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Abstract 

Built on top of a consistent continuum damage mechanics (CDM) damage 

representation formulation, a novel damage evolution law based on the concept of 

damage driving force is proposed for modelling the evolution of matrix damage in 

UD composites. This damage evolution law has the advantage of allowing 

different damage evolution constants to be associated with different loading 

modes (corresponding to the fracture modes in Fracture Mechanics) when dealing 

with mixed-mode loading conditions, which avoids the unrealistic assumption in 

many existing theories that different loading modes make the same contribution to 

damage evolution. A new CDM model for UD composites is developed 

incorporating this damage evolution law. 

Thanks to the laminate test cases designed and conducted in this project, it is 

found that the damage initiation and propagation related material constants can be 

determined using these tests. These damage-related material constants served as 

inputs to the UD composite CDM model. 

Apart from the tests on laminates, detailed experimental investigation was carried 

out regarding damage in two types of layer-to-layer interlock 3D woven 

composites which are reinforced by IM7 carbon fibre (CF) and E-glass fibre (GF), 

respectively. The experimental data obtained and the damage processes recorded 

for these 3D woven composites can serve as a good reference for future interest in 

this area, since currently only limited studies are available in the literature 

regarding damage in this type of 3D woven composites. 

The new UD composite CDM model is applied to predict intra-laminar damage in 

laminates and intra-tow damage in the 3D woven composites. Compared to the 
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experimental results, it is found that the model produced satisfactory predictions 

but lacking the capability to predict a severe stress-strain nonlinearity caused by 

shear.  

A new pragmatic continuum damage model is developed to capture the damage 

effect of inter-tow cracks in the 3D woven composites caused by warp direction 

tensile loading. This model works in conjunction with the intra-tow damage 

predicted by the aforementioned UD composite CDM model. 

With the successful development of these damage models, a novel damage 

modelling methodology for textile composites is made possible and implemented 

in conjunction with the UnitCells© composite characterisation tool [1] and the 

artificial neural network tool developed in [1]. Through the artificial neural 

network for data interpolation, the constitutive behaviour of textile composite 

incorporating the effect of damage can be interpolated for any load combination, 

which is then readily available for engineering applications. 
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1. Introduction 

1.1 Background 

As mentioned in [2], to improve the propulsive efficiency of aerospace turbofan 

engine for achieving better fuel economy, modern turbofan engines are designed 

with increasingly large fan sections. As shown in Fig. 1-1, for a typical fan section 

of a turbofan engine, the fan blades and fan case are the two major structural 

components. 

 

Fig. 1-1 Illustration of fan blades and fan case in a turbofan engine [3] 

 

With the increase in size, fan sections of modern turbofan engines are becoming 

heavier. For example, the CF-6 engine produced by General Electric (GE) 

Aviation, which entered service in 1973, had a bypass ratio of 5. The fan section 

in that engine weighs about 820 kg and is equivalent to approximately 20% of the 

total engine weight. By the time of 2011, the new GEnx turbofan engine, which is 

developed as a modernised replacement for the CF-6 engine, featured a bypass 
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ratio of 10. This time, the fan section in the GEnx engine weighs about 1742 kg 

and accounts for roughly 30% of the total engine weight. As can be seen, the 

increase in size for the fan section has caused significant weight penalties. 

Moreover, every kilogram added to the fan section normally results in 2.25 kg of 

extra support structure being incorporated into the engine and aircraft wing 

structures [2]. 

To reduce the weight penalty associated with large fan section, light-weight 

composite materials are used in the fan sections of modern turbofan engines. 

According to [4] and [5], in the case of GEnx engine, the carbon fibre composite 

fan blades and fan case employed saved engine weight by about 160 kg per engine 

when compared to the metallic alternative. 

Apart from weight-saving, impact resistance is another important consideration 

for fan blades and fan case. This is due to the aircraft engine certification 

requirements imposed on fan blades and fan case for the safe operation of 

commercial flights. For example, the Federal Aviation Administration (FAA) in 

the United States of America requires that fan case of a turbofan engine must be 

able to contain failed and released fan blades when the engine is running at full 

power. This dictates that the fan case must have sufficient impact resistance to 

prevent the penetration of high speed blade fragments through the fan case [6]. 

Because of this, the fan case of a turbofan engine is often referred to as the fan 

containment case. In addition, fan blades are also subjected to bird strike 

requirements. For instance, during a typical take-off scenario, if the fan blades are 

impacted by a bird below a certain size and weight, the damaged fan blades 

should not cause engine thrust reduction higher than the limits specified in related 

certification requirements, like those in [6]. 
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As a result, for the design of composite fan blades and composite fan case, one 

should consider impact damage resistance from the start of the design process. 

Moreover, to predict impact damage accurately and efficiently during the design 

process of composite structural components, a robust and systematic composite 

damage modelling strategy is required. 

According to [7] and [8], initially, in the engineering community, there was little 

interest in predicting damage in composites and only simple failure prediction 

methods were used for the design and sizing of laminated composites. The 

common practice at that time was to use fibre failure strain to predict the final 

failure of laminates or to adopt the “make and test” approach to measure laminate 

failure stress (strain) allowables directly. The former method may be acceptable 

for quasi-isotropic (QI) laminates since there are sufficient numbers of fibres in 

multiple directions, making the laminate behaviour as fibre-dominated. This 

method was in particular favoured by those engineers who treated carbon fibre 

composites as “black aluminium” where QI laminate stacking sequences were 

used exclusively when designing the laminates [9]. However, to exploit the full 

potential of laminated composites, stacking sequences other than QI should be 

used where appropriate. For the laminates where matrix failure modes are 

important, the former method is not suitable and the “make and test” approach is 

normally used in the industry to provide information on laminate failure [7]. 

However, this approach is both time-consuming and expensive as it is not a 

predictive method and a large number of tests on laminate samples of different 

stacking sequences are necessary in order to obtain corresponding failure stresses 

(strains) [8]. As a result, there is a growing trend in the engineering community to 
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move away from the “make and test” approach and rely more on the predictive 

methods for laminate failure analysis [7]. 

In response to this need of predictive laminate failure analysis methods, various 

failure criteria applicable to the unidirectional (UD) laminae inside laminates were 

developed. These criteria were later assessed in a series of World Wide Failure 

Exercises (WWFEs). However, it was found that instead of simple instantaneous 

failures, many laminates suffered gradual damage processes when subjected to 

loads [10]. Due to this and as a recommendation resulting from the WWFE 

activities, the laminate failure theories incorporating damage process modelling 

capabilities have been found to be superior for characterising laminate behaviour 

under loads [10-12]. Furthermore, another important conclusion from the WWFE 

activities is that failure criteria and damage modelling formulations should be 

physically based to reflect the true physics of failure and damage in composites 

[9,10,13]. It was identified that many existing laminate failure and damage 

theories contained deficiencies which compromised the physical justification of 

these theories, leading to inaccurate predictions in some cases [12,14]. These 

deficiencies should be rectified before the failure and damage theories can be 

approved for engineering applications.  

Apart from laminates, textile composites are also gaining applications in the fan 

sections of turbofan engines. A recent example is the CFM Leap-X engine 

developed by Safran Aircraft Engines [15], which used 3D woven carbon fibre 

composites to construct the fan blades and the fan case. Due to the novelty and the 

more complex internal structures of 3D textile composites relative to conventional 

laminated composites, failure and damage analysis of 3D textile composites is not 

as well-developed as that for laminates. Consequently, no systematic approach 
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suitable for engineering applications was provided in the open literature regarding 

failure and damage analysis of 3D textile composites. 

Based on the background information as introduced above, it can be seen that with 

the increasing application of composite materials in aircraft engines, especially 

with the use of novel textile composites, there is a genuine and urgent need in the 

aerospace industry for a physically rigorous, efficient and systematic composite 

damage modelling methodology to aid the design process of composite structures, 

which to the best of author’s knowledge is not yet available in the engineering 

community. Moreover, as composites of different reinforcement configurations 

might be considered for aero-engine applications, such a methodology should be 

applicable to simple forms of composites like conventional laminates, as well as 

advanced textile composites like 3D textile composites. 

 

1.2 Aims & Objectives 

In response to the aforementioned demand from the aerospace industry, the aim of 

this research is to develop a physically based, efficient and systematic damage 

modelling methodology for composite structures in aero-engines, with an 

emphasis on the damage analysis of textile composites. 

The development of this methodology is a part of the joint research effort to 

establish an integrated tool set for the design and analysis of composite structures 

in aero-engines. Due to this, the damage modelling methodology developed here 

serves as a necessary input to the textile composite characterisation toolbox 

developed in [1], where the characterisation of failure and damage in textile 

composites is made possible thanks to the adoption of this methodology. With the 
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failure and damage effect properly accounted for, the material properties predicted 

by the material characterisation toolbox are then used in the composite structure 

impact analysis models developed in [16], where impact damage in various 

composites structures is simulated and assessed to aid the design of these 

structures. 

To accomplish the research aim stated above, following objectives are set: 

(1) To develop a novel physically based theoretical damage model for UD 

composites. This model should be capable of rationally predicting the 

orientation, initiation and evolution of matrix damage, as well as detecting 

abrupt failure modes like fibre failures. Moreover, it should be applicable to 

general loading conditions including unloading and reloading scenarios. 

(2) To implement the aforementioned UD composite theoretical damage model as 

practical material subroutine codes usable for damage analysis, which are 

catered for the prediction of damage in UD laminae within laminates, as well 

as for the prediction of damage in UD fibre tows inside textile composites. 

(3) If applicable, to develop a pragmatic damage model to account for possible 

interfacial damage associated with the interfaces between the fibre tows and 

the matrix materials. 

(4) To carry out experimental investigation regarding damage in laminates and 

textile composites. For the experimental work, different test cases should be 

designed and employed respectively for the determination of damage-related 

material properties and the acquisition of reference experimental data which 

can be used to validate the damage models developed in this research. 
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(5) To verify that the damage models and the material subroutines developed in 

this research work are mathematically rigorous and self-consistent using 

simple analysis cases where the correctness of the results can be judged based 

on common sense and analytical results. 

(6) To carry out validation work for the damage models developed in this research. 

This can be achieved by applying the damage models for the prediction of 

real-life damage scenarios concerning laminates and textile composites. The 

predictions from the models should then be compared against the 

corresponding experimental data recorded so that the model performance can 

be evaluated and validated. 

 

1.3 Structure of Thesis 

There are eight chapters in this thesis. Apart from the current introduction chapter, 

the organisation for the rest of the chapters is described below.  

In Chapter 2, a comprehensive and up-to-date literature review is provided for the 

topics relevant to this research. These topics include the background and 

development of aerospace composites, the investigation of failure and damage in 

composites of various fibre reinforcement configurations, and the theories and 

modelling techniques developed for predicting failure and damage in composites. 

Some important observations are made based on the literature review conducted, 

which provided valuable guidance for the present research. 

Based on the appraisal of UD composite failure and damage theories as presented 

in the literature review, a novel theory for modelling matrix damage evolution in 

UD composites is developed and described in detail in Chapter 3.  
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In Chapter 4, the experiments conducted on the laminates and the 3D textile 

composites for this research project are introduced. The experimental results 

obtained from different test cases enabled the determination of damage-related 

material properties and provided reference experimental data which can be used to 

validate the damage model predictions. 

The damage evolution law introduced in Chapter 3 is integrated with an existing 

UD composite failure criterion and an existing UD composite damage 

representation formulation to form a novel continuum damage mechanics (CDM) 

model applicable to UD composites. The implementation and the verification of 

this CDM model are presented in Chapter 5. 

In Chapter 6, the validation of the novel UD composite CDM model is conducted. 

Through the validation work, the suitability of this CDM model to predict real-life 

composite damage scenarios is assessed, demonstrating the advantages and 

deficiencies of this model when used for practical applications. 

A pragmatic damage model developed for capturing inter-tow damage effect is 

introduced in Chapter 7. This damage model is developed to complement the UD 

composite CDM model for situations when the effect of inter-tow damage like 

tow-matrix inter-facial debonding cannot be ignored in the process of damage 

analysis. 

Finally, in Chapter 8, the conclusions and outcomes of this research are 

summarised. Based on the findings out of this project, suggestions for future 

research directions in this research area are also provided.  
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2. Literature Review 

In this chapter, a comprehensive and up-to-date literature review is provided for 

the topics relevant to this research. 

Since this research focuses on the composite materials for aerospace applications, 

an overview on the background and the development of aerospace composites is 

provided in this chapter. 

Furthermore, as the aim of this research is to develop a composite material 

continuum damage mechanics model intended for engineering applications, 

experimental investigations and theoretical developments concerning failures and 

damage in composites are reviewed. Such review is presented in this chapter 

according to the order of increasing complexity of composite materials, i.e. from 

the simplest unidirectional (UD) composites to the more advanced 3D textile 

composites. 

 

2.1 Composite Materials for Aerospace Applications 

In this section, a review on the use of composite materials in the aerospace 

industry is presented. 

First of all, to appreciate the rationale behind the increasing applications of 

composite materials in the aerospace industry, a general discussion on the benefits 

of using composites is provided, along with a brief summary for the historical 

developments associated with aerospace composites. 

Then, the shortfalls and issues related to the most common type of aerospace 

composites, laminated composites, are discussed. This then leads to the review of 
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3D textile composites, where the reasons for its increasing popularity over 

laminates for certain applications are explained. 

 

2.1.1 Benefits and History 

According to [17,18], initial serious application of composites in the aerospace 

industry dates back to the 1960s, when high performance continues fibres and 

homogeneous matrix material were first combined together to form the so called 

advanced composite material at that time. Among the composite materials 

reinforced by different fibre types, the one reinforced by carbon fibres, i.e. carbon 

fibre reinforced plastics (CFRP), has received the widest range of applications. 

In comparison to aluminium alloys, which are the most common metallic 

materials traditionally used in aerospace industry, CFRP has many superior 

properties. 

First of all, specific stiffness and specific strength in the longitudinal direction of 

typical unidirectional (UD) CFRP are normally about 3 and 6 times higher than 

those offered by aluminium alloy [17]. This often allows significant weight 

savings to be achieved when switching from traditional metallic structures to 

composites structures. For almost any aerospace vehicle, weight saving is 

normally always beneficial as either extra payload can be accommodated or 

significant reduction in fuel consumption can be achieved. In the case of 

commercial airliners, extra payload capability may allow more passengers to be 

carried per flight to maximise airline profit, or alternatively, without using the 

additional payload capability, a resulting lighter aircraft leads to lower specific 

fuel consumption which reduces the direct operating cost of commercial flights. 

As mentioned in [17], according to the statistics in 1990, the value of weight 
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savings for various aerospace vehicles can be translated into corresponding life 

cycle fuel cost savings, which varies from a sizable $300/lb for a medium-sized 

helicopter to an astonishing $30,000/lb for a spacecraft. Based on this, the 

attractiveness of using composites for achieving lighter aerospace structures is 

obvious. 

Other than weight saving, composites can also be tailored to suit specific 

structural load requirements. A well-known example is the Grumman X-29A 

experimental aircraft which had forward-swept wings. The forward-swept wing 

structures were made with composites which contained CFRP laminates with 

layers tailored to overcome the static divergence associated with this particular 

wing configuration, which cannot be practically achieved using traditional 

isotropic materials [18]. 

Composites are also known to be of better fatigue resistance than aluminium 

alloys. Typically, CFRP has much longer fatigue life than aluminium alloys. In 

composites, fatigue damage accumulation is normally in the form of slow 

development of multiple damage modes that are wide-spread in the material. On 

the contrary, in metallic materials, fatigue loading often induces a few dominant 

microcracks which may propagate abruptly when a critical number of fatigue 

cycles is reached [18]. As a result, metal fatigue is normally more abrupt and 

dangerous than composite fatigue. 

Another advantage of using composites is that large integrated structural 

components can be made possible thanks to composite manufacture processes like 

co-curing. This may significantly reduce the numbers of parts and fasteners in a 

structural assembly. As illustrated in [17], the CFRP composite structure 

replacement for the original full metallic vertical tail plane of L-1011 airliner not 
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only saved 27% structural weight, but also reduced the part number and fastener 

number down to a third and a quarter of the original quantities respectively. This 

certainly reduced structural complexity and simplified the assembly process 

dramatically. Moreover, integrated composite structures may even improve 

aerodynamic performance directly. In the case of the F-22 fighter jet, some flight 

control surfaces were made with composites such that the control surface skins 

were co-cured to the supporting structures underneath. Thanks to this, no rivets 

were used on the skins which led to less aerodynamic drag [18].  

Due to the benefits offered by composite structures as listed above, increasing 

applications of composite materials in the aerospace industry started around the 

1960s. Initially, owing to limited experience with composites, by the time of the 

1970s, attempts were only made to produce trial composite parts for replacing 

existing metallic structures. These early attempts include CFRP replacement 

structures for metallic control surfaces and sections of empennage primary 

structures on the Boeing 727, the Lockheed L-1011 and the McDonnell Douglas 

DC-10 transport aircraft [17]. 

Then, in the 1980s, thanks to the experience gained from earlier attempts, 

composite structures were designed from the start as production pieces for control 

surfaces, winglets and empennage structures of airliners. The Airbus A300/310 

and A320 aircraft family, as well as the Boeing 757/767 and 777 aircraft, were 

some of the famous commercial aircraft types at that time which utilised 

substantial CFRP and sandwich composite materials [17].  

By the time of 2009, CFRP composites had secured dominant presence in aircraft 

structures as not only most of the secondary structures and empennage structures 

were made of composites, but major primary structures like fuselage and wings 
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were also mainly constructed from CFRP. The latest examples are the Boeing 787 

[19] and the Airbus A350 [20] airliners as both are flying with nearly complete 

CFRP airframes. It is truly remarkable considering that just after 50 years of 

development since 1960, CFRP had gained such a wide range of applications in 

aircraft structures to an extent that landing gear and engine pylon might be the 

only major aircraft structural components without extensive use of CFRP. 

In terms of composite applications in aerospace turbofan engine, the trend is more 

conservative. The service temperature limit of polymer matrix composites 

effectively constrained the application of composites to “cold” sections of engines. 

As a result, composites are normally only employed for structures in the fan 

system. 

Initially, around 1990, for limited types of engines, composites were only used in 

the nose cone which is the foremost component positioned in the fan system for 

guiding air stream into the engine air intake [2]. 

By the time of 1993, General Electric (GE) first successfully used CFRP 

laminates for making large fan blades for the GE90 turbofan engine. The 

laminates were composed of hundreds of pre-impregnated (prepreg) layers, which 

were moulded and cured into the blade shape required. In addition, a thin layer of 

titanium alloy is attached to the blade leading edge for shielding the laminates 

from impact and erosion damage. This marked the start of large quantity 

applications of composites in aero-engines [2]. Since then, composites were used 

in other turbofan engine components like fan containment case and bypass air 

duct stator vanes. 
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In 2006, the first composite fan containment case design emerged, which was 

employed on the GEnx turbofan engine. According to [21-23], this composite fan 

case design selected 2D tri-axial braided carbon fibre fabric as the fibre 

reinforcement type which was rolled into a cylinder. The cylinder was then 

moulded into fan case structures using resin transfer moulding (RTM) process. 

For each fabric layer, fibre tow orientations were set at -60º, 0º and 60º to form a 

quasi-isotropic material architecture. It was argued that since every fabric layer 

was quasi-isotropic, stiffness mismatch between layers would be minimised which 

should help to prevent inter-laminar damage. However, other than stiffness 

mismatch, weak interlaminar strength is also a major cause for delamination 

damage. Since the 2D tri-axial braided fabric still retained the layered 

configuration where the inherently weak interfaces between the layers were still 

present, it is envisaged that this woven architecture should still be susceptible to 

delamination damage. 

Just seven years later, in 2013, 3D woven CFRP composites were successfully 

employed in the fan blade and the fan case structures of the new CFM Leap-X 

turbofan engine, which is expected to enter into service by 2016 [15]. 

 

2.1.2 Issues Associated with Laminates 

However, the use of composite materials in the aerospace industry is not without 

problems and hurdles. 

For laminated composites, which are the most commonly used type of composite 

materials, although they possess superior in-plane mechanical properties, their 

poor through-the-thickness properties can be a significant drawback [24,25]. 
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Since there is no fibre reinforcement in the thickness direction, laminates have 

low Young's modulus and strength values in the thickness direction. For the same 

reason, their transverse shear modulus and strength are also low. Moreover, 

because of their layered architecture and low inter-laminar fracture toughness, 

laminates are known to be prone to delamination damage which can be easily 

caused by inter-laminar shear stresses arising from transverse impact. As a result, 

laminates usually have poor impact damage resistance. 

A well-known example demonstrating the inferior impact resistance of laminates 

is the ill-fated development of CFRP fan blades for the Rolls-Royce RB211 

turbofan engine. Developed in the 1960s, these fan blades were made of carbon 

fibre laminates and represented a radical new advancement in aero-engine 

technology at that time [26]. However, the development ceased when the blades 

shattered catastrophically under bird strike during the engine bird ingestion test 

[27]. Due to this composite fan blade design flaw and other technical issues, the 

RB211 engine programme suffered long delays and heavy financial penalties 

which led to the nationalisation of Rolls-Royce. In the end, conventional titanium 

alloy fan blades replaced the composite blades which then allowed the RB211 

engine to enter the service. 

According to [25,28], apart from the shortfalls in terms of mechanical properties 

as mentioned above, there are also many issues concerned with laminate 

manufacture. 

Laminates are mostly made from prepregs which require expensive refrigeration 

facilities for storage. This normally causes significant increase in the production 

cost. 
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Beside this, laminate manufacture can be very labour intensive as in many cases 

manual hand lay-up procedure is still required if automation is not possible. A 

typical example is the making of a CFRP composite fan blade for the GE90 

engine, where hundreds of prepreg layers were laid piece by piece by shop floor 

workers to form the stacking sequence desired [2]. Without a doubt, such a labour 

intensive process resulted in long production times as currently a single CFRP fan 

blade for the GE90 engine needs about 340 hours of lead time from the cutting of 

raw prepreg material to the delivery of a finished blade [29]. 

In addition, most prepreg layers used for making laminates are poor for draping. 

As a result, laminates normally cannot be directly moulded into complex shapes 

and components of complex shapes may have to be carefully machined from 

laminates which is time-consuming and likely to introduce defect if the process is 

not well-controlled. 

 

2.1.3  3D Textile Composites 

3D textile composites first emerged in the 1960s, when carbon-carbon 3D braided 

composite was evaluated for its application in rocket motor components [30]. 

However, it was not until the mid-1980s that 3D textile composites in the form of 

fibre reinforced polymers received serious development and 3D textile fibre 

reinforcements of various configurations were developed. The need of 3D 

composites is mainly to overcome the deficiencies associated with 2D laminates, 

that is, to improve through-the-thickness mechanical properties, to improve 

impact damage resistance and to reduce high production cost [31]. However, due 

to the inherent fibre undulation presenting in most 3D textile composites, they 
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normally have inferior in-plane mechanical properties when compared with 

laminates of similar fibre volume fractions. As a result, 3D textile composites may 

not be suitable for stiffness- and strength-critical applications where high in-plane 

mechanical properties are required. Nonetheless, thanks to the benefits offered by 

3D textile composites, they are becoming more widely-used in the aerospace 

industry, especially for structural components requiring good impact resistance. 

Unlike prepregs, for producing 3D textile composites, large quantities of dry fibre 

tows are formed into 3D textile preforms using textile processes. The preforms are 

then impregnated with resin according to liquid moulding processes so that the 

final composite component can be moulded. 

In 3D textile composites, fibres are oriented or inserted in the thickness direction 

using textile processes such as stitching, 3D weaving, braiding and knitting [32]. 

With fibre reinforcement in the thickness direction, 3D textile composites have 

better mechanical properties in the thickness direction and are less prone to 

delamination when compared against laminates [24,31,32]. Thanks to the textile 

processes which are automated by the use of textile machinery, preforms of 3D 

textile composites can be produced at a fast rate with little human interference. 

Moreover, without much difficulty, some textile processes can be set up to 

produce single-piece near-net-shape 3D textile preforms of complex shapes 

[24,32]. Last but not least, due to the combination of automated textile processes 

and the use of dry textile preforms instead of prepreg materials, the production 

cost of 3D textile composites is usually much lower than that of laminates. 

The simplest and the cheapest textile process for making 3D textile preforms is 

stitching, where 2D fabric layers are stitched together in the thickness direction by 

high-strength fibres [24,32]. This type of 3D textile composites are commonly 
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referred to as stitched composites. In contrast to other textile processes, stitching 

is considered as the most flexible process because through-the-thickness fibre 

reinforcements can be chosen to be applied only at where needed. Stitched 

composites have been used on centre fuselage skin of the Eurofighter fighter 

aircraft [33] and rear pressure bulkhead in the Airbus A380 airliner [34,35]. For 

both cases, it was reported that stitched composites achieved significant cost 

savings over equivalent prepreg laminate constructions. 

3D weaving is the fastest and the most used textile process for producing large 

volumes of 3D preforms [24,25,28]. More importantly, it is capable of weaving 

preforms of complex shapes which makes the production of single-piece near-net-

shape 3D woven composites possible. However, although a wide range of 

through-the-thickness weave patterns are available, in-plane fibre tow orientations 

are normally restricted to 0º and 90º (warp and weft directions). This means 3D 

woven composites normally have poor in-plane shear properties. The earliest 

application of 3D woven composites for commercial aviation appeared in the 

Beech Starship aircraft where 3D woven composite structural connectors were 

used to join wing panels[36]. Recently, 3D woven composites were used for 

constructing the fan containment case of the CFM Leap-X turbofan engine where 

flanges and other structural features were continuously woven together for better 

structural integrity [37]. 

3D preforms can also be made using braiding [24,32]. Braided 3D composites 

normally have the highest level of conformability, structural integrity and 

torsional stability among all types of 3D composites. The braiding process can be 

adjusted during operation to achieve variations in cross-sectional shape, taper, and 

bends for the preform that is being braided. Thanks to the wide range of braiding 
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angles available, fibres can be oriented from -80º to 80º in a plane with respect to 

the braiding axis. However, due to limitations of most braiding machines, this 

textile process currently can only produce slender preforms. It was reported that 

propeller blades for a type of naval landing craft had been made from 3D braided 

composites [38]. 

Knitting is another textile process for making 3D preforms. Knitted preforms are 

highly drapable which makes them most suitable for producing net-shape parts of 

very complex geometry [24,32]. However, due to the highly curved fibre path 

resulting from the knitting process, knitted 3D composites usually have low 

stiffness when compared with other types of 3D composites. Because of this, 

knitted 3D composites are mainly used for non-structural components. 

Aforementioned 3D textile composites generally have better impact damage 

resistance than laminates. 

For 3D woven composites, it was found that the impact energy required to initiate 

damage can be up to 60% higher than that for laminates of the same thickness 

[39]. Moreover, mode I type of fracture toughness values of 3D woven 

composites can be 6 to 20 times higher than those offered by laminates of the 

same thickness, resulting in improved resistance to impact-induced delamination 

[40,41]. In some cases, impact energy dissipation in 3D woven composites was 

found to be more than twice of that in laminates of comparable areal densities and 

fibre volume fractions under low speed impact scenarios with a fixed impact 

speed of 2m/s [42]. When compared with laminates, better impact damage 

resistance of 3D woven composites often leads to less impact-induced degradation 

for in-plane mechanical properties, hence, providing better residual properties 

after impact [43,44]. However, due to crimping of fibres, damage to fibres during 



20 
 

weaving processes and the existence of resin rich areas, 3D woven composites 

normally have lower in-plane mechanical properties than laminates of the same 

fibre volume fraction [43-52]. 

In terms of stitched composites, their improved impact resistance over laminates 

was reported in [53-57] for low speed impact events and in [58-60] for high speed 

impacts. Detailed studies on the influence of various stitch parameters to the 

impact resistance of stitched composites were presented in [61,62]. It was found a 

small volume fraction of through-the-thickness stitched fibre reinforcement is 

normally able to provide significant increase in mode I interlaminar fracture 

toughness. As a result, crack propagation in stitched composites mostly occurs in 

mode II type of fracture. However, similar to 3D woven composites, compared 

with laminates of the same fibre volume fraction, stitched composites usually 

have reduced in-plane mechanical properties [32,59,63-66]. This is because the 

needles for the stitching process often damage the in-plane fibres locally. Also, 

resin rich zones exist in stitched composites which are normally associated with 

the thickness direction threads. 

According to [67,68], thanks to their tight integral textile structure, 3D braided 

composites were found to have the smallest damage areas under ballistic impacts 

when compared to all other 3D textile composites tested. Moreover, they were 

also reported to have the highest ballistic impact penetration resistance among all 

the textile composites studied in [69]. Under low speed impact, since there is no 

layered architecture in 3D braided composites, resin crack, tow debonding and 

fibre breakage were the common failure modes observed, while delamination was 

never discovered [70-73]. Due to curved fibre tows around the braiding axis, 3D 
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braided composites also have lower in-plane properties than laminates of the same 

fibre volume fraction [67,74]. 

In terms of knitted 3D composites, although the highly curved fibre tow path 

limited their in-plane material properties, they were reported to have the ability to 

absorb substantial amount of impact energy, largely due to high mode I fracture 

toughness [31]. As mentioned in [75], compared to the composite of uniweave 

reinforcements with similar fibre volume fraction, the knitted 3D composite used 

in that investigation was shown to absorb 64% more impact energy when tested 

under impacts with an incident energy of 7.3J. Chou et al. [76] conducted notched 

Charpy impact tests on the E-glass/epoxy composites of 3D knitted architecture 

and plain weave architecture. They found that for the test case they designed, the 

impact energy absorbed by the former was about 2.4 times of that absorbed by the 

latter. As suggested in [31], this ability of knitted 3D composites to absorb much 

greater amounts of impact energy than 2D composites implies that they are 

potential candidate materials for damage-prone structures or crush members.  

 

2.2 Failure in UD Composites under Static Loadings 

In this section, failure mechanisms and failure theories related to the simplest 

form of composites, UD composite, are reviewed. 

Since most high performance fibre-reinforced composites are comprised of UD 

composites in the form of tows or UD laminae, a good understanding of the 

failure mechanisms associated with UD composite is normally beneficial for the 

failure and damage analysis of composites with more advanced reinforcement 

architectures. 
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As pointed out in [35] and [7], due to the brittle nature of composites, independent 

UD composites are normally considered to fail abruptly instead of showing a 

gradual damage process. As a result, failure theories for UD composite are 

abundant in the literature. 

However, as will be discussed later, when UD composites are bonded together to 

form composites of more complex reinforcement architectures, gradual damage 

phenomenon becomes more influential. 

 

2.2.1 Failure Mechanisms 

As summarised in [77], UD composite exhibits different failure modes depending 

on the loading conditions and the properties of the constituent materials. 

Under longitudinal tension, the constituent material inside UD composites with 

the lowest ultimate tensile strain should fail first. Normally, fibres have lower 

ultimate strains than matrix materials. As a result, longitudinal tension usually 

leads to fibre tensile failure in UD composites. However, this failure mechanism 

is normally complicated by the statistical distribution of fibre strength which 

varies from fibre to fibre and from point to point. 

For UD composites under longitudinal compression, common failure modes 

observed are micro-buckling and fibre kinking. For UD composites with low fibre 

volume fraction, extensional mode of microbuckling is likely to occur. With 

increasing fibre volume fraction, shear mode microbuckling or fibre-matrix 

debonding become the dominant failure modes. If the UD composites is of very 

high fibre volume fraction and has well-aligned fibres, pure compressive failure 

might be encountered which is normally in the form of fibre shear failure.  
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When UD composite is loaded under transverse tension, high stress concentration 

is usually induced at fibre-matrix interface. Due to this, multiple isolated tensile 

cracks tend to initiate at different locations of the fibre-matrix interface 

throughout the material. With increasing loading, more of these cracks appear and 

they finally coalesce to produce a macrocrack which leads to the complete 

fracture of UD composites under transverse tension. 

Under transverse compression, high stress concentration is again induced at fibre-

matrix interface, which promotes matrix compressive failure or fibre crushing. 

Moreover, high interfacial shear stress may also be present which can cause 

matrix shear failure or debonding, resulting in a globally shear failure response. 

When UD composite is loaded under in-plane shear, high shear stress 

concentration develops at fibre-matrix interface, which leads to matrix shear 

failure and debonding. Eventually, debonding cracks propagate into lengthy 

macrocracks parallel to the fibre direction, causing the final fracture of UD 

composites. 

 

2.2.2 Failure Theories 

As suggested in [78], failure theories for UD composites can be categorised into 

two main groups: phenomenological failure criteria and mode-dependent failure 

criteria. 

In terms of phenomenological failure criteria, one of the earliest is the theory by 

Hill [79], which formed the foundation for many advanced polynomial criteria 

developed afterwards. In that theory, the von Mises yield criterion for isotropic 

ductile materials is modified for application to anisotropic ductile materials. Tsai 
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then converted this criterion for failure prediction in orthotropic composite 

materials. The resulting theory is known as the Tsai-Hill criterion [80]. 

Later, by resolving the coefficients associated with stress terms, Azzi and Tsai [81] 

used the failure theory by Hill to predict the failure of transversely isotropic UD 

lamina. This criterion allows for the interaction between different in-plane stress 

components but provides no distinction between tensile and compressive strengths. 

As a result, when using this criterion, strength parameters must be specified 

according to the stress state encountered. 

To allow different tensile and compressive strengths to be addressed, Hoffman [82] 

modified Tsai-Hill criterion by introducing linear stress terms into the failure 

theory. 

Tsai and Wu made the first attempt to develop an original failure theory for 

anisotropic composite materials, which is known as the Tsai-Wu criterion [83]. 

This criterion is expressed by invariants of stress tensor components, which 

assured objectivity. Apart from allowing interaction between stress components, 

this criterion is also capable of accounting for different tensile and compressive 

strengths. 

All failure theories mentioned above are phenomenological failure criteria where 

each of them is expressed by a single quadratic function of stresses. Although 

their operation is simple and can be readily implemented for computational 

procedures, but they are unable to describe the mode-dependent nature of 

composites failure, which sometimes makes them inaccurate. For instance, in 

some of them, strengths for different independent failure modes are used together 

for creating a smooth but physically unjustifiable failure envelope. Moreover, all 



25 
 

of them only produce smooth continuous failure envelopes, although experience 

has shown that under certain circumstances the failure envelope is better 

described by a set of piece-wise segments for some quadrants. To allow 

interaction between different stress components, some of them require strength 

parameters of multi-axial stress state, which can be difficult to obtain 

experimentally.  

In contrast to polynomial form failure criteria, mode-dependent failure criteria 

incorporate the influence and physical considerations of different failure modes 

into the failure criteria. 

The simplest forms of mode-dependent criteria are the maximum stress and 

maximum strain failure criteria, in which failure is expected when any of the 

stress or strain components reach the strength or failure strain value defined. 

However, these simple criteria do not allow interaction between different stress or 

strain components which normally lead to inaccuracy in the failure envelope 

under multi-axial loading conditions. Also, the resulting failure envelopes are 

formed by straight lines only which is an unrealistic assumption for the shapes of 

failure envelopes.  

A more advanced and well-received mode-dependent failure theory is the one 

proposed by Hashin [84]. In this theory, four failure modes are suggested as there 

are tensile and compressive failures associated with fibre-dominated or matrix-

dominated failure modes. As a result, four failure condition expressions are 

proposed, with each catered for a specific failure mode. Some of these expressions 

are polynomial quadratic functions of stress invariants which reproduced features 

from the expression of Tsai-Wu criterion. Thanks to this, for some failure modes, 

necessary stress interaction is allowed. However, some linear stress terms 
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originally presented in Tsai-Wu criterion is dismissed in the theory by Hashin 

without much justification. 

Later, Puck developed a sophisticated physically based failure criterion (Puck 

criterion) [85]. In this criterion, similar to the failure theory by Hashin, fibre 

dominated failure and matrix dominated failure are distinguished. For the former, 

separate tensile and compressive failure modes are defined. For the latter, the 

concept of the fracture plane is employed such that a plane parallel to the fibre 

direction is determined to be the plane of inter-fibre matrix cracks. This treatment 

for matrix crack prediction is inspired by the Mohr-Coulomb failure criterion [86], 

which is originally proposed for brittle isotropic materials. In the Puck criterion, 

for matrix failure under tension, the corresponding failure condition expression is 

modified from that defined in the Hashin failure criterion. On the other hand, for 

matrix failure under compression, the corresponding formulation is based on the 

Mohr-Coulomb failure criterion which accounts for the effect of friction on 

compression-induced shear failure. Compared to the failure theory by Hashin, the 

Puck criterion inherited all the capabilities offered by the former, while providing 

the added capability of predicting matrix cracking orientation. Moreover, the 

physical consideration for compression-induced shear failure in brittle materials is 

also included in the Puck criterion, which is an advantage over the failure theory 

by Hashin. 

As discussed above, phenomenological failure criteria do not integrate physical 

considerations and failure modes of composites. Although they can be used to 

predict failure to some extent, the way they accomplish this is via the use of non-

physical formulations in a seemingly “curve-fitting” fashion. In light of this, it is 
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recommended to use mode-dependent failure criteria as they are superior in 

reflecting the real physics of UD composite failure. 

In addition, comprehensive benchmarking and assessment for various UD 

composite failure criteria can be found in the outcomes from the World Wide 

Failure Exercises (WWFEs) [9-14,87]. 

The formulations of the failure criteria reviewed above are listed in Table 2-1 

below. 
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Table 2-1  Summary of UD composite failure criteria 

Tsai-Hill [80] 

2 2 2 2 2 2

11 22 22 33 33 11 23 13 12( ) ( ) ( ) 2 2 2 1F G H L M N                

where F, G, H, L, M, N  are material properties. 

Azzi-Tsai [81] 

2 2
2 2 2 2

11 11 22 22 122 2

X X
X

Y T
         

in which X is the strength in the fibre direction, Y is the strength in the transverse 

direction, T is the in-plane shear strength 

Hoffman [82] 

2 2 2
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where  ( 1 9)iC i    are nine independent material parameters 

Tsai-Wu [81] 
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where iF   are material parameters as follows 
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Hashin[84] 

Fibre tensile mode: 
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Puck [88] 

Fibre tensile mode: 
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Fibre compressive mode: 
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Inter-fibre matrix failure tensile mode: 
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Inter-fibre matrix failure compressive mode: 



30 
 

1

2

2

22












































n

C

nt
n

C

nl

R

p

RR

p

R














 

where 

 C

C

p

R
R









12
 




 2

,

2
,,

sincos










 
R

p

R

p

R

p
CTCTCT

 

22

2

2sin
ntnl

nl







 , 22

2

2cos
ntnl

nt







  

11
 
and 

12  are the longitudinal uniaxial strain and longitudinal shear strain, 11T

and 11C  are the longitudinal tensile and compressive failure strains of the UD 

composite, 12fv  is the longitudinal Poisson’s ratio of pure fibre, 
1fE  is the 

longitudinal Young’s modulus of pure fibre, fm  is the stress magnification 

factor for fibre bundles, n , nl  and nt
 
are the normal, longitudinal shear and 

transverse shear stresses on the fracture plane,   is the orientation of the fracture 

plane anticlockwise from the second material principal plane,  ||
Tp ,  ||

Cp , 
Tp  and 

Cp  are the slopes of the failure envelope related to the tensile, compressive 

normal stresses, longitudinal shear stress and transverse shear stress on the 

fracture plane, 
TR , 

CR ,  ||R  and R  are the strength values for triggering inter-

tow matrix failure in terms of tensile normal, compressive normal, longitudinal 

shear and transverse shear stresses on the fracture plane. 
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In Table 2-1, 11TS  and 11CS  are the longitudinal direction tensile and compressive 

strengths, 22TS  and 22CS  are transverse direction tensile and compressive 

strengths, 12S  and 23S  are longitudinal and transverse shear strengths. 

 

2.3 Damage in Laminates under Static Loading 

As pointed out in [7,11,35], when laminates formed by UD laminae are subjected 

to loads, not all laminae fail instantly as often there are different gradual damage 

development processes associated with laminates depending on their stacking 

sequences. As a result, only predicting the failure of a UD lamina does not 

provide the full picture of damage process in laminates. In the composite research 

industry, more attention is now being shifted to the study of damage process [89]. 

In this section, a review of both experimental investigation and theoretical 

development concerning damage in laminates are presented. 

 

2.3.1 Damage Mechanisms 

Major damage modes observed in laminates under static loading are intra-laminar 

cracking, inter-laminar cracking, fibre fracture and micro-buckling [7,89].  

In general, intra-laminar cracks are the first damage to occur which signifies 

damage initiation in laminates. When laminates are loaded under uniaxial tension, 

depending on their stacking sequences, these cracks were reported to initiate in 

the laminate axial strain range of 0.4-1% [89]. The effect of off-axis ply 

orientation on intra-laminar crack initiation was studied in [90-92]. It was found 

with the decrease of off-axis ply angle, increase in laminate axial strain was 

observed for the initiation of intra-laminar cracks. Once initiated, due to the nature 
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of brittle failure, intra-laminar cracks normally propagate in an unstable manner 

through the thickness of the plies containing them, until they are arrested by 

neighbouring plies of different orientations. In the width direction, cracks tend to 

run right to the edges of the laminates or to stop at places where the overall stress 

distribution no longer promotes the cracking process [90,93,94]. 

Unlike in ductile materials where propagation of cracks is the main damage 

evolution process, further loading in laminates leads to multiplication of intra-

laminar cracks [89]. During the crack multiplication stage, when crack density is 

sufficiently high, interaction between cracks promotes a “shielding effect” which 

effectively reduces the stress between adjacent cracks. This then results in reduced 

crack multiplication rate and leads to the crack saturation phenomenon [93,95-97]. 

Once propagated across the ply thickness, intra-laminar cracks may then develop 

into delamination and trigger longitudinal splitting. Continued loading of 

laminates beyond this point causes more severe debonding, delamination and 

local failures like fibre fracture, until final catastrophic failure is reached [89]. 

However, the dominant mode of damage is reported to be different for laminates 

with different stacking sequences [91,98,99]. 

For cross-ply laminates under uniaxial tension, extensive experimental 

investigations have been conducted to characterise their damage processes. As 

mentioned in [93,94,100-104], damage initiation in cross-ply laminates is usually 

in the form of intra-laminar cracks originating from ply edges of 90º plies. These 

cracks then propagate instantly in the thickness and width directions of 90º plies. 

It was found that the thickness ratio between the 0º and 90º plies can affect the 

constraint effect provided by the 0º plies, which in turn influences damage 

initiation and stress-strain behaviour of cross-ply laminate. As reported in 
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[105,106], if the number of the 0º plies is more than 10 times of that for the 90º 

plies in cross-ply laminates, complete suppression of intra-laminar cracks in the 

90º plies is possible. Different damage behaviours were also noticed for cross-ply 

laminates with [90/0]S and [0/90]S stacking sequences, where the former showed 

earlier damage initiation and faster crack density growth due to its outer 90º plies 

being less constrained from the 0º plies [107,108]. 

A detailed study of intra-laminar cracks in quasi-isotropic (QI) laminates is 

provided in [90]. In contrast to cross-ply laminates, although intra-laminar cracks 

appeared in both the 90º and the 45º plies in QI laminates, cracks in the 45º 

plies initiated much later than those in the 90º plies. Moreover, cracks in the 45º 

plies did not propagate to full ply width and full ply thickness. In terms of crack 

multiplication, the crack density growth rate in the 45º plies is much lower than 

that in the 90º plies. Compared to cross-ply laminates, less stiffness reduction was 

observed and higher crack density was reached for the QI laminates.  

Although angle-ply laminates are not common in practical applications, a 

comprehensive study of intra-laminar cracks in this kind of laminate can be found 

in [91], where the effect of notch on angle-ply laminate damage behaviour is also 

addressed.  

 

2.3.2 Damage Modelling 

According to [89], damage modelling approaches for laminates can be categorised 

into two types: micro-damage mechanics approach and continuum damage 

mechanics approach. 
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2.3.2.1 Micro-damage Mechanics Approach 

In this kind of approach, cracks and voids inside laminates are treated as 

microstructures, for which local stress distribution and displacement field around 

them are worked out using micromechanics methods. Lamina level in-situ 

strengths are required in this approach to predict the emergence of new intra-

laminar cracks, which then enables the prediction of crack density growth with 

respect to the loads applied. 

One of the earliest analytical methods developed in this area is the one published 

by Aveston et al. [109], which is known as the “ACK” model and formed the 

foundation of shear lag analysis. Shear lag analysis is essentially a one- 

dimensional analysis which captures the interfacial shear stress of the stress 

transfer phenomenon between cracked lamina and undamaged lamina. Cox [110] 

initially used shear lag analysis to predict the stress transfer between fibre and 

matrix. Later, Aveston and Kelly [111] presented a shear lag model for predicting 

the strain to initiate matrix cracking in the UD composites. Further extensions to 

the shear lag model by Cox [110] were developed by Garrett, Bailey and Parvizi 

[93,94] and Manders et al. [112] to analyse transverse cracks in cross-ply 

laminates. Smith et al. [113-115] developed shear lag models for the analysis of 

intra-laminar cracks inside cross-ply laminates and QI laminates under bending. 

Using shear lag analysis in conjunction with fracture mechanics and simple 

bending theory, they managed to predict the flexure stiffness, the neutral axis 

positions and the residual curvature of the laminates as a function of the 

transverse crack density and the lamina in-situ strength. 

However, due to the one-dimensional nature of shear lag analysis, it cannot 

provide accurate stress analysis. For example, it is unable to distinguish between 
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[90/0]s and [0/90]s laminates as it cannot account for the different stress boundary 

conditions associated with the 90º plies in these stacking sequences [108]. 

Moreover, for damage analysis of cross-ply laminates, shear lag models give the 

non-physical prediction of having nonzero interfacial shear stress at locations of 

transverse cracks [89]. 

In light of the deficiency of 1D shear lag analysis, variational analysis methods 

were developed which extended the analysis to two-dimensional stress analysis. 

The first application of this method to the analysis of cracked laminates was 

reported by Hashin [116]. In this kind of method, principle of minimum 

complementary energy is applied to a cracked laminate volume. When used for 

cross-ply laminate analysis, this method can correctly predict zero interfacial 

shear stress at the locations of transverse cracks [105]. Later, Varna and Berglund 

[117-119] modified the variational method by Hashin [116] by determining the 

axial stress variations across the thickness of plies, instead of assuming constant 

stress values for these. In addition, Kuriakose and Talreja [120] successfully used 

the variational method to predict damage in cross-ply laminates under bending. 

The variational approaches based on Hashin’s work [116] were applicable only to 

symmetric laminates of three layers in principle due to the lack of sufficient 

boundary conditions. This restriction had not been recognised until the emergence 

of [121] where the difficulty was overcome by the supplement of natural 

boundary conditions. 

Although capable of providing analytical solutions, the micro-damage mechanics 

approach mentioned above may not always be readily applicable to complex 

damage scenarios where multiple damage mechanisms, complex interaction 
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between cracks and complex constraint effect from neighbouring plies of various 

orientations are present [89]. 

For highly complex damage situations, finite element method, which can be 

regarded as a numerical experiment approach, can be used to analyse cracks 

inside laminates. Examples of this method are reported in [122-124]. 

In addition, another computational method for cracked laminate analysis, known 

as the finite strip method, was developed by Li et al. [125]. By using this method, 

analysis for laminates of arbitrary layup is possible. However, the restriction in 

this method is that all cracked plies have to be of the same orientation. 

 

2.3.2.2  Continuum Damage Mechanics Approach 

At around the same time as the development of the micro-damage mechanics 

approach, continuum damage mechanics (CDM) approach was also adopted for 

the analysis of damage in laminates.  

The concept of CDM was first introduced by Kachanov [126] for characterising 

creep damage in metallic materials, where damage was represented by a scalar 

internal state variable. After this, Lemaitre and Chaboche [127] applied the work 

of Kachanov for the analysis of materials with distributed cavities and cracks. 

Further advance was made by Krajcinovic [128] who not only associated CDM 

theory with concepts from fracture mechanics and plasticity, but also addressed 

thermodynamic implications for CDM theory. In terms of the application of CDM 

to composites, one of the earliest attempt was made by Talreja [129], who later 

developed the theory further for predicting damage evolution in cross-ply 

laminates [130] and damage evolution in laminates under fatigue loadings [131]. 

http://appliedmechanics.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=D.+Krajcinovic&q=D.+Krajcinovic
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Other well-known CDM theories for laminate analysis are the ones proposed by 

Matzenmiller et al. [132] and Ladeveze et al. [133-136]. 

The fundamental assumption in CDM theory is treating the damaged material as a 

statically homogeneous continuum so that a macro-scale material constitutive 

relationship involving elasticity and damage can be used to describe the overall 

material behaviour. As a result, the concept central to CDM is the homogenisation 

of damage for a representative volume element (RVE) inside the damaged 

material. For this concept to be legitimate, the size of RVE has to be sufficiently 

large so that the effective material properties of damaged material do not depend 

on the locations of microcracks [89,137,138]. 

Unlike cracking damage in monolithic metallic materials, where a single 

dominant crack often contributes to overall material degradation and failure, 

cracking damage in composites is normally dissipated within the affected 

materials such that a large number of almost evenly distributed microcracks are 

usually observed [89]. Due to such a widespread and seemingly uniform 

distribution of microcracks within the material volume, damaged composites can 

therefore be regarded as an effective homogeneous continuum which is especially 

suitable for the application of CDM.  

Furthermore, due to the multitude of microcracks in damaged composites, the use 

of fracture mechanics and micro-damage mechanics types of analysis, which is to 

account for every individual crack and the interactions between the cracks, is not 

always practical for predicting the overall material behaviour of damaged 

composites. In particular, for engineering applications, analysis of these kinds for 

product design will be unacceptably time-consuming and prohibitively expensive 

in terms of computational power required. As an alternative, CDM presented a 
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suitable approach for developing constitutive models of damaged composites. 

When using the CDM approach, the overall damage effect due to numerous 

cracks is represented by a homogeneous damage field, which introduces 

irreversible changes into the constitutive behaviour of damaged composites, 

thereby removing the need of studying every individual crack. 

A large number of damage models based on CDM theory (CDM models) were 

developed by various researchers for modelling the damage of UD laminae in 

laminates. These damage models are normally comprised of three major 

components as listed in Table 2-2. 

Table 2-2 Components in the CDM models for UD lamina 

Components Functions 

Damage initiation criteria for 

monotonic loading and reloading 

scenarios 

To predict the starting point of initial 

damage process and continued 

damage process. 

Damage representation formulation 

To introduce damage variables into 

the constitutive relationship of 

damaged composites 

Damage evolution law 
To govern the growth of damage 

variables 

 

As can be seen in Table 2-2, the damage initiation criterion forms a part of the 

CDM models because for identifying the starting point of damage process, the 

onset of damage needs to be predicted. Many CDM models adapted failure 

theories of UD composites as damage initiation criteria. For example, the CDM 

model proposed by Zinoviev et al. [139] used the maximum stress failure criterion, 

Matzenmiller et al. [132] selected the failure theory by Hashin [84] for their CDM 
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model and the maximum strain failure criterion was chosen as the damage 

initiation criterion in the CDM model developed by Bogetti et al. [140]. In this 

report, discussions on various failure theories of UD composites have already 

been provided in Section 2.2.2. 

In addition to the damage initiation criterion, damage representation is another 

major component in CDM models because this is where material internal state 

variables (damage variables) representing damage effect are introduced into the 

material constitutive relationship. With the definition of damage representation, 

the specific terms in the stiffness/compliance matrix of damaged composites, 

which are affected by the damage effect, can be clearly identified and related. 

Last but not least, with the inclusion of damage variables in the material 

constitutive relationship, a damage evolution law is required in the CDM model 

for governing the growth of damage variables. 

In the following subsections, a review on various damage representation 

formulations and damage evolution laws used in different CDM models is 

presented. 

 

2.3.2.2.1 Damage Representation 

There appeared to be no unified form of damage representation formulation as 

researchers proposed different constitutive relationships incorporating damage. In 

fact, this issue was addressed in [137] with the argument that there were so many 

inconsistent forms of suggested constitutive relationships involving damage, such 

that this situation should be reviewed and improved by adding more "physics" 
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into the derivation of these constitutive relationships, implying that some of them 

may not even be considered as physically rigorous. 

One of the major differences between various damage representation formulations 

is the way of accounting for the relationship between the degradation of transverse 

Young’s modulus, E2, and in-plane shear modulus, G12. A simple example of such 

a damage scenario is matrix cracking parallel to the fibre direction. This should 

result in degradation to both the transverse tensile modulus (E2) and the 

longitudinal shear modulus (G12). The experimental evidence for such coupled 

damage effect was obtained by Knops and Bögle [141], who conducted tests on 

tubular glass fibre laminate specimens. It was shown for that particular test case 

the transverse tensile modulus suffered higher extent of degradation than the in-

plane shear modulus. 

However, some of the well-known CDM models for UD lamina, as summarised in 

Table 2-3, employed unrealistic artificial restrictions for the representation of this 

coupled damage effect [142]. In some cases, complete independence between the 

degradation of E2 and G12 is assumed, while in others, exactly the same percentage 

of degradation to E2 and G12 with respect to their undamaged values is assumed. 

Both assumptions are physically unjustifiable. This issue was also identified 

during the recent WWFE-III activities [12]. Moreover, for general 3D stress 

problems, with the presence of matrix crack parallel to the fibre direction, there 

will also be a coupled damage effect between E2 and G23 in addition to that 

between E2 and G12. However, since most of the existing damage representation 

formulations were developed only for plane stress problems suitable for 

application to laminates, the summary provided in Table 2-3 is limited to the 

representation of coupled damage effect between E2 and G12 only. 

http://www.sciencedirect.com/science/article/pii/S026635380500312X
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Table 2-3  Classification of CDM models for UD lamina with regard to the 

representation of coupled damage effect between E2 and G12 

Representation of coupled damage 

effect between E2 and G12 
CDM models 

Assumed complete independence 

between the degradations of E2 and 

G12. 

A structural-phenomenological model for 

multi-layered composites under plane-

stress state by Zinoviev et al. from 

WWFE-I [139] 

Enhanced mesomodel for laminated 

composites by Ladeveze and Daghia from 

WWFE-III [143] 

Generalized Daniel's model for fibre-

reinforced polymer under a complex 

loading by Sapozhnikov and Cheremnykh 

from WWFE-III [144] 

  

Assumed E2 and G12 to have exactly 

the same percentage of degradation 

with respect to their undamaged 

values (i.e. a 30% degradation of E2 

would result in a 30% degradation of 

G12 and vice versa). 

Physically based phenomenological 

models for failure analysis of FRP 

laminates by Puck and Schurmann from 

WWEF-I [85] 

A stress-based Grant-Sanders method for 

predicting failure of composite laminates 

by Edge from WWFE-I [145] 

Implementation of the damage theory by 

Matzenmiller et al. [132] as MAT 162 

composite material damage model in LS-

DYNA [146] 

A structural modelling framework for 

prediction of damage development and 

failure of composite laminates by Vaziri et 

al. from WWFE-III [147] 
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Interaction between degradations of 

E2 and G12 is accounted for, with no 

artificial restriction imposed on how 

much the interaction should be. 

Finite element implementation of Puck's 

failure theory for fibre-reinforced 

composites under three-dimensional stress 

by Deuschle and Kröplin from WWFE-II 

[148] 

Damage mechanics model of composite 

materials based on thermodynamics with 

internal variables by Talreja [129] 

Constitutive model for anisotropic damage 

in fibre composites by Matzenmiller et al. 

[132] 

Continuum damage mechanics framework 

for UD composites containing matrix 

cracking by Li et al. [149] 

 

 

Comparing various methods of damage representation in Table 2-3, it is 

interesting to note that in the original theory, Matzenmiller et al. [132] suggested 

using experimental data to account for coupled damage effect. However, when 

this theory was implemented into LS-DYNA finite element analysis package as 

MAT 162 material model, the unrealistic assumption of identical degradations for 

E2 and G12 was adopted [146]. Other than this, modification to Puck’s damage 

theory can also be noted as the original version in WWFE-I [85] was modified for 

WWFE-II [148] in order to better characterise the coupled damage effect.  

Among these CDM models in Table 2-3, the one developed by Li et al. [149] 

stands out as it used an analytical method for quantifying some of the coupled 

damage effects for the case of having an array of dispersed matrix cracks parallel 

to the fibre direction. 

http://www.sciencedirect.com/science/article/pii/0167663694000530
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In detail, their work is based on the derivation of constitutive relationship for 

damaged UD composites provided by Talreja [129], which used Helmholtz free 

energy expression as the state function for damaged UD composites. The energy 

expression in there incorporated strain terms and a vector damage variable in the 

form of irreducible integrity bases so that the objectivity principle can be satisfied. 

During the derivation process, there are many damage related unknown material 

constants in the constitutive relationship. In contrast to the work by Talreja [129], 

where these unknown constants were all interpolated from the experimental data, 

Li et al. [149] developed an analytical method for solving as many as possible of 

these unknowns by virtue of the fact that many properties of the damaged UD 

composites would be unaffected under certain damage conditions. 

As shown in [149], this analytical method was applied to the case of having an 

array of closed cracks parallel to the fibre direction with the normal to the crack 

plane coincident to the material principal axis-2 (Fig.2-1). Using this method, 

although the material constant characterising coupled damage effect between E2 

and G12 still needs to be determined experimentally, the constant quantifying 

coupled damage effect between E2 and G23 can be determined analytically. The 

significance of this is not only in the sense that analytical expressions for 

quantifying coupled damage effect can indeed be found, but also in the reduction 

of dependence on experimental work and therefore associated empiricism. 
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Fig.2-1 Illustration of crack plane parallel to fibre direction with its normal 

coincident to material principal axis-2  

 

Based on above review for damage representation formulations, it is envisaged 

that the damage representation formulation proposed by Li et al. [149], while 

being physically sound, should also be regarded as the most capable one, provided 

that the damage scenario encountered is suitable for its application. 

 

2.3.2.2.2 Damage Evolution 

Similar to the lack of a unified methodology for damage representation definition, 

different types of damage evolution laws were also suggested by researchers. 

These damage evolution laws can be classified into three types in general, as 

shown in Table 2-4.  
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Table 2-4  Classification of CDM models for UD lamina with regard to 

damage evolution laws 

Damage evolution law types CDM models 

Independent curve-fitting functions 

derived using direct interpolation of 

experimental stress-strain curves 

under specific loading cases, which 

are not applicable to other loading 

cases. 

A structural-phenomenological model for 

multi-layered composites under plane-

stress state by Zinoviev et al. from 

WWFE-I [139] 

A stress-based Grant-Sanders method for 

predicting failure of composite laminates 

by Edge from WWFE-I [145] 

Generalized Daniel's model for fibre-

reinforced polymer under a complex 

loading by Sapozhnikov and Cheremnykh 

from WWFE-III [144] 

 

Damage evolution laws applicable to 

general loading cases, but with the 

assumption that direct stresses 

(strains) and shear stresses (strains) 

always have the same contribution to 

damage evolution.  

(i.e. a 30% increase in direct or shear 

stress would result in the same 

amount of damage growth) 

Physically based phenomenological 

models for failure analysis of FRP 

laminates by Puck and Schurmann from 

WWEF-I [85] 

A structural modelling framework for 

prediction of damage development and 

failure of composite laminates by Vaziri et 

al. from WWFE-III [147] 

Implementation of the damage theory by  

Matzenmiller et al. [132] as MAT 162 

composite material damage model in LS-

DYNA [146] 

 

Damage evolution laws applicable to 

general loading cases, permitting 

direct stresses (strains) and shear 

Enhanced mesomodel for laminated 

composites by Ladeveze and Daghia from 

WWFE-III [143] 
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stresses (strains) to have different 

contributions on damage evolution.  

Damage mechanics model of composite 

materials based on thermodynamics with 

internal variables by Talreja [129] 

 

Damage evolution laws in the first group are based entirely on direct interpolation 

of experimental stress-strain curves, where empirical functions are devised to 

modify the linear elastic stress-strain responses into nonlinear ones for including 

the damage effect. However, this type of damage evolution laws are normally 

only applicable to limited loading cases, because the damage evolution processes 

are essentially prescribed by independent functions, fitting to the experimental 

stress-strain curves obtained under specific loading cases involving damage. As a 

result, with every function corresponding to a specific loading case, these adhoc 

curve-fitting functions can only reproduce the experimental stress-strain curves if 

exactly the same loading cases are encountered.  

Moreover, strictly speaking, these functions might not even be considered as 

formal damage evolution laws since the use of them is effectively no different 

than using already available experimental stress-strain curves, meaning that they 

are unable to make any theoretical prediction, but merely duplicating existing 

experimental results for the sake of modelling. 

On the other hand, there are also damage evolution laws developed that are 

suitable for all possible loading cases. For these, all stress or strain components 

contributing to damage growth are accounted for by integrating them into 

expressions like stress exposure functions as suggested by Puck and Schurmann 

[85], equivalent strain expressions as suggested by Vaziri et al. [147] or damage 

driving force expressions derived by Ladeveze and Daghia [143] and Talreja 
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[130]. However, although these damage evolution laws are applicable to all the 

loading cases associated with damage growth, some of them employed the 

unrealistic assumption that direct stresses (strains) and shear stresses (strains) 

should always have the same contribution to damage growth. 

In particular, the MAT162 damage model in LS-DYNA [146] employs a damage 

evolution law based on the definition of damage surface, where all stress 

components affecting damage growth are included, which makes the model 

applicable to any loading case. However, the damage evolution law formulated 

therein only allocated a single parameter for governing the rate of damage growth. 

Consequently, as long as the final stress is at a certain value above the threshold 

stress value for damage initiation, the same amount of damage growth will always 

be predicted, regardless whether a direct stress or a shear stress induced the 

damage growth. In reality, damage may not always evolve this way. The 

experimental result for UD composites provided in WWFE-I [150,151] suggested 

that the damage growth rates (modulus degradation rates) due to direct stresses 

and shear stresses can be very different. Based on this, it can be concluded that 

from the damage evolution laws as summarised in Table 2-4, only those proposed 

by Ladeveze and Daghia [143] and Talreja [129] can be regarded as physically 

rigorous. 

In terms of derivation of damage evolution laws, two major approaches were 

identified, one following the concept of a damage surface which is similar to the 

concept of a yield surface in plasticity, the other one is based on the derivation of 

a damage driving force which is a concept similar to energy release rate in 

fracture mechanics [89,152]. 
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For the former method, damage surface expressions are often derived from 

damage initiation criteria so that as soon as damage is initiated, the damage 

surface will be updated continuously during the subsequent damage evolution 

process [85,146]. Then, an incremental damage evolution law based on a damage 

surface can be devised in a similar way to that in the incremental theory of 

plasticity. Li et al. [153] developed a CDM model for charactering transverse 

matrix cracks in laminates, which employed the concept of damage surface for 

formulating a damage evolution law. 

On the other hand, unlike the damage surface concept, damage driving force 

expressions are normally derived from energy functions of damaged materials. In 

the CDM model proposed by Ladeveze et al. [143], strain energy density function 

of damaged UD composite was used to derive the damage driving force. 

Alternatively, specific Helmholtz free energy function was chosen by Talreja 

[129].  

Regardless of the form of energy function employed, due to the internal 

dissipation inequality condition imposed by the second law of thermodynamics, 

which states that energy dissipation caused by any change of internal state must 

always be non-negative, partial derivatives of energy with respect to damage 

variables have to be obtained for demonstrating the compliance to this inequality 

condition. These partial derivatives are defined as damage driving forces [130], 

also known as thermodynamic forces conjugate to internal damage variables, as 

stated in [138]. In order to satisfy the internal dissipation inequality condition, the 

product of damage driving force and rate of change of damage must be of non-

negative value. 
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2.4 Damage in 3D Textile Composites under Static Loading 

There is a growing trend of using 3D textile composites to replace conventional 

laminated composites in structural components where through-the-thickness 

loadings are substantial or better impact resistance is required. With its increasing 

popularity, there has been a steady stream of investigations regarding the damage 

behaviour of 3D textile composites. In this section, damage mechanisms and 

methods of damage modelling for 3D textile composites are reviewed. 

 

2.4.1 Damage Mechanisms 

There are a large number of experimental investigations reported in the literature 

for characterising damage in various types of 3D textile composites. Among them, 

most are focused on the damage in 3D orthogonal woven composite. 

Tan et al. [154] conducted static tensile tests in the warp and weft directions of a 

3D orthogonal woven carbon fibre composite material. Although the resulting 

stress-strain curves were linear, debonding of the z-fibre tows, tow pull-out and 

tow breakage were discovered in the tested specimens. 

Kuo et al. [155] studied the compressive response of orthogonal 3-axis woven 

carbon fibre composites. They observed progressive compressive damage and 

kink bands associated with stuffer rods and stuffer tows. Later, Kuo et al. [156] 

investigated the effect of varying surface tow patterns on the compressive 

response of 3-axis orthogonal composites. 

Leong et al. [157] reported extensive longitudinal tow splitting in a 3D orthogonal 

woven carbon fibre composite during tensile testing. They deduced that such a 
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damage mode should be caused by the extensive longitudinal matrix cracking as a 

result of the Poisson’s ratio mismatch between the matrix and longitudinal tows. 

A detailed experimental methodology for characterising damage in 3D textile 

composites was suggested by Lomov et al. [158]. They recommended the use of 

acoustic emission for identifying strain levels of interest, the use of full-field 

strain measurement for locating strain concentrations, and the use of computerised 

axial tomography scan and optical microscopy for identifying local damage 

modes. Bogdanovich et al. [159] and Lomov et al. [160] applied this experimental 

methodology for identifying damage events during tensile loading of 3D 

orthogonal woven carbon composites. The damage events discovered were 

cracking of boundary tows, intra-tow transverse cracks and tow/matrix debonding. 

Apart from 3D orthogonal woven composites, studies regarding the damage in 3D 

interlock woven composites are also available in the literature.  

Normal-layered interlock and offset-layered interlock glass fibre composites were 

tested in tension by Callus et al. [52]. It was found that crimped tow straightening 

may have contributed to substantial nonlinearity in the stress-strain responses 

obtained. John et al.[161] also reported damage in these two kinds of 3D woven 

composites under tensile loading. They concluded that intra-tow cracking and 

debonding of warp tows were the major damage modes observed.   

Damage in a 3D angle interlock carbon fibre woven composite was studied by 

Cox et al. [162]. They conducted tensile, compressive and bending tests for the 

material. It was found kink band formation and debonding were the major damage 

modes caused by compressive loading while tow rupture and tow pull-out were 

the major damage modes observed under tensile loading. A combination of these 
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damage modes were discovered when the material was subjected to bending. 

Later, Cox et al. [163,164] identified warp tow straightening as the primary 

damage mechanism for causing softening in the tensile stress-strain responses of 

layer-to-layer and through-the-thickness interlock 3D woven carbon fibre 

composites. 

Tensile, compressive and in-plane shear tests were carried out by Warren et al. 

[165] for ply-to-ply angle interlock 3D woven composites reinforced by IM7 

carbon fibre tows. Based on the test result, it was concluded that crimped warp 

tows contributed to the reduced strengths and the non-linear stress-strain 

behaviours in the warp direction when compared with those in the weft direction. 

For in-plane shear, the non-linear stress-strain response observed was similar to 

that of plain woven laminates with the same fibre volume fraction.  

Based on the experimental result available in the literature, it is found for most 3D 

textile composites, damage initiates in the form of intra-tow transverse cracks. 

With further loading, multiplication of intra-tow cracks occurs until crack 

saturation state is reached. This is then followed by the formation and propagation 

of inter-tow cracks which are normally found around crimping tows. Depending 

on the textile reinforcement architecture, tow straightening may occur after the 

formation of inter-tow cracks. Final failure modes of 3D textile composites are 

usually tow rupture under tensile loading and extensive brooming or kink band 

type of tow failure under compression. 

Moreover, it has been observed that the textile reinforcement architecture and the 

type of loading affect many aspects of the damage process in 3D textile 

composites. These aspects include the point of damage initiation, non-linearity 

induced by damage, crack density, damage modes and so on. 
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2.4.2 Damage Modelling 

In contrast to damage modelling for laminates where most models are only two-

dimensional, for 3D textile composites, three-dimensional models capturing 

detailed geometry of textile reinforcement may become a necessity. The reason 

for this is that the damage process in 3D textile composites is highly influenced by 

the internal architectures of these materials [166]. 

However, a few simplified two-dimensional damage analysis methods for 3D 

textile composites were developed. Most of these can be classified as the 

equivalent laminate method, where the 3D textile architectures were approximated 

as laminates comprised of UD laminae. For example, Pickett et al.[167] and 

Fouinneteau et al. [168] used a laminate representation for analysing damage in 

carbon fibre and glass fibre braided composites, where the continuum damage 

model by Ladeveze [169] was incorporated for damage prediction. The same 

approach was used by Greve et al. [170] for predicting damage in carbon fibre 

non-crimp fabric composites. Despite the simplicity of two dimensional analysis 

methods, they are unable to capture the effect of tow crimp, which is known to 

cause damage like inter-tow cracks, fibre rupture and tow micro-buckling [166]. 

In contrast to two-dimensional damage analysis methods, three-dimensional finite 

element analysis models, capturing tow shape and tow path explicitly, can provide 

the maximum of geometrical details for the textile reinforcements inside the 3D 

textile composites. Thanks to this, these finite element models are normally 

capable of predicting local damage associated with textile geometry [171]. In 

these models, due to the periodicity of 3D textile reinforcement, the representation 
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of 3D textile composites is normally in the form of a unit cell. The unit cell is 

further discretised into element volumes of tows and matrix material so that tow 

shape and tow path are explicitly modelled. Different material constitutive models 

are assigned to tow elements and matrix elements as the former is normally 

treated as a transversely-isotropic material and the latter as an isotropic material 

[171]. 

Among the finite element analysis models developed for damage prediction in 3D 

textile composites, there appeared to be two major approaches adopted for 

introducing damage into the models: the continuum damage mechanics (CDM) 

approach and the cohesive element approach [172]. 

In the CDM approach, damage variables are introduced into the constitutive 

relationships of tow and matrix materials. Since tows are normally regarded as 

UD composites, well-established UD composite failure criteria as reviewed in 

Section 2.2.2 and the CDM models for UD composite as mentioned in Section 

2.3.2.2 can be used for tow damage modelling. However, for simplicity, many 

researchers used element discount method such that once damage initiation is 

detected, damage variables would jump to the maximum value and result in a 

sudden complete loss of stiffness. Based on finite element modelling, these 

researchers used CDM approach combined with element discount method to 

predict the damage in woven [173,174], braided [175], and non-crimp fabric 

composites [176]. On the other hand, CDM approach combined with gradual 

damage evolution laws were applied by others for the damage analysis of 3D 

braided composites [177] and 3D woven composites [178]. 

As an alternative to the CDM approach, the cohesive element approach models 

cracks as discontinuities, where damageable surfaces represented by cohesive 
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elements are introduced into the finite element model. However, it requires the 

definition of crack orientation and location prior to the analysis which is not 

always possible. McLendon and Whitcomb [179] used this approach to predict 

tow-matrix interfacial damage inside textile composites, where they found that the 

choice of stiffness degradation law affects greatly the accuracy of the prediction 

since stress redistribution is sensitive to the stiffness degradation law formulated. 

 

2.5 Summary 

Based on the literature review presented above, some conclusions are drawn as 

follows: 

Composite materials are receiving increasing applications in the aerospace 

industry thanks to their high specific mechanical properties for weight-saving, 

their ability to be tailored for the most critical loading conditions and their 

superior fatigue resistance over traditional metallic materials. As a result, 

composites are gradually becoming the primary type of material used in airframe 

structures. 

Moreover, thanks to the textile processes which are capable of producing 

integrated near-net-shape performs of complex geometry, as well as improved 

mechanical properties in the thickness direction, 3D textile composites are more 

suitable than conventional laminated composites for constructing structural 

components of complex shapes and requiring good impact resistance. 

In terms of failure of UD composites, different failure modes were discovered 

depending on the loading conditions and the properties of the constituent 

materials. Consequently, phenomenological failure criteria for UD composites 
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which do not include the physical consideration of failure modes are not 

recommended. Instead, whenever possible, mode-dependent UD composite failure 

criteria should be used as they are superior in modelling the real physics of UD 

composite failure. As a result, for the current research objective of developing a 

novel theoretical damage model for UD composites, mode-dependent UD 

composite failure criteria are to be incorporated into the damage model, as 

addressed in Chapter 3 and Chapter 5. 

With regard to laminates, different damage processes were observed for laminates 

of different stacking sequences, which imply that in addition to failure criteria, 

damage process modelling is indeed required in order to capture the full picture of 

laminate damage phenomenon. Based on this, the novel UD composite damage 

model developed in this project is applied for predicting intralaminar damage in 

laminates, which is shown in Chapter 6. The predicted results are then compared 

against the experimental results, so that the model performance can be assessed. 

The micro-damage mechanics approach for damage modelling, which relies on 

analytical methods or numerical methods to predict the damage effect caused by 

every single crack, may not be suitable for engineering applications. This is 

because at present, this approach is time-consuming and prohibitively 

computational expensive if it is applied to engineering problems where a 

multitude of cracks would need to be studied one by one. On the other hand, the 

continuum damage mechanics approach, which homogenises the damage effect of 

all individual cracks into an overall combined damage effect, thereby removing 

the need of studying every individual crack, presents as an efficient and viable 

damage modelling approach for engineering applications. Consequently, as 

illustrated in Chapter 3, for this research project, the continuum damage 
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mechanics approach is adopted for developing the new damage model of UD 

composites. 

Among the existing continuum damage mechanics models, different formulations 

of damage representation were suggested and some imposed unrealistic 

assumptions regarding the coupled damage effect phenomenon. It is deemed that 

the damage representation formulation proposed by Li et al. [149] is physically 

sound and is the most capable one as in their theory an analytical method was 

developed to quantify part of the coupled damage effect. As a result, this damage 

representation formulation is incorporated into the UD composite CDM model 

being developed in this project. 

Based on the review of UD composite continuum damage mechanics models, it is 

envisaged that a physically rigorous damage evolution law with general 

applicability should be applicable to general loading cases while permitting direct 

stresses and shear stresses to have different contributions to the damage evolution 

process. Consequently, the UD composite CDM model being developed in this 

project should possess these attributes.  

Similar to laminates, damage processes were also observed in 3D textile 

composites. While the damage processes in laminates are dependent on the 

laminate stacking sequences, the damage processes in 3D textile composites are 

influenced by the textile reinforcement configuration. This means that for 

satisfactory modelling of damage processes in 3D textile composites, accurate 

modelling of textile reinforcement geometry becomes a necessity. As a result, 3D 

finite element analysis is found to be the ideal approach for damage modelling of 

3D textile composites since detailed reinforcement geometry can be constructed in 

finite element models for damage analysis. Based on this, as shown in Chapter 6, 
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the UD composite CDM model developed in this project is used to predict intra-

tow damage in 3D textile composites, where finite element models capturing 

textile reinforcement configurations are used for carrying out the analyses. 

Thanks to the literature review presented above, some valuable recommadations 

regarding the development of UD composite damage models are found. Based on 

these recommandations, a novel theoretical formulation characterising damage 

evolution in UD composites is developed and introduced in the next chapter. 
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3. A Novel Formulation for Damage Evolution of UD 

Composites based on the Concept of Damage Driving 

Force 

 

3.1 Introduction 

As discussed in the previous chapter, among the damage representation 

formulations that imposed no unrealistic restriction on coupled damage effect, the 

proposal from Li, et al. [180] (hereafter referred to as Li’s damage representation) 

is deemed to be the most capable one for characterising an array of planar matrix 

cracks parallel to fibre direction. However, to make use of Li’s damage 

representation in the context of CDM framework, a suitable damage evolution law 

is still required so that a complete CDM model for UD composites can be 

established. As a result, in this chapter, a novel damage evolution law is proposed 

to pair up with Li’s damage representation. 

Moreover, as Li’s damage representation was derived from the Helmholtz free 

energy expression, the decision was made to develop the new damage evolution 

law based on damage driving force concept so that the same Helmholtz free 

energy expression can be utilised which may promote a more seamless transition 

from the theoretical work of damage representation to that of damage evolution. 

 

3.2 Derivation of Damage Driving Force 

The derivation starts from the original Helmholtz free energy expression 

presented in [180] for UD composites with the inclusion of a damage vector
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1 2 3{ }TV v v v . Before rushing straight into the derivation of damage 

driving force, for the terms formed by irreducible invariant integrity bases in the 

Helmholtz free energy expression, second order terms containing only damage 

vector components are now added into the original energy expression since these 

were neglected previously in [180] but will affect the current derivation of 

damage driving force. Due to this, the original expression for Helmholtz free 

energy  is now modified as: 

2 2 2 2 2

1 1 2 1 2 3 1 5 4 1 5 6 5 1 8 6 1 9 7 1 2 5 8 1 2 8
2 2 2 2

1 2 2 2 5 3 2 5 6 4 2 8 5 2 9
2

1 3 2 3 5 3 3 8
2

1 4 2 4 5 3 4 8

1 5 7
2

1 6
2

1 5 2 8

2

1

2

        

A I A I I A I I A I I I A I I A I I A I I I A I I I

B I B I I B I I I B I I B I I

C I C I I C I I

D I D I I D I I
E I I

F I

G I G I

O

       
     
 

  
 

     
 
 

  
 
  ,V

 

(3-1) 

 

with the irreducible integrity bases defined as: 

1 1

2 2 3
2 2 2

3 2 4 3
2 2

4 5 6

5 1

6 2 6 3 5

7 2 2 6 2 4 5 3 4 6 3 3 5
2 2

8 2 3
2 2

9 2 2 2 3 4 3 3

2 2

2 2

I
I

I

I
I v
I v v
I v v v v

I v v

I v v v v


 
  
 

 
       

  


 

  

 

 
   

 

  

 

where 4 23  , 5 13  and 6 12  . 

Apart from this modification, all other assumptions stated originally in [180] with 

regard to this Helmholtz free energy expression are still in effect here. With the 

Helmholtz free energy expression established, the damage driving force 
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components are therefore formulated as shown in (3-2) which will drive the 

growth of damage, where iv  are components of the damage vector

 as originally defined in [180]. 

i

i

R
v


 


(i=1-3) (3-2) 

A point to note is that since internal energy is being released from the material 

during a cracking process, a negative sign is added here denoting that energy is 

being released out of the system. Then, the damage driving force components iR

can be rearranged into a matrix form with respect to the damage vector 

components  as shown below:  

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

R W W W v

R W W W v

R W W W v

     
    

    
           

(3-3) 

where 

2 2 2 2

11 3 1 2 2 4 3 7 1 2 3
2 2 2

2 2 3 1 2 5 6

(2 2 ) ( )

        ( ) ( )

W A C A

B G D

      
   

     

      

12 21 4 1 6 1 2 6 4 5 3 2 3 6

1 1 1
(2 ) ( )

2 2 2
W W A E B               

13 31 4 1 5 3 2 3 5 1 4 6 3 5

1 1 1
( ) ( 2 )

2 2 2
W W A B E               

2 2

22 6 1 2 8 1 2 3 5 1 4 2 3 5 2 2 3
2 2 2 2 2 2

1 6 3 2 4 3 3 5 6 2

( ) ( ) ( )

         (2 2 ) ( )

W A A A B B

F C D G

          
     

       

      

23 32 6 1 4 5 2 3 4 1 5 6

1 1
( )

2 2
W W A B F            

1 2 3{ }TV v v v

iv
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2 2 2 2 2

33 5 1 4 2 3 8 1 2 3 3 2 4 3
2 2 2

3 5 6 6 1 3 5 3 2 3 1 5 2

( ) ( ) (2 2 )

        ( ) ( )

W A B A C

D A B F G

        
       

       

        

As shown above, all elements in the matrix [ ]W are functions of strains, 

undamaged UD composite elastic properties and damage representation related 

material constants obtained from [180], except for 11W , 22W
 
and 33W

 
elements 

where new unknown constant terms containing solely 1G  and 2G  from (3-1) are 

present. 

However, looking at the full expression of 
22W  

in (3-3) as an example, consider 

that if no strain loading is applied, 2G would be the only remaining term in 
22W , 

implying the existence of a damage driving force iR
 
and damage  even before 

any loading is applied to the material. 

The same argument also applies to the constant term of 1G
 
in 11W . Obviously, 

such a scenario is due to the initial condition where initial damage exists in the 

material. For simplicity, by setting 1G
 
and 2G

 
to zero, the effect of initial 

damage is neglected for later development of the theory. 

Since the matrix damage is assumed to be an array of planar cracks with a 

common orientation parallel to fibre direction, by assigning a rectangular material 

coordinate system (Fig. 3-1) to UD composites and choosing the 2-axis to be 

perpendicular to the crack surfaces, 1v  and 3v  should then become zero while 2v  

remains as the only non-zero component in the damage vector to reflect such a 

form of cracking damage, i.e. 
2{0 0}TV v . As a result, only 12W , 22W  and 

32W
 
matrix elements in (3-3) need to be considered for 2v . 

iv
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Fig. 3-1 Rectangular material coordinate system assigned to UD composites 

 

Instead of pursuing further with 12W , 22W  and 32W  terms expressed in the strain 

space, these terms are rearranged and expressed by stresses so that damage 

driving force can be presented in the stress space. For this, partial derivatives of

12W , 22W  and 32W  are taken twice with respect to strains as shown in (3-4) so that 

these terms can be rearranged into (3-5). 

2

12
pq

p q

W
X

 



 

 

2

22
pq

p q

W
Y

 



   

2

32
pq

p q

W
Z

 



 

 

(p =1-6, q =1-6) 

(3-4) 

 

12

22

32

[ ] [ ][ ]

[ ] [ ][ ]

[ ] [ ][ ]

T

T

T

W X

W Y

W Z

 

 

 







 

(3-5) 
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After this, by making use of the compliance matrix [ ]S of the damaged UD 

composites (3-6), (3-5) can be manipulated into (3-7) which is now expressed by 

stress loadings.  

0 0

12 12

0 0 0

1 1 1
0

23

0 0

2 2

0

2

23

0

12

12

1
0 0 0

1
0 0 0

(1 )
1

0 0 0

[ ]
1

0 0

1
0

1

E E E

E E

ES

G

Symm
G

G

 





 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3-6) 

 

By doing so, the presentation of damage driving force for uniaxial stress states 

will be much tidier as otherwise strain terms due to Poisson’s effect would appear. 

12

22

32

[ ] [ ] [ ][ ][ ]

[ ] [ ] [ ][ ][ ]

[ ] [ ] [ ][ ][ ]

T T

T T

T T

W S X S

W S Y S

W S Z S

 

 

 







 

(3-7) 

By denoting [ ] [ ] [ ][ ]TM S X S , [ ] [ ] [ ][ ]TP S Y S  and [ ] [ ] [ ][ ]TQ S Z S , 

(3-8) can be obtained. 

12

22

32

[ ] [ ][ ]

[ ] [ ][ ]

[ ] [ ][ ]

T

T

T

W M

W P

W Q

 

 

 







 
(3-8) 

where 
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16

26

36

45

0 0 0 0 0

0 0 0 0

0 0 0

0 0

. 0 0

0

M

M

M
M

M

Symm

 
 
 
 

  
 
 
 
 

, 

22

44

66

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0

. 0 0

P

P
P

Symm

P

 
 
 
 

  
 
 
 
  

, 

and 

24

34

56

0 0 0 0 0 0

0 0 0 0

0 0 0

0 0 0

. 0

0

Q

Q
Q

Symm Q

 
 
 
 

  
 
 
 
 

. 

The above derivation then yields the following expressions for 12W , 22W  and 32W :  

12 16 1 6 26 2 6 36 3 6 45 4 5

2 2 2

22 22 2 44 4 66 6

32 24 2 4 34 3 4 56 5 6

2 2 2 2

2 2 2

W M M M M

W P P P

W Q Q Q

       

  

     

   

  

  

 
(3-9) 

 

A closer look at (3-9) reveals that 12W  and 32W  contain stresses like 1 , 3  

and 5 ( 13 ), which do not directly cause matrix cracks with crack surface 

perpendicular to axis-2 (
2{0 0}TV v ). As can be seen, these stresses are 
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arranged in 12W  and 32W  expressions in multiplication with other stress 

components, forming terms characterising the interactions between these stresses. 

For simplicity, such interactions are not addressed here and 12W  and 32W  

expressions are neglected for the derivation of damage driving force. In this case, 

only 2R  and 12W  are considered which simplified the damage driving force 

expression to (3-10). 

2 22 2R W v  (3-10) 

Now, in the case of 22W
 
(3-9), the only three non-zero terms dictate the damage 

driving force 2R to be made up by three components corresponding to the 

contributions from transverse tensile stress 2 , transverse shear stress 4  

( 23 ) and longitudinal shear stress 6  
( 12 ) respectively. 

This expression of 22W
 
is rational and of great importance. The reason for this is 

that, first of all, it is a theoretical formulation matching the real physical 

phenomenon. This can be explained by looking at Fig.2-1 which shows that, 

physically, only these three stresses are expected to cause the kind of planar 

cracks parallel to fibre direction for making the damage vector as 

2{0 0}TV v . 
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Fig. 3-2 Stresses for causing planar cracks parallel to fibre direction 

 

Moreover, one may also recall that this very physical phenomenon actually 

formed the basis of Li's damage representation work in [180]. Bearing this in 

mind, along with the fact that the derivation here for damage driving force is also 

based on the material constants obtained from Li’s damage representation, it is 

therefore, not surprising, that these three stresses are once again worked out to be 

the contributors for damage, but this time, in the form of damage driving force for 

driving the damage evolution process.  

Actually, rather than surprising, this result may be seen as an assurance that the 

new damage driving force expression developed here is indeed consistent with 

Li's damage representation, demonstrating a smooth theoretical work transition 

from damage representation to damage evolution as mentioned at the beginning of 

this chapter. 

In addition, this result is also in agreement with Puck’s failure criterion [88] since 

in there, transverse tensile, transverse shear and longitudinal shear stresses are 

also identified to be the three stress components on an action plane responsible for 

generating planar matrix cracks parallel to fibre direction in UD composites. Then, 

it is envisaged that Puck's criterion is suitable to be employed as a damage 

initiation criterion in conjunction with the damage driving force derived here. 
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Recall in [180], the relationship between damage vector component 2v  and 

damage variable   was introduced as (3-11).  

2

2v  with 

0

2 2

0

2

E E

E



  (3-11) 

Since the damage variable   is a direct measure of modulus degradation, damage 

driving force expression (3-10) is now redefined with respect to   as shown in 

(3-12). 

2 22

2

2 2 2

2 4 6

2

  I III II

v W

v

P P P

 


  

  

 
     

  

  
 

(3-12) 

where 

 
  

 

0 0

12 210

0 0 0 0 0 0
2 23 12 21 23 2

2
0

0 0

12 12

0

0 0 0
2 23 2

2 11

1 2 1

2

1 1

1

D

I I I

D

II II II

D

III III III

P P P
E E

k k
P P P

G G

P P P
E E

 
 

   

 

 



   

  

   

   


 

and k  is the coupled damage effect factor between transverse tensile damage and 

longitudinal shear damage as defined in [180]. 

The new subscripts introduced in (3-12) for P  terms not only serve as a reminder 

that the new expression has now accounted for the coefficient 
1

2
  in order to 

bring in  , but also indicate the adoption of a naming rule for different fracture 

modes caused by different modes of loading similar to that defined in classical 
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fracture mechanics, i.e. mode I for transverse tensile ( 2 ) fracture and mode II 

& III for sliding and tearing types of shear ( 6 & 4 ) induced fracture. 

However, in a slight contrast to classical fracture mechanics, the fracture mode 

naming concept adopted here is not targeted to specific cracks, but rather, 

intended for smeared damage effect in the form of modulus degradation. 

Following the idea of fracture mode classification,   can then be regarded as the 

total damage driving force consisting of three damage driving force 

subcomponents corresponding to the three fracture modes (loading modes) as 

shown below. 

I II III         with  

2

2

2

12

2

23

I I

II II

III III

P

P

P

 

 

 







 
(3-13) 

Also from (3-12), it can be seen that the damage driving force   is actually a 

function of undamaged UD composites elastic constants, damage variable and 

stresses, resulting in the unit of stress as the physical dimension for  . In this 

case, under monotonic increasing stress loading, according to (3-12), damage 

driving force   value would have to increase. During such a loading process 

from an initial stress-free state, damage evolution would be triggered when a 

certain damage initiation criterion is satisfied.  
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3.3 Critical Damage Driving Force 

For the time being, leave the issue of selecting appropriate damage initiation 

criterion to be addressed elsewhere, but focus instead on the damage driving force 

formula (3-13). At the point of damage initiation, one should not fall into the trap 

of treating the total damage driving force   as a material property by regarding 

it as the critical total damage driving force. This is similar to the observation in 

fracture mechanics where critical total energy release rate is not a material 

property since it is not unique and varies with the modes of fracture, i.e. loading 

conditions. Instead, critical energy release rates associated with specific fracture 

modes like ICG , IICG  and IIICG  are defined as true material properties in fracture 

mechanics [181].  

The same argument also applies here for damage driving force, as only critical 

damage driving forces for each loading modes denoted by I C , IIC  and IIIC

can be considered as true material properties. Each of these critical damage 

driving forces has to be obtained under a single mode of loading right up to the 

point of damage initiation. Therefore, I C , IIC  and IIIC  are defined as in 

(3-14). 

0 2

2

0 2

12

0 2

23

IC I C

IIC II C

IIIC III C

P

P

P

 

 

 







 
(3-14) 

where 2C , 12C  and 23C  are uniaxial or pure shear stress threshold values 

for triggering damage initiation and are expected to be material properties.  
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Since initial damage is not considered here, one should be aware that the value of 

damage variable  is zero at the point of damage initiation as damage is just 

about to grow in a virgin material. Therefore,   does not appear at all in (3-14). 

Based on above discussion, the total damage driving force   is merely to account 

for mixed-mode loading scenarios, but I C , IIC  and IIIC  are real material 

properties as long as the same type of UD composites is being dealt with. 

 

3.4 Unloading and Reloading Scenarios 

On the other hand, if the material is unloaded after loading, according to (3-12), 

the total damage driving force   value would decrease to reflect the reduction in 

stressing. However, one should acknowledge that damage cannot be healed during 

the unloading process, at least not for conventional composites. Therefore, once 

the reduction in total damage driving force value signifies the start of the 

unloading process, the damage evolution process has to be paused and the current 

level of damage should remain unchanged during the unloading process, resulting 

in the unloading criterion shown in (3-15). 

If 0,  0      (3-15) 

With the issue of unloading introduced, there is also the issue of reloading when 

the previously unloaded material is loaded again. For such a scenario, since the 

damage evolution process would have been stopped due to previous unloading 

action, a reloading criterion is therefore needed to define an envelope beyond 

which damage evolution process is expected to resume during reloading stage. 

Furthermore, this scenario may also be encountered under a mixed-mode loading 
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condition which complicates this matter even further. Because damage driving 

forces are the quantities causing damage evolution, it is envisaged that such a 

reloading criterion should be based on damage driving forces. Then, inspired by 

common forms of mixed-mode fracture criteria from fracture mechanics [181], 

the reloading criterion is formulated as (3-16), where the ratio EQ  represents the 

combined equivalent effect from all damage driving forces so that mixed-mode 

loading condition can be accounted for.  

I II III

IC IIC IIIC

EQ
  

  
  

 
(3-16) 

In order to make use of this criterion, provided that the material is already 

damaged, the EQ  
value at the end of loading process just before unloading should 

be recorded which registers the current highest level of combined equivalent 

effect from all damage driving forces. After this, during subsequent reloading 

stage, if damage driving forces increase such that they cause a new EQ   value 

higher than the previously recorded highest EQ   value, damage evolution process 

should then resume. Otherwise, the current damage state still remains unchanged. 

 

3.5 Damage Evolution Law and Incremental Material Constitutive 

Relationship 

With the successful derivation of damage driving force, the quantities driving the 

evolution of damage are clearly identified and these would determine whether the 

damage will grow. However, as mentioned in the earlier review for damage 

evolution laws (Section 2.3.2.2.2), to determine how much the damage will grow, 

an additional relationship governing the magnitude of damage growth is still 
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needed. In this case, a relationship between the damage driving force and the 

value of damage growth. 

For this, a proposed way forward is described as follows. Since damage growth is 

driven by damage driving force, it is then conceivable that 

 , ,I II IIIfn     
(3-17) 

Imagine the critical state for damage initiation is met with values of damage 

driving force components reaching 0I , 0II  and 0III . One can expand the 

function in (3-17) into a Taylor’s series in the neighbourhood of the critical state 

at a given damage level of 0 , with higher than first order terms neglected, (3-18) 

is obtained. 

   
 

0 0 0

0      

I I I II II II

III III III

       

  

    

    

or 

I I II II III III            
 

(3-18) 

where I , II  and III  are damage evolution constants which are material 

properties specific to the material system concerned and they will have to be 

determined empirically through experiments. 

Moreover, thanks to the natural partition of total damage driving force into three 

components as previously derived in Section 3.2, different damage evolution 

constants I , II  and III
 
are allocated for three different loading modes in 

(3-18), which avoids the unrealistic assumption that different loading modes 
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should always have the same contribution to damage growth as mentioned earlier 

in Section 2.3.2.2.2. However, the new assumption herein (3-18) is the proposed 

linear relationship between different loading modes when accounting for damage 

evolution under mixed-mode loading condition. 

Also can be seen from (3-18), it is obvious that damage only evolves as a result of 

increasing damage driving force values. On the other hand, decreasing damage 

driving force values signify unloading process which was already discussed in 

Section 3.4. 

As mentioned previously in Section 2.3.2.2.2, the internal dissipation inequality 

condition (Clausius - Duhem Inequality) resulting from the second law of 

thermodynamics requires the product of damage driving force and rate of damage 

growth to be of non-negative value, which can be expressed as (3-19). 

0   (3-19) 

Due to this, the damage evolution constants I , II  and III
 
are also restricted 

by this condition such that the incremental damage value   predicted by (3-18) 

should satisfy (3-19). 

Now, substituting (3-13) into (3-18), we have 
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       

      

      

          

         

         

 
(3-20) 

However, one may notice here that the incremental stress terms 2 , 12  and 

23  in above expression are also dependent on incremental damage  . They 
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can be expressed as shown in (3-21) with stiffness matrix components 0
C and D

C , 

where 0
C  is the original stiffness matrix of undamaged UD composite material 

and D
C  contains terms representing changes to the stiffness matrix due to damage 

effect. 
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(3-21) 

Based on this, it is obvious that (3-20) is a nonlinear algebraic equation of the 

damage increment  . To solve for  , Newton’s iterative method is 

employed to find the value of   satisfying both (3-20) and (3-21). To 

facilitate this, rearrange (3-20) into (3-22): 
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      

      

           

         

         

 
(3-22) 
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The satisfaction of (3-22) about   is to find an appropriate   value which 

makes   0f   . Then, Newton’s iteration formula as below can be used to 

find the root for such a homogeneous equation. 

For 1k k k      with 0 0  , 
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(3-23) 

where 
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with subscript k   indicating number of iteration. 

When the above defined iterations converge, k  converges to  . This value 

should then be used to update the damage state. 

Based on this, at a given deformation state   ε ε , the tangential stiffness 

matrix of damaged material incorporating evolving damage variable can be 

derived as follows. 

Starting from incremental stress-strain relationship: 
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The tangential stiffness [ ]tC  can then be expressed as 
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(3-25) 

and rearranged into 
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0

D D

t I
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 
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 (3-26) 

where [ ]I  is identity matrix and 


σ
 can be found using (3-20).  

The tangential stiffness matrix as above must be defined when an implicit FEA 

solver is used, such as ABAQUS™/Standard. Moreover, when a user defined 

material subroutine is utilised for the analysis, such a tangential stiffness matrix 

normally needs to be included in the subroutine.  

 

3.6 Summary 

In this chapter, a new damage evolution law based on the concept of damage 

driving force is proposed. It is to be applied in conjunction with Li’s damage 

representation formulation for predicting the evolution of matrix damage in UD 
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composites in the form of planar cracks with a common orientation parallel to the 

fibre direction.  

The damage evolution law proposed is capable of dealing with mixed-mode 

loading condition such that different modes of loading are allowed to have 

different contributions on damage evolution. In addition, it is also applicable to 

unloading and reloading scenarios thanks to the unloading and reloading criteria 

introduced here based on damage driving force. 

In order to apply this damage evolution law, damage-related material properties 

are needed as necessary input parameters. For the determination of these 

parameters, experimental investigation of damage processes in composites is 

conducted and introduced in the next chapter.  

Moreover, this damage evolution law is combined with Li’s damage 

representation formulation, a damage initiation criterion, a damage evolution law 

and an instantaneous failure criterion to form a complete damage model for UD 

composites. This new UD composite CDM model is introduced in detail in 

Chapter 5. 
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4. Experimental Investigation of Damage in Composites 

by Quasi-static Tests 

 

4.1 Introduction 

With all the appropriate mathematical derivations presented in the previous 

chapter, a new damage evolution law for defining the progressive matrix damage 

in UD composites has been developed. In order to apply it for the prediction of 

damage in real UD composites, a number of damage-related material properties 

should be specified as input parameters for the damage evolution law. The 

experimental work necessary for determining the values of these parameters are 

presented in this chapter. A series of quasi-static tensile tests and in-plane shear 

tests were carried out on laminates of various stacking sequences which provided 

information regarding damage initiation and damage evolution. 

Since the damage evolution law developed for UD composites is also considered 

to be appropriate for defining damage in UD tows of 3D woven composites, the 

same types of experiments were conducted on layer-to-layer interlock 3D woven 

composites. The data obtained from these tests was intended for validating the 

damage prediction produced by the damage evolution law when it is used for 

modelling damage inside the tows. In addition to that, to gain an in-depth 

understanding of damage development in the 3D woven composites, a series of 

tests for damage inspection have been devised, where samples subjected to 

different extent of damage were examined using microscopy. 

Since only a limited number of studies on damage in layer-to-layer interlock 3D 

woven composites can be found in the open literature, the experimental 
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investigation presented here also provides an important insight into the 

complexity of damage development process in these materials. 

 

4.2 Experimental Method 

All tensile and shear tests were conducted according to ASTM D3039 testing 

standard [182] and ASTM D3518 testing standard [183] respectively.  

 

4.2.1 Material Types and Specimens 

Two types of composite materials were used, one being carbon fibre (CF) 

laminates of various ply stacking sequences, the other being layer-to-layer 

interlock 3D woven composites with E-glass fibre (GF) or carbon fibre 

reinforcement. Panels of the laminated and the 3D woven composite materials 

were produced following different manufacturing procedures, which are outlined 

in Sections 4.3.1  and 4.4.1 respectively, where the material data is also given. 

All specimens were cut from the panels using a diamond-tipped wheel saw. The 

final geometries of all specimens were in accordance with the requirements listed 

in ASTM D3039 [182] testing standard. Aluminium alloy end tabs were attached 

to all specimens using Araldite® Standard epoxy adhesive. The bonding process 

was carried out according to the instructions set by the adhesive supplier [184]. 

Dimensions of specimens and end tabs are summarised in Section 4.3.1 for the 

laminates and in Section 4.4.1 for the 3D woven composites. 
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4.2.2 Loading Device and Test Environment 

The tests were conducted using an electromechanical Instron® 5985 universal 

testing machine, with a 250 kN load cell. A constant testing speed of 2 mm/min 

(cross-head displacement rate) was applied. Load and extension data acquisition 

rate of 1 kHz was set in all the tests. The specimens were gripped with a pressure 

of 15 MPa by a set of Instron® 2716-003 manual wedge action grips capable of 

withstanding 100 kN. Instron® 2703-011 or 2703-012 jaw faces were used 

depending on the thicknesses of specimens. An ambient temperature of 18 

C and 

a relative humidity of 43% were maintained in the laboratory throughout the 

duration of tests. All specimens were kept in such an atmospheric condition for at 

least 24 hours prior to the tests. 

 

4.2.3 Strain Measurement 

An Imetrum™ contactless video strain gauge system with a standard camera and a 

telecentric lens was used for strain measurement. Black speckle patterns on top of 

white coat paint were applied to the specimens, so that the video gauge camera 

would capture the local displacement on the surface of the specimens. Details of 

the video gauge set up are summarised in Table 4-1. 

Table 4-1  Video strain gauge parameter summary 

Controlling system Imetrum Video Gauge™ software 

Camera resolution 1.3 Megapixel 

Gauge length (mm) 27 

Working distance (mm) 180 

Strain resolution () 5 
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4.2.4 Acoustic Emission 

In some of the tests, real time acoustic emission (AE) data collection was 

performed, along with the stress and strain measurements. A PCI-2 based AE 

bench top system was used in conjunction with a 0/2/4 preamplifier and a R50D 

sensor, which were all supplied by Physical Acoustics Corporation™. As shown 

in Fig. 4-1, the sensor was attached to one of the grips of the Instron® testing 

machine with a couplant gel applied to the interface between them to improve 

signal transmission. 

 

Fig. 4-1 Attachment of the AE sensor 

 

The AE system was set up for composite material testing according to the 

recommendations listed in [185]. The main setting parameters for the AE 

equipment are summarised in Table 4-2. 
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Table 4-2  Acoustic emission equipment parameter summary 

Amplification (dB) 20 

Data processing software AEwin™ 

Hit definition time (s) 150 

Hit lock-out time (s) 300 

Peak definition time (s) 35 

Sample rate (MHz) 5 

Range (KHz) 100 – 700 

Threshold (dB) 50 

 

When cracking damage events occur in composites, elastic strain energy is 

suddenly released, resulting in propagation of elastic waves within the material. 

The mechanical energy of elastic waves is then detected by the AE sensor and 

converted into electrical signals before they are amplified and processed by the 

AE equipment.  

The AE data collected serves as a record of sound signals emitted due to material 

cracking events. As mentioned in [158,186], it is especially useful when 

cumulative AE energy data is plotted against strain data, so that different levels of 

cumulative AE energy registered can be associated with different strain levels 

applied to a specimen in an uniaxial tensile test. Moreover, since cumulative AE 

energy is the sum of instant energy from every AE event over time, it shows the 

trend of AE event development during a test, which might reflect different stages 

of damage development in a specimen. Based on this, AE data plots are presented 

as “AE energy vs. tensile strain” plots in this chapter. 
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4.3 Quasi-static Test on Laminates of IM7 Carbon Fibre 

 

4.3.1 Specimen Manufacture and Dimensions 

Laminate panels were produced using IM7 carbon fibre UD pre-impregnated 

(prepreg) composite material supplied by Hexcel
®
 [187]. Panels of different 

stacking sequences were manufactured. 

From the supplier provided raw prepreg material roll, layers of raw prepreg 

material were cut into square-shaped panels with a side length of 300 mm. A hand 

lay-up procedure was then followed to stack up the prepreg layers manually on a 

flat aluminium tool plate. Care was taken to ensure good alignment of the fibre 

orientation for each layer according to the stacking sequence desired. After this, 

the laid up prepreg panels were debulked, vacuum bagged and cured using an 

autoclave according to the curing cycle recommended by the material supplier 

[188]. 

The stacking sequences and dimensions of the laminate specimens are 

summarised in Table 4-3. As can be seen, specimens with different stacking 

sequences were intended for the determination of different damage initiation 

stresses and different damage evolution constants for the matrix cracking damage 

in UD laminae inside the laminates. 

Table 4-3  Laminate specimen summary* 

Stacking sequences 
Overall length 

(mm) 

Width  

(mm) 

Thickness 

(mm) 

Material 

properties to be 

determined 

[0]8 250  (1.87) 
15.5  

(0.184) 

1.03  

(0.0124) 

Longitudinal 

strength 
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[90]12 251  (1.32) 
25.3  

(0.158) 

1.49  

(0.0273) 

TR  

[+45/-45]3S 250  (1.22) 
25.2  

(0.241) 

1.98  

(0.0233) 
 ||R , II  

[0/907]S 251  (1.41) 
25.6  

(0.272) 

1.98  

(0.0214) 
I  

[0/45/-45/90]S 249  (1.71) 
25.3  

(0.162) 

1.01  

(0.0112) 

Mixed-mode case 

for validation 

  Values in “(  )” are standard deviation values 

 

Ten tensile specimens were produced for each stacking sequence category. Two 

untested specimens from each stacking sequence category were subjected to 

microscopic inspection for manufacturing defect checking. No defect in the form 

of cracks and voids was found for any of the specimens checked. The dimensions 

of the aluminium alloy end tabs attached to the specimens are presented in Table 

4-4. 

Table 4-4  Aluminium alloy end tab information for laminate specimens* 

Tabs attached to 
Length  

(mm) 

Width 

(mm) 

Thickness  

(mm) 

Tab bevel 

angle (º) 

[0]8laminates 
60.2 

(0.684) 

15.2 

(0.104) 

1.52 

(0.0102) 
90 

[90]12  laminates 
25.1 

(0.131) 

25.3 

(0.137) 

1.51   

(0.011) 
90 

All other specimens 
40.2 

(0.324) 

25.3 

(0.151) 

1.51 

(0.0105) 
90 

  Values in “( )” are standard deviation values 
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4.3.2 Material Properties of the UD Lamina 

Since the laminates were composed of plies of Hexcel
®
 IM7 carbon fibre UD 

prepreg, cured prepreg material data are presented in Table 4-5 for reference. The 

data were extracted from the test report [187] provided by the manufacturer for 

the specific batch of prepreg material supplied. Additional details for the neat 

matrix and pure fibre materials of the prepreg can be found in [188] and [189]. 

Table 4-5  Cured IM7/8552 CF UD prepreg material property summary 

[187] 

Carbon fibre type HexTow® IM7 

Fibre tow size 12K 

Epoxy matrix type HexPly® 8552 

Resin content by weight (%) 33.2  0.65 

Fibre areal weight (g/m
2
) 135  2.53 

Total fibre volume fraction (%) 59.6  0.6 

Ply thickness (mm) 0.124  0.003 

Fibre direction ultimate tensile strength (MPa) 2895  118 

Fibre direction Young’s modulus (GPa) 189  3.27 

 

 

4.3.3 Result and Discussion 

 

4.3.3.1 Fibre Direction Uniaxial Tensile Test of UD Laminates 

Typical experimental stress-strain curve demonstrating the material response 

under tension in fibre direction is shown in Fig. 4-2. The material properties 

determined based on the experimental data are summarised in Table 4-6. It should 
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be noted that the measured values of Young's modulus and strength in the fibre 

direction are comparable to those provided by the material manufacturer (Table 

4-5). 

Table 4-6  IM7/8552 CF UD laminate fibre direction test result 

Property Mean value Std. dev. COV % Number of tests 

Young’s modulus (GPa) 186 9.84 5.3 7 

12 0.312 0.0499 16 7 

Ultimate strength (MPa) 2550 142 5.6 7 

Ultimate strain % 1.51 0.102 6.8 7 

Stress at initial nonlinearity 

(MPa) 
2170 113 5.2 7 

 Values were obtained in the strain range of 1000-3000 microstrain 

As can be seen in Fig. 4-2, the nonlinearity occurred after strain in the fibre 

direction exceeded 1%. The likely cause for this is gradual fibre breakage and 

fibre splitting damage, which were observed at this level of strain. 

 

Fig. 4-2 Typical fibre direction tensile test stress-strain curve of IM7/8552 CF 

UD laminate  
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The final failure for all the specimens was a combination of severe fibre splitting 

and sudden fibre breakage in an explosive manner, when the specimens burst into 

very small pieces at the end. The specimens were so fragmented after final failure 

such that all that remained were a few broken fibre bundles that were still attached 

to the specimen end tabs. Such a severe specimen fragmentation phenomenon 

during a quasi-static test might be caused by the instantaneous stress waves 

induced by the sudden fibre breakage upon final failure. 

 

4.3.3.2 Transverse Direction Uniaxial Tensile Test of UD Laminates 

As was expected, in the transverse direction of UD laminates, the Young's 

modulus and strength values measured (Table 4-7) were significantly lower than 

those in the fibre direction (Table 4-6). Furthermore, the typical transverse 

direction stress-strain curve (Fig. 4-3) appears to be linear until the final failure of 

the specimen, indicating that under this type of loading, if any cracking damage 

occurred, it did not become severe enough to affect the stiffness of the material. 

Table 4-7  IM7/8552 CF UD laminate transverse direction test result 

Property Mean value Std. dev. COV % Number of tests 

Young’s modulus(GPa) 10.9 0.371 3.4 7 

Ultimate strength (MPa) 49.2 5.76 12 7 

Ultimate strain % 0.447 0.0411 9.2 7 

Values were obtained in the strain range of 1000-3000 microstrain 
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Fig. 4-3 Typical transverse direction tensile test stress-strain curve of 

IM7/8552 CF UD laminate  

 

All specimens in this test case failed by clear cut fracture aligned in the fibre 

direction as shown in Fig. 4-4. It is obvious that such failure was caused by the 

tensile load applied perpendicular to the fibre direction. No other damage or 

failure mode was detected from visual inspections of the tested specimens. 

 

Fig. 4-4 Typical final failure of IM7/8552 CF UD laminate in transverse 

direction tensile test 
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The implementation of the damage evolution law developed in this research 

requires the definition of the conditions that trigger the initiation of damage, 

which involves the definition of the material property 
TR . 

TR  
is essentially a 

damage initiation threshold strength for mode I type of damage which should be 

caused by transverse tensile stress. Since no effects of damage were detected prior 

to the ultimate failure under the transverse tensile loading, it can be concluded that 

the strength value determined in this loading case should serve as the damage 

initiation stress 
TR . 

 

4.3.3.3  In-plane Shear Test of 45 Laminates 

In-plane shear tests were carried out on laminates of [+45/-45]3S stacking 

sequence by loading them in 0 direction. The tests were conducted according to 

ASTM D3518 testing standard [183] for obtaining effective in-plane shear 

properties of UD laminates. 

Due to limitations of the video strain gauge, strain measurement was stopped 

automatically at approximately 3% of engineering shear strain, as the painted 

speckle pattern on the specimens distorted excessively and became no longer 

recognisable by the video gauge. As a result, tests were stopped once strain 

measurement ceased. Due to this, no specimen in this test case was tested to reach 

final failure. Consequently, ultimate shear strength is not specified in Table 4-8. 

Also, neither visible damage nor obvious deformation was observed from the 

specimens tested.  

A typical stress-strain curve captured in in-plane shear tests is shown in Fig. 4-5. 

The stress-strain relationship is very nonlinear, which is characteristic of typical 
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shear response of UD laminates [190]. A possible explanation for this nonlinearity 

is the combined effect of shear cracking damage and plastic deformation of the 

matrix material.  

Table 4-8  IM7/8552 CF UD laminate in-plane shear test result 

Property 
Mean 

value 
Std. dev. COV % Number of tests 

Shear modulus(GPa) 5.19 0.203 3.9 7 

0.2% offset shear strength (MPa) 55.9 4.39 7.9 7 

Values were obtained in engineering shear strain range of 2000-6000 microstrain 

 

 

Fig. 4-5 Typical in-plane shear stress-strain curve of IM7/8552 CF UD 

laminate  

 

From this test case, the in-plane shear stress-strain plot obtained not only 

indicated the point of damage initiation as nonlinearity started when the 0.2% 

offset shear strength was reached, but also displayed the damage evolution 

process since the slope of the stress-strain curve reduced gradually with increasing 

shear strain.  
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Consequently, the 0.2% offset shear strength can be regarded as the damage 

initiation threshold stress value  ||R  under in-plane shear loading, while the 

nonlinear part of the stress-strain curve beyond the 0.2% offset shear strength can 

be used for determining the in-plane shear damage evolution constant II . In this 

way, both of the  ||R  and II  damage-related material constants can be 

determined from UD composite in-plane shear stress-strain plot like the one in Fig. 

4-5. 

 

4.3.3.4  Uniaxial Tensile Test of Cross-Ply Laminates 

Tensile tests were carried out on cross-ply laminates with the stacking sequence as 

[0/907]S. In these experiments, damage mainly occurred in the form of 

transverse matrix cracking in the 90 plies, which was caused by the tensile 

loading transverse to the fibre direction and corresponds to mode I type of 

damage. 

Table 4-9  IM7/8552 CF Cross-ply laminate test result 

Property Mean value Std. dev. COV % 
Number of 

tests 

Young’s modulus(GPa)* 31.1 0.653 2.1 7 

Strength (Mpa) 326 17.7 5.4 7 

Ultimate strain % 1.37 0.0354 2.6 7 

Stress at initial nonlinearity 

(MPa) 
132 19.7 15 7 

Values obtained in the strain range of 500-2500 microstrain 

As can be seen from the typical stress-strain curve shown in Fig. 4-6(a), the effect 

of damage is obvious, as it caused significant changes in the slope of the curve. 
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On the other hand, in AE energy plot (Fig. 4-6(b)), two strain levels of 

significance were identified and marked by letters "A" and "B". Strain level "A" is 

considered significant because it marked the beginning of detected AE events, 

while strain level “B” stands out because a sudden steep increase in cumulative 

AE energy was recorded at this strain level. 

 

(a) 

 

 

(b) 

Fig. 4-6 Typical IM7/8552 CF cross-ply laminate test result: a) stress-strain 

curve, b) AE energy plot 
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Comparing Fig. 4-6(a) and Fig. 4-6(b), it can be seen that the initial rapid change 

in the slope of stress-strain curve occurred at strain level "B", when a steep 

increase in cumulative acoustic energy was also detected. The likely cause for that 

is the coalescence of matrix cracks in 90 UD plies, which was the first damage 

event severe enough to be reflected in the stress-strain curve. This damage could 

also have caused AE events of higher than 110
9
aJ instant energy, which resulted 

in the steep rise of cumulative acoustic energy at the same time. 

However, as shown in Fig. 4-6(b), there are also numerous AE events recorded 

between strain level “A” and strain level “B”. These AE events might be caused 

by matrix cracking and delamination damage which occurred before strain level 

“B”. Despite their presence being picked up by the acoustic emission, these 

damage events were not severe enough to be reflected on the stress-strain curve. 

In terms of the stress-strain response recorded (Fig. 4-6(a)), it is worth noting that 

there are several stress plateaus after strain level “B” was reached. It is believed 

that these plateaux are related to the residual curing stresses within laminates, 

which were caused by the mismatch of thermal expansion coefficients between 

adjacent plies of different orientations. Specifically, the 90 plies in a cross-ply 

laminate would be held in place by 0 plies due to laminate deformation 

compatibility condition, therefore they would resist tension from 0 plies, because 

the 90 plies tend to contract more during the cooling down period of the curing 

process.  

When the transverse matrix cracks initiated in the 90 plies, the transverse 

stiffness in these plies reduces rapidly. Because of this, the residual stresses left 
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behind from the curing process would be released in response to this change. The 

release of residual stresses is accompanied by an increase in the tensile 

deformation of the laminate, which does not correspond to any increase in 

loading, but results from the emergence of transverse matrix cracks in the 90 

plies. Apparently, the higher the concentration of 90 plies there is in the laminate, 

the more pronounced these stress plateaux would be. 

In this test case, since the 90 UD plies were loaded under transverse tension, the 

damage in these plies resembles the mode I type of damage. If no damage occurs 

in the 0 UD plies until the final failure of the specimen, variation of the slope of 

the stress-strain curve in Fig. 4-6(a) should be due to the development of mode I 

damage in the 90 UD plies. In this sense, the mode I damage evolution constant 

I  can therefore be determined from the cross-ply laminate stress-strain curve 

like the one in Fig. 4-6(a).  

However, considering that the stress plateaux in the laminate stress-strain plot 

(Fig. 4-6(a)) are envisaged to be caused by the release of residual curing stresses 

rather than the stiffness degradation due to damage in the 90 UD plies, only the 

part of laminate stress-strain curve beyond the major stress plateaux should be 

used for I  constant determination.  
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Fig. 4-7 Typical IM7/8552 CF cross-ply laminate failure modes 

 

As shown in Fig. 4-7, multiple failure modes can be observed from the failed 

cross-ply laminate specimens. There were large delamination cracks between 90 

and 0 plies, fracture of 90 plies in the form of through-the-thickness transverse 

cracks which are considered to be mode I type and fibre fracture in the outermost 

0 plies which is expected to be the catastrophic failure responsible for final 

disintegration of the specimens. 

 

4.3.3.5 Uniaxial Tensile Test of Quasi-isotropic Laminates 

Quasi-isotropic (QI) laminates of stacking sequence [0/45/-45/90]S were also 

subjected to tensile testing to create a scenario where both mode I and mode II 

loadings were present in the laminate specimens. In detail, the plies with 45 

orientations are expected to experience a combination of mode I and mode II 

loadings, since they would be loaded under both transverse tensile and in-plane 

shear stresses in the laminate. The 90 plies, on the other hand, are expected to 
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show mode I type of damage only as they would be mainly loaded under 

transverse tension. 

The experimental result obtained from this test case for QI laminates can be used 

for the future validation of the damage model incorporating the new damage 

evolution law as the damage predicted for the QI laminates can be assessed 

against the real experimental data collected here. 

Table 4-10  IM7/8552 CF QI laminate test result 

Property Mean value Std. dev. COV % 
Number of 

tests 

Young’s modulus(GPa)* 68.1 1.23 1.8 7 

Strength (MPa) 805 35.3 4.4 7 

Ultimate strain % 1.19 0.0286 2.4 7 

* Values were obtained in the strain range of 1000-3000 microstrain 

The stress-strain curve obtained for the QI laminates under tension is shown in 

Fig. 4-8(a). The stress-strain dependence appears to be linear, suggesting that QI 

laminate did not show clear sign of any damage before final failure. However, the 

large number of instant energy points and a rising cumulative AE energy curve in 

the AE plot as shown in Fig. 4-8(b) indicate that actually a lot of damage events 

happened inside the QI laminates during the loading process. 

Based on this, it is suspected that, although matrix cracking occurred in plies of 

45 and 90 orientations, the QI laminate stress-strain curve remained linear due 

to the high Young’s modulus value in the fibre direction offered by the 0 plies, 

which effectively undermined the influence of matrix cracking at the laminate 

level of stress-strain response. 
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(a) 

 

 

(b) 

Fig. 4-8 Typical IM7/8552 CF QI laminate test result: a) Stress-strain curve, 

b) AE energy plot 

 

As captured in Fig. 4-9, failure modes observed from tested QI laminates are 

similar to those found previously in the cross-ply laminate test case, but with the 

addition of 45 ply fracture. 
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Fig. 4-9 Typical IM7/8552 CF QI laminate failure modes 

 

4.4 Quasi-static Test on 3D Woven Composites 

 

4.4.1 Specimen Manufacture and Dimensions 

Layer-to-layer interlock 3D woven composites with E-glass fibre or carbon fibre 

reinforcement were provided by Sinoma
®
 [191,192]. Both types of 3D woven 

composites were moulded into square-shaped composite panels with a side length 

of 300 mm using vacuum assisted resin transfer moulding (VARTM) process. 

Closed-mould tools of mild steel were used for the RTM process. Corner injection 

method was employed to fill the mould cavity with Gurit Prime™ 20LV infusion 

epoxy resin. The epoxy resin was mixed with Prime™ slow hardener prior to the 

injection. The mixing, resin injection and curing processes were all carried out 

according to the guidance published by the resin supplier [193]. Further details for 

the manufacturing process can be found in [194]. 

In addition to in-plane shear tests, uniaxial tensile tests in the warp and weft 

directions were also conducted for the 3D woven composites. Sixteen specimens 

were made for each test direction. Dimensions of the specimens and the 
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aluminium alloy end tabs attached to them are presented in Table 4-11 and Table 

4-12 respectively. 

Table 4-11  3D woven composites specimen summary* 

Material type Test direction  
Overall 

length (mm) 

Width  

(mm) 

Thickness 

(mm) 

CF 3D woven 

composite 

Warp direction 250  (1.54) 
25.1  

(0.134) 

4.29  

(0.0431) 

Weft direction 251  (1.26) 
25.3  

(0.165) 

4.31  

(0.0332) 

In-plane  shear 251  (1.33) 
25.4  

(0.113) 

4.28  

(0.0291) 

GF 3D woven 

composite 

Warp direction 250  (1.31) 
25.5  

(0.174) 

4.11  

(0.0309) 

Weft direction 249  (1.24) 
25.4  

(0.112) 

4.13  

(0.0402) 

In-plane  shear 250  (1.81) 
25.1  

(0.164) 

4.09  

(0.0311) 

  Values in “( )” are standard deviation values 

 

Table 4-12  3D woven composites specimen end tab dimension* 

Length  (mm) Width (mm) Thickness (mm) Tab bevel angle (º) 

40.2 (0.324) 25.3 (0.151) 1.51 (0.0105) 90 

  Values in “( )” are standard deviation values 

 

4.4.2 3D Woven Composite Reinforced by IM7 Carbon Fibre 

 

4.4.2.1 Material Properties and Structure of the Weave 

The woven reinforcements in this type of 3D composite were produced with IM7 

carbon fibres, which were the same type of fibre material as was used for the UD 

reinforcement in the laminates mentioned in Section 4.3. General information of 
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the 3D woven composite is summarised in Table 4-13. Material properties for the 

IM7 carbon fibre tows and cured Gurit Prime™ 20LV infusion epoxy resin are 

listed in Table 4-14 and Table 4-15 respectively. 

Table 4-13   General information of IM7 CF 3D woven composite [191] 

Weave pattern Layer-to-layer interlock (Fig. 4-10 - Fig. 4-12) 

Reinforcement type HexTow
®
 IM7 12K carbon fibre 

Matrix material type Gurit Prime™ 20LV epoxy resin 

Weft to warp ratio (By weight per cm) 0.625 

Number of weft tow layers 7 

Dry fabric areal density (kg/m
2
) 4.05  0.04 

Total fibre volume fraction (%) 55.5%  0.8%  

 

Table 4-14  IM7 12K carbon fibre tow material properties [189] 

Tensile modulus (GPa) 276 

Tensile strength (MPa) 5655 

Ultimate tensile failure strain 1.9% 

 

Table 4-15 Cured Gurit Prime™ 20LV epoxy resin material properties [193] 

Young’s modulus (GPa) 3.5 

Poisson’s ratio 0.35 

Tensile strength (MPa) 73 

 

As specified in Table 4-13, the total fibre volume fraction in the 3D woven CF 

composite was 55.5%. It was lower than that in laminates, for which the total fibre 

volume fraction was 59.6% (Table 4-5). This is expected as it is well known that 

3D woven composites made by using RTM process are normally unable to 



101 
 

achieve fibre volume fractions as high as those of high performance laminates due 

to limitations of RTM process. 

To study the internal structure of the composite, a sample of cured IM7 CF 3D 

woven composite was subjected to a micro computed tomography (micro-CT) 

scan. The micro-CT images are presented in Fig. 4-10, Fig. 4-11 and Fig. 4-12, 

showing views of the internal structure in the weft, warp and through-the-

thickness directions accordingly. For the ease of reference, a rectangular 

coordinate system was assigned to the 3D woven composite with X-, Y- and Z-

axes correspond to the warp, weft and through-thickness directions, respectively. 

 

 

(a) 

 

 

(b) 

Fig. 4-10  XZ-plane CT scan images of cured IM7 CF 3D woven composite: a) 

original image,  b) image with annotation of distinctive regions 
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As can be seen in Fig. 4-10, where view of the internal structure in the weft 

direction is shown, the adjacent layers of the weft tows are interlocked by the 

warp tows, hence there are no explicit interfaces between the layers of the weft 

tows. This is one of the most important differences between layer-to-layer 

interlock 3D woven composites and conventional laminates. In absence of explicit 

interfaces, inter-ply delamination, which is common in laminated composites, 

does not occur in 3D woven composites with layer-to-layer angle interlock 

reinforcement. 

For the ease of description, the regions where warp tows were curved and where 

warp and weft tows crossed each other will be referred to as “warp curving region” 

and “warp-weft interlacing region”, respectively, as shown in Fig. 4-10(b). 

In the warp curving region, the warp tows, interlacing the straight weft tows, 

provided reinforcement in through-the-thickness direction. Therefore, it is 

expected that such architecture would provide substantially better transverse shear 

properties than conventional laminates.  

 

Fig. 4-11 XY-plane CT scan image of cured IM7 CF 3D woven composite 
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The tow packing in warp-weft interlacing regions is shown in Fig. 4-12. Here the 

warp tows were more densely packed due to the presence of straight weft tows, so 

much so that the boundaries between warp tows became indistinguishable in some 

layers between the weft tows. 

 

 

(a) 

 

 

(b) 

Fig. 4-12 YZ-plane CT scan images of cured IM7 CF 3D woven composite: a) 

at warp curving region,  b) at warp-weft interlacing region 

 

Based on the CT images obtained, geometric properties of the woven 

reinforcement were measured and summarised in Table 4-16. These geometrical 

data was later used for generating unit cell models for conducting analysis of the 

3D woven composite. 
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Table 4-16 Weave pattern geometries of cured IM7 CF 3D woven 

composite 

Warp tow weaving angle 31.6  3º 

Warp tow width 1.28±0.09 mm 

Warp tow thickness 0.37±0.04 mm 

Weft tow space 4.52±0.14 mm 

Weft tow width 2.26±0.16 mm 

Weft tow thickness 0.37±0.03 mm 

 

4.4.2.2 Results and Discussion 

 

4.4.2.2.1 Warp Direction Uniaxial Tensile Test 

Although both used the same carbon fibre material type, the values of Young’s 

modulus and strength for the 3D woven composite in the warp direction (Table 

4-17) were only about half of those obtained from the QI laminates (Table 4-10). 

Moreover, the failure strain in the warp direction of the 3D woven composite was 

about 1% higher than that of the QI laminates. This indicates that when the 3D 

woven composite was under warp direction quasi-static tension, its response was 

more compliant than that of the QI laminates. 

Table 4-17 Measured properties of IM7 CF 3D woven composite in warp 

direction 

Property Mean value Std. dev. COV % 
Number of 

tests 

Young’s modulus (GPa)* 37.8 1.25 3.3 7 

Strength (MPa) 421 25.3 6 7 

Ultimate strain % 2.29 0.569 24.8 7 

Stress at initial nonlinearity 

(MPa) 
91.2 8.94 9.8 7 

* Values were obtained in the strain range of 500-2500 microstrain 
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Comparing the stress-strain curves in Fig. 4-13 and Fig. 4-8, it can be seen that the 

former shows a very early onset of nonlinearity while the latter is mostly linear up 

to final failure. The differences in material response are probably due to the 

combined effect of lower fibre volume fraction and curved warp tow path (Fig. 

4-10) in the 3D woven composites as opposed to the straight fibres and higher 

fibre volume fraction in the laminates. 

A reasonably good correlation can be found between the stress-strain plot and the 

AE data in Fig. 4-13. The sudden increase in cumulative energy to around 1  10
9 

aJ (indicated by the arrow in AE data plot) occurred at the same strain level 

(around 0.25%) where the stress-strain curve deviated away from the initial linear 

part. In addition, occurrence of AE events became much more frequent beyond 

this particular strain level, as density of red points representing instant energy 

from individual AE events increased rapidly after 0.25% warp direction strain in 

Fig. 4-13(b). Based on these observations, it is envisaged that 0.25% warp 

direction strain was a critical strain level, beyond which a change in damage 

development phase had occurred and resulted in the effective bilinear shape of the 

stress-strain curve. 
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(a) 

 

 

(b) 

Fig. 4-13  Typical experimental output for IM7 3D woven composite tested 

under the warp tension: a) stress-strain curve, b) AE data plot 

 

To identify the cause for this bilinearity of stress-strain response in the warp 

direction, a number of additional tensile tests were conducted, where a certain 

degree of damage was introduced to the specimens by loading them in the warp 

direction until 0.2%, 0.35% or 1% strains were reached. These specimens, along 

with those tested to final failure, were cut into smaller samples, which were then 
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polished for microscopic examination using optical microscope. By doing so, 

internal structures of the material before and after reaching the critical strain 

level were visually examined, and the damage development in the material was 

monitored. 

The microscopic examination of damaged specimens has proven to be very 

helpful in showing the evolution of damage. As can be seen in Fig. 4-14, at 0.2% 

warp direction strain, no visible cracking damage occurred in either the warp 

curving region or the warp-weft interlacing region, which is consistent with the 

record of very limited AE events before 0.25% warp direction strain. 
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(a) 

 

 

(b) 

Fig. 4-14 Typical microscopic images of IM7 CF 3D woven composite 

loaded to 0.2% warp direction strain:  a) at warp curving region,  b) at 

warp-weft interlacing region 
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However, at 0.35% warp direction strain, inter-tow cracks between warp tows 

appeared in many of the warp curving regions (Fig. 4-15). No other form of 

damage was found at this stage. Based on this, considering the sudden increase 

of AE event occurrence after 0.25% warp direction strain, it was concluded that 

the initiation and propagation of these inter-tow cracks caused the increase of 

AE event activity.  

Therefore, it was deduced that at around 0.25% warp direction strain, the 

damage development process progressed from a phase where no obvious 

cracking was found to a new phase where cracks between warp tows started to 

occur. This was also reflected by the deviation of stress-strain curve from its 

initial linear part (Fig. 4-13(a)) and the sharp increase of AE activity (Fig. 

4-13(b)).  
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Fig. 4-15 Typical microscopic images of inter-tow cracks in IM7 CF 3D 

woven composite loaded to 0.35% strain in the warp direction 

 

At 1% warp direction strain, cracking between the warp tows was detected in 

every warp curving region. Moreover, as shown in Fig. 4-16, not only there were 

more cracks per warp curving region, but also the cracks appeared to be much 

wider and longer than those discovered at 0.35% warp direction strain. However, 

still no other form of damage was found at this strain level. 
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Fig. 4-16 Typical microscopic image of inter-tow cracks in IM7 CF 3D 

woven composite loaded to 1% warp direction strain 

 

The microscopic images of specimens tested to final failure are shown in Fig. 

4-17. As can be seen, some of inter-tow cracks propagated from warp curving 
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region into warp-weft interlacing region along the boundaries between warp and 

weft tows, effectively forming new cracks between the warp and the weft tows. 

In addition to that, warp tow breakage was observed and cracks associated with 

it were mostly connected to the inter-tow cracks. 

 

Fig. 4-17 Typical microscopic image of cracks in IM7 CF 3D woven 

composite loaded to warp direction ultimate strain 

 

Furthermore, warp tow breakage was the failure mechanism led to the final 

fracture of the specimens as shown in Fig. 4-18. 
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Fig. 4-18  Typical final failure of IM7 CF 3D woven composite tested in 

warp direction 

 

It can be concluded that under uniaxial tensile loading in the warp direction, the 

damage development in IM7 CF 3D woven composite started around 0.25% warp 

direction strain with the formation of inter-tow cracks between warp tows, which 

are believed to have caused the sharp increase in AE activity and triggered the 

nonlinearity in the stress-strain curve. More inter-tow cracks appeared and they 

became wider in the specimens as 1% warp direction strain was reached. Upon 

final failure, some inter-tow cracks extended into boundaries between the warp 

and the weft tows. At the same time, warp tow breakage also occurred and led to 

final fracture of the specimens. Surprisingly, although normally perceived as a 

common form of damage, intra-tow cracking transverse to the loading direction 

was not discovered within the weft tows. 

 

4.4.2.2.2 Weft Direction Uniaxial Tensile Test 

Unlike the properties in warp direction, the Young’s modulus value (62.7 GPa) 

and strength value (832 MPa) in the weft direction for the IM7 CF 3D woven 

composite (Table 4-18) were comparable to the Young’s modulus value (68.1 



114 
 

GPa) and strength value (805 MPa) of the QI laminates mentioned earlier (Table 

4-10).  

Table 4-18  IM7 CF 3D woven composite weft direction test result 

Property Mean value Std. dev. COV % 
Number 

of tests 

Young’s modulus (GPa)* 62.7 2.57 4.1 7 

Strength (MPa) 832 46.3 5.6 7 

Ultimate strain % 1.49 0.373 25 7 

Stress at initial nonlinearity 

(MPa) 
463 33.8 7.3 7 

* Values were obtained in the strain range of 1000-3000 microstrain 

 

Moreover, the typical stress-strain curve obtained under weft loading (Fig. 4-19(a)) 

is nearly linear up to the final failure which occurred at a strain of 1.49%. This 

value of ultimate strain was approximately 1.5 times lower than that in the warp 

direction. In fact, the stress-strain behaviour observed is qualitatively similar to 

that of UD composites under tension in longitudinal direction, in terms of high 

stiffness, low strain to failure and linear elastic response. The explanation to this 

is as follows. Since the weft tows were straight, combined with the high stiffness 

and strength values of IM7 carbon fibres, it is believed that under weft direction 

tension, the linear elastic response from the weft tows should provide the most 

substantial contribution to the stress-strain response of the entire composite, 

provided that the fibre volume fraction in the weft direction is sufficiently high. 
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(a) 

 

 

(b) 

Fig. 4-19 Typical IM7 CF 3D woven composite weft direction test result: a) 

Stress-strain curve, b) AE data plot 

 

AE data collected during the test are shown in Fig. 4-19(b). Similar to the 

previous warp direction testing case, a sudden increase of AE activity was 

detected, but it took place at a later stage, at approximately 0.5% weft direction 

strain (indicated by an arrow), which is double the strain value in the warp 

direction testing case. Another observation to make is that although the AE data 

plot indicates that damage should occur when the material was loaded beyond 
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0.5% weft direction strain, this was not reflected in the stress-strain curves, 

which remained generally linear up to failure.  

To investigate damage initiation and evolution under tensile loading in weft 

direction, microscopic inspection procedure used for the previous warp direction 

test case was repeated here. The microscopic images of the specimen that was 

loaded to 0.4% strain is shown in Fig. 4-20. At this strain level, no crack was 

observed in the specimen, which is consistent with the AE data in Fig. 4-19(b), 

where only a few AE events were registered below 0.5% weft direction strain. 
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(a) 

 

 

(b) 

Fig. 4-20 Typical microscopic images of IM7 CF 3D woven composite 

loaded to 0.4% weft direction strain:  a) warp curving region,  b) warp-weft 

interlacing region 

 

On the other hand, at around 0.7% weft direction strain, cracks transverse to 

weft direction were discovered in both warp curving and warp-weft interlacing 
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regions, as shown in Fig. 4-21. These cracks managed to bypass the weft tows to 

form very long cracks extending across the entire thickness of the specimen. 

Since no other type of damage was observed, formation of these cracks is 

believed to be the main cause for increased AE activity beyond 0.5% weft 

direction strain. 

However, it is difficult to tell whether these were inter-tow or intra-tow cracks 

because a single lengthy crack could appear on warp tow boundary as well as 

cutting through warp tow cross sections like the one captured in Fig. 4-21(a). To 

make matters worse, the boundaries of warp tows can be barely seen in the 

warp-weft interlacing regions since the warp tows were so densely packed 

together (Fig. 4-21(b)). Nonetheless, at this stage, all the cracks were oriented 

transverse to the weft direction (loading direction), meaning that they were 

probably caused by transverse tension due to the applied weft direction loading. 
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(a) 

 

 

(b) 

Fig. 4-21  Typical microscopic images of transverse cracks in IM7 CF 3D 

woven composite loaded to 0.7% weft direction strain:  a) warp curving 

region,  b) warp-weft interlacing region 
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At ultimate strain, more through-the-thickness transverse cracks appeared and a 

significant increase in crack density can be seen (Fig. 4-22). In addition to that, 

new inter-tow cracks parallel to the weft tows were formed as some of the 

through-the-thickness cracks branched and propagated into boundaries between 

warp and weft tows (Fig. 4-22(b)). 
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(a) 

 

 

(b) 

Fig. 4-22 Typical microscopic images of cracks in IM7 CF 3D woven 

composite loaded to weft direction ultimate strain:  a) warp curving region,  

b) warp-weft interlacing region 
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Summarising the observations made, it can be concluded that for the specimens 

tested in the weft direction, damage initiated at 0.5% strain in the form of 

through-the-thickness transverse cracks. Further loading caused an increase in 

number of these cracks, some of which propagated into boundaries between 

warp and weft tows. In terms of final failure, typical final fracture of the 

specimens is shown in Fig. 4-23, where weft tow breakage can be clearly seen. 

 

Fig. 4-23  Typical final failure of IM7 CF 3D woven composite tested in weft 

direction 

 

The experimental investigation presented here has confirmed that damage did 

indeed occur in the specimens tested in the weft direction, even though the 

recorded stress-strain response remained linear until final failure. The possible 

explanation for this is as follows. Although the damage occurred in the form of 

transverse cracks spanning across the specimen thickness, but these cracks 

bypassed the weft tows which remained intact until the final failure. Because of 

the high longitudinal stiffness and strength of weft tows, their contribution was 

high enough to dominate the weft direction stress-strain response of the entire 3D 

woven composites, such that the damage effect from the transverse cracks became 

negligible. 
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In contrast, although warp tows remained intact up to the final failure for the 

specimens loaded in the warp direction (Section 4.4.2.2.1), because of crimps in 

the warp tows, those specimens were more compliant, hence the contribution of 

damage was more significant as the stress-strain response became nonlinear due 

to the inter-tow cracks between the warp tows. 

 

4.4.2.2.3 ASTM D3518 In-plane Shear Test 

Similar to the aforementioned case for laminates, with the specimens made to 

have warp and weft tows at a 45º offset from the loading direction in the XY 

plane, in-plane shear testing for 3D woven composites was conducted. 

For the same reason stated in Section 4.3.3.3 concerning the limitations of the 

video strain gauge, no specimens were tested to final failure. The properties 

measured in the tests were shear modulus and 0.2% offset shear strength as 

specified in Table 4-19. Their values were lower than those of IM7 CF UD 

laminates (Table 4-8). Since both kinds of composites were based on the same 

type of fibre reinforcement material, it is envisaged that the lower shear modulus 

and strength in the woven composites might be due to its lower total fibre volume 

fraction and differences in the epoxy resin systems used. 

Table 4-19  IM7 CF 3D woven composite in-plane shear test result 

Property Mean value Std. dev. COV % 
Number of 

tests 

Shear modulus (GPa)* 3.92 0.173 4.4 7 

0.2% offset shear strength 

(MPa) 
42.6 1.62 3.8 7 

* Values were obtained in engineering shear strain range of 2000-6000 microstrain 

The general trend of in-plane shear stress-strain curve for the IM7 CF 3D woven 

composite (Fig. 4-24) was very similar to that of UD laminates (Fig. 4-5). 
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Moreover, both of them had reached their 0.2% offset shear strengths at an 

engineering shear strain just beyond 1%. 

 

Fig. 4-24 Typical in-plane shear test stress-strain curve of IM7 CF 3D 

woven composite 

 

As shown in Fig. 4-25, unlike shear specimens of laminated composites, 3D 

woven CF composite suffered very obvious local deformations for the fibre tows. 

It was also observed during tests that while the tows deformed locally, the 

matrix material surrounding the tows fractured and very small fragments of it 

detached from the specimens. This offers an explanation for the visible cross-

sectional shrinkage in the middle of the specimens, namely, the tows tend to 

deform and align in the loading direction when the matrix material between 

them is eroded. 

 

Fig. 4-25  Typical deformation of IM7 CF 3D woven composite under in-

plane shear 
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4.4.3  3D Woven Composite Reinforced by E-glass Fibre 

 

4.4.3.1  Material Properties and Structure of the Weave 

Another type of 3D woven composite tested were layer-to-layer angle interlock 

composite with glass fibre woven reinforcement. This composite had the same 

type of weave pattern and matrix material as the IM7 CF 3D woven composite, 

but with slightly higher weft-to-warp ratio and higher warp weaving angle, as 

specified in Table 4-20. The material properties of the E-glass fibre tows used are 

summarised in Table 4-21. 

The purpose of testing on this type of 3D woven composite was to investigate to 

what extent different materials of reinforcement can affect the mechanical 

properties and the damage development process in the 3D woven composites. 

Table 4-20   General information of GF 3D woven composite [192] 

Weave pattern 
Layer-to-layer interlock  (Fig. 4-26 - 

Fig. 4-28) 

Reinforcement type E-glass (75 tex) 

Matrix material type Gurit Prime™ 20LV epoxy resin 

Weft to warp ratio (By weight per cm) 0.651 

Number of weft tow layers 6 

Dry fabric areal weight (kg/m
2
) 5.68  0.09 

Total fibre volume fraction (%) 50.2%  0.8% 

 

Table 4-21 Sinoma
®
 E-glass fibre tow (75 tex) material properties [195] 

Tensile modulus (GPa) 73 

Tensile strength (MPa) 3140 

Ultimate tensile failure strain 4.8% 

 



126 
 

To ensure that the thickness and total fibre volume fraction in the GF 3D woven 

composite are similar to those in the IM7 CF 3D woven composite, the former 

had six layers of weft tows, which is one layer less than the latter. The cured GF 

3D woven composite were also subjected to CT scan and the images are presented 

in Fig. 4-26, Fig. 4-27 and Fig. 4-28.  

 

 

Fig. 4-26   XZ-plane CT scan image of cured GF 3D woven composite 

 

 

 

Fig. 4-27   XY-plane CT scan image of cured GF 3D woven composite 
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(a) 

 

 

(b) 

Fig. 4-28   YZ-plane CT scan images of cured GF 3D woven composite: a) 

warp curving region,  b) warp-weft interlacing region 

 

Table 4-22  Weave pattern geometries of cured GF 3D woven composite 

Warp tow weaving angle 4.35±0.3º 

Warp tow width 1.31±0.1 mm 

Warp tow thickness 0.37±0.15 mm 

Weft tow space 4.35±0.3 mm 

Weft tow width 2.48±0.2 mm 

Weft tow thickness 0.42±0.06 mm 
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4.4.3.2 Results and Discussion 

 

4.4.3.2.1 Warp Direction Uniaxial Tensile Test 

The first type of experiments conducted was a tensile test, where the warp tows in 

the specimens were aligned in the loading directions. The properties measured are 

summarised in Table 4-23. Comparing them with properties of IM7 CF 3D woven 

composite in Table 4-17, it can be seen that the Young’s modulus and the strength 

of GF 3D woven composite in the warp direction are substantially lower. Since 

both types of composites had the same epoxy resin system, similar total fibre 

volume fractions and the same weave pattern, it is believed that the lower 

properties of GF composite were mainly caused by the inherent lower Young’s 

modulus and strength values of its E-glass fibre reinforcements (Table 4-21). 

Table 4-23  GF 3D woven composite warp direction test result 

Property Mean value Std. dev. COV % 
Number of 

tests 

Young’s modulus (GPa)* 21.8 0.762 3.5 7 

Strength (MPa) 213 13.6 6.4 7 

Ultimate strain % 2.05 0.311 15 7 

Stress at initial 

nonlinearity (MPa) 
81.3 4.15 5.1 7 

* Values were obtained in the strain range of 500-2500 microstrain 

Typical stress-strain curve recorded during the experiment is shown in Fig. 

4-29(a). Comparing it with the stress-strain response of IM7 CF 3D woven 

composite (Fig. 4-13(a)), it can be seen that, qualitatively, the responses of the 

two composites are similar. 
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(a) 

 

 

(b) 

Fig. 4-29 Typical GF 3D woven composite warp direction test result: a) 

Stress-strain curve, b) AE data plot 

 

The AE data collected in the same experiment are shown in Fig. 4-29(b). A step 

increase in cumulative energy was observed at 0.35% warp direction strain 

(indicated by an arrow), which corresponds to the onset of nonlinearity in the 

stress-strain curve. Similar correlation was also observed for the IM7 CF 3D 

woven composite tested under warp direction tension as shown previously in Fig. 

4-13. However, comparing the AE plots of the two composites, it is noticeable 
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that while a substantial amount of AE events were registered for the GF 

composite before the onset of stress-strain nonlinearity, only limited AE activity 

was registered for the IM7 CF composite before such a point. To identify the 

cause for this phenomenon, samples of specimens subjected to different extent 

of damage were examined under the microscope, following the same procedure 

as mentioned previously in Section 4.4.2.2.1. 

The internal structure of the specimen that was loaded to 0.25% warp direction 

strain is shown in Fig. 4-30. As can be seen, numerous intra-tow cracks formed 

in the weft tows. At this strain level, the strain-stress response was still linear, 

but substantial amount of AE events were captured. Since no other type of 

damage was observed at this stage, the intra-tow cracks were considered to be 

responsible for causing the substantial AE events before the onset of nonlinearity 

at 0.35% warp direction strain as shown in Fig. 4-29. 

In contrast, as mentioned in Section 4.4.2.2.1, no damage was found before the 

onset of stress-strain nonlinearity for the IM7 CF 3D woven composite tested in 

warp direction. This suggests a marked difference in terms of damage 

development for the GF and CF 3D woven composites tested. Moreover, 

cracking of the weft tows in the GF composite did not seem to affect the stress-

strain response, which remained linear until 0.35% warp direction strain. This 

indicates that the stiffness reduction due to intra-tow cracks was rather 

insignificant as it was not reflected on the stress-strain curve. 
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(a) 

 

 

(b) 

Fig. 4-30 Typical microscopic images of intra-tow cracks in GF 3D woven 

composite loaded to 0.25% warp direction strain:  a) warp curving region,  

b) warp-weft interlacing region 

 

The internal structure of the specimens loaded to 0.47% strain, which is beyond 

the nonlinearity onset strain, is shown in Fig. 4-31. As can be seen, at this strain 
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level, in addition to the intra-tow cracks, inter-tow cracks between warp tows had 

developed. Some of them even connected to the existing intra-tow cracks as 

shown in Fig. 4-31(b). These inter-tow cracks were very similar to those 

discovered in the samples of IM7 CF 3D woven composite tested under warp 

direction tension. 

 

(a) 

 

(b) 

Fig. 4-31 Typical microscopic images of cracks in GF 3D woven composite 

loaded to 0.47% warp direction strain 
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Furthermore, when the GF 3D woven composite specimens were loaded to the 

warp direction ultimate failure (Fig. 4-32), these inter-tow cracks became longer 

and wider, which is again similar to what was observed in the damaged IM7 CF 

3D woven composite specimens. As shown in Fig. 4-33, the final failure of the 

GF 3D woven composite was due to fracture of the warp tows. 
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(a) 

 

 

(b) 

Fig. 4-32 Typical microscopic images of cracks in GF 3D woven composite 

loaded to warp direction ultimate strain 
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Fig. 4-33  Typical final failure of GF 3D woven composite tested in warp 

direction 

 

It is worth noting that, after the emergence of inter-tow cracks, there seemed to be 

no visible increase in crack density for the intra-tow cracks. This suggests that the 

effect of inter-tow cracks in GF 3D woven composite is no different from that in 

the IM7 CF 3D woven composite. Specifically, it is believed that the inter-tow 

cracks, rather than the intra-tow cracks, triggered the stress-strain nonlinearity in 

Fig. 4-29(a) and contributed to the step increase of AE activity in Fig. 4-29(b). 

It can be concluded that the damage development process in GF 3D woven 

composite under warp direction tensile stress was very similar to that in IM7 CF 

3D woven composite. The only new form of damage observed was the intra-tow 

cracks in the weft tows. 

 

4.4.3.2.2 Weft Direction Uniaxial Tensile Test 

The weft direction properties of GF 3D woven composite are listed in Table 4-24. 

Similar to the warp direction tension case, the weft direction Young’s modulus 

and strength (Table 4-24) are substantially lower than those of the IM7 CF 3D 
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woven composite (Table 4-18). The explanation for this was already given in the 

previous section. 

Table 4-24  GF 3D woven composite weft direction test result 

Property Mean value Std. dev. COV % 
Number of 

tests 

Young’s modulus (GPa)* 25.7 1.45 5.6 7 

Strength (MPa) 337 32.6 9.7 7 

Ultimate strain % 1.85 0.299 16 7 

Stress at initial nonlinearity 

(MPa) 
94.4 8.72 9.2 7 

*  Values were obtained in the strain range of 500-2500 microstrain 

 

It is worth noting that for the GF 3D woven composite the Young’s modulus in 

the weft direction is only 18% higher than that in the warp direction, although a 

marked improvement (58%) can be seen in terms of strength. For the low Young’s 

modulus value, this again is likely to be due to the effect from the inherently low 

stiffness of E-glass fibre. Because of the low stiffness of glass fibres, even when 

the straight weft tows were aligned in the loading direction, the improvement to 

the specimen level weft direction Young’s modulus was still not apparent. 

Alternatively, one may arrive at the argument that the stress-strain response in 3D 

woven composites with fibre constituent of low stiffness is less sensitive to the 

variation of warp weaving angle. Such argument can be further supported by 

comparing the Young’s modulus value of E-glass fibre tow to that of IM7 carbon 

fibre tow. The longitudinal Young’s modulus of IM7 carbon fibre tow, 276 GPa 

(Table 4-14), is almost four times of that of E-glass fibre tow, 73 GPa (Table 

4-21). Consequently, as seen here, having E-glass fibres rather than IM7 carbon 
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fibres aligned in the loading direction would have much less influence on the weft 

direction Young’s modulus. 

In contrast to its carbon fibre counterpart, GF 3D woven composite demonstrated 

a bilinear curve trend for its weft direction stress-strain response (Fig. 4-34(a)), 

with the onset of stress-strain nonlinearity correlating well with the sudden 

increase of cumulative AE energy (Fig. 4-34 (b)).  

 

(a) 

 

 

(b) 

Fig. 4-34  Typical GF 3D woven composite weft direction test result: a) 

Stress-strain curve, b) AE data plot 
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In terms of microscopic inspection, the internal damage in the GF 3D woven 

composite specimens loaded to 0.23%, 0.43% and ultimate failure strains can be 

seen in Fig. 4-35, Fig. 4-36 and Fig. 4-37. Comparing to the internal damage 

observed in IM7 CF 3D woven composite tested in the weft direction (Fig. 4-20 - 

Fig. 4-22), it becomes apparent that both types of composites had a very similar 

damage development process when loaded in the weft direction. The only 

difference observed was the higher crack density at the ultimate strain level in the 

GF composite.  
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(a) 

 

 

(b) 

Fig. 4-35 Typical microscopic images of GF 3D woven composite loaded to 

0.23% weft direction strain:  a) warp curving region,  b) warp-weft 

interlacing region 
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(a) 

 

 

(b) 

Fig. 4-36 Typical microscopic images of transverse cracks in GF 3D woven 

composite loaded to 0.43% weft direction strain:  a) warp curving region,  b) 

warp-weft interlacing region 
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(a) 

 

 

(b) 

Fig. 4-37 Typical microscopic images of cracks in GF 3D woven composite 

loaded to weft direction ultimate strain:  a) warp curving region,  b) warp-

weft interlacing region 

 

With the damage process identified, it is clear that the stress-strain nonlinearity 

was caused by the through-the-thickness cracks. However, recall the argument 
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presented in Section 4.4.2.2.2 stating that for the IM7 CF 3D woven composite the 

linear stress-strain response under weft loading was due to the high stiffness of the 

weft tows in the loading direction, which dominated the stress-strain response of 

the entire specimen even with the presence of through-the-thickness cracks. 

Apparently, for GF 3D woven composite loaded in the weft direction, the stiffness 

of the weft tows was not high enough to prevent the stiffness reduction caused by 

the development of through-the-thickness cracks. 

Photographs of the specimens failed under weft direction tension are shown in Fig. 

4-38, where weft tow fracture and areas of whitening due to extensive matrix 

cracks can be seen. 

 

Fig. 4-38  Typical final failure of GF 3D woven composite tested in weft 

direction 

 

4.4.3.2.3 ASTM D3518 In-plane Shear Test 

Typical result and stress-strain curve obtained from the in-plane shear test of GF 

3D woven composite are shown in Table 4-25 and Fig. 4-39. The measured in-

plane shear properties of GF 3D woven composite, namely, the in-plane shear 

modulus and 0.2% offset shear strength, are very close to those of the IM7 CF 3D 
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woven composite. Also, the in-plane shear stress-strain responses of these two 

types of composites are very similar, both qualitatively and quantitatively. 

 

Table 4-25  GF 3D woven composite in-plane shear test result 

Property Mean value Std. dev. COV % 
Number 

of tests 

Shear modulus (GPa)* 4.03 0.157 3.9 7 

0.2% Offset shear strength (MPa) 38.8 1.63 4.2 7 

 * Values were obtained in engineering shear strain range of 3500-7500 microstrain 

 

 

Fig. 4-39  Typical in-plane shear test stress-strain curve of GF 3D woven 

composite 

 

4.5 Summary 

In this chapter, the experiments conducted for investigating damage inside 

laminates and 3D woven composites are described in detail.  

Based on the experimental result from laminate test cases, it is determined that 

damage-related material properties 
TR , I ,  ||R  and II

 
can be determined 
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using test cases of transverse tensile testing on UD laminates, tensile testing on 

cross-ply laminates and in-plane shear testing on UD laminates.  

As shown in the next chapter, with the experimental result available for the 

determination of damage-related material properties, a new UD composite CDM 

model containing the novel damage evolution law is proposed and implemented 

for carrying out damage analyses. The method and detailed processes of using the 

experimental result to determine the damage-related material properties are also 

illustrated in the next chapter. 

In terms of the 3D woven composites loaded in the warp direction, both IM7 CF 

and GF 3D woven composite demonstrated nonlinear stress-strain responses in the 

form of almost bilinear stress-strain curves, which are shown to be caused by the 

inter-tow cracks discovered in the warp-curving regions. Moreover, transverse 

intra-tow cracks were also found inside the weft tows of the GF 3D woven 

composite, but no such damage was discovered in the IM7 CF 3D woven 

composite.  

On the other hand, for the 3D woven composites loaded in the weft direction, 

through-the-thickness transverse cracks bypassing weft tows were found in both 

the IM7 CF and GF 3D woven composites. However, while these cracks made the 

weft direction stress-strain response of GF 3D woven composite to be nonlinear, 

but that of IM7 CF 3D woven composite remained to be linear as high fibre 

direction Young’s modulus value of IM7 carbon fibre weft tows is believed to 

have dominated the specimen level stress-strain response. 

As the damage effect of the inter-tow cracks is not accounted for by the UD 

composite CDM model used for intra-tow damage modelling, a separate damage 
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model catered for characterising the damage effect of inter-tow cracks is 

introduced in Chapter 7.  
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5. Implementation and Verification of Proposed Damage 

Evolution Formulation 

 

5.1 Introduction 

Although the damage evolution law developed in Chapter 3 can be paired up with 

Li’s damage representation to characterise damage process, in order to implement 

them in the form of a new CDM model for UD composites, a suitable damage 

initiation criterion is required to predict the start of the damage process. In this 

chapter, the issue of incorporating appropriate damage initiation criterion is 

addressed. 

Furthermore, other than the damage evolution law which is targeted for 

characterising a damage process, failure criteria predicting instant failures of UD 

composites are also introduced in this chapter and added into the new CDM 

model proposed in this chapter. 

This CDM model is then implemented for both 2D plane stress state and 3D stress 

state situations where the former case could be of laminates consisting of UD 

plies while the latter case could be UD fibre tows inside textile composites. 

As a necessary sanity check for derived theoretical formulation and algorithm, the 

implemented CDM model is subjected to verification using numerical examples. 

These numerical examples are illustrated in this chapter. 

In addition, as a part of the implementation process for the CDM model, the 

determination of damage-related material properties, which serve as input 

parameters to the CDM model, is also described in detail in this chapter.  



147 
 

 

5.2 Incorporation of Damage Initiation Criteria and Instant Failure 

Criteria 

As mentioned in Chapter 3, Puck’s failure criteria for UD composites are suitable 

to be used in conjunction with the newly developed damage evolution law 

because both identified transverse tensile, transverse shear and in-plane shear 

stresses on an action plane as contributors for causing matrix cracking parallel to 

the fibre direction. Moreover, Puck’s failure criterion has been found to be one of 

the most promising failure criteria from World Wide Failure Exercise (WWFE) 

[10] for predicting the failure of UD composites. As a result, Puck’s failure 

criterion [88] is chosen to be the damage initiation criterion employed for the 

current CDM model. 

Adapted as a damage initiation criterion, Puck’s criterion predicts both the onset 

of the matrix damage as well as the orientation   of emerging planar matrix 

cracks. As shown in Fig. 5-1, the orientation   is measured from the second axis 

of material coordinate system to the fracture plane normal (marked with “n”) with 

anticlockwise direction defined as the positive direction. 

 

Fig. 5-1 UD composite matrix cracking damage orientation definition 
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It is necessary and advantageous to have the crack orientation predicted because 

for UD composites under 3D stress state like in the case of fibre tows inside 

textile composites, tows may be subjected to different load combinations at 

different locations which may result in the same tow having different matrix crack 

orientations at different locations, not to mention it is even more common for 

different tows to have different matrix crack orientations. With the incorporation 

of Puck’s criterion for taking care of damage orientation determination, 

differences in matrix cracking orientation can be duly reflected. 

In addition, by referring to Fig. 5-1, the damage vector 1 2 3{ }TV v v v  can 

be rotated about the fibre direction according to the predicted matrix crack 

orientation ( ) so that the damage vector component 2v  can always be aligned 

in the direction normal to the crack plane. In this way, the damage vector would 

always be 2{0 0}TV v , which is the type of damage already dealt with in 

Chapter 3 and in Li’s damage representation work, i.e. a single array of 

microcracks within each representative volume of the material. Therefore, all the 

damage-related theoretical formulations derived there are available for use 

without the need of further modification. The obtained effective material 

properties are expressed in the local material coordinate system which can be at 

different orientations than that defined by the damage vector. However, if one 

needs to obtain these properties in another coordinate system, e.g. that for a meso-

scale unit cell representing the 3D textile composite [1], a standard coordinate 

transformation can be employed using the fibre orientation and the matrix 

cracking orientation ( ) predicted. 
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In contrast to matrix cracking which is a gradual damage process, failures of 

instant nature, i.e. fibre direction failures, are also addressed in Puck’s criterion. 

For these instant failure modes, Puck’s criterion used the stress within fibre which 

is calculated according to (5-1) under a multi-axial stress state:  

1 1 1 12 2 3( )f f f fE m        (5-1) 

where 1 f
E  is Young’s modulus of pure fibre in its longitudinal direction, 

 12 f
v  is the major Poisson’s ratio of pure fibre, 

 f
m

 
is stress magnification factor due to transverse stresses on pure fibre. 

If the fibre stress 1 f
 
obtained from (5-1) exceeds tensile or compressive 

strengths of the fibre, instant fibre direction failure is expected. This part of 

Puck’s criterion to predict instant fibre direction failures of UD composites is also 

incorporated in the CDM model proposed here. 

However, one should be aware that the fibre failure predicted here is a local 

material failure, not an ultimate structural failure. To allow this local failure to be 

traced during the analysis of laminates or textile composites, tow properties 

associated with fibres like 1E , 12G  and 13G  at the material point concerned 

should be reduced to a trivial value, so that a complete loss of load-carrying 

capability for these directions can be simulated when fibre failure occurs. 

 

5.3 Implementation as a New CDM Model for UD Composites 

With all components of a CDM model, namely damage representation, damage 

initiation criterion, damage evolution law and instant failure criterion clearly 
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defined as shown in above paragraphs, a new CDM model is established and 

implemented as a MATLAB code for laminate analysis, also as a user-defined 

material subroutine (UMAT) running in ABAQUS™/Standard for full 3D 

analysis. 

For understanding the operation of this implemented CDM model, a flow chart is 

given in Fig. 5-2. As can be seen, the model first checks if there is any fibre 

failure occurred based on failure indicator determined from previous strain 

increment calculation. If there is, for example, fibre tensile failure detected, then 

associated Young’s modulus and shear modulus values will be reduced to a trivial 

value (5% of their virgin values) to simulate the abrupt and catastrophic nature of 

fibre direction failure, while maintaining the positive definitiveness of the 

materials stiffness matrix as a numerical requirement from ABAQUS™/Standard. 

Next, if matrix damage has not been initiated, Puck’s criterion will be used to 

determine if matrix damage should initiate and its corresponding fracture plane 

orientation. If matrix damage has not been initiated and it is not predicted to 

initiate, the model will skip the matrix damage calculation process and update 

stresses directly. On the other hand, if matrix damage has been initiated, the 

damage orientation determined previously will be unchanged. 

With the matrix damage predicted to occur, stresses on the fracture plane will be 

calculated. The effect of compressive normal stress on the crack plane will be 

ignored for damage evolution calculation since obviously such a stress does not 

contribute to cracking damage propagation on the fracture plane. 
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With the stresses on the fracture plane identified, the model then checks if this is a 

case of reloading. If it is, damage evolution will not be activated until the 

reloading criteria are met for damage evolution process to resume. 

If damage is to evolve, the damage evolution law is applied to calculate a damage 

increment value   based on Newton’s iterative method. During this iterative 

process, stresses and damage increment value   are updated in every iteration 

according to theoretical formulations presented in Chapter 3, as required by 

ABAQUS™/Standard in order to implement it through its user defined material 

subroutine UMAT, until a converged  value is reached. If the converged 

damage increment value   is negative, it signifies unloading and the damage 

increment  is set to zero for retaining the previous total value of the damage 

variable   since damage cannot be "healed" during unloading. 

In the end, the damage variable   will be updated based on the calculation of 

damage increment  , which then enables the material stiffness matrix and 

stresses to be updated accordingly. 
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Fig. 5-2 CDM model operation flowchart 
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5.4 Verification Cases 

To verify the implemented CDM model, verification examples are used. These 

examples are designed by assuming the damage evolution characteristics of an 

imaginary UD composite material. These verification cases are so introduced such 

that, for the assumed damage processes, damage driving force and stress values at 

different damage levels can be obtained analytically by using the theoretical 

formulations in Chapter 3. It is essential that the results obtained by the analytical 

method can be reproduced by the implemented numerical model using UMAT of 

ABAQUS™/Standard before contemplating any practical applications. 

 

5.4.1 Set-up of the Verification Examples 

The material properties assumed for the numerical verification examples are 

summarised in Table 5-1. 

Table 5-1  UD composite material properties assumed for the verification 

examples 

Symbol Explanation Value 

1E  Young’s modulus in fibre direction  100 (GPa) 

2 3 (= )E E  
Young’s modulus in transverse 

direction  
10 (GPa) 

12G  In-plane shear modulus  5 (GPa) 

23G  Transverse shear modulus 3.45 (GPa) 

12  Major Poisson’s ratio  0.1 

k  

Coupled damage effect factor 

between transverse tensile damage 

and in-plane shear damage as defined 

0.25 
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in [180] 

f T   Pure fibre ultimate tensile strength 2000 (MPa) 

f C   
Pure fibre ultimate compressive 

strength 
-1000 (MPa) 

1 fE  
Pure fibre longitudinal direction 

Young’s modulus 
200 (GPa) 

12 f  Pure fibre major Poisson’s ratio 0.333 

fm  

Stress magnification factor for fibre 

bundles as defined in Puck’s 

criterion [88] 

1.1 

Tp  

Slope of the failure envelope relating 

to transverse tensile and transverse 

shear action stresses as defined in 

Puck’s criterion [88] 

0.3 

Cp  

Slope of the failure envelope relating 

to transverse compressive and 

transverse shear action stresses as 

defined in Puck’s criterion [88] 

0.26 

 ||
Tp  

Slope of the failure envelope relating 

to transverse tensile and in-plane 

shear action stresses as defined in 

Puck’s criterion [88] 

0.35 

 ||
Cp  

Slope of the failure envelope relating 

to transverse compressive and in-

plane shear action stresses as defined 

in Puck’s criterion [88] 

0.3 

TR  

Transverse tensile stress threshold 

value for triggering matrix damage 

initiation 

50 (MPa) 

CR  

Transverse compressive stress 

threshold value for triggering matrix 

damage initiation 

150 (MPa) 

 ||R  

In-plane shear stress threshold value 

for triggering matrix damage 

initiation 

70 (MPa) 
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As can be seen from Table 5-1, since UD composites are normally regarded as 

transversely-isotropic materials, the transverse Young's moduli 2E  and 3E  are 

therefore identical. Also, the transverse compressive stress threshold for matrix 

damage initiation 
CR  

is set to be more than twice the value of 
TR  since this is 

typical of brittle composite material as mentioned in [88]. 

For clear illustration of the verification cases, the assumed damage evolution 

processes corresponding to each single mode loading case are designed to be as 

illustrated in Table 5-2, where the values of damage driving force are calculated 

according to the theoretical formulations presented in Chapter 3. 

Table 5-2 Damage evolution processes assumed for each single mode loading 

case 

Loading modes Quantities 

Values 

At damage initiation 

with   = 0% 

At damaged state 

with   = 40% 

Uniaxial transverse 

direction stress 

n  

n (MPa) 50 80 

I  (MPa) 0.25 1.28 

Pure In-plane shear 

stress nl  

nl  (MPa) 70 100 

II  (MPa) 0.245 0.6 

Pure transverse 

shear stress nt
 

nt  (MPa)
 

75 140 

III  (MPa)
 

0.563 2.5 

 

Based on the damage processes in Table 5-2, where variations of stresses, damage 

levels and damage driving force values are clearly shown, the corresponding 
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damage evolution constants I , II  and III
 
for each single mode of loading 

are evaluated using (5-2), which is introduced in Chapter 3.  

I I II II III III            
 

(5-2) 

 

These damage evolution constants are then used as material property inputs 

(Table 5-3) for the numerical simulation work where the CDM model UMAT 

code will calculate damage evolution processes based on them. In doing so, the 

damage evolution scenarios presented in Table 5-2 should be reproduced by the 

simulation work if the theoretical formulations, e.g. the derivation of the 

tangential stiffness matrix in Chapter 3, are indeed mathematically sound and 

correctly coded as material subroutines. This then fulfils the purpose of this 

verification work. 

Table 5-3  Damage evolution constants for the verification examples 

Symbol Explanation Value 

I  
Damage evolution constant under 

mode I type of loading. 
0.387 (MPa)

-1
 

II  
Damage evolution constant under 

mode II type of loading. 
1.13 (MPa)

-1
 

III  
Damage evolution constant under 

mode III type of loading. 
0.206 (MPa)

-1
 

 

The numerical simulation models are constructed using ABAQUS™/Standard. 

For simplicity, a single C3D8 solid element (Fig. 5-3) is used and subjected to 

different loading conditions which covered not only the damage processes in 
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Table 5-2, but also unloading and reloading scenarios. Result and discussion of 

these numerical examples are presented in the next section. 

 

Fig. 5-3 Single solid element (C3D8) used for the simulation work in 

ABAQUS™/Standard 

 

 

5.4.2 Results from the Numerical Examples 

 

5.4.2.1 The Case of Transverse Direction Uniaxial Tension 

In this example, the imaginary UD composite is loaded under uniaxial tension in 

axis-3 direction of the material coordinate (refer to Fig. 5-1). The load is 

repeatedly applied to simulate an unloading-reloading scenario. 

First, looking at the stress-strain plot in Fig. 5-4, it can be seen that nonlinearity 

appeared when 3  
reached 50 MPa. This is expected since 50 MPa is the value 

of 
TR  set in Table 5-1. As a result, the stress-strain nonlinearity is due to initiation 

and evolution of matrix damage predicted by the CDM model. 
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Fig. 5-4 Stress-strain plot for the case of uniaxial transverse tension and 

reloading 

 

Moreover, one may see the unloading and reloading history in Fig. 5-4 (indicated 

by arrows), where the state returned to the point of zero stress and strain during 

unloading, before it followed the same path as unloading back for reloading and 

went up to the point where the previous loading process was stopped (marked as 

U in Fig. 5-4). It is obvious that only after reaching this “U” point during 

reloading, the damage evolution process then resumed. This can be seen from the 

continuous and smooth nonlinear curve shape in the vicinity of this “U” point in 

Fig. 5-4. This also means that the secant modulus value for 3E  did not change 

during the unloading and reloading processes, causing the unloading and 

reloading curve paths to be identical before damage evolution was reactivated. 

Such an unloading-reloading behaviour is made possible thanks to the unloading 

and reloading criteria introduced in Chapter 3. 

Since only uniaxial 3  
stress is applied in this example, according to Puck's 

criterion, the fracture plane would be the action plane of 3  
where only a normal 
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stress n  would exist with all other shear stresses at zero value. This is 

correctly predicted by the CDM model with a calculated fracture plane orientation 

at 90º from axis-2 of the material coordinate system (refer to Fig. 5-1 for the 

definition of damage orientation). Considering that 3  acting on the plane 

perpendicular to the axis-3 is indeed at 90º from the plane perpendicular to the 

axis-2, this facture plane orientation prediction is therefore correct.  

The cause for stress-strain nonlinearity beyond 50 MPa is also reflected in Fig. 

5-5 as damage variable   started to grow from zero once n  reached 50 MPa. 

In terms of predicted damage evolution behaviour, Fig. 5-5 shows that the damage 

variable grew to 40% when n  reached 80MPa, which is consistent with the 

assumed damage evolution process in Table 5-2. In addition, the nonlinear trend 

in Fig. 5-5 is due to the fact that damage driving force is defined as a nonlinear 

function of stresses as illustrated in Chapter 3. 

 

 

Fig. 5-5  Damage-stress plot for the case of uniaxial transverse tension and 

reloading 
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On the other hand, Fig. 5-6 confirms that the predicted damage driving force 

values matched with the damage driving force values in Table 5-2. The linear 

trend in Fig. 5-6 is a reflection of the linear damage evolution law defined in 

Chapter 3.  

However, one may notice that in both Fig. 5-5 and Fig. 5-6, a horizontal line 

appeared. This is due to unloading and reloading processes since the damage 

variable value remained constant during these processes while stress value and 

damage driving force value continued to vary. 

 

 

Fig. 5-6  Damage variable - damage driving force plot for the case of uniaxial 

transverse tension and reloading 

 

Based on above result, it can be concluded that the UMAT code did indeed 

reproduce the damage process in Table 5-2 for the case of transverse direction 

uniaxial tension loading. 

 



161 
 

5.4.2.2  The Case of Transverse Direction Uniaxial Compression 

For this case, transverse direction uniaxial compressive stress 2  is applied. The 

UMAT code predicted a stress-strain response as shown in Fig. 5-7, where the 

stress-strain nonlinearity after reaching -150 MPa is correctly accounted for since 

CR  is set at 150 MPa in Table 5-1. 

 

Fig. 5-7  Stress-strain plot for the case of uniaxial transverse compression 

 

Fig. 5-8 further confirms that the stress-strain nonlinearity in Fig. 5-7 is indeed 

caused by the damage predicted. 

 

Fig. 5-8  Damage-stress plot for the case of uniaxial transverse compression 
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Recall that Puck’s criterion stated that the damage due to transverse compression 

for brittle UD composites should be in the form of transverse shear cracking at a 

fracture plane orientation slightly greater than 45 from the direction of the 

uniaxial transverse compressive stress. This is because on the stress action plane 

of that orientation, transverse shear stress will eventually cause the fracture when 

compressive normal stress on that action plane becomes too low to resist the shear 

fracture. 

Such form of damage is successfully predicted by the UMAT code for this 

example with a resulting crack orientation at 50.4 from axis-2. The predicted 

stresses on the fracture plane are shown in Fig. 5-9 where both transverse shear 

and normal compressive stresses are present. 

 

Fig. 5-9  Stresses on the fracture plane for the case of uniaxial transverse 

compression 

 

From Fig. 5-9, one may see that the prediction of transverse shear stress nt  and 

damage variable   is in agreement with the assumed damage evolution process 

for pure transverse shear loading mode in Table 5-2. 



163 
 

Moreover, only the transverse shear stress nt  contributed to the damage driving 

force value in Fig. 5-10. Although a compressive direct stress is found on the 

fracture plane, it will not contribute to damage evolution. 

 

Fig. 5-10  Damage variable – damage driving force plot for the case of 

uniaxial transverse compression 

 

Again, the prediction of damage driving force in Fig. 5-10 is consistent with the 

values listed in Table 5-2 for transverse shear loading mode. 

 

5.4.2.3  The Case of Pure Transverse Shear 

Pure transverse shear stress 23  is applied in this case before unloading. As can 

be seen from the predicted nonlinear stress-strain curve in Fig. 5-11, damage 

occurred during the loading process. 
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Fig. 5-11  Stress-strain plot for the case of pure transverse shear 

 

However, such damage is not a case of transverse shear cracking. A closer look at 

the simulation result revealed that the matrix damage in this case is actually 

caused by normal tensile stress n , with the predicted fracture plane orientation 

at 45° to axis-2. This is essentially a case of tensile fracture in principal stress 

direction under the application of pure transverse shear stress. This result is in 

agreement with Puck’s criterion and such damage behaviour was reported to be 

characteristic of brittle UD composites which normally have transverse tensile 

strength lower than transverse shear strength [88]. 

Since the matrix damage here is once again due to normal tensile stress n , 

plots in Fig. 5-12 and Fig. 5-13 for the current case are therefore similar to those 

in Fig. 5-5 and Fig. 5-6 for the earlier transverse tension case. 
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Fig. 5-12  Damage-stress plot for the case of pure transverse shear 

 

 

Fig. 5-13  Damage variable -damage driving force plot for the case of pure 

transverse shear 

 

As illustrated in Fig. 5-14, another interesting point to note is that there are non-

trivial increasing direct strain values predicted for 2  and 3  during the damage 

evolution process. 
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Fig. 5-14  Strain-damage plot for the case of pure transverse shear 

 

Although this may appear at first to be strange since a pure shear stress 23  

somehow caused direct strains 2  and 3  to increase, but considering that the 

crack orientation predicted here is at 45° from axis-2 which effectively 

transformed the original transversely-isotopic material into an anisotropic material. 

In this sense, the application of a pure shear stress would cause non-zero direct 

strains and such a shear-extension coupling effect would become more severe if 

the matrix cracking damage at 45° to axis-2 were to grow further.  

 

5.4.2.4 The Case of Pure In-plane Shear 

In this example, pure in-plane shear stress 13  is applied before unloading. From 

Fig. 5-15 and Fig. 5-16, it can be seen that damage initiation is modelled correctly 

as stress-strain nonlinearity due to damage appeared when 13  reached 70 MPa, 

which corresponds to the  ||
R
  value in Table 5-1.  
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Fig. 5-15  Stress-strain plot for the case of pure in-plane shear 

 

 

Fig. 5-16  Damage-stress plot for the case of pure in-plane shear 

 

In terms of fracture plane orientation, the UMAT code predicted it to be of 90° 

from axis-2 which is correct as the fracture plane caused by 13
 
should have its 

normal in the direction of axis-3 which is indeed a 90° shift from axis-2.  
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As shown in Fig. 5-16 and Fig. 5-17, the predicted values of damage variable, 

damage driving force and in-plane shear stress are all consistent with the values 

listed in Table 5-1 for the case of pure in-plane shear stress nl . 

 

Fig. 5-17  Damage - damage driving force plot for the case of pure in-plane 

shear 

 

5.4.2.5  The Case of Fibre Direction Failures 

In this example, fibre direction instant failure scenario is verified. Uniaxial tensile 

and uniaxial compressive stress loadings are applied separately in the fibre 

direction (axis-1). 

As can be seen from Fig. 5-18, for the tensile case, instant failure is predicted to 

occur when 1  
hit 1000 MPa. 
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Fig. 5-18  Stress-strain plot for the case of fibre direction tension 

 

This result is correct and can be explained as follows. First, by referring to the 

formula (5-3) extracted from Puck’s criterion for pure fibre longitudinal stress 

calculation, fibres in a UD composite are expected to share the same longitudinal 

strain 1  
as in the composite in the same direction. 

1 1 1 12 2 3( )f f f fE m        (5-3) 

Considering that in Table 5-1 the longitudinal Young’s modulus value of pure 

fibre 1 fE  is twice of that of the UD composites ( 1E ), it is  therefore expected 

that the pure fibre ultimate tensile strength f T   
of 2000 MPa would be reached 

when 1  in UD composites reached around 1000 MPa. This should then trigger 

fibre direction instant tensile failure which is properly modelled in this example.  

For the compressive case, instant failure is also predicted to occur (Fig. 5-19), but 

at a lower stress level since ultimate fibre compressive strength f C   is 1000 
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MPa. For both cases, upon instant failure, the prescribed sudden reduction of 1E  

to 5% of its virgin value is evident in Fig. 5-18 and Fig. 5-19. 

 

Fig. 5-19  Stress-strain plot for the case of fibre direction compression 

 

 

5.5 Test Cases for Damage-related Material Property Determination 

Three laminate test cases are employed to determine damage-related material 

properties. The corresponding experiments are described previously in Chapter 4 

and are summarised as follows: 

 Transverse direction uniaxial tensile test on UD laminates, which is for 

measuring the transverse tensile stress value TR  
that triggers the initiation 

of mode I type matrix damage. 

 Uniaxial tensile test on cross-ply laminates, which is for measuring the 

damage evolution constant I  for mode I type matrix damage. 
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 In-plane shear test on UD laminates, which is for measuring the in-plane 

shear stress  ||R  
that triggers the initiation of mode II type matrix damage, 

as well as for determining the damage evolution constant II . 

It is worth noting that, based on the analysis of the experimental data in Section 

4.3.3.2 of Chapter 4, the mode I damage initiation stress, 
TR , was found to be the 

same as the transverse tensile strength of the UD composite. This is the case for 

most of the UD composites as they are brittle and fail abruptly under transverse 

tension, instead of suffering gradual stiffness degradation. Because of this, it may 

not be necessary to conduct the transverse tensile tests to obtain 
TR , as long as 

the UD composite transverse tensile strength values are available. 

The procedure for the determination of damage evolution constants I  and II  

are summarised as follows: 

1. From the experimental stress-strain plots of uniaxial tensile test on cross-

ply laminates and in-plane shear test on UD laminates, ply level stress 

values for the plies subjected to mode I or mode II types of damage can be 

extracted. As a result, ply level stress-strain relationships can be obtained 

which enables ply level damage variables   to be calculated using 

0

2 2

0

2

E E

E



  and 

0

12 12

0

12

G G

kG



 . 

2. Using these ply level stress values, damage variables and the UD ply 

material elastic properties, the damage driving force values I  and II  

can be calculated according to 
2 2 2

2 13 12I III IIP P P      , which is 

introduced in Chapter 3. 
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3. Using the damage driving force values and the damage variable values, 

I 
 
and II   data curves can be obtained. The gradients in these 

curves are expected to be damage evolution constants as defined in the 

damage evolution law: I I II II III III             . 

In addition to the IM7 carbon fibre laminate test cases described in Chapter 4, the 

determination of damage-related material properties and the subsequent laminate 

analysis are also carried out using the experimental data of E-glass/MY750 

laminates supplied in WWFE-I [150,151]. 

The value of doing so is not only to demonstrate that the CDM model can be 

employed for different material systems, but also for the benefit of additional 

validation test cases being available in WWFE-I [150,151]. Specifically, biaxial 

loading with different loading ratios can offer more diverse damage scenarios to 

which the CDM model can be exposed through the validation work. Needless to 

say, the more real-life damage scenarios the CDM model is validated for and 

assessed against, the higher the confidence level which can be accredited to this 

model for practical engineering applications. 

 

5.5.1 IM7 Carbon Fibre Laminates 

For the IM7 carbon fibre UD lamina, the values of strength parameters 
TR  (49.2 

MPa) and  ||R  
(55.9 MPa) were measured directly from the transverse tensile 

test and the in-plane shear test on UD laminates, respectively, which were 

described in Section 4.3.3.3 of Chapter 4. 
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To determine the value of damage evolution constant I  for mode I type matrix 

damage, the experimental stress-strain curve from the cross-ply laminate test case, 

as reported in Section 4.3.3.4 of Chapter 4, is used. This experimental stress-strain 

curve is reproduced here in Fig. 5-20 and designated as the “original experimental 

result”. 

 

Fig. 5-20  Original and edited experimental stress-strain curves for IM7/8552 

cross-ply laminate 

 

As was explained in Section 4.3.3.4, the stress plateaux on the original 

experimental stress-strain curve in Fig. 5-20 occurred because of the release of 

residual curing stresses, rather than the stiffness degradation due to matrix 

cracking in the 90 UD plies. In order to better visualise the stiffness degradation 

solely due to matrix cracking, the original stress-strain curve is post-processed 

with stress plateaux removed by shifting parts of the curve on the right of the 

plateaus to the left. The resulting edited stress-strain curve is plotted in Fig. 5-20 

alongside the original curve. 

Since the current CDM model formulation does not include conditions for 

capturing the effect of residual stress numerically, the edited stress-strain curve, 
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which filtered out the effect from residual stress, should be used for the 

determination of the damage evolution constant I . 

The ideal method to determine the value of I  is to plot the damage variable 

value   against the damage driving force value I  for the damaged 90 plies 

inside the cross-ply laminate. Then, according to the damage evolution law 

formulation defined in Chapter 3, which is restated here in (5-4), the I  value can 

be determined as the gradient of the I 
 
curve. 

I I II II III III            
 

(5-4) 

However, to do so, one needs to obtain the ply level stress-strain response for the 

90 plies. This can be achieved by employing some assumptions and using the 

edited laminate level experimental stress-strain curve in Fig. 5-20. 

First of all, due to balance of force, the relationship between laminate level stress 

and ply level stresses can be expressed as (5-5). 

90 90 0 0LDT DT DT     (5-5) 

where L  is the laminate level stress in the loading direction, 90  is the 

transverse stress in the 90 plies, 0  is the longitudinal stress in the 0 plies, D   

is the width of the laminate and T , 90T , 0T  are total thicknesses of the laminate, 

the 90 plies, the 0 plies respectively. 

Then, assuming there is no fibre damage in the 0 plies until the final failure of 

the cross-ply laminate and that the stresses in the 90 plies are uniformly 
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distributed, transverse tensile stress in the 90 plies can be calculated according to 

(5-6). 

0 0
90

90

1 0

90

     

L

L L

T T

T

T E T

T

 


 







 

(5-6) 

where 1E  is the longitudinal Young’s modulus value of the 0 plies, L  is the 

laminate level strain in the loading direction. 

Thanks to this, using the data points in the edited laminate level stress-strain curve 

in Fig. 5-20, transverse stress in the 90 plies ( 90 ) can be obtained and plotted 

against the strain data as shown in Fig. 5-21. 

 

 

Fig. 5-21  Derived ply level stress-strain response for the 90 plies in the 

IM7/8552 cross-ply laminate 
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With the knowledge of stress-strain response in the 90 plies, the corresponding 

damage driving force can be calculated using properties of the UD lamina as 

summarised in Table 5-4. Six distributed data points which located beyond the 

mode I damage initiation stress 
TR  (49.2 MPa) in the above stress-strain curve 

are selected for damage driving force calculation, since that part of the stress-

strain curve should have included the damage effect from mode I type matrix 

damage. In addition, the corresponding damage variable values   for these six 

data points can also be obtained as 

0

2 2

0

2

E E

E



 . 

Table 5-4  Properties of IM7/8552 UD lamina for damage driving force 

calculation  

Symbol Explanation Value 

1E  Young’s modulus in fibre direction 186 (GPa) 

2E  
Young’s modulus in transverse 

direction 
10.9 (GPa) 

12G  In-plane shear modulus 5.19 (GPa) 

12  
Major Poisson’s ratio 0.312 

23  
Transverse Poisson’s ratio 0.45 

k  

Coupled damage effect factor 

between transverse tensile damage 

and longitudinal shear damage as 

defined in [180] 

0.21 

 

In Table 5-4, apart from the material elastic properties which are obtained through 

experiments as reported previously in Chapter 4, the k value is determined by a 
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numerical experiment documented in [142,180]. In there, different extents of 

damage   were represented by matrix cracks of different lengths which were 

introduced into the unit cell models of homogenised UD composites. The relative 

degradation of the effective in-plane shear modulus 12G
 
and that of the effective 

transverse modulus 2E  at each state of damage was determined, and the value of 

k was calculated as the ratio of the two [180], as expressed in (5-7). 

12

0

12

1
G

G
k





  
(5-7) 

The same numerical experiment method is used to determine the values of k  in 

the UD composites of different material systems that are involved in the present 

research. 

Then, based on the properties from Table 5-4, as well as the definition of damage 

driving force introduced in Chapter 3 (reproduced here in (5-8)). Damage driving 

force values for the six data sample points selected in Fig. 5-21 are calculated and 

plotted in Fig. 5-22 with corresponding damage variables.  

2 2 2

2 13 12I III IIP P P       (5-8) 
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Fig. 5-22  Relationship between damage and damage driving force for the 90 

plies in the IM7/8552 cross-ply laminate 

 

The I 
 
data points in Fig. 5-22 can be approximated by the best-fit line 

expressed as " 0.69 0.11I   ", from which the gradient of 0.69 is the value of 

the damage evolution constant I  determined. 

For the determination of the damage evolution constant II  for mode II type of 

matrix damage, in-plane shear test result reported in Section 4.3.3.3 is used. The 

same approach described above is followed to obtain the II  data points and a 

value of 6.4 is determined to be the value of II
 
for IM7 carbon fibre UD 

lamina. 

With the damage evolution constants determined (listed in Table 5-5), the CDM 

model is ready to predict intra-lamina damage in laminates. 
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Table 5-5  Damage evolution constants determined for IM7/8552 UD 

lamina 

Symbol Value 

I  0.69 (MPa)
-1

 

II  6.4 (MPa)
-1

 

 

To verify that the damage evolution constants determined above will enable the 

CDM model to reproduce the cross-ply test case and the in-plane shear test case 

reported in Chapter 4, laminate analyses are carried out using the MATLAB code 

to simulate these test cases. Material properties used for the laminate analyses in 

addition to these in Table 5-4 and Table 5-5 are listed in Table 5-6. 

Table 5-6  Additional IM7/8552 UD lamina material properties used for 

laminate analysis 

Symbol Explanation Value 

 ||
Tp  

Slope of the failure envelope relating 

to transverse tensile and longitudinal 

shear action stresses as defined in 

Puck’s criterion [88]. 

0.35 

 ||
Cp  

Slope of the failure envelope relating 

to transverse compressive and 

longitudinal shear action stresses as 

defined in Puck’s criterion [88]. 

0.3 

TR  
Transverse tensile stress threshold 

value for matrix damage initiation.  
49.2  (MPa) 

CR  

Transverse compressive stress 

threshold value for matrix damage 

initiation [196] 

286 (MPa) 

 ||R  
Longitudinal shear stress threshold 

value for matrix damage initiation. 
55.9 (MPa) 
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For the cross-ply laminate test case, the stress-strain prediction generated by the 

MATLAB code is presented in Fig. 5-23 along with the experimental result. As 

can be seen, the model prediction successfully reproduced the experimental stress-

strain response. 

 

Fig. 5-23  Stress-strain prediction for IM7/8552 cross-ply laminate with the 

experimental result 

 

For the purpose of demonstrating the performance of the CDM model, two more 

analyses are carried out for this cross-ply test case, but with made-up values of 

I  
at 0.1 (MPa)

-1
 and 6 (MPa)

-1
 respectively to show the sensitivity of the model 

to these material properties. 

Stress-strain curves and damage predictions generated by the MATLAB code, 

using aforementioned three different values of I , are plotted in Fig. 5-24(a). As 

can be seen, I  has significant influence on the damage evolution behaviour with 

higher values of I  resulting in faster growth of damage. 
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(a) 

 

(b) 

Fig. 5-24  Different predictions for IM7/8552 cross-ply laminate: a) Laminate 

level stress-strain curve, b) Damage variable in the 90º plies 

 

Moreover, the ply level stress-strain curves predicted for the 90 plies are shown 

in Fig. 5-25. In all three cases, damage initiation was triggered when transverse 

stress in these plies reached the value of 
TR  

(49.2 MPa), which is the damage 

initiation threshold for mode I type of matrix damage. Another point to note is 

that the stress-strain curve prediction with I  
= 6 (MPa)

-1
 shows a strain 

softening behaviour after damage initiation, as the damage growth in that case 
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was too severe. Such a behaviour could lead to numerical instability problems, 

especially if an implicit algorithm is used for the analysis, such as that in 

ABAQUS™/Standard.  

 

Fig. 5-25  Predictions of transverse stress in the 90º plies in IM7/8552 cross-

ply laminate 

 

Also, the range of characteristics as shown in Fig. 5-25 illustrates that the CDM 

model developed has the capability to simulate different stress-strain behaviours 

by choosing an appropriate value for I , regardless of whether it is a material 

hardening or a material softening behaviour. 

For the in-plane shear test case, the predicted stress-strain response and damage 

variable value are presented in Fig. 5-26. As can be seen, the model prediction 

reproduced the experimental stress-strain behaviour. 
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(a) 

 

(b) 

Fig. 5-26  Prediction for in-plane shear of IM7/8552 45 laminate: a) Stress-

strain response, b) Damage variable 

 

However, it is important to note that the experimental result of nonlinear shear 

behaviour included a shear nonlinearity effect in addition to pure damage effect. 

Therefore, strictly speaking, using only a damage model to predict the shear 

behaviour should not be considered as comprehensive. Here, for simplicity, all 

shear nonlinearity effects are represented by the damage model as an 

approximation. 
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In terms of damage prediction as shown in Fig. 5-26(b), one may notice that the 

predicted damage variable   had reached 100%, which is the reason why the 

modelling process suffered an early termination even before 2% engineering shear 

strain was reached. This again demonstrates the drawback of using only a damage 

model to simulate the entire nonlinear shear behaviour, as in order to account for 

the shear nonlinearity effect, a much quicker damage evolution process has to be 

introduced into the CDM model, resulting in reaching 100% of damage variable at 

an early stage as it is in this case. 

Since the ASTM D3518 shear testing method [183] used for carrying out the in-

plane shear experiment does not lead to pure shear stress state in the material 

principal directions of the UD plies, direct stresses should arise in these directions 

as a result. This is successfully predicted by the CDM model and illustrated in 

Fig. 5-27. Moreover, ply stress in the transverse direction never reached 
TR , 

therefore mode I damage never occurred in this in-plane shear test case. 
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(a) 

 

(b) 

Fig. 5-27  Ply level stress prediction for in-plane shear of IM7/8552 

45laminate: a) Fibre direction, b) Transverse direction 

 

However, one should still be aware that the damage caused by in-plane shear also 

has its effect on the stress-strain behaviour in the transverse direction according to 

formulation of the CDM model. This effect is visualised in Fig. 5-27(b), where, 

following the initiation of mode II damage, the ply-level stress in the transverse 

direction is shown to reduce while strain continued to increase. In the end, zero 
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stress value is reached in the transverse direction corresponding to the damage 

variable   reaching 100%. 

As shown above, with both values of I  and II  being demonstrated to enable 

the CDM model to reproduce the experimental result of the cross-ply test case and 

the in-plane shear test case, they are confirmed to be valid damage evolution 

constants for the IM7 carbon fibre UD lamina. 

 

5.5.2 E-glass Fibre Laminates 

In order to validate the CDM model against the experimental data obtained for the 

E-glass fibre laminates, as supplied in WWFE-I [150], the damage-related 

material property determination procedure is also carried out for these laminates. 

The laminates are based on various stacking sequences of UD laminae, in which 

Silenka 1200tex E-glass fibre and MY750 epoxy are the constituent materials.  

The corresponding UD lamina material elastic properties and strength properties 

as provided in [150] are used as input parameters for the CDM model, which are 

summarised in Table 5-7. Thanks to the experimental data reported in [150,151] 

for the [0º/90º]S cross-ply test case and the in-plane shear test case for the E-glass 

fibre laminates, the damage evolution constants I  and II
 
for the E-glass fibre 

UD lamina are determined using the same approach as described previously in 

Section 5.5.1 for the IM7 carbon fibre UD lamina. These damage evolution 

constants are also listed in Table 5-7. 
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Table 5-7  E-glass/MY750UD lamina material properties used for laminate 

analysis 

Symbol Explanation Value 

1E  Young’s modulus in fibre direction 45.6 (GPa) 

2E  
Young’s modulus in transverse 

direction 
16.2 (GPa) 

12G  In-plane shear modulus 5.83 (GPa) 

12  Major Poisson’s ratio 0.278 

23  Transverse Poisson’s ratio 0.4 

k  

Coupled damage effect factor 

between transverse tensile damage 

and longitudinal shear damage as 

defined in [180] 

0.25 

 ||
Tp  

Slope of the failure envelope relating 

to transverse tensile and longitudinal 

shear action stresses as defined in 

Puck’s criterion [88]. 

0.3 

 ||
Cp  

Slope of the failure envelope relating 

to transverse compressive and 

longitudinal shear action stresses as 

defined in Puck’s criterion [88]. 

0.25 

TR  
Transverse tensile stress threshold 

value for matrix damage initiation.  
40 (MPa) 

CR  

Transverse compressive stress 

threshold value for matrix damage 

initiation 

145 (MPa) 

 ||R  
Longitudinal shear stress threshold 

value for matrix damage initiation. 
35 (MPa) 

I  
Damage evolution constant under 

mode I type of loading. 
0.98 (MPa)

-1
 

II  
Damage evolution constant under 

mode II type of loading. 
8.6 (MPa)

-1
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Similar to the procedure presented in Section 5.5.1, for assessing the validity of 

the damage evolution constants determined, laminate analyses are carried out 

using the MATLAB code to reproduce the cross-ply laminate and the in-plane 

shear test cases reported in [150,151] for the E-glass fibre laminate. 

The experimental and the predicted stress-strain curves corresponding to the 

cross-ply test case are shown in Fig. 5-28. As can be seen, there is a good 

agreement between the two. 

 

Fig. 5-28  Stress-strain prediction for the E-glass/MY750 cross-ply laminate 

with the experimental result 

 

The damage variable predictions are plotted in Fig. 5-29(a). It is worth noting that 

in addition to the 90

 plies, the matrix damage is also predicted to occur in the 0


 

plies at a late stage. This prediction is different from that obtained for the IM7 

carbon fibre cross-ply laminate in Section 5.5.1, where damage was predicted to 

develop only in the 90
 
plies. 
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(a) 

 

(b) 

Fig. 5-29  Prediction for E-glass/MY750 cross-ply laminate: a) Damage 

variable, b) Ply stress 

 

In Fig. 5-29(b), transverse stresses 2  
in the 0

 
and 90

 
plies are plotted. 

Comparing Fig. 5-29(a) and Fig. 5-29 (b), one may see the cause for the predicted 

damage development in the 0

plies, as transverse stress in the 0


plies is predicted 

to reach 
TR  

(40 MPa) to trigger mode I type matrix damage. 
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Then, considering the stacking sequence of [0º/90º]S for the cross-ply laminate, it 

is obvious that for this test case, the transverse tensile stress in the 0

 plies should 

be due to the combined influence from the Poisson’s ratio and the constraint 

provided by the fibres in the 90

 plies. Specifically, as the laminate was gradually 

loaded, the 0

 plies tend to shrink in the transverse direction due to Poisson’s 

effect. However, stiff fibres in the adjacent 90

 plies would impede this natural 

transverse shrinkage of the 0

 plies, resulting in transverse tensile stress in the 0


 

plies as the cross-ply laminate is loaded further, until 
TR  is reached to trigger 

mode I damage in these plies. 

This prediction of matrix damage in the 0

 plies is validated by checking with the 

experimental result reported in [151] for this particular test case, where 

longitudinal fibre splitting damage was discovered when the actual cross-ply 

laminate specimen was loaded in tension just beyond 1.25% strain. 

On the other hand, for the IM7 carbon fibre cross-ply laminate, damage in 0

 plies 

was neither captured experimentally, nor predicted in the analysis in Section 5.5.1. 

There are two main reasons for this. First of all, the 
TR  value of IM7 carbon fibre 

UD lamina (49.2 MPa) is higher than that in E-glass fibre UD lamina (40 MPa), 

hence the mode I matrix damage in the IM7 carbon fibre laminates is triggered at 

higher values of transverse tensile stress. Secondly, the IM7 carbon fibre cross-ply 

laminate experienced a much lower displacement (final strain) in the loading 

direction (Fig. 5-24(a)), which should have led to a reduced transverse shrinkage 

tendency for the 0

 plies due to the Poisson's ratio, resulting in lower transverse 

tensile stress in those plies. 
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Apart from the cross-ply laminate analysis case, for the laminate analysis case 

reproducing the in-plane shear test conducted on the E-glass fibre UD laminate as 

reported in [150], the model prediction and the experimental result for stress-

strain behaviour are presented in Fig. 5-30(a), where a good match between the 

two can be seen. The damage variable prediction is shown in Fig. 5-30(b). 

However, similar to the predicted shear response of IM7 carbon fibre UD 

laminates in Section 5.5.1, the damage variable   reached 100% at an early stage. 

This limitation of the current CDM model for predicting shear response has 

already been discussed in Section 5.5.1. 
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(a) 

 

(b) 

Fig. 5-30  Predictions for in-plane shear of the E-glass/MY750UD laminate: a) 

Stress-strain curve, b) Damage variable 

 

5.6 Summary 

With the incorporation of Puck’s failure criterion for damage initiation prediction, 

Li’s damage representation formulation and the novel damage evolution law 
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based on damage driving force, a new CDM model is developed and implemented 

for UD composites. The CDM model is implemented both in the form of a 

MATLAB code for laminate analysis and in the form of an ABAQUS™/Standard 

UMAT code for full 3D analysis. 

As some sanity checks, verification work is carried out using this new CDM 

model for running numerical simulation examples in ABAQUS™/Standard. The 

verification cases demonstrated that the CDM model is correctly coded as 

material subroutines and the theoretical formulations are numerically verified to 

be mathematically sound. 

Moreover, the procedure and method for the determination of damage-related 

material properties are presented in this chapter. The damage-related material 

properties of the IM7/8552 carbon fibre laminate and the E-glass/MY750 laminate 

material systems are determined and verified to be of correct values.  

With the knowledge of these properties, the current CDM model is fully geared 

for the prediction of intralaminar damage in laminates and intra-tow damage in 

textile composites. Consequently, as shown in the next chapter, the CDM model is 

used to predict real-life material damage scenarios, where the validity of the 

predicted result is assessed against corresponding experimental result. 
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6. Validation of the Proposed UD Composite Damage 

Model 

The UD composite CDM model developed in the current project has been verified 

in Chapter 5, where it is shown that the results produced by the model are 

consistent with the assumed damage evolution processes and the failure criterion 

of Puck. This confirmed that the CDM model has been correctly implemented as a 

computer code, and also verified numerically that the theoretical formulations 

derived in Chapter 3 are mathematically sound. However, beyond verification, to 

validate the CDM model, its ability to predict damage should be assessed against 

real-life material damage scenarios, rather than the assumed ones. 

With the successful determination of damage-related material constants as shown 

previously in Chapter 5, in this chapter, validation of the UD composite CDM 

model is addressed, where the model is used to predict damage in laminates, as 

well as in 3D woven composites, under the same loading conditions as in the 

experiments described in Chapter 4. To achieve this, the UD composite CDM 

model is employed to define the constitutive responses of the UD laminae inside 

the laminates and that of the UD tows within the 3D woven composites. 

Predictions from the CDM model are then compared against the experimental data 

so that the model performance can be evaluated and validated. The experimental 

data from both the laminate test cases and the 3D woven composite test cases as 

described in Chapter 4 are used as the reference for the current validation work. 
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6.1 Application to Laminates 

The implementation of the UD composite CDM model as a MATLAB code has 

been discussed in Chapter 5. The code was developed for laminate analysis, where 

the CDM model was used to predict the initiation and evolution of intra-laminar 

matrix cracking damage within the individual UD lamina inside laminates. The 

assumption of plane stress is adopted for laminate analysis, hence, the damage-

related properties Tp , Cp  and III , which are associated with the transverse 

shear stresses, are not involved in the material definition. All other damage-

related material constants for the IM7/8552 and the E-glass/MY750 laminate 

material systems are determined as shown in the previous chapter, which are 

readily available to be used in the CDM model. 

Based on the real-life laminate test cases, both reported in Chapter 4 and those 

available in the literature, analyses for CDM model validation are designed and 

implemented. These validation cases are presented in the following subsections. 

 

6.1.1 IM7 Carbon Fibre Laminates 

 

6.1.1.1 Uniaxial Tensile Test on IM7/8552 QI Laminates 

The first validation case considered is the tensile testing of IM7/8552 QI laminate, 

which was described in Section 4.3.3.5. Based on the same material properties as 

presented earlier in Table 5-4 and Table 5-5 in Section 5.5.1 for the IM7 carbon 

fibre UD lamina, the analysis was conducted using the MATLAB code of the 

CDM model. 
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In Fig. 6-1, the predicted stress-strain curve is plotted along with the experimental 

one, showing a very close agreement between the two. 

 

Fig. 6-1 Predicted stress-strain behaviour for the IM7/8552 QI laminate 

 

Recall the acoustic emission data captured in the same experiment as presented in 

Fig. 4-8(b), which indicated that while the stress-strain curve appeared to be linear, 

the matrix damage had actually occurred in the QI laminates tested. This 

experimental observation was successfully reproduced by the CDM model. 

Specifically, the damage prediction plot in Fig. 6-2 demonstrates that matrix 

damage was indeed predicted to occur for both the 90 and 45 plies, while in 

the 0

 plies matrix damage did not occur since the presence of the 45 plies 

introduced more transverse shrinkage and hence reduced the transverse tension in 

the 0 plies. 
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Fig. 6-2 Damage prediction for the 45 and 90 plies in the IM7/8552 QI 

laminate 

 

In order to understand why the predicted matrix damage in the 45

 plies initiated 

at a higher strain value than that in the 90

 plies, as shown in Fig. 6-2, stresses in 

those plies are examined. The transverse tensile stress-strain curve in the 90

 plies 

is shown in Fig. 6-3(a). As can be seen, the transverse stress reached the value of 

TR  (49.2 MPa) at around 0.6% laminate strain, which led to mode I damage 

growth. In contrast to that, in the 45

 plies, the damage initiation point was 

reached after 0.6% laminate strain and the transverse tensile stress was 

significantly lower than that in the 90

 plies. The damage initiation was in fact due 

to a combination of the in-plane shear stress and the transverse tensile stress, 

which are shown in Fig. 6-3(b). Therefore, unlike the 90

 plies, the 45


 plies have 

experienced a mixed-mode damage scenario, with damage onset being triggered 

at a higher level of strain. 
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(a) 

 

(b) 

Fig. 6-3 Ply stress prediction for IM7/8552 QI laminate: a) 90

 ply, b) 45

 
ply 

 

 

6.1.1.2 Validation Using IM7/8552 Cross-ply Laminate Test Data Reported in 

the Literatures 

This validation case is devised based on the IM7/8552 cross-ply laminate test case 

reported in [197]. In there, the cross-ply laminates with [0/904]S stacking 

sequence were tested under uniaxial tension. Since the same laminate material 

system as the previous case was used, the same material elastic and damage 

property input data is used for the CDM model as was employed for the previous 
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validation case involving the IM7/8552 laminates. The only change in the input 

data for the CDM model is the laminate stacking sequence information as it is 

changed to [0/904]S. 

As shown in Fig. 6-4, the model reproduced the experimental result from [197] 

with a good degree of accuracy. This confirms that for the same material system, 

the same damage-related material properties as input to the CDM model should be 

used for the analysis, regardless of the laminate stacking sequence encountered, 

because these parameters are indeed inherent material properties of the UD 

lamina.   

 

Fig. 6-4 Prediction for IM7/8552 cross-ply laminate test case reported in [197] 

 

6.1.2 E-glass Fibre Laminates 

Based on the material properties listed in Table 5-7 for the E-glass/MY750 UD 

lamina, the CDM model is also configured to predict the E-glass/MY750 laminate 

test cases documented in [151]. Comparisons between the model prediction and 

the experimental result are presented below. 
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6.1.2.1 Biaxial Tensile Test for [45º] E-glass/MY750 Laminate at a 1:1 Stress 

Ratio 

In this test case, a biaxial tensile stress loading with a 1:1 load ratio was applied to 

the [45º] angle-ply E-glass/MY750 laminate as detailed in [151]. 

Since the biaxial stress loading in this case was applied symmetrically along two 

principal axes of this specially orthotropic laminate, in theory, the material stress-

strain responses in these two loading directions should be exactly the same. 

However, the slight differences between the two experimental stress-strain curves 

in Fig. 6-5(a) are likely to be caused by experimental error. In particular, precisely 

the same loading rate for both loading directions to satisfy the 1:1 load ratio 

requirement may have not been achieved during the experiment.  

On the other hand, in Fig. 6-5(a), the predicted stress-strain curves in both loading 

directions appeared to be identical. This is in agreement with the theoretical 

prediction, however, as one could imagine, this behaviour should be very difficult 

to demonstrate experimentally. Nonetheless, in terms of the general trend for the 

stress-strain behaviour, the predicted curves are in good agreement with the 

experimental ones. 

  



201 
 

 

(a) 

 

(b) 

Fig. 6-5 Prediction for E-glass/MY750 [45º] laminate: a) Stress-strain 

response, b) Damage variable 

 

In terms of the damage predictions, as shown in Fig. 6-5(b), substantial matrix 

damage was predicted for each ply within the laminate. After checking with the 

ply stress prediction, it is clear that the damage was caused by ply-level transverse 

tensile stress as shown in Fig. 6-6(b). Furthermore, the prediction of ply-level in-

plane shear stress turned out to be zero for the entire loading process, which is 

valid because under this particular biaxial loading scenario, in-plane shear 
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deformations and shear stresses are not expected to occur in this specially 

orthotropic laminate. 

 

(a) 

 

(b) 

Fig. 6-6 Ply stress prediction for E-glass/MY750 [45º] laminate: a) Fibre 

direction, b) Transverse direction 

 

 

6.1.2.2 Biaxial Tensile Test for [55º] E-glass/MY750 Laminate at 1:2 Stress 

Ratio 

Another validation case devised based on the test data in WWFE-I [151] is an 

angle-ply E-glass/MY750 laminate with a stacking sequence of [55º] subjected 
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to a biaxial tensile loading, for which the stress ratio of X : Y  was maintained at 

1:2. As shown in Fig. 6-7, the stress-strain curves predicted by the CDM model 

are similar to the experimental ones, but with notable deviations at higher strain 

values. 

 

Fig. 6-7 Stress-strain plots of biaxial tensile test on E-glass/MY750 [55º] 

laminate 

 

To understand the cause for such discrepancies, especially that between the X-

direction stress-strain curves, the damage prediction plot shown in Fig. 6-8 was 

analysed. It can be seen that, even with the damage variable value approaching 

100% in Fig. 6-8, the CDM model still did not reproduce the severe X-direction 

stress-strain nonlinearity demonstrated by the experimental result in Fig. 6-7. 
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Fig. 6-8 Damage variable VS strain in the X-direction for biaxial tensile test 

on E-glass/MY750 [55º] laminate 

 

Since the laminate was not orthotropic, it should have exhibited some in-plane 

shear deformation. This is confirmed by outputting the transverse direction and in-

plane shear direction ply stress curves as shown in Fig. 6-9. As can be seen, both 

the in-plane shear and the transverse tensile stresses contributed to damage growth 

in every ply of the laminate. Consequently, the matrix damage predicted should be 

of mixed-mode type. 

 

Fig. 6-9 Ply stress prediction for biaxial tensile test on E-glass/MY750 [55º] 

laminate 
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Based on this, it is envisaged that the limited ability of the CDM model in 

simulating shear nonlinearity, as well as the material local failures that might have 

occurred in the specimen during the experiment, have all contributed to the 

discrepancies between the predictions and the experimental results for this non-

symmetric biaxial loading case. However, the general trend of the stress-strain 

curves was captured by the CDM model reasonably well. 

 

6.1.2.3 Uniaxial Tensile Test on E-glass/MY750 [55º] Laminate 

In Fig. 6-10, both the predicted and the experimental stress values in X-direction 

(the loading direction) are plotted against the strains in X- and Y-directions. As 

can be seen, the CDM model produced a good approximation of the experimental 

data, but only at small strain values. 

 

Fig. 6-10 Ply Stress-strain plots for uniaxial tensile test on E-glass/MY750 

[55º] laminate 

 

Again, the same reasoning applies here for this phenomenon as was given 

previously in Section 6.1.2.2 when discussing the issue of shear modelling. 
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Namely, since the CDM model did not incorporate an extended definition for the 

shear nonlinearity, the damage variable reached 100% due to shear. 

This is confirmed by plotting the damage variable  against the strain in the 

loading direction as shown in Fig. 6-11, where the damage variable reached its 

maximum value of unity when the strain was still relatively small. 

 

Fig. 6-11  Damage prediction for uniaxial tensile test on E-glass/MY750 [55º] 

laminate 

 

Also, as shown in Fig. 6-12, this damage was apparently caused by the ply-level 

in-plane shear stress predicted, as it went beyond the damage initiation stress  ||R

(35 MPa) for mode II type damage. 
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Fig. 6-12  Ply stress prediction for uniaxial tensile test on E-glass/MY750 

[55º] laminate 

 

6.1.3 Summary of Model Validation using Laminate Test Cases 

The CDM model validation against the experimental data obtained from various 

laminate tests has confirmed that the model can be applied to laminate analysis 

with some promising outcomes. 

As long as the damage model is calibrated based on the experimental data 

obtained from uniaxial tensile tests on cross-ply laminates and in-plane shear tests 

on UD laminates, it is ready for independent prediction of damage and stress-

strain response for laminates of various stacking sequences under different 

loading conditions.  

The only shortfall exposed for the model is the lack of capability to predict a 

severe stress-strain nonlinearity caused by shear. Whenever there was a strong 

presence of shear, model prediction deviated away from the experimental data.  

It can therefore be concluded that the current CDM model is capable of delivering 

accurate predictions of damage in laminates for loading cases where the shear 

deformation involved is small. 
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6.2 Application to the 3D Woven Composites 

After being validated by the laminate test data, the UD composite CDM model is 

also applied to predict the intra-tow damage in the 3D woven composites used for 

this research project. The corresponding analyses are conducted in 

ABAQUS™/Standard, where the 3D woven composites are represented by unit 

cell models. The damage model is implemented in the unit cell models as a user-

defined material subroutine, UMAT, to define the constitutive behaviour of the 

tows within the 3D woven composites. In this chapter, these unit cell analysis 

cases for intra-tow damage prediction are presented. 

 

6.2.1 Unit Cell Analysis of Undamaged 3D Woven Composites 

Before attempting the prediction of intra-tow damage using the unit cell analysis, 

credible and validated unit cell models which can accurately predict undamaged 

material properties for the 3D woven composites investigated in this research 

project should be established. Only then, can these validated 3D woven composite 

unit cell models be used to incorporate the UD composite CDM model in the form 

of UMAT for intra-tow damage prediction. 

To determine undamaged material properties for both the IM7 carbon fibre and 

the E-glass fibre reinforced 3D woven composites mentioned in Chapter 4, unit 

cell models of two length-scale levels are developed. 

The first level of unit cell analysis is categorised as microscopic level analysis to 

predict the effective properties of the tows which are modelled as UD composites. 

The next level of analysis is meso-scale where effective properties of the 3D 
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woven composites are predicted with the tows considered as UD composites 

suspended in the matrix in a configuration as defined by the weave pattern of the 

3D woven composites. 

Both levels of unit cell analyses are carried out using ABAQUS™/Standard with 

periodic boundary conditions as formulated in [198] applied to the models so that 

uniaxial direct stress and pure shear stress loadings can be properly assigned. To 

obtain the effective properties, load perturbations are applied in terms of uniaxial 

direct stresses and pure shear stresses. The resulting stress and strain values are 

then used for effective material property calculation. An automated material 

characterisation toolbox named as UnitCells© is used for implementing the unit 

cell analysis cases. Details of the toolbox and the procedure involved for carrying 

out analysis can be found in [1]. 

As shown in Fig. 6-13, as the first step, the geometrical models for the 3D woven 

composite unit cells are constructed according to the actual fabric parameters 

(Table 4-13, Table 4-16, Table 4-20, Table 4-22) and weave pattern CT images 

(Fig. 4-10 - Fig. 4-12 and Fig. 4-26 - Fig. 4-28) presented in Chapter 4. 
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Fig. 6-13  Unit cell model for the 3D woven composites showing mesh of warp 

tows (red), weft tows (green) and pure matrix material (blue) 

 

Then, based on these geometrical models, using (6-1) and (6-2) below, weft and 

warp tow volume fractions can be worked out as shown in Table 6-1. 

Volume of all weft tows

Total volume of 3D woven composites 
t weft

V


  (6-1) 

 

Volume of all warp tows

Total volume of 3D woven composites 
t warpV  

 
(6-2) 
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Table 6-1 Tow volume fractions determined from unit cell models 

Material type t warpV  (%) t weft
V

  (%) 

IM7 CF 3D woven composites 43.8 28.8 

GF 3D woven composites 38.2 26.1 

 

Using these calculated tow volume fractions, along with total fibre volume 

fractions fV  of the 3D woven composites and the weft-to-warp ratios weft warp
R

  

provided by the material manufacturer in Table 4-13 and Table 4-20, the fibre 

volume fractions within the weft and warp tows can be estimated according to 

(6-3) and (6-4). These fibre volume fractions are summarised in Table 6-2 

 1
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Table 6-2  Fibre volume fraction within tows 

Material type f warp
V

  (%) f weft
V

  (%) 

IM7 CF 3D woven composites 78.1 74.1 

GF 3D woven composites 79.3 75.5 

 

With f warp
V

  and f weft
V

  
obtained, microscopic level (UD composites) unit 

cell models are created (Fig. 6-14) such that the unit cell total volume and the 
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geometrical entity simulating pure fibre are adjusted to correctly represent

f warp
V

  and f weft
V

  
for different tows. 

 

Fig. 6-14  Microscopic level unit cell model for predicting effective tow 

properties 

 

Then, using material properties in Table 4-5, Table 4-15 and Table 4-21 for pure 

fibre and cured pure matrix materials, effective properties of undamaged warp and 

weft tows (Table 6-3 & Table 6-4) are predicted by microscopic level unit cell 

analyses. 

Table 6-3  Tow elastic properties for IM7 CF 3D woven composites 

Properties Values for warp tow Values for weft tow 

1E (GPa) 217 207 

2 3 (= )E E (GPa) 12.2 11.3 

12 13 ( )G G (GPa) 5.29 4.8 

23G (GPa) 4.21 3.91 

12  0.29 0.3 
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Table 6-4  Tow elastic properties for GF 3D woven composites 

Properties Values for warp tow Values for weft tow 

1E (GPa) 58.9 56.1 

2 3 (= )E E (GPa) 22.9 19.6 

12 13 ( )G G (GPa) 8.39 7.13 

23G (GPa) 8.62 7.38 

12  0.24 0.25 

 

With tow elastic properties determined by microscopic level unit cell analysis, 

these properties along with the pure matrix properties then served as material 

property inputs for meso-scale unit cell analysis. These analyses are based on unit 

cell models like the one in Fig. 6-13, where tows are explicitly modelled as UD 

composites.  

After carrying out meso-scale level unit cell analysis, effective elastic properties 

for the 3D woven composites (Table 6-5 and Table 6-6) are obtained. As can be 

seen from Table 6-5 and Table 6-6, the predicted values for XE , YE  and XYG

are close to the experimental result, which validated the applicability of unit cell 

analyses as a mean for multi-scale material characterisation. 
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Table 6-5  Effective elastic properties for the IM7 CF 3D woven composite 

Properties Unit cell analysis prediction Experimental result 

XE (GPa) 43.9 37.8 

YE (GPa) 62.9 62.7 

ZE (GPa) 8.44  

XYG (GPa) 3.21 3.92 

XZG (GPa) 4.65  

YZG (GPa) 2.68  

XY  0.01  

XZ  0.96  

YZ  0.43  

 

Table 6-6  Effective elastic properties for the GF 3D woven composite 

Properties Unit cell analysis prediction Experimental result 

XE (GPa) 23.7 21.8 

YE (GPa) 24.8 25.7 

ZE (GPa) 11.6  

XYG (GPa) 5.28 4.03 
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XZG (GPa) 5.59  

YZG (GPa) 4.41  

XY  0.12  

XZ  0.48  

YZ  0.33  

 

 

6.2.2 Validation Cases using Unit Cell Models and Intra-tow CDM Model 

With the incorporation of the UD composite CDM model, new analysis cases are 

set up based on the validated unit cell models mentioned above to predict the 

intra-tow damage inside the 3D woven composites. 

In order to conduct the analysis, material property input has to be specified for the 

tows. According to the UD composite CDM model formulation, both the elastic 

and the damage-related material properties are required for the tows. For the 

former, these are already determined by the micro-scale unit cell analysis of tows 

as reported in the previous section (Table 6-3 & Table 6-4). However, for the 

latter, which is still unknown, acquiring these properties experimentally by 

mechanical testing of the individual tows is impractical. 

Since the radius of curvature of the tow in the 3D woven composites is orders of 

magnitude greater than the diameter of the fibres within the tows, the tows can be 

effectively considered to be straight, therefore regarded as UD composites at 

microscale. It is anticipated that their mechanical behaviour should be 
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satisfactorily predicted as a UD lamina at macroscale, provided that the same 

constituents and the fibre volume fraction are employed. Following this logic, the 

damage-related properties for intra-tow cracking in the warp and weft tows could 

be determined from testing on laminates having the same fibre volume fractions. 

For this research, both the IM7 carbon fibre and the E-glass fibre 3D woven 

composites tested had the warp tow fibre volume fraction at around 78% and the 

weft tow fibre volume fraction at around 74% (Table 6-2). However, 

manufacturing and testing UD laminates with those specific characteristics is not 

possible due to limited resources available and the time constraints, hence, 

alternative solution is proposed. 

As the best available alternative, damage-related properties previously determined 

for the IM7 carbon fibre and the E-glass fibre laminates as listed in Table 5-5, 

Table 5-6 and Table 5-7 are used for modelling the tows. In doing so, the 

implication is that the difference in fibre volume fractions and the difference in 

matrix material systems between the laminates and the tows are assumed to have 

negligible influence on the damage-related properties, such that these determined 

from the laminate tests can be used for modelling the tows of the same fibre 

material type. 

In addition to this, owing to the lack of experimental data for III , a further 

assumption is made regarding the damage evolution constants: III  values due to 

transverse shear loading are assumed to be the same as the values of II
 
due to 

longitudinal shear loading. 

With damage-related material properties defined as described above, the complete 

sets of input properties for the IM7 carbon fibre tow and the E-glass fibre tow are 
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given in Table 6-7 and Table 6-8. As can be seen, elastic properties for the tows 

are the same as those shown previously in Table 6-3 and Table 6-4. 

Table 6-7 IM7 carbon fibre tow material properties  

Symbol Explanation Value for warp Value for weft 

1E  
Young’s modulus in fibre 

direction  
217 (GPa) 207 (GPa) 

2 3 (= )E E  
Young’s modulus in transverse 

direction  
12.2 (GPa) 11.3 (GPa) 

12G  (= 13G ) 
Longitudinal shear modulus  

5.29 (GPa) 4.8 (GPa) 

23G  
Transverse shear modulus  

4.21 (GPa) 3.91 (GPa) 

12  
Major Poisson’s ratio  

0.29 0.3 

k  

Coupled damage effect factor 

between transverse tensile 

damage and longitudinal shear 

damage as defined in [180] 

0.19 0.18 

f T   
Pure fibre ultimate tensile 

strength [189] 
5655 (MPa) 

f C   
Pure fibre ultimate compressive 

strength [189] 
1716 (MPa) 

1 fE  
Pure fibre longitudinal direction 

Young’s modulus [189] 
276 (GPa) 

12 f  
Pure fibre major Poisson’s ratio 

[189] 
0.21 

fm  

Stress magnification factor for 

fibre bundles as defined in 

Puck’s criteria [88] 

1.1 

Tp  

Slope of the failure envelope 

relating to transverse tensile and 

transverse shear action stresses 

0.27 
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as defined in Puck’s criteria 

[88] 

Cp  

Slope of the failure envelope 

relating to transverse 

compressive and transverse 

shear action stresses as defined 

in Puck’s criteria [88] 

0.28 

 ||
Tp  

Slope of the failure envelope 

relating to transverse tensile and 

longitudinal shear action 

stresses as defined in Puck’s 

criteria [88] 

0.35 

 ||
Cp  

Slope of the failure envelope 

relating to transverse 

compressive and longitudinal 

shear action stresses as defined 

in Puck’s criteria [88] 

0.3 

TR  

Transverse tensile stress 

threshold value for matrix 

damage initiation 

49.2 (MPa) 

CR  

Transverse compressive stress 

threshold value for matrix 

damage initiation [196] 

286 (MPa) 

 ||R  

Longitudinal shear stress 

threshold value for matrix 

damage initiation 

55.9 (MPa) 

I  

Damage evolution constant 

under mode I type of loading. 
0.69 (MPa)

-1
 

II  

Damage evolution constant 

under mode II type of loading. 
6.4 (MPa)

-1
 

III  

Damage evolution constant 

under mode III type of loading. 
6.4 (MPa)

-1
 

 



219 
 

Table 6-8  E-glass fibre tow material properties 

Symbol Explanation Value for warp Value for weft 

1E  
Young’s modulus in fibre 

direction  
58.9 (GPa) 56.1 (GPa) 

2 3 (= )E E  
Young’s modulus in transverse 

direction  
22.9 (GPa) 19.6 (GPa) 

12G  (= 13G ) 
Longitudinal shear modulus  

8.39 (GPa) 7.13 (GPa) 

23G  
Transverse shear modulus  

8.62 (GPa) 7.38 (GPa) 

12  
Major Poisson’s ratio  

0.24 0.25 

k  

Coupled damage effect factor 

between transverse tensile 

damage and longitudinal shear 

damage as defined in [180] 

0.24 0.23 

f T   
Pure fibre ultimate tensile 

strength [150] 
2150 (MPa) 

f C   
Pure fibre ultimate compressive 

strength [150] 
1450 (MPa) 

1 fE  
Pure fibre longitudinal direction 

Young’s modulus [150] 
74 (GPa) 

12 f  
Pure fibre major Poisson’s ratio 

[150] 
0.23 

fm  

Stress magnification factor for 

fibre bundles as defined in 

Puck’s criteria [88] 

1.3 

Tp  

Slope of the failure envelope 

relating to transverse tensile and 

transverse shear action stresses 

as defined in Puck’s criteria 

[88] 

0.23 
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Cp  

Slope of the failure envelope 

relating to transverse 

compressive and transverse 

shear action stresses as defined 

in Puck’s criteria [88] 

0.24 

 ||
Tp  

Slope of the failure envelope 

relating to transverse tensile and 

longitudinal shear action 

stresses as defined in Puck’s 

criteria [88] 

0.3 

 ||
Cp  

Slope of the failure envelope 

relating to transverse 

compressive and longitudinal 

shear action stresses as defined 

in Puck’s criteria [88] 

0.25 

TR  

Transverse tensile stress 

threshold value for matrix 

damage initiation 

40 (MPa) 

CR  

Transverse compressive stress 

threshold value for matrix 

damage initiation 

145 (MPa) 

 ||R  

Longitudinal shear stress 

threshold value for matrix 

damage initiation 

35 (MPa) 

I  

Damage evolution constant 

under mode I type of loading. 
0.98 (MPa)

-1
 

II  

Damage evolution constant 

under mode II type of loading. 
8.6 (MPa)

-1
 

III  

Damage evolution constant 

under mode III type of loading. 
8.6 (MPa)

-1
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For modelling the neat matrix material as in the resin pockets of textile 

composites, since no resin crack was observed in the resin rich areas of the tested 

3D woven composite samples, elements in the unit cell models representing neat 

matrix are assigned with linear elastic isotropic material behaviour where the 

corresponding input properties are listed in Table 6-9. 

Table 6-9  Cured properties of Gurit Prime™ 20LV epoxy material [193] 

Symbol Explanation Value 

E  Young’s modulus 3500 (MPa) 

  Poisson’s ratio  0.35 

 

 

6.2.2.1  IM7 Carbon Fibre Specimens under Warp Direction Uniaxial 

Tension 

The experiment of tensile testing on the IM7 CF 3D woven composite in the warp 

direction has been reported in Section 4.4.2.2.1. The stress-strain prediction from 

the unit cell analysis for this case is plotted in Fig. 6-15 along with the 

experimental result. As can be seen, there is a large discrepancy between the two 

curves, where the predicted stress-strain curve is linear, while the one obtained in 

the experiment is highly nonlinear. 
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Fig. 6-15  Stress-strain prediction for the IM7 CF 3D woven composite under 

warp direction tension 

 

Given that the inter-tow cracking damage has not yet been accounted for in the 

present unit cell analysis, it can be concluded that the intra-tow damage alone has 

little effect on the stiffness reduction in the 3D woven composite considered, 

hence the predicted stress-strain response is almost linear. Furthermore, the 

experimental study in Section 4.4.2.2.1 suggests that the inter-tow cracks be the 

main contributor for stress-strain nonlinearity in this case. As a result, without the 

capability to predict the inter-tow damage, it is expected that the model would not 

be able to reproduce the experimental stress-strain curve. 

Nonetheless, modelling the intra-tow damage alone allows one to assess whether 

the predicted response of the tows is reasonable, without the interference of inter-

tow damage, which would serve as an indicator for the validity of the model. 

Since the tensile loading is applied in the warp direction, fibres in the warp tows 

should withstand the majority of the applied load. At the same time, the fibre 

direction of weft tows should be under compression due to the transverse 

contraction of the 3D woven composite caused by Poisson’s effect. From Fig. 

6-16, it can be seen that this scenario is indeed captured by the model. 
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Fig. 6-16 Tow longitudinal stress contour plot for the IM7 CF 3D woven 

composite under warp direction tension 

 

The damage contour plot shown in Fig. 6-17 indicates that the intra-tow matrix 

damage is predicted to occur in both the weft and warp tows. Moreover, in both 

cases, the damage is found to be concentrated in the warp curving regions as 

marked by the red ellipse in Fig. 6-17, instead of being evenly distributed along 

the tows. The predicted damage localisation offers an explanation as to why the 

intra-tow matrix damage was not observed in the middle of the weft tows during 

the experimental investigation for this test case (Section 4.4.2.2.1). 

 

Fig. 6-17  Damage variable contour plot for IM7 CF 3D woven composite 

under warp direction tension 

 

To understand why the unit cell model has arrived at such a damage prediction, 

stress distributions within the tows are inspected.  
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According to the failure theory of Puck [88], which is employed in the current 

CDM model to define the onset of intra-tow damage, the damage initiation 

conditions are satisfied on the predicted fracture plane of matrix crack. Therefore, 

in order to identify the stress components that caused the intra-tow matrix damage, 

the stresses on this very fracture plane should be examined. For this, the tow 

elements that sustained high degree of intra-tow damage and positioned closely to 

the warp curving regions are selected, and stress outputs for those elements are 

inspected. In the weft tows, the position of such a critical stressed part is marked 

by a black arrow in Fig. 6-18.  

 

Fig. 6-18  Weft tow damage variable contour plot and the selected element 

for result inspection 

 

For an element in this part, the stress output on the fracture plane is plotted in Fig. 

6-19(a), while the damage prediction is plotted in Fig. 6-19(b). As can be seen, in 

this case, the transverse tensile, longitudinal shear and transverse shear stresses all 

contributed to the damage initiation and growth. With reference to the weft tow 

material principal coordinate system as shown in Fig. 6-18, the fracture plane 

orientation predicted is at 20.6º anticlockwise from the second material principal 

axis. 
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(a) 

 

(b) 

Fig. 6-19  Damaged weft tow element result: a) Stresses on the fracture plane, 

b) Damage variable 

 

The stresses causing the damage have been identified to be those in the weft tows. 

The weft tow stress contour plots of 2 , 3  and 13  are therefore extracted 

from the analysis and presented in Fig. 6-20. 
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(a) 

 

(b) 

 

(c) 

Fig. 6-20 Weft tow stress contour plot for the IM7 CF 3D woven composite 

under warp direction tension: a) 3 , b) 2 , c) 13  

 

Some observations are made which confirmed that the predicted stress 

distributions as shown in Fig. 6-20 are reasonable. First of all, 3 in the weft tows 

is predicted to be compressive, as during the loading process, warp tows would 



227 
 

tend to align with the loading direction and therefore compress against the weft 

tows. This tendency is illustrated by the tow deformation prediction in Fig. 6-21.  

Also, the transverse stress 2  in the weft tows is predicted to be tensile, which is 

natural, since the global tensile loading applied to the 3D woven composite is in 

the warp direction. 

For the shear stress 13 in the weft tows as shown in Fig. 6-20(c), high values of 

this stress are predicted near the intersections of the alternating curved warp tow 

paths, as can be visualised by assessing Fig. 6-20(c) in conjunction with Fig. 6-21. 

This predicted 13  stress distribution is envisaged to be caused by the severe 

shear deformation in the Y-Z plane as shown in Fig. 6-21. Moreover, the root 

cause of such shear deformation in the Y-Z plane should be attributed to the 

deformation of warp tows in aligning themselves with the direction of warp 

direction loading applied, which is also depicted in Fig. 6-21. 

 

Fig. 6-21  Tow deformation prediction (scaled up) for the IM7 CF 3D woven 

composite under warp direction tension 
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Similar element result assessment is also conducted for the warp tow elements. 

The element output result is extracted from the element indicated by the red arrow 

in Fig. 6-22. 

 

Fig. 6-22  Warp tow damage variable prediction and the selected warp tow 

element for result inspection 

 

As can be seen from Fig. 6-23(a), in this case, the longitudinal shear and the 

transverse shear stresses are predicted to be the main stresses on the fracture plane 

for causing damage initiation and growth. By referring to the warp tow material 

principal coordinate in Fig. 6-22, the predicted fracture plane orientation in this 

case is 4.8º anticlockwise from the second material principal axis, which indicates 

that the fracture plane is almost parallel to the second material principal plane of 

the warp tow. 
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(a) 

 

(b) 

Fig. 6-23  Damaged warp tow element output result: a) Stresses on the 

fracture plane, b) Damage variable 

 

Again, the stresses on the fracture plane as shown in Fig. 6-23(a) can be related to 

the stress distribution within the warp tows as shown in Fig. 6-24. 
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(a) 

 

(b) 

Fig. 6-24  Warp tow stress contour plot for the IM7 CF 3D woven composite 

under warp direction tension:  a) 12 , b) 23  

 

As can be seen from the contour plot of 12  in Fig. 6-24(a), 12  reached the 

highest value in the warp curving regions. This can be explained by the predicted 

deformation of the warp tows as shown in Fig. 6-21, which confirms that the warp 

tows in this region underwent a substantial longitudinal shear deformation, 12 . 

This shear deformation is believed to be induced by the tendency of the warp tows 

to align themselves with the loading direction. 

As shown in the contour plot of the transverse shear stress 23  in Fig. 6-24(b), 

23 has reached the highest value along the warp tow edges adjacent to the warp 

tows of the opposite tow path. Again, consulting with the predicted deformation 
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for the tows in Fig. 6-21, it can be seen that high values of 23 in this region are 

due to the severe shear deformation of the tows in the Y-Z plane, which is already 

discussed earlier. 

Comparing the damage predictions as illustrated above with the actual damage 

observed in the corresponding test case as described in Section 4.4.2.2.1, some 

conclusions can be drawn as follows. 

First of all, although some intra-tow damage is predicted for the weft tows, it 

appeared to be localised, which might explain why intra-tow cracks was not found 

inside the weft tows during the experimental investigation. 

Also, severe shear deformation is predicted for the tows in the warp curving 

regions, which is caused by the tendency of warp tows to align themselves in the 

direction of the applied warp direction loading. Due to this shear deformation, 

significant shear-induced intra-tow matrix damage is predicted to occur inside the 

warp tows in those regions. 

However, one may recall that during the experimental investigation of this test 

case, no intra-tow damage was observed for the warp tows in the warp curving 

regions. Instead, inter-tow cracks surrounding the warp tows were discovered in 

those regions. It is therefore envisaged that the predicted shear deformation of 

warp tows still occurred in the actual specimens during the experiment, but led to 

the formation of inter-tow cracks rather than the intra-tow matrix cracks predicted, 

presumably, due to the low interfacial strength between the warp tows and the 

matrix material. 
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Nonetheless, the simulation work still successfully identified shear deformation as 

the most probable cause for the inter-tow cracks surrounding the warp tows in the 

warp curving regions. 

 

6.2.2.2  IM7 Carbon Fibre Specimens under Weft Direction Uniaxial Tension 

The corresponding experiment of this test case is described in Section 4.4.2.2.2. 

The experimental and the predicted stress-strain curves are plotted in Fig. 6-25. 

As can be seen, the simulation has accurately reproduced the experimental result. 

The stress-stress responses appeared to be linear in both cases. However, recall 

that microscopic inspection of the tested specimens for this test case (Section 

4.4.2.2.2) revealed the presence of numerous transverse cracks, which did not 

have any noticeable effect on the material stiffness. Therefore, the capability of 

the model in predicting damage cannot be assessed by simply comparing the 

predicted stress-strain response with the experimental one. If anything, the stress-

strain prediction in Fig. 6-25 only proved that the simulation did not over-predict 

the stiffness degradation due to intra-tow damage. 

 

Fig. 6-25 Stress-strain prediction for the IM7 CF 3D woven composite under 

weft direction tension 
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Tow longitudinal stress contour plot is shown in Fig. 6-26. As can be seen, the 

prediction of the stress distribution is quite reasonable in this case, as the weft 

tows are shown to take majority of the tensile load applied in the weft direction. 

 

Fig. 6-26  Tow longitudinal stress contour plot for the IM7 CF 3D woven 

composite under weft direction tension 

 

The predicted deformation due to the applied weft direction load is shown in Fig. 

6-27, where the woven fabric is shown to be elongated in the loading direction. 

Moreover, no apparent distortions of the warp or the weft tows are predicted, 

indicating that shear deformation of the fabric, if present, should not be significant 

in this loading case. 

 

Fig. 6-27  Tow deformation prediction (scaled up) for the IM7 CF 3D woven 

composite under weft direction tension 
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The contour plot of damage variable is shown in Fig. 6-28. As can be seen, the 

predicted damage occurred and evolved only in the warp tows and it is nearly 

uniformly distributed throughout all the warp tows. 

 

Fig. 6-28  Damage variable contour plot for the IM7 CF 3D woven composite 

under weft direction tension 

 

To identify the stresses associated with the intra-tow damage initiation and 

evolution, stresses on the fracture plane are inspected for one of the warp tow 

elements. The typical stress output is shown in Fig. 6-29(a). As can be seen, on 

the fracture plane, transverse tensile stress is the only non-zero stress component. 

Also, the orientation of the fracture plane is found to be 90º, which means the 

fracture plane is predicted to be perpendicular to the third material principal axis 

of the warp tows (refer to the warp tow material principal coordinate system in 

Fig. 6-30). 
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(a) 

 

(b) 

Fig. 6-29  Damaged warp tow element output result: a) Stresses on the 

fracture plane, b) Damage variable 

 

The transverse tensile stress on the fracture plane is 3 in the warp tows as shown 

in Fig. 6-30, where a nearly uniform distribution of 3  is predicted. 
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Fig. 6-30  Warp tow 3  contour plot for the IM7 CF 3D woven composite 

under weft direction tension 

 

Based on this, it is obvious that the nearly uniform transverse tensile stress 3 in 

the warp tows is responsible for causing the intra-tow matrix damage. Obviously, 

this transverse tensile stress resulted from the weft direction tensile loading 

applied to the 3D woven composite in this test case. 

It can be concluded that, for this test case, the prediction of intra-tow damage in 

the warp tows is in agreement with the actual warp tow transverse cracking 

damage observed from the experiment (Fig. 4-22). Moreover, the modelling result 

suggested that this damage results from the transverse tensile stress imposed on 

the warp tows. 

However, from the microscopic examination conducted during the experiment, 

the transverse cracks were also found to extend beyond warp tows and form 

through-the-thickness transverse cracks. This type of damage is not captured in 

the present analysis, since the unit cell model only has the capability of predicting 

the intra-tow damage. 

Nonetheless, a linear stress-strain curve, similar to that obtained from the 

experiment, is predicted by the model. The explanation for such a linear stress-

strain response was already provided in Section 4.4.2.2.2, i.e. the high Young’s 
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modulus value of the straight IM7 carbon fibre weft tows dominated the specimen 

level stress-strain response such that it is generally not affected by the transverse 

cracks. 

 

6.2.2.3   E-glass Fibre Specimens under Warp Direction Uniaxial Tension 

The stress-strain curve predicted for this case is shown in Fig. 6-31, where it is 

compared with the experimental data from Section 4.4.3.2.1. As can be seen, the 

initial linear elastic response of the composite is represented reasonably well by 

the unit cell analysis. However, the experimental curve became nonlinear at 0.35% 

strain, while the predicted stress-strain response remained mostly linear until the 

end of the analysis. This is the same type of discrepancy between the experimental 

result and the model prediction as was mentioned previously for the case of IM7 

CF 3D woven composite in Section 6.2.2.1. Again, the cause for this discrepancy 

is the lack of inter-tow damage modelling, since the inter-tow cracks are also 

found to be the major contributor to the stress-strain nonlinearity for this case as 

mentioned in Section  4.4.3.2.1. 

 

Fig. 6-31  Stress-strain prediction for the GF 3D woven composite under 

warp direction tension 
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The contour plot of tow longitudinal stress 1  
is shown in Fig. 6-32. As can be 

seen, the warp tows are predicted to withstand the majority of the applied load as 

expected. 

 

Fig. 6-32  Tow longitudinal stress contour plot for the GF 3D woven 

composite under warp direction tension 

 

The intra-tow damage prediction for this case is illustrated in Fig. 6-33, where the 

weft tows are shown to sustain nearly uniformly distributed damage of relatively 

high magnitude, while damage in the warp tows are predicted to be concentrated 

at the warp curving regions. 

 

Fig. 6-33  Damage variable contour plot for the GF 3D woven composite 

under warp direction tension 
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The prediction of weft tow damage in this case is very different from that obtained 

previously for the IM7 CF 3D woven composite under the same type of loading 

(Section 6.2.2.1). In that case, intra-tow damage in the weft tows was predicted to 

be concentrated only at the warp curving regions without much in the weft tows. 

This marked difference in weft tow damage prediction between these two cases is 

illustrated in Fig. 6-34. 

 

(a) 

 

(b) 

Fig. 6-34  Damage variable in the weft tows for the case of (a) IM7 CF 3D 

woven composite, (b) GF 3D woven composite under warp direction tension 

 

To identify the reason for this difference, typical weft tow element result from the 

present case is extracted and inspected. As illustrated in Fig. 6-35(a), for the weft 

tows in the present case, the intra-tow damage is predicted to be caused solely by 
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the transverse tensile stress on the fracture plane. Moreover, the fracture plane is 

predicted to be parallel to the second material principal plane of the weft tow (i.e. 

0º fracture plane orientation). This implies that the warp direction loading applied 

to the composite has caused the formation of transverse intra-tow cracking in the 

weft tows. 

 

(a) 

 

(b) 

Fig. 6-35  Damaged weft tow element output result: a) Stresses on the 

fracture plane, b) Damage variable 
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Such weft tow element output result is different from that obtained previously for 

the IM7 CF 3D woven composite case, where transverse shear stress on the 

fracture plane is also predicted to contribute to damage initiation and evolution 

(Fig. 6-19(a)). It is envisaged that the lower value of mode I damage initiation 

stress for the E-glass fibre tows (
TR =40 MPa), when compared with that of the 

IM7 carbon fibre tows (
TR =49.2 MPa), has led to this result. 

Predicted stress distributions in the weft tows are shown in Fig. 6-36.  Comparing 

these with those obtained previously for the IM7 CF 3D woven composite case 

(Fig. 6-20), it can be seen that the patterns of predicted stress distributions in these 

two woven composites are very similar. 
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(a) 

 

(b) 

 

(c) 

Fig. 6-36  Weft tow stress contour plot for the GF 3D woven composite under 

warp direction tension: a) 3 , b) 2 , c) 13  

 

Then, by comparing the predicted tow deformation pattern of the current case (Fig. 

6-37) with that of the previous IM7 CF 3D woven composite case (Fig. 6-21), the 

cause for such similarity in stress distributions becomes apparent, as similar tow 

deformation patterns are predicted for both materials under warp direction tension. 
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Fig. 6-37  Tow deformation prediction (scaled up) for the GF 3D woven 

composite under warp direction tension 

 

The prediction of intra-tow damage in the warp tows is shown in Fig. 6-38. For 

the element marked by the arrow in Fig. 6-38, the stresses on the fracture plane 

and the damage variable predicted are shown in Fig. 6-39(a) and Fig. 6-39(b), 

respectively. The predicted stress distributions for the warp tows are shown in Fig. 

6-40. Again, due to the similar tow deformation patterns predicted, these results 

are similar to those predicted previously for the IM7 CF 3D woven composite 

(Fig. 6-22 - Fig. 6-24). 

 

Fig. 6-38  Warp tow damage variable prediction and the selected element 
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(a) 

 

(b) 

Fig. 6-39  Damaged warp tow element output result: a) Stresses on the 

fracture plane, b) Damage variable 

 



245 
 

 

Fig. 6-40  Warp tow stress contour plot for the GF 3D woven composite 

under warp direction tension 

 

For this test case, it can be concluded that the model has successfully predicted 

the transverse cracks inside the E-glass fibre weft tows, which is in agreement 

with the experimental result (Section  4.4.3.2.1). Moreover, the transverse tensile 

stress in the weft tows is found to be the stress causing these intra-tow transverse 

cracks. 

In addition, the predicted shear deformation pattern of warp tows in this case is 

similar to that predicted previously for the case of IM7 CF 3D woven composite 

under warp direction tension. As discussed earlier, this type of shear deformation 

is believed to be the root cause for the inter-tow cracks in the warp curving 

regions, which were discovered during the experiment. 
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6.2.2.4   E-glass Fibre Specimens under Weft Direction Uniaxial Tension  

The predicted stress-strain response for this case is plotted in Fig. 6-41 along with 

the experimental data. As can be seen, a reasonably good agreement has been 

achieved between the prediction and experimental result. Specifically, the stress-

strain nonlinearity due to damage, as was observed experimentally, is captured by 

the model. 

 

Fig. 6-41  Stress-strain prediction for the GF 3D woven composite under weft 

direction tension 

 

As shown by the tow longitudinal stress contour plot in Fig. 6-42, weft tows took 

the majority of the applied load as anticipated. 

 

Fig. 6-42  Tow longitudinal stress contour plot for the GF 3D woven 

composite under weft direction tension 
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The predicted intra-tow damage distribution, as shown in Fig. 6-43, is almost 

uniform within the warp tows, and is qualitatively similar to that predicted for the 

IM7 CF 3D woven composite under the same type of loading (Fig. 6-28). 

Moreover, the predicted warp tow fracture plane orientation for this case is also 

the same as in the IM7 CF 3D woven composite case, with the fracture plane 

parallel to the third material principal plane of the warp tows. However, 

quantitatively, higher values of intra-tow damage variables are predicted for the 

E-glass fibre warp tows in this case. 

 

Fig. 6-43  Damage variable contour plot for the GF 3D woven composite 

under weft direction tension 

 

For the warp tow elements, the stresses on the fracture plane and the damage 

predicted are shown in Fig. 6-44(a) and Fig. 6-44(b). The predicted stress 

distribution of 3  in the warp tows is illustrated in Fig. 6-45. Comparing these 

predictions with those obtained previously for the IM7 CF 3D woven composite 

in Fig. 6-29 and Fig. 6-30, it can be seen that the predicted warp tow damage 

scenarios in both 3D woven composites are very similar under this loading case. 
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(a) 

 

(b) 

Fig. 6-44  Damaged warp tow element output result: a) Stresses on the 

fracture plane, b) Damage variable 
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Fig. 6-45  Warp tow 3  contour plot for the GF 3D woven composite under 

weft direction tension 

 

To summarise for this case, the actual through-the-thickness transverse cracks 

observed in the experiment (Fig. 4-37) are successfully predicted by the model, 

but only in the form of intra-tow damage within the warp tows, since the unit cell 

model only incorporated the CDM model for intra-tow damage prediction.  

Despite this, the predicted nonlinear stress-strain curve still closely resembled the 

experimental one. A possible explanation for this could be that, although only 

intra-tow transverse cracking in the warp tows is modelled by the unit cell 

analysis, since the warp tows themselves are partially oriented in the thickness 

direction due to the weave pattern (Fig. 6-45), the predicted damage in the warp 

tows effectively recreated the through-the-thickness cracks observed in the 

experiment. As a result, the equivalent smeared damage effect of the through-the-

thickness transverse cracks is nonetheless reproduced by the model. 

 

6.2.3 Summary of Model Validation using 3D Woven Composite Test Cases 

 

Based on the unit cell analysis results as shown above, some conclusions can be 

drawn as follows. 
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First of all, the CDM model incorporated for intra-tow damage modelling 

successfully predicted all cases of intra-tow transverse cracking that are observed 

in the experiments. This is demonstrated for the test cases of 3D woven 

composites loaded in weft direct tension, where the actual intra-tow cracks found 

in the warp tows are captured by the model. On the other hand, for the case of 3D 

woven composites loaded under warp direction tension, not only did the model 

correctly predict the presence of intra-tow cracks inside the weft tows of the GF 

3D woven composite, but also it predicted the phenomenon that the intra-tow 

cracks inside the weft tows of the IM7 CF 3D woven composite are localised in 

the warp curving regions, which provided the explanation as to why these intra-

tow cracks were not easily observed in the experiment. 

In terms of stress-strain behaviour prediction, due to the lack of inter-tow damage 

modelling, the unit cell models did not reproduce the experimental stress-strain 

curves for the test cases of warp direction tensile loading. As a result, a separate 

damage model designed to characterise the damage effect of inter-tow cracks is 

developed and introduced in the next chapter.  

However, in contrast, the unit cell models predicted acceptable stress-strain 

behaviours for the cases of weft direction tensile loading. In particular, in the case 

of GF 3D woven composite, the predicted intra-tow damage in the warp tows 

effectively recreated the through-the-thickness transverse cracks, which led to a 

reasonable prediction of stress-strain nonlinearity when compared to the 

experimental result. 

For the test cases of tensile loading in the warp direction, as indicated by the 

predicted shear-induced intra-tow damage, the unit cell models identified warp 
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tow shear deformation as the main cause for the inter-tow cracks surrounding the 

warp tows that were observed in the experiments. 
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7. A Pragmatic Continuum Damage Mechanics Model for 

Inter-tow Cracks in 3D Woven Composites 

 

7.1 Introduction 

As illustrated by the experimental result in Chapter 4, inter-tow cracks between 

warp tows are identified to be the main cause for stress-strain nonlinearity when 

the 3D woven composites were loaded in the warp direction. However, this 

influential damage mode is not incorporated in the UD composite CDM model 

proposed in Chapter 3 for simulating tow properties, because inter-tow cracks 

are naturally formed around rather than inside tows. As a result, in addition to 

the UD composite CDM model, another damage model accounting for inter-tow 

cracking damage should also be devised so that the damage effects due to both 

intra-tow and inter-tow cracks can be predicted for 3D woven composites. To 

meet this need, a pragmatic continuum damage model capturing the main 

characteristics of inter-tow cracking damage is developed, implemented, verified 

and validated as shown in this chapter. 

However, recall that for the test cases of 3D woven composites under weft 

direction uniaxial stress (Chapter 4), it was impossible to tell whether the 

through-thickness transverse cracks were intra-tow cracks or inter-tow cracks. 

Even for a single transverse crack in there, part of it could be inside tows while 

part of it could be right on the tow boundary. In light of this and also for the sake 

of simplicity, the damage model developed here for inter-tow crack modelling is 

only applicable to the cases of 3D woven composites loaded under warp 
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direction uniaxial stress where the genuine inter-tow cracks can be clearly 

identified from experimental result. 

Another point to note is that the inter-tow crack damage model proposed here is 

considered to be pragmatic in the sense that, when developing the model, instead 

of starting from independent experimental investigation and theoretical 

characterisation of inter-tow cracks, stiffness reduction in 3D woven composites 

caused by these cracks is assumed to be directly represented by the difference 

between the experimental stress-strain curve and the stress-strain curve obtained 

from the unit cell analysis of 3D woven composites, where the latter only 

accounts for intra-tow damage. Unit cell analysis of 3D woven composites can 

be made to predict the effect of intra-tow damage since the UD composite CDM 

model can be incorporated in the analysis to model tow damage inside 3D 

woven composites. 

This assumption for quantifying inter-tow crack damage effect can be 

demonstrated graphically using the example shown in Fig. 7-1, where the shaded 

area is regarded as being due to the contribution from inter-tow cracks. Such an 

assumption is based on the consideration that, while the stress-strain curves 

obtained from the unit cell analyses in Chapter 6 only included the effect from 

intra-tow damage, the real-life experimental stress-strain curves like the ones in 

Chapter 4 certainly reflected the damage effects from both intra-tow and inter-

tow cracks. Therefore, as an approximation, the discrepancy between these 

curves can be attributed to the damage effect caused by the inter-tow cracks.  
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Fig. 7-1 Graphical example showing the assumption for quantifying inter-tow 

crack damage effect 

 

The procedure for the development and the implementation of this inter-tow 

damage model is described as follows: 

1. A constitutive relationship of the damaged 3D textile composite is 

established first. It accounts for the damage effect due to both the intra-

tow damage and the inter-tow damage, which serves as the damage 

representation formulation for this inter-tow damage model. Moreover, 

special unit cell analyses incoprating artificially introduced inter-tow 

cracks are carried out for characterising the dependence between different 

inter-tow damage variables. Such a relationship between the inter-tow 

damage variables is included in the damage representation formulation. 

2. Starting from the complementary strain energy function of the damaged 

3D textile composite, damage driving force expressions can be derived 

with regard to inter-tow damage. 
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3. Then, a damage evolution law based on damage driving force is proposed, 

where damage evolution constants for inter-tow damage are required to 

furnish this damage evolution law.  

4. The unit cell analysis stress-strain curves presented in Chapter 6 and the 

original experimental stress-strain curves presented in Chapter 4 are both 

used to determine the damage evolution constants for inter-tow damage. 

Since the former accounted for intra-tow damage only while the latter 

accounted for both intra-tow damage and inter-tow damage, the 

discrepancy between them is attributed to inter-tow damage effect, which 

enables inter-tow damage variables to be calculated. This then allows the 

empirical relationships between the inter-tow damage variables ( D ) and 

the damage driving forces ( D ) to be found, where the gradients of the 

D - D  plots are the inter-tow damage evolution constants to be 

obtained.  

5. With the damage evolution constants found, the damage evolution law is 

fully furnished. Then, this inter-tow damage model is available for inter-

tow damage prediction on top of the intra-tow damage prediction already 

provided by the unit cell analysis cases. 

Details of the development and the implementation of this inter-tow damage 

model are described in the sections below. 
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7.2 Damage Representation 

Since inter-tow cracks are positioned outside of tows which are not included in 

the UD composite constitutive relationship previously adopted for modelling 

tows, damage representation of inter-tow cracks is defined with respect to the 

constitutive relationship of the entire 3D woven composites. 

For the tested 3D woven composites discussed in Chapter 4, they can be regarded 

as orthotropic materials. The reason for this is presented in Fig. 7-2 and Fig. 7-3 

where the weave patterns of these 3D woven composites demonstrate two planes 

of symmetry that are perpendicular to each other.  

 

 

Fig. 7-2 CT scan images of the IM7 3D woven composites showing material 

symmetry 
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Fig. 7-3 CT scan images of the GF 3D woven composites showing material 

symmetry 

 

As a result, orthotropic material constitutive relationship is suitable for 

characterising these 3D woven composites and a compliance matrix representing 

the constitutive relationship of the damaged 3D woven composites is proposed 

here as (7-1). 
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Is
 
and Ds  are damage variables associated with intra-tow cracks and inter-

tow cracks respectively, where s=X, Y, Z, XY, XZ and YZ respectively. Note here 

that Is
 
is defined with respect to the constitutive relationship of 3D woven 

composites rather than that of tows as in the case of  .  

However, although material orthotropy simplified the constitutive relationship 

formulation, absolute values of undamaged Young’s moduli and Poisson’s ratios 

still need to be determined. Thanks to the quasi-static tests carried out as 

mentioned in Chapter 4, 
0
XE , 

0
YE  and 

0
XYG had already been obtained 

experimentally. For the rest of undamaged material properties, they can all be 
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determined using unit cell analysis of undamaged 3D woven composites based on 

constituent material properties of tows and matrix. In addition, experimentally 

obtained 
0
XE , 

0
YE  and 

0
XYG values can also be used to check if the unit cell 

analysis is able to predict similar values for these properties so that the accuracy 

of unit cell analysis can be assessed. 

Moreover, one may also notice that in (7-1), the damage variables for both intra-

tow cracks and inter-tow cracks appeared in all six diagonal components of the 

compliance matrix associated with the six stresses. The reason behind this is that 

these cracks can have different orientations at different locations simultaneously 

within the damaged 3D woven composites. This result in the presence of damage 

effect for the compliances associated with all six stresses. However, as mentioned 

before, one should be aware that the values of intra-tow damage variables Is  in 

(7-1) can be predicted by unit cell analysis and the only remaining unknowns will 

be inter-tow damage variables Ds  which are to be determined by the damage 

model proposed here. 

Recall that in Li’s damage representation, degradations of some Young’s moduli 

and shear moduli due to cracking damage were found to be not entirely 

independent (i.e. there is a coupled damage effect) and the relationship between 

some of them could be characterised using material constants 12K  and 23K . Here, 

for the case of inter-tow damage induced by warp direction uniaxial tensile stress, 

one is inspired to ask if similar relationship is also present between different inter-

tow damage variables Ds .  
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In order to investigate this issue further, unit cell analysis is employed with 

artificially introduced inter-tow cracks. Special unit cell analysis cases are 

designed with the inter-tow cracks artificially introduced inside the 3D woven 

composite models. Such a concept of using artificial cracks for damage 

characterisation is well-accepted as many well-known composite damage analysis 

theories like the variational analysis method developed by Hashin [116], the shear 

lag analysis models developed by Smith et al. [113-115] and the finite strip 

method developed by Li et al. [125] all incorporated definitions of artificial cracks 

in their theories to facilitate the characterisation of damage effect. 

The special unit cell analysis cases have been defined, again, based on the 

geometrical models previously shown in Fig. 6-13. However, over the boundaries 

of warp tows, thin layers of pure matrix elements are introduced to represent the 

resin rich area between tows (Fig. 7-4). As illustrated in Fig. 7-5, these thin layers 

of elements are of thickness less than a tenth of the warp tow thickness and are 

treated as interfacial elements for accommodating inter-tow cracks.  
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Fig. 7-4 3D woven composites unit cell model with artificially introduced 

inter-tow cracks showing mesh of warp tows (green), weft tows (blue), 

interfacial elements (yellow) and pure matrix material (grey) 

 

 

Fig. 7-5 Side view of the unit cell model showing mesh of warp tows (green), 

weft tows (blue), interfacial elements (yellow) and matrix material (grey) 

 

To simulate inter-tow cracks in a simple but meaningful manner, an imaginary 

Young’s modulus value of trivial magnitude is assigned to some of the interfacial 

elements so that these elements would effectively lose load-carrying capability 

and act like cracks. The rest of the interfacial elements still retain the matrix 

material property originally assigned to them in order to represent interfacial areas 
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that are still intact. Apart from the interfacial elements, all other elements 

representing pure matrix and tow materials are still assigned with original virgin 

material properties so that the only damage effect predicted by this unit cell 

analysis would be from the introduced inter-tow cracks. 

However, in order to rule out possible ill-conditioning in the mesh adopted for the 

interfacial elements, trial analyses are carried out first, where pure matrix material 

properties are assigned to all interfacial elements without introducing any damage. 

Using undamaged tow material properties and matrix material properties as listed 

previously in Table 4-15, Table 6-3 and Table 6-4, the trial analyses successfully 

reproduced the effective elastic properties of the IM7 CF 3D woven composites 

(Table 6-5) and those of the GF 3D woven composites (Table 6-6). This 

demonstrates that the mesh of thin interfacial elements is acceptable and it did not 

compromise the performance of unit cell model. 

With reference to real inter-tow cracks (Fig. 7-6) observed from the experimental 

result, a series of unit cell analysis cases with increasing inter-tow crack length 

(Fig. 7-7) are carried out to reflect the progressive manner of damage 

development. As can be seen, the artificial cracks are introduced in the models to 

mimic the real inter-tow cracks as closely as possible. 
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Fig. 7-6 Example of the GF 3D woven composites inter-tow crack damage 

development under increasing warp direction loading 
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Fig. 7-7 Interfacial element mesh with yellow-coloured elements simulating 

inter-tow crack development 

 

After carrying out unit cell analysis for all these cases, effective material 

properties (Table 7-1 & Table 7-2) are obtained for both the IM7 CF and GF 3D 

woven composites containing introduced inter-tow cracks. 

Table 7-1 Effective properties of IM7 CF 3D woven composites with 

artificially introduced inter-tow cracks 

Properties 

Predictions from unit cell analysis cases 

Undamaged 

case 

Crack length 

= 0.63mm 

Crack length 

= 0.84mm 

Crack length 

= 1.25mm 

XE (GPa) 43.9 42.3 40.1 35.9 

DX  (%) 0 3.82 8.75 18.4 

YE (GPa) 62.9 62.6 62 61.3 

DY (%) 0 0.62 1.5 2.7 

DY
Y

DX

K





 N/A 0.16 0.17 0.15 

ZE (GPa) 8.44 7.92 7.32 6.44 
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DZ (%) 0 6.17 13.3 23.4 

DZ
Z

DX

K





 N/A 1.6 1.5 1.3 

XYG (GPa) 3.21 3.03 2.78 2.38 

DXY (%) 0 5.43 13.4 26 

DXY
XY

DX

K





 NA 1.4 1.5 1.4 

XZG (GPa) 4.65 4.63 4.59 4.49 

DXZ (%) 0 0.5 1.42 3.44 

DXZ
XZ

DX

K





 N/A 0.13 0.16 0.19 

YZG (GPa) 2.68 2.54 2.38 2.11 

DYZ (%) 0 5.29 11.4 20.4 

DYZ
YZ

DX

K





 N/A 1.4 1.3 1.1 

 

Table 7-2 Effective properties of GF 3D woven composites with artificially 

introduced inter-tow cracks 

Properties 

Predictions from unit cell analysis cases 

Undamaged 

case 

Crack length 

= 0.63mm 

Crack length 

= 0.84mm 

Crack length 

= 1.25mm 

XE (GPa) 23.7 23 20.6 16.2 

DX  (%) 0 3.06 13.1 31.8 

YE (GPa) 24.8 24.3 23.1 20.2 
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DY (%) 0 1.74 6.55 18.2 

DY
Y

DX

K





 N/A 0.57 0.5 0.57 

ZE (GPa) 11.6 11.3 10.5 8.71 

DZ (%) 0 2.31 9.43 24.9 

DZ
Z

DX

K





 N/A 0.75 0.72 0.78 

XYG (GPa) 5.28 5.07 4.38 2.73 

DXY (%) 0 3.82 17 48.4 

DXY
XY

DX

K





 NA 1.3 1.3 1.52 

XZG (GPa) 5.59 5.47 5.09 4.15 

DXZ (%) 0 2.37 8.95 25.9 

DXZ
XZ

DX

K





 N/A 0.77 0.69 0.81 

YZG (GPa) 4.41 4.31 3.99 3.38 

DYZ (%) 0 2.02 9.34 23.4 

DYZ
YZ

DX

K





 N/A 0.66 0.71 0.73 

 

As can be seen from Table 7-1 and Table 7-2, for cases with longer inter-tow 

cracks, lower effective Young’s moduli values are predicted which demonstrated 

the effect of damage of these cracks. Also, all Young’s moduli and shear moduli 

are affected by the cracks since the cracks are positioned around the warp tows. 

There is recognisable dependence between different inter-tow damage variables 
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Ds , indicating coupled damage effect. This is shown by the ratios of damage 

variables designated as YK , ZK , YZK , 
XZK  and 

XYK  in Table 7-1 and Table 7-2, 

which are all assessed against DX . Since each of these ratios did not show large 

variations in value with the increase of inter-tow damage DX , they are 

therefore regarded as constants with their absolute values approximated by their 

respective averaged values as summarised in Table 7-3. 

Table 7-3 Averaged values for ratios of damage variables 

 
For IM7 CF 3D woven 

composites 

For GF 3D woven 

composites 

YK  0.16 0.55 

ZK  1.5 0.75 

XYK  1.4 1.4 

XZK  0.16 0.76 

YZK  1.3 0.7 

 

With the confirmation of coupled damage effect, the constitutive relationship in 

(7-1) can be modified into (7-2). 
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(7-2) 
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Since the intra-tow damage variables Is
 
in (7-2) can all be worked out from 

unit cell analysis of 3D woven composites where tows are modelled by the UD 

composite CDM model, (7-2) can therefore be split into two parts as a truncated 

Taylor series with respect to DX  as shown in (7-3), with the effects of inter-tow 

damage appearing only in [ ]AS .  

[ ] [ ][ ] ([ ] [ ])[ ]

    [ ] [ ]

AI

I D add

S S S  

 
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   
(7-3) 
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In (7-3), [ ]I  
represents the strain prediction resulting from the unit cell analysis 

where only intra-tow damage is present, while [ ]
D add


  
is the part of the strain in 

addition to [ ]I  
to account for the effect from inter-tow damage. 

In (7-3), [ ]IS  is expressed as: 
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while [ ]AS  is obtained as: 
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7.3 Damage Initiation 

As shown previously in Fig. 4-6, according to the assumptions made for the 

current damage model, inter-tow crack damage is deemed to have initiated only 

when the unit cell analysis prediction for stress-strain response begins to deviate 

away from the experimental stress-strain curve. This assumption should be 

validated against experimental result by showing that the actual inter-tow cracks 
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indeed first started to appear around this point in reality. If so, then the use of it 

for defining inter-tow damage initiation is justified.  

 

7.4 Damage Driving Force and Damage Evolution Law 

Similar to the earlier derivation process for the damage driving force of the UD 

composite CDM model in Chapter 3, here, the derivation of damage driving force 

for inter-tow damage model also starts from energy expression of damaged 

material, but in the context of damaged 3D woven composites. According to [89], 

the complementary strain energy density function mesoU  can be expressed as 

(7-6).  
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(7-6) 

where [ ] [ ][ ]S  . 

Then, damage driving force for inter-tow damage (7-7) is derived. 
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As can be seen, similar to the damage driving force   derived in Chapter 3 for 

the UD composite CDM model, damage driving force D  
(7-7) for inter-tow 

crack damage is also a function of undamaged material properties, damage 

variables and stresses, with the dimension of stresses.  

Also, one may notice that all six stresses appeared in the damage driving force 

expression. The reason for this is similar to that given previously in Section 7.2, 

namely, the inter-tow cracks caused by warp direction loading may have different 

crack orientations, with the possibility that any of the six stress components can 

contribute to the propagation of an arbitrarily orientated crack. As a result, all six 

stresses should be included in the damage driving force formula. 
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As shown in (3-17), inter-tow damage DX  is defined to be driven by damage 

driving force components.  

 , , , , ,DX DX DY DZ DYZ DXZ DXYfn         
(7-8) 

Imagine a situation where the critical state for inter-tow damage initiation is met 

with values of damage driving force components reaching 0DX , 0DY , 0DZ , 

0DYZ , 0DXZ
 
and 0DXY . Then, expanding (3-17) into a Taylor’s series in the 

neighbourhood of the critical state at a given damage state 0DX , with terms 

higher than first order neglected, the damage evolution law approximated is as 

shown in (7-9). 
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or 

            
DX DX DX DY DY DZ DZ

DYZ DYZ DXZ DXZ DXY DXY

     
     

      
       

(7-9) 

where DX , DY , DZ , DYZ , DXZ  and DXY  are the inter-tow damage 

evolution constants associated with different stresses. They are regarded as 

material properties of the specific 3D woven material system concerned. 

However, for this research project, the only experimental result available for inter-

tow damage process was obtained under warp direction uniaxial stress X  as 

recorded in Chapter 4, which means only DX  associated with warp direction 
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stress X  can be determined from the experimental result. (7-9) is therefore 

simplified into (7-10) where only X
 
is considered. 

DX DX DX     (7-10) 

To determine DX , a stress-strain plot like the one in Fig. 7-1 should be referred 

to so that the values of DX  and DX  can be extracted to provide reasonable 

approximation over a practical range of warp direction stress. Then, an empirical 

relationship between DX  and DX  can be obtained which is used to estimate 

the value of DX
 
according to (7-11).  

DX
DX

DX

d

d





  (7-11) 

However, in order to satisfy the second law of thermodynamics, the damage 

evolution constant DX
 
obtained should always ensure that the damage 

increment DX  calculated from (7-10)  is compliant to the inequality in (7-12).  

0DX DX    (7-12) 

To implement this incremental inter-tow damage evolution law, the warp 

direction loading process can be divided into small stress increments of X . In 

addition, simulation result from unit cell analysis is also used so that values of 

total stress X , total strain IX  and intra-tow damage variable IX  at the start 

and at the end of every stress increment are evaluated. 
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Starting from the stress increment just beyond inter-tow damage initiation point, 

damage driving force increment DX  can be calculated according to (7-13) 

based on the initial condition that DX  is zero. 
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(7-13) 

where 

( ) ( 1) DXDX n DX n    

( 1) ( ) IXIX n IX n    

( 1) ( ) XX n X n      

After this, substituting the damage driving force increment DX  into (7-10), 

the damage increment DX can be calculated and added to the previous total 

value of DX  for updating the damage status. However, due to the nature of 

incremental algorithm, the updated damage variable DX  will be used in the 

next increment rather than for the current one as indicated in (7-13).  

By substituting this updated damage variable DX  into (7-3) and (7-5), the 

corresponding additional strain term DX add


  can be worked out, which then 

modifies the strain value from IX
 
to X . 

This process is repeated for all stress increments beyond inter-tow damage 

initiation point. In this way, for a given warp direction stress loading history, the 
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strain prediction IX  from unit cell analysis can be modified by the inter-tow 

damage model. The resulting new stress-strain prediction X - X  is expected to 

approximate the experimental result, having incorporated both intra-tow and inter-

tow damage effects in the modelling process. 

 

7.5 Model Implementation and Verification 

To verify the formulations and the algorithm derived above for the inter-tow crack 

damage model, a verification example is designed and implemented. For 

simplicity, only warp direction stress-strain behaviour is considered in this 

example.  

The warp direction stress-strain behaviour of an imaginary 3D woven composite 

material is assumed and illustrated in Table 7-4 and Fig. 7-8. As can be seen, the 

undamaged warp direction Young’s modulus value 
0
XE

 
is assumed to be 20 GPa 

and the initiation point for inter-tow crack damage is set at 100 MPa of X . In 

addition, the stress-strain response ( X - IX ) accounting only for intra-tow 

damage is also assumed. As a result, the inter-tow damage model is applied with 

the presence of intra-tow damage, which is a more general scenario. 

Table 7-4 Assumed stress-strain data for the verification case 

X (MPa) IX (%) IX (%) X (%) 

0 0 0 0 

20 0.1 0 0.1 

40 0.2 0 0.2 

60 0.3 0 0.3 
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80 0.4 0 0.4 

100 0.5 0 0.5 

117 0.593 1.6 0.6 

128 0.676 5.2 0.7 

139 0.755 7.9 0.8 

150 0.831 9.9 0.9 

160 0.903 11.4 1 

169 0.972 12.6 1.1 

179 1.037 13.6 1.2 

188 1.099 14.4 1.3 

197 1.158 15 1.4 

205 1.214 15.6 1.5 

213 1.267 16 1.6 

220 1.316 16.3 1.7 

227 1.363 16.6 1.8 

234 1.406 16.9 1.9 

240 1.447 17.1 2 

 

 

Fig. 7-8 Assumed warp direction stress-strain responses for the verification 

case 
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Based on the assumed data in Table 7-4, using (7-14) and (7-15), data points for 

DX  and DX  can be obtained as shown in Table 7-5. 

0
1 X

DX IX

X

E

E
     (7-14) 

 

2

2

02 (1 )
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DX

X IX DXE


 
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 (7-15) 

 

Table 7-5  Damage data extracted from Fig. 7-8 

X (MPa) DX  (%) DX (MPa) 

100 0 0.5 

117 1.1 0.72 

128 3.2 0.98 

139 5.1 1.28 

150 6.9 1.62 

160 8.6 2 

169 10.2 2.42 

179 11.7 2.88 

188 13.2 3.38 

197 14.7 3.92 

205 16.1 4.5 

213 17.5 5.12 

220 18.9 5.78 

227 20.3 6.48 

234 21.6 7.22 

240 22.9 8 
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Then, using the data in Table 7-5, the empirical relationship between DX  and 

DX  can be plotted as in Fig. 7-9. This empirical relationship is fitted into a 

natural logarithm curve function as shown in (7-16).  

 

Fig. 7-9 Assumed warp direction stress-strain responses for the verification 

case 

 

0.0908ln( ) 0.0285DX DX    (7-16) 

With the empirical relationship between DX  and DX
 
established, the inter-tow 

cracking damage evolution constant DX
 
can be worked out according to (7-17).  

0.0908
DX

DX

DX DX

d

d


 


   (7-17) 

 

Now, all assumed material properties necessary for implementing the damage 

model are defined. The damage model is then used to modify the X  - IX

stress-strain response into the X  - X  
stress-strain response. If the resulting 
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X  - X  
stress-strain response is similar to the one assumed in Table 7-4, the 

damage model is verified. 

As mentioned, this damage model uses an incremental algorithm based on stress 

increments of X . Correspondingly, the damage driving force increment 

DX  can be calculated according to (7-18). 
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(7-18) 

 

Then, using the damage evolution law in (7-19), damage increment DX
 
can be 

found.  

DX DXDX      (7-19) 

 

After this, the damage increment DX  calculated from every stress increment is 

used to update the damage variable as shown in (7-20). 

( 1) ( ) DXDX n DX n
    (7-20) 

 

Since in this case only warp direction stress-train behaviour is considered, the 

constitutive relationship in (7-3) can be simplified to (7-21).  



281 
 

0 (1 2 )

     

DX X
X IX

X DX IX

IX DX add

E


 

 



 

  

 
 (7-21) 

 

Then, the updated damage variable DX  from (7-20) is substituted into (7-21) 

for updating the strain prediction. Some of the quantities predicted by the damage 

model are presented in Table 7-6 and they are not far off in value from those in 

Table 7-5. 

Table 7-6  Data produced by the damage model 

X (MPa) DX  (%) DX (MPa) DX add


  (%) 

100 0 0.5 0 

117 2.6 0.7 0.016 

128 4.9 0.97 0.037 

139 6.9 1.27 0.062 

150 8.8 1.62 0.093 

160 10.6 2.01 0.128 

169 12.3 2.45 0.168 

179 13.9 2.93 0.212 

188 15.4 3.45 0.261 

197 16.9 4.01 0.314 

205 18.3 4.61 0.371 

213 19.6 5.24 0.431 

220 20.8 5.91 0.494 

227 22 6.60 0.559 

234 23.1 7.32 0.624 

240 24 8.04 0.687 
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The resulting X  - X  
stress-strain response produced by the damage model is 

illustrated in Fig. 7-10. As can be seen, the prediction is very close to the assumed 

experimental result which means this inter-tow damage model for modifying X  

- IX stress-strain response is verified. 

 

Fig. 7-10  Predicted warp direction stress-strain response for the verification 

case 

 

7.6 Test Cases for Model Validation  

As described in Chapter 6, damage modelling for the 3D woven composites was 

conducted using unit cell analysis under the condition that damage could initiate 

and evolve only within the tows. The result from the unit cell analysis suggested 

that the stress-strain response could not be accurately predicted for the cases 

where the materials were loaded in the warp direction. The cause for the 

discrepancy in those cases was the lack of inter-tow damage modelling capability 

for the unit cell analysis models. 
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To account for the effect of inter-tow damage, based on the results from 

aforementioned unit cell analysis where intra-tow damage was already predicted, 

the pragmatic inter-tow damage model introduced in this chapter is applied for 

predicting the warp direction stress-strain response of the 3D woven composites. 

 

7.6.1 IM7 Carbon Fibre 3D Woven Composites under Warp Direction 

Uniaxial Tension 

For the case of IM7 CF 3D woven composites under warp direction tension, the 

discrepancy in stress-strain response between the unit cell model prediction and 

the experimental result is evident as shown in Fig. 7-11. 

 

Fig. 7-11 Comparison between the unit cell analysis prediction and the 

experimental result 

 

Recall that from the experimental result in Section 6.2.2.1, the inter-tow cracks 

were observed to initiate at 0.25% warp direction strain. This inter-tow damage 

initiation point is reflected in Fig. 7-11, where the model prediction curve 

separated from the experimental result curve, which is also at around 0.25% warp 

direction strain. This confirms that the 0.25% warp direction strain with 80 MPa 
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warp direction stress can indeed be regarded as the inter-tow damage initiation 

point.  

Moreover, the stress-strain curve predicted by the unit cell analysis was linear, 

which implies that the predicted intra-tow damage had negligible effect on the 3D 

woven material stress-strain behaviour. Because of this, the intra-tow damage 

variable IX
 
can be considered as equal to zero. 

Following the procedure introduced in Section 7.5, the stress-strain data in Fig. 

7-11 is used to calculate the inter-tow damage variable DX  and the damage 

driving force, DX , which are defined as follows. 

0
1 X

DX

X

E

E
    (7-22) 
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X2 (1 )

X
DX

DXE


 


 (7-23) 

The derivation of (7-22) and (7-23) has already been provided in Section 7.5. 

This yields a set of data points for DX and DX , with some of them shown in 

Table 7-7 for illustration. 

Table 7-7 Inter-tow damage data extracted from Fig. 7-11 

X (MPa) DX (%) DX (MPa) 

80 0 0.1 

120 27 0.56 

170 41 1.7 

220 48 3.7 
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270 56 7.6 

320 59 13 

370 61 19 

420 62 26 

 

The empirical relationship between DX and DX , as specified in Table 7-7, 

can be visualised by plotting DX  against DX . As can be seen in Fig. 7-12, the 

relationship between them is highly nonlinear and it is found to be best 

approximated by the natural logarithm curve function as below. 

0.123ln( ) 0.308DX DX    (7-24) 

 

 

Fig. 7-12 Empirical relationship between DX  and DX  

 

With the empirical relationship between DX  and DX  determined, the inter-

tow damage evolution constant can be calculated as 

0.123DX
DX

DX DX

d

d


 


   (7-25) 
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As mentioned previously, the inter-tow damage model uses an incremental 

algorithm with stress increments of X . Correspondingly, the inter-tow 

damage driving force increment DX  can be calculated according to 

2 2

2 2
( 1) ( )

( ) 0 0
( ) ( 1)2 (1 ) 2 (1 )

X n X n

DX n

X XDX n DX nE E

 






  
 

 (7-26) 

 

One should note that the intra-tow damage variable IX  is omitted in (7-26) as it 

equals to zero for this particular case. Then, using the damage evolution law 

defined in Section 7.4 which is presented here in (7-27), inter-tow damage 

increment DX
 
can be found. 

DX DX DX     (7-27) 

 

After this, the damage increment DX  calculated from every stress increment is 

used to update the total inter-tow damage variable as shown in (7-28). 

( 1) ( )DX n DX n DX    (7-28) 

 

As in this case only warp direction stress-strain behaviour is concerned, the 

constitutive relationship can be simplified to (7-29). Then, the updated total inter-

tow damage variable DX
 
from (7-28) is substituted into (7-29) for updating the 

strain prediction. 
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(7-29) 

 

With the inter-tow damage model applied as described above, the resulting 

modified stress-strain curve is plotted in Fig. 7-13 along with the curves from unit 

cell analysis and the experimental result. 

 

Fig. 7-13 Comparison between predictions for stress-strain response 

 

As can be seen, with the inter-tow damage being accounted for, the modified 

stress-strain curve appeared to be a much better approximation to the 

experimental curve. 

 

7.6.2 E-glass Fibre 3D Woven Composites under Warp Direction Uniaxial 

Tension 

Similar to the case of IM7 CF 3D woven composite above, there is also a 

substantial discrepancy between the predicted and the measured stress-strain 
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curves for the GF 3D woven composite under warp direction tension. The 

comparison of the two curves is shown in Fig. 7-14. 

 

Fig. 7-14 Comparison between the unit cell analysis prediction and the 

experimental result for stress-strain responses  

 

In this case, as shown in Fig. 7-14, the point of separation between the two curves 

corresponds to the experimentally determined inter-tow cracking damage 

initiation point at 0.35% warp direction strain. Consequently, this point is 

validated as the inter-tow damage initiation point for applying the inter-tow 

damage model. 

In contract to the negligible effect of intra-tow damage on the stress-strain 

response of IM7 CF 3D woven composite under warp direction tension, the 

presence of intra-tow damage in the GF 3D woven composite affected the stress-

strain response, making it nonlinear. Therefore, the intra-tow damage variable 

IX
 
cannot be neglected in this case. 

Based on the predicted stress values from unit cell analysis in Fig. 7-14, data 

points for DX  and DX are obtained as follows. 
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Table 7-8 Damage data extracted from Fig. 7-14 

X (MPa) IX (%) DX (%) DX (MPa) 

85 0 0 0.32 

110 6.5 18 0.96 

125 8.3 22 1.5 

140 8.9 29 2.3 

160 11 32 3.5 

180 12 37 5.7 

200 12 39 7.8 

220 12 43 11 

 

The calculated values of DX  and DX
 
as summarised in Table 7-5 are plotted 

in Fig. 7-15. 
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Fig. 7-15 Empirical relationship between DX  and DX  

 

As can be seen, the nonlinear relationship in Fig. 7-15 is best approximated by the 

natural logarithm curve function as below. 

0.128ln( ) 0.164DX DX    (7-32) 

 

With the empirical relationship between DX  and DX  established, the inter-

tow damage model is applied following the same procedure as described in 

Section 7.6.1. Since the intra-tow damage variable IX
 
needs to be accounted for 

in this case, the expressions for increment of damage driving force DX
 
and the 

strain prediction X are as follows. 
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As can be seen in Fig. 7-16, with the unit cell analysis result modified by the 

inter-tow damage model, the new stress-strain prediction is much closer to the 

experimental result. 

 

Fig. 7-16 Comparison between predictions for stress-strain response 

 

7.7 Summary 

In this chapter, a pragmatic continuum damage model is developed for 

characterising the damage effect of the inter-tow cracks in 3D woven composites 

caused by warp direction tensile loading. 

In this model, use has been made of the unit cell analysis of 3D woven composites 

with artificially introduced inter-tow cracks. The coupled damage effect due to the 

inter-tow cracks is identified and included in the damage representation 

formulation. An incremental damage evolution law is proposed which works in 

conjunction with the intra-tow damage predicted by the unit cell analysis cases. 
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For a given warp direction stress loading history, the strain prediction “ IX ” 

produced by the unit cell analysis of intra-tow damage is modified by the present 

inter-tow cracking damage model. The resulting new stress-strain prediction 

“ X  - X ” is expected to better approximate the experimental result since both 

intra-tow and inter-tow cracking damage effects are captured during this 

modelling process. 

As demonstrated by the validation cases of IM7 carbon fibre and E-glass fibre 

reinforced 3D woven composites loaded under warp direction uniaxial tension, in 

comparison to the stress-strain predictions where only the intra-tow damage was 

accounted for, the stress-strain predictions modified by the inter-tow cracking 

damage model indeed showed a much better resemblance to the experimental 

result. 
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8. Conclusions and Future work 

8.1 Conclusions 

8.1.1 Experimental Investigation for Damage in Laminates and 3D Textile 

Composites 

Thanks to the laminate test cases designed and conducted in this project, it is 

found that the damage initiation and propagation related material constants 
TR , 

I ,  ||R  and II  for a certain type of composites can be determined using the test 

cases of transverse tensile testing and in-plane shear testing on UD laminates, and 

tensile testing on cross-ply laminates. As a result, whenever dealing with an 

unfamiliar composite system, these tests can be employed to determine necessary 

material properties usable for composite damage modelling. 

Apart from the tests on laminates, detailed experimental investigation was carried 

out regarding damage in two types of layer-to-layer interlock 3D woven 

composites which are reinforced by IM7 carbon fibre (CF) and E-glass fibre (GF), 

respectively. 

When the 3D woven composites were loaded in the warp direction, both the IM7 

CF and the GF 3D woven composites exhibited nonlinear stress-strain responses 

in the form of almost bilinear relationship, which was shown to be caused by the 

inter-tow cracks appearing in the warp-curving regions. Moreover, transverse 

intra-tow cracks were also found inside the weft tows of the GF 3D woven 

composites, but such damage was not observed in the IM7 CF 3D woven 

composites due to the higher strengths required to initiate intra-tow cracking 

damage in the latter material. 
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On the other hand, when the 3D woven composites were loaded in the weft 

direction, through-the-thickness transverse cracks bypassing the weft tows were 

found in both the IM7 CF and the GF 3D woven composites. However, while 

these cracks gave rise of a source of nonlinearity to the weft direction stress-strain 

response of the GF 3D woven composite, the appearance of the stress-strain 

relationship of the IM7 CF 3D woven composite appeared to be rather linear as 

the high value of the fibre direction Young’s modulus of IM7 carbon fibre in the 

weft tows is believed to have dominated the specimen level stress-strain response. 

Furthermore, the experimental data obtained and the damage processes recorded 

for these layer-to-layer interlock 3D woven composites can serve as a good 

reference for future interests in this area, since currently only limited studies are 

available in the literatures regarding damage in this type of 3D woven composites. 

 

8.1.2 A Novel Damage Model for UD Composites 

Built on top of a consistent CDM damage representation formulation [149], a 

novel damage evolution law based on the concept of damage driving force is 

proposed for modelling the evolution of matrix damage in UD composites. It is to 

be applied in conjunction with the UD composite failure theory developed by 

Puck [88] which acts as a damage initiation criterion. 

This damage evolution law has the advantage of describing the damage evolution 

process in terms of the total damage driving force which is naturally partitioned 

into three components directly associated with the corresponding stress 

components. This has been achieved through rigorous theoretical derivation, 

which ensures that the theory proposed is physically-based as there are three 
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stresses acting on a crack plane to drive damage evolution. Such derivation is 

consistent with the failure theory by Puck [88] and the damage representation 

formulation by  Li et al [149]. 

Moreover, thanks to the natural partition of the total damage driving force into 

three components, different damage evolution constants are allowed for the three 

loading modes (corresponding to the fracture modes in Fracture Mechanics) when 

dealing with mixed-mode loading conditions, which avoids the unrealistic 

assumption in many existing theories ([85,146,147]) that different loading modes 

make the same contribution to damage evolution. 

This damage evolution law is also applicable to unloading and reloading scenarios 

with the implementation of the unloading and reloading criteria devised based on 

damage driving force as a part of the present development. 

The new UD composite CDM model containing the novel damage evolution law 

has been implemented as a MATLAB
®

 code for laminate analysis and as an 

ABAQUS™/Standard UMAT code for finite element unit cell analysis of textile 

composites. Using the damage-related material constants determined from the 

experiments conducted for this research and those available in the literatures, the 

new UD composite CDM model is applied to predict intra-lamina damage in 

laminates and intra-tow damage in the layer-to-layer interlock 3D woven 

composites as those cases tested in the experimental part of this research project. 

For its application to laminate analysis, it is demonstrated that as long as 

necessary damage-related material constants are provided, the UD composite 

CDM model is ready for independent prediction of damage and stress-strain 

response for laminates of arbitrary stacking sequences under different loading 



296 
 

conditions. The only shortfall exposed for the model is the lack of capability of 

predicting a severe stress-strain nonlinearity caused by shear. Whenever there was 

a strong presence of shear, the model prediction deviated away from the 

experimental data. Nonlinear shear behaviour has been identified as a complicated 

enough subject in its own right [190] and it has been left aside in the present 

research in order to focus on the objectives of the present project. 

In its application to the 3D woven composites, the UD composite CDM model 

successfully predicted the intra-tow cracking damage that were observed in the 

experiments in all cases. The benefits of using this CDM model for intra-tow 

damage prediction are obvious as not only the stiffness reduction caused by the 

intra-tow damage can be predicted, but also the crack orientation and the stresses 

causing the damage can be identified, such that the subsequent deformation can be 

simulated closely leading to the final failure of the composites. 

However, in terms of stress-strain behaviour prediction, due to the lack of inter-

tow damage modelling, the unit cell analysis models incorporating the UD 

composite CDM model alone did not reproduce the experimental stress-strain 

curves satisfactorily, e.g. for the test cases of warp direction tensile loading. As a 

result, inter-tow damage modelling is necessary when carrying out damage 

analysis for layer-to-layer interlock 3D woven composites involving loading in 

the warp direction. 

Without accounting for the inter-tow cracking damage, the unit cell models are 

capable of predicting acceptable stress-strain behaviours for the test cases of weft 

direction tensile loading. In particular, in the case of GF 3D woven composite, the 

predicted intra-tow damage in the warp tows effectively reflected the effects of 

the through-the-thickness transverse cracks observed in the experiment, which led 
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to a reasonable prediction of stress-strain nonlinearity when compared to the 

experimental result. 

 

8.1.3 A New Pragmatic Continuum Damage Model to Capture the Effect of 

Inter-tow Damage 

A new pragmatic continuum damage model is developed to capture the damage 

effect of inter-tow cracks in 3D woven composites caused by warp direction 

tensile loading. In this model, the coupled effects due to the intra-tow and inter-

tow cracks are incorporated in a new damage representation. An incremental 

damage evolution law is proposed correspondingly, which works in conjunction 

with the intra-tow damage predicted by the aforementioned UD composite CDM 

model. 

The composite material characterisation tool UnitCells© [1] has been employed to 

determine the new damage-related material properties in the new damage 

representation by artificially introducing inter-tow cracks of constant lengths. 

Since this inter-tow damage model is also CDM based which offers homogenised 

effects of damage, there is no need to model the evolution of every inter-tow 

crack explicitly which can be computationally expensive for engineering 

applications. 

 

8.1.4 A Novel Damage Modelling Methodology for Textile Composites in 

Aero-engines 

With the successful development of aforementioned UD composite CDM model 

and pragmatic inter-tow damage model, a novel damage modelling methodology 
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for textile composites is made possible and implemented in conjunction with the 

UnitCells© composite characterisation tool [1] and the artificial neural network 

tool developed in [1]. This methodology is described as follows.  

With the UD composite CDM model, intra-tow damage within the tows of the 

textile composites can be predicted, where the influences due to crack orientation, 

mixed-mode loading, coupled damage effect and other physically-based 

considerations are properly accounted for. Then, based on the prediction of intra-

tow damage, the pragmatic inter-tow damage model is used to account for the 

effect of inter-tow damage. Since both damage models are continuum damage 

mechanics models, explicit modelling of intra-tow and inter-tow cracks is not 

required for the analysis of damage process. This ensures that these models can be 

efficiently adopted for engineering applications. 

Having established the damage modelling technique, these damage models are 

then employed in a large number of analysis cases for textile composite 

corresponding to loading cases of different load combinations, which can be 

encountered in engineering problems in a form of virtual testing using the 

composite characterisation tool UnitCells©. The stress and strain predictions from 

these analysis cases are then fed into the artificial neural network tool as these are 

essential for the artificial neural network to interpolate the constitutive behaviour 

of textile composite for general purpose applications [1]. Through the artificial 

neural network, the constitutive behaviour of textile composite incorporating the 

effect of damage can be interpolated for any load combination, which is then 

readily available for engineering applications. 

 



299 
 

8.2 Future work 

The current UD composite CDM model is only capable of characterising matrix 

cracks in UD composites with a common orientation parallel to the fibre direction. 

The potential of this CDM model can be extended further by modifying it to 

characterise matrix cracks of different orientations, thereby making it capable of 

predicting more general matrix cracking scenarios. 

As mentioned previously, the UD composite CDM model also lacks the ability to 

handle severe non-linear shear behaviour since there is no dedicated formulation 

in the model to account for this phenomenon. Consequently, this is also an area 

needing further improvement. 

In terms of the inter-tow damage model developed for the layer-to-layer interlock 

3D woven composites, one may notice that the inter-tow cracks characterised by 

the model are symmetric in the sense that they are assumed to appear in every 

warp curving regions regardless of the direction of the warp tow paths. However, 

in practice, there can be cases that the inter-tow cracks may only appear in the 

regions where the warp tow paths are inclined in one particular direction. This 

scenario is particularly likely when the layer-to-layer interlock 3D woven 

composites are subjected to the transverse shear loading XZ . The appearance of 

the inter-tow cracks in this case appears to be asymmetric. This has not been 

incorporated in the present model and will be the subject of future development. 
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