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Abstract

In this thesis we study the chemical reactions and transport phenomena which occur
in a microwave power assisted chemical vapour deposition (MPA-CVD) reactor which
facilitates diamond growth. First we introduce a model of an underlying binary gas
flow and its chemistry for a hydrogen gas mixture. This system is heated by incorpo-
rating a microwave frequency electric field, operating in a resonant mode in the CVD
chamber. This heating facilitates the dissociation of hydrogen and the generation of
a gas discharge plasma, a key component of carbon deposition in industrial diamond

manufacture.

We then proceed to summarise the discontinuous Galerkin (DG) finite element dis-
cretisation of the standard hyperbolic and elliptic partial differential operators which
typically occur in conservation laws of continuum models. Additionally, we sum-
marise the non-stabilised discontinuous Galerkin formulation of the time harmonic
Maxwell operator. These schemes are then used as the basis for the discretisation

method employed for the numerical approximation of the MPA-CVD model equations.

The practical implementation of the resulting DG MPA-CVD model is an extremely
challenging task, which is prone to human error. Thereby, we introduce a mathematical
approach for the symbolic formulation and computation of the underlying finite ele-
ment method, based on automatic code generation. We extend this idea further such
that the DG finite element formulation is automatically computed following the user’s
specification of the convective and viscous flux terms of the underlying PDE system in
this symbolic framework. We then devise a method for writing a library of automat-
ically generated DG finite element formulations for a hierarchy of partial differential

equations with automatic treatment of prescribed boundary conditions.

This toolbox for automatically computing DG finite element solutions is then applied
to the DG MPA-CVD model. In particular, we consider reactor designs inspired by the
AIXTRON and LIMHP reactors which are analysed extensively in the literature.
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CHAPTER 1

Introduction

1.1 Synthetic Diamond

In 2012 the global industrial diamond output was estimated to be 4.52 billion carats,
valued between $1.65and $2.50billion [112]. The first synthesis of artificially grown
diamond is attributed to Howard Tracy Hall using the so-called high pressure high
temperature (HPHT) process in 1954 [71]. This was achieved by building on work by
Percy Bridgman in high pressure physics for which he was awarded the Nobel Prize in
1946. The largest of these first artificial diamonds measured 0.15 mm in diameter and
were grown at pressures of 10 GPa and temperatures above 2000 °C. Further manufac-
turing methods have been developed since using chemical vapour deposition, explo-
sive optics and ultrasound cavitation [129]. In this thesis we seek to model the chemical

vapour deposition process of diamond manufacture.

The chemical vapour deposition (CVD) diamond market has seen strong growth
since its introduction in the mid 1980s due to its properties of strength, durability,
stiffness and thermal conductivity. Furthermore, research and development of CVD
diamond manufacture has seen rapid expansion since its inception [129]. The advan-
tages of the CVD diamond manufacture process owe to its rigidly controlled growth
conditions. The remarkable optical, thermal, chemical and electronic properties of dia-
mond, along with its extreme hardness and wear resistance, offer a material with great
potential in scientific and engineering applications. Furthermore, diamond manufac-
tured in chemical vapour deposition processes allows for the growth of the material to

be tailored to specific applications.
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The aim of this project is to formulate a mathematical model of the chemically react-
ing flows involved in the CVD diamond growth process, and to provide accurate and
efficient numerical discretisation methods. Exploiting the results from these calcula-
tions will enable the growth of higher quality diamond products as a result of improved
reactor design. The challenge lies in the amalgamation of modelling plasma physics,
energy deposition, chemical reactions, and transport processes, as well as developing
suitable computational methods. In this thesis, we present a model for the dissociation
of molecular hydrogen in a CVD reactor, along with its discontinous Galerkin (DG)

finite element method (FEM) approximation.

1.2 Synthetic Diamond Manufacture via Chemical Vapour De-

position

Industrial use of CVD diamond requires film purity, low defect content and a satis-
factory growth rate. Employing a microwave plasma-assisted (MPA) resonant cavity
system in the CVD reactor design facilitates the dissociation of required quantities of
atomic hydrogen to meet these needs. A summary of the physical properties of dia-
mond grown in CVD reactors, as well as an overview of the CVD growth process is

given by Balmer et al. [13].

The first synthesis of diamond material using MPA-CVD was demonstrated in 1983
by Kamo et al. [88]. Employing a gas mixture of hydrogen and -~1% methane, the hy-
drogen component was dissociated via microwave discharge. Atomic hydrogen atoms
stabilise the growth of diamond and discourage the growth of graphite. In a typical
CVD manufacturing process, the diamond mounted on a substrate in the CVD reactor
is heated to temperatures of 800K to 1000K and the gas is held at pressures between
15 torr to 300 torr. A typical MPA-CVD reactor microwave cavity design consists of a
quartz window separating a vacuum chamber and an air filled cavity. The vacuum
chamber contains the hydrogen methane mix in which the plasma is ignited and the
diamond deposited. The shape and stability of the ignited plasma leads to optimum
conditions for diamond growth. It is favourable that the plasma be flat against the sub-
strate surface whilst being maintained for a period of hours to several days. A cross

section of a typical MPA-CVD reactor design is show in Figure 1.1.

MPA-CVD reactor design can be optimised through trial and error based on an un-

derstanding of the underlying physical processes, although this is a time consuming

10
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Figure 1.1: A cross section of a typical MPA-CVD reactor design.

and expensive process. In the case of complicated geometries, the shape of the elec-
tric field in the CVD reactor can be difficult to predict given its interaction with the
plasma. Numerical solutions of CVD reactor models are therefore an essential require-
ment. Initial numerical experiments employing finite difference numerical schemes
were performed in [53, 61, 136]; see [47, 123] for high performance computing experi-
ments implementing the finite element method for multiphase gas flow occurring the
CVD reactors.

In this thesis we aim to develop a fully self consistent numerical model of the pro-
cesses which occur in the MPA-CVD diamond manufacture process. We seek to simul-
taneously find numerical approximations to the gas momentum transfer, heat transfer,
electromagnetic field energy and plasma density. This will build on prior work of nu-
merical models which only account for subsets of the physical and chemical processes
occurring in a CVD reactor. Furthermore, the numerical methods employed should be
efficient and robust to accommodate for the large range of operating conditions of CVD
reactors. Whilst offering the power of modern numerical methods, we will also ensure
its ease of use in a user-friendly environment. In the following sections, we will give

an outline of each of these subjects.

11
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1.3 Modelling MPA-CVD Reactors

In this section we give an outline of the descriptive models regarding the hydrogen
dissociation chemistry in a CVD reactor based on the excellent review paper by Has-

souni et al. [70]. For molecular hydrogen this includes accounting for:

¢ The collisions of electrons with molecular hydrogen resulting in excited rotational

and vibrational state and hence the heating of the hydrogen gas [32, 68, 104, 105].

¢ Electronically excited states of molecular hydrogen, some of which result in the

production of atomic hydrogen [31, 34].

¢ The resistive electron collision interaction with atomic hydrogen leading to the
production of several excited state species including atomic and ionised hydro-
gen [33, 34].

¢ Collisions between electrons and atomic hydrogen resulting in excited atomic

hydrogen states along with production of hydrogen ions [118, 125, 141].

¢ The reactions involving the heavy molecular and atomic hydrogen species also
lead to production of their excited states and energy redistribution [104, 105],
ionisation [116, 134], heated dissociation [68, 105] and reciprocal neutralisation
[51, 101].

Hassouni et al. [70] summarise by stating that a fully descriptive model of hydro-
gen plasmas requires consideration of at least seven species along with their internal
modes: Hy, H, H", H™, Hj, H} and e™. In order to reduce complexity of the model, the
state-to-state kinetics of the internal modes are considered negligible. For example, the
number density of electrically excited hydrogen molecules is several orders of magni-
tude smaller than its ground state in moderate pressure hydrogen plasma discharges
[68]. With this in mind, a simplified model can be presented of moderate pressure
hydrogen plasma discharges that accounts for collisional energy transfer between elec-
trons and the heavy species in terms of ionisation and dissociation kinetics. The energy
of the system is modelled via the thermodynamic temperature of the heavy species
gas mixture and the temperature of the electrons measured from the electron energy
distribution function. The simplified model also reduces the reactions and production
of the seven species mentioned above to Hy, H, H*, Hj and e”. Here, H™ is ignored
due to molecular hydrogen discharges at moderate pressure being electropositive. Fur-
thermore, the Hy* species is considered an instantaneous intermediate species which is
converted to H3". In this thesis, we consider a further simplified model where we only

consider the dissociation of hydrogen and thereby the species H, Hy and e™.

12
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Hassouni et al. [70] state the assumption, which will also be used in the model pre-
sented in this thesis, that the flow within the CVD reactor is subsonic, allowing for
the mean system pressure to be treated as a system constant. When low flow rates
are considered, the convective effects of mass transport are negligible and only diffu-
sive transport need be considered. The particle flux of each species therefore obeys a

continuity conservation law of the form

dp; —
g _|_ V . ]l — 7’1/ (131)

where p;, j; and r; are the densities, diffusive fluxes and mass production rates of
species i, respectively. The diffusive fluxes j; are determined by Fick’s law of diffu-
sion due to inter-species particle concentration gradients. Furthermore, conservation
of the energy density of each species provides a description of the temperature of the
hydrogen gas and the temperature of the electrons whose energy source comes from
the coupled microwave field. This pseudo-Soret effect is expressed as

d (poh) _
£ 4v.q=0 (1.3.2)

where &, q and Q are the gas enthalpy, diffusive flux vector due to temperature gra-
dients and external heating, respectively. Discussed later in this thesis, the model pre-
sented accounts for the case of high flow rates where the convective effects are not

neglected.

The gas is heated via a coupled microwave frequency electric field, facilitating the
dissociation of hydrogen. The ignited plasma in the gas mixture introduces a perturba-
tion in the electrical permittivity of the gas mixture medium. Hassouni et al. [70] sum-
marise two methods for modelling the electric field’s absorbed power in the plasma as

either a high frequency conducting medium or a dielectric.

Regarding the high frequency conducting medium model, solutions are sought for

the electric field £ and magnetic field H from the time dependent form of Maxwell’s

equations
oH
VxE&= —‘u()ﬁ, (133)
VXxXH= —€oaaf — JeNeUe_HF- (1.3.4)

Here, 119 and ¢( are the permeability and permittivity of free space, respectively, e, #e
and u._pr are the charge of the electron, electron number density and high frequency

electron velocity, respectively; these combine to give the electron drift velocity jo =

13
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—(eneUe_pr. In the context of electrically conducting plasmas, these solutions, £ and
H, can be found in the frequency or time domain [60, 90, 122, 146], where examples
specifically for a CVD reactor geometry are given in [135, 136]. A key ideal in the design
of a CVD reactor is for its dimensions to support resonant modes of the contained
electric field. The resonant frequencies supported by an empty CVD reactor cavity

geometry can be calculated using frequency domain analysis [53-55, 126].

The time domain solutions to Maxwell’s equations offer an advantage over the fre-
quency domain analyses in the sense that they facilitate direct coupling with the plasma
system. Furthermore, due to its suitability for numerical schemes such as finite dif-
ferencing, finite volume and finite element methods, time domain analysis allows for
easier numerical discretisation of complex geometries, which is typically the case for
CVD reactors. Combined with rapid computational performance improvements be-
tween 1995 and 2005, time domain analysis became more widely popular, we refer to
[53, 55,59, 63, 69, 92, 136, 140, 145] for a comprehensive history of these developments.

The disadvantage of the time domain analyses of the high frequency model is the
implementation of simultaneously solving several equations to determine the high fre-
quency component of the electron drift velocity je. The calculation of j. depends on
the collision cross section of the electron-heavy species momentum transfer and the
electron energy distribution function [29, 30]. The dielectric model of the CVD reactor
plasma formulates the high frequency electron drift velocity component of equation
(1.3.4) as part of a plasma dielectric permittivity ¢,. In essence, equation (1.3.4) can be

written as Ampere’s law

o€
—Ep,

The plasma parameters involved in the calculation of the plasma permittivity are de-

VxH = (1.3.5)

pendent on the particle and energy density conservation of each constituent chemi-
cal species. Equation (1.3.5) offers the advantage of being well suited for the time-
harmonic formulation of Maxwell’s equations where € (x, t) = R(E(x)e/“!) and H(x,t) =
R(H(x)e/“t) for electric field frequency w, complex unit j = v/—1 and complex phasors
E and H.

Although beyond the scope of this thesis, Hassouni et al. [70] also summarise the
hydrogen-methane plasma models developed for diamond deposition. The underly-
ing principles of the H, /CH, model are very similar to the momentum, particle density

and energy density conservation when coupled with a driven electric field which mod-

14
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els the hydrogen plasma [67]. The introduction of methane to the model introduces
much greater complexity due to the larger number of chemical species and chemical
reactions. Furthermore, the ionisation properties and hence plasma parameters of the
H,/CHy4 mixture will be largely different from those incorporated in the hydrogen
plasma model [50, 85, 119]. It should be noted that in diamond deposition reactors,
which will only have peak ratios of CHs/H; at «~10%, the difference in the plasma
shape, position and optimal power deposited from the electric field compared to the

hydrogen plasma is not significant [56, 57].

The series of articles by Fiiner et al. [53-55] and subsequently the work by Hassouni
et al. [69] and Hagelaar et al. [63] give a chronological account of the development of
numerical models of CVD reactors employing the finite difference method. Account-
ing only for diffusive transport in a hydrogen gas mixture, a numerical model is solved
with the emphasis being on the measurement of the microwave power deposition in the
plasma discharge, as well as the composition of the plasma at the diamond substrate
surface. Modelling hydrogen dissociation allows for the simulation of the configura-
tion of the shape, temperature and position of the plasma in the CVD reactor. Using
the plasma shape calculated from this result, a further model is presented for the mix-
ture of hydrogen and methane in one dimension along the axis of the ignited plasma.
The results of the hydrogen methane model were then used to analyse transport and
wave phenomena in the plasma, and therefore the optimisation of diamond growth

processes at the substrate surface.

1.4 Numerical Simulation and Reactor Design

The use of numerical models for the optimisation of reactor design is reviewed by Silva
et al. [127]. Simulations presented in [127] show that the concentration of atomic hy-
drogen resulting from its dissociation from molecular hydrogen is sufficient to encour-
age deposition of high purity diamond films whilst maintaining large growth rates in
various reactor geometries. Most importantly for MPA-CVD reactors, the shape and
volume of the plasma produced in the MPA cavity of the CVD reactor depends greatly
on the careful design of the microwave system. The capacity to precisely account for
the coupling between the electric field and the plasma and therefore the perturbation
in the electric field is a key component in the reactor’s geometric optimisation. For ex-
ample, this perturbation can lead to large portions of the input power being reflected

resulting in detrimental heating and damage of the reactor walls or quartz window.

15
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Improving reactor design by exploiting numerical reactor modelling usually involves
the optimisation of a so-called quality factor Qf. The quality factor function is depen-
dent on the CVD reactor operating parameters, such as geometric dimension, operating
pressure and antenna/waveguide configuration. Computing simulations on a discrete
mesh of cells representing a CVD reactor geometry, Fiiner et al. [55] demonstrate the
optimisation of their ellipsoidal reactor design based on the metric of absorbed mi-
crowave energy in the plasma measured in terms of the electric field magnitude, |£|,

whereby Q is defined by
ef*

lasma cells
Q= -1 . (1.4.1)
! Lo [eP

remaining cells

This quality factor metric is further implemented in recent numerical reactor design

methods, cf. An et al. [6].

The use of numerical modelling for reactor design allows for novel geometric shapes
of CVD reactors to be easily tested. We note that the choice of the quality factor function
depends on a desired quantity of interest, and that we are not restricted to (1.4.1). For
example, incorporating geometries designed to reflect the enclosed coupled resonant
electric field maxima to a single focal point as in [55, 98]. Recent simulations used
for CVD reactor designs, optimising geometries of reflective surfaces, are presented in
[6, 97,130, 131].

We emphasise that in these models only diffusive effects are considered, or the bulk
gas flow of hydrogen is modelled as a velocity potential, cf. Koldanov et al. [92].
Our aim here is to model the conservation of momentum of the atomic and molecular
hydrogen gas mixture and therein its diffusive and particularly its convective transport
phenomena. Due to the convective terms arising in the model presented in this thesis,

we will employ the discontinuous Galerkin finite element method.

1.5 Discontinuous Galerkin Finite Element Methods

1.5.1 Hyperbolic and Elliptic Operators

The finite element method seeks to approximate the weak formulation of a given par-
tial differential equation (PDE) boundary value problem, based on employing piece-

wise polynomials. Indeed, the computational domain is subdivided into elements and

16
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the underlying solution is approximated on each element by a polynomial of a given or-
der ¢. In ‘traditional” continuous Galerkin (CG) finite element methods, the assumption
is made that the numerical solution approximation is continuous across the boundaries
of the elements. To enforce this continuity condition, the approximating polynomial of
an element on the mesh will share degrees of freedom with its neighbours. Subject
to enforcing appropriate boundary conditions, the CG finite element approximation
closely follows the variational formulation of the underlying PDE by replacing trial and
test functions by piecewise polynomials. In the case of linear problems, this discrete
system leads to the matrix problem Ax = b. The book by Babuska and Strouboulis [10]

details the early history of the development of finite element methods.

Standard CG finite element approximations of convection dominated problems ex-
hibit non-physical oscillatory solutions leading to issues of poor numerical stability. As

an example of such numerical instability, on the interval (0,1) consider the equation

d%u du
— e@ + ba =0, u(0)=0, u(l)=1, (1.5.1)

which has the analytical solution

b
u(x) = ﬂ. (1.5.2)

1—ec
Here, the quantity /e is the Péclet number; for a large Péclet number (b > €) equation
(1.5.1) becomes convection dominated, leading to the formation of a boundary layer,
where u rapidly changes close to x = 1. For € = 0.01 and b = 1, the analytical solu-
tion and CG finite element approximation with 10 elements are shown in Figure 1.2a.
Stabilisation schemes for the standard CG finite element method have been proposed
to alleviate this problem such as ‘upwinding’ [23] and the residual free bubble method

[22, 27].

When modelling the transport phenomena found in CVD reactor gas flows, the re-
sulting equations can be convection dominated in the case of high input gas flow rates.
Thereby, numerical simulations require the approximation of systems of highly non-
linear equations stemming from the exploitation of very fine resolution computational
meshes. Brooks and Hughes [23] introduce the challenge of finding numerically stable
solutions to the Navier-Stokes equations. With application to the Navier-Stokes equa-
tions, examples are given for including “artificial viscosity” in the direction of convec-
tion in the form of an added diffusion term. This streamline up-wind/Petrov-Galerkin

method introduces stability into the finite element solution of convection dominated

17
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Figure 1.2: Finite element solutions to equation (1.5.2). This presents an example of
non-physical numerical oscillation error present in continuous Galerkin fi-

nite element approximations of convection dominated problems.

problems. Brooks and Hughes give examples ranging from a convection-diffusion
equation to vortex shedding from a circular cylinder. A summary of stabilisation meth-
ods proposed for CG methods and their comparison with discontinuous methods is
given by Cangiani et al. [28]. Implementing this notion of stabilised CG finite element
methods applied to numerical approximations of chemically reacting flows, along with
some strategies for re-meshing and mesh refinement, Braack and Richter [20] present

results implementing the SUPG method developed by Brooks and Hughes [23].

Currently an area of great interest in computational modelling, discontinuous Galerkin
(DQ) finite element methods offer novel schemes which attempt to address the numer-
ical stability problem. Further benefits of the DG finite element method arise from the
richer space of functions in which the numerical approximation is sought (e.g. per-
mitting discontinuities across element interfaces) and the consistent DG finite element

formulation for PDE operators, as will be shown in Chapter 3.

Stemming from the concepts of weakly enforcing Dirichlet boundary conditions on
the exterior of a computational domain [109], the DG method weakly enforces con-
tinuity of the solution variable across interior element faces. As a consequence, the
‘upwinding” employed artificially by other methods is in fact implicitly a component
of the DG formulation. Its application to elliptic PDEs is summarised by Arnold et al.

[8] reviewing earlier proposals for non-conforming finite element methods. For exam-
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Figure 1.3: Comparison of run times to complete a simulation of a CVD reactor geom-
etry for a more extreme parameter set using a CG and DG finite element
method on the same mesh. These results were generated from a prelim-
inary model which does not include the coupling of the electromagnetic

field and plasma model.

ple, some of the many DG finite element methods include: symmetric interior penalty
methods [7, 11, 49, 143], non-symmetric interior penalty methods [77, 120], incomplete
interior penalty methods [45, 48, 132] and the Baumann-Oden method [15]. Analysis
of the DG finite element method applied to nonlinear second order PDEs has been un-
dertaken in [26, 62, 81], for example. The application of DG methods to hyperbolic

problems and its a priori analysis has been analysed in [17, 73, 75].

Numerical experiments show the advantages of the increased stability and robust-
ness of the DG method compared with CG methods, however at a cost of greater
computational expense. This arises due to the DG scheme allowing for discontinu-
ities across boundaries of elements, which implies that degrees of freedom are not
shared between elements as with CG schemes, but rather more degrees of freedom are
required to enforce numerical flux restriction on the facets between neighbouring ele-
ments. A DG finite element approximation to the solution of equation (1.5.1) is given in
Figure 1.2b for € = 0.01 and b = 1 demonstrating the advantages of the DG numerical

scheme in this convection dominated system.
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Examples of the DG method applied to the Stokes [39], Euler [64], compressible
Navier-Stokes [66], incompressible Navier-Stokes [38, 40—42] and incompressible mag-
netohydrodanamics [82] equations give a comprehensive explanation of the formula-
tion of DG methods for fluid flow problems along with their a priori numerical analysis.
By fixing the element polynomial degree of the approximating polynomial, optimal
convergence rates can be analytically derived and experimentally shown by varying
the element size, so-called h-refinement. Furthermore, due to DG methods permitting
basis functions discontinuous across element interfaces, varying the degree of the ap-
proximating polynomial across elements in the DG scheme is handled by the method
in a simple manner. This leads to the so-called p- and hp-refinement methods being
easily implemented in a DG scheme, which offer exponential convergence rates with
an increasing number of degrees of freedom [74, 76]. Naturally this leads to adaptive
refinement based on a posteriori dual weighted residual error estimation, for which DG
methods are well suited. Examples of this approach for nonlinear hyperbolic conser-

vation equations is given in [65].

The details of the CVD reactor model and the computation of its numerical approx-
imation will be discussed later in this thesis; however, to highlight the benefit of using
DG methods in this project, a comparison between using a CG and DG method for the
CVD reactor model was devised. We use a reduced reactor model which only solves
for hydrogen gas momentum, mass and enthalpy balance, but not the electric field and
plasma model. Selecting a CVD reactor geometry and a set of parameters which would
describe a typical CVD reactor state for growing diamond, the time elapsed to compute
the solution is shown in Figure 1.3. The primary reason for the improved performance
of the DG scheme is that the stability and robustness it offers leads to a reduction in
the number of continuation steps required to compute the solution of the system state
for the given parameter set. Another clear benefit of the DG scheme is from the richer
space of functions in which the solution is sought. The DG Taylor Hood elements em-
ployed to solve the gas flow momentum balance equations permit piecewise constant
polynomial approximation of the pressure and piecewise linear polynomials for each
component of the velocity solution. This reduces the number of degrees of freedom
in the system compared with the CG FEM Taylor Hood scheme, although at a cost of

greater approximation error due to the lower polynomial order.
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1.5.2 Time-Harmonic Maxwell Operator

The time-harmonic Maxwell equations present a series of challenges in their approxi-
mation using finite element methods. In a naive approach, their reformulation to the
Helmholtz equation through the divergence free field constraint of Gauss’ Law, allows
for the standard variational formulation of the Laplace operator using CG finite ele-
ment spaces [83, 84]. Not only does this require that the discretisation of the underly-
ing geometry satisfy Nyquist’s theorem, but in the case of a non-convex domain, the
solution to the time-harmonic Maxwell equations can be singular. Here, the use of stan-
dard finite element methods will lead to the discrete solution erroneously converging
to a function which is not the solution to Maxwell’s equations. Accounting for this, the
tangentially continuous edge elements of Nédélec with H(curl) conforming basis were
developed in [107, 108], see also [86, 106].

For a review of the development of DG methods for the time-harmonic form of
Maxwell’s equations, we refer to the series of articles [79, 80, 114, 115]. In the discreti-
sation process, the flux formulation weakly enforces continuity of the inter-element
tangential flux. Furthermore, the divergence free field condition of Gauss’ law is en-
forced by a Lagrange multiplier. Buffa et al. present the application of DG methods to
the Maxwell eigenvalue problem in [24, 25].

Eigenvalue problems include those required for computing electromagnetic resonant
frequency estimates of resonant cavities. For example, consider the eigenvalues A of the
Maxwell operator acting on the vector eigenfunction u in a computational domain ()

with boundary 0Q) together with prescribed homogeneous boundary conditions

VXxVxu=Au in (), (1.5.3)
nxu=20 on oQ). (1.54)

Given a finite dimensional solution space Vj, ;, the DG variational formulation of (1.5.3)

is to find eigen pairs (0 # uy, Ay) € Vj, ¢ x C such that
a(ay, vi) = Ay(ay, vi) Vv, € Vi, (1.5.5)

Here, ay,(-,-) is the DG sesquilinear variational formulation of the Maxwell operator
and (u,v) = [, u- ¥V dx denotes the usual L,((}) inner product. The DG finite element
matrix formulation of the eigen problem is of the form A, U = A; MU where Ay, is the
discrete matrix formulation of the bilinear operator a;(-,-), U is the DG finite element

solution vector and M is the mass matrix. Numerical solutions to this problem can be
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calculated using eigenvalue and eigenvector computational libraries such as ARPACK
[95].

1.6 Automatic Solution of Partial Differential Equations

Writing code to implement finite element methods is a challenging task, however
several libraries exist which facilitate the solution process. At the low level, libraries
such as FreeFem++ [72], deal.Il [14] and OpenFOAM [142] provide data structures and
functions encapsulating aspects of the finite element computation. These libraries still
require in depth knowledge of the application of finite element methods and experience
with the languages and their paradigms in which they are each written. Using such
packages to formulate and solve the systems of equations associated with large multi-
physics models in several subdomains of a parent geometry remains a very technical

and time consuming task.

One approach which aims to bring a higher level of language syntax to the compu-
tation of finite element solutions is illustrated by the Unified Form Language (UFL) of
the FEniCS project. Exploiting Python for its dynamic and weakly typed nature, along
with automated memory management and synergy of object-orientation, procedural
and functional constructs, the UFL syntax allows for user friendly and expressive spec-
ification of finite element problems. Examples of a similar syntax to the UFL are given
in Table 1.1. By creating a layer of abstraction between the model and the numerical
solution, the UFL allows a user to specify their problem with little requirement to be
proficient with programming. Details of the implementation of the UFL and the FEn-
iCS Form Compiler (FFC) which automatically generates C++ code to solve the finite
element problem are discussed along with design choices based on the works of sym-
bolic and automatic algebraic calculus collected by Bischof et al. [19]. A collection of
numerical problems in various fields of mathematics, including fluid flow problems

and the results of their calculation in the FEniCS suite is given by Logg et al. [103].

The practical use of packages such as FEniCS is the encapsulation of the complexity
of writing finite element code. An overview of how such packages are created, with
specific consideration to DOLFIN, part of the FEniCS project is given by Logg and Wells
[102]. Futhermore, a discussion of the aesthetic links between the syntax of high level
code and finite element mathematics along with its application in the FEniCS project

is given by Alanees et al. [2]. Examples of this high level language used for numerical
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FE Operation Code Syntax

fQ uov dx ukvrdx
J50 8vds g*vxds
Vu grad(u)
V-u div(u)
u-v dot(u, v)

Ipl - {a} dot(jump(p), avg(q))

Table 1.1: Examples of high level code syntax following aesthetically from the finite

element method nomenclature.

analysis of the DG finite element formulation of the Poisson, advection-diffusion and

Stoke’s equations are presented in Jlgaard et al. [110].

Even in this user friendly setting, large systems of nonlinear PDEs with parameters
which may consist of power series or functionals of solutions variables, writing the DG
formulation can be a difficult task and prone to human error. Furthermore, the specifi-
cation of a DG finite element formulation in the UFL can be somewhat verbose given
that there are not any utility methods for handling elliptic or hyperbolic operators. A
computational tool whose syntax resembles that of the UFL as a basis for automatic
computation of large DG finite element problems, whilst ensuring ease of code gener-
ated is a further challenge addressed in this thesis with the development of the software
suite AptoPy. A brief summary of AptoPy’s structure is given in Section 1.7.3 and its
syntax and operation in the subsequent Section 1.7.6. The development and operation

of the AptoPy package is discussed in greater detail in Chapter 5.

1.7 AptoFEM and AptoPy

The underlying finite element software package used throughout this thesis is AptoFEM
[1]. The AptoFEM project is lead by Paul Houston and has had several contributors. A
major contribution of this thesis is the symbolic algebra front end to AptoFEM named
AptoPy. In this section we introduce the basics of the implementation of a simple finite

element problem, how AptoFEM and AptoPy are used to solve this problem, and then
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the syntax and structure of the code required to compute the solution.

1.7.1 The Finite Element Method

The finite element method is constructed based on approximating the solution to the
weak formulation of a PDE [87]. With this in mind consider the following variational

formulation: find u € V such that
a(u,v)=1(v) YoeV. (1.7.1)

Here, V is a Hilbert space, a (-, -) is a bilinear form on V x V and I (-) is a linear func-

tional on V. Here (1.7.1) may be considered as the weak formulation of a linear PDE.

Employing a Galerkin scheme, the finite element approximation u; € V}, is sought
such that
a (Llh, Uh) =1 (Uh) Yo, € Vy, (1.7.2)

where V}, is a finite dimensional subspace of V, composed of the span of continuous
piecewise polynomial basis functions of fixed order defined on a given computational
mesh. Employing a suitable basis for V}, i.e., writing V;, = span,_; y{¢i}, where
N = dim(V}), the finite element method (1.7.2) may be re-written in the following

equivalent matrix form: find u = (U, ..., UN)T such that
Au =f. (1.7.3)

Here, A;; = a(¢;, ¢;) and f; = I(¢;). In principle, assuming that A is invertible, the

solution vector u may be computed.

For a nonlinear PDE, a semilinear weak formulation can be derived; in this setting
we seek u € V such that
N (u;0) =0 Yo e V. (1.7.4)

Here, N (u;v) is a semilinear form, which is nonlinear in u but linear in v. In this case,
the finite element solution u;, = YN ; U;¢; is determined as the solution of the system

of nonlinear equations defined by
N (up;0) =0 Yo, € V). (1.7.5)

To compute the solution we may employ Newton’s method [20, 89]; thereby, we have
the iteration
uf =l +dy, (1.7.6)
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where d}! is the update of ]} defined by: find d; € V}, such that
N} (uf;0n) = =N (uf;04) Vo, € V. (1.7.7)

Here, N [w] (u; v) is the Gateaux derivative of N (1;v) in the direction of w, i.e.,

N [w] (u;0) := limN(u+TW;v) —N(u;v)'

7—0 T

(1.7.8)

1.7.2  AptoFEM

AptoFEM serves as a practical tool for the automated solution of PDEs using the finite
element method. Data structures and functions are made available to the user allow-
ing them to specify the finite element form of the weak formulation. The AptoFEM
kernel then manages and handles the computation of the solution of the linear equa-
tion (1.7.3) or the nonlinear equation (1.7.5), provided that the user specifies the form of
the residual vector N (uy,;v),) and the Jacobi matrix N [uy,] (dj; vy,). AptoFEM further
provides interfaces to external linear algebra packages such as MUMPS [4], PETSc [12]
and ARPACK [95].

Although AptoFEM is a powerful tool, in the case of increasingly large coupled sys-
tems of PDEs the user specification of the finite element form becomes evermore prone
to human error. The evaluation of the Jacobi matrix can also be a somewhat laborious
task, inviting the possibility of human error compounded by the fact that the syntax
of the code does not follow aesthetically from the mathematics. A proposed remedy
to this is to generate the finite element form code automatically with computational

symbolic algebra as detailed by Cliffe and Tavener [37].

1.7.3 AptoPy

A major contribution of this thesis is the development of the AptoPy package. This
provides a user friendly front end to AptoFEM which automatically formulates the
required Jacobi matrix, enforces boundary conditions for a given domain, and manages
the execution of the solution process. Whilst planning a front end for AptoFEM, a series

of key requirements were drafted:

* Be concise, with as little verbosity as possible.
¢ Feel familiar to users with little programming experience.

¢ Follow the form of the mathematics as closely as possible.
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’ -~ ARPACK | |

AptoFEM ’ — MUMPS |

~ PETSc | |

[generated Code] 3 |
~ SymPy | .

AptoPy 3 !

—~ NumPy | |

external packages

Figure 1.4: Relationship between AptoPy and AptoFEM and the implementation of

their respective library dependencies.

¢ Automate the entire process between specification of a problem and AptoFEM

computing a solution.

The preliminary objective was to choose a language to allow a user to write their
finite element problem. Satisfying the requirement of familiarity for those with lit-
tle programming experience, and the availability of the open source symbolic algebra
package SymPy [133], the language chosen was Python. A simplified overview of the
synergy of AptoPy, AptoFEM and their dependencies is given in Figure 1.4.

Pending adequate testing and review, it is hoped that the front end Python layer,
named AptoPy, will allow AptoFEM to be used as more than a FEM code for research,
but a tool for those who have little experience with numerics wanting to solve differ-

ential equations in complex geometries.

1.7.4 The 1D Poisson Equation and Weak Formulation

To provide some insight into the AptoPy package, in this section we provide a brief
outline of the syntax employed to solve a PDE. The architecture and design of AptoPy,
as well as a performance and validation review, will be further studied in detail in

Chapter 5. As an example, here we consider the 1D Poisson equation
— ' (x) = f(x), (1.7.9)
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for which a solution to the unknown function u is sought in the interval x € [a,b],
subject to the boundary conditions #(a) = 0 and u(b) = 0. The weak formulation is
found by multiplying the above equation by a test function v and integrating by parts

over the interval x € [a, b]; thereby, we have

b i, b
/ u'(x)0' (x) dx — u/ (x)o(x) I, = / f(x)o(x) dx. (1.7.10)

This operation requires that the functions u# and v be members of the Sobolev space

H'(a,b). Here, for the multi-index
d
o= (a,...,00) ENY, a| =) u;, (1.7.11)
j=1

the Sobolev space H"(Q)), Q) C R?, d > 1, is defined with respect to the weak deriva-
tive operator of order D*,

- olal

T axT . ax (1712

such that
H"(Q) :={u € Ly(Q) : D"u € Ly,(Q), |a] <m}. (1.7.13)

The choice of test function v is arbitrary. Since there is no information available for
u'(a) and ' (D), the test function should be chosen such that v(a) = 0 and v(b) = 0.
Defining the space

Hl(a,b) = {v € H(a,b) : v(a) = 0, v(b) = o}, (1.7.14)

we arrive at the weak formulation for the specific boundary value problem as follows:
find u € V such that

b b
/a u'(x)v'(x) dx :/a f(x)o(x) dx (1.7.15)

forallv € V, where V = H}(a,b).

1.7.5 Discretisation with Finite Elements

In order to discretise (1.7.15), the interval x € [a,b] is subdivided into individual ‘el-
ements’ of length h. The solution space V is then replaced by a finite-dimensional
subspace V;, C V which consists of continuous piecewise polynomials of a fixed de-
gree { associated with this subdivision. With this notation, we define the following

approximation: find u; € V}, such that

b b
/u up, (x)vy,(x) dx :/a f(x)op(x) dx (1.7.16)

for all v, € Vj,. This is the the so-called finite element formulation of (1.7.9).
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Writing N(h) = dimV}, to denote the dimension of the discrete solution space V,
we let V, = span {¢1,...,¢N(h)} for linearly independent basis functions ¢;, i =

1,...,N(h). Thereby, we may write u, in the following form

N(h)
up(x) = Y Ujgi(x), (1.7.17)
=1

where the coefficients U; must be determined computationally. Equation (1.7.16) can

therefore be written in the following manner: find U = (U, .. ., Uny h))T such that

N(h) b b
]; U /a ¢ig; dx = /a f¢i dx, (1.7.18)

fori =1,...,N(h). This is a system of N(h) linear equations which can be expressed
as a matrix problem, with matrix A;; = fab gb}(])l{ dx of size N(h) x N(h), and vector
bi= | ab f¢; dx yielding the equation,

AU = b. (1.7.19)

Solving equation (1.7.19) for U determines the finite element solution u;,.

1.7.6 Calculating the Solution

Using AptoPy, the solution vector U can be calculated after establishing the boundary
value problem given in equation (1.7.16). In this case, we choose 2 = 0, b = 1 and

f = 1. Initially we import the AptoPy library.

from AptoPy import x

The discretised interval x € [0,1] with 15 elements can then be instantiated as a Mesh
object, and its boundary, domain integration elements and spatial variable can be col-

lected.

mesh = DiscreteInterval(1l5, 0.0, 1.0)
dS = mesh.boundary()
dx = mesh.domain()

x = mesh.space_vars()

The finite element function space V}, is instantiated based on this mesh, with default
polynomial order ¢ = 1. The Dirichlet boundary conditions of u(a) = 0 and u(b) = 0
are strongly enforced on this function space. Furthermore, the trial function u;, and the

test function v}, associated with this function space can then be defined.
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Figure 1.5: Finite element solution to equation (1.7.16) generated using the AptoPy

code presented in Section 1.7.6.

V = FemFunctionSpace(mesh)
V.dirichlet(dS, 0.0)
u, v = V.trial(), V.test()

Now the residual of equation (1.7.16) can be constructed as follows.

residual = diff(u, x)*diff(v, x)*dx - 1.0*vx*dx

Finally, the linear system can be solved for u; by constructing a solution vector and

solving the system of equations.

U = SolutionVector (V)

newton_solve(residual, U)

The result of running this code in AptoPy is shown in Figure 1.5.

1.8 Outline of Thesis

We first introduce the MPA-CVD reactor model in Chapter 2 as a continuum model

of conservation laws. We then introduce the DG finite element method along with
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preliminary definitions of notation in Chapter 3. The DG discretisation of the MPA-
CVD reactor model, along with an abstract definition of a reactor geometry is discussed
in Chapter 4 providing a summary of the PDEs to be solved subject to appropriate
boundary conditions. Following their summary in the preceding chapter, Chapter 5
gives details of the design decisions, architecture and syntax of the AptoPy package,
which will be used to compute the numerical approximation to the solution of each of
the underlying PDEs in the system. A demonstration of the validity and performance
of the AptoPy code is presented thereafter in Chapter 6. Based on the work presented
in all of the preceding chapters, the numerical approximations to the MPA-CVD reactor
model for a number of reactor designs is presented in Chapter 7. Finally we present

our conclusions and possible avenues of future research in Chapter 8.
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CHAPTER 2

Microwave Power Assisted
Chemical Vapour Deposition
Reactor Model

2.1 Introduction

The primary purpose of the CVD reactor model is to determine the shape, density
and temperature of the ignited plasma above the diamond substrate surface. A self
consistent description must couple the electric field propagation in the reactor cav-
ity along with its perturbation resulting from the plasma. Further to this, the trans-
port phenomena arising from particle conservation of the low pressure hydrogen gas
should be accounted for. At high gas inlet flow rates the convective effects of the gas
flow will have significant impact in the direction of the flow field streamlines. In this
chapter we introduce the notion of conserving molecular and atomic hydrogen particle
species’ densities given their mass average flow field and heterogeneous chemistry due
to chemical reaction. The time harmonic description of the CVD reactor’s coupled elec-
tric field is then discussed for a medium whose electric permittivity is dependent on
the characteristics of the reactor plasma. Finally, the electron particle conservation law
is introduced subject to the gain and loss of electrons due to ionisation and electron-ion

recombination, respectively.

2.2 Mass Averaged Chemically Reacting Flow

In order to adequately model the position and fraction of dissociated hydrogen in a

gas mixture of molecular hydrogen, the mass transport phenomena and heat of the gas
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mixture must be accounted for. In this section we consider flow for a multicomponent
mixture comprising of n different chemically interacting species. The model presented
accounts for conservation of each species” density, momentum and energy density. The
theory of multicomponent flow is then applied to a binary gas mixture composed of
molecular and atomic hydrogen. In this case, consideration will only be given to two
components and the two chemical reactions enabling dissociation of molecular hydro-
gen. Here, the two components of atomic and molecular hydrogen will be labelled H
and Hy, respectively. The derivation of this model closely follows the theory of multi-

component flow outlined by Bird, Stewart and Lightfoot [18].

2.2.1 Preliminaries of Multicomponent Flow

Consider the system of n interacting gaseous species. Each gas species has density p;
and velocity u;, i = 1,...,n. For each species, the rate of increase of mass must be
balanced by the net rate of addition of mass to that volume by flow convection, molec-

ular diffusion and chemical reaction. Thereby, the conservation of mass of component

i gives

0

§%+V%mm=n/ (2.2.1)
where r;, i = 1,...,n, is the rate of mass production of component i due to chemical

reaction. Summing over all componentsi =1, ...,n yields

d
L +V - (ou) =0, (22.2)
where we employ the definitions of total density p and mass averaged flow velocity u
n
=Y pi (2.2.3)
i=1
= Liz1 Pt (2.2.4)
P
along with conservation of mass
n
Y ri=0. (2.2.5)
i=1

Introducing the diffusion flux of componenti, i =1,...,n,
ji = pi(w; —u), (2.2.6)

we rewrite equation (2.2.1) in the following form by employing the identity p;u — p;u =
0
api

g +V- (piu + jl) =7 (227)

where we note that the total diffusive flux

Y ji=o. (2.2.8)
i=1
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The conservation of mass has so far been expressed in terms of density, but we can
further express this equation in terms of the molar concentration c; of each component,
i =1,...,n,and molar concentration of the mixture c = )} ; ¢;. Given gas component
molar mass M;, i = 1,...,n, we note the relation between density and molar concen-
tration

pi = Mici, (2.2.9)

which along with the definition of the mixture mean molar mass

n . .
M= M (2.2.10)
we note that
o = Mc. (2.2.11)
The conservation of component i in terms of molar concentration is
aC,‘
S5t + V- (Ciui> =R;, (2.2.12)

where R;, i = 1,...,n, is the molar rate of mass production of component i due to
chemical reaction, such that r; = R;M;. Summing equation (2.2.12) over all species and

noting that moles are, in general, not conserved yields

ac o
§+V'(Cu)—

M-

Il
A

R;, (2.2.13)

for molar mass average flow velocity

ut = Z=1CC“ (2.2.14)
Introducing the molar diffusion fluxes of each component
Ji =ci(uj—u"), (2.2.15)
we write equation (2.2.12) as follows
L4V (cut+JH) =R, (2.2.16)
where ) ' J¥ = 0.
Further quantities of interest include the mass fraction w; = ri/p,i = 1,...,n, and

molar mass fraction x; = <i/c, i = 1,...,n, provide insight into the empirically mea-

surable state of a multicomponent system. Furthermore, we may also compute the
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number density of each species, n;, i = 1,...,n, in terms of their molecular mass, m;,

i=1,...,n, where

py =PI _ @ _ Mix; Mc
m; m; M mi'

_ Mixic 2217

= (2.2.17)

2.2.2 Conservation of Mass in a Binary Gas

Recall mass and molar mass conservation equations (2.2.7) and (2.2.16), respectively.
For the hydrogen binary gas, the diffusion fluxes ju and ju, or Jj; and Jj;, should be
expressed in terms of gradients of the concentration, temperature and pressure in order
to yield a closed system of equations for the self consistent model. Diffusion due to
pressure gradients generally occurs only when the gradient in pressure is very large,
a condition not found in MPA-CVD reactors which leads us to neglect these terms.
Therefore, the diffusion flux takes into account concentration gradients of the mixture,
as well as thermal terms. In general, j; is determined by the Maxwell-Stefan equations;
however, in the case of a binary gas mixture, the binary diffusion flux is given by Fick’s
law along with thermal terms. Specifically for atomic hydrogen in a binary gas mixture

of atomic and molecular hydrogen
ju = —0pDun, Vwy — DEVInT. (2.2.18)

Here, Dap is the binary diffusion coefficient for component A in a mixture consisting
of A and B, D} is the thermal diffusivity coefficient for component A (note that D} =
—D{ for a binary gas mix of A and B), and T is the temperature of the mixture. The
molar diffusion flux for a binary gas mixture of atomic and molecular hydrogen is

given by the equivalent formulation of equation (2.2.18), namely,

M

x _ oD (M
Ju cDun, Vxy <MHMH2

> DLVInT. (2.2.19)

Equation (2.2.19) is derived from equation (2.2.18) as follows: initially, recall the mo-
lar diffusion flux (2.2.15) with i = H, and note that

Jii = cn (up —u’)

=cg(ug—u) —cg(u* —u). (2.2.20)
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The difference between the binary mixture’s molar mass averaged velocity and its mass

averaged velocity is given by

u’ —u = xguy + Xpg,up, — U

= xg (ug — u) + xg, (ug, — u) (xg +xm, = 1)
= xﬁ]H + @sz (Equation (2.2.6))
PH PH,
- <"H . tz> m (Equation (2.2.8)) (2.2.21)
PH  PH,

Substituting (2.2.21) into (2.2.20) gives

« _ CH. XH XH, \ .
]H—H]H—CH<— )]H

P oH  PH,
o l_xH+xH . L_ﬁ x'—ﬁ
~ My T My M) " M; o T

XH, XH .

pr— 1 _ —

<MH * MH2> JH ( Xp = XH,)

M .
~ \ MMy, )T (M = xgMy + xp1, Mp,) (2.2.22)
2

In essence the relationship between equations (2.2.18) and (2.2.19) is that J{; = (ﬁ) jH-
2

This is clear in the second term of (2.2.19), and becomes clear in the first by noting that

—pDun,Vwy = —pDun,V (P;)

MHCH
Mc

_ H
oD ()
MVXH — XHVM>

= _pDHHZV (

M2

= —C7DHH2VXH. (2223)

For the hydrogen binary gas, combining the equation of molar concentration conser-
vation (2.2.16) for i = H and the definition of the molar flux in equation (2.2.19) yields

the conservation equation

acj +V. (cHu*) -V- <CDHH2VXH + <

5 DLV iIn T) =Ry (2.2.24)

MuMp, )

We require (2.2.24) to be expressed in terms of the mass average flow u in order to

easily couple with the conservation of momentum model which will be discussed in
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the following section. To eliminate u* we note that by employing the definiton of the

mass average flow (2.2.4), we get

u’ = u— wyuy — Wh,uy, + u*

=u— wHy (uH—u*)—wH2 (qu—u*) (CUH+CUH2:1)
— g gy DHape (Equation (2.2.15))
CH CH,
oy MMy <w,. 2, ¢ A@) (22.25)
Hence,
cau’ = cgu + ¥y <MH2M_MH> Ji. (2.2.26)

Substituting this into (2.2.24) yields the conservation of mass in terms of each species’

molar concentrations and their gradients

ac My, - M * *
a—tH +V- <cHu+xH (HZMH) ]H+]H> =Ry
dc xg (Myg, —My)+M_,
7atH+V~ <CH11+ ( = M ) JH) =Ry
dc My, .,
WLy, <cHu + Mo JH> ~ Ry, (2227)
from which we get the following conservation equation
DT
M) | g () = V- (Mepy Vi + PEVINT) = Ry (2228)
ot M My

It should be noted here that the thermal diffusivity of atomic and molecular hydrogen
is often small, especially in the case of the low pressure gas mixture in a CVD reactor,

and can thereby be neglected [117].

In order to define the density and concentration of a mixture, here the equations of
state for an ideal gas are introduced:

P MP
c= T o= RT’ (2.2.29)

where P is the constant mean pressure of the system and R is the gas constant. Noting
that p = Mc, p can be defined in terms of molar mass fractions comprising the mixture,

ie., b
P =27 1; M;x;. (2.2.30)

The binary gas mixture’s molar mass fractions of atomic and molecular hydrogen can

be expressed in terms of xy, = 1 — xy yielding the expression for p

P

o= RT (Z\/IH2 (1 — XH) -+ MHXH) . (2.2.31)
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In the case of the ideal gas, we may also extend the calculation of the gas species num-
ber density in (2.2.17) such that the number densities of atomic and molecular hydrogen

are given by

- MHxHi
- my RT’
. ]\/IH2 (1 — XH) P

_ P 2233
", my,  RT (2.2.33)

ny (2.2.32)

In the specific case of a binary gas mixture involving the dissociation of hydrogen,

two simple reactions are assumed to take place,

H+H —H+H+H, (2.2.34)
H+H—H+H+H (2.2.35)

Assuming the chemical reaction rate constants to be the same for both reactions, the

reaction rate for atomic hydrogen is given by
Ry = Ry —R,. (2.2.36)

Here, Ry is the forward molar rate of production by dissociation and R, is the reverse
molar rate of production. Each of R 7 and R, are determined by the chemical kinetics
of each reaction, depending on the concentration of each species H and H; along with
the forward and reverse reaction rate coefficients, k ¢ and k., respectively. We refer to
[18] regarding details of chemical kinetics in reaction terms. In the case of the rate of

production of H by dissociation from H; we write

RH =2 kaIZ-IZ — er%_ICHZ + kaHZCH - er%_I

reaction (2.2.34) reaction (2.2.35)
=2 (kf <c2 (1—xp)* +cPxy (1— xH)> —ky (Pxfy (1 —xp) + c3x%))
=2 (kpc* (1 — xu) — k), (2.2.37)

where the factor of 2 accounts for 2 H atoms produced per reaction and we assume the

forward and reverse rate coefficients to be equivalent for each reaction.

2.2.3 Conservation of Momentum

Assuming the viscosity # of the mixture of n individual chemical species to be isotropic,

the conservation of momentum is described by the quasi-incompressible Navier Stokes
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equations
gfz +V - (ou) =0, (2.2.39)

Here, g is the acceleration due to gravity and the stress tensor 7 is defined as
T=—pl+y (Vu—l—VuT—%(V-u)I), (2.2.40)

where p is the pressure and 1 is the identity tensor. The viscosity of the mixture can be
determined by the semi-empirical formula [144]
n

XiNi
=y A 2.2.41
1 ; Yje1 X Pij 2240

where 7); is the viscosity of the ith component of the mixture, and ®;; is given by

1 1 1 2
2\ T2 N2 /M2
;i = \}g (1 + ﬁ;) (1 - <Z;) <MZ> > : (2.242)

In the case of the binary gas mixture of atomic and molecular hydrogen

6311 12(1 - xp)
n= T N\2 + L N\2
6xH+\@(1+2zN) (1-xy) 12N2 (1—xH)+\@(1+2zN) i

My,

(2.2.43)
— H
where N = T, [144].

2.24 Conservation of Energy

The conservation of the energy density pE of a multicomponent mixture is governed
by

a(gf) +V-(()E—=T)u)+V-q=Q+pu-g (2.2.44)

where q is the energy flux of the mixture, Q is an energy source, pu - g is the power
expended from external force acting on the gas mixture and E is the total energy of the
system. E can also be expressed as E = e + 3u%, where ¢ is the internal energy per unit

mass, and 11 is the kinetic energy per unit mass, with u?> = u - u.

Now consider the mechanical energy equation, formulated by taking the product of
the conservation of momentum equation (2.2.38) with u and rearranging with respect
to the continuity equation [18]

A(zpu?)

oy + V- (3pu*u) = V- (tu) +7: Vu=pu-g. (2.2.45)
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By subtracting the mechanical energy in equation (2.2.45) from the conservation of en-

ergy in equation (2.2.44) it can be shown that

a(apte) +V-(peu) —7:Vu+V.q=0Q. (2.2.46)

Similar to the process for finding the conservation of mass in terms of molar mass
fractions, the conservation of energy equations should be reduced from their thermo-
dynamic internal energy description to a form which is easily measured empirically.
In this case, the conservation of energy should be expressed in terms of the system’s
temperature T and specific enthalpy i = h(T). The specific enthalpy for the multi-
component mixture can be expressed in terms of each of the specific enthalpies of the

mixture’s species, weighted by their respective mass fraction, i.e.,

h=)Y wih; (2.2.47)
i=1

The enthalpy of the system is composed of its internal energy in addition to the

thermodynamic work done by the system on its adiabatic chamber, i.e.,
h:e+g (2.2.48)
where p is the pressure of the gas mixture. Substituting the expression for enthalpy

given in equation (2.2.48) into the conservation of internal energy equation (2.2.46), it

can be shown that

d(ph 9
§)+vxmw+v«p=£+vwmﬂ+VVu+Q
d
— ETZJ +u-Vp+ Tgev : Vu+Q, (2.2.49)

where we have introduced the deviatoric component of 7, given by
Tdey = 1] (Vu +Vu' — % (V- u)l) ) (2.2.50)

In the CVD reactor model we assume the viscous dissipation effects in the CVD vac-
uum to be negligible as they are important only in flows with enormous velocity gra-
dients; thereby, we set

Tgey : Vu = 0. (2.2.51)
We further state the ideal gas assumption of (2.2.29) that the gas flow in the CVD reactor

is flowing in a system with constant mean pressure P, i.e., we take

aaiz +u-Vp=0. (2.2.52)
Upon making these assumptions, equation (2.2.49) reduces to
d(ph
(gt) +V . (phu)+V-q=0Q. (2.2.53)
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An expression for the energy flux can be found in terms of Fourier heat diffusion,
where the Dufour effect of energy transport due to concentration gradients between
chemical species is small and can be neglected [18]. Here, for multicomponent gas

mixture temperature
n

q=—xVT+ ) hiji. (2.2.54)
i=1

The thermal conductivity x can be expressed in terms of each chemical species thermal

conductivity x;,i = 1,...,n, (see [18]), i.e.,

-1
K = % Y xir + (Z xl) . (2.2.55)

The term involving the spatial gradients of the species’ specific enthalpies in equation
(2.2.54) is often small and can be neglected [18], leaving the form of the conservation of
energy in terms of enthalpy and temperature given by

d (oh

(ai) + V- (phu) — V- (xVT) = Q. (2.2.56)

A thermodynamic quantity of interest in the CVD reactor is the specific heat of the

plasma, namely,

oh
cp= (5’T>p,wi' (2.2.57)

In the specific case of the binary gas mixture, its specific heat is given by
cp = wncpu + (1 — wn)cpn,, (2.2.58)

where ¢, g and ¢, g, are the specific heats of each species. It is worth noting that em-
P, p,2 p p g
pirical data is usually obtained by measuring molar heat capacities, C,;, i = 1,...,n,

together with its relation to the specific heat capacity,

_ S 2.2.59
CP,i = M ( L. )

2.3 Electromagnetic Waveguides and Resonators

The coupling of a microwave frequency electric field within the CVD reactor is key
to the localised heating of the gas mixture above the diamond substrate. For a closed
cavity whose walls act as perfect conductors, there are infinitely many harmonic elec-
trical resonant modes at an equal number of corresponding frequencies which can be
excited. Common commercially available magnetron devices operate at frequencies
of 896 MHz and 2.45GHz. A key aspect of CVD reactor design is to ensure that the
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reactor’s geometry supports a given resonance mode at the frequency of the driving
magnetron. Furthermore, it is favourable that the profile of the resonant electric field’s
amplitude be at its greatest magnitude above the substrate surface, ensuring efficient

dissociation of hydrogen above the diamond substrate surface.

2.3.1 Wave Propagation in Lossy Dielectrics

Electromagnetic fields are created by static charge distributions and directional flow of
electric charge. For a scalar distribution of charge density denoted by pe, and a cur-
rent flow of electric charge i, Maxwell’s equations state the electric and magnetic field
intensities £(x, t) and B(x, t), respectively, and the electric displacement and magnetic

induction fields D(x, t) and H(x, t), respectively, are related by

B yxe=o, (2.3.1)
ot
V-D =pe., (2.3.2)
oD .
=~ VxH=, (2.3.3)
V-B=0. (2.3.4)

The electromagnetic field, electric displacement and magnetic induction fields are re-
lated by

D =¢€, (2.3.5)
B=uH, (2.3.6)

where e and p are the material permittivity and permeability, respectively.

Analysing electromagnetic wave propagation at a single frequency, the time-dependent
Maxwell’s equations can be reduced to the time-harmonic Maxwell system. For a given

radiative temporal angular frequency w, the electromagnetic field is time-harmonic if

E(x,t) = R(E(x)el"), D(x,t) = R(D(x)el“"), (2.3.7)
B(x,t) = R(B(x)e/“"), H(x, t) = R(H(x)e/“"), (2.3.8)

for time ¢, imaginary unit j = v/ —1, and complex-valued phasor terms E, D, B and H.

Similarly, the charge and current densities can be expressed in phasor form,

Pe(X, t) = ?R(py(x)ej“’t), (2.3.9)
i=R>A(x)el ). (2.3.10)
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Figure 2.1: Cylindrical waveguide geometry of radius a and length d.

Substituting these expressions into Maxwell’s equations and exploiting the electromag-
netic field relations given in (2.3.5) and (2.3.6) along with the current density approxi-

mation for electrical conductivity ¢, namely,
i=0¢, (2.3.11)

yields the time-harmonic formulation of Maxwell’s equations for a dielectric medium

V x E = —jwuH, (2.3.12)
V- (¢E) = py, (2.3.13)
V x H = (0 + jwe)E, (2.3.14)
V- (uH) = 0. (2.3.15)

Applying the curl operator to equation (2.3.12) and substituting into (2.3.14) yields the

time harmonic E-field formulation
V x (y—lv x E) + jw (0 + jwe) E = 0. (2.3.16)

Similarly, by applying the curl operator to equation (2.3.14) and substituting into (2.3.12)

yields the time harmonic H-field formulation

V x ((a+jws)_1 V x H) + jwuH = 0. (2.3.17)

42



CHAPTER 2: MICROWAVE POWER ASSISTED CHEMICAL VAPOUR DEPOSITION
REACTOR MODEL

2.3.2 Uniform Isotropic Lossless Waveguides

The behaviour of uniform lossless waveguides filled with an isotropic dielectric ma-
terial is well understood for cross-sectional geometries such as rectangles, circles and
coaxial cylinders [99]. Here, the derivation of the solution to the time harmonic E-
field formulation will be briefly demonstrated for the empty homogeneous cylindrical
waveguide of radius a shown in Figure 2.1, with isotropic material parameters (i.e.,
pv = 0,0 = 0, e and p are constant). We consider the case of the propagating elec-
tromagnetic wave operating in a transversal magnetic (TM) mode; this is where the
magnetic field only has non-zero components transverse to the direction of wave prop-
agation 2, i.e, H = H,t + Hy6. This electric field configuration is commonly used in

CVD reactor design.

Let Q = {r,0,z : r < a} with boundary 92, with unit outward pointing normal
n represent the geometry of the waveguide depicted in Figure 2.1. We wish to solve
the time harmonic formulation of Maxwell’s equations subject to the perfect electric

conductor boundary condition on d(), namely,

V XV xE— puew?E =0 in Q, (2.3.18)
V-E=0 in Q, (2.3.19)
nxE=0 on 9. (2.3.20)

Employing the vector identity
Vx(VxA)=V(V-A)-V3A (2.3.21)

in (2.3.18), whilst taking note of the divergence free condition imposed by Gauss’ law

(2.3.19), yields the time harmonic Helmholtz formulation

V2E+KE=0 in Q, (2.3.22)
nxE=0 on dQ), (2.3.23)

where k = /jiew is the propagation constant.

Equation (2.3.22) is linearly independent in each orthogonal direction t, § and 2. As
such, solving for only the Z component of the electric field allows the remaining compo-
nents of the electromagnetic field to be derived from the time harmonic E- and H-field
formulations of Maxwell’s equations. Given the perfect electric conductor boundary

condition E; = 0 on the waveguide walls, the solution to

V2?E, +K*E, =0 (2.3.24)
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can be shown to be the radially and azimuthally harmonic function [99]
X”P —jBupz
E, = EozJn 71’ cos(nf)e TPz, (2.3.25)

Here, Ey, is the peak field amplitude, 7 is the integer order of the azimuthal harmonic
mode, ], (-) is the nth order Bessel function of the first kind, X, is the pth root of J,(r)

implicitly dictating the order of the radial harmonic mode and the electric field phase

2
Bup = \/ pew? — (Xa”p> : (2.3.26)

The harmonic mode numbers 1 and p are used to characterise a waveguide configu-

constant 8, is specified by

ration with the nomenclature TM,;;,. The propagation term B,, determines the nature

of the incident electromagnetic field with three cases:

2
1. Propagation: If pew?® > (%) the electromagnetic wave propagates due to real

valued phase angle of R (e*fﬁm’z) = cos(Bupz).

2
2. Attenuation: If pew? < (%) the electromagnetic wave is dissipated due to the

now complex valued phase angle of e /Pm=.

2
3. Cutoff: If pew? = (X;” ) , this is the minimum angular frequency by which the

electromagnetic field can propagate, denoted by

1 X
we= :”, or ke=—". (2.3.27)

The full TM cylindrical waveguide electric vector field solution can therefore be shown

to be

e or ke v ee

T
E— <_.ﬁnp BEZ _.,Bnp 1aEz E > . on Z 0’ p Z 1. (2328)

2.3.3 Microwave Cavity Resonator

A cavity resonator is an electrically conducting enclosure in which electromagnetic en-
ergy is confined. Analytically, a given resonator does not offer a unique solution to its
contained electromagnetic field, but rather an infinite number of resonant modes, each
of which correspond to a given resonant frequency. When the driven frequency of the
electromagnetic field corresponds to one of these resonant frequencies, the contained
standing wave will reach a maximum amplitude at the cavity’s peak energy. The stand-
ing wave mode arising from the lowest resonant frequency is known as the dominant

mode.
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In a given cavity resonator, the contained electric field E should satisfy the time har-
monic formulation of Maxwell’s equations. Consider the waveguide geometry in Fig-
ure 2.1 now with perfect electrically conducting wallsatr =4,z =0and z = d, i.e., let
Q={r0,z:r<a, 0<z<d} with boundary 0Q). As derived for the empty uniform
isotropic waveguide, the solution to the time harmonic Helmholtz formulation for a
contained TM electromagnetic field must now also be harmonic in the Z direction. The
solution to E, can be shown to be

Xn
E, = Eo.Jy (a”r> cos (16) cos (%z) , n>0,p>14>0. (2.3.29)

Here, g is in the integer modal value of the number of half waves in the axial direc-
tion. The enclosed transverse magnetic field in the cavity resonator is characterised
by the harmonic mode numbers 7, p and g using the nomenclature TM,,,;. Again, the
remaining unknown quantities of the system E,, Eg and H can be found from the set of
simultaneous relations in the time harmonic formulation of Maxwell’s equations. Here,

the resonant frequency of each harmonic mode is analytically determined by

2
Wy = \/%\/(2’”’) n (%)2. (2.3.30)

The electric field solutions of the first four TMy,, resonant modes are shown in Figure
2.2.

2.4 Plasma Ignition

2.4.1 Introduction

The source of electrons in the CVD reactor plasma should be modelled in the same
way as the species of hydrogen, in the sense that their number density and internal
energy should be conserved. We present here a simple model of electron momentum
and energy conservation, along with electron generation by ionisation and loss by re-
combination with heavy ions according to the Maxwell-Boltzmann distribution. The
derivation which follows summarises the plasma physics model presented in Gold-
ston and Rutherford [58] and Lieberman and Lichtenberg [100].

24.2 Boltzmann Equation

Let f(x, v, t) be the distribution function which describes particle position and velocity

in the six-dimensional phase space (x,v) at time t. The number of particles in a six-
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Figure 2.2: The electric field magnitude of the first four TMyj, transverse magnetic

resonance modes in a cylindrical cavity.
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dimensional phase space volume dx dv at time ¢ is then given by
f(x,v,t) dx dv. (2.4.1)

Under the influence of macroscopic forces in the (x, v) phase space, the flux of particles
in the volume element dx dv should obey the continuity equation. Consider the rate of

flux across the infinitesimal six-dimensional volume element from time ¢ to ¢ + dt,

[f(x,v,t+dt) — f(x,v,t)] dxdv =
[f(x, v, t)v — f(x+dx, v, t)v] dv dt
+ [f(x v, )vi(x, v, ) — f(x,v+dv,t)vi(x, v+ dv, t)] dxdt, (242)

where v; denotes the particles” acceleration. Division of (2.4.2) by dx dv dt yields

T = Y (fv)-Vu(fw), 243

where we introduce the operator Vy = (9/av,,9/av,, a/avZ)T. Noting that v is indepen-
dent of position x, and that the particles” acceleration v; = F/m, where F is the force
and m is the particle mass, has no dependence on v, yields the collisionless Boltzmann
equation

of

g—i—v-Vf—kvt-va:O. (2.4.4)

The Boltzmann equation, accounting for particle collisions, incorporates a further

term such that (2.4.4) is modified as follows,

of _|of
§+V'Vf+vt-vvf— [atLﬂ’ (2.4.5)

where the term [9f/at] ; accounts for the inter-particle collisions occurring almost in-

stantaneously compared with the time scale of the evolution of f.

2.4.3 Electron Particle Conservation

Consider the electron particle density n.(x, t) given by

He(x,t) = / Fdv (2.4.6)

and the associated particle flux I'(x, t) for mean particle velocity ue, i.e.,
[(x,t) = Heue = /Vf dv. (2.4.7)

Using these quantities, and by taking the zeroth velocity moment of equation (2.4.5),
the macroscopic particle continuity equation of the system is given by

01,
ot

+ V.- (neue) =G— L. (2.4.8)
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The collision term {%} | yields the particle gain G and loss L terms though processes
Cco

such as ionisation and recombination. The particle continuity equation does not pro-
vide a complete description of the evolution of 7., since the mean particle velocity u.

is unknown.

2.4.4 Particle Momentum Conservation

The plasma electron momentum conservation equation for mean particle velocity ue
can be derived from multiplying the Boltzmann equation (2.4.5) by v and integrating
over the particle velocity, i.e., taking the first velocity moment [100] (see also [93, p.
31D),

Ue
ot
where 1, is the electron mass, g. is the electron charge, p is the pressure, £ is the electric

Melle + (ue - Vue) | + Vp = gente (€ +ue x B) + [f]colf (2.4.9)

field and B is the magnetic field.

The collision term in (2.4.9) must encapsulate the momentum transfer due to inter-
species collisions. When considering only electrons and positive ions, the Krook colli-

sion operator provides a good approximation [100, p. 32]
f]o = — Zmenevmei (ue — u;) — e (Ue —ug) G+ me (Ue —ur) L, (2.4.10)
i

where i denotes each species, u; is the mean velocity of species i and v,,,; is the mo-
mentum transfer frequency for collisions with species i. Here, ug and u; represent the

mean velocities of created and lost particles, respectively.

A simplification of (2.4.9) is made by neglecting magnetic forces and considering
only the mass averaged velocity neutral species of the background gas u and average
electron neutral collision frequency with the background gas vy,,. In general the mean
velocity of generated particles by ionisation is much less than the particles” mean ve-
locity |ug| < |ue| and particles lost through recombination have little effect on their

mean velocities u;, =~ u [100, p. 32]. This leads to the following simplified model:

MeNe [aalte + Ue - Vue} = geNe& — Vp — MV, (Ue —u). (2.4.11)

Equations (2.4.8) and (2.4.11) can then be closed by choosing a thermodynamic equa-
tion of state to eliminate the pressure term p. In the isothermal case, we have Vp =
kgTVn, where kg is Boltzmann’s constant and T is the temperature. In the adiabatic
setting VInp = vV Inn, where v is the ratio of specific heats at constant pressure to

constant volume.
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2.4.5 Particle Diffusive Mobility

Due to the low density of electrons, we neglect the convective derivative terms and

consider the steady state version of (2.4.11), i.e.,
qeneg - vp - meneVme (ue - ll) - 0. (2.4.12)
Considering an isothermal plasma with the thermodynamic equation of state Vp =

kpTVne and rearranging for neu. equation (2.4.12) becomes

ksT
nowe = FeE KT G4 e, (2.4.13)
MV,  MeVm,

This can be written as the flux term
I' = —pene€ — DVne + neu, (2.4.14)

where the macroscopic mobility y and diffusion D coefficients are given, respectively,
by

e kBT
= D= . 24.1
fe MeVp,~ MeVp, ( %)

The flux I' = neue can be employed in the particle continuity equation (2.4.8) derived
from Fick’s law, i.e.,
01,

= TV I=G-L (2.4.16)

In the case when the applied electric field is absent, the single species particle diffusion
equation follows
0Me

= TV (new) =V - (DVne) =G~ L. (2.4.17)

2.4.6 Ambipolar Diffusion

The presence of the electric field term in (2.4.14) necessitates that this equation must
hold for both electrons and ions. Furthermore, for ionising collisions it should be as-
sumed that the flux of electrons and ions through any volume must be equivalent in
order for charge to be conserved, i.e., I', = I'; = I' and n. ~ n; for electrons and ions,

respectively. Thereby,
UineE — DiVine = —pene& — De Vi, (2.4.18)

which rearranged for £ in terms of V. is

£ — Di—DeVne
Wit e Me

(2.4.19)
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Substituting this expression for £ into the flux term (2.4.14) and subsequently the con-

tinuity equation (2.4.16) gives the ambipolar electron diffusion equation

o1,
ot

+ V- (neu) — V- (D,Vne) =G — L (2.4.20)

for ambipolar diffusion coefficient

D, = 1iDet HeDi. (2.4.21)

Hi + He
2.4.7 Ionisation and Recombination

Modelling the multitude of ionisation, excitation and recombination reactions of elec-
trons with heavy species is a difficult task. In this thesis, we adopt the heuristic model
employed in [131]. The collisions between the electrons and ions in the plasma, espe-
cially at low velocity, have a finite probability of resulting in their recombination into a
neutral atom. This process is dependent on the collision cross section of electron recom-
bination with the heavy ions oy, the kinetic energy of the electron u#. and the number

density of the electrons and ions. This results in a loss of electrons in the plasma
L = nen;i (Orecle) , (2.4.22)

where, 11; (Oreclte) is the average collision frequency of the electrons with the ions. We
can write (2.4.22) in terms of a recombination rate coefficient which is a function of the

electron temperature T, and the recombination energy E., i.e.,

E rec

<Urecue> - krec(Te) ~ Te .

(2.4.23)

Using the assumption that ne ~ n; and that k. is constant, the loss term in equation
(2.4.20) is written
L = Rone? (2.4.24)

for recombination constant Ry.

The plasma is maintained in the steady state if the gain of electrons due to ionisation
balances the losses due to diffusion and recombination. This process is dependent on
the momentum exchange of electrons with the heavy species. In a similar fashion to
the electrons lost by recombination, the electrons gained by ionisation is dependent on
the average electron-heavy species ionisation cross section ¢;, average electron kinetic

energy, the number density of electrons and the neutral heavy species n,, i.e.,
G = Neny (Oille) . (2.4.25)
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Figure 2.3: Plasma whose electrons are displaced by (. with respect to the ions.

This electron particle source term can also be written in terms of rate coefficient k;(Te)

and ionisation energy E;, namely,
Ei
<0’iue> = ki(Te) ~ Aie_Tie, (2.4.26)

where, A; is the ionisation rate constant. We make the simplified assumption here that
the electron temperature is strongly influenced by the time averaged magnitude of the
applied electric field and the number density of the background gas of neutrals remains
roughly constant such that

G = Ao|E|*ne (2.4.27)

for ionisation constant Ag. Regarding appropriate choices of constants Ry and Ap we
refer to [131].

2.5 Non Magnetised Plasma Properties

2.5.1 Introduction

There is a series of fundamental plasma properties and parameters which are key to
the CVD reactor model. We summarise those which are required here. Details of their

derivations and analyses can be found in [100].

2.5.2 Natural Plasma Frequency

As shown in Figure 2.3, consider a plasma of finite width I containing equal numbers
of stationary T. = 0 electrons and infinite mass ions. Displacing the electrons of this
plasma relative to the ions in the positive X direction by a distance (¢(t) < [ at time

t leads to a charge density on the left surface of p. = enf. and on the right surface
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pe = —enle. Applying Gauss’ law (2.3.2), the equal and opposite charges generate an
electric field

g, = eltebe. (2.5.1)
€0

and the force acting on the electrons is
d*Ze

meﬁ - —qegx. (252)

Substituting (2.5.1) into (2.5.2) reveals a natural oscillatory nature of the electron

plasma
d*Ze
dr?
for the fundamental characteristic frequency of an electron plasma

= —whele (2.5.3)

2
n
w2 — deMe

b = e (2.5.4)

2.5.3 Plasma Permittivity and Conductivity

In the case of a plasma occupying the volume of a background gas in the presence of
an applied time harmonic electric field, where the mass of the ions is considered to be

infinite, the force acting on the electrons is

duey
Me™ 3

The solution uey in (2.5.5) is also time harmonic with ue, = R {ﬁexef‘” t} and amplitude

= —ge&x — MV, Uex. (2.5.5)

. Ge 1

=————E,. 2.5.6
Uex mejw+Vme X ( )

When there is no applied magnetic field, the total current density ir can be derived
from (2.3.3), i.e.,

CI
iTx - 80? + 1y, (257)

where in the cold plasma approximation the current iy, is due to motion of electrons

only. The time harmonic current density i, is therefore
b = —qefteliey (258)
which leads to the time harmonic total current density der, given by
fery = JwWEEy — deNeliex. (2.5.9)

Substituting ey in (2.5.9) for the velocity amplitude of equation (2.5.6) gives

) Whe
lTx — ]wso [1 - a}(a]_]]/‘me)] Ex. (2.5.10)
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As a result, this relation of the electric field to the total current density allows the

definition of the plasma permittivity ¢, by

w2
e, =g |[1— ——2—|. (2.5.11)
g w (w = jvm,)
Furthermore, equation (2.5.10) can be written in the form iTx = (ap + jwso) E, for
plasma conductivity
2
gow
oy = _0%pe (2.5.12)
JW + Vg,

Substituting (2.5.12) into the time harmonic form of Maxwell’s equation (2.3.14) gives
the new relation

V x H = (0}, + jwey) E. (25.13)

Also note that in the low frequency case w < vy, and w < wpe, the direct current cold
plasma conductivity approximation can be derived
2
I T

= = . 2.5.14
Odc U MeVm, ( )

e

2,54 Ohmic Heating

As a result of electron-neutral collisions arising from the electric field in a plasma, the

time averaged collisional ohmic power absorbed by those electrons is given by

12

me (2.5.15)

1 2
2 IE o TMe
| | O—dcwz_i_vrzne

P =
ohm 7

where |E|* = E - E. This source of heat is then applied in the conservation of energy
of the multicomponent gas mixture heat source term Q of equation (2.2.44). Outside of
the CVD reactor’s vacuum region in which a plasma cannot be ignited, the standard
Joule heating model is applied

Q=c|E]. (2.5.16)

2.6 Summary

In this chapter we have derived a fully self consistent model of the MPA-CVD reactor.
By this we mean that the solution to the equations derived from the physical conserva-
tions laws of momentum, energy, mass and number density, along with the contained
electromagnetic field, is to be determined simultaneously. The numerical solution of

this system requires the approximation of the unknown quantities of the mass average
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gas velocity u, the relative pressure p, the molar mass fraction of atomic hydrogen xy,
the system temperature T, the time harmonic electric field E and the number density of
the electrons in the plasma n.. Compound with the difficulty of simultaneously solv-
ing the system of equations, the coefficients relating to dissociation of hydrogen are
temperature dependent. In this thesis we employ chemical data made available in the
National Institute of Standards and Technology chemistry database [35, 43] which ap-
proximates empirical results as power series expansions of the temperature variable. A
brief summary of the system of equations to be solved and their nonlinear dependence

on each of the solution variables is shown in Appendix A.

The model CVD reactor problem and a detailed summary of the conservation equa-
tions of this model, along with its numerical approximation will be discussed in detail
later in Chapter 4. A primary novelty in the numerical approximation to this model
is the ability to account for both effects of macroscopic diffusion and convection, the

latter of which is often neglected in the MPA-CVD reactor modelling community.

54



CHAPTER 3

Discontinuous Galerkin
Approximation of Hyperbolic and
Elliptic Partial Differential

Equations

3.1 Introduction

The MPA-CVD reactor model consists of several constituent equations which in turn
are composed of nonlinear diffusive, transport and reaction terms. Prior to presenting
the discontinuous Galerkin (DG) finite element discretisation of these terms, a series
of definitions fundamental to the DG formulation is given in Section 3.2. In this chap-
ter we introduce a method for classes of elliptic and hyperbolic operators in Sections
3.4 and 3.5, respectively. Furthermore, we examine the treatment of the mass average
continuity equation of the quasi-incompressible Navier-Stokes equations in Section 3.6.
In a similar fashion, the DG formulation of the Maxwell operator and divergence free

electric field condition of Maxwell’s equations are also derived in Section 3.7.
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3.2 Preliminaries

3.2.1 Function Spaces

Let O C R% d > 1, be an open domain with boundary dQ. We define the multi-index

tuple of natural numbers
d
o= (ag,...,049) € N9, la| = Zocj, (3.2.1)
j=1

such that the weak derivative operator D* is defined by

- ol

=7 322
X 9x (3.22)

We write C*(Q)) to denote the set of all continuous real valued functions in Q) fors € IN
where
C*(Q) ={veC(Q): D e CQ), |a| <s}. (3.2.3)

We further denote the space of square integrable functions on Q) as Ly(Q2) which is

1
2
ol = (), loF o) 3:24)

This allows for the definition of the standard Sobolev space

equipped with the norm

H*(Q) :={u € L(Q) : D*u € Ly(Q), |a] <s}, (3.2.5)
which is equipped with the seminorm

|v|ils(0) = Z HD%H%Z(Q) (3.2.6)
la|=s

and norm .
2 2
1ol = X 12l mi) - (3.2.7)
i=0

For a function space X (()), we extend the above notation of scalar function spaces
to vector and tensor function spaces. To this end, we write [X(Q)]? and [X(Q)]",
m,d € IN, to denote vector and tensor function spaces, respectively. We also define
the outer product and tensor contraction operators, respectively, for u,v € RY and
o, T € R™4 by

(u®v); =wyv;, o:7=Trace (O'TT) . (3.2.8)
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3.2.2 Discontinuous Function Spaces and Operators

Consider a subdivision of Q into a shape regular mesh 7/, triangulated with non-
overlapping elements x with boundary 9k, each with outward pointing unit normal
n,, such that 7! = {x} and Q = UKeTg x. We define the interior faces of the mesh by
I'7 = Ugerp dx \ 9Q). We denote the space of L, functions on () whose restriction to

each element x belongs to H*(«x) as the ‘broken’ Sobolev space,
HY (T = {v e Ly(Q) : v|, € H(x), x € TL}. (3.2.9)
In addition, the broken gradient of a function g € H!(7/) is defined by
(V)| ==V (ql,), xe T (3.2.10)
Similarly, the broken divergence of a function v € [H*(7/)] is given by
(Vi -v)|, =V -(v|,), x€Ts (3.2.11)

and the broken curl
(Vi xv)| =V x(v]) Tk (3.2.12)

For a given polynomial of order ¢ > 0, we denote the space of polynomials on each
element by

P*(x) := {v: vis a polynomial of degree < ¢ on x} (3.2.13)

and the finite element space of discontinuous vector valued polynomial functions of

degree ¢ > 0 and dimension m
V(TS = {Vh € [La(Q)]" : i, € [Pf(x)r,x € 7’{)‘}. (3.2.14)

For convenience we further denote the finite element space consisting of discontinuous
scalar polynomial functions by V;(7) := V}(7/). Similarly, the finite element space
consisting of discontinuous tensor valued polynomials of degree ¢ > 0 and dimension
m x d is given by

}mxd

()= {re o] e e [Pw] " we ) o219

3.2.3 Trace Operators

Given two neighbouring elements in the mesh which share a common face F € I'z,
denoted x*,x~ € T/, such that F = 9x* N dx~, we write the traces of scalar g €
HY(T}A), vector w € [HY(T4)] % and tensor T € [HY(TH)] " functions on F as g, wt
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and tF, respectively (relative to the interior of element kF). Similarly, we also write the
unit outward normal vector of F pointing from ™ into x~ as n;" and from «~ into k™ as
n, . Using this notation we define the average, jump, tensor-jump and tangential-jump

operators. To this end, the average operator {{-}} is defined as

fa} =3 ) on Tz, fay =q" ondQ,  (3216)
{w} = % (Wwh +w") onI7, {wl =w" on 9Q), (3.2.17)
oy =2 ST 4T onTy;,  {t}=t"  ondQ, (3218

the jump operator [-] is defined as

4] = 9tnf + g n, on Tz, 9] = q9tn; on 9Q), (3.2.19)
[w] =w" n} +w -ng on Iz, [w] =w*-n} on 9}, (3.2.20)
[t] =t"n{ + 1t ng on Tz, [t] = t™n{ on 9Q), (3.2.21)

the tensor-jump operator [-] is given by
[wl=wr®nl+w ®n,; onTz, [w]=w"®n] onaQ, (3.2.22)

and the tangential-jump operator [[-]r is defined by

[Wwlt=nf xw"+n, xw~ onlz, [w]r=n;xw" ondQ. (3.2.23)

It is worth noting that:
{Hah 3 = fa. THwi} = {wl, o3 = A (3.2.24)
g3 = 41, {Iwl} = [wl, {0y = [, (3.2.25)
[I411 =0, [[wl] =o, [[<1] =0, (32.26)
[{a3] =0, [{w}] =0, [{z}] =o. (3.227)

Each of these operators allow us to rewrite integrals over element boundaries dx as

integrals over the interior I'7 and exterior d() element faces, namely,

;ﬁ gw -, ds = /r il wpass /r RGINED (32.28)
; | ri@en)ds= [ ol as / e[l as (32.29)
EZT:h foveoxwyds= [l fehds— [ fwh-llrds (230

where g € H' (T2), w € [H' (T!)]%, v € [H' (T1)]", z € [H (T1)]" and T €
[Hl (T(})’)} ™4 Proofs of (3.2.28), (3.2.29) and (3.2.30) are given in Appendix B.
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3.3 Conservation Laws

Given QO ¢ R%,d > 1, with boundary 0Q2, we write 002 = dQ)p U dQ)y, where 0Q)p is

closed and non-empty. A typical model conservation law is to find u such that

V- (F(u) = F(u; Vu)) =0, in Q, (3.3.1)
u=gp, on dQ)p, (3.3.2)
F?(u; Vu) -n = gy, on 0Oy, (3.3.3)

where n denotes the unit outward normal vector on Q). Here, u is the conserved

solution vector,

fir(w) o ff ()
Fa=| | = (8w, 5w) (3.3.4)
foa(@) e f ()

is the nonlinear hyperbolic convective flux and

fliwVu) - 7, (u; Vu)
FO(u; V) = : ; = (£(w; Vu),..., £(u; Vu))
fup(wVu) e £ (w V)
(3.3.5)
is the viscous flux, which is assumed here to be nonlinear in u and linear in Vu. Fur-
thermore, gp and gy are the Dirichlet and Neumann boundary functions, respectively.

A typical example includes the compressible Navier-Stokes equations [66].

3.4 DG Finite Element Formulation of Hyperbolic Terms

The DG formulation of the convective terms arising in the PDE (3.3.1) presented here is
based on the work undertaken by Hartmann and Houston [65]. We present a specific
case where 0QQy = @ assuming that Dirichlet data is prescribed on dQ)p as required by
(3.3.1), and refer to [65] regarding the more general case. Consider the convective term
V - F¢(u) of (3.3.1) which we rewrite as

V-F(u)=0, in Q, (3.4.1)
B™ (u,n)(u—gp) =0, on 0Q)p. (34.2)
Here,
4 of
B(u,n) =) —l;nz- (3.4.3)
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is the flux Jacobian, where n; is the ith component of n and the positive/negative part
of B(u, n) is given by

B*(u,n) = PA*PL. (3.4.4)
Here, P is the matrix of eigenvectors of B(u, n) and the diagonal matrices of the positive

and negative eigenvalues A(B) are written

AT = diag (max (A(B),0)), (3.4.5)
A~ = diag (min (A(B),0)). (3.4.6)

Multiplying (3.4.1) by a test function v € [H!(7/)]™ and integrating by parts on an

element x € T/ yields
. /]—"C(u)  Vvdx+ [ Fo(u) e vdx=0. (3.4.7)

K K

The DG finite element formulation is derived by replacing u by the finite element ap-
proximation u, and the test function v by v, where u;, v;, € V! (7'(7)“) Summing (3.4.7)
over all elements x € T/ and replacing the inter-element convective flux with a con-
sistent and conservative numerical flux function ”H(uf{, u,, n, ), the DG semilinear for-

mulation is given by: find w, € V7(7/) such that
Né(uh;vh) = —/Q]-'C(uh) : Vth dx

+ Z /aK\aQ H (u;,u,,ny) - v, ds

KET&

+ ) /amao H (uf,ur (w),ne) v, ds=0 (3.4.8)

KET(IZ

forall v, € VI'(TL).

Several numerical fluxes H (-, -, -), such as the Roe flux [121] and the Vijayasundaram
flux [139], are discussed in the application of numerical schemes for hyperbolic con-
servation laws, see LeVeque [96] and Kroner [94]. The boundary function ur(u;[) de-
termines the weakly enforced boundary conditions. Imposing the Dirichlet boundary

condition on dQ)p requires that ur(u™) = gp on Q) p, cf. Hartmann and Houston [65].

In this thesis we employ the consistent and conservative local-Lax Friedrichs flux
Hir (w,wy,,n) |, =5 (F (wf) ne+ F (u,) ne+a(w —u,)). (349
The dissipation parameter « is defined by

&y = max {|A(B(w,n))[}. (3.4.10)
w=u, Ly,
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3.5 DG Finite Element Formulation of Elliptic Terms

The DG discretisation of the viscous terms arising in the PDE (3.3.1) presented here is
again based on the work undertaken by Hartmann and Houston [66]. Consider now

the viscous term —V - F?(u; Vu) of (3.3.1) which we rewrite as

-~V - F(u;Vu) =0, in O, (3.5.1)
u=gp, on dQ)p, (3.5.2)
F?(w;Vu) -n =gy, on Q. (3.5.3)

We define the homogeneity tensor by

Gy (u) = o k=1 d; (3.5.4)
klu _a(vu>l/ A A g4 e
thereby, we may write
m d
(G(u)Vu)y =)} (G (u))ij (V). (3.5.5)
j=11=1

Here, we also define the transpose homogeneity tensor product acting on a tensor vari-

able T € R"*4
), -

In order to define the DG formulation of (3.5.1) we rewrite (3.5.1) as a first order

d
Y (G (u ij Tik- (3.5.6)
k=1

™=

Il
—_

i

system, i.e., we have
c=Gu)Vu=F’(w;Vu) and —V-0=0. (3.5.7)

Multiplying both parts of (3.5.7) by test functions T € [H!(TZ)] " and v € [H (T,

respectively, and integrating by parts on each element x € ’Té‘ gives

/o:rdx:—/u-v-(cf dx+/ W) ncds,  (358)
/(T:Vvdx:/(f-nK-vds. (3.5.9)
K oK
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Here, as above, n, denotes the unit outward normal vector on the boundary of element
K E 73 Here, we have employed (3.5.5) and (3.5.6) in (3.5.8); indeed, we have that

i=1k=1
m d m d
=Y ) (Z (G(wu);; (Vu)]l> 7 dx
Ki=1k=1 \j=1I=1
m d m d
:/ZZ(VH)]'I (ZZ (G(u)kl)u le) dx
j=1i=1 i=1k=1

— [ Vu: (G(u)TT> dx. (3.5.10)

We sum over all elements x € Tg and replace u, v, ¢ and T by their discrete finite
element counterparts, uy, v, € VI'(7!) and 03, 7, € ZZ”Xd (7). This yields the flux
formulation: find u, € VI(7/) and 0, € "4 (T24) such that, respectively

mdx =~ [ w- V- (67 dx+ Y [ (G .y ds,
/QU’h T, dX Quh h ( (uh)Th> X K;}é’ aKuh < (uh)Th> n S
(3.5.11)

0y, :V dx = / 0y, - Ny - vy, ds + / -vy, ds 3.5.12
/Q Wi Vv ) a0y 1 Vi KZT(}; 30 gN - Vi, ( )

KET&

forall v, € V¥ (T%) and T € ZI™4(TH).

The numerical fluxes i, and 0;, represent approximations to u and Vu, respectively.
The formulation of the DG method will depend on the particular choice of these nu-
merical fluxes which will be addressed later. To determine the primal formulation of
equations (3.5.11) and (3.5.12) in terms of the variable uj, we perform integration by
partsin (3.5.11) on all elements « € Tﬂh and choose the test function 7, = V), vy,; thereby,

we get

/ oy . thh dx = / F? (uh;thh) . thh dx
Q Q

k€T
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Upon substituting equation (3.5.13) into equation (3.5.12), the primal semilinear form

can be obtained for the viscous components, namely: find u;, € V#(7/), such that

NG (up;vy) i= /Q]:U (up; Viuy) + Vv, dx

+ Z ./ax(ﬁh —uy) - (GT(uh)Vth) -ny ds

KG'H%’
- Z/ &y -1y - vy, ds — Z/ gy-vids=0 (3.5.14)
KET(I; aK\aQN KET& dxNIQN

forall v, € VZ”(Th).

It should be noted that the face terms which arise on the interior of the mesh ’73
occur twice in the sum over the elements k¥ € Tg in equation (3.5.14). In order to
rewrite the primal flux formulation in terms of a face-based rather than an element-
based form, we apply the identities stated in equations (3.2.28) and (3.2.29). The DG

residual primal flux formulation is to find w, € V7 (7/) such that

NE (s vy) = / F (up; Vi) : Vv dx — / €onY : [va] ds
Q 790 —
—/ [0n] - £vu} ds +/ [8, — wy] - {G " (wp) Vavy}} ds
I'z T7UoQ)
+/ {{ﬁh - uh}} : [[GT (uh)Vth]] ds — / gN - Vj ds=0 (3515)
FI aK)N
for all vj, € V*(T4), where the choices of numerical flux vector function 1, and tensor

function 6y, are discussed at length in [8].

Here we employ the interior penalty method; to this end, the numerical flux func-
tions are defined by
ﬁh = {{uh}}, frh = {{J—'W (uh; thh)}} - (S(Hh) on FI, (3516)
where the penalisation term 6 (uy,) for the interior penalty method is chosen to be
02
6(uy) = CIPE{{G(uh)}} [un], (3.5.17)
where Cyp is a sufficiently large positive constant and /i is defined by
he|p = min(meas(x "), meas(x~))/meas(F), F=0x" Nox . (3.5.18)
On the exterior boundary we select the numerical flux functions as follows
ﬁh = ur(uh), &h = {{fv (ur(uh); thh)}} — 5r(uh) on BQ, (3519)
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where the penalisation term Jr(uy,) on the exterior boundary 0Q)p is given by

or(up) = CIP {{G(ur(“h))}}[[uh—ur(uh)]]- (3.5.20)

Here, the boundary function ur(u;,) weakly enforces the Dirichlet boundary condition.
In the case of the original conservation model equation (3.3.1), ur(w;)|3n, = gp; on

the Neumann boundary we set ur(uy)|3q, = u; -

3.5.1 Complete Formulation for Convective and Viscous Terms

Collecting the DG discretisations of the convective and viscous terms of equation (3.3.1),
the full DG discretisation may be defined by: find u, € V7*(7/) such that

NG (ay;vy) /JTC w,) = Vv, dx+/ F(up; Viuy) : Vv dx

2 /K\ao (uyy wy me) - vy ds—/rIM; {G" (w,) Vv, } ds

_/ {F° (uy; Vyuy) } :[[vh]]ds—l—/rzé(uh) : [va] ds

H (u;,ur (u;),ny) - v, ds — /a.QD{{]-"” (ur(u;)); Viuy) § - [vi] ds

+Z/

7-;1 0xMoQY
—/[,QD[M—IIF(HZ)]]: {6 (ur(wn) Viva ds+/aQD or(wf) : [vi] ds

— -viids=0 (3521
90 gN "V, ( )

forall v, € VI'(T1).

3.6 The Quasi-Incompressible Navier-Stokes Continuity Equa-

tion

The work of Cockburn and co-workers analyses the application of the DG finite ele-
ment method to the Stokes [39], Oseen [41] and Navier-Stokes [40] equations subject to
the constraint of the continuity equation. Based on these works, the DG formulation for
the quasi-incompressible Navier-Stokes equations discussed here closely follows that
presented by Cliffe et al. [38].
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Consider the quasi-incompressible Navier-Stokes equations given by

V- (‘Frcnom( ) frzrjlom(u Vll)) g in Q/ (361)
V- (pu) =0 in Q, (3.6.2)
u=gp on 0Q)p, (3.6.3)
]:rZI)wm (u; Vu) ‘n=gnN on aQN, (364)
where
From(1) = pu®u, (3.6.5)
Foam(wi V) = (Vut Va3 (V1) - (366)

In this section, we consider only the DG discretisation of the continuity equation (3.6.2).
To this end, multiplying (3.6.2) by a test function g € H!(7/!) and integrating by parts

on an element k € T we get

- /(Pu) - Vg dx +/a u-n,(pg) ds =0. (3.6.7)

Introducing the numerical flux & and integrating by parts a second time gives
/qV - (pu) dx + 5 (6 —u) - nc(pgq) ds = 0. (3.6.8)
K K

Summing over all elements in the mesh x € 7/ and replacing u and g with their discrete
finite element approximations uy, and g;, respectively, the flux formulation is given by:
find u;, € V4(72%) such that,

/qhvh (puy,) dx + Z/ a4 —uy) ne(pgy)ds=0 (3.6.9)
keTH

for all g, € V,_1(T). Regarding the choice of DG finite element space V, {(T%) we
refer to the literature of finite element methods concerning saddle point problems [21,
39, 44]. The primal formulation of equation (3.6.9) can be written in terms of the jump

[-] and average {-}} operators by applying the identity in (3.2.28). To this end, we get

NE™ (uy; qn) / qn Vi - (puy) dx
+ [ Tead-fa—whds+ [ fonhla-wlds. (3610
I'zUoQ) I'z
Here, we define the numerical flux i as follows

{u,}} onTg,
a=1{ gp  ondQp, (3.6.11)

u’ on 0Qy,
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cf. Section 3.5. Hence, we may write

NE™ (Wi qn) == | qn Vi - (ouy) dx
O

-/ Tuilfon) ds - | T = ur(u)I o} ds. (3:6.12)

3.7 Discontinuous Galerkin Approximation of the Maxwell Op-

erator

The DG discretisation of the Maxwell operator employed in this thesis is based on the
method developed by Houston, Perugia and Schoétzau [80]; in particular, it enforces the
divergence free condition of the electric field through the introduction of a Lagrange
multiplier p. The properties of this Lagrange multiplier term are discussed in [46, 138].
Let O ¢ RY, d > 1, be a bounded domain with boundary Q) = 0Qp U dQy with
unit outward normal vector n, where 0Q)p is closed and non-empty. As before, we let
T = {x} be the subdivision of Q) into shape regular elements of granularity /. The
Maxwell operator acting on an unknown vector field E along with Lagrange multiplier

term p for material permeability y and permittivity ¢ is given by

V x (;rlv X E) —eVp =0 inQ, (3.7.1)
V- (¢E) =0 in (), (3.7.2)

subject to the boundary conditions

n X E=gp ondQp, (3.7.3)
n X (;flv X E) = gn on dQy, (3.7.4)
p =0 ondOp. (3.7.5)

3.7.1 The curl-curl Operator

To define the DG finite element formulation of the Maxwell operator, initially consider
the curl-curl operator
V x (y—lv x E) — 0. (3.7.6)

Writing this as a first order system, we get
c=u'VxEand Vxo=0. (3.7.7)

We now proceed as in the case of discretising the viscous terms, cf. Section 3.5. Thereby,

multiplying both equations by the complex conjugate of complex valued test functions
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F e [HY(TH)] “and T € [HY(TH)] . respectively, and integrating by parts elementwise
yields,

/a.fdx: /E-V < (177) dx—/a (Exng)- (p'7) ds, (3.7.8)
/KU-VXF:/E)K(anK)-Fds, (3.7.9)

where T and F denotes the complex conjugate of T and F, respectively. Summing over
all elements x € 7/ and replacing E, F, o and 7 by their discrete finite element counter-
parts Ey, Fy, 0, T, € V4(T[), respectively, gives the flux formulation: find E, € V4(71)
and 0;, € V4(T2) such that

/Qah STy dx = /Q E, - V) x <y‘1?h> dx— ) /K (Ey x ny) - (y_lfh) ds,

KET(% J
(3.7.10)

0, -V x F = / 0y x ny) - Fy ds + / -Fj, ds 3.7.11
/Q o Zh ax\BQN( X nw) - By Z,l axray o ( )
€Ta k€T

forall F, € V4(T7) and 7, € VI(TH).

Just as with the treatment of the numerical fluxes of viscous terms in Section 3.5, the
numerical fluxes E;, and ¢;, represent approximations to E and 1!V x E, respectively.
Choosing the test function 7, = V), x Fj, and integrating equation (3.7.10) by parts a

second time yields

/Uh-ththx:/ IV, x By, - V), x By dx —
o) 0

Y [ (B ~E) xno) B ds.
kETH o

(3.7.12)
Substituting (3.7.12) into equation (3.7.11) and noting the following identities for vec-
tors a,b,c € R?

a-(bxc)=b-(cxa)=c-(axb), (3.7.13)
a-(bxc)=-a-(cxb), (3.7.14)

the primal sesquilinear formulation can be derived

) /aK (ne x (Ej —Ey)) - Fy ds

al(\)/[aX(Ehth) = /Qy_lvh x Ej, - V), x F dx +

KG'H%’
— 0- x Fj,) ds — -F,ds=0. (3.7.15
Zh /;K (nK h) s Zh aKﬂaQN gN h ° ( )
keTHh xkeTs
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By applying the identity in equation (3.2.30) to (3.7.15), the sesquilinear operator can

be written in terms of the average and jump operators:
alg\)’IaX(Eh, Fh) = /0;4_1Vh X Ep - Vh X Fh dx
+/ {1V x B} - [Ey — By]lr ds — / [~V x By - {{Ey — By}t ds
OUT I'z

_ /aQUFI{{&h}} . [[Fh]]T ds + /FI [[@'h]]rr . {{Fh}} ds — /aQN gN - Fh ds. (3.7.16)

The numerical fluxes of the DG discretisation Ej, and 6;, employed here are chosen to

be those of the symmetric interior penalty method (see Perugia et al. [115])

B, ={E.}, 0n={u'VixE}} —56(E;) onTz. (3.7.17)

Here, the penalisation term §(E)) for the interior penalty method is

2
6(Ey) = Cfp,i (min {u*, ¢~ }) "' Byl (3.7.18)

where Cj;, is a positive constant, £ is the local element polynomial order, and hr element
face size. Regarding choices of Cj, we refer to [25, 78]. On the exterior boundary, the

numerical fluxes incorporate the boundary flux function
B, =Er (E,), 0, =pu 'V, xE,—dr (E,) ondQp (3.7.19)
with exterior boundary penalisation term Jr (Ej,)
or (Ep) = Cfp]i (u™) "' By — Er (By)]r- (3.7.20)

In the case of equation (3.7.3) the boundary function Er(E;") ‘BQD = gp. On the Neu-
mann component of the exterior boundary the numerical flux function Er(E;)| a0y =

E;.

Substituting the flux terms of equations (3.7.17) and (3.7.19) into the DG primal flux
formulation of equation (3.7.16), the full DG discretisation of the curl-curl component

of the Maxwell operator can be derived
aM>(Ey, Fy,) = /Q;Flvh x By, - V), x Fy dx
— [ {Vix B} [Edrds— [ Vi x B [Brds
dQpUl'y 0QpUl'r
+ [ 6B [Bulrds+ [ ér (B [Fulr ds
I'z BQD

+ /BQD [Er (E)]1- p V) x B} ds — /aQN gy - F,dx. (3.7.21)
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3.7.2 The Divergence Free Field Constraint

The DG discretisation of the divergence free electric field constraint and the corre-
sponding Lagrange multiplier term can be determined in an analogous manner to that
employed for the continuity equation in Section 3.6. First consider the term —eVyp of
equation (3.7.1) which is multiplied by test function F and integrated by parts on and

element x € T/:

—/<eVp)-Fdx=/pv- (cF) dx—/ peF - n, ds. (3.7.22)
K K oK

Integrating by parts a second time, summing over all elements, introducing the numer-
ical flux function §;, and replacing p and F by their discrete finite element counterparts
pn € Vi1 (Th) and Fy € VI(TL) gives

- Z / eVph Fh dX:—/ (szh) Fh dx — Z/ ph—ph)EFh n, ds. (3723)
Th eTh

Regarding the choice of the richer space V;,1(7/!) for the Lagrange multiplier, we refer
to [46]. Applying the identity relating integrals on element boundaries to integrals over

element faces in (3.2.28) allows the derivation of the primal flux semilinear residual:

NEP (ps Fy) = — /Q (eVpy) - Fy dx

- /rzuao Hebt- [ =il ds - /Fz [eFu]{{pn —pnlt ds; (3.7.24)

here we choose the numerical flux § = {p;,}} on 0Q UTz. The DG semilinear residual

can then be written as

NS (o1 En) = — /Q (eVpy) - Fy dx + /r Um{{sih}}-[[ph]] ds. (3.7.25)

Now consider the divergence free electric field constraint V - (¢E) = 0. Multiplying

by scalar test function q € H'(7) and integrating by parts on an element x € 7! gives
/EV - (eE) dx = — / ¢E - Vq dx +/ €E - n,q ds = 0. (3.7.26)
K K oK

Summing over all elements x € 7/, replacing E and q by their DG finite element coun-
terparts E, € V(74) and q;, € Vyy1(7), respectively, and introducing the numerical

flux function E gives

—/ eEy, - Vqy, dx + Z / eEj, - neg, ds = 0. (3.7.27)
kETH
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Applying the identity in equation (3.2.28) to equation (3.7.27), and rewriting the bound-

ary terms as integrals over the faces yields the primal flux formulation:

Ny B (B, 1) == —/QSEh - Vg, dx

o eEy - [m st [ B {m) ds. 6728)

Here, the numerical flux function E;, = {E,}} — 5[[ps] for penalisation parameter

2 -
5. — { Cipjy max {e”,e"} only, (3.7.29)

CfP% max{e"}  onadQ.

3.8 Summary

In this chapter we have written the DG finite element formulation of nonlinear hy-
perbolic and elliptic PDEs as well as the Maxwell operator. The DG formulation of
the hyperbolic and elliptic terms can now be applied to those found in the equations
describing the conservation of mass, molar mass fraction, momentum, energy and elec-
tron density in the MPA-CVD reactor model in the previous chapter. Furthermore, the
derivation of the DG finite element formulation of the Maxwell operator will be imple-
mented to discretise the time harmonic formulation of Maxwell’s equations modelling
the microwave field in the MPA-CVD reactor cavity. In the following chapter we will
summarise the equations of the MPA-CVD reactor model, their DG finite element for-

mulation, and physically appropriate boundary conditions.
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CVD Reactor Model Problem

4.1 Reactor Geometry

Let Q C R® be a bounded domain with exterior boundary Q) denoting the geome-
try of a given CVD reactor. An example of such a computational domain is shown in
Figure 4.1. Adopting a cylindrical coordinate system and assuming azimuthal symme-
try, an axial slice at & = 0 and r > 0 is taken yielding the bounded domain QO* C
with boundary 00)*; for simplicity of notation, we simply denote this two-dimensional
slice by ). This domain is then subdivided into three subdomains characterising com-
ponents of the CVD reactor such that Q = Q, U Qq U Q. Here, ), is the subdomain
filled with air at atmospheric pressure, () is the fused silica window and (), is the vac-
uum chamber of the CVD reactor containing atomic and molecular hydrogen in which

diamond growth occurs on a substrate surface.

The boundary of Q) is divided such that 00} = 9Qgus U 0Qhyan U 0Qin U 0Qgye U
0Qant U 0Qayis. Here, 0Q)q¢ is the component of the boundary specifying the substrate
surface on which the diamond is grown, 0}y is the wall of the reactor, (i, is the
gas inlet, 0Qoy: the gas outlet, 00, the microwave antenna which excites the electric
tield in the cavity and 0Q,yis the exterior boundary component which lies on the axis of
symmetry r = 0. Each of ()y, ()q and (),, has exterior boundaries d()y, dQ)q and 0Q), re-
spectively. We also denote the interior subdomain interface boundaries I'ng = Q. N Qq
and I'yq = O, N 5(1. On boundary I'yq we define the unit normal vector pointing from
0, to Qg by nyq and from Qg to Oy by ng,. Similarly, on boundary I'vq we define
the unit normal pointing from () to Qg by nyq and from Qg to )y by ngy. The two

dimensional slice of the CVD computational domain is shown in Figure 4.2.
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N
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Figure 4.1: Example of a computational domain (), a basic representation of a chemi-

cal vapour deposition reactor in cylindrical coordinates.
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Figure 4.2: Axial slice of the chemical vapour deposition reactor shown in Figure 4.1
at azimuth 6 = 0. Collapsing the CVD reactor volume to this two dimen-
sional computational domain is permitted by exploiting azimuthal sym-

metry.
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4.2 Summary of Equations, Boundary Conditions and their DG

Formulations

In this thesis we seek numerical approximations to the steady state DG FEM formu-
lation of the CVD reactor model equations, i.e., the time derivatives of the solution
variables are zero. To this end, in this section each PDE arising in the CVD model
equations is stated; moreover, we define suitable boundary conditions, together with
their DG finite element formulations. The unknown quantities to be solved for are: the
mass averaged gas flow of the molecular and atomic hydrogen mix u, its relative pres-
sure p, the molar mass fraction of atomic hydrogen xy, the reactor temperature T, the
electron density 7., the complex phasor of the time harmonic electric field E and the
complex Lagrange multiplier p enforcing a divergence free solution of the electric field

variable.

42,1 Momentum

Modelling an inlet gas flow profile by ujyjet, no slip u = 0 on the walls of the reactor
and allowing the gas to exit the vacuum through the outlet pipe, the multicomponent

gas mixture momentum conservation equation takes the form

V- (Frnom (W) = From (w; Vu)) = pg in Oy, 4.2.1)
V- (pu) =0 in O, (4.2.2)
=0 on aQant U Bqurf U aﬂwau U qu, (423)
U = Ujnler 0N 9y, (4.2.4)
nVu-n—pn=20 on 0045 U 0Qout (4.2.5)
where

From(u) =pu®u, (4.2.6)

2
Foom(w; Vu) =17 (Vu +Vu' — 3 (V- u)I) —pL 4.2.7)

The density is given in terms of molar masses My and My,, the gas constant R and the
mean vacuum pressure P, namely, p = PM/RrT, where M is the mean molar mass of the

gas mixture, i.e., M = (Mpxy + Mp, (1 — x51)). The viscosity is given by

6x 12(1 —x

2 2
6xi+ V3 (1+2N) (1=xu)  12N2(1—xy) + V3 (1+2iN) xy

(4.2.8)

73



CHAPTER 4: CVD REACTOR MODEL PROBLEM

where N = /7u/p4, and 57y and 77y, are the viscosities of atomic and molecular hydro-

gen, respectively. The Neumann boundary conditions require that on 0Qayis U 0Qout
ur(u”) =ut, (4.2.9)
2
Foom (ur(u®); Vu) -n=1y (VuT -3 (V- u) I> -n. (4.2.10)

The DG formulation of the gas flow model is to find (uy, py) € V{(T4 ) x Vi1 (74)
such that

/\/(.g;js flow (wp, PR v, qn) = Né’inom (up; vp) —|—./\/’S’Vmom (up; vy) +N(C)3nt (wp; q1) =0
4.2.11)
for all (v, qp) € V?(Tghv) X € Vf—l(T(];v)'

4.2.2 Mass

Assuming no presence of atomic hydrogen on the walls of the reactor and that the gas
at the inlet is pure molecular hydrogen, the conservation law enforcing continuity of

mass fraction is

V- (Félass(xH) - Fgass(xH; VxH)) = Ry in Oy, (4.2.12)
XHg = 0 on 8QV \ (8anis U a@out), (4213)
Vxg-n=0 on 00 axis U 0Qout, (4.2.14)
where
Finass(XH) = cxpu, (4.2.15)
M
‘FIZ‘[;laSS<xH; va) - %CDHHZVXH- (4.2.16)

Here, Dyp, is the diffusivity of atomic hydrogen in the binary gas mixture, c = P/RT is
the molar concentration of the gas mixture and Ry = 2 (k f02 (1—xy)— krc3x12{) is the
rate of mass production of atomic hydrogen for forward and reverse rate constants k¢
and k,, respectively. The natural Neumann condition (Vxg) - n = 0 is prescribed on
the axis of symmetry and gas outlet requiring that xgr(x;) = x{; on 9Qauis U 0Qout.
The DG formulation is to find xpy;, € Vg(T(P)’V) such that

fract . , . , .
NG AN (xpgp; Con) 1= NG (xaan; Gag) + NG (X11h; Cagg)

_ / Ruéy,  dx = 0 (4.2.17)
Oy

for all &y,n € V(T4 ).
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4.2.3 Energy

The source of heat in the hydrogen gas is generated by the time averaged ohmic power

absorbed, i.e.,

1 v
Potun = 7 [E|* 0e =" (4.2.18)

Here, w is the electric field angular frequency and vy, is the electron-neutral collision
frequency. The direct current cold plasma conductivity approximation oy, is given in
terms of the electron rest mass . and electron charge g, namely,

2
_ {e'TNe

: 42.19
— (4.2.19)

0Udc

The sources of heat in the quartz and the air filled cavity are approximated by the Joule

heating model for material conductivity o, i.e.,
P=c|E]*. (4.2.20)

The temperature within the reactor is modelled such that the walls and the inlet gas are
held at room temperature T;yom and the diamond substrate surface is heated to Tqyrface-
The temperature and heat flux are required to be continuous across the interfaces be-
tween the vacuum, the quartz window and the air filled cavity. The energy balance of
the CVD reactor is then modelled by conserving energy in the vacuum Ty, in the quartz

T4 and the air filled cavity T, according to

V- (Fenersys (T0) = Fenergye (T V) = Popm - in Oy, (4221)
—V  Forergyq(Ta; VTq) = 0 [E*  in Q, (4.2.22)
—V - Fonergya (T VTa) = 0 [E* in Q,, (4.2.23)
To=Ta=Tqg=Troom 0N 3Qyan Ut Udn, (4.2.24)
Ty = Tourface 0N Qs (4.2.25)
VT, n=0 on 00ayis U 0Qout, (4.2.26)
VT, n=VTy-n=0 on 00 axis, (4.2.27)

where
Fenergyy (Tv) = phu, Fenergyw (Tv; VTy) = &,V Ty, (4.2.28)
Fenergyq(Tai VIg) = kqV Ty, Fonergya(Ta; VTa) = 6, VT, (4.2.29)

and «y, kq and k, are the thermal conductivities in the vacuum, quartz and air, respec-

tively. Here, xy is given in terms of thermal conductivities of atomic xy and molecular
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kH, hydrogen, i.e.,

-1
1 .
=s | Tt ( y xl) . (4.2.30)
ic [HH,} ' Ki
We employ the thermal conductivity of fused silica xq presented in [128]. These equa-
tions are also subject to the interface boundary conditions on I';q and I'yq enforcing

continuity of the heat flux:

Ty =Ty, Ky VTy - nyq = gV - nyq on I'yq, (4.2.31)
Tq=Ta, KqVTq nga =kaVTa-Nga on [q. (4.2.32)

Writing the temperature of the CVD reactor as T such that T|, = Ty, T\Qq = Tq
and T|, = T,, convective and viscous flux operators can be written for the whole
reactor domain Feyerpy (T) and Fiery (T; VT), respectively, in terms of the thermal

conductivity x and heat source Q. The equivalent conservation of energy equation is

V- (Fenersy (T) = Fonergy(T;iVT)) = Q in Q) (4.2.33)
where
phu in Q)
F gner T) = ’ 4.2.34
o (T) { 0 otherwise ( )
f:nergy(T; VT) =«kVT, (4235)

and piecewise material parameters are given by

Ko in Q) 0. |E[* inQ,
K=14 ky iNQy , Q=19 Popm inQy . (4.2.36)
Kq inQq oq [E)* inQq

The natural Neumann condition VT - n = 0 requires that Tr(T") = T" on 0Qayis U

0Qout. The DG formulation is given by: find Tj, € Vg(Té‘) such that

N(t;mperature (Th} gTh) — N(c),energy (Th; CTh) + Né,energy ( Ty; gTh)

. /Q Q&g dx = 0 (4.2.37)

for all &y, € V,(T2).
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4.2.4 Electron Density

It is assumed that there are no free electrons present on all physical boundaries of the
CVD reactor vacuum chamber and at the gas mixture inlet. The conservation of elec-

tron particle density is given by the ambipolar diffusion approximation

V- (Fe(ne) — Fé(ne, Vie))

e (Rone — A |E|2) =0 in O, (4.2.38)
ne =0 on 90y \ (0Qaxis U 0Qout), (4.2.39)
Vie-u=20 on 00axis U 0Qout. (4.2.40)

Here, the electron generation by ionisation is scaled by the inelastic rate constant Ay,
and the loss due to dissociative recombination of electrons with hydrogen ions is scaled
by the recombination coefficient Ryp. The convective and viscous flux operators are
given in terms of ambipolar diffusion coefficient D, (see [68,91] for appropriate choices)

by
Fe(ne) = neu, (4.2.41)

Fe(ne; Vne) = DV, (4.2.42)

The Neumann condition requires that ner(net) = ne™ on 0Qais U 0Qout. The DG

formulation is to find 1., € Vg(Té’v) such that

densit
Nog ™ (neni o) = NG, (1ew; Gneh) + NG; (s Enh)

+ /Q Nepy (Roneh — Ag |E’2> Cneh dx=0 (4243)

for all &y € Vi(T4 ).

4.2.5 Electric Field

The time-harmonic formulation of Maxwell’s equations describe the electric field of fre-
quency w in the CVD reactor with permeability y, permittivity e and electric conduc-
tivity . The permeability of the gas mixture, quartz window and the air filled cavity
are all assumed to be equivalent to the permeability of free space 9. The permittivity

is discontinuous across the subdomains of the reactor; namely,

gp in Qy,
e=14q gq inQy, (4.2.44)

€, In Q)
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where in the vacuum region the complex plasma permittivity is given by

Whe
€p = € [1 — (U((U—]Vme)] , (4.2.45)
where j = y/—1 is the complex unit, ¢ is the free space permittivity, w}%e = qe’ne /eqme is
the characteristic plasma frequency and vy, is the electron-neutral collision frequency.
In the case of neutral hydrogen atoms we take v,,, ~ 1 x 101°P/T (see [36, 52, 55]). The

electric conductivity is discontinuous across the subdomains of the reactor such that

0p inQy,
c=14 0q inQq, (4.2.46)
oy in Q),,
where 5
oy = m 0q=13x10"", ¢, =3x10"". (4.2.47)

Subject to perfect electric conductor boundary conditions on the reactor walls and ex-
citation E,nt from the antenna, the time harmonic formulation of Maxwell’s equations

in the CVD reactor is given by

Vx (47'V X E) —eVp +jw (0 + juwe) E= 0 inQ, (4.2.48)
V- (eE) =0 in Q, (4.2.49)
nxE=0 on 0Oy U0dQyrs, (4.2.50)
nxXE=nxE; onodQan, (4.2.51)
n x (y_lv X E) =0 on 00 ayis U 0Oin U 0Oout-
(4.2.52)

As shown in Section 3.7, the semilinear DG residual formulation of the Maxwell equa-
tions is to find (Ej, p,) € VI(T) x Viy1(T) such that

NETAS (B, 0 By, i) i= aM™(By, By) + NP (pi; By)

FNS O B + [ oo o+ jee) By Frdx =0 (4259)

for all (F;, q;) € V?(T(P)l) X V£+1(T(})l)-

4.2.6 System Residual

For each of the unknown variables of the MPA-CVD reactor model: the mass average

gas flow field u, pressure p, hydrogen molar mass fraction xy, temperature T, electric
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field phasor E, Lagrange multiplier p and electron density 7., we seek their DG finite
element approximation given by: find
U, = (uhr Ph, XHh, Th, Ep, bns neh) €
V(TS X Veer(T8,) x Vi(T4) x Va(T3) % VE(TE) x Ve (T3) x Ve(T3,)

(4.2.54)
such that
N(s)ystem (Uh; Eh) — N(g)is flow (uh/ Dhi Vi qh) + N(r)r:fiss fraction (xHh/' ngh)
+ Ngt)emperature (Th; éTh) + N(e)v (ne; érneh) + Ng-ﬁeld (Eh/ P Fhr qh)
=0 (4.2.55)

for all

En = (Vi s Cxpyinr ST B Qs Cott) €
VI(TE,) x Via(Th) x Vi(T8) x Vi(Th) x VHTE) x Ve (T8) x Vie(T4,)-
(4.2.56)
Here, all parameters and coefficients including those which are functions of the un-
known solution variables stated in (4.2.54) are replaced by their finite element counter-
parts in each semilinear residual formulation A/ (;-). Furthermore, it is assumed that

any geometric discontinuities in parameters are lined up perfectly with the mesh 7.

4.3 Microwave Cavity Resonant Frequency

A key aspect of designing a MPA-CVD reactor is to achieve electric field resonance.
Consider the case of the empty reactor geometry represented by (). Restricting all
boundary components not lying on the axis of symmetry to be perfect electric conduc-
tors, the resonant frequencies are calculated from the eigenpair solutions (0 # E,y?) €
C3 x C of

V x (y—lv x E) — 12E in Q, 43.1)
nxE=0 on 90 \ 90ayis, (4.3.2)
n x (y‘lv X E) =0 on 90 .ys- (4.3.3)

where 72 = —jw (¢ + jwe). In the case of the empty cavity where (¢, ¢, 1) = (0,0, Ho),
the resonant frequencies are w, = 7//&. The discrete formulation of the eigen problem
(4.3.1) is to find (0 # Ej, 7?) € V4(T/) x C such that

aty™ (B, Fy) = /Q'Y%Eh - Fy dx (4.3.4)

forall F, € V4(TH).
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’ Choose an electric field resonance mode

—>’ Dimension the reactor ‘

. Compute resonant frequency w;
Redesign .
from eigenvalue problem (4.3.4)

!

Verity electric field configu-

. Redesign
ration computed from (4.3.4)

!

1 <> Compute numerical MPA-CVD model
i=1,...,n

solution for each parameter set ¢;

Optimised reactor

Figure 4.3: MPA-CVD reactor discrete optimisation procedure.

4.4 Optimisation Procedure

Following the choice of the electric field resonance mode, the MPA-CVD reactor sys-
tem’s operational parameters should be optimised. Examples of these parameters in-
clude geometric dimensions, mean system pressure, substrate temperature and inlet
gas flow rate. Given n parameter sets ® = {¢1,..., P, }, the parameter set which max-
imises the so-called quality factor function Qs (®) is the optimum MPA-CVD operating
condition. In this thesis we employ the quality factor function implemented by Fiiner
et al. [55] which measures the ratio of the magnitude of the electric field in the plasma
to the rest of the gas. For a minimum electron number density criterion €, the plasma
region is defined such that Qpjasma = {K iming ne > €y, K € Té’} and the remaining

vacuum chamber region Qg fielqg = Qv \ Qplasma- We seek to optimise the electric field

power deposited in the plasma according to quality factor

1N £ (O rama)
Qf(P) = —— (4.4.1)
f( ) HEHLz(QE-ﬁeld)

In the work presented here, we employ a simple exhaustive method for small param-
eter sets @, choosing the optimum parameter set ¢; such that Qs(¢;) = max Qs(P). A
flow chart of this optimisation procedure is presented in Figure 4.3 (cf. [55]). Here,
after choosing the operating electric field resonant mode, the geometry of the reactor is

designed. We then verify the resonant electric field configuration of the empty cavity
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ensuring that the design meets the requirement for plasma ignition encouraging dia-
mond growth. Once satisfied, we test the performance of the reactor under operation
with system configurations specified in the parameter set ® by computing numerical

approximations of the fully self consistent MPA-CVD reactor model.
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AptoPy

As we have seen in Chapter 4, the implementation of the DG MPA-CVD reactor model
is extremely challenging. A major aspect of the work in this thesis is the development
of AptoPy. In this chapter, AptoPy, the computational framework for automatically
generating code to solve PDEs using the finite element method is introduced. The
fundamental paradigm of AptoPy is that for a given PDE, the code required to calculate
its finite element solution should be automatically generated, given a computational

symbolic algebra representation of the underlying finite element formulation.

Initially, we introduce the method for computational symbolic algebra in Section 5.1.
The use of this symbolic algebra as a means to represent the weak formulation of a
PDE is shown, as well as handling finite element function spaces and meshes. The DG
discretisation scheme for elliptic and hyperbolic PDE operators is then simplified with
their automatic computation in this symbolic algebra framework. The tools which the
AptoPy package offers with regards to DG methods, such as automatic computation of
the homogeneity tensor and local-Lax Friedrichs flux, are discussed and demonstrated

in Section 5.3.

For a given a finite element formulation representation in AptoPy, Section 5.4 demon-
strates the solution procedure. Initially the PDE variable indexing and translation to
Fortran code and primitive variables is discussed. The translation procedure is then
demonstrated, i.e., parsing the Python code representation of a weak formulation in
AptoPy to a meaningful representation in the Fortran code for AptoFEM. Lastly, the
element and boundary finite element matrix construction procedures are then shown
such that they can be applied in an iterative Newton method to compute the finite

element solution.
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Figure 5.1: Sympy tree structure representing the expression d,u(x)0,v(x). Each class
handles: Mul multiplication, Derivative differentiation, Function functions

and Symbol algebraic symbols.
5.1 Symbolic Representation

5.1.1 Expressions and sympy

AptoPy employs the python symbolic algebra library sympy as the framework for rep-
resenting and evaluating mathematical expressions and operators [133]. At its core,
sympy stores mathematical expressions as trees made up of custom objects for differ-
ent mathematical concepts. Each of the classes from which these objects are instantiated
inherit from a diverse hierarchy, becoming more abstract until reaching the base class
Basic. Each level of this class hierarchy adds specialisation characteristics; for exam-
ple, indicating whether the object is an algebraic symbol x or a function such as sin (),
as well as assigning properties to an expression, such as whether it is differentiable,
real, complex, a power expansion series, an infinite sum and so on. Furthermore, these
objects serve to overload the standard mathematical operators of Python: addition +,
subtraction -, multiplication *, division / and exponentiation *x, providing familiar

syntax for their manipulation.

For example, the simple expression ‘2 4 3" is represented in sympy as Add (Integer(2),
Integer(3)). Here the object Add has two arguments of type Integer which in turn have
the primitive int arguments 2 and 3, respectively. A graphical representation of the tree
required to represent the more complicated expression 0,u(x)d,v(x) is given in Figure
5.1.
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5.1.2 The Coordinate System Singleton

Vector calculus is an integral part of the construction of a multi-dimensional weak for-
mulation. Operations such as scalar and vector products, as well as tensor contractions
must be defined. Furthermore, the encapsulation of operations involving vector gra-
dients in the AptoPy code should evaluate implicitly based on the chosen coordinate

system.

AptoPy accommodates any curvilinear coordinate system based on an implementa-
tion of the abstract CoordinateSystem class. CoordinateSystem itself is also the manager
of its own singleton instance via the static mutator and corresponding static accessor
methods CoordinateSystem.set() and CoordinateSystem.get(). The CoordinateSystem
class defines the abstract methods dim() and space_vars() which, respectively when
overridden, provide the number of spatial dimensions and the vector representation
of the position vector. Furthermore, the abstract methods grad(), div() and curl()

correspond to the respective operations gradient (V), divergence (V) and curl (V x).

An example of the implementation of this class for the 2D Cartesian coordinate
system is the class CartesianCoordinateSystem2D as shown in Figure 5.2. This imple-
mentation can then be chosen as the coordinate system to be used by simply calling

CoordinateSystem.set(CartesianCoordinateSystem2D()).

5.1.3 Finite Element Mesh

Given an open bounded Lipschitz domain ) C R4, d > 1, the starting point to in-
troduce the finite element method is to first define the mesh 7% = {x}, consisting of
non-overlapping elements x such that [ J¥ = Q. A simple 2D example of such a mesh-

ing procedure is given in Figure 5.3.

The requirement for AptoPy’s representation of the mesh is to encapsulate the prop-
erties of not only the underlying computational geometry, but also to generate the rep-
resentation of the unit outward normal vector n, € R? on each element ¥ € T/, the
spatial variables x € IRY, the element volume integration element dx and the face inte-

gration element ds for both interior and exterior faces.

The dimension 4 and the spatial variables vector x of a Mesh object are always im-

plicitly specified by the CoordinateSystem singleton. In the same implicit fashion, the
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class CartesianCoordinateSystem2D(CoordinateSystem):

def __init__(self):
self.x, self.y = Symbol(’'x"), Symbol(’'y")

def dim(self):

return 2

def space_vars(self):

return Matrix([self.x, self.y])

def div(self, u):
return diff(u[0], self.x) + diff(u[l], self.y)

def grad(self, u):
if isinstance(u, Matrix):
return Matrix([[diff(u[0], self.x), diff(u[0], self.y)l, \
[diff(u[l], self.x), diff(u[l], self.y)1])
return Matrix([diff(u, self.x), diff(u, self.y)])

def curl(self, u):
return diff(u[l], self.x) - diff(u[0], self.y)

Figure 5.2: Implementation of a 2D Cartesian coordinate system which overrides the
abstract methods dim, space_vars, div, grad and curl of its base class

CoordinateSystem.

element face normals’ n, vector representation is calculated by the Mesh.face_normals
() method, with each component containing a sympy symbolic representation of each

orthogonal component.

The given domain for a finite element problem is represented in the AptoPy Mesh
class with the restriction that the exterior boundary must be interpolated as a piece-
wise linear polynomial in RY. The boundary dQ of the computational domain Q is
divided into a set of non-overlapping segments {9€);};"?, such that 9Q) = J; 9Q); and
N;0Q); = @. Each segment dQ);, i = 1,...,mq, is given a string representing its name;
each of these named boundary components is then allocated a piecewise linear ex-

pression of the form f0,(x), such that the condition ‘ faQi(x)‘ <e 0 < e <x1,ade-
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g

X

Figure 5.3: Domain QO C R? and its triangulation into conforming elements x such
that the mesh 7% = {x}.

mesh.add_boundary_definition('bottom’, Abs(y) <= tol)
mesh.add_boundary_definition(’'right’, Abs(x - 1.0) <= tol)
mesh.add_boundary_definition(’top’, Abs(y - 1.0) <= tol)
mesh.add_boundary_definition(’'left’, Abs(x) <= tol)

Figure 5.4: AptoPy code defining a unit square domain for a given tolerance tol.

quately describes whether the spatial location x lies on the boundary component 0();,
i=1,...,mq, within a given numerical tolerance €. For example, the case of the unit
square domain is shown in Figure 5.4. Although AptoPy currently requires element
faces to be described by piecewise linear functions, potential future functionality is
not restricted from incorporating piecewise quadratic and other higher-order curved

boundaries.

The Mesh class generates a symbolic representation of the whole boundary d() of the
domain () with a call to dS = mesh.boundary(). For individual boundaries, the bound-
ary integration elements are constructed by the Mesh class by providing the required
name in a call to mesh.get_boundary_element(). For example, the left side of the unit
square dQ)jesr defined in the code example in Figure 5.4 is obtained using dS_left =

mesh.get_boundary_element(’left’).

Operations to find the union and exclusion of these boundary elements are imple-
mented via the addition + and subtraction - operators, respectively. For example, the
AptoPy equivalent of Qe U 0Qop would be dS_1left + dS_top, where dS_top = mesh.
get_boundary_element(’top”), and the equivalent of 0Q2 \ )¢y would be dS - dS_left.
These boundary integration elements can then be used in the implementation of Dirich-

let and Neumann boundary conditions, as will be demonstrated in the next sections.
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The diverse range of properties of the Mesh class required to produce the appropriate
code for AptoFEM to generate the mesh (such as element type, external mesh genera-
tion package, characteristic lengths, etc.) are stored in a hash table. For example, choos-
ing the element type of a mesh to be simplex would require the key-value definition
of mesh.define_property(’element_type’, ’'simplex’). This somewhat non-specific de-
sign allows for future extensibility, especially when incorporating new external mesh

generation libraries into AptoFEM.

5.1.4 Function Spaces and Dirichlet Boundary Conditions

Let the continuous finite element space of piecewise polynomials defined on the parti-
tion 7 of the domain Q) be defined by

Vie(Q) = {v e C(Q) : 0|, € P'(x) ¥x € Th}, (5.1.1)
in which the solution to a finite element problem is sought.
Consider the Poisson equation defined on a domain (2 whose boundary 9d() is split

into two components dQ)p upon which a Dirichlet condition is enforced, and dQy,

where a natural Neumann condition is specified: find u such that

~Vu=finQ, (5.1.2)
u=gp on GQD, (513)
Vu-n = gnondQy, (5.14)

where 0Q) = dQ)p U dQy and 0Q)p N0y = @.

The finite element formulation is to find the finite element solution u;, in the space of

piecewise polynomials of a given order /, i.e.,
uy € VE(Q) = {v € Vie(Q) : vl = gD} (5.1.5)

such that
an(up, o) = y(op) (5.1.6)

for all v, in the space of piecewise polynomials which vanish at the Dirichlet boundary
BQD ’ i.e. ’
oy € VB(Q) = {v € Vie(Q) : vy, = o}. (5.1.7)

Here, the bilinear functional aj, : V}EZ(Q) X VhEg(Q) — Ris

ay (Llh, Uh) = /Q Vuh . Vvh dX, (518)
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and the linear functional /j, : VhFj 7(Q)) — Ris given by

lh(Uh) = /Q fvh dx + /{)Q INU ds. (519)
N

Mimicking mathematical notation for variational problems, the function spaces of
the weak formulation must be appropriately defined with their required bases, poly-
nomial order and whether they are formed based on H', Ly, Raviart-Thomas, Nédélec

or other types of elements.

In AptoPy the finite element function space is represented by an instantiation of the
FemFunctionSpace class which requires a given Mesh object, polynomial order and fi-
nite element type (dictating the numerical scheme) as its construction arguments. For

example, the space of continuous piecewise quadratic polynomials,
VE (Q) = {v € Via(Q) : vy, = gD} (5.1.10)
is created in AptoPy using
V_h2 = FemFunctionSpace(mesh, poly_order=2, element_type='CG"). (5.1.11)

Any Dirichlet conditions which are to be strongly enforced on this function space must
be declared. Referring back to the naming scheme of boundary components of d(2 in
the Mesh class in Section 5.1.3, a named component of the boundary such as dS_D = mesh
.get_boundary_element(’left’) can be chosen. A Dirichlet condition is then enforced
in the finite element space by calling V_h2.dirichlet(dS_D, g_D). The trial function,
acquired by calling u = V_h2.trial(), then satisfies u; € VhL:Z(Q). Furthermore, this
implicitly ensures that the test function associated with v, € VhEg(Q) acquired from

v = V_h2.test(), vanishes on the Dirichlet boundary.

For more complicated problems, AptoPy has the classes FemvectorFunctionSpace when
vector valued trial and test functions are required, along with the complex function
spaces FemComplexFunctionSpace and FemComplexVectorFunctionSpace. In combination
with the ability to mix function spaces via the FunctionSpaceProduct class which over-
loads the multiplication operator x, finite element spaces such as those required for
Taylor Hood [137] elements, e.g., V},2(Q) x V},1(Q2), can be constructed as shown in
Figure 5.5.
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V = FemVectorFunctionSpace(mesh, poly_order=2, element_type='CG")
Q = FemFunctionSpace(mesh, poly_order=1, element_type='CG")
TH =V x Q

Figure 5.5: Example of constructing Taylor Hood finite element function space
Vi2(Q) x Qp1(QQ) using AptoPy.

5.1.5 Finite Element Formulation and Neumann Boundary Conditions

AptoPy requires that the finite element formulation be expressed in terms of a residual.
For example, the residual formulation of the finite element method defined in (5.1.6) is
to find uy, € VhEé(Q) such that

Ry (up,vp) =0 (5.1.12)

for all v, € V,EE(Q), where

Rh (uh, Uh) = ay (uh, Z)h) — lh (Uh) . (5113)

The process by which AptoPy parses a weak formulation to translate to Fortran code
for AptoFEM relies on finding coefficient expressions of volume (dx) and boundary
(ds) integration elements. This appropriately assumes that every component of a finite
element formulation is implicitly part of an integral operation. Combined with the
weakly typed nature of Python, this allows for expressive means of representing a finite

element formulation, examples of which are given in Figure 5.6.

The specification of Neumann boundaries is declared as part of the weak formula-
tion. For example, the Neumann boundary condition component of the linear func-
tional in (5.1.9) is a component of the weak formulation, and is therefore written in

AptoPy as g_N*v+dS_N.

5.1.6 Function Encapsulation: The Cost of Symbolic Differentiation

A disadvantage of AptoPy being based on the symbolic algebra package sympy is the
computational cost of evaluating the symbolic derivatives of functions and expressions.
This cost is prevalent for nonlinear PDEs, where the Gateaux derivative of the system
must be evaluated. AptoPy alleviates this problem by encapsulating user specified
expressions into AptoFunctions. AptoFunctions, when translated for AptoFEM, exist as
a set of user friendly and human readable Fortran functions in a single module. This

also allows AptoPy to cache the results of operations on AptoFunctions to reduce the

89



CHAPTER 5: APTOPY

residual = dot(grad(u), grad(v))*xdx - fxvxdx - g_NxvxdS_N

def a(u, v):

return dot(grad(u), grad(v))x*dx
def 1(v):

return fxvxdx + g_N*xv*dS_N

residual = a(u, v) - 1(v)

Figure 5.6: Examples of the ‘expressiveness’ of the symbolic representation of the fi-
nite element formulation in equation (5.1.6). The first simply writing out
the residual equation, and the second emulating the bilinear functional for-

mulation by defining Python functions a(u, v) and 1(v).

computational expense of generating code to solve a given finite element formulation.
The performance benefit offered by the AptoFunction optimisation will be discussed in

detail later in Section 6.6.

For example, when a function such as grad() is called on an AptoFunction which
encapsulates an expression, a new AptoFunction is generated which encapsulates the
derivative of its generator’s expression as its own. This calculation is only performed
once per AptoFunction and derivative variable, after which it is stored in a cache. Any
further attempts to calculate the same derivative will simply return a reference to the

previous evaluation from the cache.

Instantiating an AptoFunction requires three arguments: the expression itself, the ar-
guments of the function and a string name. For example, consider the simple function
f(x) = x%; this can be encapsulated by an AptoFunction by calling f = AptoFunction(x

*x2, x, 'f').

Consider the Poisson equation defined on the domain () with diffusion coefficient
D(x), i.e.,

~V - (D(x)Vu) = fin Q, (5.1.14)
u = gp on dQ)p, (5.1.15)
(D(x)Vu) -n = gy on 0Qy. (5.1.16)

The finite element formulation is given by: find u, € V;5,(Q) such that
/ DV, - Vo, dx = / Fop dx + / anop ds (5.1.17)
0 0 Ay
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D = AptoFunction(x**2 + y*x2 + 1, (x, y), 'diffusion_coeff’)
residual = Dxdot(grad(u), grad(v))*dx - fxvkdx - g_N*xvxdS

real(db) function diffusion_coeff(x, y)
real(db), intent(in) :: x, y
diffusion_coeff = x**2 + y**x2 + 1

end function diffusion_coeff

Figure 5.7: An example of the AptoPy implementation of a diffusion coefficient en-
capsulated by an AptoFunction as required by the finite element problem

in equation (5.1.17), along with the resulting generated Fortran code.

for all v, € VhEz(Q) An example of choosing the diffusion coefficient to be D(x) =
x% 4+ y? + 1 and declaring it in the AptoPy code as an AptoFunction is given in Figure
5.7.

In the case that an expression should have a non-computable derivative, such as
for the min(-,-) and max(-, -) functions, AptoPy offers AptoEvaluations. This class is
implemented in exactly the same way as AptoFunction, except that every derivative
will be nullified to return the symbolic representation of 0. For example, this is used

for the dissipation term a of the local-Lax Friedrichs flux (3.4.10).

In the case that custom Fortran code should be inserted into a function, AptoPy of-
fers AptoCustomFunction. This class is implemented in the same way as AptoEvaluation;
however, instead of requiring an expression as the first argument of its constructor,
it requires a string representation of the Fortran code to be used. Just as with the
AptoFunction and AptoEvaluation, this custom function can be manipulated as a math-
ematical function in sympy expressions. An example of an AptoCustomFunction is given

in Figure 5.8.

5.1.7 Parameters

In a similar vein to the AptoFunction class, the AptoParameter class allows for symbolic
representations of real and integer valued parameters. This ensures the symbolic rep-
resentation of a finite element formulation in AptoPy remains identical irrespective
of whether the underlying numeric value assigned to an AptoParameter changes. The
AptoParameter class also allows the underlying numeric value to change between indi-

vidual calculations of a finite element solution, which is key to the implementation of
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rr

fortran_code =
real(db) function custom_func_name(argl,arg2)
real(db) :: argl, arg2
custom_func_name = arglxx2 - Max(argl, arg2)

end function custom_func_name

f = AptoCustomFunction(fortran_code, (x, y), 'custom func name’)

Figure 5.8: An example of the AptoPy implementation of a Fortran function encapsu-
lated by an AptoCustomFunction. This can then be manipulated as if it were
a mathematical function with its given arguments in AptoPy, however; its

derivative is defined as zero.

continuation or changing time step sizes in time discretisation methods, for example.

5.1.8 Function Traces

For some discretisation schemes, such as the DG finite element method, traces of func-
tions are required on inter-element boundaries. Consider the bounded domain () with
boundary 9Q) subdivided into a shape regular mesh 7! of non-overlapping elements «
such that 7! = {x}. The interior boundary T’z is chosen to be the union of the common
interior faces dx* Ndx~ of all pairs of neighbouring elements k*,x~ € 7. Recalling

the definition of the ‘broken” Sobolev space from Section 3.2.1
H(TE) = {v € Ly(Q) : v|, € H(x),x € TL}, (5.1.18)

a function u € H'(7!), when evaluated from the interior of element x*, is denoted
by ut and from the interior of the neighbouring element x~ by u~. These function
traces evaluated on the ‘skeleton” of the mesh are symbolically represented in AptoPy

by calling the function elementwise().

For example, given a mesh upon which a finite element function space is defined v =
FemFunctionSpace(mesh), its trial functionu = V.trial() can have its traces represented
by calling u_p, u_m = elementwise(u). These symbolic representations in AptoPy cor-

respond to u™ =u_pand u” = u_m.

The function elementwise() is not limited to simple arguments such as test functions.
Entire expressions including AptoFunctions can be passed as arguments. These expres-
sions are then parsed to find which components can be multivalued on inter-element

boundaries, and their local and neighbouring trace representations will be calculated.
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5.1.9 Jumps and Averages

We refer to the jump [-], average {{-}}, tensor jump [-] and tangential jump [-]t op-
erators defined in Section 3.5 which determine their output based on whether they
are evaluated on d() or the interior I'7 boundary of a mesh. The symbolic representa-
tion encapsulates this behaviour in the jump(), avg(), tensor_jump() and cross_jump()
functions, respectively, based on whether they are parsed to be coefficients of the inte-
rior faces integration element mesh.interior_faces(), or an exterior component of the

boundary mesh.boundary ().

5.2 Geometry Representation

5.2.1 The Polygon Class

Although the concept of a symbolic representation of a mesh Tg has already been in-
troduced in Section 5.1.3, generation of the geometry of its parent domain () is not
specified. The use and generation of domains and meshes is not restricted to any one
package by AptoPy, however AptoPy offers a means to construct domains QO C R?
with the Polygon class and thereby construct a mesh of that geometry, 7/, by interfac-
ing with the mesh generation package Triangle [124].

The Polygon class requires that all exterior boundary faces of a domain can be repre-
sented by piecewise linear polynomials, and that all points be specified in a Cartesian
geometry x = (x,y). The Polygon class stores and manages pairs of points which de-
scribe the boundary 002 of a domain ). Functions can subsequently be applied to all
points of the Polygon allowing for translation, dilation, rotation and other such geo-
metric operations. An example of implementing the Polygon.add_line() and Polygon.
line_to() functions to construct a unit square is demonstrated in Figure 5.9. For each
pair of points a, b, passed to Polygon.add_line() the symbolic piecewise linear polyno-
mial bounding equation f0, (x) of the boundary component 0(); can automatically be
computed. Here,

y—mx—+c ifby—ay>0,

foa, (x) = (5.2.1)
x — by, otherwise,
where
m by 2y c=b,—mb (5.2.2)
- bx _ ax, - Yy X7 o=
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poly = Polygon()

poly.add_line((0.0, 0.0), (1.0, 0.0), name='bottom’)
poly.line_to((1.0, 1.0), name='right")
poly.line_to((0.0, 1.0), name='"top’)
poly.line_to((0.0, 0.0), name='left")

Figure 5.9: Generating a unit square using the Polygon class.

which upon constructing a Mesh object is used in calling Mesh.add_boundary_definition()

for an appropriate numerical tolerance close to machine precision (see Figure 5.4).

5.2.2 Error Control of the Piecewise Linear Boundary Description

Let K(x) be a function defined on the interval x € [a, b] which describes a component
of the boundary of Q C R?, where a,b € R and a4 < b. We wish to interpolate K by
continuous piecewise linear polynomials such that K can be approximated using the
Polygon class. We denote the subdivision of [, b] into element subintervals x each of
length h, as ’R’ib] = {x}. We define the single continuous piecewise linear polynomial

interpolating K as

Kii={v € Cllab]) : ol € PL(K), 0 (@) = K@)l Ve € Tly b (5:23)

The automatic definition of exterior boundary components with pairs of points dis-
cussed in Section 5.2.1 allows for error control on curved sections of the exterior bound-

ary geometry. The L, error of the interpolation estimate on element « is denoted by
€y ‘= H’C - IChHLz(K)' (524)

We also introduce the interpolation error on the interval [a, b] by

2

e:=|K=Kulloqopp = | L ex| - (5.2.5)

Ke’f[;‘/b]

We seek an interpolant K of curve K which satisfies a given numerical tolerance
e < ToL. We employ an h-refinement scheme to adapt the subdivision 7&‘ b into succes-
sively finer meshes until the interpolation error criterion is fulfilled. The outline of this

procedure as computed in AptoPy is given in Algorithm 1. An example for the domain

Q={x:y>x% y<1, 0<x<1} (5.2.6)
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with curve interpolation add_curve_by_12_error((0.0, 0.0), (1.0, 1.0), lambda x:

x¥*2, tol=tol) is demonstrated in Figure 5.10 for various tolerances. Here the argu-
ments (0.0, 0.0) and (1.0, 1.0) are the start and end points (a,C(a)) and (b, (b)),
respectively, lambda x: x*x2 is the expression y = x? and tol is the numerical tolerance

of the interpolation error.

Algorithm 1 Compute exterior boundary geometry interpolation estimate.
while e > TOL do

For each k € T[Z,b} compute e,

Choose refinement fraction x € (0,1]

Compute the {X ‘T[Z,b} H largest values of ey, Vk € T[Z/b] denoted by E
Let 7!, = {x : e € E}

Compute 7., = {bisect (x) Vx € T}

Compute fine mesh 7 = <7'a 0\ Old> UT

Reassign 7'[2’ =Th

Compute e

end while

5.2.3 Subdomains and Interface Boundaries

In the specification of a Polygon, it may be required to indicate relevant subdomains. In
the context of the MPA-CVD reactor geometry, these subdomains characterise the air
filled cavity, quartz window and hydrogen vacuum regions. Polygon allows for specifi-
cation of subdomains using int identifiers by calling Polygon.define_region(location,
region_number). Here, the location argument is a point in R? which is enclosed by
the boundary of a subdomain which has been specified in the Polygon instance. The
region_number argument is the int identifier assigned to that subdomain. The Polygon
instance then assumes that when a mesh is generated, all elements in the volume en-
closing the location specified should be categorised by assigning to each the same

identifier region_nubmer.

Once a Mesh object has been instantiated from the provided Polygon with these subre-
gions, the interior interfaces can be requested. For two subdomain regions subdomainl
and subdomain2, the symbolic form of the integration element on their interface is ac-
quired from dInt_12 = mesh.region_interface(subdomainl, subdomain2). AptoPy au-
tomatically evaluates any DG jump and average operators as interior or exterior based

on whether their arguments exist on both or only one side of the interface. AptoPy
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@ToL=1 (b) TOL = 107!
(c) ToL = 1072 dToL=10"3
(e) ToL = 10~* @ ToL=10"°

Figure 5.10: Examples of meshes of the domain QO = {x:y > 2%, y <1, 0<x<1}
generated from a Polygon class instance, whose exterior boundary is de-
fined using Polygon.add_curve_by_12_error(). The meshes of the volume
of the domain are generated by interfacing with the mesh generation

package, Triangle [124].
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further handles the orientation of the face normal vectors to automatically point from

the region of highest integer identifier into the lower.

5.3 Discontinuous Galerkin Utility Functions

5.3.1 Penalisation Parameter ¢

Recall the penalisation parameter of the interior penalty method (3.5.17), repeated here

for convenience

Slur) = Crrp{(G(uwp) 65:31)

The component % is explicitly calculated in AptoFEM for a finite element solution of
polynomial degree ¢ on each element with diameter measuring hr. This quantity is
represented in AptoPy as a property of the FemFunctionSpace class, FemFunctionSpace
.penalisation(). The positive constant Cip can be selected by the user. For example,
choosing Cip = 20.0 requires 20.0x%V.penalisation(). In the case of finite element vector
function spaces or function space products, for example V4(7), FemFunctionSpace.

penalisation() is the vector
02
é, i=1,...,d, (5.3.2)

where /; is the polynomial degree of finite element function space component (V4 (7}%’))]

5.3.2 Automatic Treatment of Convective Terms

Recall the definition of the local Lax-Friedrichs flux from Section 3.4, i.e.,
Hir (u;,u;,ny) ‘a;c =3 (F (w) ne+F (u,) ne+a (v —u,)). (5.3.3)

The functional Hig(-, -, -) and dissipation parameter « can be automatically generated
in AptoPy for the convective components F¢(-) of a PDE. CallingH = lax_friedrichs_flux
(F_c, alpha) for a callable function F_c() and symbolic representation of alpha, the
generated function H() takes three arguments. These arguments correspond to the
mathematical representation of the local Lax-Friedrichs flux H(u",u",n,). Consider

the application of this AptoPy function to the linear advection equation
V- (bu)=f, (5.3.4)

where b € RY and F(u) = bu. Here, the dissipation parameter can be shown to be

|y, = |b - n,|. The AptoPy code example for this problem is given in Figure 5.11.
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alpha = Abs(dot(b,n))
def F_c(u): return bxu
H = lax_friedrichs_flux(F_c, alpha)

interior_residual = H(u_p, u_m, n)*(v_p - v_m)*dInt

Figure 5.11: Example of the AptoPy automatic calculation and symbolic representa-
tion of the local Lax-Friedrichs flux H(u™,u~, n,) as required for the lin-

ear advection equation shown in (5.3.4)

In some cases the dissipation parameter & cannot be so easily computed analytically.

Recall that for system flux Jacobian

f

d Of¢
B(u,ny) := ; En'{’i' (5.3.5)

0

the local Lax-Friedrichs dissipation parameter is defined to be the largest magnitude
eigenvalue, i.e.,
&lye = max {|A(B(w,ny))l}. (5.3.6)

w=u;"u;
AptoPy offers the utility functions flux_jacobian() and flux_jacobian_eigen_values()
to automatically compute the local Lax-Friedrichs dissipation parameter. AptoPy’s
flux_jacobian() function takes three arguments: the hyperbolic flux F*(-), the solution
vector u and the element face normal n,. By calling flux_jacobian(F_c, u, n), AptoPy
employs the symbolic differentiation of sympy to formulate the matrix B(u, uy). Subse-
quently calling flux_jacobian_eigen_values(), passing the flux Jacobian matrix as the
argument, further employs sympy to compute and solve the characteristic polynomial
of the matrix via the Berkowitz algorithm [16]. An example of using this method to
compute the local Lax-Friedrichs dissipation parameter for the convective component

of the Navier-Stokes equations F¢(u) = pu ® u is presented in Figure 5.12.

5.3.3 Automatic Treatment of Viscous Terms

Due to the consistent treatment of the elliptic second order terms of a DG finite element
formulation, AptoPy takes advantage of this by offering utility functions to automat-
ically generate their semilinear residual formulations. Recall from Chapter 3 that the

viscous component of a PDE can be written as

-V -F’(u;Vu) =0. (5.3.7)
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def F_c(u):
return rhoxuxu.T
# Calculate the eigenvalues for the dissipation parameter
B = flux_jacobian(F_c, u, n)
lambdas = flux_jacobian_eigen_values(B)
# Calculate the maximum of their magnitudes and encapsulate
lambdas_p, lambdas_m = elementwise(map(Abs, lambdas)))
maximum_lambda = Max(*lambdas_p.row_join(lambdas_m))

alpha = apto_evaluation(maximum_lambda, (u_p, u_m, n), ’alpha’)

Figure 5.12: Automatic symbolic algebra computation of the dissipation parameter re-
quired by the local Lax-Friedrichs flux appled to the Navier-Stokes con-

vective flux component F¢(u) = pu ® u.

def F_v(u):
return grad(u)

vt = DGFemViscousTerm(F_v, u, v, penalty)

Figure 5.13: Application of the DGFemViscousTerm class to the elliptic operator of the

Poisson equation —V?u = f where F°(u; Vu) = Vu.

The semilinear DG discretisation of the viscous (elliptic) term of this equation, derived

in equation (3.5.15), is repeated here for convenience

N(U) (uh;vh) = /QJTU (uh; thh) : Vv, dx — /I“IUaQ{{&h}} ZMdS
- /rz (6] - {vi} ds+ /rzan [, —w] : {GT (wy)Vavi} ds

+ / fay, —w,} - [GT(w)Vyvi] ds = 0. (5.3.8)
I'z

This semilinear formulation can be calculated in AptoPy by calling DGFemViscousTerm

(F_v, u, v, penalty) for scalar or vector trial and test functions u and v, respectively,

DG penalty quantity penalty = CIP% = C_IPxV.penalisation() used in the automatic

formulation of the interior penalty parameter, and callable function

F_v(u) = F°(u; Vu). (5.3.9)

An example of the application of the DGFemViscousTerm class for the Poisson equation

is given in Figure 5.13. Although DGFemViscousTerm currently only implements the in-

terior penalty method, this is not a restriction, and future support for other methods is

possible.
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The DGFemViscousTerm automatically generates the homogeneity tensor G, and thereby
also the interior penalty parameter § of equation (3.5.17). Recall that the homogeneity
tensor G(u) is defined for F°(u; Vu) = (f{,...,f5) by

of}
=1,...,d 3.1
Gu (u) = a(Vu) kil=1,....4d, (5.3.10)
such that for homogeneity tensor product
m d
(G(u) = Y (G (W) (Vu)y. (5.3.11)

I
—_

j=11=1

AptoPy offers the function homogeneity_tensor(F_v, u) toautomatically calculate G(u)
in equation (3.5.4) according to Algorithm 2 and the function hyper_tensor_product(G,
tau) to compute the homogeneity tensor product according to Algorithm 3. The
DGFemViscousTerm class uses this function, automatically constructing the homogene-
ity tensor storing it as a member of each instance. This is then used along with the
trial and test function vectors and the penalisation parameter in the calculation of the

semilinear residual stated in equation (3.5.15).

Algorithm 2 Calculating the symbolic algebra representation of the homogeneity ten-
sor G(u).
function HOMOGENEITY_TENSOR(F?(u; Vu), u)
(F_v,grad_u) < (F?(u; Vu), Vu)

G < [[0]mxm]dxd > Initialise homogeneity tensor
fork=1,...,ddo > Iterate over number of space variables
forl=1,...,ddo
g < [o]mxm
forr=1,...,mdo > Iterate over number of PDE variables
forc=1,...,mdo > Perform symbolic differentiation

glr, c] < Differentiate(F_v[r, k], grad_u[c, 1])
end for
end for
G[k, 1] +g
end for
end for
return G

end function
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Algorithm 3 Calculation of the homogeneity tensor product G(u)7.
function HOMOGENEITY_TENSOR_PRODUCT(G(u), T)

(G, tau) < (G(u), 1)
M < [0]">4
fori=1,...,mdo
fork=1,...,ddo
xi<+0
forl=1,...,ddo

X1 ¢— xi + MatrixVectorProduct(G[k, 11, taul:, 1])[i]

end for
M[i, k] < M[i, k] + xi
end for
end for
return M

end function

DGFemViscousTerm offers two methods for handling the boundary components of the
DG discretisation in (3.5.15). DGFemViscousTerm.interior_residual() automatically gen-
erates terms associated with the interior boundaries I'z; DGFemViscousTerm
.exterior_residual(u_gamma, dS_i) automatically generates the terms associated with
exterior boundary component dS_i with boundary condition ur(u) = u_gamma. An
example of the AptoPy code required to generate the semilinear residual form for the

nonlinear Poisson equation
-V -((u+1)Vu)=finQ, (5.3.12)
u = 0on dQ), (5.3.13)

is demonstrated in Figure 5.14.

In the case of applying the DGFemViscousTerm class in a coordinate system other than
the Cartesian coordinate system, the pattern matching offered by sympy required to
find components of Vu in F?(u; Vu) when calculating the homogeneity tensor is in-
sufficient. AptoPy therefore offers a more specialised method of calculating G(u) in the
function generalised_homogeneity_tensor(F_v_general, u) for vector u and callable func-
tion

F_v_general(u, grad_u) = F°(u;Vu). (5.3.14)
When this function is called from generalised_homogeneity_tensor(), its second argu-

ment is a matrix whose elements are symbolic representations of the vector derivative
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def F_v(u): return (u + 1l)xgrad(u)
vt = DGFemViscousTerm(F_v, u, v, penalty)
residual = dot(F_v(u), grad(v))*dx \

+ vt.interior_residual(dInt) \

+ vt.exterior_residual(0.0, dS) \

- fxvxdx

Figure 5.14: Example of the automatically generated discontinuous Galerkin finite el-
ement formulation of the nonlinear Poisson equation in (5.3.12) using the
DGFemViscousTerm utility class. Compare with the linear case shown pre-

viously in Figure 5.13.

def F_v_general(u, grad_u):
return grad_u
G_general = generalised_homogeneity_tensor(F_v_general, u)

vt = DGFemViscousTerm(F_v, u, v, delta, G=G_general)

Figure 5.15: Example of the automatically generated homogeneity tensor for the Pois-
son equation in (5.3.12), and its subsequent use in the instantiation of a

DGFemViscousTerm object.

such that
(Vu);j = grad_uli, jl. (5.3.15)

This simplifies the symbolic derivative calculation required by AptoPy for each coor-
dinate system. An example of generating the generalised homogeneity tensor for the

Poisson equation in (5.3.12) is shown in Figure 5.15.

5.3.4 Automatic Generation of DG Finite Element Formulations

Even with the utility functions provided by AptoPy described in Sections 5.3.2 and
5.3.3, the specification of a DG finite element formulation can be verbose, especially for
large systems of PDEs with many boundary conditions. In order to manage specifica-
tion of large sets of boundary conditions, AptoPy offers the BoundaryCondition abstract
class from which the classes DirichletBC and NeumannBC inherit. These implementations
simply serve to store the boundary condition and the boundary component over which
the condition should be enforced. For example, applying a Dirichlet boundary condi-
tion as required by the Poisson equation in (5.1.14) of u = gp on dQ)p simply requires
an instantiation of DirichletBC(dS_D, g_D). Constructing a series of boundary condi-

tions in this manner and placing them in a list allows for iterative generation of exterior
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bcs = [DirichletBC(dS_1, bc_1), DirichletBC(dS_2, bc_2), ...]
vt = DGFemViscousTerm(F_v, u, v, penalty)

ext = sum(vt.exterior_residual(bc.boundary(), bc.condition()) for bc in bcs)

Figure 5.16: Example of the automatic generation of the exterior residual terms of a

given DGFemViscousTerm for a list of Dirichlet boundary conditions.

bcs = [DirichletBC(dS_D, g_D), NeumannBC(dS_N, g_N)]
poisson_equation = PoissonEquation(mesh, V, bcs)

residual = poisson_equation.generate_fem_formulation()

Figure 5.17: Example of implementing the PoissonEquation utility class which in-
herits from the EllipticOperator and in turn the abstract base class

FemFormulation.

boundary terms in a finite element formulation. As an example of a series of Dirich-
let boundary conditions being automatically generated using the DGFemViscousTerm see
Figure 5.16.

This concept is further extended in AptoPy by the introduction of the abstract class
FemFormulation which prescribes one abstract method generate_fem_formulation(). As
its arguments, the FemFormulation constructor requires the symbolic representations of
the PDE boundary value problem mesh, the function space and the list of boundary
conditions. For example, the class EllipticOperator inherits FemFormulation which
requires the extra argument at instantiation of the form of F?(u; Vu). The imple-
mented overridden method generate_fem_formulation() should then be written to au-
tomatically generate the volume, interior boundary and exterior boundary integration
terms, implementing all of the concepts of utility functions for elliptic operators in
Section 5.3.3 and Figure 5.16. In turn, the utility class PoissonEquation inherits from
EllipticOperator which replaces the optional argument of EllipticOperator specify-
ing F(u; Vu) to the diffusion coefficient D. An example of the automatic generation

of the DG formulation of the Poisson equation (5.1.14) is shown in Figure 5.17.

This class hierarchy scheme for the automated generation of DG FEM formulations
implemented in AptoPy is presented in Figure 5.18. Further implementations of each
member of this class hierarchy need not only be by inheritance. For example, con-
sider an implementation of the steady state heat equation coupled to the incompress-
ible Navier-Stokes equations. ILe., given domain QO C R? with exterior boundary 9Q)

we seek the DG numerical approximations of velocity field u and temperature field T
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such that
~V?u+u-Vu+Vp=0 inQ, (5.3.16)
V-u=0 inQ, (5.3.17)
u-VT—-V?T=0 inQ, (5.3.18)

subject to the boundary conditions for prescribed functions gp and Tp

u=gp onod(), (5.3.19)
T=Tp ondQ. (5.3.20)

The AptoPy implementation could simply be a class inheriting FemFormulation and ag-
gregating single instances of the Poisson, NavierStokes and HyperbolicOperator classes.
When overriding the abstract generate_fem_formulation() method, only the provision
of the convective flux of the system enthalpy with the background velocity is required
to be coded. The remaining is simple management between the velocity, pressure
and temperature function spaces and boundary conditions amongst the aggregated

FemFormulation members.
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EllipticOperator

F_v : function

F_v_v : function

FemFormulation

—[)[ Biharmonic ]
—[)[ Poisson ]
—[)[ Helmholtz )

bcs : list
mesh : Mesh

fspace : FSpaceProduct

Continuity

rho : Expression

__init__(mesh, fspace, bcs)

generate_fem_formulation()

HyperbolicOperator

F_c : function

alpha : Expression

D[ Stokes ]
[ >
N ;[ NavierStokesIncompressible ]
.
D[ NavierStokes ]

MaxwellOperator

mu : Expression

epsilon : Expression

4[>[ Euler

4[>[ Burgers
— Advection

e’ S’

MaxwellWithInvolution )

Figure 5.18: Class diagram of the DG FEM formulation hierarchy.
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5.4 Solution Procedure

5.4.1 Introduction

By default, AptoPy solves every finite element formulation of a given PDE, as if it were
a nonlinear problem by employing a damped Newton iterative method. Given a finite
element formulation defined by the semilinear residual functional N (u;v;) and its

Gateaux derivative

N w] (w;v) := lim N (utTw; Z) — N (wv), (5.4.1)

then for damping parameter & € (0, 1], each subsequent solution estimate uzﬂ is up-

dated according to:
ultt = uf + 0dj. (5.4.2)

Here, d}} is the update of the previous iterate u}} defined by: find dj} € V), such that

N/ [dm (uz; Uh) = —N (uZ; Vh) Vvh S Vh- (543)

AptoFEM provides the appropriate subroutines and data structures to handle the it-
erative calculation of equation (5.4.2). Therefore AptoPy must parse the computational
symbolic algebra representation of the finite element formulation, and generate the
necessary Fortran code for compilation against AptoFEM and thereby computation of
the FE solution. To this end, in this section an indexing scheme is introduced to match
symbols in AptoPy with the corresponding implementation in AptoFEM. The method
implemented by AptoPy of parsing a finite element solution from a sympy expression
tree and then calculating its Gateaux derivative is then demonstrated. Lastly the formu-
lation in terms of the basis functions of each finite element function space is introduced
and hence the automatic residual vector and Gateaux derivative matrix construction in
AptoFEM. Using these principles, the resulting Fortran code AptoPy generates in this
translation procedure is then automatically compiled against the AptoFEM library, and

the resulting executable is run to compute the numerical FE solution.

5.4.2 Indexing Function Spaces and their Associated Variables

The various variables and function spaces of a finite element formulation written in
AptoPy must be correctly indexed in order to translate the symbolic form to the auto-

matically generated Fortran code necessary for AptoFEM to compute the solution.

106



CHAPTER 5: APTOPY

In the case of Cartesian coordinates, the spatial variables are indexed in the following
manner
x=(x1,...,x3) ", (5.4.4)

which in turn define the indices used in AptoFEM for the spatial coordinate vector,

such that x; = svars(j). Similarly, the element face unit outward normal vector
_ T
ne = (ny,...,1n3) ", (5.4.5)

corresponds to the AptoFEM array with indices n; = face_normals(j).

On a bounded domain () with Dirichlet boundary 0Q)p and Neumann boundary
0Qn, where 0Q)p UdQy = dQ2 and 9Qp N dQy = @, a given finite element solution

space may be the product of several finite element spaces, i.e.,
W(Q) = V,,(Q) x VZ,(Q) x ... x Vi, (Q), (5.4.6)

where each trial function is indexed such that up; € V}{ Z(Q), j=1,...,a. The product

of finite element spaces which vanish on the Dirichlet boundary 0Q)p is denoted by
W(Q) = V() x V2,(Q) x ... x Vi, (Q), (5.4.7)

where each test function is indexed such that v;,; € V}{ (Q),j =1,...,a Further-
more, derivatives of the functions belonging to these spaces are indexed with the same

scheme as used for the spatial variables, for example, ous;/ox, j =1,...,a, k=1,...,d.

5.4.3 Parsing the Residual Finite Element Formulation

Initially the residual finite element formulation expression tree is parsed to separate
element and face contributions. The element components are found in coefficients of
the volume integration element dx and face components are found in coefficients of
the boundary integration element ds for each boundary component 9Q);,i =1, ..., mq,

and interior faces I'z. An example of this process is shown in Figure 5.19.
The following notation is used to denote the solution variable vector for each trial
function uy,; € VZ,E(Q)'j =1,...,«a
u= (Up1,... Upy) (5.4.8)
and test function vector for each test function Upj € \7,{, K(Q), j=1...,«a
V= (Up1,., Una)- (5.4.9)
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Add
Mul Symbol Mul Symbol
Function Function "dx’”  Integer Function "ds’
NN N
"u” Symbol ‘v’ Symbol 3 "u’”  Symbol
| | |
"x' 'x' 'x'

Figure 5.19: The expression tree for the AptoPy code uxvxdx + 3xvxdS, which is parsed
for the volume integration element dx by walking the tree as shown by red
branches. The coefficient subtree of dx is then extracted as shown by the

blue branches.

For each function space employed in the definition of the product space W(Q2), each
subtree is parsed to find coefficients of test functions Onj, j=1,...,8, which are stored
in the tensor E7(u) for element contribution and B]-v’aﬂi (u) for boundary contributions.
Furthermore, coefficients of test function derivatives dvs;/ox, j =1,...,a, k =1,...,d,
are stored in the element contribution tensor E]Zf (u) and boundary contribution tensor
Bzf’aﬂ" (u). This then allows for the semi-linear residual formulation to be written: find
u, € W(Q) such that

avh i
uh,vh / Z ( uh Uh,] + Z E ) ax:> dx
8 Uy i
BYP%( + BVVaQ Z | 5.4.10
/ao Z ( (un)onj Z axk s ( )

1]1

for all v;, € W(Q), where mq is the total number of boundary components.

5.4.4 Calculating the Gateaux Derivative

We introduce the tensors:

v v Vv Vv
vu 87] v,Vu _ aE] Vvau _ an,k Vv,Vu __ an,kv
j’l o au ! j’l’k o auh,l ’ j’k'l o au ’ jrkvrl/ku - auh,[ 4
Il aaTk Il aaxku
v v Vv Vv
e I ) vou _ Ok vorw O gy
Iz auhl’ ik aa“h,l ! jkd auhl ! Jrko L ku ouy,; ’ o
’ 9 ! axk
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V = FemFunctionSpace(mesh)
u, v = V.trial(), V.test()
residual = dot(grad(u), grad(v))*xdx - fxvxdx

gd = GateauxDerivative(residual, V)

Figure 5.20: AptoPy python code computing the Gateaux derivative of the finite ele-

ment residual formulation of the Poisson equation.

wherej, Il =1,...,aand k, k,, k, = 1,...,d. These tensors can each be calculated using

sympy, the Gateaux derivative of the residual expression in (5.4.10) is given by,

14 14 v, u aw
N wy] (up;vy) = /QZZ (ejz (up)wy,op,j + Z@]zvk (up) o1, o vh,z) dx

ko k=1 axk axk

o o d oo, & 8 dv
Vv, h, Vv,V Wh,1 OCh,;
NP (ej,k:,wuwwh,z 7ot L G (w) )
mao L aw
1,0 ,0 hl
oy zz(%zr “<uh>wmvh,]+2%7li“ o )

Ule oo d B VA0, BV, aQ owy,; OV d
+, 2 (B (w whl + Z ok (W )axk Oxy "
s u 0

M -

(5.4.12)

Although seemingly verbose, this formulation reduces the computational complex-
ity of calculating the symbolic Gateaux derivative of the residual form by breaking up
the residual equation into smaller segments. Once translated to Fortran code, opti-
mised linear algebra libraries can also take advantage of the matrix product calcula-
tions between the arrays storing the residual and Gateaux derivative tensors and the
arrays storing the basis of the test functions and their derivatives. AptoPy implements
the calculation and storage of the symbolic Gateaux derivative in the GateauxDerivative
class. An example of the automatic computation of the Gateaux derivative residual for

the finite element formulation of the Poisson equation is demonstrated in Figure 5.20.

We will show later in Section 6.6 that computing the Gateaux derivative of a finite
element formulation is the most costly computation performed by AptoPy. To allevi-
ate this issue, each computed Gateaux derivative can be serialised and cached to the
persistent memory of the hard disk. These cached Gateaux derivatives are indexed
by meta-data generated from the residual from which they were computed, such that
AptoPy will load the corresponding formulation when required on subsequent code

generation.
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5.4.5 Applying Newton’s Method: The Residual Vector and Jacobi Matrix

We write N;(h) = dimVI{,e(Q), j=1,...,a, to denote the dimension of the discrete so-
lution space V%z,é (Q), and let Vé’E(Q) = span {4)]1,. : "Qb;vj(h)} for linearly independent
basis functions ¢}, n = 1,..., N;(h). Thereby, we may write u, ; in the following form

N;(h)

=Y Ul j=1,...,a (5.4.13)
m=1

for solution vector U/ and denote the complete solution vector by
i = (ul,...,u“) : (5.4.14)

This solution vector is represented in AptoPy by the SolutionVector class whose con-
structor arguments require the function space of the problem. For example, given the
function space of a finite element problem V! ,(Q}) x V2,(Q)), an appropriate solution
vector Y is constructed by calling U = SolutionVector(Vl * V2). The residual formula-
tion of equation (5.4.10) is then constructed in the vector
Ne(h) .
oY u,”;(p;;) ; 4ﬂn> , (5.4.15)
=

1

Ni(h)
R =N (( Y Uhdn, -
m=1

forj=1,...,aandn =1,... ,N]-(h). The Gateaux derivative is constructed in the

matrix

Ni(h) Ne(h) .
(1) == N [d)] ((:Zj ulgl,..., Y um¢%>;¢£) (5.4.16)
m=1 m=1

forj=1,...,04andn =1,...,Nj(h).

The damped iterative Newton method then employs the vector in (5.4.15) and the
matrix in (5.4.16) for each iterative solution vector approximation &I, of the Newton
method, i.e.,

o = Ly — & [0 ()] 93 () (5.4.17)

with initial starting guess 4, = (U}, ..., U§).

The data-structures and subroutines required to set up and store the vectors il and
R and the sparse matrix R’ are provided by AptoFEM, along with subroutines for
evaluating the iterative method in (5.4.17). The AptoPy symbolic representation for
computing a solution to a finite element residual formulation in SolutionVector U is
simply to call newton_solve(residual, U). In this case the Gateaux derivative of the
residual is computed implicitly based on the properties of the Solutionvector; a custom

GateauxDerivative argument can be passed as an optional argument if required.
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5.4.6 Numerical Quadrature in AptoFEM

In order to evaluate the integration operations required in the finite element formula-
tion, a quadrature method is employed. On each element « of the mesh T/, the quadra-
t