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Abstract

Power electronics is the enabling technology that can put transportation on a more

sustainable pathway. The key problem with power electronic (PE) systems is that

they are prone to instability. Classical techniques are insufficient at assessing the

stability of these systems, as they do not take into account the uncertain nature of

physical systems. This thesis presents the structured singular value-based µ method

as an effective, reliable and robust stability analysis approach that justifiably incor-

porates uncertainties which are inherently present in physical systems.

Although the µ approach has numerous benefits, it has a few drawbacks that tend

to make it hard to apply. Its theoretical framework remains complex. The practical

approaches to applying the µ method to PE systems seem lacking in the literature.

The µ approach is generally applied to linear system models while most systems are

non-linear in nature. This thesis demonstrates the applicability of the µ method to

PE systems, by addressing these limitations. The work first brings deeper and clearer

insights into key concepts of µ theory. It demonstrates the significance and usefulness

of the robust stability measure µ in the space of multiple parametric uncertainties,

through the concept of the hypercube. Secondly, it presents several practical ap-

proaches to applying the µ method to PE systems. Finally, it develops a modelling

methodology that converts a non-linear system to an equivalent linear model, suited

for µ analysis. The findings are supported by simulation and experimental results of

the buck converter, permanent magnet machine drive, ideal constant power load and

resistance-inductance-capacitance systems.

This thesis provides the design engineer with some crucial theoretical and practical

tools for applying the µ approach to both linear and non-linear models of PE systems,

while showing how to reap the full benefits of the method. It is the author’s belief

that the µ method can be used as widely as classical methods, and to great effect.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 More electric transport

Transport accounts for nearly two thirds of the global crude oil consumption and

about a quarter of carbon dioxide (CO2) emissions [1],[2],[3]. The energy use and

CO2 emissions in this sector are predicted to increase by 80% by 2050 [1]. The major

contributors of greenhouse effects are expected to be light duty vehicles (43%), trucks

(21%), aviation (20%) and shipping(8%) by 2050 [1]. Buses and rails are already

sustainable modes of transport. In order to mitigate the impact of the emissions

on climate change, the Intergovernmental Panel on Climate Change recommends a

reduction of at least 50% in global CO2 emissions by 2050 [1]. This target cannot be

met unless there is a deep cut in CO2 emissions from the transportation sector. On

the other hand, independently of climate policy actions, the projections are that fossil

fuel reserves will become exhausted within the next 50 years. If a more sustainable

future is to be achieved, the issues of greenhouse emissions and energy security are

to be addressed at this very point in time. One of the long-term solutions may well

2
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lie in both the adoption of current best technologies and in the development of more

advanced technologies, in all sectors including transportation [1]. A shift towards

more efficient modes of transport, including the “more electric transport” (MET) are

not only needed but seem inevitable.

The “more electric aircraft” (MEA) is a good example of the MET [4]. Although

the electrical power system (EPS) of the MEA is different from those of the more

electrical road vehicles, rails and ships, they share similar characteristics and benefits.

In conventional aircraft, power is generated by engines from fuel. The bulk of the

power is used for propulsion; the remainder is transformed to hydraulic, pneumatic,

mechanical and electrical power to supply different loads in the aircraft [5]. Pneumatic

power is used for the environmental control system (ECS) and wing anti-icing [5].

Hydraulic energy is used to power flight controls and landing gear [5]. Mechanical

systems are driven by mechanical power through gearboxes [5]. Electrical power

is used for lighting, avionics and commercial loads [5]. Moving towards the MEA

involves increasing the electrical power generation and distribution capability of the

aircraft to supply most of the aforementioned loads. This shift towards electricity

rests on the development power electronics. It is the enabling technology that can

contribute to high efficiency improvements in the aircraft, based on its distinctive

features such as high power capability and controllability [6].

Power electronic technology is paving the way towards the more-electric engine and

more-electric loads in the aircraft. The engines of the MEA will be started with in-

built starter/generator instead of high pressure air [4]. The vanes to control airflow

to the engine central core will be driven by PE converters. Power electronics will

enable fuel pumps to run at their optimum speed in according with prevailing oper-

ating conditions [4]. This will significantly reduce wasted pumping energy. A large

part of the aircraft loads, which run on pneumatic or hydraulic energy, will be con-

trolled by PE converters, leading to further increase in efficiency [4]. These include

environmental control system and wing anti-icing. Pressurisation will be performed

by electrically powered compressors. Most hydraulic and pneumatic actuators will be

replaced by electromechanical actuators (EMA) [5],[7]. Further, flight control systems
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and flight control actuation are expected to be PE-based. Of note is that many of

these functions are already implemented on current aircraft such as the Boeing 787

Dreamliner [4].

In the face of growing greenhouse emissions and declining fossil fuel reserves, the

world, now more than ever, needs to move towards a more sustainable and truly

low CO2 future [1]. In this effort, transport needs to be put on a more sustainable

pathway [1]. This implies the partial to complete electrification of all transport modes.

And power electronics certainly lies at the heart of this technology transition.

1.1.2 System stability

Power electronic driven loads have numerous benefits. However, one key drawback is

that they are prone to instability. As the aircraft electrical network becomes larger

and more complex, the multitude of PE-based loads can thus challenge the stability

of the EPS [8],[9],[10]. This is owing to the fact that the loads interfaced through

power electronic converters exhibit constant power load (CPL) behaviour, under fast

controller actions [11],[12]. They are seen in the network as negative impedances [12].

It is the negative impedance of the PE-based loads, when combined with input filter

impedances, that may drive the system to instability. The CPL behaviour of two

dominant PE-based subsystems in the MEA architecture are presented herein for

illustration, together with the non-linear and linear models of the ideal CPL.

1.1.2.1 Constant power load

The DC/DC converter is an important component of the MEA architecture. It is

commonly used to supply certain avionics DC loads [7]. Fig. 1.1 depicts such a con-

verter connected to a resistive load [7]. Power system applications for the DC/DC

converter requires the output voltage vo to remain fairly constant despite perturba-

tions in the input line voltage and step changes in load currents. This is achieved
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by having a compensator in the negative feedback loop of the converter, which au-

tomatically adjusts the duty cycle under various conditions of disturbances, so as

to keep the output voltage vo constant and close to the reference voltage vref [13].

Since the electrical load as well as the output voltage are constant in steady state

condition, the power supplied to the load is constant. With the converter efficiency

considered unvarying, the input power Pin drawn from the source is also constant.

The DC/DC buck converter, which is a commonly employed in the aircraft EPS, is

further examined in Chapter 4.

+

Pin 

(constant)

-

  DC/DC

converter  
  

vin(t)  

iin(t)  io(t)  

vo(t)  DC filter

  Controller 

to regulate 

voltage  
  

AC/DC 

converter
Electrical 

load

AC power

  system

vref  

Figure 1.1: A DC voltage regulator behaving as a CPL to the AC power supply

Another key component of the aircraft EPS is the DC/AC converter. It is employed

to drive loads such as flight control actuators [7]. Fig. 1.2 depicts such a system where

the controller regulates the speed wr of a permanent magnet (PM) machine such that

it follows the reference speed w∗r [7]. Since the speed wr as well as the torque T

are constant at a given operating point, the power supplied to the load is constant.

Considering that the losses of the motor and converter are constant, the input power

Pin drawn from the source is also constant. The DC/AC PM machine drive system

is examined in greater detail in Chapter 5.

The aforementioned examples of the power electronics driven loads exhibit CPL be-

haviour. Under infinitely fast controller actions, they can mathematically be repre-

sented as ideal CPLs, as shown in Fig. 1.3.
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+
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Figure 1.2: An actuator system behaving as a CPL to the AC power supply

The CPL characteristics are depicted in the non-linear equation (1.1) and in the curve

in Fig. 1.4.

iin(t) =
Pin
vin(t)

(1.1)

+

Pin (constant)

-

Ideal 

CPL
vin(t)  

iin(t)  

DC filterAC/DC 

converter

AC power

  system

Zin Zo 

Figure 1.3: An ideal CPL representing tightly controlled power conversion systems
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vin (t)

iin (t)
Pin = constant

δiin(t)

δvin(t)

( in,V in)Eqo I

Figure 1.4: Characteristic curve of an ideal CPL

The ideal CPL can be represented by a linear model under steady state conditions.

This is shown at the operating point Eqo on the curve in Fig. 1.4. The linear model

of the ideal CPL is depicted by (1.2) and the circuit model in Fig. 1.5. Equation

(1.2) can be derived from the partial differentiation and tangent line approximation

of (1.1). The ideal CPL will be examined in more detail Chapter 3.

iin(t) ≈ −Pin
V 2
in

vin(t) +
2Pin
Vin

=
1

(−Rcpl)
vin + Icpl (1.2)

+

Pin (constant)

-

vin(t)  

iin(t)  

DC filterAC/DC 

converter

AC power

  system

Zin Zo 

-Rcpl  
  

 

Icpl 

Figure 1.5: Linear model of an ideal CPL

At any given operating point, the input current and input voltage to the converter

system may be represented by DC values (Vin, Iin), as shown in Fig. 1.4. If the
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voltage increases by δvin(t), the input current has to decrease by δiin(t) to keep the

input power Pin constant [7],[12]. Hence, while the instantaneous impedance Vin/Iin is

positive, the incremental impedance (δiin(t)/δvin(t)) is negative as shown in Fig. 1.4.

This negative impedance, also represented by −Rcpl for the ideal CPL, can lead to

stability issues within the network, as will be described in the subsequent section.

1.1.2.2 Issue of stability

The negative impedance of the PE-based loads, when combined with input filter

impedances, under certain circumstances, may cause the system to oscillate and be-

come unstable [14]. This phenomenon can be more clearly explained through the

Nyquist stability criterion. An EPS can be viewed as a cascade of its source and load

components. The transfer function of the interconnected system is given by (1.3),

where FA and FB are the transfer functions of the source and load subsystems re-

spectively, and T is referred to as the minor loop gain [15],[16],[17]. As illustrated in

Fig. 1.3 and 1.5, Zo and Zi are the output and input impedances of the source and

load subsystems respectively.

FAB =
FAFB
1 + T

, with T =
Zo
Zi

=
| Zo |
| Zi |

∠(φzo − φzi) (1.3)

According to the Nyquist stability criterion, for the system to be stable, 1 + T must

not have any roots in the right half plane [14],[15]. It is seen from (1.3), that if

T equals −1, the denominator becomes zero and the transfer function FAB tends to

infinity. At this point, the system oscillates and is at the boundary of stability. For

a system to be stable, the Nyquist contour must not encircle the point (-1,0) [14].

In order to illustrate the issue of stability, a DC/DC buck converter connected to an

input LC filter is examined. This is an example of the EPS shown in Fig. 1.1. The

buck converter, with an efficiency of 93 %, draws an input power Pin of 17.2 W from

the source, to feed a resistive load of 16 W , under steady state condition. Under
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infinitely fast controller action, the buck converter can be represented as an ideal

CPL of 17.2 W , as shown in Fig. 1.3 and 1.5. The buck converter and its ideal

CPL representation are examined in later Chapters 4 and 3 respectively. Since these

systems are being used for the purpose of illustration herein, they are not defined at

this stage.

The input impedance of the buck converter, measured in simulation at different values

of its bandwidths (2.8 kHz, 4.0 kHz, 15.3 kHz, 91 kHz), are shown in Fig. 1.6. It

can be observed from the chart in Fig. 1.6, that the converter behaves as a negative

resistance at low frequency with its phase being close to −180o. Further, it is noted

from the chart that the negative resistance or CPL behaviour of the buck converter

tends to prolong over a wider range of frequency under tighter controller action or

increasing bandwidth. The ideal CPL representation of the buck converter is also

shown in Fig. 1.6. It is equivalent to the negative resistance −Rcpl, with a magnitude

of 27 dB and a phase of −180o over the entire frequency range.
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Figure 1.6: Effect of bandwidth on the negative impedance behaviour of a DC/DC
buck converter

In addition, the output impedance of the LC input filter, including the power supply,

is shown in Fig. 1.6. According to Middlebrook criterion, | Zo |�| Zi | is a sufficient
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condition for the stability of the system [14]. For cases where the input impedance

| Zi | decreases or the output impedance | Zo | increases, at some point | Zi | may

be equal to | Zo |, as shown in Fig. 1.6. At that point, if ∠(φzo − φzi) = 180o,

which will cause T , as shown in (1.3), to be equal to −1, the system will reach

boundary stability. In order to keep the system stable, it is clear from Fig. 1.6, that

the phase difference ∠(φzo − φzi) should be kept as small as possible and far from

the critical 180o value. However, when a converter is tightly controlled, ∠φzi tends to

−180o. This increases the likelihood of the phase difference between source and load

impedances reaching 180o, and leading the system to instability. It is the interaction

of the negative impedance of the PE-based load with the impedance of the input filter

that tends to make the system susceptible to instability.

1.1.2.3 Stability analysis

Stability assessment is thus crucial in the design of power electronic systems. It is to

be emphasised that system stability can be analysed both at the small and large sig-

nal level. Small-signal analysis investigates the stability of an EPS when it is subject

to small disturbances [7],[12],[15],[18]. The analysis is performed on a linear system

model about a certain operating point [7],[12],[15],[18]. In contrast, large signal sta-

bility analysis investigates the system’s behaviour under large disturbances including

transients and sudden large changes in loads [19],[20]. The large signal stability of a

simplified electric ship power system is assessed in [21] based on Lyapunov’s theorem.

Although stability assessment of large signal disturbances is important, the subject is

not treated in this study. This work focusses on small-signal stability analysis, which

is an important concern in the reliable operation of the system.

The issue of system stability is not confined to the electrification of the aircraft but

extends to the other transport modes [3],[22]. As power electronics plays a key role in

developing more sustainable modes of transport, there is a dire need to address the

issue of stability. Stringent assessment techniques are required to ensure the stability

of electrical network for the MET.
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1.1.3 Robust stability

The stability of electrical power systems is generally assessed by using classical stabil-

ity analysis techniques [23],[24]. These include the eigenvalue method, and impedance

methods based on the Nyquist stability criterion. The eigenvalue theorem verifies that

all the eigenvalues of the Jacobian system matrix evaluated at a given equilibrium

point have negative real parts, as a condition for system stability [7],[25]. According

to the Nyquist stability criterion, for a system to be stable, the Nyquist contour of the

minor loop gain must not encircle the point (-1,0) [14],[15]. The Middlebrook criterion

and its extensions, which are based on the Nyquist criterion, provide sufficient, but

not necessary conditions of stability. Middlebrook criterion requires that the source

impedance be less than the load impedance to ensure system stability [14],[15],[17].

The method is known to be very practical. Yet, the results can be conservative which

may lead to the design of larger filter than is actually required [15],[17]. A number

of extensions to Middlebrook criterion, such as the Gain Margin and Phase Mar-

gin (GMPM) criterion, and the Energy source analysis consortium (ESAC) criterion,

were later developed to reduce the conservatism of the design [15],[17]. The different

methods define various forbidden regions which contain the point (-1,0). The results

are made less conservative by specifying less restrictive forbidden regions [15],[17].

The classical methods work on the nominal model of the physical system [7],[14]. The

outcome of the stability assessment is therefore heavily dependent on the quality of

the system model. The model may be refined to great detail by matching its response

to that of the physical system. Yet, in practice, excessive model refinement is unlikely

to be viable or practical. Further, the exact values of system components may not be

known accurately. For instance, system parasitics, often hard to quantify, can have

a significant influence on the quality of the model. The power supply and external

filters, to be connected on site, may be unknown at the design stage. This may

significantly alter the impedance of the power stage. In addition, electrical power

systems may be exposed to large variations in their loads. Thus, it can be safely

argued that, in practice, nominal system models are bound to contain uncertainties.
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From another perspective, even though a nominal model is deemed to be accurate,

it may not truly represent the actual system, which is generally subject to various

operating conditions uncertainties. For instance, in aerospace applications power

electronics based systems may be exposed to temperatures typically ranging from

-40 oC to 125 oC [26]. These large variations in temperature may have considerable

effect on the properties of system components. Ageing is another factor which brings

uncertainty to the system elements over time. Although an EPS is assessed as stable

based on fixed parameters and conditions, it is questionable whether it continues to

be stable in the face of all the aforementioned possible types of uncertainties.

Despite the fact that exact values of system components, system loads or operating

conditions may not be known accurately, their range of variation can generally be

estimated to good accuracy. For instance, the tolerance of most components can be

obtained from data sheets. The variation of resistances can be computed from the

range of change in operating temperatures. Uncertainty sets of power supply and

filter impedances may be obtained based on possible make and type. Given that

uncertainties seem to be inherent in EPS, it may be more natural to work around

uncertain system models. In contrast with nominal models, uncertain models define

both the nominal values and the possible range of variation of their parameters. The

uncertain model is thus closer to the physical system. While classical methods are

applied for stability analysis of nominal system models, a robust approach is needed

for the stability assessment of uncertain system models. The structural singular value

(SSV)-based µ approach is a robust stability method that incorporates all sources of

uncertainties within the system [27],[28],[29].

It can be argued that uncertainties can be incorporated when using classical meth-

ods [7],[30]. In an attempt to include uncertainties in stability analysis, classical

approaches such as the eigenvalue method are combined with the Monte Carlo simu-

lation. This probabilistic stability assessment approach can be employed to determine

probability density functions of critical eigenvalues but cannot guarantee to identify

the most critical system scenarios with respect to stability [31],[32]. Additionally,

[30] presents an admittance space stability analysis method that incorporates uncer-
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tainties in the application of the classical impedance-based ESAC criterion approach.

Yet, the aforementioned methods involve exhaustive iterations of parameter varia-

tions, linearisation at a number of equilibrium points and computation of eigenvalues

or impedances. The approaches tend to be laborious. The authors in [30] have de-

veloped a software to make the process automatic. However, applying single input

single output (SISO) methods to multi input multi output systems (MIMO) may not

produce reliable results, as reported in a number of studies [31],[33].

The µ approach is a deterministic method, that can provide a direct measure of sta-

bility robustness of a system with respect to its uncertain elements. It is founded

on the aforementioned concept of the uncertain system model. Hence, by working

directly on an uncertain model, µ analysis eliminates the burden from a user of per-

forming exhaustive iterations. Further, the µ approach has proven to produce reliable

results in robust stability analysis of power systems subject to multiple simultaneous

uncertainties [27],[33],[34],[35],[36].

Following the above discussion, it is evident that there is a need to ensure that an

EPS is not only stable but robustly stable, i.e. it must remain stable in the face of

all system uncertainties. This is especially important for safety-critical applications.

This thesis presents the structural singular value based µ method as an effective and

reliable stability robustness approach, that justifiably takes into account all possible

system perturbations.

1.1.4 µ method

Important developments in the multivariable control theory since the early eighties

have made the µ approach more rigorous and applicable, when compared to the early

stages of its development [28]. However, despite its numerous advantages, the method

has a few limitations, which could explain why it is still not as widely used as classical

methods, as discussed herein.
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1.1.4.1 Theoretical aspects

The mathematical complexity underlying the µ theorem is such that certain aspects

of the approach are not well understood and interpretation thereof may not be evident

from the engineering viewpoint [33]. In fact, a great amount of literature is devoted

to the theoretical framework [27],[28],[29],[33],[35],[37]. It discusses linear fractional

transformation (LFT), which is a modelling technique required to convert a system

model into a form that is suitable for µ analysis. The theory also discusses the prin-

ciple of SSV, which is a measure of stability robustness of the system. Understanding

the µ theory is of utmost importance; yet, the practical significance and applicability

of the key concepts are equally important. Unfortunately, this aspect is not widely

discussed in the literature. Although the operation of LFT and the computation of µ

remain complex, the processes have been automated with the help of software such as

MATLAB R© Robust Stability Toolbox and ONERA R© Skew mu toolbox [38],[39],[40].

Another feature of the µ approach that adds to the aforementioned limitation is

that µ cannot be computed as an exact value particularly for large problems, since

the computational burden increases exponentially with the size of the problem. A

lower bound and an upper bound are calculated instead of its exact value. It is to

be pointed out that these bounds are usually interpreted from a theoretical rather

than from a practical viewpoint. It has been reported in the literature that the

method can be computationally expensive for the analysis of complex systems with a

large number of uncertainties [34],[41]. However, a number of algorithms have been

developed to reduce the gap between the µ bounds while maintaining reasonable

computational time [34],[40],[42]. Further, the computation of µ is dependent on

the types of uncertainties being considered. These can be structured parametric

uncertainties, unstructured unmodeled dynamics or a combination of these two types

of perturbations [27],[35]. Unmodeled dynamics group uncertainties that are often

hard to quantify, such as perturbations arising outside the control bandwidth at high

frequencies. They are often represented as frequency-dependent uncertain transfer

functions. Of note is that this study focusses on parametric uncertainties, which is

particularly relevant to engineering problems.
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For the µ approach to be more applicable, a thorough understanding of the µ theory

as well the practical implications of its key concepts is essential.

1.1.4.2 Practical aspects

Many works have proven that the µ approach can be applied to realistic models

of power systems with successful results. Unfortunately, certain key aspects of the

employed methodology have not been presented in sufficient detail, that would enable

a user to reapply the method. Further, the practical approach to applying the method

to power electronic based systems seems to be lacking in the literature.

The authors in [43],[44],[45],[46],[47] successfully apply µ analysis to determine the

maximum power transfer of large scale power systems. The studies analyse the µ

upper bound, however they do not evaluate the µ lower bound. Besides, the method-

ology applied through associated software is not discussed. The work in [48] investi-

gates the maximum range of variation in the load, that a university campus microgrid

can withstand before becoming unstable. The results, based on µ upper bound, are

reported to be satisfactory, and in addition are shown to be less conservative as com-

pared to Middlebrook method. However, the work neither discusses the conservatism

in the µ upper bound nor presents the method employed. Although, the authors in

[31] investigate the stability of the PE-based buck converter system, the focus of the

work is, nonetheless, on µ sensitivity. This method identifies the system parameters

which are most critical to stability robustness. The study shows that both Middle-

brook method and Monte Carlo method, in contrast to the µ sensitivity approach,

cannot be used reliably to identify the most critical parameters that cause instability.

Certain works such as [34],[49] have treated the practical aspects of the µ approach

in good depth. The work presented in [34] shows the practical approaches to using

µ analysis for aeronautical applications. While the results are clearly examined, the

systems analysed and the method employed are not presented in a manner that is

comprehensive enough to reapply them. Further, [38],[49] and [50] demonstrate the

use of the computational functions in MATLAB R© Robust control toolbox. However,
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the example systems deal mainly with the design and analysis of robust controllers.

In addition, the computational functions, that are presented in these works, have long

been replaced by new functions in the updated versions of the toolbox. The work

presented in [51] applies µ analysis to a buck-boost converter. Nonetheless, the focus

is on the design of a robust controller for the converter and similarly to previous

studies, it does not present the method applied.

In order to make the µ approach more applicable, sufficient knowledge as regards

its practical application, particularly to power electronic systems, is necessary. The

methodology required to apply the µ method, through available software, needs to

be presented in a manner comprehensive enough to enable a user to reapply it.

1.1.4.3 Application to non-linear systems

The µ method is generally applied for robust small-signal stability analysis of linear

uncertain system models. However, most electrical power systems are generally non-

linear in nature. The small-signal stability assessment of non-linear systems may

be challenging in the face of uncertainties. This is due to the fact that small-signal

stability analysis is performed on a linear model about a certain operating point; and

depending on the amount of variations considered in the system, there may be an

arbitrarily large number of linearised models to be generated and assessed, over a

large range of operating points.

In order to analyse the small-signal stability of an EPS, the classical approach em-

ploys an extensive iterative process. For instance, [52] uses the eigenvalue method to

determine the critical torque of the PM machine based electromechanical actuation

system. Firstly, the operating range is divided into a finite number of points. Then,

for each operating point, numerical linearisation is performed and eigenvalues are

calculated. The iterative process has to be further refined until the critical parameter

value is obtained to a satisfactory accuracy. The process can be laborious.

Few methods, proposed in the literature, have aimed to apply the µ method to non-
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linear systems. A combined numerical and symbolic linearisation technique is pre-

sented in [41]. Another approach identifies the elements of state space matrices that

vary with changes in operating conditions and system parameters, and then approx-

imates those varying elements by polynomial functions [43],[44],[45],[46]. Yet, these

methods, similarly to the classical approach, cannot fully take into account depen-

dencies of operating points on parameter uncertainties and may lead to conservative

results. Nonetheless, it should be noted that these techniques were proposed for larger

power systems, for which the loss in accuracy in the results may be justified.

In order to make the µ approach more applicable power electronic systems, it is

necessary to have adequate techniques that can extend the applicability of the method

to non-linear systems, while ensuring accuracy of results.

1.2 Research objectives

Power electronic based systems plays a key role in moving towards more sustainable

modes of transport. It is therefore essential that the issue of stability in PE-based

systems be addressed in a rigorous manner. Classical methods are not sufficient to

assess the stability of such EPS as they neglect uncertainties, which are inherent in

the physical system. The µ approach is presented as a reliable method that can be

employed to ensure the stability robustness of EPS, in the face of system uncertain-

ties. Even though the µ method has great advantages, it also has a few drawbacks.

First, its theoretical framework remains complex and is not always well understood.

The practical significance of µ and its bounds is not always clear. Secondly, the

practical approaches to applying the µ method to PE systems seem lacking in the

literature. Finally, the µ approach is generally applied to linear system models while

most systems are non-linear in nature.

The µ approach has numerous benefits as compared to classical methods. However,

the aforementioned limitations may suggest why this robust method is not widely

employed by design engineers. It is the author’s belief that the µ approach can be
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employed as commonly as the classical techniques and to great effect. In order to

make the µ approach more application-friendly and to fully realise the benefits of the

method, this work addresses its limitations, through the following key objectives.

• The first objective is to bring clearer and deeper insights into certain key theo-

retical aspects of the µ approach, in view of making it more applicable.

• The second objective is to demonstrate the practical and flexible aspects of the

µ method, and present approaches to applying it to PE-based systems.

• The final objective is to extend the application of the µ method to non-linear

systems, while reducing the conservativeness in the results.

1.3 Contributions

The research methods, that have been implemented to meet the aforementioned ob-

jectives, are presented in the main chapters of this thesis and are outlined in the next

section. This effort has resulted in three main contributions.

• By extending and applying the concept of the hypercube to PE systems, this

work provides important insights into the meaning and usefulness of the robust

stability measure µ, for systems subject to multiple parametric uncertainties.

The hypercube represents the largest normalised parametric space centred about

the nominal point, within which robust stability is guaranteed.

• This study presents practical and flexible approaches to applying the µ method

to PE-based systems. It demonstrates how different types of uncertainties, such

as uncertainties in the model, the load and operating conditions, can be easily

incorporated in the stability exercise, while employing the same system model

and the same analysis tool.
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• This thesis develops a general modelling methodology to represent a non-linear

system by an equivalent linear state space model, that is suited for µ analy-

sis. By expressing dependencies of operating points on system parameters, the

developed modelling approach reduces conservativeness in the results.

1.4 Thesis structure

The thesis is organised in six main chapters.

Chapter 1 provides the motivation for this work and highlights the major contribu-

tions.

Chapter 2 presents the theoretical framework to the µ method, and illustrates

they key concepts by applying them to the well established resistance-inductance-

capacitance RLC circuit. The technique of LFT and the principle of SSV are dis-

cussed. Two different approaches to uncertain system modelling, based on LFT

techniques, are analysed in detail. These include the interconnection of LFT mod-

els and Morton’s method. Furthermore, the chapter examines the µ bounds and

the associated robust stability margin. The main limitations of the µ method are

discussed.

Chapter 3 applies the concept of the µ-based hypercube to a basic EPS connected

to an ideal constant power load, to determine the robust stability domains within

which the EPS can be guaranteed to operate safely. It demonstrates the applicability

of the µ approach in evaluating stability robustness and robust stability domains of

an EPS subject to multiple parametric perturbations. This is achieved by translating

µ results from the frequency domain into the more perceivable parametric space. µ

analysis predictions are evaluated against analytical results.

Chapter 4 demonstrates the practical approaches to µ analysis by applying it to the

buck converter as an example EPS. The first part of the chapter applies µ analysis
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to the refined model of the system, when it is subject to load uncertainties. The

investigation is performed for source impedance of varying values. The µ predictions

of the critical destabilising load are verified against experimental results performed

both in the time domain and the frequency domain. The second part examines the

robust stability margin of the EPS under extreme temperature variations. Finally,

the chapter demonstrates how model uncertainties can be incorporated in stability

analysis of a system. It evaluates the robust stability margin when model uncertainties

are accounted for, as compared to the case when these uncertainties are neglected.

Chapter 5 develops a modelling method for robust stability analysis of non-linear

EPS over a range of operating points and under parameter uncertainties. The pro-

posed modelling approach is applied to a 4 kW permanent magnet (PM) machine

drive. µ analysis, applied to the developed equivalent linear model of the EPS, is then

used to predict the destabilising torque over a range of different operating points and

parameter variations. The stability of the PM machine drive system has been anal-

ysed based on the classical eigenvalue method and also tested experimentally in [52].

The methodology, presented in this chapter, is validated by evaluating the predictions

from µ analysis to the experimental reported in [52].

Chapter 6 discusses the significance as well as the implications of the findings pre-

sented in the thesis, and provides suggestions for future works.
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Chapter 2

Theoretical framework

2.1 Introduction

Power electronic systems play a key role in the development of the more electric

transportation. However, they are prone to instability and call for the adoption of

robust stability assessment techniques. The µ approach is a robust tool that can

be used effectively to assess the stability of such systems. One factor that tends to

make the method hard to apply is the complexity of its theory, which is not always

fully understood [27],[33]. This chapter aims to bring a good comprehension of the

basic µ theory, in view of making the µ approach more applicable. The theoretical

framework consists of certain key concepts which include the modelling technique of

LFT as applied to uncertain system models, as well as the principle of structural

singular value µ and its bounds.

The LFT technique, which forms the basis of the µ approach, is explained widely in

the literature. It is described as a technique that is used to “pull out” uncertainties

from the uncertain model. While the method is often discussed in theoretical terms,

the authors in [35] and [38] illustrate LFT by applying it to a mechanical mass-

spring-damper system. These studies have provided a good basis to further explore

22
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the concept of LFT in this chapter. Even though the process of LFT, being extensive,

is generally performed by the aid of associated software, understanding the basic steps

involved in the process is important, prior to employing the µ approach.

While the principle of µ and the computation of its bounds are widely examined

in the literature, the discussion is generally done from a mathematical viewpoint.

Few works have tried to interpret the concepts from a practical or engineering stand

point [34],[49]. µ can generally not be calculated as an exact value as it is computa-

tionally expensive. A lower and an upper bound are provided instead. A number of

studies work with the µ upper bound. However, they neither discuss its conservative

nature nor compare it with the µ lower bound [43],[44],[45],[47]. Yet, the authors

in [38] suggest to use both bounds for a more reliable use of the µ approach. The

examination of µ and its bounds, from an application point of view, seems lacking

in the literature. Fortunately, [34] brings a clearer understanding of the µ bounds

by discussing their implications on stability assessments. If the basic theory of the µ

approach is unclear, its application will remain be a daunting task. Hence, there is

a need to gather the dispersed knowledge of the key underlying concepts and bring a

comprehensive examination of the µ framework.

This chapter provides a perspective on the modelling technique of LFT, as applied to

uncertain system models. It examines two different approaches to LFT, namely the

interconnection of LFT models and Morton’s method. It then explores the theoretical

framework of SSV by discussing the µ bounds and the µ-based robust stability margin.

It illustrates the two approaches to LFT and the principle of µ by applying them to

an example RLC circuit. The limitations of the µ approach are also discussed.

2.2 Uncertain system model

A great advantage of the µ approach is that it works with the uncertain system

model as opposed to the nominal model [29],[35],[36],[37]. In practice, parameters

of an actual system may vary within a certain range of the nominal values owing
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to some perturbation effects such as parameter changes, noise, variation in material

properties, design errors [35]. An uncertain system model considers not only nominal

values of the system parameters but also the possible range of parameter changes [35].

In contrast, a system that is designed around fixed parameters is referred to as the

nominal model. The advantage of designing around an uncertain system model is

that it brings the model closer to the physical system. Standard techniques are

sufficient to verify stability of nominal systems with no uncertainties. However to

analyse stability of uncertain systems, the principle of structural singular value (µ)

can be used. Prior to applying µ analysis, the system must be expressed in the linear

fractional transformation (LFT) form [27],[36]. The aim is to verify that a system

remains stable for all conditions that may arise within the defined uncertainty set, in

which case it is said that the system is robustly stable. The systems dealt in this work

are Multiple-Input-Multiple-Output (MIMO) systems that vary with frequency and

are linear time-invariant (LTI). The focus of this study is on parametric uncertainties,

which are particularly relevant to engineering problems.

2.3 Linear fractional transformation

LFT is a modelling technique which is employed to “pull out” the indeterminate part

from the known part of a system model and place it in the feedback form. If a general

uncertain parameter P is considered to be bounded in the region [Pmin,Pmax], it may

be represented in its normalised form δP bounded within [−1, 1]. It is easy to show

that P can be modelled as an LFT in δP in the expression (2.1) and in the matrix form

in Fig. 2.1a [35],[53]. It should be added that an inverse of an LFT is also an LFT.

This is illustrated by the inverse of the parameter l in (2.2) and in the matrix form

in Fig. 2.1b, where l is bounded within [lmin,lmax]. Considering that the parameters

P and 1/l are constituent parts of a dynamic system, the input and output signals

of the parameters with respect to the system, are denoted as usp, usl and ysp, ysl

respectively, while u∆p, u∆l and y∆p, y∆p denote the outputs and inputs of δP and δl

respectively, as shown in Figs. 2.1a and 2.1b [35],[49].
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P = Po + PoPvarδP , δP ∈ [−1, 1] (2.1)

where Po = (Pmin + Pmax)/2

and Pvar =
(Pmax − Pmin)

2
/

(Pmax + Pmin)

2

1/l = 1/lo − lvarδl(1 + lvarδl)
−1(1/lo), δl ∈ [−1, 1] (2.2)

where lo = (lmin + lmax)/2

and lvar =
(lmax − lmin)

2
/

(lmax + lmin)

2

u∆py∆p
ysp usp

0 Po 

Pvar Po 

δP

(a)

u∆ly∆l
ysl usl

lvar 1/lo 

lvar 1/lo 

δl

(b)

Figure 2.1: Uncertain parameters (a) P as an LFT (b) 1/l as an LFT

Similarly, the model of an entire system with parametric uncertainties can be repre-

sented in the LFT form [36],[50]. For the purpose of illustration, a general uncertain

system expressed in the state space form with input u and output y, as shown in

Fig. 2.2a, is considered. The elements of the state space matrix ( A B
C D ) are functions

of either fixed or uncertain parameters. For instance, element Aij of the state matrix

A can be expressed as Aij = f1(P1, P2...Pm) where P1 to Pm denote uncertain pa-

rameters of the system [45]. Based on the technique of LFT, it is possible to extract

the set of uncertainties in their normalised form and regroup them in the diagonal

uncertainty matrix ∆ as shown in Fig. 2.2b, where ∆ = diag{δP1, δP2, ..., δPm}. As a

result, the initial state space matrix is expanded to accommodate two sets of inputs

namely u∆ and us and two sets of output y∆ and ys as shown in Fig. 2.2b [35],[43].
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C0 D21 D22 

x.
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Figure 2.2: Uncertain system (a) the original uncertain system in state space form

(b) indeterminate uncertainties “pulled” out of the system using LFT

The expanded state space matrix can be simplified by absorbing the “states” through

the use of equations (2.3) - (2.6). In this manner, the state space matrix in Fig. 2.2b

is converted into the N∆ configuration in Fig. 2.3a.

N11(s) = C1(sI − A0)−1B1 +D11 (2.3)

N12(s) = C1(sI − A0)−1B0 +D12 (2.4)

N21(s) = C0(sI − A0)−1B1 +D21 (2.5)

N22(s) = C0(sI − A0)−1B0 +D22 (2.6)

Further, the system matrices in Fig. 2.3a can be represented as three distinct equa-

tions (2.7) - (2.9). By rearranging these equations to eliminate u∆ and y∆ and ex-

pressing the output ys in terms of the input us, the transfer function of the system is

obtained as (2.10), if the feedback is well posed. The uncertainty matrix ∆ is clearly

distinguishable in (2.10) and is said to have been “pulled out” of the original uncer-

tain system. Equation (2.10) is known as the upper linear fractional transformation

Fu(N,∆). It is interesting to note that with the disturbance ∆, in (2.10), being zero,

the system is equivalent to N22(s), which is exactly the nominal transfer function of

the uncertain system.
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y∆ = N11 u∆ +N12 us (2.7)

ys = N21 u∆ +N22 us (2.8)

u∆ = ∆ y∆ (2.9)

Fu(N,∆) =
ys
us

= N22 +N21∆(I −N11∆)−1N12 (2.10)

u∆y∆
ys us

N11 N12 

N21 N22 

∆

(a)

u∆y∆
∆

M

(b)

Figure 2.3: Uncertain system (a) in the LFT or N∆ form (b) stability depends on M∆

loop where M = N11

2.4 Structural singular value (µ)

2.4.1 The µ framework

Referring to the general LFT expression (2.10), it can be seen that the only source

that can cause the system N∆ to become unstable is the feedback term (I −M∆)−1

where M = N11 [36]. The stability of the whole system therefore rests on the stability

of the subsystem (I −M∆)−1. This is represented in Fig. 2.3b which can be seen as

an extraction of the transfer function matrix in Fig. 2.3a.

The small gain theorem, upon which robust stability theorem is based, states that

if the systems M and ∆ are open-loop stable, the interconnected loop M∆ is also

stable provided that the loop gain product is less than unity as given by (2.11) [49].
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As defined in [49], ‖M∆‖∞ describes “the maximum energy gain of the interconnected

system and is decided by the peak value of the largest singular value of the frequency

response matrix over the whole frequency axis”.

‖M∆‖∞ < 1 and ‖∆M‖∞ < 1 (2.11)

Generally uncertainty falls in two main categories namely structured parametric

uncertainty and unstructured frequency-dependent unmodeled dynamic uncertainty

[34],[38],[36]. The stability conditions, as defined in (2.11), are valid for unstructured

uncertainties but do not consider the structure of the uncertainty matrix. In order to

generalise the small gain theorem to include structured uncertainties, the determinant

stability condition, which is based on the generalised Nyquist Theorem, is used. It

states that the system M∆ in Fig. 2.3b is stable for all allowed perturbations if and

only if : [29],[54]

the complex function det(I −M∆(jw)) 6= 0, ∀w ∈ R (2.12)

or the eigenvalues λi(M∆) 6= 1

Based on the small gain theorem and the determinant stability condition, the robust

stability condition for structured uncertainties is given by the structured singular

value, as defined in (2.13).

µ∆(M) =
1

min[σ̄(∆) : det(I −M∆) = 0,∆ structured]
(2.13)

The structured singular value, commonly denoted as µ, identifies the smallest per-

turbation matrix (∆) that destabilises the system by causing the location of system

poles on to the imaginary axis [29],[35]. In fact, the robust stability margin, which
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corresponds to the size of the critical perturbation matrix, is equal to 1/µ. SSV is

a frequency-dependent matrix function which depends on both the system matrix

M(s) and the structure of ∆ [29],[35]. The SSV theory gives necessary and sufficient

conditions for stability robustness [27]. If µ is less than 1, the system is guaranteed

to be stable for the entire uncertainty set.

2.4.2 µ bounds

There exists an arbitrarily large number of solutions to the robust stabilisation con-

dition (2.13) [38],[49]. The computational burden of calculating µ increases exponen-

tially with the size of the problem [27],[34],[37]. It is not computationally feasible to

compute µ, particularly for large size problems [34]. The solution is thus to compute

a lower bound µ
¯

and an upper bound µ̄ instead of the exact value of µ. The µ bounds

are defined in (2.14) [49]. The lower bound corresponds to the spectral radius of M ,

(ρ(M)), which refers to the largest value of all the eigenvalues of M(s) [35]. The

upper bound corresponds to the largest singular value of M i.e. σ̄(M) [35]. However

the gap between the bounds in (2.14) can be very large. The transformation matrices

U and V are introduced to provide tighter bounds on µ, as given in (2.15) [49].

ρ(M) ≤µ∆(M) ≤ σ̄(M) (2.14)

max
U∈U

ρ(UM) ≤µ∆(M) ≤ inf
V ∈V

σ̄(VMV −1) (2.15)

where the lower bound µ
¯

= max
U∈U

ρ(UM) (2.16)

and the upper bound µ̄ = inf
V ∈V

σ̄(VMV −1) (2.17)

The condition (2.16) is a non-convex problem. It can be solved as a non-convex

optimisation problem, which may be computationally demanding. A non-convex

problem may have multiple feasible regions, and each feasible region may contain

multiple optimal solutions [55]. To identify whether the problem has a global solution

when the objective function is unbounded, or to determine whether a local solution is
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the global solution across all feasible regions is a hard problem, i.e. the computational

time may increase exponentially with the size of the problem. The lower bound µ
¯

is

obtained as a local maximum to condition (2.16). This is depicted in Fig. 2.4, which

has a purely illustrative significance. If the local maximum coincides with the global

maximum, µ
¯

is always equal to µ. However, this cannot be guaranteed. On the other

hand, the upper bound µ̄ can be obtained as a solution to the condition (2.17). This is

a convex problem with a unique maximum, as depicted in Fig. 2.4 [34]. It can be solved

efficiently up to very large size, as a convex optimization problem. However, except for

a few cases, µ̄ is generally higher than µ, and tends to be conservative [38],[49]. Yet, µ̄

can be used as a measure of the maximum possible error in the lower bound. This can

be estimated by the gap [µ
¯
,µ̄] [34]. It is to be added that the computational burden

for determining µ
¯

is relatively low since it is generally based on the iterative process.

In contrast, generating the optimal value of µ̄ tends to have high computational

requirements, especially for large problems [40],[42].

The concept of the µ bounds is illustrated in Fig. 2.4. A lower bound µ
¯

(which is

also the upper bound of the robust stability margin) provides a sufficient condition

of the instability of the system (I −M∆) for the model perturbation ∆ = 1/µ
¯

[34].

On the other hand, the upper bound µ̄ (which is also the lower bound of the robust

stability margin) provides a sufficient condition that guarantees stability of the system

(I −M∆) for all perturbations that are smaller than 1/µ̄ [34].

Although, µ
¯

is not guaranteed to be equal to µ, it is always computed at the boundary

of stability. Further, it yields the worse case perturbation model for a system. The

destabilising values of the uncertainty matrices, corresponding to µ
¯
, can be obtained

through computational algorithms. This is not the case with µ̄ upper bound. It

is worth noting that much work has been devoted to increasing the accuracy of the

bounds and reducing the gap between the bounds [33]. This includes the development

of ad-hoc algorithms [34],[38],[40]. The worse ratio of µ/µ̄ has been reported to be

equal to 0.85 while in most cases the ratio is close to unity [35]. The lower bound µ
¯

is therefore generally close to µ. For the aforementioned reasons, the lower bound µ
¯

is used as a good estimate of µ in this study.



2.4. STRUCTURAL SINGULAR VALUE (µ) 31

 [0, 0]

Nominal Point

Stable

Unstable

R
ob

us
t s

ta
bi

lit
y 

m
ar

gi
n1/μ-

μ1/
μ-1/

bo
un

ds
μ

μ
μ-

μ-

Figure 2.4: Representative figure to illustrate µ bounds and robust stability margin

2.4.3 Robust stability margin (1/µ)

The robust stability margin is defined as min(σ̄(∆(jw))) and is given by the inverse

of µ in accordance with (2.13). It provides a measure of the smallest permissible

deviation of uncertain elements from their nominal values, relative to their maximum

uncertainty range. For the sake of illustration, a system with uncertainty in a single

parameter P , as defined in (2.1), is considered. µ analysis identifies the smallest nor-

malised perturbation δPcr or the smallest critical parameter Pcr that causes instability,

as depicted in (2.18). Equation (2.18) can be rearranged to give (2.19). The robust

stability margin is given by 1/µ or | δPcr |, as shown in (2.20). Fig. 2.5, which is an

illustration of (2.19), clearly depicts the robust stability margin as being the ratio of

the permissible uncertainty range for system stability, to the maximum uncertainty

range; both being with respect to the nominal point. Further, robust stability margin

can be interpreted as the magnitude by which the maximum uncertainty range must

be scaled in order to guarantee stability [36]. In other words, the system is ensured

stable within the range (± Pvar × 1/µ) or (± Pvar× | δPcr |).
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At boundary of stability Pcr = Po + PoPvarδPcr (2.18)

where δPcr =
Pcr − Po
PoPvar

=
(Pcr − Po)

(Pmax − Pmin)/2
(2.19)

Robust stability margin σ̄(∆) =
1

µ
=| δPcr | (2.20)
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Figure 2.5: Robust stability margin for a system with a single parametric uncertainty

2.5 Applicative example

In this section, the modelling technique of LFT and the principle of SSV are illustrated

by applying them to a basic RLC circuit, with possible uncertainties in its system

parameters resistance r, inductor l and capacitor c. The system is shown in Fig. 2.6,

where i and v denote the current in the circuit, and source voltage respectively.
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c 

lr

V

i(t)

Figure 2.6: RLC circuit

2.5.1 LFT modelling

There are several methods to represent uncertain system models in LFT forms. Two

of these methods are analysed in the subsequent sections, by applying them to the

RLC circuit shown in Fig.2.6. The first approach is based on interconnections of

LFT models of system uncertain parameters and the second approach is based on

Morton’s method. The LFT modelling is generally performed by using developed

software such as MATLAB R© Robust stability toolbox and the ONERA R© Skew mu

toolbox [39],[42].

2.5.1.1 Interconnections of LFT models

This approach consists of first deriving LFT models for each uncertain parameter of

the system and, then interconnecting them based on the dynamic system equation, in

order to form an LFT model of the whole system. The modelling steps for converting

the example RLC circuit, with uncertainties in its parameters r, l, c, are given below

[49],[35].

i. Identify system states and describe behaviour of the system by a set of differ-

ential equations, and state space matrix. The dynamic equation of the system

in Fig. 2.6 is given by (2.21), where q denotes the charge of the capacitor. The

corresponding state space matrix is given by (2.22), where [q, i] denote the sys-

tem states, v is the system input and i is the system output. The RLC system

in (2.22) is equivalent to the original uncertain system depicted in Fig. 2.2a.
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The subsequent steps describe how the RLC system with uncertainties in r, l

and c, as given by (2.22), is converted in the LFT form.

l
di

dt
+ r

dq

dt
+

1

c
q = v (2.21)

or l i̇+ r q̇ +
1

c
q = v


q̇

i̇

y

 =


0 1 0

−1/cl −r/l 1/l

0 1 0



q

i

v

 (2.22)

ii. Draw an equivalent block diagram of the system based on the system dynamic

equations. The block diagram representing (2.21) is shown in Fig.2.7.

1/ l1/s

r

v
-

ᵢ 
-

vr

vc

vl

q
1/c1/s

ᵢ 

q

ᵢ .

.

Figure 2.7: Basic block diagram of the example RLC circuit

iii. Express each uncertain parameter of the system in its LFT form as explained in

the examples in section 2.3. The LFT expressions for r, 1/l and 1/c are given

in (2.23), (2.24) and (2.25) respectively.
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r = ro ± rorvarδr (2.23)

1/l = 1/lo − lvarδl(1 + lvarδl)
−1(1/lo) (2.24)

1/c = 1/co − cvarδc(1 + cvarδc)
−1(1/co) (2.25)

iv. Redraw the block diagram of the nominal system model by replacing each un-

certain parameter by its corresponding LFT form. The uncertain RLC system

under study is shown with uncertainties embedded in r, l and c in the block

diagram in Fig. 2.8.
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-lvar 1/lo 

0 ro 

rvar ro 

1/s

1/s

ᵢ 

q
.

.

Figure 2.8: Block diagram of the example RLC circuit with uncertainties in r, l, c

v. Derive a set of equations relating the output to the input of each uncertain

parameter matrix and of each delta block based on the block diagram of the

uncertain system. The set of equations describing the uncertain system in

Fig. 2.8 are given by (2.26) - (2.34).
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yl = −lvarul + (v − vr − vc)/lo (2.26)

i̇ = −lvarul + (v − vr − vc)/lo (2.27)

yr = roi (2.28)

vr = rvarur + roi (2.29)

yc = −cvaruc + q/co (2.30)

vc = −cvaruc + q/co (2.31)

ul = δlyl (2.32)

ur = δryr (2.33)

uc = δcyc (2.34)

vi. Construct the uncertain system matrix in the LFT form in (2.35) and (2.36),

by rearranging equations (2.26) - (2.34). The matrices can be built by using

the function “sysic” of MATLAB [42]. It is interesting to note that (2.35) -

(2.36) are in the LFT form, as shown in Fig. 2.2b in subsection 2.3, with the

parametric uncertainties “pulled out” from the system.


ul

ur

uc

 =


δl 0 0

0 δr 0

0 0 δc



yl

yr

yc

 (2.35)



q̇

i̇

yl

yr

yc

y


=



0 1 0 0 0 0

−1/loco −ro/lo −lvar −rvar/lo cvar/lo 1/lo

−1/loco −ro/lo −lvar −rvar/lo cvar/lo 1/lo

0 ro 0 0 0 0

1/co 0 0 0 −cvar 0

0 1 0 0 0 0





q

i

ul

ur

uc

v


(2.36)
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2.5.1.2 Morton’s Method

Morton’s method, which is another modelling technique to LFT, is described in this

section. It is applied to the RLC circuit in Fig. 2.6, when the system is subject to

uncertainties in r and c. The general steps of the method are outlined below [56].

First, the state space elements of an uncertain system (2.37), which is in the form

shown in Fig. 2.2a, are separated into their nominal matrix and a series of uncertain

matrices, each corresponding to one particular parametric uncertainty δi as repre-

sented in (2.38). By means of the Singular Value Decomposition (SVD) technique,

each of the uncertain matrices is then decomposed into a set of their equivalent row

and column matrices as shown in (2.39) - (2.41). These terms are then used to make

up the final system matrix which is shown in (2.42). It can be noted that (2.42) is

comparable to the elements of the general state space form in (2.43). This is the LFT

form of the uncertain system, as shown in Fig. 2.2b.

S(∆) =

[
A B

C D

]
(2.37)

=

[
A0 B0

C0 D0

]
+

n∑
i=1

δi

[
Ai Bi

Ci Di

]
(2.38)

Every term (i : 1− n) is decomposed using SVD as follows:

[
Ai Bi

Ci Di

]
=

[
Ui11 Ui12

Ui21 Ui22

][
Si 0

0 0

][
Vi11 Vi12

Vi21 Vi22

]
(2.39)
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The non-negligible singular values are retained in Si leading to:

[
Ai Bi

Ci Di

]
=

[
Ui1

Ui2

] [
Vi1 Vi2

]
(2.40)

Therefore,

S(∆) =

[
A0 B0

C0 D0

]
+

n∑
i=1

δi

[
Ui1

Ui2

] [
Vi1 Vi2

]
(2.41)

The final representation is:

S(∆) =



A0 U11 . . Un1 B0

V11 0 . . 0 V12

. . . .

. . . .

Vn1 0 . . 0 Vn2

C0 U12 . . Un2 D0


(2.42)

The general state space representation is:


ẋ

y∆

ys

 =


A0 B1 B0

C1 D11 D12

C0 D21 D0




x

u∆

us

 (2.43)

Morton’s method, which has been described in general terms earlier, is applied to

the RLC circuit. The elements 1/l and 1/c are denoted respectively by m and k

to simplify the notation. Only variations in r and c are considered in the following.
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However if uncertainties in l are also taken into account this will lead to additional

nonlinear uncertainties δkδm and δrδm and an additional mathematical effort is needed

to represent the uncertain system model in form (2.42) as discussed in [36]. These

non-linearities introduce additional terms in the D11 submatrix, as shown in (2.43) ,

that is normally zero if the state-space model contains only linear uncertainties.

The steps to model the example RLC circuit in an LFT form using Morton’s method

are described below.

i. Write down the state space representation of the RLC circuit as (2.47). This is

comparable to the state space matrix as given in (2.22).

ii. Replace the parameters in the state space matrix (2.47) by their uncertain

models defined in (2.44) and (2.45) to obtain system uncertain matrix (2.48). It

is to be noted that mo is used for inverse of the nominal value of the inductance.

r = ro +rvarroδr (2.44)

k = ko +kvarkoδk (2.45)

m = mo (2.46)

iii. Identify uncertain sub-matrices relating to each uncertain parameter as in (2.49),

and rewrite them in the form of product of their equivalent row and column

matrices as in (2.50). In (2.50), the uncertain system is clearly seen with un-

certainties embedded in r and k.

iv. Replace the general sub-matrices in (2.42) with the corresponding elements in

(2.50) to form the final system matrix (2.52) and the corresponding ∆ matrix

(2.51). The matrices (2.51) - (2.52) are now in the LFT form as shown in

Fig 2.2b in subsection 2.3.
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S(∆) =


0 1 0

−km −rm m

0 1 0

 (2.47)

=


0 1 0

(−komo − δkpkkomo) (−romo − δrprromo) mo

0 1 0

 (2.48)

=


0 1 0

−komo −romo mo

0 1 0

+ δk


0 0 0

−pkkomo 0 0

0 0 0



+δr


0 0 0

0 −prromo 0

0 0 0

 (2.49)

=


0 1 0

−komo −romo mo

0 1 0

+ δk


0

1

0

[ −pkkomo 0 0
]

+δr


0

1

0

[ 0 −prromo 0
]

(2.50)

[
uk

ur

]
=

[
δk 0

0 δr

][
yk

yr

]
(2.51)



q̇

i̇

yk

yr

y


=



0 1 0 0 0

−komo −romo 1 1 mo

−kvarkomo 0 0 0 0

0 −rvarromo 0 0 0

0 1 0 0 0





q

i

uk

ur

v


(2.52)
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2.5.2 µ analysis

In this section, the robust stability of the RLC circuit in Fig. 2.6 is assessed by using

the µ approach. MATLAB R© Robust stability toolbox is used to perform both the

LFT operation and µ analysis [42]. It is expected that the RLC circuit will become

resonant and reach borderline stability when the resistance r reaches zero. The nom-

inal values, the range of parameter variations and the system transfer function or

state space matrix are the only inputs required by the software, which first allows

automatic conversion of the uncertain system models into the normalised N∆ struc-

ture before calculating lower and upper bounds of µ. Two cases are analysed in this

section. In the first case, the uncertain RLC system has uncertainty in only one

parameter namely r. In the second case, the system has uncertainties in all three

parameters r, l and c.

2.5.2.1 Case Study I

In this case, the resistance r is considered to be the only uncertain parameter in the

system, with an average nominal value of 6 Ω and with possible variations between

0 and 12 Ω as given in Table 2.1. The inductance and capacitance have fixed values,

as depicted in Table 2.1.

Table 2.1: Uncertain parameter for Case I

Parameter Nominal Range of variation with
Value respect to nominal value

Resistance r ro : 6 Ω rvar : ± 100 %
Inductance l lo : 25 mH -
Capacitance c co : 100 µF -

Prior to µ analysis, the uncertain RLC system is converted to the N∆ form as

described in section 2.3. For this case study, the resulting ∆ matrix contains the

unity norm bounded parameter δr as shown in (2.53).

∆(j2πf) = [δr] (2.53)
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During µ analysis, the smallest disturbance that will cause the system pole to reach

the imaginary axis, i.e. det(I −M∆(jw)) = 0, is detected at each frequency w over

a frequency grid defined between 50 Hz to 150 Hz. Fig. 2.9a and 2.9b show the plot

of the µ bounds.
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Figure 2.9: RLC system (a) µ chart to predict critical r (b) zoomed area near peak of
µ chart

It is seen that the µ upper bound matches closely the µ lower bound for this case and

the maximum SSV or µ is equal to 1 at the resonant frequency of 100.7 Hz. At this

point the robust stability margin min(σ̄(∆)) = 1/µ = 1. This is confirmed from the

critical disturbance matrix given in (2.54), which is obtained from µ analysis.

∆(j2π100.7) = [δr] = [−1] (2.54)

Hence, the smallest destabilising disturbance is δr = −1 which corresponds to r = 0

Ω, in accordance with (2.44). At this point the RLC circuit becomes resonant as

expected. µ is also a measure of robustness of the system stability. In this case µ = 1

indicates that the system is at the robust stability margin. The system can withstand
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all perturbations within the defined range of r± 6Ω without becoming unstable. For

the case when δr = −1 or r = 0 Ω the system will be at the boundary of stability.

2.5.2.2 Case Study II

In case II, all three parameters r, l and c are also allowed to vary within the intervals

defined in Table 2.2. This causes the RLC circuit to become resonant over a range of

frequency points as shown in Fig. 2.10a and 2.10b. This is correctly reflected in the

µ bounds which remain at 1 over the resonant interval.

Table 2.2: Uncertain parameters for Case II

Uncertain Nominal Range of variation wrt
Parameter Value nominal value

Resistance r ro : 6 Ω rvar : ± 100 %
Inductance l lo : 25 mH lvar : ± 10 %
Capacitance c co : 100 µF cvar : ± 5 %
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Figure 2.10: RLC system (a) µ chart to predict critical r, l, c (b) zoomed area near
peak of µ chart
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It is worth noting that when all three parameters vary, the uncertainty matrix is of

the form (2.55).

∆(2πf) =


δc 0 0

0 δl 0

0 0 δr

 (2.55)

2.6 Limitations of the µ approach

2.6.1 Problem of convergence of the µ lower bound

In certain cases where all the uncertain parameters are purely real, it has been re-

ported in the mathematical and engineering literature that the function µ lower bound

can be discontinuous [36],[37],[38],[42]. The µ lower bound is computed at every fre-

quency point within a grid of defined frequencies. If the lower bound µ falls between

two frequency points, the analysis may fail to identify it. This thus leads to a problem

of convergence in the computation of a µ lower bound. Increasing the density of the

frequency grid may not always solve the problem. It is also probable that, due to the

discontinuous nature of the problem, the analysis may identify a lower bound, which

is not necessarily the closest to the actual µ. It has been found that one way to solve

the convergence problem is to add a small complex value (α) to the real parameters,

as described in appendix A. This approach can significantly improve continuity and

convergence of the lower bound.

For the purpose of illustration, a parameter P , lying within the interval [Pmin, Pmax],

is considered. Parametric uncertainties are generally real in nature. A small com-

plex value may be added to P , using the function complexify in MATLAB R© Robust

Control toolbox. The modified uncertain P now has a frequency response with a

predominantly real value but with a small complex part added to it [38]. Instead

of representing a certain interval of values, P is equivalent to a disc of complex
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values centred around the nominal value [38]. This mixed µ problem, instead of a

purely real µ problem, has better continuity properties, and hence better conver-

gence behaviour [38]. It is to be added that the lower bound µ may be slightly more

conservative, with the addition of the complex value. However, a certain function

in the Toolbox allows extraction of the actual critical value of the parameter, while

excluding the complex part. This is described in appendix A.

In the above two case studies pertaining to the RLC example circuit, the lower bound

matched closely the upper bound indicating that µ is accurate. However, in case I

where the uncertain parameter r is purely real, there was a problem of convergence in

the computation of the µ bounds. This problem is illustrated Fig. 2.11. It can be seen

from the µ chart in Fig. 2.11 that µ analysis failed to identify a critical uncertainty

matrix at the resonant frequency of the system.
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Figure 2.11: RLC system - µ bounds to predict critical r, with no added complexity

The problem has been solved by adding a small complex value (1%) to the real

parameter r. The results have been reported in subsection 2.5.2.1. It is to be added

that in case II, where all three parameters are uncertain, the µ chart, as shown in

Fig. 2.10a, is continuous. The analysis has not required the addition of a complex

value to the parameters. This indicates that the problem of convergence of the lower

bound does not occur for all cases with real parameters. Further, the addition of
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the complex value to the real parameter has proven to be an effective solution to the

problem.

2.6.2 Size of the uncertainty matrix

In robust stability studies, it is desirable to keep the size of the uncertainty matrix

as small as possible to reduce the computation burden. Hence it is important to note

that the form of the system transfer function, when handled by the above mentioned

software toolboxes, has a direct impact on the size of the resulting system and uncer-

tainty matrices. More specifically the number of times one parameter appears in the

transfer function description impacts the order of the final uncertain matrix. In the

case of the RLC circuit, when the transfer function is written as 1/(ls2 + rs + 1/c)

the resulting uncertainty matrix is of the order 3x3. If the transfer function is written

as (1/l)/(s2 + r/ls+ 1/lc) the uncertainty matrix increases to the order of 5x5.

The uncertainty matrix in the example RLC circuit used to illustrate Morton’s

method was of the order of 2x2 as shown in (2.51). It is worth noting that if variations

in the inductance are also included in the uncertain state-space model, the resulting

uncertainty matrix is of the order 5x5 as shown in (2.56). This is due to the fact

that the element m appears 3 times in the uncertain state-space matrix (2.47) and

is treated, by Morton’s method, as a new uncertain parameter each time it appears

in the matrix. The system is thus regarded to have 5 uncertain elements. However

there exist some order reduction methods that can be used to minimise the size of

these matrices [3]. Further, optimising the transfer functions or state space matrices

of a system may result in smaller uncertainty matrices and reduce computational

burden [57].
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δk 0 0 0 0

0 δm1 0 0 0

0 0 δm2 0 0

0 0 0 δm3 0

0 0 0 0 δr


(2.56)

2.7 Conclusion

This chapter has provided a comprehensive and clear explanation of the basic theo-

retical concepts underlying the µ approach, through illustrations and applications.

• The study has clearly demonstrated how the LFT technique “pulls out” uncer-

tainties from an uncertain system model. Two well known modelling approaches

to LFT, namely the interconnection of LFT models and Morton’s method, have

been examined by applying them to the well established RLC system.

• The chapter has provided a clearer insight into the complex concept of µ. The

state space matrix of a general system has been converted to its LFT or N∆

form. It has then been shown how the µ approach determines the stability

of the whole system, by identifying the smallest perturbation matrix ∆ that

destabilises the feedback loop M∆, where M is a subsystem of N . The concept

of µ has been illustrated by applying it to the RLC example system.

• This study has clearly demonstrated the meaning and limitations of the µ

bounds, through illustrations, and application to the RLC example system.

The lower and upper bounds, being the estimates of the actual value of µ, are

generally not clearly described in the literature. Justification has been provided

as to the use for the µ lower bound in this work.

• Through clear illustrations, it has been shown how the robust stability margin

(1/µ) determines by how much the maximum uncertainty range must be scaled

in order to guarantee robust stability of an uncertain system.
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• Computational limitations of the µ bounds have been discussed, and possible

solutions have been presented.

Through the thorough and clear examination of the key concepts of the µ theorem,

this chapter has provided a first stepping stone for making the µ approach more

applicable.



Chapter 3

µ approach to robust stability

domains

3.1 Introduction

As discussed earlier in this work, power electronic systems are the foundation of the

electrification of land, air and sea vehicles [4]. Unfortunately, power electronic con-

trolled loads, due to their common constant power load behaviour, are seen in the

network as negative impedances and thus can cause severe stability issues within

the power system [12],[14]. Moreover, in practice, these EPS are subject to multi-

ple simultaneous parameter uncertainties, such as variations in system load, source

impedance or operating temperature. These uncertainties may further compromise

system stability, as will be demonstrated in later chapters. It naturally follows that

the stability domains within which such systems may operate safely in the face of

multiple uncertainties need to be identified, as an aid to designing stable systems

especially for safety critical applications. The µ approach, presented in this work,

can prove to be an effective analysis tool in determining the robust stability domains

for electrical power systems with multiple parametric uncertainties [34].

49
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In order to effectively apply the µ method to obtain a robust stability measure for the

aforementioned EPS, the significance of the single-valued µ in the analysis of multiple

parameter uncertainties need to be understood. This subject does not seem to have

been adequately treated in the literature, which does not alleviate the complexity of

the µ framework [33]. Nevertheless, the authors in [34] have discussed the concept

of the hypercube in order to explain µ for systems with multiple uncertainties. The

hypercube has been treated at a purely conceptual level in [34]. Yet, the study

has provided an opportunity to further explore and apply the hypercube concept,

in view of bringing deeper understanding of µ in the space of multiple parametric

uncertainties. Moreover, µ results generated in the frequency domain may not be

easily understood. Translating the µ results from the frequency domain to the more

perceivable parametric domain may help bring more clarity to the robust stability

measure µ.

While the meaning of µ with respect to a single parameter variation has been exam-

ined to some extent in the earlier chapter, this study aims to provide new insights

into the meaning and usefulness of µ, with respect to multiple parametric uncertain-

ties. In light of the aforementioned discussion, the concept of the hypercube is to be

explored and extended by applying it to a basic electrical power system connected

to an ideal constant power load. The ideal CPL is an important representation of

tightly controlled power electronic driven loads, as was reviewed in the introduction

part of this work. It is widely used in the stability studies of PE systems [16]. It

is to be noted that a few figures used in Chapter 1 are reproduced in this study for

convenience.

The objective of this chapter is to show how µ can provide information on the stability

domains within which a system with multiple uncertainties can be guaranteed stable,

while shedding light on µ theory in parametric space. The predictions from µ analysis

are to be evaluated and verified against analytical results.
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3.2 Modelling of an EPS with an ideal CPL

The electrical network of the MET may consist of a multitude of loads interfaced

through power converters. Such a power converter may behave as constant power

load under fast controller actions [7],[12]. These types of power electronic driven

loads can mathematically be represented as ideal CPLs. An example of a CPL is the

DC/DC buck converter. With converter efficiency considered as constant, the input

power drawn from the source is also constant.

3.2.1 Non-linear model of the ideal CPL

Fig. 3.1 depicts the example EPS that is used to support this study. It is an ideal CPL

connected to the dc power supply through an input LC filter. The system parameters

are defined in Table 3.1. The power electronic controlled load displays constant power

load characteristic, which is depicted in the non-linear equation (3.1) and in Fig. 3.2.

iin(t) =
Pin
vin(t)

(3.1)

Cin

LinRin 

+

Pin

-
CPL vg(t)

ig(t)

vin(t)

iin(t)

Figure 3.1: Non-linear model of the ideal CPL
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vin (t)

iin (t)
Pin = constant

δiin(t)

δvin(t)

( in,V in)Eqo I

Figure 3.2: Characteristic curve of the ideal CPL

Table 3.1: Nominal values for system parameters

Symbol Units Nominal Values Description

vg V 19.8 DC source voltage
Rin mΩ 160 Input Resistance
Lin µH 511.8 Input filter inductance
Cin µF 95 Input filter capacitance
Pin W 10.4 Input power

3.2.2 Small-signal ac model of the ideal CPL

Most control design and stability analysis methods work on linear systems. Hence,

it is important to study the linear model of the CPL. At any given operating point,

the system currents and voltages may be represented by dc values with some super-

imposed small-signal ac components as shown in (3.2).

iin(t) = Iin + îin(t), vin(t) = Vin + v̂in(t) (3.2)

In view of linearising the CPL at the dc quiescent point (Vin, Iin) denoted as Eqo

in Fig. 3.2, the gradient at that point is obtained from the partial derivative of
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(3.1), as shown in (3.3) - (3.4). This gradient represents the small-signal incremental

impedance at the dc point, as also depicted in (3.5).

δiin(t) = −Pin
V 2
in

δvin(t) +
1

Vin
δPin(t) (3.3)

δiin(t)

δvin(t)
= −Pin

V 2
in

, since δPin(t) = 0 (3.4)

δiin(t)

δvin(t)
=

iin(t)− Iin
vin(t)− Vin

=
îin(t)

v̂in(t)
= −Pin

V 2
in

=
1

(−Rcpl)
(3.5)

It is worth noting that while the steady state impedance Vin/Iin is positive, the small-

signal incremental impedance, as given by (3.5) and shown in Fig. 3.2, is negative. It is

the negative impedance characteristics of the CPLs that account for their propensity

to become unstable [16]. Based on this analysis, the small-signal model of the CPL

system can be represented in Fig. 3.3.

Cin

LinRin 

+

-
-Rcpl

vg(t)


ig(t)


vin(t)

iin(t)


Figure 3.3: Small-signal model of the ideal CPL

3.2.3 Linear model of the ideal CPL

Furthermore, by using tangent line approximation of the non-linear equation (3.1)

together with the small-signal incremental impedance (3.5), the linear model of the

CPL can be obtained as (3.8). The steps are shown in (3.6) - (3.8).
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iin(t)− Iin
vin(t)− Vin

= −Pin
V 2
in

(3.6)

iin(t) = −Pin
V 2
in

vin(t) +
Pin
Vin

+ Iin (3.7)

iin(t) =
1

(−Rcpl)
vin(t) + Icpl (3.8)

where −Rcpl = −V
2
in

Pin
, Icpl =

2Pin
Vin

= 2Iin

Based on the function (3.8), the circuit diagram of the linear model of the ideal

CPL can be constructed by connecting a negative resistance −Rcpl in parallel with a

constant current source Icpl as shown in Fig. 3.4.

Cin

LinRin 

+

Pin

-
-Rcpl Icpl =2Iin

Iin+iin(t)



-(Iin-iin(t))

Ig+ig(t)


Vg+vg(t)
 Vin+vin(t)

Figure 3.4: Linear model of the ideal CPL

The expression (3.8) can be rearranged and represented as (3.9), which is interesting

in that it clearly shows the voltage across the negative resistance and the current

that flows through it, as illustrated in Fig. 3.4. In accordance with Kirchoff’s current

law, the current flowing to the current source is 2In. Additionally, since the current

source carries only dc current, the small-signal ac current îin(t) only flows through

the negative resistance.

−Rcpl =
Vin + v̂in(t)

−(Iin − îin(t))
(3.9)
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3.2.4 The EPS with the ideal CPL

This chapter applies µ analysis to the EPS connected to the ideal CPL, as shown

in Fig. 3.1, over a range of operating points and parameter variations. Hence, a

modelling methodology is employed to represent the non-linear EPS as an equivalent

linear model that contains all system variations, in addition to being suitable for

µ analysis [58]. The method is based on symbolic linearisation around an arbitrary

equilibrium point, as described below. Of note is that the methodology will be covered

in greater depth in Chapter 5, by applying it to the PM machine drive system.

The first step involves writing the differential equations which describe the dynamic

behaviour of the non-linear system in Fig. 3.1. These are given as (3.10) - (3.11).

dig(t)

dt
= −Rin

Lin
ig(t)−

1

Lin
vin(t) +

1

Lin
vg(t) (3.10)

dvin(t)

dt
=

1

Cin
ig(t)−

Pin
Cin

1

vin(t)
(3.11)

The next step is to linearise the non-linear system model in symbolic form. The

equations (3.10) - (3.11) are firstly represented in the state space form (3.12) with

the states x(t)=[ig(t), vin(t)], input u(t)= vg(t) and output y(t)=vin(t). For the

purpose of linearisation, the system variables are expanded in terms of their dc and

ac components as shown in (3.12). Linearisation is then performed based on (3.13)

where the dc quiescent point and the small-signal ac model are extracted as (3.14)

and (3.15) respectively.

ẋ(t) = f(x, u), where x(t) = X + x̂(t), u(t) = U + û(t) (3.12)

Ẋ + ˆ̇x(t) ∼= f(X,U) +

[
δf

δx

]
X,U

x̂(t) +

[
δf

δu

]
X,U

û(t) (3.13)
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0 = f(X,U) dc terms (3.14)

ˆ̇x(t) =

[
δf

δx

]
X,U

x̂(t) +

[
δf

δu

]
X,U

û(t)

= Ax̂(t) +Bû(t) ac terms (3.15)

Based on (3.14) and U = Vg, the dc equilibrium states X = [Ig, Vin] can be computed

by equating (3.10) - (3.11) to zero and are given as (3.16) and (3.17) respectively.

Ig = In =
Pin
Vin

(3.16)

Vin =
Vg
2

[1 +

√
1− 4Rin

Pin
V 2
g

] (3.17)

It is to be noted that all the elements in the system model should be in their rational

form in order to allow conversion of the system model in its corresponding LFT

configuration [41]. Hence the voltage Vin in (3.17) is expressed in its rational form

Vin−est as shown in (3.18) by employing the first order approximation of the binomial

series expansion.

Vin−est = Vg −
RinPin
Vg

(3.18)

Based on the general equation (3.15), the small-signal ac model of the considered

system can be obtained as (3.19). Besides, the small-signal output can be written as

(3.20) from ŷ(t) = v̂in(t).
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[
d̂ig(t)

dt

dv̂in(t)
dt

]
=

 −
Rin

Lin
− 1

Lin
1

Cin

Pin
CinV 2

in−est

[ îg(t)

v̂in(t)

]
+

 1

Lin
0

 v̂g(t) (3.19)

ŷ(t) =
[

0 1
] [ îg(t)

v̂in(t)

]
(3.20)

The developed small-signal model, (3.19) - (3.20), operating about the dc equilibrium

point (3.16) - (3.17), represents the non-linear system shown in Fig. 3.1 over a range

of operating points and parameter variations, in addition of being suitable for µ

analysis [58]. It is referred to as the equivalent linear model of the power system in

Fig. 3.1.

µ analysis is applied to the equivalent linear model (3.19) - (3.20) to evaluate the

stability robustness and stability domains of the power system in Fig. 3.1, in the

remaining part of the chapter. The µ predictions are verified against results obtained

analytically. To that end, the stability boundary conditions based on the character-

istic equations of the power system under study are developed in the next section.

3.3 Analytical assessment of system stability

The transfer function of the small-signal model of the power system, as shown in

Fig. 3.3, is given by (3.21) [59].

v̂in(t)

v̂g(t)
=

1

[CinLins2 + (CinRin −
LinPin
V 2
in−est

)s+ (1− RinPin
V 2
in−est

)]
(3.21)

The stability of the system can be examined by verifying the location of the roots of

its characteristic equation, as given by (3.22) [59].
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CinLins
2 + (CinRin −

LinPin
V 2
in−est

)s+ (1− RinPin
V 2
in−est

) = 0 (3.22)

Based on Routh-Hurwitz criterion, the terms in the characteristic equation as given

by (3.23) and (3.24) must be positive for the system to be stable [59].

CinRin −
LinPin
V 2
in−est

> 0 (3.23)

1− RinPin
V 2
in−est

> 0 (3.24)

However, since the input resistance Rin has a relatively low value, condition (3.24)

can be neglected and the main condition for system stability becomes (3.23). Hence

at boundary stability, the critical power Pin is obtained as (3.25) from the main

condition (3.23).

At boundary stability Pin =
CinRinV

2
in−est

Lin
(3.25)

Replacing Vin−est in (3.25) by (3.18) produces the expression (3.26) from which the

critical value of Pin can be computed analytically.

R2
in

V 2
g

P 2
in − (

Lin
CinRin

+ 2Rin)Pin + V 2
g = 0 (3.26)

Further, at the boundary condition of stability, the critical frequency of oscillation

is given as (3.27). The expression is derived by substituting (3.25) in the system

characteristic equation in (3.22) and solving for s or jw. The critical conditions

(3.26) and (3.27) are used to verify the results from µ analysis.

At boundary stability s = jw = j2πf =

√
(
Lin − CinR2

in

CinL2
in

) (3.27)
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3.4 System with single parametric uncertainty

This section demonstrates how µ analysis is employed to determine stability robust-

ness and stability domains of the power system in Fig. 3.1, when it is subject to

variation in a single parameter. The nominal values of the system parameters are

given in Table 3.1. Considering that the input power Pin may vary within ±33%

of its nominal value of 10.4 W , as defined in Table 3.2, µ analysis is applied to the

equivalent linear model of the power system, as given by (3.19) - (3.20), to determine

the critical or smallest input power that can destabilise the system.

Table 3.2: Single uncertain parameter system (case I) - the uncertain parameter

Parameters Nominal Value Range of Variation

Pin Pino = 10.4 W Pinvar = ± 33 %

3.4.1 µ analysis

The application of µ analysis requires that the considered equivalent linear model be

first converted in the M∆ or LFT form. This can be performed by using MATLAB R©

Robust Stability Toolbox. The only inputs that are required by the software are firstly

the state space model, which is (3.19) - (3.20) in our case, and then the values of the

fixed and uncertain parameters which are defined in Tables 3.1 and 3.2 respectively

for the case under study.

The operation of LFT entails expressing all uncertain parameters in the system model

as LFTs. Thus, the parameter Pin in the system model is written in its normalised

form δPin in (3.28), based on equation (2.1) and the information in Table 3.2.

Pin = Pino + PinoPinvarδPin (3.28)



3.4. SYSTEM WITH SINGLE PARAMETRIC UNCERTAINTY 60

The normalised parameters δPin are then extracted from the system model (3.19)-

(3.20) and grouped in a diagonal matrix in a feedback form by employing the LFT

technique. This results in the system model being converted in its M∆ form with

the disturbance matrix given by (3.29), where I3 is a 3 × 3 identity matrix; δPin

appears 3 times in the uncertainty matrix since Pin appears that number of times in

the uncertain system model.

∆(j2πf) = diag(δPin I3) (3.29)

The system stability can now be examined by applying µ analysis to the system model

in its LFT form. Based on the principle of SSV, which was described in chapter 2, µ

analysis identifies the smallest uncertainty matrix that destabilises the system. The

results are depicted in Fig. 3.5a and 3.5b.
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Figure 3.5: Single uncertain parameter system (a) µ chart to determine critical Pin
(b) zoomed area near peak of µ chart
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From the µ charts, it can be seen that the peak values of both the lower bound µ
¯

and

the upper bound µ̄ are equal to 3.02. The µ bounds occur at the critical frequency

of 720.1 Hz, which corresponds to the resonant frequency of the LC filter, estimated

as 1/2π
√
LinCin. By using appropriate function in MATLAB R© Robust Stability

Toolbox, the smallest destabilising disturbance matrix is extracted as ∆(j2π720.1)

as shown in (3.30) and in Table 3.3 [42].

∆(j2π720.1) = diag(+0.331 I3) (3.30)

The critical value of δPin is equal to 0.331 as can be deduced by comparing ∆(j2π720.1)

in (3.30) with the structure of the uncertainty matrix in (3.29). The robust stability

margin can be calculated as 1/µ
¯
= 0.331. The smallest input power that can desta-

bilise the power system is computed as 11.53 W , as shown in equation (3.31) and

given in Table 3.3.

Pin = Pino + PinoPinvarδPin = 10.4 + 10.4× 0.33× 0.331 = 11.53 W (3.31)

Table 3.3: Single uncertain parameter system - µ analysis results

Perturbation matrix σ̄(∆(jw)) µ
¯

=1/σ̄(∆(jw)) Critical Pin

∆(j2π720) 0.331 3.02 11.53 W

3.4.2 Analytical verification

Further, the critical power and frequency have been calculated according to the ana-

lytical stability conditions (3.26) and (3.27) respectively. The analytical results agree

exactly with the µ analysis results as shown in Table 3.4. This finding supports the

results from µ analysis.
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Table 3.4: Single uncertain parameter system - µ analysis and analytical results

µ analysis results Analytical results

Critical input power (Pin) 11.53 W 11.53 W
Critical frequency (f) 720 Hz 720 Hz

In addition, the eigenvalues are first computed under nominal conditions, and then

from the critical input power provided by the µ lower bound, as given in Table 3.4.

From the eigenvalue plot in Fig. 3.6, it is seen that the application of the destabilising

uncertainty matrix to the nominal model causes both system poles to move to the

imaginary axis. This further validates the results from µ analysis.
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Figure 3.6: Single uncertain parameter system - Plot of eigenvalues based µ lower
bound predictions, (*) eigenvalues with nominal Pin = 10.4 W , (o) eigenvalues with
critical Pin = 11.53 W
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3.4.3 Robust stability domains

The µ tool identifies the smallest destabilising perturbation matrix as given by (3.30).

From the critical uncertainty matrix, the robust stability margin | δPin | or 1/µ
¯

is

0.331, as shown in Table 3.3. This implies that for any value of | δPin |< 0.331, the

system is guaranteed stable; in contrast for any value of δPin > +0.331, the system

is unstable, as depicted in Fig. 3.7.

In parametric space, for an EPS with a single parametric uncertainty, µ analysis

provides the largest normalised line segment of coordinate size 1/µ with respect to

the nominal point, within which the system is guaranteed robustly stable. This line

segment is represented in Fig. 3.7 for the case study.

Unstable

Largest segment 
of coordinate size 1/μ
centred about [0,0]

δPin > 0.331

 [0, 0]

δPin = + 0.331 Boundary stability

δPin = -0.331

Nominal Point

Figure 3.7: Single uncertain parameter system - Largest linear segment of coordinate
size (1/µ) centred about nominal point within which system is robustly stable

Based on the explanation of robust stability margin provided in section 2.4.3 in chap-

ter 2, it is interesting to add that, in order to guarantee robust stability, the max-

imum variation in Pin, which is 33% as defined in Table 3.2, must be scaled by

(1/µ = 0.331). In other words, robust stability is ensured if Pin is allowed to vary

only within 0.331× 33% = 11 % of its nominal value of 10.4 W , i.e. within [9.53 W ,

11.53 W ]. This supports the findings provided by the hypercube, and the results

obtained from the eigenvalue method, as shown in Fig. 3.7 and Fig 3.6 respectively.
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3.5 System with two parametric uncertainties

In this case study, the power system in Fig. 3.1 is subject to variation in two param-

eters namely Cin and Pin, as depicted in Table 3.5. The other parameters are fixed

as defined in Table 3.1. This subsection examines both the stability robustness and

the stability domain of the system.

Table 3.5: Two uncertain parameters system (case II) - the uncertain parameters

Parameters Nominal Value Range of Variation

Pin Pino = 10.4 W Pinvar = ± 33 %
Cin Cino = 95 µF Cinvar = ± 10 %

3.5.1 µ analysis

µ analysis is performed on the equivalent linear model (3.19) - (3.20) based on the

nominal values and the range of variation of the two uncertain parameters, as defined

in Table 3.5. The structure of the uncertainty matrix is obtained as (3.32) from the

LFT operation.

∆(j2πf) = diag(δCin I2, δPin I3) (3.32)

The resulting µ chart is depicted in Fig. 3.8a and 3.8b, from which it can be noted

that µ=µ
¯
=µ̄ = 4.03. The results are given in Table 3.6.

Table 3.6: Two uncertain parameters system - µ analysis results

Critical ∆(jw) σ̄(∆(jw))=1/µ
¯

µ
¯

∆(j2π729.2) 0.248 4.03
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Figure 3.8: Two uncertain parameters system (a)µ chart to determine critical Cin and
Pin (b) zoomed area near peak of µ chart

The smallest perturbation matrix, which is provided by the µ lower bound at the

critical frequency of 729.2 Hz, is given in (3.33).

∆(j2π729.2) = diag(−0.248 I2, + 0.248 I3) (3.33)

By comparing the perturbation matrix (3.33) with the structure of the uncertainty

matrix (3.32), the critical values of δCin and δPin can be derived, as shown in Table 3.7.

Based on these critical values, the smallest destabilising input capacitance and input

power are computed as 92.65 µF and 11.25 W respectively, from the (3.28), as shown

in Table 3.7.

It is to be noted that the critical frequency has increased from 720 Hz, for the single

uncertain parameter system analysed in the earlier section, to 729.2 Hz for the current

case study. This is due to the fact that the system reaches boundary stability at a

lower critical capacitance of 92.65 µF for case II, as compared to 95 µF for case I.
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Table 3.7: Two uncertain parameters system - Critical values of Cin, Pin from µ analysis

Critical ∆(jw) δCin δPin Cin (µF ) Pin (W )

∆(j2π729.2) -0.248 +0.248 92.65 11.25

3.5.2 Analytical verification

For verifying the µ results, the input power and frequency are computed from the

analytical stability boundary conditions (3.26) and (3.27) respectively, with Cin set

to its critical value of 92.65 µF . The analytically obtained results are found to match

exactly the µ analysis results as shown in Table 3.8.

Table 3.8: Two uncertain parameters system - µ analysis and analytical results

µ analysis results Analytical results

Critical input power (Pin) 11.25 W 11.25 W
Critical frequency (f) 729.2 Hz 729.2 Hz

3.5.3 Stability domains

This section demonstrates how µ analysis can be used to determine stability domains

of the power system under study. As discussed earlier, the peak value of the µ lower

bound corresponds to a perturbation matrix at the critical frequency of 729.2 Hz.

Similarly, each point along the µ chart corresponds to a particular perturbation matrix

at a specific frequency. These perturbation matrices can be extracted from the µ chart

and employed to construct stability domains of the power system [42].

For this case study, perturbation matrices are extracted at a number of frequency

points on the µ lower bound chart as shown in Fig. 3.9. For the purpose of illustration,

three uncertainty matrices corresponding to points A, B and C in Fig. 3.9, and given

by (3.34), (3.35) and (3.36) respectively, are analysed. The corresponding µ values

are given in Table 3.9.
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Figure 3.9: Two uncertain parameters system - Points A, B, C chosen to illustrate
construction of stability domain

∆(j2π700) = diag(+0.579 I2, + 0.523 I3) (3.34)

∆(j2π729.2) = diag(−0.248 I2, + 0.248 I3) (3.35)

∆(j2π750) = diag(−0.779 I2, + 0.071 I3) (3.36)

Table 3.9: Two uncertain parameters system - µ lower bound for points A, B, C

Points Perturbation Matrix σ̄(∆(jw)) µ
¯

= 1/σ̄(∆(jw))

∆(jw)

A ∆(j2π700.0) 0.579 1.73
B ∆(j2π729.2) 0.248 4.03
C ∆(j2π750.0) 0.779 1.28

The next step involves identifying the values of δCin and δPin from the extracted

perturbation matrices, based on the structure of the uncertainty matrix (3.32). The

normalised parameters are then converted into their actual values Cin and Pin, based

on the (3.28). The corresponding values for matrices A, B and C are depicted in

Table 3.10.
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Table 3.10: Two uncertain parameters system - critical parameter values for points A,
B, C

Perturbation Matrix δCin δPin Cin (µF ) Pin (W )

A ∆(j2π700.0) +0.579 +0.523 100.5 12.2
B ∆(j2π729.2) -0.248 +0.248 92.6 11.3
C ∆(j2π750.0) -0.779 +0.071 87.6 10.6

Finally, the critical values of Pin are plotted against the critical values of Cin. Fig. 3.10

shows the resulting stability line. The points A, B and C shown in Fig. 3.10 serve to

demonstrate how the µ chart has been ‘translated’ into a stability line.
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Figure 3.10: Two uncertain parameters system - stability domain from µ analysis and
analytical method

In order to verify the validity of the stability line obtained from µ analysis, the input

power Pin is computed for a number of values of Cin in the range [85.5 µF , 104.5 µF ]

based on the analytical equation (3.26). The resulting plot of Cin against Pin is

shown in Fig. 3.10. The boundary stability curve obtained from the analytical method

matches the curve generated from µ analysis, as can be noted from Fig. 3.10. These

findings validate the µ analysis results.
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3.5.4 Robust stability domains

µ analysis identifies the smallest uncertainty matrix that can cause system instability,

as given in (3.33) for the case under study. The robust stability margin, which is also

the size of the critical matrix, is equal to 1/µ=0.248 as shown in Table 3.6. In

parametric space and for a system subject to two parametric uncertainties, the µ

approach identifies the largest square of coordinate size 1/µ within which the system

can be guaranteed robustly stable [34]. In order to illustrate this point, the squares

connecting points A, B, C are drawn centred about the nominal point (0,0), as shown

in Fig. 3.11, 3.13 and 3.12 respectively.

The rectangle encompassing point A falls in both the stable and unstable regions,

as depicted in Fig. 3.11. Although the rectangle connecting point ‘C’ falls entirely

in the stable region, as shown in Fig. 3.12, it does not give the largest uncertainty

size within all uncertain parameters, for which robust stability is guaranteed. The

‘square’ connecting point ‘B’ is completely in the stable region, and gives the largest

parametric space inside of which the system is robustly stable, as shown in Fig. 3.13.

Point B corresponds to the peak value of µ.
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Figure 3.11: Two uncertain parameters system - rectangle centred about nominal point
and connecting point A
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Figure 3.12: Two uncertain parameters system - rectangle centred about nominal point
and connecting point C
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Figure 3.13: Two uncertain parameters system - largest square of coordinate size (1/µ)
centred about nominal point and connecting point B, within which system is robustly
stable
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Hence, in order to ensure robust stability of the system, uncertainties have to stay

within the ‘square’ region of size 1/µ identified in Fig. 3.13. As discussed in chapter 2,

the robust stability margin 1/µ, which is 0.248 in this case study, is also a measure of

how much the maximum uncertainty range should be scaled to ensure robust stability

of the EPS.

This subsection has shown how the µ approach provides the largest square of co-

ordinate size 1/µ, centred about the nominal point, within which a system with two

parametric uncertainties, can be guaranteed stable.

3.6 System with three parametric uncertainties

This subsection assesses stability robustness of the power system in Fig. 3.1 when it

is subject to three parametric uncertainties Pin, Cin and Lin, as defined in Table 3.11.

It also provides an insight into the meaning of µ by exploring the robust stability

domains.

Table 3.11: Three uncertain parameters system (case III) - the uncertain parameters

Parameters Nominal Value Range of Variation

Pin Pino = 10.4 W Pinvar = ± 33 %
Cin Cino = 95 µF Cinvar = ± 10 %
Lin Lino = 511.8 µH Linvar = ± 10 %

3.6.1 µ analysis

After defining the uncertain system parameters Cin, Lin and Pin, as given in Ta-

ble 3.11, robust stability is analysed using the µ tool. The µ chart is shown in

Fig. 3.14a and 3.14b. The structure of the uncertainty matrix, as extracted from µ

analysis, is shown in (3.37).
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Figure 3.14: Two uncertain parameters system (a) µ chart to determine critical Cin,
Lin, Pin (b) zoomed area near peak of µ chart

∆(j2πf) = diag(δCin I2, δLin I1, δPin I3) (3.37)

The maximum value of the µ lower bound is 4.974 and is nearly equal to that of the

upper bound. The critical uncertainty matrix at the critical frequency of 720.5 Hz is

shown in (3.38). The results are shown in Table 3.12.

∆(j2π720.5) = diag(−0.201 I2, − 0.196 I1, + 0.201 I3) (3.38)

Table 3.12: Three uncertain parameters system - µ analysis results

Perturbation matrix ∆(jw) σ̄(∆(jw)) µ
¯

∆(j2π720.5) 0.201 4.974
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The values of δCin, δLin, δPin pertaining to the critical uncertainty matrix can be

obtained by comparing the elements of ∆(j2π720.5) in (3.38) with the elements in

(3.37), and are shown in Table 3.13. Further, the smallest parameter values that can

destabilise the power system can be computed from these normalised values and the

general LFT expression (3.28), as depicted in Table 3.13.

Table 3.13: Three uncertain parameters system - critical values of Cin, Lin, Pin from
µ analysis

δCin δLin δPin Cin (µF ) Lin (mH) Pin (W )

-0.201 +0.196 +0.201 93.1 521.8 11.1

Of note is that the critical frequency is 720.5 Hz for this case study, as compared

to 729.2 Hz in case study II, and 720.0 Hz is case I. This is owing to the fact that

despite the critical capacitance decreasing to 93 µF from its initial value of 95 µF ,

the critical inductance has increased to 521.8 mH from its initial value of 511.8 mH,

as shown in Table 3.13.

3.6.2 Analytical verification

In order to verify the µ analysis results in Table 3.13, the input power Pin and

frequency f are computed from the analytical equations (3.26) - (3.27), with Cin and

Lin set to the critical values of 93.1 µF and 521.8 mH respectively. The analytical

results match µ analysis predictions as shown in Table 3.14. This confirms that µ

analysis has identified critical parameters at the boundary of stability for the case

under study.
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Table 3.14: Three uncertain parameters system - µ analysis and analytical results of
critical Pin and f

µ analysis results Analytical results

Critical input power (Pin) 11.1 W 11.1 W
Critical frequency (f) 720.5 Hz 720.5 Hz

3.6.3 Stability domains

This subsection translates frequency-based µ results into parametric space. It pro-

vides insights into the usefulness of µ in the identification of the parametric space

within which a system is guaranteed stable.

3.6.3.1 µ in parametric space

In order to generate the stability domain of the power system under consideration,

perturbation matrices are firstly extracted at a number of frequency points on the

chart of the µ lower bound shown in Fig. 3.15. For the purpose of illustration, three

uncertainty matrices corresponding to the points A, B and C in Fig. 3.15, and given

in (3.39), (3.40) and (3.41) respectively, are analysed.

∆(j2π700) = diag(+0.241 I2, + 0.333 I1, + 0.301 I3) (3.39)

∆(j2π720.5) = diag(−0.201 I2, − 0.196 I1, + 0.201 I3) (3.40)

∆(j2π750) = diag(−0.399 I2, − 0.399 I1, + 0.330 I3) (3.41)

The next step involves identifying the values of δCin, δLin and δPin for each of the

perturbation matrices. This is done by comparing the elements of the matrices with

the elements of the general uncertainty matrix (3.37). The normalised parameter

values for points A, B and C are given in Table 3.15 along with the corresponding

computed values of Cin, Lin and Pin, which are computed from (3.28).
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Figure 3.15: Three uncertain parameters system - points A, B, C chosen to illustrate
construction of stability domains

Table 3.15: Three uncertain parameters system - critical parameter values for points
A, B and C

δCin δLin δPin Cin (µF ) Lin (mH) Pin (W )

A +0.241 +0.333 +0.301 97.3 528.9 11.4
B -0.201 +0.196 +0.201 93.1 521.8 11.1
C -0.399 -0.399 +0.330 91.2 491.4 11.5

The coordinates (δCin, δLin, δPin), extracted from the µ
¯

chart, are then plotted in

three dimensional space. The resulting chart is depicted in Fig. 3.16. The points A,

B and C shown in Fig. 3.16 serve to demonstrate how the µ chart in Fig. 3.15 has

been ‘translated’ from frequency domain to parametric space.

3.6.3.2 Stability plane from analytical method

In order to gain more insight into the µ approach, in this subsection the stability

domains for the system under study are firstly determined through the analytical

method and then correlated with the µ lower bound chart.
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Figure 3.16: Three uncertain parameter system - µ lower bound chart translated into
parametric space

A series of points (Cin, Lin) are chosen in the range of Cin = 95 µF ± 10% and

Lin = 511.8 mH ± 10%; then Pin is calculated iteratively for each coordinate point

according to (3.25). The resulting coordinates (Cin, Lin, Pin) are then converted

into their normalised form (δcin, δLin, δPin) using the generic equation (3.28) and

the parameter values in Table 3.1. The three-dimensional plot of the coordinates,

as shown in Fig. 3.17, is the boundary stability plane for the system under study.

The system is stable for all sets of parameters chosen in the region below the stability

plane and is unstable for all sets of parameters chosen in the region above the stability

plane.

When the µ lower bound chart in Fig. 3.16 is superimposed on the analytically ob-

tained stability plane, it is found to lie exactly on the plane as shown in Fig. 3.17.

This proves that the critical parameters determined by the µ lower bound for this

case study lie at the boundary of stability.
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Figure 3.17: Three uncertain parameters system - stability boundary plane from ana-
lytical method and µ chart translated into parametric space

3.6.3.3 Significance of µ in frequency domain

As can be seen in Fig. 3.17, the µ
¯

chart connects only a few of the parameter coordi-

nates within the wide stability plane. This is because the employed algorithm does

not verify all the points of the stability plane. Instead, it monitors the boundary

stability for migration of those poles, which correspond to the smallest destabilising

uncertainty matrices, at every frequency point within the grid. The smallest of all

the destabilising perturbation matrices over the entire frequency grid gives 1/µ, in

accordance with (2.13). In order to demonstrate this point, this subsection computes

µ from the parameter coordinates in the analytical plane in Fig. 3.17. The procedure

employed is based on the definition of µ in (2.13), which states that µ∆(M(jw)) =

1/min[σ̄(∆(jw))]. The steps are outlined in Fig. 3.18 and illustrated below:

1. A frequency grid is chosen as a set of 100 points spaced between 500 Hz and

1000 Hz. (Suggestions for the selection of the grid for µ analysis are given in

the appendix A.)
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1. Define frequency grid f = [ fmin, fmax, n ], where 
fmin, fmax are the minimum and maximum frequency, 

and n is the number of points in the grid

2. Select a frequency point  fi  within the grid

4. Compute  the maximum singular value  of all 

uncertainty matrices for fi  : s(D (j2πfi))  

5. Compute  minimum[s(D (j2πfi))] = 1/m(M( j2πfi)) 

6. Repeat for all  frequency points in grid 

3. Identify all uncertainty matrices  corresponding to 

frequency fi as follows:

(i) Select a set of values for Lin within 511.8 mH+10% 

(ii) Compute Cin for each Lin, based on (32) and fi

(iii) Compute Pin for each (Cin, Lin),  based on (31)

(iv) Convert (Cin, Lin, Pin) to ( dCin, dLin, dPin ),
        based on general LFT equation (1)

(v) Arrange ( dCin, dLin, dPin ) in the form (40)

 

7. For entire frequency grid, compute                     

minimum[s(D (j2πf))] = 1/m (M(j2πf))  

Figure 3.18: Flow chart for computing the smallest critical uncertainty matrix for a
given system frequency

2. A frequency of 700 Hz is selected for analysis.

3. A number of uncertainty matrices corresponding to coordinates (δCin, δLin, δPin)

and pertaining to 700 Hz are computed. These coordinates, plotted in Fig. 3.19,

are shown to lie exactly on the stability plane.

4. The maximum singular value of each of the uncertainty matrices, lying on the

frequency line of 700 Hz, is computed. For illustration, the maximum singular

value is computed for three points, denoted as 1, 2 and 3 in Fig. 3.19, as shown

in Table 3.16.
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Table 3.16: Three uncertain parameters system -maximum singular value of matrices
1, 2 and 3 on frequency curve 700 Hz

Pts δCin δLin δPin σ̄(∆(j2π700)) min[σ̄(∆(j2π700))]

1 +0.869 -0.270 +0.720 0.869 -
2 +0.244 +0.330 +0.303 0.330 0.330
3 -0.243 +0.850 -0.005 0.850 -

5. The smallest uncertainty matrix on the frequency curve 700 Hz is then iden-

tified. This corresponds to point 2 which matches point A on the µ
¯

chart in

Fig. 3.16, as shown in Table 3.16. Hence, the critical perturbation matrix at

a given frequency point on the µ
¯

chart is found to be the smallest uncertainty

matrix that can destabilise the system at that frequency.

6. The above exercise is repeated for all frequency points within the grid. The

smallest matrix on the frequency lines 720.5 Hz and 750 Hz correspond to

points B and C respectively as shown in Fig. 3.19 and in Table 3.17.



3.6. SYSTEM WITH THREE PARAMETRIC UNCERTAINTIES 80

Table 3.17: Three uncertain parameters system - smallest matrices on frequency lines
700 Hz, 720.5 Hz and 750 Hz

frequency (δCin, δLin, δPin ) σ̄(∆(jw)) µ∆(M(jw))
= 1/σ̄(∆(jw))

700 Hz A (+0.241, +0.333, +0.301) 0.333 3.00
720.5 Hz B (-0.201, +0.196, +0.201) 0.201 4.97
750 Hz C (-0.399, +0.399, +0.330) 0.399 2.51

7. When all the computed uncertainty matrices on the µ chart are analysed, it is

found that the smallest matrix over the entire frequency grid corresponds to

point B or the peak of the µ chart. This is shown in Table 3.18.

Table 3.18: Three uncertain parameters system - µ computed from coordinate points
on stability plane

Frequency (f) min[σ̄(∆(j2πf))] µ∆(M(j2πf))=1/min[σ̄(∆(j2πf))]

500 Hz - 1000 Hz 0.201 4.974

3.6.4 Robust stability domains

Following the analysis in the earlier subsection, the smallest destabilising perturbation

matrix on the boundary stability plane corresponds to point B on the µ
¯

chart. This

can be noted by comparing the sizes of the uncertainty matrices A, B and C in

Table 3.17. The peak value of the µ plot thus provides the largest perturbation matrix

that the system is robustly stable against over the entire frequency grid. With respect

to parametric space, σ̄(∆(jw)) = 1/µ
¯

can be interpreted as the coordinate size of the

largest cube centred around the nominal point (0, 0, 0) inside of which the system is

guaranteed robustly stable. The robust stability margin (1/µ) also denotes the ratio

by which the maximum range of the uncertain parameters must be adjusted for the

system to be robustly stable, as discussed in Chapter 2.
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For the purpose of illustration, a set of rectangular cuboids centred about the nominal

point (0,0,0) are drawn to connect points A, B and C respectively. From Fig. 3.20,

it can be noted that the cuboid connecting point A falls in both the stable and the

unstable regions. This is also the case for point C.
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Figure 3.20: Three uncertain parameters system - part of the cuboid centred about the
origin and connecting point A falls in the unstable region

In contrast, the cube of coordinate size 1/µ = 0.201 connecting point B lies totally in

the stable region below the stability plane as depicted in Figs. 3.21 and 3.22. It is to be

pointed out that the small yet noticeable discrepancies in the normalised values in the

uncertainty matrix (3.38) of point B have been neglected and attributed to numerical

inaccuracies. The system is robustly stable for all variations in uncertainties that may

occur within that ‘cube’.

This subsection has shown that the µ approach identifies the largest ‘cube’ in dimen-

sional parametric space inside which an EPS, with three parametric uncertainties, is

guaranteed to be robustly stable.
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3.7 System with multiple parametric uncertainties

By extrapolating on the ideas presented in the earlier subsections, for a system subject

to N parametric uncertainties, µ analysis provides the largest hypercube of dimension

N centred about the nominal point and of coordinate size 1/µ, within which system

robust stability can be guaranteed [34]. For a single parametric uncertainty, the

hypercube becomes the largest line segment within which the system is guaranteed

robustly stable. The line segment is of coordinate size 1/µ = 0.331 for case study I.

Similarly, when two parametric uncertainties are considered, the hypercube becomes

the largest square in the unit bound normalised parameter space within which system

robust stability is guaranteed; in case study II this is a square of coordinate size

1/µ = 0.248. When considering a system subject to three parametric uncertainties, µ

analysis identifies the largest cube within which system robust stability is guaranteed,

which in case study III is of coordinate size 1/µ = 0.201. Of note is that the initial

selection of the nominal values as well as the interval of parameter variations will

influence the outcome of the robust stability assessment of a system.

It is interesting to note that the coordinate size of the ‘hypercube’ or 1/µ tends to

decrease with increasing number of uncertainties, as depicted in Table 3.19. This

clearly shows that stability assessment, if performed without duly incorporating po-

tential system uncertainties, can lead to optimistic and possibly erroneous stability

margins.

Table 3.19: Variation of robust stability margin with number of uncertain parameters

Number of parametric Robust stability Critical power
uncertainties margin (1/µ) (Pin)

1 0.331 11.53 W
2 0.248 11.25 W
3 0.201 11.10 W
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3.8 Conclusion

This chapter has brought deeper insight into the meaning of µ with respect to multiple

parametric uncertainties.

• The novelty of this study is that it has exploited and applied the concept of

the hypercube, in view of bringing more clarity to the concept of µ. Although

the hypercube has been discussed in the literature, it has been defined at a

purely conceptual level. This chapter has constructed the hypercube of a ba-

sic EPS connected to an ideal CPL when it is subject to multiple parametric

uncertainties. This has been made possible though the extraction of data from

perturbation matrices generated during µ analysis of the system.

• Through the constructed hypercube, this study has demonstrated how, for a

system subject to N parametric uncertainties, the µ approach provides the

largest hypercube of dimension N , centred about the nominal point and of

coordinate size 1/µ, within which the system can be guaranteed to be robustly

stable. 1/µ is the robust stability margin of the system. For the EPS under

study, it has been shown how robust stability can be ensured within a line

segment of coordinate size 1/µ = 0.331 when the system has a single parametric

uncertainty in its power P ; a square of coordinate size 1/µ = 0.248 when the

system has two parametric uncertainties in P and its capacitance Cin; and a

cube of coordinate size 1/µ = 0.201 when the system has three parametric

uncertainties in P , Cin and its inductance Lin.

• This chapter has translated the µ results from the frequency domain into the

more perceivable parametric space, thus bringing better understanding to the

µ method. Further it has shown the correlation between µ and the critical

perturbation matrices on the µ chart.

The findings in this study have several practical implications. The design engineer

is offered the possibility of working with the µ results in the more perceivable para-
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metric domain, and better interpret the robust stability measure µ. The hypercube,

illustrated in this work, offers the design engineer a space within which to choose

optimum parameters for design while ensuring stability robustness. The chapter has

been presented in a manner comprehensible enough to make the µ approach more

applicable to a wide range of uncertain systems subject to multiple simultaneous

parametric uncertainties.



Chapter 4

A practical approach to µ analysis

4.1 Introduction

Power electronics is becoming an integral part of MET applications. Yet, the suscepti-

bility of power electronic systems to instability remains an important issue that needs

attention. Finding an answer to this problem is crucial, particularly for the safety

critical applications. Power electronic technology is fast evolving. Yet, the methods

that are widely employed to assess the stability of these systems are still based on

classical techniques. These include the eigenvalue approach and impedance methods

based on Nyquist stability criterion. Despite their numerous benefits, the classical

methods treat the physical system as a fixed model, where all the system components

have unique values. However, the physical systems are complex and dynamic. The

properties of their system components are continuously varying due to changes in

both their operating and environmental conditions. Classical methods may attempt

to include these uncertainties in the analysis through the extensive iteration process.

However, they are designed for SISO systems, and may not produce reliable results

when applied to MIMO systems [31],[33]. In order to keep pace with evolving tech-

nology in power electronics, there is a need to adopt new analysis techniques, that

duly account for uncertainties that are present in physical systems.

86
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Considering the case where the stability of a physical system is assessed based on its

nominal model, the outcome of the analysis is necessarily dependent on the quality of

that model. In an attempt to increase the accuracy of the analysis, the nominal model

may be greatly refined to match the physical system. However, in practice, excessive

model refinement is unlikely to be viable. In addition, certain system components,

such as system parasitics and non-linear elements, are hard to quantify. It can be

inferred that a nominal system model is bound to contain model uncertainties. From

another viewpoint, even though the nominal model may be very accurate, it may

not truly represent the physical system. In practice, these systems are subject to

multiple sources of uncertainties, which may arise due to variations in operating or

environmental conditions. In face of all the uncertainties, that may be present in the

nominal model and in the physical system, the need for a robust tool to assess system

stability can only be reinforced.

The µ method is a robust approach that can be employed to incorporate uncertainties

in stability analysis. In order to effectively apply the method, in addition to a sound

understanding of its theoretical framework, sufficient knowledge is required as regards

its application through the use of associated software. Practical approaches to ap-

plying the µ method so as to cater for the aforementioned uncertainties in the power

electronic area needs to be explored. Further, it seems important to identify to what

extent uncertainties can affect the outcome of stability assessments and, consequently

determine the importance of including them in the analysis, through the adoption of

tools such as the µ approach.

While chapters 2 and 3 have treated the µ theoretical framework in great depth, this

chapter aims to present practical approaches to applying the µ tool in the robust

stability assessment of PE systems. This is to be achieved by demonstrating how

few key system uncertainties can be incorporated in the examination of the robust

stability margin of the widely used DC/DC buck converter system. The sources of

uncertainties to be considered include variations in system load, source impedance,

operating temperature as well as uncertainties in the nominal model including some

non-linearities. The µ predictions are to be evaluated against experimental results
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both in the time domain and in the frequency domain. In addition, the case studies,

presented in this chapter, are to be used as a basis to assess the impact of uncertainties

on system stability, and to gauge the need for robust analysis tools.

4.2 Modelling of the buck converter for µ analysis

The electrical network of the MET will consist of a large number of power electronic

converters. The regulated DC/DC converter is known to be a critical and very im-

portant component of the on-board electrical system of the aircraft [31]. It is used

to interface sections of the EPS having different voltage levels, for instance 270 V

to 28 V . These applications include battery charging and energy storage interfacing.

This study is based on the buck converter system, being widely used for the DC/DC

power conversion for such applications.

In this section, the small-signal ac models of the power stage and the controller are

built separately and then combined to yield the complete linear time invariant (LTI)

model of the closed loop converter [13],[51],[60],[61]. Further, it applies a general

modelling method to convert the non-linear buck converter system in an equivalent

linear model, which is valid for µ analysis over a range of operating points and pa-

rameter variations [58],[62]. The method is based on symbolic linearisation around an

arbitrary equilibrium point. All elements in the system model are explicitly expressed

in terms of definable system parameters and input only, and for instance not in terms

of indeterminate equilibrium states. The method, not being the focus in this study,

is not emphasised in this chapter. It will be examined in more detail in chapter 5.

4.2.1 The experimental buck converter

The experimental closed loop buck converter, that is used in this study, is depicted in

the circuit model in Fig. 4.1, and shown in Fig. 4.2 [63]. The converter consists of a
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U3825 PWM controller, a Type III analogue compensator and an LC input filter. The

switching frequency has been measured as 51.2 kHz [64]. The sawtooth generator

of the modulator generates a sawtooth waveform of peak voltage (Vpp) measured as

3.52 V . The modulation gain fm is given by 1/Vpp and is equal to 0.284. It is the

transfer function of the modulator and refers to the change in duty cycle d as a result

of changing input control voltage V ′com, as shown in Fig. 4.1 [65]. The comparator

compares the control voltage to the ramp voltage and in so doing generates the gate

drive signal as a rectangular waveform signal to the MOSFET. This switched output

voltage vd is averaged by the output filter and applied to the load as the output voltage

vo. The controller has been designed with a phase margin of 55o and a bandwidth

of 4.2 kHz. The small-signal ac model of the closed loop controlled buck converter,

which is illustrated in Fig. 4.1, is developed in the subsequent subsections. The

system parameters are defined in Table 4.1.
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Figure 4.1: Circuit representation of the closed loop controlled buck converter with
input filter
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Figure 4.2: The experimental closed loop controlled buck converter with input filter

4.2.2 Power stage model

The buck converter has two operating modes over one switching period. The equations

(4.1) and (4.2) describe the dynamics of the power stage when the switch is on and

off respectively. The parameters in (4.1) - (4.2) are shown in Fig. 4.1, and Table 4.1.

On-state period :
dig
dt

= ((vg − igRin)− (vcin + (ig − il)Rcin))/Lin

dvcin
dt

= (ig − il)/Cin
dil
dt

= ((vcin + (ig − il)Rcin)− (vo + ilRlon))/L

dvc
dt

= (il − (vo/R))/C

vo(t) = (Rcil + vc)(R/(Rc +R))

(4.1)
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Off-state period :
dig
dt

= ((vg − igRin)− (vcin + (ig)Rcin))/Lin

dvcin
dt

= ig/Cin

dil
dt

= (−vd − (vo + ilRld))/L

dvc
dt

= (il − (vo/R))/C

vo(t) = (Rcil + vc)(R/(Rc +R))

(4.2)

where Rlon = Rl +Ron, Rld = Rl +Rd,

Table 4.1: Nominal values for system parameters

Symbol Units Nominal Description
values

vg V 19.8 DC source voltage
vref V 5.1 Reference Voltage
vd V 0.22 Diode Voltage
voff V 2.352 Offset Voltage
fs kHz 51.0 Switching frequency
fm - 0.284 Modulator gain
R Ω 2.50 Load resistance
Ron mΩ 160 Switch on resistance
Rd mΩ 12 Diode on resistance
Rin mΩ 100 Input Resistance
Lin µH 500 Input filter inductance
Cin µF 100 Input filter capacitance
Rcin mΩ 47 ESR of input filter capacitor
L µH 42 Output filter inductance
Rl mΩ 45 ESR of output filter inductor
C µF 590 Output filter capacitance
Rc mΩ 10 ESR of output filter capacitor
R1 kΩ 20.0 Resistance in compensator
R2 kΩ 20.0 Resistance in compensator
R3 kΩ 2.0 Resistance in compensator
C1 nF 8.22 Capacitance in compensator
C2 nF 4.72 Capacitance in compensator
C3 nF 0.331 Capacitance in compensator
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In order to convert the time variant system into a time invariant system, the averaging

modelling method is applied. Equations (4.1) and (4.2) are firstly represented as the

state equations (4.3) and (4.4) respectively, with state vectors x(t): [ig(t), vcin(t), il(t), vc(t)],

input vector u(t): [vg(t),vd(t)] and output vector y(t): [vo(t)].

dx(t)

dt
= A1x(t) +B1u(t), y(t) = E1x(t) + F1u(t) (4.3)

dx(t)

dt
= A2x(t) +B2u(t), y(t) = E2x(t) + F2u(t) (4.4)

Then, averaging (4.3) and (4.4) over a switching period produces the averaged time

invariant system model as given by (4.5). This is based on the duty cycle d(t) during

the on-state period and d′(t) = 1− d(t) during the off-state period.

dx(t)

dt
= [d(t)A1 + d′(t)A2]x(t) + [d(t)B1 + d′(t)B2]u(t)

y(t) = [d(t)E1 + d′(t)E2]x(t) + [d(t)F1 + d′(t)F2]u(t)

(4.5)

The averaged model (4.5) is non-linear as it involves the multiplication of time varying

quantities. In order to obtain the linear small-signal ac model of the system, the

averaged model must be linearised about a dc steady state operating point. To that

end, the variables in (4.5) are firstly expanded in terms of their dc and ac components.

The averaged state vector x(t), input vector u(t), output vector y(t) and duty cycle

d(t) are expressed in terms of their dc steady state values X, U , Y and D with

superimposed small ac variations ˆx(t), ˆu(t), ˆy(t) and ˆd(t) respectively as shown in

(4.6). It can be shown that d̂(t) = −d̂′(t).

x(t) = X + x̂(t), u(t) = U + û(t)

y(t) = Y + ŷ(t), d(t) = D + d̂(t)
(4.6)

After substituting (4.6) in (4.5) and collecting common terms, the averaged state

space model can be written as (4.7) and (4.8).
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d(x̂(t))

dt
= AX +BU

+ Ax̂(t) +Bû(t) + ((A1 − A2)X + (B1 −B2)U)d̂(t)

+ (A1 − A2)x̂(t)d̂(t) + (B1 −B2)û(t)d̂(t)

(4.7)

Y + ŷ(t) = EX + FU

+ Ex̂(t) + Fû(t) + ((E1 − E2)X + (F1 − F2)U)d̂(t)

+ (E1 − E2)x̂(t)d̂(t) + (F1 − F2)û(t)d̂(t)

(4.8)

The averaged model in steady state corresponds to the dc terms in (4.7) and (4.8)

and is given as (4.9).

0 = AX +BU, Y = EX + FU (4.9)

where A = A1D + A2D
′, B = B1D +B2D

′

E = E1D + E2D
′, F = F1D + F2D

′

D′ = 1−D

(4.10)

The equilibrium state can be computed as (X = −BUA−1) with U = [Vg, Vd]
T based

on (4.9). Besides, the duty cycle D in (4.10) can be obtained from (4.11) which is

based on the equivalent steady-state model of the buck converter in Fig.4.3.

D2Vo
Rin

R
+D[−Vg − Vd + Vo

(Ron −Rd)

R
]

+ [Vd + Vo
(R +Rd +Rl)

R
] = 0 (4.11)

Symbolic linearisation of the averaged model about the quiescent dc point, given by

(4.9), then involves neglecting the second order non-linear terms in (4.7) - (4.8) as
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(1-D)Rd

+-DIo DVin

(1-D)VdIg
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Figure 4.3: Model of the buck converter in steady state

they are very small in magnitude when compared to the linear terms. The resulting

linearised small-signal ac model, in symbolic form, is obtained as (4.12) in its gen-

eralised form and as (4.13) - (4.14) in its full form. Of note is that the elements in

(4.13) - (4.14) are explicitly in terms of system parameters and inputs only.

d(x̂(t))

dt
= Ax̂(t) +Bû(t) + ((A1 − A2)X + (B1 −B2)U)d̂(t)

ŷ(t) = Ex̂(t) + Fû(t) + ((E1 − E2)X + (F1 − F2)U)d̂(t)

(4.12)

d̂ig(t)

dt
=
−(Rcin +Rin)

Lin
îg(t)−

1

Lin
v̂cin(t)

+
DRcin

Lin
îl(t) +

1

Lin
v̂g(t) + p1d̂(t)

dv̂cin(t)

dt
=

1

Cin
îg(t)−

D

Cin
îl(t) + p2d̂(t)

d̂il(t)

dt
=
DRcin

L
îg(t) +

D

L
v̂cin(t) +

q

L
îl(t)

− R

L(R +Rc)
v̂c(t) +

D − 1

L
v̂d(t) + p3d̂(t)

dv̂c(t)

dt
=

R

C(R +Rc)
îl(t)−

1

C(R +Rc)
v̂c(t)

(4.13)
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v̂o(t) =
RcR

Rc +R
îl(t) +

R

Rc +R
v̂c(t) (4.14)

where k1 = R +Rl +Rd +D2(Rin −Rcin)

+D(Rcin −Rd +Ron)

k2 =
RRc

R +Rc
, k3 = DVg + (D − 1)Vd

k4 = (R +Rl +Rd)Vg +DRinVd +DRcinVg

+D(Ron −Rd)Vg −D2(RcinVg +RinVd)

p1 =
Rcink3

Link1

p2 = − k3

Cink1

p3 =
k3(Rd −Rcin −Ron)

Lk1

+
k4

Lk1

+
DRcink3

Lk1

+
Vd
L

It is to be noted that all elements in the developed model must be in their rational

forms in order to allow conversion of the system model in its corresponding LFT

configuration. The duty cycle D in (4.13) being irrational is therefore approximated

by a polynomial expansion. Fig. 4.4 shows the rational 0th, 1st and 2nd order Taylor

series expansions of duty cycle D about the nominal operating point.
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Figure 4.4: Duty cycle D as a function of load R
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Although the 2nd order Taylor series provides the best approximation, as can be seen

in Fig. 4.4, the 1st order approximation is used in this section of the work, not to

unnecessary increase the computational complexity.

4.2.3 Controller model

The transfer functions of the compensator and modulator, shown in Fig. 4.1, can be

written as (4.15) and (4.16) respectively.

Gc(s) =
vcom(s)− vref (s)

vref − vo(s)

=
k(s+ wz1)(s+ wz2)

s(s+ wp2)(s+ wp3)
(4.15)

d(s) = fm(vcom(s)− voff (s)) (4.16)

where k =
(R1 +R3)

R1R3C3

wz1 =
1

C1R2

, wz2 =
1

C2(R1 +R3)

wp2 =
1

C2R3

, wp3 =
(C1 + C3)

C1C3R2

Based on the above transfer functions, the state equations of the small-signal ac

model of the controller can be obtained as (4.17) and (4.18) respectively with state

vector x̂(t): [x̂5(t), x̂6(t), x̂7(t)], input vector û(t): [v̂ref (t),v̂off (t)] and output vector

ŷ(t): [d̂(t)]. The corresponding dc quiescent point can be derived as (4.19) and (4.20).
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˙̂x5(t) = −(wp2 + wp3)x̂5(t)− wp2wp3x̂6(t) + v̂ref (t)− v̂o(t)
˙̂x6(t) = x̂5(t)

˙̂x7(t) = x̂6(t)

(4.17)

d̂(t) = m1x̂5(t) +m2x̂6(t) +m3x̂7(t) + fmv̂ref (t))− fmv̂off (t) (4.18)

where m1 = fmk, m2 = fmk(wz1 + wz2), m3 = fmkwz1wz2

X5 = 0, X6 = 0, X7 =
(D − fmVref + fmVoff )

fmkwz1wz2

(4.19)

Vo = Vref (4.20)

4.2.4 Closed loop controlled converter model

At this point, the power stage and controller models, derived in the earlier sections,

can be combined to yield the small-signal ac model of the closed loop controlled buck

converter. The process involves replacing v̂o(t) in (4.17) with expression (4.14) and

d̂(t) in (4.13) with expression (4.18). The resulting state equations have combined

state vector x̂(t) = [̂ig(t), v̂cin(t), îl(t), v̂c(t), x̂5(t), x̂6(t), x̂7(t)], input vector û(t) =

[v̂g(t), v̂d(t), v̂ref (t), v̂off (t)] and output vector ŷ(t) = v̂o(t). The state equations, when

expressed in the state space matrix form ( A B
E F ), produces the small-signal ac model

of the closed-loop controlled buck converter as shown in (4.21).

It is to be added that all the elements of the developed model are rational, in symbolic

form and expressed in terms of system parameters and system inputs only. The system

model (4.21), referred to the linear equivalent model of the buck converter, is suited

for µ analysis over a range of operating points and parameter variations.
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4.3 Model refinement

In this section, the small-signal ac circuit of the buck converter in Fig. 4.1, built in

Simulink R© environment, is verified and validated. The objective is to obtain a refined

model that can predict the behaviour of the power system such as borderline stability

with fairly good accuracy. The procedure for refining the system model is depicted

in Fig. 4.5. The process has required the use of a network analyser to experimentally

measure certain small-signal transfer functions of the system under study, as described

in appendix B [13],[63].

I. Build initial simulation model including  

parasitics. Define system components based on 

available data such as data sheets

Model 

validated

No 

Yes

Good Match

?

III. Verify model validity by comparing 

simulation transfer functions with 

experimentally measured transfer functions 

II. Perform individual component model 

validation through experimental 

measurements and refine system model

Figure 4.5: System model refinement procedure
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4.3.1 Initial simulation model

The first step consists in defining the initial average model of the buck converter under

study based on available data and nameplate information, as defined in Table 4.1.

Many of these initial parameter values, can be further refined to increase model

fidelity, as described in the following subsections.

4.3.2 Individual system components models

Thus, the second step of the process models individual system components through

experimental measurements. It has been shown that non-idealities such as parasitic

resistances in wiring and power supply, the equivalent series resistance (ESR) of the

capacitors and inductors as well as, the voltage drop in the diode and the on-resistance

of the switch transistor have significant impact on the accuracy of the model. The

experimental measurements for a few system components are described below.

The output impedance of the power supply has been measured when connected to

different loads and set to different voltages, as shown in Fig. 4.6. A network analyser

has been employed to obtain the dynamic measurements [13],[63]. The best estimate

of the experimental measurements of the power supply impedance, through curve

fitting, are found to be 47e−3 + s1.8−6. From these measurements, the equivalent

series resistance (ESR) and inductance of the power supply are estimated as 47 mΩ

and 1.8 mH respectively.

The input filter inductance and capacitance have been measured by means of an

impedance analyser. The measurements are depicted in Figs. 4.7 and 4.8, respec-

tively. After deducting the resistance of the cables used for the measurements, of

70 mΩ, the filter inductance and ESR are estimated as 510 µH and 60 mΩ, respec-

tively. The input filter capacitance and ESR are estimated as 95 µF and 95 mΩ

respectively. It is to be noted that although second order polynomials provide better

approximations, especially at high frequencies, the first order approximation has been
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selected as it provides sufficient accuracy to the parameter model without unneces-

sarily complicating the model.

102 103 104
-30

-25

-20

-15

m
ag

ni
tu

de
 (

dB
)

102 103 104

frequency (Hz)

0

45

90

ph
as

e 
(d

eg
)

19.9 V 0.50 A
21.0 V 0.60 A
24.3 V 0.70 A

47e-3 +s 1.8 e-6

Figure 4.6: Output impedance of power supply estimated through curve fitting of
experimental measurements
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through curve fitting of experimental measurements
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Figure 4.8: Input filter capacitance estimated through curve fitting of experimental

measurements

4.3.3 Refined system model

The last step consists first of experimentally measuring the converter transfer func-

tions, such as the loop gain T , the input impedance Zi and the output impedance

Zo, by means of a network analyser [13],[63]. The experimental measurements are

then compared with the corresponding transfer functions obtained from the simula-

tion model. The individual component model and the system model are refined and

adjusted iteratively until a good match is obtained.

Fig. 4.9 and 4.10 depict the loop gain and the input impedance of the converter

obtained from both experiments and the updated simulation model. These measure-

ments have been made without the input filter inductor and with a load of R = 1.6 Ω.

The simulation model transfer functions match the experimentally observed behaviour

of the converter to good accuracy.

Through the process of model refinement, the initial values of the system components
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have been fine-tuned to their final values, as given in Table 4.2. The refined simulation

model is used for µ analysis of the ensuing case studies.
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Figure 4.9: Validation of simulation model loop gain against experimental measure-

ments of loop gain
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Table 4.2: Initial and measured values for the system parameters

Symbol Units Initial Measured Description
Values Values

vg V 19.8 19.8 DC source voltage
vref V 5.1 5.1 Reference Voltage
vd V 0.22 - Diode Voltage
voff V 2.352 2.3252 Offset Voltage
fs kHz 51.0 51.2 Switching frequency
fm - 0.284 0.284 Modulator gain
R Ω 2.50 2.50 Load resistance
Ron mΩ 160 - Switch on resistance
Rd mΩ 12 - Diode on resistance
Rin mΩ 100 160 Input Resistance
Lin µH 500 511.8 Input filter inductance
Cin µF 100 95 Input filter capacitance
Rcin mΩ 47 95 ESR of input filter capacitor
L µH 42 45.5 Output filter inductance
Rl mΩ 45 50 ESR of output filter inductor
C µF 590 540 Output filter capacitance
Rc mΩ 10 17 ESR of output filter capacitor
R1 kΩ 20.0 19.9 Resistance in compensator
R2 kΩ 20.0 19.7 Resistance in compensator
R3 kΩ 2.0 2.0 Resistance in compensator
C1 nF 8.22 8.22 Capacitance in compensator
C2 nF 4.72 4.72 Capacitance in compensator
C3 nF 0.331 0.331 Capacitance in compensator

4.4 Load uncertainty

In this section, µ analysis is applied to determine the critical resistive load R that

destabilises the system shown in Fig. 4.1. In this analysis, the only varying parameter

is load R that can vary around its nominal value by ±50% (i.e Rvar = ±50% as defined

in (4.22) to (4.24) and Table 4.3. The other system parameters are assumed to be

constant with nominal values given in Table 4.1.
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Table 4.3: Uncertain resistive load

Parameter Nominal Range of variation (Rvar)
Value (Ro) with respect to nominal value

Load Resistance (R) 2.5Ω ± 50 %

4.4.1 µ analysis

Prior to µ analysis, the state space model (4.21) is converted in its LFT form. In

this work, Matlab R© Robust Stability Toolbox has been employed for performing both

LFT and SSV analysis. Expressing (4.21) in the M∆ form requires that all uncertain

parameters be firstly converted in their LFT forms. In order to represent uncertain

element R in an equivalent LFT form, it has to be expressed as a function of its

normalised form δR which lies between −1 and 1 as shown in (4.22). Ro and Rvar can

be derived from the minimum value (Rmin) and the maximum value (Rmax) of the

resistive load as shown in (4.23) and (4.24) [53].

R = Ro +RoRvarδR where δR ∈ [−1, 1] (4.22)

Ro = (Rmax +Rmin)/2 (4.23)

Rvar = (Rmax −Rmin)/(Rmax +Rmin) (4.24)

The normalised parameters δR are then extracted from the uncertain system model

(4.21) and grouped in a diagonal matrix in a feedback form by applying LFT tech-

nique. The resulting uncertainty matrix is shown in (4.25). δR appears 227 times

in the ∆ matrix which corresponds to the number of times R appears in the system

matrix.

∆(2πf) = δR I227×227 (4.25)

µ analysis is then applied to the obtained uncertain system model in M∆ form by

using Matlab R© Robust Stability Toolbox. The results are shown in Fig. 4.11a and

4.11b.
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Figure 4.11: System with load uncertainty (a) µ chart to predict critical R (b) zoomed
area near peak of µ chart

For this test, µ = 1.44 as given by the peak value of the charts in Fig. 4.11a and

4.11b. The smallest destabilising matrix, of size 227 × 227 as given by (4.26), gives

the robust stability margin (1/µ) as 0.696 [38].

∆(j2π702.4) = −0.696 I227×227 (4.26)

By comparing (4.26) with (4.25), it can be noted that δR = −0.696. The critical

destabilising load can be computed from δR = −0.696 and (4.22) and is equal to

1.63 Ω or 15.96 W , as shown in (4.27) and Table 4.4.

R = Ro +RoRvarδR where δR ∈ [−1, 1] (4.27)

= 2.5 + 2.5× 50%× (−0.696)

= 2.5− 2.5× 35% = 1.63
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Table 4.4: System with load uncertainty - µ analysis results

Perturbation Robust stability µ
¯

Critical Critical

matrix margin R Po

∆(j2π702.4) 0.696 1.44 1.63 Ω 16.0 W

µ > 1 indicates that the system is not robustly stable, i.e. the system does not remain

stable over the whole uncertainty range between 1.25 Ω and 3.75 Ω, as defined in

Table 4.3. In order to ensure that the system remains robustly stable, µ should be

less than 1. This can be achieved by scaling the operating range of the system load

by 1/µ, the robust stability margin, as discussed in chapter 2. The new uncertainty

range of R needs to be reduced by 2.5±2.5×50%×0.696 i.e. 2.5 Ω±35%. This is in

accordance with the hypercube concept, from which it can be inferred that, the buck

converter remains robustly stable within a line segment of coordinate size 1/µ = 0.696,

as shown in Fig 3.7 in chapter 3. The line segment gives a maximum range in R of

[1.63 Ω, 3.37 Ω], as can be computed from (4.27), for a robustly stable system. It is

equivalent to a largest uncertainty range in output power P of [7 W , 16 W ] based on

the output voltage of 5.1 V . Although it can be argued that the system may remain

stable below the lower limit of 7 W , it is evident that the upper limit of 16 W gives

the critical destabilising value of the output power. This information can be obtained

and confirmed from (4.26) and (4.27).

4.4.2 Experimental results in time domain

In this experiment, the electronic resistive load R was decreased in small steps from a

peak value of 2 Ω until the system reached boundary stability. When R was decreased

to 1.62 Ω at t = 0.253 s (i.e. Io increased to 3.15 A), the system reached the boundary

condition of stability, as can be seen in Fig. 4.12a and 4.12b. This is shown by the

sustained oscillations in vin and vo in Fig. 4.12a and 4.12b. When R was increased

back to 2 Ω at t = 0.503 s (i.e. Io decreased to 2.55 A), the system stabilised again, as

shown in Fig. 4.12a. The critical load resistance of 1.62 Ω closely matches the value

of 1.63 Ω predicted by µ analysis, as depicted in Table 4.5.
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Figure 4.12: Experimental results for system with load uncertainty (a) system is at

boundary of stability with R = 1.63 Ω from t = 0.253 s - 0.503 s (b) zoomed area near

t = 0.253 s
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Table 4.5: System with load uncertainty - µ analysis and experimental results

Parameter µ analysis Experimental

Load resistance (Ω) 1.63 Ω 1.62 Ω
Power (Po) 16.0 W 16.1 W

4.4.3 Experimental results in frequency domain

The aim of this part of the work is two-fold. First, it evaluates the feasibility of

applying impedance-based stability analysis to the buck converter in experiment, so

as to determine the destabilising system load. Secondly, it verifies the µ predictions,

obtained in section 4.4.

Considering two subsystems connected in series, with FA and FB being the transfer

functions of the source and load subsystems respectively, the transfer function of the

whole system can be derived as (4.28) [14],[66].

FAB =
FAFB
1 + T

, with T =
Zo
Zi

=
| Zo |
| Zi |

∠(φZo − φZi) (4.28)

The impedance ratio of the source impedance Zo to the load impedance Zi is referred

to as the minor loop gain T as given by (4.28). For a system to be stable, the minor

loop gain must satisfy the Nyquist stability criterion, i.e, 1 + T must not have any

roots in the right half plane [14].

The sufficient condition of Middlebrook criterion, which is an extension of the afore-

mentioned formal requirement of the Nyquist stability criterion, requires that | Zo |�
| Zi | for all frequencies, to ensure system stability [14],[66]. The Middlebrook crite-

rion, is normally applied at the input filter/converter interface at point Y , as shown

in Fig. 4.1 and 4.2. At the interface Y , Zo has a resonant point since it includes the

LC filter. A practical way to verify that the system is stable is to ensure that the

peak of | Zo | is less than | Zi |, as was discussed in the thesis introduction. The

application of Middlebrook criterion to the buck converter in Fig. 4.1 required the
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experimental measurement of Zi at point Y . This involves the series connection of

an injection circuit from the network analyser at that point, as shown in Fig. B.1 and

B.2 in appendix B. However, since the input filter capacitor Cin was part of the PC

board of the buck converter, as shown in Fig. 4.2, there were no connection points

available for signal injection between Cin and the mosfet at point Y . Hence, it was

not practically possible to apply the sufficient condition of the Middlebrook criterion.

Nevertheless, it was feasible to measure the system impedances at point X of the buck

converter, as shown in Fig. 4.1 and 4.2. The pointX is the input to the buck converter,

which includes the input filter capacitor. The injection circuit could be connected at

that point, by disconnecting the input filter inductor from the converter at that

interface. Hence, the aim was to apply Nyquist criterion to the minor loop gain T at

point X to determine system stability. The methodology involved firstly measuring

Zo at point X. The measurements were made by means of a network analyser, over

a frequency range between 100 Hz and 50 kHz [13]. A set of measurements of Zi

was then made with different loads R connected to the converter, ranging from 1 Ω

to 6 Ω. In order to measure Zi, with R set below its critical value, without causing

the system to become unstable, the measurements were made with the input filter

inductor disconnected from the circuit. The output impedance Zo was measured

separately, with the power supply and inductor connected to a dummy load.

The set of experimentally measured Zo/Zi is analysed to identify the critical value

of R, which causes the system to reach the boundary of stability. According to the

Nyquist stability criterion as applied to T in (4.28), when the gain margin | Zo/Zi |=
1, the phase difference (φZo − φZi) must be equal to 1800, for the system to be

at the boundary of stability. The experimental measurements of Zi with R set at

1.02 Ω, 1.62 Ω and 5.37 Ω are depicted in Fig. 4.13 and Fig. 4.14, together with the

measurements of Zo.
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Figure 4.14: Zoomed view of the phase of the input impedance in Fig. 4.13

The phase difference (φZo − φZi) at points A , B and C where | Zo |=| Zi | are given

in Table 4.6. It is noted from Table 4.6 that, with R equal to 1.62 Ω, the phase

difference is close to 180o. This corresponds to the µ prediction of 1.63 Ω, obtained

in section 4.4. For the stable case, with R equal to 5.37 Ω, the phase difference is

slightly less than 180o while for the unstable case, with R equal to 1.02 Ω, the phase

difference exceeds 180o.
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Table 4.6: System with load uncertainty - Experimental measurements of Zo and Zi

Points R Magnitude Phase Zi Phase Zo Phase difference
| Zi |=| Zo | φi φo (φo-φi)

C 5.37 Ω 7.3 dB −90.13o 88.20o 178.33o

B 1.62 Ω 7.2 dB −93.84o 88.18o 182.02o

A 1.02 Ω 7.1 dB −98.20o 88.11o 186.31o

Further, Nyquist charts of the experimentally measured Zo/Zi have been plotted for

the aforementioned cases. For the stable case, with R equal to 5.37 Ω, the Nyquist

plot does not enclose the point (-1,0) as depicted in Fig. 4.15a. For the unstable

case, with R equal to 1.02 Ω, the Nyquist plot encloses the point (-1,0) as depicted in

Fig. 4.15b. With R equal to 1.62 Ω, the Nyquist plot encloses the point (-1,0) rather

than going through it, as shown in Fig. 4.15c and 4.15d. This is expected as the

phase difference of the measured impedances is 182o and not 180o at that point, as

shown in Table 4.6. Nevertheless, it is to be noted that the point at which the curve

crosses the real axis, and which corresponds to the phase difference of 180o, is closer

to the critical point (-1,0) for R equal to 1.62 Ω, as compared to when R is 1.02 Ω.

It should be noted that identifying the critical destabilising load experimentally, by

using the impedance-based method, posed a few difficulties. First, the phase difference

of the impedances are very close to 180o, for a wide range of loads. In addition, there

are possible measurement errors that may arise due to the disconnection of the input

filter inductor from the circuit, during the experiment. This may further compromise

the accuracy of the results.

4.4.4 Simulation time

In order to assess the effect of the duty cycle approximation on robust stability margin

and simulation time, µ analysis has also been performed by using the first order

approximation of the duty cycle D. The results are given in Table 4.7. The first

order approximation introduces an error of 7% in the robust stability margin and an
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error of 4% in the critical R, with respect to the second order approximation. Inspite

of the loss in accuracy, the simulation time is seen to reduce considerably, as noted in

Table 4.7. This is due to the fact that D appears 189 times in the system model. By

setting D as a constant, the size of the uncertainty matrix reduces from 227× 227 to

37× 37. It can be inferred that the size of the uncertainty matrix has a key influence

on computational cost. Of note is that non-linear terms can be treated as uncertain

elements of the system, as will be examined in a later section.

Table 4.7: System with load and model uncertainties - Evaluation of polynomial ap-
proximations of D

D Robust stability Critical Size Simulation
approximation margin R ∆(jw) time

2nd order 0.696 1.63 Ω 227× 227 2.6 hrs
1st order 0.745 1.57 Ω 37× 37 4 mins

4.5 Source impedance uncertainty

At design stage, the power source to which a converter is to be connected, may not be

known. Yet, the source impedance may influence the stability of an EPS to a great

extent. Hence, this section investigates the impact of source impedance uncertainty

on system stability. The robust stability margin of the buck converter is examined,

when it is subject to load uncertainty as shown in Table 4.3, for different values of line

resistance Rin. In the first case (I), Rin is set to 185 mΩ and in the second case (II),

Rin is set to 278 mΩ. The µ approach is applied to (4.21), based on the methodology

described in section 4.4. Experimental validation is provided.

4.5.1 µ analysis

The µ charts for cases I and II are shown in Figs. 4.16a - 4.16b, and 4.17a - 4.17b

respectively.
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The associated robust stability margin, obtained from µ analysis, are given in Ta-

ble 4.8. In addition, the µ predictions and experimental results, with Rin set to

160 mΩ, as determined in section 4.4, are also included in Table 4.8 for completion.

Table 4.8: System with uncertain load and different Rin - µ analysis results

Rin µ Robust stability Critical R Critical Po
margin µ analysis µ analysis

160 m Ω 1.44 0.696 1.63 Ω 16.0 W
185 m Ω 1.20 0.835 1.46 Ω 17.8 W
278 m Ω 0.85 1.180 1.03 Ω 25.3 W

4.5.2 Experimental results

During the experiment, the line resistance of the buck converter was adjusted for the

two case studies. Rin was first set to 185 mΩ and then to 278 mΩ. The load R was

then gradually decreased in both cases until the EPS reached boundary stability. For

case I, with Rin set to 185 mΩ, the experimental results in Fig. 4.18 show that voltage

Vin is stable when R is 1.89 Ω. When the load R is reduced to 1.54 Ω, the system

reaches boundary stability, as shown by the sustained oscillation of Vin. Decreasing

R to 1.50 Ω causes the system to become unstable. For case II, with Rin set to

278 mΩ at time t = 0.08 s, the buck converter reaches boundary stability when the

load R is decreased to 1.17 Ω, as depicted in Fig. 4.19a and 4.19b. The µ results are

within 12 % of the experimental results, as shown in Table 4.9. The µ predictions

are acceptable, considering errors in experimental measurements and in the system

model.

Table 4.9: System with uncertain load and different Rin - µ analysis and experimental
results

Rin µ Robust stability Critical R Critical R Critical Po
margin µ analysis Experimental µ analysis

160 m Ω 1.44 0.696 1.63 Ω 1.62 Ω 16.0 W
185 m Ω 1.20 0.835 1.46 Ω 1.54 Ω 17.8 W
278 m Ω 0.85 1.180 1.03 Ω 1.17 Ω 25.3 W
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Figure 4.18: Experimental results for system with uncertain load and Rin = 185 mΩ (i)
top figure: system is stable with R = 1.89 Ω (ii) middle figure: system is at boundary
of stability with R = 1.54 Ω (iii) bottom figure: system is unstable with R = 1.50 Ω

4.5.3 Results analysis

As can be seen from Table 4.9, the robust stability margin increases as the source

resistance increases. Hence, by providing damping to the system, Rin has a stabilising

effect on the buck converter. Supposing the nominal Rin is 278 mΩ, it will be consid-

ered safe to operate the buck converter with an output power up to 25.3 W , as shown

in Table 4.9. However, if the actual Rin is 160 mΩ, the system will become unstable

when the power is increased up to 16 W only. In fact, the actual robust stability

margin is 69.6%, as compared to the optimistic value of 118% based on the nominal

value of Rin of 278 mΩ, as given in Table 4.9. This analysis clearly demonstrates that

variation in the source impedance has a great impact on robust stability margin and

must, therefore, be accounted for in stability assessment of an EPS.
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Figure 4.19: Experimental results for system with uncertain load and Rin = 278 mΩ
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4.6 Temperature uncertainty

Although, an EPS can be modelled to good accuracy, however, in practice, the values

of its system components are bound to vary during operation. Temperature is one

of the main factors that can introduce uncertainties in multiple system parameters.

This section investigates the effect of extreme temperature variation on the robust

stability margin of the buck converter, shown in Fig. 4.1. The µ approach si applied

based on the methodology used in 4.4. The duty cycle D is estimated by its first

order approximation.

4.6.1 Uncertain parameters

For this case study, the buck converter is considered to be working in an environment

where the temperature may vary between −40 oC and 80 oC with a reference value

of 20 oC, as shown in Table 4.10.

Table 4.10: Uncertainties in temperature and resistive components

Parameter Nominal Range of variation
Value with respect to nominal value

Temperature (T ) To=20oC ∆T=±60oC
Resistive components (Res) Reso Resvar=α ∆T =±24%

The variations in temperature will influence the characteristics of the resistive compo-

nents of the buck converter, which include but are not limited to the system parasitics

and cable resistances. These components, which are denoted as Res further in the

text, comprise Rin, Rcin, Rl, Ron, Rc. It is assumed that a temperature coefficient

of resistance (α) is 0.004 /oC. From (4.29) and Table 4.10, it can be seen that the

variations in temperature of ±60 oC cause variations in the resistive components of

±24% around their nominal values denoted as Reso.

Resvar = (Res −Reso)/Reso = α∆T (4.29)
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The nominal values of the system components, including Res, are given in Table 4.1.

It is assumed that the resistive load varies within ±50% of its nominal value, as shown

in Table 4.3 in section 4.4. The µ approach is applied to study the effect of the defined

temperature variation on stability robustness of the EPS.

4.6.2 µ analysis

By employing the LFT technique, the system model (4.21) is firstly expressed in the

LFT form. The structure of the resulting uncertainty matrix is shown in (4.30).

∆(j2πf) = diag(δRI41, δRcI13, δRcinI38,

δRinI25, δRlI23, δRonI27) (4.30)

The µ approach is then applied to the uncertain system model in its LFT form. The

µ chart is depicted in Fig. 4.20 where the peak µ lower bound is seen to be equal to

1.98 at the critical frequency of 704 Hz.

The corresponding critical values of the resistive load and resistive components, cal-

culated from the µ bounds, are given in Table 4.12. The critical destabilising load is

now 1.87 Ω, based on the µ lower bound. This represents a robust stability margin

of 50.5%, as shown in Table 4.11.

Table 4.11: System with temperature uncertainty - µ analysis results

Parameters Robust stability µ
¯

Critical Critical

margin R Po

Res 0.505 1.98 1.87 Ω 13.9 W
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4.6.3 Simulation verification

When the critical values predicted by µ analysis, as given in Table 4.12, are input in

the Simulink R© model of the buck converter, the system reaches boundary stability.

Fig. 4.21a and 4.21b show the results for the case where the load R is varied with the

other Res components fixed at their critical values given in Table 4.12.

When R is set to be 10% higher than its critical value of 1.87 Ω at t = 0.1 s (Io

is 2.48 A), the system stabilises as shown in Fig. 4.21a. When R is decreased to

the critical value of 1.87 Ω at t = 0.2 s (Io is 2.73 A), the system reaches boundary

stability condition, as can be seen from the sustained oscillations in vo in Fig. 4.21a

and 4.21b. When R is decreased by a further 10% below 1.87 Ω at t = 0.3 s (Io

is 3.03 A), the system becomes unstable. The simulation results closely match the

results predicted by µ analysis as shown in Table 4.12.
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Figure 4.21: System with temperature and load uncertainties (a) top figure - voltage
vo, bottom figure - current io (i) at t = 1.0 s, R = 1.1×1.87 Ω (ii) at t = 1.3 s, R = 1.87
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by µ analysis (b) zoomed area near t = 1.3 s

4.6.4 Results analysis

From robust stability analysis, µ > 1 indicates that the EPS, with 50 % load un-

certainty, is not guaranteed to remain stable over the whole range of variation of

temperature (i.e. −40 oC to 80 oC). Based on the examination of the hypercube con-

cept in Chapter 3, the buck converter system under study will remain robustly stable

within a hypercube of 6th dimension, of coordinate size 1/µ = 0.505, and centred

about the nominal point. The size of the hypercube in terms of actual parameter

values correspond to the µ based predictions given in Table 4.12. Any combination of

parameter values chosen within the aforementioned hypercube will ensure the robust

stability of the buck converter under study, within the range of temperature variation

defined in Table 4.10.

Further, as depicted in Table 4.13, when the uncertainty in temperature is considered,

the robust stability margin is 50.5%, as compared to 74.5% when temperature vari-
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ation is neglected. This represents a 32% decrease in the robust stability margin, as

shown in Table 4.13. This study confirms that the variation in temperature can have

a significant influence on robust stability margin and must therefore be incorporated

in the stability assessment of an EPS.

Table 4.12: System with temperature uncertainties - µ analysis and time domain sim-
ulation results

Parameters Nominal Critical Value
Value µ lower bound Simulation

R (Ω) 2.50 1.87 1.87
Rc (mΩ) 17 14.9 14.9
Rcin (mΩ) 95 83.5 83.5
Rin (mΩ) 160 140.6 140.6
Rl (mΩ) 50 43.9 43.9
Ron (mΩ) 160 154.7 154.7

Table 4.13: Effect of temperature on stability margin with D constant

Temperature effect considered No Yes

Critical Load Resistance (R) 1.57 Ω 1.87 Ω
Critical Power (Po) 16.6 W 13.9 W

Robust stability margin 74.5 % 50.5%

4.7 Model uncertainties

In practice, it is neither viable nor time-efficient to create highly refined system models

to represent actual systems. Hence, approximate system models, with a good trade-

off between accuracy and simplicity, are often used for design. The nominal values

of their system components are generally based on known data such as nameplate

information. This section investigates how uncertainties in the nominal model may

influence robust stability assessment results. It also demonstrates how the µ approach

may be employed to take into account possible errors in the nominal model without

compromising the reliability of the results.



4.7. MODEL UNCERTAINTIES 124

The approach is illustrated by applying it to the buck converter example power system

in Fig 4.1. The initial values of the system components, as given in Table 4.1, are

used as the nominal values for the EPS. Three cases are investigated, as defined

in Table 4.14. In case I, robust stability margin is evaluated without taking into

account any uncertainties in the model. Only uncertainty in the load is considered.

In cases II and III, uncertainties in the model are included in the analyses. However,

the approximation errors in the model for case II are larger as compared with those

for case III. The other system parameters are considered to be fixed as defined in

Table 4.1. This investigation aims to demonstrate how model uncertainties, which

may be known to different level of accuracy, can be incorporated in robust stability

analysis. In addition, it examines the effect of model uncertainties on stability margin.

Table 4.14: Uncertainties in system model

Parameters Nominal Range of variation
Value case I case II case III

R 2.50 Ω ± 50 % ± 50 % ± 50 %
Rin 135 mΩ - ± 50 % ± 30 %
Lin 480 µH - ± 50 % ± 30 %
Cin 100 µF - ± 10 % ± 6 %
Rcin 80 mΩ - ± 10 % ± 6 %
L 42 µH - ± 50 % ± 30 %
Rl 45 mΩ - ± 10 % ± 6 %
C 590 µF - ± 50 % ± 30 %
Rc 10 mΩ - ± 10 % ± 6 %
D 0.2768 - ± 4.5 % ± 4.5 %

4.7.1 System with no model uncertainties

This subsection evaluates the robust stability margin for case I. µ analysis is applied

to the system model (4.21) with the parameters as defined in Table 4.14. The µ

chart, as depicted in Fig. 4.22a and 4.22b, shows that the µ lower bound is 1.63. This

corresponds to a robust stability margin of 61.4% and a critical R of 1.73 Ω, as shown

in Table 4.15. The buck converter is predicted to remain stable for an output power

Po of up to 15 W .
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Figure 4.22: System with load uncertainty and no model uncertainty (case I) (a) µ
chart to predict critical R (b) zoomed area near peak of µ chart

Table 4.15: System with load uncertainty and no model uncertainty- µ analysis results

Case Robust stability µ
¯

Critical Critical

study margin R Po

Case I 0.614 1.63 1.73 Ω 15.0 W

4.7.2 System with model uncertainties

The stability robustness for cases II and III are evaluated in this subsection. The

maximum possible errors that may be expected in the nominal values, as given in

Table 4.14, are taken into account in the analyses. This is based on the knowledge of

the system. For instance, for case II, the tolerances of the capacitors and inductors are

known to be well within 10 % of their nominal values. Parasitic elements, which may

be non-linear in nature, are generally hard to quantify. Hence, the system parasitics
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such as the ESR of the inductors and capacitors, have been considered to vary within

a maximum range of ± 50% within their estimated nominal values. Further, non-

linear terms in the system model may be treated as uncertain elements. Hence in this

case, the duty cycle D is set as an uncertain parameter with 4.5% uncertainty, based

on its maximum variation range as depicted in Fig. 4.4. This eliminates the need

for high order approximations, which has the added advantage of reducing the size

of the uncertainty matrix. As in previous case studies, the load R is considered to

vary within 50% of its nominal value. In case III, it is considered that the parameter

values are known with better accurary, with variation range of the system inductances,

capacitors and ESRs being tighter, as depicted in Table 4.14.

µ analysis is applied to the system model (4.21) based on the uncertain parameters

defined in Table 4.14, for cases II and III. Following the LFT operation, the structure

of the uncertainty matrix, of size 351× 351, is obtained as (4.31).

∆(j2πf) = diag(δCI2, δCinI6, δDI189, δLI4, δLinI8,

δRI41, δRcI13, δRcinI39, δRinI25, δRlI24) (4.31)

The µ charts for cases II and III are shown in Fig. 4.23a and Fig. 4.23b respectively.

The µ lower bound is 4.77 for case II. This corresponds to a robust stability margin

of 21 % and a critical R of 2.24 Ω, as depicted in Table 4.16. For case III, the µ lower

bound is 3.47. The associated robust stability margin is 28.8 %, and the critical R

is 2.14 Ω . The results are shown in Table 4.16. Thus after taking into account the

aforementioned uncertainties in the model, the buck converter is predicted to remain

stable for an output power Po of up to 11.6 W for case II, and up to 12.2 W for

case III, as shown in Table 4.16. The results for case I are included in Table 4.16 for

completion.
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Figure 4.23: System with load and model uncertainties - µ charts to predict critical R

(a) for case II (b) case III

Table 4.16: System with load and model uncertainties - µ analysis results

Case Model Robust stability µ
¯

Critical Critical

Study uncertainties margin R Po

Case I No 0.614 1.63 1.73 Ω 15.0 W
Case II Yes 0.210 4.76 2.24 Ω 11.6 W
Case III Yes 0.288 3.47 2.14 Ω 12.2 W

With the aim to verify the µ predictions, the eigenvalues of the nominal model are

evaluated against the eigenvalues of the critical model for case II. The corresponding

plots of the eigenvalues are depicted in Fig. 4.24a and 4.24b. It is noted that applying

the critical values, predicted by µ analysis, to the system model brings the eigenvalues

near to the imaginary axis. This confirms that µ analysis has identified the critical

values at the boundary of stability.
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Figure 4.24: System with load and model uncertainties for case II (a) plot of eigenvalues
based on µ lower bound predictions, (*) eigenvalues with nominal parameters, (o)
eigenvalues with critical parameters (b) zoomed view near the imaginary axis

4.7.3 Results analysis

The robust stability margin (1/µ) for cases I, II and III are depicted in Table 4.16.

Based on the work developed in Chapter 3, it is interesting to note that the stability

robustness for cases I, II and III are represented by hypercubes, of 10th dimension,

centred about the nominal point, but of sizes 0.614, 0.210 and 0.288 respectively. The

actual size of the hypercubes can be obtained by using LFT equations, as described

in section 4.6.

When uncertainties are not included in the model, the system has the largest hyper-

cube with a robust stability margin of 61.4%, as depicted in Table 4.16. Although, the

results may seem to be less conservative, they can not be guaranteed to be reliable, as

the nominal parameters are rough estimates. With model uncertainties incorporated

in the analysis, the robust stability margin is 21.0% and 28.8% for cases II and III

respectively, representing smaller hypercubes with respect to case I. Although, the

results seem to be conservative in comparison, they are more reliable. This is be-
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cause the analyses take into account uncertainties of the system model, and therefore

include worst case scenarios.

Further, the parametric space within which the system in case II is robustly stable,

as given by its aforementioned hypercube, is smaller than for case III. These findings

indicate that the larger the uncertainty range, the tighter is the resulting robust

stability margin, and the smaller the hypercube. Yet, in both cases, the results

are reliable since they include model uncertainties. It is to be pointed out that the

reliability of the results is still dependent on the validity of the defined bounds of

the uncertain system parameters. With µ method, the designer has the flexibility

to incorporate any level of fidelity to the model, depending on available information.

While the size of their hypercubes, which represent the parametric space within which

the systems are robustly stable, may differ, the results are reliable in all the cases.

Of note is that incorporating model uncertainties is computationally more expensive,

as can be noted in Table 4.17. This is evident since the size of the uncertainty matrix

increases with the number of uncertain parameters.

Table 4.17: Evaluation of system with load and model uncertainties

Case Model Robust stability Critical Size Simulation
Study Uncertainties margin R ∆(jw) time

I No 0.614 1.73 Ω 37× 37 4 mins
II Yes 0.210 2.24 Ω 351× 351 2.3 hours

However, it is to be noted that the computation time is also dependent on the de-

fined frequency grid. The computation time can be kept reasonably low by using a

frequency grid of low density, initially. µ analysis may then be performed around the

peak of the µ chart to obtain more accurate results of µ.
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4.8 Conclusion

This chapter has presented practical approaches to applying the µ approach to power

electronic systems, by using the DC/DC buck converter, which is a key component

for MET application.

• The study has shown how the µ method can identify the critical value of an

uncertain parameter that can destabilise a system. µ analysis has determined

that the buck converter example system becomes unstable when the output

power to its resistive load is increased to 16 W . This prediction is supported

by experimental results both in the time domain and the frequency domain.

• The work in this chapter has also shown the practical limitations of applying

the classical Middlebrook criterion and Nyquist stability criterion to the buck

converter system in the laboratory. Experimental application of Middlebrook

criterion is often not feasible for certain configuration of component grouping in

the hardware. Experimental application of the Nyquist stability criterion could

not be used to obtain precise predictions of instability conditions.

• Further, µ analysis has been employed to predict the destabilising output power

of the buck converter under study to good accuracy, for varying values of line

resistance. All the results have been validated in experiment.

• The chapter has also shown how the µ approach can be employed to take into

account uncertainties in operating conditions. The robust stability margin of the

buck converter has been found to be 74.5% when uncertainties in temperature

are not included, as compared to 50.5% when uncertainties in temperature

are included. The findings emphasise the necessity of incorporating operating

conditions uncertainties for more reliable stability analysis of a system.

• The study has demonstrated how the µ tool can be employed to account for

uncertainties, including certain classes of non-linearities and parasitics, that

are inherent in a system model. Although the literature states that the µ
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method treats a physical system as an uncertain model, it does not show the

practical approach to achieving that. This chapter has catered for this gap in

the literature.

µ analysis has predicted the critical output power of the considered buck con-

verter to be 15.0W , when model uncertainties are neglected. On the other hand,

the critical output power has been determined as 12.2 W , when uncertainties

are included, while its value dropped to 11.6 W , when the given uncertainties

are defined within a relatively wider range.

It can be inferred that results tend to be highly optimistic when uncertainties are

neglected, yet more reliable when uncertainties are included. Further, although

the robust stability margin is tighter when uncertainties are defined within wider

ranges or with less accuracy, the results can be employed more reliably as worse

case scenarios are accounted for.

• The methodology that is required to apply the µ method through MATLAB R©

Robust Control Toolbox has been shown in a manner that is clear enough to

enable a user to reapply it to other uncertain systems.

• The influence of the size of perturbation matrices on computational time has

been discussed.

The work presented in this chapter has many implications. Often times, the design

engineer does not have sufficient information as to the exact values of the system

components. Yet, the parameters may be estimated within some reasonable bounds.

With the µ approach, the designer is offered the flexibility of determining the best

trade-off between accuracy and practicality, by choosing the levels of details that is

incorporated into modelling. The great benefit of the µ tool is that different types of

uncertainties, in operating conditions and in the model, can be easily included in the

analysis, by using the same model but only defining the considered uncertain elements

differently. The methodology for applying the µ approach has been presented in a

generalised and clear manner, which allows it to be extended to wider applications,

and to include yet further sources of uncertainties



Chapter 5

A modelling methodology for

µ analysis of non-linear systems

5.1 Introduction

Power electronic systems in the MET may be subject to multiple sources of perturba-

tions, which may be due to variations in their environmental conditions or fluctuations

in their load demand. These types of uncertainties may lead to variation in system

parameters, which may consequently cause the system operating points to change.

As was demonstrated in Chapter 4, these uncertainties may compromise system sta-

bility. Based on this insight, it seems necessary to investigate robust stability of such

EPS, not only at a given operating point, but over a range of operating points. Such

stability assessment is required both at the small and large signal level. As mentioned

in the thesis introduction, small-signal stability analysis, being an important concern

in the reliable operation of PE systems, is the focus of this work. Most small-signal

stability analysis techniques work on linear system models. However the physical

systems are generally better represented by non-linear system models. Hence, there

is a need for analysis techniques to assess the stability of non-linear systems, under a

wide variation of parameter uncertainties and operating points.

132
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In order to apply small-signal analysis technique to a non-linear uncertain EPS, the

system must first be divided into a number of linear models, each pertaining to a

particular operating point. Each linear model is then analysed with respect to the set

of considered parametric uncertainties. It is to be appreciated that this process can

lead to an arbitrarily large number of linear models. The task can be challenging,

particularly for classical techniques. In addition to the linearisation process, they

have to perform extensive iterations on each linear model in order to account for

uncertainties. Yet, the authors in [17] have applied the classical impedance-based

ESAC criterion to non-linear systems. They have developed a software to make the

process automatic. However, in addition to being laborious, it has been reported that

the SISO-based techniques may not produce reliable results when applied to systems

with multiple uncertainties [31],[33].

The µ approach can reliably be employed to account for all considered parametric

uncertainties. However, the method is generally applied to study the effect of un-

certainties on the stability of a linear system model, at a particular operating point.

One problem of applying the method to a non-linear system is that, the parameters,

being allowed to vary within their defined sets, may cause the operating point to

change, and that too in a non-linear manner. It is therefore important to account for

the dependencies of the operating points on parametric uncertainties in the robust

stability assessment. A few studies have applied the µ approach to non-linear sys-

tems. The method proposed in [45] approximates the non-linear elements in the state

space system matrix by a series of linear terms, while [41] uses combined numerical

and symbolic linearisation techniques on the non-linear system. However, due to the

applied approximations, these methods may not fully account for all dependencies of

operating points on parametric uncertainties. It is to be noted that these methods

were developed for large scale power systems, for which the possible loss in accuracy

in the results may be justified.

As stated in the introduction chapter, this thesis aims at making the µ approach

more applicable to power electronic systems. By shedding light on the µ theory and

presenting practical approaches to applying the method, the previous Chapters 2 - 4
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have made the µ tool more application-friendly. This study aims at extending the ap-

plicability of the µ method to non-linear system models. The objective is to develop

a modelling methodology to convert a non-linear system to a unique equivalent linear

model, while catering for all dependencies of operating points on systems parameters.

The developed model needs to be valid for µ analysis over a defined range of oper-

ating points and parameter uncertainties. The methodology is based solely on the

symbolic linearisation technique. It must fully account for all system non-linearities,

in view of reducing conservativeness in stability assessment. The modelling approach

is developed in this chapter, by applying it to a 4 kW PM machine drive system. The

method is verified through µ analysis of the equivalent linear model of the considered

system with torque uncertainty, over a range of different operating points and under

parameter variations. Further, the predictions from µ analysis are to be validated

against experimental results. Of note is that the method, proposed in this chapter,

has been applied to the EPS with the ideal CPL in Chapter 3 and the DC/DC buck

converter in Chapter 4, although it was not fully elaborated in these chapters.

5.2 Permanent magnet machine drive system

5.2.1 System structure

The power system under study is depicted by the circuit representation in Fig. 5.1.

The system represents a hybrid distribution topology considered for the MEA power

system [52]. The engine driven ac generator, controlled by the generator control unit,

is considered as an ideal 3-phase balanced voltage source, for the purpose of this study.

The transmission line from the power supply to the rectifier is modelled by an RL

circuit. The six-pulse uncontrolled rectifier in Fig. 5.1, represents typically employed

multiphase autotransformer-rectifier (ATRU) units of a real on-board system. It

provides DC power to the surface mounted PM machine based electromechanical

actuator (EMA) through an LC filter. The EMA is a standard vector-controlled PM

motor drive depicted in Fig. 5.2 [52].
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The parameters of the example power system are defined in Table 5.1. With the

assumption that the amplitude of the AC supply and the DC load current are constant

and that commutation occurs only once during a commutation period, the power stage

in Fig. 5.1 is modelled by the circuit in Fig. 5.3 by using the average-value modelling

method [7],[17],[52].

The six-pulse diode rectifier is modelled by the DC voltage source Ve in series with

the equivalent resistance Re and the equivalent inductance Le which are given by

(5.1) - (5.3). The transmission line inductance causes an overlap angle and hence a

commutation voltage drop which is represented on the DC side by rµ in (5.4), [52].
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ve =
3
√

3
√

2

π
vs (5.1)

Re = rµ + rF + 1.824Req (5.2)

Le = LF + 1.824Leq (5.3)

rµ =
3wLeq
π

(5.4)

5.2.2 Experimental hardware

In this chapter, µ analysis is employed to predict the destabilising torque of the EPS

shown in Fig. 5.1 - 5.3, over a range of operating points and under certain parameter

variations. The stability of the aforementioned EPS has been investigated previously

both analytically based on the classical eigenvalue method, and experimentally by

Kongpan Areerak [52]. The µ predictions, in this study, are to be evaluated against

the experimental results reported in [52]. The experimental test rig, used in [52], is

described here for the sake of completion [52].

Fig. 5.1 is a good circuit representation of the experimental rig used in [52]. A 12 kV A

programmable ac source (model 61705 Chroma) is used as an ideal voltage source.

The sinusoidal supply voltage can be varied up to 300 V and the source frequency

can be varied up to 1.2 kHz. Three phase line inductance, with a value of 60 µF

per phase, is used for the transmission line. A three phase six-pulse diode rectifier

provides DC voltage to the 540 V DC bus, through a DC-link filter. The parameter
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Table 5.1: Nominal values for system parameters

Symbols Units Nominal Description
Values

vs Vrms−ph 223 phase source voltage
w rad/s 2π50 source frequency
Req Ω 0.045 line resistance
Leq µH 60 line inductance
rF Ω 0.2 DC-link inductor resistance
LF mH 24.15 DC-link inductance
rc Ω 0.4 ESR of DC-link capacitor
CF µF 320 DC-link capacitance
wrated rpm 1140 rated speed
w∗r rpm 800 speed reference
Trated Nm 40 rated load torque
Rs Ω 0.5 stator resistance
Lq mH 2.3 stator leakage inductance
P poles 20 number of poles
Jm kgm2 0.004 moment of inertia
Fm Wb 0.123 constant flux of PM machine
KPim - 4.124 current loop proportional gain
KIim - 3632 current loop integral gain
wn,current Hz 200 natural frequency of current loop
KPw - 0.02 speed loop proportional gain
KIw - 0.863 speed loop integral gain
wn,speed Hz 10 natural frequency of speed loop
η % 88.83 Efficiency of PM motor

values of the DC-link filter are given in Table 5.1. A six phase two level voltage

inverter, using 100 A, 1200 V inverter leg modules, is used to supply power to the

4 kW ac PM motor. The controller for the motor drive uses Texas instruments C6713

floating point DSP, and a high speed Actel, ProAsic3 FPGA.

Experiments were performed to measure the destabilising torque of the EPS. A rig

dynamometer was used to apply increasing torque to the PM motor. The DC link

voltage was observed for sustained oscillations, which indicate that the system is at the

boundary of stability. A power analyser and a torque meter were used to measure the

power and torque of the PM motor respectively. The experiments were repeated with

variations in the system frequency f , bandwidth of the DC-link voltage filter fcutoff
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and natural frequency of the speed loop fn. The system frequency was varied on the

programmable ac source. The frequencies fcutoff and fn were set at different values by

changing the code in the controller board. The destabilising torque of the PM machine

drive system was measured under variation in load torque, and the aforementioned

parameter values. The experimental results, which have been reported in [52], will

be used to validate the predictions from µ analysis in the subsequent sections

5.3 Modelling methodology

This section describes the methodology for representing a non-linear system by an

equivalent linear model which is valid for all operating points and parameter varia-

tions. The approach is illustrated by applying it to the PM machine drive system,

which is the most typical electromechanical actuator in the MEA.

5.3.1 Symbolic linearisation

The non-linear equations for the PM machine drive are given by (5.5) - (5.11) where

KT = 3PFm/4 and icpl = 3v∗sqmisqm/4vf [52]. The parameters in the aforementioned

equations are defined in Table 5.1. The system voltages, currents, motor speed and

torque are shown in Fig. 5.1 - 5.3. The voltage across the DC-link capacitor is assumed

to be equal to vout given that the voltage drop across the ESR of the capacitor is very

small.

didc
dt

= −(rc +Re)

Le
idc +

rc
Le
icpl −

vout
Le

+
ve
Le

(5.5)

dvout
dt

=
1

CF
idc −

1

CF
icpl (5.6)

dwr
dt

=
KT

Jm
isqm −

1

Jm
T (5.7)
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disqm
dt

= −PFm
2Lq

wr −
Rs

Lq
isqm +

1

2Lq

v∗sqmvout

vf
(5.8)

dvf
dt

= − 1

τf
vf +

1

2τf
vout (5.9)

dv∗sqm
dt

= −KIimisqm +KIimi
∗
sqm −KPim

disqm
dt

+KPim

di∗sqm
dt

(5.10)

di∗sqm
dt

= −KIwwr +KIww
∗
r −KPw

dwr
dt

+KPw
dw∗r
dt

(5.11)

Prior to the linearisation of the system model, the non-linear equations are converted

into a non-linear state space form where the vectors x, u and y denote system states,

inputs and outputs respectively, and are given as:

x: idc, vout, wr, isqm, vf , v
∗
sqm, i∗sqm

u: ve, w
∗
r , T

y: vout

An arbitrary equilibrium point is defined by Xo and Uo which denote steady state

values of state vector x and input vector u respectively, and are given as:

Xo: Idco, Vouto, wro, Isqmo, Vfo, V
∗
sqmo, I

∗
sqmo

Uo: Ve, w
∗
r , To

The input Ve and w∗r are constant over all operating points. The load torque T is

denoted as To at steady state. Finally, the non-linear state space system is linearised

around equilibrium point (Xo,Uo) by using standard linearisation technique.
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5.3.2 State space matrix elements expressed in terms of sys-

tem parameters and inputs

This step involves expressing explicitly all elements of the resulting linearised state

space model as functions of only system parameters and inputs. Any indeterminate

elements in the system model such as equilibrium points must be expressed in terms

of definable system parameters and inputs.

For the system under study, firstly, Xo, as given by (5.12) - (5.18), is derived by

setting (5.5) - (5.11) to zero.

Idco = Icplo = 3V ∗sqmoIsqmo/2Vouto (5.12)

Vouto = −ReIdco − Ve (5.13)

wro = w∗r (5.14)

Isqmo = To/KT (5.15)

Vfo = Vouto/2 (5.16)

V ∗sqmo = Vsqmo = RsIsqmo + PFmwro/2 (5.17)

I∗sqmo = Isqmo = To/KT (5.18)

The steady state variables Idco in (5.12) and V ∗sqmo in (5.17) are then further rearranged

and expressed as (5.19) and (5.20). In addition, Vouto in (5.13) is expressed as (5.21)

by using the constant power load equation Idco = Po/Vouto where Po = Towro/η.

Idco =
(3To/2KT )(RsTo/KT + PFmwro/2)

Vouto
(5.19)

V ∗sqmo = RsTo/KT + PFmwro/2 (5.20)

Vouto =
Ve
2

[1 +

√
1− 4ReTowro

ηV 2
e

] (5.21)
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The flexibility of the linearised model, which now contains only determinate parame-

ters and inputs in symbolic form, serves to cater for the system non-linearities. How-

ever, the linearised model contain non-rational terms in (5.21), which is not suitable

for LFT modelling.

5.3.3 Rational approximation of non-rational terms

All non-rational elements in the linearised system model are to be expressed in their

rational forms as is required for the conversion of the system model in its correspond-

ing LFT configuration. In our case, the non-rational expression of Vouto in (5.21) is

estimated in its rational form as in (5.22) by using the first two terms of the bino-

mial expansion of the square root term in (5.21). The expression (5.22) is a good

approximation of Vouto with respect to variations in torque as shown in Fig. 5.4.

Vouto−est = Ve −
ReTowro
ηVe

(5.22)
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Figure 5.4: Polynomial approximation of the steady state DC-link voltage Vouto
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5.3.4 The equivalent linear model

After applying the above steps, the state space model ( A B
C D ), given by matrices (5.25)),

is obtained where V ∗sqmo, Vouto−est, Asubs1 and Asubs2 are given by (5.20), (5.22), (5.23)

and (5.24) respectively. The developed model represents with good accuracy the

system for all operating points and parameter variations, and is directly suited for µ

analysis.

Asusb1 = (−KPimKIw +
KPimPFm

2Lq
) (5.23)

Asubs2 = −KIim −
KPimKPwKT

Jm
+
KPimRs

Lq
(5.24)

5.3.5 Validity of the equivalent linear model over a range of

operating points

The equivalent linear model represents the non-linear system over a range of operating

points and parameter variations. In order to illustrate this point, in this section, the

nominal values of Re and the speed reference w∗r , in the studied system in Fig. 5.1 - 5.3,

denoted by Reo and w∗ro have deliberately been set to 3.6 Ω and 3000 rpm respectively.

The nominal torque Too is kept at 20 Nm and the other system parameters are

defined as in Table 5.1. These larger parameter values introduce more non-linearity

in the system by causing a larger voltage drop in the DC-link voltage vout, as can

be noted from (5.21). This increase in non-linearity better serves the purpose of

illustration. For practical systems, with long interconnecting cables and large source

impedance, it is not improbable that the value of Re is very high. Based on the

new parameter values, the voltage Vouto is now better estimated by the third order

binomial approximation, denoted by Voutoest3 and shown in Fig. 5.5.
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Figure 5.5: Polynomial approximation of the steady state DC-link voltage Vouto with
Re = 3.6 Ω and w∗r = 3000 rpm

In view of illustrating the validity of the equivalent linear model over a range of

operating conditions, a number of operating points of the system (Icplo,Vouto−est3) are

plotted in Fig. 5.6, when both To and Re are subject to variations. With Re, w
∗
r and

To set to the aforementioned nominal values and the rest of the system parameters

defined as in Table 5.1, the nominal operating point can be shown to lie at the point

Eq10 in Fig. 5.6. For variable Re (± 40% of Reo) and fixed torque (20 Nm), the

operating points move along curve 1 in Fig. 5.6. On the other hand, for variable To

(± 90% of Too) and fixed Reo(3.6 Ω), the operating point moves between Eq20 and

Eq30. The operating points Eq20 and Eq30 correspond to the minimum and maximum

torque respectively. Hence, when both To and Re vary, the operating points will lie

between curves 2 and 3.

Thus, the generalised linear model converts to specific linear models about distinct

operating points depending on the values assigned to the system parameters and

inputs. The equivalent linear model is thus valid for all defined operating points and

parameter uncertainties of the system.

Furthermore, the developed system model being linear is now suitable for µ analysis.

Since the µ approach explicitly takes into account all varying system parameters

and inputs, it becomes clear that in fact it assesses stability robustness of a non-
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linear system over all corresponding operating points, as will be demonstrated in the

subsequent section.
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Figure 5.6: Operating points with varying torque To and line resistance Re

5.4 Load uncertainty

In this section, µ analysis is applied to determine stability robustness of the EPS,

shown in Fig. 5.1 - 5.2, when it is subject to uncertainty in load torque. The torque

To is considered to vary within ±90% of its nominal value of 20 Nm as depicted in

Table 5.2, while all other system parameters are assumed to be constant and equal to

their nominal values as defined in Table 5.1. The system is studied with no DC-link

voltage filter. The destabilising torque predicted by µ analysis is also verified against

experimental results.

Table 5.2: Torque Uncertainty

Parameter Average value Range of variation wrt average value
(Too) (Tvar)

Torque (To) 20 Nm ± 90%



5.4. LOAD UNCERTAINTY 146

5.4.1 LFT modelling

The application of µ analysis requires that the equivalent linear model be first con-

verted in the LFT form [53]. The function ‘robuststab(sys, omega)’, in MATLAB R©

Robust Stability Toolbox, performs both LFT operation and µ analysis on the state

space system model, denoted as ‘sys’, over the defined grid of frequencies, denoted as

‘omega’. For this case study, ‘sys’ is given by (5.25).

The operation of LFT involves firstly expressing all uncertain parameters in the sys-

tem model as LFTs. The torque To, which is bounded in the interval [2 Nm, 38 Nm],

(i.e. within ±90 % of Too), can be represented as a perturbation in its normalised

form δT bounded within [-1, 1]. Thus, To can be expressed as an LFT in δT based on

(5.26) and the values in Table 5.2 [53],[67].

To = Too + TooTvarδT , δT = [−1, 1] (5.26)

From Fig. 5.7, which is an illustration of (5.26), it can be seen that when the ‘per-

turbation’ in torque is absent, δT = 0, the torque is equal to its average value of

To = Too = 20 Nm. When the ‘perturbation’ is at its maximum, either δT = −1 at

the low end of the uncertainty range where To = Tmin = 2 Nm, or δT = 1 at the

high end of the uncertainty range where To = Tmax = 38 Nm. The critical torque, as

represented by the point (δTcr , Tcr) in Fig. 5.7, will be determined by µ analysis in

the next section.

Based on the LFT operation, all normalised parameters δT are then extracted from

the system model (5.25) and grouped in a diagonal matrix in a feedback form. This

results in the system model being converted in its LFT form as shown in Fig. 2.3a.

The resulting disturbance matrix is given by (5.27) where δT appears 24 times since

To appears that number of times in the uncertain system model.
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Figure 5.7: Relationship between torque and the normalised disturbance in torque

∆(jw) = δT I24×24 (5.27)

It is worth noting that the order of an uncertainty matrix is dependent on the number

of uncertain parameters as well as on the size and complexity of the power system

being analysed. It also depends on the order of polynomial approximation of certain

system elements, such as Vouto in (5.22) for the system under study. Unfortunately,

the higher the order of the uncertainty matrix, the higher is the computational bur-

den [34]. Nevertheless, there exists some order reduction methods that can be used

to minimise the size of these matrices [68].

5.4.2 µ analysis

By applying SSV analysis to the system in its LFT form, the smallest disturbance

matrix that causes instability is identified. MATLAB R© Robust stability toolbox has

been employed to compute µ bounds of the system under study [53][50][67]. The

results of µ analysis, as depicted in Fig. 5.8a - 5.8b, show the peak values of the lower

and upper bounds of µ, which are in this case the same and equal to 2.38 at the

frequency of 57.04 Hz.
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Figure 5.8: System with uncertain torque (a) µ chart to predict critical T (b) zoomed
area near peak of µ chart

The critical frequency corresponds to the resonant frequency of the LC filter which

can be estimated as 1/(2π
√
LFCF ). Based on the µ analysis results, the smallest

destabilising disturbance matrix is extracted as in (5.28), and the robust stability

margin is calculated as min(σ(∆)) = 1/µ = 0.42. The destabilising torque Tcr,

computed from (5.29) and δTcr = 0.42, is equal to 27.6 Nm which is equivalent to the

critical power of 2.6 kW.

∆cr(j2π57.04) = δTcr I24×24 = 0.42 I24×24 (5.28)

Tcr = Too + TooTvarδTcr (5.29)

= 20 + 20× 0.9× (0.42)

= 20 + 20× 37.8% = 27.6

The system is not robustly stable, as confirmed by the result, µ > 1. This indicates

that the system may become unstable if operated within its defined maximum uncer-
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tainty set (i.e. within 20 ± 18 Nm). The robust stability margin of 0.42 represents

the ratio by which the maximum range of uncertainty in torque must be scaled to

ensure stability robustness, as discussed in Chapter 2, and depicted in Fig. 5.9. This

requires that the operation of the EPS under study be limited within (20 ± 37.8%)

or (20 ± 7.6Nm), which can be derived based on computation shown in (5.29). In the

same light of thought, the PM machine drive can be ensured robustly stable within

the hypercube, of single dimension, of size 0.42, about the nominal point, as shown

in Fig. 3.7 in Chapter 3, and in Fig 5.9. The correlation between the robust stability

margin and the hypercube of the case under study is clearly depicted in Fig. 5.9.

Based on the positive sign of δTcr as shown in (5.28), the destabilising torque is con-

firmed as the upper limit of this range at 27.6 Nm. This section has shown how µ

can provide a direct a measure of stability robustness of an EPS.
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Figure 5.9: Robust stability margin and hypercube for system with uncertain torque

One known difficulty with µ analysis, as reported in section 2.6 in Chapter 2, is that

the the lower µ bound may fail to converge when uncertain parameters are purely

real [36],[37],[50]. This problem was encountered at the outset of this study. Hence,
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a very small complexity of α = 0.1% was added to the real parametric uncertainty

torque To by using the command “complexify” in MATLAB R© Robust stability tool-

box, as described in appendix A. This was sufficient to make the µ lower bound

converge [53].

5.4.3 Simulation results

The PM machine drive, modelled in the Simulink R© environment, has enabled time-

domain verification of the result from µ analysis. The time domain simulation results

are depicted in Fig. 5.10a - 5.10b.
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Figure 5.10: Time domain simulation of DC-link voltage vout(t) (a) (i) at t=4s, T =

0.95Tcr (ii) at t=8s, T = Tcr (iii) at t=12s, T = 1.05Tcr, where Tcr is the critical torque

(b) zoomed area near t = 9.1 s

With the speed kept constant at 800 rpm, three values of torque are applied in steps

to the model. At time t = 4 s, 95% of the critical torque (26.2 Nm) is applied to the
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system and the DC-link voltage vout(t) stabilises with time as can be seen in Fig. 5.10a

and 5.10b. At time t = 8 s, application of the critical torque Tcr = 27.6 Nm causes the

system to reach boundary stability with sustained DC-link voltage oscillations. This

confirms the results from µ analysis which predicted the critical torque of 27.6 Nm.

Applying an additional torque of 5% over its critical value at t = 12s causes the

system to become unstable as shown in Fig. 5.10a.

5.4.4 Experimental results

A number of experiments were undertaken on the considered PM machine drive test

rig, as described in section 5.2.2, and reported in [52]. It was found in the experiment

that when the torque was increased to 26.7 Nm at a speed of 800 rpm, the DC-

link voltage showed sustained oscillations as depicted in Fig. 10 in [52]. This is in

very close agreement with the critical torque of 27.6 Nm determined from µ analysis.

Thus, both experimental and simulation results confirm the validity of the proposed

modelling approach.

5.4.5 Discussion

µ analysis directly provides an explicit measure of the amount of variability that

is allowed in uncertain parameters for the system to remain stable. For the case

under study, the robust stability margin equal to 0.42 implies that maintaining the

normalised torque within 42 % of its nominal value ensures system stability. This

information is very useful and can directly be employed in the design of the electrical

power systems. For instance, in order to ensure that the system under study remains

stable over the whole uncertainty range, µ should be less than 1. One way to do

this is to limit the operating range to To = 20 Nm ± 38%, ( which can be derived

from To = Too ± TooTvarδTcr). However, if the operating range is to be maintained

within 20 Nm ± 90%, the input filter parameters LF and CF can be modelled as

uncertainties in the procedure for filter design.
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Furthermore, the SSV method is less demanding for a user. The only inputs that

are to be provided to the software are firstly nominal values and a variation range of

uncertain parameters, and then an equivalent linear state space model.

In contrast, the classical eigenvalue approach applied in [52] to determine the critical

torque of the PM machine drive is not direct and involves an extensive process.

Firstly, the operating range is divided into a finite number of points. Then, for each

operating point, numerical linearisation is performed and eigenvalues are calculated.

The iterative process has to be further refined until the critical parameter value is

obtained to a satisfactory accuracy.

The modelling methodology proposed in this work has been successfully applied to

the power system under study. It is still to be tested on system-level architectures

where source and load subsystems, of the order of the EPS under consideration, are

interconnected.

5.5 Effect of parameter variations on stability

robustness

In the previous section, we found that stability can be guaranteed for the system under

study up to the maximum power of 2.6 kW. In this section, the effect of parameter

variations on the destabilising power is investigated by using the µ method that was

described in section 5.4. In particular this analysis includes variations in system

frequency, bandwidth of the DC-link voltage filter and natural frequency of the speed

loop. All the other system parameters are kept constant as given in Table 5.1 unless

specified otherwise. The results from µ analysis are verified against experimental

results reported in [52].
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5.5.1 System frequency

While conventional aircraft tends to use constant frequency ac power, the future

aircraft is more likely to operate on variable frequency ac supply, typically ranging

between 360 Hz and 720 Hz [69]. Based on the use of power electronic converters,

the aircraft generator is allowed to rotate at variable speed, thus eliminating the

need for constant speed drive. Variable frequency supply can lead to an increase in

efficiency [69]. It is important to analyse how stability robustness of the power system

is affected by variations in system frequency [70]. For the purpose of illustration, µ

analysis is applied to determine the critical torque that destabilises the power system,

when the system frequency is allowed to vary between 1 Hz and 300 Hz. For every

frequency under study, the uncertain torque is as defined in Table 5.2. The system

is investigated with no DC-link voltage filter. The critical power is then computed

from the critical torque, determined from µ analysis at each frequency point, based

on P = Tcrwr/η. Fig. 5.11 depicts the results from µ analysis. Further, a number

of experiments were performed on the system to identify the destabilising power for

frequencies of 50 Hz, 100 Hz, 200 Hz and 300 Hz. Fig. 5.11 shows the experimental

results which have also been reported in Fig. 11 in [52]. There is a close agreement

between the µ analysis predictions and the experimental results as can be seen in

Fig. 5.11. It can be noted that an increase in system frequency causes an improvement

in system stability.

5.5.2 Bandwidth of the DC-link voltage filter

The DC-link voltage vout is filtered for the computation of the modulation index in

the digital signal processor (DSP) as shown in Fig. 5.2 [52],[71]. The critical torque

is determined for different values of the DC-link voltage filter (fcutoff ) ranging from 0

Hz to 300 Hz. The critical power is then computed from the critical torque, predicted

by µ analysis at the different values of fcutoff , based on P = Tcrwr. Fig. 5.12 depicts

the power stability threshold obtained from µ analysis.



5.5. EFFECT OF PARAMETER VARIATIONS ON STABILITY
ROBUSTNESS 154

0 50 100 150 200 250 300
System Frequency (Hz)

0.0

1.0

2.0

3.0
In

pu
t P

ow
er

 (
kW

)

µ Analysis
Experiment
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Figure 5.12: Experimental results and µ predictions of critical power with varying

bandwidth of the DC-link voltage filter

In addition, the critical power was measured experimentally at the shaft of the motor

for fcutoff of 10 Hz, 25 Hz, 50 Hz, 200 Hz and 300 Hz. Fig. 5.12 depicts the experi-

mental results which have also been reported in Fig. 12 in [52]. These experimental

results agree fairly well with µ analysis predictions as can be noted in Fig. 5.12. It
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can be noted that the effect of the DC-link voltage filter bandwidth on stability ro-

bustness is not monotonic and is around 75 Hz at the point where the system is the

least robustly stable.

5.5.3 Natural frequency of the speed loop

µ analysis is applied to determine the destabilising power for different values of natural

frequency of the speed loop (fn) ranging from 1 Hz to 25 Hz. The DC-link voltage filter

bandwidth is fixed at 50 Hz. Fig. 5.13 shows the results from µ analysis. Moreover,

the critical power was measured experimentally at the shaft of the motor when fn was

set at 5 Hz, 10 Hz, 15 Hz and 20 Hz. Fig. 5.13 shows the experimental results which

have also been reported in Fig. 13 in [52]. The experimental results agree closely with

the µ analysis predictions as can be seen in Fig. 5.13. The system stability is seen to

degrade with an increase in the natural frequency of the speed loop.
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Figure 5.13: Experimental results and µ predictions of critical power with varying
natural frequency of the speed loop
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5.5.4 Discussion

This section has demonstrated how parameter variations can affect system stability.

The µ analysis results match closely the experimental results which were reported in

[52] and also shown in Fig. 5.11 - 5.13 for the sake of completeness. This validates

the methodology proposed in this paper.

5.6 Conclusion

This chapter has demonstrated how the the µ method, which is generally employed

for linear models, can be applied to non-linear system models. The study has been

applied it to the PM machine based electromechanical actuation system, which is

widely used for MEA application.

• This study has developed a modelling methodology that extends the applicabil-

ity of the µ approach to non-linear system models. The novelty of the method

is that it converts a non-linear system into an equivalent linear model that is

valid for all defined operating points and parameter uncertainties of the system.

In addition it fully accounts for non-linear dependencies of operating points on

parameter uncertainties. The study has illustrated how the generalised model,

in symbolic form, converts to specific linear models about distinct operating

points depending on the values assigned to the system parameters and inputs.

The methodology has been developed based on the symbolic linearisation of

the non-linear model around an arbitrary equilibrium point. Further, it has

required that all the elements of the linearised model be explicitly expressed in

terms of determinate parameters and inputs only.

• This approach, with respect to classical methods, eliminates the need for ex-

haustive linearisation and extensive iterations under parameter variations. The

design engineer only requires an equivalent linear model and a definition of the
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uncertain parameters, so as to obtain a direct measure of robust stability margin

of the non-linear system.

• In addition, the modelling approach reduces conservativeness in stability assess-

ment. This has been achieved by fully catering for the non-linear dependencies

of operating points on parameter uncertainties.

• The proposed modelling methodology has been verified through the µ analysis

of a 4 kW PM machine drive system, which has successfully predicted the

critical torque that causes system instability. The investigation has included

uncertainties in load, with variations in system frequency, bandwidth of the

DC-link filter voltage and natural frequency of the speed loop. Further, all µ

analysis predictions have been validated based on experimental results reported

in [52].

Electrical power systems are generally represented by non-linear models. Through

the development of the proposed modelling methodology, this work has extended the

applicability of the µ approach to non-linear system models.



Chapter 6

Conclusions

Power electronics is at the heart of the technology transition that is required to put

transportation on a more sustainable pathway. The “more electric transport” is one

of the main long term solutions to reducing CO2 emissions and preserving fossil fuel

reserves. The key problem with power electronic driven loads lies in their suscepti-

bility to instability, which may be further compromised by uncertainties inherently

present in these systems. There is a need to adopt robust analysis techniques to assess

and ensure stability of these generally non-linear systems in the face of uncertainties.

While power electronics is fast evolving, the stability analysis techniques for these

systems are still widely based on classical methods, which treat the physical system

as a fixed model. However, it is necessary to adopt new techniques that include the

uncertain nature of the physical systems. This work has proposed to use the µ ap-

proach as a practical method that assesses the stability robustness of such systems in

the face of uncertainties.

By working with the uncertain model of the physical system, the µ method justifiably

takes into account all considered structured uncertainties in the system, while pro-

ducing reliable robust stability assessment results. However, three main limitations,

as identified in this work, tend to make the approach hard to apply.

158
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• First is the complexity of its underlying theoretical framework.

• Secondly, practical approaches to applying the method to power electronic sys-

tems seem lacking in the literature. This include the necessary methodology to

be employed through the use of associated software.

• Thirdly, the µ method is generally applied to linear systems while most systems

analysed have non-linear behaviour.

This work has addressed these three shortcomings, as will be discussed in the following

section. In doing so, it has demonstrated the applicability, flexibility and effectiveness

of the µ method, while realising the full benefits of the approach.

6.1 Research outcomes

The research findings of the thesis are presented herein. The main contributions along

with the implications of the study are emphasised.

6.1.1 Theoretical aspects

Chapter 2 has provided a clear and thorough examination of the key concepts of the µ

framework, through application to the well established RLC example system. These

concepts, often considered complex, are not always examined from the engineering

viewpoint in the literature. The study has clearly illustrated the modelling technique

of LFT, and the robust stability margin (1/µ). The principle of µ, as well as the

attributes and limitations of its bounds, have been treated in a comprehensive manner.

Further, the computational limitations of the µ method and the possible solutions

have been discussed. This part of the work has thus brought a clearer understanding

of the µ theorem, which is essential in both the application of the method and in the

interpretation of results.
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The work developed in Chapter 3 is novel in that it has extended and applied the

concept of the hypercube, to show the significance and usefulness of the robust sta-

bility measure µ with respect to single and multiple parametric uncertainties. The

hypercube is presented at a purely conceptual level in the literature. This study has

constructed hypercubes of a basic electrical power system connected to an ideal CPL,

when it is subject to multiple parametric uncertainties, based on data from µ analysis.

The CPL is pivotal in the stability studies of PE systems. In addition, this study

has translated the µ results from the frequency domain to the parametric domain,

making µ easier to work with.

Through the generated hypercubes of the considered system, it has been shown how

µ identifies the largest parametric space within which stability robustness is guaran-

teed. More specifically, for a system subject to N parametric uncertainties, the µ

approach provides the largest hypercube of dimension N , centred about the nominal

point and of coordinate size 1/µ, within which the system can be guaranteed to be

robustly stable. 1/µ is a measure of the robust stability margin of the EPS. The hy-

percube becomes the largest line segment, square and cube of coordinate size 1/µ, for

a system subject to a single, two and three parametric uncertainties respectively. The

hypercube concept, as presented in Chapter 3, can be further explored and applied

to a large range of uncertain systems. For instance, the hypercube can be utilised for

the optimum selection of parameters in the design of robustly stable systems.

Following the application of the hypercube concept and the translation of the µ results

in the more perceivable parametric space, this work has helped to make the µ method

easier to understand and apply, particularly for systems with multiple parametric

uncertainties.

6.1.2 Practical aspects

Chapter 4 has presented a number of practical approaches to incorporate uncertainties

in µ analysis of power electronic systems, by using the widely employed DC/DC
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buck converter. It has demonstrated the importance of incorporating uncertainties

in stability assessment and the necessity for adopting a robust analysis tool, such as

the µ approach.

µ analysis has been applied to predict the destabilising load of the buck converter

system, for different values of line resistance. The results have been validated in

experiment both in the time domain and in the frequency domain. Although µ

analysis results have been validated in the literature, the studies generally pertain to

large power systems rather than power electronic systems. The study has shown that

a decrease in line impedance has a negative impact on the robust stability margin

of the EPS. The practical limitations of applying the classical Middlebrook criterion

and the more formal Nyquist stability criterion to the experimental buck converter

have been discussed.

The study has demonstrated how key uncertainties, such as extreme operating tem-

perature variations, can be included in µ analysis of the buck converter, in order to

obtain more reliable results. It has been shown that the consequence of neglecting

operating temperature variations may lead to highly optimistic but often unreliable

results. Given that electrical systems of the MET may be subject to wide fluctua-

tions in operating temperature, it is crucial to include this type of uncertainty in the

system stability assessment for these safety critical applications.

The study has shown how the µ approach can be used to its full potential by in-

cluding model uncertainties in the analysis, and hence justifiably catering for the

uncertain nature of the physical system. These aspects may have been suggested

in the literature, but they have not been applied. Further, the findings have shown

that robust stability margin tends to be larger, if model uncertainties can be defined

within narrower range. In all cases, the results tend to be more reliable, if uncertain-

ties are included in the analysis, rather than using the nominal system model with

fixed parameter values.
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The method required to apply the µ method, through the use of the software namely

MATLAB R© Robust Stability Toolbox, has been presented clearly such that it can

be easily reapplied to other systems. This aspect is often left out in the literature.

Furthermore, the effect of the size of the problem on computational time has been

discussed through certain cases studied in this chapter.

The study has important implications. The approach can bring flexibility to a user, by

allowing the user to choose the degree of accuracy of the parameters in a system model,

depending on available data. The user may even define system non-linearities as

uncertain elements, in order to reduce the complexity of the system model. Parasitics,

generally hard to measure, can be treated as uncertainties. The robust stability

margin may be tighter when the parameters are known with less accuracy and defined

within a wider range of values. Yet, the results tend to be more reliable, which may

justify the approach from a practical viewpoint.

This chapter has presented practical approaches to µ analysis in a manner that is clear

enough to enable a user to apply the method to similar or more complex systems,

and to extend the applications to include yet further sources of uncertainties.

6.1.3 Application to non-linear systems

The last part of the work in Chapter 5 has developed a modelling methodology that

enables the µ method to be applied to non-linear systems. The novelty of the method

is that it converts a non-linear system into a unique equivalent linear model, while

fully catering for system non-linearities. The equivalent linear model is valid for

µ analysis over a range of defined operating points and system parameters. The

generalised model represents the complete set of all possible linear models that can

result due to variations in uncertain parameters and operating points.

The strength of the approach, over classical methods, is that it eliminates the need for

exhaustive linearisation and iterations. The µ approach requires only the equivalent
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linear model together with its nominal data and uncertain parameters upper and lower

limits, in order to provide a direct and reliable measure of robust stability margin.

In addition, the modelling approach reduces conservativeness in stability assessment

as it preserves all dependencies of varying operating points on parameter uncertain-

ties. This may contribute to the design of more optimised systems, for instance

through the selection of smaller filters.

µ analysis has been applied to the developed equivalent linear model of a 4 kW PM

machine based electromechanical actuation system, and has successfully predicted

the critical torque that causes system instability. The investigation has included

uncertainties in load, with variations in system frequency, bandwidth of the DC-link

filter voltage and natural frequency of the speed loop. Further, the experimental

results reported in [52] have allowed the validation of both the µ predictions and the

modelling methodology.

This last part of the work has demonstrated that the µ method can effectively be

extended to non-linear systems, through the use of the experimentally validated and

proposed modelling approach.

6.1.4 Research summary

The µ approach is an effective method that can be adopted for the robust stability

assessment of electrical power systems for the MET. Yet, the method is not widely

employed due to certain limiting factors. One drawback relates to the complexity of

its theoretical framework. The practical approaches to applying the method to power

electronic systems are not adequately covered in the literature. In addition, the µ

approach is not directly applicable to non-linear system models, that are generally

used to represent physical systems. With the aim to making the approach more appli-

cable, this work has addressed these key limitations. It has provided a comprehensive

understanding of the µ theoretical framework and has presented practical approaches
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to employing the µ method, and in addition has extended application of the approach

to non-linear systems. This has been done in manner that is comprehensible enough

to make it more application-friendly while offering the possibility of it being extended

to similar or more complex systems. Based on the strong foundation laid in this work,

it is the author’s belief that the µ approach can be used as commonly as classical

techniques, and to great effect.

6.2 Future research

This thesis is hoped to be a stepping stone to future studies, with the possibilities of

deepening knowledge of the subject and broadening the area of application. Three

main areas, amongst many others, may be explored further.

• First, the µ approach may be applied on system-level architectures, where source

and load subsystems, of the order of the systems analysed in this work, are

interconnected. It will be interesting to investigate how the local stability of

a subsystem affect the global stability of the whole network, based on the µ

approach.

• Secondly, µ sensitivity, which is a related feature of the µ approach, can be

studied. µ sensitivity can be employed to identify which uncertain parameters

in the system model is most critical to stability robustness. This knowledge

may be used to narrow stability assessment with respect to the critical elements

of the model, and further reduce size and complexity of the uncertain model.

• Finally and very importantly, there needs to be a continuous investigation into

currently available computational tools for µ analysis. Tools to optimise any

state space system in order to obtain smaller uncertainty matrices as well as

order reduction methods are to be explored. These include but are not lim-

ited to MATLAB R© Robust Stability Toolbox and ONERA R© Skew mu toolbox.

Finding the right tools may significantly improve the accuracy of the µ bounds
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and decrease computational burden to reasonable limits, which is particularly

important for assessing large scale problems.

By making the µ method more applicable for the robust stability of power electronic

systems, this thesis has provided a strong basis for addressing the issue of stability

for the larger and more complex electrical networks of the more electric transport.
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Appendix A

Computational aids

This appendix provides some computational aids in using MATLAB R© Robust Sta-

bility Toolbox for the evaluation of robust stability. Further details may be found in

MATLAB R© documentation.

A.1 µ analysis

The function ‘robuststab(ufrd(sys,omega))’ performs both LFT operation and µ anal-

ysis of the considered system. Prior to applying the function, the following elements

must be defined:

• The nominal parameters

• The uncertain parameters using the function ‘ureal’

• The frequency grid as ‘omega=logspace(wmin, wmax, n)’ where wmin, wmax are

the minimum and maximum frequency and n is the number of points in the

grid.

• The system ‘sys’ in state space configuration and symbolic form
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A.2 Problem of convergence of the µ lower bound

One known problem is that the µ lower bound may fail to converge when the uncertain

parameters are purely real [38],[42],[53]. This issue has been encountered in this work

for case studies with a single parametric uncertainty. A small complexity of value up

to 1%, added to the real parametric uncertainty by using the command “complexify”,

has proved to be sufficient to make the µ lower bound converge [53]. The use of the

command is shown below. The term ‘sys’ refers to the uncertain system in state space

configuration and symbolic form. µ analysis is performed on the system defined by

‘sysreg’ instead of ‘sys’.

• alpha=0.01

• sysreg = complexify(sys,alpha,‘ultidyn’);

It is to be added that the MATLAB R© command, shown hereunder for the parameter r,

may be used to extract the real value of the critical r, after excluding the complex part.

The variables ‘destabunc’ and ‘stabmarg.DestabilizingFrequency’ contain information

regarding the critical value of r and the critical frequency respectively.

• real(destabunc.r + freqresp(destabunc.r cmpxfy,stabmarg.DestabilizingFrequency))

An alternative algorithm in MATLAB Robust Control Toolbox, that makes use of

the coordinate-wise optimization (i.e. the “gain-based lower bound” method) can

be employed for good convergence of the µ lower bound [42]. It does not require

the use of complexity. The method is reported to be slower than the approach with

added complexity [42]. Furthermore, it has been reported that different runs of the

algorithm may produce different values of the µ lower bound [40].
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A.3 Accuracy of µ bounds

A rough frequency grid can initially be chosen to identify the peak value of the µ

bounds. It has been found that the accuracy of the µ bounds can be further improved

by rerunning the analysis but this time specifying a tighter frequency grid around the

critical frequency of µ. In some cases, making the frequency grid denser also improves

the results.

A.4 Accuracy of the upper bound

The gap between the lower and upper bound was initially large for case study II in

both chapters 2 and 3. Using the computation option ‘a’, which calculates the upper

bound with greater accuracy, lead the gap to reduce, in this case. The command has

to be modified as shown below. Of note is that this option did not work for the larger

systems analysed in chapters 4 and 5, since it is computationally expensive.

• robuststaboptions(‘Mussv’,‘a’)

• robuststab(ufrd(sys,omega),ropt)



Appendix B

Experimental measurements of

input impedance

The network analyser has been employed for the experimental measurements of

certain small signal transfer functions of the closed loop buck converter in Chap-

ter 4 [13],[63]. In section 4.3, the equipment has been used to measure the loop gain,

input impedance (Zi) and output impedance (Zo) of the buck converter, in view of

refining the system model of the EPS. In section 4.4.3, Zi and Zo of the buck con-

verter have been measured by means of the equipment, in order to assess the stability

of the EPS, based on Nyquist stability criterion. This appendix describes how the

network analyser is used to experimentally measure the input impedance of the buck

converter.

The input impedance is the transfer function describing how perturbation in the

input current îin affects the input voltage v̂in. The experimental set-up for the small

signal input impedance measurement is shown in Fig. B.1 and B.2. The network

analyser injects a small signal at a desired location in the considered system from

its output denoted as OUT , as depicted in Fig. B.2. It then takes measurements of

interest through its inputs denoted as R and A, as shown in Fig. B.2. The injection

terminals of the network analyser is connected to the buck converter through an
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isolating transformer and a series connected DC capacitor, as depicted in Fig. B.1

and B.2. The isolating transformer is required so as to prevent the injected current

from flowing back to the source through the ground terminal of the measurement

probes. Any leakage current through the ground causes a voltage drop in the probes

which may reduce accuracy in measurements. Besides, the DC blocking capacitor

acts as a short for high frequency signals and as an open circuit for low frequency

signal. Hence, it prevents the DC and low frequency signals in the injection voltage

from upsetting the input DC source voltage of the converter.

As depicted in Fig. B.1 and B.2, the network analyser injects a sinusoidal source of

controllable amplitude and frequency to the input of the buck converter. Using a

current injection caused most of the current to flow into the low impedance source

side. Hence a series voltage injection was used to inject perturbation into the circuit

through the gate of a FET. In order to obtain smooth waveforms of transfer functions,

power of around 15 dB was injected for the measurements of Zi, while only −5 dB

was required for the loop gain measurements. Following the small signal injection,

the input voltage v̂in and the current îin were measured at intervals of 30 Hz over

a range of frequency between 100 Hz and 50 kHz. The current îin was obtained by

measuring the voltage v̂r across a resistance of 1 Ω, as shown in Fig. B.1 and B.2. The

ratio of v̂in/̂iin produces the frequency response of Zi, as given in (B.1) and (B.2).

Magnitude plot |Zi| = | v̂in
îin
| (B.1)

Phase plot ∠Zi = ∠
v̂in

îin
(B.2)
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Figure B.1: Practical implementation of input impedance measurements

Figure B.2: Equipment set-up for input impedance measurements
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