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Abstract
This thesis utilises large deviation methods to study nonequilibrium phenomena in

both quantum and classical systems. The dynamical analogues of the ensembles of

statistical mechanics are used to explore dynamical phase spaces of systems, quan-

tifying atypical fluctuations that can play a critical role in long term behaviour.

A dynamical ensemble based on fixed numbers of dynamical events, allowing tra-

jectory observation time to fluctuate, is introduced. This ensemble, denoted the

x-ensemble, is found to be well suited to numerically simulate atypical fluctuations

using transition path sampling (TPS). x-ensemble TPS schemes are analysed with

reference to existing methods in both quantum and classical stochastic systems,

and are found to offer more flexibility and efficiency in a variety of situations. The

potential to develop this scheme into a self-optimizing algorithm is discussed with

examples. The x-ensemble is then used in three non-equilibrium scenarios. Firstly

in plaquette models of glass formers, in an effort to provide insight into the nature

of the glass transition. It is shown that a two-dimensional triangular plaquette

model (TPM) exhibits both a trajectory phase-transition between dynamical ac-

tive and inactive phases, and when two replicas are coupled, a thermal phase

transition between states of low and high overlap between the replicas. These two

transitions are similar to those seen to occur in more realistic glass formers. When

the TPM is generalised to a three-dimensional square pyramid plaquette model

(SPyM) these dynamical and thermodynamic features of interest remain. It is ar-

gued that these models therefore provide an ideal test-bed for competing theories

of the glass transition. Secondly the x-ensemble is used to define and analyse the

dynamical analogue of the Jarzynski equality, allowing for the computation of dy-

namical free energy differences with, in principle, arbitrarily fast protocols linking

two dynamical states. This relation is tested and found to hold in open quantum

systems. Finally the partition sum zeros method of Lee and Yang is used to ex-

tract the location of dynamical phase transitions from the high-order, short-time

cumulants of the x-ensemble. Results in both classical and open quantum systems

are compared with previously studied dynamical ensembles, providing insight into

the nature in which dynamical behaviours are encoded by these ensembles.
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from cumulants of order m = 6, 7, 8, 9. These are found to oscillate

with increasing K and do not converge to a single point. This is

indicative of a lack of a trajectory transition point existing in the

complex x plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.3 We consider κ = 4Ω1 and fix Ω1 = 1 and Ω2 = 0.15. Plots of the

Mandel Q Parameter for (a) the s-ensemble and (b) the x-ensemble.

Despite the information being encoded in different ways, the same

physical properties are realised by both ensembles . . . . . . . . . . 152



1. Introduction

The theory of equilibrium statistical mechanics provides powerful tools for de-

scribing and predicting the static properties of many-body systems [1, 2]. In lieu

of a deterministic microscopic approach, seemingly complex problems are well

described by a small number of aggregate statistical measures. Many-body inter-

actions with degrees of freedom on the order of Avogadro’s number (∼ 1024) are

reduced to a small number of quantities exchanged with an environment that is too

large to be influenced by the system under study. Few theories have enjoyed such

broad success, from providing the underpinnings of thermodynamics, ideal gases,

heat engines, and phase transitions, to applications in quantum systems such as

Bose-Einstein condensation and quantum computing. Despite this success, there

are areas of scientific interest where the static picture alone proves insufficient.

This is most notably an issue when systems are driven out of equilibrium, where

the breaking of time-reversal symmetry necessitates the inclusion of dynamic pro-

cesses. This has long been a problem in the study of biophysics, where nearly

every system of interest is driven in some manner, and indeed, many of the tools

to be discussed in this thesis were developed to study such systems [3].

There is a more subtle area where the static picture also encounters problems - in

systems where ergodicity is broken, such as glass. The nature of glass formation

is a highly controversial topic, with no single theory fully describing the observed

18
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phenomena [4–8]. Glasses have no apparent structural order, characteristic of a

liquid state, but long structural relaxation times make them solids. Unlike most

materials the specific protocol used in the formation of glass, such as initial tem-

perature and rate of cooling, plays a critical role in the properties of the resulting

solid - and this provides the first clue that the dynamics might provide insight

into the static structure of the material. Furthermore glasses exhibit dynamical

heterogeneities - space-time “bubbles” within the bulk material with vastly differ-

ent dynamical activity [9, 10], which any theory of glass must necessarily account

for. The controversy, then, is centred on whether there is an equilibrium phase

transition to the glass state [8, 11], or if it is the result of unusually correlated

dynamical behaviour [12,13].

The thermodynamic formalism developed by Ruelle [14] provided an opportunity

to adapt the language of statistical mechanics to dynamical systems, resulting

in a “thermodynamics of trajectories” [12, 13, 15–22]. Using large deviation the-

ory [23–25], the concept of an ensemble was generalised to trajectories, and the

statistics of dynamical processes probed in a manner analogous to the configura-

tions of equilibrium statistical mechanics. Fields conjugate to dynamical variables

of interest play the role of free energies and entropies, and are used to explore a dy-

namical phase space. Rare, but important dynamical behaviours can be uncovered

by varying these fields, including the dynamical equivalent of a phase transition -

a singular change in dynamical properties of a system at specific points in phase

space. The physical dynamics of the system take place at zero field while atypi-

cal but potentially important dynamics occur with non-zero field, in contrast to

the ensembles of equilibrium statistical mechanics, where fields are often physi-

cally tunable parameters that can be precisely controlled. A good example of the

importance of these rare behaviours occurs in chemical reactions - the physical

interaction that causes two species to bond might be incredibly uncommon, es-

pecially if it requires more than a two-body interaction, but such events play an
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obviously crucial role in the long term behaviour of the system.

With this new approach to non-equilibrium dynamics there comes a need for tools

to efficiently explore the dynamical phase spaces of systems. A novel approach that

is well suited to sampling rare dynamical behaviours is transition path sampling

(TPS) [3]. TPS is a collection of computational algorithms originally developed to

study so called reaction trajectories to gain insight into the physical mechanisms

involved in a chemical reaction. It amounts to a biased random walk, coupled

with efficient methods of proposing steps, through the space of all trajectories

- in a similar vein to how techniques such as simulated annealing operate on

configurations [26]. This approach revealed the existence of a zero field first order

dynamical phase transition between a high activity liquid phase, and an inactive

glass phase, in a simple glass forming spin model, the East Model [13, 27, 28].

Crucially this model has trivial thermodynamic properties, with no static phase

transitions, adding weight to the dynamic approach to the glass transition. Glassy

behaviour arises because of kinetically constrained dynamics - neighbouring spins

compete dynamically and block each others motion. Despite the success of the

approach, capturing all the properties of a real glass former in a three-dimensional

setting remains difficult.

The purpose of this thesis is to adapt and develop efficient path sampling schemes

into the thermodynamics of trajectories, with the ultimate aim of application to

three-dimensional glass formers. More generally it aims to improve the flexibility

of the tools used to study dynamical systems, by exploring alternative dynami-

cal ensembles and adapting important relations in conventional thermodynamics

to the dynamical case. The work is laid out as follows: Chapter 2 provides the

background theory on large deviations and their connection to Ruelle’s formalism

for thermodynamics that underpins the thermodynamics of trajectories. The con-

ventional presentation of the thermodynamics of trajectories, ensembles of fixed



1. Introduction 21

trajectory observation time known as the s-ensemble, is also developed here, with

brief introductions to the problems tackled later in this thesis. Chapter 3 intro-

duces a new dynamical ensemble where observation time fluctuates and the number

of dynamical events (e.g. photon emissions, spin flips) is instead kept constant -

which we denote the x-ensemble. The relationship between s- and x-ensemble is

explored with simple examples of both classical [29] and quantum [30,31] stochas-

tic systems.

A path sampling scheme implemented by Crooks and Chandler [32] is adapted to

the x-ensemble in Chapter 4. Efficiency is a key concern here, and the x-ensemble

scheme is examined in classical, glassy, and quantum stochastic systems, with

comparisons drawn to the relative efficiency of s-ensemble schemes. One of the

main problems encountered in TPS is tuning the algorithms to the system under

study, as efficiency, including algorithmic scaling, can vary substantially. As such,

a future outlook on a self-tuning x-ensemble algorithm is also discussed here.

Chapter 5 focuses on kinetically constrained models of glasses. We examine an old

model glass former with (effectively) kinetically constrained dynamics - the two-

dimensional triangular plaquette model (TPM) [33–35]. This model has recently

become of interest to the discussion on glasses, as two coupled replicas exhibit a

thermodynamic phase transition with coupling strength as the order parameter.

However this transition is not present at zero coupling strength, except in the limit

of zero temperature [36]. Furthermore the model also undergoes a dynamical phase

transition between an equilibrium liquid state and a glass state at low temperature,

making it a useful test bed for arguments about thermal and dynamical transitions

in glasses. We generalise this model to a three-dimensional equivalent, which we

denote the square pyramid model (SPyM) and study its dynamical phase space

in an attempt to bring arguments of glass formers onto solid three-dimensional

footing. Developing three-dimensional glass forming models is an important step
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in the study of glassiness, not only because of the three-dimensional nature of

physical glass, but also crucially due to inherent dimensionality arguments in

the debate on glasses. Arguments proposing an equilibrium phase transition to

glass state are compelling in a mean-field (i.e. infinite-dimensional) setting, but

the transitions vanish in two dimensions. Conversely, early studies utilising the

dynamical approach saw success in one- and two-dimensional models, but took

longer to establish a footing in three dimensions. The efficiency provided by

x-ensemble TPS allows the exploration of the SPyM’s dynamical phase space,

which we find to be strikingly similar to that of the two-dimensional TPM. The

interesting thermodynamic properties of coupled replicas of these models, as well

as the rich dynamical phase space allude to the possibility of a connection between

the (apparently quite different) competing theories of glass formers.

In the final two chapters, 6 and 7, we expand upon the thermodynamics of trajec-

tories, developing equivalents to useful methods and relations from conventional

thermodynamics. First we examine the Jarzynski equality [37, 38] - a revolution-

ary relation that allows for the computation of equilibrium free energy differences,

from non-equilibrium (i.e. fast) methods. It adapts quite naturally to dynamical

ensembles and we explore its use in open quantum systems - including attempts

to compute dynamical “free energies” across a trajectory phase transition point.

Chapter 7 looks at the Lee-Yang zeros method [39, 40] in the context of the x-

ensemble. This method has previously been adapted to the s-ensemble [41–43]

and we note important consequences of the manner in which dynamical ensembles

encode information about physical dynamics, based on the results of examinations

of open quantum systems.

Finally Chapter 8 provides a general discussion of the work in this thesis, with

comments on potential future developments.



2. Background theory:

thermodynamics, large

deviations and stochastic

processes

Few theories have enjoyed the broad applicability of statistical mechanics, captur-

ing the phenomenology of a wide array of systems, both quantum and classical.

This is in a large part due to the flexibility allowed by statistical ensembles - a

mathematical idealisation of a large (or infinite) number of replicas of a system.

The ease with which expectation values can be calculated using the approach,

coupled with the large numbers of microscopic degrees of freedom present in any

macroscopic system ensuring minimal deviation from expected aggregate values,

and crucially, the ability to easily tailor an ensemble to describe any physical

system has resulted in decades of successful exploration of physical systems. A

mathematical formalism developed by Ruelle [14], based on the theory of large

deviations [25] has facilitated the extension of the tools of statistical mechanics

into the realm of non-equilibrium physics, capturing the dynamical behaviours

of systems. This extension is sometimes called the thermodynamics of trajecto-

ries [12, 13,15–22].

23
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This chapter introduces the background theory necessary for the work presented

in the remainder of the thesis. Firstly large deviation theory will be introduced

with connections made to thermal ensembles. This leads quite naturally into

the thermodynamics of trajectories itself, which will be presented in their typical

manner with an ensemble of fixed trajectory observation time - the s-ensemble.

A brief primer on master equations, both quantum and classical, will be provided

to facilitate the description of dynamical processes captured by the s-ensemble.

Furthermore, brief backgrounds on systems and relations of interest studied in this

thesis, including glasses and fluctuation theorems will be provided

2.1 Large deviation theory

Large deviation (LD) theory [16, 25] can naively be thought of as an extension of

the law of large numbers. It is the statement that fluctuations in the mean value

of some parameter, n, become exponentially suppressed in the large size limit, and

hence the probability distribution of the observed mean value takes on the generic

form P (n) ≈ e−nI(n), with all other terms being subdominant in this limit.

As a simple illustrative example, consider the case of n independent Gaussian

random variables, X0, X1, ...Xn with mean µ and variance σ2. The probability

distribution for these variables is given by

P (Xi = xi) =
1√

2πσ2
e−

(xi−µ)2

2σ2 . (2.1)

If we now wish to calculate the probability distribution for the sample mean

S of our n variables, defined by Sn = 1
n

∑
iXi, using the fact that the prob-

ability of drawing a sequence of Gaussian variables, represented by the vector

x = (x1, x2, ..., xn), is simply the product of their individual probabilities

P (x) = P (x1, x2, ...xn) = P (x1)P (x2)...P (xn) (2.2)
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the probability that the sample mean takes on a value s is

P (Sn = s) =

∫
dxδ(Sn(x)− s)P (x)

= 〈δ(Sn − s)〉

=

√
n

2πσ2
e−

n(s−µ)2

2σ2 . (2.3)

As we take n→∞ the
√
n term is subdominant to the exponential term and we

recover the large deviation form

P (Sn = s) � e−nI(s) (2.4)

where the function I(s) = (s − µ)2/2σ2 is known as the large deviation rate

function, and the symbol � indicates that in the limit of large n the behaviour

of the probability distribution is dominated by the exponential term given.

While the applicability of LD theory is broad, the most useful result for the pur-

poses of this thesis is known as the Gärtner-Ellis theorem, which connects the

LD form of a probability distribution to its (scaled) cumulant generating function

(CGF). The CGF is closely related to the moment generating function (MGF) of a

distribution, which presents an alternative description to the probability distribu-

tion. For a random variable, A, which is parameterised by a real positive integer

n (i.e. we are taking n samples), the MGF is defined by

M(t) = lim
n→∞

1

n

〈
etnAn

〉
(2.5)

where 〈
e−ntAn

〉
=

∫
dAne

−tnAnP (An) (2.6)

In the case of a continuous probability density, the MGF amounts to the Laplace

transform of P (An) and t can be understood as the real parameter conjugate to

A. For independent and identically distributed random variables, Xi, Cramr’s

theorem can be used to simplify the calculation of the MGF

M(t) = lim
n→∞

1

n

〈
et

∑n
i=1Xi

〉
= lim

n→∞

1

n

n∏
i=1

〈
etXi

〉
=
〈
etX
〉
. (2.7)
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Thus for our previous example, the MGF of a Gaussian sample mean can be

calculated by inserting Eq. 2.1 into Eq. 2.6 using Eq. 2.7∫
dXe−tXP (X) =

∫
dXe−tX

1√
2πσ2

e−
(X−µ)2

2σ2 . (2.8)

This integral can be explicitly calculated as exp[tµ + 1
2
t2σ2]. The purpose of

defining the MGF, if it exists, is that one can easily extract the kth moments of

the distribution by differentiating the MGF w.r.t. t, k times, and then setting

t = 0. The CGF is then simply defined as the natural logarithm of the MGF,

θ(t) = lnMA(t) = lim
n→∞

1

n
ln
〈
e−ntAn

〉
(2.9)

and is thus simply θ(t) = tµ + 1
2
t2σ2 for our Gaussian sample mean. As with the

MGF, the kth cumulant of the probability distribution is obtained by differenti-

ating θ k times w.r.t t and then setting t = 0. It is straightforward to see that the

CGF of our Gaussian sample mean yields µ as the first cumulant and σ2 as the

second cumulant, with all other moments being zero, as expected.

The Gärtner-Ellis theorem then states that A satisfies a large deviation principle

with

P (An) � e−nI(An) (2.10)

provided that the CGF exists and is differentiable at all t ∈ R. The LD rate

function and the CGF are related by a Legendre-Fenchel transform (an extension

to the Legendre transform, which can be seen as a saddle point approximation

solution to Eq. 2.6 above) with

θ(t) = −min
An

[I(An) + tAn] (2.11)

and its inversion

I(An) = −min
t

[θ(t) + tAn]. (2.12)

Thus we can recover the large deviation rate function for our Gaussian sample

mean given previously, from the CGF of its probability distribution.
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2.1.1 Connection to thermodynamics

Before the development of statistical mechanics, thermodynamic calculations in

systems of interest proceeded through the use of free energies Φ [1,2]. Given a set

of extensive variables, (X0, X1, ..., Xn) - variables that are additive when two

systems are combined, number of particles, N , or internal energy, E1 - the free

energies relevant to a problem of interest are defined by Legendre transforming

the system’s energy by

Φ = E − ∂E

∂Xi

Xi = E − fiXi. (2.13)

Here fi is the intensive field conjugate to Xi, defined by fi = ∂E/∂Xi. These

fields act as constraints on thermal systems by controlling fluctuations in the rel-

evant extensive variables, for example the chemical potential µ, which controls

fluctuations in N . The free energies then capture the amount of energy available

in a system, subject to all its constraints, to perform work. Although it is not im-

mediately obvious, that they are obtained by a Legendre transform of the systems

energy is a subtle manifestation of the Gärtner-Ellis theorem.

2.1.1.1 Ensembles of statistical mechanics

With the development of statistical mechanics, the rigorous microscopic theory

underpinning thermodynamics, Ruelle was able to cast thermodynamics in a for-

malism that makes this connection to large deviation theory explicit, and one can

1Strictly speaking the internal energy is not extensive as the total energy of two combined

systems contains a contribution from interactions: Etot = E1 + E2 + Eint. However for short

range interactions Eint grows with the size of the interface between the two systems and is

therefore subextensive compared to Etot, which grows with the combined volume. Long range

interactions such as magnetic or electric fields need to be treated more carefully, but can often

be considered as a separate mechanical (not internal) energy.
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identify the partition function of statistical ensembles as the MGF of the systems

energy. We illustrate this connection here, with a heuristic derivation of statistical

ensembles [1, 14].

Consider a system comprised of N interacting particles. At any moment in time

it is possible to fully describe the state of the system with the positions r and

momenta p of the particles. In a system with D dimensions, this corresponds to

2DN scalar values, which uniquely define a representative point, x, of a sys-

tem. This space of 2DN points in which the representative point lives is known

as phase space. In principle it is possible to compute the full behaviour of

the system from Hamiltonian dynamics, but the scale of the computation makes

it impossible in practical situations. Instead we assume the thermodynamic

limit of the system, that is that the system is sufficiently large so that the law

of large numbers ensures fluctuations in the extensive macroscopic quantities are

suppressed, (X0, X1, ..., Xn) of the system. It is then clear that the systems repre-

sentative point exists in some accessible region of phase space, denoted Γ, where

each of these variables takes on its thermodynamic value, which we denote as X∗i .

The volume of this accessible region of phase space |Γ| then corresponds to the

number of microstates accessible to the system, allowing us to write Boltzmann’s

fundamental entropy postulate as

S = kB ln |Γ| (2.14)

where kB is the Boltzmann constant.

Using the above concept we can define a probability distribution for the representa-

tive point P (x) within phase space, that is to say the probability the representative

point takes on value in the infinitesimal range x+ dx. Specific probability distri-

butions define an ensemble of all the possible realisations of a system’s state, with

any constraints on the system encoded by P (x). The power of this statistical ap-

proach is the ability to predict the expected value of the observables, which aren’t
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necessarily variables considered in thermodynamics, of a system. For a generic

observable A(x), its equilibrium value, which we denote a∗, can be calculated by

averaging the value of A(x) over all of the accessible region of phase space:

a∗ = 〈A(x)〉 =

∫
Γ

dxA(x)P (x). (2.15)

The simplest choice for P (x) - a flat probability distribution with P (x) = 1/〈Γ〉
- defines the microcanonical ensemble. This is the maximally constrained en-

semble, as all extensive variables, including internal energy are fixed. The broad

success of this approach, however, lies with the flexibility offered by defining alter-

native ensembles where we allow certain extensive variables to fluctuate. Generi-

cally we can imagine connecting our system of interest to a much larger reservoir,

R, and allowing for the exchange of the quantity of interest, Xi. We imagine the

reservoir is sufficiently large so that its properties are unaffected by any fluctua-

tions in the system. In essence this means that the exchange of Xi between the

system and reservoir is governed by the intensive variable conjugate to Xi, which

for convenience we redefine here

−fi
T

=
∂SR

∂XR
i

)
E

. (2.16)

The superscript R denotes variables associated with the reservoir. Treating the

representative points of the system and reservoir separately, observables of the

system can then be calculated as follows. From Eq. 2.15 we have

〈A〉 =
1

|Γ|

∫
Γ

dxRdxsysA(xsys)

which can be rewritten as

〈A〉 =
1

|Γ|

∫
Γ

dxRdxsysA(xsys)δ
(
XR
i (xR) +Xsys

i (xsys)−Xi

)
=

1

|Γ|

∫
dxsysA(xsys)

∫
dxRδ

(
XR
i (xR)− (Xi −Xsys

i (xsys)
)
. (2.17)

The integral over the reservoir dxR is simply the volume of accessible phase space

when the reservoirs extensive variable XR
i takes on a value Xi−Xsys

i (xsys) which
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can be related to the entropy using the fundamental postulate (Eq. 2.14)∫
dxRδ

(
XR
i (xR)− (Xi −Xsys

i (xsys)
)

= exp

[
− 1

kB
SR (Xi −Xsys

i (xsys))

]
.

(2.18)

Because the system is much larger than the reservoir, we can Taylor expand this

exponential

exp

[
−S

R

kB
(Xi −Xsys

i (xsys))

]
' exp

[
SR

kB
(Xi)

]
exp

[
− 1

kB

∂SR

∂Xi

Xsys
i (xsys)

]
.

(2.19)

Remembering Eq. 2.16 we finally arrive at

〈A〉 ' 1

Z

∫
dxsysA(xsys)exp

[
fiX

sys
i (xsys)

kBT

]
(2.20)

where Z is the normalising quantity known as the partition function

Z =

∫
dxsysexp

[
fiX

sys
i (xsys)

kBT

]
. (2.21)

In essence we have defined a new probability distribution where we have weighted

different points in phase space by the factor exp(fiXi/kBT ). Furthermore the

Boltzmann constant defines an inverse temperature scale for thermodynamic prob-

lems, β = 1/kBT .

We have now defined a flexible mathematical language where an ensemble can be

chosen to treat any system of interest depending on which quantities we allow to

fluctuate within the system, and which we keep fixed. Either an extensive quantity

is fixed in a system, or it can fluctuate and the fluctuations are controlled by

fixing the conjugate intensive variable. For example, if we imagine a system that

is able to exchange energy with the reservoir we define the canonical ensemble,

with P (x) = e−βE/Z, while allowing the exchange of particles as well defines the

grand canonical ensemble, with P (x) = e−β(E−µN)/Z (note we have omitted the

sys index since we are always working with system quantities now). This flexibility

allows us to easily define an ensemble appropriate for treating any physical system

we are interested in studying.
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The important connection to large deviation theory arises from studying the par-

tition function whose large deviation form should be clear from Equation 2.21.

It is possible to show that the mean values of observables in the thermodynamic

limit are dominated by the region of phase space where they are close to their

equilibrium value X∗i . Away from this value they fall off on the order of N1/2.

Thus we have

Z =

∫
dxeβfiXi(x) =

∫
dX ′

∫
dxδ(Xi(x)−X ′)eβfiX′

=

∫
dX ′eβ(TS(X′)+fiX′) (2.22)

where we are implicitly summing over all of the relevant observables Xi. The

similarity between this form and Eq. 2.6 is no coincidence, nor is the existence of

a saddle point method solution in the thermodynamic limit, yielding

Z ' exp [β(TS(X∗i ) + fiX
∗
i )] . (2.23)

Explicitly then, the partition function plays the role of the (unscaled) MGF of

the systems energy. The quantity in this exponent, and therefore the (unscaled)

CGF, is the free energy for whichever ensemble we are using, for example in the

canonical ensemble we have exp [−β(E∗ − TS(E∗))] = exp [−βF ] and we have

recovered the Helmholtz free energy. This precisely explains why free energies are

obtained Legendre transformations of the systems energy.

The important result of this section comes from the generic form of Equation 2.20.

While thermodynamics is concerned with the thermal properties of systems in

space, it is equally possible to define a probability distribution for the observation

of some dynamical event in time. This allows the power of the tools of statistical

mechanics to be brought into the dynamical realm, defining the thermodynamics

of trajectories, and allowing the study of non-equilibrium behaviours. Before

presenting the thermodynamics of trajectories however, it is necessary to introduce
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some of the formalism used to describe the dynamics of the systems to be studied

in this thesis.

2.2 Classical stochastic processes

The work presented in this thesis will focus on stochastic systems [1, 29]. A

stochastic process can be seen as a sequence of configurations defined at discrete

moments in time, {Ci(ti), C2(t2), ...Cn(tn)} where the transitions between configu-

rations contain an element of randomness. Such processes are naturally a part of a

statistical mechanical description of nature - while the motion of a particle is inher-

ently deterministic in nature the complexity of a large system of particles makes a

deterministic solution prohibitive, instead the aggregate effect of an environment is

considered in a probabilistic fashion. The problem can thus be solved by assigning

a probability to possible sequences of configurations, P (Cn, tn; Cn−1, tn−1; ...;Ci, ti),

where Ci, ti are the initial configuration and time, and instead studying the time

evolution of this probability. For simplicity we focus on a subcategory of stochastic

processes known as Markovian processes, in continuous time. These are processes

where the transition probability to a new configuration is dependent only on the

current configuration, with no memory of previous configurations and thus

P (Cn, tn|Cn−1, tn−1; ...;Ci, ti) = P (Cn, tn|Cn−1, tn−1) (2.24)

where P (Cn, tn|Cn−1, tn−2) denotes the conditional probability of being in configu-

ration Cn at time tn given that the configuration Cn−1 was realised at time tn−1.

The time evolution of these probabilities is governed by the Chapman-Kolmogorov

equation, where the probability of being in configuration C at a time t is calculated

by integrating over all intermediate configurations C ′ at times t′,

P (C, t|Ci, ti) =

∫
dC ′P (C, t|C ′, t′)P (C ′, t′|Ci, ti). (2.25)
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While the Chapman-Kolmogorov equation is useful, it is much more convenient

to collect the probabilities of being in all possible states into a vector,

|P (t)〉 ≡
∑
C

P (C, t)|C〉 (2.26)

where {|C〉} is an orthonormal configuration basis, 〈C|C ′〉 = δC,C′ . The time evolu-

tion of this vector can then be captured by a matrix equation, called the master

equation [1, 31]

∂t|P (t)〉 = W|P (t)〉. (2.27)

While we focus on continuous time Markov chains, generalisations of what we

describe below are straightforward. The master operator W is the matrix

W ≡
∑
C′ 6=C

W (C → C ′)|C ′〉〈C| −
∑
C

R(C)|C〉〈C|, (2.28)

where W (C → C ′) is the transition rate from C to C ′, and R(C) the escape rate

from C (these transition rates can be explicitly calculated by Taylor expanding

the Chapman-Kolmogorov equation about infinitesimal t′). In this description,

the expectation value of an operator A is given by 〈A(t)〉 = 〈−|A|P (t)〉, where

〈−| ≡∑C〈C| (such that 〈−|P (t)〉 = 1 due to probability conservation).

The dynamics described by Eqs. (2.27-2.28) is realised by stochastic trajectories.

A trajectory of total time τ is a time record of configurations, and of waiting times

for jumps between them, observed up to a time τ . That is, if we denote by Xτ

such a trajectory, then Xτ = (C0 → Ct1 → . . . → Ctn), where C0 is the initial

configuration and ti the time when the transition from Cti−1
to Cti occurs (so that

the waiting time for the i-th jump is ti− ti−1). The trajectory Xτ has a total of n

configuration changes (and tn ≤ τ , i.e., between tn and τ no jump occurred). Eqs.

(2.27-2.28) imply that the probability P (Xτ ) to observe this trajectory out of all

the possible ones of total time τ is given by

P (Xτ ) = p0(C0)
n∏
i=1

e−(ti−ti−1)R(Cti−1 )W (Cti−1
→ Cti)

×e−(τ−tn)R(Ctn ) (2.29)
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with t0 = 0. The last factor is the survival probability of the configuration Ctn
between tn and τ , and we have also included the probability p0 of the initial

configuration.

2.3 Open quantum systems

In the previous section we focused for simplicity on stochastic Markovian clas-

sical systems. The extension to Markovian open quantum systems [30, 44, 45] is

straightforward. In this case, instead of a master equation for the probability

distribution we have a master equation for the density matrix ρ

∂tρ(t) =W [ρ(t)], (2.30)

where the quantum master operator is the super-operator [45],

W(·) ≡ −i[H, ·] +

NL∑
i=1

Li(·)L†i −
1

2
{L†iLi, ·}. (2.31)

Here H is the Hamiltonian, which generates the coherent part of the evolution,

and Li (i = 1, . . . , NL) are (bounded) quantum jump operators corresponding

to the incoherent effect of the interaction with the environment [30, 44, 45]. The

evolution described by (2.30)-(2.31) can be realised by an “unravelling” in terms

of stochastic wave-functions [30, 45, 46]. This stochastic evolution is given by

propagation of the wave-function under the action of the non-Hermitian operator

Heff ≡ H − 1
2

∑
i L
†
iLi, punctuated at random times by “quantum jumps” due to

the action of the jump operators Li. That is, a quantum version of the continuous

time Markov chains discussed above.
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2.4 Thermodynamics of trajectories - s-ensemble

In this section we introduce the thermodynamics of trajectories in its usual form -

the so-called s-ensemble (also known as the canonical dynamical or canonical path

ensemble) [12,13,16]. The properties of the dynamics can be studied by considering

the statistics of time-extensive observables [14–16]. This allows the formalism of

statistical ensembles to be brought into the realm of dynamics. One such trajectory

observable is the “dynamical activity”, defined as the total number of configuration

changes in a trajectory [12,16,47]. Its distribution over all trajectories Xτ of total

time τ is

Pτ (K) =
∑
Xτ

δ
(
K − K̂[Xτ ]

)
P (Xτ ) (2.32)

where the operator K̂ counts the number of jumps in a trajectory. Equivalent

information is contained in the MGF,

Zτ (s) ≡
∑
K

e−sKPτ (K) =
∑
Xτ

e−sK̂[Xτ ]P (Xτ ), (2.33)

whose derivatives give the moments of the activity, 〈Kn〉 = (−)n∂nsZτ (s)|s=0.

For large τ , the probability of observing an intensive number of jumps K/τ ac-

quires a LD form [16,25],

P (K/τ) ∼ e−τϕ(K/τ). (2.34)

This in turn implies that for large τ the generating function also acquires a LD

form [16,25],

Zτ (s) ∼ eτθ(s). (2.35)

The analogy with equilibrium statistical mechanics is now evident from Eqs.

(2.34,2.35). For the dynamics, the equivalent objects to configurations, or mi-

crostates, are trajectories. Order parameters are time-extensive observables, in
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this case the activity K. The large-size limit becomes that of large observation

time τ (more specifically the limit of large space-time volume for a many-body

system), and in this limit the order parameter distribution Pτ (K) is described by

the function ϕ(k), which plays the role of, say, a Helmholtz free energy, which for

constant “volume” τ is only a function of the intensive “density” (of the number

of transitions) k = K/τ . Similarly, Zτ (s) is like a partition sum with an associated

free energy θ(s) (which in this analogy would be like a grand-potential) depen-

dent on the counting field s (akin to a chemical potential for the activity). Just

like thermodynamic potentials, the LD functions ϕ(k) and θ(s) are related by a

Legendre-Fenchel transformation [16,25]

ϕ(k) = −min
s

[θ(s) + ks], (2.36)

together with the inversion formula

θ(s) = −min
k

[ϕ(k) + ks]. (2.37)

[In Eq. (2.36) above, the function θ is convex and (piecewise) differentiable, thus

giving rise to a convex ϕ. In Eq. (2.37), if the function ϕ is non-convex the

resulting θ is convex but singular, and the inverse transform, via (2.36), returns

the convex envelope of ϕ.]

The LD function θ(s) is the quantity of interest. It is the scaled cumulant gen-

erating function for the activity, i.e., the n-th cumulant of the activity (per unit

time) is given by
〈〈Kn〉〉
τ

= (−)n
∂n

∂sn
θ(s)

∣∣∣∣
s=0

, (2.38)

where 〈〈·〉〉 indicates cumulant (mean, variance, etc.). It thus contains the full

statistical information about K. Furthermore, just like a free energy, its analytic

properties encode the phase structure of the dynamics. In particular, singularities

of θ(s) are indicative of dynamical, or trajectory, phase transitions.
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It is useful to clarify the meaning of s at this point. While K is a physical

observable, its conjugate field s is not in principle a physical field (such as pressure

or magnetic field); it is a mathematical field which defines the generating function

of K. Furthermore, it would appear that only s = 0 matters. But to recover

all cumulants, derivatives to all orders at s = 0 are needed, see (2.38), so that

the behaviour of θ(s) for all values of s is relevant to the full statistics of K. In

the vicinity of s = 0 the LD function θ encodes statistical information about all

trajectories (as one calculates averages by setting s = 0) and therefore provides

information about typical dynamics. In contrast, θ in the vicinity of s 6= 0 carries

information about rare trajectories and thus atypical dynamics. In particular, we

can think of s as defining an ensemble of trajectories whose probability is given

by

Ps(Xτ ) ≡ Z−1
τ (s)e−sK̂[Xτ ]P (Xτ ), (2.39)

where Xτ are the same trajectories as the ones generated by the dynamics (2.27-

2.28), but their probability of occurring is now biased by their activity. Of par-

ticular interest, singular features in θ(s) away from s = 0 imply the existance

of “fat” tails in the distribution Ps(Xτ ). The ensemble given by (2.39) is often

termed s-ensemble [12, 13, 16]. Note that this is an ensemble of trajectories de-

fined by controlling the total time τ and the field s, so it can be thought of as a

(τ, s)-ensemble for trajectories, analogous to a (V, µ)-ensemble for configurations.

Figure 3.1(a) illustrates this ensemble.

The function θ(s) can be obtained from a deformation of the master operator

W [24, 25, 48]. Specifically, for the case of the activity in classical systems, this

deformed operator is [12,16]

Ws ≡
∑
C′ 6=C

e−sW (C → C ′)|C ′〉〈C| −
∑
C

R(C)|C〉〈C|, (2.40)

and θ(s) is its largest eigenvalue. For general s the operator Ws does not conserve

probability and does not describe a proper stochastic evolution. It only does so
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at s = 0, where it reverts to W, and where θ(0) = 0. The operator Ws is the

“transfer matrix” for the “partition sum” Zτ (s), that is,

Zτ (s) = 〈−|eτWs|p0〉, (2.41)

where |p0〉 is the vector for the initial state probability, |p0〉 ≡
∑
C p0(C)|C〉. The

above expression is easy to prove from the definitions (2.29) and (2.33). Just like

in equilibrium statistical mechanics, this provides a simplification, as calculating

θ(s) then becomes an eigenvalue problem. For quantum systems we instead have

Ws(·) ≡ −i[H, ·] +

NL∑
i=1

e−sLi(·)L†i −
1

2
{L†iLi, ·}. (2.42)

2.5 Systems and relations of interest

While the primer on the thermodynamics of trajectories provides the background

theory for the tools and methods to be used in this thesis, the remainder of this

chapter is dedicated to providing a brief introduction to the systems and relations

to be studied in the context of dynamical ensembles. This starts with a presen-

tation of glass formers, where the s-ensemble has already provided some fresh

insight into the debate on the nature of glass formation [12,13]. Following this we

look at some of the useful methods of statistical ensembles, namely the Jarzynski

equality and the Lee-Yang zeros method, both of which should be adaptable to

the dynamical context.

2.5.1 Models of glass formers

As supercooled liquids approach their glass transitions, one observes a very sharp

increase in their viscosities and structural relaxation times. Below their glass tem-

perature, Tg, these materials have a non-zero static sheer modulus - indicative of



2. Background theory: thermodynamics, large deviations and
stochastic processes 39

(i) (ii) (iii)

0

4

8

12

16

-1  0  1  2  3  4

3BRP
3Sty

5-PPE
AFEH
B2O3

BN
BP2IB

BPC
BSC

BePh
CAKNO3

CN60.0
CN60.2
CN60.4
Cum-1
Cum-2
dBAF

DBP-1
DBP-2
DC704

DCHMMS
DEP

DHIQ

dIBP
DMP
DOP

DPGDME
DPG

EH
ER

FAN
Gly

KDE
mTCP

MTHF-1
MTHF-2

mTol
NBB

NBS710
NBS

nProp-1
nProp-2

NS66
NS80

OTP-1

OTP-2
OTP-3

PDE
PG

PHIQ
PPG
PS1
PS2
PS3
PT
SB

Sal-1
Sal-2
Sal-3
Sqa

TANAB-1
TANAB-2

TCP
tNB

TPG
TPP
Xyl

(iv) (v)

T

Entropy, S

TK

Crystal entropy

Tg

Liquid

Glass

Figure 2.1: (i), (ii), (v) Taken from Ref. [7]. (i) Super-Arrhenius relaxation of ortho-

terphenyl (OTP) showing good agreement with both VFT (blue) and

parabolic (red) laws. Also plotted is a mode-coupling theory (green) pre-

diction, showing it break down at low temperature. (ii) Dynamical hetero-

genieties in an equilibrium trajectory of two-dimensional mixture. Overlap

of particles with their original position after one tenth of the systems re-

laxation time are plotted with high overlap (no movement) in blue and low

overlap in red. (iii) Schematic illustration of temperature dependent entropy

of a glass former. Extrapolating the slope of the liquid phase intersects the

entropy of the crystal at a non-zero temperature. Theories must either ac-

count for the inability to crystallise, or uncover a phase transition to an ideal

glass state that occurs before TK . (iv) Taken from Ref. [111] Relaxation of

a large number of different materials, all exhibiting super-Arrhenius relax-

ation. (v) The difference in specific heat of glass and liquid phases, Cp of

OTP showing anomalous differences when the sample is cooled (black) and

heated (green) through the same temperature range. This illustrates that

the properties of the material are unusually dependent on its history.



2. Background theory: thermodynamics, large deviations and
stochastic processes 40

a solid - yet they lack any long range order. In essence glasses appear to be liquids

that are unable to flow. Confusingly this glass temperature, and other properties

of the resulting glass, are not only dependent in the material in question, but

also the specific protocol used to cool the glass, with different rates resulting in

different Tg. The viscosities of “strong” glass formers, η follow a characteristic

Arrhenius law, η ∼ exp(β∆) where ∆ is the microscopic energy barrier to motion

and β is the inverse temperature. Glassiness occurs at low temperature as the

system is unable to overcome these barriers, and the dynamics become blocked.

More confusing are so-called “fragile” glass formers, exhibit super-Arrhenius be-

haviour, the precise functional form of which is still debated (see Ref. [7] and

Fig.2.1(i)). Glass formers also characteristically exhibit dynamical heterogeneities

– space-time “bubbles” of differing activity within the bulk of a glass former (see

Fig.2.1(ii)). This demonstrates that the relaxation does not occur evenly, in both

space and time, and that the dynamics are unusually correlated beyond the ap-

parent structure - which remains that of a liquid. Furthermore if one extrapolates

the structural entropy of the liquid phase, ignoring the abrupt change in slope at

Tg (see Fig. 2.1(iii)), one finds that the entropy of the liquid phase crosses that of

an ideal crystal at a finite positive temperature, known as the Kauzmann temper-

ature, Tk [49]. The argument is then that either a liquid must crystallise before

Tk, or there must be a true thermodynamic phase transition to a glass state. The

physical mechanism underlying this slow dynamics remains controversial [4–7].

Some theories, particularly the random first-order transition theory (RFOT) [8],

propose that glassy systems are approaching some kind of thermodynamic phase

transition, with associated collective (slow) dynamics. These approaches paint the

picture of a “rugged” thermodynamic landscape with many deep, local minima

in free energy functions. They argue that upon cooling the number of energy

minima reduces, becoming sub-exponential in system size. Glassiness then arises

because systems fall out of equilibrium as the liquid is cooled, breaking up into
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small subsystems, each with its own amorphous order in a local energy minima,

without ever reaching the global (liquid) minimum. A characteristic length scale,

l∗ can be defined, subsystems smaller than this scale behave as glasses and are

unable to relax, while those on longer scales exist as supercooled liquids. It is

argued that l∗ is determined by the thermodynamic properties of the system, and

that it diverges at Tg, ensuring a thermodynamic phase transition at some non-

zero temperature Tc (which is often related to, but not necessarily exactly Tk),

to an ideal glass state. The existence of such phase transitions can be probed by

computing the free energy of a pair of coupled copies (or replicas) of the system,

and searching for a transition as a function of both temperature and coupling

strength. These transitions link an equilibrium-like phase where the replicas are

different from each other (the liquid) to one where they become very similar (the

glass) [11]. The similarity between the configurations is measured by an overlap

variable, which is the order parameter for the transition. A functional form for

super-Arrhenius relaxation, known as the Vogel-Fulcher-Tammann (VFT) law, ac-

counts for the singularity at Tc in the RFOT description, with relaxation given by

τ = τ0 exp[A/(T − Tc)], where A is a system-dependent constant.

An alternative approach, that of dynamical facilitation (DF) [50], links glassy

behaviour to a dynamical phase transitions that arise from particle motion be-

ing blocked (or facilitated) by neighbouring particles as in the East model, a

one-dimensional lattice spin model where spinflips can only occur on sites whose

neighbour to the left is in excited state. Such models are thermodynamically triv-

ial, but with super-Arrhenius barriers to particle motion [12, 13]. By analysing

their dynamical phase structure using the s-ensemble, one may infer the exis-

tence of transitions between an active dynamical phase (the equilibrium liquid)

and an inactive phase (the non-equilibrium glass). This provides a natural ex-

planation for the origins of dynamical heterogeneities, and accounts for the onset

of glassiness without a thermodynamic transition. Proponents of this approach
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argue that complex dynamical pathways alone are enough to account for the in-

ability to crystallise, and the liquids invariably fall out of equilibrium on experi-

mental timescales. DF predicts super-Arrhenius parabolic relaxation of the form

τ = τ0 exp[(J/To)
2(To/T − 1)2] where To is a reference temperature for the onset

of glassiness.

Frustratingly both of these very different forms for super-Arrhenius relaxation fit

existing experimental data well (see Fig 2.1(iv)). While a more recent experiment

on 20 million year old amber showing divergence with the VFT form and agreement

with the parabolic form [51], there is still much debate over the correct functional

form of super-Arrhenius relaxations - it is not clear whether all materials must

necessarily follow parabolic relaxation.

The critical issue in resolving these differing approaches lies in the difficulty of

studying models of real glass formers in three dimensions. RFOT based approaches

are well studied and compelling in the mean field limit but symmetry considera-

tions mean that the transitions they predict can not be present in two dimensions.

On the other hand the dynamical approach has several compelling results in lower

dimensional systems, but the complexity involved in three dimensional glass for-

mers means that making connections to real glass is a difficult endeavour. As of

yet, no single theory captures all of the properties of real glasses.

2.5.2 Fluctuation theorems and the Jarzynski equality

One of the more problematic questions in statistical physics, and indeed all of

physics, is irreversibility, or more specifically how time-irreversible properties can

emerge from fundamentally reversible dynamics. This question is, at its heart, a

question of entropy - the second law of thermodynamics only holds on a statistical
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average, and indeed, only for sufficiently large systems. With technology shrinking

to smaller scales it became necessary to rigorously quantify the scales on which

fully reversible descriptions of nature start to give way to the second law. The

results of this investigation are known as fluctuation theorems [37,38,52–58]. While

the second law ensures that, on average, entropy must increase for driven processes,

this is not true for an individual realisation of a trajectory, where entropy may

decrease. Fluctuation theorems encode the precise probability that such a drop

in entropy occurs. Their study has lead to one of the most celebrated recent

developments in statistical physics - the Jarzynski equality [37], which connects

equilibrium free energy differences with the work done in non-equilibrium (i.e.

fast) processes joining the two states.

Early studies on fluctuation theorems by Evans et al. [59–61] considered the energy

dissipated by some fixed time trajectory of a system, characterized by a dissipation

function, Γ. This lead to what is now known as the Fluctuation Theorem (FT),

which relates the probability the dissipation function takes on a specific value, A
to its negative:

P (Γ = A)

P (Γ = −A)
= eAt. (2.43)

Negative values of Γ are thus suppressed exponentially, and it becomes clear how

violations of the second law are only expected for small systems and short times.

The situation considered by the Jarzynski relation is slightly different - that of

a system initially in thermal equilibrium with a heat reservoir, where the system

is subsequently driven away from equilibrium by externally changing one or more

parameters. The dynamics of the system obeys detailed balance with respect

to the stationary distribution corresponding to the instantaneous values of the

control parameters. Non-equilibrium can then be described as a “lag” between this

stationary distribution and the actual distribution [62]. The Jarzynski equality

relates the average work done over all trajectories with the change of free energy
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between initial, C and final, C ′ state. From the second law one expects the free

energy difference, ∆F = FC′ − FC between the states to be related to the work

done, W in moving from one to the other by

∆F ≤ W. (2.44)

Equation 2.44 is only an equality when the system is changed quasistatically (i.e.

infinitely slowly). The Jarzynski equality, however, finds that

e−β∆F =
〈
e−βW

〉
(2.45)

where the brackets denotes the average over all possible trajectories connecting C
and C ′ and β = 1/kBT . This is closely related to (and can be derived from) the

Crooks’ Fluctuation Theorem [54,63], which relates the work done in an arbitrarily

fast process connecting C → C ′, to the work done in the reverse process taking

C ′ → C:
PC→C′(W = A)

PC′→C(W = −A)
= eA−∆F (2.46)

Remarkably, these relations allow for the calculation of equilibrium free energy

differences using non-equilibrium protocols.

2.5.3 Lee-Yang partition function zeros method

In 1952 Lee and Yang made an important advancement in our understanding of

phase transitions [39,40]. By studying Ising models in a magnetic field, they noted

the partition function could be expanded into the complex magnetic field plane,

revealing that all of the zeros of the partition function lie on a ring in the com-

plex plane. As the system is tuned towards a phase transition (including taking

the system size to the thermodynamic limit), these zeros move towards the real

axis, eventually intersecting it at a phase transition point. While there was limited
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success in expanding this analysis of the zeros of the partition function in the ther-

modynamic case, it has been adapted to the dynamical case [41–43]. Through an

analysis of high-order cumulants of the systems dynamics, the motion of the zeros

of the MGF at short, but increasing, times can be calculated [64–66]. As in the

thermodynamic case these zeros lie in the complex s plane, and move towards any

dynamical phase transition points on the real s axis in the “thermodynamic limit”

of large time and system size. The location of these dynamical phase transitions

can thus be extrapolated from the short-time motion of the zeros. This has in-

teresting implications for dynamical phase transitions, and particularly, instances

where the zeros of the MGF lie near but not on, the real axis in the large time

limit can heavily influence the dynamics of a system, causing a dynamical crossover

without a true phase transition. As such the methods of Lee and Yang provide

potentially useful tools for understanding a variety of dynamical behaviours.



3. Fluctuating observation

time ensembles in the

thermodynamics of

trajectories: theory

While the thermodynamics of trajectories has provided great insight into the dy-

namical properties of both classical and quantum systems [12, 13, 15–20, 42, 47,

48, 67–90] , studies have thus far been mostly limited to either the “microcanon-

ical” dynamical ensemble - where the set of trajectories is conditioned on all of

them having a fixed value of a time-integrated quantity (for example fixed total

activity, see Chapter 2), or the “canonical” dynamical ensemble - where the set of

trajectories is such that a time-integrated quantity, while not strictly fixed, has a

specific fixed average (as in the s-ensemble) [91]. A large part of the ubiquitous

success of statistical mechanics, however, comes from the flexibility offered by the

description of its ensembles. For any system of interest it is a simple matter of

finding the ensemble best suited to treat it. As such, there is likely to be great

benefit in exploring alternative dynamical ensembles as well, ensembles that use

order parameters other than the number of counted dynamical events.

46
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In this chapter we introduce a fluctuating observation time ensemble we denote the

x-ensemble, which uses the total time of the trajectory, τ as the order parameter

with fixed numbers of dynamical events, K. The correspondence between this and

the s-ensemble is examined and discussed heuristically, with simple examples of

both classical and quantum stochastic systems whose dynamics are Markovian,

and described by master equations. This new ensemble will form the basis for the

remainder of the thesis.

3.1 Fluctuating observation time: the x-ensemble

Consider the case where, instead of keeping fixed the total time τ of trajectories

generated by (2.27)-(2.28), what is kept fixed is the total number of configuration

changes K, i.e. the activity, in each trajectory. That is, if we denote by YK such a

trajectory, then YK = (C0 → Ct1 → . . .→ Cτ ), where the number of configuration

changes is fixed to be K, but the time τ of the final K-th jump fluctuates from

trajectory to trajectory. From (2.27)-(2.28) the probability of YK is

P (YK) = p0(C0)
K∏
i=1

e−(ti−ti−1)R(Cti−1 )W (Cti−1
→ Cti), (3.1)

where t0 = 0 and tK = τ .

In analogy with Section 2.4, we ask the question: what is the distribution PK(τ)

of total trajectory length τ for fixed activity K. From the definitions above we

have,

PK(τ) =
∑
Yτ

δ (τ − τ̂ [YK ])P (YK) (3.2)

=
∑
C0···CK

p0(C0)
K−1∏
i=1

∫ ti+1

0

dtie
−(ti−ti−1)R(Cti−1 )

×W (Cti−1
→ Cti).
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Figure 3.1: (a) The s-ensemble is the set of all trajectories that are possible with the

dynamics (2.27)-(2.28), of fixed total time τ , and where the probability

of each trajectory is weighed by the number of configuration changes. It

is the ensemble defined by fixed (τ, s). The ensemble of trajectories that

corresponds to the actual dynamics (2.27)-(2.28) is given by (τ, 0). We

sketch two trajectories, the squares indicate the times where trajectories

begin and end, and the tick where jumps between configurations take place.

(b) The x-ensemble is the set of all trajectories that are possible with the

dynamics (2.27)-(2.28), of fixed number of configuration changes K, and

where the probability of each trajectory is weighed by the trajectory length.

It is the ensemble defined by fixed (x,K).
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The corresponding moment generating function for τ is

ZK(x) ≡
∫ ∞

0

dτe−xτPK(τ)

=
∑
YK

e−xτ̂ [YK ]P (YK), (3.3)

so that 〈τn〉 = (−)n∂nxZK(x)|x=0.

Similarly to what we discussed for the s-ensemble, for large K, the probability of

the intensive trajectory length, τ/K, has a LD form,

P (τ/K) ∼ e−Kφ(τ/K), (3.4)

and so does the generating function,

ZK(x) ∼ eKg(x). (3.5)

The definitions (3.2)-(3.5) are analogous to (2.32)-(2.35) above: all trajectories

have fixed activity K (cf. τ above); the large limit is that of large K (cf. large

τ); the LD function φ determines the probability of τ at large K (cf. ϕ for K at

large τ); x is the conjugate field to τ (cf. s and K), and the LD function g is

the cumulant generating function for τ at large K (cf. θ(s) for K at large τ). As

before, the LD functions φ and g are related by Legendre-Fenchel transforms,

φ(t) = −min
x

[g(x) + tx], g(x) = −min
t

[φ(t) + tx]. (3.6)

Equation (3.3) is the “partition sum” for the ensemble of trajectories with prob-

abilities

Px(YK) ≡ Z−1
K (x)e−xτ̂ [YK ]P (YK). (3.7)

If the s-ensemble of the previous section, of fixed (τ, s), is analogous to an equilib-

rium (V, µ) ensemble (since τ plays the role of volume and s of chemical potential

for the activity), then this x-ensemble, of fixed (x,K), can be thought of as anal-

ogous to an equilibrium (p,N) ensemble, as x is conjugate to the size trajectories

τ (cf. p and V for configurations). The x-ensemble is sketched in Fig. 3.1(b).
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The generating function ZK(x) can also be written in terms of a transfer matrix

operator. This can be proved as follows. If we define the operator,

T(t) ≡
∑
C′ 6=C

W (C → C ′)e−tR(C), (3.8)

then the probability of a trajectory in Eq. (3.1) is given by the product of its matrix

elements. This is because a fixedK trajectory can be thought of as a trajectory of a

discrete Markov chain with transition operator T(t). The probability of observing

a total time τ in K jumps therefore given by K convolutions of T(t). From Eq.

(3.3) we have that ZK(x) is the Laplace transform of this convolution, and thus

given by

ZK(x) = 〈−|TKx |p0〉, (3.9)

where

Tx ≡
∑
C′ 6=C

W (C → C ′)
x+R(C) |C

′〉〈C|, (3.10)

is the Laplace transform of T(t). The LD function g(x) then corresponds to the

logarithm of the largest eigenvalue of Tx.

3.2 Ensemble correspondence

Both the s-ensemble and the x-ensemble are different ways to consider the same

underlying dynamics generated by Eqs. (2.27)-(2.28). Just like in the configu-

rational equilibrium case, we expect that in the “thermodynamic limit” of large

τ and large K the two ensembles will be equivalent (except perhaps at phase

transitions [91]), and that the properties of one ensemble will be obtainable from

those of the other. This correspondence can be proved directly from the spectral

properties of the operators Ws and Tx.



3. Fluctuating observation time ensembles in the thermodynamics
of trajectories: theory 51

The matrices Ws and Tx are directly related to each other. Specifically, from Eqs.

(2.40) and (3.10) we have

e−sTx = Ws ·Qx + I− xQx, (3.11)

where I is the identity, I ≡∑C |C〉〈C|, and Qx the diagonal matrix,

Qx ≡
∑
C

1

x+R(C) |C〉〈C| (3.12)

Consider now a left vector 〈l| that is simultaneously an eigenvector of Ws and

Tx with eigenvalues θ(s) and eg(x), respectively. If we left multiply (3.11) by this

vector we obtain, (
e−s+g(x) − 1

)
〈l| = [θ(s)− x] 〈l|Qx. (3.13)

We see that our assumption (of 〈l| being an eigenvector of both Ws and Tx) can

only be satisfied if g(x) = s and θ(s) = x. That is, given the function g, the

function θ is obtained from its inverse, and vice-versa,

θ(s) = g−1(s), g(x) = θ−1(x). (3.14)

Since the LD rate functions are convex the relation between g and θ is one-to-one

(except perhaps at their boundaries, or at phase-transition points [91]). Equation

(3.14) is the statement of the correspondence between the s-ensemble and the

x-ensemble at the level of their respective “free-energies”.

It is illuminating at this point to expand on the analogy with thermodynamic

ensembles. If one considers the trajectory observation time τ to be a effective

volume, with the events K as particles that fill up this volume, then the field s

controls the addition and removal of particles, making it a chemical potential, µ.

The s-ensemble is then the analogue of fixed volume ensemble with fluctuating

particle numbers - the grand canonical ensemble. The x field is then conjugate to

the volume when particle numbers are fixed, i.e. a pressure, p. The x-ensemble is



3. Fluctuating observation time ensembles in the thermodynamics
of trajectories: theory 52

then the analogue of the isobaric-isothermal ensemble, more commonly known as

the (NpT )-ensemble. A summary of this analogy is presented below.

Dynamical property Thermodynamic equiv. s-ensemble x-ensemble

τ (time) V (Volume) fixed fluctuates

K N (number of particles) fluctuates fixed

Counting fields s, x µ, p s fixed x fixed

Moment generating function Partition function Zτ (s) ZK(x)

Cumulant generating function Free energy density θ(s) g(x)

LD rate function Entropy density ψ(K/τ) φ(τ/K)

|1〉

|0〉

γ λ

(a) (b)

|1〉

|0〉

γ

|2〉

γ

γ |1〉

Ω

|0〉

(c)

γ

|1〉

Ω

|0〉

(d)

γ λ

Figure 3.2: (a) Classical two-level system. (b) Classical three-level system. (c) Quan-

tum T = 0 two-level system: the full line indicates a coherent transition

of frequency Ω and the wavy line a dissipative quantum jump of rate γ as-

sociated to emission into the bath. (d) Quantum T 6= 0 two-level system:

same as before, but now absorption from the bath leads to a second kind of

quantum jump with rate λ.

3.2.1 Example: classical two-level system

As an elementary example consider the classical two level system of Fig. 3.2(a),

where there are only two configurations, C ∈ {0, 1}, and the transition rates are,
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W (0→ 1) = γ and W (1→ 0) = λ. With only one transition out of each state the

escape rates are thus simply R(0) = γ and R(1) = λ respectively. The operator

Ws is,

Ws =

 −λ e−sγ

e−sλ −γ

 , (3.15)

and θ(s) is given by its largest eigenvalue,

θ(s) =
1

2
(λ+ γ)

(√
1− 4λγ

(λ+ γ)2
(1− e−2s)− 1

)
. (3.16)

We can explicitly see from this that probability is only conserved at s = 0, as

this is the only situation with a zero eigenvalue, corresponding to a steady state.

From θ(s) we can extract the cumulants of the activity. For the average activity

per unit time, i.e. the average transition rate between the two levels, we obtain

〈K〉τ
τ

= −θ′(0) =
2λγ

λ+ γ
, (3.17)

as expected. For the case γ = λ the LD function reduces to θ(s) = λ(e−s − 1),

which is the cumulant generating function for a Poisson process with rate λ.

Similarly, the operator Tx for this problem reads,

Tx =

 0 γ
x+γ

λ
x+λ

0

 , (3.18)

and from its largest eigenvalue we obtain the LD function g(x)

g(x) =
1

2
log

(
λγ

(x+ λ)(x+ γ)

)
. (3.19)

This function g is indeed the inverse of the function θ (3.16). The cumulants of

the total time are obtained from g(x). In particular, the average total time, scaled

by the number of jumps, is

〈τ〉K
K

= −g′(0) =
λ+ γ

2λγ
, (3.20)

which is the inverse of (3.17). Analogous relations between the moments of K in

the fixed τ ensemble, and those of τ in the fixed K ensemble can be obtained by

virtue of Eq. (3.14).
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3.3 Generalisation of the x-ensemble to multiple

observables

In the sections above we have proved the correspondence between the s-ensemble

of fixed observation time τ , where s is conjugate to the overall activity, and the

x-ensemble of fixed activity K, where x is conjugate to the total time. This

correspondence can be extended to the case where one or more s fields couple to

other time-extensive quantities.

Consider a setup like that of section 2.4, but now we are interested in the statistics

of several different time-extensive quantities [12]. For example, one could think

of counting, instead of the total activity, the total number of certain kind of

transitions, or the time integral of a certain quantity such as the energy. Let us

say that there are N different dynamical observables, which we denote collectively

by the vector ~M ≡ (M1, . . . ,MN). Under the dynamics Eqs. (2.27)-(2.28) there

will be a joint probability for observing a combination of these M quantities,

Pτ ( ~M). For large τ this joint probability will have a LD form,

P ( ~M/τ) ∼ e−τΦ( ~M/τ), (3.21)

where the LD function now depends on the whole vector of intensive observables

(M1/τ, . . . ,MN/τ). The corresponding moment generating function for ~M also

has a LD form at large τ [25],

Zτ (~s) ≡
∑
~M

e−~s·
~MPτ ( ~M) ∼ eτΘ(~s), (3.22)

where for each observable Mn there is a counting field sn, collected in the vector

~s ≡ (s1, . . . , sN), and where the LD function Θ(~s) is a now function of this whole

vector.

The partition function Zτ (~s) has a transfer matrix representation similar to (2.41)



3. Fluctuating observation time ensembles in the thermodynamics
of trajectories: theory 55

in terms of an operator W~s. For simplicity we will assume that the time-extensive

observables ~M only change at jumps between configurations (extending to cases

where observables accumulate in the periods between jumps is straightforward).

In this case W~s reads [16],

W~s ≡
∑
C′ 6=C

e−~s·~m(C→C′)W (C → C ′)|C ′〉〈C|

−
∑
C

R(C)|C〉〈C|, (3.23)

where mn(C → C ′) is the change in Mn under the transition C → C ′ (for the

activity this was just 1 for all C, C ′ as it counted all transitions equally). Θ(~s) is

the largest eigenvalue of the operator (3.23). As before, LD functions are related

by Legendre-Fenchel transforms

Φ(~m) = −min
~s

[Θ(~s) + ~m · ~s], Θ(~s) = −min
~m

[Φ(~m) + ~m · ~s].

Eqs. (3.22),(3.23) define an (τ, ~s)-ensemble for a general set of dynamical order

parameters ~M .

In analogy with section 3.1, there is a corresponding construct for studying the

statistics of ~M in trajectories where the total activity K is fixed. The probability

of observing ~M , together with a total time τ , for a fixed and large K has the form,

P (τ/K, ~M/K) ∼ e−KΦ(τ/K, ~M/K). (3.24)

The corresponding moment generating function is

ZK(x,~s) ≡
∑
~M

∫ ∞
0

dτe−xτ−~s·
~MPK(τ, ~M)

∼ eKG(x,~s), (3.25)

with Φ and G related by

Φ(t, ~m) = −min
x,~s

[G(x,~s) + tx+ ~m · ~s],

G(x,~s) = −min
t,~m

[Φ(t, ~m) + tx+ ~m · ~s].
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Equations (3.24),(3.25) define a generalised x-ensemble.

The partition sum ZK(x) can be written in terms of a transfer matrix, ZK(x) =

〈−|TKx,~s|p0〉, with

Tx,~s ≡
∑
C′ 6=C

W~s(C → C ′)
x+R(C) |C

′〉〈C|, (3.26)

where W~s(C → C ′) are the coefficients of the off-diagonal entries of (3.23). This

allows us to prove the ensemble correspondence in this generalised case. From

Eqs. (3.12),(3.23),(3.26) we have that

Tx,~s = W~s ·Qx + I− xQx. (3.27)

As in section 3.2 we search for conditions for which a left vector 〈l| is simulta-

neously an eigenvector of both W~s and Tx,~s with eigenvalues Θ(~s) and eG(x,~s),

respectively. Multiplying 〈l| into = (3.27) we get,

(
eG(x,~s) − 1

)
〈l| = [Θ(~s)− x] 〈l|Qx. (3.28)

It follows that Eq. (3.28) is satisfied when

Θ(~s) = x∗(~s), (3.29)

where x∗(~s) is the solution of

G(x∗(~s), ~s) = 0. (3.30)

Equations (3.29),(3.30) prove the correspondence between the general ~s-ensemble

and the general x-ensemble: they allow to obtain the “free energy” LD functions

in one from those in the other, and thus encode the statistical properties of each

other. In the case where ~M corresponds only to the activity K, the function

G(x, s) = g(x)− s, and Eqs. (3.29),(3.30) reduce to (3.14).
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3.3.1 Example: classical three-level system

As a simple example of how the general s- and x- ensembles relate, consider the

classical three-level system in a setup like that of Fig. 3.2(b). We have three

allowed transitions each with the same rate, W (0 → 1) = W (1 → 2) = W (2 →
0) = γ, with all other transitions prohibited W (0 → 2) = W (1 → 0) = W (2 →
1) = 0, and the escape rate from each state is thus R(0) = R(1) = R(2) = γ

Suppose we only observe the jumps between configurations 2 and 0. In the notation

above we have N = 1, and ~M is just K20, the total number of transitions between

top and bottom levels. In the s-ensemble, the largest eigenvalue of the operator

Ws20 = γ


−1 1 0

0 −1 1

e−s20 0 −1

 , (3.31)

(where s20 is the field conjugate to K20) gives the LD function Θ(s20) = γ(e−s/3−
1), which is the cumulant generating function for the number of jumps K20 per

unit time. In the x-ensemble context, the relevant operator is

Tx,s20 =
γ

x+ γ


0 1 0

0 0 1

e−s20 0 0

 . (3.32)

From its largest eigenvalue we obtain the LD function G(x, s20) = −s20/3+log γ−
log (x+ γ). This is the generating function for cumulants of both τ/K and K20/K.

If we solve G(x∗, s20) = 0 for x∗ we get, x∗(s20) = Θ(s20) above, in accordance

with (3.29),(3.30).
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3.4 x-ensemble in open quantum systems

We now turn to the quantum case, with dynamics described by the quantum

master super-operater given in Eq. 2.31. We denote again by ~M ≡ (M1, . . . ,MN)

the time-integrated observables we wish to count, and by Θ(~s) the large-deviation

rate function corresponding to the cumulant generating function for ~M/τ in the

large τ limit. If under the action of the jump operator Li the observable Mn is

incremented by m
(i)
n , then the deformed quantum master operator for which Θ(~s)

is its largest eigenvalue reads [18],

W~s(·) ≡ −i[H, ·] +

NL∑
i=1

e−~s·~m
(i)

Li(·)L†i −
1

2
{L†iLi, ·}. (3.33)

This is the open quantum equivalent s-ensemble operator to that of Eq. (3.23) for

the classical case.

The generalised x-ensemble corresponds to controlling the fields x, conjugate to

the total time τ , and ~s, conjugate to ~M , in quantum stochastic trajectories of

total and fixed K quantum jumps. The corresponding LD function G(x,~s) is the

largest eigenvalue of the super-operator,

Tx,~s(·) ≡
NL∑
i=1

e−~s·~m
(i)

Li
[
(x+R)−1(·)

]
L†i , (3.34)

where (x+R)−1 is the inverse super-operator to (x+R), i.e., (x+R)−1[(x+R)(·)] =

(·). Here R is the “escape” super-operator, R(·) ≡ iHeff(·) − i(·)H†eff , where

H†eff ≡ H− 1
2

∑
i L
†
iLi. Equation (3.34) is, in the open quantum context, equivalent

to Eq. (3.26) in the classical context. It is obtained in a similar manner as (3.26)

by noting that the probability to observe a trajectory of K quantum jumps due to

the action of operators (Li1 , . . . , LiK−1
, LiK ) that occur at times (t1, . . . , tK−1, τ) is

Tr
[
LiKe

−i(τ−tK−1)HeffLiK−1
· · ·Li1e−it1Heffρ0

eit1H
†
effL†i1 · · ·L

†
iK−1

ei(τ−tK−1)H†effL†iK

]
, (3.35)
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where ρ0 is the initial density matrix.

Just like in the classical case, W~s and Tx,~s are directly related,

Tx,~s(·) =W~s[Q(·)] + (I − xQ)(·), (3.36)

where I is the identity super-operator and Q ≡ (x +R)−1. The correspondence

between the s and x-ensembles is proved in the same manner as before. We act

to the left on a matrix λ which we ask to be simultaneously a left-eigenmatrix of

Tx,~s and W~s with eigenvalues eG(x,~s) and Θ(~s), respectively (where the left action

of a super-operator is that of the adjoint), we get

(λ)Tx,~s = Q[(λ)W~s] + (I − xQ)(λ)

eG(x,~s)λ = Θ(~s)Q(λ) + λ− xQ(λ)

⇒
(
eG(x,~s) − 1

)
λ = [Θ(~s)− x]Q(λ), (3.37)

which has as solutions (3.29),(3.30) as in the classical case.

3.4.1 Example: quantum two-level system

As a simple example consider the quantum two-level system of Fig. 3.2(c), corre-

sponding to a system of two quantum levels |0〉, |1〉 coherently driven on resonance

at Rabi frequency Ω and coupled to a zero temperature bath [31]. The operators

that enter in the definition of W are the Hamiltonian,

H = Ω (|0〉〈1|+ |1〉〈0|) , (3.38)

and the single jump operator (NL = 1)

L1 =
√
γ|0〉〈1|. (3.39)

We count the number of quantum jumps due to this operator, and consider for

simplicity the case where γ = 4Ω (a particular parameter point where the algebra
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is simple). We can write the super-operator Ws as a matrix [18],

Ws = Ω


0 4e−s i −i
0 −4 −i i

i −i −2 0

−i i 0 −2

 , (3.40)

which acts on the 2× 2 density matrix ρ which we write as the vector,
ρ00

ρ11

ρ01

ρ10

 . (3.41)

The largest eigenvalue of (3.40) is [18],

θ(s) = 2Ω(e−s/3 − 1). (3.42)

In this matrix form the operator Tx,s reads,

Tx,s =
4Ωe−s

(x+ 2Ω)3


2Ω2 (x+ Ω)2 + Ω2 −ixΩ ixΩ

0 0 0 0

0 0 0 0

0 0 0 0

 .

From its largest eigenvalue we obtain,

G(x, s) = −3 log
(

1 +
x

2Ω

)
− s, (3.43)

and it is easy to see that G[θ(s), x] = 0, as expected from Eqs. (3.29),(3.30). In

particular, g(x) = G(x, 0) is the cumulant generating function for the trajectory

length τ . Using the transform (3.6) we obtain the distribution of total time τ in

the large K limit,

PK(τ) ≈
(

2Ωτ

3K

)3K

e−2Ωτ+3K , (3.44)

which is the expected result given that the probability of waiting a time tw

between jumps (except for the first one if the initial condition is not |0〉) is

p(tw) = 4(Ωtw)2e−2Ωtw .
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3.5 Outlook

The x-ensemble introduced in this chapter provides an alternative means of study-

ing atypical dynamical behaviours. While the analytical form of the s-ensemble,

following naturally from common master equation descriptions of stochastic dy-

namics, may appear more intuitive than the transfer matrix prescription of the

x-ensemble, the x-ensemble is not without benefit. The x-ensemble’s utilisation of

fixed K is well suited to simulations of stochastic dynamics - and its use in such

situations will be the focus of the remainder of this thesis. One of the key aspects

of this chapter that we again emphasise here is the flexibility offered by utilis-

ing alternative dynamical ensembles. We argue that the ability to work with the

s-ensemble for more familiar analytics, and switch to the x-ensemble for numeri-

cal work, converting results between the two using the ensemble correspondence

illustrated in section 3.21 is of significant benefit when exploring the dynamical

properties of new systems.

1This conversion between ensembles will be treated more explicitly in Chapter 4.



4. Fluctuating observation

time ensembles: transition path

sampling applications

While the thermodynamics of trajectories described in the previous chapter can

unlock the full array of dynamical behaviours present in a system, it is not always

a straightforward task to access this information. The examples presented all pos-

sessed master operators (for the classical case) or super-operators (i.e. operators

with a larger number of degrees of freedom than number of states - for the quan-

tum case) that are directly diagonalizable, but for more complex systems this is

often not the case, making it difficult to obtain the moment generating function.

The problem is compounded since the dynamical fields, s, x are not connected to

physically tunable parameters as their thermodynamic counterparts are. While

techniques such as thermodynamic integration and umbrella sampling [92] can be

adapted to numerically recreate these dynamical free energies, they are compu-

tationally costly, and often the full LD function is not required. Transition path

sampling (TPS) [3] offers an alternative method of efficiently sampling the low-

order moments. Originally developed to generate so-called reaction trajectories

that occur sufficiently infrequently that their direct observation from simulated

dynamics is infeasible, it is well suited to sample the rare trajectories at the heart

62
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of the s- and x-ensemble. It has already had success in numerically describing the

s-ensemble [13,72,73].

In this chapter we develop a TPS scheme for the x-ensemble based on the method

of Crooks and Chandler in Ref. [32], focusing on its efficiency relative to the

s-ensemble. We generically introduce the simulation methodology in section 4.1,

before detailing the operation of the x-ensemble scheme in section 4.2. This scheme

is then applied to a variety of stochastic systems, both classical and quantum in

section 4.3, with an analysis of the performance of the algorithms. At the end of

the chapter the efficiency of x-ensemble TPS is discussed, with a look at the future

potential of improving performance further through “self-tuning” TPS algorithms.

4.1 Transition path sampling for trajectory en-

sembles

TPS operates by performing a biased random walk through the space of all tra-

jectories, towards a predefined region of the trajectory space, and is in essence

a Markov chain Monte Carlo (MCMC) [92] sampling algorithm. In its original

application to chemical reactions, the predefined region would be trajectories that

start in the reactant region of phase space, and end in the product region. For the

s- and x-ensembles, the regions defined by the weights e−sK , e−xτ are instead the

target. It is convenient to view TPS as a wrapper, operating as a layer around

the simulated dynamics of the system. While any method of generating dynamics

can be used with TPS, for reasons of efficiency we focus on continuous time Monte

Carlo methods in both the quantum and the classical case, which we present below.

The only mechanism for efficiency over raw sampling of the dynamics is clever
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methods of proposing subsequent steps in the random walk, reusing much of the old

trajectory without artificially altering the underlying dynamics. Broadly speaking

there are two methods of proposing alterations; local and non-local changes. Local

changes alter some small part of the system at a specific point in time, for example

giving a single particle a small change in momentum, without drastically altering

the trajectory as a whole. They tend to have high acceptance rates, but because

of the limited scope of the change, decorrelation times are high at each stage of the

chain, and they struggle to reach distant target distributions in a timely manner.

Non-local changes alter entire sections of the current trajectory, and tend to suffer

the opposite problems - low acceptance rates. Examples of these methods include

the “forwards/backwards shooting” and “forwards/backwards shifting” techniques

previously used with the s-ensemble [13,72].

4.1.1 Classical continuous time Monte Carlo

Like in the previous chapter we consider stochastic dynamics produced with con-

tinuous time Markov chains, both classical or quantum. For systems subject to

classical or quantum master equations, Eqs. (2.27)-(2.28) or (2.30)-(2.31), respec-

tively, the standard way to simulate stochastic trajectories is by means of contin-

uous time Monte Carlo [26] (often called quantum jump Monte Carlo for the case

of open quantum systems [30]). For the classical case such a scheme amounts to

the following [26]:

i) Given the current configuration of the system C, compute the time tw to

the next transition by solving PC(tw) = r1, with PC(tw) ≡ e−twR(C) being the

“survival probability”, R(C) the escape rate from C, and r1 ∈ [0, 1] a uniformly

distributed random number
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ii) Choose a transition C → C ′ by drawing a second random number r2, where

the probability to make the jump C → C ′ is given by W (C → C ′)/R(C)

iii) Change the current configuration from C to C ′ and repeat from (i).

4.1.2 Quantum jump Monte Carlo

In the open quantum case, quantum jump Monte Carlo amounts to an “unravel-

ling” of the quantum master equation, Eqs. (2.30)-(2.31), that leads to a stochastic

evolution for the wave function [30,45,46]. Again (quantum) jumps occur stochas-

tically, but in contrast to the classical case the wave function also evolves between

jumps through the action of the effective Hamiltonian Heff . That is, if the wave

function at t is |ψ(t)〉, and no quantum jumps occur between t and t + tw, then

|ψ(t+ tw)〉 = e−itwHeff |ψ(t)〉. Furthermore, the survival probability for the waiting

time until the next quantum jump is given by Pψ(tw) ≡ ||e−i~Heff tw |ψ(t)〉||2. A

stochastic trajectory can then be generated in the following way [30]:

i) Given the (normalised) state |ψ(t)〉, compute the time to the next jump by

solving Pψ(tw) = r1, where r1 ∈ [0, 1] is a uniformly distributed random

number

ii) Evolve the wave function by tw, |ψ(t+ tw)〉 = e−itwHeff |ψ(t)〉

iii) Draw a second random number r2 to select which quantum jump to perform,

where the probability to make the quantum jump i is proportional to 〈ψ(t+

tw)|L†iLi|ψ(t+ tw)〉

iv) Make the selected quantum jump, |ψ(t+ tw)〉 → Li|ψ(t+ tw)〉, normalise the

resulting state, and repeat from (i).
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4.1.3 TPS and Metropolis-Hastings in trajectory space

TPS then operates as a wrapper around the dynamics in the following manner:

i) Generate a starter trajectory, X, with continuous time Monte Carlo, comput-

ing observables of interest, τ, ~M

ii) Propose a new trajectory, X′ with observables τ ′, ~M ′

iii) Accept or reject X′ with Metropolis acceptance probability Paccept = min{1, e−(x∆τ}
for the x-ensemble, Paccept = min{1, e−(s∆K} for the s-ensemble, or indeed

Paccept = min{1, e−(x∆τ+~s·∆ ~M)} for a compound ensemble with many s, x fields

iv) Repeat steps ii and iii until X is sufficiently equilibrated to the target distri-

bution

The Metropolis acceptance criteria in step iii) above ensures trajectory sampling

obeys detailed balance with respect to the target distribution. It can be derived,

starting from a statement of detailed balance, as follows. From

P (X→ X′)P (X) = P (X′ → X)P (X′) (4.1)

the transition probability is split into a proposal distribution (the probability of

proposing X′ given X), π(X → X′), and an acceptance distribution (the proba-

bility of accepting the proposed change), A(X→ X′). Rearranging we then have

A(X→ X′)

A(X′ → X)
=
P (X′)π(X′ → X)

P (X)π(X→ X′)
. (4.2)

Choosing a proposal method such that

π(X′ → X)

π(X→ X′)
= 1, (4.3)
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and given, for example, that in the x-ensemble we have P (X) = e−xτPK(τ) we

arrive at
A(X→ X′)

A(X′ → X)
=
e−xτ

′

e−xτ
(4.4)

which for convenience we write

A(X→ X′) = min{1, e−x∆τ}. (4.5)

It should be noted that the Metropolis-Hastings algorithm approaches the target

distribution asymptotically, so it is a somewhat subjective matter to decide when

a trajectory is “equilibrated.” In practice one waits until the acceptance ratio

(the fraction of proposed changes that get accepted) is stable and fluctuations in

the mean value of observables have ceased. Furthermore because old trajecto-

ries are adapted to propose new ones, subsequent steps in the Markov chain are

correlated, and so to sample statistical information fairly one must wait multiple

steps before drawing samples. This, again, is a subjective matter that depends

on the specific method of proposal. The key to successful TPS, then, lies in bal-

ancing acceptance rates vs decorrelation times. It can be difficult to know what

the “ideal” acceptance rate should be tuned to, though it has been shown to be

50% for a one-dimensional Gaussian target distribution, dropping to 23% for an

infinite-dimensional Gaussian distribution [93]. As such acceptance ratios in the

region of 25− 40% are a good target for most systems.

4.1.4 Comments on s-ensemble efficiency

The s-ensemble TPS schemes have thus far relied on two kinds of moves, shooting

and shifting. Shooting moves operate as follows

i) Randomly select a time along the trajectory, t′
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Figure 4.1: Illustration of typical s-ensemble TPS protocols with a generic evolution

of “coordinates” of a system as a function of time. (a) Shooting moves:

a point in time is selected (blue line) and based on a coin flip, either the

past or future is discarded (pink) and replaced by a new segment (green).

(b) Shifting moves: before generating a new segment the kept portion of a

trajectory is first shifted forwards or backwards (backwards shift not shown).

It should be noted that both protocols require the ability to produce time

reversed dynamics.
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ii) Generate a random number r ∈ [0, 1] to determine whether to replace the

future or past from t′

iii) If r > 1
2

discard and regenerate the trajectory segment t′ → tf

iv) If r < 1
2

discard and regenerate, using time reversed dynamics, the trajectory

segment t′ → ti

Shifting moves operate in the same manner, but add the additional step of shifting

the section of trajectory that is not discarded backwards/forwards in time before

replacing the missing segment (see Fig. 4.1 for an illustration). Since the sampling

is done from an exponentially suppressed distribution, raw sampling of trajectories

must scale as O(es) and O(eτ ). Shooting moves are fundamentally limited by the

need to accept alterations to the middle of the trajectory, and so scale similarly

to raw sampling with τ/2. This is a significant improvement, but ultimately they

still suffer from exponential scaling. Shifting moves can function better, with

multiple small shifts in the same direction working collaboratively to alter the

middle portion of trajectories. However they suffer from bottlenecking as plateaus

of “desired” dynamical behaviour, which are unlikely to be modified, form around

“bad” regions in the trajectory. If one imagines an “optimal” shifting length, l

that has an ideal acceptance rate, trajectories that are very much longer than

this, τ � l are likely to suffer from such bottlenecking. s-ensemble schemes are

thus a delicate balance act between the optimal trajectory length for efficient

sampling, and achieving the “thermodynamic limit” of large τ . This is further

confounded by variations in dynamical activity in a dynamical phase space, which

alter l. Because of these issues, as well as the overall degree to which a trajectory

is changed in a proposed move, s-ensemble schemes often have acceptance rates

that are fractions of a percent in practical applications, well below the desired

range. Both schemes are also critically dependent on the availability of time-

reversed dynamics for efficient sampling, making their application to quantum
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systems problematic. It is these problems we aim to address with the x-ensemble.

4.2 TPS with fluctuating observation time

The x-ensemble is well suited to describe systems whose dynamics is generated

by such classical or quantum continuous time Monte Carlo. A trajectory with a

fixed total number K of jumps is fully determined by K pairs of random numbers,

{r1, r2}K - the first to determine how long until a configuration or quantum jump

occurs, the second to determine which configuration change or quantum jump

occurs.1 A TPS scheme for the x-ensemble can then be devised based on the

method of Ref. [32]. Since a trajectory is fully encoded in predetermined set of

K pairs of random numbers, randomly selecting one of these pairs and modifying

it is an efficient way to generate a new trajectory from an old one. The change

in the extensive quantities of interest, ∆τ and ∆ ~M , where ~M again denotes the

counted observables, can be calculated and the new trajectory accepted or rejected

based on the Metropolis acceptance criterion Paccept = min{1, e−(x∆τ+~s·∆ ~M)}. After

a sufficiently large number of accepted moves, a trajectory typified by the fields

(x,~s) is generated. It is often impossible to implement local changes in the context

of trajectories due to the exponential growth of differences upon making a change,

however, this x-ensemble scheme is, in essence, a combination of local and non-

local changes. In the context of the random numbers only a small, local change

is made, but due to the highly non-linear mapping from random numbers to

trajectory, and the exponential growth of differences, this can have non-local effects

throughout the trajectory. Furthermore the overall extent of the change is small

1This pair of random numbers could, of course, be combined into a single random number

that determines both the waiting time and the configuration change, but it is far simpler just to

generate a pair of random numbers.



4. Fluctuating observation time ensembles: transition path
sampling applications 71

compared to s-ensemble schemes (one can think of s-ensemble schemes as altering

half of the random numbers associated with a trajectory on average), bolstering

acceptance rates.

Due to the ensemble correspondence demonstrated in chapter 3, it is possible to

convert x-ensemble TPS results, where the values of the fields (x,~s) are fixed, to

their equivalent s-ensemble described by ~s only. In order to do this it is necessary

to find the curve x∗(~s), see Eq. (3.30). This curve passes through the origin of the

space spanned by (x,~s), since G(0, 0) = 0 trivially. It is then possible to move

along the x∗(~s) curve by expanding (3.30) for small increments δ~s in ~s which allow

to relate the required change in δx to the current averages of τ and ~M :

δx =
δ~s · 〈 ~M〉x,~s
〈τ〉x,~s

+ o(δs2). (4.6)

In order to compute the s-ensemble we can therefore start at the point (x = 0, ~s =

0), i.e. unbiased dynamics, and progress towards ~s by adjusting x according to

(4.6), using an x-ensemble TPS algorithm for each value of (x,~s). In this way

we recover the properties of ensembles of trajectories with fixed total observation

time from simulations of trajectories with fixed number of transitions or jumps.

4.3 Applications

We now apply the x-ensemble TPS scheme described above to a number of sys-

tems. We start with some simple open quantum systems because they are easy

to simulate and the structure of their trajectory phase space can be analysed an-

alytically, but inherent issues with time reversal make an s-ensemble exploration

difficult. This provides an ideal test bed for the x-ensemble, with known results

with which to compare the numerics generated. We then move onto a classical, ki-

netically constrained glass forming model, the East model, to test the performance
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of x-ensemble TPS in an area the s-ensemble has already seen success.

4.3.1 T 6= 0 quantum two-level system

We again consider the quantum two-level system, but now for the case of T 6= 0,

Fig. 3.2(d) [30]. In most open quantum systems, generating time-reversed dy-

namics is non-trivial, whether due to the combination of coherent dynamics inter-

spersed with stochastic jumps in state, or the possibility of an unpaired Lindblad

term for which there is no reverse process (that is a Lindblad term describing a

transition between states |i〉 → |k〉 with no corresponding Lindblad term for a

transition |k〉 → |i〉 – the population of state |i〉 might instead be brought about

by the coherent evolution). In such systems conventional TPS is limited to forward

shooting only, limiting its efficiency. We use the simple case of the T 6= 0 two-level

problem to illustrate how the x-ensemble TPS can efficiently sample such systems.

Compared to the T = 0 case of Sect. 3.4.1, when T 6= 0 there is a second jump

operator, L2 ≡
√
λ|1〉〈0|, associated to the absorption of a quanta from the bath,

which leads to a projection to the |1〉 state at a rate λ (where the ratio λ/γ is

determined by the temperature T ). Let us say we are interested in the statistics

of the number of jumps K1 due to L1 (3.39). Using the x-ensemble TPS scheme

we can compute the average total time, 〈τ〉(x, s1), and the average number of

1-jumps, 〈K1〉(x, s1), for fixed total jumps K (i.e. due to both L1 and L2) as a

function of the fields x and s1. Figure 4.2(a) shows the ratio 〈τ〉/〈K1〉 as a function

of x, along the curve x∗(s1) (3.29)-(3.30), comparing the TPS simulation to the

exact result. Figure 4.2(b) shows the activity associated to K1 in the s-ensemble,

〈K1〉s = −θ′(s1)τ , both the exact result from diagonalisation of Ws1 , and the

numerical estimation from the conversion from the x-ensemble TPS simulation,

〈K1〉s = 〈K1〉x∗(s1)〈τ〉x∗(s1). A rudimentary efficiency comparison of the x-ensemble
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TPS scheme and a forwards/backwards shooting s-ensemble TPS scheme is shown

for zero-temperature in Figure 4.2(c) and (d). The x-ensemble scheme scales

linearly with trajectory length, and as O(x2), while the s-ensemble scheme scales

exponentially with both trajectory length, and s.

4.3.2 Micromaser

Next we consider a micromaser [94], a single-mode cavity coupled to a finite-

temperature bath, and pumped by sending excited two-level atoms through the

cavity at a constant rate. There are four quantum jump operators associated

with the system, two for the atom-cavity interaction L1 =
√
r sin(λ

√
aa†)√

aa†
a, L2 =

√
r cos(λ

√
aa†), and two for the cavity-bath interaction, L3 =

√
κa, L4 =

√
γa†.

Here the a, a† are the raising/lowering operators of the cavity mode, r is the

atom beam rate, and λ encodes the time of flight of atoms through the cavity.

For simplicity, the system can be parameterised by a single “pump parameter”

α = λ
√
r/(κ− γ). It can be shown that if the system is initiated in a state with

diagonal density matrix, the system stays in a diagonal state. It should be noted

that while this effectively reduces the problem to a classical one, generating time-

reversed dynamics is still problematic as there is no clear reverse process for action

under L1.

The micromaser has a rich trajectory phase diagram with many dynamical phase

transitions between states characterised by different photon occupations, 〈N〉, of

the cavity [95]. This complex dynamical phase structure is made manifest by

coupling to the number of events M1 under the action of L1, i.e. measurements on

the atoms leaving the cavity where the atom is in its ground state. Below we will

reproduce this behaviour by converting results from the x-ensemble, described by

fields (x, s1), to the equivalent s-ensemble described by s1.
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Figure 4.2: T 6= 0 quantum two-level system. (a) x-ensemble: 〈τ〉/〈K1〉 as a function

of x, along the curve x∗(s1) in the x-ensemble; symbols are from TPS sim-

ulations and the curve from exact diagonalisation of Tx,s1 . (b) s-ensemble:

the symbols are the s-ensemble expectation values as a function of s, as

obtained from the x-ensemble TPS simulation, and the curve those from

the exact diagonalisation of Ws1 . The parameters here are γ = 6Ω and

λ = 2Ω. (c) and (d) Efficiency comparison of (c) x-ensemble TPS to (d)

s-ensemble forwards/backwards shooting for parameters γ = 4Ω and λ = 0

(zero-temperature). The simplicity of the system represents the most effi-

cient possible scenario for both approaches. Real time taken to converge to

within 2% of the analytical rates showing the scaling with trajectory length.

The typical trajectory lengths plotted are 400 times longer in (c) than (d).

(Inset) As before but now the scaling is with x/s. The range of x and s used

are equivalent.
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Transitions from states with high to low photon occupation occur far more readily

than the reverse. This can present a problem when trying to numerically recreate

a transition away from x = 0 from a state with low photon occupation to a state

with a higher photon occupation. This is similar to the problem of a thermal

system becoming stuck in a potential well that is not the global minimum. While

there are many techniques to deal with such an issue, such as replica-exchange,

there is a more novel approach in the micromaser. Since suitable time-reversed

dynamics are not available, it is simple to fix the initial state of the trajectory

to a large photon occupation, N , and set the trajectory length (defined by K)

large enough that the initial conditions do not have significant impact on the

latter stages of the trajectory. Since the micromaser frequently returns to the

same state under a TPS algorithm, the x-ensemble TPS approach is not punished

by large trajectory lengths in the same way the s-ensemble is (by returning to a

previous state, in effect a constant amount of computation is needed to propose a

new trajectory under the x-ensemble, where an amount of time of O(τ) is needed

in the s-ensemble, since on average half the trajectory is always recomputed; see

next section).

Figure 4.3(c) provides a comparison between the efficiency of the x-ensemble to

that of the s-ensemble. It shows the same quantity as in (a) in the range s ∈ [0, 0.1]

and α ∈ [π, 4π] but generated using an s-ensemble forward shooting algorithm.

It took about 100 times more computational effort using the s-ensemble TPS to

generate the data in (c), over a fraction of the parameter range of (a), and clearly

the convergence to the exact result is still poor, cf. panel (b). Furthermore, no

useful data could be generated in that time using an s-ensemble TPS approach for

s1 < 0. This illustrates the efficiency of the x-ensemble TPS scheme as compared

to the standard fixed observation time TPS.
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Figure 4.3: Micromaser: average number of L1 jumps, 〈M1〉, as a function of s1 and α/π.

(a) Results from x-ensemble TPS of trajectories of fluctuating observation

time τ , transformed to the s-ensemble. (b) Exact numerical diagonalisation

ofWs1 . Both plots at the same resolution. (c) Results from s-ensemble TPS.

This small segment of the phase diagram took approximately 100 times the

computation time of the x-ensemble plot.

4.3.3 East facilitated spin model of glasses

The s-ensemble method was first applied [12, 15] to uncover the dynamical phase

structure of kinetically constrained models [28] of glassy systems. Such systems are

thermodynamically simple but dynamically complex, and this can be traced back

to a singularity in ensembles of trajectories, between “active” (equilibrium) and

“inactive” (non-equilibrium) dynamical phases. These two phases are stabilised

by negative or positive s, respectively, with a first-order transition between them

at s = 0 (in the limit of large system size, and for the case where the kinetic

constraints are “hard”, i.e. cannot be violated). A more in depth discussion on

the nature of glasses can be found in chapter 5.

For a demonstration of the functionality of the x-ensemble approach in a many-

body glassy systems, we consider the East model in one-dimension [28], defined
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Figure 4.4: (a) The raw x-dependent mean jump waiting time per site τ/NK explicitly

converted to: (b) The s-dependent mean activity per site, K/Nτ and (c)

The s-dependent mean excitation density per site, ρn/N . Both plots are

at temperature T = 0.5, for chain lengths N = 15, 30, 60, and the simula-

tions were made using x-ensemble TPS. (d/e/f) Same as before but now for

N = 60 and for temperatures T = 0.91, 0.75, 0.5. The change in relationship

between x and s with a change in both chain length and temperature is

demonstrated in the conversion from (a) → (b) and from (d) → (e) respec-

tively
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on a lattice of N sites with a binary variable at each site, ni = 0, 1 (i = 1, . . . , N),

and with energy function E =
∑

i ni. A transition at site i, from 0 → 1 with

rate c, and from 1 → 0 with rate (1 − c), can occur only if the neighbouring site

to the left is excited, ni−1 = 1. This latter condition on the rates is the kinetic

constraint. The transition rates are temperature dependent with c = (1 + e1/T )−1.

Note that with these definitions detailed balance is obeyed with respect to the

Boltzmann equilibrium with energy E at temperature T , and since E is non-

interacting, despite the strong dynamical interactions, the system evolves towards

a non-interacting equilibrium state.

The x-ensemble TPS approach is able to efficiently recover the results obtained

through s-ensemble TPS. Figure 4.4 shows that we recover the active-inactive

crossover, which is seen to get sharper with increasing lattice size, and is present

at all temperatures, as expected [12]. Again we have converted from an x-ensemble

described by field x to an s-ensemble described by field s.

Finally we perform another efficiency comparison shown in Figure 4.5. An x-

ensemble TPS scheme, and a forwards/backwards shooting s-ensemble TPS scheme

were run from an initially infinite temperature system, and we measure the real

time taken for the mean excitation density per site, ρn/N to fall below some crit-

ical value ρcrit for s = 0.2. This corresponds to taking the system from a highly

active state (s < 0) to the inactive state (s > 0). The lengths of the trajectories

were set to be over a similar range for a trajectory in the inactive state. The linear

dependence of the x-ensemble scheme with system size, K continues to hold in

this system. The s-ensemble scheme on the other hand is significantly punished

by trajectories that are too short or too long. Furthermore, due to a large over-

all difference in efficiency, a higher value of ρcrit = 0.05 had to be used for the

s-ensemble scheme, compared to ρcrit = 0.02 for the x-ensemble.
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Figure 4.5: Efficiency comparison of the (a) x-ensemble TPS scheme, and (b) a for-

wards/backwards shooting s-ensemble TPS scheme. Both plots are for

T=0.5, N=60 and show the mean real time taken for the mean excitation

density per site, ρn/N , of an initially infinite-temperature system to fall be-

low some critical value ρcrit for TPS with s = 0.2. Due to overall difference

in efficiency we used ρcrit = 0.02 for the x-ensemble in (a) and ρcrit = 0.05

for the s-ensemble in (b). The trajectory lengths are over similar ranges for

trajectories in the inactive phase with s > 0

4.4 Efficiency of the x-ensemble scheme

While we have focused on systems simulated with continuous-time Monte Carlo

(both classical and quantum), it should be noted that x-ensemble TPS is applicable

to any system whose trajectories can be fully described by sets of random numbers.

The efficiency of the approach will be dependent on the nature of the system under

study, but in general there are several factors that should contribute to a greater

efficiency in the x-ensemble than the equivalent s-ensemble TPS schemes. These

factors are the following:

(i) A new trajectory Y′ is generated by altering the i-th random number that

defines the current trajectory Y leaving the other random numbers, before and
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after, unchanged. If at any later stage j > i the trajectory visits the same state

as in Y then no further computation is required to generate Y′. This drastically

reduces the computation overhead required to propose a new trajectory. While

this recurrence is unlikely in large systems, it will be the main source of efficiency

in few-body problems, and perhaps also in systems with large state spaces but

with limited dynamical pathways (cf. the micromaser).

(ii) Smoothness of the acceptance criteria. s-ensemble TPS has a Metropolis

acceptance probability of Paccept = min (1, e−s∆K). Since the number of events

is necessarily an integer, a change in activity is only seen if K changes by at

least 1. This can lead to low acceptance probabilities, particularly for large s.

The x-ensemble, on the other hand, has a metropolis acceptance probability of

Paccept = min (1, e−x∆τ ) [or more generally for multiple observables, Paccept =

min (1, e−x∆τ−~s·∆ ~M)]. Since the trajectory length τ is continuous small incremental

improvements, towards a trajectory typical of the desired value of (x,~s), are more

likely to be accepted.

(iii) Trajectories are not altered as drastically. Working in such a manner where

trajectories are fully described by a sequence of sets of random numbers, an s-

ensemble forwards-backwards shooting approach is equivalent to a replacement,

on average, of half of the random numbers. While the relationship between the

random numbers used to describe a trajectory and the activity of that trajectory is

obviously highly non-trivial for a complex system, it is nevertheless to be expected

that smaller changes to the random numbers defining the trajectories will have

a smaller impact on the activity - although this is unlikely to be a factor in

highly chaotic systems. Furthermore, while the mapping from random numbers

to trajectories may be non-linear, it is still systematic, for example small random

numbers might correspond to long waiting times in general. By modifying one

pair of random numbers only, the x-ensemble approach makes smaller incremental
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improvements facilitating faster convergence. This is particularly important as

s-ensemble schemes often only manage acceptance rates that are fractions of one

percent.

(iv) Alterations can be made at any point along the trajectory with compara-

tive ease. This avoids the bottlenecking in s-ensemble schemes where the middle

portions of a trajectory are difficult to alter.

We expect the x-ensemble to be particularly useful in systems that display an

active-inactive dynamical phase coexistence, such as glassy systems [12,13]. Using

a fixed-time trajectory, as in the s-ensemble, the length of the trajectory needs to

be set long enough that any interesting behaviour in the inactive phase is captured.

But this can lead to an unnecessarily large amount of information on the active

phase being recorded. This is the primary reason for the poor performance of the

s-ensemble in the micromaser (see Fig. 4.3) - the scheme fails whenever the system

encounters a dynamical phase boundary because of the difference in activity in

either side. Optimising τ for the inactive phase leads to poor sampling in the active

phase and vice versa. It is also the reason for the computational cost when τ is too

small seen in the East model (see Fig. 4.5). In contrast, in the x-ensemble little

computation time is wasted on the active phase: by fixing total event numbers,

the same quality of statistics is generated for both active and inactive dynamics.

It should also be noted that at worst, s-ensemble shooting/shifting schemes can

easily be adapted to the x-ensemble. This flexibility is of great importance, as in

general with TPS, there is no a priori way of knowing for certain which schemes

will be effective.
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Figure 4.6: Efficiency comparison of the “small r” scheme (red circles) with the original

scheme (blue triangles) in the quantum two-level system with parameters

γ = 4Ω and λ = 0 (T=0), K = 10000. (a) Mean real time taken to converge

to within 0.5% of the analytical rates across a range of x values with their

corresponding acceptance rates (b).

4.5 Beyond the standard TPS algorithm: a self-

tuning approach

In this section we discuss the future outlook of work in progress on x-ensemble

TPS schemes. While the x-ensemble has been shown to be more efficient than

the s-ensemble in a wide variety of systems, its key advantage is its flexibility

which can be exploited further. While in the previous section we utilised a scheme

of replacing a single set of random numbers, it is not necessary to be limited

in this manner. Any modifications that preserve the symmetry of the proposed

move distributions (see Eq. 4.3) can be used. This includes alterations that

change a set of random numbers by a small amount instead of replacing them

completely, provided the flatness of the random number distribution is preserved.

One possibility is to set a maximum increment, dr, and modify a random set of

random numbers, {r1, r2} → {r1 +dr1, r2 +dr2} with dr1, dr2 ∈ [−dr, dr]. In order
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to preserve the distribution of random numbers, we impose periodic boundary

conditions on [0, 1]. It is straightforward to see that any proposed move occurs

with the same probability as its reverse, i.e. P ({r1, r2} → {r3, r4}) = P ({r3, r4} →
{r1, r2}) and Eq. 4.3 is satisfied.

The primary advantage of this “small r” method is that it allows for more precise

control of acceptance rates, something that has been lacking in TPS applications

to the thermodynamics of trajectories. We apply this method, again to the T = 0

quantum two-level system of Fig. 3.2 (c). Figure 4.6 (a) shows the benefits

obtained. We compare the performance of the original method (dr = 1) to the

new one with a value of dr = 0.4. Initially, for small x where acceptance rates are

high, there is some linear overhead where further bolstering of the acceptance rates

is a hindrance. However as we increase x the small r method begins to outperform

the original, with a 50% reduction in computation time for the x > 10 region. The

corresponding acceptance ratios (defined as the ratio of accepted moves to total

proposed moves A% = Naccepted/Nproposed) in Figure 4.6 (b) illustrate this point. A

crude analysis of the peak relative performance of the two methods suggests the

optimum acceptance ratio for this system occurs at approximately A% = 0.3 - in

line with other applications of the Metropolis-Hastings algorithm [93].

There is still further flexibility that can be explored with the x-ensemble. Situa-

tions where acceptance rates of the standard scheme are higher than optimal are

not overly common in practical situations, particularly not in difficult to sample

regions of a trajectory phase space. The x < 5 region of Fig. 4.6, for example, is a

manifestation of this. Improvements could potentially be made to lower the accep-

tance rates in such a case, and speed up sampling, but there is little need given the

overall rapidity with which sampling occurs. However, often in the initial “burn

in” phase of a complex system, particularly when attempting to sample close to a

dynamical phase transition, there is a need for large overall changes to a trajectory,
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Figure 4.7: Efficiency of the initial relaxation of an East model, mean real time taken

(blue triangles) for the excitation density to fall below ρcrit = 0.012 with

x = −0.04 withN = 30, T = 0.5, andK = 7500. The values of dr are integer

i.e. changes to whole sets of random numbers. The corresponding acceptance

rates (red circles) are shown, and the relationship between acceptance rate

and time taken is non-linear (as expected).

to quickly decorrelate from an initial chosen trajectory. Such a situation occurs

for example in the East model. If we want to fairly sample the inactive phase, it is

often best to start from an equilibrium trajectory with a random spin distribution

(i.e. infinite temperature) as its initial configuration. If one were to start from an

artificially constructed inactive state, the slow dynamics and large escape barrier

from any given inactive state results in a long decorrelation time from the initial

trajectory (one can think of this as being stuck in a very deep potential well in

a thermal problem). This is the same motivation behind techniques such as sim-

ulated annealing [26] starting from an effective “high-temperature” state before

relaxing to fairly sample from the entirety of a distribution. This is particularly

true for systems with many deep, nearly degenerate free energy (or g(x) in our
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analogous situation) minima where crossing from one minima to another at low

temperature is a difficult endeavour. To illustrate this we implement a scheme in

the East model with dr > 1 (signifying changes to more than one set of random

numbers at a time) in Figure 4.7. The real time taken for the initial relaxation

to the inactive phase, measured by the excitation density falling below a value of

ρcrit = 0.012 for an N = 30, T = 0.5, K = 7500 system, is plotted for a range of

(integer) values of dr, along with the corresponding acceptance rates. For ease of

implementation we modify sequential sets of random numbers. This then corre-

sponds to effectively a small shooting move at a randomly selected point in the

trajectory. With a value of dr = 10 we find there is more than a 66% reduction

in the time taken to relax the East model trajectories to the inactive phase.

Combining the methods above sets the ground work for current ongoing work on

a self-tuning x-ensemble TPS scheme. As we have seen A% is the critical quantity

for the efficiency of Metropolis-Hastings algorithms, and the x-ensemble allows for

very strong influence on acceptance rates compared to the s-ensemble. It is pos-

sible to modify the protocol used in response to the current measured acceptance

ratio as one proceeds with TPS. Each time we modify the protocol an interface is

created in the Markov chain across which detailed balance is broken, which is an

unfortunate consequence. However, if only a small change is made to the protocol,

there is little impact on the sampled distribution, and the Markov chain relaxes

almost instantaneously back to the “equilibrium”2 of the target distribution. As

long as changes to the protocol are small, and made infrequently, we can do so

without biasing the sampling. This is a precise analogue of the method of sim-

ulated annealing, which also uses small, infrequent breakages of detailed balance

2Again one needs to be careful remembering we are dealing with a Markov chain of trajec-

tories, and a protocol moving through the space of trajectories, rather than configurations -

this “equilibrium” is not a thermal equilibrium, but rather with the regards to the stationary

distribution of trajectories defined by x.
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(with respect to configurations in that case) to optimize sampling of thermal phase

spaces.

This self-tuning algorithm would then proceed as follows:

i) Define an “ideal” target acceptance ratio, A
(tar)
% (typically around 25% for a

many body system)

ii) Set an initial protocol, typically with large changes to the system initially

(e.g. dr � 1)

iii) Perform a set (large) number of TPS moves and measure the current accep-

tance ratio A
(curr)
%

iv) Compare A
(tar)
% and A

(curr)
% , and adjust the protocol accordingly i.e. if A

(curr)
% >

A
(tar)
% increase dr by a small amount, else decrease dr by a small amount.

One must naturally enforce an upper and lower bound on dr to prevent failure of

the algorithm on edge cases. Such an approach would greatly reduce the labour

intensity of a TPS study, as one does not need to worry about the nuances of

the most efficient TPS implementation, the algorithm would self-tune towards

optimum sampling. This is particularly useful for studying a broad range of x, and

particularly, crossing dynamical phase boundaries, where the optimum protocol

in each phase may be drastically different. It will also potentially help when the

dynamical phase space is “rugged,” where the system can struggle to find the

global minimum. One can start from a large dr, x = 0 protocol and slowly tune x

towards the desired target, correspondingly adjusting dr to facilitate the location

of the global minimum. This is exactly the situation simulated annealing was

developed to address in thermal systems. We have implemented such a scheme,

again for a simple test case of the T = 0 quantum two-level system in Fig. 4.8.
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Figure 4.8: Implementation of a self-tuning x-ensemble TPS algorithm in a T = 0 quan-

tum two-level system. The real time taken to converge within 0.5% of the

analytical rates across a range of values for a range of target acceptance

rates. Also included is the original method with dr = 1 (maroon aster-

isks). For large x all schemes converge towards the same time taken as they

consistently hit the lower dr bound of 0.03. The plateaus, and subsequent

improvements in time taken, for the high acceptance rate targets (40−60%,

teal triangles, black triangles and green crosses) are caused by encountering

this lower dr bound much sooner, and the inability to maintain unnecessarily

high acceptance rates.
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The specific implementation measures the local acceptance rate over 104 TPS

moves and slowly adjusts the value of dr accordingly. dr has upper bound of 1

(complete replacement) and a lower bound of 0.03. The ’ideal’ acceptance rate

appears to be somewhere in the region of 20−25%, suggesting a surprising amount

of complexity in Metropolis sampling even a seemingly simple dynamical system

(we again reiterate here that ideal acceptance rates have been shown to be 50% for

sampling a one-dimensional Gaussian distribution, falling to 23% for an infinite-

dimensional Gaussian [93]). We are in the process of refining this approach and

applying it to a variety of systems to fully establish its usefulness.

Beyond this there are two further points we wish to discuss. Firstly, it is also

possible to incorporate the shooting and shifting methods of the s-ensemble in

cases where time-reversed dynamics are available, but such moves are fundamen-

tally less limited in the x-ensemble. One can imagine exotic schemes where, for

example, a set of random numbers is cut from the trajectory, a small segment of

the trajectory (but not the entirety of the remainder) shifted into its place, and

a new random number inserted at the end of the shifted segment. While such a

scheme may or may not be useful, it serves to illustrate the flexibility offered by

the x-ensemble. At a worst case scenario one can always reduce to an s-ensemble

scheme, so we argue well implemented x-ensemble TPS scheme should never fail

to perform at least as efficiently as a well implemented s-ensemble scheme. The

second point is that, in may places in this work, we have exploited a fixed initial

configuration Ci of a trajectory to aid in sampling of a desired phenomenon. If

the trajectory is long enough to (effectively) realise the LD limit of the system,

the initial configuration is irrelevant to the statistics of the sampled distribution.

However, when not using time-reversed dynamics, one could consider the initial

configuration to simply be the first set of random numbers in a trajectory, treated

like any other, with attempted changes being made by modifying this set of ran-

dom numbers. These changes could be large (replacing the initial configuration
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completely) or small (flipping a single spin in the initial configuration for example)

without breaking detailed balance. This can potentially be extremely useful when

sampling from a bistable distribution, where the typical configurations through-

out a typical trajectory from each peak are drastically different. This is again,

not a possibility that is practical with any s-ensemble scheme. As such, we again

emphasise the degree of flexibility offered by the x-ensemble is of great importance

to the efficiency with which TPS studies can be performed.

4.6 Outlook

The results of this chapter illustrate the usefulness of the x-ensemble in a numer-

ical setting. It is perhaps natural that an ensemble of fixed event numbers would

be well suited to computer simulation, with predefined memory requirements and

simple methods of trajectory alteration. This has allowed the application of the

x-ensemble in situations where the s-ensemble struggles - notably where the dy-

namics of systems do not obey detailed balance. Even in scenarios where the

s-ensemble has been successfully utilised, the x-ensemble demonstrates improved

performance. This performance is further enhanced by the greater flexibility in

manipulation of trajectories allowed by the x-ensemble, allowing more precise

control over the acceptance rates of TPS schemes. We are hopeful that these de-

velopments will allow for the exploration of the dynamical properties of systems

that have so far been beyond the reach of traditional methods.



5. Dynamical and static

transitions in plaquette models

of glasses

In this chapter, we investigate plaquette spin models of glasses [35], for which

both overlap-fluctuations and dynamical activity-fluctuations can be analysed,

by a combination of analytical and computational methods. We concentrate on

two models, whose relaxation behaviour is similar to that of the facilitated East

model [27, 28, 96] – their relaxation times increase faster than an Arrhenius law

at low temperatures, but the equilibrium relaxation time is finite at all positive

temperatures, diverging only as T → 0. We present evidence that these models

support both dynamic and thermodynamic phase transitions. In the thermody-

namic case we consider a coupling between two annealed replicas, and transitions

occur only for non-zero (positive) values of the coupling.

We argue that these results provide a connection between the (apparently quite

different) ‘thermodynamic’ and ‘dynamic’ theories of the glass transition. This

connection is built on the idea of metastability, which is intrinsically connected

to glassy behaviour. The formation of a metastable state in a finite dimensional

system requires that small perturbations in that state do not grow: the system

90
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prefers to relax back into the metastable state. This stability to small perturba-

tions may be described in terms of an interfacial cost that acts to penalise local

perturbations. Different theories ascribe different origins to these interfacial costs,

which might be either static or dynamic, depending on the system of interest,

and the kinds of fluctuation being considered. However, the existence of these

interfacial costs seems quite generic, and may be useful for rationalising different

kinds of phase transition in these systems.

The main results of this chapter are as follows. We analyse the triangular plaquette

model (TPM) in two spatial dimensions [33,34], and a three-dimensional variant of

this model, which we refer to as the square pyramid model (SPyM). In section 5.2,

we show numerical evidence that the TPM in a magnetic field supports a phase

transition in the 2d-Ising universality class. There is a previously known method

of mapping two (annealed) coupled replicas of these systems to a single system in

a magnetic field [36, 97, 98], which is shown in Appendix A. It then follows that

the coupled replicas of these systems also support a similar phase transition. In

section 5.3, we show that the TPM also supports dynamical “space-time” phase

transitions, similar to those in [12,13,99]. In section 5.4, we introduce the SPyM,

and show evidence that it supports phase transitions in the coupled replica setting,

and dynamical space-time phase transitions. Finally in section 5.5, we discuss the

relationships between the thermodynamic and dynamical phase transitions that

we have found, and we consider the consequences of these results for theories of

the glass transition.
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5.1 Plaquette models, and coupled replicas

5.1.1 Models

We consider plaquette spin models defined in terms of classical Ising spins on

regular lattices, with energy functions of the form

EJ(σ) ≡ −J
2

∑
µ

σiµσjµ · · · σkµ , (5.1)

where σi = ±1 with i indicating a lattice site (i = 1, . . . , N), and where the

interactions are in terms of products of spins σiµσjµ · · ·σkµ around the plaquettes

µ of the lattice. See [33–35] for a more general overview of the relevant properties

of these systems. On a square lattice, one labels each square plaquette with an

index µ, and {σiµ , σjµ , . . . , σkµ} is the set of four spins on the vertices of plaquette

µ. This construction is easily generalised to higher dimensions: for a cubic lattice

and cubic “plaquettes”, each term in the energy would involve eight spins. This

motivates us to define plaquette variables τµ = σiµσjµ · · ·σkµ .

An interesting model in this class is the TPM [35], where the lattice is triangular

and the interactions are between triplets of spins in the corners of upward pointing

triangles,

EJ(σ) ≡ −J
2

∑
µ=M

σiµσjµσkµ , (TPM) (5.2)

The geometical setting is shown in Fig. 5.1(a). Our analysis rests on a correspon-

dence between configurations of the spin variables σi and the plaquette variables

τµ. If we first consider rhombus-shaped systems whose linear size is an integer

power of 2, with periodic boundaries, then there is a one-to-one mapping be-

tween spin configurations and plaquette configurations. (It is clear that every

spin configuration corresponds to a unique plaquette configuration, but the ex-

istence of a spin configuration corresponding to every plaquette configuration is
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Figure 5.1: (a) Illustration of spins and plaquettes in the TPM. The spins σi are located

on the vertices of the lattice. The plaquette variables τµ are located on the

upward pointing triangles (shaded). Each plaquette is associated with three

spins and the variable τµ is given by the product of these spins. (b),(c) Ge-

ometrical illustration of the duality relation (A.9) in the TPM. Panel (b)

shows two TPM systems, a and b, with coupling as in (5.3). Panel (c) shows

the location of the sites of the dual problem, again two coupled TPMs a∗

and b∗. The plaquettes in the dual system bisect the coupling interactions

in the direct system, and vice versa.

less trivial [28, 33–35].) For systems of different sizes or with different boundary

conditions, the correspondence is not perfectly one-to-one, but these deviations

turn out to be irrelevant in the thermodynamic limit. In section 5.4 below, we

will also discuss the SPyM, a three-dimensional model with the same one-to-one

correspondence, on the body-centred cubic (bcc) lattice.

In cases where the one-to-one mapping holds exactly, the fully polarised state

σi = 1 ∀i is the unique ground state of (5.1). In terms of the plaquette vari-

ables, the ground state is τµ = 1 ∀µ, and the elementary excitation is a “de-



5. Dynamical and static transitions in plaquette models of glasses
94

fect”, τµ = −1. Two-body spin correlations vanish in these models [35], although

higher-order spin correlations are finite and allow access to a growing length scale

at low temperatures [100]. Also, since there is a one-to-one mapping between

spins and plaquettes, the thermodynamic properties of these models are those of

non-interacting binary plaquette variables [28, 33–35], or a free gas of ‘defective’

plaquettes (with τµ = −1) 1.

However, while the thermodynamic properties of plaquette models are trivial, their

(single spin-flip) dynamics is not. This effect arises because flipping a single spin

σi changes the states of all of the plaquettes in which it participates. The pla-

quette dynamics is therefore “kinetically constrained” [28,34,35] possibly leading

to complex glassy dynamics at low temperatures. This is what occurs for ex-

ample in the TPM whose dynamical properties are similar to those of the East

facilitated model [28, 34, 35], displaying “parabolic” super-Arrhenius relaxation,

dynamic heterogeneity, and other characteristic features of the glass transition [7].

5.1.2 Coupled replicas

To probe thermodynamic overlap fluctuations, we consider two coupled replicas of

a plaquette model [11, 36, 102–104]. The energy function of the combined system

is

EJ,ε(σ
a, σb) ≡ EJ(σa) + EJ(σb)− ε

∑
i

σai σ
b
i , (5.3)

where σa and σb are the spin configurations in the replicas a and b. The overlap,

Q(σa, σb) ≡
∑
i

σai σ
b
i , (5.4)

1If the plaquette interactions do not allow for a spin-defect duality, as for example with spins

in a cubic lattice with interactions on the square faces (rather than on the cubes), then the static

properties may be non-trivial. See for example [101]
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measures how similar the two copies are, and the strength of their coupling is given

by its conjugate field ε. The coupling (5.3) is denoted annealed since both replicas

are allowed to fluctuate on an equal footing. The case of quenched coupling, in

contrast, involves one of the replicas being frozen in an equilibrium configuration.

Here we will only consider the case of annealed coupling which is easier to treat

both analytically and numerically. Hence the partition function for these two

coupled replicas is

Z2(J, ε) =
∑
σa,σb

e−βEJ,ε(σ
a,σb). (5.5)

where the sum runs over the configurations σa, σb: that is, over all σai = ±1 and

all σbi = ±1. Here and in the following, we sometimes set β = 1 where there is no

ambiguity [for example, the left hand side of (5.5) should strictly be Z2(βJ, βε)

but we suppress the dependence on β, for simplicity].

5.1.3 Dualities and phase transitions

The mapping from two coupled replicas to a single system in a field has useful

consequences, since we may exploit existing results for plaquette models in mag-

netic fields. The duality of this model, Eq. (A.6) (see also [98]), implies a duality

relation for the free energy F1 = − lnZ1,

F1(h, J) +
N

2
ln sinh(2βh) = F1(h̃, J̃) +

N

2
ln sinh(2βh̃) (5.6)

where h̃ and J̃ are given in Eq. (A.7). Phase transitions appear as singularities in

the free energy density f1 = limN→∞ F1/N .

From (5.6), if F1 is singular at (h, J), it is also singular at (h̃, J̃). This places

constraints on the possible phase behaviour of the system. In particular, if the

system supports only a single phase transition, it must occur for parameters such

that (h, J) = (h̃, J̃). This condition defines a line in the (h, J)-plane, which is
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given by

βJ = − ln tanh βh. (5.7)

On this line one has also sinh βJ sinh 2βh = 1. Phase transitions that occur on

such lines were investigated in [97, 98]: the plaquette models considered there

support a single critical point that occurs at some point (Jc, hc) on this line, with

first-order phase coexistence occurring on the part of the line with J > Jc.

We note that (5.6) resembles the Kramers-Wannier duality of the Ising model,

which allows the position of the critical point to be identified exactly in that

model. Here the situation is different because the transition takes place at finite

h, in contrast to the Ising transition which is known to take place at zero field,

by symmetry. For this reason, the duality of the TPM does not fully determine

the position of the critical point, but restricts it to the line (5.7) within the (h, J)

plane.

From the mapping in Appendix A, the phase transitions of the TPM in a field

correspond to phase transitions in the coupled replica system: the first-order tran-

sition line separates a state with low overlap (small ε) from one with high overlap

(large ε). For the coupled replicas, the self-dual line is

sinh(βJ) sinh(βε) = 1, (5.8)

This situation, where the self-dual line for the coupled-replica system contains a

first-order transition region and a critical point, was proposed for the TPM in

Ref. [36]. We present numerical evidence for this situation in section 5.2 below.

5.1.4 Other consequences of dualities and symmetries

In this section, we explore some further consequences of the results derived thus

far. First, we note that the relation (A.2) means that for a coupled replica system
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at parameters (J, ε), the probability of a particular configuration of the overlap

variables q is the same as the probability of finding the configuration σ = q

for a single system in a field, with parameters (J ′, h = ε). From a numerical

perspective, the single system in a field is much simpler to simulate, and the

result (A.2) means that such a simulation provides direct access to all observables

based on the overlap variables. (This result is much stronger than a mapping at

the level of free energies.)

Second, for a geometrical interpretation of the duality relation (A.9), we refer

to Figs. 5.1(b) and 5.1(c). The original coupled system can be thought of as a

lattice consisting of two parallel layers, a and b. The duality relation (A.9) may

be interpreted as a mapping between two different two-layer systems, where the

plaquette energy scale in one model determines the interlayer coupling in the other,

and vice versa. Fig. 5.1(c) illustrates this situation, in which the interlayer ‘bonds’

in the original system intersect the intralayer plaquettes in the dual system, and

vice versa. This geometrical way of seeing the duality easily generalises to other

lattices and plaquette interactions.

Third, the duality relation for a plaquette model in a field can be used to analyse

the behaviour of its free energy in the vicinity of a (presumed) critical point. We

assume that a critical point exists somewhere on the self-dual line, and that this

critical point is in the Ising universality class, as is found generically [97] (see also

below). The free energy is singular at the critical point (hc, Jc), and the form of

this singularity is universal. Given (5.6), it is convenient to define

Fsymm(h, J) = F1(h, J) +
N

2
ln sinh(2βh), (5.9)

The singular behaviour of Fsymm is the same as that of F1 since the added term is

regular. The reason for introducing Fsymm is that the duality relation (5.6) now

reads simply

Fsymm(h, J) = Fsymm(h̃, J̃). (5.10)
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Figure 5.2: Illustration of the relation between critical behaviour of the Ising model

and the TPM. (a) Ising phase diagram. the hI = 0 axis is a symmetry

line, there is a critical point indicated by a circle, with a first-order (phase

coexistence) line for large JI , indicated by a solid line. Selected lines of

constant JI are indicated by dotted lines. (b) The corresponding situation

for the TPM in a field. On the solid/dashed line (5.7), the system has a

discrete (Z2) symmetry: a critical point and phase coexistence both occur

on this line, as indicated. The dotted lines are obtained from (5.13) for three

different values of h0, and correspond to the lines of constant JI in panel

(a). Near the critical point, they indicate the direction of the most relevant

renormalisation group flow.

To investigate the universal behaviour of Fsymm, we introduce fields H = H(h, J)

and J = J (h, J). These fields are defined to be equal to zero at the critical point,

and will correspond to the directions in parameter space that are relevant under

the renormalisation group. The universal character of phase transitions means

that these fields can be chosen such that

Fsymm(h, J)− Fsymm(hc, Jc) ' a0[FI(H,J )− FI(0, 0)] (5.11)

where a0 is a constant and FI(H,J ) is the free energy of an Ising model in a field

hI = H and with coupling JI = Jc,I + J , in which Jc,I is the critical coupling of
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Figure 5.3: Simulations of the TPM in a field. (a) Distribution of the magnetisation

at various values of J for state points on the self-dual line (5.8), at system

size L = 128. The bimodal distribution P (m) indicates a first-order transi-

tion, which disappears on reducing J . From (A.2), the same distributions

would be obtained when considering the overlap between two coupled TPMs,

at appropriate state points. (b) Representative configuration at phase co-

existence (βJ = 2.9 and L = 128) showing interfaces between regions of

small and large magnetisation (corresponding to regions of small and large

overlap in the two-replica problem). (c) At our estimated critical point,

(Jc = 2.634, hc = 0.072) and for various system sizes, we show distributions

of the variable x that is obtained by rescaling the order parameterM to zero

mean and unit variance. The full line is the corresponding result for the 2d

Ising model at criticality, indicating that the critical point of the TPM in a

field (and therefore of the two coupled TPMs) is in the 2d Ising universality

class.
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the Ising model. The approximate equality in (5.11) accounts for non-universal

contributions which are negligible for sufficiently large systems and close enough

to the critical point.

The symmetry of the Ising model under inversion of the field hI means that

FI(H,J ) = FI(−H,J ). The corresponding symmetry relation for the TPM is

(5.10), and the operation of this symmetry should invert the magnetic field H but

preserve the coupling J in the equivalent Ising model. Hence the functions H and

J should satisfy

H(h̃, J̃) = −H(h, J), J (h̃, J̃) = J (h, J) (5.12)

A geometrical interpretation of (5.11) is shown in Fig. 5.2. The self-dual line (5.7)

corresponds to the symmetry lineH = 0, which corresponds to hI = 0 for the Ising

model. We now derive TPM analogs of the dotted lines JI = const. in Fig. 5.2(a).

That is, we seek curves J(h) such that J (h, J(h)) is constant.

In fact, since (5.11) applies only close to the critical point, it does not fully fix the

dependence of H and J on (h, J). However, a consistent choice for the family of

curves with constant J is

βJh0(h) = − ln tanh(2βh0 − βh). (5.13)

This family of curves is illustrated by the dotted lines in Fig. 5.2b. Each curve is

associated with a parameter h0, which is the value of the field h at which it crosses

the self-dual line. The dual of any point on the curve Jh0(h) is easily verified to be

(J̃ , h̃) = (Jh0(2h0 − h), 2h0 − h), which also satisfies (5.13), consistent with these

two points having the same value of J (recall (5.12)). It also follows from (5.6)

that Fsymm is a symmetric function of h− h0, when evaluated on these lines, just

as FI(H,J ) is a symmetric function of H, when evaluated at fixed J .
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These curves are useful because the function FI(H, 0) is the cumulant generating

function for the magnetisation of the Ising model at criticality. One obtains cumu-

lants by taking derivatives with respect to H. Differentiating (5.11) in this way,

evaluation of the right hand side requires (∂h/∂H)J and (∂J/∂H)J . In fact it is

sufficient to have the ratio of these derivatives, (∂J/∂h)J , but since (5.13) defines

lines of constant J , this is simply J ′h0
(h) = −2/ sinh(4βh0−2βh). Evaluating this

derivative on the self-dual line yields J ′h0
(h0) = 2 sinh βJ0 where J0 = − ln tanhh0

is the value of the coupling at that point (recall sinh 2βh0 sinh βJ0 = 1 for points

on the self-dual line). Hence we have from (5.11),(
∂

∂H

)m
FI(0, 0) ∝

(
∂

∂h
+ 2 sinh βJ

∂

∂J

)m
Fsymm(hc, Jc) (5.14)

The left hand side is proportional to the mth cumulant of the Ising magnetisation.

All cumulants with odd m are zero by symmetry. An explicit calculation using

the symmetry (5.10) shows that the right hand side is also zero for odd m, as

required. (Note also that one expects corrections to (5.14) due to non-universal

contributions, as in (5.11)).

To obtain a more direct intepretation of the right hand side of (5.14), recall that

(−∂h)mF1 is the mth cumulant of the magnetisation M =
∑

i σi in the TPM,

and (∂J)m[F1 + (NJ/2)] is the mth cumulant of the number of defects, Nd =

1
2

∑
µ(1− τµ). We therefore define an order parameter for the TPM

M = −T
(
∂

∂h
+ 2 sinh βJ

∂

∂J

)
[F1 + (NJ/2)]

= M − 2Nd sinh J, (5.15)

Using (5.9) and (5.14), and working at the critical point of the TPM, one sees that

cumulants M may be written as a sum of terms, one of which is proportional to

an Ising model cumulant (∂H)mFI(0, 0), while others are non-universal corrections.

Close to the critical point, the even cumulants ofM show singular behavior while

the corrections remain regular. Hence, for systems large enough that the singular
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terms dominate the regular ones, we expect the critical distribution of M in the

TPM at criticality to match the critical distribution of the Ising magnetisation.

This prediction will be verified numerically in the following section.

5.2 Numerical results for the TPM in a field

We performed numerical simulations of the TPM in a field, to analyse its phase

behaviour. Working always on the self-dual line (5.8) we use continuous time

Monte Carlo simulations [105,106] to sample a reweighted Boltzmann distribution

P (σ) ∝ b(M(σ))e−βEJ (σ)+βhM(σ), where b(M) is a bias function and M(σ) =
∑

i σi

is the magnetisation. We measure the resulting distribution Pb(M) of the mag-

netisation, but we choose the function b(M) so that this sampled distribution

does not include any deep minima (free energy barriers) [107]. The ‘true’ dis-

tribution P (M) associated with the unbiased model is then easily obtained as

P (M) ∝ Pb(M)/b(M).

The bias potential b(M) is chosen such that b(M) ≈ 1/P (M) within a range of M

close to its mean. Outside this range we take b(M) independent of M (and b(M)

is continuous at the edge of the range). This means that the sampled distribution

Pb(M) is approximately constant over a range close to its mean. In practical

terms, we start at a relatively high temperature T for which sampling is easy and

we collect Ns representative configurations σr with r = 1, 2, . . . , Ns. We typically

take Ns in the range 103 − 104: these samples are not fully independent from

each other but the sampling runs are long enough that the configurations fully

decorrelate within each run. For each sample, we store both the magnetisation

Mr = M(σr) and the number of defects Nd,r = Nd(σ
r) as prescribed by (5.2).

This provides an estimate for a suitable bias potential for further simulations at
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this temperature:

b(M) ∝ 1∑
r δM,Mr

(5.16)

where δM.M ′ is the Kronecker delta, so 1/b(M) is the empirical distribution of

M . Clearly (5.16) can be used only in the range of M for which one has good

sampling: for large systems it may also be useful to smooth b(M) by forming a

histogram with a suitably chosen bin width.

We now reduce the temperature to T −∆T , which corresponds to an increase in

J/T of ∆J = J/T − J/(T − ∆T ). We also reduce the parameter ε/T by ∆ε so

that the system remains on the self-dual line (5.7). It is easily verified that given

sufficient sampling,

1

b∆(M)
∝ 1

b(M)

∑
r

δM,Mre
−∆JNd,r−∆εMr (5.17)

converges to the (unbiased) distribution P (M) at the new state point. We choose

a value of ∆T that is small enough for this estimate to be reasonably accurate

(essentially this requires that the exponential weights in (5.17), do not result in

concentration of the probability onto too small a fraction of the samples). Then

b∆(M) is used as a bias potential for a simulation at this new state point. Repeat-

ing this procedure allows the temperature to be further reduced. The advantage

of the method is that the histogram of M being sampled is approximately flat

at each stage. In contrast to unbiased simulations (b(M) = 1 for all M), this

method is useful when P (M) has two peaks separated by a deep minimum, in

which case unbiased calculations tend to sample only from one peak or the other,

and rarely make transitions between them. However, the flat histogram method

facilitates these transitions: see [107] for a review of these kinds of method. We

note in passing that this scheme could also be implemented usingM as the order

parameter: we would expect similar performance in this case.

Figure 5.3(a) shows numerical evidence that for large J (and small h), the self-
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Figure 5.4: Phase diagrams of coupled plaquette models, the two-dimensional TPM

(left) and the three-dimensional SPyM (right). The full line corresponds

to a line of first-order transitions between a thermodynamic phase of small

overlap and one of large overlap between the replicas. This curve is on the

self-dual line (5.8) (dashed line). The first-order transition line ends at a

critical point that is in the 2d Ising universality class for the TPM and the

3d Ising universality class for the SPyM.

dual line is associated with a first-order phase transition: see also Ref. [98]. The

figure shows the distribution P (m) of the magnetisation density m = M/N , for

three state points on the self-dual line. At large J the distribution is bimodal,

characteristic of first-order coexistence. A typical configuration at these conditions

is shown in Fig.5.3(b), showing coexistence of low- and high-m regions, separated

by sharp interfaces, as expected for a first-order transition. Based on smaller

systems, a previous study [98] speculated that phase separation would not occur

for the TPM in a field, but our results show that this does indeed occur large

enough systems are considered. Given the mapping (A.2), Fig. 5.3(b) is also

a representative configuration of the overlap between two coupled replicas, for

suitable (J, ε).
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As J is decreased (or equivalently, temperature and field are increased) along the

self-dual line, the bimodality in P (M) becomes less pronounced and eventually

disappears. Fig. 5.3(a) indicates that the first-order line terminates at a critical

point (Jc, hc) with Jc ≈ 2.6. To identify the universality class of this phase tran-

sition, we performed a finite-size scaling analysis, using the order parameter M
defined in (5.15). Note that if all spins are up, one has M = N and Nd = 0,

giving M = N . On the other hand, in a state with h = 0 then M = 0 and

Nd = 1/(1 + eJ), at low temperatures this gives M ≈ −N . In general, one

expects a crossover between these two limits as h is increased from 0, with the

crossover occuring near M = 0.

As discussed in Sec. 5.1.4, one expects the distribution of M at the critical point

to be close to the distribution of the magnetisation in a critical Ising model. This

provides a sensitive method for identifying the critical point. In order to match

the shape of the distribution, it is convenient to subtract the mean of M and

rescale so that the distribution has unit variance. We accomplish this by defining

x = (M−〈M〉)/
√
〈(M− 〈M〉)2〉. Working at the critical point, we then expect

P (x) to be independent of the system size, and that P (x) for the TPM should

also match with a similarly rescaled distribution of the magnetisation of the 2d

Ising model. This allows the critical point to be estimated as the temperature for

which P (x) is independent of L and matches with its known Ising form.

We find these conditions to be satisfied for a coupling J/T = 2.634 (with h/T cho-

sen to be on the dual line). The resulting scaling collapse is shown in Fig. 5.3(c),

which includes data for the TPM at three system sizes, and data for a 2d Ising

model at criticality [108]. The data collapse is not perfect but correspondence

with the universal (Ising) form is increasingly good as the system size increases,

consisent with the singular terms in the free energy becoming dominant at the

system size increases (recall Sec. 5.1.4). These data confirm the Ising univerality
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class of this phase transition. Note that this collapse implies that cumulant ratios

such as 〈δM4〉/〈δM2〉2 must take the appropriate universal values, independent

of system size. Hence the data in Fig. 5.3c is sufficient to ensure that cumulant

ratio crossings (see for example [97]) also take place at this estimated critical tem-

perature. (Note also that while the critical distribution of the order parameter is

bimodal, the transition is second order [108]: the separation of the peaks vanishes

as the system size L → ∞ and the depth of the trough between them remains

constant, in contrast to first-order transitions for which the peaks spacing remains

constant and P (M)→ 0 in the trough.)

We also calculated the ratio of the susceptibilities χ = L−d〈δM2〉 at criticality,

for the system sizes L = 128 and L = 256. We find χ(L = 256)/χ(L = 128) =

3.36. Theory predicts that the susceptibility should scale as χ ∝ Lγ/ν where

(γ, ν) = (7/4, 1) are the susceptibility and correlation length exponents for 2d-

Ising universality. This yields a prediction for the ratio of our susceptibilities of

2567/4/1287/4 = 27/4 ≈ 3.364, which is consistent with our results.

Bringing together these results, we arrive at the phase diagram shown in Fig. 5.4.

We re-introduce the temperature T = β−1 as an explicit parameter and plot the

phase diagrams as a function of T/J and ε/J since this is conventional representa-

tion in supercooled (glassy) liquids. The form of this phase diagram was proposed

in [36]. However, the results here now provide both the correct location and uni-

versality class of the critical point as compared to that work, whose arguments

were based on the incorrect assumption that the TPM in a field was equivalent to

the generalised Baxter Wu model [109]. Our finding that the critical point is in

the Ising class is interesting, since this is the expected result from other general

arguments [102], and what is observed in simulation of coupled liquids [103,104].

A key feature of the plaquette models is that the first-order transition line does



5. Dynamical and static transitions in plaquette models of glasses
107

not intersect the ε = 0 axis except at T = 0 [36]. However, the duality line at

low temperatures is βε ' 2e−βJ , so the field ε = ε∗ at which the first-order phase

transition takes place is very small. Indeed, simple extrapolation of the first-order

line from high-temperature data might lead one to propose a phase transition at

ε = 0 and some T = TK > 0, as predicted in mean-field theories [11]. In this

case the scenario shown in Fig. 5.4 might be hard to distinguish from the mean-

field picture. However, direct simulations near this proposed phase transition (if

possible) would demonstrate that there are no diverging fluctuations as near the

first-order transition line, in contrast to the mean-field scenario where length and

time scales diverge at TK .

5.3 Active-inactive dynamical transitions in the

TPM

The TPM falls into a category of glassy models that are thermodynamically simple

but where glassy behaviour arises because of non-trivial dynamical pathways to

the equilibrium state at low temperature [27,28,34,110]. In fact, the dynamics of

the TPM [34] is closely related to that of a two-dimensional East model [27,28,96].

Many kinetically constrained models, including the East model (see section 4.3.3),

display dynamical phase transitions – phase transitions in the space of trajectories

– between a phase with a high dynamical activity, K, and one with low dynamical

activity [12].

For these lattice models, the models evolve in time by flips of spin variables (for

plaquette models, these are the σi variables). Each time a spin changes its state,

this changes the configuration of the system: the activity K is again defined as the

total number of configuration changes in a trajectory [16,47], with a time-intensive
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activity,

k(s) ≡ 〈K〉s/τ. (5.18)

Like the East model, the dynamical relaxation of the TPM is hierarchical, due

to energy barriers to relaxation that are logarithmic in the linear size of relaxing

regions [28]. This in turn leads to a “parabolic” [111] super-Arrhenius law for

the typical relaxation time in equilibrium as a function of temperature. Given

the similar dynamical properties of the TPM and the East model dynamics, a

natural question is whether the TPM also displays active-inactive dynamical phase

transitions.

In order to answer this question numerically we again make use of transition path

sampling (TPS) to efficiently sample trajectories in the s-ensemble. These systems

are computationally expensive, so the efficiency provided by the x-ensemble is of

great benefit, however for clarity of comparison to prior results we convert back

to the s-ensemble, as in Chapter 4.

Figure 5.5 shows the results of the s-ensemble analysis of the TPM. It shows the

average activity for a system of size N = 8× 8 as a function of s, at temperature

T = 0.5 (note this is the TPM in the absence of field). As the length of the

trajectories is increased the change in 〈K〉s becomes more pronounced, as seen in

the corresponding susceptibilities. This is indicative of a first-order transition at

some sc & 0. Similar size scaling is observed by changing system size, as shown in

the insets. The dependence of this transition on the temperature is discussed in

Sec. 5.4.3 below, together with similar results for the (three-dimensional) SPyM.

We note at this point that these transitions are inherently dynamical in nature.

For example, one might also consider a plaquette model that involves in time

by dynamical rules in which single plaquette variables may change their state

independently. In this case the dynamics is that of a (grand canonical) free gas of
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Figure 5.5: Average activity k(s), and the associated susceptibility χ(s) in the TPM at

T = 0.5. The main panels show data for system size L = 8. These results

were obtained by the x-ensemble method (see text), using trajectories with

fixed numbers of events K, as shown. On increasing the trajectory length,

the crossover from active to inactive behaviour becomes increasingly sharp

and the susceptibility peak increases. The behaviour for smaller systems

(L = 4) is shown in the insets, with both quantities normalised by the

system size. In the absence of a phase transition, one expects both k(s)/Ld

and χ(s)/Ld to be independent of L, so the sharper crossover at L = 8 is

again consistent with an underlying phase transition.

defective plaquettes and the statistics of K are simply those of a Poisson process

(the same situation is observed when considering kinetically constrained models

from which the constraint has been removed [12]). Similarly, the transition in the

coupled replica system of the previous section is also destroyed if one measures the
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overlap at the defect level (that is, one replaces Q in (5.4) by Qd =
∑

µ τµτ
′
µ). In

summary, observation of the phase transitions discussed in this chapter requires a

suitable choice of order parameter (Q not Qd), and the dynamical phase transitions

also depend on the dynamical rules by which the systems evolve.

5.4 Overlap and activity transitions in a three-

dimensional plaquette model

In order to explore whether the static and dynamical transitions found above for

the TPM are present in dimensions other than two it is of interest to generalise

the TPM to higher dimensions. One of the reasons is that if one wishes to consider

plaquette models to study “quenched” coupled replicas [11, 102, 103] or “random

pinning” [112–114] the distinction between two and three dimensions may be very

significant, due to the inability of two-dimensional systems in random fields to

support first-order static transitions [115]. Here we introduce a three-dimensional

model that is similar to the TPM.

5.4.1 Model

The model we consider is defined on a three-dimensional body-centred cubic (bcc)

lattice. The “plaquettes” are upward-pointing square-based pyramids, each con-

taining five spins. Considering the standard bcc unit cell, one such pyramid is

formed by the spin at the centre of the cube together with the four spins at the

corners of the lower face: see Fig. 5.6. We call this model the square pyramid
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Figure 5.6: (a) The SPyM consists of spins (grey circles) on the sites of a BCC lattice,

which interact in quintuplets at the vertices of upward pointing square pyra-

mids. One such pyramid is indicated; the central spin also participates in

four other upward pointing pyramids whose apexes are the four spins on the

upper face of the cube.

plaquette model, or SPyM. Its energy function reads,

EJ(σ) ≡ −J
2

∑
µ

σiµσjµσkµσlµσmµ (SPyM) (5.19)

where µ runs over all the pyramidal plaquettes on the lattice, and the location of

the five interacting spins σiµ · · ·σmµ is shown in Fig. 5.6. This is “model 1” of [97].

Just like the TPM, the SPyM has a one-to-one correspondence between spin and

plaquette configurations. An alternative model [35, 97] may be defined on a face-

centred cubic lattice, in which the plaquettes are tetrahedral pyramids (“model 2”

of [97]). However, in this case each interaction involves four spins so the system

has a global spin-flip symmetry, and the spin-plaquette correspondence is not

exact in finite (periodic) systems. However, these deviations from the one-to-one

correspondence are irrelevant in the thermodynamic limit.

Returning to the SPyM, we explicitly demonstrate the one-to-one correspondence

between spins and plaquettes, by a general method that applies also to the TPM.
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The total number of configurations of the spin variables is 2N , and this is also equal

to the total number of configurations of the plaquette variables, by construction of

the model. For any spin configuration, the configuration of the plaquette variables

is uniquely specified since the τµ are defined in terms of the spins σi. However,

it might be that some plaquette configurations can be achieved by more than one

spin configuration, in which case the mapping is not one-to-one (this happens for

example in the square plaquette model [100] with periodic boundary conditions).

In that case the equal numbers of spin and plaquette configurations means that

there must exist plaquette configurations that cannot be realised by any realisation

of the spin variables. To rule this out and establish the one-to-one mapping, we

now show how a spin configuration may be constructed for any given plaquette

configuration.

We choose as basis vectors for the lattice ~a1 = (1, 0, 0), ~a2 = (0, 1, 0) and ~a3 =

(−1,−1,
√

2)/2. We focus on systems whose sites are at l~a1 + m~a2 − n~a3 with

l,m, n ∈ {0, 1, 2, . . . , L − 1}, with periodic boundaries (so for example sites with

n = L − 1 are neighbours of those with n = 0). We indicate the location of the

µ-th pyramid by the position of the spin at the apex. The plaquette variable τµ

for µ = (i, j, k) is then

τ(i,j,k) = σ(i,j,k)σ(i,j,k−1)σ(i−1,j,k−1)σ(i,j−1,k−1)

×σ(i−1,j−1,k−1). (5.20)

Following the same reasoning as in [35] we can invert this relation in terms of a

“Pascal pyramid”: the idea is to demonstrate that introducing a single defect into

the system corresponds to flipping a particular set of spins.

Starting from the ground state, we demonstrate the procedure by introducing a

single defect at the origin: this affects those spins in upper layers which lie on

the sites of an inverted Pascal pyramid (or fractal pyramid). Assuming that the
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central spin in Fig. 5.6 is at the origin, we flip that spin, which introduces a defect

in the pyramid below it. In order to avoid any other defects, we also flip the four

spins on the top face of the cube shown in Fig. 5.6, which ensures that there are

no defects in any of the pyramids pointing upward from the origin. Iterating this

procedure for all other layers, the final spin configuration is

σ(i,j,k) = 1− 2

 k

i

 k

j

 mod 2

 , (5.21)

where ( nr ) = n!
r!(n−r)! are combinatorial numbers, and 0 ≤ i, j ≤ k (all other spins

σ(i,j,k) = 1). Given periodic boundary conditions, this procedure determines all

spins in the system: on setting the final layer of spins, it may be that defects in the

final layer are unavoidable. However, for systems whose linear size L is a power

of 2, it is easily shown that this procedure produces a final state with exactly one

defect.

Now observe that for any spin configuration, flipping the set of spins for which

σ(i,j,k) = −1 in (5.21) inverts the state of the plaquette variable just below the

origin, leaving all other plaquette variables constant. Similarly, to flip the state

of any other plaquette, one applies a spatial translation to the same set of spins,

and flips all the spins within this translated set. Hence, by repeatedly applying

this procedure, one can generate a spin configuration that corresponds to any

given configuration of the plaquette variables. This establishes the one-to-one

correspondence between spin and plaquette configurations, by the argument given

above.

This correspondence between spin and defect configurations means that the ther-

modynamics of the SPyM is that of a free binary gas of plaquettes. Furthermore,

the relaxational dynamics is similar to that of a (three-dimensional) East model.

Figure 5.7 shows the decay of the energy at low temperatures starting from a

T = ∞ configuration. We see the characteristic hierarchical decay of both the
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Figure 5.7: Relaxation of the energy of the SPyM at low temperature starting from a

random configuration (the system size is L = 16). The curve shows the

characteristic plateaus indicative of hierarchical relaxation, as in the East

model and the TPM. Inset: average relaxation time as a function of inverse

temperature, showing super-Arrhenius behaviour.

East model and the TPM: the energy decays in steps with characteristic time

scales τn = enβJ with n = 0, 1, 2, . . . . These steps become apparent when plotting

as a function of the rescaled time variable (T/J) ln t [116]. The inset to Fig. 5.7

shows that the equilibrium relaxation time of the SPyM is super-Arrhenius, as in

the East model and the TPM.

5.4.2 Phase transition in (annealed) coupled replicas

The SPyM possesses the exact duality described in Appendix A. In particular,

the properties of the SPyM in a field were studied in Ref. [97] (“model 1” of that

paper), where it was found that on the self-dual line there is a first-order transition

between phases of small and large magnetisation terminating at a critical point in
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the 3D Ising class. From those results we can directly infer the phase diagram of

the two coupled SPyMs via the mapping of Appendix A. The result is shown in

Fig. 5.4. This phase diagram is similar to that of the TPM, except that the range

of phase coexistence is larger and the critical point occurs at higher temperature.

5.4.3 Evidence for a dynamical (space-time) phase transi-

tion

As well as the phase transition for coupled replicas in the SPyM, we also present

evidence for a space-time phase transition, similar to that shown for the TPM

in Fig. 5.5. The results for the SPyM are shown in Fig. 5.8, for temperature

T/J = 0.65 and linear system size L = 4. There is good evidence for a sharp

transition at s = s∗ > 0, as found in the TPM.

In Fig. 5.8(b,c), we show how the crossover in activity varies with the temperature

T/J , for both the TPM and the SPyM. Simple estimates [117, 118] indicate that

if the inactive state is metastable and relaxes to equilibrium via some kind of

nucleation process with rate γnuc per unit volume, then s∗ ≈ γnuc/δk, where δk

is the activity difference (per unit space-time) between the active and inactive

states [117]. We attribute the existence of the transition in this model to a stable

inactive state with almost no defects. We expect that the rate for relaxation back

to equilibrium is a strongly decreasing function of temperature, which is consistent

with the increasing s∗ as T/J increases. (The activity difference ∆k between active

and inactive states increases with T/J but this dependence is much weaker than

that of the relaxation rate.)

Comparing Figs. 5.4 and 5.8, a natural question is whether the crossover lines

identified in Fig. 5.8(b) and 5.8(c) are indeed first-order phase transition lines, and
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Figure 5.8: (a) Activity as a function of s in the SPyM for system size L = 4, various

trajectory lengths, and T/J = 0.65. The inset shows the corresponding

susceptibility. (b) and (c) s-ensemble phase diagrams for the TPM and

SPyM. The full curves are an estimate of the transition point from the

simulations. The dashed lines are extrapolations in the low temperature

regime inaccessible to numerics.
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whether the true phase behaviour involves a first-order line for low temperature

that terminates at a critical point. Our numerical results are not sufficient to

answer this question, due to the significant computational expense of sampling

the s-ensemble. However, we expect on general grounds that the situation should

be similar to the softened Fredrickson-Andersen model considered in [99], in which

case the first-order line would indeed end at a finite-temperature critical point.

This scenario is consistent with the results presented here.

5.5 Discussion

5.5.1 Connection of phase transitions to long-lived metastable

states

The phase behaviour shown in Figs. 5.4 and 5.8 reveals striking similarities be-

tween thermodynamic transitions (for coupled replicas) and dynamic transitions

(based on dynamical activity). The two transitions are distinct and we do not

believe that they are related by any exact mapping. Nevertheless, we argue in

the following that these transitions are connected to the existence of long-lived

metastable states, which are intrinsically linked to the glassy behaviour in these

systems.

Consider first transitions for annealed replicas. If we work at the phase coexis-

tence point, but within the high-overlap phase, the system occupies low-energy

states. For ε = 0, these states would be metastable (with finite lifetimes). This

metastablility means that when localised low-overlap regions are generated by

thermal fluctuations, these regions tend to shrink, just as small fluctuations tend

to shrink within classical nucleation theory. Escape from the metastable state
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requires a collective process that operates on some finite length scale. As ε is

increased from zero, this length scale increases, as does the associated free en-

ergy barrier: both diverge at the coexistence point where the high-overlap phase

becomes stable.

The situation for dynamical phase transitions is similar, except that one should

think of trajectories of the system as (d+1)-dimensional objects that exist in space-

time. If one works at the dynamical phase coexistence point (some s = s∗ > 0)

then inactive trajectories dominate the s-ensemble. During these trajectories,

the system remains localised in low-energy metastable states, with small thermal

fluctuations of the activity, associated with space-time “bubbles” [50]. If the tra-

jectory length τ is less than the time required for escape from the metastable state,

similar inactive trajectories can be generated with unbiased (s = 0) dynamics, by

taking initial conditions from low-energy metastable states. Transformation of

such a trajectory into a typical equilibrium trajectory involves the introduction of

an active space-time bubble, which subsequently grows to macroscopic size. The

connection with metastability arises because if one introduces a small active bub-

ble within an inactive trajectory, one expects to incur a cost in probability (if this

were not the case, the state would not be metastable since it would readily relax

back to equilibrium). As in the case of overlap fluctuations, the critical bubble

size and the probability barrier increase as s is increased from zero, diverging at

the coexistence point.

We argue that this analogy between phase coexistence phenomena induced by s-

and ε-fields provides a qualitative explanation of the similarity between Figs. 5.4

and 5.8, in that both are linked to the existence of metastable states that can

be observed in unbiased (s = 0 = ε) systems. The relevant metastable states

have low energy: both the inactive state of Fig. 5.8 and the high-overlap state of

Fig. 5.4 have much lower defect concentrations than the equilbrium average value
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c ≈ e−βJ . For large s, the system minimises its propensity for dynamical activity

by removing defects, so that Nd/N ≈ 0; for large coupling ε it is easy to show

that Nd/N ≈ e−2βJ since the system has an effective temperature 1/(2β) [119].

(Considering the partition function (5.5), for large ε we have σa ≈ σb in which

case the Boltzmann factor in (5.5) reduces to e−2βEJ (σa)+εN , and the distribution

over configurations σa is equilibrium-like at temperature 1/(2β). The general case

considered in [119] involves m coupled replicas in the case where the coupling

is strong enough to localise all replicas in the same metastable state, but weak

enough that it has a negligible effect on intra-state fluctuations.)

Evidence for phase coexistence induced by s and ε-fields have both been pre-

sented in atomistic models [13, 103]. By contrast, in kinetically constrained mod-

els (KCMs), dynamical phase coexistence can be induced by the s-field [12] but

there is no such transition as a function of ε. Metastable states can be identified

in KCMs [118] – here a state is defined [120] as a region of configuration space

for which the equilibration time within the state is much smaller than the time to

escape from it. (As argued in [120], this is a robust definition in finite-dimensional

systems at ε = 0, for which mean-field constructions break down.) Given this

definition of metastability, phase coexistence at positive s may be expected, as

argued above. However, this metastability does not lead to phase coexistence for

any ε: in fact the free energy for two coupled KCMs can be obtained exactly and

the statistics of the overlap are trivial in this case. Clearly the static construction

based on coupled replicas does not reveal the metastability in this model: the

reason is that the kinetic constraints generate metastable behavior by reducing

the ability of the system to evolve from high-overlap to low-overlap states. (To

see this, note that if one removes the kinetic constraints, the metastable states

disappear but the results for coupled replicas do not change.)

A similar situation occurs when considering plaquette models with different over-
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lap measures and different rules for their dynamical evolution. As discussed in

Sec. 5.3, changing the dynamical rules of the plaquette models so that plaque-

tte (defect) variables flip independently destroys the dynamical phase transition.

(Viewing the plaquette models in a defect representation, this is equivalent to

removing a kinetic constraint [28].) Also, changing the definition of overlap from

Q to Qd =
∑

µ τµτ
′
µ means that the phase transition for the coupled replicas is

lost. (This also happens in plaquette models on random graphs for which exact

mean-field calculations are possible [121].)

The general point here is that the natural dynamical definition of metastabil-

ity [120] coincides with the presence of phase transitions for coupled replicas only

if the natural dynamics of the system leads to unconstrained local changes in the

overlap. So if the dynamics has (unconstrained) single spin flips then the natural

overlap parameter is the spin overlap and one observes both static and dynamic

transitions in plaquette models. If the dynamics has independent changes to de-

fect variables and one uses the defect overlap then both static and dynamical

transitions are lost, so the two constructions are still consistent with each other.

If one uses spin flip dynamics and an overlap based on defects then the dynamical

transition survives but the coupled replicas are insensitive to it. (This is similar

to the KCM case: the dynamical rules for defect variables in plaquette models

are constrained but the spin-overlap is not sensitive to this constraint). Finally

if one uses independent-defect dynamics but an overlap based on spins then the

dynamical transition is lost but the static one survives: the dynamical and static

constructions probe different aspects of the system in this case and give different

results.

We end this section by noting that the inactive and high-overlap states in Figs. 5.4

and 5.8 are structurally distinct from equilbrium states at temperature T , and

also from the active and low-overlap states. For example, as noted above, con-
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Figure 5.9: Three dimensional stack of coupled two-dimensional TPMs.

figurations deep inside the high-overlap phase have energies and spin correlation

functions representative of equilibrium at temperature T/2 while the low overlap

phase is close to an equilibrium state at temperature T . The states observed at

finite ε are not exactly the equilibrium states at temperature T or T/2 that are

found for ε = 0 or ε→∞, but their properties are qualitatively similar, and there

is a significant jump in the energy EJ(σ) on crossing the first-order transition

line. This is quite different from ensembles with a quenched coupling between

replicas [122,123], where the structures of high- and low-overlap states should be

statistically (almost) indistinguishable, with (at most) a small discontinuity in

EJ(σ) at the transition (see also [112]).

5.5.2 Connection between multiple coupled replicas and

biased-activity ensembles

The connection between Figs. 5.4 and 5.8 can be further motivated through a

generalisation of the coupled two-replica system discussed above. Given a pla-

quette model in dimension d, consider the associated d + 1 system composed of

many replicas of the d-dimensional system arranged parallel to each other along
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the extra dimension, see Fig. 5.9. Such system of n coupled replicas has an energy

En(σ1, σ2, . . . , ) ≡ EJ(σ1) + EJ(σ2) + · · ·

−ε
∑
i

(
σ1
i σ

2
i + σ2

i σ
3
i + · · ·

)
. (5.22)

Using the methods of Refs. [36, 98, 109] it is easy to prove that the partition sum

of the (d+ 1)-dimensional problem also has an exact duality:

Zn(J, ε) = (sinh βJ sinh βε)NnZn(J∗, ε∗), (5.23)

where we have assumed periodic boundary conditions in the transverse direction,

and (J, ε) and (J∗, ε∗) are related again by (A.9). Similar results were found

in [124, 125] for other classes of plaquette models. Given this duality we expect

the phenomenology of this many-replica system to be similar to that of two repli-

cas, except that any phase transitions should be in the (d + 1)-dimensional Ising

universality class (assuming that both longitudinal and transverse dimensions are

taken to infinity in the thermodynamic limit).

The partition sum Zn has a natural transfer matrix representation in the transverse

direction, Zn = Tr(Tn), with

T = coshN(βJ/2)eNβε
⊗
µ

[
1 + tanh(βJ/2)σziµσ

z
jµ · · · σzkµ

]
⊗
i

(
1 + e−2βεσxi

)
, (5.24)

where σx,z are Pauli matrices. This in turn can be related to the generator of

(imaginary time) quantum evolution in the usual manner [124, 125] when the

transverse coupling is large and the longitudinal one small [e−2βε, tanh(βJ/2)� 1],

so that Zn ∝ exp (−tH), with

H ≡ −h
∑
i

σxi − g
∑
µ

σziµσ
z
jµ · · ·σzkµ , (5.25)

where

δt h = e−2βε, δt g = βJ/2, t = nδt. (5.26)



5. Dynamical and static transitions in plaquette models of glasses
123

The Hamiltonian (5.25) generates dynamics in the transverse direction. While it

is not derived from a stochastic operator it has the basic features of the genera-

tor [12,16] for the dynamical ensemble defined in (2.39): an off-diagonal part (the

σx terms) that perform configuration changes and a diagonal part (the σz) plaque-

tte terms associated to the escape rate. The parameter s in the s-ensemble oper-

ator controls the relative strength of the diagonal and off-diagonal terms [12, 16],

in analogy with the balance between h and g in (5.25). Furthermore, the dual-

ity (5.23) implies a duality h ↔ g in (5.25), with the possibility of a dynamical

transition at that self-dual point g = h. This connection between a static transi-

tion in the d+ 1-dimensional problem (5.22) (itself closely connected to the static

transition in the two-replica plaquette system) and a dynamical transition in the

d-dimensional system (5.25) provide another rationalisation of the similarities be-

tween Figs. 5.4 and 5.8.

5.5.3 Outlook

Plaquette spin models have several features that make them attractive for studies

of the glass transition. As we have shown here, exact results can be derived,

which guide numerical studies of phase behaviour and many-body correlations.

The models are also computationally much less demanding than atomistic models

of supercooled liquids, so that (for example) finite size scaling over a large range

of system sizes can be performed, to analyse phase transitions. The equilibrium

relaxation of the models follows a dynamical facilitation scenario, in which point

defects play a central role. However, there are strong many-body correlations, and

the statistics of overlap fluctuations are rich and complex, as anticipated in the

theory of Franz and Parisi [11]. In this sense, the models provide a bridge between

different theories. Indeed, as argued in [100], one might describe plaquette models

by a modified form of RFOT, but with two important caveats: (i) the analogue
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of the Kauzmann transition occurs at zero temperature in these models (ii) the

interfacial cost associated with growing droplets of a new state within a typical

equilibrium state scales logarithmically in the droplet size (not as a power law as

anticipated by RFOT).

Looking forward, we hope that further work on plaquette models (particularly in

d = 3) will show to what extent mean-field [11] and RFOT ideas can be modified

to apply in this setting. We can imagine that the apparently different physical

pictures envisaged by thermodynamic and dynamical theories of the glass tran-

sition [7] might both be applicable in these models. In that case, it is not clear

whether some new results would be required to discriminate between the theo-

ries, or whether they might in fact offer complementary descriptions of the same

phenomena.



6. Meta-work and an

analogous Jarzynski relation

6.1 Jarzynski relation in trajectory space

Given that the thermodynamics of trajectories is a generalisation of equilibrium

thermodynamics to dynamical ensembles, it is natural to expect there will be

an analogous extension of the fundamental non-equilibrium relations encoded by

the fluctuation theorems to trajectory ensembles. In this chapter we study an

analogous Jarzynski equality in the thermodynamics of trajectories by identifying

an analogous quantity to work. This allows for the computation of the large

deviation function g(x) of the x-ensemble. We study two systems, the quantum

two-level system of Fig. 3.2 to provide a simple illustration of the approach, and

the micromaser of section 4.3.2, where the rich dynamical phase space allows us

to investigate the behaviour of the Jarzynski relation as one crosses first-order

discontinuities. This is a situation which has thus far received comparatively little

attention (see for example Refs. [126, 127] for a numerical and Ref. [128] for a

mean-field study in the case of the Ising model).

125
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6.1.1 Meta-dynamics: Dynamics in the space of trajecto-

ries

In the thermodynamics of trajectories it is of interest to be able to determine the

function g(x) over a range of values x. Instead of performing many “equilibrated”

simulation runs at fixed x, we aim to extract the function g(x) while changing x.

To this end we require the notion of a meta-dynamics and a meta-time, which for

convenience we take as integer, enumerating the sequence of generated trajecto-

ries ~X ≡ (X0, . . . ,XN). The meta-dynamics that generates these trajectories is

required to obey detailed balance (see Eq. 4.1) with respect to the distribution

Px(X) defined by Equation 3.7. The natural candidate for this meta-dynamics is

transition path sampling (see Chap. 4). For the purpose of efficiency we stick to

the x-ensemble scheme.

6.1.2 Meta-work and the Jarzynski relation

Equation (3.7) has the form of an equilibrium Boltzmann distribution, where

Ex(X) = xτ(X) can be identified as the analogue of an “energy”. Suppose that

we change x along the sequence ~X: We start with a value x0 for the biasing field

and generate the initial trajectory X0. We then change the value of x0 to x1 and

generate the next trajectory X1 of the sequence with a single TPS step and so on.

The change of the “energy” along the whole sequence is

∆E ≡ ExN (XN)− Ex0(X0) = W +Q, (6.1)

which can be split into two sums

Q ≡
N−1∑
i=0

[Exi+1
(Xi+1)− Exi+1

(Xi)], W ≡
N−1∑
i=0

[Exi+1
(Xi)− Exi(Xi)]. (6.2)
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These sums are identified as “heat” Q and “work” W , respectively. In particular,

the meta-work

W =
N−1∑
i=0

(xi+1 − xi)τ(Xi) (6.3)

sums the incremental changes of the “energy” due to a change of the field x for

the same trajectory.

We can now prove the Jarzynski relation following standard arguments by com-

bining the form of the path probability Eq. (3.7) with Eq. (4.1). Consider the

average

〈e−W 〉 =

∫
DX0 · · · DXN Px0(X0)Px1(X0 → X1) · · ·PxN (XN−1 → XN)e−W

(6.4)

The first integral reads

1

ZK(x0)

∫
DX0 P0(X0)Px1(X0 → X1)e−x1τ(X0)

=
ZK(x1)

ZK(x0)

∫
DX0 Px1(X0)Px1(X0 → X1) =

ZK(x1)

ZK(x0)
Px1(X1). (6.5)

Unraveling all terms thus leads to

〈e−W 〉 =
ZK(xN)

ZK(x0)
, (6.6)

which is the analogous Jarzynski relation for the meta-work in canonical ensembles

of trajectories.

It is important to remember that there are two layers to the dynamics in this

case, and that the trajectory analogue of the Jarzynski applies at the level above

the physical dynamics occurring in a trajectory. This can be confusing as the

conventional, thermodynamic Jarzynski relation uses the concept of a trajectory

linking two configurations of a system. Here however, the trajectories play the

roles of (meta-) configurations, with a meta-dynamics - the dynamic process of

moving through the trajectory space with TPS - playing the role of the trajectories.
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For clarity we refer to quantities of interest in the trajectory ensembles as meta-

quantities of their thermodynamic analogues (meta-work meta-free energy etc.).

6.1.3 Computing the meta-free energy g(x)

From Eq. (6.6), we can extract the change of the trajectory (or meta-) free energy

∆g ≡ g(xN)− g(x0) = lim
K→∞

1

K
ln〈e−W 〉 (6.7)

from the meta-work. Because in practice finite K must be used, it should be

noted we are in essence calculating a finite-K meta-free energy g(x,K). However

by using a sufficiently large value of K this value approaches its large-deviation

limit, g(x) while still allowing the computation to be done in finite time. Using

this result, the meta-free energy g(x) of the x-ensemble can be calculated from

simulation in the following way. A trajectory with fixed number of events K is

created and equilibrated to the desired starting value x0 using the x-ensemble TPS

algorithm. The system then moves along the “forward” path up to the desired

maximum value xN in a series of steps. For simplicity, we consider a linear protocol

xi = x0 + i(xN − x0)/N although other protocols might be more suitable. Each

step corresponds to a single change to the trajectory whether the proposed change

is accepted under the Metropolis criterion or not.

This process is repeated M times until a good distribution of meta-work for both

the forward and the reverse process (going from xN to x0) is built up. The meta-

free energy difference between xN and x0 can then be computed with an iterative

Bennett’s Acceptance Ratio (BAR) method [129,130],

∆g(k+1) = − ln

∑M
j=1

[
1 + eW↑,j−∆g(k)

]−1

∑M
j=1

[
eW↓,j + e−∆g(k)

]−1 , (6.8)
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where the sum over j denotes the sum over the work values for each repetition of

forward (↑) and reverse (↓) process. The work values are random numbers with

probability distributions P↑(W ) and P↓(W ), respectively.

As is the case in thermodynamic problems, there need be some overlap in the

work distributions for the forward and reverse processes, but the rate at which

these processes occur need not be slow enough to ensure equilibrium at all points

(resulting in completely overlapping work distributions). Strictly speaking, the

large-deviation function g(x) is defined in the limit of K → ∞. In practice, for

the numerical estimation of g(x), the length of individual trajectories as defined by

the number of events K is not critical to the result, provided the meta free-energies

are scaled per event. Furthermore, while short trajectories of low K necessarily

require less computation time, they also necessarily have much larger fluctuations

in work distributions, requiring more repetitions to build a reasonable distribution

numerically, meaning there is some trade off in efficiency. Note however that a

positive aspect of these fluctuations is that the broadening of work distributions

can lead to an increase in their overlap. These considerations indicate that the

optimal trajectory length, and number of steps to calculate the effective meta

free-energies as efficiently as possible, are highly system dependent.

6.2 Application to open quantum systems

For the purpose of demonstrating the validity of the analogous Jarzynski equal-

ity (6.6), we consider again open quantum systems whose dynamics are described

by Lindblad master equations as in Eq. 2.31 Throughout, ~ is set to unity and we

simulate the systems are using continuous-time Monte Carlo algorithms [30] (see

Chapter 4).
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6.2.1 Two-Level System

We consider a laser-driven two-level system, which exchanges photons with a ra-

diation bath as in section 4.3.1. Again the counted events are photon emissions

and absorptions under the action of the Lindblad operators L1, L2

We consider first the zero-temperature case (λ = 0), for which there is only one

jump - described by action under L1 (photon emission). The large deviation

function in this case (from Eq. 3.43) reads

g(x) = −3 ln
(

1 +
x

2

)
(6.9)

Fig. 6.1(a) provides a numerical test of the Jarzynski relation (6.6) for trajectories

with K = 20 events. Due to the simplicity if the system, with only one possible

outcome for each event, this is sufficient for a good agreement with the large-K

limit1 of the meta-free energy - g(x) (see Fig. 6.1). We have sampled M = 5000

trajectories for the forward and backward protocol, where trajectories started from

an initial x0 = 0 (equilibrium) state to a final state ranging between x = −1 and

x = 1.5, with N = 1000 TPS step moves for each direction. As criterion to stop

the BAR iterations, we chose the threshold 10−5 for the fractional change of the

estimated g(x) between iterations. For this system convergence is reached very

fast taking typically 2-3 iterations, and there is a good agreement between the

results obtained from the Jarzynski relation and the exact results.

We now consider the finite temperature case with parameters γ = 6Ω, λ = 2Ω.

Here action under both L1 and L2 occurs, and so there are two jump possibilities.

Fig. 6.1(b) provides a numerical test of the Jarzynski relation in this case. Analyt-

1Actually, given that there is only one possible event, drawn from one waiting time distribu-

tion, then provided we start in the ground state of the system, K = 1 is enough to realise the

large-K limit of the system.
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Figure 6.1: 2-level system. (a) Comparison of the meta-free energy g(x) obtained numer-

ically via the trajectory Jarzynski relation (symbols) to the exact analytical

result (6.9) (solid line) for a range of x, in the zero temperature case, with

γ = 4Ω. (b) Same as in (a), but now for the finite temperature case, with

γ = 6Ω and λ = 2Ω. The statistical error is smaller than the symbol sizes.

Insets to (b): Sampled histograms for the meta-work distribution P↑(W ) for

the forward (red) and P↓(−W ) for the backward process (blue), at the two

final values of x shown.

ical results are again obtained from the largest eigenvalue of the deformed master

operator corresponding to the s-ensemble, and inverted to give the x-ensemble

meta-free energy g(x). The exact expression is available but cumbersome and

rather unilluminating to be given explicitly. Note that the true g(x) diverges close

to x ' −3.5 [cf. with the zero temperature case, Eq. (6.9), where the limiting

value is x = −2]. Again, M = 5000 iterations were used for trajectories of K = 20

events but with now N = 5 × 105 TPS step moves for each iteration. There are

now two possible outcomes for each event, corresponding to photon emission and

absorption. However K = 20 still converges to the large-K limit satisfactorily.

While there is a good agreement between the results obtained from the Jarzyn-
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ski relation and the exact results for a broad range of xN , we have extended the

plotted range of x values to demonstrate that the numerical estimate for g(x)

starts to divert from its analytical prediction as we approach the divergence. For

x < 0 the “pressure” is negative, selecting rare trajectories with large trajectory

length τ . Our numerical procedure breaks down because it takes an increasing

amount of time to equilibrate the system at the final x for the backward itera-

tions. For the forward-backward protocol, N has to be sufficiently large to generate

work distributions that sufficiently overlap in order for Eq. (6.8) to work. This is

demonstrated in the inset of Fig. 6.1(b). This is a general feature of the Jarzynski

relation. Although in principle it holds for any driving speed and any protocol,

application to data requires either to sample extreme work values sufficiently or

to generate distributions from forward and backward protocols that overlap.

6.2.2 Micromaser

We again consider the micromaser (see section 4.3.2), which provides a useful test

of a pseudo-many-body system, as well as a system with many first-order phase

transitions in the x-ensemble. A detailed account of the model can be found in

Ref. [94]. The events being counted are the actions under any of the four Lindblad

terms.

Despite being a system with a single degree of freedom, the micromaser has a rich

dynamical behaviour due to the combination of an infinite dimensional Hilbert

space and the non-linear jump operators L1 and L2. In particular, it displays a

number of distinct dynamical phases and transitions between them [95, 131, 132].

(Strictly speaking, these are sharp crossovers which only become singular in the

limit of r → ∞; see [74, 131].) As a result it provides a useful testing ground for

the trajectory Jarzynski relation.



6. Meta-work and an analogous Jarzynski relation 133

1 2 3 4
x

-0.04

-0.03

-0.02

-0.01

0

g
(x
)

(a)

-0.5 0 0.5 1 1.5
x

-0.02

0

0.02

0.04

g
(x
)

(b)

Figure 6.2: Micromaser. (a) Comparison of the meta-free energy g(x) obtained numer-

ically via the trajectory Jarzynski relation (symbols) to results obtained by

direct diagonalisation of the master operator (solid line) for α = 1.2π, where

the system is initially equilibrated to x = 2. (b) Same as in (a), but now

for α = 4π. Different simulations, equilibrated to different initial values of

x are denoted by different symbols.

We first attempt to compute meta-free energy differences within a single phase.

Fig. 6.2(a) provides a numerical test of the Jarzynski relation for a pump param-

eter of α = 1.2π. The trajectories are initially equilibrated to a non-equilibrium

dynamical phase with x0 = 2, and the Jarzynski protocol run for trajectories of

K = 1000 jumps, with M = 5000 iterations and N = 60000 TPS step moves

per iteration. The computed meta-free energy differences are compared to re-

sults obtained from direct diagonalisation of the master operator, as in [95], and

a good agreement is found between the two methods. Provided the existence of

phases, and the boundaries between them, is known, a complete picture of meta

free energy differences can be constructed even when there are multiple dynamical

phases. For example, with the pump parameter taking a value of α = 4π, four

distinct phases occur, see Fig. 6.2(b), and g(x) can be computed within phases by



6. Meta-work and an analogous Jarzynski relation 134

initially equilibrating the trajectories to a value of x within the required phase.

Again trajectories of K = 1000 jumps were used, with M = 5000 iterations and

N = 60000 TPS step moves per iteration.

6.2.3 Driving across a first-order phase transition

We finally examine the behavior of the Jarzynski relation using a protocol x0 → xN

that crosses a phase boundary x∗ at a finite speed. In the quasi-stationary limit

of N →∞, we obtain from the definition Eq. (3.3) the well-known expression

ln
ZK(xN)

ZK(x0)
=

∫ xN

x0

dx
∂ lnZK(x)

∂x
= −

∫ xN

x0

dx 〈τ〉x (6.10)

for thermodynamic integration, where the subscript emphasizes that the average

is calculated from equilibrated trajectories at fixed x. Eq. (6.10) is known to fail

in the presence of a discontinuous phase transition, not because the equation is

wrong but because of the way a simulation is carried out in practice. Typically, one

will apply a small change xi → xi+1, let the system relax, and then record data to

calculate the average. Crossing x∗, the system will not immediately adapt to the

new state but follow the metastable branch due to the cost of nucleating the new

stable phase, thus violating the assumption that the calculated mean corresponds

to the true equilibrium mean. In the micromaser, sharp crossovers occur at certain

values of the biasing field between phases that can be characterised by either

their average emission rate, or the closely related expected photon occupation

of the cavity [95, 131, 132]. When considering these transitions in the context

of the x-ensemble, different phases have significantly different average trajectory

lengths for the same fixed number of quantum jumps. Just like in ordinary first-

order transitions, pronounced metastability may prevent from estimating meta

free-energies accurately with (6.10). This can occur when the transition at x∗

is between phases with very different activities. In this case, if trajectories are
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prepared in the less active phase (for example starting from x = 0 and increasing

x), the barrier to nucleate the more active phase when x > x∗ can be prohibitive

for practical simulation. The nucleation event can be promoted externally, for

example by altering the photon occupation of the cavity by temporarily increasing

the pump parameter (or similar “parallel tempering”). But without such external

interference the timescale for nucleating the new stable phase is often beyond what

can be reasonably simulated.

One could hope that the Jarzynski relation, given that it applies to arbitrarily

fast non-equilibrium protocols, would provide a way out of this problem since

trajectories can be sampled at finite rate for the change in x. In practice, however,

even with slow driving speeds it is problematic to compute free energy differences

across first-order phase boundaries. Results for the micromaser are shown in

Fig. 6.3 (for a pump parameter of α = 1.2π and with γ
κ

= 0.15 corresponding

to a temperature T = 0.5). Trajectories with K = 2000 jumps were sampled for

M = 5000 iterations, with N = 106 TPS step moves for each iteration. For the

chosen parameters, the system undergoes a first-order transition at x∗ ' 1.34.

The computed free energy difference using the Jarzinsky relation gets locked to

the phase that is stable for x < x∗ but which becomes metastable for x > x∗.

This is evident by the fact that the computed free energy follows the path of the

eigenvalue that dominates for x < x∗, but which becomes subdominant at x > x∗.

Fig. 6.3(b) shows parameters that are more suitable for a cross-phase meta-free

energy computation. The system is set to zero temperature - removing the pos-

sibility of the cavity absorbing a photon from the bath and thus simplifying the

simulation - and the atom beam rate is reduced - which serves to reduce the dif-

ference in the dynamic properties of the two phases [95]. The sampling is also

improved by doubling the number of iterations. While there is improvement over

the finite temperature case of Fig. 6.3(a), the calculated meta-free energy still
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Figure 6.3: Micromaser with cross-phase Jarzynski protocol. (a) Comparison of the

numerical meta free energy, g(x), obtained numerically via the Jarzynski

relation (symbols) to results obtained by direct diagonalisation (solid line)

in a micromaser with pump parameter α = 1.2π, at a finite temperature

(γ/κ = 0.15). The second largest eigenvalue (dashed line) is plotted to

illustrate the meta free energy calculation being locked to the metastable

branch after the transition. Inset to (a): the expected waiting time per

event showing the differing dynamic properties of the two phases. (b) Same

as in (a), but now at zero temperature (γ/κ = 0). Insets to (b): sampled

meta-work distributions for the forward (red) and backward (blue) process

for the three points shown.

deviates from its expected value across the phase boundary. The cause can be

understood by looking at the meta-work distributions for the forward and re-

verse processes, see insets to Fig. 6.3(b). For the conditions shown, the driving is

slow enough for the forward and reverse meta-work distributions to overlap im-

mediately before the phase transition. However as the phase boundary is crossed

the two become separated. A small residual spike of the reverse distribution lies

within the bulk of the forward distribution, corresponding to a small fraction of

cases where the reverse process starts in the metastable phase. This occurs pre-

cisely because the simulation cannot be done in the “thermodynamic limit” of
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K →∞ and r/(κ− γ)→∞, i.e. the transition is not strictly a phase transition

but a very sharp crossover [131]. Thus when differences in the meta free energy

g(x) is computed with the BAR method, it only sees the metastable phase. It is

worth noting that these attempts to compute a cross-phase free energy difference

took two orders of magnitude more computation than any of the single-phase free

energy computations.

6.3 Outlook

The results of this chapter further underpin the thermodynamics approach to

dynamics. Not only ensembles of dynamical trajectories can be studied by gener-

alising equilibrium statistical mechanics via large deviation methods, but also non-

equilibrium statistical mechanics tools can be generalised and applied to uncover

properties of such ensembles. By considering the analogous Jarzynski relation we

have shown that the large-deviation function that encodes the properties of one

trajectory ensemble can be obtained by considering the statistics of the meta-work

performed as the parameter that characterises the ensemble is driven.

A further interesting observation is the following. The general relation between

forward and backward processes that underpins most integral fluctuation theorems

is a straightforward consequence of probability conservation [58]. Few integral fluc-

tuation relations are “non-trivial” in the sense of conveying actually useful infor-

mation about the problem studied. This occurs when one can write the stationary

distribution in terms of “weights” that encode their functional dependence on the

objects that form the ensemble under consideration (usually configurations; tra-

jectories in our case), and a “free-energy”. For ensembles of configurations, these

include the Jarzynski relation proper [37,38] and the Hatano-Sasa relation [55] for
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driven stationary states. We note that the class of trajectory ensemble problems

we studied here adds to this small group. These are cases where the “normalisa-

tion constant” of the stationary probability distribution also has physical meaning,

as it is given by the large-deviation function which is the generating function for

moments and cumulants of time-integrated observables (and thus play the role of

trajectory free-energies).

While the trajectory Jarzynski relation allows for the direct computation of the

generating functions for the dynamics of a system, it is unclear if it will be a

computationally efficient method of doing so. There are doubts about whether

the conventional Jarzynski relation is more efficient at calculating free energy dif-

ferences than other methods (see for example Refs. [133,134]), and while there are

proposed methods that show some potential (for example Ref. [135]), in general

it is not clear if Jarzynski-based methods are optimal [136]. This, coupled with

the issues in crossing a phase boundary, mean the trajectory Jarzynski relation

is unlikely to be the optimal method of calculating meta-free energy differences.

Never the less the importance of the Jarzynski relation to non-equilibrium statis-

tical mechanics makes the investigation of its dynamical analogue worthwhile. It

also serves to emphasise the analogy between dynamical ensembles and thermo-

dynamics and provide a basis for exploring other useful thermodynamic relations

in the context of dynamical ensembles.



7. Dynamical Lee-Yang zeros in

the x-ensemble

Although ensembles in the thermodynamics of trajectories are formally equivalent

to equilibrium statistical mechanics, trajectory phases are in general difficult to

probe either experimentally or numerically. The problem is two fold: firstly, these

trajectory phase transitions occur in the limit of long times or large K which

may be difficult to access in practice. Secondly, and perhaps more importantly,

the “counting fields” which drive these trajectory phase transitions are generally

not simply related to physically accessible parameters [12,13,16,19,137–140] and

so are hard to tune in either an experiment or simulation [17]. While transition

path sampling has been shown to be an effective numerical technique for exploring

dynamical phase spaces, it can still be problematic and computationally expensive

to implement. One can imagine situations where one does not require the full

dynamical phase diagram of a system, but rather the locations of any dynamical

phase transitions (for example one could potentially combine the location of phase

space singularities with the trajectory Jarzynski relation shown in Chapter 6 to

efficiently compute the generating function of a system).

A potential solution to this question is based on a generalization of the Lee-Yang

theory [39,40] of phase transitions to these dynamical systems [41–43]. Using this

139
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approach one may extract the zeros of the moment generating function (MGF)

using its short time high-order cumulants [64–66]. In equilibrium statistical me-

chanics, the zeros of the partition function are complex for a finite system, but

move towards real values of the order parameter when the system size is taken to

infinity. Analogously in the dynamical case, the zeros of the MGF move towards

real values of the fields s, x when trajectory observation time is taken to infinity.1

Thus the location of trajectory transition points can be extrapolated by track-

ing the movement of these complex zeros for short, but increasing, time. This

approach was applied successfully to the s-ensemble in both classical stochastic

systems, which had both 1st order [42] and continuous trajectory phase tran-

sitions [43], and open quantum sytems [141]. Motivated by the success of this

approach to the s-ensemble we extend it to the x-ensemble (i.e. the ensemble

of trajectories where the overall time of a trajectory is not fixed, see Chapter 3)

and use it to identify trajectory transition points using high-order cumulants of

the overall time length of trajectories at small values of K. The efficiency of the

x-ensemble in simulating a range of systems, as shown in Chapter 4 potentially

makes it the ensemble of interest for identifying the trajectory transition points

of a system.

In this chapter we develop an analogous dynamical Lee-Yang theory for the x-

ensemble and apply it to an open quantum system, the “blinking” 3-level system,

as well as the 1d East model of section 4.3.3. The 3-level system displays dy-

namical intermittency [18, 30, 142] which was shown recently to be the result of

two complex conjugate transition points lying close to the origin in the complex s

plane, when analysed within the s-ensemble framework [141]. Contrastingly, the

x-ensemble zeros do not converge to any location in the complex x plane indicat-

ing intermittency does not manifest as complex conjugate transition points in this

1Strictly speaking both system size and time should be taken to infinity for this convergence.
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trajectory ensemble. An analytic expression for the x-ensemble LD function is

extracted via exact diagonalization and is confirmed not to possess any trajectory

transition points. The emergence of complex singularities in one ensemble and not

the other highlights that although the s- and x-ensembles encode equivalent in-

formation the former ensemble couples to a dynamical observable which captures

this intermittency more directly.

7.1 Dynamical Lee-Yang zeros of the x-ensemble

Taking inspiration from the ideas of Lee and Yang [39, 40], we focus on the dy-

namical zeros (xj(K)) of the MGF given in Eq. 3.5 as a function of the number of

configuration changes K. Because a trajectory phase transition corresponds to the

crossing of dominant eigenvalues of the tilted transition operator, see Chapter 3

and Eqs. 3.10,3.26, and 3.34, when we are close to a transition point x = xc, we

can approximate the MGF by the two eigenvalues of the transfer matrix with the

largest real parts of the transition operator, cf. Eq.3.9

ZK(x) ' c0(x)eKλ0(x) + c1(x)eKλ1(x). (7.1)

Here the initial conditions are encoded in the coefficients c0(x) and c1(x), however

these are unimportant in the large K limit. Rearranging Eq. (7.1) we find the

zeros of the MGF are given by

λ0(x) = λ1(x) +
log[c1(x)/c0(x)] + i2πn

K
, (7.2)

where n ∈ Z. In the large K limit the second term of Eq. (7.2) vanishes, indicating

that with increasing K the zeros of the MGF will converge to where λ0(x) = λ1(x),

i. e. a trajectory transition point xc.

Here we note that the difference between dynamical Lee-Yang zero approach of

Refs. [42, 43, 141] is that we are using the total number of configuration changes
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K to define our ensembles. This quantity is a non-negative integer and thus the

motion of the Lee-Yang zeros in the complex x plane with increasing K will not be

smooth. Having established a form of dynamical Lee-Yang theory for fluctuating

time ensembles, we will relate these Lee-Yang zeros to the high-order cumulants of

the observation time. Using the Hadamard factorization theorem [143] we rewrite

the MGF in terms of the Lee-Yang zeros:

ZK(x) ∝
∏
j

[xj(K)− x
xj(K)

]
, (7.3)

where xj(K) denotes the jth zero of the MGF after K events.

For finite K and real x, the MGF is both real and positive implying that the Lee-

Yang zeros appear in complex conjugate pairs. Ignoring any analytic prefactors

in Eq. (7.3) the cumulant generating function (CGF) may be approximated as:

G(x,K) ' ∑
j log(xj(K) − x) − log(xj(K)), hence the Lee-Yang zeros of the

MGF appear as logarithmic singularities of the CGF (as expected). According to

Darboux’s theorem [144,145] these singularities will determine the functional form

of the high-order cumulants of the observation time. Differentiating the CGF with

respect to x, we find the zeros of the MGF and high-order cumulants are related

via [64–66]

〈〈τm〉〉 ' (−1)(m−1)(m− 1)!
∑
j

e−im arg[xj(K)]

|xj(K)|m , (7.4)

where we have written the complex zeros in polar notation, xj(K) = |xj(K)|e−i arg[xj(K)],

and as before 〈〈·〉〉 indicates cumulants, eg. 〈〈τ 2〉〉 = 〈τ 2〉 − 〈τ〉2, etc.

Considering high-order cumulants, that is those with large orders m, the sum in

Eq. (7.4) is dominated by the pair of Lee-Yang zeros closest to the origin, which we

label x0(K) and x∗0(K). Thus we make a further approximation that the high-order

cumulants are given solely by the contribution from this pair [42,43,64–66,145,146],

〈〈τm〉〉 ≈ (−1)(m−1)(m− 1)!
2 cos[m arg x0(t)]

|x0(t)|m . (7.5)
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The key observation is that this approximation allows us to determine the position

of the leading Lee-Yang zero pair from high-order cumulants of the observation

time. Formally this pair is found by solving the matrix equation [42,43,66,147], 1 −κ
(+)
m

m

1 −κ
(+)
m+1

m+1

 ·
 −(x0 + x∗0)

|x0|2

 =

 (m− 1)κ
(−)
m

mκ
(−)
m+1

 , (7.6)

where the entries of the matrices are given by the ratios of the cumulants

κ±m(K) ≡ 〈〈τ
m±1〉〉
〈〈τm〉〉 . (7.7)

From Eq. (7.6) we will extract the leading Lee-Yang pair, x0 and x∗0, and with

increasing K these zeros will converge to the trajectory transition points closest

to the origin. We will now apply this approach to a classical stochastic model

of a glass former that has a 1st order trajectory transition at the origin and a

dissipative open quantum system that displays dynamical intermittency.

7.2 East Model

To exemplify the ideas described in the previous section, we study the trajectory

phase transitions in the fluctuating time ensembles of the 1d East Model [27].

From the s-ensemble it is known that the glassy dynamics of this model is a

consequence of a dynamical phase transition occuring at sc = 0 between phases of

distinct activity. This first order dynamical transition is between an equilibrium

liquid phase (or active phase) and an inactive glassy phase, the glassy dynamics

then results from the system effectively existing close to phase coexistence between

these regimes. In Chapter 4 we show this phase coexistence picture holds when

one considers the x-ensemble as well, see Fig. 7.1(a), where the transition between

the glassy inactive phase and liquid active phase also occurs at xc = 0. We now
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Figure 7.1: East Model results for N = 60 spins. (a) The obervation time activity as

a function of x displays a discontinuity at x = 0. This marks a first order

transition from an inactive glassy phase, x < 0, to an active liquid phase.

(b) The leading Lee-Yang zero pair extracted from the high-order cumulants.

These converge to points close to the origin with increasing K, this highlights

one infer the presence of a trajectory transition point at the origin in the

limit of K → ∞ from these small K cumulants. (c) The approximated

cumulants (dashed lines) are found to match their numerically extracted

values (full lines) for small K, confirming the validity of the approximation.
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show why this may be expected by considering the relationship between the LD

functions θ(s) and g(x). Differentiating Eq. (3.14) with respect to x twice we find

g′′(x) =
−θ′′(g(x))

[θ′(g(x))]3
. (7.8)

First and second order trajectory transition points are marked by diverging g′′(x)

or θ′′(s) depending on the ensemble of trajectories one is considering. We know

that g(0) = 0 and θ′′(0) → ∞ due to probability conservation and the presence

of the first order trajectory transition at sc = 0 respectively. Combined with a

finite activity at s = 0, i. e. −θ′(0) is finite, one can readily see that g′′(0) will

diverge and therefore xc = 0 is a trajectory transition point in the fluctuating time

trajectory ensemble.

Having understood the trajectory phase behaviour of this model within the x-

ensemble we apply the proposed method of Sec. 7.1 to extract the trajectory

transition point using the observation time cumulants for fixed jump number K.

Figure 7.1(c) shows high-order observation time cumulants as a function of K ex-

tracted directly from simulation (full lines). Using the approximation in Eq. (7.5)

we extract the leading Lee-Yang zero pair, x0(K) and x∗0(K), from these cumu-

lants and plot them as a function of K in Fig. 7.1(b). These zeros are plotted for

N = 60 and T = 0.5 and are found to approach the origin with increasing jump

number K. As the trajectory phase transition only occurs in the limit of large

N and K these zeros converge to a pair of complex conjugate transition points

close to the origin. In the thermodynamic limit these transitions points merge and

form the transition point xc = 0. However, already for finite N and K one can

see evidence of a trajectory phase transition at xc = 0.

To test the validity of the approximation we use the extracted Lee-Yang pair to

estimate the cumulants via Eq. (7.5) and compare it with the numerical cumulants.
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These estimated cumulants (dashed lines) are plotted in Fig. 7.1(c) and show that

over the K range of interest the approximation fits the numerically extracted

cumulants well. This confirms that we are indeed extracting the leading Lee-Yang

zero pair of the system. However, going to even larger K values the approximation

in Eq. (7.5) begins to break down as higher order zeros begin to move towards

the origin and contribute to the cumulants. We demonstrate here that one may

be able to infer the position the trajectory transition points before this occurs; if

one were to use even higher order cumulants this method is also expected to give

better results.

7.3 Dissipative Three-level system

We now consider a driven dissipative 3-level quantum system as shown in Fig. 7.2(a).

This system is driven by two resonant lasers with Rabi frequencies Ω1 and Ω2 re-

spectively which results in a system Hamiltonian:

H =
2∑
i=1

Ωi(ci + c†i ), (7.9)

where ci = |0〉〈i| and c†i = |i〉〈0|. In addition to this Hamiltonian the system also

possesses a single decay channel |1〉 → |0〉 with an associated decay rate κ. This

manifests as a single jump operator in the systems evolution,

L1 =
√
κc1, (7.10)

and hence the value of i in Eq. (2.31) is fixed as 1. In this section we apply the

x-ensemble approach to the emission waiting times from this system. In particular

we are interested in the parameter regime where the transition timescales of the

|0〉 � |1〉 processes are much shorter than the |0〉 � |2〉 transition timescales,

i. e. Ω1, κ � Ω2. In this parameter regime the photon emission trajectories are
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Figure 7.2: We consider κ = 4Ω1 and fix Ω1 = 1 and Ω2 = 0.15. (a) Schematic of a

dissipative 3-level system. The system is driven by two lasers of frequency

Ω1 and Ω2 which drive transitions from |0〉 → |1〉 and |0〉 → |2〉 respectively.

There is a single decay channel |1〉 → |0〉 with an associated decay rate

κ. (b) The large deviation function θ(s) and associated dynamical activity

k(s) as a function of s. A rounded crossover is seen at s ∼ 0 where the

system changes from behaving as an active two-level system comprised of

the states |1〉 and |0〉, i. e. an active phase, to a photon inactive phase. (c)

The large deviation function associated with the fluctuating time trajectory

ensemble along with the observation time is plotted as a function of x.

Although the system is intermittent this does not manifest as a crossover

as in the s-ensemble case. (d) Dynamical Lee-Yang zeros of the fluctuating

time ensemble MGF extracted from cumulants of order m = 6, 7, 8, 9. These

are found to oscillate with increasing K and do not converge to a single

point. This is indicative of a lack of a trajectory transition point existing in

the complex x plane.
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composed of large temporal regions where the system is very photon active and

large inactive regions where few photons are emitted [30,142]. This intermittency

manifests as a dynamical crossover in the activity k(s) as a function of s [18].

Due to the small scale of the system the LD function θ(s) and the corresponding

activity may be extracted via exact diagonalization and are shown in Fig. 7.2(b).

The rounded crossover marks a transition from a highly active phase for s . 0,

where the dynamics is dominated by the transition channel |1〉 → |0〉, to an

inactive phase (s & 0) where the dark state |2〉 dominates.

Recently it has been shown that this crossover is the result of a complex conjugate

pair of transition points in the complex s plane [141]. Moreover the crossover was

shown to sharpen as the transition points moved towards the real s axis, i. e. in the

limit κ→ 0+. We now ask two questions: firstly does the dynamical intermittency

manifest in the x-ensemble as a crossover and secondly do complex x transition

points exist, similar to the s-ensemble case. To answer these questions we begin

by diagonalizing the transfer matrix, see Eq. (3.34), to find the dynamical free

energy

g(x) = log

 4κΩ2
1(x(x(2x+ κ) + 2Ω2

1) + 2(x+ κ)Ω2
2)

(x(x(x+ κ) + 4Ω2
1) + 4(x+ κ)Ω2

2)...
...(4x3 + 4x2κ+ 2κΩ2

1 + x(κ2 + 4(Ω2
1 + Ω2

2)))

 (7.11)

We note that this function is not well-defined for all values of x ∈ R. From

Eq. (3.14) we see that the domain of g(x), i. e. [xl, xu], is simply the range of θ(s):

xl = min
s∈R

θ(s), (7.12)

xu = max
s∈R

θ(s).

Furthermore it is straightforward to relate the observation time activity to the

photon activity,

g′(x) =
1

θ′(g(x))
. (7.13)
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From the above Equation it is clear that a crossover in θ′(s) may not necessarily

result in a crossover in g′(x) due to the nontrivial functional form of g(x). We

evaluate the LD function g(x) and find no crossover in the observation activity

despite the system being intermittent, see Fig. 7.2(c).

However this does not necessarily imply no transition points are present in the

complex x plane. To show that the susceptibility g′′(x) may still be a smooth

function of real x but possess complex trajectory transition points we factorize

the MGF in terms of its zeros

ZK(x) '
∏
j

e−xj(K) − e−x
e−xj(K)

, (7.14)

where we once again denote the Lee-Yang zeros as xj(K). From this we approxi-

mate the dynamical free energy as

g(x) = lim
K→∞

logZK(x)

K
(7.15)

' log
(e−xc − e−x

e−xc

)
+ log

(e−x∗c − e−x
e−x∗c

)
, (7.16)

where we simply replace the Lee-Yang zeros by the complex transition point pair

xc and x∗c . Furthermore we’ve assumed that in the limit of large K the diverging

Lee-Yang zero density at these transition points is compensated by the factor of

1/K. From this simple approximation we find the susceptibility at x = Re[xc] is

given by

g′′(x = Re[xc]) '
1

2 sin2(Im[xc])/2
. (7.17)

This equation implies that although there would be a peak in the susceptibility

when Im[xc]� 1, corresponding to a crossover, in general this may not be present

despite complex transition points being present. Such a crossover becomes a sharp

discontinuity when the transition points move onto the real x axis, i. e. Im[xc]→ 0.

Having concluded that despite the lack of a crossover complex transition points
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may still be present we apply our Lee-Yang zero method described in Sec. 7.1.

The high-order observation time cumulants are calculated using Quantum Jump

Monte Carlo [30] as in Chapter 4. Here we recall that the motion of the Lee-

Yang zeros relies only on the finite K cumulants at x = 0 and so are potentially

experimentally accessible.

The leading Lee-Yang zero pair x0(K) and x∗0(K) are extracted using cumulants

of order m = 6, 7, 8, 9 in a parameter regime where the system is intermittent,

e. g. Ω1 = 1, κ = 4 and Ω2 = 0.15. In Fig. 7.2(d) we show the motion of this

pair as a function of K and find that they do not converge to any complex pair

of transition points, instead their positions oscillate as a function of K. This lack

of convergence indicates that the Lee-Yang approach of Sec. 7.1 is not applicable

to the x-ensemble of this model and g(x) does not possess any complex transition

points as well as no crossover as a function of x ∈ [xl, xu].

However in Ref. [141] it was shown that in this intermittent regime there exists a

pair of complex conjugate s-ensemble transition points close to the origin, sc and

s∗c . At these transition points the dynamical susceptibility diverges, i. e. θ′′(s
(∗)
c )→

∞. This susceptibility is related to the x-ensemble activity and susceptibility via

θ′′(s) = − g′′(θ(s))

[g′(θ(s))]3
, (7.18)

one would then naively expect there to exist a pair of x-ensemble transition points

to exist at x
(∗)
c = θ(s

(∗)
c ). In this instance we instead find g′′(θ(s

(∗)
c ) is finite but

g′(θ(s
(∗)
c )) → 0. Thus a transition point in the s-ensemble may not result in an

equivalent transition point in the x-ensemble but a point of zero activity. We note

that the observation time activity g(x) is finite for all finite real x ∈ [xl, xu]. This

means a s-ensemble transition point sc ∈ R results in a real x-ensemble transition

point at xc = θ(sc) through Eq. (7.18), as seen in the East model studied in

Sec. 7.2.
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We have shown that there is not necessarily a one-to-one mapping between com-

plex transition points of the s- and x-ensembles. For completeness we confirm

that g(x) possesses no complex x transition points analytically. Differentiating

Eq. (7.11) twice with respect to x we identify the points at which the suscepti-

bility g′′(x) diverges to be the zeros of a high-order polynomial in x. Thus in

our parameter regime of interest (Ω1 = 1, κ = 4 and Ω2 = 0.15) we identify the

transition points

xc = {−2.26285,−1.9515,−1.64015,−1.22567, (7.19)

− 1.17993,−0.868574,−0.663688,−0.110638,−0.096998}.

Crucially all of these transition points lie outside the domain of g(x) (with the

smallest lying on the domain boundary of g(x)) and hence the cumulants and

extracted zeros are not influenced by their presence. Thus the lack of conver-

gence of the Lee-Yang zeros confirms the lack of x-ensemble transition points for

this model despite intermittency. This highlights that although equivalent infor-

mation is captured in both the s- and x-ensembles, in the former signatures of

the intermittent stationary state are more apparent. This is analogous to equi-

librium thermodynamics where coupling to the “correct” order parameter reveals

information about the system more readily than other order parameters would.

While there are no peaks in the fixed-K susceptibility, g′′(x), indicating a lack of

a crossover in the x-ensemble, it is important to note that physical quantities of

interest exhibit the same behaviour in both ensembles. Of particular interest, the

Mandel Q parameter - a measure of the degree of photon bunching/antibunching

- can be defined for both the s-ensemble,

Qs =
〈K2〉s − 〈K〉2s
〈K〉s

− 1 (7.20)

and x-ensemble. [142]

Qx =
〈τ 2〉x − 2〈τ〉2x
〈τ〉2x

(7.21)
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Figure 7.3: We consider κ = 4Ω1 and fix Ω1 = 1 and Ω2 = 0.15. Plots of the Mandel

Q Parameter for (a) the s-ensemble and (b) the x-ensemble. Despite the

information being encoded in different ways, the same physical properties

are realised by both ensembles

In both ensembles the Q parameter is peaked close to s/x = 0 on the inactive

side (x < 0, s > 0), with the same limiting behaviour (Q = 0 in the low-activity

limit, Q = −2/3 in the high-activity limit, see Fig. 7.3). This illustrates that

while the two ensembles encode information about the system in different ways,

they correspond to the same physical dynamics.

7.4 Outlook

While this chapter demonstrates the applicability of the Lee-Yang method of lo-

cating trajectory transition points to the x-ensemble, the most notable outcome is

where it fails in the quantum three-level system. It serves as an important reminder

that while different trajectory ensembles encode the same physical dynamics, the

manner in which the information is encoded is critical to what is uncovered. While

the s-ensemble reveals a dynamical phase transition in the complex s plane, it is a

transition to a state with zero dynamical activity (i.e. θ′(s) = 0). The x-ensemble,
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by its very construction, is incapable of encoding trajectories with zero activity

and so no trajectory transition points are found. This can be of great consequence

to the understanding of dynamical behaviours, as even systems where trajectories

in the long-time limit can not physically realise zero activity can have their high

order cumulants (and therefore the tails of their distributions) influenced by com-

plex transition points to states of zero activity. This is precisely the case in the

quantum three-level system.

Since it is true that the x-ensemble can not encode trajectories with precisely

zero activity, the inverse must be true for the s-ensemble. A trajectory with zero

activity simply has K = 0 in the s-ensemble, while the order parameter diverges in

the x-ensemble, τ →∞. Conversely, states with infinite activity have τ = 0 while

K diverges. While a dynamical system with infinite activity appears inherently

unrealisable, there are two points to note. Firstly the presence of a transition

point in the complex x plane can influence the high-order cumulants of the system

in an analogous fashion to the three-level system. Secondly this is inherently an

issue of an order parameter diverging, and one might choose an ensemble whose

order parameter can physically diverge, as in the x-ensemble.

This chapter then serves as a useful illustration of the need for, and benefit of ex-

ploring a variety of dynamical ensembles. Thermodynamics has a long history of

selecting the ensemble most suited to the problem at hand, and with care one can

navigate the shortcomings of any particular ensemble. While the thermodynamics

of trajectories has thus far been focused on the s-ensemble, it is potentially bene-

ficial to take inspiration from thermodynamics and explore a variety of alternate

ensembles.



8. Conclusions and Future

Work

The key message of this thesis is the benefits that can be reaped by exploring

alternative dynamical ensembles. While observing a system for a set amount of

time and counting events of importance is the most natural method of defining a

trajectory ensemble - with intuitive analytical structure - flexibility in mathemat-

ical descriptions of physical systems is an important endeavour. The analytical

structure of fixed time (s-) ensembles easily extends from master equation de-

scriptions of dynamics, whereas the fluctuating time (x-) ensembles we introduced

in Chapter 2 adapt far more naturally to the structure of computer simulations.

Thermodynamics has a long history of selecting the most appropriate ensemble

to the task at hand, with a wide variety of order parameters being used to define

thermal phase spaces, and we have explored similar, potentially beneficial, situ-

ations in the thermodynamics of trajectories. Recent studies using more exotic

order parameters (for example see [148]) have also uncovered further depth in sys-

tems already studied by the s-ensemble, emphasising the benefit of this flexibility.

Furthermore, the ensemble correspondence we illustrated allows for the results

obtained in the x-ensemble to be converted to the s-ensemble and vice versa, and

more recent work in Ref. [149] has demonstrated the full equivalence of these

ensembles. This further illustrates the scope of flexibility allowed by alternative

154
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dynamical ensembles.

s-ensemble path sampling schemes have struggled in situations where time-reversal

symmetry is broken, as they are dependent on being able to produce time-reversed

dynamics. Even when this is not the case they provide limited ability to control ac-

ceptance rates - which is of key importance to the efficiency of Metropolis-Hastings

algorithms. We explored an alternative x-ensemble TPS scheme which was shown

to provide significant computational benefits, including better algorithmic scaling,

in a number of stochastic systems, both quantum and classical. Furthermore this

scheme shows the potential to develop into a self-tuning algorithm that precisely

controls acceptance rates to maximize efficiency. Since TPS often involves some

trial and error to find the optimal methods for any given system, a self-tuning

algorithm would speed up initial TPS investigations of new systems.

After this exploration of x-ensemble TPS we turned to plaquette models of glasses,

where the efficiency provided by x-ensemble scheme allowed the exploration of the

dynamical phase space of a three-dimensional glass former. It was found to be

strikingly similar to the thermodynamic one, and while we do not believe they are

directly related, we argue both are intrinsically related to long-lived metastable

states. Since metastability and dynamical heterogeneities are a universal features

of glass formers this is a good point to try and resolve competing theories of

glassiness. Bringing the argument firmly onto a three-dimensional footing where

both dynamical and thermodynamic arguments can be applied is an important

step. In general, the thermodynamic arguments (such as RFOT) are compelling

in the mean-field limit (i.e. infinite dimensions) where they are exact. In contrast,

kinetically constrained dynamics is supposed to describe the dynamics in low (two

and three) dimensions where dynamical fluctuations are prevalent. Our three-

dimensional version of a plaquette model (the SPyM model) provides a good test

bed for the study of thermodynamical behaviour of coupled systems, in the spirit
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of RFOT, together with the study of dynamical behaviour associated to facilitated

dynamics. The models studied in Chapter 5 are therefore particularly useful to

the discussion of the nature of the glass transition. Utilising a highly optimised

TPS scheme to locate the dynamical critical point in the SPyM (if there is one as

we assume) will be an interesting endeavour, as sampling the distribution close to

a critical point is difficult. We are hopeful the self-tuning x-ensemble algorithm

described in Chapter 4 will provide the capability to accomplish this.

We then looked to expand upon the thermodynamics of trajectories as a whole

with a trajectory analogue of the Jarzynski equality. This allowed for the compu-

tation of dynamical free energies from the “meta-dynamics” through the space of

trajectories conducted by TPS. While this is unlikely to be the most efficient means

of calculating these LD functions, it is a useful demonstration of an important re-

lation in non-equilibrium statistical physics. We expect other important relations

from statistical physics will be similarly developed for the thermodynamics of tra-

jectories. We further comment on the possibility that a combination of numerical

techniques, perhaps the histogram reweighting methods used in Chapter 5, will

enable a cross-phase meta-free energy calculation using the Jarzynski protocol, as

this is a problem that has received comparatively little attention. Failing that,

the Lee-Yang zeros method studied in Chapter 7 can be used to locate trajectory

phase transition points, and single-phase free energy calculations used instead to

capture the full LD functions. This method of Lee and Yang also provided a useful

reminder of the importance of careful selection of ensembles. Studying a “blink-

ing” quantum three-level system revealed no trajectory phase transitions in the

x-ensemble, where prior studies in the s-ensemble had found complex s transition

points. While these two ensembles are equivalent in the “thermodynamic limit”

(with some small technical nuances, see Ref. [149]) of K →∞, τ →∞, the transi-

tion point previously found in the s-ensemble is a transition to a dynamical state

of zero activity. As such, information about this state can not be encoded in the
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x-ensemble. We argue that, if anything, this further stresses the need for a vari-

ety of dynamical ensembles constructed from different order parameters. One can

then analyse if an order parameter is likely to capture any behaviours of interest

in a system under study.

Finally we close with a general comment on the thermodynamics of trajectories

as a whole. That the mathematical formalism of a centuries old theory can be so

usefully adapted to a fundamentally new setting is a testament to the power of

statistical mechanics. We look forward to further development of these ideas, with

the hope that non-equilibrium physics can be placed on equally solid mathematical

footing is its equilibrium counterpart.



A. Mapping coupled TPMs to

single system in field

In [36], a mapping was derived between the free energies of the coupled system

(5.5) and a single plaquette model in a magnetic field. Here, we present a mapping

between (sets of) configurations of these systems, which extends that analysis, as

well as recovering the same mapping between free energies.

We introduce overlap variables qi = σai σ
b
i on each site: our aim is to calculate the

statistical weight of a particular configuration of these variables. This weight is

W2(q|J, ε) =
∑
σa,σb

e−βEJ,ε(σ
a,σb)

∏
i

δ(qi − σai σbi ). (A.1)

We now perform the sum over the σ variables. If we sum over σb first we obtain,

W2(q|J, ε) =
∑
σa

exp

[
βJ

2

∑
µ

σaiµσ
a
jµ · · ·σakµ

×
(
1 + qiµqjµ · · · qkµ

)
+ βε

∑
i

qi

]
.

For the summation over σa we replace σaiµσ
a
jµ · · ·σakµ by τaµ . Then we use the

characteristic feature of the model, that plaquette and spin configurations are in

a one-to-one correspondence, so we replace the sum over the σai with a sum over

158
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the τaµ .

W2(q|J, ε) =
∑
τa

exp

[
βJ

2

∑
µ

τaµ
(
1 + qiµqjµ · · · qkµ

)
+βε

∑
i

qi

]
,

Performing the sum, we arrive at

W2(q|J, ε) = (4 cosh βJ)N/2 · e−βEJ′ (q)+βε
∑
i qi . (A.2)

with

βJ ′ = log cosh(βJ) (A.3)

We recognise the exponential term in (A.2) as the statistical weight of a configu-

ration σ = q for a single plaquette model with energy scale J ′, in a magnetic field

h = ε.

To explore the consequences of this property for the free energy, we observe

Z2(J, ε) =
∑

qW2(q|J, ε), so that

Z2(J, ε) = (4 cosh βJ)N/2 · Z1(J ′, ε), (A.4)

where

Z1(J, h) =
∑
σ

e−βEJ (σ)+βh
∑
i σi . (A.5)

is the partition function of a single plaquette model in a field h. In addition, this

latter system is known to have an exact duality [97,98]

Z1(J, h) = (sinh βJ sinh 2βh)N/2Z1(J̃ , h̃), (A.6)

where

e−βJ̃ = tanh(βh) , e−2βh̃ = tanh(βJ/2). (A.7)

From Eqs. (A.4)-(A.7) the duality of the coupled plaquette system follows:

Z2(J, ε) = (sinh βJ sinh βε)NZ2(J∗, ε∗), (A.8)
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with

e−βε
∗

= tanh(βJ/2) , e−βJ
∗

= tanh(βε/2). (A.9)

This duality is precisely the one obtained in [36] for the two coupled replicas of the

TPM. (Note that if tanh y = e−2x then tanhx = e−2y, which follows from the def-

inition of the tanh function, and facilitates inversion of these duality transforms.)
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