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Abstract 
 
 

 

Hel308 is a RecQ family DNA helicase that is conserved in metazoans and 

archaea but is absent from bacteria and fungi. Hel308 family helicases are 

implicated in DNA repair, homologous recombination and genome stability, 

but the exact role of Hel308 is largely unknown. Strains deleted for hel308 are 

sensitive to DNA inter-strand crosslinks, which are potent blocks to DNA 

replication. In this study, the archaeon Haloferax volcanii was used as a model 

organism to study the role of Hel308. 

In archaea, homologous recombination is catalysed by polymerisation of the 

RadA recombinase onto ssDNA; the mediator RadB assists this process. 

Strains deleted for radB exhibit decreased levels of recombination and an 

increased sensitivity to DNA damaging agents. In this study, strains deleted for 

hel308 in combination with radB exhibited in an improvement in both these 

phenotypes, suggesting that Hel308 acts as an anti-recombinase to antagonise 

RadA filament formation.  

Genetic analysis of point mutants in Hel308 revealed that that the helicase 

activity of Hel308 is separate to its role in the regulation of recombination, 

which appears to rely heavily on the correct structural conformation of Hel308. 

Analysis of these point mutations suggests that Hel308 may act in regulating 

the pathway choice for the resolution of homologous recombination 

intermediates 

This study showed that H. volcanii contains a second Hel308 helicase named 

Hel308b, which lacks the ‘auto-inhibitory’ domain 5 found in canonical 

Hel308 helicases. Deletion of hel308b does not lead to sensitivity to DNA 

inter-strand crosslinks but does result in defects in homologous recombination. 
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Chapter 1: Introduction 
 

 

1.1 Archaea  
 

1.1.1 Discovery of Archaea 
 

In 1977 Carl Woese and George Fox first identified Archaebacteria through 

nucleotide sequence analysis of small subunit ribosomal RNAs (16S rRNA) 

from a wide range of organisms (Woese & Fox 1977). rRNA is common to all 

living organisms and displays a high level of sequence conservation. This 

allowed Woese and Fox to carry out a sophisticated phylogenetic analysis that 

did not rely on cellular morphology, physiology or pathology. Archaebacteria 

are prokaryotic but it was later revealed that they are more closely related to 

Eukaryotes than Bacteria and therefore the Archaebacteria were renamed 

Archaea. From here, a model phylogenetic tree was developed whereby 

Archaea, Bacteria and Eukaryotes constitute the three domains of life, Figure 

1.1 (Woese et al 1990). 
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Figure 1.1: Tree of Life based on 16S rRNA sequencing.  Bacteria, 
Archaea and Eukaryotes represent the three domains of life. Selected phyla 
and genera are shown. Figure adapted from (Allers & Mevarech 2005). 
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Further analysis of archaeal rRNA nucleotide sequences indicated that archaea 

cluster into two main phyla; the Crenarchaeota and Euryarchaeota (Winker & 

Woese 1991). More recently, four other phyla have been identified: 

Thaumarchaeota, which were previously thought to be mesophilic 

Crenarchaeota (Brochier-Armanet et al 2008, Pester et al 2011), Korarchaeota 

believed to be an ancient division that diverged from the Archaea lineage 

before the separation of Crenarchaeota and Euryarchaeota. (Auchtung et al 

2006, Elkins et al 2008). Nanoarchaeota that contains only one member; the 

nanosized Nanoarchaeum equitans (Di Giulio 2007, Huber et al 2002, Huber et 

al 2003) and Aigarchaeota (Nunoura et al 2011).  

As shown in Figure 1.1, Woese proposed a three domain tree where 

Eukaryotes are a sister group with Archaea and are derived from a common 

ancestor to the exclusion of Bacteria (Pace 1997). However, evidence from 

comparative genomics is accumulating to suggest a two domain tree where 

Eukaryotes have emerged from a deep branch within the TACK 

(Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) superphylum 

of the Archaea, Figure 1.2 (Koonin & Yutin 2014). 

 

 

 

 

Figure 1.2: Phylogenetic relationship between the Eukarya and the Archaea. (A) The 
classical Woesean three domains of life tree, Eukarya and Archaea are two distinct sister 
lineages, implying that they share an ancestor. Branch lengths and number of lineages within 
each domain are arbitrary. For simplicity, the root of the universal tree of life has been placed 
in the bacterial branch. (B) The new proposed two domains tree of life; the Archaea and the 
Bacteria are the two primary domains, whereas the Eukarya is a secondary domain that arose 
from within the archaea. Figure adapted from (Gribaldo et al 2010). 

Archaea Eukarya Bacteria Archaea Eukarya Bacteria
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The evidence for this hypothesis is that a dispersal of eukaryotic components 

such as ubiquitin (Ub) signaling, RNA interference (RNAi), actin and tubulin 

based cytoskeleton can be seen across the Archaea, Figure 1.3. The genome of 

Ca. Caldiarchaeum subterraneum, the only known representative of the 

Aigarchaeota, contains a predicted operon containing Ub-like protein, a 

deubiquitinating enzyme and homologs of all three Ub ligase subunits 

(Nunoura et al 2011). All these proteins show high similarity to eukaryotic 

counterparts.  Recently, a distinct cell division system homologous to the 

ESCRT-III membrane remodeling complex has been characterized within the 

Sulfolobales of the Crenarchaeota and the Thaumarchaeon Nitrosopumilus 

maritimus (Lindas et al 2008, Makarova et al 2010, Pelve et al 2011, Samson et 

al 2008). The eukaryotic hallmark RNAi system that is involved in antivirus 

defense and regulation of gene expression has mixed archaeal and bacterial 

origins, with the archaeal components apparently derived from Euryarchaeota 

(Makarova et al 2009). 

 

 

Figure 1.3: Taxonomic distribution of archaeal orthologs of eukaryotic signature proteins. 
Phylogenetic relationships are depicted as a consensus of recent phylogenomic analyses. 
Colour filled circles indicate the presence of homologues in all members of a lineage, whereas 
half filled and white circles denote patchy distribution and absence of homologues, 
respectively. Adapted from (Eme & Doolittle 2015) 

The robustness of the two-domain hypothesis has been subjected to lively 

debate; seven recent large-scale phylogenomic studies have investigated the 
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tree of life to address the issue of the relationship between the Archaea and 

Eukarya. Three studies support the three-domain hypothesis that the Archaea 

and the Eukarya are two independent monophyletic lineages (Ciccarelli et al 

2006, Harris et al 2003, Koonin & Yutin 2014). Conversely four studies 

support the two-domain theory that shows a relationship between the Eukarya 

and a particular archaeal lineage (Cox et al 2008, Foster et al 2009, Pisani et al 

2007, Rivera & Lake 2004).  Although, progress has been made to understand 

the relationship between the Archaea and Eukarya, no individual analysis is 

definitive.  The Archaea are central to understanding the origin of Eukarya, and 

metagenomic mining of new Archaeal lineages in the future could provide the 

answers to this phylogenetic problem. 

1.1.2 Characteristics of Archaea 
 
Archaea are typically thought of as extremophiles capable of living in harsh 

environments such as hypersaline brines, hydrothermal vents and 

acidic/alkaline waters. However, archaea are found to be widespread in non-

extreme habitats such as soil, fresh water sediments and oceans where they 

represent more than 20% of all microbial cells present (DeLong & Pace 2001, 

Pace 1997). 

Archaea possess features in common with both bacteria and eukaryotes, see 

Table 1.1 for details. Morphologically, archaea are more closely related to 

bacteria than eukaryotes but in relation to DNA replication, transcription and 

translation in archaea resemble eukaryotic systems, however they are less 

complex (Barry & Bell 2006, Grabowski & Kelman 2003). 
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Table 1.1: Properties of the three domains of life. 
Trait Bacteria Archaea Eukaryotes Reference 
Nucleus No No Yes (Lake 1989) 
Chromosome Mostly circular Circular Linear (Tan & 

Tomkins 2015) 
Origins Single Single or Multiple Multiple (Kelman & 

Kelman 2004, 
Wu et al 2014) 

Chromatin 
Proteins 

None Histones (some 
species) 

Histones (Pereira & 
Reeve 1998) 

Organelles  No No Yes (Gray 1989) 
Lipids Ester-linked to 

an sn-glycerol-
3-phosphate 
backbone 

Ether-linked to an sn-
glycerol-1-phosphate 
backbone 

Ester-linked to 
an sn-glycerol-3-
phosphate 
backbone 

(Albers & 
Meyer 2011) 

Cell wall Yes 
(peptidoglycan) 

Some species 
(pseudopeptidoglycan)  

No (Albers & 
Meyer 2011) 

Cell size <5μm <5μm 10 -100 μm (Tan & 
Tomkins 2015) 

Adapted from (Tan & Tomkins 2015) 

Genome Organisation 

Like bacteria and unlike eukaryotes, archaea have circular chromosomes and 

contain operons (Olsen & Woese 1997). However, archaeal genomes tend to 

have a higher gene density than bacterial or eukaryotic genomes (Koonin & 

Wolf 2008). Archaea also possess single or multiple origins of replication, this 

is discussed in further detail in Section 1.3.1. 

Similar to eukaryotes, the majority of Euryarchaeal, Thaumarchaeal and 

Nanoarchaeal genomes are packaged by histone proteins. In eukaryotes, DNA 

is compacted by tight wrapping around octamers of four core histones; H2A, 

H2B, H3 and H4 to form a nucleosome. Eukaryotic histones contain N- and C-

terminal tails that undergo extensive posttranslational modifications such as 

acetylation and methylation, which represses transcription and therefore gene 

expression (Reeve et al 1997, White & Bell 2002). Archaeal histones are 

shorter and lack these N- and C-terminal tails suggesting that regulation of 

transcription is not mediated through histones. Furthermore archaeal histones 

can form both homodimers and heterodimers and the number of histones varies 

from species to species. For example Methanothermus fervidus contains two 

histone-coding genes whereas Methanobacterium species has three, 

Methanococcus jannaschii has five and Haloferax volcanii has one (Ammar et 

al 2012, Bult et al 1996, Grayling et al 1996). 
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In addition to histones, Crenarchaea, Thaumarchaea, Nanoarchaea and some 

Euryarchaea also contain the DNA binding protein Alba. Excluding the 

Crenarchaea, Alba is always found alongside a histone (Sandman & Reeve 

2005, White & Bell 2002). Alba induces negative supercoiling and protects 

DNA from nucleases. Species such as methanogens that lack Alba contain the 

DNA binding protein MC1 that significantly distorts and compacts circular 

DNA (Cam et al 1999, Toulme et al 1995). 

DNA Replication and Repair 

The mechanisms and proteins involved in archaeal DNA replication and DNA 

repair is more eukaryotic than bacterial, albeit simpler. DNA replication and 

repair across all three domains of life is discussed in further detail in Sections 

1.3 and 1.4. 

Transcription and Translation 

The core apparatus of transcription, RNA polymerase, is universal in 

distribution across all domains of life, but the subunits of the archaeal and 

eukaryotic RNA polymerase (RNAP) are more alike than the bacterial 

counterpart, Figure 1.4 (Bell & Jackson 2001, Hirata & Murakami 2009, 

Langer et al 1995). The TATA box binding protein (TBP) and transcription 

factors IIB and IIIB (also known as TFB) involved in the initiation of 

transcription are also highly conserved across eukaryotes and archaea (Gietl et 

al 2014). However, transcription in archaea is regulated by bacterial proteins 

such as the leucine-responsive regulatory protein (Lrp), a major global 

regulator found in Escherichia coli (Peeters & Charlier 2010). 
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Figure 1.4: RNA polymerase structures across the three domains of life. Crystal structure 
of bacterial, archaeal and eukaryotic RNAPs. Archaeal and eukaryotic RNAPs are more 
closely related containing equivalent subunits that are not present in the bacterial RNAP. 
Orthologous subunits are shown in the same colour. Figure adapted from (Albers et al 2013) 

The majority of archaeal translation initiation factors (IFs) are universally 

conserved across all domains of life (IFs 4-6), however the factors a/eIF2 and 

aIF6 are shared only with eukaryotes. No archaea-specific initiation factors 

have been identified (Londei 2005). 

1.1.3 Halophiles 
 
Archaea are highly diverse and are found in a wide range of moderate and 

extreme locations for example oceans and soils to acidic pools, hydrothermal 

vents, hot springs and hypersaline pools (Chaban et al 2006). Organisms that 

live in hypersaline conditions are known as halophiles and for these organisms 

to survive in such conditions, one of two mechanisms are employed to adapt to 

high salt conditions.  The first mechanism used largely by halophilic bacteria 

and eukaryotes is the ‘salt out’ mechanism. Here, salts are pumped out from 

the cell and the cytoplasm is packed with organic solutes such as glycerol or 

glycine betaine to maintain the osmotic balance (Christian & Waltho 1962, 

Oren 1999, Oren 2008). Halophilic archaea and some bacteria accumulate high 

levels of salt in the cytoplasm to maintain osmotic balance, this is a ‘salt in’ 

mechanism approach (Oren et al 2002). Proteins in halophilic archaea have 

adapted to function in high salt and low water conditions by several different 

strategies, which will be discussed in further detail in Chapter 6: in vitro 

Analysis of Hel308, Section 6.1.1: Halophilic Proteins. 

Bacteria
Thermus aquaticus RNAP

Archaea
Sulfolobus solfataricus RNAP

Eukarya
Saccharomyces cerevisiae RNAP II
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1.2 Haloferax volcanii  
 

Haloferax volcanii is a halophilic euryarchaeon that was originally isolated 

from the Dead Sea. H. volcanii is coccid, pigmented red due to the presence of 

carotenoids and the outer cell surface is comprised of a glycoprotein S layer 

(Hartman et al 2010, Mullakhanbhai & Larsen 1975). H. volcanii is aerobic 

and can be easily in cultured at an optimum growth temperature of 45ºC in 

NaCl concentrations of 1.7 - 2.5 M, with a generation time of 2.5-3 hours. Due 

to its ease of culture and large range of genetic tools available (discussed in 

section 1.2.1), H. volcanii is a model organism for the study of archaeal 

genetics. 

 

There is no evidence for a defined cell cycle within H. volcanii (Iain Duggin, 

personal communication). This is corroborated by DNA replication profiles 

generated through deep sequencing, which showed that the genome copy 

number maximum:minimum ratio in H. volcanii is >2:1. This demonstrates 

that concurrent rounds of replication are occurring within the cell and is 

evidence against the presence of a defined S-phase (Hawkins et al 2013).  

 

The complete genome of H. volcanii is 4.2 Mb in size, comprising a 2.85 Mb 

main chromosome and three megaplasmids: pHV1 at 86 kb, pHV3 at 442 Kb 

and pHV4 at 690 Kb (Charlebois et al 1991). The 6Kb plasmid, pHV2 was 

cured from the laboratory strain but is present in the wild-type isolate DS2 

(Wendoloski et al 2001). Additionally, in the laboratory strain H26 the pHV4 

megaplasmid has integrated onto the main chromosome (Hawkins et al 2013). 

H. volcanii has a genome with a %GC of around 65%, furthermore the genome 

of H. volcanii is highly polyploid with up to 20 genome copies present per cell 

(Breuert et al 2006). Finally, a full genome sequence is available for H. 

volcanii (Hartman et al 2010). 
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1.2.1 Genetic tools for H. volcanii 
 
Selectable markers 
 
The use of antibiotic selection is available within H. volcanii. Mutations in the 

gyrB and hmgA genes gives resistance to Novobiocin, which is an inhibitor of 

DNA gyrase and mevinolin an inhibitor of the HMG-CoA reductase, 

respectively (Holmes et al 1991, Lam & Doolittle 1989). However, these 

markers were isolated as mutant alleles of essential genes and therefore show 

near-complete homology to the chromosomal allele. Therefore homologous 

recombination may occur between the plasmid-borne resistance marker and the 

genome, resulting in the acquisition of antibiotic resistance by the host strain. 

 

To overcome this problem, several gene deletions a have been made in H. 

volcanii to allow for the use of auxotrophic selectable markers. Selectable 

markers relevant to this study are described in Table 1.2. 

 
Table 1.2: Auxotrophic selection methods available for use in H. volcanii. 

Gene Encodes Involved in Reference 
pyrE2  Orotate phosphoribosyl 

transferase 
Uracil biosynthesis (Bitan-Banin et al 

2003) 
trpA Tryptophan synthase Tryptophan 

biosynthesis 
(Allers et al 2004) 

leuB 3-isopropylmalate 
dehydrogenase 

Leucine biosynthesis (Allers et al 2004) 

hdrB Dihydrofolate reductase Thymidine 
biosynthesis 

(Ortenberg et al 2000) 

 
Reporter genes 
 

Two reporter genes are widely used within H. volcanii, the first is a ß-

galactosidase gene which allows for the detection of blue colonies after strains 

have been treated with X-gal (Holmes & Dyall-Smith 2000).  This marker can 

be utilised in growth competition assays and recombination assays (Delmas et 

al 2009). The second reporter gene is green fluorescent protein (GFP) that has 

been adapted by three amino acid substitutions to allow for use in high salt 

conditions (Crameri et al 1996, Reuter & Maupin-Furlow 2004) 
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Transformation 
 

H. volcanii can be easily transformed with plasmid DNA by the removal of the 

S-layer using EDTA and the addition of polyethylene glycol with facilitates the 

uptake of DNA (Cline et al 1989). This is described in further detail in Chapter 

2: Materials and Methods, Section 2.2.2: General Haloferax volcanii 

Microbiology. 

 
Gene Deletion/Replacement 
 

A gene deletion and replacement/knock out system has been developed in H. 

volcanii that utilises the pyrE2 marker during pop-in and pop-out steps. This is 

described in further detail in Chapter 2: Materials and Methods, Section 2.2.5: 

Genetic Manipulation of Haloferax volcanii. 
 
Gene Expression 
 
In H. volcanii, the overexpression of genes on episomal plasmids is induced by 

the addition of tryptophan. Overexpression plasmids contain the gene of 

interest downstream of the tightly-controlled tryptophan-inducible promoter 

p.tnaA (Large et al 2007), which originates from the H. volcanii tryptophanase 

gene tnaA.  This promoter has been used for the overexpression of proteins 

natively in H. volcanii (Allers et al 2010). This will be discussed in further 

detail in Chapter 6: in vitro Analysis of Hel308. 
 

1.2.2 Biochemical tools for H. volcanii 
 

Halophilic proteins are typically insoluble and misfold in low salt conditions; 

therefore it is inadvisable to express proteins from H. volcanii in heterologous 

hosts such as E. coli. 

 

Prior to this study, biochemical tools were developed to allow for the 

expression and purification of histidine tagged proteins in H. volcanii. The 

deletion of the restriction enzyme Mrr allows for efficient transformation of 
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protein expression plasmids into H. volcanii without the need to isolate the 

plasmid DNA from E. coli dam- strains. H. volcanii host strains were generated 

that reduce the co-purification of naturally histidine-rich proteins with his6-

tagged recombinant proteins, this required the removal of a histidine rich linker 

from PitA and the truncation of the Cdc48d protein to remove a histidine rich 

domain (Allers et al 2010). However, even after removal of these major 

contaminants, other histidine-rich contaminating proteins still co-purify during 

protein purification. For this reason, one aim of this study was to develop new 

biochemical methods for native protein expression and purification from H. 

volcanii. This will be discussed in detail in Chapter 6: in vitro Analysis of 

Hel308. 

 

1.3 DNA replication  
 
 
The complete and accurate replication of DNA is integral to the proliferation of 

life in all three domains. Without DNA replication genetic information cannot 

be transmitted to the next generation. The replication of DNA is tightly 

regulated and must occur before cell division. Across all three domains of life, 

DNA replication can be divided into three distinct stages: initiation, elongation 

and termination. 

1.3.1 Initiation 
 

Initiation of DNA replication occurs at defined regions on the genome called 

origins of replication. Bacteria typically contain a single origin of replication 

called the oriC, however bacteria have circular chromosomes and typically 

undergo concurrent rounds of replication (O'Donnell et al 2013). In E. coli the 

oriC is approximately 250 bp in length and contains an array of 9 bp repeat 

elements known as DnaA boxes that are located within the DNA unwinding 

element (DUE). These are sequence-specific binding sites for the initiator 

protein DnaA, an AAA+ family ATPase that forms a nucleoprotein filament at 

the oriC (Ozaki & Katayama 2009). Assembly of DnaA at the DnaA boxes 

results in stretching and therefore melting of the DNA within the DUE, 

generating single stranded DNA onto which the replicative helicase DnaB is 
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loaded (Erzberger et al 2006). DnaB is a hexameric helicase that uses the 

hydrolysis of ATP to unwind double stranded DNA. Loading of DnaB is 

mediated by the AAA+ family ATPase helicase loader DnaC, which loads 

DnaB on to single stranded DNA at the oriC by breaking the hexameric ring of 

DnaB (Arias-Palomo et al 2013). To prevent secondary structure formation and 

degradation by nucleases, the ssDNA generated by the helicase unwinding 

action of DnaB is bound by the ssDNA-binding protein (SSB) to form a 

nucleoprotein filament. In E. coli SSB is a homotetramer that can bind ssDNA 

via an oligosaccharide binding fold (OB-fold) and form protein-protein 

interactions via its C-terminal domain (Shereda et al 2008). 

 

Due to larger genome sizes, eukaryotes have multiple origins of replication 

across a linear genome (O'Donnell et al 2013). The initiator machinery in 

eukaryotes is called the origin recognition complex (ORC), which is a six 

subunit heteromeric protein composed of the proteins Orc1-6 (Bell & Dutta 

2002). ORC recruits the replication factor Cdc6, an AAA+ family ATPase and 

Cdt1, which function as a helicase loader and so in turn recruit the 

heterohexameric replicative MCM2-7 helicase to the origin. Together these 

proteins form the pre-replicative complex (pre-RC) and the origin is now 

licenced for replication. MCM forms a protein complex with Cdc45 and GINS 

which is also known as the CMG complex (Onesti & MacNeill 2013). The 

formation of the CMG complex transforms the pre-replicative complex into the 

pre-initiation complex; this complex is closely regulated by phosphorylation 

(Sclafani & Holzen 2007). To prevent DNA damage, the ssDNA generated by 

the DNA unwinding of the CMG complex is bound by replication protein A 

(RPA) which is the eukaryotic equivalent to SSB in bacteria (Nguyen et al 

2014). 

 

Archaea have either one or multiple origins of replication, for example 

Pyrococcus abyssi contains a single origin of replication whereas H. volcanii 

contains four origins of replication on its main chromosome (oriC-1, 2,3 and 

ori-pHV4) (Hawkins et al 2013, Kelman & Kelman 2004). Note that ori-pHV4 

is located on the chromosome as a result of the integration of the pHV4 
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megaplasmid onto the chromosome in the laboratory strain H26 of H. volcanii, 

Figure 1.5. 

 
Figure 1.5: Replication profile for the main chromosome of H. volcanii. (A) Replication 
profile for the wild-type isolate DS2, the main chromosome has 3 origins of replication. (B) 
Replication profile for the lab strain H26. pHV4 has integrated into the main chromosome, 
resulting in 4 origins on the main chromosome. Figure adapted from (Hawkins et al 2013). 
 

Archaea contain at least one homolog of the eukaryotic Orc1 or Cdc6 initiator 

proteins (Barry & Bell 2006), Many archaeal species contain multiple 

Cdc6/Orc1 proteins, Pyrococcus has only one, Sulfolobus has three and H. 

volcanii contains 16 orc1/cdc6 genes. Not all of these genes are located next to 

origins of replication and at least two of these genes are not involved in DNA 

replication (Norais et al 2007). From deletion studies in H. volcanii, it appears 

that many of the orc1/cdc6 genes have overlapping functions. The Cdc6/Orc1 

proteins bind to origin recognition boxes (ORBs) and recruit the MCM 

replicative helicase. In contrast to eukaryotes, archaeal genomes only appear to 

have one MCM homologue, which forms homohexamers in vitro, but like the 

eukaryotic MCM proteins and bacterial DnaB, archaeal MCM is an AAA+ 

protein. Furthermore, no archaeal homologues to bacterial or eukaryotic 

helicase loading factors have been found suggesting that MCM interacts 

directly with Orc1/Cdc6 at the origin of replication (Barry & Bell 2006). Like 

eukaryotes, once recruited to the replication origin, MCM interacts with GINS 

to form the CMG complex (MacNeill 2010). But unlike eukaryotes the GINS 

complex also associates with a GINS-associated nuclease (GAN) which is a 

RecJ family nuclease and an ancient homologue of Cdc45 (Bell 2011, 

1.0

1.4

1.8

0 500 1,000 1,500 2,000 2,500 2,848

RUL&� RUL&� RUL&� RUL&�

Chromosomal coordinate (kb)

R
e

la
ti
v
e

 c
o

p
y
 n

u
m

b
e

r

1.0

1.4

1.8

2.2
ori-pHV4oriC1 oriC3 oriC2 oriC1

R
e

la
ti
v
e

 c
o

p
y
 n

u
m

b
e

r

500 1,000 1,5000 2,000 2,500 3,000 3,484

Chromosomal coordinate (kb)

oriC1

oriC1

oriC2

oriC2

oriC3

ori-pHV4

Wild-type 

isolate DS2

H26 

chromosome

A

B



Chapter 1: Introduction 
 

 14 

Makarova et al 2012). The ssDNA generated by the CMG helicase activity is 

bound by a single stranded DNA binding protein that is either like the 

eukaryotic RPA or the bacterial SSB depending on the species (Barry & Bell 

2006). The crenarchaeal single stranded binding protein from Sulfolobus 

solfataricus shows a similar structure to bacterial SSB (Wadsworth & White 

2001). Euryarchaea have single stranded binding proteins more similar to the 

eukaryotic RPAs. The formation of RPA complexes varies between archaeal 

species. In H. volcanii RPA1 and RPA3 interact with the archaea specific 

RPA-associated proteins RPAP1 and RPAP3 but are not essential, whereas the 

essential RPA2 protein acts alone (Stroud et al 2012). 

 

After the initiator protein, replicative helicase and other replicative factors have 

been recruited, bi-directional DNA synthesis is initiated at the origin of 

replication. A replication fork showing replication factors from all three 

domains of life is shown below, Figure 1.6. 

 

 
Figure 1.6 Components of a replication fork. A replication fork showing equivalent 
components from all three domains of life, bacteria (blue, eukaryotes, (orange) and archaea 
(red). Figure adapted from (McGlynn & Lloyd 2002b). 

 

1.3.2 Elongation 
 
The elongation phase of DNA replication can be divided into two stages, 

priming and DNA synthesis, both stages are discussed below. 
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Priming 
 
DNA polymerases are unable to initiate DNA synthesis de novo, they require a 

short primer from which they can extend. An RNA polymerase known as a 

primase synthesises short RNA primers, a DNA polymerase then elongates 

these RNA primers and so carries out DNA synthesis. On the leading DNA 

strand (5’-3’), DNA synthesis is continuous and DNA synthesis on the lagging 

strand (3’-5) is discontinuous, leading to the formation of Okazaki fragments. 

 

In bacteria, the short RNA primers are synthesised by the primase, DnaG. The 

initiation of the DnaG requires interaction with DnaB, the generation of a 

primer occurs in the opposite direction to helicase unwinding by DnaB (Fang 

et al 1999).  RNA primers synthesised by DnaG can range from 10 to 60 

nucleotides in length but are typically around 11 nucleotides long (Frick & 

Richardson 2001).  

 

The primase in eukaryotes is a dimer consisting of PriS and PriL subunits, 

which associate with Pol α and the accessory B subunit to form a Pol 

α/primase complex.  The primase synthesizes RNA primers of 8 to 12 

nucleotides, which are then elongated to around 30 nucleotides by Pol α to 

produce a DNA-RNA hybrid before handing over to the replicative polymerase 

(Arezi & Kuchta 2000, Frick & Richardson 2001, Kuchta & Stengel 2010). 

 

Archaea possess homologs of the eukaryotic PriS and PriL primases but lack 

the Pol α and the accessory B subunits, Archaeal primeases typically 

synthesise RNA primers 7-10 nucleotides in length (Barry & Bell 2006). 

 
DNA synthesis 
 

Once RNA primers have been synthesised by primases, the primer is then 

extended by DNA polymerases. Additional members of the replisome that are 

essential for DNA synthesis are circular sliding clamps and clamp loaders, 

which will be discussed below. 
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DNA is synthesised by DNA polymerase III holoenzyme in bacteria, this 

enzyme comprises two DNA polymerases in complex with nine other subunits 

(Kelman & O'Donnell 1995). The polymerase core consists of the DNA 

polymerases α and ε, a 3’-5’ exonuclease and θ, these subunits are responsible 

for DNA polymerisation and proof-reading. DNA polymerase III is loaded 

onto the DNA by a ß clamp, which is able to encircle and slide along the DNA. 

The ß clamp is itself loaded by the γ complex, and the ß clamp increases 

processivity of the DNA polymerase by stabilising the complex (Kuriyan & 

O'Donnell 1993, Turner et al 1999). 
 

Eukaryotic DNA synthesis is performed by two B-family DNA polymerases 

Polε and Polδ, which synthesise DNA on the leading and lagging strand 

respectively (O'Donnell et al 2013). The proliferating cell nuclear antigen 

(PCNA) is a sliding clamp which has a similar structure to ß clamp in bacteria. 

PCNA aids Polε and Polδ in DNA replication by tethering replicative enzymes 

to the replication fork. PCNA itself is loaded onto DNA by the clamp loader 

replication factor C (RFC), which is similar in structure to the bacterial clamp 

loader (Moldovan et al 2007). 

 

Archaea contain a family B polymerase, and Euryarchaea and Thaumarchaeota 

contain an extra family D polymerase that is composed of the DP1 and DP2 

subunits. DP1, which is related to the eukaryotic Polδ, exhibits 3'-5' 

exonuclease activity and proofreading ability (Barry & Bell 2006, Cann et al 

1998).  Like eukaryotes, the DNA polymerases are assisted by the sliding 

clamp PCNA that is loaded by the clamp loader RFC (Cann et al 1999). 

 

DNA synthesis on the lagging strand is discontinuous and leads to the 

formation of Okazaki fragment flap structures separated by RNA primers. To 

generate a continuous nascent strand of DNA, primer removal, gap filling and 

ligation are necessary. In bacteria the Okazaki fragment flaps are removed by 

the RNase H endonuclease before ligation (Reyes-Lamothe et al 2012). In 

eukaryotes Okazaki fragment maturation is carried out by polymerase δ, 

RNase H, flap endonuclease 1 (FEN1), Dna2 and DNA ligase I, all of which 
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are co-ordinated by PCNA (Zheng & Shen 2011). In archaea, the RNA primers 

are removed FEN1 and RNase H2, which degrades the RNA primer. The gap 

in the DNA is joined by the DNA ligase LigA which is recruited to the nick 

site by PCNA (Barry & Bell 2006). In addition to LigA, H. volcanii possesses 

the DNA ligase LigN, which have been suggested to have an overlapping 

function in Okazaki fragment maturation (Giroux & MacNeill 2015, Zhao et al 

2006). 

1.3.3 Termination 
 
 
Bacteria have circular genomes and in E.coli termination occurs opposite to the 

oriC at Ter sequences where the bidirectional replication forks meet. Ten 

oppositely-orientated Ter sequences, also known as a replication trap, block 

replication forks from traveling through them in a specific direction (Duggin et 

al 2008). This occurs when the Ter sites are bound by the terminator protein 

Tus. The Tus-Ter complex acts by blocking the action of the replicative DnaB 

helicase, but details of the mechanism are uncertain (Neylon et al 2005).  

 

Unlike bacteria, eukaryotes do not have defined termination sites. Termination 

in eukaryotes occurs when two replication forks meet and the two nascent 

DNA strands are ligated together. This occurs randomly in the region between 

a pair of replication origins. However, in highly transcribed regions such as 

ribosomal operons site-specific fork barriers that prevents the collision of 

replication and transcription machinery results in the termination of replication 

(Eydmann et al 2008). 

 

Like eukaryotes, archaea appear not to have defined termination sites, 

termination is likely to occur due to the collision of replication forks from 

multiple origins of replication. Replication profiles in Sulfolobus spp. shows 

that termination occurs asynchronously (Lundgren et al 2004). In H. volcanii 

termination is seen to happen over broad regions of the genome, indicated by 

smooth valleys as opposed to sharp troughs on marker frequency profiles, 

Figure 1.5 (Hawkins et al 2013). 
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1.3.4 Lesions in the DNA template 
 

The replication machinery accurately copies undamaged template DNA but is 

unable to copy DNA faithfully in the presence of DNA lesions. Lesions on the 

leading strand of DNA can lead to replication fork stalling or collapse. Since 

DNA synthesis is discontinuous, lesions in the lagging strand can be bypassed 

by a new priming event and repaired at a later time (Pages & Fuchs 2003). 

Unrepaired DNA lesions can lead to mutations or wide-scale genome 

aberrations. 

 

1.4 DNA repair 
 

1.4.1 DNA damage 
 
Direct chemical damage to the template DNA comes from both exogenous 

(environmental) and endogenous (spontaneous) sources and can lead to a 

variety of lesions, Figure.1.7. Some of these DNA lesions will be discussed in 

further detail below.  

 

 

1.4.1.1 Endogenous DNA damage 
 

Endogenous DNA damage occurs from chemical species that arise as a result 

of normal metabolic processes within the cell.   
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Figure 1.7: Types of DNA damage. Common types of DNA damage caused by exogenous and 
endogenous sources. Figure adapted from (Helleday et al 2014) 
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Oxidative DNA lesions 
 
Free radicals such as reactive oxygen species or nitrogen oxide species are 

generated endogenously as by-products of normal cellular metabolism 

(Helleday et al 2014). These species can cause over 25 different oxidative base 

lesions, one of the most studied is 8-oxo-2ʹ-deoxyguanosine, which forms 

hydrogen bonds with adenine and leads to G·C to T·A base pair transitions 

(Evans et al 2004). Oxidative species can also lead to breakages in the DNA 

backbone. 
 
Deamination 
 
Deamination occurs spontaneously in all DNA bases that contain primary 

amines, the principle repair mechanism for deamination is base excision repair 

(BER). Common deamination reactions include the hydrolytic deamination of 

5-methylcytosine to thymine, which results in a C·G base pair to be converted 

to T·A during the next round of DNA replication (Lutsenko & Bhagwat 1999). 

Deamination of a cytosine to uracil can occur spontaneously and can also be 

catalysed by members of the cytidine deaminase family such as AID which 

converts cytidine to uridine to initiate the hypermutation process during 

immunoglobulin maturation (Teng & Papavasiliou 2007). Deamination of 

adenine to hypoxanthine gives rise to A·T to base pair G·C transitions (Lindahl 

1993). 

1.4.1.2 Exogenous DNA damage 
 

Exogenous DNA damaged is caused by external chemical or physical agents, 

examples relevant to this thesis are described below.  

 
Ultraviolet light 
 
A major source of DNA damage is ultraviolet (UV) radiation that can cause 

several different types of DNA lesions such as pyrimidine dimers, 6-4 

photoproducts, and single and double strand DNA breaks. 
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Upon excitation from high-energy UV radiation the C5 and C6 double bonds 

on neighbouring pyrimidine bases can become covalently crosslinked to form 

cyclobutane pyrimidine dimers (CPD), Figure 1.8. UV radiation can also 

induce pyrimidine (6-4) photoproducts where a single bond is formed between 

the C6 and C4 of adjacent pyrimidines (Ravanat et al 2001, Sinha & Hader 

2002). These ‘bulky’ lesions distort the backbone of DNA and if unrepaired 

can lead to C·G to T·A or CC·GG to TT·AA substitutions during DNA 

replication (Helleday et al 2014). In organisms other than placental mammals, 

CPDs and (6-4) photoproducts can be repaired directly by photolyases in a 

process called photoreactivation. Bulky DNA lesions can also be removed by 

nucleotide excision repair (NER), here a section of DNA containing a lesion is 

removed, filled in and ligated (Sinha & Hader 2002). In humans NER is the 

primary mechanism in repairing UV-induced lesions. Both of these repair 

mechanisms will be discussed in further detail in Sections 1.4.2.1 and 1.4.2.2. 

 

 
Figure 1.8: UV-irradiation results in the formation of pyrimidine dimers and (6-4) 
photoproducts. UV light is absorbed by pyrimidine C=C double bonds, causing them to open 
and allowing them react with neighbouring molecules. Adjacent thymindines can be covalently 
crosslinked to form pyrimidine dimers at the C=C double bonds. Alternatively, (6-4) 
photoproducts form in which the C6 and C4 of adjacent pyrimidines covalently link. 
 

UV radiation also causes the production of reactive oxygen species that can 

result in single strand DNA breaks (Cadet et al 2005, Lankinen et al 1996). 
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close proximity or if a replication fork encounters a single strand break on the 

leading strand. DSBs can be repaired by either by homologous recombination, 

non-homologous end joining (NHEJ) or microhomology-mediated end joining 

(MMEJ), all of which will be discussed in further detail in Section 1.4.2.3. 
 
DNA Crosslinking Agents 

Many chemical agents can form crosslinks within DNA molecules but due to 

its relevance to this thesis, only mitomycin C (MMC) will be discussed here.  

MMC is naturally synthesised by Streptomyces caespitosus and is a chemical 

mutagen that is commonly used as a chemotherapeutic anti-tumour agent 

(Tomasz 1995). MMC monoalkylates DNA at guanine bases leading to 

monoadduct formation between MMC and DNA. Alkylation of a second 

guanine base generates a bisadduct and therefore crosslinking of the DNA. 

Crosslinking can occur between the two strands of DNA or between the same 

strand to generate inter-strand crosslinks and intra-strand crosslinks 

respectively. Interstrand crosslinks can be repaired by NER and homologous 

recombination, if unrepaired DNA crosslinks lead to blockages in DNA 

replication due the replication forks inability to pass through the crosslinked 

region.   

 

1.4.2 DNA Repair Pathways 
               

1.4.2.1 Direct repair 
 

The majority of organisms contain mechanisms to repair DNA by direct 

reversal of chemical damage.  

 

The first mechanism involves the photoreversal of UV-induced cyclobutane 

pyrimidine dimers and (6-4) photoproducts by DNA pyrimidine dimer 

photolyases and 6-4 photolyases respectively. Photolyases in E. coli are 

monomeric and contain the chromophore cofactor folate that absorbs 

violet/blue light photons, which excites a second cofactor, flavin (Li et al 

1991). The excited flavin transfers an electron to the cyclobutane pyrimidine 

dimer to generate a dimer radical anion, which in turn splits the two 
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pyrimidines and thus reversing the damage (Sancar et al 2004) . Placental 

mammals lack photolyases and so are unable to perform photoreversal of 

pyrimidine dimers. 

 

A second mechanism involves the removal of the O6-methyl group from O6-

methylguanine (O6MeGua) DNA bases by methylguanine DNA 

methyltransferase. The methylguanine methyltransferase flips out the 

O6MeGua DNA base where the methyl group is then transferred to an active 

site cysteine in the enzymes active site (Olsson & Lindahl 1980). The enzyme 

becomes inactive after one catalytic event and so dissociates from the now 

repaired DNA. Mice lacking the O6MeGua methyltransferase MGMT gene are 

highly susceptible to tumorigenesis by DNA alkylating agents (Kawate et al 

1998). 

 

1.4.2.2 Excision repair 
 
Excision repair involves the removal of patches of DNA containing damaged 

bases or nucleotides via incisions on the damaged strand at either side of the 

lesion. The gap is then filled via DNA synthesis, replacing the damaged 

segment of DNA using the complementary strand as a template for repair. 

Defects in excision repair leads to a higher incidence of cancer susceptibility. 

 
 
Base excision repair  
 
 
Base excision repair (BER) corrects small DNA lesions resulting from 

oxidation, deamination, methylation and alkylation that do not significantly 

distort the DNA helix. BER can also remove and replace misincorporated 

uracil. The main components of BER are well conserved across all three 

domains of life (Sartori & Jiricny 2003). Defects in BER have been linked to 

age related diseases such as cancer and neurodegeneration (Wilson & Bohr 

2007). 

 

BER is initiated by a lesion-specific DNA glycosylase that flips out the 

damaged base and cleaves the N-glycosylic bond between the damaged base 
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and the deoxyribose, thus removing the base and leaving an apurinic or 

apyrimidinic (AP) site, Figure 1.9. An AP endonuclease cuts the sugar-

phosphate backbone to the 5' side of the AP site, giving rise to a single strand 

break. The upstream fragment is terminated with a free 3' hydroxyl group and 

the downstream has a baseless deoxyribose-phosphate (dRP) residue at its 5' 

terminus. In E. coli baseless dRP is removed by a 5’ phosphodiesterase such as 

RecJ (Piersen et al 2000). Some DNA glycosylases have a second function in 

which they display beta lyase activity that cleaves the phosphodiester bond 3' 

to the AP site. In mammalian cells the processing of the AP sites can occur 

through two different pathways; the preferred ‘short-patch’ BER which results 

in the replacement of a single nucleotide and ‘long-patch’ BER where the 

repair tract is 2-6 nucleotides in length (Dogliotti et al 2001, Sartori & Jiricny 

2003). DNA polymerase β fills in the nucleotide gap and removes the dRP 

moiety by elimination and is ligated to seal the resulting nick (Matsumoto & 

Kim 1995). In ’long-patch’ BER a longer ‘flap’ oligonucleotide is produced in 

the gap filling process, the overhanging flap is excised by the flap-

endonuclease (FEN1) which is present in eukaryotes and archaea, and the 

resulting nick is sealed by DNA ligase (Lindahl 1993). 
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Nucleotide excision repair   
 

Nucleotide excision repair (NER) is generally considered to be an ‘error free’ 

and highly versatile DNA damage removal pathway that counteracts the 

deleterious effects of an array of DNA lesions. Lesions repaired by NER tend 

to cause significant distortion to the DNA helix (de Laat et al 1999). Defects in 

NER results in the extreme photosensitivity and predisposition to cancer as 

seen in the syndrome xeroderma pigmentosum (XP) Cockayne syndrome (CS) 

and the photosensitive form of the brittle hair disorder trichothiodystrophy 

(TTD) (de Boer & Hoeijmakers 2000).  
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backbone to remove the baseless deoxyribose-phosphate (dRP). Gap filling is carried out 
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The general stages of NER are conserved across all three domains of life: 

lesion recognition, 3' and 5' sequential dual incisions, unwinding, patch repair 

synthesis and ligation, Figure 1.10. However, the bacterial and eukaryotic 

proteins involved show very little homology and many steps in mammalian 

NER are more complex than in other species.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In E. coli, a DNA lesion is first identified by the UvrA-UvrB protein complex, 

which has an A2B1 stoichiometry. Upon binding of the DNA lesion by the 

UvrA subunit, the helicase UvrB locally kinks and unwinds approximately 5 

bp around the damaged DNA. UvrB binds tightly to the ssDNA lesion via a 

beta hairpin and isomerises and UvrA dissociates from the complex. UvrC then 

binds to the UvrB-DNA complex and makes first a 3' and then a 5' incision in 

the DNA, resulting in a 12-13 nucleotide oligomer. UvrD (helicase II) is 

5’
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3’
DNA nicks

DNA polymerase
DNA ligase
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Figure 1.10: Nucleotide excision repair. Nucleases make incisions 3' and 5' to the DNA 
lesion shown here as a pyrimidine dimer. Helicases unwind the oligonucleotide 12-13 
nucleotides in bacteria and 29 nucleotides in eukaryotes. Gap filling is carried out by DNA 
polymerase using the complementary strand of DNA as a template. The nick is sealed by 
DNA ligase. 
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recruited to the nick sites, resulting in dissociation of the oligomer and UvrC. 

This gives access to DNA polymerase I to the 5' site hydroxyl residue, 

allowing it to synthesises DNA and repairs the gap; DNA ligase then seals the 

resultant nick (Petit & Sancar 1999). 

 

NER in eukaryotes has the same overall steps as bacteria however a more 

complex set of proteins are involved. Eukaryotes also contain two sub 

pathways of NER; global genomic repair (GGR), which is used throughout the 

genome, and transcription coupled repair (TCR), which specifically deals with 

lesions that arrest the RNA polymerase in the transcribed strand of expressed 

genes (Hanawalt 1994). TCR is also found in bacteria. 

 

The UvrABC counterpart in humans is composed of 16-17 proteins that are 

organised into 6 repair factors: XPA, RPA, TFIIH, XPC-RAD23B, XPG and 

ERCC1-XPF (Scharer 2013). In TCR, the NER recognition signal is a stalled 

RNA polymerase upstream (5’) of the DNA lesion and it is thought that the 

CSA and CSB proteins (which are mutated in Cockayne syndrome) are 

responsible for recruiting the rest of the NER factors (Costa et al 2003). By 

contrast in GGR, XPC-RAD23B is the initial damage recognition factor with 

the XPC subunit recognising thermodynamically destabilised duplex DNA. 

Additionally, DDB1/DDB2 can recognise UV damaged DNA which in turn 

activates ubiquitin ligase that recruits XPC. RAD23B acts to stabilise XPC and 

dissociates from XPC upon damage recognition (Sugasawa et al 1996). The 

TFIIH factor consisting of XPB, p52, p8, p62, p34, p44 and CAK (cyclin 

activated kinase) subunits is then recruited to the XPC-RAD23B site. The two 

helicase subunits XPB and XPD are involved in unwinding the DNA around 

the lesion in a 3' to 5' and 5' to 3' direction respectively (Oksenych & Coin 

2010, Tapias et al 2004). The association of XPD with the lesion allows for the 

assembly of the pre-incision complex consisting of XPA, RPA and XPG. XPA 

is thought to be a regulatory factor that maintains the other proteins in the 

complex while the single-strand DNA binding protein RPA co-ordinates 

excision and repair synthesis events. The endonuclease XPG makes a 3' 

incision generating a hydroxyl group that is used to initiate repair synthesis, 
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followed by a 5' incision by ERCC1-XPF. The dual incision results in a 24-

32mer oligonucleotide containing the damaged DNA which then disassociates.  

The DNA is then filled by DNA polymerases δ and ε and assisted by the 

sliding clamp PCNA and the clamp loader RFC, and the resulting nick is then 

sealed by DNA ligase I.  

 

Genomic sequencing has revealed that most archaea possess homologues of the 

eukaryotic NER proteins such as XPF, XPG, XPB, and XPD (Grogan 2000, 

White 2003). However, there are examples of archaea missing one or both of 

the XPB and XPD, suggesting that these two helicases do not have an essential 

cooperation during archaeal NER. Archaeal and eukaryotic XBP proteins share 

around 25% to 30% sequence identity and most crenarchaea contain multiple 

copies (Richards et al 2008a). The archaeal nuclease Bax1 co-transcribes with 

XPB and is thought to be the archaeal equivalent of the eukaryotic XPG. Two 

forms of archaeal XPF have been found: a long form containing nuclease and 

helicase domains known as Hef that is specific to the euryarchaea, and a short 

form found in crenarchaea and thaumarchaea that contains a nuclease domain 

only. (Komori et al 2004, Nishino et al 2005). The crenarchaeal XPF is 

dependent on the sliding clamp PCNA for its catalytic activity (Roberts et al 

2003). The flap endonuclease NucS has also been suggested to play a role in 

archaeal NER, however its distribution amongst the archaea is sparser than that 

of XPF (Ren et al 2009). 

 

Some mesophilic methanogens such as Methanobacterium 

thermoautotrophicum and some halophiles such as the H. volcanii possess 

orthologues of the bacterial UvrABC system (Costa et al 2003, Lestini et al 

2010). Furthermore, some archaea such as Methanosarcina mazei, have a 

mixture of bacterial UvrABC and eukaryotic XPF orthologues (White 2003). A 

possible explanation for this observation is that the original NER pathway in 

archaea was eukaryotic in nature but has been replaced in some species by a 

more bacterial system through lateral gene transfer (Kelman & White 2005). 

This could mean that two NER pathways are acting in tandem or that archaeal 

NER proteins have additional functions within the cell.  However, since an 
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archaea-specific NER system has not been demonstrated in vivo or in vitro, 

NER in the archaea is largely unknown.  

 

It is unclear how DNA damage is detected in the archaeal NER systems that do 

not possess the UvrABC system, since no XPC-RAD23B homologues have 

been identified. It has been suggested that the single stranded binding protein 

SSB (also known as RPA in eukarya and some archaea) could fulfil this role. 

RPA is seen to be upregulated in Halobacterium after treatment with UV 

radiation, and SSB in S. solfataricus is capable of recognising DNA damage 

such as mismatches, photoproducts and bulky lesions in vitro (Cubeddu & 

White 2005, McCready et al 2005).   

Mismatch repair  
 
DNA mismatch repair (MMR) maintains genomic stability by correcting 

mismatched base pairs that arise mainly from errors during DNA replication. 

The overall mechanism and proteins involved in MMR are highly conserved 

across most species of bacteria and eukaryotes, but only in a limited set of 

archaeal species. Post-replicative MMR is typified by ‘long-patch’ mechanism 

where a long oligonucleotide is excised during repair. MMR in Escherichia 

coli increases the accuracy of DNA replication by 20 to 400 times (Schaaper 

1993). In humans, mutations and epigenetic silencing of the MMR proteins 

have been linked to hereditary non-polyposis colon cancers (Jiricny 2006). 

 

Two types of MMR mechanisms are known; the first mechanism appears to be 

specific to E. coli and other closely related bacteria; mismatched DNA in this 

system is recognized by the absence of DNA methylation at GATC sequences 

to restrict DNA repair to the newly synthesised DNA (Fukui 2010). 

Immediately following DNA synthesis, the daughter strand remains 

unmethylated for up to 2 minutes, due to the slow rate of methylation by the 

Dam methylase. The MutS homodimer recognises the mismatched DNA, 

which in turn recruits MutL to activate the restriction endonuclease MutH. 

MutH nicks the unmethylated DNA strand at a hemimethylated GATC site and 

generates an entry point for the excision reaction to occur (Smith & Modrich 

1996). The error-containing strand is nicked by the exonucleases ExoVII or 
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RecJ at 5' to the DNA damage or by ExoI or ExoX at 3' to the DNA damage, 

the oligonucleotide is then unwound by the UvrD helicase (Li 2008). The new 

oligonucleotide is synthesised by DNA polymerase III and the nick is sealed by 

DNA ligase. Homologues of the E. coli MutS and MutL are present in most 

bacteria and eukaryotes, however no widespread presence of the MutH 

homologue has been identified. 

 

The second MMR mechanism is employed by eukaryotes and the majority of 

bacteria, in this mechanism errors in the mismatched DNA duplex are 

recognised by strand discontinuities. In eukaryotes, the MutSα sliding clamp 

recognises base-base mismatches and insertions/deletions of up to two 

nucleotides, and the sliding clamp MutSβ can identify larger nucleotide 

insertions and deletions (Jiricny 2006). MutLα then nicks at either the 3' or 5' 

side of the mismatch on the discontinuous DNA strand (Kadyrov et al 2006, 

Modrich 2006). This DNA segment is then excised by EXO1 exonuclease in 

concert with ssDNA binding protein RPA, a new oligonucleotide is synthesised 

by DNA polymerase δ and the gap is sealed by DNA ligase 1 (Genschel & 

Modrich 2009). A similar process occurs in bacteria lacking MutH; mispaired 

bases and short insertion and deletion loops are recognised by MutS and nicked 

by MutL. The error-containing DNA is removed by the helicases such as UvrD 

and RecJ, and ExoI exonucleases with cooperation from single stranded DNA 

binding protein SSB. DNA polymerase III fills the gap and the nick is sealed 

by DNA ligase. 

 

Several hyperthermophilic archaea such as Sulfolobus spp. exhibit effective 

mutation-avoidance mechanisms in response to DNA damaging agents, 

however hyperthermophiles on a whole lack any MMR machinery with 

homology to the eukaryotic and bacterial MutS and MutL system (Grogan 

2004). This suggests that an alternative repair pathway is present in these 

archaea. In fact phylogenetic analysis has detected MutS and MutL orthologues 

in only nine halophilic and methanogenic archaeal species from the phylum 

Euryarcheaota, which appear to have arisen from bacteria via horizontal gene 

transfer (Lin et al 2007). The newly discovered endonuclease EndoMS which 
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is also known as NucS from Pyrococcus furiosus is capable of cleaving 

mismatched bases, suggesting the presence of a novel archaeal mismatch repair 

mechanism initiated by double strand breaks (Ishino et al 2016). H. volcanii 

encodes two homologs of MutL and four of MutS, which have been shown to 

function in MMR in H. volcanii (Adit Noar, Tel Aviv University and Stéphane 

Delmas, Sorbonne University, Paris, personal communication). 

 

1.4.2.3 Double strand break repair 
 
DNA double strand breaks (DSBs) can be induced by ionising radiation or by 

naturally-occurring metabolic products and reactive oxygen species that 

accumulate within the cell. DSBs are also intentionally formed during meiosis 

in eukaryotes and during V(D)J recombination for the development of T-cells 

and B-cells in the vertebrate immune system (Davis & Chen 2013). Failure to 

correctly repair DSBs results in chromosome breakage and rearrangements, 

which leads to cellular death and predisposition to cancers and immune system 

disorders (Hefferin & Tomkinson 2005).  

 

Three repair pathways are involved in the repair of double strand breaks: non-

homologous end-joining (NHEJ), microhomology-mediated end joining 

(MMEJ) and homologous recombination (HR), Figure 1.11. End joining is a 

rapid way to repair DNA breaks but these mechanisms are inherently error-

prone. Converesely, HR is a slower method of DNA repair but is more accurate 

as an undamaged homologous DNA sequence is used as a template for repair.  
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Figure 1.11: Double-strand break repair pathways.  Three pathways exist to repair double 
strand breaks. During non-homologous end joining (NHEJ) Ku binds to the dsDNA ends at the 
site of a double strand break and recruits bridging factors as well as polymerases and 
exonucleases to process the DNA ends. DNA ends are then ligated to repair the DSB. During 
microhomology-mediated end joining (MHEJ) DNA ends are processed to reveal 
microhomologies, which then align and anneal. Gaps are filled by translesion polymerases and 
then the gap is ligated. During homologous recombination DNA ends are resected and 
recombinases are loaded onto the ssDNA. The recombinase-DNA filament invades an intact 
homologous DNA molecule and uses it as a template for DNA repair. 

 
Double-strand break repair pathway choice 
 

In eukaryotes the choice between HR and NHEJ is largely influenced by the 

cell cycle. In S and G2 phase, HR predominates because following DNA 

replication, a homologous sister chromatid available as a template for repair. 

NHEJ occurs in all stages of the cell cycle but unlike HR and MMEJ, NHEJ 

does not involve end resection and so it is the preferred mechanism in G1 

phase when end resection activity is low within the cell (Ira et al 2004). The 

choice between NHEJ and MMEJ is largely influenced by the NHEJ DNA 

tethering protein Ku and the cell cycle; Ku has a higher affinity for DNA ends 

than the MMEJ equivalent PARP1, explaining the predominance of NHEJ over 

MMEJ.  

 

The Mre11-Rad50 complex also plays a role in DNA repair pathway choice. 

Mre11 is a single stranded DNA nuclease and Rad50 is an ATPase with a long 
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coiled domain; this coiled domain contains a zink hook motif at the tip 

allowing for intermolecular interactions between other Rad50 molecules, DNA 

or chromosomes (de Jager et al 2001, Hopfner et al 2002, Paull & Gellert 

2000). In vertebrates the Mre11-Rad50 complexes with Xrs2 or with Nbs1 in 

yeast. Archaea contain a homologue of Mre11Rad50 homologue but not Xrs2. 

The Xrs2/Nbs1 protein mediates interactions between the Mre11Rad50 

complex and other DNA repair proteins and acts to recruit Mre11-Rad50 to 

sites of DNA damage through interactions with histone γH2AX (Kobayashi et 

al 2002). The Mre11 complex tethers DSBs and controls end-resection; if end-

resection occurs, then homologous recombination or MMEJ is promoted and 

limited end processing promotes NHEJ (Symington & Gautier 2011). In H. 

volcanii Mre11-Rad50 restrains recombination at double strand breaks 

allowing time for pathways such as MMEJ to repair the DNA ends rather than 

HR (Delmas et al 2009). 

 

In mammalian cells, the ATM (ataxia-telangiectasia mutated) and ATR (ATM-

and Rad3-Related) proteins alongside protein kinases can also direct DNA 

repair pathways. ATM detects DNA double strand breaks leading to the 

recruitment of the Mre11-Rad50-Nsb1 complex (Marechal & Zou 2013). ATR 

interacts with ATRIP (ATR-interacting protein) to sense ssDNA generated by 

processing of DSBs, as well as ssDNA present at stalled replication forks. Both 

ATM and ATR initiate signalling cascades that involve the checkpoint kinases 

Chk1 and Chk2 that initiate a secondary wave of phosphorylation events in a 

large singling network (Matsuoka et al 2007). One phosphorylation target is 

BRCA1 that is a promoter of homologous recombination (Sancar et al 2004). 

 
Non-homologous end-joining  

 

Non-homologous end-joining (NHEJ) has the potential to be less accurate at 

repairing DSBs. This pathway often results in minor changes of the DNA 

sequence at the break site and occasionally leads to the joining of previously 

unlinked DNA molecules, leading to chromosomal rearrangements (Davis & 

Chen 2013).  Conserved across eukaryotes, some bacteria and a very limited 

number of archaea, the basic mechanism of NHEJ involves the recognition and 
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bringing together of broken ends of DNA followed by a processing and 

ligation of the ends and disassembly of the NHEJ complex.  

 

In eukaryotes, DSBs are first recognised and bound by the Ku heterodimer, 

composed of Ku70 and Ku80 subunits which form a ring shaped structure that 

encircles the dsDNA molecule (Walker et al 2001). At both ends of the DSB, 

Ku70/80 forms a scaffold to which the NHEJ factors are recruited (Davis & 

Chen 2013). The first NHEJ factor is the DNA-dependent protein kinase 

catalytic subunit (DNA-PKcs) that is involved in forming a synaptic complex, 

which brings both of the DNA ends together. DNA polymerases μ and λ fill in 

or exonucleases such as Artemis remove single stranded non-compatible 

overhangs, this is the step where loss of nucleotides can occur. The ligase IV 

and XRCC4 complex then catalyses the ligation of the processed ends which is 

aided by the XRCC4-like factor (XLF). 

 

Ku is a major marker for the presence of a NHEJ pathway, however Ku genes 

are not present in all bacteria and are absent from the E. coli K12 strain. No 

obvious phylogenetic pattern is observed between bacterial species that possess 

or lack NHEJ apparatus, suggesting that NHEJ systems are acquired by 

horizontal gene transfer events (Bowater & Doherty 2006). At 30-40 kDa, 

bacterial Ku proteins are smaller than the eukaryotic counterparts and are 

predominantly homodimeric (Aravind & Koonin 2001, Doherty et al 2001). 

Bacterial Ku genes are usually found in operons alongside DNA dependent 

ligases such as LigD, forming a species-specific NHEJ complex (Weller et al 

2002). The Ku associated ligases have shown to contain Pol X family 

polymerase domains and exonuclease activity, and are suggested to play a role 

in processing non-compatible DNA ends (Della et al 2004, Pitcher et al 2005). 

 

Some NHEJ like genes have been identified in archaea, homologues of 

bacterial LigD phosphoesterase domain have been observed in seven species of 

the Euryarchaeota (Nair et al 2010, Smith et al 2011). Homologues of Ku have 

also been identified in several species of archaea such as Archaeoglobus 
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fulgidus, however the NHEJ apparatus appears to be absent in H. volcanii 

(Aravind & Koonin 2001, Bowater & Doherty 2006).  
 
Microhomology-mediated end joining 
 
An alternative mechanism of NHEJ is known as microhomology-mediated end 

joining (MMEJ), which involves the alignment and annealing of 

microhomologous sequences at the ends of a DNA break before ligation. 

MMEJ is error prone and can lead to deletions, insertions and chromosomal 

translocations at the DNA break point. 

 

Similar to the role of Ku in NHEJ, poly ADP-ribose polymerase 1 (PARP1) 

tethers DNA ends at the site of DSBs, which are then resected in a 5' to 3' 

direction to expose microhomologous sequences. In mammalian and 

Saccharomyces cerevisiae cells, the Mre11–Rad50–Nbs1 and Mre11–Rad50– 

Xrs2/Sae2 complexes are responsible for the initiation of end resection by 

nicking the strand at the site of a DSB and carrying out 3'-5' resection, a 

ssDNA tract is then created by the 5'-3' exonuclease Exo1 (Symington & 

Gautier 2011). In mammalian cells an 1-18 nt ssDNA tract is formed during 

end resection and the ssDNA is maintained by binding of RPA (Sfeir & 

Symington 2015). Following annealing of resected ends by complementary 

base pairing, ssDNA gaps are filled in by the translesion DNA polymerase 

Polθ. Polθ, encoded by the gene POLQ, contains a C-terminal proof reading 

deficient polymerase domain and an N-terminal helicase domain that shows 

homology with the human Hel308 helicase HelQ. The helicase domain has 

shown to be critical in the regulation of DNA end joining (Ceccaldi et al 2015, 

Chan et al 2010, Marini & Wood 2002). Hel308 will be discussed in further 

detail in Section 1.7. After DNA synthesis, heterologous 3' flaps are removed 

by the endonuclease XPF–ERCC1 complex and the DNA ends are ligated by 

DNA ligases Lig1 and Lig3. 

 

In some bacteria, the multidomain protein LigD composing of polymerase, 

nuclease and ligation domains carries out the majority of MMEJ (Pitcher et al 

2007). MMEJ is observed in H. volcanii where the Mre11-Rad50 complex 
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appears to prevent the repair of double strand breaks by homologous 

recombination and this promoting MMEJ (Delmas et al 2009).  Compared to 

eukaryotes, MMEJ is largely understudied in prokaryotes 
Homologous recombination 
 
Homologous recombination (HR) is considered to be an error-free mechanism 

to repair DNA double strand breaks. During homologous recombination a 

damaged DNA strand uses an homologous sister chromosome (usually in S or 

G2 phase cells) as a template. The understanding of HR is essential to this 

study, and the mechanism and role that HR plays in the repair of DNA lesions 

including DSBs and genomic stability will be discussed in further detail below. 

 

1.5 Homologous recombination  
 
Homologous recombination (HR) involves the genetic exchange between 

homologous DNA sequences and is regarded as an error-free mode of DNA 

repair. HR is critical for the repair of many types of DNA lesions such as 

double strand breaks, single strand DNA gaps and interstrand DNA crosslinks. 

HR is involved in the restart of stalled or broken replication forks, as well as 

for chromosomal pairing and exchange during meiosis (Michel et al 2001, 

Neale & Keeney 2006). The inability to repair DNA damage and resolve DNA 

replication stress in a timely fashion leads to genomic instability, which is a 

contributing factor to the development of cancer. For example, mutations in the 

BRCA1 and BRCA2 genes leads to a predisposition to breast and ovarian 

cancers (Venkitaraman 2002). Fanconi anaemia is a cancer predisposition 

syndrome, which is typified by the inability to repair DNA interstrand 

crosslinks and is caused by failures in FA proteins such as FancD1, FancD2 

and FancJ (Takata et al 2006). Mutations in the Bloom’s syndrome RecQ 

helicase BLM promotes excessive crossing over of sister chromatids leading to 

elevated levels of chromosomal rearrangements, genomic instability and a 

predisposition to cancer (Wu & Hickson 2003). Mutations in the Werner’s 

syndrome RecQ helicase WRN results in defects in HR resolution and cell 

division, leading to genetic instability, cancer susceptibility and premature 

aging (Saintigny et al 2002). Since unrestrained HR can lead to undesirable 

DNA rearrangements, many regulatory mechanisms have evolved to ensure 
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that HR occurs accurately and at the correct time and place within the cell, this 

is discussed later in Section 1.4.3.6. 

 
The overall mechanism of HR is conserved across all three domains of life and 

can be broken down in to three main stages: pre-synapsis, synapsis and post-

synapsis. During pre-synapsis, DNA is resected to generate ssDNA 3' 

overhangs and recombinases are loaded. In synapsis, recombinases polymerise 

onto the ssDNA, which then undergoes a homology search to find an intact 

homologous DNA sequence. Once found, strand exchange is catalysed and the 

ssDNA molecule invades the dsDNA homologous sequence forming a D-loop. 

During the final stage of post-synapsis, the DNA complex is resolved allowing 

the repair of DNA or restart of the stalled replication fork. The resulting 

products of HR can either be crossover, where an exchange of genetic material 

occurs between the two DNA molecules, or non-crossover where no genetic 

exchange occurs, Figure 1.12. A detailed account of each stage of homologous 

recombination will be discussed in Sections 1.4.3.1 to 1.4.3.3.  

 
Figure 1.12: Homologous recombination pathways. A schematic of homologous 
recombination using the repair of double strand breaks as an example. Recombination occurs 
in three stages: pre-synapsis, synapsis and post-synapsis. Yellow spheres indicate 
recombinases, dashed lines indicate newly synthesised DNA, Orange arrowheads indicate 
cleavage events.   
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1.5.1 Pre-synapsis  
 

During pre-synapsis, dsDNA is resected in a 5' to 3' direction to generate 

ssDNA 3' overhangs. Recombinases are loaded onto the 3' ssDNA tails 

displacing the single stranded binding proteins; the recombinase in bacteria is 

RecA, in eukaryotes it is Rad51 (DMC1 during meiosis) and in archaea it is 

RadA, Figure 1.13. 
 

 

 

 

 

 

 
Bacterial pre-synapsis 
 
HR in E. coli can either be initiated by the RecBCD or by the RecFOR 

pathway. Both pathways generate ssDNA onto which the bacterial 

recombinase RecA is loaded prior to invasion of a homologous DNA molecule 

(Rocha et al 2005). RecBCD binds dsDNA ends and acts to repair DSBs, the 

RecBCD holoenzyme contains helicase and nuclease functions that unwind and 

degrade dsDNA until it reaches a χ site. A χ site is a regulatory DNA sequence 

(5'-GCTGGTGG-3') that acts to attenuate the 3' nuclease activity of RecBCD 

(Dixon & Kowalczykowski 1993). At the χ site the helicase activity of 

RecBCD is promoted to generate 3' ssDNA onto which the recombinase RecA 

is loaded (Kowalczykowski 2000, Singleton et al 2004). 

 

Figure 1.13 Homologous recombination pre-synapsis.  Displacement of single stranded 
binding protein and recombinase nucleoprotein filament formation upon 3' ssDNA tails 
following end resection of DSBs. Recombinase filament formation is a dynamic and reversible 
process. 
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RecFOR binds to gapped ssDNA and displaces single strand binding protein 

(SSB) to allow RecA binding (Morimatsu & Kowalczykowski 2003). If 

necessary, the endonuclease RecJ acts alongside RecFOR to enlarge the 

ssDNA region. In both the RecBCD and RecFOR pathways, RecA forms a 

filament with right-handed helical geometry, with six RecA molecules and 18 

nucleotides per turn  on the ssDNA that is able to slide along dsDNA molecule 

in search for homology during synapsis (Ragunathan et al 2012). 

 
Eukaryotic pre-synapsis 
 

In yeast, 3' ssDNA tails are generated via end resection by the 

Mre11/Rad50/Xrs2 (MRX) complex along with Sae2 and by the 

Mre11/Rad50/Nbs1 (MRN) complex along with CtIP in mammals (Jasin & 

Rothstein 2013). BRCA1 interacts with MRN and CtIP and promotes HR and 

SSA, suggesting that BRCA1 plays a role during end resection (Stark et al 

2004). If extensive resection is required, this is performed by the exonuclease 

Exo1 or by the helicase/nuclease Sgs1/Dna2 (Mimitou & Symington 2008).  

 

The eukaryotic homologue of bacterial RecA is Rad51, which is loaded on to 

ssDNA that has been generated from resecting 5' strands at DSBs or has arisen 

from perturbations in DNA replication. Rad51 displaces the already bound 

RPA with assistance from the recombination mediators Rad52, Rad54 and 

Swi5-Sfr2 (Benson et al 1998, Kurokawa et al 2008, Mazin et al 2010). In 

yeast the recombination mediator is the Rad55/57 heterodimer, which 

promotes the stability of the Rad51 presynaptic filaments (Krejci et al 2002, 

Sung 1997). BRCA2 is also suggested to be a recombinase mediator in 

mammals by promoting the assembly of Rad51 onto ssDNA in preference over 

dsDNA, and also aiding Rad51 in displacing RPA (Jensen et al 2010). Rad51 is 

loaded onto the ssDNA in a right-handed helical geometry, with six Rad51 

molecules and 18 nucleotides per turn (Chen et al 2008). The ssDNA within 

the nucleofilament is stretched by 50%, which aids in efficient homology 

search during synapsis (Klapstein et al 2004).  In eukaryotes, Dmc1 is the 

meiosis-specific recombinase that is able to displaces RPA and form filaments 
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upon ssDNA. This action catalyses HR between homologous chromatids at 

programmed DSBs during meiosis (Sehorn et al 2004). 

 
Archaeal pre-synapsis 
 

The eukaryotic HR initiating proteins Mre11 and Rad50 are conserved in 

archaea. In thermophilic archaea, Mre11-Rad50 is commonly found within an 

operon containing the hexameric helicase HerA and the 5' to 3' nuclease NurA 

(Constantinesco et al 2002, Constantinesco et al 2004, White 2011). In 

Pyrococcus furiosus Mre11-Rad50 was shown to generate short 3' overhangs 

on which the HerA-NurA complex initiates end resection from to generate 3' 

ssDNA tails (Hartman et al 2010). However in H. volcanii Mre11-Rad50 

appears to delay the repair of DSBs by HR, suggesting that Mre11-Rad50 acts 

to control the entry into the HR pathway following DNA damage (Delmas et al 

2009). Additionally, HerA and NurA are not present in H. volcanii. Once end 

resection has occurred, the SSB/RPA homologue binds to the ssDNA but must 

be displaced to allow the loading of the archaeal recombinase RadA.  The 

deletion of radA in H. volcanii leads to severe growth, DNA repair and 

recombination defects (Delmas et al 2009). Most archaeal species contain at 

least one copy of the RadA paralogue, RadB. RadB is not involved directly in 

strand exchange but does assist RadA in forming a nucleoprotein filament on 

ssDNA. Strains deleted for radB in H. volcanii show decreased levels of 

recombination and increased levels of sensitivity to DNA damaging agents, but 

to a lesser extent as a radA deletion (Guy et al 2006). Suppressor mutations 

S101P and A196V in RadA alleviate the phenotypic effect of a radB deletion, 

suggesting that RadB induces conformational changes in RadA. These changes 

promote RadA polymerisation on ssDNA during pre-synapsis, Figure 1.14. 

Furthermore, protein;protein interaction studies in Pyrococcus furiosus and H. 

volcanii have shown that RadA and RadB interact in vivo (Komori et al 2000, 

Wardell 2013). 
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Figure 1.14: ∆radB suppressors radA-S101P and radA-A196V. (A) Wild-type RadA may not 
be in the correct conformation to form a nucleoprotein filament on ssDNA. RadB may be 
required for efficient polymerisation. (B) RadA-S101P may lock RadA into a polymerisation-
competent position and therefore not require RadB. S101P is indicated by yellow star. (C) 
RadA-A196V increases the hydrophobicity of the RadA binding pocket, which could result in 
stronger hydrophobic interactions between RadA monomers, negating the need for RadB. 
A196V indicated by yellow arc. RadA core domain in blue and N-terminal domain in green. 
Adapted from (Li et al 2008, Wardell 2013). 

 

1.5.2 Synapsis  
 
The core reaction of strand exchange in homologous recombination occurs 

during synapsis. Strand exchange is catalysed by the recombinases, RecA in 

bacteria, Rad51/Dmc1 in eukaryotes and RadA in archaea. The recombinase 

facilitates a physical connection between the invading ssDNA and the 

homologous duplex DNA template, leading to the formation of a heteroduplex 

D-loop (McEntee et al 1979). In eukaryotes, the homology search catalysed by 

the Rad51 ssDNA filament is assisted by Rad54 and Rhd54, which facilitate 

the sliding of the ssDNA along homologous duplex DNA (Krejci et al 2012). 

 

1.5.3 Post-synapsis 
 

Recombination intermediates generated by strand exchange during synapsis are 

processed by several pathways, which will be described below. Resolution of 

homologous recombination leads to either a crossover product where genetic 

material is exchanged between two homologous DNA molecules or a non-

crossover product, the latter is also known as a gene conversion. 

 

1.5.3.1 Synthesis-dependent strand annealing 
 
One way to resolve recombination intermediates following strand invasion is 

by synthesis-dependent strand invasion (SDSA), Figure 1.15, which can occur 
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during both mitotic and meiotic DSB repair in eukaryotes (San Filippo et al 

2008). It is suggested that there are two waves of repair during HR; the first is 

SDSA that leads to only non- crossover products which reduces the likelihood 

of genomic rearrangements. The second wave follows the route of double 

strand break repair (DSBR) forming Holliday junctions and is mainly 

characterised by crossover products. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
During SDSA the extended D-loop is reversed through the action of helicases 

leading to the annealing of the newly synthesised DNA strand with the resected 

strand of the second end of the DSB. In yeast, the Srs2 helicase dissociates 

bound Rad51 from D-loops and therefore is thought to promote SDSA. It is 

Figure 1.15: Synthesis-dependent strand annealing (SDSA). Following strand 
invasion, DNA is synthesised and helicases act to disrupt the recombinase 
nucleoprotein filament. Resulting in the disassembly of the D-loop. The gaps are filled 
and ligated resulting in a non-cross over product. 

Non-crossover
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suggested that Srs2 activity is directly stimulated by Rad51 bound to dsDNA 

(Ira et al 2003, Krejci et al 2003, Paques & Haber 1999). The yeast Mph1, a 

homologue of the human FANCM translocase, is able to disrupt Rad51 coated 

D-loops; Mph1 in particular is able to displace the extended primers during 

DNA synthesis within D-loops (Prakash et al 2009).  The antirecombinase 

RecQ helicases RecQ5, BLM and FANCJ are also able to disrupt Rad51 

filaments, suggesting that they could promote the resolution of recombination 

intermediates via the SDSA pathway (Bugreev et al 2007, Hu et al 2007, 

Sommers et al 2009) 

 

1.5.3.2 Double-strand break repair 
 
A second way to resolve recombination intermediates is by the double strand-

break repair (DSBR) pathway. This mechanism involves the capture of the 

second end of the DSB, which in eukaryotes depends on the Rad52 mediator 

protein, and the formation of a double Holliday junction (dHJ) (McIlwraith & 

West 2008). A Holliday junction is a branched structure composed of two 

linked DNA duplexes in a cross-shaped configuration. To complete DNA 

repair, these two DNA molecules require separating. This occurs either by 

cleavage by endonucleases that resolve the HJ or by helicase unwinding which 

leads to dissolution of the HJ. 
 
Holliday junction resolution  
 
Holliday junctions are resolved by endonucleases (also known as resolvases) 

that are specialised to cleave branched DNA structures. If these resolvases 

cleave a dHJ in the same sense this results in non-crossover DNA products 

whereas if cleavage occurs in opposite sense strands of a dHJ then crossover 

products are formed, Figure 1.16. 
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In E. coli, Holliday junctions are resolved by the RuvABC complex. The RuvA 

protein constrain the junction in a square planar configuration and the RuvB 

helicase catalyses branch migration, Figure 1.17. RuvC cleaves the Holliday 

junction intermediates into duplex products at specific target sequences by 

making a dual symmetric incision (Sharples et al 1999). Symmetric cleavage 

results in perfect nicked duplexes that can be directly ligated (West 1997). 

Homologs of RuvA and RuvB are highly conserved across bacteria, however 

RuvC is less conserved. It has been suggested that species lacking RuvC could 

resolve Holliday junctions using RusA. The helicase RecG can also perform 

branch migration, processing of stalled replication forks and plays a role in the 

directing of DNA synthesis during HR (Azeroglu et al 2016, Singleton et al 

2001) 

 

 

 

 

Opposite sense cleavage

Second end capture
(dHJ formation)

Non-crossover Crossover

Same sense cleavage

Resolvase

Figure 1.16: Resolution of double-Holliday junctions. Same sense cleavage by resolvases 
results in a non-crossover recombination event. Opposite sense cleavage results in the 
production of a crossover recombination event. 

Figure 1.17: Branch migration. Helicases migrate the Holliday-junctions along the duplex. 
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HJ resolution in eukaryotes is not as straightforward as that catalyzed by the 

RuvABC system in bacteria. Multiple Holliday junction resolution pathways 

are present in eukaryotes and their use depends on the species. A number of 

DNA endonucleases have been proposed to carry out Holliday junction 

resolvase activity in eukaryotes, such as: Mus81–Mms4 (Eme1), Slx1–Slx4 

(BTBD12/Mus312), XPF– ERCC1, Yen1 (GEN1) and Sgs1/MutLγ/ExoI 

(Schwartz & Heyer 2011). The resolution of joint DNA complexes is thought 

to be a complex and multistep process where HR intermediates are nicked in 

sequential steps by endonucleases (Matos et al 2011).  

 

Hjc is an archaeal HJ resolving endonuclease and has shown to have analogous 

resolving properties to the E. coli protein RuvC. Like to RuvC, Hjc cuts 

Holliday junctions symmetrically (Bolt et al 2001) and the Hje endonuclease in 

Sulfolobus solfataricus has shown to resolve four-way DNA junctions by 

introducing a pair of nicks in the stacked-X form of the Holliday junction. Hjr 

from Pyrococcus furiosus on the other hand is able to cleave all four arms of a 

Holliday junction (Kvaratskhelia et al 2001). In addition to Hjc, H. volcanii 

contains the second Holliday junction nuclease Hef. Neither Hjc or Hef is 

essential, and strains deleted for either nuclease shows no growth defects and 

only mild sensitivity to MMC. However either nuclease becomes essential for 

cell survival when the other is deleted, suggesting a redundancy in functions of 

Hjc and Hef. Hjc acts exclusively in the HR pathway whereas Hef does not 

(Lestini et al 2010).  

 
Asymmetric cleavage  
 
A second route of resolving Holliday junctions involves the asymmetric 

cleavage of HR intermediates. This step occurs before a double HJ is ligated 

and results in crossover DNA products, Figure 1.18. 
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In eukaryotes, the endonuclease module Slx1–Slx4 generates a nicked Holliday 

junction intermediate that can then be targeted by a second endonuclease 

complex: Mus81-Eme in fission yeast or by Mus81-Mms4 in budding yeast 

(Nishino et al 2005, Schwartz & Heyer 2011, Svendsen et al 2009). This 

asymmetric cleavage results in gapped duplex DNA crossover products that are 

then filled in by DNA polymerases and ligated.  

 
The Mus81 homologue in archaea is Hef, which is able to cleave flaps and 

forked structured DNA. Hef is homologous to FANCM and consists of an N-

terminal helicase domain and a C-terminal nuclease domain linked by a helix-

hairpin-helix DNA binding domain, and acts to resolve Holliday junctions by 

forming homodimers (Komori et al 2002, Meetei et al 2005). Hef in H. 

volcanii is shown to be essential in backgrounds where the Holliday junction 

resolvase Hjc is deleted (Lestini et al 2010). Hef was also shown to form 

increased amounts of localised foci under replication stress suggesting that Hef 

may enhance replication fork stability by directly interacting with collapsed 

replication forks (Lestini et al 2013). 
 

Figure 1.18: Asymmetric cleavage of D-loops. A single Holliday junction is cleaved 
asymmetrically and the D-loop is then unwound. A second asymmetric cleavage event 
occurs followed by DNA synthesis and ligation, resulting in a crossover DNA product. 

 

Crossover

D-loop 

Cleavage and 
unwinding of HJ

Second cleavage 
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Holliday junction dissolution  
 
An alternative mechanism to process double Holliday junctions is by 

unwinding of the structure using helicases to generate DNA hemi-catenanes, 

which are then processed by topoisomerases. This pathway does not rely on 

endonuclease action like in Holliday junction resolution methods and generates 

exclusively non-crossover DNA products, Figure 1.19 (Schwartz & Heyer 

2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
RecQ family 3' to 5' helicases are responsible for migrating dHJs to form DNA 

hemi-catenanes during Holliday junction dissolution. In E. coli this helicase is 

RecQ, in Saccharomyces cerevisiae it is Sgs1, in Schizosaccharomyces pombe 

it is Rqh1, and it is BLM in humans (Bizard & Hickson 2014). Defects in the 

BLM helicase cause Bloom’s syndrome, a disorder that leads to cancer 

predisposition. In Saccharomyces cerevisiae and humans the hemi-catenane is 

Figure 1.19: Dissolution of a double Holliday junction. Double holiday junctions can 
be migrated together by the action of two helicases to form a hemi-catenane. Once the 
two Holliday junctions have been merged the intermediate DNA complex is unwound by 
topoisomerases resulting in a non-crossover DNA product. 

Second end capture
(dHJ formation)

D-loop 
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then processed by the topoisomerases Top3 and TOPOIIIα respectively 

(Fasching et al 2015). In humans, the OB-fold proteins Rmi1 and Rmi2 

stabilise the topoisomerase in an open conformation that favours decatenation 

over relaxation of the DNA substrate (Bachrati & Hickson 2009, Bocquet et al 

2014). 

 

1.5.4 Regulation of Homologous Recombination 
 
Tight regulation of HR is essential as uncontrolled recombination can lead to 

aberrant chromosomal rearrangements. Furthermore, recombination can be 

harmful in certain situations, for example stalled replication forks may be more 

safely restored using translesion DNA synthesis. In some circumstances the 

nucleoprotein intermediates generated by HR are toxic and can cause cell cycle 

arrest and cell death (Krejci et al 2012). 
 
Negative regulators   
 

Several prominent negative regulators of HR are either DNA helicases or DNA 

translocases that act to antagonise recombinases such as Rad51, these are 

known as anti-recombinases, some of which are discussed here. 

 

In Saccharomyces cerevisiae, the 3' to 5' DNA helicase Srs2, which has 

homology to the E. coli helicase UvrD, is capable of dismantling Rad51 

filaments by promoting the displacement of Rad51 by RPA (Veaute et al 

2003). This mechanism prevents untimely or unwanted recombination. Srs2 

generally functions as a antirecombinase but also plays a role in promoting 

SDSA. This mechanism is not well understood, it is suggested that Srs2 could 

remove Rad51 filaments from D-loops, prevent second end capture (by Rad52) 

or collaborate with nucleases to cleave DNA tails and other intermediate 

structures (Krejci et al 2012). Additionally, Rad51 and Rad55/57 have been 

shown to antagonise Srs2 activity (Liu et al 2011). No mammalian homologue 

of the anti-recombinase Srs2 has been identified, however, other helicases have 

been shown to have similar functions such RecQ5, BLM and FANCJ. All of 
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these helicases have shown to be able to disrupt Rad51-ssDNA filaments 

(Bugreev et al 2007, Hu et al 2007, Sommers et al 2009).  

 

Sgs1 in yeast is a RecQ helicase, which is thought to directly dismantle pre-

synaptic filaments, inhibit aberrant invasion events and resolve recombination 

intermediates (Mankouri et al 2002, Oh et al 2007). The human orthologues of 

Sgs1 include the cancer-associated helicases BLM, WRN and RTS, which 

have demonstrated similar activities. The BLM homologue Mus309 in 

Drosophila melanogaster is able to free invading ssDNA from D-loops and 

channel it towards the strand annealing step in SDSA (Adams et al 2003, 

Bugreev et al 2007). 

 

The Hel308 homologue HELQ-1 from Caenorhabditis elegans, along with 

RFS-1, have also been shown to promote the disassembly of Rad51 filaments 

from strand invasion intermediates (Ward et al 2010). Hel308 helicase and its 

homologs will be discussed in further detail in Section 1.7. 

 
Positive regulators   
 

In mammals, the recombinase mediators BRCA2, Rad52, Rad54 and Swi5-

Sfr2 promotes the assembly of Rad51 onto ssDNA and aids Rad51 in 

displacing RPA (Jensen et al 2010). The archaeal recombinase mediator RadB 

facilitates the loading of RadA onto ssDNA to promote strand invasion and D-

loop formation. 

 

The Shu complex found in Schizosaccharomyces pombe promotes Rad51 

function during replication-associated repair but may also function to 

antagonise Srs2 (Krejci et al 2012, Mankouri et al 2007). 

 

The DNA-dependent ATPases, Rad54 and Rdh54/Tid1 regulate Rad51 by 

stabilising pre-synaptic filaments, stimulating Rad51 mediated strand invasion 

and promoting D-loop and HJ migration (Mazin et al 2010, Sung et al 2003). 
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1.6 Replication Fork Restart  
 

Faithful replication of the genome is crucial for accurate transmission of 

genetic information from generation to generation.  DNA lesions caused by 

endogenous or exogenous agents, or nicks in the leading strand, can cause 

replication forks to stall or collapse. The progression of a replication fork can 

also be hindered if it collides with a DNA-bound protein, for example stalled 

RNA polymerase. Survival of the organism is now dependant on removal of 

the obstruction and re-establishment of the replication fork. Several pathways 

are available to restart a stalled replication fork, which include the 

recombination dependent mechanisms of break-induced repair (BIR) and 

Holliday junction-mediated restart. Mechanisms of repair by homologous 

recombination are conservative but are complex as they involve the removal 

and subsequent reloading of the replication machinery. Replication forks can 

also be repaired using fork remodelling and fork resetting mechanisms that are 

independent of homologous recombination, Figure 1.20. 

 

 
 

 
 

 

 
 

Replication Fork
StallCollapse

dsDNA end 
processing

Break induced replication

Fork 
regression

Fork remodelling

Fork 

Fork resetting

dsDNA end 
processing

Non-crossover Crossover Non-crossover
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Figure 2.20: Replication fork restart pathways. Stalled replication forks can be restarted via 
several pathways such as the recombination-dependent Holliday junction-mediated restart and 
break induced replication (BIR) mechanisms. Stalled forks can be restarted by more direct 
recombination independent methods such as fork remodelling and fork resetting. Collapsed forks 
are repaired only via BIR. 
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1.6.1 Stalled fork processing 
 
Stalled forks can be processed by several different pathways to reset the 

replication fork. Stalled forks can be repaired by either homologous 

recombination dependent or independent methods.  

 
Fork regression  
 
Regression of a fork into a Holliday junction is one method of stabilising 

stalled replication forks, Figure 1.20. The four-way Holliday junction like 

intermediate formed by fork regression can be reset into a replication fork via 

recombination dependent and recombination independent mechanisms. 
 
In bacteria, the RecG helicase facilitates the regression/reversal of the 

replication fork to generate a Holliday junction intermediate termed a ‘chicken 

foot’. Regression of the replication fork allows access for endonucleases such 

as RuvC to cleave the Holliday junction. RuvAB has also been shown to 

regress replication forks and to completely unwind the Holliday junction 

intermediate (Gupta et al 2014). The paired nascent leading and lagging strand 

substrates generated by the action of either RuvC or RuvAB are then used to 

reform the replication fork via the break-induced replication (BIR) pathway, 

which will be discussed in further detail below. 
 
In eukaryotes the Bloom’s syndrome and Werner’s syndrome helicases BLM 

and WRN, respectively, as well as FancM are capable of stabilising stalled 

replication forks by facilitating fork regression into a Holliday junction (Gari et 

al 2008, Machwe et al 2006). BLM could also act to repress the formation of 

aberrant recombination intermediates at stalled forks (Ralf et al 2006). The 

ssDNA annealing helicase SMARCAL1 assists in stabilising stalled replication 

forks by re-annealing long stretches of ssDNA generated during the stalling 

process (Petermann & Helleday 2010). The Rad5 DNA helicase in 

Saccharomyces cerevisiae has shown fork regression activity by unwinding 

and annealing the nascent and parental strands of replication fork structures 

(Blastyak et al 2007). 
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The Hel308 homolog Hjm from Sulfolobus tokodaii, an archaeon belonging to 

the Crenarchaeota, displays fork regression activity in vitro. Furthermore, in 

Pyrococcus furiosus Hjm shows in vitro Holliday junction migration activity 

suggesting that Hjm may have a similar function to the bacterial RecG at 

targeting replication forks and forming Holliday junctions (Fujikane et al 2006, 

Li et al 2008). The branch migration of activity of Hjm is poor compared to its 

activity in the unwinding of the lagging strand in replication forks or D-loops. 

The archaeal FancM homologue Hef contains an N-terminal helicase, which 

has shown to be able to regress the branch point of a replication fork stalled on 

the leading strand (Komori et al 2004).  
 
Fork remodelling  
 
Following regression, the fork can be reversed by helicases to re-establish 

replication; this is a direct method of replication fork restart that is 

recombination-independent, Figure 1.20.  In bacteria, the helicases RecG and 

RecQ are able to reverse replication fork regression in vitro, suggesting that 

they are capable of resetting replication forks (Manosas et al 2013, McGlynn & 

Lloyd 2000, McGlynn & Lloyd 2002a). In addition to generating regressed 

replication forks, the eukaryotic helicases BLM and WRN may also reverse the 

formation of Holliday junction-like structures via their HJ migration activities, 

thus promoting replication fork restart (Constantinou et al 2000, Karow et al 

2000). FancM in eukaryotes and the archaeal FancM homologue Hef are 

capable of migrating Holliday junctions and may act in the reversal of 

regressed forks during fork resetting (Atkinson & McGlynn 2009, Lestini et al 

2010, Whitby 2010). 
 
 
Fork resetting  
 
Fork resetting is a mechanism involving the degradation of the regressed DNA 

strands to restore the replication fork, Figure 1.20. In E. coli, nascent DNA 

strands at replication forks have seen to be partially degraded by the nuclease 

RecJ and this is aided by the helicase RecQ (Chow & Courcelle 2007). In 

humans, the Dna2 nuclease/helicase and the WRN helicase have been shown to 

interact at reversed replication forks to degrade dsDNA with a 5' to 3' polarity. 
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The human RecQ1 helicase inhibits Dna2 to prevent excessive nascent strand 

degradation and is has been suggested that Dna2 plays a partially redundant 

role with the exonuclease Exo1 in the repair of replication forks (Karanja et al 

2012, Thangavel et al 2015). 
 
Holliday junction-mediated resetting  
 
 
Holliday junction like structures generated by fork regression can be 

reassembled into replication forks via two recombination dependent 

mechanisms. One mechanism is called Holliday junction-mediated resetting 

where the newly regressed DNA strand invades and recombines with the 

parental duplex DNA. Strand invasion is catalysed by recombinases and this 

process forms a double-Holliday junction. The replication fork is restored 

when the Holliday junction intermediates are resolved or dissolved as 

described in Section 1.4.3.5. 
 
 
Break-induced replication  
 
 
Break-induced replication (BIR) is a homologous recombination-dependant 

method of restarting stalled replication forks, Figure 1.20. DNA replication 

during BIR proceeds via a bubble-like replication fork that results in 

conservative inheritance of the new genetic material. The Pif1 helicase 

promotes DNA synthesis during BIR by stimulating DNA polymerase Polδ at 

D-loops (Saini et al 2013, Wilson et al 2013). After fork stalling, the 

replication fork or a regressed replication fork is cleaved via endonucleases to 

generate a one-ended DSB. In both instances, the DSB undergoes 5' end 

resection near the fork junction to generate 3' ssDNA end that is capable of 

invading the homologous template. Homologous recombination proteins 

process the double strand break and promote strand exchange. The enzymology 

of homologous recombination across all three domains of life is detailed in 

Section 1.4.3. The resolution of the Holliday junction intermediates by the 

endonuclease Mus81 restores the replication fork (Mayle et al 2015). Mutation 

rates as a result of BIR are around 1000 times higher than those seen during 

normal DNA replication (Sakofsky et al 2012). 
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In bacteria the cleavage of regressed replication forks is carried out by the 

RuvC complex following fork regression by RuvAB or RecG (Gupta et al 

2014, Seigneur et al 1998). In eukaryotes the exonuclease/endonuclease protein 

EEPD1 along with the end resection nuclease Exo1 and BLM enhances 5' end 

resection at stalled replication forks (Wu et al 2015). 5' end resection prevents 

the competing NHEJ pathway from repairing the double strand break and 

therefore channels the repair of a replication fork down a homologous 

recombination-dependant pathway. This is advantageous as NHEJ during 

replication fork repair could lead to aberrant fusing of dsDNA ends that are 

generated as intermediates during replication fork repair. In archaea, one-sided 

DNA breaks are thought to be generated by the nuclease Hef and the Holliday 

junction resolvase Hjc during the restart of replication forks (Komori et al 

2002, Komori et al 2004, Lestini et al 2010). 

 

1.6.2 Replisome reassembly  
 
In E. coli, origin-independent reassembly of the replisome is catalysed by the 

DNA structure-specific factors PriA and PriC. PriC facilitates the loading of 

the replicative helicase DnaB onto the lagging strand DNA of fork structures 

with large gaps on the leading strand; around 20 bp of ssDNA is required for 

efficient DnaB loading (Heller & Marians 2005a). If the initiation of the last 

Okazaki fragment on the lagging strand occurs close to the replication fork 

junction, the 3'-5' helicases Rep or PriA act to unwind the nascent lagging 

stand. This exposes enough single stranded DNA for PriC-mediated DnaB 

loading (Heller & Marians 2005b). If the blocked leading strand is located 

close to the fork junction, then replication can be initiated by a PriA-dependent 

mechanism (Gabbai & Marians 2010, Heller & Marians 2005a). PriA 

preferentially acts at fork structures with no gaps on the leading strand such as 

the junction of a D-loop; PriA, with PriB and DnaT, acts to load the replicative 

helicase DnaB to the displaced strand of the D-loop to reform the replisome. 

Following replisome reassembly by PriA, a leading strand priming event would 

allow replication to proceed downstream from the original blockage, similar to 

the PriC-dependent pathway. These methods of replication restart result in 
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ssDNA gaps on the leading strand of DNA, which can be repaired by 

homologous recombination. 

 

Unlike bacteria, eukaryotes and archaea contain multiple origins of replication; 

therefore other replication forks on the chromosome can act as a back up to 

rescue terminally-stalled replication forks (Ge et al 2007, Newman et al 2013). 

During replicative stress in eukaryotes, excess amounts of the replicative 

helicase MCM have been seen to activate ‘dormant’ origins of replication to 

alleviate replication pressures such as stalled replication forks (Ibarra et al 

2008). 

1.7 Helicases 
 
 

Helicases are ubiquitous enzymes that play a fundamental role in nearly all 

DNA and RNA processes including replication, recombination, DNA repair, 

transcription, translation and RNA splicing (Hall & Matson 1999, Matson et al 

1994).  

 

Helicases are molecular motors that catalyse the separation of two 

complementary strands of a nucleic acid duplex, a reaction dependent on 

energy derived from nucleoside 5’ triphosphate (NTP) hydrolysis, Figure 1.21 

(Hall & Matson 1999). Once loaded onto single stranded DNA or RNA, a 

helicase will translocate unidirectionally; based on the directionality of this 

translocation, helicases can be classified as 5'-3' or 3'-5' (Brosh 2013). 

 

 

 

 

 

 

 

Due to their essential roles in nucleic acid metabolism, helicases have been 

implicated in a range of human genetic disorders. The helicases XPB and XPD 

Figure 1.21: Helicase DNA/RNA unwinding. Strand separation of complementary 
DNA or RNA by a helicase (pink oval) is ATP dependant. 
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are part of the TFIIH transcription factor and play a role in nucleotide excision 

repair (NER). Mutations within these subunits are associated with the genetic 

disorders xeroderma pigmentosum (XP), which is typified by an extreme 

predisposition to skin cancer, in addition to Cockayne syndrome (CS) and 

trichothiodystrophy (TTD), which cause premature aging with profound 

neurological defects (Coin et al 1999, Fuss & Tainer 2011). BLM and WRN 

are 3' to 5' RecQ-family helicases that when mutated lead to the genetic 

disorders Bloom’s syndrome (BS) and Werner’s syndrome (WS), respectively 

(Mohaghegh et al 2001). BS is associated with phenotypes such as 

immunodeficiency, facial erythema, small body size and sub-fertility whereas 

in WS loss of skin elasticity, development of cataracts and loss of 

subcutaneous fat is prevalent. In both syndromes, individuals are susceptible to 

cancers. At the cellular level, a high degree of genetic instability is observed in 

BS and WS patients, for BS a high frequency of homologous recombination 

events occur and in WS illegitimate recombination and high frequency of 

chromosomal deletions are seen (German 1993, Shen & Loeb 2000). The 

FANCM protein contains an N-terminal helicase domain and a C-terminal 

nuclease domain and is orthologous to archaeal Hef (Meetei et al 2005). 

FANCM promotes branch migration of Holliday junctions and replication 

forks, and mutations in this helicase lead to Fanconi anemia (FA), which is 

characterized by cancer predisposition developmental defects, bone marrow 

failure and sensitivity to DNA crosslinking agents (Gari et al 2008). 

1.7.1.1 Helicase structure 
 
Helicases are ordered into six superfamilies (SF1-6), the classification of 

helicases into these superfamilies is based on sequence and organisation of 

nine signature motifs designated Q, I, Ia, Ib, II, III, IV, V and VI. Motifs I and 

II are more commonly known as the Walker A and Walker B ATPase motifs, 

respectively (Gorbalenya & Koonin 1993, Singleton et al 2007, Tuteja & 

Tuteja 2004). The majority of helicases belong to SF1 and SF2; these helicases 

are typically monomeric and mostly have a 3′ to 5′ directionality. In these 

superfamilies, the Walker A and B motifs are highly conserved and the other 

motifs are less so. Helicases from SF3-6 usually form hexameric rings. SF3 
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enzymes are commonly found in DNA or RNA viruses and contain only 

Walker A and B motifs and a SF3 specific motif III (Singleton & Wigley 

2002). SF4 have a 5′ to 3′ polarity and act as replicative helicases, in bacteria 

SF4 helicases associate with primases (Singleton et al 2007). The Rho helicase 

is the SF5 helicase and is responsible for the termination of transcription in 

bacteria by binding to a specific sequence on the nascent RNA and then 

unwinding the DNA/RNA hybrid (Kaplan & O'Donnell 2003). Finally, the 

eukaryotic replicative helicase MCM complex and the bacterial Holliday 

junction migration helicase RuvB are examples of SF6 helicases (Enemark & 

Joshua-Tor 2008). SF6 along with SF3 helicases also belong to the AAA+ 

family of ATPases (Neuwald et al 1999). The AAA+ superfamily is a large and 

functionally diverse superfamily of NTPases that are characterized by a 

conserved nucleotide-binding and a catalytic module; this AAA+ module 

contains an αβα core domain where the Walker A and B motifs are found 

(Snider et al 2008). 

 

The Q, I, Ia, Ib, II, III, IV, V and VI conserved motifs are usually clustered in a 

region of 200-700 amino acids termed the ‘helicase core’, which consists of 

two RecA-like folds (Tuteja & Tuteja 2004). The RecA folds contain the 

highly-conserved Walker A and Walker B boxes that are responsible for 

coupling the energy from ATP hydrolysis to conformational changes within the 

helicase that, in turn, drive DNA translocation and unwinding (Patel & Picha 

2000).  

 

It should be noted that the presence of these helicase motifs does not 

necessarily mean that the protein will be capable of unwinding DNA, the 

motifs are just a representative of NTP dependant translocases (Singleton & 

Wigley 2002). A summary of the helicase motifs can be seen in Table 1.3. 
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Table 1.3: A summary of the nine helicase signature motifs; Q, I, Ia, Ib, II, III, IV, V and 

VI. 

Motif Information Consensus 
sequence 

Reference 

Q Contains highly conserved 
glutamine. Regulates ATP 
binding and hydrolysis and 
affinity for RNA 

GAxxPoxxG (Cordin et al 2004) 

I (Walker A) Contains invariant lysine that 
contacts the β-phosphate of 
the ATP upon binding and 
hydrolysis. Couples 
hydrolysis to DNA unwinding 

AxxGxGKT (SF1), 
GxxxxGKT/S (SF2) 

(Hall & Matson 
1999, Pause & 
Sonenberg 1992). 

Ia Involved in ssDNA binding FTNKAA (SF1/SF2) (Caruthers & McKay 
2002, Marintcheva & 
Weller 2003) 

Ib Involved in RNA binding TPGR (Rocak & Linder 
2004) 

II (Walker 
B) 

Contains glutamic acid which 
is important for ATP 
hydrolysis 

DEAD (SF1/SF2) 

QxxR (RNA 
helicases) 

(Caruthers & McKay 
2002) 

III Coupling of ATP to 
unwinding by hydrogen bond 
and stacking interactions with 
the DNA bases.  

GDADQSIYRWR 
(SF1/SF2) 

(Caruthers & McKay 
2002) 

IV Makes direct contacts with 
ADP in the enzyme-ADP 
binary complex 

AVLYRTNAQSR 
(SF1/SF2) 

(Caruthers & McKay 
2002) 

V Contains invariant glycine 
involved in affinity for 
ssDNA 

HAAKGLE 
(SF1/SF2) 

(Caruthers & McKay 
2002) 

VI Mediates conformational 
changes associated with 
nucleotide binding 

VGITRAEE 
(SF1/SF2) 

(Gorbalenya & 
Koonin 1993) 

 

1.7.1.2 Mechanism of Helicase Unwinding  
 
The mechanism by which nucleotide strand displacement occurs can be 

classified as either active or passive. This classification depends on whether the 

helicase participates directly in the nucleotide-unwinding event or if it only 

acts to stabilize the resulting ssDNA. In the passive mechanism, DNA 

unwinding is achieved by binding of the helicase to ssDNA that has formed 

through fraying at an ssDNA/dsDNA junction. At the junction, the helicase 

traps the ssDNA and unwinding occurs as the helicase translocates (Lohman & 

Bjornson 1996). Active mechanisms of strand separation include the 

‘inchworm’ and ‘active rolling’ models.  
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Inchworm Model 

Most superfamily 1 and 2 helicases unwind according to the ‘inchworm’ model 

(Mackintosh & Raney 2006). The inchworm model requires coordinated 

alternate binding of nucleic acid at two different sites within the helicase. One 

site in the helicase is needed to bind ssDNA and the other binds both ssDNA 

and dsDNA. Figure 1.22. In this model, translocation and unwinding is coupled 

to ATP binding and hydrolysis, respectively.  ATP coupled conformational 

changes within the helicase destabilise and ‘flip out’ bases of the nucleic acid 

duplex in a manner that has been proposed to resemble a ‘Mexican wave’. 

Figure 1.22 Schematic of the inchworm model of helicase translocation and unwinding.  
The helicase is bound to an ssDNA tail; upon binding of ATP there is a conformational change 
within the helicase, which leads to unwinding of DNA at an ss/dsDNA junction. Following the 
hydrolysis of ATP the helicase returns to its starting conformation. (A) Schematic showing the 
relative movement of two RecA-like domains illustrated by hands (1A and 2A). The open hand 
represents a loose grip on the DNA and a closed hand represents a tighter grip. (B) Illustration 
of the ssDNA-binding region within the helicase. During DNA unwinding and translocation 
the conformational changes in the helicase causes nucleotide bases to flip between binding 
pockets of the helicase. The bases are numbered arbitrarily in the 3′ to 5′ direction. Adapted 
from (Singleton et al 2007, Velankar et al 1999). 

 

Co-operative Inchworm Model 

Some monomeric helicases show enhanced unwinding when multiple 

monomers function cooperatively, this is known as the ‘cooperative inchworm’ 

model. This can occur when the monomers encounter a protein block or duplex 

DNA, the cooperation between monomers increases unwinding and therefore 

increases the chance that the obstacle will be overcome The superfamily 1 T4 

phage helicase Dda is functional as a monomer but was seen to be more 

processive when acting co-operatively with other monomers to clear 

A

B
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streptavidin from biotin-labeled oligonucleotides (Mackintosh & Raney 2006), 

Figure 1.23. 

 

 

 

 

 

 

 

Active rolling Model 

The active rolling model was proposed to explain the mechanism by which E. 

coli Rep helicase unwinds duplex DNA. This model requires an oligomeric 

helicase with each monomer having identical nucleic acid binding sites that can 

bind both ssDNA and dsDNA (Soultanas & Wigley 2001).  In this model, at 

least one subunit is bound to ssDNA ahead of the ss/dsDNA junction at any 

given time and the second binding site is bound either to the same ssDNA 

region or to dsDNA ahead of the replication fork Figure 1.24. The E.coli the 

two Rep subunits alternate their affinity for DNA in an ATP dependent fashion 

so that DNA translocation occurs in a hand over hand mechanism and multiple 

base pairs are unwound by each Rep subunit in each binding event (Bjornson et 

al 1996). 

Figure 1.24 Schematic of the active rolling mechanism of helicase translocation and 
unwinding. The dimeric E. coli Rep helicase binds to ssDNA with the high affinity subunit 
(blue oval) and then the low affinity subunit (red rectangle) where one subunit is bound to 
ssDNA ahead of the ss/dsDNA junction. An ATP dependant isomerisation step can switch the 
affinities of the two Rep subunits. Translocation occurs by rolling of the Rep dimer on the 
DNA lattice. Adapted from (Bjornson et al 1996). 
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Figure 1.23: Schematic of the co-operative inchworm model of helicase 
translocation and unwinding. Multiple monomeric helicases assemble along the 
ssDNA function together to increase the rate of blockage clearing and therefore an 
increase in helicase unwinding and translocation. Helicase (pink oval), blockage 
(orange circles) Adapted from (Mackintosh & Raney 2006) 
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1.8 Hel308 
 
Hel308 is a monomeric superfamily 2 helicase that is conserved across 

metazoans and archaea but is absent from bacteria and fungi (Richards et al 

2008b, Woodman & Bolt 2009).  Hel308 was first identified after the isolation 

of mutants in Drosophila melanogaster that are hypersensitive to DNA 

crosslinking agents (Boyd et al 1981), this led to the identification of the 

human Hel308 homologue. Confusingly, Hel308 is known by several different 

names depending on the organism of study. In higher eukaryotes, Hel308 is 

known as HELQ, in C. elegans it is known as HELQ-1 and in some archaea 

such as Pyrococcus furiosus and Sulfolobus tokodaii it is known as Hjm. 

Furthermore, in higher eukaryotes, the DNA polymerase Polθ also known as 

POLQ, since it contains a C-terminal DNA polymerase domain and an N-

terminal helicase-like domain that shows similarity to Hel308. 
 

1.8.1.1 Structure of Hel308 
 
Crystal structures of three Hel308 homologues are available, one from the 

crenarchaeon Sulfolobus solfataricus, an apo and a DNA-Hel308 co-crystal 

from the euryarchaeon Archaeoglobus fulgidus, and the Hel308 homologue 

Hjm from the hyperthermophile Pyrococcus furiosus (Buttner et al 2007, 

Oyama et al 2009, Richards et al 2008b). All three crystal structures show 

structural conservation with each other even though their amino acid sequence 

is poorly conserved. P. furiosus Hjm shares only 30% and 37% amino acid 

identity with the A. fulgidus and S. solfataricus Hel308 helicases, respectively, 

but the overall protein folding is very similar (Oyama et al 2009). These crystal 

structures show that Hel308 consists of 5 structural domains that form a central 

pore lined with essential DNA binding residues. All five domains surround the 

DNA and drive a β-hairpin plough found in domain 2 through the duplex to 

separate the DNA strands, Figure 1.25.  

 

Domains 1 and 2 contain the RecA folds that house the ATP-binding site 

motifs I, II, V and VI. Domain 3 contains a non-canonical winged-helix (WH) 

fold with four α-helices and two parallel β- strands. WH domains are common 
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nucleic acid binding domains and in Hel308 the WH in domain 3 is thought to 

be important in maintaining the structural integrity of the RecA folds found in 

domains 1 and 2 (Woodman & Bolt 2011); it is noteable that domain 3 is 

tightly packed against domain 1. Domain 4 contains a seven-helix bundle 

whose central helix is thought to act as a ‘ratchet’ to unwind DNA (Woodman 

et al 2007). Along with domains 1 and 3, domain 4 forms a ring around the 3′ 

tail of ssDNA. Domain 5 consists of a helix-loop-helix (HLH) structure that 

binds ssDNA as it extrudes from the central pore of the helicase. Domain 5 is 

involved in coupling ATP hydrolysis to helicase unwinding and is thought to 

act as an auto-inhibitory domain or ‘molecular brake’(Richards et al 2008b, 

Woodman et al 2007). The domains of Hel308 will be discussed in further 

detail in Chapter 5: Genetic Characterisation of hel038 Point Mutants. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

Figure 1.25:  Hel308-DNA co-crystal from Archaeoglobus fulgidus. (A) Hel308 in complex 
with the 15 base pair DNA duplex and 10 base single stranded 3′ tail. Hel308 consists of 5 
domains that form a central pore around ssDNA. (B) Linear schematic of the structural 
domains of Hel308. Structure taken from Protein Data Bank 2P6R (Buttner et al 2007)   
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1.8.1.2 Biochemical analysis of Hel308  
 

Both human and archaeal Hel308 helicases have shown to translocate 3′ to 5′ in 

vitro and have ATPase activity that is stimulated by ssDNA but not dsDNA 

(Guy & Bolt 2005, Marini & Wood 2002). Hel308 has shown to be able to 

unwind and migrate Holliday junctions in P. furiosus; the Hel308 homologue 

is named Hjm for Holliday junction migration after this observation (Fujikane 

et al 2005). The authors suggested a role for Hel308 in the later stages of 

homologous recombination. 

 

In Methanothermobacter thermautotrophicus, Hel308 has been shown to 

unwind replication fork structures with preference for displacing lagging strand 

structures (over leading strands) from a branch-point, however Hel308 has 

difficulty in unwinding parental duplex DNA (Guy & Bolt 2005). Hel308 

targets DNA fork substrates most efficiently by engaging the fork branch point, 

which requires parental duplex, and either a strand nick or perhaps a ss–

dsDNA junction. The Hel308 homologue Hjm from the hyperthermophilic 

archaeon Sulfolobus tokodaii also showed a preference for binding ss/dsDNA 

junctions and unwinding of nascent strands in replication fork structures. 

However, Hjm in S. tokodaii is able to unwind both leading and lagging strand 

structures with 5′ and 3′ overhangs, respectively; this is in contrast to Hel308 

from M. thermautotrophicus which can only unwind 3′ overhangs (Fujii et al 

2002, Li et al 2008). The difference between Hjm and Hel308 unwinding may 

be due to the evolutional divergence between Euryarchaeota and 

Crenarchaeota, and may indicate divergent cellular functions of Hjm and 

Hel308 helicases in these two major archaeal subdomains. 

 

Hel308 is also able to dissociate the ‘invading’ strand in D-loop structures 

(Guy & Bolt 2005). A minimal length of between 7–15 nt of 3′ ssDNA tail is 

required for Hel308 to unwind a replication fork-like structure (Tafel et al 

2011). The ability of Hel308 to unwind forks with a lagging strand suggests 

that Hel308 might act at damaged replication forks in which DNA replication 

on the leading strand template has stalled. It has also been proposed that Hjm 

from S. tokodaii can form “chicken foot” structures from the replication forks, 
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suggesting that Hjm/Hel308 homologues could be involved in remodeling of 

DNA replication forks after stalling events (Li et al 2008). 

GFP tagged human Hel308 has been shown to localise to stalled replication 

forks after treatment with camptothecin (an agent that induces replication fork 

stalling and collapse). The Hel308 foci also co-localised with RPA, FANCD2 

and Rad51 foci (Tafel et al 2011); FANCD2 is associated with the promotion 

of fork repair by homologous recombination and Rad51 is a recombinase 

(Taniguchi et al 2002). This indicates that Hel308 is recruited to sites of stalled 

replication forks following damage and is involved in the processing of stalled 

forks that require recombination-mediated processes for their restart. 

1.8.1.3 Hel308 protein:protein interactions  
 

In M. thermautotrophicus, Immobilised Hel308 was shown to interact in vitro 

with purified replication protein A (RPA). Mutational analysis revealed that it 

is the C-terminus of Hel308 that interacts with RPA (Woodman et al 2011). 

RPA was also was also seen to interact with mouse HELQ in 

immunoprecipitation assays (Adelman et al 2013). RPA is the eukaryotic and 

archaeal single stranded binding (SSB) protein that binds single stranded DNA 

to protect it from degradation and secondary structure formation. Additionally, 

RPA has been seen to directly stimulate the helicase activity of human Hel308 

(Tafel et al 2011). It is proposed that in archaea, RPA could act as a platform to 

recruit Hel308 to stalled replication forks. 

 

In S. tokodaii, gel filtration, affinity pulldown, and yeast two-hybrid analyses 

revealed that the Hel308 homologue Hjm physically interacts with Hjc in vitro 

(Li et al 2008). Hjc is a Holliday junction resolvase that binds specifically to 

Holliday junctions and cleaves two opposing strands symmetrically to generate 

two recombinant duplexes, and as been suggested to restart stalled replication 

forks (Lestini et al 2010). Hong and colleagues found that Hjm prevents the 

formation of Hjc-Holliday junction complexes, suggesting that Hjm may 

regulate the activity of the Hjc endonuclease (Hong et al 2012). This 

interaction with Hjc suggests a possible role for Hel308 in homologous 
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recombination, however neither the mechanism of this interaction or its 

function is known. 

 

The human Hel308 homologue HELQ was shown to associate with the RAD51 

paralogues RAD51B/C/D and XRCC2, which are collectively known as the 

BCDX2 complex, Figure 1.26. The BCDX2 complex is required for 

homologous recombination. HELQ was also shown to associate in vivo with 

the DNA damage-responsive kinase ATR, which is activated in response to 

persistent single-stranded DNA to cause a signaling pathway which can lead to 

the promotion of homologous recombination (Takata et al 2013). The BCDX2 

complex and ATR were also seen to interact with mouse HELQ in reciprocal 

immunoprecipitation assays (Adelman et al 2013). These results suggest that 

HELQ may play a role in the restart of stalled replication forks, since the 

BCDX2 complex functions to promote replication-coupled homologous 

recombination. The Rad51 paralog rfs-1 in C. elegans shows synthetic lethality 

when deleted in combination with helq-1, which may be caused by a mitotic 

defect (Taylor et al 2015). Observations of a helq-1 rfs-1 double mutant strain 

suggest that this mitotic defect is due to a failure to dissasemble RAD51 from 

strand invasion intermediates. This was corroborated using purified HELQ-1 

and RFS-1, which were found to independantly bind to and promote the 

disassembly of RAD51 from double stranded, but not single stranded DNA 

filaments in vitro (McClendon et al 2016, Ward et al 2010). This indicates that 

HELQ-1 and RFS-1 have overlapping but distinct roles in homologus 

recombination. 

 

 

 

 

 

 

 

 

 



  Chapter 1: Introduction 
 

 65 

 

 

 

 

 

 

 

 

 

In vivo immunoprecipitation analyses in P. furiosus have found that the 

proliferating cell nuclear antigen (PCNA) co-precipitates with Hel308 

homologue Hjm via an interaction with the C-terminal domain of Hjm. PCNA 

is the DNA sliding clamp that anchors DNA polymerase to the template DNA 

to prevent dissociation. Furthermore, PCNA was shown to stimulate the 

helicase activity of Hjm at fork structured DNA (Fujikane et al 2006). 

 

1.8.1.4 Genetic analysis of Hel308 
 

In almost all organisms that contain Hel308, deletions are viable meaning that 

Hel308 is not essential. Hel308 appears to be essential in Sulfolobus islandicus 

but not in other related Sulfolobus species (Hong et al 2012, Zhang et al 2013). 

In H. volcanii hel308 deletions are slow growing and show sensitivity to DNA 

crosslinking agents such as MMC. 

 
In Drosophila melanogaster, Hel308 deletion mutants are sensitive to cisplatin, 

a DNA crosslinking agent and potent inhibitor of DNA replication (Boyd et al 

1990).  Deletion of the Hel308 homologue HELQ in human cells also shows 

this same phenotype after treatment with the DNA crosslinking agent MMC 

Figure 1.26: HELQ interaction network. Coloured lines depict interactions based on 
protein:protein pull downs and mass spectrometry analysis for the human Hel308 
homologue HelQ. Dashed lines indicate reported interactions from BIOGRID, STRING 
and MINT databases Adapted from (Adelman et al 2013)  
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(Takata et al 2013). This suggests a specific function for Hel308 in the 

processing and repair of crosslinked DNA. 

 

HELQ helicase deficient mice exhibit subfertility, germ cell attrition, DNA 

cross-linking sensitivity and a predisposition to tumours (Adelman et al 2013). 

These phenotypes are similar (albeit milder) to those observed in mouse 

models of Fanconi anaemia, therefore Adelman and collegues generated Helq 

Fancd2 double mutant mice to ivestigate these smilarities (Parmar et al 2009). 

Double mutant cells exhibited a greater sensitivity than either single mutant to 

the replication blocking agents MMC and camptothecin. Furthermore, 

spontaneous and MMC-induced chromosomal aberrations were significantly 

increased over the Helq single mutant, suggesting that HELQ and FANCD2 act 

in parallel pathways of DNA interstrand cross link repair. This was 

corroborated by similar findings in C. elegans, FANCD2 RNAi studies in 

human cells, and with FANCC deleted mice models (Luebben et al 2013, 

Muzzini et al 2008, Takata et al 2013). Although HELQ was shown to act in a 

distinct pathway to the FA complex, HELQ was found to physically interact 

with the FANCD2–FANCI heterodimer by immunoprecipitation assays in 

mouse, Figure 1.26; this suggests that regulation of the two pathways may be 

modulated by a physical interaction (Adelman et al 2013). 

 

Certain Hel308 single nucleotide polymorphisms (SNPs) have seen to be more 

prevelant in several types of head and neck cancers such as esophageal 

squamous cell carcinoma and gastric adenocarcinoma (Babron et al 2014, Li et 

al 2013, Liang et al 2012). These findings suggest a link between Hel308 and 

genome stability. 
 
Summary 
 
Various studies have shown Hel308 to interact with replication fork-like 

structures in vitro, as well as interacting with proteins commonly associated 

with replication fork maintenance such as RPA and PCNA. Additionaly, 

Hel308 has been seen to unwind D-loop structures and associate with proteins 

involved in the early stages of homologous recombination such as RAD51. 
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Hel308 was also shown to associate with Hjc a Holliday junction resolvase that 

acts in the latter stages of homologous recombination, and the Hel308 

homologue Hjm has seen to migrate Holliday junctions, which again hints at a 

role in the latter stages of homologous recombination. Hel308 clearly is 

implicated in the restart of stalled replication forks and homologous 

recombination, but the exact function and mechanism of the role played by 

Hel308 is unknown. 

 

1.8.2 Hel308b  
 

In H. volcanii a second hel308 gene is present, in addition to the canonical 

hel308; this second Hel308 helicase is termed Hel308b. Hel308b is 639 amino 

acids in length whereas the canonical Hel308 is 827 amino acids in length. The 

hel308b gene (HVO_0971) is found at bp 880821-882740 on the H. volcanii 

chromosome and is likely to have arisen from a gene duplication event. Similar 

hel308b genes have also been found in four other closely related haloarchaeal 

species.  hel308b is a previously unstudied gene and will be described in 

further detail in Chapter 7: Phylogenetic and Genetic Characterisation of 

hel308b. 
 

1.9 DNA Sequencing Using Nanopores 
 
One aim of this study was to isolate novel DNA processing enzymes from 

halophilic archaeal viruses for the development of a nanopore based DNA 

sequencing technology, this work was in collaboration with Oxford Nanopore 

Technologies. The basic principles of DNA sequencing using nanopores and 

will be described here. An overview of halophilic archaeal viruses and the 

potential of halophilic viral proteins to be used in nanopore sequencing 

technologies will be described in detail in Chapter 8: Novel Haloviral DNA 

Processing Enzymes For The Use In Nanopore DNA Sequencing Technologies, 

Sections 8.1.1 to 8.1.3. 
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1.9.1 Basic Principles of Nanopore sequencing 
 
 
When inserted into a lipid bilayer or a synthetic membrane, biological 

nanopores such as alpha hemolysin (α-HL) and Mycobacterium smegmatis 

porin A (MspA) can be utilised in the sequencing of ssDNA and ssRNA 

molecules (Braha et al 1997, Derrington et al 2010). If a potential is applied 

across the membrane, single molecules such as ssDNA and ssRNA are driven 

through the central aperture of the nanopore and cause perturbations of the 

current within the pore. Each base disrupts the ionic current in a characteristic 

way, therefore enabling the sequence of the ssDNA or ssRNA to be 

determined, Figure 1.27 (Deamer 2010). Several nanopore-based sequencing 

technologies are currently available or under development from Oxford 

Nanopore Technologies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There are several advantages of nanopore-based sequencing platforms 

developed by Oxford Nanopore Technologies over conventional next 

generation sequencing methods. Firstly, sample preparation time is minimal 

compared to conventional sequencing methods, since the DNA does not 

Figure 1.27:  DNA and RNA sequencing using a Nanopore. Upon the 
application of a potential, DNA/RNA enters a membrane bound nanopore and 
disrupts the internal ionic current.  Each DNA/RNA base perturbs the current 
in a characteristic by allowing for its sequence to be determined. Adapted 
from (Bayley 2006). 
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require shearing, cloning or enzymatic amplification prior to sequencing.  Long 

read lengths of up to tens of kb can be achieved by nanopore sequencing 

compared to the 300-700 nt achieved by conventional methods (Bayley 2006, 

Shendure & Ji 2008). As well as providing greater sequence information, 

longer read lengths reduces the computational assembly time of sequence data. 

Finally, data can be acquired from nanopore sequencing in real time, allowing 

for faster analysis of results (Benner et al 2007). 

 

1.9.2 Improvement of Nanopore Sequencing Technologies 
 
The trans-membrane potential required to drive DNA or RNA through the 

central aperture of a pore is around 120 mV. However, at this voltage a single 

base takes around 2 μs to translocate the pore giving only around 2 pA of 

difference in ionic current between a purine and pyrimidine base. This small 

current does not provide a large enough signal-to-noise ratio to accurately 

discriminate between bases. One method to overcome this problem is to slow 

the translocation rate of DNA/RNA bases through the aperture of the pore from 

a microsecond timescale to a millisecond timescale. This would allow for 

better signal averaging and resolution of ionic current differences of a few 

picoamps (Deamer 2010). 

 

Translocation of DNA/RNA through the pore may be slowed by the addition of 

a nucleic acid processing enzyme such as a helicase, polymerase or a nuclease 

to the cis face of the pore. The nucleic acid processing enzyme will ratchet the 

DNA/RNA through the central cavity of the pore in a controlled fashion, which 

will include pausing as the enzyme cycles. This regulated motion of the nucleic 

acid will allow for improved signal averaging of the ionic current within the 

pore, therefore giving a more reliable signal-to-noise ratio.  

 

Many DNA processing enzymes have been trialled for their suitability in the 

nanopore sequencing apparatus. The addition of E. coli exonuclease I to a 

nanopore system was partially successful and the dwell time of translocating 

DNA within the pore was increased 10 fold. However, under the forces 
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produced by the applied voltage, the exonuclease was seen to dissociate from 

the pore within milliseconds after capture (Hornblower et al 2007) 

 

The addition of the phi29 viral DNA polymerase to both a α-HL and an MspA 

nanopore has been shown to be successful in slowing the translocation of DNA 

through the central cavity of the pore, Figure 1.28 (Craig et al 2015). The phi29 

DNA polymerase acted as a motor to pull ssDNA through the aperture of the 

pore, giving dwell times of bases within the pore of around 28 milliseconds 

and ionic current differences of up to 40 pA, thereby achieving single 

nucleotide resolution of signal (Maitra et al 2012, Manrao et al 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Developments in nanopore sequencing using DNA processing enzymes are 

promising, but there are still some challenges that require addressing. For 

example, the MinION nanopore sequencing technology developed by Oxford 

Nanopore currently has an error rate in base calling of around 12% to 40% 

(Goodwin et al 2015, Ip et al 2015, Laver et al 2015). Nanopores used in 

sequencing can accommodate up to 5 nucleotides at one time, meaning that 

slippages will lead to miscalling of bases. This is particular problem for 

phi29 
DNA polyerase

MspA pore

DNA
translocation

Figure 1.28:  phi29 DNA polymerase in nanopore DNA sequencing. phi29 DNA 
polymerase slows the translocation of DNA through the MspA nanopore to enable 
better signal resolution and base calling. Adapted from (Craig et al 2015) 
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DNA/RNA tracts of the same base, which will cause a prolonged perturbation 

in current that cannot be easily resolved or differentiated from a stalled 

complex. Additionally, errors in the DNA processing enzyme could lead to 

backtracking of the DNA, or motor steps that are faster than can be resolved 

with existing technology (Maitra et al 2012).  

 

The challenges faced during sequencing could be addressed by the discovery 

and development of DNA processing enzymes that can modulate the 

translocation of nucleotides through the nanopore in a tighter fashion, thus 

reducing errors in base calling. Furthermore, the development of RNA 

processing enzymes would be advantageous for the sequencing of RNA 

substrates for transcriptional studies.  

Candidate nucleotide processing enzymes must be hardy enough to withstand 

the voltages applied across the nanopore, as well as the salinity of the bathing 

solution within the nanopore flow cell. Enzymes from halophilic organisms are 

adapted to high salt conditions and therefore could function in the buffer 

conditions found in a nanopore sequencing flow cell. Furthermore, viral 

proteins tend to be more robust and do not require numerous co-factors, 

compared to their cellular counterparts (Choi 2012, Kukkaro & Bamford 2009, 

Pauling 1982). Therefore, nucleotide processing enzymes from halophilic 

viruses could be key in the development of improved nanopore sequencing 

technologies in the future. The potential use of proteins from halophilic viruses 

will be discussed and investigated further in Chapter 8: Novel Haloviral DNA 

Processing Enzymes For The Use In Nanopore DNA Sequencing Technologies, 

Sections 8.1.1 to 8.1.3. 

 

1.10  Aims 
 
The aims of this study is to further understand the role of Hel308 in H. 

volcanii, this will be achieved by several approaches. The first is to delete 

hel308 in combination with other DNA repair proteins, in particular ones 

involved in homologous recombination. The characterisation of these deletion 

mutants could give insight into the role of Hel308. Point mutations of Hel308 

will also be studied which could reveal details about the mechanistic action of 
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Hel308. The role of Hel308 will also be studied by analysing its in vivo 

protein:protein interactions. This approach has the potential to reveal novel 

proteins that interact with Hel308 and could give insight into the pathways in 

which Hel308 acts. The previously unstudied Hel308b protein will also be 

phylogenetically and genetically characterised which could elucidate its role in 

H. volcanii. Lastly, in collaboration with Oxford Nanopore Technologies, this 

study also aims to isolate novel DNA processing enzymes from halophilic 

archaeal viruses for the development of a nanopore based DNA sequencing 

technology. 
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Chapter 2: Materials and Methods 
	  

 

2.1 Materials  
 

2.1.1 Strains 
 
Strain construction is detailed in Chapter 3.  

Table 2.1: Strains used in this study. 

Parent: H26 (∆pyrE2)  
Strain Parent Genotype Notes 
H358 H26 ∆hef Constructed by ZD 

(Lestini et al 2010) 
H1049 H26 ∆hjc Constructed by RL 

(Lestini et al 2010) 
H1391 H26 ∆hel308 Constructed by TA 
H1392 H26 ∆hel308 Constructed by TA 
H1467 H1049 ∆hjc, ∆hel308::trpA+ Constructed by TA 
H1468 H358 ∆hef, ∆hel308::trpA+ Constructed by TA 
H1843 H26 ∆hel308b Chapter 3.2.2.2 
H1844 H1391 ∆hel308, ∆radB Chapter 3.2.2.1 
H1845 H26 ∆radB Constructed by TA 
H2076 H1392 hel308-E422G Chapter 3.2.3.1 
H2077 H1392 hel308-D420A Chapter 3.2.3.1 
H2078 H1392 hel308-E330G Chapter 3.2.3.1 
H2097 H1392 hel308-H317G Chapter 3.2.3.1 
H2396 H1392 hel308-F316A Chapter 3.2.3.1 
H2426 H1844 ∆hel308, ∆radB {hel308+ pyrE2+} Chapter 3.2.1 
H2427 H1844 ∆hel308, ∆radB {pyrE2+} Chapter 3.2.1 
H2488 H1391 ∆hel308, ∆hel308b Chapter 3.2.2.2 
H2572 H1391 ∆hel308 {hel308+ pyrE2+} Chapter 3.2.1 
H2573 H1391 ∆hel308 {pyrE2+} Chapter 3.2.1 
 
Parent: H53 (∆pyrE2, ∆trpA) 
Strain Parent Genotype Notes 
H1554 (H1393) hel308-K53R Constructed by TA 
H1555 (H1393) hel308-D145N Constructed by TA 
H1804 (H53) ∆oriC1, ∆oriC2, ∆oriC3, ∆ori-pHV4-2 Constructed by KP 
H1953 H1804 ∆oriC1, ∆oriC2, ∆oriC3, ∆ori-pHV4-2, 

∆hel308::trpA+ 
Chapter 3.2.2.1 

 
Parent: H164 (∆pyrE2, bgaHa-Bb, leuB-Ag1, ∆trpA)  
Strain Parent Genotype Notes 
H2007 H164 ∆hel308b Chapter 3.2.2.2 
H2117 H164 ∆hel308::trpA+ Chapter 3.2.2.1 
H2417 H2117 ∆radB, ∆hel308::trpA+ Chapter 3.2.2.1 
H2257 H2117 hel308-E422G Chapter 3.2.3.1 
H2259 H2117 hel308-D420A Chapter 3.2.3.1 
H2261 H2117 hel308-H317G Chapter 3.2.3.1 
H2263 H2117 hel308-E330G Chapter 3.2.3.1 
H2397 H2117 hel308-F316A Chapter 3.2.3.1 
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H2398 H2117 hel308-R743A Chapter 3.2.3.1 
H2400 H2117 hel308-D145N Chapter 3.2.3.1 
H2641 H164 ∆radB Chapter 3.2.2.1 
H2643 H2007 ∆hel308b, ∆hel308::trpA+ Chapter 3.2.2.2 
 
 
Parent: H2047 (∆pyrE2, Nph-pitA, ∆mrr, cdc48d-ct, ∆trpA) 
Strain Parent Genotype Notes 
H2131 H2047 ∆hel308::trpA+ Chapter 3.2.3.2 
H2418 H2131 his6 tag-hel308-strepII tag Chapter 3.2.3.1 
 
Parent: H1424 (∆pyrE2, Nph-pitA, ∆mrr, cdc48d-ct, ∆hdrB)  
Strain Parent Genotype Notes 
H1737 H1424 {p.tnaA:: his6 tag-hel308+strepIItag pyrE2+ 

hdrB+} 
Chapter 3.2.1 

H1738 H1424 {p.tnaA:: his6 tag-hel308b+strepIItag pyrE2+ 
hdrB+} 

Chapter 3.2.1 

H1739 H1424 {p.tnaA:: his6 tag-RadA+strepIItag pyrE2+ hdrB+} Chapter 3.2.1 
H1740 H1424 {p.tnaA::hel308+strepIItag pyrE2+ hdrB+} Chapter 3.2.1 
H1741 H1424 {p.tnaA::hel308b+strepIItag pyrE2+ hdrB+} Chapter 3.2.1 
H1742 H1424 {p.tnaA::RadA+strepIItag pyrE2+ hdrB+} Chapter 3.2.1 
H1743 H1424 {p.tnaA::strepII tag-hel308+ his6 tag pyrE2+ 

hdrB+} 
Chapter 3.2.1 

H1744 H1424 {p.tnaA::strepII tag-hel308b+ his6 tag pyrE2+ 
hdrB+} 

Chapter 3.2.1 

H1745 H1424 {p.tnaA::strepII tag-RadA+ his6 tag pyrE2+ 
hdrB+} 

Chapter 3.2.1 

H1746 H1424 {p.tnaA::strepII tag-hel308+ pyrE2+ hdrB+} Chapter 3.2.1 
H1747 H1424 {p.tnaA::strepII tag-hel308b+ pyrE2+ hdrB+} Chapter 3.2.1 
H1748 H1424 {p.tnaA::strepII tag-RadA+ pyrE2+ hdrB+} Chapter 3.2.1 
H2167 H1424 ∆tnaA::hdrB+ Chapter 3.2.3.2 
H2169 H1424 ∆pilB3C3, ∆tnaA::hdrB+ Chapter 3.2.3.2 
H2682 H2169 ∆pilB3C3, tnaA∆EcoNI Chapter 3.2.3.2 
TA = Thorsten Allers. SH = Sam Haldenby. ZD = Zhenhong Duan. RL= Roxane Lestini. KP= 
Katarzyna Ptasinska. Parental strains in brackets indicate intermediate strains were generated 
during construction, but these are not listed. [ ] indicates integrated plasmid, { } indicates 
episomal plasmid. 

 

Table 2.2: E. coli strains used in this study.  

Strain Genotype Notes 
XL1-Blue 
MRF' 

endA1, gyrA96 (NalR), lac [F' proAB 
lacIqZ∆M15 Tn10 (TetR)], ∆(mcrA)183,  
∆(mcrCB-hsdSMR-mrr)173, recA1, relA1, 
supE44, thi-1 

Standard cloning strain for 
blue/white selection using 
pBluescript-based plasmids. 
Tetracycline resistant, Restriction 
endonuclease and recombination 
deficient, dam+. From Stratagene. 

N2338 
(GM121) 

F–, ara-14, dam-3, dcm-6, fhuA31, galK2, 
galT22, hsdR3, lacY1, leu-6, thi-1, thr-1, 
tsx-78  

dam- dcm- mutant for preparing 
DNA for Haloferax volcanii 
transformations. From (Allers et al 
2004) M.G. Marinus via R.G. 
Lloyd.  
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2.1.2 Plasmids 
	  
Plasmid construction is detailed in Chapter 3.  

Table 2.3: Plasmids used in this study. 

Name Use Notes 
pBluescript sII 
SK+ 

Standard E. coli vector with functional blue/white 
screening capability 

From Stratagene 

pTA83 radA deletion construct Constructed by TA 
pTA131 For making deletions in ∆pyrE2 background Constructed by TA 

(Allers et al 2004) 
pTA163 Integrative vector containing leuB-Ag1 and pyrE2. For 

use in recombination assays. 
Constructed by GN 

pTA236 hjc deletion construct Constructed by GN 
pTA312 radB deletion construct Constructed by SH 
pTA325 radA::trpA+ deletion construct Constructed by TA 
pTA354 Episomal plasmid with oripHV1/4 Constructed by SH 

(Allers et al 2010) 
pTA414 Episomal plasmid for in trans expression of radA Constructed by TA 
pTA415 hel308 genomic clone Constructed by ZD 
pTA637 Episomal plasmid for in trans expression of radA Constructed by TA 
pTA1276 hel308 deletion construct Constructed by TA 
pTA1277 hel308::trpA+ deletion construct Constructed by TA 
pTA1316 hel308 genomic clone Constructed by TA 
pTA1334 hel308-K53R gene replacement construct Constructed by TA 
pTA1335 hel308-D154N gene replacement construct Constructed by TA 
pTA1364 hel308b genomic clone Chapter 3.1.1 
pTA1368 hel308b deletion construct Chapter 3.1.2.2 
pTA1392 Vector for tryptophan inducible gene expression under 

the control of p.tnaA with an N-terminal his6-tag and a 
C-terminal StrepII tag 

Chapter 3.1.3.1 

pTA1403 Vector for tryptophan inducible gene expression under 
the control of p.tnaA with an N-terminal StrepII tag and a 
C-terminal his6-tag. 

Chapter 3.1.3.1 

pTA1419 For the expression of N-terminally his6-tagged and a C-
terminally StrepII-tagged Hel308 under control of p.tnaA 

Chapter 3.1.3.1 

pTA1422 For the expression of C-terminally StrepII-tagged Hel308 
under control of p.tnaA 

Chapter 3.1.3.1 

pTA1425 For the expression of N-terminally StrepII-tagged and a 
C-terminally his6-tagged Hel308 under control of p.tnaA 

Chapter 3.1.3.1 

pTA1428 For the expression of N-terminally StrepII-tagged Hel308 
under control of p.tnaA 

Chapter 3.1.3.1 

pTA1503 Intermediate construct for creating pTA1508 Chapter 3.1.2.3 
pTA1508 tnaA deletion construct Chapter 3.1.2.3 
pTA1545 hel308-E422G gene replacement construct Chapter 3.1.2.4 
pTA1546 hel308-D420A gene replacement construct Chapter 3.1.2.4 
pTA1548 radB::trpA+ deletion construct Constructed by TA 
pTA1567 For the expression of N-terminally his6-tagged and a C-

terminally StrepII-tagged radB under control of p.tnaA 
Chapter 3.1.3.1 

pTA1575 hel308-H317G gene replacement construct Chapter 3.1.2.4 
pTA1576 hel308-E330G gene replacement construct Chapter 3.1.2.4 
pTA1615 tnaA::hdrb+ deletion construct Chapter 3.1.2.3 
pTA1647 hel308-F316A gene replacement construct Chapter 3.1.2.4 
pTA1648 hel308-R743A gene replacement construct Chapter 3.1.2.4 
pTA1661 Intermediate construct for creating pTA1662 Chapter 3.1.3.2 
pTA1662 N-terminally his6-tagged and a C-terminally StrepII- Chapter 3.1.3.2 
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tagged hel308 gene replacement construct 
pTA1669 Episomal plasmid for in trans expression of hel308 Chapter 3.1.3.2 
TA = Thorsten Allers. GN= Greg Ngo. SH = Sam Haldenby. ZD = Zhenhong Duan. 

 

2.1.3 Oligonucleotides 
	  
Table 2.4: PCR Primers used in this study. 

Name Sequence (5’-3’) Description  Used to 
construct 

CgiBglR CGAGTGGAGaTCTT
GAGTACGGATTCGC 

Amplification of hel308 pTA1648 

dHel308b_D_BamHI_F GAGTTCCGCGgGaTC
CGGGCGC 

Amplification of downstream 
flanking region of hel308b and 
introduction of an BamHI site 

pTA1368 

dHel308b_D_XbaI_R ACCCGCATCtAGAC
GCCGTGG 

Amplification of downstream 
flanking region of hel308b and 
introduction of an XbaI site 

pTA1368 

dHel308b_U_BamHI_R CTCACATAAGgATCc
CGCCGGC 

Amplification of upstream 
flanking region of hel308b and 
introduction of an BamHI site 

pTA1368 

dHel308b_U_KpnI_F CTACGCCgGTAcCTC
CTACGCC 

Amplification of upstream 
flanking region of hel308b and 
introduction of an KpnI site 

pTA1368 

Hel308_BamHI_F GTCTGGaTccTTTCG
AATGAGGCTCCTCG 

Amplification of hel308 and 
introduction of an BamHI site 

pTA1661 

hel308-D420A-F GTACATCTGGGCCG
cCGCCGAGGACGTG
C 

Generation of a hel308-D420A 
mutation. 

pTA1546 

hel308-D420A-R GCACGTCCTCGGCG
gCGGCCCAGATGTA
C 

Generation of a hel308-D420A 
mutation. 

pTA1546 

hel308-E422G-F CTGGGCCGACGCCG
gcGACGTGCGGTCG
A 

Generation of a hel308-E422G 
mutation 

pTA1545 

hel308-E422G-R TCGACCGCACGTCgc
CGGCGTCGGCCCAG 

Generation of a hel308-E422G 
mutation 

pTA1545 

Hel308b_d_BamHI_R GCTTAAAACGGGAT
cCCGAAGCG 

Amplification of hel308b and 
introduction of an BamHI site 

pTA1429 

hel308b_U_SphI_F CCTCTGTGACgcATG
CGCGTGCG 

Amplification of hel308b and 
introduction of an SphI site 

pTA1420, 
pTA1426 

Hel308bF ACCAGTTCGGCTTT
CGTGTCCG 

Forward primer for hel308b 
probe 

- 

Hel308bF_NdeI GTGACAtATGCGCG
TGCGTGACCTCCCG
C 

Amplification of hel308b and 
introduction of an NdeI site 

pTA1423 

Hel308bR GCTGTACATCGTCC
CGCTTCGC 

For hel308b probe and for RT-
PCR to check hel308b transcript 

- 

Hel308bR_NheI CCGATgctagcGGGCG
ACAGCAGCGCCCG 

Amplification of hel308b and 
introduction of an NheI site 

pTA1420, 
pTA1423, 
pTA1426 

Hel308bRTR TCCGGGACGCGACG
CTGGAGGG 

For RT-PCR to check hel308b 
expression 

 

Hel308E330GF CTCGTGGgcGACGC
CTTCCGCGACAGAC 

Generation of a hel308-E330G 
mutation 

pTA1576 

Hel308E330GR AGGCGTCgcCCACG
AGCGTTCGGTGTTC
C 

Generation of a hel308-E330G 
mutation 

pTA1576 
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hel308EcoR AGGTAGTCGAGCAC
GCGGTCC 

Amplification of internal region 
of hel308 

- 

Hel308F_NdeI AGATcatATGCGAAC
TGCGGACCTGACGG 

Amplification of hel308 and 
introduction of an NdeI site 

pTA1422 

Hel308F316AF CGCGGCGgcCCACC
ACGCGGGACTCGCC
G 

Generation of a hel308-F316A 
mutation 

pTA1647 

Hel308F316AR CGTGGTGGgcCGCC
GCGCCTTTGGCGAC
C 

Generation of a hel308-F316A 
mutation 

pTA1647 

Hel308FInt AGCGCTGGGAGGA
GTACGGC 

Amplification of internal region 
of hel308 

- 

Hel308H317GF GGCGTTCggCCACG
CGGGACTCGCCGCG
G 

Generation of a hel308-H317G 
mutation 

pTA1575 

Hel308H317GR CCGCGTGGccGAAC
GCCGCGCCTTTGGC
G 

Generation of a hel308-H317G 
mutation 

pTA1575 

hel308Nde5R CAGTTCGCATatgAT
CTCCCTTGG 

Amplification of upstream 
flanking region of hel308 and 
introduction of an NdeI site 

pTA1276, 
pTA1661 

hel308NsiF GAACGCTCGTGGAA
GACGCC 

Amplification of internal region 
of hel308 

- 

Hel308R_NheI GCCgctagcTTCGAAA
TCACCCAGACTGG 

Amplification of hel308, 
removal of stop codon and 
introduction of an NheI site 

pTA1419, 
pTA1422, 
pTA1425 

Hel308R743AF CCGAAAGgcCGCCC
GCCGGCTGTTCGAG
G 

Generation of a hel308-R743A 
mutation 

pTA1643 

Hel308R743AR GGCGGGCGgcCTTTC
GGCCGACGCCGCGG 

Generation of a hel308-R743A 
mutation 

pTA1643 

Hel308RTR GTGTTGACGCCGGC
GGCGAGCG 

For RT-PCR to check hel308 
transcript 

- 

Hel308SphF GGAGATGgcATGCG
AACTGCGG 

Amplification of hel308 and 
introduction of an SphI site 

pTA1419, 
pTA1425, 
pTA1428, 
pTA1429 

helQ(R)BamHI02 CGAGGAtCCTCATTC
GAAATCACCCAGAC
TGG 

Amplification of hel308 and 
introduction of an BamHI site 

pTA1428 

RadA6HF ACCTATTGCGCATA
TGCACCACCACCAC
CACCACATGGCAGA
AGACGACCTCG 

Amplification of radA 
incorporating a his6 tag and 
introduction of an NdeI site  

pTA1421 

RadABamR CCGACgGAtCcACGG
CTTACTCGG 

Amplification of radA and 
introduction of an BamHI site. 

pTA1430 

RadANdeF GAACGACTGcaTAT
GGCAGAAGACG 

Amplification of radA and 
introduction of an NdeI site 

pTA1424 

RadAR_NheI CGGCgctagcCTCGGG
CTTGAGACCGGCG 

Amplification of radA, removal 
of stop codon and introduction 
of an NheI site 

pTA1421, 
pTA1424, 
pTA1427 

RadAStrepIIF ACCTATTGCGCATA
TGTGGTCGCACCCG
CAGTTCGAGAAGAA
CATGGCAGAAGAC
GACCTCG 

Amplification of radA 
incorporating a StrepII tag 

pTA1427, 
pTA1430 

radBBsF CCTCCTGtCaTGACA
GAGTCAGTCTCC 

Amplification of radB and 
introduction of an BspHI site. 

pTA1567 

radBNheR CGACCCCTgcTagcCA
CGTCAGTCGCGGAG
AGCCC 

Amplification of radB, removal 
of stop codon and introduction 
of an NheI site 

pTA1567 

rpoARTF CGGCGAGCACCTGA
TTGAC 

For RT-PCR to check rpoA - 
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transcript 
rpoARTR ACGGACGAGGAAG

CAGACG 
For RT-PCR to check rpoA 
transcript 

- 

Ski2F CCTCGCTCGTCTTC
GTGAACTC 

Amplification of hel308 - 

Lower case letters indicate mismatches with the wild-type gene. Novel restriction sites are 
underlined. 
 
 
 

Table 2.5: Oligonucleotides for plasmid construction used in this study. 

Name Sequence (5’-3’) Description  Used to 
construct 

StrepII_N_F TATGTGGTCGCACCC
GCAGTTCGAGAAGA
ACATGTGGCGCCCCA
GCTAGCCACCACCAC
CACCACCACTGAGAT
ATCG 

Incorporating in-frame N-terminal 
StrepII tag and a C-terminal his6 
tag. With 5' NdeI and 3' EcoRI 
compatible ends. Introduction of 
PciI/NspI, NarI, NheI and EcoRV 
sites. 

pTA1403 

StrepII_N_R AATTCGATATCTCAG
TGGTGGTGGTGGTGG
TGGCTAGCTGGGGCG
CCACATGTTCTTCTC
GAACTGCGGGTGCGA
CCACA 

Incorporating in-frame N-terminal 
StrepII tag and a C-terminal his6 
tag. With 5' NdeI and 3' EcoRI 
compatible ends. Introduction of 
PciI/NspI, NarI, NheI and EcoRV 
sites. 

pTA1403 

StrepIIF CATGTGGCGCCCCAG
CTAGCTGGTCGCACC
CGCAGTTCGAGAAGT
GAGATATCG 

Incorporating in-frame StrepII 
tag. With 5' PciI/NspI and 3' 
EcoRI compatible ends. 
Introduction of NarI, BstXI, BmtI, 
NheI and EcoRV sites. 

pTA1392 

StrepIIR AATTCGATATCTCAC
TTCTCGAACTGCGGG
TGCGACCAGCTAGCT
GGGGCGCCA 

Incorporating in-frame StrepII 
tag. With 5' PciI/NspI and 3' 
EcoRI compatible ends. 
Introduction of NarI, BstXI, BmtI, 
NheI and EcoRV sites. 

pTA1392 

Novel restriction sites are underlined. 

 
	  

2.1.4 Chemicals and Enzymes 
	  
All chemicals were purchased from Sigma and all enzymes from New England 

Biolabs (NEB) unless otherwise stated. Specific buffers and solutions are 

detailed with the appropriate method. 

2.1.4.1 Media 
	  
���Haloferax volcanii Media 

All media is sterilised by autoclaving (1 minute 121ºC) and stored in the dark 

at room temperature (unless otherwise stated). Plates are stored in sealed bags 
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in the dark at 4ºC to prevent desiccation and dried for at least 30 minutes 

before use. 

30% salt water (SW): 4 M NaCl, 148 mM MgCl2.6H2O, 122 mM 

MgSO4.7H2O, 94 mM KCl, 20 mM Tris.HCl pH 7.5. 

18% salt water (SW): Made up with 30% SW, 3 mM CaCl2. CaCl2 added after 

autoclaving. 

Trace elements: 1.82 mM MnCl2.4H2O, 1.53 mM ZnSO4.7H2O, 8.3 mM 

FeSO4.7H2O, 200 μM CuSO4.5H2O. Filter sterilised and stored at 4ºC. 

Hv-Min salts: 0.4 M NH4Cl, 0.25 M CaCl2, 8% v/v of trace element solution. 

Stored at 4ºC. 

Hv-Min carbon source: 10% DL-lactic acid Na2 salt, 8% succinic acid Na2 

salt·6H2O, 2% glycerol, pH to 7.0 with NaOH. Filter sterilised. 

10 × YPC: 5% yeast extract (Difco), 1% peptone (Oxoid), 1% casamino acids, 

17.6 mM KOH. Not autoclaved, used immediately. 

10 × Ca: 5% Casamino acids, 17.6 mM KOH. Not autoclaved, used 

immediately. 

Hv-Ca Salts: 362 mM CaCl2, 8.3% v/v of trace elements, 615 μg/ml thiamine, 

77 μg/ml biotin. 

KPO4 Buffer: 308 mM K2HPO4, 192 mM KH2PO4 pH 7.0 

Hv-YPC agar: 1.6% Agar (Bacto), 18% SW, 1× YPC, 3 mM CaCl2. 

Microwaved without 10× YPC to dissolve agar. 10× YPC added, then 

autoclaved. CaCl2 added prior to pouring.  

Hv-Ca agar: 1.6% Agar (Bacto), 18% SW, 1× Ca, 0.84% v/v of Hv-Ca Salts, 

0.002% v/v of KPO4 buffer (pH 7.0). Microwaved without 10× Ca to dissolve 

agar. 10× Ca added, then autoclaved. Hv-Ca Salts and KPO4 Buffer added prior 

to pouring. 
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Hv-Min agar: 1.6% Agar (Bacto), 18% SW, 30 mM Tris·HCl pH 7.5, 2.5% 

Hv-Min carbon source, 1.2% Hv-Min Salts, 0.002% v/v of KPO4 buffer (pH 

7.0), 444 nM biotin, 2.5 μM thiamine. ���Microwaved to dissolve agar. Tris·HCl 

pH 7.5 added, then autoclaved. Hv-Min carbon source, Hv-Min Salts, KPO4 

buffer, biotin and thiamine added prior to pouring. 

Hv-YPC broth: 18% SW, 1× YPC, 3 mM CaCl2. CaCl2 added after 

autoclaving, when cool. 

Hv-Ca+ broth: 18% SW, 30 mM Tris.HCl pH 7.0, 1×Ca, 2.5% v/v of Hv-Min 

carbon source, 1.2% v/v of Hv-Min Salts, 0.002% v/v of KPO4 buffer (pH 7.0), 

444 nM biotin, 2.5 μM thiamine.��� 30% SW, dH2O and Tris-HCl pH 7.0 

autoclaved. All other components added when cool.         

Haloferax volcanii media supplements 

All solutions sterilised by filtration through a 0.2 μm filter. 

Table 2.6: Media supplements used with H. volcanii 

Supplement Abbreviation  Final Concentration 
Leucine Leu 50 μg/ml 
Uracil Ura 50 μg/ml 
Thymidine Thy 50 μg/ml (+50 μg/ml hypoxanthine in Hv-Ca and 

Hv-Min) 
Tryptophan Trp 50 μg/ml 
5-Fluoroorotic acid 5-FOA 50 μg/ml (+ 10 μg/ml uracil) 
Mevinolin Mev 4 μg/ml 
 

 

Growth of H. volcanii auxotrophic mutants on different media is shown below. 

Where a supplement is named, this supplement requires addition to the growth 

media. 

Table 2.7: H. volcanii mutant growth in different media. 

Genotype Hv-YPC  Hv-Ca Hv-Min 
∆pyrE2 + Ura- Ura- 
∆leuB + + Leu- 
∆trpA + Trp- Trp- 
∆hdrB Thy- Thy-* Thy-* 
*In addition to thymidine, ∆hdrB strain cultures are supplemented with hypoxanthine in Hv- 
Ca and with hypoxanthine, methionine, glycine, and pantothenic acid in Hv-Min 
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Escherichia coli Media 

���Sterilised by autoclaving and stored at room temperature. 

LB (Lysogeny Broth): 1% tryptone (Bacto), 0.5% yeast extract (Difco), 170 

mM NaCl, 2 mM NaOH, pH 7.0. 

LB agar: 300 ml of LB broth, plus 1.5% agar. 

Escherichia coli media supplements 

Table 2.8: Media supplements used with E. coli. 

Supplement Abbreviation Final concentration 
Ampicillin Amp 50 μg/ml 
Tetracycline Tet 3.5 μg/ml 
5-Bromo-4-chloro-3-indolyl β-D-galactopyranoside X-Gal 66.67 μg/ml 
 

2.1.4.2 Other Solutions 
	  
TE: 10 mM Tris.HCl pH 8.0, 1 mM EDTA. 

 

2.2  Methods 
	  
	  

2.2.1 General Escherichia coli Microbiology 
	  
Growth and Storage  

Small liquid cultures (1-10 ml) were grown overnight in a static incubator 

(LEEC) at 37ºC with 8 rpm rotation.  Larger cultures (300 ml) were grown 

overnight in an Innova 4330 floor-standing shaking incubator (New Brunswick 

Scientific) at 37ºC with 110 rpm shaking. Cultures on solid media were grown 

at 37ºC overnight in a static incubator. For short-term storage, solid and liquid 

cultures were stored at 4ºC. For long-term storage, glycerol was added to 20% 

(v/v) to cultures, snap frozen on dry ice and stored at -80ºC. 

 

 



Chapter 2: Materials and Methods 
	  

	  82	  

Preparation of Electrocompetent Cells! 

Two strains were used to prepare electrocompetent E. coli cells: XL-1 Blue 

(dam+, resistant to tetracycline) or N2338 (dam-). 

A 5 ml overnight culture was grown at 37ºC with 8 rpm rotation with 

appropriate antibiotic selection. Cells were diluted 1/100 in LB broth 

supplemented with appropriate antibiotics and grown at 37ºC to A650 = 0.5-

0.8. Cells were pelleted at 6000 × g for 12 minutes at 4ºC and the supernatant 

removed. The pellet was resuspended in an equal volume of ice-cold sterile 1 

mM HEPES (pH 7.5). This process was repeated using 0.5 volumes 1 mM 

HEPES, 0.25 volumes 1 mM HEPES + 10% glycerol, 0.1 volumes 1mM 

HEPES + 10% glycerol, and 0.001 volumes 1mM HEPES + 10% glycerol. 

Cells were snap frozen on dry ice and stored in 100 μl aliquots at -80ºC. 

Transformation of Escherichia coli by Electroporation  

SOC broth: 2% tryptone (Bacto), 0.5% yeast extract (Difco), 10 mM NaCl, 2.5 mM KCl, 10 
mM MgCl2, 10 mM MgSO4, 20 mM glucose. 

1 μg of DNA in 4 μl sterile dH2O was added to 40 μl of electrocompetent cells, 

on ice and transferred to a pre-chilled electroporation cuvette (1 mm electrode 

gap, GENEFLOW). The cuvette was pulsed at 1.8 kV in an E. coli gene pulser 

(BioRad) and 1 ml of SOC was immediately added. After 1 hour incubation at 

37ºC with 8 rpm rotation, cells were plated onto LB+2×Amp plates and 

incubated at 37ºC overnight. 

2.2.2 General Haloferax volcanii Microbiology 
	  
Growth and Storage  

Small liquid cultures (1-10 ml) were grown overnight in a static incubator 

(LEEC) at 45ººC with 8 rpm rotation.  Larger cultures (50-333 ml) were grown 

overnight in an Innova 4330 floor-standing shaking incubator (New Brunswick 

Scientific) at 45ºC with 110 rpm shaking. Cultures on solid media were grown 

for 5-10 days at 45ºC in a static incubator (LEEC) in a plastic bag to prevent 

drying. For short-term storage, solid and liquid cultures were stored at room 

temperature. For long-term storage, glycerol (80% glycerol in 6% SW) was 
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added to 20% (v/v) to cultures, snap frozen on dry ice and stored at -80ºC. 

Transformation of Haloferax volcanii Using PEG600 

H. volcanii can be transformed by using PEG600 (Cline et al 1989). H. 

volcanii encodes a restriction endonuclease (Mrr) that targets methylated DNA; 

therefore, plasmid DNA requires passage through a dam- E. coli host prior to 

transformation (Holmes et al 1991). ∆mrr strains of H. volcanii can be 

transformed directly with dam+ plasmid DNA.  

Buffers and solutions all sterilised by filtration through a 0.2 μM filter. 

Buffered Spheroplasting Solution: 1 M NaCl, 27 mM KCl, 50 mM Tris.HCl pH 8.5, 15% 
sucrose.                                                                                                             
Unbuffered Spheroplasting Solution: 1 M NaCl, 27 mM KCl, 15% sucrose, pH 7.5. ���                                                                                                                           
Transforming DNA: 5 μl 0.5 M EDTA, pH 8.0, 15 μl unbuffered spheroplasting solution, 10 
μl DNA (~1-2 μg).                                                                                           
60% Polyethylene Glycol 600 (PEG 600): 150 μl PEG 600 and 100 μl unbuffered 
spheroplasting solution.  
Spheroplast Dilution Solution: 23% SW, 15% sucrose, 37.5 mM CaCl2.  
Regeneration Solution: 18% SW, 1×YPC, 15% sucrose, 30 mM CaCl2.  
Transformation Dilution Solution: 18% SW, 15% sucrose, 30 mM CaCl2. 
 
A 10 ml culture of H. volcanii was grown in Hv-YPC (+ additives) overnight 

at 45ºC until an A650 of 0.6-0.8. Cells were centrifuged at 3300 × g for 8 

minutes in a 10ml round-bottomed tube, the supernatant removed and cells 

gently resuspended in 2 ml of buffered spheroplasting solution. Cells were 

transferred to a fresh 2 ml round-bottom tube, pelleted again, supernatant 

removed then resuspended gently in 600 μl buffered spheroplasting solution. A 

200 μl aliquot per transformation was transferred to a fresh 2 ml round-bottom 

tube and a 20 μl drop of 0.5 M EDTA pH 8.0 was pipetted onto the side of the 

tube, gently inverted and incubated for 10 minutes at room temperature. 

Transforming DNA was added in the same manner as EDTA and incubated at 

room temperature for 5 minutes. 250 μl of 60% PEG 600 was added and mixed 

by gentle rocking followed by incubation at room temperature for 30 minutes. 

1.5 ml of spheroplast dilution solution was then added and mixed by inversion 
and after 2 minutes incubation at room temperature was centrifuged at 3300 × 

g for 8 minutes at 25ºC. The cell pellet was transferred whole to a sterile 4 ml 

tube containing 1 ml regeneration solution (+ 40 μg/ml thymidine for ∆hdrB 

strains). After an undisturbed recovery at 45ºC for 90 minutes, the pellet was 
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resuspended by tapping the tube and incubated for a further 3 hours at 45ºC 

rotating at 8 rpm. Cells were transferred to a fresh 2 ml round-bottom tube and 

centrifuged at 3300 × g for 8 minutes. The cell pellet was resuspended gently 

in 1 ml of transformation dilution solution. Appropriate dilutions were made 

and 100 μl of each dilution plated on appropriate media. Plates were incubated 

for at least 5 days at 45ºC. 

2.2.3 DNA Extraction From Cells 
	  
Plasmid Extraction from Escherichia coli 

Plasmid DNA extraction from E. coli was performed using Macherey-Nagel 

Nucleospin (Mini) and Nucleobond AX (Midi) kits. Protocol was as described 

in the manufacturer’s guidelines. 1-2 ml and 300ml of E. coli cell culture (LB 

broth+Amp) was used for minipreps and midipreps respectively. Plasmid DNA 

from minipreps was eluted in 30 μl elution buffer, and for midipreps the 

plasmid DNA was isopropanol and ethanol precipitated then resuspended in 

200 μl of TE. Plasmid DNA samples were stored at -20ºC. 

Plasmid Extraction from Haloferax volcanii 

ST buffer: 1 M NaCl, 20 mM Tris.HCl pH 7.5. 

Macherey-Nagel Nucleospin (Mini)/Nucleobond AX (Midi) kits were used to 

obtain circular plasmid DNA from H. volcanii. Due to H. volcanii having a low 

plasmid copy number and a large amount of cellular debris, the following 

amendments to the manufacturers guidelines are required: 

Starter culture: 10 ml of cell culture was used for minipreps, and 300 ml for 

midipreps. 

Resuspension step: Cell pellets were resuspended in the same total volume as 

E. coli minipreps or maxipreps. However, the pellet was initially resuspended 

in 1⁄2 volume of ST buffer supplemented with 50 mM of EDTA, then made up 

to total volume with standard resuspension buffer (Macherey-Nagel). 

Chloroform extraction: To avoid column blockage, a chloroform extraction 

step was required to separate DNA from cellular debris. Sample was mixed 
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with an equal volume of chloroform, vortexed to mix and centrifuged for 5 

minutes at 3300 × g. The aqueous top layer was then loaded onto the column. 

Genomic DNA Extraction from Haloferax volcanii  

ST buffer: 1 M NaCl, 20 mM Tris.HCl pH 7.5.                                                              
Lysis Solution: 100 mM EDTA pH 8.0, 0.2% SDS. 
 
A 10 ml culture of H. volcanii was grown overnight at 45ºC until at an O.D. 

650 = 0.6-0.8, then centrifuged at 3300 x g at 25ºC for 5 minutes. The 

supernatant was removed, the cells resuspended in 200 μl of ST buffer 

followed by addition of 200 μl of lysis solution. The tube was mixed by 

inversion and the cell lysate overlaid with 1 ml of 100% EtOH. DNA was 

spooled at the interface onto a capillary tip until the liquid was homogenous 

and clear. The spool of DNA was washed twice in 1 ml of 100% EtOH, and 

excess EtOH allowed to drain from the DNA. The DNA was air-dried, 

resuspended in 450 μl of TE and precipitated with ethanol. The pellet was 

thoroughly resuspended 100 μl of TE and stored at 4ºC. 

Crude Genomic DNA Extraction from Haloferax volcanii for PCR 

When high quality genomic DNA from H. volcanii was not required, a crude 

genomic DNA extraction was carried out. A liquid culture was grown at 45ºC 

to an A650 = 0.6-0.8. Then 1 ml was pelleted at 10,000 × g for 1 minute. The 

supernatant removed and the cell pellet resuspended in 400 μl of dH2O. This 

was incubated at 94ºC to lyse the cells, followed by quenching on ice for 10 

minutes. DNA was stored at 4ºC. 

2.2.4 Nucleic Acid Manipulation 
	  
PCR Amplification  

Amplification of DNA was carried out using Phusion, DyNAzyme EXT 

(Finnzymes) or Q5 Hotstart. These enzymes are suitable for amplifying 

templates with a high GC content. Phusion was used for amplifications that 

required high fidelity, DyNAzyme EXT was used for diagnostic amplifications 

and Q5 Hotstart was used for long or difficult amplicons. Reaction conditions 

are shown below. All reactions were carried out using a Techne TC-512 
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thermocycler.  

Table 2.9: PCR reaction components 

DyNAzyme EXT Phusion Q5 Hotstart 
200 μM of each dNTP ��� 
 

200 μM of each dNTP 200 μM of each dNTP 

0.5 μM of each primer ��� 
 

0.5 μM of each primer 0.5 μM of each primer 

10-50 ng of template DNA ��� 10 ng of template DNA 1 ng - 1 μg genomic DNA 
template or 1 pg – 1 ng 
plasmid DNA template 
 

1× Optimised DyNAzyme 
Buffer  
 

1× Phusion GC Buffer 1× Q5 Reaction Buffer 

5% DMSO ��� 
 

3% DMSO 1x Q5 High GC Enhancer 

1 U of Dynazyme EXT 1 U of Phusion 0.02 U/μl Q5 Hotstart 
 

Table 2.10: PCR reaction conditions 

Step DyNAzyme EXT Phusion Q5 Hotstart  
Initial 
Denaturation 

94ºC, 120 seconds 98ºC, 30 seconds 98ºC, 30 seconds  

Denaturation 94ºC, 15 seconds 98ºC, 10 seconds 98ºC, 5-10 seconds 

30
 c

yc
le

s 
Annealing TmºC, 20 seconds TmºC, 15 seconds TmºC, 10-30 seconds 
Extension 72ºC, 40 seconds/kb 72ºC, 20 seconds/kb 72ºC, 20-30 seconds/kb 
Final Extension 72ºC, 10 seconds 72ºC, 10 seconds 72ºC, 120 seconds  
 

Annealing temperatures for primers (TmºC) were calculated using the 

following equation (Howley et al 1979) (Equation 2.1). 

81.5+ 16.6×log!" Na! + 0.41  ×%GC − 100−%homology −
!""

!"#$%!
  

Equation 2.1: Calculating annealing temperature of primers. %GC: percentage guanine and cytosine 
in the primer. Homology: percentage homology shared between primer and template. Length: length of 
primer in bases. 

 

Touchdown PCR  

When primers were not 100% homologous to the template DNA (e.g. when 

introducing restriction sites or mutations), two annealing temperatures were 

calculated. The first was based on the original percentage of homology (Tms), 
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and the second on 100% homology (Tme). The reaction annealing temperature 

started at Tms and increased to Tme across 10 cycles. The remaining 20 cycles 

used Tme as the annealing temperature. 

Colony PCR  

In order to screen large numbers of colonies for a desired plasmid or 

chromosomal gene, colony PCRs were used. H. volcanii or E. coli colonies 

growing on solid media were touched gently with a sterile yellow tip, ensuring 

only a small number of cells were picked up and the colony was not disturbed. 

The yellow tip was used to pipette up and down in 100 μl of dH2O. This was 

boiled at 100ºC to lyse cells, then cooled on ice. 1 μl of this was then used in a 

PCR reaction with DyNAzyme EXT polymerase. 

Overlap extension PCR 

In order to introduce point mutations within a gene, complementary forward 

and reverse primers were designed containing the desired mutation. Two PCRs 

were carried out, one using each of the primers and an appropriate external 

primer to amplify the region either side of the desired mutation. A third PCR 

was then carried out using the external primers only, which amplified the 

mutated region of interest. 

Restriction Digests 

Digests were carried out as by the manufacturers instructions (NEB). All 

digests were supplemented with 200 ng/μl BSA (NEB). For double digests, 

NEB buffers were selected such that each enzyme had at least 75% activity. 

Plasmid DNA was digested for at least one hour, and genomic DNA for 16 

hours. 

Blunt-end Filling with Klenow enzyme 

Overhangs generated by restriction digests were filled-in to produce a blunt 

ends using Klenow (NEB). Samples were incubated with 1 units of Klenow per 

μg of DNA, 1 x NEB Buffer 4 and 1 mM dNTPs for 30 minutes at 25ºC. The 

reaction was stopped by heat inactivation at 75ºC for 20 minutes. 
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Dephosphorylation of Vector DNA 

To prevent self-ligation of vector DNA, Shrimp alkaline phosphatase was used 

to remove 5′ phosphate groups. Samples were incubated with 5 units of Shrimp 

alkaline phosphatase/μg of DNA and 1× Antarctic phosphatase buffer for 30 

minutes at 37ºC. Phosphatase was heat inactivated at 65ºC for 10 minutes. 

Ligation of DNA 

Ligations were performed using T4 DNA ligase. For each μg of DNA, 5 units 

of ligase were used in a reaction with 1× T4 ligase buffer. For vector:insert 

ligations, reactions contained a molar ratio of ~3:1 insert to vector DNA. 

Ligations were carried out at 15ºC overnight or 4ºC for 36 hours, ethanol 

precipitated, resuspended in 4 μl dH2O and transformed into E. coli or H. 

volcanii (∆mrr strains only). 

Ethanol Precipitation of DNA 

1/10 volume of 3 M sodium acetate (pH 5.3) and 2 volumes of 100% ethanol 

were added to DNA samples and incubated at -20ºC for 1 hour. Samples were 

centrifuged at 4ºC, 20,000 × g for 30 minutes and the supernatant removed. 

Pellets were washed in 400 μl of 70% ethanol followed by centrifugation at 

4ºC, 20,000 × g for 10 minutes. The supernatant was removed and pellets air-

dried before resuspension in sterile dH2O. 

Nucleic Acid Purification 

PCR products, ligations, restriction digests and dephosphorylated DNA 

products were purified using Macherey-Nagel DNA purification kits. Protocol 

was as described in the manufacturer’s guidelines. In these kits, DNA is bound 

pH dependently to a silica membrane and is separated from contaminants by 

ethanolic washing. DNA was eluted in 30 μl of the provided elution buffer. 

DNA Sequencing 

All DNA sequencing reactions and analysis were performed by the Biopolymer 

Synthesis and Analysis Unit, University of Nottingham. Sequencing was 

carried out using the dideoxy chain termination method (Sanger et al 1977). 
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Oligonucleotide Synthesis 

Oligonucleotides were synthesised by Eurofins MWG, Germany. 

Nucleic Acid Quantification 

To determine the concentration and purity of plasmid preparations the 

absorbance at 260 nm and the 260:280 nm absorbance ratio, respectively, were 

measured by spectrometer (Beckman Coulter DU 530). 

Agarose Gel Electrophoresis 

TBE (Tris/Borate/EDTA): 89 mM Tris.HCl, 89 mM boric acid, 2 mM EDTA.    
TAE (Tris/Acetic acid/EDTA): 40 mM Tris.HCl, 20mM acetic acid, 1 mM EDTA. ���    
Gel Loading Dye (5×): 50 mM Tris·HCl, 100 mM EDTA, 15% Ficoll (w/v), 0.25% 
Bromophenol Blue (w/v), 0.25% Xylene Cyanol FF (w/v). 
 
As standard practice TBE buffer was used to cast and run agarose gels. When 

high quality resolution and/or Southern blotting was required, TAE buffer was 

used. 

Agarose gels were cast using agarose powder (Sigma) and TBE or TAE buffer. 

1/5 by final volume of 5 x gel loading dye was added to the DNA samples and 

loaded alongside molecular markers, either a 1 kb ladder (NEB) or a 100 bp 

ladder (NEB). TBE gels (10 cm) were run at 100 V for 1 hour. TAE gels (25 

cm) were run overnight (16 hours) with buffer circulation at 50 V. For 

visualization of bands, gels were stained with ethidium bromide at a final 

concentration of 0.5 μg/ml for 30 minutes. Gels used for DNA extraction were 

stained with ethidium bromide after removal of sample lanes. 

Agarose Gel Extraction and Purification of DNA 

To purify DNA from agarose gels without UV exposure, sample lanes were 

protected using foil while the appropriate band was excised. DNA was 

visualised by UV light using a UV transilluminator (UVP inc.). DNA was 

purified using the Macherey-Nagel DNA purification kit as described in the 

manufacturer’s guidelines. 
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2.2.5 Genetic Manipulation of Haloferax volcanii 
	  
Generating a Genomic Clone 

A genomic clone of a gene was obtained by restriction digest of high quality 

genomic DNA, restriction sites chosen were at least 500 bp upstream and 

downstream of the gene of interest. The digested genomic DNA was run on 

0.75% TAE agarose gel for 16 hours at 50 V and the band of expected size (+/- 

0.5 Kb) was extracted. DNA was purified and ligated to compatible sites in 

pBluescript II SK+. The resulting plasmid library was transformed into XL1- 

Blue E. coli. Transformants were selected on LB +Amp +X-gal and white 

colonies patched out and screened by colony hybridization using a gene 

specific probe. 

Generating a Deletion Construct 

A deletion construct was generated from a genomic clone by inserting the 

upstream and downstream flanking regions of the gene of interest into 

pTA131; this can be achieved by either restriction digest or PCR. 

Generating a deletion construct by digest 

A deletion construct could be made by digest if the gene of interest has 

restriction sites available within the coding sequence at both the 5' and 3' ends 

of the gene. Schematic shown in Figure 2.1 Blunt-ending with Klenow was 

required if these enzymes do not produce compatible ends. The genomic clone 

containing the gene of interest was digested with the relevant enzymes to 

remove the coding sequence, and the plasmid re-ligated. The upstream and 

downstream regions are then inserted into pTA131 by digest if appropriate 

sites are available ~800 bp upstream and downstream from the gene. Plasmids 

were transformed into XL-1 blue and plated on LB +Amp +X-gal, White 

colonies were selected and the plasmid confirmed by restriction digest and 

sequencing if necessary.   
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Figure 2.1: Schematic for generating deletion constructs by digest. ∆gene construct is 
generated by digesting appropriate restriction sites to remove the coding sequence and 
inserting the upstream (US) and downstream (DS) flanking regions into pTA131. AmpR 
(ampicillin resistance gene E. coli), colE1 origin (E. coli origin of replication), lacZ (β-
galactosidase gene used for blue/white selection in E. coli), pyrE2 (uracil biosynthesis in H. 
volcanii) 

	  
Generating a deletion construct by PCR 

If no appropriate sites for restriction digest were present, then a deletion 

construct was obtained by PCR. Schematic is shown in Figure 2.2. A PCR was 

carried out to amplify the upstream region (US) of the gene of interest and 

another PCR to amplify the downstream (DS). External primers were designed 

to contain different restriction sites compatible with the pTA131 multiple 

cloning site. Internal primers were designed to make a ‘clean’ deletion of the 

gene of interest and introduce a BamHI site at the site of deletion. The PCR 

products are both digested with BamHI and ligated. This product was then 

digested with the external enzymes and inserted into pTA131. Plasmids were 

transformed into XL-1 blue and plated into LB +Amp +X-gal, White colonies 

were selected and the plasmid confirmed by restriction digest, and sequencing 

if necessary The presence of a BamHI site marking the deletion allows for 

insertion of markers (e.g. trpA) into this region of the deletion construct.  
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Figure 2.2: Schematic for generating deletion constructs by PCR. (A) ∆gene construct is 
generated by amplifying upstream (US) and downstream (DS) flanking regions of the gene of 
interest by PCR. This example shows primers with KpnI/BamHI US sites and BamHI/XbaI DS 
sites. US and DS regions ligated at internal BamHI sites and inserted into pTA131 at KpnI and 
XbaI sites. (B) Optional. For making ∆gene::trpA+ construct. trpA gene taken from pTA298 
using BamHI and inserted between the US and DS regions at the internal BamHI site. AmpR 
(ampicillin resistance gene E. coli), colE1 origin (E. coli origin of replication), lacZ (β-
galactosidase gene used for blue/white selection in E. coli), pyrE2 (uracil biosynthesis in H. 
volcanii)	  
 
Generating a gene replacement construct 

Gene replacement constructs were made by inserting the gene of interest 

(usually containing a point mutation) along with its flanking regions into 

pTA131. The protocol for doing this varied depending on the mutation. For 

details on individual gene replacement plasmids constructed for this study see 

Chapter 3: Plasmid and Strain Construction. Section 3.1.2: Gene Deletion and 

Replacement Plasmids  

Gene Deletion / Replacement 

Deletion constructs were integrated at the gene locus by transformation of H. 

volcanii ∆pyrE2 strains. The strains were plated on Hv-Ca (+ necessary 

additives) to select for the integrated pyrE2-marked plasmid (pop-in). A pop-in 

colony was picked and grown (non-selectively) overnight in a 5 ml Hv-YPC 

(+Thy) culture until A650 = 1.0. This culture was diluted 1/500 into a fresh 
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Hv-YPC (+Thy) culture and the growth and dilution repeated. By relieving 

selection for uracil, the integrated plasmid and native gene are lost from the 

chromosome. To select for pyrE2- pop-outs, the final culture was plated into 

Hv-Ca +5-FOA (+ necessary additives). Depending upon the location of the 

recombination event either wild-type or deletion mutants can be recovered. 

Replacing the gene with a selectable marker such as trpA+ enables direct 

selection for deletion mutants. Colonies were then restreaked onto selective 

media and tested for the desired genotype. A schematic is shown in Figure 2.3 

 

 

 

 

 

 

 

 

 

 

Deletion of radA 

Recombination is essential for the pop-in and pop-out steps of the gene 

deletion and gene replacement protocol. RadA is a recombinase that facilitates 

the process of recombination; therefore, for a radA deletion to occur the strain 

must be complemented with an episomal copy of the radA gene during the 

pop-out step. ∆pyrE2 ∆trpA strains were first transformed with the ∆radA 

pyrE2

Integration of deletion construct 
plasmid at gene locus

∆pyrE2 host

Select for Ura+ 
integrants

or

Select for 5-FOA 
resistance 

Deletion Wild-type
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∆pyrE2 host

pyrE2
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trpA
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trpA
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Figure 2.3: Gene deletion by pop-in/pop-out. (A) ∆pyrE2 strains are transformed with a pyrE2+ 
deletion construct. (B) Pop-ins are selected for by their ability to grow on media lacking uracil (C) 
Relieving uracil selection allows for pop-out to occur, recombination between the regions of 
homology can be either upstream (left) or downstream (right). Pop-out is selected for by plating 
on 5-FOA The resulting gene locus will either be a deletion of wild-type (D) Replacing the gene 
with trpA+ marker enables direct selection for deletion mutants. 
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deletion construct (pTA83) and plated on selective media. Integrants were then 

transformed with a radA+ expressing episomal plasmid with Mevinolin 

resistance (pTA637), for in trans complementation of radA. To generate a pop-

out, a colony was picked and grown in YPC+Mev to an A650 of 1.0, then 

diluted 1/100 in fresh YPC+Mev. When this culture was grown to an A650 of 

1.0, it was diluted 1/100 in fresh YPC to allow loss of the episomal radA+ 

MevR plasmid from the strain. Cultures were then plated onto Hv-Ca +5-FOA 

to select for pop-outs that had also lost the episomal plasmid (pyrE2-). 

Colonies were restreaked onto selective media and tested for the desired 

genotype. This is shown in Figure 2.4. 
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Figure 2.4: radA gene deletion. (A) A ∆pyrE2, MevR- strain is transformed with pTA83, a 
deletion construct containing a radA deletion and pyrE2 marker (pop-in). (B) The strain is 
then transformed with pTA637 an episomal plasmid containing radA and pyrE2 and MevR 
markers. (C) Pop-out is able to occur due to the presence of radA+ on pTA637. (D) Strains 
are selected for both the pop-out of pTA83 and the loss of pTA637 by plating out on 5-
FOA (Delmas et al 2009). 
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2.2.6 Genotype Screening 
	  
A number of methods are used to screen for the presence or absence of a 

specific gene in pop-out strains. If the strain has a selectable phenotype (e.g. 

∆trpA) then colonies can be plated on selective media. However, H. volcanii is 

polyploid and so strains could be merodiploid, meaning that pop-outs could 

have a mixture of mutant and wild-type alleles on different chromosome 

copies. To select for strains that are homozygous, colony hybridization and 

Southern blotting must be carried out. For both of these methods, DNA is 

denatured and transferred to a positively charged membrane by either colony 

lift or vacuum transfer. 

Colony Lift 

20×SSPE: 3 M NaCl, 230 mM NaH2PO4, 32 mM EDTA, pH 7.4.  
Denaturing Solution: 1.5 M NaCl, 0.5 M NaOH. ��� 
Neutralising Buffer: 1.5 M NaCl, 0.5 M Tris·HCl, 1 mM EDTA. 
 
Candidate colonies and controls were patched on to Hv-YPC (+Thy if 

required) plates using sterile wooden toothpicks and incubated at 45ºC for ~3 

days. The patched colonies were lifted from the plate by placing a circle of 

Bio-Rad Zeta-Probe GT positively charged membrane onto the surface for 1 

minute. The membrane was transferred colony side up to Whatman paper 

soaked in 10% SDS for ≥5 minutes to lyse cells. The membrane was then 

transferred to Whatman paper soaked in denaturing solution for ≥5 minutes to 

denature proteins and DNA, then transferred to Whatman paper soaked in 

neutralising solution for ≥5 minutes. Neutralisation was repeated and the filter 

was washed briefly for 30 seconds in 2 × SSPE before being air-dried. DNA 

was crosslinked to the membrane with 120 mJ/cm2 UV. 

Southern Blot Vacuum Transfer 

20× SSPE: 3 M NaCl, 230 mM NaH2PO4, 32 mM EDTA, pH 7.4.  
Denaturing Solution: 1.5 M NaCl, 0.5 M NaOH. 
 
Purified H. volcanii genomic DNA was digested with enzymes that cut ~500-

1000 base pairs upstream and downstream of the gene of interest. The digested 

DNA was run on a 200 ml 0.75% TAE gel for 16 hours at 50 V with buffer 

circulation and stained with 0.5 μg/ml of ethidium bromide for 30 minutes. 
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Gel-embedded DNA was acid-nicked for 15 minutes in 0.25 M HCl, washed 

for 10 minutes in dH2O and denatured in denaturing solution for 45 minutes. A 

15 × 25 cm Zeta-Probe GT membrane was soaked in dH2O before equilibrating 

in denaturing solution. Vacuum transfer was carried out using a Vacugene XL 

gel blotter and Vacugene Pump (Pharmacia Biotech) for 1 hour at 40 mBar. 

Following transfer, the membrane was washed briefly in 2 × SSPE and air-

dried before the DNA was crosslinked with 120 mJ/cm2 UV. 

Hybridisation 

100× Denhardt’s Solution: 2% Ficoll 400, 2% PVP (polyvinyl pyrrolidone) 360, 2% BSA 
(bovine serum albumin, Fraction V). ��� 
20×SSPE: 3 M NaCl, 230 mM NaH2PO4, 32 mM EDTA, pH 7.4. ��� 
Prehybridisation Solution: 6 × SSPE, 1% SDS, 5 x Denhardts, 200 μg/ml salmon sperm 
DNA (Roche, boiled for 5 minutes prior to addition). 
Hybridisation Solution: 6 × SSPE, 1% SDS, 5% dextran sulphate.  
Low Stringency Wash Solution: 2 × SSPE, 0.5% SDS. ��� 
High Stringency Wash Solution: 0.2 × SSPE, 0.5% SDS. 
 
Membranes from colony lifts or vacuum transfer of agarose gels were 

prehybridised for ≥3 hours at 65ºC in 40 ml prehybridisation solution 

containing denatured salmon sperm DNA (10 mg/ml). Radiolabelled DNA 

probes were made with 50 ng of DNA and 0.74 Mbq of [α-32P] dCTP (Perkin 

Elmer). DNA was denatured at 100ºC for 5 minutes then incubated with the 

radioisotope and HiPrime random priming mix (Roche) for 15 minutes at 37ºC. 

The radiolabelled probe was then purified on a BioRad P-30 column and mixed 

with 10 mg/ml of salmon sperm DNA, followed by denaturing at 100ºC for 5 

minutes and quenching on ice. For Southern blots, 1 μl of 1 μg/ml 1 kb ladder 

was also included in the radiolabelling reaction. The prehybridiation solution 

was replaced with 40 ml of hybridisation solution and the probe DNA added. 

Membranes were incubated overnight at 65ºC. The membranes were washed 

twice with 50 ml of low stringency wash solution, once for 10 minutes and 

then 30 minutes, followed by another two washes with high stringency wash 

solution, both for 30 minutes. Membranes were allowed to dry before being 

wrapped in Saran wrap and exposed to a phosphorimager screen (Fujifilm BAS 

Cassette 2325) for ≥24 hours. The screen was scanned using a Molecular 

Dynamics STORM 840 scanner. 
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2.2.7 Phenotyping of Haloferax volcanii 
	  
Standard Growth Assay 

In order to test growth rate in liquid media, cultures were set up in 5 ml Hv-

YPC broth and grown at 45ºC to an A650 = 0.2-0.8 (exponential phase). 

Cultures were diluted and grown again to an A650 = 0.2-0.8, then diluted to an 

A650 = 0.05 (early-log phase) and incubated for 1 hour at 45 ̊C with 8 rpm 

rotation. 250 μl of culture and appropriate blanks were added to the wells of a 

48 well microtiter plate (Corning).  The plate was sealed around the edges with 

microporous tape (Boots economy brand) and incubated at 45 ̊C with double 

orbital shaking at 425 rpm for 48 hours in a Epoch 2 Microplate 

Spectrophotometer (BioTek). Readings at A600 were taken every 15 minutes. 

The generation time was calculated by plotting the growth on a log2 scale and 

using the following equation 2.2. 

𝐺   = !
!
 

𝑛   = !"#!!!"#!
!"#!

 

 

It was noticed that generation times of strains varied between experiments 

when measuring the growth using the Epoch 2 Microplate Spectrophotometer 

(BioTek). Therefore, in this study comparisons are ony made between sets of 

strains within the same experiment. i.e. strains that have been incubated on the 

same 48 well microtitre plate and with the A600 measured simultaneously 

during a single run on the the Epoch 2 Microplate Spectrophotometer 

(BioTek). Since generation times vary between experiments, the generation 

times stated are not absolute. However, the relationship between sets of strains 

has been observed to be consistent, meaning that comparisons of generation 

times between strains within a single experiment is reliable. Therefore, in this 

study growth curves generated by this method are used to illustrate the 

G = generation time 

t = time 

n = number of generations 

b = end OD 

B = start OD 

Equation 2.2: Equation to calculate the generation time of a liquid culture using the OD A600. 



Chapter 2: Materials and Methods 
	  

	  98	  

differences in generation times between a set of strains rather than an exact 

determination of each generation time. 

Ultraviolet (UV) Irradiation Sensitivity 

1 colony was used to inoculate 5 ml of HV-YPC broth (+Thy if required) and 

grown at 45ºC overnight. The culture was diluted appropriately into 5 ml of 

fresh HV-YPC broth and grown until A650 ~0.35-0.4 was reached. Cells were 

diluted in 18% SW (10-1 – 10-6), and duplicate 20 μl samples were spotted out 

on Hv-YPC agar (+Thy if required) and allowed to dry at room temperature. 

Plates were exposed to UV light (254 nm, 1 J/m2/sec) and shielded from visible 

light to prevent DNA repair by photo-reactivation. Plates were incubated at 

45ºC for 4-7 days and colonies counted. Survival fractions were calculated 

relative to an unirradiated control. 

Mitomycin C (MMC) sensitivity 

1 colony was used to inoculate 5 ml of HV-YPC broth (+Thy if required) and 

grown at 45ºC overnight. The culture was diluted into 5 ml of fresh HV-YPC 

broth and grown until OD of A650 ~ 0.35-0.4 was reached. Cells were diluted 

in 18% SW (100 – 10-6), and duplicate 20 μl samples were spotted out on Hv-

YPC agar containing 0 – 0.02 μg/ml of MMC. Plates were allowed to dry 

before incubation, incubated at 45ºC for 4-7 days and colonies counted. 

Survival fractions were calculated relative to an untreated control. MMC plates 

were made fresh and used within 5 days. 

Recombination Assay 

The recombination frequency between a plasmid and the chromosome can be 

measured by using a pair of mutant leuB alleles (Lestini et al 2010). Strains 

derived from a H195 or a H164 background have a mutant leuB allele, leuB-

Ag1, and therefore cannot grow on media lacking leucine. Recombination 

between this allele and the leuB-Aa2 allele present on pTA163 results in a 

wild-type leuB allele, this strain can now grow on media lacking leucine, 

Figure 2.5. 

 



Chapter 2: Materials and Methods 

	   99	  

 

 

 

 

 

 

 

 

Strains were transformed with 1 μg of pTA163 (pyrE2+, leuB-Aa2), 

transformants were allowed to recover for 1.5 hours with no disturbance 

followed by 3 hours with rotation. Transformants were plated on Hv-Min +Trp 

+Ura at 100 – 10-3 dilutions to select for cells that had undergone a 

recombination event between the plasmid leuB-Aa2 allele and the 

chromosomal leuB-Ag1 allele, generating a wild-type leu+ allele. Previous 

work has shown that reversion of this allele is rare and does not affect the 

results of this assay (Haldenby 2007). To determine the total viable count, 

transformants were also plated onto (non-selective) Hv-YPC at 10-4 – 10-6 

dilutions. 

To determine the proportion of crossover (CO) vs non-crossover (NCO) 

recombination events, colonies were patched in duplicate on Hv-Min +Trp to 

select for CO recombination events in cells that had integrated the plasmid and 

become pyrE2+ leu+ and then on Hv-Min +Trp +Ura as a control to ensure 

that all colonies patched were leu+. The fraction of CO events (leuB+ pyrE2+) 

leuB-Aa2

pyrE2 

pTA163

leuB-Ag1

or

leuB+ pyrE2 leuB+

Non-crossover
Leu+ Ura-

Crossover
Leu+ Ura+

Figure 2.5: Chromosome x plasmid recombination assays. ∆pyrE2 strains with a 
chromosomal leuB-Ag1 allele (leu-) are transformed with pTA163, containing pyrE2 and 
leuB-Aa2. A recombination event between the plasmid leuB-Aa2 allele and chromosomal 
leuB-Ag1 allele generates a wild-type leu+ allele and strains can grow on media lacking 
leucine. Crossover and non-crossover events are measured by studying the proportion of 
transformants that have retained or lost the pyrE2 marker found on pTA163: crossover 
recombinants are pyrE2+ (ura+), and non-crossover recombinants ∆pyrE2 (ura-). 
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is derived by comparison to the total recombination frequency. The remaining 

recombination events (leuB+, pyrE2-) were NCO. 

The transformation efficiency of a strain was determined by transforming with 

1 μg of pTA354 (pyrE2+), transformants were allowed to recover for 1.5 hours 

with no disturbance followed by 3 hours with rotation. Transformants were 

plated on Ca +Trp at 100 – 10-3 dilutions to select for cells that had taken up the 

plasmid and on Hv-YPC at 10-4 – 10-6 dilutions to determine the total viable 

count. The recombination frequency was normalised to the transformation 

efficiency for each strain. 

Flow Cytometry  

Flow cytometry was used to determine the DNA content and cell size of H. 

volcanii cells (Delmas et al 2013). 5 ml Hv-YPC broth was inoculated and 

grown at 45ºC with 8 rpm rotation in two successive dilutions until an A650 

was reached. 10 μl of acridine orange solution (0.1 mg/ml) was added to 1 ml 

of culture and incubated at room temperature for 1 minute. The sample run on 

an Apogee A40 flow cytometer with settings of: sample flow 0.7 μl /minute, 

volume 110 μl, sheath pressure = 150 psi. PMT voltages were 450 V for 

forward light scatter (LS1) and 500 V for emission at 510-580 nm (FL1). Data 

was analysed using Flow Jo (Tree Star Inc.). Debris was excluded and at least 

50,000 cells counted for each time point. Gating on the peak/area plots for LS1 

and FL1 was used to exclude cell doublets. Data was analysed using Flow Jo 

(Tree Star Inc.). 

2.2.8 Gene Expression by RT-PCR 
	  
In order to determine the level of gene expression, RNA was extracted from 

cells and an RT-PCR (reverse transcriptase PCR) carried out. Strains were 

treated as follows prior to RNA extraction: 

Expression level following UV-irradiation 

5 ml cultures of H. volcanii were grown over two successive overnights in 10 

ml Hv-YPC (+Thy if required) to an A650 ~ 0.5. 1 ml of culture was pelleted 

at 3300 × g for 8 minutes at 25ºC and then resuspended in 18% salt water. The 
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culture was UV irradiated at 20 J/m2, then centrifuged at 3300 × g for 8 

minutes at 25ºC and resuspended in 1 ml of Hv-YPC (+Thy if required). The 

cells were left to recover in the dark for 30 minutes at 45ºC with 8 rpm rotation 

before RNA was extracted. A control sample was treated exactly as above but 

without UV irradiation. 

Expression level following Mitomycin C (MMC) treatment 

5 ml cultures of H. volcanii were grown over two successive overnights in 10 

ml Hv-YPC (+Thy if required) to an A650 ~ 0.5. 1 ml of the culture was then 

treated with 2 μg/ml MMC. The sample was incubated at 45ºC with 8 rpm 

rotation for 1 hour before RNA was extracted. A control sample was treated 

exactly as above but with addition of 18% salt water instead of MMC. 

RNA Extraction 

All equipment was wiped down with 0.1 M NaOH 1mM EDTA followed by 

0.1% DEPC-treated water. Filter tips, individually wrapped tubes and RNase-

free chemicals were used and gloves were worn at all times. 

Unbuffered Spheroplasting Solution: 1 M NaCl, 27 mM KCl, 15% sucrose, pH 7.5. ���  

Cultures were centrifuged at 3300 x g for 8 minutes at 25 ̊C in a round 

bottomed tube. The cells were resuspended in 250 μl of unbuffered 

spheroplasting solution and transferred to a fresh 1.5 ml tube. 500 μl of Trizol 

LS (Invitrogen) was added, homogenized by vortexing then followed by a 5 

minute incubation at room temperature. 250 μl of chloroform was then added 

and samples were vortexed for 30 seconds before incubation for 3 minutes at 

room temperature. The samples were then centrifuged at 4ºC at 14,000 x g for 

10 minutes and the top aqueous layer was transferred to a fresh 1.5 ml tube. 
500 %l isopropanol was added and incubated for 10 minutes at room 

temperature. The samples were then centrifuged at 4 ̊C, 14,000 x g for 10 

minutes, the supernatant removed and the precipitated RNA washed in 1 ml of 

75% ethanol and followed by centrifugation at 4ºC, 14,000 x g for 10 minutes. 
The supernatant was removed and the pellet left to air dry before resuspension 

in 45 μl of dH2O. A 5 μl aliquot was used in a 1/10 dilution with TE to check 



Chapter 2: Materials and Methods 
	  

	  102	  

RNA concentration and purity by measuring 260:280 nm absorbance ratio of a 

spectrometer (Beckman Coulter DU 530). RNA samples were snap frozen 

using dry ice and stored at -80ºC. 

DNase Treatment of RNA samples 

5 μl of 10X TURBO DNase buffer and 1 μl of TURBO DNase (Ambion) were 

added to 45 μl RNA sample and incubated at 37ºC for 30 minutes. A further 1 

μl of TURBO DNase was added and incubation repeated. 5 μl of DNase 

inactivation reagent (Ambion) was added, mixed by vortexing and incubated 

for 3 minutes at room temperature, vortexing occasionally. The samples were 

then centrifuged at 14,000 x g at room temperature and supernatant containing 

RNA transferred to a fresh tube. RNA samples were pipetted into 5 μl aliquots 

and snap frozen before being stored at -80ºC. 

Reverse-Transcription PCRs (RT-PCRs) 

To assess the level of gene expression, reverse-transcription PCRs (RT-PCRs) 

were carried out on RNA extracts using a OneStep RT-PCR kit (QIAGEN). 

100 ng of template RNA was used in the following RT-PCR reaction (final 

volume 25 μl): 100 ng of template RNA, ���1 × QIAGEN OneStep Buffer, ���400 

μM of each dNTP, ���0.6 μM of each primer���, 5-10 units RNase inhibitor (Super 

RNase.In), ���1 × Q solution (aids transcription of GC rich templates)���, 1 μl 

enzyme mix (containing reverse transcriptase and DNA polymerase). Reaction 

conditions are shown in Table 2.11, all reactions were carried using a Techne 

TC-512 thermocycler and a no RT control was used for all RT-PCRs. 

Table 2.11: PCR conditions for RT-PCR 

Step Conditions  
Reverse transcriptase 50ºC, 30 minutes  
Initial Denaturation 95ºC, 30 minutes  
Denaturation 94ºC, 30 seconds  

26 
cycles 

Annealing 55ºC, 1 minute 
Extension 72ºC, 30 seconds/kb 
Final Extension 72ºC, 10 minutes  
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2.2.9 Protein Overexpression and Purification 
	  
Protein Induction and Overexpression 

Binding Buffer A: 20 mM HEPES pH 7.5, 2 M NaCl, 1 mM PMSF (phenylmethanesulphonyl 
fluoride), imidizole to desired concentration. 
Binding Buffer B: 20 mM HEPES pH 7.5, 2 M NaCl, 1 mM PMSF 
 
 
 A starter culture was grown overnight at 45ºC in 5 ml Hv-Ca+ broth to A650 

of ~1.0, then diluted 1/100 in to fresh 5 ml Hv-Ca+ broth and grown for ~8 

hours at 45ºC until an A650 of ~ 1.0 was reached. The culture was diluted 

1/200 in 50 ml Hv-Ca+ broth and grown for 24 hours until an A650 of ~ 0.5 

was reached, then diluted 1/120 into 333 ml YPC broth and grown at 45°C 

with shaking (175 rpm) for 16 hours. When A650 = 0.5, 0.2 g (3 mM final 

concentration) of powdered	   tryptophan (Trp) was added to induce expression 

and the culture was incubated at 45ºC; after 1 hour a further 0.1 g Trp (~4.5 

mM final concentration) was added and incubated for another hour. If native 

levels of protein expression were to be analysed then the culture was not 

induced by Trp. The culture was centrifuged at 3300 × g for 8 minutes at 4ºC. 

If proteins were his6-tagged and to be purified by a Ni2+ column then cells 

were resuspended in 7 ml ice-cold Binding Buffer A (20 mM imidazole); if 

proteins were StrepII tagged and to be purified by StrepII column then cells 

were resuspended in 7 ml ice-cold Binding Buffer B. Cells were lysed by 

sonication (4-5 x 30 seconds at ≤ 8 μm amplitude) on ice, cell lysate was then 

transferred to a 15 ml round bottomed flask and centrifuged at 20,000 × g for 

15 minutes at 4ºC. The sample was filtered sequentially through 0.8 µm, 0.45 

and 0.2 µm μm filters to remove DNA. 

Charging of Ni2+ beads 

To allow purification of his6-tagged proteins, IMAC Sepharose 6 Fast Flow 

beads (GE Healthcare) were charged with Ni2+. Beads (0.5 ml per column) 

were washed twice with ≥2 volumes of dH2O, and then equilibrated for 30 

minutes with ≥0.2 volumes of 0.2 M NiSO4 with rotation at 4ºC. Two further 

washes with dH2O were performed, the beads were then washed once with 5 

ml of Buffer A (500 mM imidazole) then a further three times with Buffer A 



Chapter 2: Materials and Methods 
	  

	  104	  

(20 mM imidazole). Beads were resuspended in 0.5 ml Buffer A (20 mM 

imidazole) per sample. 

Ni2+ gravity column 

Cell lysates were incubated for 1 hour, rotating at 4ºC with 0.5 ml Ni2+ charged 

beads. The slurry was applied to a Poly-Prep column (Bio-Rad) and the flow-

through collected and reloaded onto the column. The column was washed 3 x 

with 4 ml of ice-cold Binding Buffer A (20 mM imidazole) and bound protein 

was eluted with 2 column volumes of binding buffer containing 100, 200 and 

500 mM imidazole. All protein purification steps were performed at 4°C. 

Protein Concentration 

Protein samples were concentrated using Vivaspin 20 ultrafiltration spin 

columns (GE healthcare). These columns could also be used for diafiltration, to 

remove imidazole after Ni2+ protein purification methods, in preparation for 

further protein purification by a Strep-Tactin column. A column with 

molecular weight cut off (MWCO) appropriate to the protein was selected. 

Protein samples were added to a Vivaspin column that has been pre-

equilibrated with dH2O and the appropriate protein buffer, then spun at 8000 × 

g in a swing bucket centrifuge at 4ºC until the desired final volume was 

reached. For application onto a StrepII column after Ni2+ protein purification, 

1-2 ml of protein sample is desired. 

Strep-Tactin gravity column 

Elution Buffer: 20 mM HEPES pH 7.5, 2 M NaCl, 1 mM PMSF, 5 mM D-desthiobiotin (IBA) 
 
For protein samples that have had no prior Ni2+ purification, use double the 

amount of each bead, wash buffer and elution buffer volumes stated below. For 

protein samples that had already been subjected to Ni2+ purification prior to 

StrepII purification, the following amounts of beads, wash volumes and elution 

volumes were used. 0.5 ml Strep-tactin Sepharose (IBA) was applied to a Poly-

Prep column (Bio-Rad) and 2 x 1 ml Buffer B was added to equilibrate beads. 

Protein sample was applied to the column and flow through was collected. 

Flow through was applied to the column and this step was repeated again. The 
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column was washed with 5 x 0.5 ml Buffer B. Bound protein was eluted by 

applying 0.4 ml, 0.7 ml and then 0.4 ml of Elution Buffer to the column. All 

protein purification steps were performed at 4°C. 

Protein Storage 

For the short term, elutions were stored at 4ºC. For long term, proteins were 

snap frozen and stored at -80ºC with 10% glycerol.  

Protein Precipitation  

If samples required concentration prior to loading on an SDS-PAGE gel, 

proteins were precipitated using TCA (trichloroacetic acid). 

4× Resuspension Buffer: 4% SDS, 0.2 M Tris pH 7.4, 0.15 M NaOH. 

1/10th volume of 0.15% deoxycholate was added to samples, mixed by 

vortexing and incubated at room temperature for 10 minutes. 1/10th of the 

original volume of 72% TCA (trichloroacetic acid) solution was then added 

and incubated for 5 minutes at room temperature. Samples were pelleted at 

16,000 × g for 8 minutes and the supernatant removed. The pellet was 

resuspended in a 3:1 solution of 1 × resuspension buffer (protein sample 

buffer). The protein was then heat denatured by boiling at 94ºC for 5 minutes 

in 1× Laemmli buffer and analysed by SDS-PAGE. 

SDS-Polyacrylamide Gel Electrophoresis 

12% SDS-PAGE gel (resolving): 12.5% acrylamide/bisacrylamide Protogel (National 
Diagnostics), 0.37 M Tris (pH 8.8), 0.1% SDS 0.05% AMPS (ammonium persulfate), 0.05% 
TEMED (tetramethyleethylenediamine). ���                                
3.0% SDS-PAGE gel (stacking): 3% acrylamide/bisacrylamide Protogel, 0.25 M Tris (pH 
6.8), 0.2% SDS, 0.125% AMPS, 0.125% TEMED, 0.77 ml H2O. 
SDS-PAGE running buffer: 0.25 M Tris, 1.92 M glycine, 1% SDS. 
Laemmli buffer (4×): 50 mM Tris pH 6.8, 100 mM DTT, 2% SDS, 0.1% bromophenol blue, 
10% glycerol. 
 

Protein samples analysed using SDS-PAGE (sodium dodecyl sulphate 

polyacrylamide gel electrophoresis). Gels were cast in Novex cassettes 

(Invitrogen). A 12.5% resolving gel was poured with a layer of isopropanol on 

top to leave a flat surface. Once set, the isopropanol was washed off and a 3% 

stacking gel poured and a comb inserted. Protein samples were mixed with a 
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1/4 by final volume of 4× Laemmli buffer, denatured by boiling at 94 ̊C for 5 

minutes and run alongside a PageRuler size ladder (Fermentas). Gels were run 

for ~1 hour 20 minutes in 1× SDS-PAGE running buffer (200 V, 36 mA per 

gel) and stained with PageBlue Protein Staining Solution (Thermo Scientific) 

for visualization of proteins. 

Mass Spectrometry and Protein Identification 

Mass spectrometry was performed by Dr Susan Liddell (Proteomics Facility, 

University of Nottingham). Proteins in gel bands were reduced using DTT 

(dithiothreitol) 10 mM, carboxyamidomethylated using IAA (iodoacetamide) 

55 mM, and digested with Trypsin Gold (Promega) on a robotic platform for 

protein digestion (MassPREP station; Waters, MA, USA). The resulting 

peptides were analysed by liquid chromatography-electrospray ionization-

tandem mass spectrometry (LC-ESI-MS/MS). 

 

Tryptic peptides were separated and delivered on-line to an LTQ FT Ultra MS 

(Thermo Fisher Scientific, MA, USA) fitted with a nanoelectrospray ionisation 

source, via an Ultimate 3000 Nano LC system (Dionex/Thermo Fisher 

Scientific, MA, USA) (access to LC-MSMS courtesy of Dr Neil Oldham, 

School of Chemistry, University of Nottingham) fitted with a C18 reverse 

phase, 75 μm I.D., 15 cm column (Jupiter 4 µm Proteo 90 Å, Phenomenex, 

column made in-house, courtesy of David Tooth). 

 

The software package Xcalibur™ (Version 2.0 SR2, Thermo Fisher Scientific, 

MA, USA), was used to acquire and process the RAW data files. The MS/MS 

data were searched on the MASCOT search engine (Version: 2.3.01, Matrix 

Science Ltd, London, UK) using the MS/MS ions search tool. MASCOT data 

reported in this thesis represent output from searches against our custom 

Haloferax volcanii database which consists of the entire set of 4,111 predicted 

protein sequences, supplemented with tagged construct sequences. 

Carbamidomethylation of cysteine and oxidation of methionine were set as 

variable modifications. One missed cleavage by trypsin was accepted. Other 
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than file type (.mgl) and instrument type (ESI-FTICR), all remaining search 

values were the pre-set defaults. 

2.2.10 Halophilic Virus Isolation 
	  
Halophilic Virus Sample collection 

On the 13th October 2011, 5 litre samples were collected from evaporation 

pools at a salt works outside Eilat, Israel these samples were labelled Eilat 1, 2 

and 3. On the 14th October 2011, four more 5 litre water samples were 

collected from the west shore of the Dead Sea, Israel at Ein Gedi, Kalya, 

Mitspe Shalem and a pool near to the shore at Mitspe Shalem. Table 2.12 for 

co-ordinates of sample locations. Samples were collected in a plastic beaker 

and crudely filtered at the location through fabric to remove brine shrimp and 

debris. For transportation purposes the Ein Gedi and Kalya samples were 

pooled, as were the Eilat 1 and 3 samples. The samples were then decanted into 

5 or 10 litre jerry cans, tightly sealed with parafilm and transported back to 

England by surface mail.  

On the 29th January 2013, 50 litre sample was collected from a pond at the Bras 

del Port salterns, Alicante, Spain with help from Rodriguez-Valera Lab at the 

University Miguel Hernandez, Alicante. The sample was collected in a plastic 

beaker and decanted into 2 x 25 litre jerry cans, tightly sealed with parafilm 

and transported back to England by airmail.	  

Table 2.11: Halophilic virus sampling locations. 

Sample ID Country 
of Origin 

Latitude Longitude Sample 
Size 

Date 
Collected 

Eilat 1 Israel  29º 33' 33" N 34º 57' 41" E 5 L 13th Oct 2011 
Eilat 2 Israel  29º 33' 39" N 34º 57' 45" E 5 L 13th Oct 2011 
Eilat 3 Israel  29º 33' 33" N 34º 57' 41" E 5 L 13th Oct 2011 
Ein Gedi Israel  31º 27' 35" N 35º 24' 00" E 5 L 14th Oct 2011 
Kalya Israel  31º 45' 41" N 35º 30' 13" E 5 L 14th Oct 2011 
Mitspe Shalem Israel  31º 34' 54" N 35º 24' 42" E 5 L 14th Oct 2011 
Mitspe Shalem Pool Israel  31º 34' 54" N 35º 24' 44" E 5 L 14th Oct 2011 
Bras del Port 
Saltern ID - #30 

Alicante, 
Spain 

38º 11' 47.4"N 0º 35' 0.8" W 50 L 29th Jan 2013 
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NaCl Concentration Determination of Water Samples 

In order to determine the NaCl concentration of water samples, conductivity 

readings were taken using an AKTA Prime Plus (Amersham Biosciences). 

Firstly, 10 ml of dH2O was washed through the AKTA to zero the 

conductivity. Once zeroed, 5 ml of NaCl solutions with known concentrations 

ranging from 0 - 2.5 M were injected into the AKTA and the conductivity (in 

mS/cm) was taken to generate a standard curve. 5 ml of the seawater samples 

were then injected into the AKTA and with the conductivity readings the salt 

concentration of each sample was calculated from the standard curve. All 

samples were pre-filtered through a 0.2 μm filter to remove debris. 

Viral Enrichment 

5 ml Hv-YPC Broth was inoculated with wildtype Haloferax volcanii and 

incubated at 45ºC with rotation. When the OD650 had reached 0.5, 1 ml of 

seawater sample that had been filtered through a series of 5 μm, 0.45 μm and 

0.2 μm filters was added to the culture. The virus-inoculated culture was 

incubated overnight at 42ºC with rotation. Following incubation, the culture 

was centrifuged at 15,557 x g for 10 minutes at 25ºC to pellet the Haloferax 

volcanii cells. 10% PEG600 was added to the supernatant containing the 

enriched viruses and then incubated at 4ºC with rotation. This sample was then 

spun at 15,557 x g for 30 minutes to pellet the viruses, the pellet was then 

resuspended in 1 ml of 18% SW. 

Viral Plaque Assay 

5 ml of Hv-YPC was inoculated with wild type Haloferax volcanii and 

incubated at 45ºC with rotation until the OD650 had reached 0.5. 300 μl of the 

culture was added to 3 ml of Soft Hv-YPC agar (0.5% Agar) pre warmed to 

52ºC, vortexed, quickly poured over an Hv-YPC agar plate and left to set for 

15 minutes at room temperature. Once set, 20 μl of enriched virus sample was 

spotted onto the plate and left to soak in for 30 minutes at room temperature. 

The plates were then incubated upright in a plastic bag at 45ºC, after 24 to 48 

hours the plates were inspected for viral plaques. 
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Pre-filtration of Sea Water 

To remove large particles and cellular matter, the seawater samples were 

sequentially filtered through a fiberglass filter membrane (Millipore) and then 

either a 0.45 μm or 0.22 μm nitrocellulose membrane (Millipore). The 

membranes were held in a 142 mm stainless steel filter holder and the sea 

water was driven across the filter using a high performance peristaltic pump 

(Cole Parmer Masterflex I/P) at 0.5 litre/min. The filtrate was collected in a 

clean 5 litre jerry can and kept at 4ºC. Following each filtration the tubing and 

filter apparatus were flushed with 0.1 N of NaOH heated to 40ºC and 5 litre of 

dH2O. 

Tangential Flow Filtration of Sea Water 

To concentrate and further purify the virus particles, the filtrate from the pre- 

filtration protocol was circulated through a tangential flow filtration cartridge 

(Millipore) with a 30 kDa molecular weight cut off. Virus particles are retained 

within the membrane, whereas small molecules and water cross the membrane 

and are collected in the permeate. Unlike normal flow filtration, in tangential 

flow filtration (TFF) the sea water is flowed in at a tangent to the membrane, 

this means that the virus particles do not build up on the membrane surface but 

are swept along and therefore can be collected in the retentate. The waste was 

collected in the permeate. The sea water was driven through the TFF using a 

high performance peristaltic pump (Masterflex I/P) at around 1.5 litre/min and 

filtration was carried out until the retentate was concentrated to around 300 ml. 

Prior to each filtration, the tubing and TFF were flushed through with 7 litres 

dH2O and equilibrated with 1 litre of NaCL at the same concentration of the 

sample. Following each filtration the tubing and TFF were flushed with 0.1 N 

of NaOH heated to 40ºC, 5 litre of dH2O and then stored under sterile dH2O at 

4ºC.  

Polyethylene glycol (PEG) Precipitation of Viruses 

Phage Buffer: 30 mM Tris-HCl pH 7.5, 2 mM CaCl2, 1.25M NaCl, 88 mM MgCl2.6H2O, 85 
mM MgSO4.7 H2O (filter sterilized) 

Following concentration by TFF, the sea water samples collected from Israel 
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were precipitated by PEG. The sea water sample were adjusted to 1.35 M 

NaCl, and to precipitate the viruses PEG8000 (Fisher) was added at a final 

concentration of 10 % (w/v). The sea water samples were agitated until all of 

the PEG8000 had dissolved, then incubated overnight (for at least 10 hours) at 

4ºC in the dark. When a white phase was visible the sample was centrifuged at 

17,000 x g (Sorval SLA3000 rotor) for 30 minutes at 4ºC. The supernatant was 

discarded and the pellet allowed to air dry for 10 minutes. The PEG-virus 

pellet was resuspended in 5ml of Phage Buffer with gentle agitation for 1 hour. 

To remove PEG from the virus sample, 7 ml of chloroform was added and 

gently vortexed for 10 seconds and centrifuged at 3.5 x g for 10 minutes. This 

was repeated as many times as needed until the aqueous layer turned clear. The 

supernatant was transferred to a fresh tube and store at 4ºC. 

Iron Chloride Precipitation of Viruses 

10 g/L Fe Stock Solution: FeCl3-6H2O, 100 ml dH2O (note: the amount of FeCl3 to add is 
calculated based on the amount of Fe and not the amount of the salt counterpart) 
Resuspension buffer: 0.1 M EDTA-Na2, 0.2M MgCl2, 0.125 M Tris, 0.125 Ascorbic acid, pH 
to 6 
 
Following concentration by TFF, the sea water samples collected from 

Alicante, Spain were precipitated by iron chloride (John et al 2011). 1 ml of a 

10 g/litre Fe stock solution was added to each 10 litres of filtered sea water 

sample. The samples was shaken vigorously and incubated for 1 hour at room 

temperature with occasional shaking. The Fe treated sea water was then filtered 

through a 1.0 μm polycarbonate (PC) membrane filter on top of a 0.8 μm 

Supor800 support filter. The membranes were held in a 142 mm stainless steel 

filter holder and the sea water was driven across the filter using a high 

performance peristaltic pump (Cole Parmer Masterflex I/P) up to 0.5 

litre/minute. The FeCl3 precipitated viruses is captured on the PC membrane 

filter. As filtration slowed down the polycarbonate membrane filter was 

replaced with a fresh one. PC filters were placed in a glass Hybaid tube, 10 ml 

of Resuspension Buffer was added and incubated at 4ºC for 24 hours in the 

dark with rolling. The Resuspension Buffer, containing the precipitated viruses 

was removed and stored at 4ºC. 
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Proteinase K and SDS Treatment of Viruses 

To aid lysis of the virus particles, proteinase K and sodium dodecyl sulphate 

(SDS) was added to the sample at final concentrations of 50 μg/ml and 0.1% 

respectively and incubated at 37ºC for 1 hour. 

Preparation of Virus Samples for RNA and DNA Extraction 

TRIzol LS Reagent (Invitrogen) was added in a 3:1 ratio to the sample and 

gently pipetted up and down to homogenize the viruses. To permit complete 

dissociation of nucleoprotein complex, the homogenized sample was incubated 

at room temperature for 5 minutes. 0.2 ml chloroform was added per 0.75 ml 

TRIzol LS reagent used for homogenization, shaken vigorously for 15 seconds 

then incubated for 15 minutes at room temperature. The sample was 

centrifuged at 8,000 x g for 20 minutes to separate RNA, DNA and protein into 

three phases. The aqueous phase containing RNA and interphase/organic 

phenol phase containing DNA was kept and stored at 4ºC for further 

processing. 

Viral RNA Isolation 

For RNA work all equipment was wiped down with 0.1 M NaOH 1mM EDTA 

and then 0.1% DEPC-treated water. Filter tips, individually wrapped tubes and 

RNase-free chemicals were used and gloves were worn at all times.��� 0.5 ml of 

100% isopropanol was added to the aqueous phase per 0.75 ml TRIzol LS 

Reagent used for homogenization and incubated at room temperature for 10 

minutes. The sample was centrifuged at 8,000 x g for 15 minutes and the 

supernatant discarded. The RNA pellet was washed with 1 ml 75% ethanol per 

0.75 ml TRIzol LS Reagent used for homogenization and then centrifuged at 

7,500 x g for 5 minutes at 4ºC, the supernatant was discarded. The pellet was 

left to air dry for 10 minutes and resuspended in 50 μl of 0.1% DEPC- treated 

water. 

Viral DNA Isolation 

0.3 ml of 100% ethanol per 0.75 ml TRIzol LS Reagent used for 

homogenization was added to the interphase/organic phenol phase containing 
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DNA, inverted several times to mix and incubated at room temperature for 3 

minutes. The sample was centrifuged at 2,000 x g for 5 minutes at 4ºC to pellet 

the DNA, and the supernatant was discarded. The DNA pellet was washed with 

1 ml of 0.1 M sodium citrate in 10% ethanol per 0.75 ml TRIzol LS Reagent 

used for homogenization, incubated for 30 minutes at room temperature and 

centrifuged at 2000 x g for 5 minutes at 4ºC. The supernatant was discarded 

and the wash repeated once more. 2 ml 75% ethanol per 0.75 ml TRIzol LS 

Reagent used for homogenization was added, then incubated for 20 minutes at 

room temperature then centrifuged at 2000 x g for 5 minutes at 4ºC. The 

supernatant was discarded and the pellet was allowed to air dry. The DNA 

pellet was then resuspended in 50-300 μl of 8 mM NaOH, for long term 

storage at 4ºC the pH was adjusted with HEPES and EDTA was added. 

2.2.11 Deep Sequencing of Viral Genomes 
	  
Library preparation and viral genome sequencing was carried out by Sunir 

Malla and Raymond Wilson, Bioinformatic analysis and support was carried 

out by Jo Moreton and Martin Blythe, all at the Deep Seq facility at the 

University of Nottingham. 

Library preparation  

From the isolated viral RNA, double stranded DNA was generated using the 

NEB kit and then fragmented. The adapters were then ligated (DNA adapters 

from Illumina True seq kit). The fragmented-ligated DNA was gel purified 

using E-gel. The purified DNA was PCR amplified, the average size of the 

library was 450bp and the total adapter length was around 100bp (around 50bp 

at each end). 

Miseq sequencing 

The library was sequenced by Illumina MiSeq, 2 x 250bp (paired-end).  

Bioinformatics 

The raw reads from MiSeq sequencing were in a fastq format. Adaptor 

sequences were trimmed from the reads using Illumina Experiment Manager 

software. The paired-end reads were analysed using FLASH (Fast Length 
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Adjustment of Short reads), this software merges over lapping paired-end reads 

(Magoc & Salzberg 2011). The reads were run though the short read error 

corrector Musket (Liu et al 2013). The reads where run through the de novo 

assembler CLC Assembly Cell and the contigs from this de novo assembly 

were then searched against the NCBI non-redundant (NR) database using 

BlastX. To remove any contaminating “host” sequences the contigs were 

screened against 67 known haloarchaeal genome sequences. The reads were 

aligned to de novo contigs using Bowtie 2  run through the de novo assembler 

CLC Assembly Cell again and aligned to known haloviral genome sequences. 
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Chapter 3: Plasmid and Strain 
Construction 

 

3.1 Plasmid construction 
 
This chapter details how plasmid vectors used in this study were constructed, 

all plasmids were confirmed by restriction digest and sequencing. In all 

figures, the following abbreviation apply: AmpR (ampicillin resistance gene, E. 

coli), colE1 ori (E. coli origin of replication), f1(+) ori (E.coli origin of 

replication), hdrB (thymidine biosynthesis, H. volcanii), his6-tag 

(hexahistidine tag), lacZ (β-galactosidase gene used for blue/white selection in 

E.coli), MCS (multiple cloning site), p.fdx (ferredoxin promoter), pHV2 (H. 

volcanii origin of replication), p.tnaA (tryptophan inducible promoter), p.lac 

(promoter for lacZ), pyrE2 (uracil biosynthesis, H. volcanii), strepII-tag 

(streptavidin tag), t.L11e (terminator), t.Syn (terminator). 

3.1.1 Genomic Clones 
	  
Genomic clones were constructed using the standard E. coli cloning vector, 

pBluescript II SK+ (Figure 3.1). The multiple cloning site (MCS) is located 

within lacZ (ß-galactosidase gene). Expression of lacZ results in blue colonies 

when plated onto media containing X-gal, if lacZ is disrupted the colonies are 

white. Genomic clones are constructed by cloning a gene of interest along with 

upstream and downstream flanking regions of ~1kb each into the MCS of 

pBluescript II SK+. The protocol for this method is described in Chapter 2: 

Materials and Methods, Section 2.2.5: Genetic Manipulation of H. volcanii. 
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Chapter 3: Plasmid and Strain Construction 
	  

	  116	  

pTA415, hel308 (HVO_0014) genomic clone 
 
The hel308 genomic clone, pTA415, was previously constructed by Zhenhong	  

Duan	  in	  2005. 
 
pTA1364, hel308b (HVO_0971) genomic clone 
 

Genomic DNA was extracted from wild-type H. volcanii (H26) and digested 

with XmaI and AclI (Figure 3.2A). AclI cuts 3572 bp upstream of hel308b and 

XmaI cuts 2937 bp downstream, producing an 8.4 kb fragment. Digested DNA 

was run on an agarose gel and bands between 8-9 kb extracted and ligated into 

pBluescript II SK+ at XmaI and ClaI sites, (Figure 3.2B). Transformants were 

patched onto LB+ Amp agar and transferred to a membrane via a colony lift. 

Colony lifts were probed with a 993 bp radiolabelled Hel308bF-Hel308bR 

PCR product amplified from genomic DNA. Patches that hybridised with the 

probe were restreaked and a colony PCR used to confirm the presence of the 

correct insert (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Chapter 3: Plasmid and Strain Construction 
	  

	   117	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	  

3.1.2 Gene Deletion / Replacement Plasmids 
 

The pTA131 plasmid is utilised to generate gene deletion and gene 

replacement constructs (Figure 3.3). pTA131 is a derivative of pBluescript II 

SK+ that contains a pyrE2 marker which encodes for orotate phosphoribosyl 

transferase, an enzyme involved in uracil biosynthesis (Allers et al 2004). 

Upstream and downstream flanking regions of the gene of interest are inserted 

into pTA131 and pyrE2 is used to select for H. volcanii transformants that have 
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taken up pTA131 derived plasmids, since ∆pyrE2 strains cannot grow on Hv-

Ca media lacking uracil. 

 

 
 

 

 
 

 
 

 

 

 
 

 

 

3.1.2.1 Construction of plasmids for Chapter 4: Genetic Analysis of 
hel308 

	  
	  
pTA1276, hel308 deletion construct and pTA1277 hel308::trpA+ 
deletion construct  
 

The deletion constructs, pTA1276 (hel308 deletion construct) and pTA1277 

(hel308::trpA+) deletion construct, were previously constructed by Thorsten 

Allers in 2010.	  

 

3.1.2.2 Construction of plasmids for Chapter 7: Genetic and 
Phylogenetic Analysis of hel308b 

 
pTA1368, hel308b deletion construct 
 
From the genomic clone pTA1364, the upstream flanking region of hel308b 

was amplified using the primers dHel308b_U_KpnI_F and 

dHel308b_U_BamHI_R, which introduce KpnI and BamHI sites respectively. 
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The downstream flanking region was amplified using the primers 

dHel308b_D_BamHI_F and dHel308b_D_XbaI_R, which introduce BamHI 

and XbaI sites respectively (PCRs 1 and 2 Figure 3.4A). The two PCR products 

were digested with BamHI and ligated, the resulting product was ligated into 

pTA131 at KpnI and XbaI sites to create the hel308b deletion construct, 

(Figure 3.4B). 

 

	  
Figure 3.4: Construction of hel308b deletion construct, pTA1368. (A) Upstream and 
downstream flanking regions were amplified from pTA1364, digested with BamHI and ligated 
to produce a construct with hel308b deleted (B) The resulting product was inserted into 
pTA131 at KpnI and XbaI sites. 
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3.1.2.3 Construction of plasmids for Chapter 6: in vitro Analysis of 
Hel308 

 
pTA1508, tnaA deletion construct 
 
The tnaA genomic clone (pTA875) was digested with AgeI, which cuts at 

positions 3267 and 4755 to remove 1332 bp of tnaA, leaving 15 bp of coding 

sequence remaining. The remaining plasmid was self ligated to remove the 

tnaA gene, producing the intermediate pTA1503. pTA1508 was digested with 

BamHI and XbaI and the fragment containing tnaA upstream and downstream 

flanking regions (and tnaA deletion) was ligated into pTA131 at BamHI and 

XbaI sites to create the tnaA deletion construct pTA1508 (Figure 3.5).

	  
Figure 3.5: Construction of tnaA deletion construct, pTA1508. (A) A 1332 bp fragment of 
tnaA was removed from pTA875 by an AgeI double digest to generate the intermediate plasmid 
pTA1503. A BamHI and XbaI fragment containing tnaA flanking regions and therefore the 
tnaA deletion was ligated into pTA131. 
 

0 300
600

900
1200

1500

18
00

21
00

24

00

2700
30003300

3600

3900
4200

4500
4800

51
00

54
00

57

00
6000 6300

tnaA

AmpR

HV
O

_0
01

0

HVO_0008

HVO_0011

HVO_0007

p.fd
x

Co
lE

1 
or

i

 [Split]

AgeI (4755)

AgeI (3267)

pTA875
6483bp

0 300
600

900
1200

15
00

18
00

2100
24002700

3000

3300

3600

39
00

42
00

4500
4800 AmpR

HVO
_0010

HVO_0008

HV
O_0

011

p.fdx

HVO_0007

HVO_0009

ColE
1 o

ri

 [Split]

pTA1503
4995bp

0 300
600

900
1200

15
00

18
00

21
00

2400

27003000
3300

36

900

4200

45
00

48
00

51
00

5400 5700

lacZ' [Split]

lacZ' [Split]

Co
lE

1 
o r

ig
in

HVO_0010

HV
O_

00
08

HVO_0011

pyrE2

f1 (+) origin

fdx promoter

lac promoter

HVO_0
00

7

HVO_0

00
9

 [Split]

AmpR

BamHI (1384)

XbaI (3699)

pTA1508
5929bp

0 200
400

600
800

10
00

12
00

14

1600
1800

2000

2200

2400

2600

28
00

30
00

32

00
3400

Am
pR

ColE1 origin

pyrE2

lac
Z'

f1
 (+

) o
rig

in

fdx prom
oter

lac promoter

BamHI (1384)
XbaI (1396)

pTA131
3626bp

A  Digest tnaA coding sequence from plasmid

XbaI (4734)

BamHI (2419)

B  Insert flanking regions into pTA131



 Chapter 3: Plasmid and Strain Construction 
	  

	   121	  

 
pTA1615, tnaA::hdrB+ deletion construct 
 
pTA1185 was digested with BamHI which cuts at positions 2419 and 3146 to 

liberate a fragment containing a hdrB marker, this fragment was blunt ended 

with Klenow. The tnaA deletion construct pTA1508 was digested with AgeI, 

blunt ended with Klenow, dephosphorylated with Shrimp alkaline phosphatase 

and ligated to the hdrB containing fragment to generate a hdrB+ marked tnaA 

deletion construct pTA1615 (Figure 3.6). 

 

	  
Figure 3.6: Construction of tnaA::hdrB+ deletion construct, pTA1615. hdrB marker 
digested from pTA1185 at BamHI sites and blunt end ligated into pTA1508 at an AgeI site, to 
generate a tnaA::hdrB+ deletion construct, pTA1615 
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3.1.2.4 Construction of plasmids for Chapter 5: Genetic Analysis of 
hel038 Point Mutants 

 
 
pTA1575, hel308-H317G gene replacement construct 
 
The gene replacement plasmid pTA1575 was made to introduce an H317G 

mutation into hel308 by PCR. hel308 was amplified from the genomic clone 

pTA1316 by two PCRs (1 and 2 in Figure 3.7A). PCR 1 was carried out with 

the primers Hel308Fint and Hel308H317GR producing a 511 bp product, 

Hel308H317GR contains point mutations that will result in the generation of 

hel308-H317G. PCR 2 was carried out with the primers Hel308H317GF and 

hel308EcoR producing a 692 bp product; Hel308H317GF contains point 

mutations that will result in the generation of hel308-H317G. The binding sites 

in Hel308H317GF and Hel308H317GR overlap; therefore a third PCR was 

carried out mixing the products of PCR 1 and PCR 2 using the external primers 

Hel308Fint and hel308EcoR. This produced a 1183 bp product containing 

hel308-H317G. This PCR was digested with BspEI and EcoRI and resulting 

977 bp fragment was used to replace the equivalent fragment in pTA1316. 
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Figure 3.7: Construction of hel308-H317G gene replacement construct, pTA1575. (A) PCR 
was used to introduce a point mutation into the hel308 gene, generating hel308-H317G. (B) 
The PCR product was digested with BspEI and EcoRI, the resulting fragment was used to 
replace the equivalent fragment in pTA1316. 
	  
Other hel308 point mutant gene replacement constructs 
 
All other hel308 point mutant gene replacement constructs were generated 

using the same principles as used to make pTA1575 (Figure 3.7).  The binding 

site of the reverse primer in PCR 1 overlaps with that of the forward primer in 

PCR 2 to generate a point mutation. PCR 3 is carried out with external primers 

and uses the products from PCR 1 and 2 as a template. The product from PCR 

3 is digested and used to replace the equivalent fragment in pTA1316, and so 

generating a hel308 point mutant. Specific primers for PCRs 1, 2 and 3, 
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restriction sites used to digest PCR fragment and pTA1316 for each deletion 

construct are detailed in Table 3.1. 

 
Table 3.1: PCR and digests to generate hel308 point mutant gene replacement plasmid 
constructs. 

Name Point 
mutant 

PCR1 
Primers 

PCR 2 
Primers 

PCR 3 Primers PCR 3 and 
pTA1316 digests 

pTA1545* E422G hel308NsiF, 
hel308-E422G-R 

hel308-E422G-F, 
hel308EcoR 

hel308NsiF, 
hel308EcoR 

NsiI, EcoRI 

pTA1546* D420A hel308NsiF, 
hel308-D420A-R 

hel308-D420A-F, 
hel308EcoR 

hel308NsiF, 
hel308EcoR 

NsiI, EcoRI 

pTA1576 E330G Hel308FInt, 
Hel308E330GR  

Hel308E330GF, 
Hel308EcoR 

Hel308FInt, 
Hel308EcoR 

BspEI, EcoRI 

pTA1647 F316A Hel308FInt, 
Hel308F316AR 

Hel308F316AF, 
Hel308EcoR 

Hel308FInt, 
Hel308EcoR 

BspEI, EcoRI 

pTA1648 R743A Hel308-D420A-F, 
Hel308R743AR 

Hel308R743AF, 
CgiBglR 

Hel308-D420A-F, 
CgiBglR 

EcoRI, BlpI 

*dam+	   plasmid	   originally	   constructed	   by	   Thorsten	   Allers,	  dam-‐	   version	   created	   during	  
this	  study.	  
	  
	  

3.1.3 Episomal Plasmids for the Overexpression of Tagged Proteins 
	  

3.1.3.1 Construction of plasmids for Chapter 6: in vitro Analysis of 
Hel308 

	  

Plasmid constructs pTA1392 and pTA1403 were developed to allow for 

conditional overexpression of H. volcanii proteins with the option of a his6-tag 

and/or a strepII tag.  

 
pTA1392, overexpression construct for N-terminally his6-tagged and/or 
a C-terminally strepII-tagged proteins 
 

The 54 bp oligonucleotides StrepIIF and StrepIIR were annealed to create a 

double stranded DNA fragment containing a strepII-tag and the unique 

restriction sites PciI, NspI, BmtI, NheI, BstXI, EcoRV and EcoRI. pTA1228 

(overexpression vector containing an in frame his6-tag and a tryptophan 

inducible promoter, p.tnaA) (Brendel et al 2014) was digested with EcoRI and 

PciI and into which the strepII oligonucleotide was ligated to create the his6-

tag and strepII-tag containing overexpression vector pTA1392 (Figure 3.8). 
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Figure 3.8: Construction of the overexpression construct pTA1392. Oligonucleotides 
StrepIIF and StrepIIR were annealed and ligated into pTA1228 at EcoRI and PciI sites. 
pTA1392 is the overexpression construct that allows for N-terminally his6-tagged and/or a C-
terminally strepII-tagged proteins under the control of a tryptophan inducible promoter 
(p.tnaA) 
 

pTA1392 allows for in-frame insertion of a gene of interest with the option to 

have an N-terminal his6-tag and/or a C-terminal strepII-tag (Figure 3.9). To 

generate a construct without a N-terminal his6-tag, the start codon was 

replaced with an NdeI site and ligated with the NdeI end. For an N-terminal 

his6-tag the start codon was replaced with NcoI, BspHI, PciI or an SphI site 

and ligated with the PciI or NspI end. To generate a construct without a C-

terminal strepII-tag, an EcoRI or BamHI site was incorporated after the stop 

codon and ligated, and for a C-terminal strepII-tag the stop codon of the gene 

was replaced with NheI or a compatible site (AvrII, SpeI or XbaI) and ligated 

with the NheI end.  

                              BstXI
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pTA1403, overexpression construct for N-terminally strepII-tagged 
and/or a C-terminally his6-tagged proteins 
 

The 85 bp oligonucleotides StrepII_N_F and StrepII_N_R were annealed to 

create a double stranded DNA fragment containing a strepII-tag upstream of a 

his6-tag along with the unique restriction sites NdeI, PciI, NspI, NarI, NheI, 

Figure 3.9: pTA1392. A plasmid for the conditional overexpression of N-terminally his6 
and/or C-terminally strepII tagged proteins. The plasmid contains a tryptophan inducible 
promoter (p.tnaA), pyrE2 and hdrB markers for selection in H. volcanii. Restriction sites for 
inserting gene of interest are shown. 
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EcoRV and EcoRI. pTA1228 (overexpression vector containing an in frame 

his6-tag and a tryptophan inducible promoter, p.tnaA) was digested with NdeI 

and EcoRI , removing the existing his6-tag and into this plasmid the strepII 

oligo was ligated to create the strepII-tag and his6-tag containing 

overexpression vector pTA1403 (Figure 3.10). 

 

 

 

 

 

 

 

 

pTA1403 allows for in-frame insertion of a gene of interest with the option to 

have an N-terminal strepII-tag and/or a C-terminal his6-tag (Figure 3.11). To 

generate a construct without a N-terminal strepII-tag the start codon was 

replaced with an NdeI site and ligated with the NdeI end. For an N-terminal 

strepII-tag the start codon was replaced with an NcoI, BspHI, PciI or an SphI 

site and ligated with the PciI or NspI end. To generate a construct without a C-

terminal his6-tag, an EcoRI or BamHI site was incorporated after stop codon 

and ligated, and for a C-terminal his6-tag the stop codon of the gene was 

replaced with an NheI or compatible site (AvrII, SpeI or XbaI) and ligated with 

the NheI end. In both pTA1392 and pTA1403 constructs the gene of interest is 

under the control of a tryptophan-inducible promoter, p.tnaA. Due to the 
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Figure 3.10: Construction of the overexpression construct pTA1403. Oligonucleotides 
StrepII_N_F and StrepII_N_R were annealed and ligated into pTA1228 at NdeI and EcoRI sites. 
pTA1103 is the overexpression construct that allows for N-terminally strepII-tagged and/or a C-
terminally his6-tagged proteins under the control of a tryptophan inducible promoter (p.tnaA) 
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importance to this study, these plasmids will be discussed in more detail in 

Chapter 6: in vitro Analysis of Hel308. 

 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

 

 

 

 

 
pTA1419, N-terminally his6-tagged and a C-terminally strepII-tagged 
hel308 overexpression construct derived from pTA1392 
 

hel308 was amplified from the genomic clone pTA415 using the primers 

Hel308SphF and Hel08R_NheI. The PCR product was digested with SphI and 

Figure 3.11: pTA1403. A plasmid for the conditional overexpression of N-terminally 
strepII and/or C-terminally his6 tagged proteins. The plasmid contains a tryptophan 
inducible promoter (p.tnaA), pyrE2 and hdrB markers for selection in H. volcanii. 
Restriction sites for inserting gene of interest are shown. 
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NheI and inserted into pTA1392 at NspI and NheI sites downstream of a his6-

tag and upstream of a strepII-tag (Figure 3.12). 

 

	  
Figure 3.12: Construction of N-terminally his6-tagged and a C-terminally strepII-tagged 
Hel308 overexpression construct, pTA1419. (A) Hel308 amplified by PCR using 
Hel308SphF and Hel08R_NheI and digested with SphI and NheI (B) Ligation of PCR 
fragment into pTA1392 to generate pTA1419 
  
Other N-terminally his6-tagged and/or C-terminally strepII-tagged 
protein overexpression constructs derived from pTA1392 
 
All other overexpression constructs derived from pTA1392 were generated 

using the same principles as the ones used to make pTA1419. The gene of 

interest was amplified from a genomic clone with primers containing suitable 
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restriction sites to insert the gene into pTA1392 so that a N-terminal his6-tag 

and/or a C-terminal strepII-tag was in frame with the gene. Specific genomic 

clone plasmids, PCR primers and restriction sites used to digest the PCR 

fragment and pTA1392 for each over expression construct are detailed in Table 

3.2. 

 
Table 3.2: PCR and digests to generate pTA1392 derived overexpression constructs.	  

Name Gene Genomic 
clone used 

PCR 
Primers 

PCR 
digest 

pTA1392 
digest 

Tags incorporated 

pTA1422 hel308 pTA415 Hel308F_NdeI 
Hel308R_NheI 

NdeI, 
NheI 

NdeI, 
NheI 

C-terminal strepII 
tag 

 

 

 
pTA1425, N-terminally strepII-tagged and a C-terminally his6-tagged 
hel308 overexpression construct derived from pTA1403 
 

hel308 was amplified from the genomic clone pTA415 using the primers 

Hel308SphF and Hel08R_NheI. The PCR product was digested with SphI and 

NheI and inserted into pTA1403 at NspI and NheI sites downstream of a 

strepII-tag and upstream of a his6-tag (Figure 3.13). 
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Other N-terminally strepII-tagged and/or C-terminally his6-tagged 
protein overexpression constructs derived from pTA1403 
 
All other overexpression constructs derived from pTA1403 were generated 

using the same principles as the ones used to make pTA1425. The gene of 

interest was amplified from a genomic clone with primers containing suitable 

restriction sites to insert the gene into pTA1403 so that a N-terminal strepII-tag 

and/or a C-terminal his6-tag was in frame with the gene. Specific genomic 

clone plasmids, PCR primers and restriction sites used to digest the PCR 
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Figure 3.13: Construction of N-terminally strepII-tagged and a C-terminally his6-tagged 
Hel308 overexpression construct, pTA1425. (A) Hel308 amplified by PCR using 
Hel308SphF and Hel08R_NheI and digested with SphI and NheI (B) Ligation of PCR fragment 
into pTA1403 to generate pTA1425. 
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fragment and pTA1403 for each over expression construct are detailed in Table 

3.3. 

 
Table 3.3: PCR and digests to generate pTA1403 derived overexpression constructs.	  

Name Gene Genomic 
clone used 

PCR 
Primers 

PCR 
digest 

pTA1403 
digest 

Tags 
incorporated 

pTA1428 hel308 pTA415 Hel308SphF 
helQ(R)BamHI02 

SphI, 
BamHI 

NspI, 
BamHI 

N-terminal 
strepII tag  

 

	  

3.1.3.2 Construction of plasmids for Chapter 4: Genetic Analysis of 
hel308 

 
pTA1669, hel308 expression plasmid 
 

A plasmid was constructed to allow for in trans complementation of hel308 by 

expression from its native promoter. A 2442 bp SapI to ScaI fragment of 

pTA354 containing Hv oripHV1/4 was used to replace the equivalent fragment 

in pTA1316. This replication origin is low copy number and ensures that 

Hel308 will be expressed at native levels via the Hv oripHV1/4 origin (Norais 

et al 2007). The resulting plasmid is pTA1669 (Figure 3.14). 
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Figure 3.14: Construction of hel308 expression plasmid, pTA1669. A 2442 bp SapI to ScaI 
fragment of pTA354 was used to replace the equivalent fragment in pTA1316. 
 

 
pTA1662, N-terminally his6-tagged and C-terminally strepII-tagged 
hel308 gene replacement construct 
 

This plasmid was constructed to allow for gene replacement of the native 

hel308 with a N-terminally his6-tagged and C-terminally strepII-tagged 

version of hel308 on the chromosome. This was so Hel308 could be protein 

purified following native levels of expression.  

 

The backbone of pTA1316 was amplified using the primers Hel308_BamHI_F 

and hel308Nde5R, the PCR product was blunt ended and self ligated to result 

in a plasmid construct containing hel308 upstream and downstream regions, 

pTA1661 (Figure 3.15A). An N-terminally his6-tagged and C-terminally 

strepII-tagged hel308 2561 bp 
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fragment was digested from pTA1419 using NdeI and BamHI and ligated into 

pTA1661 at NdeI and BamHI sites. This generated a construct containing an N-

terminally his6-tagged and C-terminally strepII-tagged hel308 with upstream 

and downstream flanking regions to be used for gene replacement, pTA1662 

(Figure 3.15B). 

	  
Figure 3.15: N-terminally his6-tagged and C-terminally strepII-tagged hel308 gene 
replacement construct, pTA1662. (A) The backbone of pTA1316 was amplified the primers 
Hel308_BamHI_F and hel308Nde5R and product was blunt end self ligated to generate 
pTA1661. (B) NdeI to BamHI fragment if pT1419 was ligated into pTA1661 to generate 
pTA1662 
 

3.2 Strain Construction 
	  
Several H. volcanii parental strains were used in this study, each strain is used 

for different purposes, details of each strain is described below: 
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H26 (∆pyrE2) 
 

H26 is the standard wild-type laboratory strain; this strain was derived from the 

wild-type isolate DS2 by curing of the plasmid pHV2 and deletion of pyrE2 

(uracil biosynthesis) (Allers et al 2004, Wendoloski et al 2001). The pHV2 

plasmid was lost to allow for use of its origin in episomal vectors. H26 derived 

strains are also used to study DNA damage sensitivity. 

 
H53 (∆pyrE2, ∆trpA) 
 

H53 contains the auxotrophic selection markers ∆pyrE2 (uracil) and ∆trpA 

(tryptophan) the latter is utilised in the selection of integrated trpA marked 

gene replacement or deletion constructs for genes that are difficult to delete. 

This strain is derived from H26 (Allers et al 2004). 

 
H164 (∆pyrE2, bgaHa-Bb, leuB-Ag1, ∆trpA) 
 

H164 contains the auxotrophic selection markers ∆pyrE2 (uracil) and ∆trpA 

(tryptophan). H164 also contains a mutant leuB-Ag1 (leucine) allele and a 

mutant beta-galactosidase gene (bgaHa-Bb) from Haloferax alicantei that can 

also be used in recombination assays (Delmas et al 2009, Holmes & Dyall-

Smith 2000, Lestini et al 2010).  

 
H195 (∆pyrE2, bgaHa-Bb, leuB-Ag1, ∆trpA, ∆hdrB) 
 

H195 is derived from H164 and contains the following auxotrophic selection 

markers: ∆pyrE2 (uracil), ∆hrdB (thymidine), ∆trpA (tryptophan) bgaHa-Bb 

(beta-galactosidase) and leuB-Ag1 (leucine) (Guy et al 2006). The ∆hdrB is 

utilised in the selection of integrated hdrB marked gene replacement or 

deletion constructs for genes that are difficult to delete, as an alternative to a 

trpA marker.  H195 derived strains are also used to study DNA damage 

sensitivity. 
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H1424 (∆pyrE2, Nph-pitA, ∆mrr, cdc48d-ct, ∆hdrB) 
 

H1424 was derived from H1209 (∆pyrE2, Nph-pitA, ∆mrr, ∆hdrB) for 

improved protein overexpression and purification (Allers et al 2010, Stroud et 

al 2012). mrr encodes a restriction enzyme that cleaves foreign DNA 

methylated at GATC residues, was deleted to generate H1209 to allow direct 

transformation of H. volcanii without the need to passage plasmid DNA 

through an E. coli dam mutant. This strain was developed in order to reduce 

the co-purification of naturally histidine rich proteins with his6-tagged 

recombinant proteins. The pitA gene of H. volcanii, which contains a histidine 

rich linker region, was previously replaced with a non-histidine rich orthologue 

from Natronomonas pharaonis (Allers et al 2010). This strain also contains a 

truncated version of the cdc48d gene which lacks its histidine rich C-terminus. 

The mrr gene was deleted for efficient transformation of plasmids into H. 

volcanii. Mrr is a restriction enzyme that cuts methylated 5′-GATC-3′ 

sequences. E. coli contains a Dam methylase that methylates 5′-GATC-3′ 

sequences and most plasmids are passaged through E. coli before being 

transformed into H. volcanii mrr+ strains.  

 
H1895 (∆pyrE2, Nph-pitA, ∆mrr, cdc48d-ct, ∆hdrB, ∆pilB3C3) 
 
H1895 was derived from H1424 for improved protein overexpression and 

purification (Strillinger et al 2016). In this strain the genes Hvo_1033 (pilC3) 

and Hvo_1034 (pilB3) were deleted, these genes encode an ATPase and an 

integral membrane protein of the pilus assembly system respectively. These 

proteins are necessary for biofilm formation and deletion of these genes 

eliminates the attachment of H. volcanii to surfaces of any kind while leaving 

cells motile 

 
H2047 (∆pyrE2, Nph-pitA, ∆mrr, cdc48d-ct, ∆trpA) 
 
H2047 is derived from H1424 via H1611 for improved protein expression and 

purification. To generate H1611, trpA was deleted from H1424 to allow for the 

selection of integrated trpA marked gene replacement or deletion constructs. 
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H1611 was then transformed with a linear fragment containing hdrB to make 

the resulting strain H2407 hdrB+. 

 

3.2.1 Strains Containing Episomal Plasmids 
 

Strains containing episomal plasmids were confirmed by selection on 

appropriate media, which depended on the genotype of the transformed strain 

and the markers present on the plasmid. 

3.2.2 Gene Deletions and Replacements 
 
Gene deletions in H. volcanii were achieved using the pop-in/pop-out gene 

knock-out system (Bitan- Banin et al. 2003) seen in Figure 3.16. A thorough 

description of this method can be found in Chapter 2: Materials and methods, 

Section 2.2.5: Genetic Manipulation of Haloferax volcanii. 

 

 

 

 

 

 

 

Figure 3.16: Gene deletion by pop-in/pop-out. (A) ∆pyrE2 strains are transformed with a 
pyrE2+ deletion construct. (B) Pop-ins are selected for by their ability to grow on media 
lacking uracil (C) Relieving uracil selection allows for pop-out to occur, recombination 
between the regions of homology can be either upstream (left) or downstream (right). Pop-out 
is selected for by plating on 5-FOA The resulting gene locus will either be a deletion of wild-
type (D) Replacing the gene with trpA+ marker enables direct selection for deletion mutants. 
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3.2.2.1 Generation of deletion strains for Chapter 4: Genetic Analysis 
of hel308 

 
Deletion of Hvo_0014 (hel308) 
 

Hvo_0014 (hel308) was deleted from H1804 (∆oriC1, ∆oriC2, ∆oriC3, ∆ori-

pHV4-2) and H164 using pTA1277 (hel308::trpA+ deletion construct) to 

generate the strains H1953 and H2117 respectively.  Deletion of hel308 was 

confirmed by colony hybridisation using a 380 bp radiolabelled probe of 

hel308 amplified from pTA415 using the primers Ski2F and Ski2R (Figure 

3.17) Deletion of hel308 was also confirmed by Southern blot (data not 

shown). 

 
Figure 3.17: Deletion of Hvo_0014 (hel08) Candidate colonies were screened with a 
radiolabelled Ski2F to Ski2R PCR product of hel308 from pTA415. Colonies that did not 
hybridise were ∆hel308. 
 
 
Deletion of Hvo_2383 (radB) 
 

Hvo_2383 (radB) was deleted from H164 and H2117 and H1391 using 

pTA312 (radB deletion construct), to generate the strains H2641, H2417 and 

H1844 respectively. Deletion of radB was confirmed by colony hybridisation 

using a 286 bp radiolabelled probe of radB amplified from pTA50 using the 

primers EXTF and HEXTR, (Figure 3.18). Deletion of radB was also 

confirmed by Southern blot, Deletion was also confirmed by Southern blot 

using a 337 bp radiolabelled probe digested from pTA312 using KpnI and NotI, 

Figure 3.18D shows H1844 as an example. 
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3.2.2.2 Generation of deletion of strains for Chapter 7: Genetic and 
Phylogenetic Analysis of hel308b 

 
Deletion of Hvo_0971 (hel308b) 
 

Hvo_0971 (hel308b) was deleted from a number of backgrounds using the 

deletion construct pTA1368 to generate the strains H1843, H2007 and H2488. 

hel308b deletions were confirmed by colony hybridisation using a 993 bp 

probe amplified from genomic DNA using the primers Hel308bF and 

Hel308bR (Figure 3.19) Deletion of hel308b was also confirmed by Southern 

blot (data not shown).  

	  
Figure 3.19: Deletion of Hvo_0971 (hel08b) Candidate colonies were screened with a 
radiolabelled Hel308bF to Hel308bR PCR product of hel308b from genomic DNA. Colonies 
that did not hybridise were ∆hel308b. 
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Figure 3.18: Deletion of radB from H1391 (∆hel308). (A) Candidate colonies were screened with a 
radiolabelled EXTF to HEXTR PCR product of radB from pTA50. Colonies that did not hybridise 
were ∆radB. (B) Gene locus for radB+ and ∆radB. The XmaI and NotI sites used to digest genomic 
DNA are shown along with predicted locus size (C) A 337bp ∆radB probe for southern 
hybridization was made by digesting pTA312 with KpnI and NotI (D) Southern blot, showing H1844 
is deleted for radB. H284 is also deleted for radB. 
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H2643, ∆hel308b, ∆hel308::trpA+ 
	  

hel308::trpA+ was deleted from H2007 using pTA1277 (hel308::trpA+ 

deletion construct), deletion of hel308 was confirmed by colony hybridisation 

using a 380 bp radiolabelled probe of hel308 amplified from pTA415 using the 

primers Ski2F and Ski2R (Figure 3.20) 

 

 

 
 

Figure 3.20: Deletion of hel308::trpA+ from H2007. Candidate colonies were screened with a 
radiolabelled Ski2F to Ski2R PCR product of hel308 from pTA415. Colonies that did not 
hybridise were ∆hel308. 

3.2.3 Gene Replacements 
 

Gene replacements are carried out in the same manner as gene deletions, 

however the replacement plasmid features a gene of interest between the 

flanking regions of homology. Gene replacements were carried out to introduce 

point mutations in hel308. 

 

3.2.3.1 Generation of gene replacement strains for Chapter 5: Genetic 
Analysis of hel038 Point Mutants 

 

hel308 point mutant gene replacement constructs (Table 3.4) were introduced 

in to H1392 and H2117 (∆hel308 in a H26 background and ∆hel308 in a H164 

background respectively). Deletion of hel308 was confirmed by colony 

hybridisation using a 380 bp radiolabelled probe of hel308 amplified from 

pTA415 using the primers Ski2F and Ski2R (Figure 3.21). The presence of 

hel308 point mutants was also confirmed by Southern blot (data not shown). 
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Table 3.2: hel308 point mutant gene replacement constructs.	  	  

Name Details 
pTA1335 hel308-D154N gene replacement construct 
pTA1545 hel308-E422G gene replacement construct 
pTA1546 hel308-D420A gene replacement construct 
pTA1575 hel308-H317G gene replacement construct 
pTA1576 hel308-E330G gene replacement construct 
pTA1647  hel308-F316A gene replacement construct	  
pTA1648  hel308-R743A gene replacement construct	  
	  

	  

	  

	  

	  
	  
	  
	  

 

 
 

 
 

 

 

 

 

 
 

 

 

3.2.3.2 Generation of gene deletion and gene replacement strains for	  
Chapter 6: in vitro Analysis of Hel308 

 

To study Hel308 protein:protein interactions under conditions of native 

expression, a strain was generated where the chromosomal hel308 was N-

1200 1600 2000 2400 2800 3200 3600

cgiferredoxin

ski2Rski2F

hel308 probe

hel308 

hel308+ ∆hel308

hel308-E330G

hel308-E422G

hel308-D420A

hel308-H317G

hel308-F316A

hel308+ ∆hel308

hel308-D145N

hel308-R743A

H2397

H2076

H2077

H2078

H2097

H2396

H2398

H2400

H2257

H2259

H2263

H2261

H26 background
(∆pyrE2)

Parent: H1392 (∆hel308)

H164 background
(∆pyrE2, bgaHa-Bb, leuB-Ag1, ∆trpA)

Parent: H2117 (∆hel308)

Figure 3.21: Introduction of hel308 point mutants into H1392 and H2117 (∆hel308 in 
H26 and H164 backgrounds respectively). Candidate colonies were screened with a 
radiolabelled Ski2F to Ski2R PCR product of hel308 from pTA415. Colonies that hybridised 
to probe contained a hel308 point mutant. 
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terminally his6-tagged and C-terminally strepII-tagged. First, hel308 was 

deleted from the improved protein-expression strain H2047 and then the N-

terminally his6-tagged and C-terminally strepII-tagged hel308 was introduced. 

 
H2131, ∆hel308::trpA+ 
 

hel308::trpA+ was deleted from H2047 using pTA1277 (hel308::trpA+ 

deletion construct), deletion of hel308 was confirmed by colony hybridisation 

using a 380 bp radiolabelled probe of hel308 amplified from pTA415 using the 

primers Ski2F and Ski2R (Figure 3.22A). Deletion of hel308 was also 

confirmed by Southern blot (data not shown). 

 
H2418, his6 tag-hel308-strepII tag 
 

An N-terminally his6-tagged and C-terminally strepII-tagged hel308 was 

introduced into H2131 using the gene replacement construct pTA1662. 

Introduction of his6 tag-hel308-strepII tag was confirmed by colony 

hybridisation using a 380 bp radiolabelled probe of hel308 amplified from 

pTA415 using the primers Ski2F and Ski2R (Figure 3.22B). Introduction of 

hel308 was also confirmed by Southern blot (data not shown). 

 

 

 

	  
Figure 3.22: Deletion of hel308 from H2047 and replacement with N-terminally his6-
tagged and C-terminally strepII-tagged hel308. (A) hel308 was deleted from the improved 
protein expression and purification strain H2047 to generate H2131. (B) An N-terminally his6-
tagged and C-terminally strepII-tagged hel308 was introduced to generate the strain H2418. 
Candidate colonies were screened with a radiolabelled Ski2F to Ski2R PCR product of hel308 
from pTA415. Colonies that did not hybridise were ∆hel308. 
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Deletion of Hvo_0009 (tnaA)  
 

Hvo_0009 (tnaA) was deleted from H1424 (improved protein overexpression 

and purification strain) and H1895 (H1424 ∆pilB3C3) using the ∆tnaA::hdrB+ 

deletion construct pTA1615 to generate the pop-outs H2167 and H2169 

respectively. tnaA deletions were confirmed by colony hybridisation using a 

1488 bp radiolabelled probe of tnaA digested from pTA875 with AgeI (Figure 

3.23A). tnaA deletions were also confirmed by the ability of the strains to grow 

on media lacking Thy, PCR and by Southern blot (data not shown). 

 

In	   order	   that	   hdrB	   selection	   can	   be	   utilised	   in	   episomal	   expression	  

plasmids,	   H2167	   and	   H2169	   containing	  ∆tnaA::hdrB+	  were	   transformed	  

with	   the	   ∆tnaA	   partial	   deletion	   construct,	   pTA1730.	   The	   tnaA∆EcoNI	  

partial	   deletion	   was	   confirmed	   by	   colony	   hybridisation	   using	   a	   519	   bp	  

radiolabelled	   probe digested from pTA875 with EcoNI,	   Figure	   3.23B,	  

Southern	   blot	   and	   by	   the	   inability	   ability	   of	   colonies	   to	   grow	   on	  media	  

lacking	  Thy	  (data	  not	  shown).	  

 

 
Figure 3.23: Deletion of Hvo_0009 (tnaA). (A) Candidate colonies were screened with a 
radiolabelled AgeI digested fragment from pTA875. Colonies that did not hybridise were 
∆tnaA.	  (B)	  Candidate	  colonies	  were	  screened	  with	  a	  radiolabelled	  AgeI	  digested	  fragment	  
from	  pTA875.	  Colonies	  that	  did	  not	  hybridise	  were	  ∆tnaA. 
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Chapter 4: Genetic Analysis of hel308 
 

4.1 Background         
 
 

Helicases are ubiquitous enzymes that play a fundamental role in nearly all 

DNA and RNA metabolic processes, including replication, recombination, 

DNA repair, transcription, translation and RNA splicing. Hel308 is a 

monomeric helicase that is conserved across metazoans and archaea but is 

absent in bacteria and fungi. Hel308 is implicated in replication fork restart and 

homologous recombination, however the exact cellular function and 

mechanism by which Hel308 acts is unknown. 

 

4.1.1 Hel308 and Replication Forks 
 
Replication forks can stall after collision with a lesion on the DNA and can be 

repaired by homologous recombination-dependent or independent pathways. 

Several studies have shown Hel308 to unwind replication fork structures with 

the ability to displace both leading and lagging strand structures with 5′ and 3′ 

overhangs, respectively (Fujii et al 2002, Guy & Bolt 2005). Hel308 has also 

been seen to localise to replication forks and interact with replication fork 

associated proteins such as RPA and PCNA (Fujikane et al 2006, Tafel et al 

2011, Woodman et al 2011). It has been proposed that Hel308 may act to 

restart stalled replication forks but the exact role that Hel308 plays at 

replication forks is unknown. 

 

4.1.2 Hel308 and Homologous Recombination 
 
Hel308 was shown using genetic and biochemical techniques to interact with 

proteins that act in both early and late stages of homologous recombination 

such as the Rad51 recombinase and the Holliday junction resolvase Hjc 

respectively.  
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Early stages of homologous recombination  
 
Recombinases are essential for homologous recombination and are found in all 

domains of life. Recombinases are named RecA in bacteria, Rad51 in 

eukaryotes and RadA in archaea. Recombinases form nucleoprotein filaments 

on ssDNA, which search for homologous dsDNA molecules. Once found, 

recombinases catalyse strand invasion of the dsDNA by the ssDNA, and D-

loop formation (McEntee et al 1979). 

 

The C. elegans Rad51 paralogue shows synthetic lethality when deleted in 

combination with the Hel308 homologue, HelQ (Taylor et al 2015).  HelQ was 

also seen to disassemble Rad51 filaments from DNA in vitro (McClendon et al 

2016, Ward et al 2010). Additionally, human Hel308 foci were seen to co-

localise with Rad51 foci during immunoprecipitation studies, suggesting an 

interaction between the two proteins (Tafel et al 2011). Furthermore, the 

human Hel308 homologue HELQ was seen to interact with paralogues of the 

RAD51 recombinase, RAD51B/C/D and XRCC2, which are collectively 

known as the BCDX2 complex. The BCDX2 complex is required for 

homologous recombination (Adelman et al 2013, Takata et al 2013). Hel308 is 

clearly involved in the early stages of homologous recombination via 

interactions with recombinases, however the exact role that Hel308 plays is 

unknown.  

 
Late stages of homologous recombination 
 

Recombination intermediates such as Holliday junctions are formed during 

homologous recombination and require resolving, this can occur through 

several pathways. For a detailed description see Chapter 1: Introduction, 

Section 1.4.3.5. Resolution of Holliday junctions usually involves the action of 

endonucleases known as resolvases that are able to cleave branched DNA 

structures. Archaea contain a Holliday junction resolvase named Hjc, protein 

pull-down and yeast two-hybrid assays have demonstrated that the Hel308 

homologue from S. tokodaii interacts with Hjc in vitro (Li et al 2008). The 

Hel308 homologue Hjm was also seen to prevent the formation of Hjc-
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Holliday junction complexes (Hong et al 2012). This suggests that Hjm could 

regulate Hjc, however neither the mechanism of this interaction nor its function 

is known. 

 

4.1.3 Hel308 in Haloferax volcanii 
 
In Haloferax volcanii, deletion mutants of hel308 are viable but slow growing, 

and like hel308 mutants of other organisms are sensitive to DNA interstrand 

crosslinking agents such as MMC. H. volcanii also contains a second Hel308 

helicase named Hel308b, which will be analysed in Chapter 7: Genetic and 

Phylogenetic Characterisation of Hel308b. H. volcanii is an ideal organism for 

the genetic analysis of Hel308 and its role in homologous recombination for 

several reasons. Firstly, H. volcanii is an easily-culturable archaeon and 

contains many genetic tools such as routine transformation, selectable markers, 

a well-established gene deletion/replacement system and a defined 

recombination assay. Secondly, several aspects of homologous recombination 

have already been studied in H. volcanii. For example, the regulation of 

recombination by the recombinase and mediator RadA and RadB, respectively, 

as well as the role of Hjc and Hef in resolution of homologous recombination, 

have been described (Haldenby 2007, Lestini et al 2010, Wardell 2013). 

 

4.2 Aims 
 
Genetic analysis of hel308, in combination with other recombination factors 

such as radA, radB, hef and hjc, will give insight into the role that Hel308 

plays in homologous recombination and DNA repair. The aims of this chapter 

are to: 

• Analyse the expression profile of hel308 under native and DNA-

damaging conditions. 

• Generate strains deleted for hel308 in combination with genes encoding 

homologous recombination and DNA repair proteins 

• Analyse the generation time of strains deleted for hel308. 
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• Analyse the phenotypes of hel308 deletion strains after treatment with 

DNA damaging agents such as UV and MMC, which cause double 

strand breaks and interstrand crosslinks, respectively. 

• Analyse the recombination frequency and levels of crossover and non-

crossover products formed by strains deleted for hel308. 

 

4.3 Results 
 

4.3.1 Analysis of hel308 transcript levels 
 

Expression of genes involved in DNA repair can be constitutive, or up-

regulated in response to DNA-damaging agents. Expression of hel308 in 

response to DNA damaging agents has not previously been studied. Therefore, 

expression of hel308 was measured following treatment with UV and 

mitomycin C (MMC); these agents induce ss/dsDNA breaks and inter-strand 

crosslinking respectively. Homologous recombination and NER are involved in 

repairing DNA breaks and crosslinks. However, if the DNA damage is not 

repaired, replication forks can stall at these lesions. The stalled replication 

forks require restarting and this is achieved by homologous recombination. 

 

Strains were grown to mid-exponential phase and either UV irradiated at 20 

J/m2 or incubated for 1 hour with 2 μg/ml MMC. Samples with no UV 

irradiation or MMC treatment were used as a control. This level of UV 

irradiation and MMC exposure results in a small amount of cell death. 

Following treatment, cells were resuspended in fresh growth media and 

allowed to recover. RNA was extracted and DNase treated to remove any 

contaminating DNA. End-point RT-PCR (reverse transcriptase PCR) was used 

to measure transcript levels of hel308 using the primers Ski2F and Hel308RTR 

which gives a product size of 301 bp. As a control, expression of rpoA (RNA 

polymerase subunit A) was analysed, as transcript levels of this gene do not 

change depending on the growth phase of the cell (Tom Batstone, University of 

Nottingham, personal communication). rpoA expression levels were analysed 
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using the primers rpoARTR and rpoARTF (product size 328 bp). Results are 

shown in Figure 4.1.   

 
Figure 4.1: RT-PCRs showing expression levels of hel308 and rpoA (control). (A) 
Expression following treatment with 20 J/m2 UV-irradiation. hel308 expression does not 
change. (B) Expression following treatment with 2 μg/ml MMC. hel308 expression does not 
change. In all cases, ‘-’ indicates no UV or MMC treatment, and ‘+’ indicates treatment with 
UV or MMC. 

 

This preliminary data shows that there is no difference in the expression of 

hel308 following treatment with 20 J/m2 UV-irradiation. This is not surprising, 

given that hel308 does not have a growth phenotype when treated with UV-

irradiation (Guy & Bolt 2005). 

This data also shows that hel308 is also constitutively expressed after treatment 

of MMC (2 μg/ml). Further investigation may be required since these high 

doses may have a detrimental effect on the cells. 

rpoA expression was used as a control for RT-PCRs as transcript levels of this 

gene do not change depending on the growth phase of the cell (Tom Batstone, 

University of Nottingham, personal communication). Results show that this 

control is not suitable for treatment with MMC, as the expression level of rpoA 

is drastically reduced following treatment. This was not the case after UV 

irradiation. 

 

4.3.2 Genetic Interactions 
 

In order to investigate in which pathway of DNA repair Hel308 acts, hel308 

was deleted in combination with genes known to be involved in DNA repair. 
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For details of plasmid and strain construction, see Chapter 3: Plasmid and 

Strain Construction. 

 

4.3.2.1 Deletion in Combination with radA 
 
Homologous recombination involves the exchange of nucleotide sequence 

between identical or near-identical DNA sequences. RadA is the archaeal 

recombinase that catalyses strand exchange during homologous recombination. 

With the aid of RadB, RadA forms a nucleoprotein filament on ssDNA that can 

then bind to dsDNA molecules and search for a region of homology. Once 

homology is found, RadA catalyses strand invasion and D-loop formation (Kil 

et al 2000), Figure 4.2. 

 

 

 

 

 

 

  

In two immunoprecipitation studies, the human Hel308 homologue HelQ was 

found to interact with RAD51C in human embryonic kidney 293T cells and 

with RAD51B, RAD51C, RAD51D and XRCC2 in HeLa S3 cells. (Adelman 

et al 2013, Takata et al 2013). Rad51 is the eukaryotic recombinase involved in 

strand exchange during homologous recombination. In vertebrates, a tetrameric 

complex involving the RAD51-paralogues RAD51B, RAD51C, RAD51D and 

XRCC2 (BCDX) functions as a recombination mediator. The BCDX2 complex 

has been implicated in loading Rad51 onto ssDNA (Sigurdsson et al 2001). A 

Figure 4.2: Homologous recombination. A brief overview of the strand invasion step of 
homologous recombination using a stalled replication fork as an example. With assistance 
from RadB, the recombinase RadA forms a nucleoprotein filament and catalyses strand 
invasion to generate a formation. 
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dimer of RAD51B and RAD51C has also been shown to promote Rad51 strand 

exchange activity in vitro (Lio et al 2003, Sigurdsson et al 2001).Therefore it 

was of interest to analyse the interactions between Hel308 and the recombinase 

RadA to determine whether Hel308 is involved in homologous recombination 

in H. volcanii. 

 

To study the relationship between hel308 and homologous recombination, 

attempts were made to delete hel308 in combination with radA. However, 

recombination is essential for the pop-in and pop-out steps of the gene deletion 

process, and RadA is the recombinase that catalyses the process of 

recombination (Woods & Dyall-Smith 1997). This poses a problem when 

attempting to delete radA from the genome. ∆radA strains of H. volcanii have a 

severe growth defect, and are unable to carry out recombination (Woods & 

Dyall-Smith 1997). Therefore, for a radA deletion to occur the chromosomal 

radA deletion must be complemented with an episomal copy of the radA gene 

(pTA637) during the pop-out step, this plasmid is later cured (Delmas et al 

2009), Figure 4.3. Described further in Chapter 2: Materials and Methods, 

Section 2.2.5 Genetic Manipulation of Haloferax volcanii, Deletion of RadA. 
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The radA deletion construct pTA83 was transformed into the H1391 (∆hel308) 

to generate the pop-in strain H1956, this strain was then transformed with the 

episomal radA+ plasmid pTA637 to generate the strain H2010. Pop-out was 

allowed to occur due to the presence of radA+ on pTA637 and then strains 

were selected for both the pop-out of pTA83 and the loss of pTA637 by plating 

out on 5-FOA. Colonies were patched and screened by colony hybridization 

using a radA radiolabelled probe to check for radA deletions. 

 

Out of 320 colonies screened, no radA deletions in a H1391 (∆hel308) 

background were found. 

 

∆pyrE2 

pyrE2

∆radA

radA

∆radAradA

∆radA

pTA83

Select for Ura+  
integrants

Select for 5-FOA 
resistance 

Integrate pTA83 
at radA locus
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Figure 4.3: radA gene deletion. (A) A ∆pyrE2 strain is transformed with pTA83, a deletion 
construct containing a radA deletion and pyrE2 marker (pop-in). (B) The strain is then 
transformed with pTA637, an episomal plasmid containing radA and pyrE2 and MevR 
markers. (C) Pop-out is able to occur due to the presence of radA+ on pTA637. (D) Strains 
are selected for both the pop-out of pTA83 and the loss of pTA637 by plating out on 5-
FOA (Delmas et al 2009). 



 Chapter 4: Genetic Analysis of hel308 
 
 

 153 

4.3.2.2 Deletion in Combination with radB 
 
RadB is a paralogue of the archaeal recombinase RadA, RadB is only found in 

euryarchaea and has been proposed to function as a recombination mediator 

(Haldenby 2007, Haldenby et al 2009, Wardell 2013). ∆radB strains display 

growth defects and sensitivity to DNA damaging agents, however these 

phenotypes are less severe than those of ∆radA strains (Guy et al 2006, 

Haldenby 2007). Furthermore, ∆radB strains recombine at approximately 5% 

of wild type unlike ∆radA strains, which are unable to carry out recombination. 

 

Since radA could not be deleted in a ∆hel308 background, the strain H1844 

(∆hel308, ∆radB) was generated to study the relationship between hel308 and 

homologous recombination. 

 
Growth Rate  
 
In order to visually compare the growth rates, H1844 (∆hel308 ∆radB), H1845 

(hel308+ ∆radB), and H1391 (∆hel308 radB+), were streaked onto complete 

media alongside wild-type H26 (hel308+ radB+), Figure 4.4. 

 

 

 

 

 
 

 
 

 

 
 

 

 

H1844
∆hel308 
∆radB

H1845
hel308+
∆radB

H26
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radB+

H1391
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Figure 4.4: Growth of strains deleted for hel308, radB or both. H1391 (∆hel308 
radB+) and H1845 (hel308+∆radB) have a slight and severe growth defect 
respectively compared to wild type (hel308+ radB+). The double mutant H1844 
(∆hel308 ∆radB) has a growth rate faster than that of H1845 (hel308+∆radB). 



Chapter 4: Genetic Analysis of hel308 
 

 154 

H1845 (hel308+ ∆radB) has a severe growth defect compared to wild type 

(hel308+ radB+). The double mutant H1844 (∆hel308 ∆radB) has bigger 

colonies compared to H1845 (hel308+ ∆radB), these colonies are closer in size 

to H1391 (∆hel308 radB+). The double deletion does not show synthetic 

lethality, in fact this assay shows the oposite, suggesting an antagonistic 

relationship between Hel308 and RadB. 

 

A limitation of using growth on solid media is that only large variations can be 

readily observed (for example the difference between hel308+∆radB and 

hel308+radB+ strains). Strains with similar growth rates cannot be 

distinguished by this qualitative method, and for this reason growth in liquid 

culture was measured. Strains were grown over two consecutive overnights to 

form a vigorously growing culture. Cell growth during exponential phase was 

measured every 15 minutes by the A600 of the culture over a time course of 48 

hours using an Epoch2 Microplate Spectrophotometer (BioTek). A growth 

curve was plotted and generation time calculated during exponential phase for 

each strain, Figure 4.5. 
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Figure 4.5: Exponential growth rate of strains deleted for hel308 and/or radB. Growth was 
measured by A600. Generation time is indicated at the side of the strain name. H1844 (∆hel308 
∆radB) has a faster generation time than H1845 (hel308+ ∆radB) but not as fast as H1391 
(∆hel308 radB+). Graph plotted on a log2 scale. 3 repeats were carried out for each strain. 
Generation time calculated from linear growth phase. All strains and repeats were incubated on the 
same 48 well plate and measured simultaneously using an Epoch 2 Microplate Spectrophotometer 
(BioTek). 
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H1844 (∆hel308 ∆radB) has a faster growth rate than H1845 (hel308+ ∆radB) 

with generation times of 5.6 hours and 6.8 hours respectively, however this is 

not as fast as H1391 (∆hel308 radB+) which has a generation time of 2.8 

hours. This shows that  a double deletion of ∆hel308 ∆radB improves the 

growth compared to a single ∆radB deletion. This suggests that Hel308 could 

be acting as an anti-recombinase and supressing homologous recombination. In 

H1844 (∆hel308 ∆radB), upon the deletion of hel308 the inhibitory effect is 

relieved allowing for faster growth.  

 

It was noticed that generation times of strains varied between experiments 

when measuring the growth using the Epoch 2 Microplate Spectrophotometer 

(BioTek). Therefore, in this study comparisons are ony made between sets of 

strains within the same experiment. i.e. strains that have been incubated on the 

same 48 well microtitre plate and with the A600 measured simultaneously 

during a single run on the the Epoch 2 Microplate Spectrophotometer 

(BioTek). Since generation times vary between experiments, the generation 

times stated are not absolute. However, the relationship between sets of strains 

has been observed to be consistent, meaning that comparisons of generation 

times between strains within a single experiment is reliable. Therefore, in this 

study growth curves generated by this method are used to illustrate the 

differences in generation times between a set of strains rather than an exact 

determination of each generation time. 

Complementation of hel308 
 

H26 (hel308+) and H1391 (∆hel308) colonies are indistinguishable from each 

other on plates, Figure 4.4. Therefore, complementation of hel308 was 

measured using liquid growth assays, the method for this assay has been 

described previously, Figure 4.6. The episomal plasmid for in trans expression 

of hel308 pTA1669 (hel308+ pyrE2+) was reintroduced into ∆hel308 strain 

generating H2572, H2573 containing the episomal empty vector plasmid 

pTA354 (pyrE2+) was used as a control. 
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Figure 4.6: Exponential growth rate of strains complemented with hel308. Growth was 
measured by A600. Generation time is indicated at the side of the strain name.  H2572 (∆hel308) 
with hel308 episomally expressed (hel308+ pyrE2+) has a generation time comparable to that 
of wild type H26 (hel308+). H2573 (∆hel308) with episomal empty vector (pyrE2+) has a 
generation time comparable to that of H1391 (∆hel308). Graph plotted on a log2 scale. 3 
repeats were carried out for each strain. Generation time calculated from linear growth phase. 
All strains and repeats were incubated on the same 48 well plate and measured simultaneously 
using an Epoch 2 Microplate Spectrophotometer (BioTek). 

 

H2572 (∆hel308) with hel308 episomally expressed (hel308+ pyrE2+) has a 

generation time comparable to that of wild type H26 (hel308+). H2573 

(∆hel308) with episomal empty vector (pyrE2+) has a generation time 

comparable to that of H1391 (∆hel308). This indicates that the deletion of 

hel308 is resposible for the slow growing phenotype seen in H1391 (∆hel308). 

To determine if hel308 is truly responsible for the improved growth phenotype 

in the H1844 (∆hel308 ∆radB) strain compared with H1845 (hel308+ ∆radB) 

(Figures 4.4 and 4.5), hel308 was reintroduced on an episomal plasmid into 

H1844.  

In order to visually compare the growth rates, H2426 (∆hel308 ∆radB) 

containing the episomal plasmid for in trans expression of hel308 pTA1669 

(hel308+ pyrE2+) was streaked onto complete media along side the control 
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strain H2427 (∆hel308 ∆radB) containing the episomal empty vector plasmid 

pTA354 (pyrE2+), Figure 4.7. 

 

 
Figure 4.7: Growth of ∆hel308 ∆radB strains complemented with an episomally expressed 
hel308 or an empty vector control. H2426 (∆hel308 ∆radB) with episomally expressed 
hel308 has smaller colonies than H2427 (∆hel308 ∆radB) with the empty vector control. H26, 
H1391, H1845, H1844 included for reference. 
 
 
H2426 (∆hel308 ∆radB with episomally expressed hel308) has significantly 

smaller colonies than the control strain H2427 (∆hel308 ∆radB with empty 

vector). H2426 colonies resemble those of H1845 (hel308+ ∆radB), showing 

that the improvement in growth phenotype seen in H1844 (∆hel308 ∆radB) has 

been reversed upon the addition of hel308. This indicates that the deletion of 

hel308 is resposible for the improved growth of ∆radB∆hel308 strains. 

Additionally, as expected, H2427 colonies resemble H1844 (∆hel308 ∆radB). 

 
Survival Following Treatment with DNA-damaging Agents 
 

UV light induces several types of DNA lesions which consequently result in 

single and double strand DNA breaks (Goosen & Moolenaar 2008). The most 
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common forms of DNA damage induced by UV irradiation are cyclobutane 

pyrimidine dimers (CPDs) and (6-4) photoproducts. These lesions distort the 

backbone of DNA which can lead to blockage of replication forks, resulting in 

single and double strand DNA breaks. Mechanisms that repair UV lesions 

include photo-reactivation (apart from in placental mammals), base excision 

repair (in some organisms), nucleotide excision repair (NER) and homologous 

recombination. Strains defective these repair pathways are sensitive to UV-

irradiation. 

 

Mitomycin C (MMC) is a chemical mutagen that causes inter and intra-strand 

DNA crosslinks (Tomasz et al 1987). MMC alkylates guanine bases which 

leads to monoadduct formation between the DNA molecule and the MMC 

molecule. An alkylation reaction with a second guanine leads to the formation 

of a bisadduct, resulting in crosslinking of DNA. Crosslinking across the two 

DNA strands (interstrand crosslinking) occurs more frequently than 

crosslinking between residues in the same DNA strand  (intrastrand crosslink). 

 

Strains deleted for HelQ have an increased sentisitvity to DNA crosslinking 

agents such as MMC (Adelman et al 2013, Takata et al 2013) and strains 

deleted for radB have an increased sensitivity to DNA damaging agents due to 

recombination defects (Haldenby 2007). In order to study the ability of a 

∆hel308∆radB strain to survive following treatment with DNA-damaging 

agents, cells were treated with UV-radiation or MMC. 

 

To analyse survival of H1844 (∆hel308 ∆radB), H1845 (hel308+ ∆radB), 

H1391 (∆hel308 radB+), and H26 (hel308+ radB+) following treatment with 

DNA damaging agents, cultures were grown to mid exponential phase, spotted 

onto complete media and treated with UV or on to complete media containing 

MMC. Plates were incubated for 4-7 days at 45 ̊C and colonies counted, Figure 

4.8. 
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Figure 4.8: Survival frequency of strains deleted for hel308 and/or radB following 
treatment with DNA-damaging agents. (A) Survival following treatment with UV 
irradiation. H1844 (∆hel308 ∆radB) and H1845 (hel308+ ∆radB) are highly sensitive to UV 
irradiation compared to wild type H26 (hel308+ radB+). H1391 (∆hel308 radB+) is not 
sensitive to UV irradiation. (B) Survival following treatment with MMC. All strains are more 
sensitive to MMC than wild type H26 (hel308+ radB+). H1845 (hel308+ ∆radB) is highly 
sensitive to MMC, whereas H1844 (∆hel308 ∆radB) is only as sensitive as H1391 (∆hel308 
radB+). Survival fraction is calculated relative to untreated control. Each data point is 
generated as an average of at least 3 independent trials. Standard error is shown. Asterisk (*) 
indicates that the highest dose of UV (180 J/m2) or MMC (0.02 µg/ml) is significantly different 
to H26 (wild type) with P < 0.05. P-value calculated from two-tailed t-test in mutated strains 
compared to H26 (wild-type). 

 

Following UV irradiation both of the radB deleted strains H1844 (∆hel308 

∆radB) and H1845 (hel308+ ∆radB) show severe growth phenotypes; with P-

values calculated from a two-tailed t-test being 0.0175 and 0.0125 respectively, 

when compared to the wild type strain H26. H1845 (hel308+ ∆radB) shows no 

growth after treatment with UV at 180 J/m2. Whereas H1391 (∆hel308 radB+) 

shows survival which is not significantly different to wild type (P-value of 

0.6299). The lack of synthetic lethality demonstrates that hel308 does not 

operate in the same pathway as radB when single and double strand DNA 

breaks are induced. Following treatment with MMC, H1845 (hel308+ ∆radB) 

shows a significant reduction in survival and H1391 (∆hel308 radB+) shows a 

mild reduction in survival compared to wild type. P-values calculated from a 

two-tailed t-test for these strains are 0.0316 and 0.0338 respectively, when 
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compared to the wild type strain H26. Interestingly the double deletion H1844 

(∆hel308 ∆radB) exhibits an improved survival fraction compared to the single 

radB deletion, and H1845 (hel308+ ∆radB) appears to show survival with no 

significant difference to H1391 (∆hel308 radB+) (P-value of these two strains 

compared by a two-tailed t-test is 0.9089) suggesting a complex relationship 

between Hel308 and RadB. Hel308 could be acting as an antirecombinase and 

supressing homologous recombination. In H1844 (∆hel308 ∆radB), upon the 

deletion of hel308 the inhibitory effect is relieved allowing for better survival. 

In this strain radA is still present and recombination is still occuring at low 

levels, allowing the cell to repair DNA crosslinks (at a reduced rate). 

Recombination Frequency 

Strains deleted for radB have a recombination defect of approximately 5% of 

the wild-type level (Haldenby 2007). In order to examine the effect of a hel308 

deletion in a ∆radB strain, homologous recombination between the 

chromosome and a closed circular plasmid was measured. A schematic for this 

assay is shown in Figure 4.9.  

The recombination frequency between a plasmid and the chromosome can be 

measured by using a pair of mutant leuB alleles (Lestini et al 2010). leuB 

encodes for 3-isopropylmalate dehydrogenase, an enzyme required for leucine 

biosynthesis. Strains derived from a H164 background have a mutant leuB 

allele, leuB-Ag1 that contains a point mutant at the 5' end of the gene, and these 

strains cannot grow on media lacking leucine. These strains are transformed 

with the non-replicative plasmid pTA163, which contains a leuB-Aa2 allele 

that has a point mutant at the 3' of the gene. Recombination between these two 

leuB alleles results in a wild-type leuB allele. Since these strains are leuB+, 

they can be selected for by plating transformants on media lacking leucine. 

Transformants were also plated onto non-selective media to determine the 

viable cell count. Transformation frequency was calculated as the number of 

transformants on selective media relative to the viable cell count.  

To determine the number of crossover and non-crossover events, colonies were 

patched in duplicate on Hv-Min+Trp and Hv-Min+Trp+Ura. Crossover 
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recombination events will generate a strain containing both wild-type leuB and 

leuB-Aa2-Ag1. The pyrE2 marker also integrates onto the chromosome, 

resulting in a strain that is leu+ ura+. A non-crossover recombination event 

will generate a strain containing wild-type leuB, but the pyrE2 marker is lost. 

The resulting strain would be leu+ ura-. 

 

 

 

 

 

 

 

 

 

Figure 4.9: Chromosome x plasmid recombination assays. ∆pyrE2 strains with a 
chromosomal leuB-Ag1 allele (leu-) are transformed with pTA163, containing pyrE2 and leuB-
Aa2. A recombination event between the plasmid leuB-Aa2 allele and chromosomal leuB-Ag1 
allele generates a wild-type leu+ allele and strains can grow on media lacking leucine. 
Crossover and non-crossover events are measured by studying the proportion of transformants 
that have retained or lost the pyrE2 marker found on pTA163: crossover recombinants are 
pyrE2+ (ura+), and non-crossover recombinants ∆pyrE2 (ura-). 

 

The recombination frequency for H164 (hel308+ radB+), H2117 (∆hel308 

radB+), H2417 (∆hel308 ∆radB) and H2461 (hel308+ ∆radB) was compared, 

transformants were screened for crossover or non-crossover recombination 

events, Table 4.1. 
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Table 4.1: Recombination frequencies of strains deleted for hel308 and/or radB. 

*Recombination assay for this strain performed by Charlie Wickham-Smith (Doctoral Training 
Program rotation student) under my supervision. 
Values in bold indicate the amount of recombination, crossover or non-crossover events 
compared to wild-type H164 (hel308+ radB+). Values are generated as an average of at least 3 
independent trials, +/- standard error is shown in brackets. Cells are shaded blue to indicate 
recombination defect and red to indicate hyper-recombination. Fraction of crossover and non-
crossover events represented as a percentage, cells are shaded where values differ significantly 
from the wild type (P =0.05), blue indicates a decrease, red indicates an increase. Number of 
colonies assayed for crossover and non-crossover is indicated in brackets underneeth the 
percentages. 
 

The recombination frequency of H2117 (∆hel308 radB+) is lower than that of 

wild type H164 (hel308+ radB+) (0.23×). This suggests that Hel308 may play 

a role in homologous recombination. As expected, H2461 (hel308+ ∆radB) has 

an extremely low recombination frequency of 0.0048× that of wild type. 

However, upon the deletion of hel308 in H2417 (∆hel308 ∆radB) the 

recombination frequency increases slightly to 0.083× that of wild type. The 

crossover and non-crossover fractions in H2461 (hel308+ ∆radB) and H2417 

(∆hel308 ∆radB) are not significantly different to wild type (with two degrees 

of freedom with a chi-squared test). However, only a small number of colonies 

were available to calculate these fractions (22 and 23 respectively for H2461 

and H2417), therefore a larger samping size of above 60 colonies is needed to 

confirm if these results are acurate. 

 

 

 

Strain H164 H2117 H2461* H2417 
hel308+ 
radB+ 

∆hel308 
radB+ 

hel308+ 
∆radB 

∆hel308 
∆radB 

Recombination 
Frequency (RF) 

4.94×10-5 

(+/- 3.01×10-5) 
3.23×10-5 

(+/- 1.17×10-5) 
2.97×10-6 

(+/- 9.93×10-7) 
 

9.38×10-6 
(+/- 4.71×10-

6) 
Transformation 
Efficiency (TE) 

1.07×10-5 
(+/- 3.25×10-6) 

3.00×10-5 
(+/- 0.00) 

1.27×10-4 
(+/-2.30×10-5) 

 

2.44×10-4 
(+/- 1.57×10-

5) 
Relative recombination 
frequency (normalised 
by TE) 

4.62×100 1.08×100 2.23×10-2 
 

3.85×10-2 

1× 0.23× 0.048× 0.083× 
Crossover fraction 13.49% 

(126) 
8.75% 
(120) 

4.45 % 
(22) 

4.35% 
(23) 

Non-crossover fraction 86.51% 
(126) 

91.25% 
(120) 

95.45% 
(22) 

95.65% 
(23) 
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DNA Content and Cell Size 
 
In order to determine the effect of hel308 and radB deletions on DNA content 

and cell size, flow cytometry was used, Figure 4.10. 

 

H1391 (∆hel308 radB+) has a broader range of cell sizes and higher DNA 

content compared to wild type H26 (hel308+ radB+). H1845 (hel308+ ∆radB) 

has smaller sized cells and a smaller DNA content compared to wild type.  Cell 

size of H1844 (∆hel308 ∆radB) is more similar to wild type than either H1391 

or H1845, however DNA content closely resembles H1845 (hel308+ ∆radB).  

 

H26 
hel308+ radB+ 

0                        10K                     20K                       30K
LS1 (Peak)

0                        10K                     20K                       30K
LS1 (Peak)

0                        10K                     20K                       30K
LS1 (Peak)

0                        10K                     20K                       30K
LS1 (Peak)

0                        10K                     20K                       30K
FL1 (Peak)

0                        10K                     20K                       30K
FL1 (Peak)

0                        10K                     20K                       30K
FL1 (Peak)

0                        10K                     20K                       30K
FL1 (Peak)

Cell Size
0                        10K                     20K                       30K 0                        10K                     20K                       30K0                        10K                     20K                       30K0                        10K                     20K                       30K

Cell SizeCell SizeCell Size

D
N

A 
Co

nt
en

t

30K

            
20K 

         
10K                      

H1844
∆hel308 ∆radB 

H1845 
hel308+ ∆radB 

H1391
∆hel308 radB+ 

A  Cell Size

B  DNA Content

A  Cell Size vs DNA Content

Figure 4.10: Flow cytometry analysis of strains deleted for hel308 and/or radB. (A) 
Determination of cell size, H1844 (∆hel308 ∆radB) is more similar to wild type than either 
H1391 or H1845. (B) Determination of DNA content, H1844 (∆hel308 ∆radB) closely 
resembles H1845 (hel308+ ∆radB). (C) Cell size vs DNA content. 
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4.3.2.3 Deletion in Combination with hjc and hef 
 

Hjc and Hef are endonucleases that have been proposed to restart stalled 

replication forks in H. volcanii (Lestini et al 2010). Hjc is a Holliday junction 

resolvase that binds specifically to Holliday junctions and cleaves two 

opposing strands symmetrically to generate two recombinant duplexes. Hef 

comprises two distinct domains: an N-terminal domain of the DEAH helicase 

family and a C-terminal domain of the XPF endonuclease family. Hef acts on 

nicked, flapped or forked DNA and can convert a Holliday junction into a 

forked structure by introduction of an incision near the branch point (Komori et 

al 2002, Komori et al 2004). In H. volcanii deletion of hef results in only a 

moderate sensitivity to DNA crosslinking agents, whereas deletion of hjc has 

no effect. However, a ∆hjc ∆hef double mutant is synthetically lethal. Deletion 

of hef in a ∆radA background is highly deleterious but deletion of hjc has no 

effect. This suggests that Hjc acts exclusively in homologous recombination 

whereas Hef can act in a pathway that avoids the use of homologous 

recombination (Lestini et al 2010), Figure 4.11. 
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Figure 4.11: Hef and Hjc are proposed to act in alternative pathways of replication fork 
restart. Hef is proposed to act in a recombination dependent pathway involving cleavage of 
the replication fork (purple arrows) and a recombination independent pathway involving fork 
remodelling (orange arrows). Hjc is proposed to play a role exclusively in a recombination 
dependent pathway of replication fork restart (blue arrows). HefHel indicates Hef helicase 
activity, HefNuc indicates Hef nuclease activity. Figure adapted from (Lestini et al 2010). 
 

The Hel308/Hjm homologue from the hyperthermophilic archaeon Sulfolobus 

tokodaii was found to physically interact with Hjc via gel filtration, affinity 

pull down, and yeast two-hybrid analyses (Li et al 2008). Furthermore, the 

unwinding activity of the Hel308/Hjm homologue was inhibited by Hjc in 

vitro. The polarity of Hel308 unwinding in H. volcanii is 3' to 5', however the 

Hel308/Hjm homologue in   S. tokodaii can unwind DNA in both 3' to 5' and 5' 

to 3' directions. These results may suggest that the Hel308/Hjm family 

helicases, in association with Hjc endonucleases, are involved in processing of 

stalled replication forks. Therefore, it was of interest to analyse the genetic 

interactions between hjc, hef and hel308 to determine whether Hel308 acts in 

the Hef or Hjc pathway in H. volcanii. 

 

HefHel

HefHel

HefNuc Hjc

Stalled fork

Restart

HRHR

RadARadA

BER/NER

Remodelling

Remodelling

CleavageCleavage

Hef recombination dependent pathway

Hjc recombination dependent pathway
Hef recombination independent pathway



Chapter 4: Genetic Analysis of hel308 
 

 166 

Growth Rate  
 

In order to compare growth rate strains were streaked onto solid media 

alongside wild-type H26 (hel308+ hjc+ hef+). H1468 (∆hel308 ∆hef), was 

also streaked alongside H358 (hel308+ ∆hef), and H1391 (∆hel308 hef+). 

H1467 (∆hel308 ∆hjc) was also streaked alongside H1049 (hel308+ ∆hjc) and 

H1391 (∆hel308 hjc+), Figure 4.12. 

 

 
Figure 4.12: Growth of strains deleted for hel308 and hef or hjc. (A) Growth rate for hef 
strains. No difference in single colony size can be seen between either strain deleted for hef, 
H358 (hel308+ ∆hef) and H1468 (∆hel308 ∆hef) and both strains have growth comparable to 
wild type. (B) H1467 (∆hel308 ∆hjc) colonies are significantly smaller than H1049 (hel308+ 
∆hjc) or H1391 (∆hel308 hjc+). 

 

No difference in growth can be seen between H1468 (∆hel308 ∆hef) and H358 

(hel308+ ∆hef), H1391 (∆hel308 hef+) has slightly smaller colonies than either 

of these two strains. H1467 (∆hel308 ∆hjc) has a severe growth defect; 

colonies are significantly smaller than either H1049 (hel308+ ∆hjc) or H1391 

(∆hel308 hjc+) single colonies. This suggests a synthetic defect in hel308 hjc 

mutants. 
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The growth defect seen in H1467 (∆hel308 ∆hjc) was quantified; furthermore, 

strains with similar growth rates such as ∆hef cannot be distinguished by this 

qualitative method. For these reasons growth assays in liquid culture were 

performed for strains deleted for hel308 and hef or hjc, Figure 4.13. The 

method for this assay has been described previously. 
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Figure 4.13: Exponential growth rate of strains deleted for hel308 and hef or hjc. 
Growth was measured by A600. Generation time is indicated at the side of the strain name. 
(A) H1391 (∆hel308 hef+) shows a slight growth defect, however H358 (hel308+ ∆hef), 
H1468 (∆hel308 ∆hef) show no difference in growth compared to wild type H26 
(hel308+ hef+). (B) H1391 (∆hel308 hjc+) shows a slight growth defect, however H1049 
(hel308+ ∆hjc) and H1467 (∆hel308 ∆hjc) show no difference in growth compared to 
wild type H26 (hel308+ hjc+). Graph plotted on a log2 scale. 3 repeats were carried out 
for each strain. Generation time calculated from linear growth phase. All strains and 
repeats were incubated on the same 48 well plate and measured simultaneously using an 
Epoch 2 Microplate Spectrophotometer (BioTek). 
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H1468 (∆hel308 ∆hef) has a generation time identical to H358 (hel308+ ∆hef) 

and H26 (hel308+ hef+) of 2.1 hours. However, an improved generation time 

is seen when H1391 (∆hel308 hef+) is compared to H1468 (∆hel308 ∆ hef) of 

2.2 hours to 2.1 hours respectively. These observations indicate that there is no 

synthetic lethality between hel308 and hef.  

 
In contrast with growth on solid media, the growth assay in liquid culture 

shows that H1467 (∆hel308 ∆hjc) has a generation time identical to H1049 

(hel308+ ∆hjc) and H26 (hel308+ hjc+) of 2.1 hours. However, an improved 

generation time is seen when H1391 (∆hel308 hjc+) is compared to H1467 

(∆hel308 ∆hjc) of 2.3 hours to 2.1 hours respectively. These observations 

indicate that there is no synthetic lethality between hel308 and hjc.  

 
Survival Following Treatment with DNA-damaging Agents 
 

Strains deleted hjc or hef are not sensitive to UV-irradiation but are slightly 

sensitive to MMC (Lestini et al 2010). In order to test whether there was a 

synthetic defect between hel308 and hef or hjc, survival frequency of H1468 

(∆hel308 ∆hef) and H1467 (∆hel308 ∆hjc) was analysed following treatment 

with UV irradiation or MMC, Figure 4.14. 
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Figure 4.14: Survival frequency of strains deleted hel308 and hef or hjc following treatment 
with DNA-damaging agents. (A) Survival for hef strains. No observed difference in survival 
fraction of any strain compared to wild type H26 (hel308+ hef+) after UV irradiation. H358 
(hel308+ ∆hef) and H1468 (∆hel308 ∆hef) show survival fraction similar to H1391 (∆hel308 
hef+) after treatment with MMC. (B) Survival for hjc strains. No observed differences in survival 
fraction of any strain compared to wild type H26 (hel308+ hjc+) after UV irradiation. H1391 
(∆hel308 hjc+) shows a reduction in survival fraction whereas H1467 (∆hel308 ∆hjc) and H1049 
(hel308+ ∆hjc) show survival similar to wild type H26 (hel308+ hjc+) after treatment with MMC. 
Survival fraction is calculated relative to un-treated control. Each data point is generated as an 
average of at least 3 independent trials. Standard error is shown.  
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Following treatment with UV irradiation H1391 (∆hel308 hef+ hjc+) shows 

survival similar to wild type H26. Furthermore, both double mutants H1468 

(∆hel308 ∆hef) and H1467 (∆hel308 ∆hjc) show similar survival compared to 

wild type H26. The P-values are > 0.05 for all strains compared to wild type 

(H26) (calculated by a two-tailed t-test) indicating no significant difference to 

wild type. This suggests that Hel308 does not play a role in the repair of UV-

induced lesions in the presence or absence of Hjc or Hef 

Following treatment with MMC both H1468 (∆hel308 ∆hef) and H1467 

(∆hel308 ∆hjc) show survival similar to the single ∆hef or ∆hjc strains (H358 

and H1049 respectively). The P-values are > 0.05 for all strains compared 

(calculated by a two-tailed t-test) indicating no significant difference between 

strains.  In Figure 4.14B It appears that the rate of survival is improved upon 

the double deletion of hel308 and hjc (H1467) compared to H1391 (∆hel308 

hjc+). However, upon comparison of these strains using a two-tailed t-test, the 

survival fractions show no significant difference (P-value > 0.05). This 

suggests that in the absence of hef and hjc, hel308 deletion does not lead to 

enhanced survival following treatment with MMC.  

 

4.3.2.4 Deletion in Combination with Origins of Replication 
 

Origins of replication are defined sites on the chromosome where DNA 

replication initiates; origins are the sites where initiator proteins and replication 

machinery assemble (Bell & Dutta 2002). In H. volcanii a strain that lacks all 

origins of replication (oriC1∆oriC2 ∆oriC3 ∆ori-pHV4-2) shows no apparent 

defects and has growth faster than wild type (+7.5%) (Hawkins et al 2013). 

This strain initiates replication at dispersed sites across the chromosome rather 

than at discrete origins. This strain also has an absolute dependence on RadA 

for replication of the entire genome via homologous recombination. 

 

Since hel308 might have anti-recombinase activity, it would be interesting to 

observe the effect of a hel308 deletion in an oriC1∆oriC2 ∆oriC3 ∆ori-pHV4-2 

background in H. volcanii. 
Growth Rate  
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In order to visually compare the growth rates, H1953 (∆hel308 ∆oriC1∆oriC2 

∆oriC3 ∆ori-pHV4-2), H1804 (hel308+ ∆oriC1∆oriC2 ∆oriC3 ∆ori-pHV4-2), 

and H1391 (∆hel308 oriC1+ oriC2+ oriC3+ ori-pHV4-2+), were streaked 

onto complete media alongside wild-type H26 (hel308+ oriC1+ oriC2+ 

oriC3+ ori-pHV4-2+), Figure 4.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No difference in growth between H1953 (∆hel308 ∆oriC1∆oriC2 ∆oriC3 ∆ori-

pHV4-2), H1804 (hel308+ ∆oriC1∆oriC2 ∆oriC3 ∆ori-pHV4-2), and H1391 

(∆hel308 oriC1+ oriC2+ oriC3+ ori-pHV4-2+) can be observed. 

 

As mentioned previously, strains with similar growth rates cannot be 

distinguished by this qualitative method, and for this reason growth assays in 

liquid culture were performed, Figure 4.16. The method for this assay has been 

described previously. 
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Figure 4.15: Growth of strains deleted for hel308 and/or ∆oriC1 oriC2 oriC3 ori-pHV4-
2. No difference in single colony size can be seen between any of these strains. 
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Figure 4.16: Exponential growth rate of strains deleted for hel308 and/or ∆oriC1 oriC2 
oriC3 ori-pHV4-2. Growth was measured by A600. Generation time is indicated at the side of 
the strain name. H1804 (hel308+ ∆oriC1∆oriC2 ∆oriC3 ∆ori-pHV4-2) grows faster than wild 
type H26 (hel308+ oriC1+ oriC2+ oriC3+ ori-pHV4-2+). H1953 (∆hel308 ∆oriC1∆oriC2 
∆oriC3 ∆ori-pHV4-2) has improved growth compared to H1391 (∆hel308 oriC1+ oriC2+ 
oriC3+ ori-pHV4-2+). Graph plotted on a log2 scale. 3 repeats were carried out for each strain. 
Generation time calculated from linear growth phase. All strains and repeats were incubated on 
the same 48 well plate and measured simultaneously using an Epoch 2 Microplate 
Spectrophotometer (BioTek). 

 

In agreement with published observations, H1804 (hel308+ ∆oriC1∆oriC2 

∆oriC3 ∆ori-pHV4-2) shows to have a faster generation time than wild type 

H26 (hel308+ oriC1+ oriC2+ oriC3+ ori-pHV4-2+) (Hawkins et al 2013). 

H1953 (∆hel308 ∆oriC1∆oriC2 ∆oriC3 ∆ori-pHV4-2) has a faster generation 

time compared to H1391 (∆hel308 oriC1+ oriC2+ oriC3+ ori-pHV4-2+). This 

observation is likely due to the improved growth due to the lack of origins. 

 
Survival Following Treatment with DNA-damaging Agents 
 

The survival of H1953 (∆hel308 ∆oriC1∆oriC2 ∆oriC3 ∆ori-pHV4-2), H1804 

(hel308+ ∆oriC1∆oriC2 ∆oriC3 ∆ori-pHV4-2), H1391 (∆hel308 oriC1+ 

oriC2+ oriC3+ ori-pHV4-2+) and wild type H26 (hel308+ oriC1+ oriC2+ 
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oriC3+ ori-pHV4-2+) following treatment with DNA damaging agents was 

analysed, methods described previously, Figure 4.17. 

 

 
Figure 4.17: Survival frequency of strains deleted for hel308 and/or ∆oriC1 oriC2 oriC3 
ori-pHV4-2 following treatment with DNA-damaging agents. (A) Survival following 
treatment with UV irradiation. H1953 (∆hel308 ∆oriC1∆oriC2 ∆oriC3 ∆ori-pHV4-2) shows a 
slight decrease in survival whereas H1804 (hel308+ ∆oriC1∆oriC2 ∆oriC3 ∆ori-pHV4-2) and 
H1391 (∆hel308 oriC1+ oriC2+ oriC3+ ori-pHV4-2+) show survival comparable to wild type 
H26 (hel308+ oriC1+ oriC2+ oriC3+ ori-pHV4-2+). (B) Survival following treatment with 
MMC. H1953 (∆hel308 ∆oriC1∆oriC2 ∆oriC3 ∆ori-pHV4-2) shows a reduction in survival 
compared to wild-type but shows survival no worse than H1391 (∆hel308 oriC1+ oriC2+ 
oriC3+ ori-pHV4-2+). Survival fraction is calculated relative to un-treated control. Each data 
point is generated as an average of at least 3 independent trials. Standard error is shown. 
Asterisk (*) indicates that the highest dose of UV (180 J/m2) or MMC (0.02 µg/ml) is 
significantly different to H26 (wild type) with P < 0.05. P-value calculated from two-tailed t-
test in mutated strains compared to H26 (wild-type). 

Following UV irradiation, H1953 (∆hel308 ∆oriC1∆oriC2 ∆oriC3 ∆ori-pHV4-

2) shows a significant decrease in survival compared wild type H26 (hel308+ 

oriC1+ oriC2+ oriC3+ ori-pHV4-2+), (P-value = 0.0301, calculated from a 

two-tailed t-test). Whereas H1804 (hel308+ ∆oriC1∆oriC2 ∆oriC3 ∆ori-pHV4-

2) and H1391 (∆hel308 oriC1+ oriC2+ oriC3+ ori-pHV4-2+) exhibit survival 

not significantly different to wild type (P-values > 0.05, calculated from a two-
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tailed t-test). After treatment with MMC, H1953 (∆hel308 ∆oriC1∆oriC2 

∆oriC3 ∆ori-pHV4-2) exhibits survival significantly lower to that of wild type 

(P-value = 0.0330, calculated from a two-tailed t-test) but shows a survival 

with no significant difference to H1391 (∆hel308 oriC1+ oriC2+ oriC3+ ori-

pHV4-2+) (P-value = 0.2607, calculated from a two-tailed t-test).  
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4.4 Discussion 
 

Expression of Hel308 
 

Hel308 was shown to be constitutively expressed under native and DNA-

damaging conditions (treatment with 20 J/m2 UV-irradiation or 2 μg/ml 

MMC), with no apparent differences in transcript levels under all conditions. In 

response to DNA damage, bacteria undergo an SOS response, which involves 

the up-regulation of DNA repair genes (Little & Mount 1982). Archaea do not 

appear to have a cellular SOS response, which could account for the lack of up-

regulation of Hel308 following DNA damage (Frols et al 2009, McCready et al 

2005). Hel308 from the archaeon Sulfolobus acidocaldarius shows a cyclic 

transcription pattern during cell cycle and the transcription of this gene is up-

regulated in early S phase (Bernander et al 2010). However, H. volcanii does 

not appear to have a defined cell cycle (Iain Duggin, personal communication).  

 
Hel308 as an Antirecombinase? 
 

RadB is a recombination mediator that asssists the filament formation of RadA 

on ssDNA during homologous recombination (HR), and deletion of RadB 

results in slow growth and a marked reduction in HR (~ 5% of a wild type 

strain) (Haldenby 2007). In all phenotypic assays performed in this study, 

deletion of hel308 in combination with radB resulted in a reduction in the 

severity of the defects, compared to a radB strain. For example, the generation 

time of a ∆hel308 ∆radB strain was around 0.8 hours faster than a ∆radB 

strain. Complementation of hel308 by an episomal plasmid in a ∆hel308 ∆radB 

background resulted in slow-growing colonies (comparable to a ∆radB strain), 

confirming that the absence of hel308 is the cause of the defect suppression 

observed in a ∆hel308 ∆radB strain. Following treatment with MMC, the 

survival fraction of the ∆hel308 ∆radB strain was markedly increased, 

compared to that of a ∆radB strain. This trend was also observed in flow 

cytometry profiles, where the ∆hel308 ∆radB strain more closely resembled a 

wild type strain than a ∆radB strain.  The suppression effect of deleting hel308 

in a ∆radB background can be explained if Hel308 acts as an anti-recombinase 
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and RadB has more than one function during homologous recombination, 

Figure 4.18.  

 

 
Figure 4.18: Possible function of Hel08 as an anti-recombinase.  DNA damage (this example 
depicts a double strand DNA break) can be repaired by homologous recombination or by 
alternative DNA repair pathways. RadB could act to channel DNA damage into the 
homologous recombination pathway as well as acting as a recombination mediator to help 
polymerise RadA onto ssDNA. Hel308 could act as an anti-recombinase to disassemble D-
loops. 
 

The first role of RadB involves the catalysis of RadA polymerisation on 

ssDNA during homologous recombination (pink RadB, Figure 4.18). The 

second proposed role of RadB is as a regulator of homologous recombination 

(orange RadB, Figure 4.18). In this scenario, damaged DNA (depicted in 

Figure 4.18 as a double strand break) is channeled down the homolgous 

recombination pathway by RadB, RadA assisted by RadB then polymerises 

onto ssDNA and undergoes strand invasion, and the resuting D-loop may be 

dissasembled by Hel308. In a ∆radB deleted strain, a small amount of 

homologous recombination is carried out by RadA alone (~ 5% of a wild type 

strain) (Haldenby 2007). In the absence of RadB, these D-loops are easily 

dismantled by the anti-recombinase activity of Hel308, resulting in severe 

growth and DNA damage defects. Upon the deletion of hel308 in a ∆radB 

background, the small amount of recombination that is carried out solely by 

RadA is unopposed (due to the absence of the Hel308 anti-recombinase) and so 

the growth and DNA damage defects are less severe. This hypothesis is 

supported by the slight increase in recombination frequency observed for a 

∆hel308 ∆radB strain compared to a ∆radB strain (0.083 and 0.048 times that 

of wildtype levels, respectively). Due to the poor growth of ∆radB deleted 
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strains, only 22 colonies of the ∆radB strain (compared to 64 colonies of 

the∆hel308 ∆radB strain) were available to calculate this frequency. Repetition 

of this assay with more data is necessary to confirm these results.  

Hel308 is a 3' to 5' RecQ family helicase and other RecQ helicases with the 

same polarity also exhibits anti-recombinase activity, for example Srs2 from S. 

cerevisiae, which is homologous to the E. coli helicase UvrD. Srs2 is capable 

of dismantling Rad51 filaments from D-loops (Krejci et al 2012), and 

mammalian RecQ helicases such as RecQ5, BLM, WRN and FANCJ have also 

demonstrated the ability to disrupt Rad51-ssDNA filaments (Bugreev et al 

2007, Hu et al 2007, Sommers et al 2009). The observation that other RecQ 

helicases are capable of anti-recombinase activity suggests that Hel308 in 

archaea could also act as an anti-recombinase.  Since other anti-recombinases 

are present, Hel308 could have a redundant role in mammalian species. 

 
Hel308 does not Appear to Regulate Hjc or Hef During ICL Repair. 

Deletion of Hel308 in combination with Holliday junction resolvases Hef and 

Hjc has no effect on generation time. The lack of a synthetic defect suggests 

that Hel308 does not function in the later stages of homologous recombination 

alongside Hef and Hjc. Although the strain deleted for ∆hel308 ∆hjc displays a 

severe growth defect on solid media but no growth defect in liquid culture. 

Since strains are growing vigorously in exponential phase in liquid culture, this 

growth assay is more reliable. Repetition of ∆hel308 ∆hjc growth assay on 

solid media may be required. 

Following treatment with MMC, both ∆hel308∆hef and ∆hel308∆hjc strains 

show survival similar to the single ∆hef and ∆hjc strains respectively 

suggesting that Hel308 does not act alongside Hjc or Hef during the repair of 

interstrand cross links in H.volcanii. However, yeast two-hybrid analyses 

revealed that the Hel308 homologue Hjm from Sulfolobus tokodaii physically 

interacts with Hjc in vitro (Li et al 2008), suggesting further investigation into 

this relationship in H.volcanii may be required. 
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Is Hel308 Involved in Recombination Mediated DNA Replication? 

A H. volcanii strain deleted for the four chromosomal origins of replication 

(∆oriC1∆oriC2 ∆oriC3 ∆ori-pHV4) grows 7.5% faster than wild type and 

exhibits an absolute dependence on RadA for replication of the entire genome 

via homologous recombination (Hawkins et al 2013). In this study, a strain 

deleted for hel308 oriC1oriC2 oriC3 and ori-pHV4-2 was shown to grow faster 

than a ∆hel308 strain, which is likely due to faster growth due to the lack of 

origins. However, the ∆hel308 ∆oriC1∆oriC2 ∆oriC3 ∆ori-pHV4-2 strain had 

a longer generation time than a strain deleted for all origins but not deleted for 

hel308.  If Hel308 solely acts as an anti-recombinase, then in the origin-less 

strain where DNA replication relies on recombination, the presence of Hel308 

should be detrimental; upon deleting hel308, recombination will not be 

antagonised by Hel308 and the cell should grow faster. However the opposite 

is seen: strains grow slower after hel308 is deleted in an origin-less 

background.  

This suggests that Hel308 could have a second function in the cell. If Hel308 is 

also involved in promoting the (re)initiation of DNA replication, then deletion 

of hel308 will be detrimental to a strain that only has one route of replicating 

its genome (via homologous recombination). A strain deleted for hel308, 

oriC1oriC2 oriC3 and ori-pHV4-2 displayed a decrease in survival after 

treatment with UV, relative to that seen in either a hel308 deleted strain or an 

origin-less strain. Hel308 is not known to be involved in the repair of double 

strand DNA breaks or other forms of UV-induced damage, but if DNA 

replication is impaired upon deletion of hel308 in the origin-less background, 

then this would account for the DNA damage phenotype. 

4.5 Future perspectives 
 

To investigate the role of Hel308 as a regulator of homologous recombination, 

it would be of interest to analyse a ∆hel308∆radA strain. However, the 

generation of such strain was not possible during this study. This could mean 

that RadA is essential in a hel308-deleted background but the more likely 

reason is due to the techincal difficulties in generating radA deletions. The 
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pop-in pop-out gene deletion method used in H. volcanii utilises homologous 

recombination (and therefore RadA), which makes the deletion of radA 

challenging. If further efforts to delete radA should prove unsuccessful, then 

radA could be placed under the tryptophan-inducible p.tnaA promoter and 

assayed under conditions lacking tryptophan. This method was used by 

Hawkins and colleagues to demonstrate that radA deletion is impossible in an 

origin-less background (Hawkins et al 2013). If a ∆hel308∆radA strain can be 

generated, then based on the scenario depicted in Figure 4.18 it is expected that 

the growth and DNA damage defects would be no worse than a ∆radA strain. 

This is because ∆radA strains are unable to carry out homologous 

recombination (Woods & Dyall-Smith 1997). Therefore, no D-loop 

intermediates would be formed for Hel308 to dismantle and so deleting hel308 

would have no effect on this strain. 

 

Another method to investigate the role of Hel308 in the regulation of 

homologous recombination would be to combine hel308 deletions with point 

mutations in radA that act as supressors of the ∆radB phenotype. RadB is a 

recombination mediator, which assists RadA polymerisation onto ssDNA 

during homologous recombination. Strains deleted for radB are slow-growing 

and carry out homologous recombination at ~5% of the level seen in a wild 

type strain. The point mutants radA-S101P and radA-A196V were identified as 

supressors of the ∆radB phenotype (Haldenby 2007, Wardell 2013), Figure 

4.19 . 

 

RadA monomers polymerise onto ssDNA through a ‘ball and socket’ 

mechanism, where an invariant phenylalanine residue inserts into a 

hydrophobic socket of an adjacent monomer (Shin et al 2003). It is thought that 

RadB may activate RadA into a polymerisation-competent conformation by 

decreasing the flexibility of the N-terminal domain, thereby ‘locking’ RadA 

into an active state (Wardell 2013). The RadA-S101P mutation is located in the 

linker region between the core domain and the N-terminal domain of RadA. It 

is thought that this mutation locks the RadA-S101P monomer in a competent 

conformation for polymerisation. By contrast, the RadA-A196V mutation is 
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located in the monomer:monomer binding pocket in the core domain of RadA. 

This mutation increases the hydrophobicity of the binding pocket, resulting in 

stronger interactions between RadA monomers; as a consequence, RadA-

A196V does not require RadB for polymerisation (Haldenby 2007, Wardell 

2013). 

Combining deletions of hel308 and radB with these chromosomal alleles of 

radA that act as ∆radB suppressors may give insights into the mechanistic role 

of Hel308. In these strains, radB is deleted but homologous recombination 

occurs at near-wild type levels, since RadA is able to function ‘normally’ by 

itself. Utilising this genetic background may help determine how Hel308 

interacts with the recombination apparatus and answer the question of whether 

Hel308 interacts with RadB, RadA or both. Furthermore, this genetic 

background may help to address the hypothesis that RadB could have two roles 

in homologous recombination as described in Figure 4.18. 

4.6 Conclusion 
 
Hel308 is a helicase that has previously been proposed to act in homologous 

recombination. Through genetic analysis of hel308 deletions in combination 

with mutations in several different recombination proteins, an insight into the 

role of Hel308 in homologous recombination has been gained.  

 

Figure 4.19: ∆radB suppressors are radA-S101P and radA-A196V. (A) Wild-type RadA may 
not be in the correct conformation to form a nucleoprotein filament on ssDNA. RadB may be 
required for efficient polymerisation. (B) RadA-S101P may already be in the correct conformation 
for polymerisation, and not require RadB. S101P is indicated by yellow star. (C) RadA-A196V 
increases the hydrophobicity of the RadA binding pocket, which could result in stronger 
hydrophobic interactions between RadA monomers, negating the need for RadB. A196V indicated 
by yellow arc. RadA core domain in blue and N-terminal domain in green. Adapted from (Li et al 
2008, Wardell 2013) 
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Chapter 5: Genetic Analysis of hel308 
Point Mutants 

 

5.1 Background 
 
The phenotypic analysis of amino acid point mutations is a powerful tool to 

dissect the function of a protein (Sinha & Nussinov 2001).  

 

Biochemical analysis of point mutations within Hel308 has been carried out in 

a number of archaeal organisms. This is discussed in Chapter 1: Introduction, 

Section 1.7: Hel308, but mutations relevant to this study are discussed in 

further detail in the results sections of this chapter. However, relatively few 

point mutations in Hel308 have been studied using a genetic approach. 

Haloferax volcanii has available many genetic tools and is easily cultured, and 

therefore is an ideal organism to use for the genetic analysis of Hel308 point 

mutants. However, biochemical characterization of Haloferax volcanii Hel308 

point mutations is experimentally demanding as all biochemical assays will 

require adapting to 2.5 M NaCl conditions. 

 

The protein sequence of Hel308 from H. volcanii is well conserved with 

respect to other archaeal Hel308 helicases from Archaeoglobus fulgidus, 

Sulfolobus solfataricus, Pyrococcus furiosus and Methanothermobacter 

thermautotrophicus, Figure 5.1. Hel308 from A. fulgidus, S. solfataricus and P. 

furiosus have been included in this protein alignment as crystal structures of 

Hel308 are available from these species (Buttner et al 2007, Oyama et al 2009, 

Richards et al 2008). The crystal structures will give insights into possible 

effects that point mutations will have on Hel308 from H. volcanii. M. 

thermautotrophicus has been included in this alignment because several 

biochemical characterisations of Hel308 within this organism have already 

been reported (Woodman & Bolt 2011, Woodman et al 2007). Furthermore, 

any Hel308 point mutations giving interesting genetic phenotypes in H. 

volcanii could be biochemically characterised in this organism in the future. 
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As a consequence of a conserved protein sequence, the predicted structure of 

Hel308 from H. volcanii is also conserved with other archaeal Hel308 proteins 

such as Hel308 from A. fulgidus, Figure 5.2. 

 

 

 
Figure 5.2:  Structure of Hel308 from A. fulgidus and H. volcanii. The structure of Hel308 
from H. volcanii was predicted from the amino acid sequence using Phyre2 (Kelley et al 2015) 
and is similar to crystal structure of Hel308 from A. fulgidus  (in complex with DNA). 
Domains are indicated. 
 
The mutations generated during this study are found in domains 1, 2, the linker 

between domains 2-3, and domain 5. The details and rationale behind each 

mutation are described in the relevant results sections. 

5.2 Aims 
 
Phenotypic analysis of Hel308 point mutants will give insights into the role 

that Hel308 plays within the cell. The aims of this chapter are to: 

• Generate point mutants in the key motifs in domains 1, 2 and 5, as well 

as within the previously unstudied domain 2-3 linker region of Hel308. 

• Analyse the phenotypes of strains containing the Hel308 point mutants 

after treatment with DNA damaging agents such as UV and MMC, 

which lead to double strand breaks and interstrand crosslinks, 

respectively. 

• Analyse the growth rate of strains containing the Hel308 point mutants. 
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Domain 4                    

Domain 5                    Domain 5                    

Domain 2                    

Domain 1                    Domain 3                    

Domain 4                    

A. fulgidus                                             

DNA                    



Chapter 5: Genetic Analysis of hel308 Point Mutants 
 

 184 

• Analyse the recombination frequency and ratio of crossover vs. non-

crossover products formed by strains containing the Hel308 point 

mutants. 

 

5.3 Results  
 

5.3.1 K53R Walker A and D145N Walker B mutations 
 

The Walker A motif with the consensus sequence of GXXXXGKT/S (where X 

can be any residue) is the site of ATP binding in many proteins. Crystal 

structures reveal that Walker A motifs have a looped structure which wraps 

around nucleotides. Within this motif is are highly conserved lysine and 

threonine residues which bind to the γ-phosphate of the nucleotide 

(Ramakrishnan et al 2002). The Walker B motif has consensus sequence of 

DEAD/DEVH. The first aspartic acid residue of the consensus sequence 

coordinates Mg2+, which is required for ATP binding and the glutamate is 

essential for ATP hydrolysis (Caruthers & McKay 2002). In helicases, this 

ATPase motif is responsible for coupling of ATP hydrolysis and helicase 

activity. Mutations within these motifs abolish ATPase and helicase activity.  

 

A wealth of biochemical information is available for Walker A and Walker B 

motif mutations in motor proteins such as helicases. The biochemical effect of 

these mutations in archaeal Hel308 helicases has already been studied; in 

Sulfolobus solfataricus and Methanothermobacter thermautotrophicus it was 

shown that mutation of the conserved lysine residue of the Walker A motif 

resulted in helicase-defective proteins (Richards et al 2008, Woodman et al 

2011).  As mentioned previously, biochemical analysis of proteins expressed 

from halophilic organisms such as H. volcanii is problematic. Therefore a 

genetic analysis of Walker A and Walker B mutants was carried out. In order 

to analyse these mutations, the strains H1554 (hel308-K53R) and H1555 

(hel308-D145N) were generated containing Walker A and Walker B motif 

mutations respectively. Details of the position of these mutations and amino 

acid substitutions can be seen in Figure 5.3. 
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Figure 5.3: Location of K53 and D145 residues in the structure of Hel308. The structure of 
Hel308 from H. volcanii was predicted from the amino acid sequence using Phyre2 (Kelley et 
al 2015). (A) Predicted structure of Hel308, position of K53 is located in the RecA fold of 
domain 1, indicated with black sphere. (B) K53 is in the Walker A motif, typified by a looped 
structure. (C) Amino acid substitution of lysine with arginine, R group is shown in red. (D) 
Predicted structure of Hel308, position of D145 is located in the RecA fold of domain 1, 
indicated with black sphere. (E) D145 is in the Wlaker B motif, which is found in a loop 
structure stacked above the Walker A motif. (F) Amino acid substitution of aspartic acid with 
asparagine, R group is shown in red. Structure of of Hel308 from H. volcanii, domain 1 (blue), 
domain 2 (orange), domain 3 (purple), domain 4 (yellow) and domain 5 (red). 
 

In H1554 (hel308-K53R) the positively charged lysine (K) was mutated to 

arginine (R), in this mutation the positive charge of the side chain is 

maintained but the bulky side chain of arginine sterically hinders the binding of 

ATP (Hishida et al 1999).  In H1555 (hel308-D145N) the negatively charged 

aspartic acid (D) was mutated to asparagine (N) that has a polar uncharged side 

chain. This change in charge interferes with the coordination of Mg2+, which 

results in a loss of affinity for ATP. 
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Survival Following Treatment with DNA-damaging Agents 

 

Strains deleted for hel308 do not appear to have a growth defect after treatment 

with the ss/dsDNA break inducing agent UV but do have an inscreased 

sentisitvity to DNA crosslinking agents such as MMC (Adelman et al 2013, 

Guy & Bolt 2005, Takata et al 2013).  In order to study the effects of hel308 

Walker A and Walker B mutants on repair of DNA breaks and crosslinks, cells 

were treated with UV and MMC respectively, as described previously (Chapter 

4: Genetic chatacterisation of hel308). The survival fraction of H1554 (hel308-

K53R) and H1555 (hel308-D145N) was compared to that of H1392 (∆hel308) 

and H26 (hel308+), Figure 5.4. 

 

 
Figure 5.4: Survival frequency of hel308-K53R and hel308-D145N following treatment 
with DNA-damaging agents. (A) Survival following treatment with UV irradiation. Both 
H1554 (hel308-K53R) and H1555 (hel308-D145N) have a poor survival whereas the survival 
of H1392 (∆hel308) is comparable to wild type H26 (hel308+). (B) Survival following 
treatment with MMC. Both H1554 (hel308-K53R) and H1555 (hel308-D145N) show a survival 
fraction comparable to H1392 (∆hel308). Survival fraction is calculated relative to un-treated 
control. Each data point is generated as an average of at least 3 independent trials. Standard 
error is shown. Asterisk (*) indicates that the highest dose of UV (180 J/m2) or MMC (0.02 
µg/ml) is significantly different to H26 (wild type) with P < 0.05. P-value calculated from two-
tailed t-test in mutated strains compared to H26 (wild-type). 
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Unlike H1392 (∆hel308), H1554 (hel308-K53R) and H1555 (hel308-D145N) 

both have poor survival fractions after treatment with UV irradiation, no 

growth was seen after 90 -120 J/m2. Since Hel308 is not known to be involved 

in repairing DNA damage induced by UV, this phenotype could be due to these 

ATPase defective helicases persisting on damaged DNA and therefore 

interfering with repair of UV DNA damage. After treatment with MMC, 

H1554 (hel308-K53R) and H1555 (hel308-D145N) have a survival fraction 

significantly lower than that of wild type (P-values < 0.05, calculated from a 

two-tailed t-test). But not significantly different to H1392 (∆hel308) (P-values 

< 0.05, calculated from a two-tailed t-test). This is expected as Walker A and 

Walker B mutations are known to abolish the ATPase and helicase activity of 

helicases. 

 
Growth Rate  
 

In order to visually compare the growth rates, H1554 (hel308-K53R) and 

H1555 (hel308-D145N) were streaked onto complete media alongside H1392 

(∆hel308) and H26 (hel308+), Figure 5.5. 

 

 
Figure 5.5: Growth of hel308-K53R and hel308-D145N strains. No difference in single 
colony size can be observed between H1554 (hel308-K53R), H1555 (hel308-D145N), H1392 
(∆hel308) and H26 (hel308+). All plate images are to the same scale. 

 

The colony sizes of H1554 (hel308-K53R) and H1555 (hel308-D145N) were 

no different to H1392 (∆hel308) or H26 (hel308+). A limitation of using 

growth on solid media is that only large variations can be readily observed, 

strains with similar growth rates cannot be distinguished by this qualitative 

method. For these reasons, growth of these strains in liquid culture was 
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measured as described previously (Chapter 4: Genetic chatacterisation of 

hel308), Figure 5.6. 

 
Figure 5.6: Exponential growth rate of hel308-K53R and hel308-D145N strains. Growth 
was measured by A600. Generation time is indicated at the side of the strain name. H1554 
(hel308-K53R), H1555 (hel308-D145N) have a slower growth rate than H1392 (∆hel308). 
Graph plotted on a log2 scale. 3 repeats were carried out for each strain. Generation time 
calculated from linear growth phase. All strains and repeats were incubated on the same 48 
well plate and measured simultaneously using an Epoch 2 Microplate Spectrophotometer 
(BioTek). 

 
H1554 (hel308-K53R), H1555 (hel308-D145N) have a slower growth rate than 

H1392 (∆hel308).  These ATPase defective helicases could be persisting on the 

DNA and therefore interfering with DNA replication, DNA repair and 

transcription, this could account for the slower growth compared to H1392 

(∆hel308).  
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through the central cavity of the protein (Woodman & Bolt 2011) Figure 5.7A. 

Domain 2 of Hel038 binds and separates the strands of dsDNA via a prominent 

β-hairpin loop that melts two base pairs of the duplex DNA.  

Domain 2 makes several contacts with DNA; the backbone of the unwound 3' 

binds at motifs IVa and IVb and upon ATP binding, motif IV is thought to 

push DNA towards domain 1 as Hel308 translocates. Furthermore, a ratchet 

helix from domain 4 interacts with motif IVa in domain 2. It is proposed that 

the position of the ratchet helix is modulated by an ATP dependent movement 

in domain 2 which could directly alter the geometry of the single strand DNA 

binding site between domains 1 and 4 (Buttner et al 2007).  

Motif IV and the highly conserved motif IVa (HHAGL) in particular, is 

important in binding the 3' tail of unwound DNA passing through the central 

pore of Hel308 and helicase traslocation. Therefore, it is of interest to study 

residues in this area for this reason the strains H2396 (hel308-F316A), H2097 

(hel308-H317G) and H2078 (hel308-E330G) were constructed. In the A. 

fulgidus Hel308-DNA co-crystal, residues F300 and H301 (H316 and H317 in 

H. volcanii respectively) are positioned in the surface of the central pore of the 

helicase and next to the 3' tail of unwound DNA, Figure 5.7B. The hel308-

E330G mutation (H314 in A. fulgidus) is located in α- helix 14 between motifs 

IVa and IVb and faces away from the central pore of the helicase and towards 

the ‘back’ of the protein and domain 1, Figure 5.7B. A schematic of this region 

and these mutations can be seen in Figure 5.7C. 
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Figure 5.7: Hel308-DNA co-crystal structure from A. fulgidus. (A) Hel308-DNA co-crystal; 
DNA (grey), domain 1 (blue), domain 2 (orange), domain 3 (purple), domain 4 (yellow) and 
domain 5 (red). Single stranded DNA passes through the central pore of the helicase and 
interacts with domain 2. (B) A close up of domain 2, H301 (purple sphere) in motif Iva and 
F300 (black sphere) are positioned facing into the central pore of the helicase next to unwound 
3' DNA. E314 (yellow sphere) is located at the ‘back’ of domain 2 facing away from the 
central pore, equivalent H. volcanii residues are shown in brackets.  Domain 4 has been 
removed from this image for clarity. (C) Alignment of domain 2 from H. volcanii, A. fulgidus 
and M. thermautotrophicus, residues to be mutated are shown in red boxes and residue 
numbers above correspond to H. volcanii Hel308. 

 

In H2396 (hel308-F316A) the bulky hydrophobic phenylalanine (F) was 

mutated to the smaller hydrophobic amino acid alanine (A). The change in 

amino acid size could interfere with inter-domain and DNA interactions. In 
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to the small non-polar amino acid glycine (G). Amino acid 317 is in the 

conserved motif Iva which interacts with negativly charged DNA backbone, 

removal of the postiviely charged H could result in a loss or reduction of DNA 

binding. In H2078 (hel308-E330G) the negatively charged glutamic acid (E) 

was mutated to the small non-polar amino acid glycine (G), this change of 

charge could interfere with inter-domain and DNA interactions within domain 
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2. The amino acid substitutions and the position of these mutations in a Hel308 

predicted structure from H. volcanii are detailed in Figure 5.8. 

 
Figure 5.8: Location of F316, H317 and E330 residues in the structure of Hel308. The 
structure of Hel308 from H. volcanii was predicted from the amino acid sequence using Phyre2 
(Kelley et al 2015). (A) Predicted structure of Hel308, position of H316 is located adjacent to 
motif IVa in domain 2, indicated with black sphere. (B) H316 is angled towards the central 
pore of the helicase and ssDNA.(C) Amino acid substitution of phenylalanine with alanine, R 
group is shown in red. (D) Predicted structure of Hel308, H317 is motif IVa in domain 2, 
indicated with black sphere. (E) H317 is angled towards the central pore of the helicase and 
ssDNA. (F) Amino acid substitution of histidine with glycine, R group is shown in red. (G) 
Predicted structure of Hel308, position of H330 is located between motifs Iva and IVb in 
domain 2, indicated with black sphere. (B) H330 is angled towards the ‘back’ of the helicase 
and twards domain 1. (C) Amino acid substitution of glutamic acid with glycine, R group is 
shown in red. Domain 1 (blue), domain 2 (orange), domain 3 (purple), domain 4 (yellow) and 
domain 5 (red). 
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Survival Following Treatment with DNA-damaging Agents 
 

In order to study the effects of the hel308 domain 2 mutants, H2078 (hel308-

E330G), H2097 (hel308-H317G) and H2396 (hel308-F316A) on repair of 

DNA breaks and crosslinks, cells were treated with UV and MMC 

respectively, as described previously, Figure 5.9. 

 

 
Figure 5.9: Survival frequency of H2078 (hel308-E330G), H2097 (hel308-H317G) and 
H2396 (hel308-F316A) following treatment with DNA-damaging agents. (A) Survival 
following treatment with UV irradiation. H2078 (hel308-E330G) shows survival comparable 
to H1392 (∆hel308) and wild type H26 (hel308+). H2396 (hel308-F316A) shows an 
improvement in survival and H2097 (hel308-H317G) has a low survival fraction compared to 
H1392 (∆hel308) and wild type H26 (hel308+). (B) Survival following treatment with MMC. 
H2078 (hel308-E330G) and H2396 (hel308-F316A) have survival fractions similar to wild 
type H26 (hel308+) levels, whereas H2097 (hel308-H317G) has a survival fractions worse 
than that of H1392 (∆hel308). Survival fraction is calculated relative to un-treated control. 
Each data point is generated as an average of at least 3 independent trials. Standard error is 
shown. Asterisk (*) indicates that the highest dose of UV (180 J/m2) or MMC (0.02 µg/ml) is 
significantly different to H26 (wild type) with P < 0.05, ** indicates P < 0.01. P-value 
calculated from two-tailed t-test in mutated strains compared to H26 (wild-type). 
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function of Hel308. H2097 (hel308-H317G) has a significantly lower survival 

fraction in comparison with wild type (H26) after treatment with UV and 

MMC (P values of 0.0043 and 0.0322 respectively), indicating that this residue 

is essential in the functioning of Hel308.  

 
Growth Rate  
 

In order to visually compare the growth rates, H2078 (hel308-E330G), H2097 

(hel308-H317G) and H2396 (hel308-F316A) were streaked onto complete 

media alongside H1392 (∆hel308) and H26 (hel308+), Figure 5.10. 

 

 
Figure 5.10: Growth of hel308-E330G, hel308-H317G and hel308-F316A strains. No 
significant difference in single colony size can be observed between H2078 (hel308-E330G), 
H2097 (hel308-H317G) and H2396 (hel308-F316A), H1392 (∆hel308) and H26 (hel308+). All 
plate images are to the same scale. 

 

H2097 (hel308-H317G) and H2396 (hel308-F316A) have growth no different 

to H1392 (∆hel308) and wild type H26 (hel308+), where as H2078 (hel308-

E330G), are slightly smaller than H1392 (∆hel308) and wild type H26 

(hel308+). A limitation of using growth on solid media is that only large 

variations can be readily observed and so the growth rate of H2078 (hel308-

E330G), H2097 (hel308-H317G) and H2396 (hel308-F316A) was measured in 

liquid culture, Figure 5.11. 
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Figure 5.11: Exponential growth rate of hel308-E330G, hel308-H317G and hel308-F316A 
strains. Growth was measured by A600. Generation time is indicated at the side of the strain 
name. (A) H2078 (hel308-E330G) has a generation time similar to wild type H26 (hel308+). 
(B) H2097 (hel308-H317G) has a generation time slower than that of H1392 (∆hel308). (C) 
H2396 (hel308-F316A) has a generation time similar to wild type H26 (hel308+). Graph 
plotted on a log2 scale. 3 repeats were carried out for each strain. Generation time calculated 
from linear growth phase. All strains and repeats were incubated on the same 48 well plate and 
measured simultaneously using an Epoch 2 Microplate Spectrophotometer (BioTek). 

 

As discussed previously in Chapter 4: Genetic chatacterisation of hel308, the 

generation time of H26 (hel308+) and H1392 (∆hel308) is not consistent from 

experiment to experiment when measuring the growth using the Epoch 2 

Microplate Spectrophotometer (BioTek). However, the relationship between 

these strains within a single experiment is always consistent; i.e. that H1392 

(∆hel308) always has a generation time slower than H26 (hel308+). The 

generation times stated are not absolute. Therefore, in this study growth curves 

generated by this method are used to illustrate the differences in generation 

0 6 12 18 24 30 36 42 48
0.008

0.016

0.032

0.064

0.128

0.256

0.512

1.024

2.048

O
pt

ic
al

 D
en

si
ty

 (A
60

0)

Time (hours)

log2

H26 (hel308+)  
H1392 (∆hel308)  

1.30 hours
1.90 hours

H2078 (hel308-E330G)  1.38 hours

0 6 12 18 24 30 36 42 48
0.008

0.016

0.032

0.064

0.128

0.256

0.512

1.024

2.048

O
pt

ic
al

 D
en

si
ty

 (A
60

0)

Time (hours)

H26 (hel308+)  
H1392 (∆hel308)  

1.60 hours
1.97 hours

H2396 (hel308-F316A)  1.59 hours

log2

0 6 12 18 24 30 36 42 48
0.008

0.016

0.032

0.064

0.128

0.256

0.512

1.024

2.048

O
pt

ic
al

 D
en

si
ty

 (A
60

0)

Time (hours)

log2

H26 (hel308+)  
H1392 (∆hel308)  

2.08 hours
3.05 hours

H2097 (hel308-H317G)  3.36 hours

A H2078 (hel308-E330G)  B H2097 (hel308-H317G)  

C H2396 (hel308-F316A) 



 Chapter 5: Genetic Analysis of hel308 Point Mutants 
 

 195 

times between a set of strains in the same experiment rather than an exact 

determination of each generation time. 

 

H2078 (hel308-E330G) has a generation time comparable to wild type H26 

(hel308+) of 1.38 hours and 1.30 hours respectively. Similarly H2396 (hel308-

F316A) has a generation time comparable to wild type H26 (hel308+) of 1.59 

hours and 1.60 hours respectively. This indicates that these residues are either 

not essential to the function of Hel308 or that these mutations do not cause 

significant changes in the protein to affect the function of Hel308. By contrast, 

H2097 (hel308-H317G) has a generation time slower than that of H1392 

(∆hel308) of 3.36 hours and 3.05 hours respectively, indicating that this 

residue is essential to the function of Hel308. 
 
Recombination Frequency 

The improvement in growth and suvival after treatment can be seen in the 

H1844 (∆hel308 ∆radB) strain compared to the H1844 (∆hel308 ∆radB) (in 

Chapter 4: Genetic chatacterisation of hel308) suggests that Hel308 is 

implicated in homologous recombination. It is proposed that Hel308 could act 

as an anti-recombinase. Therefore it is of interest to analyse the recombination 

frequence of hel308 point mutants, Table 5.1 
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Table 5.1: Recombination frequencies of hel308-E330G, hel308-H317G and hel308-F316A 

strains. 

Strain H164 H2117 H2397 H2261 H2263 
hel308+ ∆hel308 hel308-

F316A 
hel308-
H317G 

hel308-
E330G 

Recombination 
Frequency (RF) 

4.94×10-5 

(+/- 3.01×10-5) 
3.23×10-5 

(+/- 1.17×10-5) 
1.53×10-4 

(+/- 2.98×10-2) 
 

2.04×10-4 
(+/- 1.24×10-4) 

 

1.53×10-4 
(+/- 1.28×10-4) 

 
Transformation 
Efficiency (TE) 

1.07×10-5 
(+/- 3.25×10-6) 

3.00×10-5 
(+/- 0.00) 

1.43×10-4 
(+/- 1.24×10-4) 

 

9.75×10-6 
(+/- 1.86×10-6) 

 

8.02×10-6 
(+/- 1.21×10-6) 

 
Relative 
recombination 
frequency 
(normalised by TE) 

4.62×100 1.08×100 4.77×10-2 
 

2.09×10-1 
 

1.91×10-1 
 

1× 0.23× 103.27× 4.53× 4.14× 

Crossover fraction 13.49% 
(126) 

8.75% 
(120) 

0.00% 
(120) 

17.5% 
(80) 

11.25% 
(160) 

Non-crossover 
fraction 

86.51% 
(126) 

91.25% 
(120) 

100.00% 
(120) 

82.50% 
(80) 

88.75% 
(160) 

Values in bold indicate the amount of recombination, crossover or non-crossover events 
compared to wild-type H164 (hel308+). Values are generated as an average of at least 3 
independent trials, +/- standard error is shown in brackets. Cells are shaded blue to indicate 
recombination defect and red to indicate hyper-recombination. Fraction of crossover and non-
crossover events represented as a percentage, cells are shaded where values differ significantly 
from the wild type (P =0.05), blue indicates a decrease, red indicates an increase. Number of 
colonies assayed for crossover and non-crossover is indicated in brackets underneeth the 
percentages. 
 
H2397 (hel308-F316A) has an extremely hyper-recombinogenic phenotype 

with recombination levels 103.27× that of wild type H164 (hel308+). No 

crossover recombination events were observed for this strain and non-

crossover events were significantly higher than wild type with two degrees of 

freedom with a chi-squared test). Both H2261 (hel308-H317G) and H2263 

(hel308-E330G) show recombination levels around four times that of wild 

type, with recombination levels of 4.53× and 4.14× respectively. These results 

suggest that Hel308 and in particular domain 2 plays a significant role in the 

regulation of homologous recombination. 

5.3.3 Domain 2-3 linker Mutations D420A and E422G 
 

Domain 3 contains a winged helix (WH), which are commonly seen in nucleic 

acid binding proteins. Extensive DNA interactions occur across domain 3 and 

this domain is important for inter-domain communication during helicase 

unwinding. This WH domain may help maintain the structure of the enclosed 

Hel308 ring around ssDNA (Woodman & Bolt 2011). It is possible that 
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Hel308 may undergo some conformational changes during helicase unwinding 

and loading onto ssDNA. The conserved extended linker region that connects 

domains 2 and 3 could act as a hinge that allows communication between the 

RecA domains 1 and 2 and the ratchet in domain 4 (Richards et al 2008). 

 

Mutations in this region could have profound effects on the movement and 

conformation of domains 1-4 relative to each other and therefore on helicase 

function as a whole. To study the effects of disruptions in this region the strains 

H2077 (hel308-D420A) and H2076 (hel308-E422G) were constructed, the 

mutations in both of these strains are found in the centre of the 2-3 linker 

region. The amino acid substitutions and the position of these mutations are 

detailed in Figure 5.12. 

 
Figure 5.12: Location of D420 and E422 residues in the structure of Hel308. The structure 
of Hel308 from H. volcanii was predicted from the amino acid sequence using Phyre2 (Kelley 
et al 2015). (A) Predicted structure of Hel308, position of D420 is located in the centre of the 
domain 2-3 linker region, indicated with black sphere. (B) The position of D420 seen from 
‘underneath’ Hel308. (C) Amino acid substitution of aspartic acid with alanine, R group is 
shown in red. (D) Predicted structure of Hel308, position of E422 is located in the centre of the 
domain 2-3 linker region, indicated with black sphere. (E) The position of E422 seen from 
‘underneath’ Hel308. (F) Amino acid substitution of glutamic acid with glycine, R group is 
shown in red. Domain 1 (blue), domain 2 (orange), domain 3 (purple), domain 4 (yellow) and 
domain 5 (red). 
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 In H2077 (hel308-D420A) the negatively charged aspartic acid (D) was 

substituted with the smaller hydrophobic amino acid alanine (A) and in H2076 

(hel308-E422G) the negatively charged glutamic acid (E) was substituted with 

the small non-polar amino acid glycine (G). The loss of negative charge in this 

region could disturb inter-domain interactions. Furthermore, the substitution of 

D and E to smaller amino acids could alter the conformation of this linker 

region. 

 
Survival Following Treatment with DNA-damaging Agents 
 

In order to study the effects of the hel308 domain 2/3 mutants, H2076 (hel308-

E422G) and H2077 (hel308-D420A) on repair of DNA breaks and crosslinks, 

cells were treated with UV and MMC respectively, as described previously, 

Figure 5.13. 

 
Figure 5.13: Survival frequency of hel308-E422G and hel308-D420A following treatment 
with DNA-damaging agents. (A) Survival following treatment with UV irradiation. No 
difference in survival of either strain compared to H1392 (∆hel308) and H26 (hel308+). (B) 
Survival following treatment with MMC. No difference in survival of either strain compared to 
H26 (hel308+). Survival fraction is calculated relative to un-treated control. Each data point is 
generated as an average of at least 3 independent trials. Standard error is shown. 

No significant difference in survival fractions was observed for H2076 

(hel308-E422G) and H2077 (hel308-D420A) after treatment with UV 

irradiation or MMC compared to H26 (hel308+)  (P-values > 0.05, calculated 
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from a two-tailed t-tests). Indicating that these residues are not essential to the 

function of Hel308 or that these mutations do not cause significant changes in 

the protein to affect the function of Hel308. 

 
Growth Rate  
 

In order to visually compare the growth rates, H2076 (hel308-E422G) and 

H2077 (hel308-D420A) were streaked onto complete media alongside H1392 

(∆hel308) and H26 (hel308+), Figure 5.14. 

 

 
Figure 5.14: Growth of hel308-E422G and hel308-D420A strains. No significant difference 
in single colony size can be observed between H2076 (hel308-E422G), H2077 (hel308-
D420A), H1392 (∆hel308) and H26 (hel308+). All plate images are to the same scale. 

 

H2076 (hel308-E422G) and H2077 (hel308-D420A) have growth no different 

to H1392 (∆hel308) and wild type H26 (hel308+). A limitation of using 

growth on solid media is that only large variations can be readily observed and 

so the growth rates of these hel308 mutants was measured in liquid culture, 

Figure 5.15. 
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Figure 5.15: Exponential growth rate of hel308-E422G and hel308-D420A strains. Growth 
was measured by A600. Generation time is indicated at the side of the strain name. (A) H2076 
(hel308-E422G) has a generation time similar to wild type H26 (hel308+). (B) H2077 (hel308-
D420A) has a generation time similar to wild type H26 (hel308+). Graph plotted on a log2 
scale. 3 repeats were carried out for each strain. Generation time calculated from linear growth 
phase. All strains and repeats were incubated on the same 48 well plate and measured 
simultaneously using an Epoch 2 Microplate Spectrophotometer (BioTek). 

 

H2076 (hel308-E422G) has growth similar to wild type H26 (hel308+) with 

generation times of 1.35 hours and 1.30 hours respectively. Likewise, the 

generation time of H2077 (hel308-D420A) is comparable to wild type of 2.18 

hours and 2.08 hours respectively. Indicating that these residues are not 

essential to the function of Hel308 or that these mutations do not cause 

significant changes in the protein to affect the function of Hel308. 

 
Recombination Frequency 

Hel308 is implicated in homologous recombination and is proposed that 

Hel308 could even act as an anti-recombinase. Therefore it is of interest to 

analyse the recombination frequence of hel308 point mutants, Table 5.2. 
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Table 5.2: Recombination frequencies of hel308-E422G and hel308-D420A strains. 

Strain H164 H2117 H2259 H2257 
hel308+ ∆hel308 hel308- 

D420A 
hel308- 
E422G 

Recombination 
Frequency (RF) 

4.94×10-5 

(+/- 3.01×10-5) 
3.23×10-5 

(+/- 1.17×10-5) 
4.95×10-5 

(+/- 4.26×10-5) 
 

6.48×10-5 
(+/- 2.73×10-5) 

 
Transformation 
Efficiency (TE) 

1.07×10-5 
(+/- 3.25×10-6) 

3.00×10-5 
(+/- 0.00) 

1.93×10-5 
(+/- 1.28×10-5) 

 

6.25×10-6 
(+/- 1.12×10-6) 

 
Relative 
recombination 
frequency 
(normalised by TE) 

4.62×100 1.08×100 2.57×100 
 

1.04×10-1 
 

1× 0.23× 0.55× 2.24× 

Crossover fraction 13.49% 
(126) 

8.75% 
(120) 

8.70% 
(115) 

8.75% 
(160) 

Non-crossover 
fraction 

86.51% 
(126) 

91.25% 
(120) 

91.30% 
(115) 

91.25% 
(160) 

Values in bold indicate the amount of recombination, crossover or non-crossover events 
compared to wild-type H164 (hel308+). Values are generated as an average of at least 3 
independent trials, +/- standard error is shown in brackets. Cells are shaded blue to indicate 
recombination defect and red to indicate hyper-recombination. Fraction of crossover and non-
crossover events represented as a percentage, cells are shaded where values differ significantly 
from the wild type (P =0.05), blue indicates a decrease, red indicates an increase. Number of 
colonies assayed for crossover and non-crossover is indicated in brackets underneeth the 
percentages. 
 
H2259 (hel308- D420A) displays a reduced recombination frequency of 0.55× 

that of wild type H164 (hel308+). H2257 (hel308- E422G) has a moderate 

hyper-recombinogenic phenotype with recombination frequency 2.24× that of 

wild type.  For both mutations the crossover and non-crossover fractions are 

not significantly different to wildtype (with two degrees of freedom with a chi-

squared test). 

5.3.4 Domain 5 mutation R743A 
 

Domain 5 is an auto-inhibitory domain that couples ATP hydrolysis to DNA 

unwinding. After emerging from the central pore of Hel308 the 3' tail of 

unwound DNA bends around domain 4 and binds a helix-link-helix (HLH) 

structure in domain 5 via the phosphate-sugar backbone (Buttner et al 2007). 

This interaction could be resposible for Hel308 recognising replication forks. 

Branched DNA structures are the prefered substrates for Hel308 in vitro 

(Fujikane et al 2005, Guy & Bolt 2005). 
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Archaeal Hel308 helicases contain a highly conserved triplet of arginine 

residues, RXRAR (where X can be any residue). In the A. fulgidus Hel308-

DNA co-crystal the central arginine of this motif (Arg644) contacts the 

phosphate backbone of the ssDNA emerging from the central pore of the 

helicase. The other two arginine residues (Arg642 and Arg646) form contacts 

between domain V and the helicase ratchet domain IV (Woodman et al 2007). 

 

In M. thermautotrophicus Hel308, the mutation of the first arginine in the 

RXRAR motif to an alanine (R647A) resulted in increased ATPase activity, 

implying that this residue possibly acts as part of a braking mechanism to stop 

ATP hyrolysis until DNA is engaged. Additionally, R647A and mutation of the 

final arginine to an alanine (R651A) abolishes helicase actvity in vitro. A 

mutation of the central arginine to an alanine (R649A) resulted in DNA 

binding defects and reduced DNA-stimulated ATP hydrolysis (Woodman et al 

2011, Woodman et al 2007).  

 

However, in S. solfataricus the mutation of the central arginine to an alanine 

(R662A) or the deletion of domain 5 altogether resulted in ssDNA binding 

affinities comparable with or only slightly weaker than the wild-type enzyme, 

but an increase of helicase activity (Richards et al 2008).  

 

Mutations in the RXRAR motif have profound effects on DNA binding, 

ATPase and helicase activity of Hel308. To study the genetic effects of a 

mutation in this region, the strain H2398 (hel308-R743A) was constructed in H. 

volcanii. In this strain the central arginine (R) in the RXRAR motif was 

substituded to an alanine (A), this mutation results in a loss of positive charge 

which will interfere with the binding of DNA. The amino acid substitution and 

the position of this mutation are detailed in Figure 5.16. 
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Figure 5.16: Location of R743 in the structure of Hel308. The structure of Hel308 from H. 
volcanii was predicted from the amino acid sequence using Phyre2 (Kelley et al 2015). (A) 
Predicted structure of Hel308, R743 is located at the base of domain 5 in the region where the 
3' tail of unwound DNA emerges from the central pore of Hel308, indicated with black sphere. 
(B) View of R743 from ‘underneath’ from the angle at which ssDNA emerges from Hel308. 
(C) Amino acid substitution of arginine with alanine, R group is shown in red. Domain 1 
(blue), domain 2 (orange), domain 3 (purple), domain 4 (yellow) and domain 5 (red). 
 
Survival Following Treatment with DNA-damaging Agents 
 

In order to study the effects of a hel308 domain 5 mutant, H2398 (hel308-

R743A) on repair of DNA breaks and crosslinks, cells were treated with UV 

and MMC respectively, as described previously, Figure 5.17. 

 
Figure 5.17: Survival frequency of hel308-R743A following treatment with DNA-
damaging agents. (A) Survival following treatment with UV irradiation. No difference in 
survival of H2398 (hel308-R743A) compared to H1392 (∆hel308) and H26 (hel308+). (B) 
Survival following treatment with MMC. No difference in survival of H2398 (hel308-R743A) 
compared to H26 (hel308+). Survival fraction is calculated relative to un-treated control. Each 
data point is generated as an average of at least 3 independent trials. Standard error is shown. 
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No significant difference in survival fraction was observed for H2398 (hel308-

R743A) after treatment with UV irradiation or MMC compared to H26 

(hel308+) (P-values > 0.05, calculated from a two-tailed t-tests). Indicating 

that these residues are not essential to the function of Hel308 or that these 

mutations do not cause significant changes in the protein to affect the function 

of Hel308. 
 

Growth Rate  
 

In order to visually compare the growth rates, H2398 (hel308-R743A) was 

streaked onto complete media alongside H1392 (∆hel308) and H26 (hel308+), 

Figure 5.18. 

 
Figure 5.18: Growth of a hel308-R743A strain. No significant difference in single colony size 
can be observed between of H2398 (hel308-R743A), H1392 (∆hel308) and H26 (hel308+). All 
plate images are to the same scale. 

 

H2398 (hel308-R743A) has growth no different to H1392 (∆hel308) and wild 

type H26 (hel308+). A limitation of using growth on solid media is that only 

large variations can be readily observed and so the growth rates of these hel308 

mutants was measured in liquid culture, Figure 5.19. 
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Figure 5.19: Exponential growth rate of a hel308-R743A strain. Growth was measured by 
A600. Generation time is indicated at the side of the strain name. H2398 (hel308-R743A) has a 
generation time similar to wild type H26 (hel308+). Graph plotted on a log2 scale. 3 repeats 
were carried out for each strain. Generation time calculated from linear growth phase. All 
strains and repeats were incubated on the same 48 well plate and measured simultaneously 
using an Epoch 2 Microplate Spectrophotometer (BioTek). 

 

H2398 (hel308-R743A) has growth similar to wild type H26 (hel308+) with 

generation times of 1.53 hours and 1.60 hours respectively. Indicating that this 

residue is not essential to the function of Hel308 or that the mutation does not 

cause significant changes in the protein to affect the function of Hel308. 

 
Recombination Frequency 

Hel308 is implicated in homologous recombination and is proposed that 

Hel308 could even act as an anti-recombinase. Therefore it is of interest to 

analyse the recombination frequence of hel308 point mutants, Table 5.3. 
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Table 5.3: Recombination frequency of a hel308-R743A strain. 

Strain H164 H2117 H2398 
hel308+ ∆hel308 hel308- 

R743A 
Recombination 
Frequency (RF) 

4.94×10-5 

(+/- 3.01×10-5) 
3.23×10-5 

(+/- 1.17×10-5) 
3.26×10-1 

(+/- 2.06×10-1) 
 

Transformation 
Efficiency (TE) 

1.07×10-5 
(+/- 3.25×10-6) 

3.00×10-5 
(+/- 0.00) 

1.06×10-3 
(+/- 8.50×10-4) 

 
Relative 
recombination 
frequency 
(normalised by TE) 

4.62×100 1.08×100 3.08×10-2 
 

1× 0.23× 66.64× 

Crossover fraction 13.49% 
(126) 

8.75% 
(120) 

0.00% 
(120) 

Non-crossover 
fraction 

86.51% 
(126) 

91.25% 
(120) 

100.00% 
(120) 

Values in bold indicate the amount of recombination, crossover or non-crossover events 
compared to wild-type H164 (hel308+). Values are generated as an average of at least 3 
independent trials, +/- standard error is shown in brackets. Cells are shaded blue to indicate 
recombination defect and red to indicate hyper-recombination. Fraction of crossover and non-
crossover events represented as a percentage, cells are shaded where values differ significantly 
from the wild type (P =0.05), blue indicates a decrease, red indicates an increase. Number of 
colonies assayed for crossover and non-crossover is indicated in brackets underneeth the 
percentages. 
 
H2398 (hel308-R743A) has an extremely hyper-recombinogenic phenotype 

with recombination levels 66.64× that of wild type H164 (hel308+). No 

crossover recombination events were observed for this strain and non-

crossover events were significantly higher than wild type with two degrees of 

freedom with a chi-squared test. This result suggests that Hel308 and in 

particular domain 5 plays a significant role in the regulation of homologous 

recombination. 

 

5.3.5 H1391 (∆hel308) and H1392 (∆hel308) Comparison  
 

In this chapter the ∆hel308 strain H1392 was used as a control, whereas in 

Chapter 4: Genetic chatacterisation of hel308, the ∆hel308 strain used was 

H1391. H1391 and H1392 are two different clones from the same pop-out of 

pTA1276 (∆hel308 pyrE2+) from hel308 locus in the parental strain H26. To 

ensure that these strains were phenotypically similar, the survival following 

treatment with DNA damaging agents and growth rates were compared, Figure 

5.20. 
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In all assays shown, H1391 (∆hel308) and H1392 (∆hel308) are phenotypically 

near-identical. No significant difference in survival frequencies following UV 

irradiation and MMC are observed (P-values > 0.05, calculated from a two-
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Figure 5.20: Survival frequency following treatment with DNA-damaging agents and 
growth rates of H1391 (∆hel308) and H1392 (∆hel308). (A) Survival following treatment 
with UV irradiation. No difference in survival between H1391 (∆hel308) and H1392 
(∆hel308). Survival fraction is calculated relative to un-treated control. Each data point is 
generated as an average of at least 3 independent trials. Standard error is shown. (B) Survival 
following treatment with MMC. No difference in survival between H1391 (∆hel308) and 
H1392 (∆hel308). (C) No difference in colony sizes. Both images are to the same scale. (D) 
Growth was measured by A600. Generation time is indicated at the side of the strain name. 
H1391 (∆hel308) and H1392 (∆hel308) have similar generation times. Graph plotted on a log2 
scale. 3 repeats were carried out for each strain. Generation time calculated from linear 
growth phase. All strains and repeats were incubated on the same 48 well plate and measured 
simultaneously using an Epoch 2 Microplate Spectrophotometer (BioTek). 
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tailed t-tests) and both strains have near identical generation times of 1.68 

hours and 1.69 hours for H1391 and H1392 respectively. This demonstrates 

that strains in this chapter that are derived from H1392 (∆hel308) and strains 

derived from H1391 (∆hel308) in Chapter 4: Genetic chatacterisation of 

hel308, can be directly compared. 
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5.4 Discussion  

A summary of the DNA damage, growth and recombination phenotypes of all 

Hel308 point mutations covered in this chapter is given in Table 5.4. ∆hel308 

is included for reference. 

Table 5.4: Summary of phenotypes of Hel308 point mutants 

Mutation UV MMC Generation 
time 

Recombination 
frequency 

CO NCO 

∆hel308 WT ê WT 
 

ê WT 
 

ê WT 
 

ê WT 
 

WT 
 

K53R 
(1) 

ê WT 
 

ê WT 
(=∆hel308) 

ê WT 
(=∆hel308) 

- - - 

D145N 
(1) 

ê WT 
 

ê WT 
(=∆hel308) 

ê WT 
(=∆hel308) 

- - - 

F316A 
(2) 

WT WT WT ééé WT êê WT 
(0%) 

éé WT 
(100%) 

H317G 
(2) 

ê WT 
 

ê ∆hel308 
 

ê ∆hel308 
 

é WT WT 
 

WT 
 

E330G 
(2) 

WT WT WT é WT WT 
 

WT 
 

D420A 
(2-3 linker) 

WT WT WT ê WT 
 

 WT 
 

WT 
 

E422G 
(2-3 linker) 

WT WT WT é WT ê WT 
 

WT 
 

R743A 
(5) 

WT WT WT ééé WT 
 

êê WT 
(0%) 

ééWT 
(100%) 

Cells are shaded blue to indicate a defect in survival following DNA damage, generation time 
or recombination. Defects equivalent to or more severe than ∆hel308 strains are indicated. 
Cells shaded red indicate hyper-recombination. Domain location of each mutant is indicated in 
brackets. 

 
 
K53R and D145N 
 
The K53R and D145N mutations lie in the Walker A and Walker B motifs that 

are responsible for the binding and hydrolysis of ATP, respectively. Mutations 

in these motifs result in helicase-defective proteins, and this study found that 

survival rates after treatment with the interstrand crosslinking agent MMC and 

generation times are similar to those of a ∆hel308 strain. These are expected 

phenotypes for these mutations and have been documented for Hel308 proteins 

from Sulfolobus solfataricus and Methanothermobacter thermautotrophicus 

(Richards et al 2008, Woodman et al 2011). However, an interesting result was 

the reduction in survival following treatment with UV irradiation, since 
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∆hel308 does not share this phenotype and Hel308 is not known to be involved 

in the repair of UV-induced lesions such as double-strand DNA breaks.  

 

Initial DNA binding of Hel308 is ATP-independent and Hel308 is able to melt 

2 bp of DNA in the absence of ATP but then requires ATP for further 

translocation (Buttner et al 2007, Woodman et al 2007). Therefore, the UV 

sensitivity phenotype could be due to the Walker A and B mutants being able 

to bind the DNA in an ATP-independent fashion, and then requiring the 

binding and hydrolysis of ATP to translocate or release from DNA. These 

mutants, unable to act as an ATPase, may become ‘locked’ onto the ssDNA at 

sites of double strand breaks (DSBs) and interfere with DSB repair, thus 

resulting in a reduced survival fraction.  

 

Due to time constraints, recombination assays were not performed with these 

mutants. However, it would be of interest to measure the levels of 

recombination in these strains since other helicase-defective Hel308 mutations 

such as ∆hel308 and hel308- H317G display altered recombination levels. 
 
F316A 
 
The F316A mutation resides in domain 2 and faces towards the inner channel 

of Hel308, through which the 3' tail of unwound DNA passes (Woodman & 

Bolt 2011). This mutation had no effect on the generation time or the survival 

rate of the mutant strain following treatment with UV and MMC.  

 

However, a striking increase of recombination frequency of around 100 times 

that of a wild type strain was observed. This suggests that this residue is 

involved in the downregulation of recombination and upon mutation this 

regulatory role of Hel308 has been impaired.  The mutation of phenylalanine 

(F) to alanine (A) results in a change from a large hydrophobic residue to a 

smaller residue that less hydrophobic. Phenylalanine can interact with other 

aromatic side chains, and could possibly play a role in inter-domain 

interactions and substrate binding within Hel308 (Betts & Russell 2003). 
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Mutation to alanine may have perturbed key interactions within Hel308 that 

allow for correct function in the regulation of homologous recombination.  

 

A second striking result is that the entirety of recombination events assayed in 

this strain result in only non-crossover (NCO) products (where genetic 

exchange has not occurred). This suggests that in this strain, homologous 

recombination is carried out only by the synthesis dependent strand-annealing 

(SDSA) pathway, which results only in non-crossover products, pink box 

Figure 5.21 (San Filippo et al 2008). If homologous recombination were to 

follow other pathways such as double strand break repair (DSBR), where 

crossovers account for 50% of the outcomes, the proportion of crossover 

products would be higher. During the initiation of SDSA, the D-loop that is 

generated during synapsis and extended by DNA polymerases can be reversed 

by the action of RecQ helicases such as Srs2 in yeast and RecQ5, BLM and 

FANCJ in mammals (Bugreev et al 2007, Hu et al 2007, Ira et al 2003, 

Sommers et al 2009). Therefore, RecQ helicases are known to promote SDSA 

and are regarded as anti-recombinases. The recombination data generated from 

this mutation suggests that not only can Hel308 regulate the level of 

recombination, but also plays a role in which recombination pathway is used. 
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Figure 5.21: Homologous recombination pathways. A schematic of homologous 
recombination using the repair of double strand breaks as an example. Recombination occurs 
in three stages: pre-synapsis, synapsis and post-synapsis. Synthesis dependent strand annealing 
(SDSA) results in only non-crossover products (pink box) whereas double strand break repair 
(DSBR) results in both crossover and non-crossover products. Yellow spheres indicate 
recombinases, dashed lines indicate newly synthesised DNA and orange arrowheads indicate 
cleavage events. SDSA results  

 
H317G 
 
The H317G mutation also resides in domain 2 and faces towards the inner 

channel of Hel308, through which the 3' tail of unwound DNA passess 

(Woodman & Bolt 2011). H317 is the first histidine in the highly conserved 

IVa motif (HHAGL), which interacts with the negativly-charged DNA 

backbone (Buttner et al 2007). This mutation results in a defect in survival 

following treatment with UV and MMC, as well as a growth defect that is 

slightly worse than that seen with a ∆hel308 strain. These results suggest that 

this residue is essential for the correct DNA binding of Hel308 and its mutation 

has led to a loss in Hel308 function. An explanation for the growth defect and 

the survival following treatment with DNA damaging agents being worse than 
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a ∆hel308 strain could be that this mutation is causing Hel308 to persist on the 

DNA substrate and thereby block other repair pathways. 

 

In this strain, recombination levels are elevated to around 4.5 times that of 

wildtype cells. This suggests that the usual activity of Hel308 is to limit the 

level of homologous recombination within the cell, and that DNA contacts 

made by the IVa motif is important for this activity. 

 
E330G 
 
In A. fulgidus, the equivalent residue to E330 is located in α-helix between the 

DNA binding motifs IVa and IVb (Buttner et al 2007). This residue faces away 

from the central pore of the helicase and towards the ‘back’ of the protein. The 

E330G mutation has no effect on growth or the survival rate of the strain 

following treatment with UV and MMC. This mutant exhibited an increase in 

recombination levels to around 4.1 times that of a wild type strain. Glutamic 

acid (E) is negatively charged and more rigid than glycine (G), which is small 

and non-polar (Betts & Russell 2003). The change in charge could have 

interfered with inter-domain interactions within Hel308. Furthermore, glycine 

is a small amino acid and so could have introduced conformational flexibility 

within the domain, leading to the increased recombination frequency of the 

strain.  

 
D420A 
 
The D420A mutation is found in the extended linker region that connects 

domains 2 and 3, and is thought to act as a hinge to allow movement of the 

domains 1-4 within Hel308 (Buttner et al 2007, Richards et al 2008). This 

mutation has no effect on growth or the survival rate of the strain following 

treatment with UV and MMC. However, a reduction in recombination frequecy 

was seen to around 50% of that observed in wild type strains. Aspartic acid (D) 

is a negatively charged amino acid that is able to form salt bridges with other 

amino acids (Betts & Russell 2003). As well as a loss of charge, the mutation 

of aspartic acid to the small amino acid alanine (A) could cause a change in the 
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conformation of the linker region, which in turn could disrupt domain 

interactions in Hel308. This mutation suggests that the correct conformation of 

Hel308 is necessary for the proper regulation of recombination. 
 
E422G  
 

The E422G mutation is also found in the domain 2-3 linker region of Hel308. 

Again, this mutation has no effect on growth or the survival rate of the strain 

following treatment with UV and MMC, but an effect was seen on the level of 

recombination. This mutation stimulated an increase in recombination to 

around 2 times that found in wild type strains. The mutation from a glutamic 

acid (E) to glycine (G) would potentially increase the flexibility of this linker 

region and therefore Hel308 as a whole, since glycine has the smallest R group 

of all the amino acids consisting of only a hydrogen atom. The added 

flexibility in this region appears to be promoting recombination, again 

suggesting that the conformation of Hel308 is important in the regulation of 

homologous recombination. 
 
R743A 
 
Mutations within domain 5 and in particular the RXRAR motif are well 

documented to interfere with the ATPase and helicase activity of Hel308 

(Richards et al 2008, Woodman et al 2007). However the mutation R743A, 

which is located in the central arginine of the RXRAR motif, has no effect on 

growth or the survival rate of the strain following treatment with UV and 

MMC. This is surpising as in M. thermautotrophicus, mutation of the central 

arginine within the RXRAR motif to an alanine resulted in DNA binding 

defects and reduced DNA-stimulated ATP hydrolysis (Woodman et al 2007).  

Based on this observation, a defect in helicase ability would be expected in the 

Haloferax volcanii Hel308-R743A mutant, but the MMC and growth 

phenotypes suggest otherwise. Perhaps, the effect of this mutation is more 

similar to results seen in S. solfataricus, where the mutation of the central 

arginine to an alanine resulted in ssDNA binding affinities comparable to the 

wild-type enzyme, as well as an increase in helicase activity (Richards et al 
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2008). A similar increase in helicase activity of the Haloferax volcanii enzyme 

could account for the remarkable increase in recombination frequency to 

around 67 times that of a wild type strain. Similar to the F316A mutation, the 

dramatic increase in recombination levels is partnered with only non-crossover 

(NCO) products being detected. As with the F316A mutation, this could 

suggest that the R743A mutation is leading to preferential use of the SDSA 

pathway, pink box Figure 5.21, again suggesting that not only is Hel308 

involved in regulating the levels of homologous recombination in the cell but 

also in which pathway is used. 

 
Summary 
 
From this study, three residues have been shown to be essential for the function 

of Hel308 as a helicase. These are K53, D145 and H317, which are located in 

the Walker A, Walker B and IVa motifs respectively; mutations of these 

residues lead to DNA damage and growth phenotypes comparable to those of a 

∆hel308 strain. 

 

The most striking observations in this study are the dramatic increase in 

recombination levels from mutations in residues F316 and R743. The increased 

recombination exclusively results in non-crossover products, suggesting that 

excess recombination is being routed down the SDSA pathway only. These 

observations suggest that not only can Hel308 modulate the levels of 

recombination within the cell, but has some control over which pathway of 

homologous recombination is used. 

 

It is notable that mutations that showed no change in the growth rate or 

response to DNA damaging agents (F316A, E330G, D420A, E422G and 

R743A) showed perturbations in the levels of recombination. This is an 

unexpected observation and suggests that Hel308 could be playing two roles in 

the cell. The first role of Hel308 is as a helicase that unwinds replication fork-

like structures at sites of DNA damage. Hel308 is able to unwind lagging 

strand-like structures from replication fork substrates in vitro (Guy & Bolt 

2005). Hel308 also co-localises at stalled replication forks and interacts with 
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replication fork proteins such as RPA, FANCD2 and Rad51 (Tafel et al 2011). 

This role is largely unaffected by the mutational changes to Hel308 made in 

this study, since growth and survival after treatment with DNA damaging 

agents are at wild type levels, and suggests that the helicase activity of Hel308 

is robust. The second role of Hel308 is specific to the regulation of 

homologous recombination and this role is dependent on the correct 

conformation of the protein. Mutations that potentially change the structure of 

Hel308 resulted in distinct changes in the levels of homologous recombination. 

 

5.5 Future Perspectives 
 
Further point mutants could be made that would aid in fully understanding the 

function of Hel308 in the cell.  

 

Due to the striking increase in recombination upon mutation of the central 

arginine residue of the RXRAR motif (R743A), it would be of interest to 

mutate the other key arginine residues within this motif (for example, R745A 

and R747A). The genetic analysis of these point mutants would complement 

the biochemical data from S. solfataricus and M. thermautotrophicus, together 

giving a robust insight into the ATPase and helicase functions of Hel308. 

Again, due to the striking recombination phenotype seen with the F316A 

mutation, it would be interesting to generate further mutations in this region of 

Hel308, which would pinpoint the specific region of domain 2 that is involved 

in the regulation of homologous recombination. 

 

Due to time constraints, it was not possible to generate point mutants in 

domain 4. Mutations in this domain would give insight into the function of the 

winged helix (WH) of Hel308. The WH domain in Hel308 is non-canonical 

and in M. thermautotrophicus, mutagenesis of the conserved aromatic residues 

in the WH domain have a profound effect on helicase unwinding; interestingly, 

mutations in the recognition helix have little effect (Woodman & Bolt 2011). It 

would be of interest to carry out genetic analysis of corresponding mutations in 

Hel308 from H. volcanii (for example, E494G and Q497G). Furthermore, 

biochemical analysis such as ATPase and helicase unwinding assays in M. 
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thermautotrophicus using mutations in Hel308 that are equivalent to those 

generated during this study may give further insights into the precise 

mechanistic action of Hel308. 

 

For strains that display significant increases or decreases in levels of 

recombination, it would be interesting to couple these mutations with a radB 

deletion. In H. volcanii, a low level of recombination still occurs within radB 

deleted strains, at approximately 5% of wild-type levels (Haldenby 2007). 

Therefore, introducing Hel308 point mutations in this background could 

indicate whether Hel308 is interacting directly with RadB to regulate 

homologous recombination or is acting by other means. 

 

The Hel308 point mutants that were seen to elicit striking increases of 

recombination showed little or no effect on cell growth. Perhaps the 

differences in generation time are too subtle to be detected using the 

spectrophotometric growth assay employed in this study. Pairwise growth 

competition assays as described by Delmas and colleagues use the bgaHa 

marker to monitor the relative growth of pairs of strains in exponential phase 

over the course of up to 8 days, allowing for the detection of very small 

differences in growth (Delmas et al 2009). It would be interesting to see if any 

growth defects could be observed by this method and if they correlate with 

other phenotypes. 

 

Lastly, employing protein pull-down assays to investigate protein:protein 

interactions of Hel308 point mutants in H. volcanii could give insights and 

perhaps a mechanism of how Hel308 interacts with other proteins, in particular 

those involved in homologous recombination.  

 

5.6 Conclusions 
 
The mutations generated in this study suggest a multifaceted role for Hel308 in 

the repair of DNA damage and the regulation of homologous recombination. 

This insight requires further investigation to define the function of Hel308 in 

the cell. 
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Chapter 6: in vitro Analysis of Hel308 
 

6.1 Background 
 

6.1.1 Halophilic proteins 
 

There are two alternative strategies employed by halophilic organisms for 

maintaining an osmotic balance between intracellular and extracellular salt 

concentrations. The first is a ‘salt out’ strategy used predominantly by 

halophilic bacteria and eukaryotes, where salts are actively pumped out from 

the cell and the cytoplasm is packed with organic solutes such as glycerol or 

glycine betaine to maintain the osmotic balance (Christian & Waltho 1962, 

Oren 1999, Oren 2008). Halophilic archaea and a few bacteria maintain 

osmotic balance by accumulating high levels of salt in the cytoplasm, this is 

termed a ‘salt-in’ approach (Oren et al 2002).  

 

Proteins in halophilic archaea have adapted to function in high salt and low 

water conditions by several different strategies (Mevarech et al 2000). 

Halophilic proteins tend to feature a large number of acidic residues on their 

surface such as aspartic acid and glutamic acid, but have a small number of 

nonpolar residues. This generates an overall low isoelectric point (pI) and high 

density of negative charges on the surface of the protein that will co-ordinate a 

network of hydrated cations, allowing the protein to stay soluble in solution 

(Lanyi 1974). Halophilic proteins have a reduced surface hydrophobicity by 

replacing large hydrophobic side groups with small hydrophilic ones. Some 

halophilic proteins have extra domains or peptide insertions that are extremely 

rich in acidic residues, which are essential for correct protein folding (Graziano 

& Merlino 2014). 

6.1.2 Protein purification 

To maintain activity and structural stability, halophilic proteins require high 

concentrations of salt and low water availability. Therefore, expression of 



Chapter 6: in vitro Analysis of Hel308 

 220 

halophilic proteins in mesophilic hosts such as E. coli can be problematic 

because halophilic proteins tend to mis-fold and aggregate in low ionic 

conditions (Ishibashi et al 2003, Jaenicke 2000). 

Halophilic proteins expressed in E. coli are often insoluble and require 

recovery from inclusion bodies, followed by denaturation and refolding in 

hypersaline solutions. For example, Connaris and colleagues expressed H. 

volcanii dihydrolipoamide dehydrogenase (a flavoprotein enzyme involved in 

energy metabolism) in E. coli as inclusion bodies and purified it using copper 
metal ion affinity chromatography in the presence of 2 M KCl. The protein 

was refolded by solubilisation in 8 M urea followed by dilution into a buffer 

containing 2 M KCl, maximal activity was obtained after 3 days incubation at 

4ºC (Connaris et al 1999). Protein recovery is only reliable with well-

characterised proteins in which correct folding can be confirmed by a 

functionality assay. Furthermore, proteins expressed in exogenous hosts such 

as E. coli may not undergo the necessary post-translational modifications such 

as acetylation or ubiquitination that are carried out in the native host (Altman-

Price & Mevarech 2009, Humbard et al 2010). 

Purification of halophilic proteins expressed in H. volcanii 

Halophilic proteins expressed natively in H. volcanii do not require refolding. 

Several protein purification techniques are available for recombinant proteins 

expressed in H. volcanii.  

For example, Jolley and colleagues expressed dihydrolipoamide 

dehydrogenase in H. volcanii and the protein was purified using a specifically 

adapted hydroxylapatite chromatography technique (Jolley et al 1996). 

Hydroxylapatite resin (Ca5(PO4)3OH)2 contains positively charged calcium 

ions and negatively charged phosphate ions that interact carboxylate residues at 

the protein surface and basic protein residues respectively. Depending on 

specific protein properties, proteins will be eluted at different points across a 

phosphate gradient (Schroder et al 2003). 
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Additionally, Humbard and colleagues employed tandem affinity tagging to 

purify 20S proteasome from H. volcanii. The α1-subunit was C-terminally 

His6-tagged and the ß-subunit was StrepII-tagged and purification was 

achieved by metal affinity chromatography followed by application of the 

protein complex to a StrepTactin (streptavidin variant) column (Humbard et al 

2009). This approach of purification could be suitable for developing generic 

methods of expressing and purifying proteins from H. volcanii due to 

compatibility of these tags with high salt. 

However, the protein expression constructs used in these studies were custom 

made and tailored to the protein of interest in question. The development of 

generic plasmid vectors and host strains for conditional overexpression of 

halophilic proteins in H. volcanii by Allers and colleagues are described in 

further detail below. 

Plasmid constructs 

Prior to the commencement of this study, Allers and colleagues had developed 

generic episomal overexpression constructs that allow for native conditional 

over-expression of N-terminally His6-tagged H. volcanii proteins (Allers et al 

2010). 

pTA963 and pTA1228 feature a his6-tag flanked by restriction sites that allow 

for in-frame insertion of a gene of interest (Figure 6.1). pTA963 contains the 

restriction sites PciI, NcoI and BspHI to allow for insertion of genes that have 

the second codon of comprising of a T, G and A respectively. The improved 

vector pTA1228 contains an additional NspI restriction site, which is 

compatible with SphI and allows for insertion of genes where the second codon 

starts with a C. 
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The p.tnaA promoter used to express proteins from pTA963 and pTA1228 is 

leaky in E. coli (Allers et al 2010, Large et al 2007). Therefore, plasmids 

containing genes encoding for halophilic proteins that are toxic to E.coli must 

be constructed directly in H. volcanii. 

Overexpression Strains 

Previous to this study, the H. volcanii strain H1424 (∆pyrE2, ∆hdrB, ∆mrr, 

Nph-pitA, cdc48d-Ct) was available for protein overexpression (Allers et al 

Figure 6.1: Plasmids for conditional overexpression of His6-tagged proteins. pTA1228 
differs from pTA963 by having additional sites available (blue). Plasmids contain a his6-tag 
downstream of a tryptophan inducible promoter (p.tnaA) and pyrE2 and hdrB markers for 
selection in H. volcanii. hown on the schematic are restriction sites available for inserting 
genes of interest (and available compatible enzymes). Abbreviations: ampR (ampicillin 
resistance gene, E. coli), colE1 ori (E. coli origin of replication), f1(+)ori (E.coli origin of 
replication), hdrB (thymidine biosynthesis, H. volcanii), his6-tag (hexahistidine tag), pHV2 
(H. volcanii origin of replication), p.tnaA (tryptophan inducible promoter), p.fdx (ferredoxin 
promoter), pyrE2 (uracil biosynthesis, H. volcanii), t.L11e (terminator), t.Syn (terminator). 
In the restriction sites, Y = C or T and R = A or G. Adapted from (Allers et al 2010) 
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2010, Stroud et al 2012). The ∆mrr, Nph-pitA and cdc48d-Ct alleles were all 

generated specifically for this technique, and will be discussed below. 

H. volcanii encodes a restriction enzyme, Mrr, which cuts methylated 5′-

GATC-3′ sequences. E. coli contains a Dam methylase that methylates 5′-

GATC-3′ sequences. For efficient transformation of plasmids into H. volcanii, 

the plasmid DNA must be passaged through a dam- strain of E. coli prior to 

transformation as the efficiency of transforming dam+ DNA into a mrr+ strain 

is 50x lower than transforming with dam- DNA or using a ∆mrr strain (Holmes 

et al 1991). The mrr gene was deleted from H. volcanii to allow for efficient 

transformation of plasmids directly into H. volcanii (>107 transformants/μg 

DNA) without needing to be passaged first through a dam- strain of E. coli 

(Allers 2010). 

The pitA protein of H. volcanii contains a histidine rich linker region and is 

therefore a major co-contaminant when using metal affinity chromatography to 

purify His-tagged proteins (Bab-Dinitz et al 2006, Humbard et al 2009). To 

overcome this problem, the histidine rich linker in H. volcanii was replaced 

with a non-histidine rich orthologue from Natronomonas pharaonis (Allers et 

al 2010). 

 

The elimination of the PitA contaminant revealed another histidine rich 

contaminant at the same size as PitA: Cdc48d (HVO_1907). cdc48d contains a 

histidine rich C-terminal domain, a truncated version of this gene was 

generated to reduce the problem of co-contamination during metal affinity 

chromatography. Both PitA and Cdc48d are essential genes in H. volcanii. 

 

However, even after removal of the two major histidine rich contaminants PitA 

and Cdc48d, many other histidine rich contaminant proteins still persist during 

metal affinity chromatography (Stroud et al 2012), Figure 6.2. The abundance 

of histidine rich proteins is characteristic of halophilic organisms. 



Chapter 6: in vitro Analysis of Hel308 

 224 

 

 

 

 

 

 

 

The naturally occurring histidine rich contaminants that are observed during 

metal affinity chromatography hinder protein purification in H. volcanii as well 

as the detection of protein:protein interactions by protein pull down assays. 

 

6.2 Aims 

The development of the generic episomal overexpression constructs pTA963 

and pTA1228 and the expression strain H1424 (∆pyrE2, ∆hdrB, ∆mrr, Nph-

pitA, cdc48d-Ct) has allowed for the expression and purification of His6-tagged 

recombinant proteins from H. volcanii. However, H. volcanii contains many 

histidine rich proteins which cause contamination during metal affinity 

chromatography, therefore it is of interest to develop new methods for protein 

expression and purification in H. volcanii. The aims of this chapter are to: 

• Develop generic strains, plasmids and techniques for overexpression 

and purification of His6-tagged and StrepII-tagged recombinant proteins 

Figure 6.2: Histidine rich contaminant proteins in metal affinity chromatography. Empty 
vector protein overexpression plasmid pTA963 was used in a mock protein overexpression. 
Histidine rich cellular proteins were purified from the soluble lysate fraction by affinity 
chromatography on a Ni2+ chelating column, bound proteins were eluted using 50 and 500 
mM imidazole. Proteins were precipitated using using trichloroacetic acid and deoxycholate 
to enhance visualisation, Proteins were identified by mass spectrometry, H. volcanii gene 
numbers indicated. Figure adapted from (Stroud et al 2012) 



             Chapter 6: in vitro Analysis of Hel308 
 

 225 

natively in H. volcanii.  

• Screen for in vivo protein:protein interactions of Hel308 by expressing 

His6-tagged and StrepII-tagged Hel308 natively in H. volcanii and 

analysing co-purifying proteins. This may give further insight into the 

cellular role of Hel308. 

 

6.3 Results 
 

6.3.1 Development of improved strains for protein overexpression  
 
 

In H. volcanii, the overexpression of proteins on episomal plasmids is induced 

by the addition of tryptophan (Large et al 2007). Overexpression plasmids 

contain the gene of interest downstream of the tryptophan inducible promoter 

p.tnaA. A final concentration of ~4.5 mM tryptophan is added to H. volcanii 

culture to induce protein expression. 

 

To improve strains for protein expression and purification the tnaA gene was 

deleted. tnaA encodes for tryptophanase, an enzyme which degrades 

tryptophan. Deletion of tnaA will eliminate the breaking down of tryptophan 

by tryptophanase therefore all of the tryptophan added will be used for the 

induction of protein expression. A second reason for deleting tnaA is that in 

Escherichia coli, the enzyme tryptophanase (tnaA) produces indole from 

tryptophan (Li & Young 2013). Indole is a signalling molecule that that is 

involved in the regulation of many processes for example motility, quorum 

sensing, biofilm formation and quiescence (Bansal et al 2007, Chen et al 2015, 

Hu et al 2010). Indole has been shown to promote quiescence by blocking cell 

division and growth at concentrations of 3 to 5 mM. Cell division is blocked as 

the presence of indole prevents the formation of the FtsZ ring; FtsZ 
polymerises into a ring structure at mid-cell and defines the site of cell 

division. Without FtsZ cytokinesis is unable to occur (Chen et al 2015, 

Chimerel et al 2012, de Boer et al 1992).The addition of tryptophan to H. 

volcanii cultures is required for protein expression. However, this very same 
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tryptophan could be converted to indole by the tryptophanase gene tnaA and 

therefore preventing FtsZ ring formation in H. volcanii resulting in quiescence 

(Wang & Lutkenhaus 1996). For this reason tnaA (Hvo_0009) was deleted 

from H. volcanii to generate an improved strain for efficient protein 

overexpression by tryptophan induction. 

 
Hvo_0009 (tnaA) was deleted from the overexpression and purification strain 

H1424 and H1895, which is H1424 with an additional deletion of pilB3C3. 

Details of these strains are described below. 

H1424 (∆pyrE2, Nph-pitA, ∆mrr, cdc48d-ct, ∆hdrB) is a protein 

overexpression and purification strain in H. volcanii (Allers et al 2010, Stroud 

et al 2012).  This strain was developed in order to reduce the co-purification of 

naturally histidine rich proteins with his6-tagged recombinant proteins. 

H1895 (∆pyrE2, Nph-pitA, ∆mrr, cdc48d-ct, ∆hdrB, ∆pilB3C3) is derived from 

H1424 and is deleted for Hvo_1033 (pilC3) and Hvo_1034 (pilB3), which 

encode an ATPase and an integral membrane protein of the pilus assembly 

system respectively (Strillinger et al 2016). These proteins are necessary for 

biofilm formation and deletion of these genes eliminates the attachment of H. 

volcanii to surfaces of any kind while leaving cells motile, therefore preventing 

biofilm formation during culture within a fermenter. 

 

Hvo_0009 (tnaA) was deleted from H1424 and H1895 using the ∆tnaA::hdrB+ 
deletion construct pTA1615 to generate the pop-outs H2167 and H2169 

respectively. tnaA deletions were confirmed by colony hybridisation using a 

1488 bp radiolabelled probe of tnaA digested from pTA875 with AgeI, Figure 

6.3. tnaA deletions were also confirmed by the ability of the strains to grow on 

media lacking Thy. 
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Figure 6.3: Deletion of Hvo_0009 (tnaA). (A) pTA1615 ∆tnaA::hdrB+ deletion construct (B) 

Candidate colonies were screened with a radiolabelled AgeI digested fragment from pTA875. 

Colonies that did not hybridise were ∆tnaA. 

 

In order that hdrB selection can be utilised in episomal expression plasmids, 

H2167 and H2169 containing ∆tnaA::hdrB+ were transformed with pTA1508 

(∆tnaA) to remove the hdrB+ marker from the ∆tnaA locus, Figure 6.4A. Pop-

outs were patched in duplicate on media containing +/- thy to select for 

colonies lacking the hdrB+ marker. No hdrB- strains were found (data not 

shown), indicating that attempts to remove the hdrB+ marker this way were 

unsuccessful. The ∆tnaA partial deletion construct, pTA1730, was constructed 

by the removal of a 588 bp EcoNI-EcoNI fragment from tnaA and transformed 

into H2169 to generate the strain H2682 (tnaA∆EcoNI, ∆hdrB), Figure 6.4B. 

The tnaA∆EcoNI partial deletion was confirmed by colony hybridisation, 

Figure 6.4C, Southern blot and by the inability ability of colonies to grow on 

media lacking Thy. 
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Figure 6.4:  ∆tnaA and tnaA∆EcoNI deletion constructs. (A) ∆tnaA deletion construct 
pTA1508. (B) tnaA partial deletion construct containing tnaA∆EcoNI fragment, pTA1730. (C) 
Candidate colonies were screened with a radiolabelled EcoNI digested fragment from pTA875. 
Colonies that did not hybridise were tnaA∆ EcoNI. 

 

In the first instance, tnaA could only be deleted using a hdrB+ marker using 

the deletion construct pTA1615 (∆tnaA::hdrB+) to generate the strains H2167 

and H2169. The removal of the hdrB+ marker could only be achieved using 

the tnaA partial deletion construct pTA1730 (tnaA∆EcoNI) but not with the 

‘whole’ tnaA deletion construct pTA1508 (∆tnaA). These results suggest that a 

full tnaA deletion is not possible; perhaps a full deletion interrupts the read 

through of transcription of a potentially essential neighbouring gene to tnaA. 

Perhaps the integrity of the gene neighbourhood is preserved when tnaA is only 

partially deleted, or when the hdrB+ marker which is a similar size to tnaA is 

present. Alternatively, the difficulty in generating a full tnaA deletion could be 

due to unknown technical reasons. 

 

Due to time constraints and the difficulties in generating a tnaA deletion in the 
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∆pilB3C3) was not tested for improved growth upon the addition of tryptophan 

and improvements in protein overexpression by tryptophan induction. 

 

To determine if the partial deletion of tnaA in H2682 (tnaA∆EcoNI, ∆pilB3C3) 

results in improved growth by blocking indole-induced quiescence, growth 

assays would have been performed. Growth assays in liquid culture would 

have been performed by measuring the A600 of H2682 (tnaA∆EcoNI, 

∆pilB3C3) along side H1895 (∆pilB3C3) using an Epoch2 Microplate 

Spectrophotometer (BioTek) in the presence and absence of tryptophan. A 

range of 2 – 5 mM would be used to mimic the concentrations of tryptophan 

used in protein overexpression protocols. This assay would determine if strains 

deleted for tnaA were able to grow better than (or as well as) strains not deleted 

for tnaA. The efficiency of protein overexpression by tryptophan induction 

would be assayed by transformation with a plasmid containing a tagged protein 

under the control of a tryptophan inducible promoter. Levels of protein 

expression would have been measured by comparing amounts of protein 

purified from H2682 (tnaA∆EcoNI, ∆pilB3C3) to its parent strain H1895 

(∆pilB3C3). Alternatively, the level of protein expression could be measured 

by inserting a reporter gene such as bgaH could be placed under the control of 

the tryptophan inducible promoter. 

 

6.3.2 Development of episomal overexpression plasmid constructs 
 

The episomal overexpression constructs pTA963 and pTA1228 currently used 

in H. volcanii allows for the expression and purification of N-terminally His6-

tagged recombinant proteins. However, H. volcanii contains many histidine-

rich proteins, which cause contamination during metal affinity 

chromatography, Figure 6.2. Therefore, an alternative method of affinity-tag 

protein purification is required for use in H. volcanii. An important point of 

consideration is that the affinity tag of choice must be compatible with high 

salt conditions since proteins in H. volcanii are adapted to function in 

approximately 2 M salt. Examples of commonly used alternatives to His6-tags 

are shown in Table 6.1. 
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Table 6.1: Commonly used tags for protein purification. 

Tag Size (aa) Matrix 
Maltose binding protein (MBP) 396 Amylose 
Glutathione S- transferase (GST) 218 GSH-sepharose 
Calmodulin-binding peptide (CBP) 28 Calmodulin affinity 
Chitin-binding domain (CBD) 51 Chitin 
StrepII 8 (WSHPQFEK) Strep-Tactin sepharose 
FLAG 8 (DYKDDDDK) Anti-FLAG M2 mAb agarose  
Heavy chain of protein C (HPC) 12 Anti-Protein C mAb matrix  
Covalent yet dissociable (CYD) 5 InaD  
S 15 S-protein of RNase A 
HA 9 Anti-HA epitope mAb 
c-Myc 11 Anti-Myc epitope mAb 
Adapted from (Kimple et al 2013, Zhao et al 2013) 

 

Large protein tags such as MBP and GST are likely to mis-fold in high salt 

conditions and therefore not be functional in the purification of halophilic 

proteins. The large size of these tags may also hinder protein function. 

Similarly, antibody based purification systems such as FLAG, HPC, HA and c-

Myc may not be suitable as they are expensive and likely to be unstable in high 

salt conditions. Purification protocols using CBP and S require protein binding 

in low salt and protein elution in high salt. Since the protein will need to be 

maintained in high salt concentrations to ensure correct folding, these tags are 

not suitable for halophilic proteins (Kimple et al 2013). A possible candidate 

for purification of halophilic proteins is the CBD tag, which is stable up to 1 M 

NaCl, however this tag is bulky and could hinder protein function (Terpe 

2003). StrepII tags are stable up to 5 M NaCl and Humbard and colleagues 

have successfully used StrepII tags to purify proteins expressed natively in H. 

volcanii (Humbard et al 2009). For these reasons, the StrepII tag was the tag of 

choice for the development of improved generic overexpression plasmids for 

use in H. volcanii within this study. 

 
Plasmid Constructs 
 

Plasmid constructs pTA1392 and pTA1403 were developed to allow for 

conditional overexpression of H. volcanii proteins with the option of a His6-tag 

and/or a StrepII tag.  
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pTA1392 allows for in-frame insertion of a gene of interest with the option to 

have an N-terminal his6-tag and/or a C-terminal strepII-tag, this is achieved by 

integrating a (CAC)6 tract and a WSHPQFEK motif downstream of p.tnaA, 

Figure 6.5. A number of sites are available for inserting genes of interest in-

frame with the his6-tag and strepII-tag. To generate a gene without a N-

terminal his6-tag, the start codon of the gene of interest is replaced with an 

NdeI site and ligated with the NdeI end of the plasmid. For the inclusion of an 

N-terminal his6-tag genes are inserted at PciI (ACATGT) or at NspI 

(RCATGY, where R = A or G and Y = C or T), both contain internal in-frame 

ATG start codons (bold). Additional enzymes that produce compatible ends are 

NcoI (CCATGG), BspHI (TCATGA) and SphI (GCATGC). The restriction 

site at the 5' end of the gene of interest is selected based on the first residue in 

the gene after the ATG start site. Therefore, the 4th residue of the gene should 

correspond to the 6th residue of the restriction site: PciI is used when second 

codon in the coding sequence starts with a T, NcoI when it begins with a G, 

BspHI when it begins with an A and SphI when it begins with a C. 

 

To generate a gene without a C-terminal strepII-tag, an EcoRI or BamHI site is 

incorporated after the stop codon and ligated, and for the incorporation of a C-

terminal strepII-tag the stop codon of the gene is replaced with an NheI or a 

compatible site (AvrII, SpeI or XbaI) and ligated with the NheI end of the 

plasmid. 
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pTA1403 allows for in-frame insertion of a gene of interest with the option to 

have an N-terminal strepII-tag and/or a C-terminal his6-tag, this is achieved by 

Figure 6.5: pTA1392. A plasmid for the conditional overexpression of N-terminally his6 
and/or C-terminally strepII tagged proteins. The plasmid contains a tryptophan inducible 
promoter (p.tnaA), pyrE2 and hdrB markers for selection in H. volcanii. Restriction sites for 
inserting gene of interest are shown. Abbreviations: ampR (ampicillin resistance gene, E. 
coli), colE1 ori (E. coli origin of replication), hdrB (thymidine biosynthesis, H. volcanii), his6-
tag (hexahistidine tag), pHV2 (H. volcanii origin of replication), p.tnaA (tryptophan inducible 
promoter), p.fdx (ferredoxin promoter), pyrE2 (uracil biosynthesis, H. volcanii), StrepII tag 
(streptavidinII tag) t.L11e (terminator), t.Syn (terminator). In the restriction sites, Y = C or T 
and R = A or G. 
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integrating a WSHPQFEK motif and a (CAC)6 tract downstream of p.tnaA, 

Figure 6.6. 

 

To generate a construct without a N-terminal strepII-tag the start codon is 

replaced with an NdeI site and ligated with the NdeI end of the plasmid. For the 

incorporation of an N-terminal strepII-tag the start codon is replaced with an 

NcoI, BspHI, PciI or an SphI site and ligated with the PciI or NspI end of the 

plasmid. The restriction site is selected based on the first residue in the gene of 

interest after the ATG start site as described for inclusion of an N-terminal 

his6-tag gene in pTA1392. 

 

To generate a gene without a C-terminal his6-tag, an EcoRI or BamHI site is 

incorporated after stop codon and ligated, and for the inclusion of a C-terminal 

his6-tag the stop codon of the gene is replaced with an NheI or compatible site 

(AvrII, SpeI or XbaI) and ligated with the NheI end of the plasmid.  
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Induction of gene expression  

 

The tightly controlled tryptophan inducible promoter p.tnaA is used for the 

induction of gene expression in pTA1392 and pTA1403 (Large et al 2007). 

Figure 6.6: pTA1403. A plasmid for the conditional overexpression of N-terminally 
strepII and/or C-terminally his6 tagged proteins. The plasmid contains a tryptophan 
inducible promoter (p.tnaA), pyrE2 and hdrB markers for selection in H. volcanii. 
Restriction sites for inserting gene of interest are shown. Abbreviations: ampR (ampicillin 
resistance gene, E. coli), colE1 ori (E. coli origin of replication), drB (thymidine 
biosynthesis, H. volcanii), his6-tag (hexahistidine tag), pHV2 (H. volcanii origin of 
replication), p.tnaA (tryptophan inducible promoter), p.fdx (ferredoxin promoter), pyrE2 
(uracil biosynthesis, H. volcanii), StrepII tag (streptavidinII tag) t.L11e (terminator), t.Syn 
(terminator). In the restriction sites, Y = C or T and R = A or G. 
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Tryptophan is an energetically costly amino acid for a cell to produce, 

requiring the equivalent of 75 ATPs for synthesis, therefore genes involved in 

tryptophan biosynthesis and degradation are tightly regulated. p.tnaA is the 

promoter for a tryptophanase gene, which encodes a protein that is involved in 

the degradation of excess tryptophan. p.tnaA, has a basal activity that is 

effectively zero, and is rapidly and strongly induced in the presence of ≥ 1 mM 

tryptophan which gives up to 100-fold induction (Large et al 2007).  

 

Termination of gene expression 

 

The transcriptional terminators t.L11e and t.Syn are present outside of the 

p.tnaA::his6-tag/strepII-tag and p.tnaA::strepII-tag/his6-tag region in pTA1392 

and pTA1403 respectively. These terminators insulate the gene of interest from 

read-though transcription by cryptic promoters present elsewhere on the 

plasmid. t.L11e is an L11e rRNA terminator from H. volcanii and t.Syn is a 

synthetic terminator (comprising a T tract flanked by G/C-rich sequences) that 

function in H. volcanii (Allers et al 2010, Shimmin & Dennis 1996). 

 

Replication of plasmid in H. volcanii 

 

pTA1392 and pTA1403 contain the origin of replication ori-pHV2, which 

allows for replication in H. volcanii. ori-pHV2 originated from pHV2, a 

plasmid that was cured from the laboratory strain of H. volcanii (Wendoloski et 

al 2001). Plasmids containing ori-pHV2 are present at approximately six copies 

per genome (Charlebois et al 1987). 

 

Selection of plasmid in H. volcanii 

 

In order to select for pTA1392 or pTA1403, pyrE2+ and hdrB+ markers are 

present on the plasmids. These plasmids are transformed into H. volcanii 

strains that are ∆pyrE2 (uracil) and ∆hdrB (thymidine) (Allers et al 2004, 

Bitan-Banin et al 2003). 
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Replication of plasmid in E. coli 

 

Due to speed of growth and higher copy number, plasmids are often generated 

in E. coli rather than H. volcanii. For replication of the plasmids in E. coli to 

occur, the E. coli origin of replication, ColE1 ori, is present. 

 

Selection of plasmid in E. coli��� 

 

The plasmids contain the ampicillin resistance marker, ampR, which allows for 

selection of the plasmid when transformed into E. coli and plated on media 

containing ampicillin. 
 

6.3.3 Protein overexpression and purification 
 
The N-terminal his6-tag and C-terminal StrepII-tag (pTA1392) and N-terminal 

StrepII-tag and C-terminal His6-tag (pTA1403) constructs were tested for their 

suitability for improved protein overexpression and purification in H. volcanii, 

using Hel308 as a candidate protein. 

Induction of expression 

Protein induction is under the control of the tryptophan inducible promoter 

p.tnaA. Concentrations of >1 mM tryptophan affect the growth of H. volcanii 

therefore induction was delayed until 2 hours before harvesting (Allers et al 

2010). To induce protein expression a final concentration of 3 mM tryptophan 

was added to the culture and incubated for 1 hour then the tryptophan was 

increased to 4.5 mM final concentration and incubated for a further hour. 

Protein purification 

Metal Affinity Chromatography 

Proteins containing a His6-tag were purified from cell lysate using metal 

affinity chromatography. Due to their ease of use in small-scale purification, 

gravity columns packed with charged Sepharose beads were used. In this study 
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Ni2+ charged beads were used, since they result in a higher protein yield than 

Co2+ charged beads in conditions of >1 M NaCl (Allers et al 2010). The tagged 

protein was eluted using 100-500 mM imidazole. If the protein was to be 

subsequently purified using a Strep-Tactin column, the sample was diafiltrated 

using appropriate MWCO Vivaspin 20 ultrafiltration spin columns to remove 

residual imidazole and to concentrate the protein sample. 

Strep-Tactin Chromatography 

Proteins containing a StrepII-tag were purified either from the cell lysate or 

from elutions following metal affinity chromatography, using gravity columns 

packed with Strep-Tactin Sepharose. Protein was eluted using 5 mM D-

desthiobiotin. Following purification, protein samples were precipitated using 

trichloroacetic acid (TCA) to aid visualisation of protein bands on SDS-PAGE 

gels. 

Purification of N-terminally His6-tagged and C-terminally StrepII-tagged 
Hel308 

In order to purify N-terminally His6-tagged and C-terminally StrepII-tagged 

Hel308, H1424 was transformed with pTA1419 (p.tnaA:: his6tag-

hel308+strepIItag pyrE2+ hdrB+) to generate the strain H1737. For details of 

plasmid construction, see Chapter 3: Plasmid and Strain Construction. His6-

Hel308-StrepII was expressed and purified by metal affinity chromatography 

and Strep-Tactin chromatography, Figure 6.7A, or by Strep-Tactin 

chromatography alone Figure 6.7B. Details of these methods are described 

previously. 
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Figure 6.7: Purification of N-terminally his6-tagged and C-terminally strepII-tagged 
Hel308. (A) His6-Hel308-strepII was expressed and purified from H1737 by metal affinity 
chromatography using a step gradient of elution buffer containing imidazole (E refers to the 
imidazole concentration in mM), following with Strep-Tactin chromatography using a 3 step 
elution with 0.4 ml, 0.7 ml and 0.4 ml of elution buffer containing 5 mM D-desthiobiotin (E 
refers to elution number). (B) His6-Hel308-strepII was expressed and purified from H1737 by 
Strep-Tactin chromatography alone using a 3 step elution with 0.4 ml, 0.7 ml and 0.4 ml of 
elution buffer containing 5 mM D-desthiobiotin (E refers to elution number) Hel308 indicated, 
confirmed by mass spectrometry, Susan Liddell, University of Nottingham, data not shown. 

 

As expected after purification of His6-Hel308-StrepII with only Ni2+ metal 

affinity chromatography, the contaminating naturally histidine-rich proteins are 

still present in the elutions E100-E500 (Figure 6.7A, all bands not indicated as 

Hel308). After further purification with Strep-Tactin chromatography, a large 

number of these contaminating bands have been removed (Figure 6.7A, E1-

E3). After purification of His6-Hel308-StrepII with Strep-Tactin 

chromatography alone, some contaminating proteins are seen in the elutions 

E1-E3 (Figure 6.7B, all bands not indicated as Hel308). This is likely due to 

overloading of the Strep-Tactin sepharose beads by the complete cell lysate. 

Furthermore, the overall amount of Hel308 recovered in E1-E3 appears to be 

less than that recovered in E1-E2 in Figure 6.7A, this is probably due to 

overloading of the Strep-Tactin sepharose beads. Therefore, purification of 

His6-Hel308-StrepII is most successful by Ni2+ metal affinity chromatography 
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followed by Strep-Tactin chromatography, rather than by Strep-Tactin 

chromatography alone. 
 
Purification of N-terminally StrepII-tagged and C-terminally His6-tagged 
Hel308 

In order to purify N-terminally StrepII-tagged and C-terminally His6-tagged 

Hel308, H1424 was transformed with pTA1425 (p.tnaA::strepII tag-hel308+ 

his6-tag pyrE2+ hdrB+) to generate the strain H1743. For details of plasmid 

construction, see Chapter 3: Plasmid and Strain Construction. StrepII-Hel308-

His6 was expressed and purified by metal affinity chromatography and Strep-

Tactin chromatography, Figure 6.8A, or by Strep-Tactin chromatography alone 

Figure 6.8B. Details of these methods are described previously. 

 
Figure 6.8: Purification of N-terminally strepII-tagged and C-terminally his6-tagged 
Hel308. (A) StrepII-Hel308-his6 was expressed and purified from H1743 by metal affinity 
chromatography using a step gradient of elution buffer containing imidazole (E refers to the 
imidazole concentration in mM), following with Strep-Tactin chromatography using a 3 step 
elution with 0.4 ml, 0.7 ml and 0.4 ml of elution buffer containing 5 mM D-desthiobiotin (E 
refers to elution number). (B) StrepII-Hel308-his6 was expressed and purified from H1743 by 
Strep-Tactin chromatography alone using a 3 step elution with 0.4 ml, 0.7 ml and 0.4 ml of 
elution buffer containing 5 mM D-desthiobiotin (E refers to elution number). Hel308 indicated, 
confirmed by mass spectrometry, Susan Liddell, University of Nottingham, data not shown. 

 

As expected, after purification of StrepII-Hel308-His6 with only Ni2+ metal 

affinity chromatography, the contaminating naturally his rich proteins are 
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present in the elutions E100-E500 (Figure 6.8A, all bands that are not indicated 

as Hel308). However, the recovery of Hel308 is very poor, even in the 

Vivaspin lane where the elutions from Ni2+ metal affinity chromatography have 

been concentrated. Again, the contamination is removed via application of the 

elutions to a Strep-Tactin column but Hel308 is still not present. After 

purification of StrepII-Hel308-His6 with Strep-Tactin chromatography only, 

contaminating bands can be seen in E1-E3 (Figure 6.8B, all bands that are not 

indicated as Hel308). However, the recovery of Hel308 was very poor. 

 

From Figures 6.7 and 6.8 it is evident that the N-terminal His6-tag and C-

terminal StrepII-tag orientation is better for purifying Hel308 than the N-

terminal StrepII-tag and C-terminal His6-tag orientation. The N-terminal His6-

tag and C-terminal StrepII-tag orientation was also seen to be better for 

purifying RadA (data not shown). Other members of the group have also found 

this orientation to be preferable for the purification of proteins such as RadB, 

Mre11-Rad50 and BktAB (beta-ketothiolase). 

 

Purification of His6-Hel308-StrepII was successful using Ni2+ metal affinity 

chromatography followed by Strep-Tactin chromatography. However, as many 

of the co-eluting proteins have been removed in this process, the identification 

of protein:protein interactions may be limited. The use of a zero-length protein 

cross-linking agent such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDC) and N-hydroxysuccinimide (NHS) could be advantageous in detecting 

protein:protein interactions in this system (Grabarek & Gergely 1990). 

 

6.3.4 Development of Chromosomally Tagged Expression Strains 
 
At overexpressed levels, Hel308 is toxic to H. volcanii (Thorsten Allers, 

personal communication). Therefore, the identification of protein:protein 

interaction partners of overexpressed Hel308 may not give a true 

representation of protein interactions within the cell. Furthermore, with excess 

Hel308 within the cell the fraction of Hel308 that will interact with other 

proteins will be small. For this reason, a strain where the genomic copy of 



             Chapter 6: in vitro Analysis of Hel308 
 

 241 

hel308 is replaced with an N-terminally his6-tagged and C-terminally strepII-

tagged version of hel308 was used to study protein:protein interaction partners 

of Hel308. The chromosomally his6-hel308-strepII is under control of the 

natural promoter of hel308 resulting in native levels of expression. 

 

The chromosomal N-terminally his6-tagged and C-terminally strepII-tagged 

hel308 strain was generated in the H2047 background: 
 

H2047 (∆pyrE2, Nph-pitA, ∆mrr, cdc48d-ct, ∆trpA) is derived from H1424 via 

H1611 for improved protein expression and purification. To generate H1611, 

trpA was deleted from H1424 to allow for the selection of integrated trpA+ 

marked gene replacement or deletion constructs. H1611 was then transformed 

with a linear fragment containing the hdrB gene to make the resulting strain 

H2407 hdrB+. This was undertaken because hdrB selection is not required, and 

to ensure that strains do not encounter problems with thymidine starvation. 

 

hel308::trpA+ was deleted from H2047 using pTA1277 (∆hel308::trpA+ 

deletion construct) generating the strain H2131. An N-terminally his6-tagged 

and C-terminally strepII-tagged hel308 was introduced into H2131 using the 

gene replacement construct pTA1662 to generate the strain H2418. Both 

strains were confirmed by colony hybridisation and Southern blot, for full 

details of plasmid and strain construction see Chapter 3: Plasmid and Strain 

Construction. 

6.3.5 In vivo Protein:Protein Interactions  

The study of protein:protein interactions is a central tool in the understanding 

of protein function and cellular processes.  

MBP-tagged Hel308 from M. thermautotrophicus imobilised on amylose beads 

was shown to interact in vitro with His6-tagged purified replication protein A 

(RPA) after incubation overnight at room temperature (Woodman et al 2011). 

RPA is the eukaryotic and archaeal single stranded binding (SSB) protein that 

binds unwound single stranded DNA to protect it from degradation and 

secondary structure formation. 
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In the hyperthermophilic archaeon Sulfolobus tokodaii, gel filtration, affinity 

pulldown, and yeast two-hybrid analyses revealed that the Hel308 homologue 

Hjm physically interacts with Hjc in vitro (Li et al 2008). Hjc is a Holliday 

junction resolvase that binds specifically to Holliday junctions and cleaves two 

opposing strands symmetrically to generate two recombinant duplexes to 

restart stalled replication forks (Lestini et al 2010).  

In in vivo immunoprecipitation analyses were performed and the proliferating 

cell nuclear antigen (PCNA) was found to co-precipitate with Hel308 

homologue Hjm through an interaction in the C-terminal domain of Hjm. 

PCNA is the DNA sliding clamp which anchors DNA polymerase to the 

template DNA to prevent dissociation. Furthermore, PCNA was shown to 

stimulate the helicase activity of Hjm at fork structured DNA (Fujikane et al 

2006). 

The mammalian Hel308 homologue, HelQ was shown to associate with the 

RAD51 paralogues RAD51B/C/D and XRCC2, and with the DNA damage-

responsive kinase ATR in vivo (Takata et al 2013). 

In order to gain a further insight into the role of Hel308, it was interest to 

identify other interacting proteins in H. volcanii. This was achieved by 

studying in vivo protein:protein interactions, with Hel308 expressed at a native 

level. 

Proof of Principle - Mre11 and Rad50 

In order to test whether the method would be successful, a control experiment 

was carried out using Mre11 and Rad50. The mre11 and rad50 genes are found 

on an operon and their resulting proteins are known to interact. Mre11 and 

Rad50 are involved in the first step of homologous recombination in 

eukaryotes and archaea. Mre11 and Rad50 form a heterodimer that binds to 

and processes double strand breaks (D'Amours & Jackson 2002). Genetic 

analysis has indicated that this is also true in H. volcanii (Delmas et al 2009). 
Therefore, Mre11-Rad50 is an ideal control to use for the study of in vivo 

protein:protein interactions. 
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The strain H2239 was constructed in the H2047 background where the 

chromosomal mre11 was N-terminally his6-tagged and the chromosomal rad50 

was C-terminally strepII tagged under the control of their native promoter 

(Wickham-Smith 2015). The result of the co-purification assay is shown in 

Figure 6.9A and B. Bands were identified by mass spectrometry. 

 

Figure 6.9: Protein:protein interaction of N-terminally his6-tagged and C-terminally 
strepII-tagged Mre11-Rad50. (A) His6-Mre11-Rad50-StrepII was expressed and purified 
from H2239 by metal affinity chromatography using a step gradient of elution buffer 
containing imidazole (E refers to the imidazole concentration in mM), Vivaspin sample 
obtained by pooling of elution samples. (B) His6-Mre11-Rad50-StrepII was expressed and 
purified from H2239 by by Strep-Tactin chromatography alone using a 3 step elution with 0.4 
ml, 0.7 ml and 0.4 ml of elution buffer containing 5 mM D-desthiobiotin (E refers to elution 
number). Vivaspin sample obtained by pooling of elution samples. Bands were identified by 
mass spectrometry (performed by Susan Liddell, University of Nottingham) Figure adapted 
from (Wickham-Smith 2015). 

 
Rad50 was seen to co-purify with N-terminally His6-tagged Mre11 after metal 

affinity chromatography, Figure 6.9A and Mre11 was seen to co-purify with C-

terminally StrepII tagged Rad50 after Strep-Tactin chromatography. This 

confirms that this method can be used successfully to detect interactions 

between proteins known to form stable complexes. 

Screening for Interaction Partners of Hel308 
 
The following in vivo protein:protein interaction assay was preformed by 

Rebecca Lever (Doctoral Training Program rotation student) under my 

supervision. 

 

A                                                                   BNi column 
Strep-Tactin

column

H2239    N-terminally his6-tagged and C-terminally strepII-tagged Mre11-Rad50
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In order to screen for interacting partners of Hel308 at native levels of 

expression, Hel308 was purified from the strain H2418 containing a 

chromosomal N-terminally his6-tagged and C-terminally strepII-tagged 

hel308. Because ∆hel308 has a marked survival deficiency after treatment with 

MMC, Hel308 is thought to act in the repair of DNA crosslinks (Adelman et al 

2013, Takata et al 2013). The H2418 strain was incubated with 0.5 μg/ml of 

the DNA crosslinking agent MMC for 1 hour prior to protein purification, and 

only Strep-Tactin chromatography was performed. The result of this 

preliminary co-purification assay is shown below Figure 6.10. All bands were 

identified by mass spectrometry, data shown in Table 6.2, 
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Figure 6.9: Protein:protein interaction of N-terminally His6-tagged and C-terminally 
StrepII-tagged Hel308.  His6-Hel308-StrepII was expressed and purified from H2418 by 
Strep-Tactin chromatography alone using a 6 step elution with 0.4 ml, 0.7 ml and 4x 0.4 ml of 
elution buffer containing 5 mM D-desthiobiotin (E refers to elution number). Vivaspin sample 
obtained by pooling of elution samples. The DNA and RNA metabolism proteins Hel308 
(HVO_0014), RadA (HVO_0104), RpoA1 (HVO_0349), GyrA (HVO_1573), RecJ4 
(HVO_2889)and UvrA (HVO_0393) were identified in the Wash lane. Hel308 (HVO_0014) 
and RecJ4 (HVO_2889) was identified in Elutions 1 and 2. Bands were identified by mass 
spectrometry (performed by Susan Liddell, University of Nottingham). 
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Table 6.2: Proteins identified by mass spectrometry 

Band A 
Protein 
accession 

Protein name HVO_ 
number 

Predicted 
MW 

MASCOT 
score 

# of 
peptides 

Peptide 
sequences 

D4GZY6 Tef1a1 0359 45731 1580 39 12 
D4GTM3 CitB1 1955 70362 262 9 8 
D4GT33 NrdJ 2452 224305 204 9 7 
Q9HHA2 Cct3 0778 55208 167 13 6 
Q48328 RadA 0104 38251 162 4 3 
D4GXM0 RecJ4 2889 79112 156 4 4 
D4GZX6 RpoA1 0349 108846 155 6 6 
D4GZY3 Tef2 0356 80391 106 10 9 
D4GXF1 PorA 1305 68427 106 2 1 
D4GZ02 GyrA 1573 94795 94 3 2 
D4GP52 CobN B0050 141168 92 2 2 
D4GYD4 GnaD 1488 45765 77 2 2 
D4GYK9 Hel308a 0014 90300 56 2 2 
D4GXE9 PorB 1304 34475 53 1 1 
D4GR47 HyuA2 A0379 72923 53 1 1 
D4H019 UvrA 0393 108611 51 2 2 
P25062 Csg 2072 85138 40 1 1 
Q48332 AtpA 0316 64474 33 3 1 
D4GV93 Muc19 2160 232675 30 3 1 
D4GZF1 AlaS1 0206 102401 28 1 1 
D4GUC3 MetS 0809 81886 27 1 1 
Band B 
Protein 
accession 

Protein name HVO_ 
number 

Predicted 
MW 

MASCOT 
score 

# of 
peptides 

Peptide 
sequences 

D4GYK9 Hel308a 0014 90300 3495 125 30 
D4GZY3 Tef2 0356 80391 110 5 4 
D4GXM0 RecJ4 2889 79112 44 2 2 
D4GQB8 UspA27 A0086 14050 31 3 1 
D4GZ93 UreA 0149 14136 29 10 1 
D4GP28 
 

2-keto-3-
deoxyxylonate 
dehydratase 

B0027 31842 28 9 1 

Band C 
Protein 
accession 

Protein name HVO_ 
number 

Predicted 
MW 

MASCOT 
score 

# of 
peptides 

Peptide 
sequences 

D4GYK9 Hel308a 0014 90300 5790 193 35 
D4GZY3 Tef2 0356 80391 300 8 5 
D4GP28 
 

2-keto-3-
deoxyxylonate 
dehydratase 

B0027 31842 35 19 1 

D4GS50 
 

Bacterio-opsin 
activator-like 
protein 

0513 24295 26 12 1 

D4GZ93 UreA 0149 14136 25 11 1 
Protein Accession, from the UniProt database, e.g., D4GYK9; predicted MW, predicted 
molecular weight (Da) of the protein sequence identified by MASCOT; MASCOT score, 
MASCOT score associated with protein identification. Ions score is -10*Log(P), where P is the 
probability that the observed match is a random event. Individual ions scores > 26 indicate 
identity or extensive homology (p<0.05); number of peptides, no. of peptides associated with 
protein identification by MASCOT;. Peptide sequences, the number of distinct peptide 
sequences associated with the protein identified by MASCOT. DNA and RNA processing 
enzymes are highlighted in bold; proteins with a MASCOT score below 26 are shown in grey. 
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In the ‘Wash’ lane the DNA and RNA metabolism proteins RadA 

(HVO_0104), RpoA1 (HVO_0349), GyrA (HVO_1573) and UvrA 

(HVO_0393) were identified. After loading of cell lysate onto the gravity 

column packed with Strep-Tactin Sepharose beads, the column was washed 

with 5 x 0.5 ml Buffer B (20 mM HEPES pH 7.5, 2 M NaCl, 1 mM PMSF). 

The proteins found in the ‘Wash’ are included in the analysis because the 

Strep-Tactin Sepharose beads used were old and likely had reduced affinity for 

the StrepII-tagged protein. Repetition of this preliminary assay with fresh 

reagents is urgently needed to conclusively confirm if these protein interactions 

are indeed true. In elutions 1 and 2 RecJ4 (HVO_2889) was identified. All 

potential protein:protein interactions found are described below.  

 

RadA (HVO_0104) 

 

RadA is the archaeal recombinase that catalyses strand exchange during 

homologous recombination. With the aid of RadB, RadA forms a 

nucleoprotein filament on ssDNA that can then bind to dsDNA molecules and 

search for a region of homology (Wardell 2013). Once homology is found, 

RadA catalyses strand invasion and D-loop formation (Kil et al 2000). 

 
RpoA1 (HVO_0349) 
 
RpoA1 is a DNA-directed RNA polymerase subunit A'. In archaea, RpoA is 

the largest subunit of the RNA polymerase is divided into two polypeptides, A′ 

and A′′ subunits, which are encoded by separate genes in an operon (Jun et al 

2011, Langer et al 1995). 

 

GyrA (HVO_1573)  

 

DNA gyrase is the topoisomerase II found primarily in bacteria and some 

archaea. It consists of two polypeptide subunits, GyrA and GyrB, which form a 

heterotetramer. The C-terminal domain of GyrA is thought to bind DNA and 

help mediate a positive superhelical wrap about the protein (Corbett et al 

2004). 
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UvrA (HVO_0393) 
 
In bacteria, the proteins UvrA, UvrB, UvrC and UvrD are responsible for 

nucleotide excision repair (NER). The UvrA2B heterotrimer detects DNA 

damage as distortions of the DNA helix. Interaction of UvrA2B with the lesion 

causes local unwinding (Zou & Van Houten 1999). Homologs of the bacterial 

UvrABCD system are found in H. volcanii and are thought to act in NER 

(Crowley et al 2006, Lestini et al 2010). 

RecJ4 (HVO_2889) 
 

H. volcanii contains four RecJ proteins: RecJ1-RecJ4. RecJ proteins are 5'→3' 

single-stranded DNA exonucleases that play roles in homologous 

recombination, mismatch repair and base excision repair. RecJ, in combination 

with the DNA helicase RecQ, produces ssDNA tails that are required to initiate 

recombination from a double-strand break (Han et al 2006). It is also proposed 

that RecJ is the bacterial and archaeal homologue of the eukaryotic CDC45 

protein, which forms part of the CMG (CDC45, MCM, GINS) complex 

(Makarova et al 2012). 

 

The validity of these interactions will be discussed in further detail in Section 

6.4: Discussion. 
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6.4 Discussion 
 
Development of Methods 
 
Methods developed and employed in this chapter have been used successfully 

to purify proteins expressed natively in H. volcanii, and to investigate in vivo 

protein:protein interactions. 

 

Prior to this study, recombinant proteins expressed in H. volcanii were His6 -

tagged and purified by metal affinity chromatography. However, many 

naturally occurring histidine-rich proteins from H. volcanii co-purify with the 

tagged protein of interest and hinder protein:protein interaction studies. The 

utilisation of a StrepII-tag in combination with a His6-tag has solved this 

problem. The optimal method to purify StrepII-tagged and His6-tagged Hel308 

was via Ni2+ metal affinity chromatography followed by Strep-Tactin 

purification. For Hel308 and other proteins mentioned in this chapter, the 

optimal orientation for tags are an N-terminal His6-tag and C-terminal StrepII-

tag. The use of N-terminal StrepII-tags and C-terminal His6-tags recovered 

little to no protein during purification. 

 

The use of StrepII tags for protein purification in H. volcanii could be 

developed further in the future. If a protein requires tagging at the N-terminus 

only, a tandem His6 and StrepII could be utilised. Currently under development 

by Alexandra Schindl and Thorsten Allers are plasmid constructs containing 

the following N-terminal tags 

MHHHHHHHGTSGWSHPQFEKGGSGWSHPQFEKGGDM (His6 tag 

shown by underlining, StrepII tags shown in bold, linkers shown in uppercase 

only). Two tandem StrepII tags are included in this array to improve the 

affinity and stringency of protein purification. 

 

The tnaA tryptophanase gene was deleted to reduce the degradation of added 

tryptophan during tryptophan-induced gene expression from the tnaA 

promoter, and thereby increase the efficiency of recombinant protein 

production. The development of improved expression strains by the deletion of 
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tnaA was successful, however due to time constraints these strains could not be 

tested for their efficacy in protein purification protocols. Before use, these 

strains should be tested by comparison with strains not deleted for tnaA, to 

measure protein expression at various levels of tryptophan induction (1 mM to 

4.5 mM). Alternatively, the level of induction could be measured by placing a 

reporter gene such as bgaH under control of the tryptophan inducible promoter. 
 
Interaction partners of Hel308 
 
A preliminary protein:protein interaction assay identified five DNA/RNA 

metabolism proteins as possible interaction partners of Hel308: RadA, RpoA1, 

GyrA, UvrA and RecJ4. However, repetition of this assay is urgently required 

to validate these findings. A large amount of flow over can be seen in the 

lysate, pellet, flow-through and wash lanes in the protein pull down gel, 

(Figure 6.9). Many bands in the Elution 1 lane are of comparable molecular 

weights to ones seen in the Wash lane, implying that either the stringency of 

the Strep-Tactin beads is poor or that flow over has occurred between these 

lanes also. Therefore, the likelihood that the proteins identified in bands A, B 

and C are true interaction partners of Hel308 is poor. Additionally, most 

proteins identified in this assay appear to be running at a higher molecular 

weight in figure 6.9. For example the molecular weight of RadA is ~ 37 kDa 

however the band in which radA was identified from was ~ 150-200 kDa, 

indicating that protein identification in this assay may not be reliable. 

Furthermore, RadA, RpoA1, GyrA, UvrA and RecJ4 were only identified by a 

few (2 to 6) peptide sequences, Table 6.2. A high number of peptides and high 

peptide coverage is desirable when confirming protein;protein interaction 

partners using mass spectrometry. 

 

If these interaction partners were confirmed to be true in the future, this would 

have interesting implications for Hel308.  

 

For example, an interaction with RecJ could indicate that Hel308 (a RecQ 

family helicase) could play a similar role to the bacterial RecQ helicase, which 

acts in concert with RecJ 5'-3' exonuclease to generate ssDNA intermediates 

during DNA repair (Morimatsu & Kowalczykowski 2014). In homologous 
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recombination, the ssDNA tails formed by DNA end resection (by RecQ and 

RecJ) are coated with the RecA-family recombinases to generate a 

nucleoprotein filament. Since Hel308 is proposed to have a role in the 

regulation of homologous recombination (possibly through the interaction with 

the recombinase mediator RadB, see Chapter 4; Genetic analysis of hel308) the 

interaction of Hel308 and RecJ places Hel308 in the correct time and place for 

this regulation of homologous recombination to occur.  More interestingly, 

RecJ is proposed to be the archaeal counterpart to the eukaryotic CDC45 

protein within the DNA replication initiation CMG complex (Makarova et al 

2012). Further evidence to support this proposal is that in H. volcanii, RecJ4 

was seen to co-purify with the replication initiation protein Orc1 (Darya 

Ausiannikava, University of Nottingham, personal communication). The 

interaction of Hel308 and RecJ4 places Hel308 at the site of DNA replication.  

 

Furthermore, an interaction with RpoA1 and UvrA could mean that Hel308 

could act during transcription-coupled repair (TCR). TCR is widely described 

in bacteria and eukaryotes but less so in archaea (Deaconescu et al 2006, Eisen 

& Hanawalt 1999, Svejstrup 2002). H. volcanii contains a TCR mechanism 

that is not dependent on UvrA (Stantial et al 2016). During TCR, the RNA 

polymerase arrests upon encountering a DNA lesion, which is then repaired via 

nucleotide excision repair (NER) using the UvrABC complex (Hanawalt & 

Spivak 2008). Since Hel308 is proposed to act as a regulator of recombination, 

Hel308 could act at the site of arrested RNA polymerases during TCR (or with 

UvrA at DNA lesions outside TCR), to promote DNA repair via NER rather 

than by homologous recombination. 

 

6.5 Future Perspectives  
 
What is the role of Hel308? 
 
The preliminary protein:protein interaction assays employed in this study 

indicate the potential to uncover possible protein interaction partners of Hel308 

in the future. 
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To confirm the possible protein interactions in this study, the protein:protein 

interaction assays require repetition with fresh Strep-Tactin Sepharose 

alongside an empty vector control. Only then can more reliable determinations 

of the role of Hel308 be made. 

 

The use of zero length cross-linking agents such as EDC and NHS may also 

aid in the discovery of transient interaction partners of Hel308 (Grabarek & 

Gergely 1990). Protein:protein interaction assays in this study were performed 

under DNA damaging conditions (MMC) and it would be of interest to 

compare these to results obtained under native conditions. 

 

Once confirmed by protein:protein interaction assays, it would be of interest to 

delete the genes encoding these interacting partners on combination with 

hel308, and then determine growth, DNA damage and recombination 

phenotypes as described in Chapter 4: Genetic Characterisation of Hel308. 

This analysis would aid in understanding the role of Hel308 in DNA repair. 

 

6.6 Conclusion 
 

Strains and plasmids have been developed to allow for the overexpression and 

purification of halophilic proteins in H. volcanii. These methods have also been 

adapted for in vivo protein:protein interaction studies. 
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Chapter 7: Phylogenetic and Genetic 
Analysis of hel308b 

 

7.1 Background 
 

In H. volcanii a second hel308 gene is present in addition to the canonical 

hel308, which is described in detail in Chapters 4-6. The second Hel308 

helicase is termed Hel308b, it is 639 amino acids in length (Hel308 is 827 

amino acids in length) and the hel308b gene (HVO_0971) is found at bp 

880821-882740 in the H. volcanii genome. hel308b is a previously unstudied 

gene. 

Duplicates of genes are found in abundance across all three domains of life 

(Zhang 2003). Gene duplication can result from unequal crossing-over, 

retroposition or chromosome/genome duplication.  Unequal crossing-over 

tends to generate tandem gene duplications i.e. duplicated genes that are linked 

on the chromosome and depending on the position of the crossing-over the 

duplicated region can contain part of a gene, an entire gene, or several genes. 

In retroposition, mRNA is retrotranscribed to cDNA and then inserted into the 

genome, this process results in a loss of introns and regulatory sequences and a 

presence of polyA tracts and flanking short direct repeats (Brosius 2003). Due 

to the lack of regulatory elements, genes duplicated in this way tend to become 

pseudogenes. A pseudogene is a DNA sequence derived from a functional gene 

but has been rendered non-functional by accumulation of mutations (Weiner et 

al 1986). The duplicated gene generated by retroposition is usually found to be 

unlinked from the original gene as gene insertion happens at random. 

Chromosomal or genome duplication can when daughter chromosomes 

separate incorrectly following DNA replication.  

Many duplicated genes are lost from the genome, however some duplicated 

genes do become fixed. Since duplication generates functional redundancy, 

eventually mutations will accumulate in one of the gene copies creating a 

pseudogene, which will either, be deleted from the genome or become diverged 
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from the original gene. If the presence of the duplicated gene is beneficial to 

the cell then the gene is fixed. In this scenario the two paralogues will have 

similar sequences and functions, this is termed concerted evolution (Elder & 

Turner 1995). If the presence of extra gene product from the duplication event 

is not advantageous then the two genes with identical functions are unlikely to 

be maintained within the genome (Nowak et al 1997). Here the duplicates will 

be stably maintained if they each adopt differing functions, for example each 

daughter gene could adopt part of the function of the original gene, this is 

called sub-functionalisation (Hughes 1994). Another outcome of gene 

duplication is that the generation of a gene with a novel function, this is called 

neo-functionalisation (Rastogi & Liberles 2005). 

 
It is likely that hel308b was generated from a gene duplication event from the 

parental (canonical) Hel308 within H. volcanii. Gene duplication in the history 

of Hel308 has already been documented, mammalian polQ encodes a DNA 

helicase and a DNA polymerase which show similarity to hel308 and polN 

respectively, it is thought that the similarity of polQ and hel308 arose from a 

ancient duplication event (Marini et al 2003). 

 

7.2 Aims 
 

Very little is currently known about the cellular role of Hel308b in H. volcanii, 

to elucidate the function of Hel308b the following steps were undertaken: 

• Analyse the protein sequence of Hel308b to identify protein structure and 

conserved domains, which may predict the function of the protein. 

• Analyse the phylogenetic lineage of hel308b and its homologs. Examine 

which species it is found in. Also analyse its gene neighbourhood 

location in order to identify any conserved genes located in the vicinity 

of hel308b.  

• Analyse the effect of hel308b deletion on cell growth to determine if it is 

required during normal cellular growth. Examine the effect of hel308b 

deletion on DNA content and cell size, to examine if it has an effect on 
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DNA replication.  

• Since hel308 has characteristic DNA damage phenotypes and 

recombination defects, the role of hel308b in DNA repair using DNA-

damage assays and recombination assays was studied.  Analyse the 

expression pattern of hel308b to determine if it is up-regulated in 

response to DNA-damaging agents.  

• Carry out an analysis of hel308b deletion in combination with hel308 

and analyse the strains for growth rate and DNA-damage sensitivity.  

 

7.3 Results 
 

7.3.1 Phylogenetic analysis of Hel308b 
 

Domain analysis of Hel308b 

The domain structure of Hel308b was analysed by protein sequence alignment 

with Hel308 from H. volcanii and other halophilic archaea. Alignment of the 

Hel308b and Hel308 was carried out in MacVector using ClustalW (Gonnet; 

penalty for open gap = 10; extend gap = 0.2), Figure 7.1. 
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Hel308b shows an overall high level of sequence similarity to Hel308b from 

other halophilic archaeal species as well as to Hel308.  

Domain 1 

Hel308b contains the conserved Walker A and B ATPase motifs, 

GXXXXGKT/S where X can be any residue and DEAD/DEVH respectively. 

Walker A and B motifs have been discussed in further detail in Chapter 5: 

Genetic Analysis of hel308 Point Mutants, Section 5.3.1: K53R Walker A and 

D145N Walker B mutations. The conservation of these motifs suggests that 

Hel308b has the ability to bind and hydrolyse ATP. 

Domain 2 

Hel308b also contains the domain 2 conserved Motifs IV, IVa and IVb, as 

previously discussed in Chapter 5: Genetic Analysis of hel308 Point Mutants, 

Section 5.3.2: Domain 2 mutations F316A, H317G and E330G, these motifs 

make numerous contacts with the the unwound 3' DNA tail as it passages 

through the central pore of the helicase. It is proposed that the position of the 

ratchet helix is modulated by an ATP dependent movement in domain. The 

helicase motifs V and VI  in domain 2 are also conserved in Hel308b,  upon 

binding of the γ-phosphate of ATP a conserved motif VI arginine is thought to 

drive conformational closure of domains 1 and 2 (Buttner et al 2007). The 

conservation of these domain 2 motifs suggests that Hel308b could be a fully 

functioning helicase. 

Domain 3 

Domain 3 shows a high level of conservation between all Hel308b and Hel308 

sequences. This domain houses a non-canonical winged helix (WH) fold, 

comprising four α- and two parallel β- strands. WH domains are known 

binders of nucleic acids, the WH fold in Hel308 may interact with an extended 

lagging strand of branched or forked DNA, WH domains have also been 

implicated in protein-protein interactions (Deng et al 2007, Woodman & Bolt 

2011). Due to high conservation, the WH fold in Hel308b may act in a similar 

way to that of Hel308. 
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Domain 4 

A large stretch of poorly conserved residues is found in domain 4 between all 

Hel308b and Hel308 sequences. Domain 4 been predicted to function as a 

helicase ‘ratchet’, which positions nucleic acids for translocation, this is linked 

to ATPase functions of the RecA folds in domains 1 and 2 (Woodman & Bolt 

2011). 

Domain 5 

The most striking difference between Hel308b and Hel308 from this alignment 

is that Hel308b lacks the C-terminal domain 5, Figure 7.2. Domain 5 is an 

auto-inhibitory domain that couples ATP hydrolysis to DNA unwinding, after 

emerging from the central pore of Hel308 the 3' tail of unwound DNA binds a 

helix-link-helix (HLH) structure that contains a RXRAR motif in domain 5 via 

the phosphate-sugar backbone. The arginine residues in the RXRAR motif are 

cruicial to coordinating DNA binding to the rate of ATP hydrolysis and 

helicase unwinding (Richards et al 2008, Woodman et al 2007).  The lack of 

domain 5 and the RXRAR motif suggests that Hel308b could have defects in 

DNA binding and therefore modulating ATP hydrolysis and helicase 

unwinding. Further details of the function of domain 5 can be found in Chapter 

Chapter 5: Genetic Analysis of hel308 Point Mutants, Section 5.3.4: Domain 5 

mutation R743A. 

Figure 7.2: Domain structure of Hel308 and Hel308b. Hel308b has a highly similar domain 
structure to Hel308, however Hel308b lacks the ‘auto-inhibitory’ domain 5. Numbers indicate 
domains. 

 

In order to further analyse Hel308b, Phyre2 was used to predict 3D structure 

(Kelley et al 2015). Phyre2 uses PSI-BLAST to analyse sequences, this 

alignment is then compared to alignments generated from database of known 

3D structures. This technique is able to predict 3D structure based on remote 
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homology, Figure 7.3. The overall structure of Hel308b shows conservation to 

domains 1-4 of Hel308. Consistent with the multiple sequence alignment of 

Hel308b and Hel308, Figure 7.1 a degree of structural disorder can be seen in 

domain 4 of Hel308b when compared to Hel308. 

 

Figure 7.3: Predicted structure of Hel308 and Hel308b from H. volcanii. Structures 
predicted using Phyre2 (Kelley et al 2015). The overall arrangement of domains 1-4 in 
Hel308b is similar to Hel308. 
 

In order to determine if the lack of domain 5 in Hel308b is genuine or due to a 

mis-annotation in the genome of H. volcanii, the genomic sequence following 

the stop codon of Hel308b was analysed Figure 7.4.  

 

Hel308                                                 Hel308b

Domain 1                    Domain 1                    

Domain 2                    Domain 2                    

Domain 3                    Domain 3                    

Domain 4                    
Domain 4                    

Domain 5                    
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Figure 7.4: hel308b genome location. (A) Genome location of hel308b, showing downstream 
gene rbcL and 128 bp intergenic region. (B) hel308b- rbcL intergenic region, Stop codon of 
hel308b (TGA) shown in orange and start codon of rbcL (ATG) shown in blue. Intergenic 
region was translated in silico using the ExPASy Translate tool (Gasteiger et al 2003) and 
aligned to domain 5 of H. volcanii. 

 

On the genome of H. volcanii a 128 bp intergenic region can be seen after the 

stop codon of hel308b and before the start codon of rbcL (ribulose 

bisphosphate carboxylase). Domain 5 of H. volcanii is 104 amino acids in 

length, which equates to around 312 nt of gene sequence.  The nucleotide 

sequence of the intergenic region was taken and translated in silico using the 

ExPASy Translate tool (Gasteiger et al 2003) and aligned to Hel308 domain 5 

of H. volcanii, carried out in MacVector using ClustalW (Gonnet; penalty for 

open gap = 10; extend gap = 0.2), Figure 7.4B. Very limited alignment is seen 

between the translated Hel308b – RbcL intergenic region and domain 5 of 

Hel308 and the intergenic region is too short to contain domain 5, indicating 

that the genome annotation is correct and Hel308b does not have a domain 5. 

Distribution of hel308b 
 
In order to determine the distribution of Hel308b, a BLAST search was carried 

out using the protein sequence from H. volcanii (Hel308b UniProt accession 

number: D4GV78). Hel308b is only found in the archaea and more specifically 

only in a small group of five closely related haloarchaeal species: Haloferax 

volcanii, Haloferax mediterranei, Halorubrum lacusprofundi, Haloquadratum 

walsbyi and Halogeometricum borinquense, Figure 7.5. 
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A phylogenetic tree of Hel308 and Hel308b shows that Hel308b most likely 

arose out of an ancestral gene duplication event in the Halobacteriales (Figure 

7.6). 
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Neighbourhood analysis of hel308b 
 
hel308b (Hvo_0971) is found at position 880821-882740 on the genome of 

Haloferax volcanii. hel308b is not found in the vicinity of hel308 (Hvo_0014) 

which has a location of 12388-14871 on the genome. 

A gene neighbourhood analysis was carried out in order to predict the potential 

gene function of hel038b. Tight gene linkages often indicate that proteins 

function in the same pathway (Gabaldon & Huynen 2004, Korbel et al 2004, 

Wolf et al 2001). 

Genes located 5 upstream and 5 downstream of hel308b were identified for the 

five halophilic species in which hel308b is present; Haloferax volcanii, 

Haloferax mediterranei Halorubrum lacusprofundi, Haloquadratum walsbyi 

and Halogeometricum borinquense, Figure 7.7. Halophiles are known to 

undergo a large amount of lateral gene transfer between species and between 

non-halophiles. Therefore, tightly associated gene linkage is more likely to be 

functionally relevant in halophiles compared to other species (Rhodes et al 

2011). 
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A number of conserved genes were found to be in the vicinity of hel308b in the 

species Haloferax volcanii, Haloferax mediterranei, Haloquadratum walsbyi 

and Halogeometricum borinquense.  These are aspartate aminotransferase 

(aspC3), riboflavin synthase (ribH), mannosyltransferase, ribose 1,5 

bisphosphate isomerase, ribulose 1,5 bisphosphate carboxylase (rbcL), NADH 

dehydrogenase (nuoD), ribonucleotide synthase (purK) and thioredoxin 

(trxA3). However, no conserved genes are found around hel308b in 

Halorubrum lacusprofundi. 

 

aspC3-aspartate aminotransferase 

Aspartate aminotransferase (AspC) is a multifunctional enzyme that catalyzes 

the synthesis of aspartate and the aromatic amino acids phenylalanine and 

tyrosine. AspC is catalytically active as a dimer (Fotheringham et al 1986, 

Gelfand & Steinberg 1977).  

ribH-riboflavin synthase 

Riboflavin synthase (ribH) also known as lumazine synthase in Bacillus 

subtilis is involved catalysing the conversion of GTP and ribulose-5-phosphate 

to riboflavin (Mack et al 1998, Ritsert et al 1995). Riboflavin synthase from 

Schizosaccharomyces pombe monomeric in the crystal structure (Gerhardt et al 

2002). Riboflavin is part of the vitamin B group. It is the central component of 

the coenzyme flavin adenine dinucleotide (FAD) and flavin mononucleotide 

(FMN). FAD and FMN are electron carriers in a many redox reactions in 

various metabolic pathways (Oprian & Coon 1982) 

Mannosyltransferase 

Mannosyltransferases are involved in mannan biosynthesis, mannans are 

polysaccharides consisting of mannose units and are a key component in the 

yeast cell wall  (Hall et al 2013, Hawkins 1973) 

ribose 1,5 bisphosphate isomerase 

In the archaea, ribulose-1,5-bisphosphate isomerase is involved in providing a 
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substrate for  ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) 

through an isomerization reaction for adenosine 5′-monophosphate (AMP) 

metabolism (Nakamura et al 2012, Sato et al 2007). 

rbcL-ribulose 1,5 bisphosphate carboxylase 

In archaea, rbcL is the ribulose-1,5-bisphosphate carboxylase-oxygenase 

(RuBisCO) which acts in the final step of AMP metabolism. In this step 

RuBisCO catalyzes the conversion of ribulose 1,5-bisphosphate CO2, and H2O 

to two molecules of 3-phosphoglycerate (3-PGA), which is an intermediate of 

central sugar metabolism. Genome sequences indicate that this pathway is 

distributed broadly among the Archaea, including all members of the 

Thermococcales, Archaeoglobales, Methanomicrobiales, Methanosarcinales 
Halobacteriales, Methanococcales, Desulfurococcales, and Thermoproteales. 

At the present, this pathway seems to be confined to the Archaea, since a 

complete set of genes cannot be found in any of the genomes of the Bacteria 

and Eucarya (Aono et al 2012). 

nuoD-NADH dehydrogenase 

In Escherichia coli, a 14 subunit complex (Complex 1) containing nuoD is 

responsible for coupling the oxidation of NADH to the generation of a proton 

motive force in the first enzyme complex of the respiratory chain (Falk-

Krzesinski & Wolfe 1998). NuoD is involved quinone binding in complex I 

(Sinha et al 2015) 

purK-ribonucleotide synthase  

In prokaryotes, purK is one of the 12 enzymes that are involved in the 

biosynthesis of purine (Li et al 1999). purK is a member of the ATP-grasp 

enzymes that contain an atypical ATP-binding site (Fawaz et al 2011). purK 
catalyses the ATP dependent conversion of 5-aminoimidazole ribonucleotide 

(AIR) and HCO3 to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) 

(Thoden et al 1999). 
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trxA3-thioredoxin 

Thioredoxin is a disulfide oxido-reductase that catalyses a wide spectrum of 

redox reactions in the cell and is involved in the oxidative stress response in 

Lactobacillus casei. It is thought that trxA3 is partly involved in maintaining 

the balance of cellular thiol and disulfide levels (Serata et al 2012).  

Many of the conserved genes located in the neighbourhood hel308b are 

involved in biosynthesis of small molecules such as aspartate, aromatic amino 

acids, riboflavin, mannans, AMP and purine. Other conserved genes found in 

this neighborhood are involved in redox reactions as part of multisubunit 

enzymatic complexes such as nuoD and trxA3. This analysis suggests that 

hel308b could play a role in the regulation of small molecule metabolism or 

redox reactions within the cell. Alternatively (more likely), the presence of 

hel308b in this genome neighbourhood could be an accident of evolutionary 

history and without functional significance. 

 

7.3.2 Expression of hel308b 
 
Analysis of hel308b transcript levels 

Expression of genes involved in DNA repair can be constitutive, or up-

regulated in response to DNA-damaging agents. Expression of hel308b has not 

previously been studied, expression was measured following treatment with 

UV and mitomycin C (MMC), and these agents induce ss/dsDNA breaks and 

inter-strand crosslinking respectively.  

Strains were grown to mid-exponential phase and either UV irradiated at 20 

J/m2 or incubated for 1 hour with 2 μg/ml MMC. Samples with no UV 

irradiation or MMC treatment were used as a control. This level of UV 

irradiation and MMC exposure results in a small amount of cell death. 

Following treatment, cells were resuspended in fresh growth media and 

allowed to recover. RNA was extracted and DNase treated to remove any 

contaminating DNA. End-point RT-PCR (reverse transcriptase PCR) was used 

to measure transcript levels of hel308b using the primers Hel308b and 
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Hel308bRTR which gives a product size of 297 bp. As a control, expression of 

rpoA (RNA polymerase subunit A) was analysed, as transcript levels of this 

gene do not change depending on the growth phase of the cell (Tom Batstone, 

University of Nottingham, personal communication). rpoA expression levels 

were analysed using the primers rpoARTR and rpoARTF (product size 328 

bp). Results are shown in Figure 7.8.   

 

 

Figure 7.8: RT-PCRs showing expression levels of hel308b and rpoA (control). (A) 
Expression following treatment with 20 J/M2 UV-irradiation. hel308b expression does not 
change. (B) Expression following treatment with 2 μg/ml MMC. hel308b expression does not 
change. In all cases, ‘-’ indicates no UV or MMC treatment, and ‘+’ indicates treatment with 
UV or MMC. 

 

This preliminary data shows that hel308b is indeed expressed. This 

demonstrates that although the existence of hel308b is probably due to a 

historical gene duplication event of hel308 in halophilic archaea, hel308b has 

not lost its gene expression and therefore is likely not to be a pseudogene. No 

difference in the expression of hel308b was seen following treatment with UV-

irradiation. A small reduction in expression can be seen following treatment 

with MMC, Indicating that hel308b could have some function in the repair of 

DNA crosslinks.  

rpoA expression was used as a control for RT-PCRs as transcript levels of this 

gene do not change depending on the growth phase of the cell (Tom Batstone, 

University of Nottingham, personal communication). Results show that this 

control is not suitable for treatment with MMC, as the expression level of rpoA 

is drastically reduced following treatment. 
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7.3.3 Genetic Analysis of ∆hel308b 
 

A genetic analysis of hel308b was carried out. In order to determine whether 

hel308b was essential for cell viability, it was deleted from the genome of H26 

to generate the strain H1843 (See Chapter 3: Plasmid and Strain Construction 

Section: 3.2.2.2) Strains deleted for hel308b are viable; the deletion was 

confirmed by colony hybridisation, Southern blot and PCR. 

 

Growth Rate 

The growth rate of H1843 (∆hel308b) was qualitatively compared to that of 

H26 (hel308b+) by streaking onto complete media, Figure 7.9. 

 

 

Figure 7.9: Growth of a strain deleted for hel308b. H1843 (∆hel308b) has no observable 
growth defect compared to wild type H26 ( hel308b+).  

 

No difference in growth can be seen between H1843 (∆hel308b) and wild type 

H26 (hel308b+). Strains with similar growth rates cannot be distinguished by 

this qualitative method, and for this reason growth assays in liquid culture were 

performed, Figure 7.10. The method for this assay has been described 

previously, Chapter 4: Genetic Analysis of hel308, Section: 4.3.2.2: Deletion in 

combination with radB. 
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H1843 (∆hel308b) has a growth similar to wild type H26 (hel308b+) with 

generation times of 2.0 hours and 2.1 hours respectively. This suggests that 

hel308b is not essential for cell viability. 

 

Survival Following Treatment with DNA-damaging Agents 

 

Since hel308 deleted strains are known to have a DNA damage phenotype after 

treatment with the DNA damaging agent MMC and the expression of hel308b 

was seen to decrease slightly after treatment with MMC, it was of interest to 

determine the survival of H1843 (∆hel308b) after treatment with UV 

irradiation and MMC, Figure 7.11. These agents induce ss/dsDNA breaks and 

inter-strand crosslinking respectively, the method for these assays have been 

described previously Chapter 4: Genetic Analysis of hel308, Section: 4.3.2.2: 

Deletion in combination with radB. 
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Figure 7.10: Exponential growth rate of a strain deleted for hel308b. Growth was 
measured by A600. Generation time is indicated at the side of the strain name. H1843 
(∆hel308b) has a generation time similar to wild type H26 (hel308b+). Graph plotted on 
a log2 scale. 3 repeats were carried out for each strain. Generation time calculated from 
linear growth phase. All strains and repeats were incubated on the same 48 well plate and 
measured simultaneously using an Epoch 2 Microplate Spectrophotometer (BioTek). 
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Figure 7.11: Survival frequency of a strain deleted hel308b following treatment with DNA-
damaging agents. (A) Survival following treatment with UV irradiation. No diference in 
survival can be seen between H1843 (∆hel308b) and wild type H26 (hel308b+). (B) Survival 
following treatment with MMC.  No diference in survival can be seen between H1843 
(∆hel308b) and wild type H26 (hel308b+). Survival fraction is calculated relative to un-treated 
control. Each data point is generated as an average of at least 3 independent trials. Standard 
error is shown. 

 

Following treatment with UV irradiation or MMC H1843 (∆hel308b)  has no 

significant difference in survival compared to wild type H26 (hel308b+), (P-

values > 0.05, calculated from a two-tailed t-test). Indicating that hel308b has 

no involvement in the repair of DNA breaks or DNA crosslinks. 
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DNA Content and Cell Size 

In order to determine the effect of a hel308b deletion on DNA content and cell 

size, flow cytometry was used, Figure 7.12. 

 

 

Figure 7.12: Flow cytometry analysis of a strain deleted for hel308b. Profiles show cell size 

vs DNA content. The profile for H1843 (∆hel308b) is identicle to wild type H26 (hel308b+). 

 

No difference in the cell size vs DNA content profile for H1843 (∆hel308b) 

can be seen compared to wild type H26 (hel308b+). This indicates that the 

presence or absence of hel308b has no effect on DNA replication or cellular 

segregation. 

 

Recombination Frequency 

Since Hel308 has been suggested to play a role in the regulation of 

homologous recombination (Chapter 4: Genetic Analysis of hel308, Section: 

4.3.2.2: Deletion in combination with radB) it was of interest to analyse the 

recombination frequency of hel308b. The method for this assay has been 

described previously; ∆hel308 has been included for comparason, Table 7.1. 

 

Cell Size Cell Size

D
N

A 
Co

nt
en

t

D
N

A 
Co

nt
en

t

H26 
hel308b+

H1843
∆hel308b



 Chapter 7: Phylogenetic and Genetic Analysis of hel308b  
 

 273 

Table 7.1: Recombination frequency of a ∆hel308b strain. 

Strain H164 H2117 H2007 

hel308b+ ∆hel308 ∆hel308b 

Recombination 
Frequency (RF) 

4.94×10-5 

(+/- 3.01×10-5) 
3.23×10-5 

(+/- 1.17×10-5) 
7.52×10-6 

(+/- 6.2352×10-7) 

Transformation 
Efficiency (TE) 

1.07×10-5 
(+/- 3.25×10-6) 

3.00×10-5 
(+/- 0.00) 

1.25×10-5 
(+/- 5.26×10-6) 

Relative recombination 
frequency (normalised 
by TE) 

4.62×100 1.08×100 6.02×10-1 

1× 0.23× 0.13× 
Crossover fraction 13.49% 

(126) 
8.75% 
(120) 

6.67% 
(120) 

Non-crossover fraction 86.51% 
(126) 

91.25% 
(120) 

93.33% 
(120) 

Values in bold indicate the amount of recombination, crossover or non-crossover events 
compared to wild-type H164 (hel308b+). Values are generated as an average of at least 3 
independent trials, +/- standard error is shown in brackets. Cells are shaded blue to indicate 
recombination defect and red to indicate hyper-recombination. Fraction of crossover and non-
crossover events represented as a percentage, cells are shaded where values differ significantly 
from the wild type (P =0.05), blue indicates a decrease, red indicates an increase. Number of 
colonies assayed for crossover and non-crossover is indicated in brackets underneeth the 
percentages. 

 

 
H2007 (∆hel308b) shows a low recombination frequency of 0.13× that of wild 

type H164 (hel308b+), this is lower than that of H2117 (∆hel308), which has a 

recombination frequency of 0.23×. Crossover and non-crossover events were 

observed to be significantly different to wild type (with two degrees of 

freedom with a chi-squared test) at 6.67% and 93.33% that of wild type 

respectively. These results suggest that hel308b may play a role in the 

regulation of homologous recombination. 

 

7.3.4 Genetic Interactions of Hel308b 
 

Since ∆hel308b like ∆hel308 shows a recombination defect, it was of interest 

to investigate if hel308b and hel308 acted in related pathways for DNA repair 

and regulation of homologous recombination. In order to study this, the strain 

H2488 (∆hel308b ∆hel308) was generated. Strains deleted for hel308b and 

hel308 are viable; the deletion was confirmed by colony hybridisation, 

Southern blot and PCR. For strain construction see Chapter 3: Plasmid and 
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Strain Construction, Section 3.2.2.2: Generation of deletion strains for 

Chapter 7. 

 

Growth Rate 

In order to compare the growth rate of H2488 (∆hel308b ∆hel308) with H1843 

(∆hel308b hel308+) and H1391 (∆hel308) strains were streaked onto solid 

media along side wild type H26 (hel308b+ hel308+), Figure 7.13. 

 

 

 

 

 

  

Figure 

7.13: 
Growth of a strain deleted for hel308b and hel308. H2488 (∆hel308b ∆hel308) has no 
observable growth defect compared to H1843 (∆hel308b), H1391 (∆hel308) and wild type H26 
(hel308b+).  

 

No difference in growth was observed between H2488 (∆hel308b ∆hel308) has 

no observable growth defect compared to H1843 (∆hel308b), H1391 (∆hel308) 

and wild type H26 (hel308b+ hel308+). Indicating that ∆hel308b and ∆hel308 

are not synthetically lethal. 

Strains with similar growth rates cannot be distinguished by this qualitative 

method, and for this reason growth assays in liquid culture were performed, 

Figure 7.14. The method for this assay has been described previously. 
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H1843 (∆hel308b hel308+) has a growth similar to wild type H26 (hel308b+ 

hel308+) with generation times of 2.0 hours and 2.1 hours respectively. 

However, in contrast to growth rates seen on solid media H2488 (∆hel308b 

∆hel308) has a generation time slower than that of H1391 (∆hel308 hel308b+) 

suggesting that hel308b and hel308 could have a synthetic lethality. 

 

Survival Following Treatment with DNA-damaging Agents 

 

Strains deleted for hel308b do not have a sensitivity to treatment with MMC, 

however they have a slight increase in survival rate after treatment with high 

doses of UV. By constrast, hel308 characteristically shows a sensitivity to 

MMC treatment but no sensitivity after UV irradiation. Given the differences 
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Figure 7.14: Exponential growth rate of strains deleted for hel308b and/or hel308. 
Growth was measured by A600. Generation time is indicated at the side of the strain name. 
H1843 (∆hel308b hel308+) has a generation time similar to wild type H26 (hel308b 
hel308+). Whereas H2488 (∆hel308b ∆hel308) has a generation time longer than H1391 
(∆hel308 hel308b+). Graph plotted on a log2 scale. 3 repeats were carried out for each strain. 
Generation time calculated from linear growth phase. All strains and repeats were incubated 
on the same 48 well plate and measured simultaneously using an Epoch 2 Microplate 
Spectrophotometer (BioTek). 
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in survival, it would be of interest to determine the survival of H2488 

(∆hel308b ∆hel308) after treatment with DNA damaging agents, Figure 7.15. 

 

 

Figure 7.15: Survival frequency of a strains deleted hel308b and hel308 following 
treatment with DNA-damaging agents. (A) Survival following treatment with UV 
irradiation. H2488 (∆hel308b ∆hel308) has growth comparable to H1391 (∆hel308) and wild 
type H26 (hel308b+ hel308+). (B) Survival following treatment with MMC.  H2488 (∆hel308b 
∆hel308) has growth comparable to H1391 (∆hel308). Survival fraction is calculated relative 
to un-treated control. Each data point is generated as an average of at least 3 independent trials. 
Standard error is shown. Asterisk (*) indicates that the highest dose of UV (180 J/m2) or MMC 
(0.02 µg/ml) is significantly different to H26 (wild type) with P < 0.05. P-value calculated 
from two-tailed t-test in mutated strains compared to H26 (wild-type). 

 

H2488 (∆hel308b ∆hel308) shows a level of survival the same as H1391 

(∆hel308), H1843 (∆hel308b) and wild type H26 (hel308b+ hel308+) 

following treatment with UV-irradiation. No significant difference is observed 

between these strains (P-values > 0.05, calculated from a two-tailed t-tests). 

After MMC treatment H2488 (∆hel308b ∆hel308) shows a significant 

reduction in survival compared to wild type (P-value < 0.05, calculated from a 

two-tailed t-test). However, the survival shows no significant difference 

compared to H1391 (∆hel308) (P-values > 0.05, calculated from a two-tailed t-
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test) suggesting that hel308b does not play a role in the repair of MMC induced 

DNA crosslinks in the presence or absence of hel308. 

 

DNA Content and Cell Size 

The cell size vs DNA content profile for H1843 (∆hel308b) is no different to 

wild type, however the profile for H1391 (∆hel308 hel308b+) shows an 

increased cell size and DNA content (Chapter 4: Genetic Analysis of hel308, 

Section: 4.3.2.2: Deletion in combination with radB). Due to these different 

profiles it is of interest to analyse the profile of H2488 (∆hel308b ∆hel308), 

Figure 7.16. 

 

Figure 7.16: Flow cytometry analysis of strains deleted for hel308b and hel308. Profiles 

show cell size vs DNA content. The profile for H1843 (∆hel308b) is identicle to wild type H26 

(hel308b+), H1391 (∆hel308 hel308b+) has higher cell sizes and DNA content compared to 

wild type and H2488 (∆hel308b ∆hel308) has higher DNA content still. 

 

The cell size vs DNA content profile of H2488 (∆hel308b ∆hel308) is more 

scattered  than that of H1391 (∆hel308 hel308b+) with a higher proportion of 

larger cell sizes and DNA content. This suggests that a hel308b hel308 double 

deletion causes DNA replication and cell segregation defects that are worse 

than those seen in a ∆hel308 mutant. 

Recombination Frequency 

Since ∆hel308b and ∆hel308 display severe recombination defects, it was of interest 

to analyse the recombination frequency of hel308b and it was of interest to 

analyse the recombination frequencey of hel308 double deletion, Table 7.2. 
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Table 7.2: Recombination frequency of ∆hel308b and ∆hel308 strains. 

Strain H164 H2117 H2007 H2643* 

hel308b+ 
hel308+ 

∆hel308 ∆hel308b ∆hel308b 
∆hel308 

Recombination 
Frequency (RF) 

4.94×10-5 

(+/- 3.01×10-5) 
3.23×10-5 

(+/- 1.17×10-5) 
7.52×10-6 

(+/- 6.2352×10-7) 
2.37×10-6 

(+/- 3.17×10-6) 
Transformation 
Efficiency (TE) 

1.07×10-5 
(+/- 3.25×10-6) 

3.00×10-5 
(+/- 0.00) 

1.25×10-5 
(+/- 5.26×10-6) 

7.74×10-5 
(+/- 2.97×10-5) 

Normalised 
Recombination 
Frequency (RF/TE) 

4.62×100 1.08×100 6.02×10-1 1.87×10-2 

1× 0.23× 0.13× 0.04× 
Crossover fraction 13.49% 

(126) 
8.75% 
(120) 

6.67% 
(120) 

8.75% 
(80) 

Non-crossover 
fraction 

86.51% 
(126) 

91.25% 
(120) 

93.33% 
(120) 

91.25% 
(80) 

*Recombination assay for this strain performed by Charlie Wickham-Smith (Doctoral Training 
Program rotation student) under my supervision. 

Values in bold indicate the amount of recombination, crossover or non-crossover events 
compared to wild-type H164 (hel308b+). Values are generated as an average of at least 3 
independent trials, +/- standard error is shown in brackets. Cells are shaded blue to indicate 
recombination defect and red to indicate hyper-recombination. Fraction of crossover and non-
crossover events represented as a percentage, cells are shaded where values differ significantly 
from the wild type (P =0.05), blue indicates a decrease, red indicates an increase. Number of 
colonies assayed for crossover and non-crossover is indicated in brackets underneeth the 
percentages. 

 

H2643 (∆hel308b ∆hel308) has a severe recombination defect with a 

recombination frequency of 0.04 times that of wild type H164 (hel308b+ 

hel308+). This defect is worse than those seen with individual hel308b or 

hel308 deletions, which have recombination frequencies of 0.13× and 0.23× 

that of wild type respectively. This result suggests that hel308b and hel308 

have a synthetic defect with regards to the regulation of homologous 

recombination. However, the crossover and non-crossover fractions of the 

∆hel308b ∆hel308 strain is not significantly different to wild type (with two 

degrees of freedom with a chi-squared test). 
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7.4 Discussion  

Hel308b is not essential in H. volcanii; strains deleted for hel308b are viable 

and have growth phenotypes comparable to wild type strains. Double deletions 

of hel308b and hel308 are also possible, and exhibit growth phenotypes no 

worse than strains deleted for hel308 only. 

By RT-PCR analysis it was confirmed that hel308b is constitutively expressed 

under both native and DNA damaging conditions, suggesting that the gene 

product of hel308b has a potential role in the cell and therefore is not a 

pseudogene.  

Structure of Hel308b 

Hel308b consists of four domains (domains 1-4) that show high sequence and 

structural homology to the canonical Hel308. However, the most notable 

difference between these two helicases is the absence of domain 5 in Hel308b, 

which is present in Hel308.  

Domain 5 is proposed to be an auto-inhibitory domain in Hel308 that couples 

the hydrolysis of ATP to the unwinding of DNA using a conserved RXRAR 

motif. Mutations in Hel308 from Methanothermobacter thermautotrophicus 

have shown that the RXRAR motif (where X can be any residue) to be critical 

in the regulation of Hel308 helicase activity.  Mutations in the first arginine 

result in increased ATPase activity, suggesting that the normal role of this 

amino acid is to restrain ATP hydrolysis until DNA is correctly engaged. 

Mutation of the central arginine leads to DNA binding defects and reduced 

DNA-stimulated ATP hydrolysis. By contrast, mutations in the final arginine 

completely abolish helicase actvity of Hel308 in vitro (Woodman & Bolt 2011, 

Woodman et al 2007). However, Hel308b lacks domain 5 entirely and 

therefore does not contain the RXRAR motif. This strongly suggests that 

Hel308b is unable to couple the hydrolysis of ATP to DNA binding and 

helicase-mediated unwinding.  This could either mean that Hel308b is unable 

to function as a helicase, or that the helicase action of Hel308b is not regulated 

by an autoinhibitory mechanism. Since Hel308b lacks domain 5 and mutations 
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in the RXRAR motif of Hel308 can lead to the total loss of helicase activity, 

this suggests that Hel308b may not function as a helicase at all. 

A crystal structure of the canonical Hel308 from A. fulgidus in complex with 

unwound DNA shows that the 3' tail of unwound DNA emerges from the 

central pore of the helicase and binds a helix-l-helix (HLH) structure in domain 

5 via the phosphate-sugar backbone (Buttner et al 2007). The preferred 

substrate for Hel308 is a branched DNA structure and it is thought that this 

interaction is crucial for Hel308 to recognise replication fork structures 

(Fujikane et al 2005, Guy & Bolt 2005). The lack of domain 5 and therefore 

the HLH structure from Hel308b suggests that Hel308b is unable to recognise 

specific DNA substrates, in particular branched and replication fork-like 

structures. This potential lack of replication fork-like substrate -specificty 

suggests that Hel308b may play a different role in the cell to that of Hel308. 

Distribution of hel308b 

The hel308b gene is only found in five closely-related halophilic euryarchaeal 

species:	   Haloferax volcanii, Haloferax mediterranei Halorubrum 

lacusprofundi, Haloquadratum walsbyi and Halogeometricum borinquense. 

The presence of Hel308b in only closely-related species suggests that a gene 

duplication event of hel308 is likely to have occurred in a common ancestor to 

these species rather than hel308b arising through lateral gene transfer. If 

hel308b arose through lateral gene transfer, then it would be present in a wider 

range of species. 

hel308b is Found in a Semi-conserved Gene Cluster 

Genes that are found in conserved neighbourhoods tend to have related or co-

operative functions within the cell (Rhodes et al 2011). The relationship of 

genes found within gene clusters has previously been documented within H. 

volcanii. A phylogenetic study in H. volcanii and other archaea identified that 

the recombinase mediator radB is often found within a gene neighbourhood 

alongside the genes rcrA (Hvo_2384), cdc48 (Hvo_2380) and genes coding for 

two hypothetical proteins, ndnR (Hvo_2382) and hrp (Hvo_2381) (Wardell 

2013). All the identified genes in this neighborhood code for proteins involved 
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in DNA metabolism or protein turnover. This study also determined that RadB 

and RcrA physically interact. Furthermore, the putative resolvase NdnR is 

essential in a radB+ background, suggesting the interrelatedness of the two 

genes within this cluster. 

In all species in which hel308b is present (apart from Halorubrum 

lacusprofundi), it is found in a loosely-conserved neighbourhood containing 

genes involved in the biosynthesis of small molecules such as aspartate, 

aromatic amino acids, riboflavin, mannans, AMP and purine. Other conserved 

genes found in this neighborhood are involved in redox reactions as part of 

multi-subunit enzymatic complexes such as nuoD and trxA3. Since the gene 

cluster shown in Figure 7.7 is not particularly conserved across all 5 

haloarchaeal species and the conserved genes within this cluster do not share 

related functions, it is unlikely that the gene neighbourhood of hel308b can 

give insight into its function. It is more likely that the presence of hel308b 

within this gene neighbourhood is coincidental. For example, after a gene 

duplication event in the ancestor of the five haloarchaea, the hel308b gene 

might have been stable in this position and therefore persisted. 

 

Hel308b is not Involved in Interstrand Crosslink Repair 

Unlike ∆hel308 mutants, strains deleted for hel308b are not sensitive to DNA 

interstrand crosslinking agents such as MMC. This indicates that Hel308b does 

not play a role in the repair of DNA crosslinks and therefore suggests that the 

role of Hel308b within the cell is different to that of Hel308. 

Hel308b as a Putative Regulator of Homologous Recombination? 

A striking result of this study is the recombination defect observed upon the 

deletion of hel308b from H. volcanii. A hel308b deletion strain exhibits a 

recombination frequency of 0.13 times that of wild type. For reference, hel308 

deletion results in a recombination frequency of 0.23 times that of wild type. 

This significant reduction in recombination frequency suggests a role for 

Hel308b in the regulation and perhaps the promotion of homologous 

recombination in the cell.  
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Since Hel308b lacks domain 5 (which links ATP hydrolysis to helicase 

function), this observation suggests that the regulatory role of Hel308b and 

therefore Hel308 within homologous recombination could be independent of 

helicase function or unwinding.  Furthermore, since a hel308b deleted strain is 

able to elicit a recombination defect, it suggests that the region of Hel308 that 

is essential for recombination regulation resides in domains 1-4. 

Lastly, a double deletion of hel308b and hel308 results in a recombination 

defect that is more severe than either of the singly-deleted strains, with a 

recombination frequency of 0.04 times that of wild type. The crossover fraction 

of the hel308b deleted strain is significantly decreased and the non-crossover 

fraction is significantly increased compared to wild type. However a 

∆hel308b∆hel308 strain has crossover and non-crossover fractions comparable 

to wild type. The synthetic defect and differences in crossover and non-

crossover fractions suggests that Hel308b and Hel308 act in separate pathways 

or at different points to regulate homologous recombination. 

7.5 Future perspectives 

Due to time constraints, a full genetic and biochemical characterisation of 

Hel308b was not possible. Many questions about the function and role of 

Hel308b within the cell remain, and future study should aid in the deeper 

understanding of Hel308b. 

How does Hel308b function? 

Since Hel308b lacks domain 5 and is therefore missing essential regulatory 

motifs that are key to helicase function, an important question to ask is whether 

Hel308b has helicase activity? 

Biochemical analysis will be able to answer this question. Hel308b is only 

found in halophiles and halophilic proteins are unstable in low salt conditions, 

therefore routine helicase assays will need to be adapted to high salt conditions. 

Protocols for the expression and purification of halophilic proteins in H. 

volcanii is described in detail in Chapter 6: in vitro Analysis of Hel308. 

Helicase assays such as those described for Hel308 from 



 Chapter 7: Phylogenetic and Genetic Analysis of hel308b  
 

 283 

Methanothermobacter thermautotrophicus (Guy & Bolt 2005, Woodman et al 

2007) will not only determine whether Hel308b is a helicase but its polarity 

and any substrate preferences. 

Since Hel308b lacks domain 5, which is a key domain in the regulation of ATP 

hydrolysis, it will be interesting to determine if there are differences in ATPase 

activity between Hel308 and Hel308b. Simple colorimetric ATPase assays 

using malachite green will be able to determine the ATP turnover of each 

helicase. Malachite green molybdate interacts with free orthophosphate 

liberated during ATP hydrolysis to result in a yellow-to-green colour change, 

which can be measured at 620-640 nm (Feng et al 2011). 

In which pathway does Hel308b act? 

Revealing the protein:protein interactions of Hel308b will give an insight into 

which pathway it acts. Protein:protein interactions as determined by protein 

pull-down assays and mass spectrometry are described in Chapter 6: in vitro 

Analysis of Hel308. Interaction partners revealed using pull-down assays 

would be candidates for deletion in combination with hel308b. 

Complementation of biochemical findings with genetic characterisation will 

improve an understanding of the role of Hel308b in H. volcanii. 

Because a striking recombination defect was seen in strains deleted for 

hel308b, it would be interesting to determine which growth, DNA damage 

repair and recombination defects are exhibited by strains deleted for hel308b 

and/or hel308 in combination with the recombinase and recombination 

mediator radA and radB respectively. The phenotypes that are observed in 

these strains will give a better understanding of the roles that Hel308b and 

Hel308 play in the regulation of homologous recombination in H. volcanii. 

7.6 Conclusion 

Hel308b is the previously unstudied second Hel308 helicase found in H. 

volcanii. Structural analysis has determined that Hel308b lacks the domain 5 

found in canonical Hel308 helicases, which is critical for coupling ATP 

hydrolysis to helicase function. hel308b is not essential and double hel308b 
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and hel308 deletions are viable and do not exhibit growth defects. However, 

hel308b and double hel308b and hel308 deletions show striking recombination 

defects, suggesting a role for Hel308b in the regulation of homologous 

recombination. 
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 Chapter 8: Novel Haloviral DNA Processing 
Enzymes for the use in Nanopore DNA 

Sequencing Technologies 
 
 

As part of a BBSRC-CASE studentship, the work carried out in this chapter 

was completed in collaboration with the industrial partner Oxford Nanopore 

Technologies. 

 

8.1 Background 
 

8.1.1 Haloviruses 
 

In this study the term “halovirus’’ will be used to describe viruses found in 

hypersaline systems, including bacterial, archaeal, and eukaryotic viruses. 

 

Viruses are the most abundant reservoirs of nucleic acid-encoded information 

in the biosphere and outnumber cells 10 to 100 fold. This is also true for 

haloviruses, where counts in hypersaline waters are reported to be at least 107 

viruses per ml and up to 2 x 109 per ml in crystallizer ponds (Aalto et al 2012, 

Dyall-Smith et al 2003, Guixa-Boixereu et al 1999). Although organisms from 

all domains of life are found in hypersaline environments, the majority of 

haloviruses to date infect only archaea. Just 9 bacterial and 5 eukaryotic 

haloviruses have been found to date (Atanasova et al 2015b). However, 

compared to bacteriophages and eukaryotic viruses, very little is known about 

archaeal haloviruses, this partially due to difficulties in cultivating haloarchaea 

that can acts as hosts. 

 

To date only around 90 viruses have been described for halophilic archaea and 

of those approximately 50 have fully sequenced genomes (Atanasova et al 

2015b, Luk et al 2014). At the start of this study in 2012, only 17 archaeal 

haloviral genomes were published and no bacterial or eukaryotic haloviral 
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genomes were known. All archaeal haloviral genomes are dsDNA, the majority 

are linear and genome sizes range from 7 kb to 143.9 kb (Pietila et al 2009, 

Sencilo et al 2013). No RNA haloviruses infecting archaea have yet been 

isolated (Pietila et al 2014). Most open reading frames (ORFs) of archaeal 

haloviruses lack any significant matches to sequences in databases; for 

example, the halovirus HF1 has 117 ORFs with 102 being unique (Tang et al 

2004). Genes that are annotated have shown to have homology with organisms 

from all three domains of life, providing an explanation for the majority of 

archaeal haloviruses having highly mosaic genomes (Sencilo et al 2013, Tang 

et al 2002). Archaeal haloviruses have highly diverse genomes, studies have 

determined that the mutation frequency is 7.65 × 10−3 substitutions per 

nucleotide with a 24% higher mutation frequency in coding regions than in 

non-coding regions (Santos et al 2011, Santos et al 2010). Archaeal haloviruses 

have abnormally high mutation rates compared to DNA and RNA 

bacteriophages which have mutation rates of 10−8 to 10−6 and 10−6 to 10−4 

substitutions per nucleotide respectively (Sanjuan et al 2010). 

 

8.1.2 Halophilic proteins 
 

There are two alternative strategies employed by halophilic organisms for 

maintaining an osmotic balance between intracellular and extracellular salt 

concentrations. The first is a ‘salt out’ strategy used predominantly by 

halophilic bacteria and eukaryotes, where salts are actively pumped out from 

the cell and the cytoplasm is packed with organic solutes such as glycerol or	  
glycine betaine to maintain the osmotic balance (Christian & Waltho 1962, 

Oren 1999, Oren 2008). Halophilic archaea and a few bacteria maintain 

osmotic balance by accumulating high levels of salt in the cytoplasm this is 

termed a ‘salt-in’ approach (Oren et al 2002). Proteins in halophilic archaea 

have adapted to function in high salt and low water conditions by several 

different strategies (Mevarech et al 2000). Halophilic proteins tend to contain a 

high amount of acidic residues on their surface such as aspartic acid and 

glutamic acid, but contain a small amount of nonpolar residues. This generates 

an overall low isoelectric point (pI) and high density of negative charges on the 



 Chapter 8: Novel Haloviral DNA Processing Enzymes for the  
use in Nanopore DNA Sequencing Technologies  

	  

	   287	  

surface of the protein that will co-ordinate a network of hydrated cations, 

allowing the protein to stay soluble in solution (Lanyi 1974). Halophilic 

proteins have a reduced surface hydrophobicity by replacing large hydrophobic 

side groups with small hydrophilic ones. Some halophilic proteins have extra 

domains or peptide insertions that are extremely rich in acidic residues, which 

are essential for correct protein folding (Graziano & Merlino 2014). Halophilic 

proteins show high levels of activity in organic media and solvents, making 

them ideal candidates for use as biocatalysts and in other biotechnological 

applications (DasSarma et al 2010, Lanyi 1974). An extensive list of halophilic 

proteins and enzymes used in biotechnology can be found in (Wackett 2012). 

 

8.1.3 Haloviral proteins 
 

Due to limitations in genome size, viruses tend to have simpler proteins with 

fewer cofactors than their cellular counterparts. For example, polymerases are 

usually active as single subunits in viruses, but are composed of multisubunit 

complexes in their prokaryotic and eukaryotic hosts (Choi 2012). 

 

Since viruses have to survive inside and outside of the protective host 

environment, their proteins are unusually robust. Archaeal and bacterial 

haloviruses have been shown to withstand being subjected to a wider range of 

salinities than their cellular hosts (Luk et al 2014). Haloviruses can endure 

rapid changes of considerable magnitudes of salinity that cellular halophiles 

cannot match. This is thought to be due to haloviral proteins having an 

extremely low pI combined with covalent cross linking that promotes protein 

stability not seen in cellular counterparts (Kukkaro & Bamford 2009, Pauling 

1982).  

 

The ‘stripped-down’ nature and hardiness of haloviral proteins could be 

exploited for use in biotechnology.   
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8.1.4 Nanopore sequencing 
 

The first biological nanopore to be used as a biosensor to sequence nucleic 

acids was alpha hemolysin (α-HL) (Braha et al 1997). α-HL is a toxic protein 

secreted by bacteria in monomeric form that spontaneously inserts into lipid 

bilayers and assembles to form heptameric transmembrane channels (Gouaux 

et al 1994). The transmembrane stem section of the pore is a 5 nm β-barrel that 

has a ring of 14 alternating lysine and glutamic acids that form a 1.5 nm 

“limiting aperture” between the vestibule and the stem. This limiting aperture 

is large enough to accommodate a single molecule of single stranded DNA or 

RNA. When a nanopore is inserted into a synthetic membrane and a potential 

is then applied across the membrane, the current runs only through the aperture 

of the nanopore (Braha et al 1997).  Single molecules, such as proteins, DNA 

or RNA that enter the nanopore cause characteristic disruptions in the current. 

The DNA or RNA strands to be sequenced are mixed with a processive ‘motor’ 

enzyme such as a helicase, nuclease or a polymerase. As the DNA:enzyme 

complex approaches the nanopore, the ssDNA is pulled though the aperture of 

the nanopore and the enzyme ratchets the DNA through the nanopore one base 

at a time. This ratcheting slows the translocation rate of the ssDNA through the 

nanopore down to the millisecond time scale allowing for better resolution of 

the signal produced (Deamer 2010). As the ssDNA passes through the pore, 

each base perturbs the electrical current in a characteristic way enabling the 

order of the bases on the DNA strand to be determined.  

 

MinION nanopore sequencing technology developed by Oxford Nanopore is 

continually improving, however this technology currently has an error rate in 

base calling of around 12% to 40% (Goodwin et al 2015, Ip et al 2015, Laver 

et al 2015). This is speculated to be due to challenges in the signal processing 

of the ionic current measurements. The pores used in this technology are more 

than a single base in height so that the ionic signal measurements are not of 

individual nucleotides but of approximately 5 nucleotides at a time (Goodwin 

et al 2015). If any diffusion of the ssDNA within the pore occurs, the bases will 

be miscalled.  To generate accurate base calling, diffusion of the ssDNA has to 

be kept to a minimum, this could be achieved by fine-tuning the way that the 
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ssDNA travels through the nanopore. A method to do this could be through the 

development of new ‘motor’ enzymes that ratchet the ssDNA through the pore. 

A candidate protein for this role would have to be a robust DNA processing 

enzyme that can withstand the salinity of the bathing solution within the 

nanopore flow cell. 

 

8.2 Aims  
 
The aim of this study was to discover novel DNA processing enzymes such as 

helicases and polymerases from novel haloviruses. These enzymes would 

hopefully be candidates for improved ‘motor’ proteins to ratchet ssDNA 

through the nanopore in Oxford Nanopore’s DNA sequencing technology. 

The following steps were carried out to achieve this aim: 

• Sample for novel haloviruses from hypersaline waters and crystallizer 

ponds in Israel and Alicante, Spain. 

• Isolate the viral fraction from the samples through host-dependent 

enrichment assays and by host-independent precipitation methods. 

• Extract viral genomic DNA and RNA and sequence using Illumina 

MiSeq. 

• Assemble sequencing reads and mine novel haloviral genomes for 

novel DNA processing enzymes such as helicases and polymerases. 

• Express and purify helicases and polymerases in an Haloferax volcanii 

expression strain. 

• Test suitability of the helicases and polymerases for use in Nanopore 

sequencing technologies. 

 

8.3 Results 
 

On the 13th and 14th October 2011, a total of 35 litres of water samples were 

taken from several sites at the Dead Sea, Israel and from evaporation pools at a 

salt works outside Eilat, Israel, Table 8.1 and Figure 8.1. Samples were taken 

at three geographically different locations along the west shore of the Dead Sea 

to capture haloviral diversity. Green algae was seen to be growing at the pool 
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at Mitspe Shalem suggesting that the water was brackish, this site was picked 

as mesohalic viruses may be present in this pool. Different hypersaline pools at 

the salt works in Eilat were chosen in order to collect samples with a range of 

high salt concentrations. Samples were collected in a plastic beaker and 

crudely filtered at the location through fabric to remove brine shrimp and 

debris. The samples were decanted into fresh jerry cans, sealed with parafilm 

and transported back to England via surface mail. 

On the 29th January 2013 a 50 litre sample was collected from a hypersaline 

pond at the Bras del Port salterns, Alicante, Spain with help from Rodriguez-

Valera laboratory at the University Miguel Hernandez, Alicante, Table 8.1 and 

Figure 8.1. The sample was collected in a plastic beaker and decanted into 2 x 

25 litre jerry cans, sealed with parafilm and transported back to England by 

airmail. 

Table 8.1: Halovirus sampling locations. 

Sample ID Country 
of Origin 

Latitude Longitude Sample 
Size 

Date 
Collected 

Eilat 1 Israel  29º 33' 33" N 34º 57' 41" E 5 L 13th Oct 2011 
Eilat 2 Israel  29º 33' 39" N 34º 57' 45" E 5 L 13th Oct 2011 
Eilat 3 Israel  29º 33' 33" N 34º 57' 41" E 5 L 13th Oct 2011 
Ein Gedi Israel  31º 27' 35" N 35º 24' 00" E 5 L 14th Oct 2011 
Kalya Israel  31º 45' 41" N 35º 30' 13" E 5 L 14th Oct 2011 
Mitspe Shalem Israel  31º 34' 54" N 35º 24' 42" E 5 L 14th Oct 2011 
Mitspe Shalem Pool Israel  31º 34' 54" N 35º 24' 44" E 5 L 14th Oct 2011 
Bras del Port 
Saltern ID - #30 

Alicante, 
Spain 

38º 11' 47.4"N 0º 35' 0.8" W 50 L 29th Jan 2013 
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Figure 8.1 Halovirus sampling locations. (A) Map of Israel with sampling sites in Eilat and 
the west shore of the Dead Sea highlighted by yellow boxes. (B) Mitspe Shalem Pool on the 
west shore of the Dead Sea. (C) Thorsten having a paddle and hunting halophiles in the Dead 
Sea. (D) Ein Gedi on the west shore of the Dead Sea. (E) An evaporation pool at the salt 
works, Eilat. (F) Aerial view of Bras del Port Salterns, Alicante, Spain. (G-H) Saltern #30 Bras 
del Port Salterns, Alicante, Spain. 

	  

8.3.1 Salinity of Sea Water Samples   
 

As haloviruses from hypersaline environments were desired, the salinity of the 

water samples from each location was determined. A standard curve was made 

by measuring the conductivity of known concentrations of NaCl. The 

conductivity of samples was measured and NaCl concentration calculated 

using the equation of the line from the standard curve, (for ease of 

transportation some samples were pooled or split, this is indicated in the 

sample name), Figure 8.2. It was found that all water samples were 

hypersaline, ranging from 16.44 to 31.94 % NaCl. 
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The salinity of the water sample from the Bras del Port salterns, Alicante was 

32%; this was measured using a hand refractometer. 

 

 

 

 

8.3.2 Viral Enrichment and Viral Plaque Assays 
 

Viral enrichment was carried out on the Israeli samples to increase the 

concentration of virus particles and therefore genomic content for sequencing. 

Sea water was filtered to remove cellular matter (but to retain virus particles) 

and incubated with a culture of Haloferax volcanii to enrich virus numbers. 

The enriched viral fraction was spotted onto a lawn of Haloferax volcanii. 

After 48 hours no viral plaques were visible on the Haloferax volcanii lawn, 

indicating that the viruses contained in the sea water were unable to infect 

Haloferax volcanii. As enhancing viral numbers via enrichment was 

unsuccessful, the viral fraction was isolated through a series of filtration and 

precipitation techniques.	  

8.3.3 Analysis of DNA/RNA extracted from haloviruses   
 
The sea water samples collected in Israel were filtered to remove cellular 

matter and concentrated using tangential flow filtration. Unlike normal flow 

filtration, in tangential flow filtration (TFF) the sea water is flowed in at a 

tangent to the membrane, this means that the virus particles do not build up on 

the membrane surface but are swept along and therefore can be collected in the 
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Sample  mS/cm [NaCl] M % NaCl 
Eilat 1 + 3 106 1.24 29.15 
Eilat 2 # 1 87 0.99 23.26 
Eilat 2 # 2  85 0.96 22.64 
Ein Gedi + Kalya 115 1.36 31.94 
Mitspe Shalem 110 1.29 30.39 
Mitspe Shalem Pool 65 0.70 16.44 

Figure 8.2: Salinity of Sea Water Samples.  The conductivity (measured in mS/cm) of known 
concentrations of NaCl solutions were measured using an AKTA Prime Plus (Amersham 
Biosciences) to generate a standard curve. From this the salinity of the sea water samples were 
calculated. 
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retentate (Grzenia et al 2008). The virus particles were precipitated using 

PEG8000 (Colombet et al 2007). DNA and RNA were isolated from 

haloviruses using TRIzol. The quality and amount of viral DNA extracted from 

these samples was measured using the Agilent High Sensitivity DNA Assay, 

performed by Deep Seq, University of Nottingham, Figure 8.3.   

 

It was found that the DNA in the Eilat 2 and Mitspe Shalem Pool samples is 

highly degraded with 63 and 67 DNA fragment peaks between 35 bp and 

10,380 bp respectively. Although the DNA in the Eilat 2 is highly degraded the 

DNA concentration is high, at 3,899 pg/µl because of this, this sample was 

taken forward for sequencing. The Mitspe Shalem Pool sample has a higher 

DNA concentration (13,060 pg/µl) than Eilat 2, but this sample was not taken 

forward for sequencing. This is because the sample was highly viscous due to 

PEG8000 persisting in the sample from the precipitation step. Excess PEG 

contamination could effect downstream enzymatic reactions during library 

preparation and sequencing. Unsuccessful attempts were made to remove the 

PEG8000 from the sample. Due to its high concentration of 2,419 pg/µl and 

lack of degradation the sample Eilat 1 + 3 was also taken forward for 

sequencing. Although the DNA from the Ein Gedi + Kalya and Mitspe Shalem 

samples had high integrity, the samples were viscous due to PEG8000 

contamination and the DNA concentrations are low (272 pg/µl and 501 pg/µl 

respectively). Therefore these samples were not taken forward for sequencing. 
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Figure 8.3: Analysis of DNA extracted from haloviruses using Agilent High Sensitivity 
DNA Assay. The traces show length of DNA fragments in base pairs (bp) vs. Fluorescence 
Units (FU) for all DNA samples. The DNA concentration of each sample is also shown. 

 

Due to volume sizes during extraction, RNA was only purified from Mitspe 

Shalem Pool and Eilat 1 + 3. The quality and amount of viral RNA extracted 

from these samples was measured using an Agilent RNA 6000 Pico Kit, 

performed by Deep Seq, University of Nottingham, Figure 8.4. Both RNA 

traces show a wide range of nucleotide lengths are present in the samples, 

indicating a degree of RNA degradation has occurred.  For Mitspe Shalem Pool 

and Eilat 1 + 3 the RNA concentrations were 20 ng/µl and 50 ng/µl 

respectively. The Eilat 1 + 3 RNA sample shows a higher level of degradation 

and was highly viscous due to PEG8000 contamination, therefore this sample 

was not taken forward for sequencing. 

Eilat 1 + 3 Eilat 2

Ein Gedi + Kalya Mitspe Shalem

Mitspe Shalem Pool Sample  [DNA] (pg/µl) 
Eilat 1 + 3 2,149 
Eilat 2 3,899 
Ein Gedi + Kalya 272 
Mitspe Shalem 501 
Mitspe Shalem Pool 13,060 



 Chapter 8: Novel Haloviral DNA Processing Enzymes for the  
use in Nanopore DNA Sequencing Technologies  

	  

	   295	  

 

 

 

The sea water samples collected at the Bras del Port salterns, Alicante, Spain 

were filtered to remove cellular matter and concentrated using tangential flow 

filtration and followed with viral precipitation using iron chloride flocculation 

(John et al 2011).  DNA and RNA were isolated from the haloviruses using 

TRIzol. The viral DNA and RNA extracted was analysed using the Agilent 

High Sensitivity DNA Assay and an Agilent RNA 6000 Pico Kit respectively, 

performed by Deep Seq, University of Nottingham. The total amount of DNA 

and RNA in the samples was 14 ng and 4 µg respectively; both samples were 

highly degraded (data not shown) and so library construction for sequencing 

could not be carried out.	  

Mitspe Shalem Pool 

Eilat 1 + 3

Figure 8.4: Analysis of RNA extracted from viruses using an Agilent RNA 6000 Pico 
Kit. The traces show length of RNA fragments in nucleotides (nt) vs. Fluorescence Units 
(FU) for all RNA samples.  
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8.3.4 Sequencing and Bioinformatic Analysis 
 

In summary, the following samples were put forward for sequencing by 

Illimina MiSeq (2 x 250 bp paired-end): Eilat 1 + 3 DNA, Eilat 2 DNA and 

Mitspe Shalem Pool RNA.  

 

After sequencing with MiSeq, the Eilat 1 + 3 and Eilat 2 DNA reads were 

highly under-represented and so these samples were not taken forward for 

further bioinformatic analysis. The Mitspe Shalem Pool RNA sample had 93% 

of reads passing filter. The overlapping paired end reads were merged and error 

corrected using FLASH and Musket respectively, details of the reads from this 

sample are shown in Table 8.2. 

 
  Table 8.2:  MiSeq reads for the Mitspe Shalem Pool RNA sample. 

Sequencing  ID Number 
of reads 

Minimum 
length (bp) 

Maximum 
length (bp) 

Average 
length (bp) 

Mitspe Shalem Pool RNA 2,632,721 35 251 246 

 

The 2,632,721 reads were assembled into contigs using the CLC Assembly 

Cell de novo assembler, assembly metrics are shown in Table 8.3.  

 
Table 8.3:  Assembly metrics for the first contig assembly. 

Sequencing  ID Number of contigs Average length (bp) N50* 
Mitspe Shalem Pool RNA  161,999 358.39 355 

* The N50: the sum of sequences of this length or longer is at least 50% of the total length of 
all sequences. 
 

The contigs were screened against 50 known haloarchaeal and halobacterial 

genomes, to remove any contaminating ‘host’ sequences. 833 contigs had total 

matches to known genomes and 2,793 contigs were partial matches to host 

genomes. The 833 total matched contigs were removed leaving 161,166 

contigs remaining.  The reads were then aligned to the de novo contigs using 

Bowtie 2, and assembled again using the CLC Assembly Cell de novo 

assembler; assembly metrics for the second assembly are shown in Table 8.4. 
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Table 8.4:  Assembly metrics for second contig assembly 

Sequencing  ID Number of contigs Average length (bp) N50* 
Mitspe Shalem Pool RNA  143,674 365.64 365 

* The N50: the sum of sequences of this length or longer is at least 50% of the total length of 
all sequences. 
 

The contigs could not be assembled into long lengths; the average contig 

length recovered was 365.64 bp, which is not significantly greater than the 

average read length of 251 bp. Whole genes could not be found within the 

assembled contigs. 

 

The contigs were analysed by BLASTX, a protein database searched using a 

translated nucleotide query. The contig sequences generated 25,324 proteins 

hits with E values ranging from 6.00E-176 to 1.30E-007. However, as contig 

length was low, only partial matches to proteins were found. Furthermore, this 

analysis would not be able to identify novel haloviral sequences. 

 

To check if the sample contained any haloviral sequences at all, the contigs 

were aligned to 17 known haloviral genomes. Sequences were found to match 

to the following 6 genomes: Archaeal BJ1 virus, Halovirus HVTV-1, 

Halovirus HSTV-2, Halovirus HF1, Halovirus HF2 and the His1 virus.  
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8.4 Discussion 
 

Isolation of haloviruses in this study was partially successful, but due to 

difficulties in contig assembly, novel haloviruses could not be identified. 

However, some contigs did show matches to published haloviral genomes, 

indicating that haloviruses were indeed present in the sample. The least 

successful part of this study was the assembly of contigs into genomes or even 

into lengths sizable enough to contain whole genes. After the second assembly, 

the average contig size was 365.64 bp, which is not significantly more than the 

average read length of 251 bp.  

 

A significant reason for this outcome could be due to the low quality and 

quantity of DNA and RNA extracted from the viral isolate. The degradation of 

the viral isolate and therefore DNA and RNA could have occurred at several 

points through this study. Firstly, samples were collected and then shipped 

back to the UK for processing via surface or airmail (Israel and Alicante 

samples respectively). In both cases the samples would not have been in a 

controlled environment, and could have been subjected to a range of 

temperatures and possibly X-rays.  The surface mail samples took several 

weeks to arrive, therefore allowing for increased degradation of the sample. If 

this were to be attempted again, processing of the samples close to the site of 

collection would be advantageous. Secondly, degradation could have occurred 

during processing of the water samples.  The filtering apparatus was 

cumbersome and so it was not practical to process the samples next to a sterile 

flame or within a lamina flow hood. Efforts were made to keep the filtering 

apparatus clean (by flushing with NaOH) however the apparatus was intricate 

so it was possible that contaminants such as nucleases could have been present 

in the system.  Loss of sample could have occurred during 0.22 μm filtration 

and some viruses could have been removed. However all published haloviruses 

have capsids smaller than 0.1 μm so this is unlikely (Dyall-Smith et al 2003). 

Lastly, the DNA and RNA samples were highly viscous due to PEG8000 

persisting in the sample from the viral precipitation step. In high salt conditions 

the number of adsorbed cations on the side chains of PEG is increased which 

leads to higher viscosity of the solution (Brunchi & Ghimici 2013, Gonzalez-
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Tello et al 1994) therefore using PEG as a precipitant in a hypersaline system 

is not ideal. Excess PEG contamination may have effected downstream 

enzymatic reactions during library preparation and sequencing. Furthermore, 

different sizes of DNA can be isolated by using different concentrations of 

PEG in solution. Higher concentrations of PEG results in the isolation of 

smaller sized DNA fragments (Lis & Schleif 1975). Therefore the excess PEG 

contamination could have increased the presence of highly degraded DNA in 

downstream processing as seen in the Agilent High Sensitivity DNA Assay 

(Figure 8.2). Due to the problems with PEG, the sea water samples from 

Alicante, Spain were precipitated using iron chloride (John et al 2011). 1 ml of 

a 10 g/litre Fe stock solution was added to each 10 litres of sea water and 

incubated. The Fe treated sea water was filtered through a 1.0 μm 

polycarbonate membrane, where the FeCl3 precipitated viruses were captured 

on the surface of the membrane. Unfortunately, this method of viral 

concentration resulted in very little DNA or RNA being extracted. This 

indicates that the iron chloride failed to precipitate any haloviruses at all. An 

alternative way to isolate and concentrate the viral fraction would be via 

ultracentrifugation for several hours at 80,000 – 288,000 x g and purification 

using a sucrose or CsCl gradient (Emerson et al 2012, Garcia-Heredia et al 

2012, Pietila et al 2013). However, ultracentrifugation was not available during 

the time of this study and furthermore would be cumbersome given the 

volumes involved. 

 

Attempts to isolate haloviruses through culture-dependent methods were made, 

however, viral enrichment and plaque assays were unsuccessful in this study. 

The Haloferax volcanii DS70 strain was used as the ‘host’ in this protocol. One 

haloarchaeal virus (HF1) is known to infect the strain Haloferax volcanii 

WFD11 (Nuttall & Dyallsmith 1993, Tang et al 2004). Both strains are 

derivatives of the wild type isolate DS2. WFD11 was generated by loss of the 

pHV2 plasmid by ethidium bromide treatment; the large plasmid (pHV3) in 

this strain is unstable and so became slow growing and is prone to lysis upon 

transformation. Due to these difficulties, the DS70 strain (cured of pHV2 by 

non mutagenic methods) was generated; this strain is indistinguishable in 
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growth and transformation characteristics from the parent DS2 (Charlebois et 

al 1987, Wendoloski et al 2001). The enrichment protocol may have been more 

successful using different halophilic archaeal or bacterial species as the ‘host’, 

either using species that are amenable to being infected by haloviruses such as 

Halorubrum spp. and Haloarcula spp (Atanasova et al 2015a, Luk et al 2014) 

or use cellular isolates derived from the same sea water as the viral fraction. 

Unfortunately, no other haloarchaeal or bacterial species were available at the 

time and optimising growth conditions for new and unknown sea water derived 

species would be time consuming, during which the sea water sample would 

undergo further degradation.  Enriching for viruses is selective, only viruses 

that are able to infect the ‘hosts’ are propagated, resulting in a loss of viral 

diversity. However, if only one or a few viruses are able to infect the host, the 

resultant concentration of those virus genomes will be high in the final sample, 

leading to a higher read depth during sequencing. This would result in better 

assembly of contigs compared to a metaviriome approach, however only one 

virus genome would be present. 

 

The metaviriome sequencing approach was taken because viral enrichment was 

not successful. In this approach viral diversity is retained, this is an advantage 

as genetic information is not lost but a disadvantage as high viral diversity 

within a sample leads to a lower read depth and difficulties in contig assembly. 

These problems are compounded by the fact that only around 50 haloviral 

genomes are published (Luk et al 2014) and only 17 were published at the time 

of this study (2012). These genomes are highly diverse, meaning finding a 

suitable sequence to map reads against is difficult. A method to increase the 

read depth with metaviriome sequencing would be to construct a fosmid 

metagenomic library as described by Garcia-Heredia et al 2012. Fosmids are 

vectors based on the bacterial F-plasmid which can be used to house around 40 

kb of DNA (the average size of a haloviral genome) and taken up by E.coli. 

Fosmids can be induced to have a copy number of 50 per cell immediately 

before DNA purification. This method woud increase the concentration of each 

genetic element whilst retaining viral diversity. 
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In this study the assembled contigs were screened against known haloarchaeal 

and halobacterial genomes in order to remove contaminating ‘host’ sequences. 

However, as viruses can share genetic elements with hosts and vice versa, it is 

likely that this screen could have removed genuine viral sequences by 

mistaking it for ‘host’. A way to resolve this would be to check for 

contamination prior to sequencing by amplifying the 16S rRNA genes with 

universal primers for Bacteria (27F and 1492R) and Archaea (522F and 

1354R) (Emerson et al 2012) to check for cellular DNA. Contamination of 

cellular matter could have also been checked by microscopy prior to DNA and 

RNA extraction. 

 

The only sample from this study of sufficient quality to analyse 

bioinformatically was the Mitspe Shalem Pool RNA sample. No haloviruses 

containing RNA genomes have been reported to date (Pietila et al 2014), the 

RNA in this sample is most likely to be viral transcriptome rather than true 

RNA genome. The evidence for this is that matches from the sample were 

found to known viruses with DNA genomes. If the sample was predominantly 

transcriptome this could account for some of the short nucleotide lengths seen 

in the Agilent RNA analysis. 

 

Another point to consider is that the Mitspe Shalem Pool sample was of the 

lowest salinity of all the samples at 16.44% NaCl. Although as previously 

mentioned that halovairuses have a wide tolerance to ranges in salinity 

(Kukkaro & Bamford 2009), this might not have been the most suitable sample 

to capture the most hyper halophilic viruses. 

 

8.5 Future perspectives  
 

Nanopore sequencing by Oxford Nanopore has a high error rate in base calling 

but improved versions of this technology are continually being released (Laver 

et al 2015). Therefore, Nanopore technology could be employed to sequence 

the metaviriome of halophilic environments in the future. This data could be 

mined for novel halophilic DNA processing enzymes to fulfil the objective of 
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this study or alternatively to advance the field of haloviruses in general. At the 

time of this study in 2012, Nanopore sequencing by Oxford Nanopore was not 

publically available. 

 

Nanopore sequencing could circumvent some of the genome assembly 

problems encountered in this study. Firstly, the current MinION flow cell 

contains 512 channels; each channel is connected to 4 wells which may each 

contain a nanopore. Each channel provides data from one of the four wells at a 

time, allowing up to 512 independent DNA molecules to be sequenced 

simultaneously (Bayley 2015, Ip et al 2015). The data from each pore is also 

captured separately from that of data from other pores. Therefore, for samples 

containing mixed DNA, for example a metaviriome, each genome will be 

sequenced individually. This avoids the bioinformatic issue of separating 

different genome sequences from each other downstream of sequencing, a task 

that would have to be performed with conventional sequencing methods. 

Secondly, unlike conventional sequencing methods, nucleic acids do not have 

to be fragmented to a few hundred bp during library preparation (Bradley et al 

2015). Nanopore sequencing can sequence an intact strand of DNA that can be 

up to hundreds of kb in length. The data output is a continuous sequence the 

length of the DNA provided, therefore the task of assembling short reads is 

avoided, which is a significant problem in metaviriome sequencing. Thirdly, as 

genomes are sequenced whole and not in short fragments, it would be easier to 

identify and discard contaminating cellular sequence data from a metaviriome 

sample than with conventional sequencing methods. Fourthly, during library 

preparation a hairpin adaptor is ligated to the dsDNA about to be sequenced, 

during sequencing the leading template strand passes through the nanopore 

followed by the hairpin adapter and then the complement strand. A consensus 

sequence from both strands of DNA can be made therefore improving the 

accuracy and read depth of sequence produced (Goodwin et al 2015). This 

proof reading technique is advantageous as metaviriomes are diverse and 

concentrations of individual virus genomes could be low. Lastly, as contig 

assembly is not required, this method of sequencing is less reliant on having a 
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good reference genome to map data against, which for haloviruses is 

advantageous as reference genomes are not available. 

 

Since the time of this study in 2012, 33 more haloviral genomes have been 

published (Luk et al 2014). If novel DNA processing enzymes are still required 

for the advancement of nanopore technology, these genomes could be mined 

for novel helicase and polymerase sequences. 

 

8.6 Conclusion 
 
The attempt to identify novel halophilic DNA processing enzymes through the 

sequencing of the metaviriome of haloviral communities was unsuccessful. 

This was in part due to the poor quality of DNA and RNA provided for 

sequencing and the numerous difficulties in assembling reads from 

metaviriomes using conventional sequencing technologies such as Illumina 

MiSeq. 
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Chapter 9: Conclusion and Future Perspectives 
 

 
Hel308 is a 3′ to 5′ RecQ family DNA helicase that is conserved in metazoans 

and archaea but is absent from bacteria and fungi. Hel308 family helicases are 

implicated in DNA repair, homologous recombination and genome stability, 

but the exact cellular role of Hel308 is largely unknown. Strains deleted for 

hel308 are sensitive to DNA interstrand crosslinks, which are potent blocks to 

DNA replication. In humans and archaea, Hel308 localises at damaged DNA 

replication forks. In this study, Haloferax volcanii was used as a model 

archaeon to study the cellular role of Hel308.    

 
Hel308 is an Anti-recombinase 
 
Previous studies have shown that Hel308 homologues can disassemble 

recombinase filaments from ssDNA and D-loop structures, suggesting that 

Hel308 acts as an anti-recombinase. This study provides further evidence to 

support this proposal and provides insight into the mode of action of Hel308 as 

an archaeal anti-recombinase.  

 

The recombination mediator RadB assists the polymerisation of RadA onto 

ssDNA during homologous recombination (HR), and deletion of RadB results 

in slow growth and a marked reduction in HR to ~ 5% that of a wild type strain 

(Haldenby 2007). Deletion of hel308 in combination with radB resulted in a 

reduction in the severity of growth, DNA damage and recombination 

phenotypes, compared to a radB strain. This finding suggests that Hel308 

antagonises RadB by acting as an anti-recombinase; it also suggests that RadB 

could have a regulatory role during homologous recombination (in addition to 

its role as a mediator to assist RadA polymerisation), namely to promote the 

repair of DNA damage by the HR pathway.  

 

In a preliminary assay, Hel308 potentially interacted with RadA in vivo, 

reinforcing the suggestion that Hel308 acts as an anti-recombinase. An 

interaction between Hel308 and RadB was not seen, most likely due to low 
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levels of RadB in the cell compared to RadA. It is of interest to confirm this 

interaction, in order to understand the role of Hel308 fully. 

 

Point mutations in domains 1, 2, 3 and 5 of Hel308 perturbed the frequency of 

homologous recombination in the cell, confirming that Hel308 is critical in the 

regulation of recombination. Several point mutations (F316A, E330G, D420A, 

E422G and R743A) had little effect on growth or survival of cells after 

treatment with DNA damaging agents, however some mutants such as F316A 

and R743A resulted in profound changes in recombination frequency. These 

observations suggest that the helicase unwinding activity of Hel308 is separate 

to its function in the regulation of recombination, and that correct regulation of 

recombination relies heavily on the correct structural conformation of Hel308. 

These suggestions pose interesting questions about how these two roles are 

managed by Hel308 and why structure in particular is important to the its 

regulatory role in HR. 

 

The point mutants F316A and R743A resulted in around a 100-fold and 60-

fold increase in recombination frequency, respectively, and generated only 

non-crossover (NCO) products. The synthesis dependent strand annealing 

(SDSA) pathway of homologous recombination is capable of generating only 

NCO products (San Filippo et al 2008). Therefore, Hel308 may regulate not 

only the level of homologous recombination in the cell but also influence the 

pathway choice by which recombination intermediates are resolved. It would 

be of interest to determine how Hel308 is involved in this pathway choice. 
 
Interactions of Hel308 
 
Could Hel308 interact with RecJ4? 

 

Preliminary assays indicated that Hel308 may interact with RecJ4 in vivo. RecJ 

is a 5'-3' exonuclease that in concert with the RecQ helicase generates ssDNA 

intermediates during mismatch repair, nucleotide excision repair (NER) and 

homologous recombination in bacteria (Morimatsu & Kowalczykowski 2014). 

If this interaction is confirmed to be true this could suggest that Hel308 (a 
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RecQ family helicase) may act in a range of DNA repair pathways in archaea, 

alongside RecJ. 

 

More interestingly, RecJ has been proposed to be the archaeal counterpart to 

the eukaryotic CDC45 protein in the DNA replication helicase CDC45-MCM-

GINS (CMG) complex (Makarova et al 2012). In H. volcanii, RecJ4 was seen 

to co-purify with the replication initiation protein Orc1 (Darya Ausiannikava, 

University of Nottingham, personal communication). If RecJ4 is a part of the 

archaeal CMG complex and if its interaction with Hel308 is verified then 

Hel308 may play a role in the restart of stalled DNA replication forks.  

 

Could Hel308 be Involved in Transcription Coupled Repair? 

 

Preliminary assays indicated that Hel308 may interact with the RNA 

polymerase subunit RpoA1 and the NER protein UvrA in vivo. If this 

interaction is found to be true this suggests a role for Hel308 in transcription-

coupled repair (TCR). During TCR, RNA polymerase stalls at a DNA lesion, 

which is then repaired via NER involving the UvrABC complex. In H. 

volcanii, TCR is not dependent on UvrA (Stantial et al 2016), which raises the 

possibility that Hel308 could be acting as the coupling factor in TCR. 

Confirmation of this possible interaction and deletion of hel308 in combination 

with TCR (and NER) proteins could give insight into role of Hel308 in this 

DNA repair pathway. 
 
Hel308b is a Regulator of Recombination?  
 
In this study, it was found that H. volcanii and four closely-related 

haloarchaeal species contain a second Hel308 helicase named Hel308b. 

Hel308b likely arose from an ancient gene duplication event, and notably 

Hel308b lacks the ‘auto-inhibitory’ domain 5 found in the canonical Hel308 

helicases.  Deletion of hel308b results in a recombination deficiency that is 

more severe than that seen in ∆hel308 mutants, suggesting that Hel308b is 

involved in the regulation of homologous recombination. However, unlike 

Hel308, Hel308b does not appear to be involved in ICL repair.  
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Many questions remain about the role of Hel308b in H. volcanii. Why has a 

second Hel308 helicase been retained? Does Hel308b have a distinct role in the 

cell and is this role different or redundant to Hel308? Does the lack of domain 

5 confer any functional advantage to Hel308b? Protein:protein pull-down 

assays of Hel308b could highlight interaction partners of Hel308b and provide 

further insights into its role. 

 
Summary 
 
This study has highlighted that Hel308 is a multifaceted helicase that could 

play roles in different overlapping DNA repair pathways in H. volcanii.  

Hel308 has shown to be a regulator of homologous recombination and is 

implicated in interstrand crosslink repair. The information presented in this 

study provides an insight into the understanding of DNA repair and genome 

stability in archaea.  
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