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Abstract

Gas-liquid pipe flows are extremely important in many industries, one of

which is the oil/gas industry which is where the motivation for this work

comes from. In subsea natural gas pipelines the gas is compressed before

being pumped through the pipe at high pressure. As it flows through the

pipe some of the gas condenses into a low density mixture of hydrocarbon

liquids. When gas and liquid flow together there are several possible flow

regimes that can occur depending on the velocity of the gas and liquid,

one of which is slug flow where the liquid forms a series of plugs (slugs)

separated by relatively large gas pockets. The occurrence of slug flow is a

major concern in the oil and gas industry due to the difficulty of dealing

with large changes in the oil and gas flow rates at the exit of the pipe.

We develop a hydraulic theory to describe the occurrence and structure

of slugging in two-layer-gas-liquid flow generated by prescribed, constant,

upstream flow rates in each layer. We will investigate how small-amplitude

disturbances affect the flow in order to study the stability of spatially uniform

solutions. We will then consider the existence of periodic travelling wave

solutions numerically in order to investigate the influencing factors that

may lead to a transition from stratified flow to slug flow. We then solve

the governing equations numerically as an initial value problem in order

to improve our understanding of how and why slugs form and are able to

compare our solutions to those predicted by the periodic travelling wave

theory. Finally, we investigate the effects of non-horizontal channels with

small, slowly varying inclination on the development of slug flow by re-

writing our equations in terms of a curvilinear co-ordinate system. From

this we find that the height of the layer of liquid increases with the angle

of the channel and our solutions are significantly different to those in the

horizontal case.
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1
I N T R O D U C T I O N

1.1 S L U G G I N G I N N AT U R A L G A S P I P E L I N E S

Gas-liquid pipe flows are extremely important in many industries, one of

which is the oil/gas industry which is where the motivation for this work

comes from. In subsea natural gas pipelines the gas is compressed before

being pumped through the pipe at high pressure, resulting in a highly

turbulent flow. As it flows through the pipe some of the gas condenses into

a low density mixture of hydrocarbon liquids. When gas and liquid flow

together there are several possible flow regimes that can occur depending

on the velocity of the gas and liquid. The three main types we are interested

in are:

• stratified - where the liquid flows along the bottom of the pipe with

the gas flowing separately above it;

• bubble flow - where the gas moves as small dispersed bubbles through

the liquid;

• slug flow - where the gas is contained in large bubbles, separated by

liquid slugs which locally fill the pipe.

A major concern in the oil and gas industry is the occurrence of slug

flow due to the difficulty of dealing with large changes in the oil and gas

flow rates at the exit of the pipe and the potential of this damaging the
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1.2 literature review

processing plant facilities. In order to combat this, the pipelines are often

designed in such a way that, although they may reduce slugging, results in

a compromise of efficiency and/or size of the processing plant. Although

there has been a lot of research on the occurrence of slug flow and the

transition to it from stratified flow, there is still a lot that has not been

explained.

Throughout this thesis we will refer to:

• roll waves – as defined by Dressler [50], as any wave formation,

periodic in distance, that occurs when a liquid flows turbulently down

an open inclined channel, where the wave profile progresses downstream

at a constant speed without distortion and such that the velocity of the

water particles is everywhere less than the wave velocity;

• slugs – as any wave which is significantly larger than the roll waves

around it and which nears the top of the channel.

1.2 L I T E R AT U R E R E V I E W

The study of the formation of slug flow regimes in two-layer hydraulic flow

has mainly been aimed at investigating the point at which a stratified flow

becomes unstable via linear stability theory, better known as the Kelvin-

Helmholtz instability. This is done by linearising the non-linear equations

and considering the effect of a small disturbance to the flow. The use of

Kelvin-Helmholtz instability theory has shown that, in order for slugs to

form, the pressure above a wave, caused by the Bernoulli principle, must be

large enough to overcome the stabilising effect of gravity. However, Kelvin-

Helmholtz instability theory assumes that the liquid is inviscid and neglects

surface tension. As a result, the instability that arises grows exponentially

as k→ ∞, where k is the wave number, known as the Hadamard instability

(Joseph and Saut [95]).
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1.2 literature review

Classical Kelvin-Helmholtz instability theory has been extended to include

viscous terms using the theory of viscous potential, see Funada and Joseph

[71], however this assumes that the shear induced by the gas flow is negli-

gible. By including the liquid viscous and inertia terms in the equation, they

can be evaluated using pseudo-steady state approximations relating them

to the flow variables, see Lin and Hanratty [115]. A comparison of different

linear stability methods against experimental results is given by Mata et al.

[122].

Although linear stability methods can predict the instability of an interface,

it is necessary to understand non-linear effects on the growth of interfacial

waves to determine whether slug flow will develop. In order to investigate

these non-linear effects it should be noted that the governing equations of a

two-layer hydraulic flow, as seen in Needham et al. [132], have a structure

similar to that of roll waves down inclined channels. Beginning with the

equations from shallow water theory, using the Chézy formula for turbulent

resistance, it can be shown that no continuous solution which is periodic in

space exists. However one continuous solution does exist which can be

used as a basis for constructing discontinuous periodic solutions joined by

shocks, see Dressler [50].

Now consider the same starting equations as Dressler [50], but with energy

dissipation expressed through tangential shear and a term expressing the

effect of energy dissipation by shearing normal to the flow. By linearising

the governing equations we can find a necessary and sufficient condition

on the Froude number for which the uniform flow is temporally stable,

but unstable otherwise. When the flow is temporally unstable and consid-

ering the effect of a small perturbation to the flow, by the Hopf bifurc-

ation theorem, it can be shown that periodic solutions exist (Needham and

Merkin [131]). Hence we may assume that periodic solutions will also exist

for the governing equations of a two-layer hydraulic flow, see Needham

et al. [132].
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1.2 literature review

In order to gain a full understanding of the underlying causes of slug

flow, we must consider the full non-linear equations. Previously this was

not possible; however, due to advances in modern computing we are now

able to solve the governing equations numerically. This area is dominated

by two distinct methods; slug tracking and slug capturing, and has led

to the development of commercial codes. In slug tracking models, such

as that developed by Barnea and Taitel [18], slug statistics are used at the

inlet and the slug fronts and tails are tracked in order to investigate the

effects on the slugs as they propagate downstream. However, these models

do not provide an insight on how the slugs are formed. This led to the

development of slug capturing models, such as that by Issa and Kempf [87].

These models do not require any slug statistics data and instead the slugs

develop automatically, allowing the user to investigate how the slugs form

as well as investigating the slug characteristics.

1.2.1 Semi-Mechanistic Models

Due to the structure of slug flow being periodic in neither space nor time, an

exact solution to the continuum equation is out of the question. Griffith and

Wallis [75] and Nicklin et al. [134] were the first to identify the importance

of the motion of the large gas pockets created in slug flow. This led some

authors to use experimental data in order to design approximate methods

for predicting slug flow characteristics, the most commonly used being

those by Beggs and Brill [20] and Dukler et al. [55, 56]. This approach

was successfully used for many years, however it did not explain how or

why slug flow developed.

Early mechanistic models were designed using the "unit-cell" approach,

developed by Wallis [182], where a control volume encompassing the liquid

slug and gas pocket of a fully evolved slug flow regime was analysed. A

moving frame of reference is then used which travels at the speed of the cell,

in order for a steady-state analysis using mass and momentum balances to
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be completed. This approach was developed for horizontal flow by Dukler

and Hubbard [54] and Nicholson et al. [133]; inclined flow by Bonnecaze

et al. [29]; vertical flow by Fernandes et al. [63], Orell and Rembrand [143]

and Sylvester [169]; and unified models were developed by Gomez et al.

[72, 73], Petalas and Aziz [144] and Taitel and Barnea [170].

Dukler and Hubbard [54] developed the first comprehensive unit-cell

model for horizontal flows. They used extensive visualisation studies which

included the use of fast shutter speed cameras to take both still photo-

graphs and videos of the flow. From these they formulated a description

of the conditions for the initiation and dissipation of slug flow, for which

they provided a qualitative explanation and derived their hydraulic model

for predicting the structure of slug flow. Their model consisted of twelve

independent equations and sixteen variables and, although it appeared

complex to use, could be solved easily.

Taitel and Barnea [170] considered various options for modelling the

hydrodynamic parameters and introduced a unified approach for the pressure

drop in order to develop a model that was applicable for the horizontal,

inclined and vertical cases. They present their approach in a way they view

as being the best combination of engineering accuracy and ease of calcu-

lation, while reviewing previous work on the topic at each stage. The calcu-

lation procedure for their model contained several options for the user, to

be chosen appropriately for the specific use required.

More recently, Gomez et al. [72] developed a unified model that was

applicable to inclination angles from horizontal to upward vertical flow.

Their model consisted of a unified flow pattern prediction model and unified

individual models for each flow regime. Based on the work by Taitel and

Barnea [170], Gomez et al. [72] developed a simpler slug flow model that

avoided the need for numerical integration along the liquid film region.

They compared predictions from their slug flow model to data sets from

Felizola and Shoham [62], Nuland et al. [139] and Schmidt [156] and found

them to be sufficiently accurate for practical applications.

5
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Figure 1.1.: The co-ordinate system.

An alternative approach, the "statistical cellular model", was developed by

separating the flow into two flow patterns, the separated and the dispersed

flow regions, then taking the statistical averages of the physical properties in

each region. The dependent variables and the characteristics of the slugs can

then be predicted using conditional averaging of the conservation equations,

see Fabre and Liné [58], Fabre et al. [59, 60], Ferschneider [64].

The developments made through steady-state analysis improved the ability

to predict some of the important flow parameters compared to the approx-

imate methods developed empirically by authors such as Beggs and Brill

[20] and Dukler et al. [55, 56]. However, they do not provide information

on the formation of slugs, or on the statistics of slug lengths or propagation

speeds. It has also been shown that they are not necessarily capable of

capturing certain flow phenomenon, such as the dissipation of slugs in

downhill flow, see Taitel et al. [174].

1.2.2 Kelvin-Helmholtz Instability

The classical Kelvin-Helmholtz instability is the instability of the uniform

flow of inviscid and incompressible liquid and gas through a horizontal,

6
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infinite channel. The interface may be wavy with wavelength λ, but has

average liquid flow height h and average gas flow depth a− h, where a is

the height of the channel, as shown in Figure 1.1. Using the long wavelength

approximation and neglecting surface tension, Kelvin-Helmholtz instability

occurs when

(vg − vl)
2 > g(ρl − ρg)

(
a− h

ρg
+

h
ρl

)
, (1.2.1)

for mean velocity v, density ρ, gravity g and subscripts l and g for the liquid

and gas respectively. Assuming ρg � ρl and vl � vg, this simplifies to

v2
g > g(a− h)

ρl − ρg

ρg
. (1.2.2)

By introducing, as suggested by Wallis [182],

j∗g = vg
a− h
a
√

ga

√
ρg

ρl − ρg
, (1.2.3)

the dimensionless volumetric flux of the gas, and

α =
a− h

a
, (1.2.4)

the void fraction, (1.2.2) becomes

j∗g > α3/2. (1.2.5)

Many authors, as with the original Kelvin-Helmholtz instability analysis,

assumed that viscosity and surface tension could be neglected, see Kordyban

and Ranov [110], Mishima and Ishii [126], Taitel and Dukler [172]. Wallis

and Dobson [183] explored experimentally when uniform flow transitions

to a slug flow regime and found that the instabilities occur for

j∗g > 0.5α3/2. (1.2.6)

They concluded that the difference between (1.2.5) and (1.2.6) is probably

due to (1.2.5) being essentially based on one-dimensional theory.

7
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Kordyban and Ranov [110], based on the experiments of Baker [14] and

previous theoretical work of Griffith and Lee [74] and Suo and Griffith

[167], proposed that the transition to slug flow was due to the Kelvin-

Helmholtz instability being magnified by the proximity of the upper wall

of the channel, and hence is wave-amplitude dependent. As a result, they

consider the pressure distribution over the wave to be dependent on the

proximity of the upper wall and that slugs are an extension of growth of an

already formed wave. They proposed that, at first order approximation, the

pressure variations over the wave could be split into two components, one

in phase with the wave profile and the other in phase with the wave slope.

For simplicity, they neglected the component in phase with the wave slope

and assume that the aerodynamic-pressure is proportional to the surface

displacement and found the point of instability corresponded to the point

the wave speed became imaginary, which they consider to be the point of

initiation of slugs. By limiting their equation to deep water waves, assuming

ρl � ρg and neglecting surface tension their stability criterion simplifies to

(vg − vl)
2 >

ρl
ρg

g
k

1
coth (k(a− h)− 0.9) + 0.45 coth2 (k(a− h)− 0.9)

, (1.2.7)

for wave number k = 2π/λ, for which a suitable value must be selected.

This led Kordyban [106] to investigate the inviscid Kelvin-Helmholtz

stability for just the crest of an existing wave. He found the instability to be

given by

K
vgc

g (a− hc)

ρg

ρl − ρg
= 1, (1.2.8)

where vgc is the gas velocity at the crest of the wave, hc is the height of the

crest of the wave and K is defined as

K = 2
∆p

ρg

(
v2

gc − v2
gt

) , (1.2.9)

for the difference between the maximum and minimum pressure over a

wave, ∆p, and gas velocity at the trough of the wave, vgt. Through experi-
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ments, Kordyban [109] found K = 1.35 as an average, however noted that

many individual waves have much larger values.

Mishima and Ishii [126] extended the work of Kordyban and Ranov [110]

by introducing the wavelength of the "most dangerous wave" in order to

determine the value of K. They considered the "most dangerous wave" to

be the one with the largest growth rate as they proposed this would be the

one that would develop into a slug. They concluded the slug criterion as

k (a− h) = 2.26, (1.2.10)

and

vg ≥ vl + 0.487
√

g (a− h)

√
ρl − rhog

ρg
. (1.2.11)

However, Lin and Hanratty [115] noted that the analysis by Mishima and

Ishii [126] shows that the "most dangerous wave" also requires the largest

gas velocity in order for there to be an instability. Hence, wavelengths that

do not grow fast may become unstable at lower gas velocities.

Taitel and Dukler [172] developed a fully predictive model for determ-

ining the flow regime transition based on physical concepts, rather than to

use experimental data as has been done by many authors (see, for example,

Kordyban and Ranov [110], Wallis and Dobson [183]). In order to use

experimental data a decision about the coordinates to be used must be

made, which Taitel and Dukler [172] considered to be a coordination of

data rather than a correlation and may not hold true when applied to data

outside of the data set being used. Instead, they developed a model based

on realistic mechanisms for transitions between flow regimes by extending

Kelvin-Helmholtz analysis to both horizontal rectangular channels and then

inclined pipes, which allowed the instability limit to be calculated for pipes

of any geometry. In order to evaluate their instability limit the liquid level

in stratified equilibrium flow, h, must be calculated. To do this they used

momentum balances in the gas and liquid phases in which the interfacial

9
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shear, τi, gas-wall shear, τg, and liquid-wall shear, τl, were evaluated using

the pseudo-steady state approximations

τi =
1
2 ρg fi(vg − vi)

2, (1.2.12)

τg = 1
2 ρg fgv2

g, (1.2.13)

τl =
1
2 ρl flv2

l , (1.2.14)

where vi is the interface velocity and fi, fg and fl are friction factors which

must be estimated (this topic will be discussed in more detail later). According

to Taitel and Dukler [172] a finite wave will grow in horizontal rectangular

channels for

j∗g >

(
1− h

a

)
α3/2, (1.2.15)

and in inclined pipes for

vg >

(
1− h

a

)√
ρl − ρg

ρg

Ag
dAl
dh

g cos θ , (1.2.16)

where Ag is the cross-sectional area of the gas, Al is the cross-sectional area

of the liquid and θ is the angle of the incline.

Note that α = (1− h/a), and if h/a = 0.5 the result is consistent with

Wallis and Dobson [183]. Taitel and Dukler [172] propose that h/a = 0.5

is a critical value for which if h/a > 0.5 a slug will form and if h/a < 0.5

annular or dispersed annular flow will develop. Their reasoning behind

this is that when suction over the crest of a finite amplitude wave causes it

to grow, the liquid it draws in must come from around it, causing a trough

to develop. If h/a > 0.5 then the peak of the wave will reach the top of the

pipe before the trough reaches the bottom, hence a slug is formed.

Although Taitel and Dukler [172] included viscous terms in order to

evaluate h in their analysis, Lin and Hanratty [115] note that the deriv-

ation of the instability limit was done using inviscid fluid theory. Hence,

in their work, Lin and Hanratty [115] included liquid viscous and inertia

10
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terms and took into account shear stresses at the gas-liquid interface and

the component of pressure out of phase with the wave height, using an

approach similar to that of Andreussi et al. [6], Hanratty [79], Hanratty and

Hershman [81]. By including these extra terms they found the wave velocity

to be greater than the liquid velocity at neutral instability rather than equal

to it as in the case for classical Kelvin-Helmholtz instability. As a result,

the instabilities occur at a lower gas velocity than (1.2.5) predicts due to the

destabilising effect of the inertia terms. They considered both turbulent gas-

turbulent liquid and turbulent gas-laminar liquid for pipe flow and channel

flow. They evaluated the gas-wall and liquid-wall shear using (1.2.13) and

(1.2.14), respectively, however instead of using (1.2.12) they evaluated the

interfacial shear using

τi =
1
2

ρg fi(vg − CR)
2, (1.2.17)

where CR is the real component of the wave velocity.

Their stability criterion for turbulent gas-laminar liquid in a channel is

given by

j∗g > Klα
3/2, (1.2.18)

with

Kl =

[
1− ΩΞ2

(1− α)3

ν4
g

νlga3

(
aαvg

νg

)3.5
]1/2

, (1.2.19)

where Ω is a function of α, fi and fg, ν is the kinematic viscosity and

Ξ =
1

60.15

(
1− α

α

)2 [
1 +

4
3

1− α

α

]
ρg

ρl
. (1.2.20)

For large νl, Kl
∼= 1 and the stability criterion reduces to (1.2.5).

Motivated by the success of viscous potential flow analysis to the Rayleigh-

Taylor instability by Joseph et al. [96], Funada and Joseph [71] used the

theory of viscous potential flow in order to apply the Kelvin-Helmholtz

instability to viscous flows where the shear from the gas is negligible. By
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considering the neutral curve, the border between stability and instability,

they found that the density and viscosity ratios

ρ̂ =
ρl
ρg

, µ̂ =
µl
µg

, (1.2.21)

for viscosity µ, have significant importance. They found that when µ̂ = ρ̂ the

marginal stability of their neutral curve is the same as the neutral stability of

the inviscid case. Moreover, the maximum critical velocity is at µ̂ = ρ̂, hence

the critical velocity for viscous fluids for which µ̂ 6= ρ̂ is smaller than that of

inviscid fluids. They found that for high viscosity liquids the stability limits

can hardly be distinguished from each other, however for low viscous fluids

there is a sharp decrease. For high-viscous fluids their work gives a much

closer stability limit to that of (1.2.5), which has also been found by other

authors (see Andritsos et al. [10], Barnea and Taitel [17]).

By taking the long-wavelength limit k→ 0, their stability criterion simplifies

to

(vg − vl)
2 > g

1− ρ̂

ρ̂

[a− (1− µ̂) h]2

a− (1− µ̂2/ρ̂) h

(
1 +

γk2

g
(
ρl − ρg

)) , (1.2.22)

where surface tension is denoted by γ. Hence, for long waves, surface

tension does not have an effect on the stability, but the effects of viscosity

are still important. By applying µ̂ = ρ̂ this is identical to (1.2.1), the inviscid

case.

Barnea and Taitel [17] noted that inviscid Kelvin-Helmholtz theory (such

as studied by Kordyban [106], Kordyban and Ranov [110], Mishima and

Ishii [126], Taitel and Dukler [172]) gave applicable results at high viscosities

and only deviates from viscous Kelvin-Helmholtz theory (such as done by

Andritsos and Hanratty [9], Andritsos et al. [10], Barnea [16], Crowley et al.

[45], Lin and Hanratty [115], Wallis [182], Wu et al. [189]), which uses the

full two-fluid model, at low viscosities. As a result, they considered not

only the condition for which a disturbance becomes unstable, but also the

rate of amplification of this disturbance. Through their analysis they found
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that inviscid Kelvin-Helmholtz theory overpredicts the result found using

viscous Kelvin-Helmholtz theory. However, in the region where the inviscid

Kelvin-Helmholtz theory is stable, but the viscous Kelvin-Helmholtz theory

is unstable, the rate of amplification of the viscous Kelvin-Helmholtz theory

is very small until the point where the inviscid Kelvin-Helmholtz theory

becomes unstable. Hence, although the inviscid and viscous cases predict

the instability at different points, the rate of amplification for both is almost

identical, which confirms the study by Barnea [16].

Mata et al. [122] compared analytical and experimental predictions by

Jeffreys [91] and [93], Taitel and Dukler [172], Lin and Hanratty [115], Barnea

and Taitel [17] and Funada and Joseph [71] with data found experimentally

by themselves, Kordyban and Ranov [110] and Wallis and Dobson [183].

They concluded that none of the theories give good agreements to the exper-

imental data as none of them are able to correctly account for the non-linear

effects without empirical data on wall and interfacial friction.

1.2.3 Shear Stresses

In order to take into consideration the non-linear effects many authors, such

as Dressler [50], Lin and Hanratty [115], Whitham [187], have expressed the

shear stresses in terms of friction coefficients. The shear stresses caused by

the friction between the moving gas/liquid and the pipe wall are directly

related to the pressure drop through the pipe. We may describe the pressure

gradient dp/dx using the dimensionless pipe friction factor

f = − D
1
2 ρv̄2

dp
dx

, (1.2.23)

where D is the pipe diameter and v̄2 is the mean horizontal velocity of the

gas/liquid. By considering the force balance (see Schlichting and Gersten
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[155]), the shear profile, τ(y), is found to be at its maximum at the wall and

is given by

τw = −D
4

dp
dx

, (1.2.24)

for subscript w denoting the value at the wall. Combining this with (1.2.23)

gives

f =
τw

1
8 ρv̄2

, (1.2.25)

which is known as the Darcy friction factor. Hence, by Newton’s law of

friction, the gas-wall shear, τg, and liquid-wall shear, τl may be expressed as

τg = µg

(
∂vg

∂y

)
y=a

=
1
8

ρg fgv̄g
2, (1.2.26)

and

τl = µl

(
∂vl
∂y

)
y=0

=
1
8

ρl fl v̄l
2, (1.2.27)

where fg and fl are the Darcy friction factors for the gas and liquid, respect-

ively. Several other definitions of the friction factor are used, such as the

Fanning friction factor

fF =
τw

1
2 ρv̄2

, (1.2.28)

which is related to the Darcy friction factor by fF = 1
4 f . In order to compare

friction factor correlations more easily we shall present them in terms of the

Darcy friction factor.

The relationship given in (1.2.23) is often called the Darcy-Weisbach equation

(Rouse [153]) and is more commonly written as

−dp
dx

= f
ρ

2
v̄2

D
. (1.2.29)

It was first presented by Darcy [47] based on his experiments on water

flowing through pipes, before being further refined by Weisbach [185].
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In order for (1.2.26) and (1.2.27) to be used, a value for fg and fl is needed.

By using similarity theory, Blasius [27] established that f was a function of

the Reynolds number, Re. From experimental data on smooth pipes he

found that

f =
0.316
Re0.25 , (1.2.30)

which is known as the Blasius formula and has been shown to be valid

for 4000 < Re < 80000. Prandtl [145] took the ideas of Blasius [27] and

applied it to data collected by Nikuradse [136] in order to find a better fit

for all turbulent Reynolds number values for smooth pipes, which led to

the relationship

1√
f
= 2 log10

(
Re
√

f
)
− 0.8. (1.2.31)

However, Zagarola and Smits [193] performed their own experiments on

a much larger data set and found a much better fit for

1√
f
= 1.88 log10

(
Re
√

f
)
− 0.131. (1.2.32)

In engineering, however, most pipes cannot be considered as smooth at

high Reynolds numbers (Schlichting and Gersten [155]). At high Reynolds

numbers the friction coefficient becomes a function of only the relative

roughness, ε/D, where ε is the height of the pipe wall roughness. Von Kármán

[181] used the data collected by Nikuradse [137] and developed the relationship

1√
f
= 1.14− 2 log10

( ε

D

)
. (1.2.33)

In the experiments carried out by Nikuradse [137], he had coated the

pipes with a uniform layer of sand covering the entire pipe interior, ε/D was

then varied by varying the diameter of the sand grains and pipes used. The

data from these experiments showed a clear trend that could be explained

by the interaction of the pipes roughness with the fluid boundary layer.

However, subsea gas pipelines do not have a uniform relative roughness,
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measurements by Colebrook and White [41] showed that in such a case

(1.2.33) did not hold. For commercial pipes Colebrook et al. [42] proposed

calculating f using

1√
f
= −2 log10

(
ε

3.7D
+

2.51
Re
√

f

)
, (1.2.34)

known as the Colebrook-White correlation, which must be solved using an

iterative method which can be time consuming. Hence Moody [129] plotted

a diagram known as the Moody Chart for which solutions to (1.2.34) could

be read from.

The Colebrook-White correlation has been widely used in engineering

since it was published (Katz and Lee [98], Massey and Ward-Smith [121]),

along with the Moody Chart. However, White [186] has stated that the

Moody Chart is only accurate to ±15%. Hence, efforts have been made to

approximate the Colebrook-White correlation using explicit formulas such

as

f =
0.25[

log10

(
ε

3.7D + 5.74
Re0.9

)]2 , (1.2.35)

which was developed by Swanee and Jain [168]. When approximations

found using (1.2.35) were compared to values from the Colebrook-White

correlation for 10−6 < ε/D < 10−2 and 5000 < Re < 108, Swanee and Jain

[168] found the error to be < 1%.

However, when Haaland [77] compared approximations found from (1.2.35)

to values from the Colebrook-White correlation he found the error to be up

to 3%. He proposed the explicit formula

1√
f
= −1.8

n
log10

[( ε

3.75D

)1.11n
+

(
6.9
Re

)n]
, (1.2.36)

for which with n = 1 gives a close approximations to (1.2.34).

Smith et al. [162] performed experiments in very smooth pipes (similar to

those used for natural gas pipelines) and found that the transition from the
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smooth to the rough regime is much more abrupt than is indicated by the

Colebrook-White correlation. In fact, they showed that choosing the friction

factor to be the maximum of that by Prandlt for smooth pipes, given in

(1.2.32), and von Kármán for rough pipes, given by (1.2.33), gives a better

approximation than the Colebrook-White correlation. Hence, for natural

gas pipelines, Haaland [77] proposed using n = 3 in (1.2.36) in order to

obtain a more abrupt transition as recommended by Uhl [177].

Similarly to (1.2.24), Taitel and Dukler [173] and many other authors used

the approximations

τi =
1
8

ρg fi(vg − vi)
2, (1.2.37)

for interfacial shear, τi, friction co-efficient, fi and velocity, vi.

By treating the gas-liquid interface as a type of wall roughness, Wallis

[182] fit four sets of liquid-film flow data using the ratio of mean film

thickness h̄ to the pipe hydraulic diameter to get the relationship

fi = 0.02
(

1 + 300
h̄
D

)
. (1.2.38)

He noted that this gave a similar relationship to that of

fw = 0.02
(

1 + 75
ε

D

)
, (1.2.39)

an approximation of wall roughness for ε/D < 0.03, implying that the wall

roughness was four times greater than the mean film thickness. However,

(1.2.38) does not accurately predict the behaviour of thicker films, for which

the relationship corresponds to smaller gas flow rates and Reynolds numbers

(Asali [12], Fore and Dukler [68], Fukano and Furukawa [70], Zabaras et al.

[192].

For a high velocity flow regime, Henstock and Hanratty [82] hypothesised

that the liquid layer may have a wavy surface which will result in an increased

drag of the gas on the liquid. Consequently, this would cause a larger

frictional pressure loss than that caused by the drag on a smooth pipe
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wall, hence the interfacial friction factor would be greater than the gas-wall

friction factor. They used several data sets from which they presented a

system of two equations based on a parameter F, which for horizontal flow

are

fi

fg
= 1 + 850F, (1.2.40)

and

h
D

=
6.59F√

fi/ fg
. (1.2.41)

By combining the these two equations we have

fi = fg

(
1 + 129

√
fi

fg

h
D

)
, (1.2.42)

from which we may write the explicit formula for fi as

fi = fg

1 +
129

2
h
D

129
h
D

+

√
4 + 1292

(
h
D

)2
 . (1.2.43)

When compared to experimental data, it was shown that although this

correlation accurately predicts the interfacial friction factor for some flows

at lower pressure, it severely overpredicts the value in higher pressure flows

(Fore et al. [69]).

Taitel and Dukler [173] suggested that fi ≈ fg and, evaluating the hydraulic

diameter in the manner suggested by Agrawal et al. [1], gave the friction

factors for turbulent flow as

f =
0.184
Re0.2 , (1.2.44)

and for laminar flow as

f =
64
Re

. (1.2.45)

However, this model fails once waves have formed due to the approximation

that fi ≈ fg. It has also been shown that the predicted value of fl from
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this model underestimates it by as much as 100%, Kowalski [111]. Similar

trends were found by Andreussi and Persen [5], Spedding and Hand [164]

and Andritsos and Hanratty [8].

Cheremisinoff and Davis [39] used the interfacial friction factor relation-

ships proposed by Cohen and Hanratty [40] in order to build a model for

turbulent liquid-turbulent gas stratified pipe flow. For small amplitude

waves they concluded that

fi = 0.0568, (1.2.46)

whereas for roll waves they gave it as

fi = 0.032 + 8× 10−5Rel. (1.2.47)

However Spedding and Hand [164] found these gave unsatisfactory results

when compared to their experimental data.

Using additional data sets obtained from Asali [12] to those used by

Henstock and Hanratty [82], Asali et al. [13] derived the relationship as

fi = fg

[
1 + 0.45Re−0.2

g

(
Reg

√
fi

8
h
D
− 4

)]
, (1.2.48)

which, although similar to (1.2.42), attempts to take into account the effects

of the laminar sublayer. They proposed that only films thicker than the

laminar sublayer would increase the interfacial friction factor above the

single-phase value, hence the subtraction of the constant 4 which is an

approximation of the laminar sublayer. Using the relationship for the gas-

wall friction factor given by Taitel and Dukler [173] in (1.2.44), i.e.

Reg =

(
0.184

fg

)5

, (1.2.49)

in (1.2.48) gives

fi = fg

[
1 +

0.45× 0.1844

2
√

2 f 7/2
g

√
fi

fg

h
D
− 1.8

0.184
fg

]
, (1.2.50)
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which can be compared roughly to the relationship proposed by Henstock

and Hanratty [82] by substituting a nominal value of fg = 0.02 to simplify

(1.2.50) to approximately

fi = fg

[
0.8 + 161

√
fi

fg

h
D
− 1.8

0.184
fg

]
. (1.2.51)

The correlation presented by Asali et al. [13] offers a good approximation

at lower relative film thickness, which is typical of the data sets used in its

derivation. However, as with the relationship proposed by Henstock and

Hanratty [82], it overpredicts the interfacial friction factor for flows with a

larger film thickness.

The effects that arise from the wavy gas-liquid interface acting like a

rough surface over which the gas, being the faster fluid, flows are from

multi-dimensional phenomenon, hence cannot be captured by a one-phase

model (Issa et al. [88]). Andritsos and Hanratty [8] proposed a relationship

based on an extensive set of experiments in horizontal pipes that accounted

for the influence of waves on both fl and fi. fg was calculated using (1.2.44)

and (1.2.45).

They observed that the ratio of fi to fg remained relatively constant until

a certain level of the superficial gas velocity, vsg = vsg,t, was reached, for

which they found

vsg,t = 5

√
ρg0

ρg
, (1.2.52)

where ρg0 is the density of the gas at atmospheric pressure. They then

proposed the relationship

fi = fg, for vsg < vsg,t, (1.2.53)

fi = fg

[
1 + 15

√
h
D

(
vsg

vsg,t
− 1
)]

, for vsg ≥ vsg,t. (1.2.54)

Spedding and Hand [164] and Shi and Kocamustafaogullari [159] showed

that this correlation proved adequate at predicting the film height and pressure
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drop even when the gas-liquid interface is far away from flat, regardless of

the fluid properties and pipe diameter. However, it was found to underes-

timate the friction factors at high liquid flow rates and overestimate them at

low liquid flow rates. Furthermore, since vsg,t decreases significantly as the

pressure is increased and the friction factor is inversely proportional to vsg,t,

for higher pressure flows (1.2.54) gives unreasonably high friction factors

(Tzotzi and Andritsos [176]).

Foley and Vanoni [67] performed experiments from which the onset of

the instability to the flow occurred much earlier than that predicted when

using empirical formula. Hence, some authors (see, for example, Demekhin

et al. [49], Tseluiko and Kalliadasis [175]) have proposed modelling the

stresses using Reynolds stresses combined with the van Driest formula

for the Prandtl’s mixing length. Although this method may increase the

accuracy of our model, it also adds an additional layer of complexity to our

already very complex system. Therefore, in order to simplify our model

and make our analysis easier, we will express the shear stresses in terms

of friction coefficients as has been commonly used in previous work and

shown to achieve accurate results (see, for example, Bonizzi et al. [28], Issa

and Kempf [87], Kjølaas et al. [105], Lin and Hanratty [115], Taitel and

Dukler [172]).

It is common practise in multiphase pipe flow engineering to use the

correlation proposed by Colebrook et al. [42] for the wall shear and the

Taitel and Dukler [173] correlation for interfacial shear, hence these are the

models we shall use in our work. As these correlations are for cylindrical

pipes we will need to modify them for channel flow, which will be done in

Section 2.4.

1.2.4 Roll Waves

Roll waves, as defined by Dressler [50], are any wave formation, periodic in

distance, that occurs when a liquid flows turbulently down an open inclined
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channel, where the wave profile progresses downstream at a constant speed

without distortion and such that the velocity of the water particles is every-

where less than the wave velocity. Photographs of roll waves in a long

rectangular channel were first presented by Cornish [44], from which the

periodic nature of roll waves was clear. Cornish [44] observed that the

wave fronts were practically vertical surfaces of discontinuity and highly

turbulent. Due to their common occurrence in man-made channels they

have been reproduced and studied in experiments, such as those by Brock

[31, 32]. He found that changes to the flow rates and flow depth greatly

affected the formation of roll waves, which creates a large problem for

engineers (Iverson et al. [90], Rouse [152]).

It has been shown that in multi-phase flow, roll waves are the main wave

type that occurs under a wide range of conditions, as described by Hanratty

and Engen [80]. The wavelengths are typically much longer than the film

thickness and the roll waves maintain their form while travelling through

the pipe. As roll waves carry fluid and mix liquid as they travel, they have

been of interest in the determination of the characteristics of multi-phase

flow and the formation of slugs (Kordyban [107]).

For the low Reynold number case, some authors have used weakly non-

linear and long wavelength theories in order to simplify the Navier-Stokes

equation. This usually results in the governing equation being a single non-

linear partial differential equation for the normal interfacial height as the

local velocity profile can be approximated to leading order by the Nusselt

profile, see Benjamin [25], Benney [26], Chang [38], Kawahara and Toh

[99], Lin [116], Nakaya [130], Sivashinsky and Michelson [161], Yih [190].

They determined the critical Reynolds number that caused an instability

and extended the theory into the non-linear regime. However, Pumir et al.

[147] found that when the solutions to these equations were extended to the

high Reynolds number case they diverged.

In order to investigate the high Reynolds number case, Jeffreys [92] used

the St. Venants model combined with the Chézy formula for turbulent
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Figure 1.2.: The co-ordinate system.

resistance in order to include the effects of drag in his equation. He performed

linear stability analysis in order to investigate the formation of roll waves

and found the instability condition

F ≤ 2, (1.2.55)

where F is the Froude number given by

F =
vl√

gh cos θ
, (1.2.56)

and θ is the angle from the horizontal, as shown in Figure 1.2.

Dressler [50] used the shallow water equations combined with the Chézy

formula for turbulent resistance in order to find a necessary condition for

the existence of a continuous solution that can be used as a basis for constructing

discontinuous periodic solutions joined by shocks. For prescribed values of

the slope, θ, resistance and wave speed, he found there is a one-parameter

family of roll-wave solutions, for which, if the wave length is also prescribed,

the solution will then be unique. The need for shocks arises as Dressler [50],

like Jeffreys [92], neglected the the turbulent viscosity, which resulted in

the equations being hyperbolic and shock forming. The condition found by
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Dressler [50] was in fact the same as that by Jeffreys [92] for the instability

of the uniform flow.

Yu and Kevorkian [191] concentrated on the weakly unstable case, 0 <

F − 2 � 1, in a broad, slightly inclined, θ � 1, channel using the dimen-

sionless shallow water equations given by Kevorkian [100]. They considered

the initial conditions

h(x, 0; ε) = 1 + εh0(x), (1.2.57)

u(x, 0; ε) = 1 + εu0(x), (1.2.58)

where ε was a small parameter which measured the amplitude of the initial

disturbance and h0(x) and u0(x) were prescribed disturbance functions and

restricted the Froude number to the one-parameter family

F = 2 + αε, (1.2.59)

for α > 0 and α = O(1). By performing a multiple scale asymptotic

expansion, they derived the leading order governing equations which they

found to be time dependent for 0 < t < T(ε), where T = O(ε−1). However,

for t = O(10T) the solution tends to the quasi-steady state as found by

Dressler [50], for which they found that a given arbitrary periodic initial

disturbance will tend to the roll wave having the same wavelength.

When Yu and Kevorkian [191] compared their results from the asymp-

totic analysis to results found from numerical integration, they found the

transient behaviour of the solution including the characteristics of the discon-

tinuities was accurately described. However, they conceded that this was

in part due to them having only compared the limiting forms of both the

asymptotic and exact equations and only having used one roll wave with

periodic boundary conditions. In order to gain a more precise comparison

they would have needed to integrate the full system sufficiently long enough
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to ensure a well-developed quasi-steady solution, which they found to be

impractical.

Some authors have built on the work of Dressler [50] by adding a diffusive

term to the momentum equation, see Chang et al. [37], Huang and Lee

[85], Kranenburg [112], Needham and Merkin [131], Prokopiou et al. [146],

Whitham [187]. Needham and Merkin [131] included an energy dissip-

ation expressed through tangential shear and a term expressing the effect of

energy dissipation by shearing normal to the flow. By non-dimensionalising

their governing equations and using linear stability analysis they found the

same stability criteria as that by Dressler [50]. They then used the Hopf

bifurcation theorem to examine the quasi-steady states of their governing

equations and found that for F > 2 there exists a critical value of the wave

propagation speed U such that there is a Hopf bifurcation when

U = 1 +
1
F

. (1.2.60)

By using an averaging method they generated uniformly valid expansions

for the quasi-steady periodic solutions and showed that for each set of flow

parameters there is a one-parameter family of roll wave solutions. Through

further numerical integration, they discovered that these solutions do not

exist indefinitely from the Hopf points, instead they appear to end abruptly.

In two following papers (Merkin and Needham [124, 125]) they demon-

strated that this end point corresponds to a homoclinic bifurcation for which

they found analytical expressions for its location near the critical Froude

number F = 2 with U = 1.5.

Hwang and Chang [86] used dynamic singularity theory and numerical

methods to analyse the model equations given by Dressler [50] and Needham

and Merkin [131]. Their work was carried out independently to Merkin

and Needham [124, 125] and used a different technique, which followed the

methods used by Carr [35] and Guckenheimer and Holmes [76]. Their work

confirmed the results found by Needham and Merkin [131] and Merkin and

Needham [124, 125] and expanded it for U > 1.5, which resulted in them
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finding roll waves within two very narrow bands either side of U = 1.5,

which they found compared very well with the data of Brock [31, 32] and

Brauner and Maron [30].

Huang and Lee [85] developed a diffusive shallow water equation model

in order to study numerically the spatial evolution of roll waves which

they compared to the experimental data of Brock [31, 32]. They found

that undiffusive models largely overestimated the wave amplitude, whereas

diffusive models gave good agreement to the experimental data as long as

the proper turbulent viscosity value is selected. However, Hu et al. [84]

found that Huang and Lee [85] evaluated their model incompletely and in

fact their model wasn unable to resolve either natural roll waves or periodic

permanent roll waves.

More recently, the shallow water equations have been combined with

k − ε turbulence closure in order to more accurately include the effects of

turbulence. Richard and Gavrilyuk [150] proposed a model which included

two types of enstrophies which represent the dispersion due to the non-

uniform velocity distribution in the vertical. They found their model gave

reasonable agreement when compared to the experimental data of Brock

[31, 32], however it requires specified flow depth and velocity at a critical

point. As a result, their model does not work in cases where there is no

observed data nor is able to resolve sufficiently the formation process of roll

waves (Cao et al. [34]).

Cao et al. [34] developed a physically enhanced model which, similarly

to Richard and Gavrilyuk [150], combined the shallow water equations

with k− ε turbulence closure, along with a modification component. They

compared their model numerically against a traditional shallow water equation

model, a shallow water equation model incorporating the standard depth-

averaged k− ε turbulence closure, a shallow water equation model incorpor-

ating the standard depth-averaged k− ε turbulence closure and dispersion

and the Richard and Gavrilyuk [150] model. They found their model gave

more accurate solutions when compared to the data of Brock [31, 32] and
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conclude that this confirms the importance of turbulent Reynolds stress for

roll waves.

Experimental evidence has shown that roll waves are not fully periodic,

and in fact the faster roll waves tend to catch up with and absorb the slower

ones, forming longer and higher roll waves, see Alavian [4] and Mayer

[123]. Hence, Kranenburg [112] derived an amplitude evolution equation for

small amplitude roll waves starting from equations similar to those used by

Needham and Merkin [131], which to second order gave a modified Burgers

equation. This equation had previously been studied by Novik [138], who

had postulated it as a model equation without giving a derivation. Unlike

the Burgers equation, Novik [138] found this model equation allowed steady,

periodic solutions if F > 2.

Through analytical methods, Kranenburg [112] found that periodic roll

waves are unstable to a sub-harmonic disturbance, which grow and annihilate

the roll waves producing a roll wave of larger size. Using numerical compu-

tations, he showed his theoretical results agreed with the observed tendency

of faster roll waves catching slower ones to form longer and higher roll

waves, as observed by Alavian [4] and Mayer [123]. However, he was

unable to give a quantitative comparison with experimental results due to

the sensitivity to initial conditions.

Many authors have ignored bottom topography when studying turbulent

roll waves. However, real channels are never perfectly flat and the effects of

boundary roughness may affect the transition from a laminar to a turbulent

regime. The instability of laminar film flow over a wavy surface has been

studied both theoretically, see Cabal et al. [33], Floryan [66], Selvarajan

et al. [158], and experimentally, see Vlachogiannis and Bontozoglou [180].

Following these authors, Balmforth and Mandre [15] studied the shallow-

water equations with bottom drag and viscosity for turbulent flow over

uneven surfaces. They performed linear stability analysis and found that

low-amplitude topography destabilised the flow and allowed roll waves to

form for lower Froude numbers, while higher-amplitude topography has
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a stabilising effect on the flow, which is consistent with observations of

hydraulic engineers, see Montes [128] and Rouse [152]. When Balmforth

and Mandre [15] considered intermediate topography, they found a new

form of instability that extended down to much smaller Froude numbers.

In these unstable windows the growth rate increased dramatically, however,

they were unable to precisely resolve the growth rate behaviour for this

case. They found that this singular behaviour coincided with the point the

inviscid equilibrium formed a hydraulic jump.

Andritsos and Hanratty [9] found experimentally that when a multiphase

flow is above the Kelvin-Helmholtz instability limit, small disturbances will

grow and form into roll waves. As roll waves may annihilate each other

forming larger roll waves in an open channel, as found by Kranenburg [112],

this may result in a transition into a slug flow regime in a closed channel.

Hence, by using periodic travelling wave theory in order to develop an

understanding of roll waves in multiphase flow, an understanding of the

characteristics behind the transition to slug flow may be uncovered, see

Needham et al. [132].

1.2.5 Computational Fluid Dynamics

Due to improvements in computing power and numerical techniques, many

authors made attempts to use the multi-field model in order to create slug

tracking models which capture flow regime transitions, see De Leebeeck

and Nydal [48], Kjølaas [103], Renault [149], Ujang et al. [178]. These models

track the position of each slug front and its tail using a Lagrangian approach

as the slugs flow through the pipe. The data gathered from this was then

used in the mass and momentum flux calculations, see Bendiksen et al.

[22] and Straume et al. [166], and led to the development of one of the

earliest commercial codes for oil and gas pipelines, OLGA, by Bendiksen

et al. [21, 24].
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Barnea and Taitel [18] proposed a kinematic model to predict the slug

length distribution at any specified point with the pipe. They based their

model on the bubble overtaking mechanism which occurs when the slugs

are shorter than the stable developed slug length. At the inlet they assumed

a random distribution of short slugs, where the gas pocket behind each slug

was assumed to be associated with the slug length using a valid relation for

fully developed slug flow. They used both a normal and uniform distri-

bution for their slug length inlet distribution and found that this initial

distribution had no bearing on the slug characteristics further down the

pipe. From their calculations they showed that, for fully developed slug

flow, the mean slug length is approximately 1.5 times the minimum stable

slug length and the maximum length is approximately 3 times the minimum

slug length. Cook and Behnia [43] compared this model to experimental

data they had taken and found the calculated mean slug lengths and slug

distribution to be quite accurate over a range of flow rates.

Zheng et al. [194] added the liquid-phase mass balance on the model

developed by Barnea and Taitel [18] in order to track individual slugs. By

considering the effects of a changing pipe angle for both the case where each

slug maintains its identity and the case where new slugs are generated and

disappear, Zheng et al. [194] proposed a model that is capable of simulating

the slug behaviour over a hilly terrain. They compared the predicted slug

characteristics from their model to experimental data from Zheng [195]

and Zheng et al. [196] and found the model’s predictions to be quite good.

However, they admitted that due to their model assuming the film thickness

is constant in the tail following the slug their model is flawed, although it

does capture the main characteristics of the physical behaviour of slugs over

a hilly terrain.

Nydal and Banerjee [141] presented a Lagrangian slug tracking model,

where the slugs were tracked as sharp gas-liquid fronts. Using the Lagrangian

description, they considered the slugs and gas pockets to be computational

units moving with independent front and tail velocities. The gas-liquid
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interface between the slug and gas pocket are evaluated using conservation

of mass and conservation of momentum. They ran simulations for both

horizontal and hilly terrain pipes and compared their results to experi-

mental data by Nydal and Banerjee [140], Nydal et al. [142], Schmidt et al.

[157] and Van Hout et al. [179] and concluded their model gave reasonably

good comparisons between the computed and measured values.

Taitel and Barnea [171] use the approach in Barnea and Taitel [18] with an

emphasis on incorporating the true effects of the gas compressibility. They

simplify their model by neglecting the time derivatives in the momentum

equation, hence their model assumed a local equilibrium force balance for

each slug unit. At the pipe inlet they set the slugs and gas pockets to

have constant size and found that this periodic fluctuation of mass entering

the pipe caused a periodic fluctuation on the pressure and slug velocity.

Their results showed that the gas compressibility causes an increase in slug

unit length, but only has a minor effect on the growth of the slugs as they

propagate through the pipe. Al-Safran et al. [3] included liquid hold-up

and the gas pocket overtaking mechanism in the model proposed by Taitel

and Barnea [171] and extended it to hilly terrain, based on the Zheng et al.

[194] model. Their model was compared to two hilly terrain experimental

cases, for which they found an accuracy of ±7.7% for the maximum slug

length. Following this, Wang et al. [184] extended the model to include the

wake effect and the pressure drop term due to liquid film acceleration. They

studied the experimental slug length distributions in a horizontal pipe and

found the predicted mean and maximum slug lengths were in agreement

with the measured data from half way along their pipe. However, due to

assuming a short minimum stable slug length in the model, the mean slug

length was underestimated when compared with the measured data from

near the outlet of their pipe.

An analysis of slug tracking models is given by Rosa et al. [151] who

develop a new model incorporating all terms introduced in previous slug

tacking models and includes the advection term, which had previously
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been neglected. They compare numerical solutions to their model to exper-

imental data, focusing on the slug tacking models ability to capture the

physical flow features of the intermittent slug regime. They found that the

major limitation of their model, and hence slug tracking models in general,

was due to the lack of reliable slug inlet models and wake law.

Due to the limitation of slug tracking models as a result of needing

prescribed flow velocities, slug lengths, liquid hold-up and slug frequency

at the inlet, some authors have developed slug capturing models, see Ansari

and Shokri [11], Du and Nydal [53], Figueiredo et al. [65], Holmås et al.

[83], Kadri et al. [97]. This has led to the development of commercial codes

such as LedaFlow, by Danielson et al. [46], which has been shown to be very

accurate when compared to experimental data, see Kjolaas and Johansen

[104], Kjølaas et al. [105]. These models require considerable computational

effort to solve a system of conservation equations using a sufficiently small

grid in order to accurately capture the dynamics of the slug fronts. Hence,

multi-grid methods have been developed which allow different grid spacing

to be used such that computational cost is kept to a minimum whilst still

fully resolving the system, see Akselsen and Nydal [2]. In these models slug

generation and development happens automatically from the model itself,

without the need for slug statistics or assumptions.

Bonizzi et al. [28] developed a model for slow transients in oil-gas pipes

using four fields: continuous liquid, dispersed liquid, continuous gas and

dispersed gas. By performing experiments and using the data of Andritsos

et al. [10], Bendiksen [23], Lioumbas et al. [117] and Nydal et al. [142] they

found their model to be valid for first order effects, such as flow structure

evolution and transitions.

Issa and Kempf [87] developed a one-dimensional form of the two-fluid

model by integrating the equations for conservation of mass and conser-

vation of momentum for each phase over the cross-sectional area of the

pipe. They computed numerous simulations and compared their predicted

flow regime type against the flow regime maps of Taitel and Dukler [172]

31



1.2 literature review

for horizontal flow and Manolis [118] and Manolis et al. [119] for downward

inclined flow, finding good agreement in both cases. They go on to compare

their predicted slug frequencies against the experimental data of Manolis

[118] and Manolis et al. [120], for which they are within the typical bound

of experimental scatter. Finally, they compare their predicted slug body

lengths against the data of Dukler and Hubbard [54], Dukler et al. [57] and

Nydal et al. [142] and found their numerical calculations were well within

the scattered data. Further, Issa et al. [89] compared solutions from the

model to experiments for both hydrodynamic and severe slugging including

terrain undulations and found excellent agreement.

Kjeldby et al. [102] developed a hybrid slug capturing and tracking scheme

such that slug initiation can be captured from unstable stratified flow using

a sufficiently fine grid and directly solving a two-fluid model, from a strat-

ified flow stability criterion or from slug existence criterion. Previous slug

capturing models, such as those by Issa and Kempf [87] and Bonizzi et al.

[28], rely on a fine grid spacing in order to resolve sharp discontinuities in

hold-up at bubble noses and slug fronts. However, Kjeldby et al. [102] used

a Lagrangian model which allows them to track slug fronts using a moving

grid and eliminates numerical diffusion at discontinuities. They compare

their model to four experimental cases and found good correspondence

with their numerical simulations.

In order to develop models which are computationally cost effective, many

authors use a one-dimensional formulation. However, by doing so they lose

information of cross-sectional variations and transfer of mass, momentum

and energy are filtered out, which means that important interactions are lost

in this process. This has led to the development of quasi three-dimensional

models, see Danielson et al. [46], Johansen et al. [94], Mo et al. [127], Razavi

and Namin [148], Simões et al. [160], whereby a three-dimensional method

is averaged down to two-dimensions. These models have been shown to be

in good agreement with experiments and give details on flow regimes and

regime transitions missed by one-dimensional models.
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In the Issa and Kempf [87] model, the only empirical information required

is for the shear stresses, which are evaluated using friction factor correla-

tions. They, similarly to other authors who have developed slug capturing

models, investigated the effects on their numerical results for several correla-

tions. They found that the correlation used had a large effect on the accuracy

of their results when compared to the experimental data and chose the

correlation which gave them the closest match. As a result, it is unknown

whether it will still provide a close match if compared to different data sets

than those used, or if it will require a different friction factor correlation to

be selected. Hence, for our model, we will use the correlations proposed by

Colebrook et al. [42] and Taitel and Dukler [173] for the wall and interfacial

shear, respectively, as these are the industry standard in multiphase pipe

flow engineering.

Further, due to the complexity of the model proposed by Issa and Kempf

[87], they are unable to perform an analytic analysis of the system and only

provide numerical results. We will use a simpler model, such as using a

channel rather than a cylindrical pipe, such that we are able to investigate

the system analytically to gain an understanding of the influencing factors

that cause the transition to a slug flow regime.

1.2.6 The Development of Slugging in Two-Layer Hydraulic Flows

Needham et al. [132] derived the one-dimensional governing equations for

hydraulic flow of a gas over a liquid inside a closed, rectangular, infinitely

wide channel. They began with the depth-averaged hydraulic equations of

motion (see Dressler [50], Dressler and Pohle [52], Needham and Merkin

[131], Stoker [165], Whitham [187]) combined with the Chézy formula for

turbulent friction and an appropriate eddy viscosity term in each layer to

account for the streamwise turbulent viscosity. They also neglected the

inertia terms in the gas layer relative to the inertia terms in the liquid

layer since the density ratio of the gas to the liquid is small. By combining
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and non-dimensionalising these equations and taking the small liquid layer

limit, they arrived at the non-dimensional equations of motion

ht + (hv)x = 0, (1.2.61)

vt + vvx +
1− ρ

F2
0

hx =
1

1 + λ
+

λ

(1 + λ)h
− v2

h
+

1
Rlh

[hvx]x , (1.2.62)

subject to the steady-state solution

h = 1, v = 1, (1.2.63)

where ρ is the ratio of gas-to-liquid density, F0 is the Froude number, λ is a

measure of the interfacial to flow resistance and Rl is the effective Reynolds

number for the liquid.

They linearised their equations by considering

h(x, t) = 1 + h̄(x, t), v(x, t) = 1 + v̄(x, t), (1.2.64)

where h̄, v̄� 1, and investigated the evolution of a small-amplitude disturbance

to the uniform flow. Using the stability criterion on the wave speeds, given

by Whitham [187], they found their stability criterion

F0 < 2(1 + λ)
√

1− ρ ≡ Fc. (1.2.65)

From which they concluded that small disturbances to the uniform flow

will decay for F0 < Fc, but grow for F0 > Fc, in which case the flow may

evolve into a slug flow regime.

They conjectured that, when F0 > Fc, the flow would develop into a

temporally periodic state, hence investigated the existence of periodic travelling

wave solutions. By introducing a travelling co-ordinate they found three

equilibrium points, H1, H2 and H3, where H1 < H2 < H3, which are a stable

node/spiral, a saddle and a node/spiral, respectively. They concluded,

using bifurcation theory, that for each F0 > Fc there exists a two-parameter
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family of periodic travelling wave solutions which began at small amplitude

from a Hopf bifurcation on H3 and grew in size as the propagation speed

was increased, until they ended in a homoclinic bifurcation with H2.

Finally, they investigated numerically how small disturbances to the uniform

flow grew when F0 > Fc using periodic boundary conditions. They found

that for values of F0 close to Fc, the wavelength of the state that develops

is close to the predicted linearly most unstable wavelength. However, after

a long enough time, the growth, which is driven by non-linear processes,

led the solution whose wavelength is considerably larger than the linearly

most unstable wavelength. By varying their parameters, they found that the

further F0 is away from Fc the quicker these non-linear processes dominate

the growth.

Needham et al. [132] used the assumption that the layer of liquid is small.

In this thesis we extend the work studied by Needham et al. [132] to liquid

layers of arbitrary thickness which results in significantly different results,

particularly when considering solutions for which the surface of the liquid

is near the top of the channel.

1.3 T H E S I S O U T L I N E

The aim of this thesis is to investigate the causes of the transition from

a stratified flow regime to a slug flow regime and to examine the charac-

teristics of these slugs when they have formed. Although subsea natural

gas pipelines consist of cylindrical pipes, for simplicity, we will consider

the flow through a a semi-infinite closed rectangular channel. In order to

do this, we will derive a tractable one dimensional system of equations

governing the flow in the gas and liquid layers for multiphase flow. These

will be simplified using the long wavelength approximation, depth-averaged

velocity and Chézy coefficients for the wall and interfacial shear. By combining

and non-dimensionalising these equations, we will be left with a system of

two equations governing the flow, driven by prescribed, constant, upstream
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1.3 thesis outline

flow rates in each layer. By considering the values of the dimensional

parameters in subsea natural gas pipelines, we will provide the typical

ranges for our non-dimensional parameters.

In Chapter 3, we will use linear stability theory to investigate how small-

amplitude disturbances affect the uniform flow. This leads to a stability

condition, for which small-amplitude disturbances to the uniform flow decay,

and a non-hyperbolic condition, for which the model is ill-posed. We will

then investigate the solution of our linearised equations for a single mode of

spatial wave number in order to investigate how fast different wavelengths

grow. From this we will find the neutral curve, for which small disturbances

will neither grow nor decay and a maximum growth rate curve.

Once these disturbances begin to grow, they become dominated by non-

linear effects and we expect them to form into roll waves, hence in Chapter 4

we investigate the existence of periodic travelling wave solutions. This

will be done by introducing a travelling co-ordinate which simplifies our

governing equations into one equation for one variable. By considering the

equilibrium points of this equation we will find two equilibrium points that

vanish in the previously studied limit, ε → 0, which come into existence

near the top of the channel. Using asymptotic analysis, we deduce that one

is a saddle and the other is a node or spiral where Hopf bifurcations may

occur.

Using MATLAB routines ode45 and bvp5c to solve our equations numer-

ically, we will find high amplitude periodic solutions. By investigating the

phase portraits of these solutions we find the possibility of multiple Hopf,

homoclinic and periodic saddle-node bifurcations occurring, resulting in

several regions in which periodic solutions can exist and which contain both

stable and unstable limit cycle solutions. Due to the number of parameters

and the extremely complicated nature of the phase planes, we find it infeasible

to provide an exhaustive catalogue of possibilities. However, our investig-

ation of periodic travelling wave solutions will give us some insight into

how the parameters affect the system and show that slugs can exist.
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1.3 thesis outline

In Chapter 5, we use a finite-difference method derived by Kurganov and

Tadmor [114] which we combine with a second-order Runge-Kutta method

to solve our governing equations as an initial value problem. We will set

the initial condition to be the uniform flow and use some small amplitude

random noise at the inlet and an outlet in order to simulate flow through

a channel. By running simulations we will find parameter sets that result

in slug flow regimes, from which we can observe how slugs form and the

affects of the parameters on their growth.

Finally, in Chapter 6, we will consider the effects of bottom topography

in the thin layer limit. We first consider the existence of periodic travelling

wave solutions for constant channel inclination, θ, and find that Hopf bifurc-

ations can exist for B < 0 and B > 0, whereas for the horizontal case it had

only been possible for B < 0. We will then solve this system as an initial

value problem and compare our solutions with those from the horizontal

case in order to evaluate the effects of the channel inclination.

We will conclude this chapter by solving the governing equations as an

initial value problem for an undulating topography. By considering the

steady state solution of the system, we will examine how the height of the

layer of liquid changes with the angle of the channel. We will then consider

the effects of having either a downhill or uphill section of channel before a

flat section, which we will compare to the horizontal case.
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2
T H E H Y D R A U L I C M O D E L

We will describe the flow of the liquid and gas through the channel in terms

of a two-dimensional Cartesian co-ordinate system (x, y) with y pointing

vertically upwards, perpendicular to the channel walls located at y = 0

and y = a > 0, and with x measuring the distance along the channel in

the streamwise direction. A layer of liquid will flow along the bottom of

the channel whose free surface will be at y = h(x, t), with t being time, as

shown in Figure 2.1.

In the liquid we will denote the horizontal velocity as ul(x, y, t), the

vertical velocity as vl(x, y, t), the pressure as pl(x, y, t), the constant density

as ρl and the constant eddy viscosity as µl. Similarly, in the gas for ug(x, y, t),

vg(x, y, t), pg(x, y, t), ρg and µg. The acceleration due to gravity will be

denoted by g.

Short wavelength instabilities have been investigated by Andritsos et al.

[10] who found they play a crucial role in the development of slugs forming

in flow with very high viscosity. Further, Fan et al. [61] observed in experi-

ments that short wavelength instabilities lead to a transition to a slug flow

regime for low superficial gas velocities. However, in subsea natural gas

pipelines, the flow has neither very high viscosities nor low superficial gas

velocity, hence we expect slugs to form due to long wavelength instabil-

ities (see, for example, Andritsos [7], Barnea and Taitel [19], Kordyban

[108], Mishima and Ishii [126], Taitel and Dukler [172]) as observed in the

experiments by Fan et al. [61]. Further, viscous long wavelength theory, as
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the hydraulic model

y = a
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Figure 2.1.: The co-ordinate system.

studied by authors such as Lin and Hanratty [115] and Wu et al. [189],

has been shown to accurately predict the transition from stratified flow

to roll waves and the formation of slugs (see, for example, Soleimani and

Hanratty [163], Woods et al. [188]). Hence, it is generally accepted that long

wavelength instabilities cause the onset of slugging in horizontal and near

horizontal pipes (Nieckele et al. [135]) and the use of a long wavelength

assumption in the modelling of multiphase flow in order to investigate the

transition to slug flow is both widely accepted and commonly used (see, for

example, Kadri et al. [97], Nieckele et al. [135], Sanchis et al. [154]).

When a long wavelength assumption is used the model still retains some

elements of the original system and solutions may eventually try to escape

the long wavelength expansion. This may lead to the IVP being ill-posed

due to short wavelength instabilities whereby the long wavelength assumption

is invalid. However, in this case it is expected that the flow regime would

change to bubble flow and hence does not detract from the models ability

to investigate the development of slugging.

We will use a long wavelength assumption, conservation of mass, conser-

vation of momentum, depth-averaged velocity and Chézy coefficients for

the wall and interfacial shear to derive the governing equations of motion
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2.1 conservation of mass

for two-layer hydraulic flow through a semi-infinite channel, which we will

then non-dimensionalise. Finally, we will discuss typical values for the

parameters and what they mean in terms of our non-dimensional parameters.

2.1 C O N S E RVAT I O N O F M A S S

Starting from the two-dimensional continuity equation for incompressible

fluid

∂ul
∂x

+
∂vl
∂y

= 0, (2.1.1)

and integrating with respect to y using Leibniz’ integration rule and vl|y=0 =

0, we have

∂

∂x

(∫ h

0
ul dy

)
+ vl|y=h − ul|y=h

∂h
∂x

= 0. (2.1.2)

At the interface F ≡ h(x, t)− y = 0, hence

DF
Dt
≡ ∂h

∂t
+ ul|y=h

∂h
∂x
− vl|y=h = 0. (2.1.3)

Finally, combining (2.1.2) and (2.1.3) along with the definition

ūl =
1
h

∫ h

0
ul dy, (2.1.4)

of the horizontal depth averaged velocity in the liquid, results in

ht + [hūl]x = 0. (2.1.5)

Similarly, in the gas

[a− h]t +
[
(a− h)ūg

]
x = 0, (2.1.6)

where ūg is the horizontal depth averaged velocity in the gas defined as

ūg =
1

a− h

∫ a

h
ug dy. (2.1.7)
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2.2 conservation of momentum

Adding (2.1.5) and (2.1.6), and integrating with respect to x gives us

(a− h)ūg + hūl = A(t). (2.1.8)

By letting A(t) = auh, where uh = uh(t) is the homogeneous velocity, (2.1.8)

becomes

(a− h)ūg + hūl = auh, (2.1.9)

which re-arranges to

ūg =
auh − hūl

a− h
. (2.1.10)

2.2 C O N S E RVAT I O N O F M O M E N T U M

We begin with the Navier-Stokes equation

ρ

(
∂v
∂t

+ v · ∇v
)
= f−∇p + µ∇2v. (2.2.1)

We assume that y scales with a and x scales with Lx, where Lx is a typical

wavelength, and Lx � a. Order of magnitude estimates from the continuity

equation imply that v ∼ a
Lx

u, and so

v� u. (2.2.2)

Since v is small, the vertical momentum equation is dominated by the

pressure and gravity terms, hence the vertical momentum equation in the

liquid is simply

∂pl
∂y

= −ρlg, (2.2.3)

which integrates to

pl = −ρlgy + p̄l(x, t). (2.2.4)
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2.2 conservation of momentum

Similarly, in the gas

pg = −ρggy + p̄g(x, t). (2.2.5)

Due to continuity of pressure at y = h, we must have

pl|y=h = pg
∣∣
y=h , (2.2.6)

hence

p̄l − p̄g = gh(ρl − ρg). (2.2.7)

We have the horizontal momentum equation in conservative form in the

liquid as

ρl

(
∂ul
∂t

+
∂

∂x
(
u2

l
)
+

∂

∂y
(ulvl)

)
= −∂p

∂x
+ µl

(
∂2ul
∂x2 +

∂2ul
∂y2

)
. (2.2.8)

By integrating with respect to y and using Leibniz’ integration rule, (2.2.8)

becomes

ρl

(
∂

∂t

∫ h

0
ul dy− ul|y=h

∂h
∂t

+
∂

∂x

∫ h

0
u2

l dy− u2
l

∣∣∣
y=h

∂h
∂x

+ ul|y=h vl|y=h

)
= − ∂

∂x

∫ h

0
pl dy+ pl|y=h

∂h
∂x

+µl

(
∂

∂x

∫ h

0

∂ul
∂x

dy− ∂ul
∂x

∣∣∣∣
y=h

∂h
∂x

+

[
∂ul
∂y

]h

0

)
,

(2.2.9)

which, by (2.1.3), (2.1.4), (2.2.4) and (2.2.6) and by assuming a close to

uniform velocity profile, hence we let ū2
l = ū2

l , gives us

ρl

(
[hūl]t +

[
hū2

l

]
x

)
= ρlghhx − [ p̄lh]x + hx pg

∣∣
y=h + µl [hūl x]x + µl

([
∂ul
∂y

]h

0
− hx

∂ul
∂x

∣∣∣∣
y=h

)
.

(2.2.10)
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2.2 conservation of momentum

The effective stresses are dominated by the shear stresses

τi = µl
∂ul
∂y

∣∣∣∣
y=h

, (2.2.11)

τl = µl
∂ul
∂y

∣∣∣∣
y=0

, (2.2.12)

which, as discussed in Subsection 1.2.3, may be modelled using empirical

correlations in order to simplify our model and make our analysis easier.

Therefore, we will express the shear stresses in terms of the well-established

Chézy formula for turbulent flow resistance (see Stoker [165]). Hence, (2.2.10)

becomes

ρl

(
[hūl]t +

[
hū2

l

]
x

)
= ρlghhx − [ p̄lh]x + hx pg

∣∣
y=h + [µlhūl x]x − ρlcl ū2

l − ρlcl
I(ūl − ūg)|ūl − ūg|,

(2.2.13)

where cl is the dimensionless Chézy coefficient associated with wall roughness

between the channel wall and the liquid, while cl
I is the dimensionless

Chézy coefficient associated with the shear roughness between the gas and

liquid at the interface. Similarly for cg and cg
I for the gas layer.

By (2.2.5) and (2.2.7) we see that

ρlghhx − [ p̄lh]x + hx pg
∣∣
y=h = −hp̄l x, (2.2.14)

hence (2.2.13) reduces to

ρl

(
[hūl]t +

[
hū2

l

]
x

)
= −hp̄l x − ρlcl ū2

l − ρlcl
I(ūl − ūg)|ūl − ūg|+ [µlhūl x]x ,

(2.2.15)

and, similarly, in the gas we have

ρg

([
(a− h)ūg

]
t +
[
(a− h)ū2

g

]
x

)
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2.3 non-dimensional equations of motion

= −(a− h) p̄gx − ρgcgū2
g − ρgcg

I (ūg − ūl)|ūg − ūl|+
[
µg(a− h)ūgx

]
x .

(2.2.16)

Continuity of interfacial shear requires that

ρlcl
I = ρgcg

I . (2.2.17)

Hence by combining (2.2.15) and (2.2.16) and using (2.1.10) and (2.2.17) and

dropping the bars from ū for convenience, we have the equations of motion

as

ht + [hul]x = 0, (2.2.18)

(
ρl +

ρgh
a− h

)
ul t +

(
ρlul +

ρgh[2auh − (a + h)ul]

(a− h)2

)
ul x

+

(
(ρl − ρg)g− ρg

a2(uh − ul)
2

(a− h)3

)
hx = −

ρlclu2
l

h
+

ρgcg(auh − hul)
2

(a− h)3

+
a3ρgcg

I
h(a− h)3 (uh− ul)|uh− ul|+

µl
h
[hul x]x−

µg

a− h

[
a(uh − ul)

a− h
hx − hul x

]
x

.

(2.2.19)

2.3 N O N - D I M E N S I O N A L E Q U AT I O N S O F M O T I O N

We will assume there exists an equilibrium at h = h0, ul = u0
l and ug = u0

g

where h0, u0
l and u0

g are positive constants and hence, from (2.1.9), uh is a

positive constant. We will now use the scales

h = h0h′, ul = u0
l v, x =

h0

cl
x′, t =

h0

clu0
l

t′, (2.3.1)

and dimensionless parameters

δ =
u0

l
uh

, ρ =
ρg

ρl
, ε =

h0

a
, F0 =

u0
l√

gh0
,
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2.3 non-dimensional equations of motion

Rl =
h0plu0

l
µlcl

, Rg =
h0ρgu0

l
µgcl

, λ =
cg

I
cg

a
h0

. (2.3.2)

Note that as the flow is driven by imposed pressure in the gas we expect the

velocity of the gas to be greater than that of the liquid, so we shall assume

u0
g ≥ uh ≥ u0

l . Combining this with 0 ≤ h0 ≤ a we have 0 ≤ ε, δ ≤ 1 and

recall that we must have Lx = h0
cl
� a, which re-arranges to ε� cl. We will

see in Subsection 2.4 that cl is of order 10−3, hence Lx � a for ε� 10−3.

Substituting (2.3.1) and (2.3.2) into (2.2.18) and (2.2.19) (and dropping

primes for convenience) gives

ht + [hv]x = 0, (2.3.3)

(
1 +

ρεh
1− εh

)
vt +

(
v +

ρεh[2− (1 + εh)δv]
δ(1− εh)2

)
vx

+

(
1− ρ

F2
0
− ρε(1− δv)2

δ2(1− εh)3

)
hx

= −v2

h
+

ρcg
I

δ2cl

(
(1− εδhv)2

λ(1− εh)3 +
(1− δv)|1− δv|

h(1− εh)3

)
+

(
1

hRl
+

ρε

(1− εh)Rg

)
[hvx]x −

ρε

δ(1− εh)Rg

[
1− δv
1− εh

hx

]
x

, (2.3.4)

subject to a steady state solution at

h = 1, v = 1. (2.3.5)

Substituting (2.3.5) into (2.3.4) and rearranging gives

ρcg
I

δ2cl
=

λ(1− ε)3

(1− εδ)2 + λ(1− δ)2 , (2.3.6)

which when substituted back into (2.3.4) gives the dimensionless equations

of motion as

ht + [hv]x = 0, (2.3.7)
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2.4 parameter values

(
1 +

ρεh
1− εh

)
vt +

(
v +

ρεh[2− (1 + εh)δv]
δ(1− εh)2

)
vx

+

(
1− ρ

F2
0
− ρε(1− δv)2

δ2(1− εh)3

)
hx

= −v2

h
+

(1− ε)3

(1− εδ)2 + λ(1− δ)2

(
(1− εδhv)2

(1− εh)3 +
λ(1− δv)|1− δv|

h(1− εh)3

)
+

(
1

hRl
+

ρε

(1− εh)Rg

)
[hvx]x −

ρε

δ(1− εh)Rg

[
1− δv
1− εh

hx

]
x

. (2.3.8)

If we assume the height of the liquid at the inlet is much less than the

channel height and its velocity is much less than that of the gas, hence let

ε→ 0 and δ→ 0 in (2.3.8), and assume ε� δ2, then (2.3.8) becomes

vt + vvx +
1− ρ

F2
0

hx = −v2

h
+

1
1 + λ

(
1 +

λ

h

)
+

1
hRl

[hvx]x , (2.3.9)

which was derived and analysed by Needham et al. [132].

2.4 PA R A M E T E R VA L U E S

Table 2.1 shows the typical ranges of the real parameters, where µ̄l and µ̄g

are the dynamic viscosities of the liquid and gas respectively, for natural

gas pipelines.

In order to express these in terms of our non-dimensional parameters

we need to calculate the values of our non-dimensional Chézy coefficients.

The dimensional Chézy coefficient for the liquid, Cl, is related to the Darcy

friction coefficient associated with wall roughness between the channel wall

and the liquid, fl, by

Cl =
√

8g/ fl, (2.4.1)

(see, for example, Hanif Chaudhry [78]). It is common practise in multiphase

pipe flow engineering to use the correlation proposed by Colebrook et al.

[42] for the wall shear and the Taitel and Dukler [173] correlation for inter-
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2.4 parameter values

Parameter Range Units

a 0.5 → 1.2 m

u0
l 0 → 10 m/s

u0
g 4 → 20 m/s

ρl 700 → 800 kg/m3

ρg 60 → 185 kg/m3

µ̄l 5.5× 10−4 → 6.5× 10−4 Pa·s

µ̄g 1× 10−5 → 2× 10−5 Pa·s

Pipe Length 1 → 1, 200 km

Table 2.1.: The typical ranges of the dimensional parameters.

facial shear, hence these are the models we shall use in our work. The

Colebrook equation for the Darcy friction factor is found by solving

1√
fl
= −2 log10

(
ε/D
3.7

+
2.51

Rel
√

fl

)
, (2.4.2)

where Rel is the Reynolds number of the liquid and Rel = ρlhul/µ̄l for

dynamic viscosity µ̄l. Noting that Cl =
√

g/cl, it is clear from (2.4.1) that

cl = fl/8, hence (2.4.2) becomes

1√
cl

= −4
√

2 log10

(
ε/D
3.7

+
0.6275

√
2

Rel
√

cl

)
. (2.4.3)

cl does not vary much for changes to Rel or ε/D, shown in Figure 2.2, hence

we will take it to be constant through the channel and it will be calculated

from the uniform flow by solving

1√
cl

= −4
√

2 log10

(
ε/D
3.7

+
0.6275

√
2µ̄l

ρlh0u0
l
√

cl

)
. (2.4.4)

Similarly, cg is found by solving

1
√cg

= −4
√

2 log10

(
ε/D
3.7

+
0.6275

√
2µ̄g

ρg(a− h0)u0
g
√cg

)
. (2.4.5)
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2.4 parameter values
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−4

Figure 2.2.: A comparison of Rel against cl from (2.4.3).

The Taitel and Dukler [173] interfacial friction factor correlation is given

by

fi =
0.184
Re0.2

i
, (2.4.6)

where Rei = ρg(a− h)
(
ug − ul

)
/µ̄g. Again we will calculate this from the

uniform flow, hence the equation for the non-dimensional interfacial Chézy

coefficient is given by

cg
I = 0.023

ρg(a− h0)
(

u0
g − u0

l

)
µ̄g

−0.2

. (2.4.7)

Using the values from Table 2.1 and varying ε/D we find that 1× 10−3 <

cl < 5× 10−3, 0.7× 10−3 < cg < 1.8× 10−3 and 0.1× 10−3 < cg
I < 1.1× 10−3.

We can now calculate the ranges of our non-dimensional parameters, which

are shown in Table 2.2. Note that although we are concerned with highly
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2.5 conclusion

Parameter Range

ε 0.01 → 0.2

δ 0.1 → 1

F0 1 → 50

ρ 0.075 → 0.125

λ 0.1 → 100

Rl 1 → 100

Rg 1 → 100

Table 2.2.: The typical ranges of the non-dimensional parameters.

turbulent flow (Rel ≈ 105 and Reg ≈ 107), our effective Reynolds numbers,

Rl and Rg, are considerably smaller.

2.5 C O N C L U S I O N

By using conservation of mass, conservation of momentum we have derived

the governing equations of motion for two layer hydraulic flow through

a semi-infinite channel, which we then non-dimensionalised. In order to

do this we used the long wavelength assumption, depth-averaged velocity

and expressed shear stresses through non-dimensional Chézy coefficients.

Finally, we discussed typical values for the parameters and a method for

calculating our Chézy coefficients which allowed us to express what our

parameters mean in terms of our non-dimensional parameters.
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3
L I N E A R I S E D S TA B I L I T Y O F T H E U N I F O R M

F L O W

We wish to investigate how small-amplitude disturbances affect the uniform

equilibrium flow in order to examine the possibility of slug flow developing.

Thus, we write

h = 1 + h̄, v = 1 + v̄, (3.0.1)

where h̄, v̄ � 1. On substituting (3.0.1) into (2.3.7) and (2.3.8) we obtain, at

leading order, the linearised evolution equations

h̄t + [h̄ + v̄]x = 0, (3.0.2)

(
1 +

ρε

1− ε

)
v̄t +

(
1 +

ρε[2− (1 + ε)δ]

δ(1− ε)2

)
v̄x +

(
1− ρ

F2
0
− ρε(1− δ)2

δ2(1− ε)3

)
h̄x

= −2v̄ + h̄ +
(1− ε)3

(1− εδ)2 + λ(1− δ)2

(
3ε(1− εδ)2

(1− ε)4 h̄− 2εδ(1− εδ)

(1− ε)3 (h̄ + v̄)

−2λδ(1− δ)

(1− ε)3 v̄ +
3ελ(1− δ)2

(1− ε)4 h̄− λ(1− δ)2

(1− ε)3 h̄
)
+

(
1
Rl

+
ρε

(1− ε)Rg

)
v̄xx

− ρε(1− δ)

δ(1− ε)2Rg
h̄xx. (3.0.3)

It is straightforward to eliminate v̄ from (3.0.3) using (3.0.2) to arrive at the

single linear partial differential equation governing h̄ as
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3.1 linear stability condition

(
1 +

ρε

1− ε

)
h̄tt + 2

(
1 +

ρε(1− εδ)

δ(1− ε)2

)
h̄xt +

(
1 +

ρε(1− εδ)2

δ2(1− ε)3 −
1− ρ

F2
0

)
h̄xx

+ 2
(

1 +
δ[ε(1− εδ) + λ(1− δ)]

(1− εδ)2 + λ(1− δ)2

)
h̄t

+

(
3− λ(1− δ)(1− 4ε + 6εδ− 3δ)− 3ε(1− εδ)2

(1− ε)[(1− εδ)2 + λ(1− δ)2]

)
h̄x

=

(
1
Rl

+
ρε

(1− ε)Rg

)
h̄xxt +

(
1
Rl

+
ρε(1− εδ)

δ(1− ε)2Rg

)
h̄xxx. (3.0.4)

3.1 L I N E A R S TA B I L I T Y C O N D I T I O N

We can re-write (3.0.4) as

(
∂

∂t
+ c+

∂

∂x

)(
∂

∂t
+ c−

∂

∂x

)
h̄ + f1

(
∂

∂t
+ c0

∂

∂x

)
h̄ = f2h̄xxt + f3h̄xxx,

(3.1.1)

where

c± = c1 ±
√

c2

F2
0
− c3, (3.1.2)

and

f1 = 2
1− ε

1− ε + ρε

1− εδ + λ(1− δ)

(1− εδ)2 + λ(1− δ)2 > 0, (3.1.3)

f2 =
(1− ε)Rg + ρεRl

(1− ε + ρε)RgRl
> 0, (3.1.4)

f3 =
δ(1− ε)2Rg + ρε(1− εδ)Rl

δ(1− ε)(1− ε + ρε)RgRl
> 0, (3.1.5)

c0 =
3(1− εδ)2 + λ(1− δ)(2 + ε− 3εδ)

2(1− ε)[1− εδ + λ(1− δ)]
, (3.1.6)

c1 =
δ(1− ε)2 + ρε(1− εδ)

δ(1− ε)(1− ε + ρε)
> 0, (3.1.7)

c2 =
(1− ρ)(1− ε)

1− ε + ρε
> 0, (3.1.8)

c3 =
ρε(1− δ)2

δ2(1− ε)(1− ε + ρε)2 > 0. (3.1.9)
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3.1 linear stability condition

Equation (3.0.4) is non-hyperbolic for complex values of c±, which happens

when

F0 >
δ
√

1− ρ(1− ε)
√

1− ε + ρε
√

ρε(1− δ)
≡ FNH, (3.1.10)

for which, if f2, f3 = 0, the IVP is ill-posed due to a short wavelength

instability, hence the long wavelength assumption is invalid and suggests

the flow regime would change to bubble flow, as discussed in Chapter 2.

In general f2, f3 6= 0 and the higher derivative terms may regularise the

system which will be discussed later in this chapter.

As shown by Whitham [187], the uniform flow is stable for

c0 < c+, (3.1.11)

which can be re-arranged to give the stability condition

F0 <
δ
√

1− ρ 3
√

1− ε√
(c0 − 1)2δ2(1− ε)3 + ρε[δc0(1− ε)− (1− δε)]2

≡ Fc. (3.1.12)

For ε, δ� 1 we have

FNH ∼
δ
√

1− ρ
√

ρε
, Fc ∼

2δ(1 + λ)
√

1− ρ√
δ2 + 4ρε(1 + λ)2

, (3.1.13)

hence

Fc < FNH. (3.1.14)

As ε→ 0 and δ→ 0, and assuming ε� δ2,

Fc → 2(1 + λ)
√

1− ρ, (3.1.15)

which was derived by Needham et al. [132], and

FNH → ∞, (3.1.16)

and hence Needham et al. [132] do not require any non-hyperbolicity condition.

Small disturbances to the uniform flow will decay when F0 < Fc, but grow
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3.2 instability growth rate analysis

when Fc < F0 < FNH. The dynamics of the flow when F0 > Fc will be

discussed in Chapter 4.

3.2 I N S TA B I L I T Y G R O W T H R AT E A N A LY S I S

Since the fastest growing wavelength will dominate the initial growth of

the disturbance, let us consider the solution of (3.1.1) for a single mode of

spatial wave number k in order to investigate how fast different wavelengths

grow. We look for a solution of the form

h̄(x, t) = Aeikx+ωt, (3.2.1)

for the complex constants A and ω, and real constant k. Substituting (3.2.1)

into (3.1.1) gives us the dispersion relation

ω2 + α(k)ω + β(k) = 0, (3.2.2)

with

α(k) = f1 + f2k2 + i(c+ + c−)k, (3.2.3)

β(k) = −c+c−k2 + i
[
c0 f1k + f3k3

]
. (3.2.4)

It follows from (3.2.2) that

ω±(k) =
1
2

(
−α(k)±

√
α(k)2 − 4β(k)

)
, (3.2.5)

hence, denoting real and imaginary parts using a subscript R and I respect-

ively, we can see that

ω−R <− 1
2

αR,

<− f1 + f2k2

2
, (3.2.6)
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3.2 instability growth rate analysis

which, from (3.1.3) and (3.1.4), is less than zero for all k. Hence the temporal

mode corresponding to ω− is always stable and so any instability must be

associated with the temporal mode corresponding to ω+, with growth rate

ω+
R .

As can be seen in Figure 3.1, increasing δ or λ or decreasing ε, F0, ρ or

Rl decreases the growth rate of the instabilities and decreases the range of

wave numbers for which the instabilities will grow. We can also see that

changes to Rg have very little effect on the growth rate. By considering the

limit as k → 0 we find, at leading order, the equation for the growth rate

reduces to

(
ω+

R

)
k→0 =

(c0 − c−) (c0 − c+)
f1

k2. (3.2.7)

Due to the growth rate not being based on the direction a wave travels, but

only on its wave number, there must be a reflection symmetry around k = 0

and hence the leading order term is O(k2).

The asymptote of ω+ as k→ ∞ is given by

(
ω+

R

)asymp
=

(c+ f2 − f3)(c− f2 − f3)

f 3
2

, (3.2.8)

where
(
ω+

R

)asymp
< 0 for

F0 < FNH

√
RgR2

l
(1− ε)(Rl − Rg) + RgR2

l
, (3.2.9)

which is greater than FNH for Rg > Rl. We can see from (3.2.8) that ω+
R → ∞

as k → ∞ if f2 = 0, for which, as stated earlier, the IVP is ill posed and the

long wavelength assumption is invalid. Since f2 > 0, from (3.1.4), even for

F0 > FNH the higher derivative terms are stabilising the system. As we have

used Rl = Rg = 50 in Figure 3.1, (3.2.9) simplifies to F0 < FNH which is

true for all the parameter sets we have used in Figure 3.1 except for when

δ = 0.25. For this parameter set
(
ω+

R

)asymp
= 0.0133, hence the system is

non-hyperbolic and unstable for all values of k.
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3.2 instability growth rate analysis
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Figure 3.1.: The growth rate for the case ε = 0.01, δ = 0.3, F0 = 10, Rl = 50,

Rg = 50, λ = 1 and ρ = 0.1 and the effect of varying the parameters.
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3.2 instability growth rate analysis

To investigate ω+
R further, let us consider the neutral curve of (3.2.2) which

happens when ω(k) is purely imaginary, i.e. ω = iy where y is real. In this

case, (3.2.2) becomes

−y2 + iα(k)y + β(k) = 0, (3.2.10)

which has real and imaginary parts

(c+k + y)(c−k + y) = 0, (3.2.11)

( f1 + f2k2)y + c0 f1k + f3k3 = 0. (3.2.12)

Rearranging (3.2.12) gives

y = − (c0 f1 + f3k2)k
f1 + f2k2 , (3.2.13)

and substituting this into (3.2.11) and rearranging gives

(
k2 − (c0 − c+) f1

c+ f2 − f3

)(
k2 − (c0 − c−) f1

c− f2 − f3

)
= 0. (3.2.14)

Hence, ω = iy when

k+ = ±

√
(c0 − c+) f1

c+ f2 − f3
= ±kN+, k− = ±

√
(c0 − c−) f1

c− f2 − f3
= ±kN−,

(3.2.15)

which correspond to the values of k for which ω+
R = 0 in Figure 3.1. By

rearranging (3.2.15) for F0 we obtain

F0 =

√
c2( f1 + f2k2)2

[c0 f1 + f3k2 − c1( f1 + f2k2)]2 + c3( f1 + f2k2)2 ≡ Fn, (3.2.16)

the equation for the neutral curve, Fn(k). The asymptote of the neutral curve

as k→ ∞ is given by

Fasymp
n =

√
c2 f 2

2
( f3 − c1 f2)2 + c3 f 2

2
. (3.2.17)
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3.2 instability growth rate analysis

We can also find the maximum growth rate curve, Fm(k), where k is found

by solving

d
dk

ω+
R = 0, (3.2.18)

for each value of F0 < FNH. An example of the neutral curve and the

maximum growth rate curve can be seen in Figure 3.2 for λ = 0.37, ρ = 0.1,

Rl = 50, Rg = 10, δ = 0.3 and varying ε.

In the region under Fn, ω+
R < 0 hence small disturbances to the uniform

flow will decay. Whereas in the region above Fn, ω+
R > 0 hence small

disturbances to the uniform flow will grow with the maximum growth rate

at Fm. For large values of k we can see there is only a very small region for

F0 in which ω+
R > 0 and F0 < FNH, this means short wavelengths are stable

except for a very small region near to FNH.

For ε = 0.1, λ = 0.37, ρ = 0.1, Rl = 50, Rg = 10 and δ = 0.3, shown in

Figure 3.2a, (3.2.8) gives

(
ω+

R

)asymp
=

4.057F2
0 − 42.631
F2

0
, (3.2.19)

hence small disturbances to the uniform flow will grow for all values of k for

F0 > 3.24. As F0 is increased above 3.24, the value of the maximum growth

rate increases until F0 = 4.03, the asymptote of Fm. At this point there is

no turning point in the growth rate and instead the growth rate becomes

monotone decreasing for k, hence in the region above Fm the maximum

growth rate is found for k = ∞.

For ε = 0.01, λ = 0.37, ρ = 0.1, Rl = 50, Rg = 10 and δ = 0.3, shown in

Figure 3.2b, (3.2.8) gives

(
ω+

R

)asymp
=

0.283F2
0 − 44.774
F2

0
, (3.2.20)

hence small disturbances to the uniform flow will grow for all values of k

for F0 > 12.57. Unlike the previous example, we now find the asymptote

of Fm at k = 10.12 and the growth rate is monotone decreasing for k >
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3.2 instability growth rate analysis
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Figure 3.2.: The neutral curve and the maximum growth rate curve for

λ = 0.37, ρ = 0.1, Rl = 50, Rg = 10 and δ = 0.3.
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3.3 conclusion

10.12, hence small disturbances to the uniform flow will grow for short

wavelengths, but their growth will be very slow.

In the work done by Needham et al. [132] they showed that as k → ∞,

Fn → ∞, whereas we have found an asymptote for Fn as k → ∞. However,

if we let ε → 0 and δ → 0 in (3.2.17), and assume ε � δ2, we are left with

Fasymp
n → ∞.

3.3 C O N C L U S I O N

We have investigated how small-amplitude disturbances affect the uniform

equilibrium flow in order to examine the possibility of slug flow developing.

By doing so, we have found a stability criterion, Fc, for which when F0 > Fc,

small disturbances in the uniform flow will grow and when F0 < Fc, they

will decay. We also found a non-hyperbolic criterion, FNH, for which when

F0 > FNH the IVP is ill-posed due to a short wavelength instability, hence

the long wavelength assumption is invalid and suggests the flow regime

would change to bubble flow. We then considered the solution of (3.1.1) for

a single mode of spatial wave number k in order to investigate how fast

different wavelengths grow. This allowed us to find the neutral curve, Fn,

for which small disturbances will neither grow nor decay and the maximum

growth rate curve, Fm. When the flow is unstable, i.e. F0 > Fc, disturbances

in the uniform flow will grow and eventually the linearised theory will

break down. At this point the governing equations will be dominated by

non-linear effects and the flow may evolve into a slugging state. In order to

investigate this further we will consider, in the next chapter, the existence

of periodic travelling wave solutions of (2.3.7) and (2.3.8) when F0 > Fc.
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4
P E R I O D I C T R AV E L L I N G WAV E T H E O RY

When the uniform flow is unstable we expect the flow to develop into roll

waves, as observed by many authors (see, for example, Mayer [123], Alavian

[4]), which take the form of periodic travelling waves far downstream. Hence

we expect the existence of periodic travelling wave solutions of (2.3.7) and

(2.3.8). We will restrict attention to those solutions with positive propagation

speed U since we are expecting disturbances to propagate downstream. We

therefore introduce the the travelling coordinate z = x −Ut and consider

solutions of the form

h = h(z), v = v(z), (4.0.1)

for

0 ≤ h(z) ≤ 1
ε

, (4.0.2)

where 1/ε is the top of the channel and both h(z) and v(z) are periodic in

z. On substitution of (4.0.1) into (2.3.7) and (2.3.8), we get

[h(v−U)]z = 0, (4.0.3)

−U
(

1 +
ρεh

1− εh

)
vz +

(
v +

ρεh [2− (1 + εh)δv]
δ(1− εh)2

)
vz

+

(
1− ρ

F2
0
− ρε(1− δv)2

δ2(1− εh)

)
hz
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periodic travelling wave theory

= −v2

h
+

(1− ε)3

(1− εδ)2 + λ(1− δ)2

(
(1− εδhv)2

(1− εh)3 +
λ(1− δv)|1− δv|

h(1− εh)3

)
+

(
1

hRl
+

ρε

(1− εh)Rg

)
[hvz]z −

ρε

δ(1− εh)Rg

[
1− δv
1− εh

hz

]
z

. (4.0.4)

Integrating (4.0.3) leads us to

h(v−U) = B, (4.0.5)

where B is a real constant. On rearranging (4.0.5), we obtain

v(z) = U +
B

h(z)
, (4.0.6)

which, after substitution into (4.0.4), leads to

(
B
Rl

+
Bρεh

(1− εh)Rg
+

ρεh [h(1− δU)− δB]
δ(1− εh)2Rg

)
hzz

=

(
B

hRl
+

Bρε

(1− εh)Rg
−

ρε
[
ε(1− δU)h2 + δB(1− 2εh)

]
δ(1− εh)3Rg

)
h2

z

−
(

UB
ρεh

1− εh
− B2

h
− Bρε [2h− δ(1 + εh)(Uh + B)]

δ(1− εh)2 +
(1− ρ)h2

F2
0

−ρε [h− δ(Uh + B)]2

δ2(1− εh)

)
hz −

(Uh + B)2

h

+
(1− ε)3

(1− εδ)2 + λ(1− δ)2

(
[h− εδh(Uh + B)]2

(1− εh)3

+
λ [h− δ(Uh + B)] |h− δ(Uh + B)|

h(1− εh)3

)
. (4.0.7)

For analysis, it is convenient to rewrite (4.0.7) as the equivalent 2D autonomous

dynamical system

h′ = w, (4.0.8)

(
B
Rl

+
Bρεh

(1− εh)Rg
+

ρεh [h(1− δU)− δB]
δ(1− εh)2Rg

)
w′
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=

(
B

hRl
+

Bρε

(1− εh)Rg
−

ρε
[
ε(1− δU)h2 + δB(1− 2εh)

]
δ(1− εh)3Rg

)
w2

−
(

UB
ρεh

1− εh
− B2

h
− Bρε [2h− δ(1 + εh)(Uh + B)]

δ(1− εh)2 +
(1− ρ)h2

F2
0

−ρε [h− δ(Uh + B)]2

δ2(1− εh)

)
w− (Uh + B)2

h

+
(1− ε)3

(1− εδ)2 + λ(1− δ)2

(
[h− εδh(Uh + B)]2

(1− εh)3

+
λ [h− δ(Uh + B)) |h− δ(Uh + B)|

h(1− εh)3

)
, (4.0.9)

where a prime denotes d/dz. We are interested in the existence of periodic

travelling wave solutions for this system of equations, hence (recalling our

definitions of roll waves and slugs from Chapter 1) we look for limit cycle

solutions which correspond to roll waves and, by varying our parameters,

investigate whether we can find slug solutions. In order to find values

of U and B for which these limit cycles can exist, we must understand

the structure of the phase plane and its bifurcations. This will be done in

Sections 4.2 and 4.3.

By setting the coefficient of w′ equal to zero in (4.0.9), we find a line of

singularities at

Us =
B(1− εh)2Rg

ρεh2Rl
+

1
δ
− Bε, (4.0.10)

which, for B < 0, increases as h increases hence Us is maximal at

Us(h = 1/ε) =
1
δ
− Bε ≡ Ust. (4.0.11)

As limit cycle solutions approach this line of singularities their peaks become

sharper until, just before they reach the line of singularities, the peaks

become a free surface corner and resemble a sawtooth wave. An example

of this will be seen in Section 4.3.
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If we now let ε → 0 and δ → 0 in (4.0.9), and assume ε � δ2, equation

(4.0.9) becomes

B
Rl

w′ =
B

hRl
w2 −

(
(1− ρ)h2

F2
0

− B2

h

)
w− (Uh + B)2

h
+

h2 + λh
1 + λ

, (4.0.12)

which is consistent with the result of Needham et al. [132].

Equilibrium points of (4.0.9) have w = 0, h = H, where H satisfies

[
(1− εδ)2 + λ(1− δ)2

]
(UH + B)2(1− εH)3

= (1− ε)3
(

H3[1− εδ(UH + B)]2 + λ[H − δ(UH + B)] |H − δ(UH + B)|
)

,

(4.0.13)

which is a fifth order polynomial and hence has up to five real solutions. A

plot of H against U is shown in Figure 4.1 for λ = 1, B = −1, ε = 1× 10−10

and δ = 1 × 10−3, ρ = 0.1, Rl = 50 and Rg = 50. For H � 1/ε we

see that we reproduce the results of Needham et al. [132] (discussed in

Subsection 1.2.6), as shown in Figure 4.1a. However, when we compare the

two models on a scale of O(ε−1), we see a significant difference, as shown in

Figure 4.1b. In particular, when δU = O(1) there are two more equilibrium

points for H = O(ε−1) which appear to join at H = ε−1, U = Ust. We can

investigate this by setting U = Ust in (4.0.13), which can then be re-arranged

to give

[
(1− εδ)2 + λ(1− δ)2

] [H
δ
+ B(1− εH)

]2

(1− εH)3

= H3(1− Bεδ)2(1− εH)2 − λδ2B|B|(1− εH)2, (4.0.14)

hence H = ε−1 is a double root for U = Ust. (Note that for dimensional

propagation speed V, where V = u0
l U, U ≈ 1/δ implies that V ≈ uh.)

These new equilibrium points represent uniform states in which the liquid

almost fills the channel. From this we can conclude that the bifurcation
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Figure 4.1.: A comparison of the equilibrium points of those obtained

using (4.0.13) against those by Needham et al. [132] for λ = 1, B = −1,

ε = 1× 10−10 and δ = 1× 10−3, ρ = 0.1, Rl = 50 and Rg = 50.
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Figure 4.2.: A typical bifurcation diagram comparing U against

equilibrium points for fixed ε, δ, F0, Rl , Rg, λ, ρ and B < 0.

structure is the same as found by Needham et al. [132] for h� ε−1, however

as U increases we see two equilibrium points that vanish in the previously

studied limit, ε → 0, at h = H+ and h = H− which come into existence

near the top of the channel for δU ≈ 1. For simplicity we will label

the original three equilibrium points H1, H2 and H3 where H1 < H2 <

H3 < H− < H+ for which H1 is a stable node/spiral, H2 is a saddle and

H3 is a spiral/node with the possibility of Hopf bifurcations occurring (as

discussed in Subsection 1.2.6). As U increases further, H+ and H− decrease

until H3 and H− disappear in a saddle-node bifurcation and we are left with

H1, H2 and H+. Figures 4.2 and 4.3 show a typical diagram comparing U

against equilibrium points for fixed B < 0 and B > 0, respectively, for fixed

ε, δ, F0, Rl, Rg, λ and ρ.

For B > 0 Needham et al. [132] found H1 to be a saddle point hence there

could be no limit cycle solutions. However, due to our line of singularities

possibly intersecting H1, it is possible for it to become a node or spiral

which would allow the possibility of a Hopf Bifurcation occurring, or a
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Figure 4.3.: A typical bifurcation diagram comparing U against

equilibrium points for fixed ε, δ, F0, Rl , Rg, λ, ρ and B > 0.

Hopf Bifurcation could occur on H− or H+. In either of these cases we

will not be able to find Hopf Bifurcations occurring for small h, so will

not be able to find limit cycle solutions that represent roll waves forming

on a thin layer of liquid. As it is these cases we wish to find in order to

investigate how they grow and potentially form slugs, we will continue our

work considering B < 0 only.

We can find an asymptotic approximation to the point at which the saddle-

node bifurcation between H3 and H− occurs by noting that δU = O(1) and

εH = O(1), hence we let

δU = Ǔ, εH = Ȟ, (4.0.15)

in (4.0.13), which at leading order gives

(1 + λ)εδ−2(1− Ȟ)3Ǔ2 ∼ Ȟ(1− ȞǓ)2. (4.0.16)
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4.1 analysis of equilibrium points

To get a leading order balance we let

δ = d0ε
1
2 , (4.0.17)

where d0 = O(1) is a positive constant, in (4.0.16), which gives

Ǔ± =
Ȟ2 ±

√
(1 + λ)d−2

0 (1− Ȟ)3Ȟ

Ȟ3 − (1 + λ)d−2
0 (1− Ȟ)3

. (4.0.18)

From Figures 4.2 and 4.3 we can see that, for a given value of H = H− = H+,

U(H+) > U(H−) hence as we are interested in H− we use Ǔ− and solve

dǓ−
dȞ

= 0, (4.0.19)

to get

Ȟ =
1
2

(1 + λ)
1
3

(√
d2

0 + 1 + λ + d0

) 2
3
+ (1 + λ)

2
3√

d2
0 + 1 + λ

(√
d2

0 + 1 + λ + d0

) 1
3

. (4.0.20)

We can then substitute (4.0.17), (4.0.18) and (4.0.20) into (4.0.15) to get the

explicit result. For λ = 1, δ = 1× 10−3 and ε = 1× 10−10 we have the

turning point at (U, H) = (9394, 0.0382 × 1010) which corresponds with

Figure 4.1b.

4.1 A N A LY S I S O F E Q U I L I B R I U M P O I N T S

In order to investigate H− and H+ we will try to find an asymptotic expansion

for H as H → ε−1. Since H ≤ ε−1 and U(H = 1/ε) = Ust ≡ 1
δ − Bε, from

(4.0.11), we define

H = ε−1 − Ĥεα−1, Ĥ ≥ 0, 0 < α < 1, (4.1.1)

δU = 1− Bεδ + Aεβ, 0 < β < 1, (4.1.2)
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4.1 analysis of equilibrium points

and

δ = d1ε
β
2 , (4.1.3)

where A, d1 = O(1) are constants to be determined. Substituting (4.1.1),

(4.1.2) and (4.1.3) into (4.0.13) at leading order gives

(1 + λ)d−2
1 Ĥ3ε3α−β ∼ ε−1

(
Ĥεα − Aεβ

)2
− λA|A|ε2β. (4.1.4)

Since 0 < α, β < 1 the first term on the right hand side must be zero for a

leading order balance, so we must have

α = β, Ĥ = A. (4.1.5)

Hence (4.1.1) becomes

H = ε−1 − Aεβ−1,

∼ 1
εδU

, (4.1.6)

and Ĥ ≥ 0 implies that A ≥ 0, hence equilibrium points close to H = ε−1

exist only for U > Ust. Since we have not found a value for β we must look

for another term in the asymptotic expansion. It is convenient to define

H =
1

εδU
+ H̃εγ−1, γ > β. (4.1.7)

Substituting (4.1.2), (4.1.3) and (4.1.7) into (4.0.13) and again looking for a

leading order balance gives

(1 + λ)d−2
1 A3ε2β ∼ H̃2ε2γ−1 − λA2ε2β. (4.1.8)

Equating powers of ε gives

γ = β +
1
2

, (4.1.9)
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4.1 analysis of equilibrium points

and

H̃ = ±
A
√
(1 + λ)A + λd2

1

d1
. (4.1.10)

By combining (4.1.2),(4.1.3), (4.1.7), (4.1.9) and (4.1.10) we have our asymp-

totic expansion of the two equilibrium points as

H± =
1

δU
ε−1 ± (δU − 1 + Bεδ)

√
(1 + λ)(δU − 1 + Bεδ)δ−2 + λ ε−

1
2 .

(4.1.11)

In order to investigate what type of equilibrium points H± are, let us

consider (4.0.9) in the form

w′ = g1(h)w2 + g2(h)w + g3(h). (4.1.12)

We can now express the Jacobian, J, of (4.0.8) and (4.0.9) as

J =

 0 1
dg3
dh (H), g2(H)

 . (4.1.13)

Hence, the eigenvalues of (4.0.8) and (4.0.9) are

λ± =
1
2

(
g2(H)±

√
g2(H)2 + 4

dg3

dh
(H)

)
. (4.1.14)

By defining F0 = F1ε−γ̄ where F1 is a positive constant and 0 < γ̄ < 1,

(4.1.14) becomes

λ± = −
Rg Ad1

2ρ

−2Bρd1F2
1 ε−

3
2 β + ρA2F2

1 ε−1 − (1− ρ)Ad2
1ε−2+2γ̄

Ad2
1F2

1

±

(−2Bρd1F2
1 ε−

3
2 β + ρA2F2

1 ε−1 − (1− ρ)Ad2
1ε−2+2γ̄

Ad2
1F2

1

)2

−8
ρH̃

Rg(1 + λ)A4d1
ε−

3
2−

7
2 β

 1
2
 ε1+ 3

2 β, (4.1.15)
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4.2 analysis for h ∼ ε−1

at leading order. Since, from (4.1.10), H̃ is negative for H− and positive for

H+, we can deduce from (4.1.15) that, in general, H− is a saddle point and

H+ is a node or spiral. A Hopf bifurcation will occur on H+ for g2(H) = 0

which happens when

U =
1
δ
− Bε +

(1− ρ)δ2 ±
√
(1− ρ)2δ4 + 8Bρ2δε3F4

0

2ρF2
0 εδ

≡ UHop f±
+ , (4.1.16)

which, for B < 0, is a real quantity when

F0 <

(
− (1− ρ)2δ3

8Bρ2ε3

)1/4

≡ FHop f
max+. (4.1.17)

As F0 → 0, U+
Hop f− → Ust from (4.0.11), hence for 0 < F0 < FHop f

max+ there will

be two Hopf bifurcations on H+. (Note that for B > 0, FHop f
max+ < 0, hence we

do not get Hopf bifurcations on H+.)

4.2 A N A LY S I S F O R h ∼ ε− 1

We will see in Section 4.3 that when δ U ≈ 1 we obtain limit cycle solutions

where the liquid almost fills the channel. We will now consider the case

where δ U 6 ≈ 1 and consider the phase plane for | h − ε− 1 | � 1 in order

to see if it is possible for limit cycles to pass through this region without the

existence of H− and H+ . To do this let

h = ε− 1 ( 1 − φ ( ε ) H̀ ) , φ ( ε ) � 1 , H̀ > 0 , (4.2.1)

w = ψ ( ε )W , W > 0 , (4.2.2)

and

δ = χ ( ε ) , 0 ≤ χ ( ε ) ≤ 1 . (4.2.3)

Substituting (4.2.1) and (4.2.3) into (4.0.9) and looking for a leading order

balance for ε and φ ( ε ) gives
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4.2 analysis for h ∼ ε−1

ρ ( 1 − U χ ( ε ) )

R g χ ( ε ) ε φ ( ε ) 2 H̀ 2
ψ ( ε )W ′ =

− ρ ( 1 − U χ ( ε ) )

R g χ ( ε ) φ ( ε ) 3 H̀ 3
ψ ( ε ) 2 W 2

+

(
2 ρ B ( 1 − U χ ( ε ) )

χ ( ε ) φ ( ε ) 2 H̀ 2
+

ρ ( 1 − U χ ( ε ) )

χ ( ε ) 2 ε φ ( ε ) H̀

)
ψ ( ε )W

+
1 − U χ ( ε )

( 1 + λ ) ε 2 φ ( ε ) 3 H̀ 3
, (4.2.4)

which rearranges to

dW
dH̀

=
W
H̀
− 2RgB

φ(ε)

ψ(ε)
−

RgH̀φ(ε)2

χ(ε)εψ(ε)
−

Rgχ(ε)

ρ(1 + λ)H̀Wε2ψ(ε)2
. (4.2.5)

In order to find a leading order balance, let

χ(ε) = d2ε
1
2 , 0 ≤ d2 ≤ ε−

1
2 , (4.2.6)

which leads us to

φ(ε) = ε
3
8 , ψ(ε) = ε−

3
4 . (4.2.7)

The leading order equation is therefore

dW
dH̀

=
W
H̀
−

Rg

d2
H̀ −

Rgd2

ρ(1 + λ)

1
H̀W

. (4.2.8)

By making the substitutions

H̀ = 4

√
d3

2
Rgρ(1 + λ)

H́, W =

√
Rgd2

ρ(1 + λ)
Ẃ, (4.2.9)

our approximations for h and w ((4.2.1) and (4.2.2), respectively) become

h = ε−1 − 4

√
d3

Rgρ(1 + λ)
ε−

5
8 H́, w =

√
Rgd

ρ(1 + λ)
ε−

3
4 Ẃ, (4.2.10)

and (4.2.8) reduces to the parameterless equation

dẂ
dH́

=
Ẃ2 − ẂH́2 − 1

ẂH́
. (4.2.11)
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4.3 numerical calculation of the periodic solutions

By solving dẂ
dH́

= 0 we find the nullclines at

Ẃ =
H́2 ±

√
H́4 + 4

2
, (4.2.12)

and can see from (4.2.11) that for

Ẃ → 0+,
dẂ
dH́
→ −∞, (4.2.13)

Ẃ → 0−,
dẂ
dH́
→ +∞, (4.2.14)

H́ → 0,
dẂ
dH́
→


+∞ if Ẃ > 1 or − 1 < Ẃ < 0

0 if Ẃ = 1 or Ẃ = −1

−∞ if Ẃ < −1 or 0 < Ẃ < 1

. (4.2.15)

Using (4.2.12) - (4.2.15) we can plot the phase portrait of equation (4.2.11),

shown in Figure 4.4, which shows that it is not possible for limit cycles to

pass through the region when |h − ε−1| = O(ε−
5
8 ). Hence when δU 6≈ 1,

there is an upper bound on the amplitude of the periodic solutions and they

cannot reach the top of the channel.

4.3 N U M E R I C A L C A L C U L AT I O N O F T H E P E R I O D I C

S O L U T I O N S

In order to investigate numerical solutions to (4.0.8) and (4.0.9) it is possible

to use software such as Auto which offers a systematic and efficient way

of tracing all travelling wave solutions and their bifurcations. However,

due to the complexity of the system and the number of parameters, it

would be difficult to gain an in depth understanding of the system this way.

Hence, we will use a combination of MATLAB routines ode45 and bvp5c

as discussed below. This method requires a more ’hands-on’ approach

allowing us to understand the effects of the parameters on the solutions

and their phase planes. It must be noted that, by using this approach, it is
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4.3 numerical calculation of the periodic solutions

possible we have missed some solution branches. Though, as will be seen in

this Section, we are able to successfully use this approach in finding solution

branches and are able to explain the structure of their respective bifurcation

diagrams.

We begin by taking ε and δ to be small (ε = 1× 10−10, δ = 1× 10−3), using

the same parameters as Needham et al. [132] in their Figure 13 (U = 1.73276,

B = −0.7, F0 = 10, Rl = 50, λ = 1 and ρ = 0.1) and using Rg = 50. We then

integrate (4.0.8) and (4.0.9) numerically in MATLAB using routine ode45

allowing it to run until the solution has become periodic (and we get the

same solution as Figure 13 by Needham et al. [132]).

Let us now define ẑ = z/L, where L is the period, or wavelength, of the

solution so that, (4.0.8) and (4.0.9) become

h′ = Lw, (4.3.1)

(
B
Rl

+
Bρεh

(1− εh)Rg
+

ρεh [h(1− δU)− δB]
δ(1− εh)2Rg

)
w′

= L

[(
B

hRl
+

Bρε

(1− εh)Rg
−

ρε
[
ε(1− δU)h2 + δB(1− 2εh)

]
δ(1− εh)3Rg

)
w2

−
(

UB
ρεh

1− εh
− B2

h
− Bρε [2h− δ(1 + εh)(Uh + B)]

δ(1− εh)2 +
(1− ρ)h2

F2
0

−ρε [h− δ(Uh + B)]2

δ2(1− εh)

)
w− (Uh + B)2

h

+
(1− ε)3

(1− εδ)2 + λ(1− δ)2

(
[h− εδh(Uh + B)]2

(1− εh)3

+
λ [h− δ(Uh + B)] |h− δ(Uh + B)|

h(1− εh)3

)]
, (4.3.2)

for 0 ≤ ẑ ≤ 1, where a prime denotes d/dẑ, to be solved subject to the

periodic boundary conditions

h(0) = h(1), w(0) = w(1) = 0. (4.3.3)
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Figure 4.5.: The periodic solutions for the case ε = 0.1, δ = 0.5, U = 2.09,

B = −1, F0 = 4, Rl = 50, Rg = 50, λ = 0.4 and ρ = 0.1 and the effect of

varying the parameters.

We are now able to use routine bvp5c to solve (4.3.1) and (4.3.2) with L as an

eigenvalue and using the solution generated by routine ode45 previously as

our initial guess. The effects of varying ε, δ, U, B, F0, Rl, Rg, λ and ρ are

shown in Figure 4.5. By increasing B, F0 and U we see the amplitude of the

periodic solution increases towards the top of the channel (at h = 10), as

can be seen in Figure 4.6.
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Figure 4.6.: The periodic solution of wavelength 1.0666 for the case

ε = 0.1, δ = 0.5, U = 2.199, B = −0.7, F0 = 6.7, Rl = 50, Rg = 50, λ = 0.4

and ρ = 0.1.

In order to understand the periodic solutions, it is necessary to examine

the phase portrait. To do this we must first note that we have a line of

singularities at h = 0, for which (4.0.9) becomes

B
Rl

w2 + B2w− B2 − (1− ε)3

(1− εδ)2 + λ(1− δ)2 λδ2|B| = 0, (4.3.4)

at leading order, hence either B = 0, or

w± =
Rl
2

[
−B±

√
B2 +

4B
Rl

+
λδ2(1− ε)3|B|

Rl[(1− εδ)2 + λ(1− δ)2]

]
. (4.3.5)

An example of a typical bifurcation diagram can be seen in Figure 4.7 for

ε = 0.1, δ = 0.5, B = −1, F0 = 4, Rl = 50, Rg = 50, λ = 0.4 and ρ = 0.1,

these are the same parameters we used in Figure 4.5. The equilibrium points

are shown in blue and are represented by solid lines if they are stable and

dashed lines if they are unstable. In this case there is a Hopf bifurcation at

H3 when U ≈ 2.074. As U increases there are periodic solutions passing

around H3 and in between H2 and H−, represented by the shaded region

with the maximum and minimum values of the solutions shown in red to

represent stable solutions (we will represent unstable solutions with pink).

The solutions increase in amplitude until U ≈ 2.095, at which point there is

a homoclinic bifurcation at H2, marked by the green line.
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Figure 4.7.: The bifurcation diagram for ε = 0.1, δ = 0.5, B = −1, F0 = 4,

Rl = 50, Rg = 50, λ = 0.4 and ρ = 0.1.

For a given set of parameters, such as those used in Figure 4.7, we can

find the value of B for which a Hopf bifurcation occurs at the trivial steady

state. This value is found by setting h = 1 and U = 1− B, which from (4.0.5)

corresponds to v = 1, and using the Hopf bifurcation theorem solving for

B. For the parameters used in Figure 4.7 this gives a supercritical Hopf

bifurcation for h = v = 1 when B = −0.22385 and U = 1.22385 from

which a unique limit cycle solution bifurcates in U > 1.22385. The solutions

increase in amplitude as U is increased until U ≈ 1.24439, at which point

there is a homoclinic bifurcation at H2, as shown in Figure 4.8. By consid-

ering the limit cycle solution just after the Hopf bifurcation we find it has

wavelength 0.51985 and hence wave number k = 12.18654. Using our

analysis in Section 3.2, we can calculate the predicted propagation speed,

given by

U =
ω+

I

k
. (4.3.6)
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Figure 4.8.: The bifurcation diagram from the steady state solution where

ε = 0.1, δ = 0.5, B = −0.224, F0 = 4, Rl = 50, Rg = 50, λ = 0.4 and

ρ = 0.1.

In this case our linear stability analysis predicts U = 1.22087, hence gives a

close match to the actual propagation speed.

We have shown it is possible for limit cycle solutions to bifurcate from the

steady state, which grow in size as their propagation speed increases. As

can be seen in Figure 4.8, there is a maximum amplitude and propagation

speed for which the solutions exist. However, as can be seen by comparing

Figures 4.7 and 4.8, if the value of B is decreased we increase the values of

U for which the limit cycles exist and are able to produce larger amplitude

solutions. Hence, solutions in the IVP will originate from the steady state

with larger values of B and as they grow in amplitude will correspond to

smaller values of B. This will be discussed in more detail in Section 5.4.

By varying the values of ε, δ, B, F0, Rl, Rg, λ and ρ, we alter the positions

of the equilibrium points and the Hopf and homoclinic bifurcations. Hence,

as we kept a constant value of U in Figure 4.5 as we varied the other
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4.3 numerical calculation of the periodic solutions

parameters, we changed the point within the region where limit cycle solutions

exist we were generating our solutions. As a result of this our comparisons

in Figure 4.5 do not reflect the effects of varying the parameters on the

system as a whole. For example, in Figure 4.5 where we have increased

F0 and produced smaller solutions, this is a result of the Hopf bifurcation

occurring at a larger value of U hence the solution at U = 2.09 is closer to

the Hopf bifurcation and hence smaller.

The periodic solution at U = 2.095, just before the homoclinic bifurcation,

is shown in Figure 4.9. We can see that, although the periodic solution

represents large waves, it has not produced slugs. From our work in Section 4.2

we know that we are only able to get periodic solutions that near the top of

the channel for U ≈ 1/δ and due to the line of singularities we must also

have U > 1/δ− Bε. Hence it is only possible to get slugs for

U = 1/δ− Bε + A, 0 < A� 1. (4.3.7)

In order for limit cycle solutions that are produced from a Hopf bifurcation

on H3 to reach the top of the channel this means they must pass around

both H− and H+. For the parameter set used in Figure 4.7 we would need

U = 2.1 + A for there to be a possibility of slug solutions existing, however

the limit cycle solutions only exist for 2.074 < U < 2.095. In order for the

limit cycles to exist where U = 1/δ− Bε + A, where we may produce slug

solutions, we must increase the value of B.

Two examples of bifurcation diagrams with larger values of B can be seen

in Figure 4.10 and Figure 4.11. In Figure 4.10 the parameters are the same as

in Figure 4.7 except now B = −0.7 and F0 = 6.7. By comparing these figures

we can see we now have a significantly larger region for which periodic

solutions exist and we have periodic solutions that exist which go around

H− and H+ which near the top of the channel. Figure 4.12 shows the effect

of varying effects of varying ε, δ, U, B, F0, Rl, Rg, λ and ρ on these solutions.

In Figure 4.5 the amplitude of the waves increased as we increased U and
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Figure 4.9.: The periodic solution at U = 2.095, just before the homoclinic

bifurcation.

B, however in Figure 4.12 the amplitude decreases as we do this as now

increasing U and B moves us further from the point U = 1/δ− Bε.

Note that for Figures 4.13b - 4.29b we have used:

• yellow for stable limit cycles,

• brown for unstable limit cycles,

• red for the top right of the saddle at H2,

• dark blue for the bottom right of the saddle at H2,

• pink for the bottom right of the saddle at H−,

• light blue for the bottom left of the saddle at H−,

• green for the top left of the saddle at H−,

and all points outside the lines shown go to H1.

Figure 4.10 shows the bifurcation diagram for ε = 0.1, δ = 0.5, B =

−0.7, F0 = 6.7, Rl = 50, Rg = 50, λ = 0.4 and ρ = 0.1 and Figures 4.13-

4.19 show the corresponding periodic solutions and phase planes. For this

parameter set w+ = 34.047 and w− = 0.953 which is not shown in the phase

plane diagrams as it has no effect on the phase plane structure. In this case

there is a Hopf bifurcation at H3 when U ≈ 2.032, as U increases there are
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Figure 4.12.: The periodic solutions for the case ε = 0.1, δ = 0.5, U = 2.3,

B = −0.7, F0 = 6.7, Rl = 50, Rg = 50, λ = 0.4 and ρ = 0.1 and the effect of

varying the parameters.
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4.3 numerical calculation of the periodic solutions

periodic solutions passing around H3 and in between H2 and H− (shown

in Figure 4.13 where the limit cycle is shown in yellow) which increase in

amplitude until U ≈ 2.199 at which point there is a homoclinic bifurcation

(hom1) at H− (shown in Figure 4.14). As U is increased past this point there

are no periodic solutions until U ≈ 2.206 where there is another homoclinic

bifurcation at H− (shown in Figure 4.15). By comparing Figures 4.14b and

4.15b we can see that, as U has increased, the limit cycle now passes around

H− and H+ in the phase plane, before coming back in towards H−. This

results in the periodic solutions having a ’bump’-like shape at their peak, as

can be seen in Figure 4.15a. After this second homoclinic bifurcation there

are periodic solutions again which decrease in amplitude as U increases and

no longer pass near H− in the phase plane, removing the ’bump’-like peak

(shown in Figure 4.16). This continues until U ≈ 2.472, at which point there

is a third homoclinic bifurcation (hom3) at H− inside the limit cycle which

results in an unstable limit cycle (shown in Figure 4.17 where the stable and

unstable periodic solutions are shown in blue and red, respectively, and

the stable and unstable limit cycles are shown in yellow and dark green,

respectively). Similarly to earlier, in the phase plane at hom3, the unstable

limit cycle passes around H3, H− and H+, before coming back in towards

H− resulting in the unstable periodic solutions having a ’bump’-like shape

at their peak. After this third homoclinic bifurcation there are both stable

and unstable limit cycles (shown in Figure 4.18) where the stable periodic

solution decreases in amplitude and the unstable periodic solution increases

in amplitude as U increases. At U ≈ 2.483 there is a saddle-node bifurcation

between H3 and H− after which we continue to get both stable and unstable

periodic solutions (shown in Figure 4.18) until U ≈ 2.509 at which point

there is a periodic saddle-node bifurcation and they annihilate each other.

Recalling our definitions of roll waves and slugs from Chapter 1 we can

see examples of these in Figures 4.13a-4.19a. After the Hopf bifurcation the

periodic solutions resemble roll waves which increase in amplitude as U is

increased, such as in Figure 4.13a. The roll waves continue to increase in
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4.3 numerical calculation of the periodic solutions

amplitude until U ≈ 2.199, just before hom1, at which point they begin to

grow in width and form slugs, such as in Figure 4.14a. The largest slugs

for this parameter set occur just after hom2 where U ≈ 2.206, such as in

Figure 4.15a, which begin to decrease in size as U is increased, such as in

Figure 4.16a.
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(b) The phase plane between the Hopf bifurcation and hom1.

Figure 4.13.: U = 2.150.
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Figure 4.14.: U = 2.199.
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Figure 4.15.: U = 2.206.
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Figure 4.16.: U = 2.350.
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Figure 4.17.: U = 2.472.
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Figure 4.18.: U = 2.480.
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limit cycle annihilation.

Figure 4.19.: U = 2.490.
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Figure 4.11 shows the bifurcation diagram for ε = 0.01, δ = 0.3, B = −0.7,

F0 = 25, Rl = 50, Rg = 10, λ = 0.37 and ρ = 0.1 and Figures 4.20-4.29

show the corresponding periodic travelling waves and phase planes. For

this parameter set w+ = 33.999 and w− = 1.0013 again is not shown in the

phase plane diagrams as it has no effect on the phase plane structure. In

this case there are two Hopf bifurcations, the first (Hopf1) is at H3 when

U ≈ 2.755 and is subcritical. As U decreases there are periodic solutions

passing around H3 and in between the line of singularities and H2 (shown

in Figure 4.20) which increase in amplitude until U ≈ 2.710 at which point

the limit cycles reach the line of singularities (shown in Figure 4.21). From

Figures 4.20 and 4.21 we can see the amplitude of the periodic travelling

wave has increased as U is decreased and its peak has become a free surface

corner and similar to a sawtooth wave as it reaches the line of singularities.

The second Hopf bifurcation (Hopf2) is also at H3 when U ≈ 4.371 and

is supercritical. As U decreases there are periodic solutions passing around

H3 and in between H2 and H− (shown in Figures 4.22) which increase in

amplitude until U ≈ 4.194 at which point there is a homoclinic bifurcation

(hom1) at H− (shown in Figure 4.23). When U is decreased past this point

there are no periodic solutions until U ≈ 4.100 where there is a second

homoclinic bifurcation (hom2) at H− and the periodic solution also passes

around H− and H+ (shown in Figure 4.24). As U is decreased further, the

amplitude of the periodic solution continues to increase until U ≈ 4.033, at

which point there is a third homoclinic bifurcation (hom3) at H− (shown

in Figure 4.26). As U is decreased there are no periodic solutions again

until there is a fourth homoclinic bifurcation (hom4) at H− for U ≈ 3.989

(shown in Figure 4.27). As U is decreased past this point there are periodic

solutions again only passing around H3 and in between H2 and H− (shown

in Figures 4.28) which decrease in amplitude to a local minimum before

increasing again. Finally, as U is decreased further, there is a homoclinic

bifurcation (hom5) at H2 for U ≈ 3.581 (shown in Figure 4.29).
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4.4 conclusion

In the region 4.033 < U < 4.100, where limit cycles exist between hom2

and hom3, we find that although the amplitude continues to increase as

U is deceased, the wavelength decreases to a local minimum at U ≈ 4.067

(shown in Figure 4.25) before increasing again.

For the first set of parameters shown in Figure 4.10 we get three saddle-

node bifurcations, three homoclinic bifurcations and a Hopf bifurcation. For

the second set of parameters shown in Figure 4.11 we have three saddle-

node bifurcations, five homoclinic bifurcations and two Hopf bifurcations.

As we have seen from these two examples, there are numerous possible

bifurcation diagrams we can get depending on the parameters.

4.4 C O N C L U S I O N

We have investigated the existence of periodic travelling wave solutions and

found that for δU ≈ 1 there are two previously unknown equilibrium points

(H− and H+) for our system of equations that come into existence near ε−1.

By finding asymptotic expansions for these new equilibrium points we were

able to deduce that, for small ε, H− was a saddle point and H+ a node or

spiral where a Hopf bifurcation may occur. Hence, from our equilibrium

points we have the possibility of:

- Hopf bifurcations at H3 and H+,

- homoclinic bifurcations at H2 and H−,

- heteroclinic bifurcations between H2 and H−

- saddle-node bifurcations between H− and H+, H3 and H− and between

H2 and H3, and

- periodic saddle-node bifurcations between stable and unstable limit cycles.

Finally we solved the system of equations numerically and found high

amplitude periodic solutions. We investigated the phase plane for two sets
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(b) The phase plane between Hopf1 and the point at which the limit cycle reaches

the line of singularities.

Figure 4.20.: U = 2.730.
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singularities.

Figure 4.21.: U = 2.710.
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Figure 4.22.: U = 4.250.
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(b) The phase plane at hom1.

Figure 4.23.: U = 4.194.
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Figure 4.24.: U = 4.100.
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(b) The phase plane between hom2 and hom3.

Figure 4.25.: U = 4.067.
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(b) The phase plane at hom3.

Figure 4.26.: U = 4.033.
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(b) The phase plane at hom4.

Figure 4.27.: U = 3.989.
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(b) The phase plane between hom4 and hom5.

Figure 4.28.: U = 3.950.
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Figure 4.29.: U = 3.581.
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of parameters while varying U. In one we found one Hopf bifurcation,

two homoclinic bifurcations and a periodic saddle-node bifurcation which

resulted in two separate regions in which periodic solutions can exist and

which contain both stable and unstable limit cycle solutions which result

in a stable-unstable limit cycle annihilation. In the other we found two

Hopf bifurcations and five homoclinic bifurcations which resulted in four

separate regions in which periodic solutions can exist. As we have many

parameters and the phase planes are extremely complicated, an exhaustive

catalogue of possibilities is not feasible, hence further research in this area

is needed in order to achieve an understanding of the whole phase portrait.

By using periodic travelling wave theory we now have more insight into

how the parameters affect the system and have shown the possibility for the

existence of slugs, such as those shown in Figure 4.14a. However periodic

travelling wave theory does not tell us about the stability of those travelling

waves in the full system, hence we will solve our governing equations as an

initial value problem.
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5
I N I T I A L VA L U E P R O B L E M

In order to improve our understanding of how slugs form and the effects

our parameters have we will now solve the governing equations as an

initial value problem. We will use the finite-difference method derived by

Kurganov and Tadmor [114] combined with a second-order Runge-Kutta

method which requires our equations in the form

∂

∂t
u(x, t) +

∂

∂x
f
(
u(x, t)

)
=

∂

∂x
Q[u(x, t), ux(x, t)] + R

(
u(x, t)

)
. (5.0.1)

Hence, we will begin this chapter by re-writing our equations from Chapter 2

so that they are in this form. We will use periodic boundary conditions to

analyse the effect of varying the spatial step size, ∆x, in order to choose a

value that will give us the necessary accuracy and a practical run-time. We

will then investigate how rapidly small disturbances to the uniform flow

grow and compare the results with those predicted in Chapter 3 in order

to verify our earlier work. We will then use solutions found using bvp5c

as our initial condition in the IVP problem to investigate the stability of

those travelling waves found in Chapter 4. Finally, we will use inlet and

outlet conditions to simulate the flow through a channel for F0 > Fc and

investigate the effects of varying our parameters.

By using more precise information on the local propagation speeds, Kurganov

and Tadmor [114] have derived a second order accurate scheme that does

not rely on the characteristics of the problem other than the local wave

106



5.1 formulation of equations

speeds. It does not generate spurious oscillations and, of particular importance

in our work, is able to capture shocks. As it is a central scheme it is not tied

to the specific eigenstructure of the problem so is straightforward to use

and, compared with other similar schemes, has a much smaller numerical

viscosity.

5.1 F O R M U L AT I O N O F E Q U AT I O N S

In Chapter 2 we derived the system of equations for our model. By combining

(2.2.15) and (2.2.16) using (2.2.17) but not (2.1.10), as we originally did, and

dropping the bars from ū for convenience, we have the equations of motion

as

ht + [hul]x = 0, (5.1.1)

[
ρlul − ρgug

]
t +

[
1
2

ρlu2
l −

1
2

ρgu2
g + (ρl − ρg)gh

]
x

= −
ρlclu2

l
h

+
ρgcgu2

g

a− h
+

aρgcg
I

h(a− h)
(ug − ul)|ug − ul|+

µl
h
[hul x]x

−
µg

a− h
[
(a− h)ugx

]
x , (5.1.2)

and, as in (2.1.10),

ug =
auh − hul

a− h
. (5.1.3)

Using the scales (2.3.1), dimensionless constants (2.3.2), defining

u =
ug

u0
l

, (5.1.4)

and dropping the primes for convenience, (5.1.1), (5.1.2) and (5.1.3) non-

dimensionalise to

ht + [hv]x = 0, (5.1.5)

107



5.1 formulation of equations

[v− ρu]t +

[
1
2

(
v2 − ρu2

)
+

1− ρ

F2
0

h

]
x

=
1

Rlh
[hvx]x −

ρ

Rg(1− εh)
[(1− εh)ux]x −

v2

h

+
ρcg

I
cl

(
u2

λ(1− εh)
+

(u− v)|u− v|
h(1− εh)

)
, (5.1.6)

and

u =
1− εδhv
δ(1− εh)

. (5.1.7)

At the inlet we assume the flow is at an equilibrium, hence (5.1.6) reduces

to

ρcg
I

cl
=

λδ2(1− ε)3

(1− εδ)2 + λ(1− δ)2 , (5.1.8)

which when substituted back into (5.1.6) gives

[v− ρu]t +

[
1
2

(
v2 − ρu2

)
+

1− ρ

F2
0

h

]
x

=
1

Rlh
[hvx]x −

ρ

Rg(1− εh)
[(1− εh)ux]x −

v2

h

+
δ2(1− ε)3

(1− εδ)2 + λ(1− δ)2

(
u2

1− εh
+

λ(u− v)|u− v|
h(1− εh)

)
. (5.1.9)

It is important to note that if the liquid forms a slug and begins to reach

the top of the channel (h → ε−1) the governing equations become invalid.

At this point the shear stresses between the wall and the gas and between

the gas and the liquid will decrease to zero as the liquid height increases

to the top of the channel. As our model does not take this into account we

must make a small modification to our equations in order for them to be

solved numerically. We will multiply the terms representing the gas-wall

and gas-liquid shear by

1− exp
(
− (1− εh)3

ε3

)
, (5.1.10)
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which will only have an effect on the solutions as they near the top of the

channel. As the gas-wall and gas-liquid shear terms contain (1 − εh)−3

we have used (1 − εh)3ε−3 so that (5.1.10) takes effect at the same rate.

Applying (5.1.10) to (5.1.9) gives

[v− ρu]t +

[
1
2

(
v2 − ρu2

)
+

1− ρ

F2
0

h

]
x

=
1

Rlh
[hvx]x −

ρ

Rg(1− εh)
[(1− εh)ux]x −

v2

h

+
δ2(1− ε)3

(1− εδ)2 + λ(1− δ)2

(
u2

1− εh
+

λ(u− v)|u− v|
h(1− εh)

)(
1− e−

(1−εh)3

ε3

)
.

(5.1.11)

Note that this is a numerical fix that should not affect the formation of slugs.

We now define

q = v− ρu, (5.1.12)

which, when combined with (5.1.7), gives

v =
ρ + δ(1− εh)q

δ[1− (1− ρ)εh]
, (5.1.13)

and

u =
1− εδhq

δ[1− (1− ρ)εh]
, (5.1.14)

where v = v(h, q) and u = u(h, q). Hence, by defining

fh = hv, (5.1.15)

fq =
1
2

(
v2 − ρu2

)
+

1− ρ

F2
0

h, (5.1.16)

Qv = hvx, (5.1.17)
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5.1 formulation of equations

Qu = (1− εh)ux, (5.1.18)

R = −v2

h
+

δ2(1− ε)3

(1− εδ)2 + λ(1− δ)2

(
u2

1− εh
+

λ(u− v)|u− v|
h(1− εh)

)(
1− e−

(1−εh)3

ε3

)
,

(5.1.19)

where fh = fh(h, q), fq = fq(h, q), Qv = Qv(h, q, hx, qx), Qu = Qu(h, q, hx, qx)

and R = R(h, q), (5.1.5) and (5.1.11) become

ht + fhx = 0, (5.1.20)

and

qt + fqx =
1

Rlh
Qvx −

ρ

Rg(1− εh)
Qux + R. (5.1.21)

We can now use the finite difference method derived by Kurganov and

Tadmor [114] combined with a second-order Runge-Kutta method.

5.1.1 Spatial Step Size Analysis

For channel length CL, the periodic boundary conditions become

h(0, t) = h(CL, t), q(0, t) = q(CL, t). (5.1.22)

Using bvp5c as before in Chapter 4, we can solve for a periodic travelling

wave which we then use as the initial condition with periodic boundary

conditions. We will let the code run until the wave has become steady then

calculate its propagation speed by measuring the distance the peak of the

wave has travelled. In order to get an accurate value of U we will solve for

a quadratic at the peak of the waves and use the location of the quadratic’s

maximum in order to give an accurate value for the peak’s location. We will

then use this value of U in bvp5c, solving for B, in order to calculate the
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5.1 formulation of equations

∆x U B

0.01 1.97282 −0.82502

0.008 1.98279 −0.83653

0.005 1.99702 −0.85311

0.0025 2.00662 −0.86438

0.001 2.00966 −0.86797

Table 5.1.: A comparison of U and B for ε = 0.1, δ = 0.5, F0 = 5, Rl = 50,

Rg = 50, λ = 1, ρ = 0.1, U = 2, B = −0.8566, L = 1 and varying ∆x.

corresponding periodic travelling wave which we can compare to our IVP

solution.

Table 5.1 shows the values of U and B for ε = 0.1, δ = 0.5, F0 = 5, Rl = 50,

Rg = 50, λ = 1, ρ = 0.1, U = 2, B = −0.8566, L = 1 and varying ∆x and

Figure 5.1 shows our IVP solutions compared to the bvp5c solutions. In

order to decrease computing time we want to use the largest ∆x possible

without losing accuracy. We can see from Figure 5.1 that for ∆x > 0.005

the IVP solution is not resolving the steep front face of the wave accurately,

hence we will use ∆x = 0.005. As can be seen in Table 5.1, using ∆x = 0.005

will result in a slightly slower propagation speed in the IVP when compared

to solutions found using bvp5c, hence when we make these comparisons we

must take this into account.

5.1.2 IVP Linear Stability

We will compare solutions from our IVP problem with our work in Chapter 3

in order to check they are consistent. To do this, recalling from Chapter 3

that

h = 1 + h̄, (5.1.23)
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Figure 5.1.: A comparison of the bvp5c solution to our IVP solution for

ε = 0.1, δ = 0.5, F0 = 5, Rl = 50, Rg = 50, λ = 1, ρ = 0.1, U = 2,

B = −0.8566, L = 1 and varying ∆x.
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5.2 analysis of the stability of periodic travelling waves

where

h̄(x, t) = Aeikx+ωt, (5.1.24)

we set our initial condition to be the uniform flow plus a small disturbance,

h̄, given by

h̄(t = 0) = 0.1 exp

(
−5
(

x− CL
2

)2
)

. (5.1.25)

Figure 5.2 shows the solutions at multiple times for ε = 0.01, δ = 0.3,

F0 = 3.2, Rl = 50, Rg = 50, λ = 1 and ρ = 0.1. For this parameter set

Fc = 3.048 and the most unstable wavelength is 3.808, which can be seen to

be close to the wavelength of the disturbances in Figure 5.2 when they are

in their early stages of growth. However, due to the non-linear effects, the

larger waves propagate more quickly than the smaller ones which causes

the wavelengths to increase after a long enough time.

Figure 5.3 shows the solution at t = 9 for the same parameter set except

with F0 = 10, for which the most unstable wavelength is 0.792. As the

value of F0 is significantly larger than Fc, the non-linear effects work more

rapidly, however again in the early stages of the growth of the disturbances

their wavelength is close to that of the most unstable wavelength. In both

cases our predicted most unstable wavelength gives a close approximation

to the wavelength of our disturbances in their early stages of growth, hence

we may assume our linear stability analysis and our numerical solution are

consistent.

5.2 A N A LY S I S O F T H E S TA B I L I T Y O F P E R I O D I C

T R AV E L L I N G WAV E S

In Chapter 4 we studied the existence of periodic travelling wave solutions,

however periodic travelling wave theory does not tell us about the stability

of those travelling waves in the full system. We will now use some of the
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Figure 5.2.: The solutions for ε = 0.01, δ = 0.3, F0 = 3.2, Rl = 50, Rg = 50,

λ = 1 and ρ = 0.1 at various times.
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Figure 5.3.: The solution at t = 9 for ε = 0.01, δ = 0.3, F0 = 10, Rl = 50,

Rg = 50, λ = 1 and ρ = 0.1.
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solutions we found earlier in Section 4.3 as our initial condition in the IVP

problem with periodic boundary conditions in order to investigate their

stability.

Throughout this section we will refer to the parameter set ε = 0.1, δ = 0.5,

F0 = 6.7, Rl = 50, Rg = 50, λ = 0.4 and ρ = 0.1 as Parameter Set 1, and

the parameter set ε = 0.01, δ = 0.3, F0 = 25, Rl = 50, Rg = 10, λ = 0.37

and ρ = 0.1 as Parameter Set 2. For Parameter Set 1 we will use bvp5c

to compute solutions for U1 = 2.099, U2 = 2.149, U3 = 2.189, U4 = 2.205,

U5 = 2.348, U6 = 2.444, U7 = 2.498 and U8 = 2.490 where for U7 we

use the stable limit cycle solution and for U8 we use the unstable limit

cycle solution. For Parameter Set 2 we will use U1 = 4.298, U2 = 4.251,

U3 = 4.200, U4 = 4.060, U5 = 3.985, U6 = 3.808, U7 = 3.560 and U8 = 2.748.

For both parameter sets we will use B = −0.7. Figures 5.4 and 5.5 show

the bifurcation diagrams for Parameter Sets 1 and 2, respectively, with the

values of U we are using in bvp5c marked by purple lines. In Figure 5.4

Region A refers to the values of U between the Hopf bifurcation and the

first homoclinic bifurcation, Region B refers to the values of U between

the second and third homoclinic bifurcations and Region C refers to the

values of U between the third homoclinic bifurcation and the point where

the stable and unstable limit cycles annihilate each other. In Figure 5.5

Region C refers to the values of U between the Hopf bifurcation and the

first homoclinic bifurcation, Region B refers to the values of U between the

second and third homoclinic bifurcations and Region A refers to the values

of U between the fourth and fifth homoclinic bifurcations.

Using bvp5c we find periodic solutions for the parameters specified. In

order to use these as our initial conditions for our IVP we will combine

ten of each solution, one after the other, creating a channel of length 10L,

where L is the length of one periodic solution, comprising ten periodic and

identical roll waves. We then use these initial conditions in our IVP and

let it run until the structure of the roll waves in the IVP has become time-

independent.
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Figure 5.4.: The bifurcation diagram for Parameter Set 1 with the values

of U1, U2, U3, U4, U5, U6, U7 and U8 marked by the purple lines.
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Figure bvp5c U IVP U IVP B

5.9a 2.099 2.077 -0.692

5.9b 2.149 2.123 -0.698

5.9c 2.189 2.186 -0.681

5.9d 2.205 2.180 -0.599

5.9e 2.348 2.298 -0.780

5.9f 2.444 N/A N/A

5.9g 2.498 N/A N/A

5.9h 2.490 2.345 0.117

Table 5.2.: A comparison of U

and B from bvp5c compared

to those from the IVP for

Parameter Set 1.

Figure bvp5c U IVP U IVP B

5.10a 4.298 3.888 -0.979

5.10b 4.251 3.817 -0.712

5.10c 4.200 N/A N/A

5.10d 4.060 N/A N/A

5.10e 3.985 N/A N/A

5.10f 3.808 3.723 -0.822

5.10g 3.560 3.560 -0.926

5.10h 2.748 N/A N/A

Table 5.3.: A comparison of U

and B from bvp5c compared

to those from the IVP for

Parameter Set 2.

Tables 5.2 and 5.3 show the resulting values of U, calculated by measuring

the distance travelled in the IVP (using the method of fitting a quadratic to

the top of the wave as described in Section 5.1), and B, calculated using

B = average(h(v−U)). We can see that the propagation speeds found in

the IVP are slightly slower than those in the initial conditions, as we expect

from our work in Section 5.1.

The values of U and B for Parameter Set 1 for U ≈ 2.444 and U ≈ 2.498

and Parameter Set 2 for U ≈ 2.748 are not given as the flow has developed

into a stratified flow regime. The values of U and B for Parameters Set 2 for

U ≈ 4.200, U ≈ 4.060 and 3.985 are not given as they are unsteady periodic

solutions which do not have a permanent form.

Plots of the values for U from bvp5c compared to those found from the

IVP and where they lie in the bifurcation diagram are shown in Figures 5.7

and 5.8. Figures 5.9 and 5.10 show plots of the initial conditions, found

using bvp5c, compared to the solutions found using the IVP.

For Parameter Set 1 we can see from Table 5.2 and Figures 5.7 and 5.9

that only bvp5c solutions in Region A are stable in the IVP. For solutions
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Figure 5.6.: Legends for Figures 5.7 and 5.8.
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the IVP for Parameter Set 2.
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(b) U2 ≈ 2.149, L = 0.79.
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(c) U3 ≈ 2.189, L = 0.99.
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(d) U4 ≈ 2.205, L = 1.28.
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(e) U5 ≈ 2.348, L = 0.55.
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(f) U6 ≈ 2.444, L = 0.44.
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Figure 5.9.: A comparison of the limit cycles solutions using bvp5c for

Parameter Set 1 to the solution from the IVP.
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Figure 5.10.: A comparison of the limit cycles solutions using bvp5c for

Parameter Set 2 to the solution from the IVP.
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in this region Figures 5.9a, 5.9b and 5.9c show the solutions from the IVP

very closely resemble those from bvp5c and from Table 5.2 we can see how

close the values of U and B are in the IVP compared to those from bvp5c.

Figure 5.9d shows a close match between the IVP and bvp5c solution just

after the second homoclinic bifurcation, in Region B. However, Table 5.2

shows that the value of B is significantly different and Figure 5.7 shows

the value of U lies in Region A, not Region B. Although the bvp5c solution

was just after the second homoclinic bifurcation, the solution from the IVP

resembles that of bvp5c just before the first homoclinic bifurcation for a

different value of B. As U is increased further into Region B we again get

a stable solution in the IVP, however we can see from Table 5.2 that the

value of U and B from the IVP is significantly different from the bvp5c

solution. Again the solution from the IVP is actually from Region A, but

for a different value of B. As the value of U is increased further we can

see from Table 5.2 and Figures 5.9f and 5.9g that the solution in the IVP

has become a stratified flow regime and no longer produces waves. Finally,

from Table 5.2 and Figure 5.9h we can see that the subcritical bvp5c solution

in Region C produces a stable solution in the IVP, however the values

of U and B are significantly different. As the value of B in the IVP is

positive, this represents a wave for which the liquid is moving faster than

the wave propagation speed which is a situation that we would not expect

to encounter as the flow is driven by the gas.

For Parameter Set 2 we can see from Table 5.3 and Figures 5.8 and 5.10

that, although bvp5c solutions from Regions A and C produce stable solutions

in the IVP, these solutions have significantly different values of U and B.

This is to be expected as, from Section 3, FNH = 12.671 for this parameter

set so the IVP model is ill-posed for these simulations. However, we can

see from Figures 5.10f and 5.10g the solutions from the IVP very closely

resemble those from bvp5c in Region A. Also, from Figure 5.8 we can

see that for solutions in Region C from bvp5c, the IVP produces stable
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5.3 channel simulations

solutions from Region A. As with Parameter Set 1, it appears that only

bvp5c solutions for U ≈ 1/δ produce stable solutions in the IVP.

5.3 C H A N N E L S I M U L AT I O N S

In order to simulate the flow through a channel, instead of using (5.1.22),

we will define our outlet condition as

h(CL, t)x = 0, v(CL, t)x = 0, (5.3.1)

and our inlet condition to be the uniform flow plus some small amplitude

random noise, Chang et al. [36], such that

h1 = 1 + 0.001
M

∑
k=1

sin
([

ωmin +
k
M

(ωmax −ωmin)

]
t + 2πrk

)
, (5.3.2)

v1 =
1
h1

, (5.3.3)

where ωmin and ωmax are constants and r is a vector of length M of random

numbers between 0 and 1 such that h1 is the uniform flow with some small

noise at the inlet. We will use ωmin = 0.1, ωmax = 10 and M = 250 unless

otherwise stated.

We expect the noise with wavelength closest to the most unstable wavelength

to dominate the flow close to the inlet. If this noise is able to escape the

linear instability, as discussed in Chapter 3, it will grow to form a wave

packet, such as those shown in Figure 5.2. If the front of the localised

coherent structure propagates down the channel faster than the structure, it

will be destroyed returning to the steady state solution. However, if it does

not, the structure will grow, as in Figure 5.2l, and may form roll waves and

possibly slugs.

We have seen when using bvp5c that for ε = 0.1, δ = 0.5, F0 = 6.7,

Rl = 50, Rg = 50, λ = 0.4 and ρ = 0.1 we can compute both periodic roll
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Figure 5.11.: The solution at t = 900 for ε = 0.1, δ = 0.5, F0 = 6.7, Rl = 50,

Rg = 50, λ = 0.4 and ρ = 0.1.

wave solutions and slug solutions. We will now use these parameters and

compute the solution in a channel with CL = 500. Assuming a channel of

height a = 1m this gives us u0
l = 6.636m/s, u0

g = 14.009m/s, h0 = 0.1m

and dimensional channel length of 33.5km. Figure 5.11 shows the solution

at t = 900, which in dimensional time is approximately 2.5 hours. We

can see that the majority of the channel is full of roll waves, but there are

four slugs and each of these is followed by a region with little liquid. We

will refer to the slug coloured red as slug1, the slug coloured dark blue as

slug2, the slug coloured light blue as slug3 and the slug coloured green as

slug4. Figure 5.12 shows a close up of these slugs where it must be noted

that although the slugs appear to have near vertical slopes, this due to the

scalings used and is not the case. For example, the dimensional length of

the front slope of slug1 between h = 2 and h = 8 is 2.6m, hence gives an

angle of approximately 13◦.

Note that the top of slug4, as seen in Figure 5.12c, is well resolved. As

the liquid gets near to the top of the channel it would in reality transition

into a local bubbly flow regime which our long wavelength model cannot

capture. As a result of this we are left with high frequency oscillations at

the top of the slug due to local ill-posedness, so the structure of the tops of

these waves is not accurate, though the overall structure is.

Using bvp5c we can solve for solutions that resemble those in the IVP

solution. The value of U is found by measuring the distance travelled by
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Figure 5.12.: The slugs at t = 900 for ε = 0.1, δ = 0.5, F0 = 6.7, Rl = 50,

Rg = 50, λ = 0.4 and ρ = 0.1.

the slug and then using B = average(h(v − U)) for an approximation of

the value for B. Figure 5.13 shows the bvp5c solution for U ≈ 2.192 and

B = −0.7 plotted over the top of Slug 2 at t = 900, from which we can see

how similar the solutions are. Hence, although our work in Chapter 4 used

a system of ODE’s, the periodic travelling wave solutions we found do exist

in the full problem.

These slugs begin as roll waves, but propagate slightly faster than the roll

waves in front of them. When they catch up with a roll wave and begin to

absorb the tail of the slower moving roll wave they are slowed down and

some of their mass is drained out of their back. At this point either their

mass and velocity is decreased such that they return to their equilibrium roll
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Figure 5.13.: Slug 2 compared to the solution found using bvp5c for

U ≈ 2.192 and B = −0.7.

wave state, or they are able to absorb the slower moving roll wave. If they

are able to absorb the slower roll wave they will continue down the channel

until they catch up with the next roll wave and the process is repeated. A

slug is formed if the faster moving roll wave is able to repeatedly absorb

the slower moving roll waves in front of it such that the mass it gains from

absorbing slower roll waves is greater than the mass that is drained out of

its back. The slug then continues down the channel increasing in size each

time it absorbs a roll wave. Hence, in general, the slugs further down the

channel will be larger than those further up the channel.

In order to determine conditions under which two roll waves will attract

and form one larger roll wave, or repel settling into their equilibrium roll

wave state, we could perform interaction experiments. Further, in simula-

tions for which slugs are produced, if the channel length is large enough,

eventually the system will be dominated by a series of large slugs which

may be separated with well-defined distances. From this we could perform

detailed statistical analysis in order to predict them analytically. These areas

are not explored here, hence are areas where further research is needed.
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Figure 5.14.: The solutions as a slug is formed at t = 570, 571, 572 and 573

for ε = 0.1, δ = 0.5, F0 = 6.7, Rl = 50, Rg = 50, λ = 0.4 and ρ = 0.1.

The slug forming process is shown in Figure 5.14 where the roll wave

of interest is shown in red. We can see in Figures 5.14a the roll wave of

interest catching up with a roll wave in front of it. As it absorbs the tail of

the slower moving roll wave, in Figure 5.14b, we can see that its size has

decreased due to mass draining out of its back as it is slowed down. In this

case, the loss of mass and velocity is not large enough to return the roll of

interest to its equilibrium roll wave state and it is able to absorb the slower

roll wave, shown in Figure 5.14c. After the absorption, as in Figure 5.14d,

it has increased in size and will continue down the channel until it reaches

the next roll wave and repeats the process forming a slug.
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Figure 5.15.: The solutions as the slug leaves liquid behind at t = 651, 664

and 670 for ε = 0.1, δ = 0.5, F0 = 6.7, Rl = 50, Rg = 50, λ = 0.4 and

ρ = 0.1.

As can be seen in Figure 5.12, slug1, slug2 and slug3 are followed by

almost flat regions of liquid, however slug4 is followed by a noisy region.

This is due to the slugs leaving small amounts of liquid behind after absorbing

roll waves. This liquid then begins to grow in amplitude and may form roll

waves. As the roll waves in front of slug4 are closer together than those

in front of slug1 or slug3, slug4 is absorbing roll waves more frequently

and hence leaving more liquid behind. The region behind slug2 is so flat

because the liquid left behind by slug3 when it absorbs roll waves is then

absorbed by slug2 before it has begun to grow. Figure 5.15 shows the same

slug we saw formed in Figure 5.14 at a later time after it has travelled further
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Figure 5.16.: A slug at t = 962 compared to the solution found using

bvp5c for U ≈ 2.206 and B = −0.7.

down the channel and increased in size. As it catches and absorbs the roll

waves in front of it, it leaves behind a small amount of liquid (shown in

green), shown in Figure 5.15a where, for the discharge, U ≈ 0.9. This liquid

begins to grow in amplitude and propagate faster, shown in Figure 5.15b

where, for the discharge, U ≈ 1.05. The discharge continues to grow in

amplitude and propagate faster and, if the roll waves following the slug are

far enough behind, will form roll waves. When the leading roll wave behind

the slug catches up with this slower moving liquid it is slowed down and

decreases in size as its momentum is transferred to the discharge, shown in

Figure 5.15c, which is then able to grow into a roll wave with U ≈ 1.945, the

same propagation speed as the following roll waves.

In Chapter 4 we saw periodic travelling waves with ’bump’-like peaks,

such as those shown in Figure 4.15a. We have seen in Section 5.2 that these

solutions are not stable in the IVP, however we do find similar solutions

in the IVP. Figure 5.16 shows a slug in the IVP at t = 962 compared to

the bvp5c solution for U ≈ 2.206 (from Section 5.2 Figure 5.9d). The slugs

in the IVP take this shape after catching and absorbing a roll wave as the

additional liquid from the roll wave is added to the slug. Hence the bvp5c
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Figure 5.17.: Legend for width figures.

solutions that take this shape are temporally stable and not unstable as our

work in Section 5.2 found.

In order to investigate these slugs further we will define the ’width’ of

a wave as the width at the point halfway between its peak and trough.

Figure 5.18 shows the widths and peak heights of the waves plotted against

their location in a channel of CL = 500 for ε = 0.1, δ = 0.5, F0 = 6.7,

Rl = 50, Rg = 50, λ = 0.4 and ρ = 0.1 at t = 850 and t = 900. We can see

that, with the exception of slug2, the slugs have increased in width as they

have propagated down the channel as expected. Slug2 has not grown as it

is located close behind slug3 (shown in Figure 5.12b), hence there are no

roll waves for it to absorb in order for it to increase in size as it propagates

down the channel.

Figure 5.19 shows the widths and peak heights of the waves plotted at

numerous times throughout the simulation. Looking at the width figure

in the region where 0 < x < 100 we can see there are only black, green

and dark blue marks all with narrow width indicating that this part of the

channel only contains roll waves. In the region where 100 < x < 150 we

begin to see some red and pink marks with narrow width indicating that

slugs have begun to form and have gained height, but are not much wider

than the roll waves around them. As x increases past 150 we can see the

red and pink marks have larger widths the further down the channel they

are due to the slugs absorbing roll waves as they travel down the channel.

By looking at the peak height figure we can also see that from x ≈ 250 the
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(b) t = 900.

Figure 5.18.: The width and peak height against location in the channel of

waves for ε = 0.1, δ = 0.5, F0 = 6.7, Rl = 50, Rg = 50, λ = 0.4 and ρ = 0.1.
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Figure 5.19.: The width and peak height against location in the channel of

waves at numerous times for ε = 0.1, δ = 0.5, F0 = 6.7, Rl = 50, Rg = 50,

λ = 0.4 and ρ = 0.1.

slugs are far enough ahead of any following roll waves that the liquid they

leave behind is beginning to grow and form roll waves.

5.3.1 Varying Parameters

We know that for a = 1m, u0
l = 6.636m/s, u0

g = 14.009m/s and h0 = 0.1m

we generate slug solutions. We want to know which of the parameters affect

the system so will keep a = 1m and solve for all combinations of u0
l = 6,

6.636 and 7; u0
g = 12, 14 and 14.7; and h0 = 0.05, 0.1 and 0.15. From a = 1m,

u0
l = 6.636m/s, u0

g = 14.009m/s and h0 = 0.1m and ε = 0.1, δ = 0.5,

F0 = 6.7, Rl = 50, Rg = 50, λ = 0.4 and ρ = 0.1 we can solve for cI , µl and

µg which we will use in order to calculate our dimensionless parameters.

131
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The results of these simulations are shown in Table 5.4 for which slugs

do form, Table 5.5 for which no slugs form and Table 5.6 which will be

discussed later. The Fr column heading is the Froude ratio, which we define

as

Fr =
F0 − Fc

FNH − Fc
. (5.3.4)

The ’D.S.’ column heading is the Data Set the parameters correspond to.

The ’R.W. h%’ and ’R.W. Width’ column headings are the average roll wave

height as a percentage of the channel height of roll waves for x > 200 and

the average width of these roll waves, respectively. The solutions with ’N/A’

in these columns are almost entirely made up of slugs with very few roll

waves, hence an average roll wave height and width cannot be given. The

’Avg Slugs’ column heading is the average number of slugs per unit time

during the simulation after t = 500, when the flow has fully formed. The

’Slug Width’ column heading is the average width of the slugs as they reach

the outlet, hence are at their maximum width for the simulation. Here a

slug is considered to have height ≥ 0.75/ε and width at least twice that of

the average roll wave width throughout the channel.

From these tables, plots of the solutions at t = 3000 for CL = 1000 (shown

in the Appendix in Figure A.1) and plots of width and peak height against

location in the channel (shown in the Appendix in Figure A.2), we can see

that, with the exception of Data Sets 13, 23 and 25, slugs form when δ > 0.5

and the Data Sets containing the most slugs also have the largest values of

δ. However, due to the high number of slugs that form in these simulations

there are not many roll waves for them to absorb and they do not grow

much in size. The widest slugs form when δ ≈ 0.5; in these Data Sets when

the slugs form there are lots of roll waves in the channel for them to catch

up with and absorb. This can be seen by comparing Data Sets 8, which

has δ = 0.609, and 14, which has δ = 0.500. In Table 5.4 and Figures 5.20a

and 5.20b we can see that Data Set 8 produces a lot more slugs than Data

Set 14. In Figure 5.21a we can see that lots of slugs are formed in the region
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0 < x < 200 which begin to grow until x ≈ 200 at which point there are no

longer any roll waves left to be absorbed and the slugs are unable to grow

further. In Figure 5.21b we can see again that the slugs form in the region

0 < x < 200, however as fewer slugs have formed they are able to continue

to grow throughout the whole length of the channel.

These simulations were completed for two different r vectors in order to

check the results were consistent. For one r vector Data Set 15 produced no

slugs, however for the other it produced a few slugs. This may be due to

the chaotic nature of the system, or the first r vector may have needed to

be run for longer in order to produce a slug. When Data Set 11 was run

it produced a few larger roll waves which did not continue to develop into

full slugs; this again could mean if it was run for longer we would get a

slug. Hence, the results from these Data Sets have been omitted.

5.4 E F F E C T S O F VA RY I N G T H E PA R A M E T E R S

We will begin by setting ε = 0.1, Rl = 50, Rg = 50, ρ = 0.1 and solving

our IVP for all combinations of δ = 0.35, 0.4, 0.45, 0.5, 0.55, 0.6 and 0.65 and

λ = 0.2, 0.4, 0.6, 0.8, 1, 2, 5, 7, 10 and 20. For each data set we will select

the value of F0 such that Fr = 0.95 in order to maximise the probability

of producing slug solutions. The results of these simulations are shown in

Table 5.7 for which slugs do form and Table 5.8 for which no slugs form.

From these tables we can see that slugs only form in data sets which have

δ ≥ 0.5 and as λ is increased, only the data sets containing the larger values

of δ result in slug solutions. We can also see that in the data sets that do

form slugs, they form lots of slugs leaving very few roll waves throughout

the channel due to the large value of F0. From this we can conclude that the

value of λ has a large influence on whether or not slugs will form, but not

much effect on how many will form.

Figure 5.22 shows a plot of δ against λ against average slugs per unit time

with λ = 20 omitted as we found no slugs for these data sets. We can see
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5.4 effects of varying the parameters

Figure 5.21a.: The width and peak height against location in the channel

of waves for Data Set 8.

Figure 5.21b.: The width and peak height against location in the channel

of waves for Data Set 14.
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5.4 effects of varying the parameters

D.S. δ F0 λ R.W. h% R.W. Width Avg Slugs Slug Width

4 0.5 7.826 0.2 50 0.100 11.000 1.060

5 0.55 9.546 0.2 N/A N/A 42.039 0.527

6 0.6 11.696 0.2 N/A N/A 68.647 0.389

7 0.65 14.460 0.2 N/A N/A 92.176 0.335

11 0.5 7.832 0.4 49 0.103 8.804 1.415

12 0.55 9.553 0.4 N/A N/A 37.745 0.536

13 0.6 11.702 0.4 N/A N/A 61.235 0.429

14 0.65 14.466 0.4 N/A N/A 88.373 0.331

18 0.5 7.839 0.6 51 0.109 8.020 1.417

19 0.55 9.559 0.6 N/A N/A 35.176 0.583

20 0.6 11.708 0.6 N/A N/A 56.843 0.444

21 0.65 14.471 0.6 N/A N/A 85.627 0.339

25 0.5 7.845 0.8 52 0.105 6.294 1.469

26 0.55 9.565 0.8 N/A N/A 34.490 0.569

27 0.6 11.714 0.8 N/A N/A 53.294 0.471

28 0.65 14.477 0.8 N/A N/A 85.529 0.331

32 0.5 7.851 1 50 0.107 5.196 1.502

33 0.55 9.571 1 N/A N/A 33.941 0.569

34 0.6 11.720 1 N/A N/A 49.490 0.468

35 0.65 14.482 1 N/A N/A 84.863 0.326

39 0.5 7.878 2 54 0.109 0.275 0.985

40 0.55 9.598 2 N/A N/A 21.451 0.654

41 0.6 11.746 2 N/A N/A 42.510 0.492

42 0.65 14.507 2 N/A N/A 66.647 0.400

47 0.55 9.660 5 51 0.118 1.451 1.230

48 0.6 11.810 5 N/A N/A 24.490 0.606

49 0.65 14.571 5 N/A N/A 46.667 0.469

55 0.6 11.843 7 46 0.114 10.529 0.517

56 0.65 14.606 7 N/A N/A 39.784 0.451

63 0.65 14.649 10 N/A N/A 23.431 0.509

Table 5.7.: Data for which slugs form when varying δ and λ.
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Figure 5.22.: δ against λ against average slugs per unit time where blue

represents no slugs.

a clear boundary between values of δ and λ that form slugs and those that

do not and that for a given value of λ, increasing δ increases the number of

slugs.

Focusing on the ’Average Slugs’ and ’Slug Width’ columns in Table 5.7 we

can see that, as we found in Section 5.3, the width of the slugs decreases as

the number of slugs increases. Figure 5.23 shows plots of the solutions at t =

1000 and the width of the waves against peak height location throughout the

simulation (using the legend from Figure 5.17) for Data Sets 32, 33, 34 and

35 which have the same parameters except for δ. From Figure 5.23a we can

see the channel mainly consists of roll waves and has a few slugs which

have a large region of separation between each other. As there are still roll

waves left at x = 500, the slugs would continue to grow in width if we

had used a longer channel so the value given for ’Slug Width’ in Table 5.7

does not represent the maximum possible width of a slug for this parameter

set. When δ is increased to 0.55 we can see from Figure 5.23b the solution
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5.4 effects of varying the parameters

now consists almost entirely of slugs, some of which are actually at their

widest at x ≈ 200 and slowly decrease in width throughout the channel.

This is due to there still being some roll waves up to x ≈ 200 allowing the

slugs to grow up until this point, after which, due to them leaving some

discharge behind (as in Figure 5.15), they decrease in size until their width

is approximately 0.569. At this point they reach an equilibrium between the

discharge they leave behind and the liquid they absorb from the discharge

left behind by the slug in front. As δ is increased further to 0.6 and 0.65,

shown in Figures 5.23c and 5.23d respectively, we see the same effects as

for δ = 0.55. As δ has increased, the distance along the channel for which

there are roll waves has decreased due to the increased amount of slugs

produced. As there are significantly less roll waves for the slugs to absorb

we now see that, not only are the slugs narrower, they are also shorter

(shown by the large quantity of purple in Figure 5.23d). This leads us to

conclude that, although increasing δ increases the number of slugs, we get

the widest slugs for values of δ closest to the boundary between Data Sets

that slug and those that do not at δ ≈ 0.5.

In order to understand what is happening at the δ ≈ 0.5 boundary between

Data Sets that produce slugs and those that do not we will consider all

combinations of δ = 0.45, 0.46, 0.47, 0.48, 0.49 and 0.5, λ = 0.2, 0.4, 0.6,

0.8 and 1 and F0 = 5, 5.5, 6, 6.5, 7, 7.5, and 8 excluding values where

F0 > FNH. (The tables corresponding to these Data Sets are given in the

Appendix where Table A.1 shows the Data Sets that produced slugs and

Table A.2 shows the Data Sets that produced no slugs.) Figure 5.24 shows

plots of δ against F0 against the average number of slugs per unit time for

each value of λ. From these we see that, for Data Sets that produce slugs,

increasing either δ and F0 increases the number of slugs produced. Looking

at the ’Slug Width’ column in Table A.1 it appears that increasing δ and

F0 increases the width of the slugs, however this is due to our channel not

being long enough for the slugs to reach their maximum width. The smaller

values of δ and F0 result in slower moving slugs so they take longer to catch
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Figure 5.23a.: The solution of Data Set 32 (δ = 0.5) at t = 1000 and the

width of the waves against peak height location throughout the

simulation.
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Figure 5.23b.: The solution of Data Set 33 (δ = 0.55) at t = 1000 and the

width of the waves against peak height location throughout the

simulation.
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Figure 5.23c.: The solution of Data Set 34 (δ = 0.6) at t = 1000 and the

width of the waves against peak height location throughout the

simulation.
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Figure 5.23d.: The solution of Data Set 35 (δ = 0.65) at t = 1000 and the

width of the waves against peak height location throughout the

simulation.
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Figure 5.24.: The average number of slugs per unit time compared to F0

and δ where blue represents no slugs.
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Figure 5.25.: The wave peak height against B for ε = 0.1, δ = 0.5, λ = 0.4,

Rl = 50, Rg = 50, ρ = 0.1 and varying F0.

and absorb roll waves, but as there are less slugs in these simulations there

are more roll waves to be absorbed resulting in larger slugs if the channel is

long enough.

We will now focus on Data Sets 58, 59, 60, 61, 62, 63 and 64 for which

λ = 0.4 and δ = 0.5. From Figure 5.24b we see that we get slugs for

F0 ≥ 6. For each value of F0 we can calculate the value of U for each wave

by measuring how far it has travelled down the channel in one t (using

the method of fitting a quadratic to the top of the wave as described in

Section 5.1) and hence calculate its value of B. Note that due to the turbulent

tops of the slugs, the values of U and B calculated will not be accurate.

Figures 5.25, 5.26 and 5.27 show plots of the peak height against B, U against

B and U against peak height, respectively, and Figures 5.28a - 5.28g show

the corresponding bifurcation diagrams for−0.8 ≤ B ≤ −0.2 from our work

on periodic travelling waves in Chapter 4.
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Figure 5.26.: The propagation speed, U, against B for ε = 0.1, δ = 0.5,

λ = 0.4, Rl = 50, Rg = 50, ρ = 0.1 and varying F0.
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Figure 5.27.: The propagation speed, U, against wave peak height for

ε = 0.1, δ = 0.5, λ = 0.4, Rl = 50, Rg = 50, ρ = 0.1 and varying F0.
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Figure 5.28a.: The bifurcation diagram for ε = 0.1, δ = 0.5, λ = 0.4,

Rl = 50, Rg = 50, ρ = 0.1, varying F0 and B = −0.2.
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Figure 5.28b.: The bifurcation diagram for ε = 0.1, δ = 0.5, λ = 0.4,

Rl = 50, Rg = 50, ρ = 0.1, varying F0 and B = −0.3.
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Figure 5.28c.: The bifurcation diagram for ε = 0.1, δ = 0.5, λ = 0.4,

Rl = 50, Rg = 50, ρ = 0.1, varying F0 and B = −0.4.
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Figure 5.28d.: The bifurcation diagram for ε = 0.1, δ = 0.5, λ = 0.4,

Rl = 50, Rg = 50, ρ = 0.1, varying F0 and B = −0.5.
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Figure 5.28e.: The bifurcation diagram for ε = 0.1, δ = 0.5, λ = 0.4,

Rl = 50, Rg = 50, ρ = 0.1, varying F0 and B = −0.6.
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Figure 5.28f.: The bifurcation diagram for ε = 0.1, δ = 0.5, λ = 0.4,

Rl = 50, Rg = 50, ρ = 0.1, varying F0 and B = −0.7.
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Figure 5.28g.: The bifurcation diagram for ε = 0.1, δ = 0.5, λ = 0.4,

Rl = 50, Rg = 50, ρ = 0.1, varying F0 and B = −0.8.

From Figures 5.25 - 5.27 we can see that the roll waves start with B ≈ −0.3

and U ≈ 1.5 and as they grow their value of B decreases and their value of

U increases until the roll waves are able to form slugs. As F0 is increased,

the roll wave peak height and value of U needed in order to produce a slug

is decreased whilst the value of B is increased. This means for larger F0 it

is easier to produce slugs, as we found in our earlier work. By comparing

Figure 5.25 to Figures 5.28a - 5.28g, we can see that for each value of B

the roll waves correspond to the maximum value of U and peak height

possible in the corresponding bifurcation diagram, therefore for them to

grow further their value of B must decrease.

From (4.3.7) we must have U = 2 + Ã for 0 < Ã� 1 in order to produce

slugs. Hence, for each value of F0, we produce slugs if the waves have

grown sufficiently large when U = 2 + Ã. As can be seen in Figures 5.28a

- 5.28g this happens for F0 ≥ 6, but not for F0 = 5.5 or 5 hence we do not

produce slugs in the IVP for these parameter sets.
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5.4 effects of varying the parameters

We will now solve the IVP for all combinations of
ε = 0.025, 0.05, 0.1

δ = 0.2, 0.3, 0.4, 0.5, 0.6

Fr = 0.4, 0.6, 0.8

Rl = 30, 50, 70

Rg = 30, 50, 70, 100

λ = 0.5, 1, 2, 5

ρ = 0.1
in order to investigate the effects of varying all the parameters. Figure 5.29

shows plots of the average number of slugs per unit time compared to F0

and δ and again we get no slugs unless δ ≥ 0.5. From equations (3.1.10)

and (3.1.12) we know FNH = FNH(ε, δ, ρ) and Fc = Fc(ε, δ, λ, ρ) hence for our

Data Sets we have multiple solutions with the same values of δ and F0, but

different values of Rl and Rg.

Focusing on λ = 1 and δ = 0.5, Figure 5.29a shows that some of these

Data Sets have produced slug solutions, however the number of slugs does

not appear to increase as F0 is increased as our previous work would imply.

This is due to the Data Sets we are comparing here having different values

of ε. Figure 5.30 shows the average number of slugs per unit time compared

to F0 and ε for λ = 1 and δ = 0.5. For each value of ε, increasing F0 does

increase the number of slugs, however we require a larger value of F0 as

ε is decreased in order to begin finding slug solutions. For the Data Sets

shown in Figure 5.30, Fmin = 6.246 for ε = 0.1, Fmin = 8.947 for ε = 0.05

and Fmin = 12.507 for ε = 0.025, where Fmin is the smallest value of F0 for

which we found slug solutions. As F0 = u0
l /
√

gh0 we would expect a larger

value of F0 for a smaller value of ε and as FNH increases as ε decreases, we

are able to solve our IVP for these values of F0 unlike earlier in this section

where we could not go above F0 ≈ 9.

Finally, we can investigate the effects of our effective Reynolds numbers

by fixing all our parameters other than Rl and Rg. Unlike our other parameters

which have had clear monotonic effects on our solutions, the effects of
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Figure 5.29.: The average number of slugs per unit time compared to F0

and δ where blue represents no slugs.

152



5.5 conclusion

0
25

10

20

20 0.1

F0

30

A
v
er
a
g
e
S
lu
g
s

40

15 0.08

ǫ

50

0.0610

60

0.045 0.02
0 0

Figure 5.30.: The average number of slugs per unit time compared to F0

and ε for λ = 1 and δ = 0.5 where blue represents no slugs.

varying Rl and Rg differ depending on the other parameters, as shown

in Figure 5.31. In Figure 5.31a the number of slugs increases as Rl increases

or Rg decreases, in Figure 5.31b the number of slugs increases as either Rl

or Rg decreases, in Figure 5.31c the number of slugs increases as either Rl

or Rg increases and in Figure 5.31d the number of slugs increases as Rl

decreases or Rg increases.

5.5 C O N C L U S I O N

We have re-written our equations of motion from Chapter 2 into the form

required to apply the finite-difference method derived by Kurganov and

Tadmor [114] which we combined with a second-order Runge-Kutta method

in order to solve our equations as an initial value problem. We performed

spatial step size analysis on our IVP and found ∆x = 0.005 to be the

optimum size in order to decrease computing time without losing accuracy.

We then set the initial condition in the IVP to be the uniform flow plus some
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Figure 5.31.: The average number of slugs per unit time compared to Rl

and Rg where blue represents no slugs.

small noise and found our work in Chapter 3 gave a very close prediction

of the maximum growth rate. By using the solutions from bvp5c found

in Section 4.3 as our initial condition in the IVP problem with periodic

boundary conditions, we were able to determine their stability. From this we

found regions within the bifurcation diagrams where the solutions, which

contained both roll waves and slugs, were stable.

We then defined an inlet condition, the uniform flow plus some small

amplitude random noise, and an outlet condition in order to simulate flow

through a channel. We first used one of the parameter sets we had used in

Section 4.3 in the IVP which resulted in the channel being predominantly
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full of roll waves with a few slugs. By following these slugs as they travelled

through the channel we saw that they begin as roll waves which propagate

faster than the roll waves in front of them and as they catch the roll wave

in front they absorb it, increasing in size to form a slug. They continue

this process as they travel down the channel, increasing in size every time

they absorb a roll wave, but also leaving a small amount of liquid behind.

This liquid then begins to grow in amplitude and, if there is sufficient space

behind the slug before the following roll waves, will form into roll waves.

In this simulation we were also able to see the effects of two slugs being

close together. The lead slug propagates down the channel absorbing roll

waves and growing in size, however the slug following behind it is unable

to grow as there are no roll waves for it to absorb. This results in the slug

being large in amplitude, but not much wider than the roll waves in the

channel.

We then varied the parameters slightly in order to investigate the effects

this had on our simulations. We found that the parameter sets with the

larger values of δ produced the most slugs, whereas those where δ ≈ 0.5

produced the widest slugs. This is because in solutions which only produce

a few slugs there are lots of roll waves for them to absorb as they travel

down the channel, so they are constantly growing in size. In the solutions

which produce lots of slugs, the roll waves are quickly absorbed early in the

channel meaning once a slug has formed there are no more roll waves left

in front of it and its width is not many times more than that of a roll wave.

By varying δ and λ we were able to determine that, δ ≈ 0.5 is a critical

limit for our IVP which separates Data Sets which may lead to slugs and

those which will not. It is at this ratio of liquid to homogeneous velocity

that the liquid momentum is able to overcome the interfacial shear forces

in order to grow into slugs. We then fixed λ and focused on a small range

of δ at this limit while varying F0 and applied our work from Chapter 4.

Through this we found that, for a wave with propagation speed U, the

solutions with smaller values of F0 had smaller waves compared to a wave
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with the same value of U from a solution with a larger value of F0. This

meant that when U ≈ 1/δ + A, the waves with smaller values of F0 were

not large enough to build into slugs.

Finally, we investigated the effects of varying all the parameters and

found our work throughout this chapter to be consistent for a larger parameter

range. We also found that as ε decreases we require larger values of F0 in

order to produce slug solutions, however as F0 = u0
l /
√

gh0 we would expect

to have larger values of F0 and as FNH increases as ε decreases we are able

to solve our IVP for these values.

Currently, due to the way the equations have been derived and the code

programmed, it is not possible for the liquid to touch the top of the channel

as this results in denominators in our equations becoming zero. Hence,

further research is needed into solutions where the liquid completely fills

the channel locally.
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6
T H E E F F E C T O F I N C L I N AT I O N I N T H E T H I N

L AY E R L I M I T

As subsea natural gas pipelines lie on the seabed they must follow the

topography of the sea floor which may destabilise the flow (as discussed in

Subsection 1.2.4). Further, as the pipeline comes to shore it will be at a slight

incline before reaching a processing plant, so the effects of uphill inclination

are of particular importance. Hence, in this chapter we will investigate how

topography affects the formation of slugs. In order to do this we must first

amend our equations from Chapter 2, which will be done by writing the

conservation of mass and conservation of momentum equations in terms

of a curvilinear co-ordinate system and taking the thin layer limit. We will

then consider the channel to be at a constant angle and, by investigating the

existence of periodic travelling waves and solving the system as an IVP, will

explore how changes to the angle affect the solutions. Finally, we will solve

the IVP for an undulating topography to investigate how combining uphill,

downhill and horizontal sections of channel may result in a transition to a

slug flow regime.

6.1 E Q U AT I O N D E R I VAT I O N

We will now consider a curved channel of height a in terms of a two-

dimensional Cartesian co-ordinate system (X, Y) with the Y axis pointing
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6.1 equation derivation

X

Y

θ

liquid

gas

H
(X

t), Y = b(X)

Figure 6.1.: The Cartesian co-ordinate system.

vertically upwards with its bottom located at Y = b(X). A layer of liquid

will flow along the bottom of the channel; the free surface of this layer will

be at Y = H(X, t), with t being time, as shown in Figure 6.1. The base of the

channel is at angle θ = arctan
(
b′(X)

)
to the horizontal on the downstream

side, hence −π/2 < θ < π/2 where θ is positive where the channel is going

uphill and negative where the channel is going downhill.

Let us now consider the same curved channel but express it in terms of a

curvilinear co-ordinate system (x, y) with the y axis pointing perpendicular

to the channel bottom and the x axis pointing tangential to the channel

bottom, measuring the distance travelled along it. Now the bottom of the

channel is located at y = 0 and the top is at y = a, while the free surface

of the layer of liquid is located at y = h(x, t), as shown in Figure 6.2. We

will denote the velocity component tangential to the channel bottom, in

the x direction, as u(x, y, t) (hereafter referred to as the tangential velocity)

and the velocity component perpendicular to the channel bottom, in the y

direction, as v(x, y, t). A point, (x, y), in the curvilinear coordinate system

will be expressed in the Cartesian co-ordinate system as (X(x, y), Y(x, y)).

On the bottom of the channel we define

X(x, 0) = ξ(x), (6.1.1)
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X

Y
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(
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t
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θ

liquid

gas

Figure 6.2.: The curvilinear co-ordinate system.

Y(x, 0) = η(x), (6.1.2)

hence b
(
ξ(x)

)
= η(x) and

X(x, y) = ξ(x)− η′(x)y, (6.1.3)

Y(x, y) = η(x) + ξ ′(x)y, (6.1.4)

where ξ ′(x) = cos θ and η′(x) = sin θ. From Dressler [51] the curvature, κ,

is given by

κ = η′ξ ′′ − ξ ′η′′, (6.1.5)

= −θ′, (6.1.6)

where θ′ = dθ/dx, the scale factors are given by

sx = 1− θ′y, (6.1.7)

sy = 1, (6.1.8)

and, for any vector f = ( fx, fy) and scalar f , we have

∇ f =
1
sx

∂ f
∂x

x̂ +
∂ f
∂y

ŷ, (6.1.9)
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6.1 equation derivation

∇ · f = 1
sx

[
∂ fx

∂x
+

∂

∂y
(sx fy)

]
, (6.1.10)

∇2 f =
1
sx

[
∂

∂x

(
1
sx

∂ f
∂x

)
+

∂

∂y

(
sx

∂ f
∂y

)]
, (6.1.11)

where x̂ and ŷ are the normal vectors in the x and y directions respectively.

Following the method we used in our original derivation in Chapter 2,

we derive the non-dimensional equations as

(1− clθ
′h)ht + [hv]x = 0, (6.1.12)

[
1− 1

2
clθ
′h +

ρεh
1− εh

(
1− 1

2ε
clθ
′[1 + εh]

)]
vt

+

(
v +

ρεh[2− (1 + εh)δv]
δ(1− εh)2

)
vx +

(
1− ρ

F2
0

cos θ − ρε(1− δv)2

δ2(1− εh)3

)
hx

=
ρcg

I
δ2cl

(
(1− εδhv)2

λ(1− εh)3 +
(1− δv)|1− δv|

h(1− εh)3 (1− clθ
′h)
)

− 1− ρ

F2
0

1− clθ
′h

cl
sin θ − v2

h
+

1
hRl

[
vx

h0

∫ h0h

0

1
1− cl

h0
θ′y

dy

]
x

− ρε

Rg(1− εh)

[(
1− δv

δ(1− εh)2
hx

a
− h

1− εh
vx

a

) ∫ a

h0h

1
1− cl

h0
θ′y

dy

]
x

. (6.1.13)

By assuming θ = O(cl), as is consistent with the small surface slope

approximation that we made in (2.3.1) in our original derivation, we use the

scale

θ(x) = cl θ̄(x), (6.1.14)

where θ̄ = O(1) and hence

cos(cl θ̄) ∼ 1, (6.1.15)

sin(cl θ̄) ∼ cl θ̄, (6.1.16)
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6.1 equation derivation

and

1

1− c2
l

h0
θ̄′y
≈ 1 +

c2
l

h0
θ̄′y, (6.1.17)

therefore (6.1.12) and (6.1.13) become

(1− c2
l θ̄′h)ht + [hv]x = 0, (6.1.18)

[
1− 1

2
c2

l θ̄′h +
ρεh

1− εh

(
1− 1

2ε
c2

l θ̄′[1 + εh]
)]

vt

+

(
v +

ρεh[2− (1 + εh)δv]
δ(1− εh)2

)
vx +

(
1− ρ

F2
0
− ρε(1− δv)2

δ2(1− εh)3

)
hx

=
ρcg

I
δ2cl

(
(1− εδhv)2

λ(1− εh)3 +
(1− δv)|1− δv|

h(1− εh)3 (1− c2
l θ̄′h)

)
− 1− ρ

F2
0

(1− c2
l θ̄′h)θ̄ − v2

h
+

1
hRl

[(
1 +

1
2

c2
l θ̄′h

)
hvx

]
x

− ρε

Rg(1− εh)

[(
1− δv

δ(1− εh)
hx − hvx

)(
1 +

1
2ε

c2
l θ̄′(1 + εh)

)]
x

. (6.1.19)

Assuming θ̄′ � 1/c2
l , the leading order non-dimensional equations of

motion are

ht + [hv]x = 0, (6.1.20)

(
1 +

ρεh
1− εh

)
vt +

(
v +

ρεh[2− (1 + εh)δv]
δ(1− εh)2

)
vx

+

(
1− ρ

F2
0
− ρε(1− δv)2

δ2(1− εh)3

)
hx

= −1− ρ

F2
0

θ̄ − v2

h
+

ρcg
I

δ2cl

(
(1− εδhv)2

λ(1− εh)3 +
(1− δv)|1− δv|

h(1− εh)3

)
+

(
1

hRl
+

ρε

(1− εh)Rg

)
[hvx]x −

ρε

δ(1− εh)Rg

[
1− δv
1− εh

hx

]
x

, (6.1.21)

with steady state solution

h = 1, v = 1, (6.1.22)
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6.1 equation derivation

when θ̄ = 0. At equilibrium, (6.1.21) rearranges to give

ρcg
I

δ2cl
=

λ(1− ε)3

(1− εδ)2 + λ(1− δ)2 , (6.1.23)

which, when substituted back into (6.1.21), gives

(
1 +

ρεh
1− εh

)
vt +

(
v +

ρεh[2− (1 + εh)δv]
δ(1− εh)2

)
vx

+

(
1− ρ

F2
0
− ρε(1− δv)2

δ2(1− εh)3

)
hx

= −1− ρ

F2
0

θ̄− v2

h
+

λ(1− ε)3

(1− εδ)2 + λ(1− δ)2

(
(1− εδhv)2

λ(1− εh)3 +
(1− δv)|1− δv|

h(1− εh)3

)
+

(
1

hRl
+

ρε

(1− εh)Rg

)
[hvx]x −

ρε

δ(1− εh)Rg

[
1− δv
1− εh

hx

]
x

. (6.1.24)

In order to consider the small liquid layer limit we let ε → 0 and δ → 0

in (6.1.24), and assume ε� δ2, hence the governing equations become

ht + [hv]x = 0, (6.1.25)

vt + vvx +
1− ρ

F2
0

hx = −1− ρ

F2
0

θ̄ − v2

h
+

1
1 + λ

+
λ

(1 + λ)h
+

1
hRl

[hvx]x .

(6.1.26)

If θ̄ is a constant, (6.1.26) may be written as

vt + vvx +
1− ρ

F2
0

hx = −v2

h
+

1
1 + λ̄

+
λ̄

(1 + λ̄)h
+

1
hRl

[hvx]x , (6.1.27)

where

λ̄ =
F2

0 + (1− ρ)θ̄

F2
0 − (1− ρ)θ̄λ

λ. (6.1.28)
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6.1 equation derivation

This gives us the same governing equations as derived by Needham et al.

[132] with λ replaced with λ̄. Note that

λ̄→


+∞ as θ̄ →

(
F2

0
(1−ρ)λ

)−
−∞ as θ̄ →

(
F2

0
(1−ρ)λ

)+
−1 as θ̄ → ±∞

, (6.1.29)

as shown in Figure 6.3.

In order to consider the stability of the uniform state, as in Chapter 3, we

let

h = 1 + h̄, v = 1 + v̄, (6.1.30)

where h̄, v̄� 1. Using (6.1.30) in (6.1.25) and (6.1.27) gives us the linearised

governing equation

(
∂

∂t
+ c+

∂

∂x

)(
∂

∂t
+ c−

∂

∂x

)
h̄ + 2

(
∂

∂t
+ c0

∂

∂x

)
h̄

=
1
Rl

[
∂

∂t
+

1
2
(c+ + c−)

∂

∂x

]
∂2h̄
∂x2 , (6.1.31)

where

c± = 1±
√

1− ρ

F2
0

, c0 = 1 +
1

2
(
1 + λ̄

) . (6.1.32)

Hence, by solving c− < c0 < c+, we find the stability condition

F0 < 2
√

1− ρ
∣∣1 + λ̄

∣∣ ≡ Fc, (6.1.33)

according to which small disturbances to the uniform flow will decay when

F0 < Fc, but grow when F0 > Fc.
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Figure 6.3.: Plot of λ̄ against θ̄.
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6.2 periodic travelling wave theory

6.2 P E R I O D I C T R AV E L L I N G WAV E T H E O RY

As in Chapter 4 we look for periodic travelling wave solutions to our equations

by introducing the travelling coordinate z = x−Ut and considering solutions

of the form

h = h(z), v = v(z), (6.2.1)

where both h(z) and v(z) are periodic in z. On substitution of (6.2.1) into

(6.1.25) and (6.1.27), we get

[h(v−U)]z = 0, (6.2.2)

(v−U)vz +
1− ρ

F2
0

hz =
1

1 + λ̄
+

λ̄(
1 + λ̄

)
h
− v2

h
+

1
Rlh

[hvz]z. (6.2.3)

Integrating (6.2.2) leads us to

h(v−U) = B, (6.2.4)

where B is a real constant. On rearranging (6.2.4), we obtain

v(z) = U +
B

h(z)
, (6.2.5)

which, after substitution into (6.2.3), leads to

Bhzz −
B
h

h2
z +

Rl
h

[
(1− ρ)h3

F2
0

− B2

]
hz +

Rl
h

[
(B + Uh)2 −

(
λ̄ + h

)
h2

1 + λ̄

]
= 0.

(6.2.6)

For analysis, it is convenient to rewrite (6.2.6) as the equivalent 2D autonomous

dynamical system

h′ = w, (6.2.7)
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w′ =
w2

h
− Rl

Bh

[
(1− ρ)h3

F2
0

− B2

]
w− Rl

Bh

[
(B + Uh)2 −

(
λ̄ + h

)
h2

1 + λ̄

]
. (6.2.8)

Equilibrium points of (6.2.8) have w = 0, h = h0, where h0 satisfies

(B + Uh0)
2 −

(
λ̄ + h0

)
h2

0
1 + λ̄

= 0, (6.2.9)

which is a third order polynomial and hence has up to three real solutions.

For λ̄ > 0, as studied by Needham et al. [132] (discussed in Subsection 1.2.6),

we find it has three equilibrium points, H1, H2 and H3, where H1 < H2 <

H3, which are a stable node, a saddle and a spiral, respectively. A Hopf

bifurcation may occur for B < 0 and UHB > 0 on H3, for which limit

cycle solutions exist in U > UHB which grow as U is increased and end

in a homoclinic bifurcation with H2. However, the case for λ̄ < 0 was

not examined by Needham et al. [132] and so we must investigate the

equilibrium points in more detail in order to establish whether a Hopf

bifurcation may occur and under what conditions.

It is convenient, for analysing (6.2.9), to rewrite it as

U0± = ±

√
λ̄ + h0

1 + λ̄
− B

h0
, (6.2.10)

and as U0± must be real,

if − 1 < λ̄ < 0, then h0 ≥ −λ̄, (6.2.11)

if λ̄ < −1, then h0 ≤ −λ̄, (6.2.12)

where

U0±(h0 = −λ̄) =
B
λ̄

. (6.2.13)

The turning points of U0± represent saddle-node bifurcations and are found

by solving

0 = ± 1

2
√

1 + λ̄
√

λ̄ + hSN
+

B
h2

SN

(
=

dU0±
dh0

∣∣∣∣
h0=hSN

)
, (6.2.14)
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which can be rearranged to give

BSN = ∓
h2

SN

2
√

1 + λ̄
√

λ̄ + hSN
. (6.2.15)

By substituting (6.2.15) into (6.2.10) we get

USN± = ±

√ λ̄ + hSN

1 + λ̄
+

hSN

2
√

1 + λ̄
√

λ̄ + hSN

 . (6.2.16)

The turning points can be found to be maxima or minima by considering

the sign of

d2U0±
dh2

0

∣∣∣∣∣
h0=hSN

= ∓ 1

4
√

1 + λ̄
(
λ̄ + hSN

) 3
2
− 2B

h3
SN

, (6.2.17)

which, using (6.2.15), simplifies to

d2U0±
dh2

0

∣∣∣∣∣
h0=hSN

= ± 4λ̄ + 3hSN

4
√

1 + λ̄
(
λ̄ + hSN

) 3
2 hSN

, (6.2.18)

hence

sign

 d2U0±
dh2

0

∣∣∣∣∣
h0=hSN

 = ±sign
(
4λ̄ + 3hSN

)
. (6.2.19)

The eigenvalues of these equilibrium points are given by

Λ± =
1
2

[
f2 ±

√
f 2
2 + 4

d f3

dh

]∣∣∣∣∣
h=h0, U=U0

, (6.2.20)

where we have re-written (6.2.8) as

w′ = f1(h)w2 + f2(h)w + f3(h), (6.2.21)

and

d f3

dh

∣∣∣∣
h=h0, U=U0±

=
Rl

B
(
1 + λ̄

)
h0

[
h2

0 ± 2B
√

1 + λ̄

√
λ̄ + h0

]
. (6.2.22)
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Hence, for a Hopf bifurcation, we must have d f3/dh < 0 and f2 = 0, which

can be rearranged to give

hHB =

(
B2F2

0
1− ρ

) 1
3

. (6.2.23)

By using (6.2.11) and (6.2.12) in (6.2.23) we find

if − 1 < λ̄ < 0, then |B| >
√

1− ρ
(
−λ̄
) 3

2

F0
≡ BHmin, (6.2.24)

if λ̄ < −1, then |B| <
√

1− ρ
(
−λ̄
) 3

2

F0
≡ BHmax, (6.2.25)

and by solving hHB = hSN for B we find that the Hopf bifurcation meets the

saddle-node bifurcation when

B = ±8(1− ρ)2

F0

( (
1 + λ̄

)
λ̄

F2
0 − 4(1− ρ)

(
1 + λ̄

)) 3
2

≡ BHS±. (6.2.26)

In order to determine the stability and direction of the limit cycles created

from these Hopf bifurcations we must apply the Hopf bifurcation theorem.

To translate the Hopf bifurcation to the origin, as required by the statement

of the Hopf bifurcation theorem in King et al. [101], we introduce the

variables

H = ω(h− hHB), µ = U −UHB, (6.2.27)

hence

h =
1
ω

H + hHB, U = µ + UHB. (6.2.28)

Substituting (6.2.28) into (6.2.7) and (6.2.8) gives

H′ = ωw, (6.2.29)

168



6.2 periodic travelling wave theory

and

w′ = f1(H; µ)w2 + f2(H; µ)w + f3(H; µ), (6.2.30)

and ω is found by solving

ω = − d f3(H; µ)

dH

∣∣∣∣
H=0, µ=0

, (6.2.31)

which gives

ω =

√√√√√−Rl
B

 hHB

1 + λ̄
± 2B

hHB

√
λ̄ + hHB

1 + λ̄

. (6.2.32)

In order to apply the criterion given in King et al. [101], we need the

quantity

a =
1

16
(

H′HHH + w′HHw + H′Hww + w′www
)

− 1
16ω

[
H′Hw

(
H′HH + H′ww

)
− w′Hw

(
w′HH + w′ww

)
− H′HHw′HH + H′www′ww

]
,

(6.2.33)

which becomes

a =
3R2

l B2

8h5
HBω4

1± 2hHB

B

√
λ̄ + hHB

1 + λ̄

 . (6.2.34)

Furthermore, separating the real and imaginary part of the eigenvalues of

the equilibrium points in the form Λ± = α(µ)± iβ(µ), we find

α(µ) = −Rl
(1− ρ) (H(µ) + ωhHB)

3 −ω3B2F2
0

Bω2 (H(µ) + ωhHB) F2
0

, (6.2.35)

α′(µ = 0) = − 3RlB
h2

HBω

dH
dµ

∣∣∣∣
µ=0

. (6.2.36)

Hence

sign
(
aα′(0)

)
= sign

−
B± 2hHB

√
λ̄ + hHB

1 + λ̄

 dH
dµ

∣∣∣∣
µ=0

 , (6.2.37)
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and, as (1− ρ) (H(µ) + ωhHB)
3−ω3B2F2

0 is monotone increasing with H(µ),

sign (α(µ > 0)) = sign

(
−B

dH
dµ

∣∣∣∣
µ=0

)
. (6.2.38)

Using (6.2.23) in (6.2.37) we find that aα′(0) = 0 when

B = ±8
√

1− ρF2
0

(
−λ̄

4F2
0 − (1− ρ)

(
1 + λ̄

)) 3
2

≡ B0±. (6.2.39)

From (6.2.23) it is clear that we get no Hopf Bifurcations if B = 0. However,

in order to establish whether we may get them if B < 0 or B > 0 we must

investigate each case individually.

6.2.1 λ̄ < −1 (Strongly Uphill)

6.2.1.1 The case for B < 0

0

U

H

(

B

λ̄
,−λ̄

)

H1

H2

H1(U0−)

H2(U0−)

H2(U0+)

Figure 6.4.: The typical bifurcation diagram for B < 0 and λ̄ < −1 with

the dashed and solid lines corresponding to U0− and U0+, respectively.

For B < 0, from (6.2.15) we see that there is a turning point on U0− for

which, by (6.2.12) and (6.2.19), gives

d2U0+

dh2
0

> 0, (6.2.40)
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6.2 periodic travelling wave theory

hence is a minimum. This gives us two branches of equilibrium points in

U > 0 which we will call H1 and H2 where H1 < H2, as shown in Figure 6.4.

As can be seen in Figure 6.4, H2 is split into two sub-branches H2 (U0−) and

H2 (U0+) which join at
(

B/λ̄,−λ̄
)
.

From (6.2.22) we can see that

sign

(
d f3

dh

∣∣∣∣
h=h0, U=U0−

)
= sign

(
h2

0 − 2B
√

1 + λ̄

√
λ̄ + h0

)
. (6.2.41)

As h2
0 − 2B

√
1 + λ̄

√
λ̄ + h0 is monotone increasing for 0 < h0 < −λ̄ and

h2
0 − 2B

√
1 + λ̄

√
λ̄ + h0 = 0 when h0 = hSN, we can conclude that

d f3

dh

∣∣∣∣
h=h0, U=U0−

> 0 if h0 > hSN, (6.2.42)

d f3

dh

∣∣∣∣
h=h0, U=U0−

< 0 if h0 < hSN, (6.2.43)

and

d f3

dh

∣∣∣∣
h=h0, U=U0+

> 0. (6.2.44)

Hence, H2 is a saddle and H1 is a node or spiral where, in order for a Hopf

bifurcation to occur, we must have B > BHS−.

Similarly to (6.2.41)

sign
(

dU0−
dh0

)
= sign

(
h2

0 − 2B
√

1 + λ̄

√
λ̄ + h0

)
, (6.2.45)

and hence

dU0−
dh0

> 0 if h0 > hSN, (6.2.46)

dU0−
dh0

< 0 if h0 < hSN, (6.2.47)

therefore, for h0 < hSN, U0− is monotone decreasing in h0.
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Using (6.2.37) and (6.2.38) we find aα′(0) < 0 and α(µ < 0) > 0, hence

the Hopf bifurcation theorem tells us (UHB, hHB) is a subcritical Hopf bifurc-

ation from which a unique limit cycle solution bifurcates in U > UHB.

An example of the bifurcation diagram is shown in Figure 6.5 where the

stability of the equilibrium points is represented by solid/dashed lines for

stable/unstable, respectively, and Figure 6.6 shows examples of limit cycle

solutions for this parameter set.

By using these periodic travelling wave solutions as the initial condition

in the IVP (6.1.25) and (6.1.27) with periodic boundary conditions, as we did

in Section 5.2, we find these solutions produce unsteady periodic solutions

which do not have a permanent form.

6.2.1.2 The case for B > 0

0

U

H

(

B

λ̄
,−λ̄

)

H1

H2

H1(U0+)

H2(U0+)

H2(U0−)

Figure 6.7.: The typical bifurcation diagram for B > 0 and λ̄ < −1 with

the dashed and solid lines corresponding to U0− and U0+, respectively.

For B > 0, from (6.2.15) we see that there is a turning point on U0+ for

which, by (6.2.12) and (6.2.19), gives

d2U0+

dh2
0

< 0, (6.2.48)

hence is a maximum. This gives us two equilibrium points in U > 0 which

we will call H1 and H2 where H1 < H2, as shown in Figure 6.7. As can be
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(a) The complete bifurcation diagram.
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(b) The bifurcation diagram zoomed in around the Hopf bifurcation.

Figure 6.5.: The bifurcation diagram for λ̄ = −2, B = −0.1, F0 = 2,

Rl = 50 and ρ = 0.1.
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(a) U = −0.992.

0 1 2 3

x

0

0.2

0.4

0.6

0.8

1

h

(b) U = −0.970.

Figure 6.6.: The limit cycle solutions for λ̄ = −2, B = −0.1, F0 = 2,

Rl = 50 and ρ = 0.1.

seen in Figure 6.7, H2 is split into two parts H2 (U0−) and H2 (U0+) which

join at
(

B/λ̄,−λ̄
)
.

Similarly to our work in the previous subsection, from (6.2.41) onwards,

we find that

d f3

dh

∣∣∣∣
h=h0, U=U0+

> 0 if h0 < hSN, (6.2.49)

d f3

dh

∣∣∣∣
h=h0, U=U0+

< 0 if h0 > hSN, (6.2.50)

(6.2.51)

and

d f3

dh

∣∣∣∣
h=h0, U=U0−

< 0. (6.2.52)

Hence, H1 is a saddle and H2 is a node or spiral where, in order for a Hopf

bifurcation to occur on U0+, we must have B > BHS+.

Again, similarly to our work in the previous subsection, from (6.2.45)

onwards, we can find that

sign
(

dU0±
dh0

)
= −sign

(
h2

0 ± 2B
√

1 + λ̄

√
λ̄ + h0

)
, (6.2.53)
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and hence

dU0+

dh0
> 0 if h0 < hSN, (6.2.54)

dU0+

dh0
< 0 if h0 > hSN, (6.2.55)

and

dU0−
dh0

> 0. (6.2.56)

Using (6.2.37) and (6.2.38) we find, for Hopf Bifurcations on H2 (U0+),

aα′(0) > 0 and α(µ > 0) > 0, hence the Hopf bifurcation theorem tells

us (UHB+, hHB) is a subcritical Hopf bifurcation from which a unique limit

cycle solution bifurcates in U < UHB+. For Hopf Bifurcations on H2 (U0−),

if B > B0+, aα′(0) < 0 and α(µ < 0) > 0, hence the Hopf bifurcation

theorem tells us (UHB−, hHB) is a subcritical Hopf bifurcation from which a

unique limit cycle solution bifurcates in U > UHB−. Whereas if B < B0+,

aα′(0) > 0 and α(µ > 0) < 0, hence the Hopf bifurcation theorem tells us

(UHB−, hHB) is a supercritical Hopf bifurcation from which a unique limit

cycle solution bifurcates in U < UHB−.

An example of the bifurcation diagram is shown in Figure 6.8 where the

stability of the equilibrium points is represented by solid/dashed lines for

stable/unstable, respectively. A supercritical Hopf Bifurcation has occurred

on H2 at UHB− ≈ −1.124 (which corresponds to U0− and will be referred

to as Hopf1) resulting in a stable limit cycle in U < UHB− (where we have

used red in Figure 6.8 to represent stable). As U decreases, the limit cycles

increase in amplitude until there is a homoclinic bifurcation at Uhom− ≈

−1.1974.

Figure 6.9 shows another bifurcation diagram where all the parameters

are the same except B which we have increased such that B > BHS+, hence

we now get two Hopf bifurcations. Comparing the two figures we can see

Hopf1 has increased in U as we have increased B and again has produced
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stable limit cycles as U is decreased before again ending in a homoclinic

bifurcation. The second Hopf Bifurcation also occurred on H2 at UHB+ ≈

0.537 (which corresponds to U0+ and will be referred to as Hopf2) resulting

in an unstable limit cycle in U < UHB+ (where we have used pink in

Figure 6.9 to represent unstable). As U decreases, the limit cycles increase

in amplitude until there is a homoclinic bifurcation at Uhom+ ≈ 0.524.

As B is increased further we find that, while Hopf1 has continued to

increase in U, Hopf2 has decreased in U, as shown in Figure 6.10a. As in

the previous cases, Hopf1 has produced stable limit cycles which increase

in amplitude as U is decreased, however we now find a homoclinic bifurc-

ation which results in a small region in U where we generate unstable limit

cycle solutions, shown in Figure 6.10b. These unstable limit cycle solutions

decrease in amplitude as U decreases while the stable limit cycle solutions

continue to increase in amplitude until we get a periodic saddle-node bifurc-

ation and they annihilate each other (denoted by the point the red and pink

lines meet).

As we continue to increase B we find the region in U for which the

unstable limit cycles produced from Hopf1 exist also increases, while the

region in U for which the stable limit cycles exist decreases, shown in

Figure 6.11. This continues as we increase B towards B0+, at which point

the region in U for which the stable limit cycles exist has become very small,

whereas the region in U for which the unstable limit cycles exist has become

large, shown in Figure 6.12. As B is increased past B0+ we no longer get any

stable limit cycle solutions, shown in Figure 6.13, instead have two regions

of unstable limit cycles which grow towards each other and move towards

each other as B is increased further, shown in Figure 6.14.

As B is increased further, the homoclinic bifurcations points coalesce and

the two regions of unstable limit cycle solutions join in a gluing bifurcation,

creating one region, starting from and ending in a Hopf bifurcation, shown

in Figure 6.15. This region in U of unstable limit cycles decreases in size

as the two Hopf bifurcations continue to move towards each other as B is
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6.2 periodic travelling wave theory

increased, shown in Figure 6.16, until there is a Hopf-Hopf bifurcation for

B = Bmax.

Figure 6.17 shows a typical plot of the Hopf bifurcation points, U =

UHB−(B) and U = UHB+(B), the homoclinic bifurcation points, U = Uhom−(B)

and U = Uhom+(B), the saddle-node bifurcation point, U = USN(B), and

the minimum limit cycle point U = Umin−. We can see from Figure 6.17

that for most values of B, Umin−(B) = Uhom−(B). However for B ≈ 1, as

in Figure 6.18 (which shows an exaggerated version of the region around

U = Umin−(B)), Umin−(B) < Uhom−(B), hence for these values of B we get

stable limit cycles in Umin−(B) < U < UHB−(B) and unstable limit cycles in

Umin−(B) < U < Uhom−(B). As B increases, the region Umin−(B) < U <

UHB−(B) decreases in size until B = B0+, from which point Umin−(B) =

UHB−(B) and we only get unstable limit cycles in U > UHB−(B). As B is

increased further we can see from Figure 6.17b that Uhom−(B) and Uhom+(B)

head towards each other until they coalesce in a gluing bifurcation. Finally,

we can see the point where UHB−(Bmax) = UHB+(Bmax), after which we no

longer get Hopf bifurcations.

By using these periodic travelling wave solutions as the initial condition

in the IVP (6.1.25) and (6.1.27) with periodic boundary conditions, as we

did in Section 5.2, we find that solutions from Hopf1 produce unsteady

periodic solutions which do not have a permanent form, whereas those from

Hopf2 produce steady periodic solutions. An example for the solutions

from Hopf2 for B = 0.5, λ̄ = −5, F0 = 10, Rl = 50 and ρ = 0.1 is shown in

Table 6.1 and Figures 6.19 and 6.20. We can see from Table 6.1 that the values

of U and B computed from the IVP are very close to those from bvp5c and,

from Figure 6.20 we see the solutions are almost identical. In these figures,

particularly Figure 6.20d, we can see that as they are travelling backwards

relative to the flow (due to having B > 0 and U > 0) their structure is

opposite in x to those we have previously seen.
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Figure 6.8.: The bifurcation diagram for B = 0.04, λ̄ = −5, F0 = 10,

Rl = 50 and ρ = 0.1.
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Figure 6.9.: The bifurcation diagram for B = 0.5, λ̄ = −5, F0 = 10, Rl = 50

and ρ = 0.1.
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(a) The complete bifurcation diagram.
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(b) The bifurcation diagram zoomed in around Hopf1.

Figure 6.10.: The bifurcation diagram for B = 0.95, λ̄ = −5, F0 = 10,

Rl = 50 and ρ = 0.1.
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(a) The complete bifurcation diagram.
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(b) The bifurcation diagram zoomed in around Hopf1.

Figure 6.11.: The bifurcation diagram for B = 1.01, λ̄ = −5, F0 = 10,

Rl = 50 and ρ = 0.1.
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(a) The complete bifurcation diagram.
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(b) The bifurcation diagram zoomed in around Hopf1.

Figure 6.12.: The bifurcation diagram for B = 1.04, λ̄ = −5, F0 = 10,

Rl = 50 and ρ = 0.1.
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Figure 6.13.: The bifurcation diagram for B = 1.05, λ̄ = −5, F0 = 10,

Rl = 50 and ρ = 0.1.
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Figure 6.14.: The bifurcation diagram for B = 1.055, λ̄ = −5, F0 = 10,

Rl = 50 and ρ = 0.1.
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Figure 6.15.: The bifurcation diagram for B = 1.056, λ̄ = −5, F0 = 10,

Rl = 50 and ρ = 0.1.
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Figure 6.16.: The bifurcation diagram for B = 1.06, λ̄ = −5, F0 = 10,

Rl = 50 and ρ = 0.1.
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Figure 6.17.: The bifurcation curves in the (U, B) plane for λ̄ = −5,

F0 = 10, Rl = 50 and ρ = 0.1.
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Figure 6.18.: The bifurcation curves zoomed in around U = Umin−.
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Figure 6.19.: The bifurcation diagram for B = 0.5, λ̄ = −5, F0 = 10,

Rl = 50 and ρ = 0.1 zoomed in around Hopf2 with the values of U1, U2,

U3 and U4 marked by the green lines.
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Figure bvp5c U IVP U IVP B

6.20a 0.53469 0.53494 0.49994

6.20b 0.52986 0.53011 0.50000

6.20c 0.52566 0.52601 0.49978

6.20d 0.52362 0.52415 0.49945

Table 6.1.: A comparison of U and B from bvp5c compared to those from

the IVP for B = 0.5, λ̄ = −5, F0 = 10, Rl = 50 and ρ = 0.1.
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(a) U1 ≈ 0.53469, L = 0.9.
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(d) U4 ≈ 0.52362, L = 2.

Figure 6.20.: A comparison between the limit cycle solutions obtained

using bvp5c for B = 0.5, λ̄ = −5, F0 = 10, Rl = 50 and ρ = 0.1 and the

corresponding solution from the IVP.
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6.2.2 −1 < λ̄ < 0 (Downhill)

6.2.2.1 The case for B > 0
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(a) Type 1.
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(b) Type 2.

Figure 6.21.: The typical bifurcation diagrams for B > 0 and −1 < λ̄ < 0

with the dashed and solid lines corresponding to U0− and U0+,

respectively.

For B > 0, from (6.2.15) we get no turning points on U0+, hence U0+ gives

one equilibrium point, which, by (6.2.22), is a saddle. For U0−, from (6.2.15)

we see that there are turning points which, when substituted into (6.2.10),

gives

USN = −

√
λ̄ + hSN

1 + λ̄
− hSN

2
√

1 + λ̄
√

λ̄ + hSN
< 0, (6.2.57)

and can be solved to give

hSN± =
2
9

[
U2

SN
(
1 + λ̄

)
− 3λ̄± (−USN)

√
1 + λ̄

√
U2

SN

(
1 + λ̄

)
+ 3λ̄

]
.

(6.2.58)

By (6.2.19), we have

d2U0−
dh2

0

∣∣∣∣∣
h0=hSN

< 0 for hSN > −4
3 λ̄

> 0 for hSN < −4
3 λ̄

, (6.2.59)
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hence for hSN > −4
3 λ̄ we get a maximum and for hSN < −4

3 λ̄ we get a

minimum. These turning points represent saddle-node bifurcations which

annihilate each other when λ̄ = λ̄SNA, where

λ̄SNA = −3
8

B
2
3

[(√
B2 + 16 + 4

) 1
3 −

(√
B2 + 16− 4

) 1
3
]

, (6.2.60)

at

hSNA = −4
3

λ̄SNA, USNA =

√
− 3λ̄SNA

1 + λ̄SNA
. (6.2.61)

From (6.2.60) and (6.2.61) we find we only get saddle-node bifurcations for

B >
8
√

3
9

λ̄2√
−λ̄

(
1 + λ̄

) ≡ BSNA. (6.2.62)

For B < BSNA (as shown in Figure 6.21a), by using (6.2.62) in (6.2.22) we

see that

d f3

dh

∣∣∣∣
h=h0,U=U0−

>
Rl

3Bh0
(
1 + λ̄

)√
−3λ̄

[
3h2

0

√
−3λ̄− 16λ̄2

√
λ̄2 + h0

]
.

(6.2.63)

By letting g(h0) = 3h2
0

√
−3λ̄− 16λ̄2

√
λ̄2 + h0 and noting that

dg
dh0

= 0 for h0 = −4
3

λ̄, (6.2.64)

and

d2g
dh2

0

∣∣∣∣∣
h0=− 4

3 λ̄

= 18
√
−3λ̄, (6.2.65)

hence h0 = −4
3 λ̄ is a minimum for which

g
(

h0 = −4
3

λ̄

)
= 0. (6.2.66)

Using this in (6.2.63) we see that

d f3

dh

∣∣∣∣
h=h0,U=U0−

> 0, (6.2.67)
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hence U0− is a saddle. Therefore, for B < BSNA, we only get one equilibrium

point which is a saddle and so will not get any Hopf bifurcations.

For B > BSNA (as shown in Figure 6.21b), by using (6.2.62) in (6.2.22) we

see that

d f3

dh

∣∣∣∣
h=h0, U=U0−

> 0 as h0 → −λ̄+, (6.2.68)

and

d f3

dh

∣∣∣∣
h=h0, U=U0−

> 0 as h0 → +∞, (6.2.69)

hence U0−(h0 = H1) and U0−(h0 = H3) are saddles and hence U0−(h0 =

H2) must be a node.

By noting that, on U = U0−,

dH
dµ

∣∣∣∣
µ=0

< 0 as h0 → −λ̄+, (6.2.70)

and

dH
dµ

∣∣∣∣
µ=0

< 0 as h0 → +∞, (6.2.71)

hence for U = U0−(h0 = H2)

dH
dµ

∣∣∣∣
µ=0

> 0, (6.2.72)

we may simplify (6.2.37) and (6.2.38) to

sign
(
aα′(0)

)
= sign

2hHB

√
λ̄ + hHB

1 + λ̄
− B

 , (6.2.73)

and

α(µ > 0) < 0. (6.2.74)

By (6.2.26), in order for hSN− < hHB < hSN+ we must have B > BHS+ and

F0 < 2
√

1− ρ
(
1 + λ̄

)
≡ FHS, (6.2.75)
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Figure 6.22.: The bifurcation diagram zoomed in around the Hopf

bifurcation for B = 2, λ̄ = −0.2, F0 = 1.52, Rl = 50 and ρ = 0.1.

and by (6.2.39), B0+ > BHS+ only when

F0 <
√

1− ρ
√

1 + λ̄ ≡ FB0 , (6.2.76)

for which FB0 > Fc for λ̄ < −0.75. Hence, by (6.2.73) and (6.2.74), for λ̄ >

−0.75, or λ̄ < −0.75 and F0 > FB0 , we get a supercritical Hopf bifurcation

from which a unique limit cycle solution bifurcates in U < UHB and for

λ̄ < −0.75 and F0 < FB0 we get a subcritical Hopf bifurcation from which a

unique limit cycle solution bifurcates in U > UHB.

Figures 6.22 and 6.23 show the typical bifurcation diagrams zoomed in

around the supercritical and subcritical Hopf bifurcations, respectively, and

Figure 6.24 shows examples of limit cycle solutions for these parameter sets.

We can see that both result in very short regions in U for which limit cycle

solutions exit, which end in homoclinic bifurcations with either H1 or H3.

By using these periodic travelling wave solutions as the initial condition

in the IVP (6.1.25) and (6.1.27) with periodic boundary conditions, as we did
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Figure 6.23.: The bifurcation diagram zoomed in around the Hopf

bifurcation for B = 2.5, λ̄ = −0.8, F0 = 0.4, Rl = 50 and ρ = 0.1.
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(a) U = −2.491, B = 2, λ̄ = −0.2,

F0 = 1.52, Rl = 50 and ρ = 0.1.
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(b) U = −3.499, B = 2.5, λ̄ = −0.8,

F0 = 0.4, Rl = 50 and ρ = 0.1.

Figure 6.24.: The limit cycle solutions for −1 < λ̄ < 0 and B > 0.
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in Section 5.2, we find these solutions produce unsteady periodic solutions

which do not have a permanent form.

6.2.2.2 The case for B < 0

0

U

H

(

B

λ̄
,−λ̄

)

H1

H1(U0−)

H1(U0+)

(a) Type 1.

0

U

H

(
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λ̄
,−λ̄

)

H1

H2

H3

H1(U0−)

H1(U0+)

H2(U0+)

H3(U0+)

(b) Type 2.

Figure 6.25.: The typical bifurcation diagrams for B < 0 and −1 < λ̄ < 0

with the dashed and solid lines corresponding to U0− and U0+,

respectively.

For B < 0, from (6.2.15) we get no turning points on U0−, hence U0− gives

one equilibrium point, which, by (6.2.22), is a node or spiral. Using (6.2.37)

and (6.2.38) we find, as U0− is monotone decreasing in H(µ), aα′(0) < 0

and α(µ < 0) > 0, hence the Hopf bifurcation theorem tells us (UHB, hHB)

is a subcritical Hopf bifurcation from which a unique limit cycle solution

bifurcates in U > UHB.

For U0+, from (6.2.15) we see that there are turning points which, when

substituted into (6.2.10), gives

USN =

√
λ̄ + hSN

1 + λ̄
+

hSN

2
√

1 + λ̄
√

λ̄ + hSN
> 0. (6.2.77)
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Similarly to our work in the previous subsection, from (6.2.58) onwards, we

find

d2U0+

dh2
0

∣∣∣∣∣
h0=hSN

< 0 for hSN < −4
3 λ̄

> 0 for hSN > −4
3 λ̄

, (6.2.78)

hence for hSN < −4
3 λ̄ we get a maximum and for hSN > −4

3 λ̄ we get a

minimum, which only exist for B < −BSNA, from (6.2.62).

For B > −BSNA (as shown in Figure 6.25a), by using (6.2.62) in (6.2.22) we

can find that

d f3

dh

∣∣∣∣
h=h0,U=U0+

< 0, (6.2.79)

and that

dH
dµ

∣∣∣∣
µ=0

>
3h2

0

√
−3λ̄− 16λ̄2

√
λ̄2 + h0

6
√

1 + λ̄
√

λ̄ + h0h2
0

√
−3λ̄

> 0, (6.2.80)

hence we may simplify (6.2.37) and (6.2.38) to

sign
(
aα′(0)

)
= sign

−2hHB

√
λ̄ + hHB

1 + λ̄
− B

 , (6.2.81)

and

α(µ > 0) > 0. (6.2.82)

Using (6.2.23) in (6.2.81) we find that we only get Hopf bifurcations for

F0 >
1
2

√
1− ρ

√
1 + λ̄ ≡ FHmin, (6.2.83)

where FHmin < Fc for λ̄ > −15
16 . Using (6.2.39) we find that B0− > −BSNA

only when F0 > FB0 , for which FB0 > Fc for λ̄ < −0.75. Hence, by (6.2.81)

and (6.2.82), for:

• λ̄ < −0.75 and B > B0−,

• λ̄ > −0.75 and F0 < FB0 , or
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• λ̄ > −0.75, F0 > FB0 and B > B0−,

we get a subcritical Hopf bifurcation from which a unique limit cycle solution

bifurcates in U < UHB, and for:

• λ̄ < −0.75 and B < B0−, or

• λ̄ > −0.75, F0 > FB0 and B < B0−,

we get a supercritical Hopf bifurcation from which a unique limit cycle

solution bifurcates in U > UHB. Figures 6.26 - 6.28 show typical bifurcation

diagrams for varying B, λ̄ and F0 and Figure 6.29 shows examples of limit

cycle solutions for the parameter set used in Figure 6.26.

We see that the branch ceases to exist as h→ 0 and the limit cycle solution

amplitude tends to infinity. To understand the behaviour near h = 0, which

is a line of singularities, we consider the transposed system of equations

H′ = HW, (6.2.84)

W ′ = W2 − Rl
B

[
(1− ρ)H3

F2
0

− B2

]
W − Rl

B

[
(B + UH)2 −

(
λ̄ + H

)
H2

1 + λ̄

]
.

(6.2.85)

The equilibrium points and phase portrait of this system are the same as for

(6.2.7) and (6.2.8), however we no longer have a line of singularities at h = 0.

Equilibrium points of (6.2.84) and (6.2.85) satisfy

W = 0, (B + UH0)
2 −

(
λ̄ + H0

)
H2

0
1 + λ̄

= 0, (6.2.86)

and

H = 0, W0± =
1
2

(
−BRl ±

√
B2R2

l + 4BRl

)
, (6.2.87)

194



6.2 periodic travelling wave theory

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

U

0

0.5

1

1.5

2

H

Hopf Bifurcation

Figure 6.26.: The bifurcation diagram for B = −0.1, λ̄ = −0.2, F0 = 2,

Rl = 50 and ρ = 0.1.
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Figure 6.27.: The bifurcation diagram for B = −2, λ̄ = −0.8, F0 = 0.5,

Rl = 50 and ρ = 0.1.
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Figure 6.28.: The bifurcation diagram for B = −2, λ̄ = −0.8, F0 = 0.4,

Rl = 50 and ρ = 0.1.
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(b) U = 0.730.

Figure 6.29.: The limit cycle solutions for B = −0.1, λ̄ = −0.2, F0 = 2,

Rl = 50 and ρ = 0.1.

where we find that W0− is a saddle and W0+ is an unstable node and H0 is

the same as those in the original system. We may also note that for H � 1

(6.2.85), becomes

W ′ ≈ −Rl
B

(
1− ρ

F2
0

W − 1
1 + λ̄

)
H3, (6.2.88)

for which W ′ ≈ 0 when

W =
F2

0
(1− ρ)

(
1 + λ̄

) ≡WH�1. (6.2.89)

By investigating the phase planes for the transposed system of equations

we find that, before the limit cycles end, by tracking (H � 1, W ′ ≈ WH�1)

backwards it originates from the limit cycle, as shown in Figure 6.30a, whereas

after the limit cycle ends it originates from W0+, as shown in Figure 6.30b.

From this we may conclude that the limit cycle ends in a heteroclinic bifurc-

ation with W0− and a non-physical saddle point at infinity.

Figure 6.31 shows examples of the stable limit cycle solutions for the

parameter set used in Figures 6.26 and 6.29 as we approach the hetero-

clinic bifurcation at U = Uhet. Comparing Figures 6.29b and 6.31a we can

see that, as we have approached the heteroclinic bifurcation, the limit cycle

solution has increased in both length and height and the tail of the solution
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H

W

W = WH≫1

(a) The phase plane before the heteroclinic bifurcation.

H

W

W = WH≫1

(b) The phase plane after the heteroclinic bifurcation.

Figure 6.30.: Phase planes for the limit cycle produced by the Hopf

bifurcation on U− for B = −0.1, λ̄ = −0.2, F0 = 2, Rl = 50 and ρ = 0.1.
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(b) U ≈ Uhet.

Figure 6.31.: The stable limit cycle solutions near the heteroclinic

bifurcation for B = −0.1, λ̄ = −0.2, F0 = 2, Rl = 50 and ρ = 0.1.

has begun to curl down towards h = 0. This corresponds to the phase plane

now coming close to W0−, as in Figure 6.30a. As U is increased further, as in

Figure 6.31b, the limit cycle solution has grown further in length and height

and continues to do so until the heteroclinic bifurcation, at which point the

solution becomes infinite as it joins the physical saddle point, W0−, with a

non-physical saddle point at infinity.

For B < −BSNA (as shown in Figure 6.25b), from (6.2.22) we can see that

d f3

dh

∣∣∣∣
h=h0, U=U0+

< 0 as h0 → −λ̄+, (6.2.90)

and

d f3

dh

∣∣∣∣
h=h0, U=U0+

< 0 as h0 → +∞, (6.2.91)

hence U0+(h0 = H1) and U0+(h0 = H3) are nodes or spirals, hence U0+(h0 =

H2) must be a saddle.

We may simplify (6.2.37) and (6.2.38) by noting that, on U = U0+,

dH
dµ

∣∣∣∣
µ=0

> 0 as h0 → −λ̄+, (6.2.92)
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and

dH
dµ

∣∣∣∣
µ=0

> 0 as h0 → +∞, (6.2.93)

hence

sign
(
aα′(0)

)
= sign

−
B + 2hHB

√
λ̄ + hHB

1 + λ̄

 , (6.2.94)

and

α(µ > 0) > 0, (6.2.95)

on both U0+(h0 = H1) and U0+(h0 = H3).

By (6.2.26), in order for hHB < hSN− or hHB > hSN+, if F0 < FHS, from

(6.2.75), we must have B > BHS−, whereas if F0 > FHS, hHB > hSN+ for all

B < −BSNA.

Hence, by (6.2.94) and (6.2.95), for λ̄ > −0.75, F0 < FB0 and B > B0−, we

get a subcritical Hopf bifurcation on U0+(h0 = H1) from which a unique

limit cycle solution bifurcates in U < UHB. Otherwise we get a supercritical

Hopf bifurcation on U0+(h0 = H3) from which a unique limit cycle solution

bifurcates in U > UHB.

Figures 6.32 - 6.34 show typical bifurcation diagrams for varying B, λ̄

and F0 and Figure 6.35 shows examples of limit cycle solutions for these

parameter sets. Again the limit cycles produced from the Hopf bifurc-

ation on U0− end in a heteroclinic bifurcation with W0− and a saddle point

at infinity. For the limit cycles produced from the Hopf bifurcation on

U0+, they may either end in a homoclinic bifurcation with H2 (Figures 6.32

and 6.34b), or a heteroclinic bifurcation (Figure 6.33) depending how close

the Hopf bifurcation occurs to the saddle-node bifurcations.

By using the periodic travelling wave solutions for both B < −BSNA

and B > −BSNA as the initial condition in the IVP (6.1.25) and (6.1.27)

with periodic boundary conditions, as we did in Section 5.2, we find that

solutions from the Hopf bifurcation on U0+ produce steady periodic solutions,
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Figure 6.32.: The bifurcation diagram for B = −0.5, λ̄ = −0.2, F0 = 5,

Rl = 50 and ρ = 0.1.
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Figure 6.33.: The bifurcation diagram for B = −0.5, λ̄ = −0.2, F0 = 18,

Rl = 50 and ρ = 0.1.
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(a) The complete bifurcation diagram.
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(b) The bifurcation diagram zoomed in around the Hopf bifurcation on U0+.

Figure 6.34.: The bifurcation diagram for B = −2.47, λ̄ = −0.8, F0 = 0.4,

Rl = 50 and ρ = 0.1.
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(b) U = 2.558 and F0 = 18.

Figure 6.35.: The limit cycle solutions for B = −0.5, λ̄ = −0.2, Rl = 50,

ρ = 0.1 and varying F0.

while solutions from the Hopf bifurcation on U0− produce unsteady periodic

solutions which do not have a permanent form.

6.2.3 Summary of Periodic Travelling Wave Solutions

We have seen that for the λ̄ < −1 (strongly uphill) and B < 0 case, if

B > BHS− we generate subcritical Hopf bifurcations on H1 (in Figure 6.4)

from which an unstable limit cycle solution bifurcates in U > UHB. These

limit cycle solutions grow in amplitude as U is increased until they end

in a homoclinic bifurcation with H2. When these periodic travelling wave

solutions are used as the initial condition in the IVP with periodic boundary

conditions, we find they produce unsteady periodic solutions which do not

have a permanent form.

When we considered the case for λ̄ < −1 (strongly uphill) and B > 0, we

found the possibility of two Hopf bifurcations occurring concurrently. The

first, Hopf1, is on H2 (U0−) (in Figure 6.7) and is either a supercritical Hopf

bifurcation on H2 (U0−) from which a stable limit cycle solution bifurcates

in U < UHB−, or is a subcritical Hopf bifurcation from which an unstable

limit cycle solution bifurcates in U > UHB−. These limit cycle solutions end
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in either a homoclinic bifurcation with H1, or a periodic saddle-node bifurc-

ation with an unstable limit cycle resulting from a homoclinic bifurcation

on H1, depending on the value of B.

The second Hopf bifurcation, Hopf2, exists for B > BHS+ on H2 (U0+) and

is a subcritical Hopf bifurcation from which an unstable limit cycle solution

bifurcates in U < UHB+. These limit cycle solutions grow in amplitude as

U is increased until they end in a homoclinic bifurcation with H1. As B is

increased, these two Hopf bifurcations and the corresponding homoclinic

bifurcations move closer together until the homoclinic bifurcations points

coalesce and the two regions of unstable limit cycle solutions join in a gluing

bifurcation, creating one region, starting from and ending in a Hopf bifurc-

ation. This region in U of unstable limit cycles decreases in size as the two

Hopf bifurcations continue to move towards each other as B is increased

until there is a Hopf-Hopf bifurcation for B = Bmax. When these periodic

travelling wave solutions are used as the initial condition in the IVP with

periodic boundary conditions, we find that solutions from Hopf1 produce

unsteady periodic solutions which do not have a permanent form, whereas

those from Hopf2 produce steady periodic solutions.

For the case of −1 < λ̄ < 0 (downhill) and B > 0, if B > BSNA we

find a Hopf bifurcation on H2 (in Figure 6.21b) which is either subcritical

and from which an unstable limit cycle solution bifurcates in U > UHB,

or supercritical and from which a stable limit cycle solution bifurcates in

U < UHB. These limit cycle solutions grow in amplitude as U is increased

until they end in a homoclinic bifurcation with either H1 or H3. When these

periodic travelling wave solutions are used as the initial condition in the IVP

with periodic boundary conditions, we find they produce unsteady periodic

solutions which do not have a permanent form.

Finally, we consider the case for −1 < λ̄ < 0 (downhill) and B < 0 and

found the possibility of two Hopf bifurcations occurring concurrently. The

first is on H1 (U0−) (in Figure 6.25) and is a supercritical Hopf bifurcation

from which an unstable limit cycle solution bifurcates in U > UHB−. The
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second Hopf bifurcation is on either H1 (U0+) or H3 and is either a super-

critical Hopf bifurcation from which a stable limit cycle solution bifurcates

in U > UHB+, or is a subcritical Hopf bifurcation from which an unstable

limit cycle solution bifurcates in U < UHB+. These limit cycle solutions end

in either a homoclinic bifurcation with H2, or a heteroclinic bifurcation with

a saddle point at infinity. When these periodic travelling wave solutions

are used as the initial condition in the IVP with periodic boundary condi-

tions, we find that solutions from the Hopf bifurcations on U0− produce

unsteady periodic solutions which do not have a permanent form, whereas

those from the Hopf bifurcations on U0+ produce steady periodic solutions.

6.3 C O N S TA N T θ̄ - I N I T I A L VA L U E P R O B L E M

Similarly to our work in Section 5.3, we will simulate the flow through

the channel using some small random noise at the inlet and investigate for

which parameter sets the flow develops into roll waves (as we have taken the

thin film limit, ε → 0, we no longer have a top of the the channel at 1 / ε ,

hence are unable to produce slugs). By using periodic boundary conditions

and the uniform steady state with a small initial disturbance, Needham et al.

[132] showed that for λ̄ > 0 we are able to find large roll wave solutions

in the IVP. We will now extend their work by investigating the λ̄ > 0 case

as well as λ̄ < 0 in order to compare the effects of changing the angle of

the channel to the horizontal case. We find that, as expected, lower values

of λ̄ and larger values of F0 increase the size of the solutions, as shown in

Figure 6.36. As we found in Section 5.3, the faster moving roll waves catch

and absorb the slower ones and begin to grow. However, due to a lack of

a top of the channel, they are now unable to maintain their size and revert

back to smaller roll waves.

For the θ̄ = 0 case, as studied by Needham et al. [132], a smaller λ̄ is

equivalent to less damping in the system and so would result in larger roll

waves, as we have found. If we consider λ to be constant and consider
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(a) λ̄ = 0.6 and F0 = 10.
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(c) λ̄ = 1 and F0 = 15.

Figure 6.36.: The solutions at t = 1000 for Rl = 50 and ρ = 0.1 and

varying λ̄ > 0 and F0.

changes to λ̄ to be due to changing the value of θ̄ , then in this example a

smaller λ̄ is a result of a smaller value of θ̄ . As a result of this, the liquid

velocity will be higher due to the effects of gravity and hence results in

larger roll waves.

We may now consider the system for λ̄ < 0. We find that due to the

method used for solving the IVP, when more extreme parameters are used

in the system our code is unable to compute the solutions due to localised

’drying’ (points for which h = 0). For this work we will only include the

results from parameters that we were able to compute fully and note that

this is an area in which further research is needed.
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(a) λ̄ = −0.5 and F0 = 2.
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(b) λ̄ = −0.2 and F0 = 2.
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(c) λ̄ = −0.2 and F0 = 5.

Figure 6.37.: The solutions at t = 1000 for Rl = 50 and ρ = 0.1 and

varying −1 < λ̄ < 0 and F0.

For −1 < λ̄ < 0 (downhill) we again find that lower values of λ̄ and larger

values of F0 increase the height of the roll waves, as shown in Figure 6.37.

The main difference with the λ̄ > 0 case is we are now able to find roll wave

solutions for lower values of F0, as Fc → 0 as λ̄→ −1. By considering values

of −1 < λ̄ < 0 and λ̄ ≥ 0, we find the effects of varying the parameters to

be continuous in the parameter space λ̄ > −1, as shown in Figure 6.38.

We have calculated the ’Peak Height’ parameter to be the average peak

height of the roll waves in the last 20% of the channel. We find that for λ̄ <

−0.6 we are unable to compute solutions due to finding localised ’drying’,

similarly for larger values of F0 for λ̄ < 0, hence the incomplete left hand
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Figure 6.38.: The average peak height against λ̄ > −1 for Rl = 50 and

ρ = 0.1 and varying F0.

side in Figure 6.38. However, we can see a clear correlation between λ̄, F0

and peak height and would expect this to continue for these parameter sets.

For λ̄ < −1 (strongly uphill) we again find that larger values of F0

increase the size of the solutions, however lower values of λ̄ decrease the

size of the solutions, as shown in Figure 6.39. This is due to the waves now

propagating backwards relative to the flow, as we saw earlier, therefore

a larger value of λ̄ (and so larger value of θ̄) results in a more negative

propagation speed and hence larger solutions. Figure 6.40 shows how the

peak height varies with λ̄ and F0, where we have been unable to compute

solutions for λ̄ > −5.

From Figures 6.39b and 6.39c we can see that for λ̄ < −1 we are able

to find roll waves that are significantly larger than the average roll wave in

the channel. As noted in Subsection 6.2.1.2, the roll waves are travelling

backwards relative to the flow and their structure is opposite in x to those

we have previously seen, i.e. they now have a sharp back and sloping front.

As a result of this the way these larger roll waves form is also opposite to

how we saw them form in Section 5.3.

As in our work in Section 5.3, the larger roll waves begin as average

roll waves, however they now propagate slightly slower than the roll waves
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(a) λ̄ = −6 and F0 = 15.
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(b) λ̄ = −7 and F0 = 15.
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(c) λ̄ = −7 and F0 = 18.

Figure 6.39.: The solutions at t = 1000 for Rl = 50 and ρ = 0.1 and

varying λ̄ < −1 and F0.
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Figure 6.40.: The average peak height against λ̄ < −1 for Rl = 50 and

ρ = 0.1 and varying F0.
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around them. When a roll wave behind catches up to them they absorb

it which increases their size. This process is then repeated by the larger

roll waves, growing in size as they move down the channel as more roll

waves catch up with them and are absorbed. Hence, in general, the larger

roll waves further down the channel will be bigger than those further up the

channel. This process is shown in Figure 6.42 where the roll wave of interest

is shown in red. We can see in Figures 6.42a and 6.42b a roll wave catching

up with the roll wave in front of it. Figure 6.42c then shows it absorbing

the faster moving roll wave, after which, as shown in Figure 6.42d, it has

formed into a larger roll wave. Also in Figure 6.42d we can see a small roll

wave which is forming in front of the larger roll wave, which is highlighted

in green. This is the discharge from the faster moving roll wave created as

it is absorbed by the larger roll wave.

6.4 VA RY I N G θ̄ - I N I T I A L VA L U E P R O B L E M

In order to solve the IVP for a non-constant θ̄ we must use (6.1.26) and

define a function for θ̄ . We will begin by letting

θ̄ = K ( 2 0 − x ) e x p
(
− ( 2 0 − x ) 2

2

)
, (6.4.1)

and use the inlet condition

h 1 = 1 , v 1 = 1 , (6.4.2)

and initial condition

h ( t = 0 ) = 1 , v ( t = 0 ) = 1 . (6.4.3)

This will allow us to to see the effects of a small ’bump’ in the channel (at

x = 2 0) on the uniform flow. Figure 6.43 shows the solution at t = 1 0 0 0

for F0 = 1 0, λ = 1, R l = 5 0 and ρ = 0 . 1. We can see that the

bump has caused a small disturbance to the flow which then grows into
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Figure 6.41.: The solution at t = 1000 for λ̄ = −5, R l = 50, ρ = 0.1 and

F0 = 12.
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Figure 6.42.: The solutions as a larger roll wave is formed for λ̄ = −5,

Rl = 50, ρ = 0.1 and F0 = 12.
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Figure 6.43.: The solution at t = 1000 for a ’bump’ in the channel at

x = 20 for F0 = 10, λ = 1, R l = 50 and ρ = 0.1.

roll waves, similarly to the effects we found when applying a small random

noise at the inlet. As the flow has not formed roll waves until it is further

down the channel than when we apply a small random noise at the inlet,

we will continue to use the small random noise in our simulations in order

to minimise the time our simulations take to compute.

We will now investigate the effects of an undulating topography on the

flow. In order to do this we will let

θ̄ = K
F2

0
1− ρ

sin
(

2πx
CL

a + bπ

)
, (6.4.4)

where a is the number of undulations, b can be set to choose whether we

start by going uphill or downhill and K controls the maximum size of θ̄.

By varying the parameters we find, as we found previously, by increasing

F0, decreasing λ or making θ̄ more negative we produce larger roll waves.

When investigating θ̄ > 0 for smaller values of θ̄ we find that increasing θ̄

decreases the size of the roll waves. However, when θ̄ is increased enough

we begin to see the roll waves absorbing each other, as in the previous

section for λ̄ < −1 (strongly uphill), and increasing θ̄ increases the size of

these roll waves until we get localised ’drying’ and our code is unable to

continue to compute solutions.
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6.4 varying θ̄ - initial value problem

Figure 6.44 shows the effects of varying a and b for F0 = 10, K = 0.4,

λ = 1, Rl = 50 and ρ = 0.1. We can see that as the channel goes uphill

(θ̄ > 0) the roll waves decrease in size to a point where the flow has become

stratified flow with a disturbance and as the flow goes downhill (θ̄ < 0) the

roll waves significantly increase in size. We may also observe that the liquid

builds up in the uphill regions, as shown in Figure 6.44c for 0 < x < 150 for

which the liquid is highest for 60 < x < 65 which corresponds to the largest

value of θ̄. As a result of this we can see in Figure 6.44 that we produce

larger roll waves in a downhill region when it comes after an uphill region.

In order to understand why the liquid builds up as θ̄ is increased, we

must consider the steady state solution of our system of equations. By

setting ht = 0 in (6.1.25) we find we must have

v =
1
h

, (6.4.5)

which, along with vt = 0, reduces (6.1.26) to

hxx = Rl

[(
1
h
− 1− ρ

F2
0

h2

)
hx −

1− ρ

F2
0

θ̄h2 − 1
h
+

h + λ

1 + λ
h +

h2
x

Rlh

]
, (6.4.6)

subject to

h(x = 0) = h(x = CL) = 0, θ̄(x = 0) = θ̄(x = CL) = 0. (6.4.7)

By solving (6.4.6) numerically in MATLAB using routine bvp5c we are able

to find the steady state solution for a given set of parameters. Figure 6.45

shows the steady state solution for the parameters used in Figure 6.44c. We

can see a clear positive correlation between h and θ̄ for which, as v = 1/h,

corresponds to the liquid velocity being lower the larger θ̄ is, as we would

expect. Hence, for uphill regions of the channel we get a build up of liquid,

as seen in Figure 6.44c, which then results in there being more liquid in the

following downhill regions and hence larger roll waves.
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6.4 varying θ̄ - initial value problem

(a) a = 1 and b = 0.

(b) a = 1 and b = 1.

(c) a = 2 and b = 0.

(d) a = 2 and b = 1.

Figure 6.44.: The effects of varying a and b for F0 = 10, K = 0.4, λ = 1,

Rl = 50 and ρ = 0.1.
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Figure 6.45.: The steady state solution for F0 = 10, K = 0.4, a = 2, b = 1,

λ = 1, Rl = 50 and ρ = 0.1.

We will now consider a channel which goes either uphill or downhill

before levelling into a region where θ̄ = 0, i.e. we let

θ̄ = K
F2

0
1− ρ

sin
(

2π min
(

x
CL

,
1
2

)
a + bπ

)
. (6.4.8)

Figure 6.46 shows the effect of varying b for F0 = 10, K = 0.4, λ = 1,

Rl = 50 and ρ = 0.1. We can see that for b = 0, where we have an

uphill region before the flat region, we have produced larger roll waves

with greater separation.

6.5 C O N C L U S I O N

By re-deriving our governing equations in a curvilinear coordinate system

and assuming the angle of the channel bottom is θ = O(cl) and θ′ �

1/cl, we found the governing equations were identical to those derived

in Chapter 2 except for one extra term on the right hand side. We then

considered the limit as ε→ 0 for constant θ and by letting

λ̄ =
F2

0 + (1− ρ)θ̄

F2
0 − (1− ρ)θ̄λ

λ, (6.5.1)

we were able to write the governing equations as found by Needham et al.

[132], except with λ replaced by λ̄.
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(a) b = 0.

(b) b = 1.

Figure 6.46.: The effect of varying b with a flat channel end for F0 = 10,

K = 0.4, λ = 1, Rl = 50 and ρ = 0.1.

We then investigated the existence of periodic travelling wave solutions

and found that we may either get one, two or three equilibrium points

which result in up to two Hopf bifurcations for both B > 0 and B <

0. By investigating these Hopf Bifurcations and their resulting limit cycle

solutions we found we have the possibility of:

- homoclinic bifurcations,

- heteroclinic bifurcations with a saddle point at infinity,

- saddle-node bifurcations,

- Hopf-Hopf bifurcations,

- gluing bifurcations, where two homoclinic bifurcations coalesce and
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6.5 conclusion

- periodic saddle-node bifurcations between stable and unstable limit cycles.

When these solutions were used as initial conditions in the IVP with periodic

boundary conditions, we were able to find steady periodic solutions for

λ̄ < −1 and B > 0, for which the solutions travel backwards relative to the

flow, and for −1 < λ̄ < 0 and B < 0.

Similarly to our work in Section 5.3, we simulated the flow through the

channel using some small random noise at the inlet and investigated the

effects of varying the parameters. We found that for λ̄ > −1, increasing F0

or decreasing λ̄ increased the size of the roll waves and for −1 < λ̄ < 0

(downhill) we were able to produce roll waves for smaller values of F0 than

we were able to in the λ̄ > 0 case. For λ̄ < −1 (strongly uphill) we again

found that larger values of F0 increased the size of the roll waves. However,

due to the waves now propagating backwards relative to the flow, a larger

value of λ̄ (hence greater incline of the channel) resulted in a more negative

propagation speed and produced larger roll waves. In this case we were

able to find roll waves that had grown significantly larger than the average

roll wave in the channel due to their absorption of smaller roll waves. This

process occurred in a similar process as we saw in Section 5.3, however it

is the larger roll waves which propagate more slowly and hence the smaller

roll waves catch them up and are absorbed.

Finally, we solved the IVP for a varying topography. We first considered a

flat channel with a small ’bump’ in it with inlet conditions h1 = 1 and v1 = 1

which created a small disturbance to the uniform flow. This disturbance

then slowly grew into roll waves, similarly to the effects of using a small

random noise at the inlet. We then considered the effects of an undulating

topography and found the uphill sections had a dampening effect on the

roll waves, whereas the downhill sections increased the size of the roll

waves. By investigating the steady state solution of the system we found

that we produced a larger layer of liquid as we increased the angle of the

channel. As a result of this, when we investigated the effects of having either

a downhill or uphill section of channel before a flat section, we produced
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6.5 conclusion

larger roll waves in the flat section when it followed an uphill section. This

is of particular importance as the subsea natural gas pipelines must travel

uphill as they leave the sea before travelling across land which may result

in larger roll waves, and potentially slugs, forming.
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7
C O N C L U S I O N

7.1 T H E S I S R E S U LT S

In this thesis, we have derived the governing equations of motion for two

layer hydraulic flow through a semi-infinite channel. This was done using

conservation of mass and conservation of momentum in both the gas and

liquid phases and simplified using the long wavelength assumption, depth-

averaged velocity and Chézy coefficients for the wall and interfacial shear.

These equations were then combined and non-dimensionalised leaving a

system of two equations governing the flow, which consisted of two variables

that were functions of x, the horizontal distance from the inlet, and t, time,

and seven parameters. We then discussed the typical values for the dimen-

sional parameters in subsea natural gas pipelines and provided the corres-

ponding values of our non-dimensional parameters.

In Chapter 3, we investigated how small-amplitude disturbances affected

the uniform flow. Through this we determined a stability criterion, Fc, on

the Froude number for which small-amplitude disturbances to the uniform

flow would decay if F0 < Fc and grow if F0 > Fc. We also found a non-

hyperbolic condition, FNH, for which when F0 > FNH the IVP is ill-posed due

to a short wavelength instability, hence the long wavelength assumption is

invalid and suggests the flow regime would change to bubble flow. We then

considered the solution for a single mode of spatial wave number in order
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7.1 thesis results

to investigate how fast different wavelengths grow. From this we found the

neutral curve Fn, for which small disturbances will neither grow nor decay

and a maximum growth rate curve Fm.

Once these disturbances begin to grow, they become dominated by non-

linear effects and we expected them to form into roll waves, hence in Chapter 4

we investigated the existence of periodic travelling wave solutions. In order

to do this we introduced the travelling co-ordinate z = x − Ut, where U

is the wave propagation speed, which simplified our governing equations

into one equation for one variable, h(z), given by (4.0.7). We considered the

equilibrium points of this equation and found two equilibrium points that

vanish in the previously studied limit, ε → 0, (H− and H+) which come

into existence near the top of the channel for δU ≈ 1. Through asymptotic

analysis, we deduced that H− is a saddle and H+ is a node or spiral where

a Hopf bifurcation may occur.

We used MATLAB routines ode45 and bvp5c to solve our equations numer-

ically and found high amplitude periodic solutions. We investigated the

phase portraits of these solutions for two sets of parameters while varying

U. In one we found one Hopf bifurcation, two homoclinic bifurcations and

a periodic saddle-node bifurcation which resulted in two separate regions

in which periodic solutions can exist and which contained both stable and

unstable limit cycle solutions which resulted in a stable-unstable limit cycle

annihilation. In the other we found two Hopf bifurcations and five homoclinic

bifurcations which resulted in four separate regions in which periodic solutions

can exist. Although we were unable to establish a complete understanding

of the phase portrait, our investigation of periodic travelling wave solutions

gave us some insight into how the parameters affect the system and showed

that slugs can exist.

In Chapter 5, we used a finite-difference method derived by Kurganov

and Tadmor [114] which we combined with a second-order Runge-Kutta

method to solve our governing equations as an initial value problem. We set

the initial condition to be the uniform flow and used some small amplitude
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7.1 thesis results

random noise at the inlet and an outlet in order to simulate flow through a

channel. We first used one of the parameter sets we had used in Section 4.3

in the initial value problem, which resulted in the channel being predomin-

antly full of roll waves with a few slugs. By following these slugs as they

travelled through the channel, we saw that they began as roll waves which

propagated faster than the roll waves in front of them and as they caught

the roll wave in front they absorbed it, increasing in size to form a slug.

They continued this process as they travelled down the channel, increasing

in size every time they absorbed a roll wave.

When we varied the parameters slightly we found that the data sets with

the larger values of δ produced the most slugs, whereas those with δ ≈ 0.5

produced the widest slugs. This was because in the solutions which only

produced a few slugs there were lots of roll waves for them to absorb as

they travelled down the channel, so they were constantly growing in size.

By varying δ and λ we determined that δ ≈ 0.5 is a critical limit which

separated data sets which may lead to slugs and those which will not. It is

at this ratio of liquid to homogeneous velocity that the liquid momentum is

able to overcome the interfacial shear forces in order to grow into slugs.

Finally, in Chapter 6, we considered the effects of bottom topography in

the thin layer limit. We first investigated the existence of periodic travelling

wave solutions for constant channel inclination, θ, and found that Hopf

bifurcations can exist for B < 0 and B > 0, whereas for the horizontal case

it had only been possible for B < 0. By investigating these Hopf Bifurcations

and their resulting limit cycle solutions we found, unlike in Chapter 4, that

there is also the possibility of heteroclinc bifurcations with a saddle point at

infinity and gluing bifurcations, where two homoclinic bifurcations coalesce.

By solving this system as an initial value problem, we found that larger roll

waves are generated in downhill channels than we had in the horizontal

case. However, although the roll waves are smaller, it is in the strongly

uphill case that we found roll waves absorbing smaller roll waves resulting

in them growing in size, as occurs for horizontal channels. In this case, the
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roll waves propagated backwards relative to the flow and the larger roll

waves were the ones propagating slowest, resulting in them being caught

up by smaller and faster roll waves which were then absorbed.

We then solved the governing equations as an initial value problem for

an undulating topography. We found that the downhill sections resulted

in larger roll waves and the uphill sections had a dampening effect on

the roll waves. However, when we considered the steady state solution

of the system, we found that the height of the layer of liquid increases with

the angle of the channel. As a result of this, when we investigated the

effects of having either a downhill or uphill section of channel before a flat

section, larger roll waves were produced in the flat section when it followed

an uphill section. This is of particular importance as subsea natural gas

pipelines must travel uphill as they leave the sea before travelling across

land which may result in larger roll waves and, potentially, slug formation.

7.2 F U T U R E W O R K

In Chapter 4, although we completed an in-depth analysis of the phase

plane for several parameter sets, due to the number of parameters and the

extremely complicated nature of the phase planes, an exhaustive catalogue

of possibilities was not feasible. Part of the difficulty in deciphering the

phase portrait is because of the number of separate regions, split by pairs

of homoclinic bifurcations, in which the solutions exist. However, when we

investigated the stability of these solutions in the initial value problem, we

found that only the solutions from Region A (in Figures 5.4 and 5.5) are

stable. Hence, concentrating on this region and tracking the bifurcations

encompassing it would provide a more detailed insight into the solutions

generated in the initial value problem.

In our simulations in Chapter 5 we found that faster propagating roll

waves catch up with slower ones and may or may not absorb them. In order

to determine conditions under which two roll waves will attract and form
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one larger roll wave, or repel settling into their equilibrium roll wave state,

interaction experiments could be performed. This could be done by using

a short channel with periodic boundary conditions and two different roll

waves as initial conditions. By varying the roll waves used, the parameters

and the initial separation between the roll waves the conditions determining

attraction or repulsion may be found.

It may be possible to analytically predict slug separation distances in

channels long enough for the system to have settled into a solution dominated

by a series of large slugs. By repeating the computations for a set of

parameters a large number of times, we could then compute the distance, l,

between slugs. By considering a histogram of the number of slugs separated

by some distance, ∆l, divided by the total number of slugs (the probab-

ility that the slugs are separated by a certain ∆l) we may find well-defined

peaks. If this is the case, we must have self-organisation and it may be

possible to develop an analytical model which predicts the slug separation

and frequency. However, due to the length of channel needed combined

with the need to repeat the simulations a large number of times, doing this

will be very computationally expensive.

Due to the way the equations have been derived, it is not possible for the

liquid to touch the top of the channel in our simulations as this results in

denominators in our equations becoming zero. By re-writing our code and

using a piecewise full-pipe solution as the initial condition, we would be

able to investigate the effects of a slug touching the channel top. However,

in order to simulate the generation of this type of slug, we would need to

re-derive our governing equations taking into account the current behaviour

as h→ 1/ε (channel filling).

Similarly, in Chapter 6, we were unable to simulate flows which experi-

enced localised drying due to h = 0 causing denominators in our equations

to become zero. There are several proposed methods for dealing with this
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in the literature, such as that by Kurganov and Petrova [113]. This method

proposes using

v =

√
2h(hv)√

h4 + max(h4, ε)
, (7.2.1)

where ε is a small a-priori chosen positive number (for which they used

ε = (∆x)4). Although we tried this method with numerous values for ε, it

only slowed the ’drying’. A more thorough examination of the literature in

this area is needed in order to find an appropriate numerical method.

In our work on the effects of bottom topography, we only investigated the

case of a thin film layer (ε � 1). We have derived the governing equations

for the non-thin film case, given by (6.1.20) and (6.1.24), which shows we

need only add one extra term to our code from Chapter 5 in order to solve

this case as an initial value problem. When we encountered ’drying’ in the

thin-film case, the peaks of the waves began to grow very large. Hence,

we may find that the effects of a channel top bounding the maximum peak

height may force liquid down and allow simulations for a wider range of

parameters.

Finally, as our work is based on channel flow, a more accurate model for

subsea natural gas pipelines could be developed by using a cylindrical pipe.

In order to simplify the governing equations, they could be cross-sectionally

averaged and width-averaged to give a one-dimensional model. Then all the

topics in this thesis would need to be re-visited.
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A
A P P E N D I X

A.1 C H A N N E L S I M U L AT I O N S

The figures corresponding to the Data Sets given in Section 5.3 in Tables 5.4 -

5.6 on Pages 133 - 134. Figure A.1 show the plots of the solutions at t = 3000

for CL = 1000 and Figure A.2 shows the plots of width and peak height

against location in the channel.
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A.1 channel simulations

Figure A.2a.: The width and peak height against location in the channel of

waves for Data Set 1.

Figure A.2b.: The width and peak height against location in the channel

of waves for Data Set 2.
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A.1 channel simulations

Figure A.2c.: The width and peak height against location in the channel of

waves for Data Set 3.

Figure A.2d.: The width and peak height against location in the channel

of waves for Data Set 4.
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A.1 channel simulations

Figure A.2e.: The width and peak height against location in the channel of

waves for Data Set 5.

Figure A.2f.: The width and peak height against location in the channel of

waves for Data Set 6.
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A.1 channel simulations

Figure A.2g.: The width and peak height against location in the channel

of waves for Data Set 7.

Figure A.2h.: The width and peak height against location in the channel

of waves for Data Set 8.
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A.1 channel simulations

Figure A.2i.: The width and peak height against location in the channel of

waves for Data Set 9.

Figure A.2j.: The width and peak height against location in the channel of

waves for Data Set 13.
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A.1 channel simulations

Figure A.2k.: The width and peak height against location in the channel

of waves for Data Set 14.

Figure A.2l.: The width and peak height against location in the channel of

waves for Data Set 16.
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A.1 channel simulations

Figure A.2m.: The width and peak height against location in the channel

of waves for Data Set 17

Figure A.2n.: The width and peak height against location in the channel

of waves for Data Set 18.
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A.1 channel simulations

Figure A.2o.: The width and peak height against location in the channel

of waves for Data Set 23.

Figure A.2p.: The width and peak height against location in the channel

of waves for Data Set 25.
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A.1 channel simulations

Figure A.2q.: The width and peak height against location in the channel

of waves for Data Set 26.

Figure A.2r.: The width and peak height against location in the channel of

waves for Data Set 27.
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A.2 effects of varying the parameters

A.2 E F F E C T S O F VA RY I N G T H E PA R A M E T E R S

The tables corresponding to all combinations of δ = 0.45, 0.46, 0.47, 0.48,

0.49 and 0.5, λ = 0.2, 0.4, 0.6, 0.8 and 1 and F0 = 5, 5.5, 6, 6.5, 7, 7.5, and

8 excluding values where F0 > FNH as discussed in Section 5.4 on Page 141.

Table A.1 shows the Data Sets that produced slugs and Table A.2 shows the

Data Sets that produced no slugs.
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A.2 effects of varying the parameters

D.S. δ F0 λ R.W. h% R.W. Width Avg Slugs Slug Width

11 0.47 6.000 0.2 51 0.114 0.451 0.661

12 0.47 6.500 0.2 49 0.104 0.294 0.875

13 0.47 7.000 0.2 55 0.100 1.118 1.172

16 0.48 6.000 0.2 54 0.118 0.569 0.750

17 0.48 6.500 0.2 54 0.110 1.314 1.192

18 0.48 7.000 0.2 54 0.103 2.647 1.415

19 0.48 7.500 0.2 54 0.098 4.471 1.633

22 0.49 6.000 0.2 56 0.123 0.451 0.558

23 0.49 6.500 0.2 55 0.113 1.745 1.231

24 0.49 7.000 0.2 52 0.105 4.137 1.406

25 0.49 7.500 0.2 51 0.100 6.294 1.444

28 0.5 6.000 0.2 58 0.127 0.784 0.667

29 0.5 6.500 0.2 50 0.117 4.314 1.053

30 0.5 7.000 0.2 51 0.109 6.510 1.256

31 0.5 7.500 0.2 49 0.104 7.882 1.184

32 0.5 8.000 0.2 45 0.100 9.176 1.640

45 0.47 7.000 0.4 53 0.101 0.529 1.317

49 0.48 6.500 0.4 52 0.111 0.608 0.734

50 0.48 7.000 0.4 53 0.104 1.824 1.296

51 0.48 7.500 0.4 54 0.100 2.902 1.757

55 0.49 6.500 0.4 55 0.115 1.078 1.056

56 0.49 7.000 0.4 54 0.108 3.157 1.352

57 0.49 7.500 0.4 48 0.102 5.255 1.478

60 0.5 6.000 0.4 54 0.129 0.078 0.400

61 0.5 6.500 0.4 57 0.119 2.392 1.136

62 0.5 7.000 0.4 51 0.113 4.902 1.192

63 0.5 7.500 0.4 46 0.105 8.039 1.455

64 0.5 8.000 0.4 45 0.099 8.667 1.545

81 0.48 6.500 0.6 51 0.112 0.490 0.710
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A.2 effects of varying the parameters

82 0.48 7.000 0.6 53 0.106 0.804 1.202

83 0.48 7.500 0.6 55 0.102 2.353 1.626

87 0.49 6.500 0.6 52 0.117 0.431 1.113

88 0.49 7.000 0.6 53 0.110 2.157 1.140

89 0.49 7.500 0.6 51 0.104 3.863 1.508

93 0.5 6.500 0.6 57 0.124 0.627 0.828

94 0.5 7.000 0.6 52 0.113 3.451 1.370

95 0.5 7.500 0.6 49 0.108 6.020 1.349

96 0.5 8.000 0.6 47 0.104 7.902 1.390

113 0.48 6.500 0.8 48 0.113 0.196 0.430

114 0.48 7.000 0.8 51 0.106 0.412 0.884

115 0.48 7.500 0.8 54 0.102 1.118 1.243

119 0.49 6.500 0.8 52 0.119 0.098 0.700

120 0.49 7.000 0.8 54 0.111 0.608 1.206

121 0.49 7.500 0.8 54 0.106 2.863 1.588

125 0.5 6.500 0.8 53 0.123 0.020 0.290

126 0.5 7.000 0.8 57 0.117 1.902 1.268

127 0.5 7.500 0.8 49 0.112 4.549 1.348

128 0.5 8.000 0.8 52 0.103 6.647 1.393

146 0.48 7.000 1 49 0.107 0.255 1.000

147 0.48 7.500 1 54 0.103 0.392 0.910

152 0.49 7.000 1 51 0.111 0.314 1.018

153 0.49 7.500 1 53 0.106 2.255 1.355

158 0.5 7.000 1 54 0.118 0.333 1.175

159 0.5 7.500 1 52 0.110 2.804 1.553

160 0.5 8.000 1 47 0.106 5.569 1.620

Table A.1.: Data for which slugs form when varying δ, λ and F0.

245



A.2 effects of varying the parameters

D.S. δ F0 λ R.W. h% R.W. Width

1 0.45 5 0.2 48 0.130

2 0.45 5.5 0.2 44 0.113

3 0.45 6 0.2 46 0.103

4 0.45 6.5 0.2 49 0.097

5 0.46 5 0.2 47 0.135

6 0.46 5.5 0.2 49 0.120

7 0.46 6 0.2 46 0.107

8 0.46 6.5 0.2 49 0.101

9 0.47 5 0.2 48 0.140

10 0.47 5.5 0.2 52 0.126

14 0.48 5 0.2 45 0.142

15 0.48 5.5 0.2 52 0.130

20 0.49 5 0.2 46 0.147

21 0.49 5.5 0.2 52 0.134

26 0.5 5 0.2 47 0.152

27 0.5 5.5 0.2 52 0.137

33 0.45 5 0.4 46 0.132

34 0.45 5.5 0.4 45 0.116

35 0.45 6 0.4 44 0.104

36 0.45 6.5 0.4 48 0.098

37 0.46 5 0.4 45 0.138

38 0.46 5.5 0.4 49 0.123

39 0.46 6 0.4 48 0.111

40 0.46 6.5 0.4 48 0.102

41 0.47 5 0.4 45 0.142

42 0.47 5.5 0.4 48 0.127

43 0.47 6 0.4 48 0.115

44 0.47 6.5 0.4 50 0.106

46 0.48 5 0.4 43 0.146
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A.2 effects of varying the parameters

47 0.48 5.5 0.4 49 0.132

48 0.48 6 0.4 50 0.120

52 0.49 5 0.4 44 0.151

53 0.49 5.5 0.4 50 0.136

54 0.49 6 0.4 52 0.125

58 0.5 5 0.4 44 0.156

59 0.5 5.5 0.4 50 0.140

65 0.45 5 0.6 43 0.134

66 0.45 5.5 0.6 45 0.118

67 0.45 6 0.6 46 0.107

68 0.45 6.5 0.6 47 0.099

69 0.46 5 0.6 43 0.140

70 0.46 5.5 0.6 45 0.125

71 0.46 6 0.6 47 0.112

72 0.46 6.5 0.6 48 0.103

73 0.47 5 0.6 42 0.145

74 0.47 5.5 0.6 49 0.130

75 0.47 6 0.6 48 0.117

76 0.47 6.5 0.6 50 0.108

77 0.47 7 0.6 51 0.102

78 0.48 5 0.6 42 0.150

79 0.48 5.5 0.6 46 0.133

80 0.48 6 0.6 50 0.122

84 0.49 5 0.6 42 0.155

85 0.49 5.5 0.6 47 0.138

86 0.49 6 0.6 52 0.127

90 0.5 5 0.6 42 0.159

91 0.5 5.5 0.6 46 0.142

92 0.5 6 0.6 54 0.131

97 0.45 5 0.8 42 0.137

98 0.45 5.5 0.8 44 0.120
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99 0.45 6 0.8 45 0.108

100 0.45 6.5 0.8 47 0.100

101 0.46 5 0.8 41 0.143

102 0.46 5.5 0.8 45 0.126

103 0.46 6 0.8 46 0.113

104 0.46 6.5 0.8 49 0.105

105 0.47 5 0.8 41 0.148

106 0.47 5.5 0.8 46 0.131

107 0.47 6 0.8 48 0.119

108 0.47 6.5 0.8 48 0.109

109 0.47 7 0.8 50 0.102

110 0.48 5 0.8 41 0.154

111 0.48 5.5 0.8 45 0.136

112 0.48 6 0.8 47 0.123

116 0.49 5 0.8 40 0.158

117 0.49 5.5 0.8 45 0.141

118 0.49 6 0.8 49 0.128

122 0.5 5 0.8 40 0.163

123 0.5 5.5 0.8 44 0.144

124 0.5 6 0.8 50 0.132

129 0.45 5 1 41 0.140

130 0.45 5.5 1 45 0.122

131 0.45 6 1 45 0.109

132 0.45 6.5 1 46 0.100

133 0.46 5 1 40 0.146

134 0.46 5.5 1 44 0.127

135 0.46 6 1 45 0.114

136 0.46 6.5 1 47 0.105

137 0.47 5 1 40 0.152

138 0.47 5.5 1 45 0.133

139 0.47 6 1 47 0.120
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140 0.47 6.5 1 48 0.110

141 0.47 7 1 50 0.103

142 0.48 5 1 39 0.157

143 0.48 5.5 1 44 0.138

144 0.48 6 1 47 0.125

145 0.48 6.5 1 48 0.115

148 0.49 5 1 39 0.162

149 0.49 5.5 1 43 0.143

150 0.49 6 1 48 0.129

151 0.49 6.5 1 51 0.120

154 0.5 5 1 39 0.167

155 0.5 5.5 1 43 0.147

156 0.5 6 1 49 0.134

157 0.5 6.5 1 51 0.124

Table A.2.: Data for which no slugs form when varying δ, λ and F0.
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