preventing the cellular presentation from being too scant or too over populated. 
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Step 5: A modest vacuum removes the excess liquid, inverts the filter and 

effectively stamps the collected cells onto a slide. The sample spot created is circular 

in shape (ca. 1 cm in radius). The slides produced can then be stained and evaluated 

using methodology similar to a conventional PAP smear. 

4.1.2.2 SurePath Sample Preparation 

The SurePath method for slide preparation is greatly more labour intensive than other 

LBC techniques and involves several different phases that have been collectively 

tenned the Prep Stain system. Unlike vacuum filtration that separates cells based 

upon there size, this technique uses a cell enrichment process. The main steps 

involved in this preparation are listed below: 

Step 1: Again gynaecological specimens are collected in the recommended manor 

using a broom-type cervical sampling device. However, the PrepStain method 

dictates that the head of the brush is placed into a vial containing SurePath 

preservative, a buffered 24% ethanol solution. 

Step 2: Sample vials are vortexed for 15 seconds at 3000rpm to allow randomisation 

of specimens. Shearing forces of the vortex free cells and cell clusters from the 

specimen collection device and partially disaggregate cell clusters. 

Step 3: By use of the instrument PrepMate~, the sample is mixed and subsequently 

removed from the preservative vial by a syringe that then layers the specimen onto a 

density reagent held within a centrifuge tube (Figure 3). The reagent used in the 
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PrepStain method is a polysaccharide solution with sodium azide added as a 

preservative. The cell suspension is then centrifuged through the density reagent for 

2 minutes. Small particles and debris which are trapped above the interface between 

the supernatant preservative fluid and the density reagent are removed to enrich the 

clinical materials in the sample. 

(a) (b) 

I n pre-enriched 
samples many 

cells are 
obscured by 

cellular material 
and debris 

SurePath system 
removes obscuring 
cellular materials to 
provide a cleaner 
and enriched cell 

pellet 

Figure 3: Pictures of the apparatus used for SurePath work. a) PrepMate instrument 
used to mix and layer the sample onto a density reagent. b) Example of cervical 
smear material before and after enrichment process. Takenfrom ref [J JI 

Step 4: A second centrifugation for 10 minutes concentrates the diagnostic c Ilular 

material at the bottom of the tube. The remaining density reagent is then decanted 

leaving the resulting enriched pellet of cellular material inside the centrifuge tube. 

The sample is then allowed to vortex ready for slide preparation. 

Step 5: Next the PrepStain Slide Processor is utilised which perfi nn th 

automated sample transfer and staining steps for the thin-layer preparati n f 

cytologic materials on a microscopic slide (Figure 4). The instrument utili a 

robotic arm and disposable tip assembly for aspirating and pi petting ample. 
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However, before this process can start, the microscopic slides are coated with a film 

of high molecular weight cationic solution. The resulting positive charge allow 

adhesion of diagnostic cytological materials to the slide throughout th slide 

preparation process. 

Figure 4: A picture of the apparatus used for Sure Path work howing the Prep tain 
sl ide processor. Taken from ref {1 J]. 

Step 6: The instrument initially resuspends the pelleted cell ample in 1 00 ~ l f 

buffered deionised water and then mixes the resulting soluti n b flu hing it in and 

out of the tube 8 times. 

Step 7: Next, the PrepStain instrument aspirates 200 ~l of the ampl from the 

centrifuge tube and injects this into a settling chamber pre iou I placed nt the 

coated microscopic slide. This allows the sample aliquot to depo it v ithin a defin 'd 

sample area of 13mm and avoids sample cross contamination (Figure 5 . The tip i 

subsequently washed with 600 ~I of buffered deionised water all v tng th tu e and 

remaining specimen to be discarded, or retained for adjuncti e t ting. 
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(a) 

Figure 5: PrepS/ain slide preparation method. a) chematic £Ii pia inK th ' tran if'r 
of a sample into a settling chamber. The chamber hold ' the ampl abov ' til ' 'fid , 
within a defined area enabling cellular transfer. b) Picture of til ' '{mw pro 'c ·S . 

Takenfrom ref [JJI 

Step 8: The PrepStain instrument then adds a 600 ~I alcoh I \ a h t the ample nd 

evacuates all remaining fluids. The sample is then all wed t dry ~ r (ppr xim tel 

60 seconds. 

Step 9: The last part of the automated proce i a quen ef t in and rin e 

cycles. Stain and rinse cycles are essentially the ame all that ari ~ fr m 

cycle is the reagent used and the duration of the pau e 

4.1.3 Liquid Based Cytology Method Development 

The preparation of cervical smear material onto refl e ti lid fI r IR an I 

undergone three main routes during this tudy th Th i pr gr d. T\ 
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methods of spectroscopic data collection were used and are described in 

chronological order. The choice of method was greatly dependent upon instrument 

availability during the project. 

The first batch of cervical samples was prepared following the ThinPrep 

methodology. Cervical smear material was deposited into their recommended 

preservative solution PreservCyt@, and then transported to Derby Infirmary Hospital 

where they were prepared onto reflective slide using the ThinPrep instrument. All IR 

micro spectral analysis of these samples was carried out utilising the IR beamline 

located at the Daresbury SRS laboratory. IR spectra were collected in a point by 

point fashion from individual cells that were clearly discemable and thus diagnosable 

by a cytologist. To take advantage of the increased signal to noise available with 

synchrotron sources, spectra were collected from spatial regions within individual 

cells that incorporated both the cytoplasm and nucleus. Large cells were examined 

using an aperture of 15 J.lm, and small cells with an aperture of 10 J.lm. Infrared 

spectra were collected in reflectance mode with a spectral resolution of 8 em-I. 

Dependent upon signal intensity, either 512 or 1 0~4 spectra were coadded over the 

range 4000 - 650 em-I. Appropriate background spectra were collected in areas off 

the sample to ratio against the single beam spectra produced. 

The second batch of cervical samples were prepared using the ThinPrep 

methodology. However, in this set of experiments the cervical smear material was 

deposited into a vial containing a 70% ethanol solution to preserve the cells. Further 

support for ethanol as a general solution for smear material was reported in the 

literature by Wood et al. [12], who compared ethanol with saline. They concluded 
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that the structural integrity of cells was preserved, the ethanol serving to rapidly 

dehydrate cellular material without the deposition of trace molecules, which could 

mask spectra. It also removed the need for fixing agents, which could distort spectra 

and also proved a good, inexpensive preservative of cells. Due to the use of this 

alternative solution, the ThinPrep instrument at Nottingham City Hospital was 

utilised as it was not limited by any solution protocol restrictions. This solution was 

chosen under recommendation from previous work undertaken by Ms Jodi Kent [13]. 

In this study, cervical tumour cells were cultured and prepared onto slide by the 

ThinPrep instrument using a variety of alcohol, saline, phosphate buffered saline 

(PBS), and PreservCyt® solutions. Initially, it was thought that infrared 

micro spectroscopy would be used to establish any spectral distortions that may be 

occurring due to the solution type used. However, due to the inherently immature 

nature of tumour cells, the cell sizes ranged from 8-10 J.lm making IR spectra 

unattainable using a conventional FTIR instrument at that time. The synchrotron 

source at Daresbury laboratory had the capability to examine the cells but at the time 

of study showed poor signal to noise during allotted data collection runs due to beam 

instability. Conclusions were therefore drawn from visual analysis that assessed cell 

deposition. The slides prepared using this method were examined by use of the 

Spotlight Spectrum Imager. 

A final small number of cervical smear slides were created by use of the SurePath 

methodology. In collaboration with researchers at PathLore, the instrument 

manufacturers, multiple slides were created from one collected sample at their 

Nottingham laboratory. To assess whether the high molecular weight cationic 

coating would adversely affect the spectra produced, slides were prepared both with 
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and without this proposed coating. Cells deposited onto these lide were agaln 

scrutinised by IR using the Spotlight Spectrum Imager following the data collection 

criteria of previous experiments. 

4.1.3.1 ThinPrep Preparation utilising PreservCyt Preservative Solution 

The application of LBC techniques for cervical smear ample preparati n d cs 

undoubtedly give marked improvement in specimen quality and pre entati n b 

reducing blood, mucous, inflammation and other obscuring artefact . A marked 

improvement in the preservation of cells was noticeable utili ing th ThinPrcp 

method and the PreservCyt® solution. Cell overlap and lumping n rm. 1I 

encountered with the conventional PAP smear method i greatl minimi cd 11 wing 

individual cells to be visualised and examined with ease (Figure 6 . 

(b) 

• 
• 

Po 

Figure 6: a) Conventional PAP smear preparation. b) ThinPrep pr para/ion 
Takenjrom refflO). 

However, after close examination of the data collected from indi idual ell prep red 

in this manor, a major artefact began to manifest itself in th pe tra pr duced. 
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Figure 7 displays several overlaid spectra collected from single cells diagnosed as 

being normal in nature by a cytologist. It can clearly be observed that the amide I 

peak sensitive to protein concentration and structure within cells [1 4 15] exhibited 

either a doublet or shouldered peak with maxima at 1646 and 1626 cm-I re pe ti ely. 

C1) 
CJ 
c: 
ns 
.c 
~ 

o 
11) 
.c 
c:( 

1800 1600 1400 1200 1000 

Wavenumbers (cm-1
) 

Figure 7: Multiple overlaid IR spectra collected f rom individual cervi ai c ' II 
diagnosed as being healthy in nature. These cells were prepared LI in Pres 'rv t 
solution as a preservative. Note the spiilling of the amide 1 ab orplion band. 

All samples examined had originated from patients displaying 1 \l -gTade di ea e and 

were subsequently attending follow up clinics. Therefore initial thought were that 

this splitting of the amide band could be a precur or for cancer u hange the 

protein side chains in effect changing from an a-helical to a ~- heet c nfigurati n 

with the onset of disease. However, this hypothesi was n t verified in previ u 

work examining cervical tissue sections (see sections 3.3. 1 & 3 .. 2 . A variety f 

different tissue sections with contrasting diagnoses had been xamined and all 
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displayed a single peak in the amide I region found at 1646cm-l
, diagnostic of an a­

helical configuration of the protein side chains. It was consequently concluded that 

this observed splitting of the amide I band was an artefact introduced into the spectra 

by the PreservCyt® solution. Unfortunately no common pattern could be easily 

found for this splitting, and the maximum intensity alternated randomly at either 

1626 or 1646 cm-I
• This possibly suggested that the change we are observing is 

related to the amount of time the cells are exposed to the solution, i.e. the longer they 

are exposed, the greater likelihood they will change protein structures. The size or 

maturity of each cell could also quite easily have an effect upon the speed to which 

they are changed by the solution. Unfortunately possible control experiments to 

verify this theory were not possible due to instrument and time constraints. 

4.1.3.2 ThinPrep Preparation utilising 70% Ethanol as a Preservative Solution 

Cervical smear material was prepared onto reflective slides using this method and 

again this approach displayed a marked improvement upon conventional smear 

presentation. The amount of cell clumping found upon the slides was reduced, but 

did not show the same efficiency obtained using the PreservCyttl solution. Cell 

damage was also observed in some of the prepared slides, especially around the 

surrounding edges of the sample spot. Closer examination at high magnification 

revealed that the cytoplasm of the cells was effectively being stripped away leaving 

individual nuclei scattering around the sample. This effect is likely to be due to the 

ethanol solution dehydrating the cells to such an extent that they have become 

extremely brittle and easily fractured during the vacuum filtration process. A 

4-14 



CI) 
o 
c 
ns 
.a ... 
o 
tn 
.a 
4 

mucosal deposit surrounding the cells was also apparent in a small number of cases, 

and is due to ethanol's inability to effectively separate the diagnostic cells when 

mucuS levels are high within samples. However, in the overwhelming majority of 

the sample area, monolayer coverage was evident, ideal for IR micro copy of 

individual cells. Figure 8 displays a number of overlaid spectra collected from 

individual cells. It can be seen from the spectra, that the splitting of the amide I band 

observed when using the PreservCyt@ solution, is no longer apparent. Thi 

preparation does not appear to introduce an artefact to the spectra and it is h p d that 

this would simplify any future multivariate analyses. 

1700 1550 1400 1250 1100 950 800 

Wavenumber (cmo1) 

Figure 8: Multiple overlaid JR spectra collected from individual cervical cell 
diagnosed as being healthy in nature. These cells were prepared 11 in,. 70% Ethanol 
solution as a preservative. 
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4.1.3.3 Surepath Preparation 

This type of LBC preparation was only tested on one collected smear sample, but 

showed some distinct advantages to the ThinPrep methodology. The proprietary cell 

enrichment process resulted in the obscuring cellular material and debris from blood, 

mucus, and inflammatory cells being significantly reduced. The density gradient 

centrifugation process separates cellular material from debris using size, shape, 

weight and density, unlike vacuum filtration which separates based on size only. A 

significant increase in the number of cells on the slides was noticeable. Cell 

aggregation was negligible and good monolayer coverage was observed. This is 

again ideal for IR microscopy of individual cells. This technique also allows easy 

manipulation of the cell population found within the sample spot. By suspending the 

cell pellet produced after centrifugation in different amounts of de ionised water, the 

number of cells can be tailored to best suit experimental requirements, whether those 

be a sparse or packed cell coverage. The creation of a slide with no cationic coating 

adversely affected the transfer of cells, resulting in only a small number of cells 

being deposited onto the slide. The application of such a coating would appear to be 

a necessity for cellular fixation onto the microscope slides. The IR analysis of 

individual cells collected from slides prepared in this manor showed no obscuring 

artefacts that could hinder subsequent multivariate analyses. 

4.1.3.4 Liquid Based Cytology Method Development Conclusion 

The application of liquid based techniques enabled cervical smear material to be 

presented in a manor ideal for IR microscopic analysis of individual cells. 

4-16 



Contamination from non-diagnostic cells which could obscure and hinder IR analysis 

is dramatically reduced. Cells are presented on the microscope slides with 

monolayer coverage permitting individual cells to be easily located and scrutinised. 

However, the solutions used to preserve the exfoliated cellular material can introduce 

changes in the biochemical makeup of the cells. These unwanted changes can then 

manifest themselves as artefacts in the spectra that can ultimately complicate any 

subsequent multivariate analysis. From th~ two types of alcohol solution used, 

ethanol gave the best results in that cells were adequately preserved and produced no 

artefacts in the spectra. However, the 24% Ethanol solution utilised in the SurePath 

method gave the best overall results, preserving the cells without any noticeable cell 

damage. Although both techniques showed marked improvements upon 

conventional smear preparation, the SurePath system gave the best presentation of 

cells with high cellularity. The ability to tailor the cell population created on the 

slide, coupled with the use of a density gradient to more effectively separate non­

diagnostic cells, would make the technique a preferred choice for spectroscopic 

applications. 

4.2 Instrumental 

Infrared spectroscopy has proved over the past decades to be an extremely potent 

analytical tool for the analysis of biologically active materials [16 - 20]. When 

biological molecules are exposed to radiation in the mid-infrared region of the 

electromagnetic spectrum (400 - 4000 cm"I), they exhibit characteristic absorptions 

from the excitation and vibration of bonds within the molecules. Creation of 

reference spectra for biochemical constituents such as proteins, lipids and nucleic 
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acids can be useful when assigning peaks, but the mixture of many different 

biomolecules within a cell will ultimately lead to very complex convoluting spectra. 

Therefore it is more useful to detect subtle changes in peaks and their positions rather 

than assigning a spectral feature to a particular cell constituent or cell type. Thus 

spectra that provide high signal to noise are essential to characterise these very small 

biochemical changes that occur between different cell types. Animal cells can also 

range in size between 5 - 50 !lm, making the more conventional macroscopic study 

of samples insufficient for detailed and unpolluted characterisation of individual cells 

and their constituents. FTIR microspectrometry however, i.e. the coupling of 

microscopy and FTIR spectrometry, is proving a potent new technique that can 

provide spatially resolved spectroscopic information from very minute quantities of 

microscopic structures within a sample [20,21]. Such techniques have therefore been 

adopted in this study to examine both single exfoliated cells and tissue specimens. 

Three types of instrumentation have been utilised, including the Nicolet Continuum, 

Perkin Elmer Spotlight Imager and a Nicolet Nic-Plan microscope that was coupled 

to a synchrotron source. These separate instruments will be fully described in the 

following sections; however basic FTIR theory will not be discussed. 

4.2.1 Nicolet Continuum FfIR Microspedrometer 

The apparatus is comprised of a Nicolet Nexus 870 FTIR spectrometer (Nicolet 

Instruments, Inc. Madison, USA), fitted with a KBr beamsplitter. The spectrometer 

is additionally coupled to a Nicolet Continuum microscope that comprises its own 

liquid nitrogen cooled mercury-cadmium-telluride (MeT) sin~~element detector --_._---
(100 !lm). The microscope uses the same apertures and optics for both the infrared 
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and visible light, where the visible optical train is parfocal and collinear with the IR 

radiation [22]. The system utilises a silicon carbide 'Globar' source, which is heated 

to -1500K, providing incident radiation to the interferometer that shows similar 

emission characteristics across the frequency range. The signal from the 

interferometer is modulated and channelled to the sample by a series of mirrors and 

optics. To reduce the effect of stray light distorting the spectra, and the problems of 

diffraction causing optical aberrations, a single 'Reflex™, aperture is used. This set 

up allows the radiation to be directed by mirrors onto the sample and back through 

the same aperture before reaching the detector. 

The MeT detector works on the principle that the absorption of IR photons by the 

photoconductive detector element, will give rise to the promotion of electrons from 

the valence band of the material, to the conduction band, resulting in the flow of 

current when a voltage is applied. Therefore it can be used proportionally as a 

measure of signal intensity. The detector is operated at very low temperatures, 

-77K, and thus requires cooling by use of liquid nitrogen. The remaining 

components are all electrical in nature, an amplifier, analogue to digital converter 

and a computer that allows the processing of the signal to create a spectrum. The 

main limiting factor of this apparatus is the problem of diffraction, where the 

aperture dimensions are limited. The diffraction limited spatial resolution d is 

defined by the equation: 

D = 0 .61 A­
N.A. 
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This is where A. is the wavelength of the incident radiation and N.A. is the limiting 

numerical aperture. Taking into account that the mid infrared radiation exists 

between the wavelengths of 25 - 2.5 J.lm, d is approximated to 10 J.lm. Because the 

radiation is now being passed through small apertures the Jaquinot advantage is 

reduced, and due to significant scattering of light, the smallest spatial resolution that 

can be studied with a reasonable signal to noise is 20 J.lm. 

4.2.2 Perkin Elmer Spotlight Imager 

The Perkin Elmer Spotlight Imager (Perkin-Elmer Corp., Sheldon, Connecticut) is 

also a FTIR microscope, similar to the Nicolet Continuum instrument, but 

alternatively comprises a dual set of detectors. The microscope is equipped with 

both a 100J.lm single element (MBMCT) detector and a NBMCT array detector. 

When operated in array mode, the system utilises a 16 x 1 element (400 J.lm x 25 J.lm) 

linear array of small area narrow band (4000 - 720 em-I) detectors that provide 

significant reduction in detector noise and thus improved signal to noise. Each 

detector has its own isolated gold connection used to perform their own signal 

processing, where all 16 channels are continuously sampled. In comparison, the 

Spotlight provides the IR radiation from below the sample when in transmission 

mode, but like the Continuum from above the sample in reflection mode. This is 

simply carried out by the movement of a mirror within the instrument that sends the 

IR radiation a different route. The optical axis of the instrument is set on the single 

element detector. However, the array is also well illuminated. When collecting data 

in array mode, the electronic stage is moved to compensate for the separation of the 

array from the optical axis, and then moves in 25 J1m steps below the array. 
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Therefore the array is effectively sweeping the sample at a speed defined by the 

spectral resolution and the number of scans per pixel. A direct link between the 

interferometer and the electronic stage only allows the stage to move when the 

interferometer has reached its end point. A map of the sample area is then built up 

by raster scanning across the sample in both the X and Y planes. The array can also 

be used to examine the sample with a 6.25 Ilm pixel size. This is achieved by use of 

a Z fold tube that dips a 4X magnification mirror into and out of the beam. 

Unfortunately, more detailed information on the specific design of the array has not 

been made available, but the obvious advantages of this instrument are clear. It has 

the capability of scanning 16 different spatial areas at once, enabling large samples 

areas to be examined rapidly with signal to noise levels that are effective for sample 

characterisation at the microscopic level. 

4.2.3 FT -IR Microspectroscopy utilising a Synchrotron Radiation Source 

The dimensions of animal cells are typically comparable to the minimum resolvable 

distance of IR microscopes caused by the limitations of diffraction. c.a. 10 !lm. 

However, a Synchrotron Radiation Source (SRC) can enable the collection of IR 

spectra at these spatial sizes with significantly higher signal to noise, where it is 

estimated that the brightness of the IR radiation produced can be up to 1000 times 

more intense [23]. In this study, the IR beamline located at the UK SRS laboratory 

in Daresbury was utilised, where they coupled their synchrotron source to a Nicolet 

Nic-Plan FTIR microscope. This instrument is very similar to the Nicolet 

Continuum previously described. but is configured slightly differently, where two 

apertures are used for transmission data collection. These both require focusing. 
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where the first dictates the area illuminated and the second captures the transmitted 

radiation, filtering out any unwanted light that may cause optical aberrations. Since 

the beam is highly collimated (approximately 20 x 30 Jlm) and hence more brilliant 

than a conventional source, the signal to noise that can be achieved is significantly 

higher. 

4.3 FfIR Microspectral Data Collection 

Both single point and mapping methods of data collection were utilised in this study 

of human tissues and cells. Tissue specimens were cut into thin sections and 

mounted onto IR transmissive BaF2 discs suitable for spectroscopic analysis. These 

types of sample were analysed solely by the collection of transmission - absorption 

spectra using mapping techniques. Exfoliated single cells were alternatively 

prepared onto 'lowe' substrates. These consist of a glass slide with a thin silver 

coating and a transparent overcoat to protect the silver layer. This type of substrate 

is completely reflective in the mid-infrared spectral region. An IR beam passing 

through a thin sample is reflected by the silver layer and subsequently passed back 

through the sample, thus experiencing twice the attenuation of a single pass. 

Additional advantages of these substrates are that they are also close to transparency 

in the visible, and can thus be examined via conventional light microscopy. 

Individual cells prepared onto these substrates were analysed by the collection of 

reflection - absorption spectra using both single point and mapping methods. 
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4.3.1 Tissue Section Analysis 

Prior to IR analysis, tissue sections were removed from the cryovial and passively 

warmed to room temperature. The circular BaF2 discs were then fixed into specially 

designed steel sample holders, similar in shape to a conventional glass slide, and 

positioned onto the sample stage of the infrared microscope utilised at that point in 

the study. A visual image was then acquired from the entire tissue section via a 

charge coupled device (CCD) camera that was referenced against a scribed mark 

previously etched onto the barium fluoride disc. Magnified visual images are 

collected under white light LED illumination, and subsequently quilted together to 

create a mosaic picture that is of arbitrary size and aspect ratio. By use of the 

adjacent and diagnosed H&E stained tissue section, areas of interest were then 

located upon the unstained sample that incorporated several different tissue types and 

effectively characterised the morphological infrastructure of the tissue section being 

examined. Large infrared maps were then obtained from these sites of particular 

interest at high resolution, and from the entire tissue section at a lower resolution if 

time permitted. To gain high signal to noise spectra necessary for effective 

multivariate analysis the spatial resolution and thus pixel size in our multivariate 

images was determined by the capabilities of each instrument. All spectra were 

collected in transmission mode with a spectral resolution Bover the spectral 

range 4000 - 720 cm-l
. The remaining instrumental parameters used for each 

instrument are listed in Table I. It must be noted that the spatial resolutio~ of the 

Perkin-Elmer Spotlight Imager when collecting at a pixel size of 6.25 f,lm is ac~ually 

c.a. 12 x 12 f,lm, being limited by the diffraction limit [24,25]. The instrument is 

actually collecting data from a 12f,.lffi spatial ~ but is being stepped by 6.25 J.1m. 
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Instrument Resolution Sampled Area Number of Scans 

Continuum HiQh 25~m x25~m 1024 
low 50IJm x 50IJm 512 

Spotlight High 6.251Jm x 6.251Jm 16 
low 25um x 25IJm 8 

Synchrotron High 15~m x 15IJm 512 
Low 25~m x 25um 256 

TableJ: Spectral data collection variables for each instrument utilised 

effectively over sampling by 2 fold. To reduce spectral contributions from 

atmospheric carbon dioxide and water vapour, the microscope was additionally 

purged with dry air which included a purge ring that surrounded the sample. The 

commercially available Spotlight instrument was not sufficiently purged, and a 

specially designed Perspex box to surround the entire microscope and sample stage 

was constructed to address this. Spectra collected were fast Fourier transfonned 

using strong apodization to yield single beam spectra. An appropriate background 

spectrum was additionally collected off the sample to ratio against the single beam 

spectra. These ratioed spectra were then converted to absorbance, with each 

spectrum containing 821 data points (4 cm-) data point interval). Acquisition time 

varied between several minutes to several hours dependent upon sample size. 

4.3.2 Exfoliated Single Cell Analysis 

Prepared slides were placed onto the sample stage of the microscope and a visual 

image taken from the entire sample spot created by liquid based cytology. Locations 

upon the sample spot where cell deposition was ideal, i.e. individual cells were 
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clearly definable, were located and an additional visual image taken at high 

magnification. Both images were reference against an etched mark on the slide to 

enable the accurate relocation of areas of interest and individual cells that were to be 

examined. Reflectance - absorbance spectra were then collected from individual 

cells using both point and mapping methods of data collection. Due to the high 

signal to noise requirements necessary for such data collection, spectra being highly 

contributed to by dispersive artefacts, only the synchrotron source and Spotlight 

instrument was utilised for these studies. Time at the synchrotron source focused 

toward the collection of spectra via point mode using a number of aperture sizes that 

varied between 10-25 J.1m to accommodate for the different cell shapes and sizes that 

were encountered. Effort was made to incorporate both the nucleus and cytoplasm in 

each case. A spectrum was then taken by co-adding 512 interferograms at 8 cm-1 

spectral resolution. Experiments undertaken using the Spotlight instrument were 

aimed to examine as large a sample area as possible and thus a significantly higher 

number of cells. This objective was administered as in early studies in had become 

apparent that the number of abnormal cells on a slide can often be significantly low 

and sparsely orientated on the sample spot. Large square infrared maps were 

therefore collected from sample areas ranging from 1000 - 5000 J.1m in size. In these 

experiments, 16 interferograms per pixel (25 x 25 J.1m sample area) were coadded 

over the spectral range 4000-720 cm-1
• All spectra collected by either of these 

techniques were fast Fourier transformed using strong apodization to yield single 

beam spectra. An appropriate background spectrum was collected off the sample 

spot to ratio against the single beam spectra. These ratioed spectra were then 

converted to absorbance. Acquisition time varied between several minutes to several 

hours 
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4.4 FTIR Spedral Data Processing 

All infrared micro-spectral data was uniformly pre-treated before undergoing further 

multivariate analysis. Small possible contributions to the spectra from atmospheric 

water vapour and carbon dioxide were removed by atmospheric correction 

algorithms integrated into both the Perkin Elmer Spotlight and Nicolet software. IR 

spectra collected from human tissues and cells may sometimes display sloping or 

curved baselines. These distorting affects may arise due to a variety of reasons. 

Contamination to the spectra may manifest itself through the superposition of 

dispersive and absorptive line shapes cause by the collection of unwanted stray light 

[26,27]. Another reported cause of distorted line shapes is the effect of Mie 

scattering from the nucleus of cells [28]. The nuclei of non-proliferating human cells 

contain tightly bound DNA and RNA strands reportedly making them almost opaque 

to IR radiation [28-30]. Applying a 6 base point linear interpolation to all spectra 

reduced the effects. Baseline points used in this process were located at 4000,3744, 

2200, 1836, 876 and 720 cm-1 respectively. Finally, to negate intensity differences 

caused by irregularities in sample thickness and cell density, spectra were uniformly 

normalised. This was achieved by scaling sPectra such that the sum squared 

deviation over the indicated wavelengths (4000-720 cm-I
) equals unity (also known 

as vector normalisation). All data processing and subsequent multivariate analyses 

were performed using algorithms that operate on top of MA TLAB version 6.5, 

release 13.0.1 (Mathworks, Natick, MA, USA). 
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4.5 Chemometrics 

4.5.1 Introduction 

Whether the aim of a spectrocopist is to determine a samples composition or identify 

a single species that may be present, the use of statistics to help extract the desired 

infonnation from the experimental data is now common practice in all modem 

analytical techniques. In this study, infrared spectroscopic data has been collected 

from human tissues that produce very complex vibrational signatures. The 

interpretation of this type of data is not always straight forward and ultimately relies 

upon the detailed understanding of the tissue constituents. For the overwhelming 

majority of human tissues, the IR spectrum produced can be directly approximated to 

the summation of lipids, proteins and nucleic acids, the basic building blocks for all 

animal cells. These species give multiple and broad absorptions across the mid­

infrared region (4000 - 1000 cm-\ making the assignment of individual 

chromophores to specific tissue components an empirical process. To remove this 

subjectivity, statistical techniques can be applied to help interpret the data produced. 

Univariate type analyses commonly used in analytical spectroscopy are no longer 

sufficient in this scenario due to the inherent complexity of tissue spectra. However, 

another branch of chemometrics termed multivariate analysis can enable the 

manipulation and investigation of data that contains multiple variables, such as an IR 

spectrum. 

Multivariate analyses can be separated into two main types, those that are supervised 

or unsupervised. Supervised pattern recognition methods utilise information that is 

already available for the sample you are examining. Thus a training set holding 
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information characteristic for each parent class can be utilised to identify a 

discriminant function by which new unlabelled data can be recognised and further 

classified into one of the parent classes. Unsupervised pattern recognition methods 

alternatively use no previous knowledge of the sample analysed and search for 

similarities within the data to characterise them. These types of unsupervised 

analysis have therefore become increasingly used in analytical spectroscopy because 

of this advantage. Underlying patterns hidden within extensively large and complex 

datasets can be identified that were previously undetectable using univariate or 

bivariate type analyses alone. Early experiments that utilised such methods for the 

analysis of IR spectra collected from animal cells were those undertaken by 

Naumann [31]. He utilised Hierarchical Cluster Analysis (HCA) to classify spectra 

that were collected from bacteria and was able to group them according to their 

bacterial strain. As a consequence, methods for rapid bacteria identification using IR 

spectra are presently being developed. In light of the reported sensitivity and 

successful application of such techniques, the overwhelming majority of 

spectroscopic data collected from biological material have been analysed using these 

types of multivariate analysis. 

To present a multitude of unsupervised methods have been utilised for spectroscopic 

data analysis of human tissues. These techniques have included Principal 

Component Analysis (PCA) [32 - 35], Hierarchical Clustering Analysis (HCA) [26, 

36-41]. K-Means and Fuzzy C-Means Clustering (KM, FCM) [42 - 45] and 

Simulated Annealing Fuzzy C-Means Clustering (SAFCM) [46]. These studies 

indicated that each multivariate technique could to a degree, be applied to disease 

diagnosis using spectroscopic data. However, there is still a general lack of 
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comparative tests between techniques. A full spectrum of unsupervised multivariate 

techniques have therefore been applied to spectral datasets collected from human 

tissues in this study. A comprehensive and detailed comparison between alternative 

techniques for tissue discrimination could therefore be achieved. These studies also 

include the application of a newly developed PCA-FCM Clustering hybrid and a 

novel PCA-FCM merge method algorithm that automatically defines the best amount 

of clusters that describe a dataset. All multivariate analyses utilised in this study are 

described in greater detail in the remainder of this chapter. 

4.5.2 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a technique widely used for scrutinising 

multivariate type data [47]. The aims of applying such a technique to very large and 

complex datasets are essentially two fold. Initially, the analysis involves the rotation 

and subsequent transformation of the original, n, axes that describe the variables 

found within the dataset. This process is carried out in such a way that the newly 

created axes now lie upon paths that describe the maximum variance within the 

dataset and are orthogonal or uncorrelated to each other. As a consequence, each 

additional axes or 'principal component' created will account for less and less 

variability. It is now typically the case that the number of principal components, p, 

that are required to describe the majority of data variance is less than n. This type of 

analysis can therefore dramatically reduce the dimensionality of a dataset. After 

principal components are calculated the analysis can now reveal those variables, or 

combinations of variables that best describe patterns found in the data. 
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In this section, the use of PCA to detect underlying patterns in spectroscopic dat.a 

will be discussed utilising the simplified dataset shown in Table 2. Infrared peClra 

were collected from 6 different tissue samples and further nonnalised to the mo t 

intense peak, removing possible tissue thickness effects. The resulting peClra ~ er 

subsequently reduced to 4 discrete variables by extracting the response value fi und 

at wavelengths 1700, 1650, 1600, 1550cm -1 for each spectrum respecti ely. T aid 

visualisation of the resulting reduced spectra the data has been plotted in Figure . 

The resultant 6 x 4 response matrix was then subjected to Principal mp nent 

Analysis. 

Wave length (cm-1) 1 2 3 4 5 6 
1700 0.00 0.01 0.00 0.00 0.00 0.00 
1650 0.50 0.52 0.51 0.02 0.03 
1600 0.05 0.02 0.01 0.50 0.48 
1550 0.00 0.00 0.00 0.10 0.15 

Table 2: Extracted absorbance values of 6 different JR spectra at wave/en rh 1 00, 
1650, 1600 and 1550cm-J respectively. 
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Figure 9: Simplified example dataset plotted across the wavelength extra led 
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The scree plot shown in Figure 10 describes the amount of variance each successive 

principal component is accountable for. The calculated first principal component 

now accounts for over 99% of the total variance from the original spectral dataset. 
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Figure 10: Cumulative percentage plot for calculated principal components 

A three dimensional scatter plot of the tissue spectra projected onto the first three 

principal components is shown in Figure 11. Studying this plot it is clearly evident 

that the first principal component gives clear separation between two sets of points, 

allowing spectra to be clustered into two main groups. To help identify the 

characteristics within the data that cause this separation, the loadings of the principal 

components can be examined. These can be described as the principal component 

axes, or eigenvectors, as functions of wavelength. More simply, they highlight the 

weights that are given to each spectral data point in each of the original spectra. 

Figure 12 displays the loading plot for the first principal component in our analysis. 
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Separation between samples can normally be identified in a loadings plot by the 

appearance of a strong positive or strong negative weighting at a point in the 

spectrum where the difference is occurring. Examining the loadings plot in our 

example, strong negative and positive weighting occurs at 1650 and 1600 cm- l 

respectively. This clearly indicates that the spectra are being clustered dependent 

upon the position of the band in this region of the spectrum. 

Principal component analysis can also be utilised for imaging purposes. From a 

statistical point of view, spectroscopic data with familiar features will have high 

correlations with each other, and vice versa. Therefore, an image can be constructed 

for each PC by applying a false colour weighting to each spectrum contained within 

a spectroscopic map or image. By use of this colour ranking, pixels on the created 

image will now reflect the intensity or correlation of each spectrum to that PC. 

These PC images now enable the identification of regions on a sample that are best 

described by that component, providing contrast between different spatial areas. 

4.5.3 Multivariate Curve Resolution (MCR) 

The complexity of FTIR datasets has lead to the development and use of a nwnber of 

data resolutionlunmixing methods called self-modelling curve resolution. One such 

method, termed Multivariate Curve Resolution (MeR), has been successfully applied 

in the analysis of spectroscopic image data [48-50). The aim of this type of analysis 

is to separate the total spectral response from a large dataset into two factor modes, 

one that describes the pure spectra and the other the pure intensities. In more 

practical terms, these modes correspond to the real spectra of the components present 
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within the data and the uncalibrated concentration of each component for each 

spectrum. In practice this is achieved by applying Principal Factor Analysis (PF A), 

which outputs a number of factors and scores characteristic of the data. These are 

then transformed into pure spectral components and concentration scores by means 

of a constrained least-squares minimisation (LS) process. A non-negativity 

constraint was used to create factors with all positive attributes, given that a negative 

spectroscopic band would make no physical sense. The MCR solution can therefore 

enable the construction of false colour intensity images for each component factor 

produced in the analysis. The choice of factor number that best describes a dataset is 

another complex issue and can be identified by the use of indicators established in 

work by Malinowski [51,52]. The complete algorithm used for MCR analysis is 

described pictorially in the flow diagram shown in Figure 13. 

The spectral rnatrix D is decornposed into cornponent concentration 
prollles and pure spectra of each modelled cornponent 

Step 1: 

Step 2: 

Step 3: 

D = CST+E 

Detennine nu~ber 01 components contributing to D 

Find initial estirnates for C and ST 

1 
Perforrn a constrained alternating least squares 
calculation of C and ST until convergence is reached. 

Data Matrix D 

E 

WaveoUIDber c 

Figure 13: The algorithm utilised/or MeR analysis described pictorially 
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4.5.4 Unsupervised Clustering Techniques 

The aim of clustering techniques is to group a given set of unlabelled data into a 

number of predefined clusters so that data held within the same group are as similar 

to each other as possible, and data held within different groups are as dissimilar as 

possible. Algorithms used to achieve this initially convert the original or suitably 

processed experimental data into a matrix of dissimilarity or similarity measures 

[53]. These measures now describe the difference or similarity that is found between 

each sample held within a dataset. The algorithm then proceeds to cluster the data 

into groups so that a minimal separation is found between data held within a cluster, 

whilst also ensuring a maximum separation between clusters is achieved. It must be 

noted that the output from clustering processes, such as cluster membership or 

number of clusters produced, is dependent upon the similarity measure used and how 

they are applied. A full understanding of these processes is therefore essential to 

allow meaningful interpretation of the results. 

4.5.4.1 Hierarchical Cluster Analysis (HCA) 

Hierarchical Cluster Analysis (HCA) is a common technique employed for pattern 

recognition. This method utilises a similarity or distance matrix to cluster similar 

objects that are held within a dataset. A common similarity or association coefficient 

utilised for analytical analysis is the correlation coefficient. Alternative measures for 

similarity are rarely used being poorly defined and difficult to apply mathematically. 

Such measures will therefore not be discussed being inappropriate for spectroscopic 
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data analysis. Only similarity measures that best suit spectroscopic data will be 

discussed in this section. To help fully understand and visualise the basic steps of 

hierarchical clustering, a simple example using correlation coefficients as a similarity 

measure will be used to demonstrate the procedures involved. To appreciate how a 

correlation coefficient matrix is fIrst calculated and subsequently utilised for cluster 

analysis, we must fIrst understand the basic principles of covariance. The data 

shown in Table 3, displaying trace metal concentrations of soil sampled from 

different locations, will act as a simplifIed example to demonstrate how these 

processes work in practice. 

A B C 0 E F 

Cadmium 10.00 9.80 9.70 3.00 2.70 2.60 

Copper 3.00 2.80 2.60 7.50 7.40 7.20 

Lead 4.00 3.90 3.80 8.00 7.80 7.80 

Nickel 4.10 4.00 3.70 9.50 9.20 9.30 

Magnesium 3.00 2.80 2.60 9.80 9.70 9.70 

Table J: Trace metal concentration of soil sampled from 6 alternate locations (A -
F), expressed in mg kg-I. The measurements in this matrix were manually generated 
to aid visualisation of a 2 cluster pattern within the data. 

For a single variable, the distribution around the mean value is classically described 

by its variance (Equation 2). By expanding the calculation to assess the shared 

variability between variables, using a common mean, the spread of multivariate data 

can also be determined. This measure of interaction between variables is more 

commonly termed covariance and is defIned in Equation 3. To help understand the 

steps involved in this calculation, the covariance between site A and B is described in 

Table 4. The full variance-covariance matrix for our example dataset is shown in 

Table 5 and can be said to have diagonal symmetry, whereby the covariance between 
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site A and B is identical to that between site B and A. Variance for each variable, or 

sample site in this case, lie along the diagonal of the matrix. 

(Equation 2) 

COljk == :teXlj -Xjm)ex,t -Xtm ) / n-l 
i=l 

(Equation 3) 

1: Xm S 

A(X I) 10.00 3.00 4.00 4.10 3.00 24.10 4.82 2.9431 

B (XI) 9.80 2.80 3.90 4.00 2.80 23.30 4.66 2.9312 

XI-X 1m 5.18 -1.82 -0.82 -0.72 -1.82 

XI-X 1m 5.14 -1.86 -0.76 -0.66 -1.86 

(X I - X im)(X i-X 1m) 26.6252 3.3852 0.6232 0.4752 3.3852 34.4940 

CovarianceAB = 34.4940 14 = 8.6235 

Table 4: The calculation of covariance between Site A and B 

A B C 0 E F 

A 8.66 8.62 8.75 -7.34 -7.54 -7.60 

B 8.62 8.59 8.71 -7.28 -7.48 -7.53 

C 8.75 8.71 8.85 -7.43 -7.63 -7.69 

0 -7.34 -7.28 -7.43 7.44 7.56 7.73 

E -7.54 -7.48 -7.63 7.56 7.69 7.85 

F -7.60 -7.53 -7.69 7.73 7.85 8.03 

Table 5: Variance-covariance matrixfor the sample sites shown in Table 2. 
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The next step in the process is to convert the covariance values into correlation 

coefficients. This is an important and necessary step as it allows the interrelation 

between variables to be calculated, which are independent of the measurement units 

used to describe them. This linear measure of interdependence between two 

variables is defined by: 

Corr jt = COV jt / (S J X S t ) (Equation 4) 

Correlation coefficient values always lie between -1 to + 1 as the covariance can 

never exceed the product of the standard deviations. A positive value close to 1 

indicates that the two variables have a strong interdependence and increase together 

at a similar rate. However, the opposite is true for a negative value close to -1. In 

this case, as one variable is increasing the other is moving in the opposite direction 

and decreasing. Values close to zero on the other hand indicate that the variables are 

linearly independent from each other. The full correlation matrix for the sample 

dataset is shown in Table 6. 

A B C 0 E F 

A 1.0000 0.9998 0.9996 -0.9137 -0.9235 -0.9109 

B 0.9998 1.0000 0.9997 -0.9102 -0.9205 -0.9074 

C 0.9996 0.9997 1.0000 -0.9154 -0.9253 -0.9125 

0 -0.9137 -0.9102 -0.9154 1.0000 0.9995 0.9999 

E -0.9235 -0.9205 -0.9253 0.9995 1.0000 0.9994 

F -0.9109 -0.9074 -0.9125 0.9999 0.9994 1.0000 

Table 6: Correlation matrix calculatedfrom the example dataset 
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Now that the correlation matrix has been correctly calculated, the algorithm can now 

start the clustering process. Initially the variables with the highest correlation are 

sort as these will form the centres of the clusters and have been highlighted in bold 

for each column in the matrix (Table 6). Studying these values it can be seen that 

sites D and F form the highest correlated pair with a shared correlation of 0.9999. 

The second highest mutual correlation is found between sites A and B with a value of 

0.9998. These two pairs of sites will therefore form the centres of our clusters and 

can be graphically displayed as a dendrogram shown in Figure 14a. At this point, 

sites D and F, and A and B, are now thought upon as being one object having 

associate properties. Thus further similarities between these clusters and other 

objects are calculated by averaging their combined values. The newly calculated 

correlation matrix utilised for the next stage of the clustering process is shown in 

Table 7. Calculation of the correlation coefficient between new objects DF and AB 

was therefore achieved by the summation and subsequent averaging of the individual 

correlations between D to A, D to B, F to A and F to B. This process whereby new 

objects are assigned to a cluster giving a new reduced correlation matrix is repeated 

until all data has been grouped forming a tree diagram. In our example, two more 

iterations are required to cluster all of our data, producing the final correlation matrix 

shown in Table 8. 

AB OF C E 

AB 1.0000 -3.6420 -0.9997 -0.9220 

DF -3.6420 1.0000 -0.9140 0.9995 

C 0.9997 -0.9140 1.0000 -0.9253 

E -0.9220 -0.9995 -0.9253 1.0000 

Table 7: Recalculated co"elation matrix after first iteration of clustering 
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ABC OFE 

ABC 1 -0.915 

OFE -0.915 1 

Table 8: Final co"elation matrix produced by clustering process 

As can be seen in the dendrogram shown in Figure 14b, during the second iteration, 

site E has joined cluster DF and site C joins cluster AB. The fInal dendrogram 

shown in Figure 14c depicts the final step whereupon all objects are linked together 

completing the tree diagram. This clearly enables visualisation of the similarity 

between objects and gives detail to the underlying structure of the dataset. The 

agglomerative clustering process is completely unsupervised and requires only the 

information contained within the dataset and subsequent similarity matrices to be 

completed. However, the division of objects into separate classes is fInally defined 

by "cutting" the completed dendrogram. This is a subjective process and requires 

informed user input to help identify the optimal amount of clusters that best 

characterise the patterns held within the data. In our worked example, the optimal 

amount of clusters that best describes our dataset is most likely to be two, with the 

dendrogram being cut at the point where DFE connects to ABC having a negative 

correlation between them (Figure 14c). The differences between data held within 

these two clusters could additionally be visualised by plotting both the original 

dataset and the average values of the individual clusters. 

4-40 



(a) 

D~ 
F 0.9999 

A 

R---- -..J 0.999R 
...................................................................................... .............................................................................. .. 

(b) 0--- -, 

F-----' 

F,---------- ----' 0.9995 

A------, 

R------' 

c-------~ 0.9997 
............... r--------:---:-------:"~--------. ................................................. . 

(c) Cutting point that 
subsequently 
creates two main 
classes 

-0.9150 

Figure 14: Dendrograms describing the three stages of hierarchical clustering for 
our example dataset. iterations (a) - (c) describe the correlation and subsequent 
links calculated in tables 4-6 respectively. 
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Although the correlation coefficient can be an effective similarity measure for 

clustering techniques, it is only a measure of the co-linearity between variables of the 

data. Thus non-linear relationships that may exist between variables are not taken 

into account, which could ultimately enhance characterisation and further pattern 

recognition. A more practical method that can allow such relationships to be 

considered is to use the distance that exists between objects as a measure of their 

similarity. Each object or datum within a dataset is ultimately characterised by the 

value of its individual variables. Objects can therefore be alternatively represented 

as a single point within multidimensional space, each dimension or axes 

symptomatic to a variable of the data. Distance measures between these objects in 

multidimensional space can therefore be calculated and a distance matrix similar to 

that of a correlation matrix produced and used for clustering. A number of distance 

measures have been proposed for clustering processes, but the most commonly 

referenced and adopted in this study is the Euclidean distance. This can be defined 

by: 

(Equation S) 

The calculated distance matrix for a given dataset is initially clustered in a similar 

fashion as previously described, whereupon the two most similar objects are linked. 

However, in this circumstance, the objects that display the smallest separating 

distance are then paired and a cluster centre fonned. At this point in the algorithm, a 

variety of different metrics can be utilised to recalculate the between cluster 

distances and subsequent reduced distance matrix [54-56]. In our studies, the Wards 
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algorithm was applied having gained a large amount of support in the literature 

[26,36,57], and has a tendency to produce compact clusters with large between 

cluster distances [58]. The Wards algorithm can be defined as [58]: 

DC(AB) = (al X DCA) + (a j X DcB )+ (f3x DAB) (Equation 6) 

where: DAB is the distance found between objects A and B 

DC(AB) is the distance between object C and new object AB 

The individual coefficients Ub Uj and p are defined as: 

(Equation 7) 

(Equation 8) 

(Equation 9) 

Whereby the number of objects contained within cluster x equals Nx• 

The algorithm can then henceforth repeat these two steps until all objects contained 

in the dataset have been clustered. 
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4.5.4.2 Fuzzy C-Means Clustering (FCM) 

An alternative method that can be utilised for clustering data is to employ a 

numerical routine that aims to optimise the intra-cluster distance. Such techniques 

utilise an iterative algorithm to continuously update the position of randomly selected 

initial cluster centres, until a minimum improvement in the clusters compactness is 

observed or no objects can be further reassigned. These types of iterative algorithm 

are best described by again imagining our data as single points that exist in 

multidimensional space, whereupon each dimension defines a variable of the data. 

To help fully understand the steps involved in this process, a random 2D data matrix, 

as shown in Figure 15a, will be clustered into 4 groups as an example. Initially, all 

objects in the 2D matrix are randomly given a cluster membership to 1 of the 4 

predefined clusters (Figure 15b). Centre points for each cluster within this space are 

then computed (Figure 15c). The next step in the algorithm is to calculate the 

distance that exists between all objects in the dataset and the centre points. Using 

these measures, each object in the dataset is reassigned to the cluster with the 

minimum separation. Subsequently, new centre points for the clusters can be 

computed allowing the distance between all objects and these centres to be 

recalculated (Figure 15d). If an objects closest centre point in space no longer 

belongs to the cluster it is presently a member of, the object will change its 

membership to the cluster that has the closet centre point. This iterative process is 

repeated until no objects remain that have not been reassigned or a minimum 

improvement in cluster density has been reached (15e). 
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Figure 15: Fuzzy clustering of random 2D matrix (a) . (b) - (e) describe random 
initialisation, find initial centres, recalculation of fuzzy centres and termination steps 
respectively. 
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Fuzzy clustering algorithms such as FCM have shown distinct advantages over more 

traditional techniques that use crisp and probabilistic methods to define cluster 

membership [59-62]. Rather than using a two-class system to define cluster 

membership (0 or 1) as described above, a membership function is employed that 

defines the degree of membership of each object to each cluster. FCM then clusters 

the data by minimising the objective function: 

n c 

J([1,V) = ) )~j)m IIXj-vj W 
i=1 j=l 

(Equation 10) 

Where X = {X I ,X2, ••• xn } is the set of data, }lij represents the membership degree of 

an object Xi to the cluster centrevj • Ilij must also satisfy the following conditions: 

c 

L J-lij = 1 , t:li = 1, ... n 
j=l 

(Equation 11) 

(Equation 12) 

The closer the object Xi is to the cluster centre vj , the higher the value}lli will be, 

and vice versa. II Xi - V j II represents the Euclidean distance between Xi and v j. The 

parameter m is used to control the fuzziness of the membership for each object, m > 

1. There is no theoretical basis for the optimal selection of m, but a value of m = 2.0 

is conventionally chosen. U = (Ilij ) n"e is a fuzzy partition matrix and V = {VI' v2 , ••• V c} 

is a set of cluster centres. FCM can be described by the following steps [59]: 
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1) Initialize membership matrix J.lij with random value, satisfying conditions (II) 

and (12). 

2) Compute the fuzzy centres Vj for the defined amount of clusters using 

(Equation 13) 

3) Calculate the new distance dij between each object and the fuzzy centres 

d;j 91x; -Vj II,Vi =~ ... f1, Vj =l, .. C (Equation 14) 

4) Update the fuzzy membership JJij for each object to each cluster 

1 
If 

Else (Equation IS) 

5) Repeat step 2) to 4) until a predefined minimum J value is achieved. When the 

analysis has come to completion, each object is assigned to a specific cluster for 

which the degree of the membership is maximal. 
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In this study, we used set parameters for the FCM analysis. The maximal number of 

allowed iterations was set to 100, the minimum objective function value was 

I.Ox 1 0·', and the number of clusters was subjectively increased from 2-8. 

4.5.4.3 Combination of PCA and FCM clustering 

As mentioned in section 4.3.2, the second type of application PCA can be used for is 

to reduce the dimensionality of a dataset. By representing the data on new 

orthogonal axes that are uncorrelated to each other, and account for a maximal 

amount of variance, the data can now be described by a reduced number of variables 

or PC's, without a significant loss of information. We have applied this compression 

technique in a newly developed algorithm that combines both PCA and FCM 

Clustering. Traditionally FCM Clustering has been directly applied to large 

vibrational datasets. In our experiments, we have used PCA to reduce the 

dimensionality of our datasets so that spectra are now described by only the first 10 

PC's, normally accounting for 95% and above of the total variance. FCM clustering 

is then directly applied to these datasets. By reducing the amount of dimensions, the 

computation time, especially for very large datasets, is dramatically reduced. 

4.5.4.4 Novel Automated FCM Merge Method Algorithm 

Although clustering techniques have shown the ability to group tissue spectra 

according to their clinical diagnosis, the number of clusters (i.e. types or subtypes of 

tissue) that best describe a sample is still an unknown feature and usually requires 
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human input. A clustering method that could automatically cluster different tissue 

types would therefore be of huge benefit, providing a more convenient and efficient 

approach in practice. 

In our previous work, a fuzzy clustering algorithm that featured simulated annealing 

(SAFC) was used to automatically detect the 'optimal' number of clusters that would 

describe tissue spectra collected from several different tissue types [46,63]. The 

algorithm utilised initially choose a random number of clusters, and then traversed 

the search space using three different neighbourhood operations: i) perturb centre, ii) 

delete centre and iii) split centre. The final clustering result was therefore dictated 

by the data structure in multidimensional space that gave the smallest cluster validity 

index value. The experiments showed that the algorithm obtained the identical 

number of clusters as defined by clinical analysis in four out of the seven datasets 

analysed. Although these results were promising, the algorithm did over estimate the 

number of clusters in almost half of the experiments and could become time 

consuming with larger datasets. With the aim of overcoming this problem, in our 

latest work [64,65], a refined FCM based clustering algorithm was used to find the 

'optimal' number of clusters. But while the algorithm was better suited for larger 

datasets, the analysis again identified an excessive number of clusters in a number of 

cases. This was partly due to the FCM algorithm and cluster validity index, where 

all distances between data points and cluster centres are calculated using their 

Euclidean distance. This means that when the shape of the clusters were 

significantly different from spherical, the clustering and validity measures were not 

effective. However, the complexity and range of the different cell types (e.g. pre­

cancerous and mature cancer) may also lead to an excessive number of clusters being 
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identified. At this stage of our study, we only want to cluster spectra into groups that 

can be identified by pathology and therefore assess natural variation within these 

defined tissue types. In order to achieve this goal, we need to combine the clusters 

that have the most similar characteristics, e.g. the suspected pre-cancerous and 

mature cancerous cell types, as they may exhibit similar properties to one another 

even though they are at different stages of malignancy. This information may be 

contained in the existing infrared spectra or data analysis. A new method is therefore 

proposed to automatically merge greatly similar clusters and detect a more suitable 

clustering structure using the characteristics of the tissue spectra. 

To help describe this newly proposed technique, a problematic dataset previously 

analysed [64,65], will be used as an example. In this particular dataset, 159 

cancerous (from different areas of cancerous tissue), 72 normal and 45 reticular 

tissue spectra were collected and analysed via FCM clustering. When the number of 

clusters was set at three to match the clinical analysis, the clustering results did not 

match the clinical diagnosis (possibly due to the Euclidean distance measurement in 

FCM). Some cancerous spectra were incorrectly clustered into the same group as 

normal tissue spectra. When we subsequently applied the automatic FCM based 

clustering algorithm, four clusters were obtained. However, two of the four clusters 

corresponded to one type of tissue (cancerous). In the remaining two clusters, the 

overwhelming majority of the data was correctly classified into their corresponding 

clinical group (only two spectra were misclassified). These results are shown in 

Figure 16. The excessive number of clusters may be caused by the fact that the 

cancerous spectra, which were taken from diverse areas of tissue, may contain cells 

at different stages of the cancer (e.g. pre-cancerous and mature cancer). As 
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mentioned before, at this stage, we only wish to cluster cell spectra that have the 

same clinical diagnosis. 
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Figure 16: The example spectral dataset loaded onto the first two principal 
components after applying the automatic FCM model selection algorithm. Cl-C-I 
describe the cluster numbers respective/yo 

Previously, many algorithms have been proposed to merge clusters [66,67]. The 

different approaches can generally be divided into two groups. The first group are 

those that select the clusters which are ' closest' to each other [66] and the second, 

those that choose the 'worst' two clusters Gudging by some cluster validity function) 

[67]. When applying these principles to the dataset shown in Figure 1, the two 

closest clusters within the existing four clusters are C 1 and C2 (see the distance 

between each cluster centre). Generally, a good cluster is defined by the property 
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that data points within the cluster are tightly condensed around the centre 

(compactness). In this dataset, C 1 and C2 are more compact than the other two, so 

the worst two clusters are C3 and C4. However, the two clusters that should be 

merged together are Cl and C3 (both are cancer). Hence, neither of these 

approaches for merging clusters is suitable for solving the problem here. Therefore, 

we looked for a new solution based on examining the original infrared spectra rather 

than searching for a relationship using the data structures in the PCA plot. Plotting 

the mean spectra from the separate clusters allows the major differences between 

them to be more clearly visualized. The similarity between clusters is more obvious 

at the wavenumber where the biggest difference between any two mean spectra is 

located. Our proposed automated merge clustering method is based on this 

observation and can be divided into two main stages. The first stage is to discover a 

reference wavenumber which the cluster merging process will use. The second step 

is to repeatedly determine the most similar clusters and merge them, until certain a 

termination criteria has been reached. In the following section the two steps are 

described in detail. 

Step1: Determine a reference frequency 

The reference frequency is defined as the wavenumber at which the biggest 

difference between any two mean spectra is found. The full procedure of 

determining this frequency is: 

1) Obtain the clustering results from the automatic FCM based clustering algorithm. 

2) Calculate the mean spectra Aj for each cluster, 

(i=l...c) (Equation 16) 
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where Ni is the number of data points in the cluster i ; Ai} is the absorbance of the 

spectrum for each data pointj in cluster i ; c is the number of clusters. The size of 

A, is p , the number of data points in each spectrum (each mean spectrum is a 

vector of p elements). 

3) Compute the vector of pair-wise absolute differences Dij between aJl mean 

spectra, 

Dij = JA; - AjJ (i=1 .. . c, j =1 .. . c) (Equation 17) 

4) Find the largest single element, dmax, within the set of vectors D. 

5) Determine the frequency corresponding to the maximal element dmax. 
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C2 normal) 

C3 (cancer) 

C4 (reticulum) 

See Figure 18 

2000 2500 3000 3500 

Wavenumber (cmo1) 

Figure 17: Mean infrared spectra calculated for each cluster partitioned by the 
automated FCM clustering technique. Note the 'optimal ' validity measure was 
reached when adopting a 4 cluster stricture. 
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Mean average IR spectra for the four resultant clusters are displayed in Figures 17 

and 18. The set of differences, D, between each pair of mean spectra was calculated 

using equation (17). The largest difference dmax exists between C I and C4, as shown 

in Figure 18. The wavenumber that corresponds to dis 2924 em-I . 
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Figure 18: Enlarged spectral region indicated in Figure 17. 

Step2: Automatically merging clusters 

C1 (cancer) 

C2 normal) 

C3 (cancer) 

C4 (reticulum) 

3000 

After finding the reference frequency, the next step is to choose the most similar 

clusters based on the absorbance value of each mean spectrum at this wavenumber, 

and then merge them together. As this is an iterative process, the merging procedure 
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will end when at least one of the termination criteria has been satisfied. Assume 

currently there are C mean spectra. The detailed information can be described as 

below: 

1) Obtain C absorbance values of the mean spectra at the reference frequency from 

step I, re-sort them in ascending order. 

2) Calculate the distance, dist, between these sorted absorbance values (note that the 

size of dist is now C-l) 

3) Identify the smallest distance, distmifb and find out the two most similar clusters 

which correspond to this distance. 

4) Merge these two clusters if they satisfy the merging condition: distminsaverage of 

rest of dist (without distmi,J. The average of these two clusters mean absorbencies 

is then calculated and considered as a new object to join the rest of merging 

iteration. Go back to 1. 

5) When there are only two dist left. The merging condition changes to: if the current 

distminsl/2 rest of dist or (distmin-1I2 rest of dist)/ distminSO.1, then the two 

clusters which corresponding the distmin are merged together. Again, the average 

of the two mean absorbencies is considered as a new object to replace them. 

6) The merging process stops if there are only two clusters left or no merging 

conditions are satisfied. 
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The same example dataset will be used to help illustrate this process. In Figure 19, 

A, (i = 1...4) is the mean spectral absorbance value from each obtained cluster 

respectively. ~ = 0.0045, A2 =0.0034, A
J 
=0.0041, A, =0.0028. The straight line 

corresponds to the reference frequency 2924 em-I. After sorting A, in ascending 

order, their new arrangement is A. , A
2

, A
J 

and ~ , obviously A, is the maximum 

absorbance value, corresponding to cluster el in Figure 18. Dist = {dl ' d2, d3}, it is 

then trivial to calculate d l = 0.0006, d2 = 0.0007, d3 = 0.0004, which is the diS/min. 

The average of rest of dist = (0.0006+0.0007)/2 = 0.00065 and greater than dislmin. 

This satisfies the merging condition in 4). Therefore, the two clusters which 

correspond to distmin (el and e3) are merged together. After this, the average of 

these two clusters mean spectral absorbance, A ... w =0.0043, replaces the previous two 

values. Re-sort the new array of the mean spectral absorbencies to, A" A2 and A MW ' as 

displayed in Figure 20. The corresponding new distances are dnewl = 0.0006 and 

dnew2 = 0.0009. Reference 5), distmin (0.0006) is not smaller than or equal to 112 rest 

of dist (0.00045); additionally, it does not satisfy the second condition either. Hence, 

in this situation, no merging conditions are satisfied, and so continued iteration stops 

as defined in 6). 

• • • • 

Figure 19: Schematic representation of the absorbance intensity values found at the 
reference frequency for each of the four clusters partitioned by the automated FCM 
analysis. 
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A new 

dnewl dnew2 

Figure 20: Schematic representation displaying the new distribution of absorbance 
intensities found at the reference frequency after the two of the most similar clusters 
have been merged. 

As may be noticed, the merging condition in 5) is different from the one when there 

are more than two dist left, as depicted in 4). This is because when there are only 

two dist (3 clusters) left, if the same merging condition as in 4) is used, th.is may lead 

to two clusters being merged in which their corresponding mean absorbance distance 

is slightly less than and nearly equal to the other distance. For example, in Figure 21, 

if d2 is a slightly less than d\, then clusters b and c will be merged together. Visibly, 

it is not convincing. In order to alleviate this situation, the merging conditions 

described in 5) are pursued. For example, in Figure 22, if d2 is smaller than half of dl 

then cluster b and c are merged together. 

a 

• 
b c 

Figure 21: Schematic representation showing the merging process when there are 
two dist left (type 1). 
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a b c 

e 

Figure 22: Schematic representation showing the merging process when there are 
two dist left (type 1). 

4.5.4.5 Spectroscopic Cluster Imaging 

As part of this study, IR spectroscopic maps have been collected from a variety of 

different tissue sections. In each instance, a parallel tissue section was cut and 

stained in the conventional way to allow diagnosis via histology. Photomicrographs 

could then be taken from the same region upon the stained section where a spectral 

map had been collected. The clusters created during the analysis should contain 

spectra from histological regions that display comparable spectral characteristics. In 

contrast, spectra contained in different clusters should exhibit spectral features 

characteristic of different tissue types. False colour "cluster images" can thus be 

assembled from the same region and compared directly against these stained images. 

By assigning each cluster a colour, these colours can then be plotted as pixels at the 

x, y coordinates from which the spectrum was collected. Therefore, pixels with the 

same colour in the false image are spectra that were grouped together into the same 

cluster. 
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