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Abstract

In this thesis we study the chemical reactions and transport phenomena which occur

in a microwave power assisted chemical vapour deposition (MPA-CVD) reactor which

facilitates diamond growth. First we introduce a model of an underlying binary gas

flow and its chemistry for a hydrogen gas mixture. This system is heated by incorpo-

rating a microwave frequency electric field, operating in a resonant mode in the CVD

chamber. This heating facilitates the dissociation of hydrogen and the generation of

a gas discharge plasma, a key component of carbon deposition in industrial diamond

manufacture.

We then proceed to summarise the discontinuous Galerkin (DG) finite element dis-

cretisation of the standard hyperbolic and elliptic partial differential operators which

typically occur in conservation laws of continuum models. Additionally, we sum-

marise the non-stabilised discontinuous Galerkin formulation of the time harmonic

Maxwell operator. These schemes are then used as the basis for the discretisation

method employed for the numerical approximation of the MPA-CVD model equations.

The practical implementation of the resulting DG MPA-CVD model is an extremely

challenging task, which is prone to human error. Thereby, we introduce a mathematical

approach for the symbolic formulation and computation of the underlying finite ele-

ment method, based on automatic code generation. We extend this idea further such

that the DG finite element formulation is automatically computed following the user’s

specification of the convective and viscous flux terms of the underlying PDE system in

this symbolic framework. We then devise a method for writing a library of automat-

ically generated DG finite element formulations for a hierarchy of partial differential

equations with automatic treatment of prescribed boundary conditions.

This toolbox for automatically computing DG finite element solutions is then applied

to the DG MPA-CVD model. In particular, we consider reactor designs inspired by the

AIXTRON and LIMHP reactors which are analysed extensively in the literature.
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CHAPTER 1

Introduction

1.1 Synthetic Diamond

In 2012 the global industrial diamond output was estimated to be 4.52 billion carats,

valued between $1.65 and $2.50 billion [112]. The first synthesis of artificially grown

diamond is attributed to Howard Tracy Hall using the so-called high pressure high

temperature (HPHT) process in 1954 [71]. This was achieved by building on work by

Percy Bridgman in high pressure physics for which he was awarded the Nobel Prize in

1946. The largest of these first artificial diamonds measured 0.15 mm in diameter and

were grown at pressures of 10 GPa and temperatures above 2000 ◦C. Further manufac-

turing methods have been developed since using chemical vapour deposition, explo-

sive optics and ultrasound cavitation [129]. In this thesis we seek to model the chemical

vapour deposition process of diamond manufacture.

The chemical vapour deposition (CVD) diamond market has seen strong growth

since its introduction in the mid 1980s due to its properties of strength, durability,

stiffness and thermal conductivity. Furthermore, research and development of CVD

diamond manufacture has seen rapid expansion since its inception [129]. The advan-

tages of the CVD diamond manufacture process owe to its rigidly controlled growth

conditions. The remarkable optical, thermal, chemical and electronic properties of dia-

mond, along with its extreme hardness and wear resistance, offer a material with great

potential in scientific and engineering applications. Furthermore, diamond manufac-

tured in chemical vapour deposition processes allows for the growth of the material to

be tailored to specific applications.
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CHAPTER 1: INTRODUCTION

The aim of this project is to formulate a mathematical model of the chemically react-

ing flows involved in the CVD diamond growth process, and to provide accurate and

efficient numerical discretisation methods. Exploiting the results from these calcula-

tions will enable the growth of higher quality diamond products as a result of improved

reactor design. The challenge lies in the amalgamation of modelling plasma physics,

energy deposition, chemical reactions, and transport processes, as well as developing

suitable computational methods. In this thesis, we present a model for the dissociation

of molecular hydrogen in a CVD reactor, along with its discontinous Galerkin (DG)

finite element method (FEM) approximation.

1.2 Synthetic Diamond Manufacture via Chemical Vapour De-

position

Industrial use of CVD diamond requires film purity, low defect content and a satis-

factory growth rate. Employing a microwave plasma-assisted (MPA) resonant cavity

system in the CVD reactor design facilitates the dissociation of required quantities of

atomic hydrogen to meet these needs. A summary of the physical properties of dia-

mond grown in CVD reactors, as well as an overview of the CVD growth process is

given by Balmer et al. [13].

The first synthesis of diamond material using MPA-CVD was demonstrated in 1983

by Kamo et al. [88]. Employing a gas mixture of hydrogen and v1% methane, the hy-

drogen component was dissociated via microwave discharge. Atomic hydrogen atoms

stabilise the growth of diamond and discourage the growth of graphite. In a typical

CVD manufacturing process, the diamond mounted on a substrate in the CVD reactor

is heated to temperatures of 800 K to 1000 K and the gas is held at pressures between

15 torr to 300 torr. A typical MPA-CVD reactor microwave cavity design consists of a

quartz window separating a vacuum chamber and an air filled cavity. The vacuum

chamber contains the hydrogen methane mix in which the plasma is ignited and the

diamond deposited. The shape and stability of the ignited plasma leads to optimum

conditions for diamond growth. It is favourable that the plasma be flat against the sub-

strate surface whilst being maintained for a period of hours to several days. A cross

section of a typical MPA-CVD reactor design is show in Figure 1.1.

MPA-CVD reactor design can be optimised through trial and error based on an un-

derstanding of the underlying physical processes, although this is a time consuming

10



CHAPTER 1: INTRODUCTION

Figure 1.1: A cross section of a typical MPA-CVD reactor design.

and expensive process. In the case of complicated geometries, the shape of the elec-

tric field in the CVD reactor can be difficult to predict given its interaction with the

plasma. Numerical solutions of CVD reactor models are therefore an essential require-

ment. Initial numerical experiments employing finite difference numerical schemes

were performed in [53, 61, 136]; see [47, 123] for high performance computing experi-

ments implementing the finite element method for multiphase gas flow occurring the

CVD reactors.

In this thesis we aim to develop a fully self consistent numerical model of the pro-

cesses which occur in the MPA-CVD diamond manufacture process. We seek to simul-

taneously find numerical approximations to the gas momentum transfer, heat transfer,

electromagnetic field energy and plasma density. This will build on prior work of nu-

merical models which only account for subsets of the physical and chemical processes

occurring in a CVD reactor. Furthermore, the numerical methods employed should be

efficient and robust to accommodate for the large range of operating conditions of CVD

reactors. Whilst offering the power of modern numerical methods, we will also ensure

its ease of use in a user-friendly environment. In the following sections, we will give

an outline of each of these subjects.

11
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1.3 Modelling MPA-CVD Reactors

In this section we give an outline of the descriptive models regarding the hydrogen

dissociation chemistry in a CVD reactor based on the excellent review paper by Has-

souni et al. [70]. For molecular hydrogen this includes accounting for:

• The collisions of electrons with molecular hydrogen resulting in excited rotational

and vibrational state and hence the heating of the hydrogen gas [32, 68, 104, 105].

• Electronically excited states of molecular hydrogen, some of which result in the

production of atomic hydrogen [31, 34].

• The resistive electron collision interaction with atomic hydrogen leading to the

production of several excited state species including atomic and ionised hydro-

gen [33, 34].

• Collisions between electrons and atomic hydrogen resulting in excited atomic

hydrogen states along with production of hydrogen ions [118, 125, 141].

• The reactions involving the heavy molecular and atomic hydrogen species also

lead to production of their excited states and energy redistribution [104, 105],

ionisation [116, 134], heated dissociation [68, 105] and reciprocal neutralisation

[51, 101].

Hassouni et al. [70] summarise by stating that a fully descriptive model of hydro-

gen plasmas requires consideration of at least seven species along with their internal

modes: H2, H, H+, H– , H+
2 , H+

3 and e– . In order to reduce complexity of the model, the

state-to-state kinetics of the internal modes are considered negligible. For example, the

number density of electrically excited hydrogen molecules is several orders of magni-

tude smaller than its ground state in moderate pressure hydrogen plasma discharges

[68]. With this in mind, a simplified model can be presented of moderate pressure

hydrogen plasma discharges that accounts for collisional energy transfer between elec-

trons and the heavy species in terms of ionisation and dissociation kinetics. The energy

of the system is modelled via the thermodynamic temperature of the heavy species

gas mixture and the temperature of the electrons measured from the electron energy

distribution function. The simplified model also reduces the reactions and production

of the seven species mentioned above to H2, H, H+, H+
3 and e– . Here, H– is ignored

due to molecular hydrogen discharges at moderate pressure being electropositive. Fur-

thermore, the H2
+ species is considered an instantaneous intermediate species which is

converted to H3
+. In this thesis, we consider a further simplified model where we only

consider the dissociation of hydrogen and thereby the species H, H2 and e– .

12
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Hassouni et al. [70] state the assumption, which will also be used in the model pre-

sented in this thesis, that the flow within the CVD reactor is subsonic, allowing for

the mean system pressure to be treated as a system constant. When low flow rates

are considered, the convective effects of mass transport are negligible and only diffu-

sive transport need be considered. The particle flux of each species therefore obeys a

continuity conservation law of the form

∂ρi

∂t
+∇ · ji = ri, (1.3.1)

where ρi, ji and ri are the densities, diffusive fluxes and mass production rates of

species i, respectively. The diffusive fluxes ji are determined by Fick’s law of diffu-

sion due to inter-species particle concentration gradients. Furthermore, conservation

of the energy density of each species provides a description of the temperature of the

hydrogen gas and the temperature of the electrons whose energy source comes from

the coupled microwave field. This pseudo-Soret effect is expressed as

∂ (ρh)
∂t

+∇ · q = Q, (1.3.2)

where h, q and Q are the gas enthalpy, diffusive flux vector due to temperature gra-

dients and external heating, respectively. Discussed later in this thesis, the model pre-

sented accounts for the case of high flow rates where the convective effects are not

neglected.

The gas is heated via a coupled microwave frequency electric field, facilitating the

dissociation of hydrogen. The ignited plasma in the gas mixture introduces a perturba-

tion in the electrical permittivity of the gas mixture medium. Hassouni et al. [70] sum-

marise two methods for modelling the electric field’s absorbed power in the plasma as

either a high frequency conducting medium or a dielectric.

Regarding the high frequency conducting medium model, solutions are sought for

the electric field E and magnetic field H from the time dependent form of Maxwell’s

equations

∇× E = −µ0
∂H
∂t

, (1.3.3)

∇×H = −ε0
∂E
∂t
− qeneue−HF. (1.3.4)

Here, µ0 and ε0 are the permeability and permittivity of free space, respectively, qe, ne

and ue−HF are the charge of the electron, electron number density and high frequency

electron velocity, respectively; these combine to give the electron drift velocity je =

13
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−qeneue−HF. In the context of electrically conducting plasmas, these solutions, E and

H, can be found in the frequency or time domain [60, 90, 122, 146], where examples

specifically for a CVD reactor geometry are given in [135, 136]. A key ideal in the design

of a CVD reactor is for its dimensions to support resonant modes of the contained

electric field. The resonant frequencies supported by an empty CVD reactor cavity

geometry can be calculated using frequency domain analysis [53–55, 126].

The time domain solutions to Maxwell’s equations offer an advantage over the fre-

quency domain analyses in the sense that they facilitate direct coupling with the plasma

system. Furthermore, due to its suitability for numerical schemes such as finite dif-

ferencing, finite volume and finite element methods, time domain analysis allows for

easier numerical discretisation of complex geometries, which is typically the case for

CVD reactors. Combined with rapid computational performance improvements be-

tween 1995 and 2005, time domain analysis became more widely popular, we refer to

[53, 55, 59, 63, 69, 92, 136, 140, 145] for a comprehensive history of these developments.

The disadvantage of the time domain analyses of the high frequency model is the

implementation of simultaneously solving several equations to determine the high fre-

quency component of the electron drift velocity je. The calculation of je depends on

the collision cross section of the electron-heavy species momentum transfer and the

electron energy distribution function [29, 30]. The dielectric model of the CVD reactor

plasma formulates the high frequency electron drift velocity component of equation

(1.3.4) as part of a plasma dielectric permittivity εp. In essence, equation (1.3.4) can be

written as Ampère’s law

∇×H = −εp
∂E
∂t

. (1.3.5)

The plasma parameters involved in the calculation of the plasma permittivity are de-

pendent on the particle and energy density conservation of each constituent chemi-

cal species. Equation (1.3.5) offers the advantage of being well suited for the time-

harmonic formulation of Maxwell’s equations where E(x, t) = <(E(x)ejωt) andH(x, t) =

<(H(x)ejωt) for electric field frequency ω, complex unit j =
√
−1 and complex phasors

E and H.

Although beyond the scope of this thesis, Hassouni et al. [70] also summarise the

hydrogen-methane plasma models developed for diamond deposition. The underly-

ing principles of the H2/CH4 model are very similar to the momentum, particle density

and energy density conservation when coupled with a driven electric field which mod-

14



CHAPTER 1: INTRODUCTION

els the hydrogen plasma [67]. The introduction of methane to the model introduces

much greater complexity due to the larger number of chemical species and chemical

reactions. Furthermore, the ionisation properties and hence plasma parameters of the

H2/CH4 mixture will be largely different from those incorporated in the hydrogen

plasma model [50, 85, 119]. It should be noted that in diamond deposition reactors,

which will only have peak ratios of CH4/H2 at v10%, the difference in the plasma

shape, position and optimal power deposited from the electric field compared to the

hydrogen plasma is not significant [56, 57].

The series of articles by Füner et al. [53–55] and subsequently the work by Hassouni

et al. [69] and Hagelaar et al. [63] give a chronological account of the development of

numerical models of CVD reactors employing the finite difference method. Account-

ing only for diffusive transport in a hydrogen gas mixture, a numerical model is solved

with the emphasis being on the measurement of the microwave power deposition in the

plasma discharge, as well as the composition of the plasma at the diamond substrate

surface. Modelling hydrogen dissociation allows for the simulation of the configura-

tion of the shape, temperature and position of the plasma in the CVD reactor. Using

the plasma shape calculated from this result, a further model is presented for the mix-

ture of hydrogen and methane in one dimension along the axis of the ignited plasma.

The results of the hydrogen methane model were then used to analyse transport and

wave phenomena in the plasma, and therefore the optimisation of diamond growth

processes at the substrate surface.

1.4 Numerical Simulation and Reactor Design

The use of numerical models for the optimisation of reactor design is reviewed by Silva

et al. [127]. Simulations presented in [127] show that the concentration of atomic hy-

drogen resulting from its dissociation from molecular hydrogen is sufficient to encour-

age deposition of high purity diamond films whilst maintaining large growth rates in

various reactor geometries. Most importantly for MPA-CVD reactors, the shape and

volume of the plasma produced in the MPA cavity of the CVD reactor depends greatly

on the careful design of the microwave system. The capacity to precisely account for

the coupling between the electric field and the plasma and therefore the perturbation

in the electric field is a key component in the reactor’s geometric optimisation. For ex-

ample, this perturbation can lead to large portions of the input power being reflected

resulting in detrimental heating and damage of the reactor walls or quartz window.
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Improving reactor design by exploiting numerical reactor modelling usually involves

the optimisation of a so-called quality factor Q f . The quality factor function is depen-

dent on the CVD reactor operating parameters, such as geometric dimension, operating

pressure and antenna/waveguide configuration. Computing simulations on a discrete

mesh of cells representing a CVD reactor geometry, Füner et al. [55] demonstrate the

optimisation of their ellipsoidal reactor design based on the metric of absorbed mi-

crowave energy in the plasma measured in terms of the electric field magnitude, |E |,
whereby Q f is defined by

Q f =

∑
plasma cells

|E |2

∑
remaining cells

|E |2
. (1.4.1)

This quality factor metric is further implemented in recent numerical reactor design

methods, cf. An et al. [6].

The use of numerical modelling for reactor design allows for novel geometric shapes

of CVD reactors to be easily tested. We note that the choice of the quality factor function

depends on a desired quantity of interest, and that we are not restricted to (1.4.1). For

example, incorporating geometries designed to reflect the enclosed coupled resonant

electric field maxima to a single focal point as in [55, 98]. Recent simulations used

for CVD reactor designs, optimising geometries of reflective surfaces, are presented in

[6, 97, 130, 131].

We emphasise that in these models only diffusive effects are considered, or the bulk

gas flow of hydrogen is modelled as a velocity potential, cf. Koldanov et al. [92].

Our aim here is to model the conservation of momentum of the atomic and molecular

hydrogen gas mixture and therein its diffusive and particularly its convective transport

phenomena. Due to the convective terms arising in the model presented in this thesis,

we will employ the discontinuous Galerkin finite element method.

1.5 Discontinuous Galerkin Finite Element Methods

1.5.1 Hyperbolic and Elliptic Operators

The finite element method seeks to approximate the weak formulation of a given par-

tial differential equation (PDE) boundary value problem, based on employing piece-

wise polynomials. Indeed, the computational domain is subdivided into elements and
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the underlying solution is approximated on each element by a polynomial of a given or-

der `. In ‘traditional’ continuous Galerkin (CG) finite element methods, the assumption

is made that the numerical solution approximation is continuous across the boundaries

of the elements. To enforce this continuity condition, the approximating polynomial of

an element on the mesh will share degrees of freedom with its neighbours. Subject

to enforcing appropriate boundary conditions, the CG finite element approximation

closely follows the variational formulation of the underlying PDE by replacing trial and

test functions by piecewise polynomials. In the case of linear problems, this discrete

system leads to the matrix problem Ax = b. The book by Babuška and Strouboulis [10]

details the early history of the development of finite element methods.

Standard CG finite element approximations of convection dominated problems ex-

hibit non-physical oscillatory solutions leading to issues of poor numerical stability. As

an example of such numerical instability, on the interval (0, 1) consider the equation

− ε
d2u
dx2 + b

du
dx

= 0, u(0) = 0, u(1) = 1, (1.5.1)

which has the analytical solution

u(x) =
1− e

b
ε x

1− e
b
ε

. (1.5.2)

Here, the quantity b/ε is the Péclet number; for a large Péclet number (b � ε) equation

(1.5.1) becomes convection dominated, leading to the formation of a boundary layer,

where u rapidly changes close to x = 1. For ε = 0.01 and b = 1, the analytical solu-

tion and CG finite element approximation with 10 elements are shown in Figure 1.2a.

Stabilisation schemes for the standard CG finite element method have been proposed

to alleviate this problem such as ‘upwinding’ [23] and the residual free bubble method

[22, 27].

When modelling the transport phenomena found in CVD reactor gas flows, the re-

sulting equations can be convection dominated in the case of high input gas flow rates.

Thereby, numerical simulations require the approximation of systems of highly non-

linear equations stemming from the exploitation of very fine resolution computational

meshes. Brooks and Hughes [23] introduce the challenge of finding numerically stable

solutions to the Navier-Stokes equations. With application to the Navier-Stokes equa-

tions, examples are given for including ‘artificial viscosity’ in the direction of convec-

tion in the form of an added diffusion term. This streamline up-wind/Petrov-Galerkin

method introduces stability into the finite element solution of convection dominated
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Figure 1.2: Finite element solutions to equation (1.5.2). This presents an example of

non-physical numerical oscillation error present in continuous Galerkin fi-

nite element approximations of convection dominated problems.

problems. Brooks and Hughes give examples ranging from a convection-diffusion

equation to vortex shedding from a circular cylinder. A summary of stabilisation meth-

ods proposed for CG methods and their comparison with discontinuous methods is

given by Cangiani et al. [28]. Implementing this notion of stabilised CG finite element

methods applied to numerical approximations of chemically reacting flows, along with

some strategies for re-meshing and mesh refinement, Braack and Richter [20] present

results implementing the SUPG method developed by Brooks and Hughes [23].

Currently an area of great interest in computational modelling, discontinuous Galerkin

(DG) finite element methods offer novel schemes which attempt to address the numer-

ical stability problem. Further benefits of the DG finite element method arise from the

richer space of functions in which the numerical approximation is sought (e.g. per-

mitting discontinuities across element interfaces) and the consistent DG finite element

formulation for PDE operators, as will be shown in Chapter 3.

Stemming from the concepts of weakly enforcing Dirichlet boundary conditions on

the exterior of a computational domain [109], the DG method weakly enforces con-

tinuity of the solution variable across interior element faces. As a consequence, the

‘upwinding’ employed artificially by other methods is in fact implicitly a component

of the DG formulation. Its application to elliptic PDEs is summarised by Arnold et al.

[8] reviewing earlier proposals for non-conforming finite element methods. For exam-
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Figure 1.3: Comparison of run times to complete a simulation of a CVD reactor geom-

etry for a more extreme parameter set using a CG and DG finite element

method on the same mesh. These results were generated from a prelim-

inary model which does not include the coupling of the electromagnetic

field and plasma model.

ple, some of the many DG finite element methods include: symmetric interior penalty

methods [7, 11, 49, 143], non-symmetric interior penalty methods [77, 120], incomplete

interior penalty methods [45, 48, 132] and the Baumann-Oden method [15]. Analysis

of the DG finite element method applied to nonlinear second order PDEs has been un-

dertaken in [26, 62, 81], for example. The application of DG methods to hyperbolic

problems and its a priori analysis has been analysed in [17, 73, 75].

Numerical experiments show the advantages of the increased stability and robust-

ness of the DG method compared with CG methods, however at a cost of greater

computational expense. This arises due to the DG scheme allowing for discontinu-

ities across boundaries of elements, which implies that degrees of freedom are not

shared between elements as with CG schemes, but rather more degrees of freedom are

required to enforce numerical flux restriction on the facets between neighbouring ele-

ments. A DG finite element approximation to the solution of equation (1.5.1) is given in

Figure 1.2b for ε = 0.01 and b = 1 demonstrating the advantages of the DG numerical

scheme in this convection dominated system.
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Examples of the DG method applied to the Stokes [39], Euler [64], compressible

Navier-Stokes [66], incompressible Navier-Stokes [38, 40–42] and incompressible mag-

netohydrodanamics [82] equations give a comprehensive explanation of the formula-

tion of DG methods for fluid flow problems along with their a priori numerical analysis.

By fixing the element polynomial degree of the approximating polynomial, optimal

convergence rates can be analytically derived and experimentally shown by varying

the element size, so-called h-refinement. Furthermore, due to DG methods permitting

basis functions discontinuous across element interfaces, varying the degree of the ap-

proximating polynomial across elements in the DG scheme is handled by the method

in a simple manner. This leads to the so-called p- and hp-refinement methods being

easily implemented in a DG scheme, which offer exponential convergence rates with

an increasing number of degrees of freedom [74, 76]. Naturally this leads to adaptive

refinement based on a posteriori dual weighted residual error estimation, for which DG

methods are well suited. Examples of this approach for nonlinear hyperbolic conser-

vation equations is given in [65].

The details of the CVD reactor model and the computation of its numerical approx-

imation will be discussed later in this thesis; however, to highlight the benefit of using

DG methods in this project, a comparison between using a CG and DG method for the

CVD reactor model was devised. We use a reduced reactor model which only solves

for hydrogen gas momentum, mass and enthalpy balance, but not the electric field and

plasma model. Selecting a CVD reactor geometry and a set of parameters which would

describe a typical CVD reactor state for growing diamond, the time elapsed to compute

the solution is shown in Figure 1.3. The primary reason for the improved performance

of the DG scheme is that the stability and robustness it offers leads to a reduction in

the number of continuation steps required to compute the solution of the system state

for the given parameter set. Another clear benefit of the DG scheme is from the richer

space of functions in which the solution is sought. The DG Taylor Hood elements em-

ployed to solve the gas flow momentum balance equations permit piecewise constant

polynomial approximation of the pressure and piecewise linear polynomials for each

component of the velocity solution. This reduces the number of degrees of freedom

in the system compared with the CG FEM Taylor Hood scheme, although at a cost of

greater approximation error due to the lower polynomial order.
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1.5.2 Time-Harmonic Maxwell Operator

The time-harmonic Maxwell equations present a series of challenges in their approxi-

mation using finite element methods. In a naïve approach, their reformulation to the

Helmholtz equation through the divergence free field constraint of Gauss’ Law, allows

for the standard variational formulation of the Laplace operator using CG finite ele-

ment spaces [83, 84]. Not only does this require that the discretisation of the underly-

ing geometry satisfy Nyquist’s theorem, but in the case of a non-convex domain, the

solution to the time-harmonic Maxwell equations can be singular. Here, the use of stan-

dard finite element methods will lead to the discrete solution erroneously converging

to a function which is not the solution to Maxwell’s equations. Accounting for this, the

tangentially continuous edge elements of Nédélec with H(curl) conforming basis were

developed in [107, 108], see also [86, 106].

For a review of the development of DG methods for the time-harmonic form of

Maxwell’s equations, we refer to the series of articles [79, 80, 114, 115]. In the discreti-

sation process, the flux formulation weakly enforces continuity of the inter-element

tangential flux. Furthermore, the divergence free field condition of Gauss’ law is en-

forced by a Lagrange multiplier. Buffa et al. present the application of DG methods to

the Maxwell eigenvalue problem in [24, 25].

Eigenvalue problems include those required for computing electromagnetic resonant

frequency estimates of resonant cavities. For example, consider the eigenvalues λ of the

Maxwell operator acting on the vector eigenfunction u in a computational domain Ω

with boundary ∂Ω together with prescribed homogeneous boundary conditions

∇×∇× u = λu in Ω, (1.5.3)

n× u = 0 on ∂Ω. (1.5.4)

Given a finite dimensional solution space Vh,`, the DG variational formulation of (1.5.3)

is to find eigen pairs (0 6= uh, λh) ∈ Vh,` ×C such that

ah(uh, vh) = λh(uh, vh) ∀vh ∈ Vh,`. (1.5.5)

Here, ah(·, ·) is the DG sesquilinear variational formulation of the Maxwell operator

and (u, v) =
∫

Ω u · v dx denotes the usual L2(Ω) inner product. The DG finite element

matrix formulation of the eigen problem is of the form AhU = λh MU where Ah is the

discrete matrix formulation of the bilinear operator ah(·, ·), U is the DG finite element

solution vector and M is the mass matrix. Numerical solutions to this problem can be
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calculated using eigenvalue and eigenvector computational libraries such as ARPACK

[95].

1.6 Automatic Solution of Partial Differential Equations

Writing code to implement finite element methods is a challenging task, however

several libraries exist which facilitate the solution process. At the low level, libraries

such as FreeFem++ [72], deal.II [14] and OpenFOAM [142] provide data structures and

functions encapsulating aspects of the finite element computation. These libraries still

require in depth knowledge of the application of finite element methods and experience

with the languages and their paradigms in which they are each written. Using such

packages to formulate and solve the systems of equations associated with large multi-

physics models in several subdomains of a parent geometry remains a very technical

and time consuming task.

One approach which aims to bring a higher level of language syntax to the compu-

tation of finite element solutions is illustrated by the Unified Form Language (UFL) of

the FEniCS project. Exploiting Python for its dynamic and weakly typed nature, along

with automated memory management and synergy of object-orientation, procedural

and functional constructs, the UFL syntax allows for user friendly and expressive spec-

ification of finite element problems. Examples of a similar syntax to the UFL are given

in Table 1.1. By creating a layer of abstraction between the model and the numerical

solution, the UFL allows a user to specify their problem with little requirement to be

proficient with programming. Details of the implementation of the UFL and the FEn-

iCS Form Compiler (FFC) which automatically generates C++ code to solve the finite

element problem are discussed along with design choices based on the works of sym-

bolic and automatic algebraic calculus collected by Bischof et al. [19]. A collection of

numerical problems in various fields of mathematics, including fluid flow problems

and the results of their calculation in the FEniCS suite is given by Logg et al. [103].

The practical use of packages such as FEniCS is the encapsulation of the complexity

of writing finite element code. An overview of how such packages are created, with

specific consideration to DOLFIN, part of the FEniCS project is given by Logg and Wells

[102]. Futhermore, a discussion of the aesthetic links between the syntax of high level

code and finite element mathematics along with its application in the FEniCS project

is given by Alanæs et al. [2]. Examples of this high level language used for numerical
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FE Operation Code Syntax

∫
Ω uv dx u*v*dx

∫
∂Ω gvds g*v*ds

∇u grad(u)

∇ · u div(u)

u · v dot(u, v)

[[p]] · {{q}} dot(jump(p), avg(q))

Table 1.1: Examples of high level code syntax following aesthetically from the finite

element method nomenclature.

analysis of the DG finite element formulation of the Poisson, advection-diffusion and

Stoke’s equations are presented in Ølgaard et al. [110].

Even in this user friendly setting, large systems of nonlinear PDEs with parameters

which may consist of power series or functionals of solutions variables, writing the DG

formulation can be a difficult task and prone to human error. Furthermore, the specifi-

cation of a DG finite element formulation in the UFL can be somewhat verbose given

that there are not any utility methods for handling elliptic or hyperbolic operators. A

computational tool whose syntax resembles that of the UFL as a basis for automatic

computation of large DG finite element problems, whilst ensuring ease of code gener-

ated is a further challenge addressed in this thesis with the development of the software

suite AptoPy. A brief summary of AptoPy’s structure is given in Section 1.7.3 and its

syntax and operation in the subsequent Section 1.7.6. The development and operation

of the AptoPy package is discussed in greater detail in Chapter 5.

1.7 AptoFEM and AptoPy

The underlying finite element software package used throughout this thesis is AptoFEM

[1]. The AptoFEM project is lead by Paul Houston and has had several contributors. A

major contribution of this thesis is the symbolic algebra front end to AptoFEM named

AptoPy. In this section we introduce the basics of the implementation of a simple finite

element problem, how AptoFEM and AptoPy are used to solve this problem, and then
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the syntax and structure of the code required to compute the solution.

1.7.1 The Finite Element Method

The finite element method is constructed based on approximating the solution to the

weak formulation of a PDE [87]. With this in mind consider the following variational

formulation: find u ∈ V such that

a (u, v) = l (v) ∀v ∈ V. (1.7.1)

Here, V is a Hilbert space, a (·, ·) is a bilinear form on V × V and l (·) is a linear func-

tional on V. Here (1.7.1) may be considered as the weak formulation of a linear PDE.

Employing a Galerkin scheme, the finite element approximation uh ∈ Vh is sought

such that

a (uh, vh) = l (vh) ∀vh ∈ Vh, (1.7.2)

where Vh is a finite dimensional subspace of V, composed of the span of continuous

piecewise polynomial basis functions of fixed order defined on a given computational

mesh. Employing a suitable basis for Vh, i.e., writing Vh = spani=1,...,N{φi}, where

N = dim(Vh), the finite element method (1.7.2) may be re-written in the following

equivalent matrix form: find u = (U1, . . . , UN)
> such that

Au = f. (1.7.3)

Here, Aij = a(φj, φi) and fi = l(φi). In principle, assuming that A is invertible, the

solution vector u may be computed.

For a nonlinear PDE, a semilinear weak formulation can be derived; in this setting

we seek u ∈ V such that

N (u; v) = 0 ∀v ∈ V. (1.7.4)

Here, N (u; v) is a semilinear form, which is nonlinear in u but linear in v. In this case,

the finite element solution uh = ∑N
i=1 Uiφi is determined as the solution of the system

of nonlinear equations defined by

N (uh; vh) = 0 ∀vh ∈ Vh. (1.7.5)

To compute the solution we may employ Newton’s method [20, 89]; thereby, we have

the iteration

un+1
h = un

h + dn
h , (1.7.6)
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where dn
h is the update of un

h defined by: find dn
h ∈ Vh such that

N ′ [dn
h ] (u

n
h ; vh) = −N (un

h ; vh) ∀vh ∈ Vh. (1.7.7)

Here, N ′ [w] (u; v) is the Gâteaux derivative of N (u; v) in the direction of w, i.e.,

N ′ [w] (u; v) := lim
τ→0

N (u + τw; v)−N (u; v)
τ

. (1.7.8)

1.7.2 AptoFEM

AptoFEM serves as a practical tool for the automated solution of PDEs using the finite

element method. Data structures and functions are made available to the user allow-

ing them to specify the finite element form of the weak formulation. The AptoFEM

kernel then manages and handles the computation of the solution of the linear equa-

tion (1.7.3) or the nonlinear equation (1.7.5), provided that the user specifies the form of

the residual vector N (uh; vh) and the Jacobi matrix N ′ [uh] (dh; vh). AptoFEM further

provides interfaces to external linear algebra packages such as MUMPS [4], PETSc [12]

and ARPACK [95].

Although AptoFEM is a powerful tool, in the case of increasingly large coupled sys-

tems of PDEs the user specification of the finite element form becomes evermore prone

to human error. The evaluation of the Jacobi matrix can also be a somewhat laborious

task, inviting the possibility of human error compounded by the fact that the syntax

of the code does not follow aesthetically from the mathematics. A proposed remedy

to this is to generate the finite element form code automatically with computational

symbolic algebra as detailed by Cliffe and Tavener [37].

1.7.3 AptoPy

A major contribution of this thesis is the development of the AptoPy package. This

provides a user friendly front end to AptoFEM which automatically formulates the

required Jacobi matrix, enforces boundary conditions for a given domain, and manages

the execution of the solution process. Whilst planning a front end for AptoFEM, a series

of key requirements were drafted:

• Be concise, with as little verbosity as possible.

• Feel familiar to users with little programming experience.

• Follow the form of the mathematics as closely as possible.
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Figure 1.4: Relationship between AptoPy and AptoFEM and the implementation of

their respective library dependencies.

• Automate the entire process between specification of a problem and AptoFEM

computing a solution.

The preliminary objective was to choose a language to allow a user to write their

finite element problem. Satisfying the requirement of familiarity for those with lit-

tle programming experience, and the availability of the open source symbolic algebra

package SymPy [133], the language chosen was Python. A simplified overview of the

synergy of AptoPy, AptoFEM and their dependencies is given in Figure 1.4.

Pending adequate testing and review, it is hoped that the front end Python layer,

named AptoPy, will allow AptoFEM to be used as more than a FEM code for research,

but a tool for those who have little experience with numerics wanting to solve differ-

ential equations in complex geometries.

1.7.4 The 1D Poisson Equation and Weak Formulation

To provide some insight into the AptoPy package, in this section we provide a brief

outline of the syntax employed to solve a PDE. The architecture and design of AptoPy,

as well as a performance and validation review, will be further studied in detail in

Chapter 5. As an example, here we consider the 1D Poisson equation

− u′′(x) = f (x), (1.7.9)
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for which a solution to the unknown function u is sought in the interval x ∈ [a, b],

subject to the boundary conditions u(a) = 0 and u(b) = 0. The weak formulation is

found by multiplying the above equation by a test function v and integrating by parts

over the interval x ∈ [a, b]; thereby, we have
∫ b

a
u′(x)v′(x) dx− u′(x)v(x)

∣∣x=b
x=a =

∫ b

a
f (x)v(x) dx. (1.7.10)

This operation requires that the functions u and v be members of the Sobolev space

H1(a, b). Here, for the multi-index

α = (α1, . . . , αd) ∈Nd, |α| =
d

∑
j=1

αj, (1.7.11)

the Sobolev space Hm(Ω), Ω ⊂ Rd, d ≥ 1, is defined with respect to the weak deriva-

tive operator of order Dα,

Dα :=
∂|α|

∂xα1
1 . . . ∂xαd

d
, (1.7.12)

such that

Hm(Ω) := {u ∈ L2(Ω) : Dαu ∈ L2(Ω), |α| ≤ m} . (1.7.13)

The choice of test function v is arbitrary. Since there is no information available for

u′(a) and u′(b), the test function should be chosen such that v(a) = 0 and v(b) = 0.

Defining the space

H1
0(a, b) :=

{
v ∈ H1(a, b) : v(a) = 0, v(b) = 0

}
, (1.7.14)

we arrive at the weak formulation for the specific boundary value problem as follows:

find u ∈ V such that ∫ b

a
u′(x)v′(x) dx =

∫ b

a
f (x)v(x) dx (1.7.15)

for all v ∈ V, where V = H1
0(a, b).

1.7.5 Discretisation with Finite Elements

In order to discretise (1.7.15), the interval x ∈ [a, b] is subdivided into individual ‘el-

ements’ of length h. The solution space V is then replaced by a finite-dimensional

subspace Vh ⊂ V which consists of continuous piecewise polynomials of a fixed de-

gree ` associated with this subdivision. With this notation, we define the following

approximation: find uh ∈ Vh such that
∫ b

a
u′h(x)v′h(x) dx =

∫ b

a
f (x)vh(x) dx (1.7.16)

for all vh ∈ Vh. This is the the so-called finite element formulation of (1.7.9).
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Writing N(h) = dimVh to denote the dimension of the discrete solution space Vh,

we let Vh = span
{

φ1, . . . , φN(h)

}
for linearly independent basis functions φi, i =

1, . . . , N(h). Thereby, we may write uh in the following form

uh(x) =
N(h)

∑
j=1

Ujφj(x), (1.7.17)

where the coefficients Uj must be determined computationally. Equation (1.7.16) can

therefore be written in the following manner: find U = (U1, . . . , UN(h))
> such that

N(h)

∑
j=1

Uj

∫ b

a
φ′jφ
′
i dx =

∫ b

a
f φi dx, (1.7.18)

for i = 1, . . . , N(h). This is a system of N(h) linear equations which can be expressed

as a matrix problem, with matrix Aij =
∫ b

a φ′jφ
′
i dx of size N(h) × N(h), and vector

bi =
∫ b

a f φi dx yielding the equation,

AU = b. (1.7.19)

Solving equation (1.7.19) for U determines the finite element solution uh.

1.7.6 Calculating the Solution

Using AptoPy, the solution vector U can be calculated after establishing the boundary

value problem given in equation (1.7.16). In this case, we choose a = 0, b = 1 and

f = 1. Initially we import the AptoPy library.

from AptoPy import *

The discretised interval x ∈ [0, 1] with 15 elements can then be instantiated as a Mesh

object, and its boundary, domain integration elements and spatial variable can be col-

lected.

mesh = DiscreteInterval(15, 0.0, 1.0)

dS = mesh.boundary()

dx = mesh.domain()

x = mesh.space_vars()

The finite element function space Vh is instantiated based on this mesh, with default

polynomial order ` = 1. The Dirichlet boundary conditions of u(a) = 0 and u(b) = 0

are strongly enforced on this function space. Furthermore, the trial function uh and the

test function vh associated with this function space can then be defined.
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Figure 1.5: Finite element solution to equation (1.7.16) generated using the AptoPy

code presented in Section 1.7.6.

V = FemFunctionSpace(mesh)

V.dirichlet(dS, 0.0)

u, v = V.trial(), V.test()

Now the residual of equation (1.7.16) can be constructed as follows.

residual = diff(u, x)*diff(v, x)*dx - 1.0*v*dx

Finally, the linear system can be solved for uh by constructing a solution vector and

solving the system of equations.

U = SolutionVector(V)

newton_solve(residual, U)

The result of running this code in AptoPy is shown in Figure 1.5.

1.8 Outline of Thesis

We first introduce the MPA-CVD reactor model in Chapter 2 as a continuum model

of conservation laws. We then introduce the DG finite element method along with
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preliminary definitions of notation in Chapter 3. The DG discretisation of the MPA-

CVD reactor model, along with an abstract definition of a reactor geometry is discussed

in Chapter 4 providing a summary of the PDEs to be solved subject to appropriate

boundary conditions. Following their summary in the preceding chapter, Chapter 5

gives details of the design decisions, architecture and syntax of the AptoPy package,

which will be used to compute the numerical approximation to the solution of each of

the underlying PDEs in the system. A demonstration of the validity and performance

of the AptoPy code is presented thereafter in Chapter 6. Based on the work presented

in all of the preceding chapters, the numerical approximations to the MPA-CVD reactor

model for a number of reactor designs is presented in Chapter 7. Finally we present

our conclusions and possible avenues of future research in Chapter 8.
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Microwave Power Assisted

Chemical Vapour Deposition

Reactor Model

2.1 Introduction

The primary purpose of the CVD reactor model is to determine the shape, density

and temperature of the ignited plasma above the diamond substrate surface. A self

consistent description must couple the electric field propagation in the reactor cav-

ity along with its perturbation resulting from the plasma. Further to this, the trans-

port phenomena arising from particle conservation of the low pressure hydrogen gas

should be accounted for. At high gas inlet flow rates the convective effects of the gas

flow will have significant impact in the direction of the flow field streamlines. In this

chapter we introduce the notion of conserving molecular and atomic hydrogen particle

species’ densities given their mass average flow field and heterogeneous chemistry due

to chemical reaction. The time harmonic description of the CVD reactor’s coupled elec-

tric field is then discussed for a medium whose electric permittivity is dependent on

the characteristics of the reactor plasma. Finally, the electron particle conservation law

is introduced subject to the gain and loss of electrons due to ionisation and electron-ion

recombination, respectively.

2.2 Mass Averaged Chemically Reacting Flow

In order to adequately model the position and fraction of dissociated hydrogen in a

gas mixture of molecular hydrogen, the mass transport phenomena and heat of the gas
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mixture must be accounted for. In this section we consider flow for a multicomponent

mixture comprising of n different chemically interacting species. The model presented

accounts for conservation of each species’ density, momentum and energy density. The

theory of multicomponent flow is then applied to a binary gas mixture composed of

molecular and atomic hydrogen. In this case, consideration will only be given to two

components and the two chemical reactions enabling dissociation of molecular hydro-

gen. Here, the two components of atomic and molecular hydrogen will be labelled H

and H2, respectively. The derivation of this model closely follows the theory of multi-

component flow outlined by Bird, Stewart and Lightfoot [18].

2.2.1 Preliminaries of Multicomponent Flow

Consider the system of n interacting gaseous species. Each gas species has density ρi

and velocity ui, i = 1, . . . , n. For each species, the rate of increase of mass must be

balanced by the net rate of addition of mass to that volume by flow convection, molec-

ular diffusion and chemical reaction. Thereby, the conservation of mass of component

i gives
∂ρi

∂t
+∇ · (ρiui) = ri, (2.2.1)

where ri, i = 1, . . . , n, is the rate of mass production of component i due to chemical

reaction. Summing over all components i = 1, . . . , n yields

∂ρ

∂t
+∇ · (ρu) = 0, (2.2.2)

where we employ the definitions of total density ρ and mass averaged flow velocity u

ρ =
n

∑
i=1

ρi, (2.2.3)

u =
∑n

i=1 ρiui

ρ
, (2.2.4)

along with conservation of mass
n

∑
i=1

ri = 0. (2.2.5)

Introducing the diffusion flux of component i, i = 1, . . . , n,

ji = ρi(ui − u), (2.2.6)

we rewrite equation (2.2.1) in the following form by employing the identity ρiu− ρiu =

0
∂ρi

∂t
+∇ · (ρiu + ji) = ri, (2.2.7)

where we note that the total diffusive flux
n

∑
i=1

ji = 0. (2.2.8)
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The conservation of mass has so far been expressed in terms of density, but we can

further express this equation in terms of the molar concentration ci of each component,

i = 1, . . . , n, and molar concentration of the mixture c = ∑n
i=1 ci. Given gas component

molar mass Mi, i = 1, . . . , n, we note the relation between density and molar concen-

tration

ρi = Mici, (2.2.9)

which along with the definition of the mixture mean molar mass

M =
∑n

i=1 ci Mi

c
, (2.2.10)

we note that

ρ = Mc. (2.2.11)

The conservation of component i in terms of molar concentration is

∂ci

∂t
+∇ · (ciui) = Ri, (2.2.12)

where Ri, i = 1, . . . , n, is the molar rate of mass production of component i due to

chemical reaction, such that ri = Ri Mi. Summing equation (2.2.12) over all species and

noting that moles are, in general, not conserved yields

∂c
∂t

+∇ · (cu∗) =
n

∑
i=1

Ri, (2.2.13)

for molar mass average flow velocity

u∗ = ∑n
i=1 ciui

c
. (2.2.14)

Introducing the molar diffusion fluxes of each component

J∗i = ci (ui − u∗) , (2.2.15)

we write equation (2.2.12) as follows

∂ci

∂t
+∇ · (ciu∗ + J∗i ) = Ri, (2.2.16)

where ∑n
i=1 J∗i = 0.

Further quantities of interest include the mass fraction ωi = ρi/ρ, i = 1, . . . , n, and

molar mass fraction xi = ci/c, i = 1, . . . , n, provide insight into the empirically mea-

surable state of a multicomponent system. Furthermore, we may also compute the
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number density of each species, ni, i = 1, . . . , n, in terms of their molecular mass, mi,

i = 1, . . . , n, where

ni =
ρi

mi
=

ωiρ

mi
=

Mixi

M
Mc
mi

,

=
Mixic

mi
. (2.2.17)

2.2.2 Conservation of Mass in a Binary Gas

Recall mass and molar mass conservation equations (2.2.7) and (2.2.16), respectively.

For the hydrogen binary gas, the diffusion fluxes jH and jH2 or J∗H and J∗H2
should be

expressed in terms of gradients of the concentration, temperature and pressure in order

to yield a closed system of equations for the self consistent model. Diffusion due to

pressure gradients generally occurs only when the gradient in pressure is very large,

a condition not found in MPA-CVD reactors which leads us to neglect these terms.

Therefore, the diffusion flux takes into account concentration gradients of the mixture,

as well as thermal terms. In general, ji is determined by the Maxwell-Stefan equations;

however, in the case of a binary gas mixture, the binary diffusion flux is given by Fick’s

law along with thermal terms. Specifically for atomic hydrogen in a binary gas mixture

of atomic and molecular hydrogen

jH = −ρDHH2∇ωH − DT
H∇ ln T. (2.2.18)

Here, DAB is the binary diffusion coefficient for component A in a mixture consisting

of A and B, DT
A is the thermal diffusivity coefficient for component A (note that DT

A =

−DT
B for a binary gas mix of A and B), and T is the temperature of the mixture. The

molar diffusion flux for a binary gas mixture of atomic and molecular hydrogen is

given by the equivalent formulation of equation (2.2.18), namely,

J∗H = −cDHH2∇xH −
(

M
MHMH2

)
DT

H∇ ln T. (2.2.19)

Equation (2.2.19) is derived from equation (2.2.18) as follows: initially, recall the mo-

lar diffusion flux (2.2.15) with i = H, and note that

J∗H = cH (uH − u∗)

= cH (uH − u)− cH (u∗ − u) . (2.2.20)
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The difference between the binary mixture’s molar mass averaged velocity and its mass

averaged velocity is given by

u∗ − u = xHuH + xH2 uH2 − u

= xH (uH − u) + xH2 (uH2 − u) (xH + xH2 = 1)

=
xH

ρH
jH +

xH2

ρH2

jH2 (Equation (2.2.6))

=

(
xH

ρH
− xH2

ρH2

)
jH. (Equation (2.2.8)) (2.2.21)

Substituting (2.2.21) into (2.2.20) gives

J∗H =
cH

ρH
jH − cH

(
xH

ρH
− xH2

ρH2

)
jH

=

(
1

MH
− xH

MH
+

xH

MH2

)
jH

(
1

Mi
=

ci

ρi
, xi =

ci

c

)

=

(
xH2

MH
+

xH

MH2

)
jH (1− xH = xH2)

=

(
M

MHMH2

)
jH. (M = xHMH + xH2 MH2) (2.2.22)

In essence the relationship between equations (2.2.18) and (2.2.19) is that J∗H =
(

M
MH MH2

)
jH.

This is clear in the second term of (2.2.19), and becomes clear in the first by noting that

−ρDH H2∇ωH = −ρDH H2∇
(

ρH

ρ

)

= −ρDH H2∇
(

MHcH

Mc

)

= −ρDH H2 MH∇
( xH

M

)

= −ρDH H2 MH

(
M∇xH − xH∇M

M2

)

= −ρ
MHMH2

M2 DH H2∇xH

= −c
MHMH2

M
DH H2∇xH. (2.2.23)

For the hydrogen binary gas, combining the equation of molar concentration conser-

vation (2.2.16) for i = H and the definition of the molar flux in equation (2.2.19) yields

the conservation equation

∂cH

∂t
+∇ · (cHu∗)−∇ ·

(
cDHH2∇xH +

(
M

MHMH2

)
DT

H∇ ln T
)
= RH. (2.2.24)

We require (2.2.24) to be expressed in terms of the mass average flow u in order to

easily couple with the conservation of momentum model which will be discussed in
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the following section. To eliminate u∗ we note that by employing the definiton of the

mass average flow (2.2.4), we get

u∗ = u−ωHuH −ωH2 uH2 + u∗

= u−ωH (uH − u∗)−ωH2 (uH2 − u∗) (ωH + ωH2 = 1)

= u− ωH

cH
J∗H −

ωH2

cH2

J∗H2
(Equation (2.2.15))

= u +
MH2 −MH

ρ
J∗H.

(
ωi =

ρi

ρ
, ci =

ρi

Mi

)
(2.2.25)

Hence,

cHu∗ = cHu + xH

(
MH2 −MH

M

)
J∗H. (2.2.26)

Substituting this into (2.2.24) yields the conservation of mass in terms of each species’

molar concentrations and their gradients

∂cH

∂t
+∇ ·

(
cHu + xH

(
MH2 −MH

M

)
J∗H + J∗H

)
= RH

∂cH

∂t
+∇ ·

(
cHu +

xH (MH2 −MH) + M
M

J∗H

)
= RH

∂cH

∂t
+∇ ·

(
cHu +

MH2

M
J∗H

)
= RH, (2.2.27)

from which we get the following conservation equation

∂(cxH)

∂t
+∇ · (cxHu)−∇ ·

(
MH2

M
cDHH2∇xH +

DT
H

MH
∇ ln T

)
= RH. (2.2.28)

It should be noted here that the thermal diffusivity of atomic and molecular hydrogen

is often small, especially in the case of the low pressure gas mixture in a CVD reactor,

and can thereby be neglected [117].

In order to define the density and concentration of a mixture, here the equations of

state for an ideal gas are introduced:

c =
P

RT
, ρ =

MP
RT

, (2.2.29)

where P is the constant mean pressure of the system and R is the gas constant. Noting

that ρ = Mc, ρ can be defined in terms of molar mass fractions comprising the mixture,

i.e.,

ρ =
P

RT

n

∑
i=1

Mixi. (2.2.30)

The binary gas mixture’s molar mass fractions of atomic and molecular hydrogen can

be expressed in terms of xH2 = 1− xH yielding the expression for ρ

ρ =
P

RT
(MH2 (1− xH) + MHxH) . (2.2.31)
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In the case of the ideal gas, we may also extend the calculation of the gas species num-

ber density in (2.2.17) such that the number densities of atomic and molecular hydrogen

are given by

nH =
MHxH

mH

P
RT

, (2.2.32)

nH2 =
MH2 (1− xH)

mH2

P
RT

. (2.2.33)

In the specific case of a binary gas mixture involving the dissociation of hydrogen,

two simple reactions are assumed to take place,

H2 + H2 −−⇀↽−− H + H + H2 (2.2.34)

H2 + H −−⇀↽−− H + H + H (2.2.35)

Assuming the chemical reaction rate constants to be the same for both reactions, the

reaction rate for atomic hydrogen is given by

RH = R f − Rr. (2.2.36)

Here, R f is the forward molar rate of production by dissociation and Rr is the reverse

molar rate of production. Each of R f and Rr are determined by the chemical kinetics

of each reaction, depending on the concentration of each species H and H2 along with

the forward and reverse reaction rate coefficients, k f and kr, respectively. We refer to

[18] regarding details of chemical kinetics in reaction terms. In the case of the rate of

production of H by dissociation from H2 we write

RH = 2


k f c2

H2
− krc2

HcH2︸ ︷︷ ︸
reaction (2.2.34)

+ k f cH2 cH − krc3
H︸ ︷︷ ︸

reaction (2.2.35)




= 2
(

k f

(
c2 (1− xH)

2 + c2xH (1− xH)
)
− kr

(
c3x2

H (1− xH) + c3x3
H
))

= 2
(
k f c2 (1− xH)− krc3x2

H
)

, (2.2.37)

where the factor of 2 accounts for 2 H atoms produced per reaction and we assume the

forward and reverse rate coefficients to be equivalent for each reaction.

2.2.3 Conservation of Momentum

Assuming the viscosity η of the mixture of n individual chemical species to be isotropic,

the conservation of momentum is described by the quasi-incompressible Navier Stokes
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equations

∂ (ρu)
∂t

+∇ · (ρu⊗ u)−∇ · τ = ρg, (2.2.38)

∂ρ

∂t
+∇ · (ρu) = 0. (2.2.39)

Here, g is the acceleration due to gravity and the stress tensor τ is defined as

τ = −pI + η
(
∇u +∇u> − 2

3 (∇ · u) I
)

, (2.2.40)

where p is the pressure and I is the identity tensor. The viscosity of the mixture can be

determined by the semi-empirical formula [144]

η =
n

∑
i=1

xiηi

∑n
j=1 xjΦij

, (2.2.41)

where ηi is the viscosity of the ith component of the mixture, and Φij is given by

Φij =
1√
8

(
1 +

Mi

Mj

)− 1
2
(

1 +
(

ηi

ηj

) 1
2
(

Mj

Mi

) 1
4
)2

. (2.2.42)

In the case of the binary gas mixture of atomic and molecular hydrogen

η =


 6xH

6xH +
√

3
(

1 + 2
1
4 N
)2

(1− xH)
+

12 (1− xH)

12N2 (1− xH) +
√

3
(

1 + 2
1
4 N
)2

xH


 ηH,

(2.2.43)

where N =
√

ηH
ηH2

[144].

2.2.4 Conservation of Energy

The conservation of the energy density ρE of a multicomponent mixture is governed

by
∂(ρE)

∂t
+∇ · ((ρE− τ) u) +∇ · q = Q + ρu · g, (2.2.44)

where q is the energy flux of the mixture, Q is an energy source, ρu · g is the power

expended from external force acting on the gas mixture and E is the total energy of the

system. E can also be expressed as E = e + 1
2 u2, where e is the internal energy per unit

mass, and 1
2 u2 is the kinetic energy per unit mass, with u2 = u · u.

Now consider the mechanical energy equation, formulated by taking the product of

the conservation of momentum equation (2.2.38) with u and rearranging with respect

to the continuity equation [18]

∂( 1
2 ρu2)

∂t
+∇ ·

( 1
2 ρu2u

)
−∇ · (τu) + τ : ∇u = ρu · g. (2.2.45)
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By subtracting the mechanical energy in equation (2.2.45) from the conservation of en-

ergy in equation (2.2.44) it can be shown that

∂(ρe)
∂t

+∇ · (ρeu)− τ : ∇u +∇ · q = Q. (2.2.46)

Similar to the process for finding the conservation of mass in terms of molar mass

fractions, the conservation of energy equations should be reduced from their thermo-

dynamic internal energy description to a form which is easily measured empirically.

In this case, the conservation of energy should be expressed in terms of the system’s

temperature T and specific enthalpy h = h(T). The specific enthalpy for the multi-

component mixture can be expressed in terms of each of the specific enthalpies of the

mixture’s species, weighted by their respective mass fraction, i.e.,

h =
n

∑
i=1

ωihi. (2.2.47)

The enthalpy of the system is composed of its internal energy in addition to the

thermodynamic work done by the system on its adiabatic chamber, i.e.,

h = e +
p
ρ

, (2.2.48)

where p is the pressure of the gas mixture. Substituting the expression for enthalpy

given in equation (2.2.48) into the conservation of internal energy equation (2.2.46), it

can be shown that
∂(ρh)

∂t
+∇ · (ρhu) +∇ · q =

∂p
∂t

+∇ · (pu) + τ : ∇u + Q

=
∂p
∂t

+ u · ∇p + τdev : ∇u + Q, (2.2.49)

where we have introduced the deviatoric component of τ, given by

τdev = η
(
∇u +∇u> − 2

3 (∇ · u) I
)

. (2.2.50)

In the CVD reactor model we assume the viscous dissipation effects in the CVD vac-

uum to be negligible as they are important only in flows with enormous velocity gra-

dients; thereby, we set

τdev : ∇u = 0. (2.2.51)

We further state the ideal gas assumption of (2.2.29) that the gas flow in the CVD reactor

is flowing in a system with constant mean pressure P, i.e., we take

∂p
∂t

+ u · ∇p = 0. (2.2.52)

Upon making these assumptions, equation (2.2.49) reduces to

∂(ρh)
∂t

+∇ · (ρhu) +∇ · q = Q. (2.2.53)

39



CHAPTER 2: MICROWAVE POWER ASSISTED CHEMICAL VAPOUR DEPOSITION

REACTOR MODEL

An expression for the energy flux can be found in terms of Fourier heat diffusion,

where the Dufour effect of energy transport due to concentration gradients between

chemical species is small and can be neglected [18]. Here, for multicomponent gas

mixture temperature

q = −κ∇T +
n

∑
i=1

hiji. (2.2.54)

The thermal conductivity κ can be expressed in terms of each chemical species thermal

conductivity κi, i = 1, . . . , n, (see [18]), i.e.,

κ =
1
2




n

∑
i=1

xiκi +

(
n

∑
i=1

xi

κi

)−1

 . (2.2.55)

The term involving the spatial gradients of the species’ specific enthalpies in equation

(2.2.54) is often small and can be neglected [18], leaving the form of the conservation of

energy in terms of enthalpy and temperature given by

∂ (ρh)
∂t

+∇ · (ρhu)−∇ · (κ∇T) = Q. (2.2.56)

A thermodynamic quantity of interest in the CVD reactor is the specific heat of the

plasma, namely,

cp =

(
∂h
∂T

)

p,ωi

. (2.2.57)

In the specific case of the binary gas mixture, its specific heat is given by

cp = ωHcp,H + (1−ωH)cp,H2 , (2.2.58)

where cp,H and cp,H2 are the specific heats of each species. It is worth noting that em-

pirical data is usually obtained by measuring molar heat capacities, Cp,i, i = 1, . . . , n,

together with its relation to the specific heat capacity,

cp,i =
Cp,i

Mi
. (2.2.59)

2.3 Electromagnetic Waveguides and Resonators

The coupling of a microwave frequency electric field within the CVD reactor is key

to the localised heating of the gas mixture above the diamond substrate. For a closed

cavity whose walls act as perfect conductors, there are infinitely many harmonic elec-

trical resonant modes at an equal number of corresponding frequencies which can be

excited. Common commercially available magnetron devices operate at frequencies

of 896 MHz and 2.45 GHz. A key aspect of CVD reactor design is to ensure that the
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reactor’s geometry supports a given resonance mode at the frequency of the driving

magnetron. Furthermore, it is favourable that the profile of the resonant electric field’s

amplitude be at its greatest magnitude above the substrate surface, ensuring efficient

dissociation of hydrogen above the diamond substrate surface.

2.3.1 Wave Propagation in Lossy Dielectrics

Electromagnetic fields are created by static charge distributions and directional flow of

electric charge. For a scalar distribution of charge density denoted by ρe, and a cur-

rent flow of electric charge i, Maxwell’s equations state the electric and magnetic field

intensities E(x, t) and B(x, t), respectively, and the electric displacement and magnetic

induction fields D(x, t) andH(x, t), respectively, are related by

∂B
∂t

+∇× E = 0, (2.3.1)

∇ · D = ρe, (2.3.2)

∂D
∂t
−∇×H = −i, (2.3.3)

∇ · B = 0. (2.3.4)

The electromagnetic field, electric displacement and magnetic induction fields are re-

lated by

D = εE , (2.3.5)

B = µH, (2.3.6)

where ε and µ are the material permittivity and permeability, respectively.

Analysing electromagnetic wave propagation at a single frequency, the time-dependent

Maxwell’s equations can be reduced to the time-harmonic Maxwell system. For a given

radiative temporal angular frequency ω, the electromagnetic field is time-harmonic if

E(x, t) = <(E(x)ejωt), D(x, t) = <(D(x)ejωt), (2.3.7)

B(x, t) = <(B(x)ejωt), H(x, t) = <(H(x)ejωt), (2.3.8)

for time t, imaginary unit j =
√
−1, and complex-valued phasor terms E, D, B and H.

Similarly, the charge and current densities can be expressed in phasor form,

ρe(x, t) = <(ρν(x)ejωt), (2.3.9)

i = <(î(x)ejωt). (2.3.10)
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Figure 2.1: Cylindrical waveguide geometry of radius a and length d.

Substituting these expressions into Maxwell’s equations and exploiting the electromag-

netic field relations given in (2.3.5) and (2.3.6) along with the current density approxi-

mation for electrical conductivity σ, namely,

i = σE , (2.3.11)

yields the time-harmonic formulation of Maxwell’s equations for a dielectric medium

∇× E = −jωµH, (2.3.12)

∇ · (εE) = ρν, (2.3.13)

∇×H = (σ + jωε)E, (2.3.14)

∇ · (µH) = 0. (2.3.15)

Applying the curl operator to equation (2.3.12) and substituting into (2.3.14) yields the

time harmonic E-field formulation

∇×
(

µ−1∇× E
)
+ jω (σ + jωε) E = 0. (2.3.16)

Similarly, by applying the curl operator to equation (2.3.14) and substituting into (2.3.12)

yields the time harmonic H-field formulation

∇×
(
(σ + jωε)−1∇×H

)
+ jωµH = 0. (2.3.17)
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2.3.2 Uniform Isotropic Lossless Waveguides

The behaviour of uniform lossless waveguides filled with an isotropic dielectric ma-

terial is well understood for cross-sectional geometries such as rectangles, circles and

coaxial cylinders [99]. Here, the derivation of the solution to the time harmonic E-

field formulation will be briefly demonstrated for the empty homogeneous cylindrical

waveguide of radius a shown in Figure 2.1, with isotropic material parameters (i.e.,

ρν = 0, σ = 0, ε and µ are constant). We consider the case of the propagating elec-

tromagnetic wave operating in a transversal magnetic (TM) mode; this is where the

magnetic field only has non-zero components transverse to the direction of wave prop-

agation ẑ, i.e., H = Hr r̂ + Hθ θ̂. This electric field configuration is commonly used in

CVD reactor design.

Let Ω = {r, θ, z : r < a} with boundary ∂Ω, with unit outward pointing normal

n represent the geometry of the waveguide depicted in Figure 2.1. We wish to solve

the time harmonic formulation of Maxwell’s equations subject to the perfect electric

conductor boundary condition on ∂Ω, namely,

∇×∇× E− µεω2E = 0 in Ω, (2.3.18)

∇ · E = 0 in Ω, (2.3.19)

n× E = 0 on ∂Ω. (2.3.20)

Employing the vector identity

∇× (∇×A) = ∇(∇ ·A)−∇2A (2.3.21)

in (2.3.18), whilst taking note of the divergence free condition imposed by Gauss’ law

(2.3.19), yields the time harmonic Helmholtz formulation

∇2E + k2E = 0 in Ω, (2.3.22)

n× E = 0 on ∂Ω, (2.3.23)

where k =
√

µεω is the propagation constant.

Equation (2.3.22) is linearly independent in each orthogonal direction r̂, θ̂ and ẑ. As

such, solving for only the ẑ component of the electric field allows the remaining compo-

nents of the electromagnetic field to be derived from the time harmonic E- and H-field

formulations of Maxwell’s equations. Given the perfect electric conductor boundary

condition Ez = 0 on the waveguide walls, the solution to

∇2Ez + k2Ez = 0 (2.3.24)
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can be shown to be the radially and azimuthally harmonic function [99]

Ez = E0z Jn

(
Xnp

a
r
)

cos(nθ)e−jβnpz. (2.3.25)

Here, E0z is the peak field amplitude, n is the integer order of the azimuthal harmonic

mode, Jn(·) is the nth order Bessel function of the first kind, Xnp is the pth root of Jn(r)

implicitly dictating the order of the radial harmonic mode and the electric field phase

constant βnp is specified by

βnp =

√
µεω2 −

(
Xnp

a

)2

. (2.3.26)

The harmonic mode numbers n and p are used to characterise a waveguide configu-

ration with the nomenclature TMnp. The propagation term βnp determines the nature

of the incident electromagnetic field with three cases:

1. Propagation: If µεω2 >
(

Xnp
a

)2
the electromagnetic wave propagates due to real

valued phase angle of <
(
e−jβnpz) = cos(βnpz).

2. Attenuation: If µεω2 <
(

Xnp
a

)2
the electromagnetic wave is dissipated due to the

now complex valued phase angle of e−jβnpz.

3. Cutoff : If µεω2 =
(

Xnp
a

)2
, this is the minimum angular frequency by which the

electromagnetic field can propagate, denoted by

ωc =
1√
µε

Xnp

a
, or kc =

Xnp

a
. (2.3.27)

The full TM cylindrical waveguide electric vector field solution can therefore be shown

to be

E =

(
−j

βnp

k2
c

∂Ez

∂r
, −j

βnp

k2
c

1
r

∂Ez

∂θ
, Ez

)>
, n ≥ 0, p ≥ 1. (2.3.28)

2.3.3 Microwave Cavity Resonator

A cavity resonator is an electrically conducting enclosure in which electromagnetic en-

ergy is confined. Analytically, a given resonator does not offer a unique solution to its

contained electromagnetic field, but rather an infinite number of resonant modes, each

of which correspond to a given resonant frequency. When the driven frequency of the

electromagnetic field corresponds to one of these resonant frequencies, the contained

standing wave will reach a maximum amplitude at the cavity’s peak energy. The stand-

ing wave mode arising from the lowest resonant frequency is known as the dominant

mode.
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In a given cavity resonator, the contained electric field E should satisfy the time har-

monic formulation of Maxwell’s equations. Consider the waveguide geometry in Fig-

ure 2.1 now with perfect electrically conducting walls at r = a, z = 0 and z = d, i.e., let

Ω = {r, θ, z : r < a, 0 < z < d} with boundary ∂Ω. As derived for the empty uniform

isotropic waveguide, the solution to the time harmonic Helmholtz formulation for a

contained TM electromagnetic field must now also be harmonic in the ẑ direction. The

solution to Ez can be shown to be

Ez = E0z Jn

(
Xnp

a
r
)

cos (nθ) cos
(qπ

d
z
)

, n ≥ 0, p ≥ 1, q ≥ 0. (2.3.29)

Here, q is in the integer modal value of the number of half waves in the axial direc-

tion. The enclosed transverse magnetic field in the cavity resonator is characterised

by the harmonic mode numbers n, p and q using the nomenclature TMnpq. Again, the

remaining unknown quantities of the system Er, Eθ and H can be found from the set of

simultaneous relations in the time harmonic formulation of Maxwell’s equations. Here,

the resonant frequency of each harmonic mode is analytically determined by

ωr =
1√
µε

√(
Xnp

a

)2

+
(qπ

d

)2
. (2.3.30)

The electric field solutions of the first four TM0pq resonant modes are shown in Figure

2.2.

2.4 Plasma Ignition

2.4.1 Introduction

The source of electrons in the CVD reactor plasma should be modelled in the same

way as the species of hydrogen, in the sense that their number density and internal

energy should be conserved. We present here a simple model of electron momentum

and energy conservation, along with electron generation by ionisation and loss by re-

combination with heavy ions according to the Maxwell-Boltzmann distribution. The

derivation which follows summarises the plasma physics model presented in Gold-

ston and Rutherford [58] and Lieberman and Lichtenberg [100].

2.4.2 Boltzmann Equation

Let f (x, v, t) be the distribution function which describes particle position and velocity

in the six-dimensional phase space (x, v) at time t. The number of particles in a six-
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Figure 2.2: The electric field magnitude of the first four TM0pq transverse magnetic

resonance modes in a cylindrical cavity.
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dimensional phase space volume dx dv at time t is then given by

f (x, v, t) dx dv. (2.4.1)

Under the influence of macroscopic forces in the (x, v) phase space, the flux of particles

in the volume element dx dv should obey the continuity equation. Consider the rate of

flux across the infinitesimal six-dimensional volume element from time t to t + dt,

[ f (x, v, t + dt)− f (x, v, t)] dx dv =

[ f (x, v, t)v− f (x + dx, v, t)v] dv dt

+ [ f (x, v, t)vt(x, v, t)− f (x, v + dv, t)vt(x, v + dv, t)] dx dt, (2.4.2)

where vt denotes the particles’ acceleration. Division of (2.4.2) by dx dv dt yields

∂ f
∂t

= −∇ ( f v)−∇v ( f vt) , (2.4.3)

where we introduce the operator ∇v = (∂/∂vx, ∂/∂vy, ∂/∂vz)
>. Noting that v is indepen-

dent of position x, and that the particles’ acceleration vt = F/m, where F is the force

and m is the particle mass, has no dependence on v, yields the collisionless Boltzmann

equation
∂ f
∂t

+ v · ∇ f + vt · ∇v f = 0. (2.4.4)

The Boltzmann equation, accounting for particle collisions, incorporates a further

term such that (2.4.4) is modified as follows,

∂ f
∂t

+ v · ∇ f + vt · ∇v f =

[
∂ f
∂t

]

col
, (2.4.5)

where the term [∂ f/∂t]col accounts for the inter-particle collisions occurring almost in-

stantaneously compared with the time scale of the evolution of f .

2.4.3 Electron Particle Conservation

Consider the electron particle density ne(x, t) given by

ne(x, t) =
∫

f dv (2.4.6)

and the associated particle flux Γ(x, t) for mean particle velocity ue, i.e.,

Γ(x, t) = neue =
∫

v f dv. (2.4.7)

Using these quantities, and by taking the zeroth velocity moment of equation (2.4.5),

the macroscopic particle continuity equation of the system is given by

∂ne

∂t
+∇ · (neue) = G− L. (2.4.8)
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The collision term
[

∂ f
∂t

]
col

yields the particle gain G and loss L terms though processes

such as ionisation and recombination. The particle continuity equation does not pro-

vide a complete description of the evolution of ne, since the mean particle velocity ue

is unknown.

2.4.4 Particle Momentum Conservation

The plasma electron momentum conservation equation for mean particle velocity ue

can be derived from multiplying the Boltzmann equation (2.4.5) by v and integrating

over the particle velocity, i.e., taking the first velocity moment [100] (see also [93, p.

31]),

mene

[
∂ue

∂t
+ (ue · ∇ue)

]
+∇p = qene (E + ue ×B) + [f]col , (2.4.9)

where me is the electron mass, qe is the electron charge, p is the pressure, E is the electric

field and B is the magnetic field.

The collision term in (2.4.9) must encapsulate the momentum transfer due to inter-

species collisions. When considering only electrons and positive ions, the Krook colli-

sion operator provides a good approximation [100, p. 32]

[f]col = −∑
i

meneνmei (ue − ui)−me (ue − uG) G + me (ue − uL) L, (2.4.10)

where i denotes each species, ui is the mean velocity of species i and νmei is the mo-

mentum transfer frequency for collisions with species i. Here, uG and uL represent the

mean velocities of created and lost particles, respectively.

A simplification of (2.4.9) is made by neglecting magnetic forces and considering

only the mass averaged velocity neutral species of the background gas u and average

electron neutral collision frequency with the background gas νme . In general the mean

velocity of generated particles by ionisation is much less than the particles’ mean ve-

locity |uG| � |ue| and particles lost through recombination have little effect on their

mean velocities uL ≈ ue [100, p. 32]. This leads to the following simplified model:

mene

[
∂ue

∂t
+ ue · ∇ue

]
= qeneE −∇p−meneνme (ue − u) . (2.4.11)

Equations (2.4.8) and (2.4.11) can then be closed by choosing a thermodynamic equa-

tion of state to eliminate the pressure term p. In the isothermal case, we have ∇p =

kBT∇n, where kB is Boltzmann’s constant and T is the temperature. In the adiabatic

setting ∇ ln p = γ∇ ln n, where γ is the ratio of specific heats at constant pressure to

constant volume.
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2.4.5 Particle Diffusive Mobility

Due to the low density of electrons, we neglect the convective derivative terms and

consider the steady state version of (2.4.11), i.e.,

qeneE −∇p−meneνme (ue − u) = 0. (2.4.12)

Considering an isothermal plasma with the thermodynamic equation of state ∇p =

kBT∇ne and rearranging for neue equation (2.4.12) becomes

neue =
qeneE
meνme

− kBT
meνme

∇ne + neu. (2.4.13)

This can be written as the flux term

Γ = −µeneE − D∇ne + neu, (2.4.14)

where the macroscopic mobility µe and diffusion D coefficients are given, respectively,

by

µe =
qe

meνme

, D =
kBT

meνme

. (2.4.15)

The flux Γ ≡ neue can be employed in the particle continuity equation (2.4.8) derived

from Fick’s law, i.e.,
∂ne

∂t
+∇ · Γ = G− L. (2.4.16)

In the case when the applied electric field is absent, the single species particle diffusion

equation follows
∂ne

∂t
+∇ · (neu)−∇ · (D∇ne) = G− L. (2.4.17)

2.4.6 Ambipolar Diffusion

The presence of the electric field term in (2.4.14) necessitates that this equation must

hold for both electrons and ions. Furthermore, for ionising collisions it should be as-

sumed that the flux of electrons and ions through any volume must be equivalent in

order for charge to be conserved, i.e., Γe = Γi = Γ and ne ≈ ni for electrons and ions,

respectively. Thereby,

µineE − Di∇ne = −µeneE − De∇ne, (2.4.18)

which rearranged for E in terms of ∇ne is

E =
Di − De

µi + µe

∇ne

ne
. (2.4.19)

49



CHAPTER 2: MICROWAVE POWER ASSISTED CHEMICAL VAPOUR DEPOSITION

REACTOR MODEL

Substituting this expression for E into the flux term (2.4.14) and subsequently the con-

tinuity equation (2.4.16) gives the ambipolar electron diffusion equation

∂ne

∂t
+∇ · (neu)−∇ · (Da∇ne) = G− L (2.4.20)

for ambipolar diffusion coefficient

Da =
µiDe + µeDi

µi + µe
. (2.4.21)

2.4.7 Ionisation and Recombination

Modelling the multitude of ionisation, excitation and recombination reactions of elec-

trons with heavy species is a difficult task. In this thesis, we adopt the heuristic model

employed in [131]. The collisions between the electrons and ions in the plasma, espe-

cially at low velocity, have a finite probability of resulting in their recombination into a

neutral atom. This process is dependent on the collision cross section of electron recom-

bination with the heavy ions σrec, the kinetic energy of the electron ue and the number

density of the electrons and ions. This results in a loss of electrons in the plasma

L = neni 〈σrecue〉 , (2.4.22)

where, ni 〈σrecue〉 is the average collision frequency of the electrons with the ions. We

can write (2.4.22) in terms of a recombination rate coefficient which is a function of the

electron temperature Te and the recombination energy Erec, i.e.,

〈σrecue〉 = krec(Te) ∼
√

Erec

Te
. (2.4.23)

Using the assumption that ne ≈ ni and that krec is constant, the loss term in equation

(2.4.20) is written

L = R0ne
2 (2.4.24)

for recombination constant R0.

The plasma is maintained in the steady state if the gain of electrons due to ionisation

balances the losses due to diffusion and recombination. This process is dependent on

the momentum exchange of electrons with the heavy species. In a similar fashion to

the electrons lost by recombination, the electrons gained by ionisation is dependent on

the average electron-heavy species ionisation cross section σi, average electron kinetic

energy, the number density of electrons and the neutral heavy species nn, i.e.,

G = nenn 〈σiue〉 . (2.4.25)
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Figure 2.3: Plasma whose electrons are displaced by ζe with respect to the ions.

This electron particle source term can also be written in terms of rate coefficient ki(Te)

and ionisation energy Ei, namely,

〈σiue〉 = ki(Te) ∼ Aie−
Ei
Te , (2.4.26)

where, Ai is the ionisation rate constant. We make the simplified assumption here that

the electron temperature is strongly influenced by the time averaged magnitude of the

applied electric field and the number density of the background gas of neutrals remains

roughly constant such that

G = A0|E|2ne (2.4.27)

for ionisation constant A0. Regarding appropriate choices of constants R0 and A0 we

refer to [131].

2.5 Non Magnetised Plasma Properties

2.5.1 Introduction

There is a series of fundamental plasma properties and parameters which are key to

the CVD reactor model. We summarise those which are required here. Details of their

derivations and analyses can be found in [100].

2.5.2 Natural Plasma Frequency

As shown in Figure 2.3, consider a plasma of finite width l containing equal numbers

of stationary Te = 0 electrons and infinite mass ions. Displacing the electrons of this

plasma relative to the ions in the positive x̂ direction by a distance ζe(t) � l at time

t leads to a charge density on the left surface of ρe = enζe and on the right surface
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ρe = −enζe. Applying Gauss’ law (2.3.2), the equal and opposite charges generate an

electric field

Ex =
qeneζe

ε0
, (2.5.1)

and the force acting on the electrons is

me
d2ζe

dt2 = −qeEx. (2.5.2)

Substituting (2.5.1) into (2.5.2) reveals a natural oscillatory nature of the electron

plasma
d2ζe

dt2 = −ω2
peζe (2.5.3)

for the fundamental characteristic frequency of an electron plasma

ω2
pe =

qe
2ne

ε0me
. (2.5.4)

2.5.3 Plasma Permittivity and Conductivity

In the case of a plasma occupying the volume of a background gas in the presence of

an applied time harmonic electric field, where the mass of the ions is considered to be

infinite, the force acting on the electrons is

me
duex

dt
= −qeEx −meνme uex. (2.5.5)

The solution uex in (2.5.5) is also time harmonic with uex = <
{

ûexejωt} and amplitude

ûex = − qe

me

1
jω + νme

Ex. (2.5.6)

When there is no applied magnetic field, the total current density iT can be derived

from (2.3.3), i.e.,

iTx = ε0
∂Ex

∂t
+ ix, (2.5.7)

where in the cold plasma approximation the current ix, is due to motion of electrons

only. The time harmonic current density îx is therefore

îx = −qeneûex (2.5.8)

which leads to the time harmonic total current density ρ̂eTx given by

ρ̂eTx = jωεEx − qeneûex. (2.5.9)

Substituting ûex in (2.5.9) for the velocity amplitude of equation (2.5.6) gives

îTx = jωε0

[
1−

ω2
pe

ω (ω− jνme)

]
Ex. (2.5.10)
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As a result, this relation of the electric field to the total current density allows the

definition of the plasma permittivity εp by

εp = ε0

[
1−

ω2
pe

ω (ω− jνme)

]
. (2.5.11)

Furthermore, equation (2.5.10) can be written in the form îTx =
(
σp + jωε0

)
Ex for

plasma conductivity

σp =
ε0ω2

pe

jω + νme

. (2.5.12)

Substituting (2.5.12) into the time harmonic form of Maxwell’s equation (2.3.14) gives

the new relation

∇×H =
(
σp + jωε0

)
E. (2.5.13)

Also note that in the low frequency case ω � νme and ω � ωpe, the direct current cold

plasma conductivity approximation can be derived

σdc =
ε0ω2

pe

νme

=
qe

2ne

meνme

. (2.5.14)

2.5.4 Ohmic Heating

As a result of electron-neutral collisions arising from the electric field in a plasma, the

time averaged collisional ohmic power absorbed by those electrons is given by

Pohm =
1
2
|E|2 σdc

ν2
me

ω2 + ν2
me

, (2.5.15)

where |E|2 = E · E. This source of heat is then applied in the conservation of energy

of the multicomponent gas mixture heat source term Q of equation (2.2.44). Outside of

the CVD reactor’s vacuum region in which a plasma cannot be ignited, the standard

Joule heating model is applied

Q = σ |E|2 . (2.5.16)

2.6 Summary

In this chapter we have derived a fully self consistent model of the MPA-CVD reactor.

By this we mean that the solution to the equations derived from the physical conserva-

tions laws of momentum, energy, mass and number density, along with the contained

electromagnetic field, is to be determined simultaneously. The numerical solution of

this system requires the approximation of the unknown quantities of the mass average
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gas velocity u, the relative pressure p, the molar mass fraction of atomic hydrogen xH,

the system temperature T, the time harmonic electric field E and the number density of

the electrons in the plasma ne. Compound with the difficulty of simultaneously solv-

ing the system of equations, the coefficients relating to dissociation of hydrogen are

temperature dependent. In this thesis we employ chemical data made available in the

National Institute of Standards and Technology chemistry database [35, 43] which ap-

proximates empirical results as power series expansions of the temperature variable. A

brief summary of the system of equations to be solved and their nonlinear dependence

on each of the solution variables is shown in Appendix A.

The model CVD reactor problem and a detailed summary of the conservation equa-

tions of this model, along with its numerical approximation will be discussed in detail

later in Chapter 4. A primary novelty in the numerical approximation to this model

is the ability to account for both effects of macroscopic diffusion and convection, the

latter of which is often neglected in the MPA-CVD reactor modelling community.
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Discontinuous Galerkin

Approximation of Hyperbolic and

Elliptic Partial Differential

Equations

3.1 Introduction

The MPA-CVD reactor model consists of several constituent equations which in turn

are composed of nonlinear diffusive, transport and reaction terms. Prior to presenting

the discontinuous Galerkin (DG) finite element discretisation of these terms, a series

of definitions fundamental to the DG formulation is given in Section 3.2. In this chap-

ter we introduce a method for classes of elliptic and hyperbolic operators in Sections

3.4 and 3.5, respectively. Furthermore, we examine the treatment of the mass average

continuity equation of the quasi-incompressible Navier-Stokes equations in Section 3.6.

In a similar fashion, the DG formulation of the Maxwell operator and divergence free

electric field condition of Maxwell’s equations are also derived in Section 3.7.
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3.2 Preliminaries

3.2.1 Function Spaces

Let Ω ⊂ Rd, d ≥ 1, be an open domain with boundary ∂Ω. We define the multi-index

tuple of natural numbers

α = (α1, . . . , αd) ∈Nd, |α| =
d

∑
j=1

αj, (3.2.1)

such that the weak derivative operator Dα is defined by

Dα :=
∂|α |

∂xα1
1 . . . ∂xαd

d
. (3.2.2)

We write Cs(Ω) to denote the set of all continuous real valued functions in Ω for s ∈N

where

Cs(Ω) =
{

v ∈ C(Ω) : Dα v ∈ C0(Ω), |α| ≤ s
}

. (3.2.3)

We further denote the space of square integrable functions on Ω as L2(Ω) which is

equipped with the norm

‖v‖L2(Ω) :=
(∫

Ω
|v|2 dx

) 1
2

. (3.2.4)

This allows for the definition of the standard Sobolev space

Hs(Ω) := {u ∈ L2(Ω) : Dαu ∈ L2(Ω), |α| ≤ s} , (3.2.5)

which is equipped with the seminorm

|v|2Hs(Ω) = ∑
|α |=s
‖Dα v‖2

L2(Ω) (3.2.6)

and norm

‖v‖2
Hs(Ω) =

s

∑
i=0
|v|2Hi(Ω) . (3.2.7)

For a function space X (Ω), we extend the above notation of scalar function spaces

to vector and tensor function spaces. To this end, we write [X (Ω)]d and [X (Ω)]m×d,

m, d ∈ N, to denote vector and tensor function spaces, respectively. We also define

the outer product and tensor contraction operators, respectively, for u, v ∈ Rd and

σ, τ ∈ Rm×d, by

(u⊗ v)ij = uivj, σ : τ = Trace
(

στ>
)

. (3.2.8)
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3.2.2 Discontinuous Function Spaces and Operators

Consider a subdivision of Ω into a shape regular mesh T h
Ω , triangulated with non-

overlapping elements κ with boundary ∂κ, each with outward pointing unit normal

nκ, such that T h
Ω = {κ} and Ω =

⋃
κ∈T h

Ω
κ. We define the interior faces of the mesh by

ΓI =
⋃

κ∈T h
Ω

∂κ \ ∂Ω. We denote the space of L2 functions on Ω whose restriction to

each element κ belongs to Hs(κ) as the ‘broken’ Sobolev space,

Hs(T h
Ω) = {v ∈ L2(Ω) : v|κ ∈ Hs(κ), κ ∈ T h

Ω}. (3.2.9)

In addition, the broken gradient of a function q ∈ H1(T h
Ω) is defined by

(∇hq)|κ := ∇ (q|κ) , κ ∈ T h
Ω . (3.2.10)

Similarly, the broken divergence of a function v ∈
[
H1(T h

Ω)
]d is given by

(∇h · v)|κ := ∇ · (v|κ), κ ∈ T h
Ω , (3.2.11)

and the broken curl

(∇h × v)|κ := ∇× (v|κ), κ ∈ T h
Ω . (3.2.12)

For a given polynomial of order ` ≥ 0, we denote the space of polynomials on each

element by

P `(κ) := {v : v is a polynomial of degree ≤ ` on κ} (3.2.13)

and the finite element space of discontinuous vector valued polynomial functions of

degree ` ≥ 0 and dimension m

Vm
` (T h

Ω) :=
{

vh ∈ [L2(Ω)]m : vh|κ ∈
[
P `(κ)

]m
, κ ∈ T h

Ω

}
. (3.2.14)

For convenience we further denote the finite element space consisting of discontinuous

scalar polynomial functions by V`(T h
Ω) := V1

`(T h
Ω). Similarly, the finite element space

consisting of discontinuous tensor valued polynomials of degree ` ≥ 0 and dimension

m× d is given by

Σm×d
` (T h

Ω) :=
{

τ ∈
[
L2 (Ω)

]m×d
: τ|κ ∈

[
P `(κ)

]m×d
, κ ∈ T h

Ω

}
. (3.2.15)

3.2.3 Trace Operators

Given two neighbouring elements in the mesh which share a common face F ∈ ΓI ,

denoted κ+, κ− ∈ T h
Ω , such that F = ∂κ+ ∩ ∂κ−, we write the traces of scalar q ∈

H1(T h
Ω), vector w ∈

[
H1(T h

Ω)
]d and tensor τ ∈

[
H1(T h

Ω)
]m×d functions on F as q±, w±
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and τ±, respectively (relative to the interior of element κ±). Similarly, we also write the

unit outward normal vector of F pointing from κ+ into κ− as n+
κ and from κ− into κ+ as

n−κ . Using this notation we define the average, jump, tensor-jump and tangential-jump

operators. To this end, the average operator {{·}} is defined as

{{q}} = 1
2
(
q+ + q−

)
on ΓI , {{q}} = q+ on ∂Ω, (3.2.16)

{{w}} = 1
2
(
w+ + w−

)
on ΓI , {{w}} = w+ on ∂Ω, (3.2.17)

{{τ}} = 1
2
(
τ+ + τ−

)
on ΓI , {{τ}} = τ+ on ∂Ω, (3.2.18)

the jump operator [[·]] is defined as

[[q]] = q+n+
κ + q−n−κ on ΓI , [[q]] = q+n+

κ on ∂Ω, (3.2.19)

[[w]] = w+ · n+
κ + w− · n−κ on ΓI , [[w]] = w+ · n+

κ on ∂Ω, (3.2.20)

[[τ]] = τ+n+
κ + τ−n−κ on ΓI , [[τ]] = τ+n+

κ on ∂Ω, (3.2.21)

the tensor-jump operator [[·]] is given by

[[w]] = w+ ⊗ n+
κ + w− ⊗ n−κ on ΓI , [[w]] = w+ ⊗ n+

κ on ∂Ω, (3.2.22)

and the tangential-jump operator [[·]]T is defined by

[[w]]T = n+
κ ×w+ + n−κ ×w− on ΓI , [[w]]T = n+

κ ×w+ on ∂Ω. (3.2.23)

It is worth noting that:

{{{{q}}}} = {{q}}, {{{{w}}}} = {{w}}, {{{{τ}}}} = {{τ}}, (3.2.24)

{{[[q]]}} = [[q]], {{[[w]]}} = [[w]], {{[[τ]]}} = [[τ]], (3.2.25)

[[[[q]]]] = 0, [[[[w]]]] = 0, [[[[τ]]]] = 0, (3.2.26)

[[{{q}}]] = 0, [[{{w}}]] = 0, [[{{τ}}]] = 0. (3.2.27)

Each of these operators allow us to rewrite integrals over element boundaries ∂κ as

integrals over the interior ΓI and exterior ∂Ω element faces, namely,

∑
κ∈T h

Ω

∫

∂κ
qw · nκ ds =

∫

ΓI∪∂Ω
[[q]] · {{w}} ds +

∫

ΓI
{{q}}[[w]] ds, (3.2.28)

∑
κ∈T h

Ω

∫

∂κ
τ : (z⊗ nκ) ds =

∫

ΓI∪∂Ω
[[z]] : {{τ}} ds +

∫

ΓI
{{z}} · [[τ]] ds, (3.2.29)

∑
κ∈T h

Ω

∫

∂κ
v · (nκ ×w) ds =

∫

ΓI∪∂Ω
[[w]]T · {{v}} ds−

∫

ΓI
{{w}} · [[v]]T ds, (3.2.30)

where q ∈ H1 (T h
Ω

)
, w ∈

[
H1 (T h

Ω

)]d, v ∈
[
H1 (T h

Ω

)]d, z ∈
[
H1 (T h

Ω

)]m and τ ∈
[
H1 (T h

Ω

)]m×d. Proofs of (3.2.28), (3.2.29) and (3.2.30) are given in Appendix B.
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3.3 Conservation Laws

Given Ω ⊂ Rd, d ≥ 1, with boundary ∂Ω, we write ∂Ω = ∂ΩD ∪ ∂ΩN , where ∂ΩD is

closed and non-empty. A typical model conservation law is to find u such that

∇ · (F c(u)−F v(u;∇u)) = 0, in Ω, (3.3.1)

u = gD, on ∂ΩD, (3.3.2)

F v(u;∇u) · n = gN , on ∂ΩN , (3.3.3)

where n denotes the unit outward normal vector on ∂Ω. Here, u is the conserved

solution vector,

F c(u) =




f c
1,1(u) · · · f c

1,d(u)
...

. . .
...

f c
m,1(u) · · · f c

m,d(u)


 ≡

(
fc

1(u), . . . , fc
d(u)

)
(3.3.4)

is the nonlinear hyperbolic convective flux and

F v(u;∇u) =




f v
1,1(u;∇u) · · · f v

1,d(u;∇u)
...

. . .
...

f v
m,1(u;∇u) · · · f v

m,d(u;∇u)


 ≡

(
fv

1(u;∇u), . . . , fv
d(u;∇u)

)

(3.3.5)

is the viscous flux, which is assumed here to be nonlinear in u and linear in ∇u. Fur-

thermore, gD and gN are the Dirichlet and Neumann boundary functions, respectively.

A typical example includes the compressible Navier-Stokes equations [66].

3.4 DG Finite Element Formulation of Hyperbolic Terms

The DG formulation of the convective terms arising in the PDE (3.3.1) presented here is

based on the work undertaken by Hartmann and Houston [65]. We present a specific

case where ∂ΩN = ∅ assuming that Dirichlet data is prescribed on ∂ΩD as required by

(3.3.1), and refer to [65] regarding the more general case. Consider the convective term

∇ · F c(u) of (3.3.1) which we rewrite as

∇ · F c(u) = 0, in Ω, (3.4.1)

B− (u, n) (u− gD) = 0, on ∂ΩD. (3.4.2)

Here,

B(u, n) :=
d

∑
i=1

∂fc
i

∂u
ni (3.4.3)
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is the flux Jacobian, where ni is the ith component of n and the positive/negative part

of B(u, n) is given by

B±(u, n) = PΛ±P−1. (3.4.4)

Here, P is the matrix of eigenvectors of B(u, n) and the diagonal matrices of the positive

and negative eigenvalues λ(B) are written

Λ+ = diag (max (λ(B), 0)) , (3.4.5)

Λ− = diag (min (λ(B), 0)) . (3.4.6)

Multiplying (3.4.1) by a test function v ∈ [H1(T h
Ω)]m and integrating by parts on an

element κ ∈ T h
Ω yields

−
∫

κ
F c(u) : ∇v dx +

∫

∂κ
F c(u) · nκ · v dx = 0. (3.4.7)

The DG finite element formulation is derived by replacing u by the finite element ap-

proximation uh and the test function v by vh, where uh, vh ∈ Vm
` (T h

Ω). Summing (3.4.7)

over all elements κ ∈ T h
Ω and replacing the inter-element convective flux with a con-

sistent and conservative numerical flux functionH(u+
h , u−h , nκ), the DG semilinear for-

mulation is given by: find uh ∈ Vm
` (T h

Ω) such that

N c
Ω(uh; vh) := −

∫

Ω
F c(uh) : ∇hvh dx

+ ∑
κ∈T h

Ω

∫

∂κ\∂Ω
H
(
u+

h , u−h , nκ

)
· v+

h ds

+ ∑
κ∈T h

Ω

∫

∂κ∩∂Ω
H
(
u+

h , uΓ
(
u+

h

)
, nκ

)
· v+

h ds = 0 (3.4.8)

for all vh ∈ Vm
` (T h

Ω).

Several numerical fluxesH(·, ·, ·), such as the Roe flux [121] and the Vijayasundaram

flux [139], are discussed in the application of numerical schemes for hyperbolic con-

servation laws, see LeVeque [96] and Kröner [94]. The boundary function uΓ(u+
h ) de-

termines the weakly enforced boundary conditions. Imposing the Dirichlet boundary

condition on ∂ΩD requires that uΓ(u+) = gD on ∂ΩD, cf. Hartmann and Houston [65].

In this thesis we employ the consistent and conservative local-Lax Friedrichs flux

HLF
(
u+

h , u−h , nκ

)∣∣
∂κ

:= 1
2

(
F c (u+

h

)
· nκ +F c (u−h

)
· nκ + α

(
u+

h − u−h
))

. (3.4.9)

The dissipation parameter α is defined by

α|∂κ = max
w=u+

h ,u−h
{|λ (B (w, nκ))|} . (3.4.10)
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3.5 DG Finite Element Formulation of Elliptic Terms

The DG discretisation of the viscous terms arising in the PDE (3.3.1) presented here is

again based on the work undertaken by Hartmann and Houston [66]. Consider now

the viscous term −∇ · F v(u;∇u) of (3.3.1) which we rewrite as

−∇ · F v(u;∇u) = 0, in Ω, (3.5.1)

u = gD, on ∂ΩD, (3.5.2)

F v(u;∇u) · n = gN , on ∂ΩN . (3.5.3)

We define the homogeneity tensor by

Gkl (u) =
∂fv

k
∂ (∇u)l

, k, l = 1, . . . , d; (3.5.4)

thereby, we may write

(G(u)∇u)ik =
m

∑
j=1

d

∑
l=1

(Gkl (u))ij (∇u)jl . (3.5.5)

Here, we also define the transpose homogeneity tensor product acting on a tensor vari-

able τ ∈ Rm×d
(

G> (u) τ
)

jl
=

m

∑
i=1

d

∑
k=1

(Gkl (u))ij τik. (3.5.6)

In order to define the DG formulation of (3.5.1) we rewrite (3.5.1) as a first order

system, i.e., we have

σ = G (u)∇u ≡ F v(u;∇u) and −∇ · σ = 0. (3.5.7)

Multiplying both parts of (3.5.7) by test functions τ ∈
[
H1(T h

Ω)
]m×d and v ∈

[
H1(T h

Ω)
]m,

respectively, and integrating by parts on each element κ ∈ T h
Ω gives

∫

κ
σ : τ dx = −

∫

κ
u · ∇ ·

(
G> (u) τ

)
dx +

∫

∂κ
u ·
(

G> (u) τ
)
· nκ ds, (3.5.8)

∫

κ
σ : ∇v dx =

∫

∂κ
σ · nκ · v ds. (3.5.9)
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Here, as above, nκ denotes the unit outward normal vector on the boundary of element

κ ∈ T h
Ω . Here, we have employed (3.5.5) and (3.5.6) in (3.5.8); indeed, we have that

∫

κ
σ : τ dx =

∫

κ

m

∑
i=1

d

∑
k=1

σikτik dx

=
∫

κ

m

∑
i=1

d

∑
k=1

(
m

∑
j=1

d

∑
l=1

(G(u)kl)ij (∇u)jl

)
τik dx

=
∫

κ

m

∑
j=1

d

∑
l=1

(∇u)jl

(
m

∑
i=1

d

∑
k=1

(G(u)kl)ij τik

)
dx

=
∫

κ

m

∑
j=1

d

∑
l=1

(∇u)jl

(
G(u)>τ

)
jl

dx

=
∫

κ
∇u :

(
G(u)>τ

)
dx. (3.5.10)

We sum over all elements κ ∈ T h
Ω and replace u, v, σ and τ by their discrete finite

element counterparts, uh, vh ∈ Vm
` (T h

Ω) and σh, τh ∈ Σm×d
` (T h

Ω). This yields the flux

formulation: find uh ∈ Vm
` (T h

Ω) and σh ∈ Σm×d
` (T h

Ω) such that, respectively
∫

Ω
σh : τh dx = −

∫

Ω
uh · ∇h ·

(
G> (uh) τh

)
dx + ∑

κ∈T h
Ω

∫

∂κ
ûh ·

(
G> (uh) τh

)
· nκ ds,

(3.5.11)
∫

Ω
σh : ∇hvh dx = ∑

κ∈T h
Ω

∫

∂κ\∂ΩN

σ̂h · nκ · vh ds + ∑
κ∈T h

Ω

∫

∂κ∩∂ΩN

gN · vh ds (3.5.12)

for all vh ∈ Vm
` (T h

Ω) and τ ∈ Σm×d
` (T h

Ω).

The numerical fluxes ûh and σ̂h represent approximations to u and ∇u, respectively.

The formulation of the DG method will depend on the particular choice of these nu-

merical fluxes which will be addressed later. To determine the primal formulation of

equations (3.5.11) and (3.5.12) in terms of the variable uh, we perform integration by

parts in (3.5.11) on all elements κ ∈ T h
Ω and choose the test function τh = ∇hvh; thereby,

we get

∫

Ω
σh : ∇hvh dx =

∫

Ω
F v (uh;∇huh) : ∇hvh dx

+ ∑
κ∈T h

Ω

∫

∂κ
(ûh − uh) ·

(
G>(uh)∇hvh

)
· nκ ds. (3.5.13)
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Upon substituting equation (3.5.13) into equation (3.5.12), the primal semilinear form

can be obtained for the viscous components, namely: find uh ∈ Vm
` (T h

Ω), such that

N v
Ω (uh; vh) :=

∫

Ω
F v (uh;∇huh) : ∇hvh dx

+ ∑
κ∈T h

Ω

∫

∂κ
(ûh − uh) ·

(
G>(uh)∇hvh

)
· nκ ds

− ∑
κ∈T h

Ω

∫

∂κ\∂ΩN

σ̂h · nκ · vh ds− ∑
κ∈T h

Ω

∫

∂κ∩∂ΩN

gN · vh ds = 0 (3.5.14)

for all vh ∈ Vm
` (T h

Ω).

It should be noted that the face terms which arise on the interior of the mesh T h
Ω

occur twice in the sum over the elements κ ∈ T h
Ω in equation (3.5.14). In order to

rewrite the primal flux formulation in terms of a face-based rather than an element-

based form, we apply the identities stated in equations (3.2.28) and (3.2.29). The DG

residual primal flux formulation is to find uh ∈ Vm
` (T h

Ω) such that

N v
Ω (uh; vh) :=

∫

Ω
F v (uh;∇huh) : ∇hvh dx−

∫

ΓI∪∂Ω
{{σ̂h}} : [[vh]] ds

−
∫

ΓI
[[σ̂h]] · {{vh}} ds +

∫

ΓI∪∂Ω
[[ûh − uh]] : {{G>(uh)∇hvh}} ds

+
∫

ΓI
{{ûh − uh}} · [[G>(uh)∇hvh]] ds−

∫

∂ΩN

gN · vh ds = 0 (3.5.15)

for all vh ∈ Vm
` (T h

Ω), where the choices of numerical flux vector function ûh and tensor

function σ̂h are discussed at length in [8].

Here we employ the interior penalty method; to this end, the numerical flux func-

tions are defined by

ûh = {{uh}}, σ̂h = {{F v (uh;∇huh)}} − δ(uh) on ΓI , (3.5.16)

where the penalisation term δ(uh) for the interior penalty method is chosen to be

δ(uh) = CIP
`2

hF
{{G(uh)}}[[uh]], (3.5.17)

where CIP is a sufficiently large positive constant and hF is defined by

hF|F = min(meas(κ+), meas(κ−))/meas(F), F = ∂κ+ ∩ ∂κ−. (3.5.18)

On the exterior boundary we select the numerical flux functions as follows

ûh = uΓ(uh), σ̂h = {{F v (uΓ(uh);∇huh)}} − δΓ(uh) on ∂Ω, (3.5.19)
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where the penalisation term δΓ(uh) on the exterior boundary ∂ΩD is given by

δΓ(uh) = CIP
`2

hF
{{G(uΓ(uh))}}[[uh − uΓ(uh)]]. (3.5.20)

Here, the boundary function uΓ(uh) weakly enforces the Dirichlet boundary condition.

In the case of the original conservation model equation (3.3.1), uΓ(uh)|∂ΩD
= gD; on

the Neumann boundary we set uΓ(uh)|∂ΩN
= u+

h .

3.5.1 Complete Formulation for Convective and Viscous Terms

Collecting the DG discretisations of the convective and viscous terms of equation (3.3.1),

the full DG discretisation may be defined by: find uh ∈ Vm
` (T h

Ω) such that

N c,v
Ω (uh; vh) := −

∫

Ω
F c(uh) : ∇hvh dx +

∫

Ω
F v(uh;∇huh) : ∇hvh dx

+ ∑
κ∈T h

Ω

∫

∂κ\∂Ω
H(u+

h , u−h , nκ) · v+
h ds−

∫

ΓI
[[uh]] : {{G>(uh)∇hvh}} ds

−
∫

ΓI
{{F v(uh;∇huh)}} : [[vh]] ds +

∫

ΓI
δ(uh) : [[vh]] ds

+ ∑
κ∈T h

Ω

∫

∂κ∩∂Ω
H
(
u+

h , uΓ
(
u+

h

)
, nκ

)
· v+

h ds−
∫

∂ΩD

{{F v (uΓ(u+
h );∇huh

)
}} : [[vh]] ds

−
∫

∂ΩD

[[uh − uΓ(u+
h )]] : {{G>(uΓ(uh))∇hvh}} ds +

∫

∂ΩD

δΓ(u+
h ) : [[vh]] ds

−
∫

∂ΩN

gN · v+
h ds = 0 (3.5.21)

for all vh ∈ Vm
` (T h

Ω).

3.6 The Quasi-Incompressible Navier-Stokes Continuity Equa-

tion

The work of Cockburn and co-workers analyses the application of the DG finite ele-

ment method to the Stokes [39], Oseen [41] and Navier-Stokes [40] equations subject to

the constraint of the continuity equation. Based on these works, the DG formulation for

the quasi-incompressible Navier-Stokes equations discussed here closely follows that

presented by Cliffe et al. [38].

64



CHAPTER 3: DISCONTINUOUS GALERKIN APPROXIMATION OF HYPERBOLIC AND

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Consider the quasi-incompressible Navier-Stokes equations given by

∇ · (F c
mom(u)−F v

mom(u,∇u)) = ρg in Ω, (3.6.1)

∇ · (ρu) = 0 in Ω, (3.6.2)

u = gD on ∂ΩD, (3.6.3)

F v
mom (u;∇u) · n = gN on ∂ΩN , (3.6.4)

where

F c
mom(u) = ρu⊗ u, (3.6.5)

F v
mom(u;∇u) = η

(
∇u +∇u> − 2

3
(∇ · u) I

)
− pI. (3.6.6)

In this section, we consider only the DG discretisation of the continuity equation (3.6.2).

To this end, multiplying (3.6.2) by a test function q ∈ H1(T h
Ω) and integrating by parts

on an element κ ∈ T h
Ω we get

−
∫

κ
(ρu) · ∇q dx +

∫

∂κ
u · nκ(ρq) ds = 0. (3.6.7)

Introducing the numerical flux û and integrating by parts a second time gives
∫

κ
q∇ · (ρu) dx +

∫

∂κ
(û− u) · nκ(ρq) ds = 0. (3.6.8)

Summing over all elements in the mesh κ ∈ T h
Ω and replacing u and q with their discrete

finite element approximations uh and qh, respectively, the flux formulation is given by:

find uh ∈ Vd
`(T h

Ω) such that,
∫

Ω
qh∇h · (ρuh) dx + ∑

κ∈T h
Ω

∫

∂κ
(û− uh) · nκ(ρqh) ds = 0 (3.6.9)

for all qh ∈ V`−1(T h
Ω). Regarding the choice of DG finite element space V`−1(T h

Ω) we

refer to the literature of finite element methods concerning saddle point problems [21,

39, 44]. The primal formulation of equation (3.6.9) can be written in terms of the jump

[[·]] and average {{·}} operators by applying the identity in (3.2.28). To this end, we get

N cont
Ω (uh; qh) :=

∫

Ω
qh∇h · (ρuh) dx

+
∫

ΓI∪∂Ω
[[ρqh]] · {{û− uh}} ds +

∫

ΓI
{{ρqh}}[[û− uh]] ds. (3.6.10)

Here, we define the numerical flux û as follows

û =





{{uh}} on ΓI ,

gD on ∂ΩD,

u+
h on ∂ΩN ,

(3.6.11)
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cf. Section 3.5. Hence, we may write

N cont
Ω (uh; qh) :=

∫

Ω
qh∇h · (ρuh) dx

−
∫

ΓI
[[uh]]{{ρqh}} ds−

∫

∂Ω
[[uh − uΓ(uh)]]{{ρqh}} ds. (3.6.12)

3.7 Discontinuous Galerkin Approximation of the Maxwell Op-

erator

The DG discretisation of the Maxwell operator employed in this thesis is based on the

method developed by Houston, Perugia and Schötzau [80]; in particular, it enforces the

divergence free condition of the electric field through the introduction of a Lagrange

multiplier p. The properties of this Lagrange multiplier term are discussed in [46, 138].

Let Ω ⊂ Rd, d ≥ 1, be a bounded domain with boundary ∂Ω = ∂ΩD ∪ ∂ΩN with

unit outward normal vector n, where ∂ΩD is closed and non-empty. As before, we let

T h
Ω = {κ} be the subdivision of Ω into shape regular elements of granularity hκ. The

Maxwell operator acting on an unknown vector field E along with Lagrange multiplier

term p for material permeability µ and permittivity ε is given by

∇×
(

µ−1∇× E
)
− ε∇p = 0 in Ω, (3.7.1)

∇ · (εE) = 0 in Ω, (3.7.2)

subject to the boundary conditions

n× E = gD on ∂ΩD, (3.7.3)

n×
(

µ−1∇× E
)
= gN on ∂ΩN , (3.7.4)

p = 0 on ∂ΩD. (3.7.5)

3.7.1 The curl-curl Operator

To define the DG finite element formulation of the Maxwell operator, initially consider

the curl-curl operator

∇×
(

µ−1∇× E
)
= 0. (3.7.6)

Writing this as a first order system, we get

σ = µ−1∇× E and ∇× σ = 0. (3.7.7)

We now proceed as in the case of discretising the viscous terms, cf. Section 3.5. Thereby,

multiplying both equations by the complex conjugate of complex valued test functions
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F ∈
[
H1(T h

Ω)
]d and τ ∈

[
H1(T h

Ω)
]d, respectively, and integrating by parts elementwise

yields,
∫

κ
σ · τ dx =

∫

κ
E · ∇ ×

(
µ−1τ

)
dx−

∫

∂κ
(E× nκ) ·

(
µ−1τ

)
ds, (3.7.8)

∫

κ
σ · ∇ × F =

∫

∂κ
(σ× nκ) · F ds, (3.7.9)

where τ and F denotes the complex conjugate of τ and F, respectively. Summing over

all elements κ ∈ T h
Ω and replacing E, F, σ and τ by their discrete finite element counter-

parts Eh, Fh, σh, τh ∈ Vd
`(T h

Ω), respectively, gives the flux formulation: find Eh ∈ Vd
`(T h

Ω)

and σh ∈ Vd
`(T h

Ω) such that
∫

Ω
σh · τh dx =

∫

Ω
Eh · ∇h ×

(
µ−1τh

)
dx− ∑

κ∈T h
Ω

∫

∂κ

(
Êh × nκ

)
·
(

µ−1τh

)
ds,

(3.7.10)
∫

Ω
σh · ∇h × Fh = ∑

κ∈T h
Ω

∫

∂κ\∂ΩN

(σ̂h × nκ) · Fh ds + ∑
κ∈T h

Ω

∫

∂κ∩∂ΩN

gN · Fh ds (3.7.11)

for all Fh ∈ Vd
`(T h

Ω) and τh ∈ Vd
`(T h

Ω).

Just as with the treatment of the numerical fluxes of viscous terms in Section 3.5, the

numerical fluxes Êh and σ̂h represent approximations to E and µ−1∇× E, respectively.

Choosing the test function τh = ∇h × Fh and integrating equation (3.7.10) by parts a

second time yields
∫

Ω
σh · ∇h × Fh dx =

∫

Ω
µ−1∇h × Eh · ∇h × Fh dx− ∑

κ∈T h
Ω

∫

∂κ

((
Êh − Eh

)
× nκ

)
· Fh ds.

(3.7.12)

Substituting (3.7.12) into equation (3.7.11) and noting the following identities for vec-

tors a, b, c ∈ Rd

a · (b× c) = b · (c× a) = c · (a× b) , (3.7.13)

a · (b× c) = −a · (c× b) , (3.7.14)

the primal sesquilinear formulation can be derived

aMax
Ω (Eh, Fh) :=

∫

Ω
µ−1∇h × Eh · ∇h × Fh dx + ∑

κ∈T h
Ω

∫

∂κ

(
nκ ×

(
Êh − Eh

))
· Fh ds

− ∑
κ∈T h

Ω

∫

∂κ
σ̂ ·
(
nκ × Fh

)
ds− ∑

κ∈T h
Ω

∫

∂κ∩∂ΩN

gN · Fh ds = 0. (3.7.15)
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By applying the identity in equation (3.2.30) to (3.7.15), the sesquilinear operator can

be written in terms of the average and jump operators:

aMax
Ω (Eh, Fh) :=

∫

Ω
µ−1∇h × Eh · ∇h × Fh dx

+
∫

∂Ω∪ΓI
{{µ−1∇h × Fh}} · [[Êh − Eh]]T ds−

∫

ΓI
[[µ−1∇h × Fh]]T · {{Êh − Eh}} ds

−
∫

∂Ω∪ΓI
{{σ̂h}} · [[Fh]]T ds +

∫

ΓI
[[σ̂h]]T · {{Fh}} ds−

∫

∂ΩN

gN · Fh ds. (3.7.16)

The numerical fluxes of the DG discretisation Êh and σ̂h employed here are chosen to

be those of the symmetric interior penalty method (see Perugia et al. [115])

Êh = {{Eh}}, σ̂h = {{µ−1∇h × Eh}} − δ(Eh) on ΓI . (3.7.17)

Here, the penalisation term δ(Eh) for the interior penalty method is

δ(Eh) = Cε
IP
`2

hF

(
min

{
µ+, µ−

})−1
[[Eh]]T, (3.7.18)

where Cε
IP is a positive constant, ` is the local element polynomial order, and hF element

face size. Regarding choices of Cε
IP we refer to [25, 78]. On the exterior boundary, the

numerical fluxes incorporate the boundary flux function

Êh = EΓ (Eh) , σ̂h = µ−1∇h × Eh − δΓ (Eh) on ∂ΩD (3.7.19)

with exterior boundary penalisation term δΓ (Eh)

δΓ (Eh) = Cε
IP
`2

hF

(
µ+
)−1

[[Eh − EΓ (Eh)]]T. (3.7.20)

In the case of equation (3.7.3) the boundary function EΓ(E+
h )
∣∣
∂ΩD

= gD. On the Neu-

mann component of the exterior boundary the numerical flux function EΓ(E+
h )
∣∣
∂ΩN

=

E+
h .

Substituting the flux terms of equations (3.7.17) and (3.7.19) into the DG primal flux

formulation of equation (3.7.16), the full DG discretisation of the curl-curl component

of the Maxwell operator can be derived

aMax
Ω (Eh, Fh) :=

∫

Ω
µ−1∇h × Eh · ∇h × Fh dx

−
∫

∂ΩD∪ΓI
{{µ−1∇h × Fh}} · [[Eh]]T ds−

∫

∂ΩD∪ΓI
{{µ−1∇h × Eh}} · [[Fh]]T ds

+
∫

ΓI
δ (Eh) · [[Fh]]T ds +

∫

∂ΩD

δΓ (Eh) · [[Fh]]T ds

+
∫

∂ΩD

[[EΓ (Eh)]]T · {{µ−1∇h × Fh}} ds−
∫

∂ΩN

gN · Fh dx. (3.7.21)
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3.7.2 The Divergence Free Field Constraint

The DG discretisation of the divergence free electric field constraint and the corre-

sponding Lagrange multiplier term can be determined in an analogous manner to that

employed for the continuity equation in Section 3.6. First consider the term −ε∇p of

equation (3.7.1) which is multiplied by test function F and integrated by parts on and

element κ ∈ T h
Ω :

−
∫

κ
(ε∇p) · F dx =

∫

κ
p∇ ·

(
εF
)

dx−
∫

∂κ
pεF · nκ ds. (3.7.22)

Integrating by parts a second time, summing over all elements, introducing the numer-

ical flux function p̂h and replacing p and F by their discrete finite element counterparts

ph ∈ V`+1(T h
Ω) and Fh ∈ Vd

`(T h
Ω) gives

− ∑
κ∈T h

Ω

∫

κ
(ε∇ph) · Fh dx = −

∫

Ω
(ε∇ph) · Fh dx− ∑

κ∈T h
Ω

∫

∂κ
(p̂h − ph) εFh · nκ ds. (3.7.23)

Regarding the choice of the richer space V`+1(T h
Ω) for the Lagrange multiplier, we refer

to [46]. Applying the identity relating integrals on element boundaries to integrals over

element faces in (3.2.28) allows the derivation of the primal flux semilinear residual:

N ε∇p
Ω (ph; Fh) := −

∫

Ω
(ε∇ph) · Fh dx

−
∫

ΓI∪∂Ω
{{εFh}} · [[p̂h − ph]] ds−

∫

ΓI
[[εFh]]{{p̂h − ph}} ds; (3.7.24)

here we choose the numerical flux p̂ = {{ph}} on ∂Ω ∪ ΓI . The DG semilinear residual

can then be written as

N ε∇p
Ω (ph; Fh) = −

∫

Ω
(ε∇ph) · Fh dx +

∫

ΓI∪∂Ω
{{εFh}} · [[ph]] ds. (3.7.25)

Now consider the divergence free electric field constraint ∇ · (εE) = 0. Multiplying

by scalar test function q ∈ H1(T h
Ω) and integrating by parts on an element κ ∈ T h

Ω gives
∫

κ
q∇ · (εE) dx = −

∫

κ
εE · ∇q dx +

∫

∂κ
εE · nκq ds = 0. (3.7.26)

Summing over all elements κ ∈ T h
Ω , replacing E and q by their DG finite element coun-

terparts Eh ∈ Vd
`(T h

Ω) and qh ∈ V`+1(T h
Ω), respectively, and introducing the numerical

flux function Ê gives

−
∫

Ω
εEh · ∇qh dx + ∑

κ∈T h
Ω

∫

∂κ
εÊh · nκqh ds = 0. (3.7.27)
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Applying the identity in equation (3.2.28) to equation (3.7.27), and rewriting the bound-

ary terms as integrals over the faces yields the primal flux formulation:

N∇·(εE)
Ω (Eh, qh) := −

∫

Ω
εEh · ∇qh dx

+
∫

ΓI∪∂Ω
{{εÊh}} · [[qh]] ds +

∫

ΓI
[[εÊh]]{{qh}} ds. (3.7.28)

Here, the numerical flux function Êh = {{Eh}} − δε[[ph]] for penalisation parameter

δε =

{
Cε

IP
`2

hF
max {ε+, ε−} on ΓI ,

Cε
IP

`2

hF
max {ε+} on ∂Ω.

(3.7.29)

3.8 Summary

In this chapter we have written the DG finite element formulation of nonlinear hy-

perbolic and elliptic PDEs as well as the Maxwell operator. The DG formulation of

the hyperbolic and elliptic terms can now be applied to those found in the equations

describing the conservation of mass, molar mass fraction, momentum, energy and elec-

tron density in the MPA-CVD reactor model in the previous chapter. Furthermore, the

derivation of the DG finite element formulation of the Maxwell operator will be imple-

mented to discretise the time harmonic formulation of Maxwell’s equations modelling

the microwave field in the MPA-CVD reactor cavity. In the following chapter we will

summarise the equations of the MPA-CVD reactor model, their DG finite element for-

mulation, and physically appropriate boundary conditions.
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4.1 Reactor Geometry

Let Ω ⊂ R3 be a bounded domain with exterior boundary ∂Ω denoting the geome-

try of a given CVD reactor. An example of such a computational domain is shown in

Figure 4.1. Adopting a cylindrical coordinate system and assuming azimuthal symme-

try, an axial slice at θ = 0 and r ≥ 0 is taken yielding the bounded domain Ω∗ ⊂ Ω

with boundary ∂Ω∗; for simplicity of notation, we simply denote this two-dimensional

slice by Ω. This domain is then subdivided into three subdomains characterising com-

ponents of the CVD reactor such that Ω = Ωa ∪Ωq ∪Ωv. Here, Ωa is the subdomain

filled with air at atmospheric pressure, Ωq is the fused silica window and Ωv is the vac-

uum chamber of the CVD reactor containing atomic and molecular hydrogen in which

diamond growth occurs on a substrate surface.

The boundary of Ω is divided such that ∂Ω = ∂Ωsurf ∪ ∂Ωwall ∪ ∂Ωin ∪ ∂Ωout ∪
∂Ωant ∪ ∂Ωaxis. Here, ∂Ωsurf is the component of the boundary specifying the substrate

surface on which the diamond is grown, ∂Ωwall is the wall of the reactor, ∂Ωin is the

gas inlet, ∂Ωout the gas outlet, ∂Ωant the microwave antenna which excites the electric

field in the cavity and ∂Ωaxis the exterior boundary component which lies on the axis of

symmetry r = 0. Each of Ωv, Ωq and Ωa, has exterior boundaries ∂Ωv, ∂Ωq and ∂Ωa re-

spectively. We also denote the interior subdomain interface boundaries Γaq = Ωa ∩Ωq

and Γvq = Ωv ∩Ωq. On boundary Γaq we define the unit normal vector pointing from

Ωa to Ωq by naq and from Ωq to Ωa by nqa. Similarly, on boundary Γvq we define

the unit normal pointing from Ωv to Ωq by nvq and from Ωq to Ωv by nqv. The two

dimensional slice of the CVD computational domain is shown in Figure 4.2.
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Antenna

Substrate

Quartz

Outlet

Inlet

z

r

θ

Figure 4.1: Example of a computational domain Ω, a basic representation of a chemi-

cal vapour deposition reactor in cylindrical coordinates.

z

r

∂Ωant

∂Ωaxis

∂Ωsurf

∂Ωwall

∂Ωwall ∂Ωwall

∂Ωout∂Ωin

Γvq nqv

Γaq nqa

Ωa

Ωv

Ωq

Figure 4.2: Axial slice of the chemical vapour deposition reactor shown in Figure 4.1

at azimuth θ = 0. Collapsing the CVD reactor volume to this two dimen-

sional computational domain is permitted by exploiting azimuthal sym-

metry.
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4.2 Summary of Equations, Boundary Conditions and their DG

Formulations

In this thesis we seek numerical approximations to the steady state DG FEM formu-

lation of the CVD reactor model equations, i.e., the time derivatives of the solution

variables are zero. To this end, in this section each PDE arising in the CVD model

equations is stated; moreover, we define suitable boundary conditions, together with

their DG finite element formulations. The unknown quantities to be solved for are: the

mass averaged gas flow of the molecular and atomic hydrogen mix u, its relative pres-

sure p, the molar mass fraction of atomic hydrogen xH, the reactor temperature T, the

electron density ne, the complex phasor of the time harmonic electric field E and the

complex Lagrange multiplier p enforcing a divergence free solution of the electric field

variable.

4.2.1 Momentum

Modelling an inlet gas flow profile by uinlet, no slip u = 0 on the walls of the reactor

and allowing the gas to exit the vacuum through the outlet pipe, the multicomponent

gas mixture momentum conservation equation takes the form

∇ · (F c
mom(u)−F v

mom(u;∇u)) = ρg in Ωv, (4.2.1)

∇ · (ρu) = 0 in Ωv, (4.2.2)

u = 0 on ∂Ωant ∪ ∂Ωsurf ∪ ∂Ωwall ∪ Γvq, (4.2.3)

u = uinlet on ∂Ωin, (4.2.4)

η∇u · n− pn = 0 on ∂Ωaxis ∪ ∂Ωout (4.2.5)

where

F c
mom(u) = ρu⊗ u, (4.2.6)

F v
mom(u;∇u) = η

(
∇u +∇u> − 2

3
(∇ · u) I

)
− pI. (4.2.7)

The density is given in terms of molar masses MH and MH2 , the gas constant R and the

mean vacuum pressure P, namely, ρ = PM/RT, where M is the mean molar mass of the

gas mixture, i.e., M = (MHxH + MH2 (1− xH)). The viscosity is given by

η =


 6xH

6xH +
√

3
(

1 + 2
1
4 N
)2

(1− xH)
+

12 (1− xH)

12N2 (1− xH) +
√

3
(

1 + 2
1
4 N
)2

xH


 ηH,

(4.2.8)
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where N =
√

ηH/ηH2 and ηH and ηH2 are the viscosities of atomic and molecular hydro-

gen, respectively. The Neumann boundary conditions require that on ∂Ωaxis ∪ ∂Ωout

uΓ(u+) = u+, (4.2.9)

F v
mom

(
uΓ(u+);∇u

)
· n = η

(
∇u> − 2

3
(∇ · u) I

)
· n. (4.2.10)

The DG formulation of the gas flow model is to find (uh, ph) ∈ Vd
`(T h

Ωv
)× V`−1(T h

Ωv
)

such that

N gas flow
Ωv

(uh, ph; vh, qh) := N c,mom
Ωv

(uh; vh) +N v,mom
Ωv

(uh; vh) +N cont
Ωv

(uh; qh) = 0

(4.2.11)

for all (vh, qh) ∈ Vd
`(T h

Ωv
)× ∈ V`−1(T h

Ωv
).

4.2.2 Mass

Assuming no presence of atomic hydrogen on the walls of the reactor and that the gas

at the inlet is pure molecular hydrogen, the conservation law enforcing continuity of

mass fraction is

∇ · (F c
mass(xH)−F v

mass(xH;∇xH)) = RH in Ωv, (4.2.12)

xH = 0 on ∂Ωv \ (∂Ωaxis ∪ ∂Ωout), (4.2.13)

∇xH · n = 0 on ∂Ωaxis ∪ ∂Ωout, (4.2.14)

where

F c
mass(xH) = cxHu, (4.2.15)

F v
mass(xH;∇xH) =

MH2

M
cDHH2∇xH. (4.2.16)

Here, DHH2 is the diffusivity of atomic hydrogen in the binary gas mixture, c = P/RT is

the molar concentration of the gas mixture and RH = 2
(
k f c2 (1− xH)− krc3x2

H

)
is the

rate of mass production of atomic hydrogen for forward and reverse rate constants k f

and kr, respectively. The natural Neumann condition (∇xH) · n = 0 is prescribed on

the axis of symmetry and gas outlet requiring that xHΓ(x+H) = x+H on ∂Ωaxis ∪ ∂Ωout.

The DG formulation is to find xHh ∈ V`(T h
Ωv
) such that

Nmass fraction
Ωv

(xHh; ξxHh) := N c,mass
Ωv

(xHh; ξxHh) +N v,mass
Ωv

(xHh; ξxHh)

−
∫

Ωv

RHξxHh dx = 0 (4.2.17)

for all ξxHh ∈ V`(T h
Ωv
).
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4.2.3 Energy

The source of heat in the hydrogen gas is generated by the time averaged ohmic power

absorbed, i.e.,

Pohm =
1
2
|E|2 σdc

ν2
me

ω2 + ν2
me

. (4.2.18)

Here, ω is the electric field angular frequency and νme is the electron-neutral collision

frequency. The direct current cold plasma conductivity approximation σdc is given in

terms of the electron rest mass me and electron charge qe, namely,

σdc =
qe

2ne

meνme

. (4.2.19)

The sources of heat in the quartz and the air filled cavity are approximated by the Joule

heating model for material conductivity σ, i.e.,

P = σ |E|2 . (4.2.20)

The temperature within the reactor is modelled such that the walls and the inlet gas are

held at room temperature Troom and the diamond substrate surface is heated to Tsurface.

The temperature and heat flux are required to be continuous across the interfaces be-

tween the vacuum, the quartz window and the air filled cavity. The energy balance of

the CVD reactor is then modelled by conserving energy in the vacuum Tv, in the quartz

Tq and the air filled cavity Ta according to

∇ ·
(
F c

energy,v(Tv)−F v
energy,v(Tv;∇Tv)

)
= Pohm in Ωv, (4.2.21)

−∇ · F v
energy,q(Tq;∇Tq) = σq |E|2 in Ωq, (4.2.22)

−∇ · F v
energy,a(Ta;∇Ta) = σa |E|2 in Ωa, (4.2.23)

Tv = Ta = Tq = Troom on ∂Ωwall ∪ ∂Ωant ∪ ∂Ωin, (4.2.24)

Tv = Tsurface on ∂Ωsurf, (4.2.25)

∇Tv · n = 0 on ∂Ωaxis ∪ ∂Ωout, (4.2.26)

∇Ta · n = ∇Tq · n = 0 on ∂Ωaxis, (4.2.27)

where

F c
energy,v(Tv) = ρhu, F v

energy,v(Tv;∇Tv) = κv∇Tv, (4.2.28)

F v
energy,q(Tq;∇Tq) = κq∇Tq, F v

energy,a(Ta;∇Ta) = κa∇Ta, (4.2.29)

and κv, κq and κa are the thermal conductivities in the vacuum, quartz and air, respec-

tively. Here, κv is given in terms of thermal conductivities of atomic κH and molecular
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κH2 hydrogen, i.e.,

κv =
1
2


 ∑

i∈{H,H2}
xiκi +

(
∑

i∈{H,H2}

xi

κi

)−1

 . (4.2.30)

We employ the thermal conductivity of fused silica κq presented in [128]. These equa-

tions are also subject to the interface boundary conditions on Γaq and Γvq enforcing

continuity of the heat flux:

Tv = Tq, κv∇Tv · nvq = κq∇Tq · nvq on Γvq, (4.2.31)

Tq = Ta, κq∇Tq · nqa = κa∇Ta · nqa on Γaq. (4.2.32)

Writing the temperature of the CVD reactor as T such that T|Ωv
= Tv, T|Ωq

= Tq

and T|Ωa
= Ta, convective and viscous flux operators can be written for the whole

reactor domain F c
energy(T) and F v

energy(T;∇T), respectively, in terms of the thermal

conductivity κ and heat source Q. The equivalent conservation of energy equation is

∇ ·
(
F c

energy(T)−F v
energy(T;∇T)

)
= Q in Ω, (4.2.33)

where

F c
energy(T) =

{
ρhu in Ωv

0 otherwise
, (4.2.34)

F v
energy(T;∇T) = κ∇T, (4.2.35)

and piecewise material parameters are given by

κ =





κa in Ωa

κv in Ωv

κq in Ωq

, Q =





σa |E|2 in Ωa

Pohm in Ωv

σq |E|2 in Ωq

. (4.2.36)

The natural Neumann condition ∇T · n = 0 requires that TΓ(T+) = T+ on ∂Ωaxis ∪
∂Ωout. The DG formulation is given by: find Th ∈ V`(T h

Ω) such that

N temperature
Ω (Th; ξTh) := N c,energy

Ω (Th; ξTh) +N v,energy
Ω (Th; ξTh)

−
∫

Ω
QξTh dx = 0 (4.2.37)

for all ξTh ∈ V`(T h
Ω).

76



CHAPTER 4: CVD REACTOR MODEL PROBLEM

4.2.4 Electron Density

It is assumed that there are no free electrons present on all physical boundaries of the

CVD reactor vacuum chamber and at the gas mixture inlet. The conservation of elec-

tron particle density is given by the ambipolar diffusion approximation

∇ · (F c
e (ne)−F v

e (ne,∇ne))

+ne

(
R0ne − A0 |E|2

)
= 0 in Ωv, (4.2.38)

ne = 0 on ∂Ωv \ (∂Ωaxis ∪ ∂Ωout), (4.2.39)

∇ne · u = 0 on ∂Ωaxis ∪ ∂Ωout. (4.2.40)

Here, the electron generation by ionisation is scaled by the inelastic rate constant A0,

and the loss due to dissociative recombination of electrons with hydrogen ions is scaled

by the recombination coefficient R0. The convective and viscous flux operators are

given in terms of ambipolar diffusion coefficient Da (see [68, 91] for appropriate choices)

by

F c
e (ne) = neu, (4.2.41)

F v
e (ne;∇ne) = Da∇ne. (4.2.42)

The Neumann condition requires that neΓ(ne
+) = ne

+ on ∂Ωaxis ∪ ∂Ωout. The DG

formulation is to find neh ∈ V`(T h
Ωv
) such that

N e density
Ωv

(neh; ξneh) := N c,e
Ωv

(neh; ξneh) +N v,e
Ωv

(neh; ξneh)

+
∫

Ωv

neh

(
R0neh − A0 |E|2

)
ξneh dx = 0 (4.2.43)

for all ξeh ∈ V`(T h
Ωv
).

4.2.5 Electric Field

The time-harmonic formulation of Maxwell’s equations describe the electric field of fre-

quency ω in the CVD reactor with permeability µ, permittivity ε and electric conduc-

tivity σ. The permeability of the gas mixture, quartz window and the air filled cavity

are all assumed to be equivalent to the permeability of free space µ0. The permittivity

is discontinuous across the subdomains of the reactor; namely,

ε =





εp in Ωv,

εq in Ωq,

εa in Ωa,

(4.2.44)
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where in the vacuum region the complex plasma permittivity is given by

εp = ε0

[
1−

ω2
pe

ω (ω− jνme)

]
, (4.2.45)

where j =
√
−1 is the complex unit, ε0 is the free space permittivity, ω2

pe = qe
2ne/ε0me is

the characteristic plasma frequency and νme is the electron-neutral collision frequency.

In the case of neutral hydrogen atoms we take νme ≈ 1× 1010P/T (see [36, 52, 55]). The

electric conductivity is discontinuous across the subdomains of the reactor such that

σ =





σp in Ωv,

σq in Ωq,

σa in Ωa,

(4.2.46)

where

σp =
ε0ω2

pe

jω + νme

, σq = 1.3× 10−18, σa = 3× 10−15. (4.2.47)

Subject to perfect electric conductor boundary conditions on the reactor walls and ex-

citation Eant from the antenna, the time harmonic formulation of Maxwell’s equations

in the CVD reactor is given by

∇×
(

µ−1∇× E
)
− ε∇p + jω (σ + jωε) E = 0 in Ω, (4.2.48)

∇ · (εE) = 0 in Ω, (4.2.49)

n× E = 0 on ∂Ωwall ∪ ∂Ωsurf, (4.2.50)

n× E = n× Eant on ∂Ωant, (4.2.51)

n×
(

µ−1∇× E
)
= 0 on ∂Ωaxis ∪ ∂Ωin ∪ ∂Ωout.

(4.2.52)

As shown in Section 3.7, the semilinear DG residual formulation of the Maxwell equa-

tions is to find (Eh, ph) ∈ Vd
`(T h

Ω)×V`+1(T h
Ω) such that

N E-field
Ω (Eh, ph; Fh, qh) := aMax

Ω (Eh, Fh) +N ε∇p
Ω (ph; Fh)

+N∇·(εE)
Ω (Eh; qh) +

∫

Ω
jω (σ + jωε) Eh · Fh dx = 0 (4.2.53)

for all (Fh, qh) ∈ Vd
`(T h

Ω)×V`+1(T h
Ω).

4.2.6 System Residual

For each of the unknown variables of the MPA-CVD reactor model: the mass average

gas flow field u, pressure p, hydrogen molar mass fraction xH, temperature T, electric
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field phasor E, Lagrange multiplier p and electron density ne, we seek their DG finite

element approximation given by: find

Uh = (uh, ph, xHh, Th, Eh, ph, neh) ∈
Vd

`(T h
Ωv
)×V`−1(T h

Ωv
)×V`(T h

Ωv
)×V`(T h

Ω)×Vd
`(T h

Ω)×V`+1(T h
Ω)×V`(T h

Ωv
)

(4.2.54)

such that

N system
Ω (Uh; Ξh) := N gas flow

Ωv
(uh, ph; vh, qh) +Nmass fraction

Ωv
(xHh; ξxHh)

+N temperature
Ω (Th; ξTh) +N e

Ωv
(ne; ξneh) +N E-field

Ω (Eh, ph; Fh, qh)

= 0 (4.2.55)

for all

Ξh = (vh, qh, ξxHh, ξTh, Fh, qh, ξneh) ∈
Vd

`(T h
Ωv
)×V`−1(T h

Ωv
)×V`(T h

Ωv
)×V`(T h

Ω)×Vd
`(T h

Ω)×V`+1(T h
Ω)×V`(T h

Ωv
).

(4.2.56)

Here, all parameters and coefficients including those which are functions of the un-

known solution variables stated in (4.2.54) are replaced by their finite element counter-

parts in each semilinear residual formulation N (·; ·). Furthermore, it is assumed that

any geometric discontinuities in parameters are lined up perfectly with the mesh T h
Ω .

4.3 Microwave Cavity Resonant Frequency

A key aspect of designing a MPA-CVD reactor is to achieve electric field resonance.

Consider the case of the empty reactor geometry represented by Ω. Restricting all

boundary components not lying on the axis of symmetry to be perfect electric conduc-

tors, the resonant frequencies are calculated from the eigenpair solutions (0 6= E, γ2) ∈
C3 ×C of

∇×
(

µ−1∇× E
)
= γ2E in Ω, (4.3.1)

n× E = 0 on ∂Ω \ ∂Ωaxis, (4.3.2)

n×
(

µ−1∇× E
)
= 0 on ∂Ωaxis. (4.3.3)

where γ2 = −jω (σ + jωε). In the case of the empty cavity where (σ, ε, µ) = (0, ε0, µ0),

the resonant frequencies are ωr = γ/√ε0. The discrete formulation of the eigen problem

(4.3.1) is to find (0 6= Eh, γ2
h) ∈ Vd

`(T h
Ω)×C such that

aMax
Ω (Eh, Fh) =

∫

Ω
γ2

hEh · Fh dx (4.3.4)

for all Fh ∈ Vd
`(T h

Ω).
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Choose an electric field resonance mode

Dimension the reactor

Compute resonant frequency ωr

from eigenvalue problem (4.3.4)

Verify electric field configu-

ration computed from (4.3.4)

Compute numerical MPA-CVD model

solution for each parameter set φi

Optimised reactor

Redesign

Redesign

i = 1, . . . , n

Figure 4.3: MPA-CVD reactor discrete optimisation procedure.

4.4 Optimisation Procedure

Following the choice of the electric field resonance mode, the MPA-CVD reactor sys-

tem’s operational parameters should be optimised. Examples of these parameters in-

clude geometric dimensions, mean system pressure, substrate temperature and inlet

gas flow rate. Given n parameter sets Φ = {φ1, . . . , φn}, the parameter set which max-

imises the so-called quality factor function Q f (Φ) is the optimum MPA-CVD operating

condition. In this thesis we employ the quality factor function implemented by Füner

et al. [55] which measures the ratio of the magnitude of the electric field in the plasma

to the rest of the gas. For a minimum electron number density criterion εne , the plasma

region is defined such that Ωplasma =
{

κ : minκ ne ≥ εne , κ ∈ T h
Ω

}
and the remaining

vacuum chamber region ΩE-field = Ωv \Ωplasma. We seek to optimise the electric field

power deposited in the plasma according to quality factor

Q f (Φ) =
‖E‖L2(Ωplasma)

‖E‖L2(ΩE-field)
. (4.4.1)

In the work presented here, we employ a simple exhaustive method for small param-

eter sets Φ, choosing the optimum parameter set φi such that Q f (φi) = max Q f (Φ). A

flow chart of this optimisation procedure is presented in Figure 4.3 (cf. [55]). Here,

after choosing the operating electric field resonant mode, the geometry of the reactor is

designed. We then verify the resonant electric field configuration of the empty cavity
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ensuring that the design meets the requirement for plasma ignition encouraging dia-

mond growth. Once satisfied, we test the performance of the reactor under operation

with system configurations specified in the parameter set Φ by computing numerical

approximations of the fully self consistent MPA-CVD reactor model.
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AptoPy

As we have seen in Chapter 4, the implementation of the DG MPA-CVD reactor model

is extremely challenging. A major aspect of the work in this thesis is the development

of AptoPy. In this chapter, AptoPy, the computational framework for automatically

generating code to solve PDEs using the finite element method is introduced. The

fundamental paradigm of AptoPy is that for a given PDE, the code required to calculate

its finite element solution should be automatically generated, given a computational

symbolic algebra representation of the underlying finite element formulation.

Initially, we introduce the method for computational symbolic algebra in Section 5.1.

The use of this symbolic algebra as a means to represent the weak formulation of a

PDE is shown, as well as handling finite element function spaces and meshes. The DG

discretisation scheme for elliptic and hyperbolic PDE operators is then simplified with

their automatic computation in this symbolic algebra framework. The tools which the

AptoPy package offers with regards to DG methods, such as automatic computation of

the homogeneity tensor and local-Lax Friedrichs flux, are discussed and demonstrated

in Section 5.3.

For a given a finite element formulation representation in AptoPy, Section 5.4 demon-

strates the solution procedure. Initially the PDE variable indexing and translation to

Fortran code and primitive variables is discussed. The translation procedure is then

demonstrated, i.e., parsing the Python code representation of a weak formulation in

AptoPy to a meaningful representation in the Fortran code for AptoFEM. Lastly, the

element and boundary finite element matrix construction procedures are then shown

such that they can be applied in an iterative Newton method to compute the finite

element solution.
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Mul

Derivative

Symbol

’x’

Function

Symbol

’x’

’v’

Derivative

Symbol

’x’

Function

Symbol

’x’

’u’

Figure 5.1: Sympy tree structure representing the expression ∂xu(x)∂xv(x). Each class

handles: Mul multiplication, Derivative differentiation, Function functions

and Symbol algebraic symbols.

5.1 Symbolic Representation

5.1.1 Expressions and sympy

AptoPy employs the python symbolic algebra library sympy as the framework for rep-

resenting and evaluating mathematical expressions and operators [133]. At its core,

sympy stores mathematical expressions as trees made up of custom objects for differ-

ent mathematical concepts. Each of the classes from which these objects are instantiated

inherit from a diverse hierarchy, becoming more abstract until reaching the base class

Basic. Each level of this class hierarchy adds specialisation characteristics; for exam-

ple, indicating whether the object is an algebraic symbol x or a function such as sin (·),
as well as assigning properties to an expression, such as whether it is differentiable,

real, complex, a power expansion series, an infinite sum and so on. Furthermore, these

objects serve to overload the standard mathematical operators of Python: addition +,

subtraction -, multiplication *, division / and exponentiation **, providing familiar

syntax for their manipulation.

For example, the simple expression ‘2+ 3’ is represented in sympy as Add(Integer(2),

Integer(3)). Here the object Add has two arguments of type Integer which in turn have

the primitive int arguments 2 and 3, respectively. A graphical representation of the tree

required to represent the more complicated expression ∂xu(x)∂xv(x) is given in Figure

5.1.
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5.1.2 The Coordinate System Singleton

Vector calculus is an integral part of the construction of a multi-dimensional weak for-

mulation. Operations such as scalar and vector products, as well as tensor contractions

must be defined. Furthermore, the encapsulation of operations involving vector gra-

dients in the AptoPy code should evaluate implicitly based on the chosen coordinate

system.

AptoPy accommodates any curvilinear coordinate system based on an implementa-

tion of the abstract CoordinateSystem class. CoordinateSystem itself is also the manager

of its own singleton instance via the static mutator and corresponding static accessor

methods CoordinateSystem.set() and CoordinateSystem.get(). The CoordinateSystem

class defines the abstract methods dim() and space_vars() which, respectively when

overridden, provide the number of spatial dimensions and the vector representation

of the position vector. Furthermore, the abstract methods grad(), div() and curl()

correspond to the respective operations gradient (∇), divergence (∇·) and curl (∇×).

An example of the implementation of this class for the 2D Cartesian coordinate

system is the class CartesianCoordinateSystem2D as shown in Figure 5.2. This imple-

mentation can then be chosen as the coordinate system to be used by simply calling

CoordinateSystem.set(CartesianCoordinateSystem2D()).

5.1.3 Finite Element Mesh

Given an open bounded Lipschitz domain Ω ⊂ Rd, d ≥ 1, the starting point to in-

troduce the finite element method is to first define the mesh T h
Ω = {κ}, consisting of

non-overlapping elements κ such that
⋃

κ = Ω. A simple 2D example of such a mesh-

ing procedure is given in Figure 5.3.

The requirement for AptoPy’s representation of the mesh is to encapsulate the prop-

erties of not only the underlying computational geometry, but also to generate the rep-

resentation of the unit outward normal vector nκ ∈ Rd on each element κ ∈ T h
Ω , the

spatial variables x ∈ Rd, the element volume integration element dx and the face inte-

gration element ds for both interior and exterior faces.

The dimension d and the spatial variables vector x of a Mesh object are always im-

plicitly specified by the CoordinateSystem singleton. In the same implicit fashion, the
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class CartesianCoordinateSystem2D(CoordinateSystem):

def __init__(self):

self.x, self.y = Symbol(’x’), Symbol(’y’)

def dim(self):

return 2

def space_vars(self):

return Matrix([self.x, self.y])

def div(self, u):

return diff(u[0], self.x) + diff(u[1], self.y)

def grad(self, u):

if isinstance(u, Matrix):

return Matrix([[diff(u[0], self.x), diff(u[0], self.y)], \

[diff(u[1], self.x), diff(u[1], self.y)]])

return Matrix([diff(u, self.x), diff(u, self.y)])

def curl(self, u):

return diff(u[1], self.x) - diff(u[0], self.y)

Figure 5.2: Implementation of a 2D Cartesian coordinate system which overrides the

abstract methods dim, space_vars, div, grad and curl of its base class

CoordinateSystem.

element face normals’ nκ vector representation is calculated by the Mesh.face_normals

() method, with each component containing a sympy symbolic representation of each

orthogonal component.

The given domain for a finite element problem is represented in the AptoPy Mesh

class with the restriction that the exterior boundary must be interpolated as a piece-

wise linear polynomial in Rd. The boundary ∂Ω of the computational domain Ω is

divided into a set of non-overlapping segments {∂Ωi}mΩ
i=1, such that ∂Ω =

⋃
i ∂Ωi and

⋂
i ∂Ωi = ∅. Each segment ∂Ωi, i = 1, . . . , mΩ, is given a string representing its name;

each of these named boundary components is then allocated a piecewise linear ex-

pression of the form f∂Ωi(x), such that the condition
∣∣ f∂Ωi(x)

∣∣ ≤ ε, 0 < ε � 1, ade-
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y

x

Ω
T h

Ω

Figure 5.3: Domain Ω ⊂ R2 and its triangulation into conforming elements κ such

that the mesh T h
Ω = {κ}.

mesh.add_boundary_definition(’bottom’, Abs(y) <= tol)

mesh.add_boundary_definition(’right’, Abs(x - 1.0) <= tol)

mesh.add_boundary_definition(’top’, Abs(y - 1.0) <= tol)

mesh.add_boundary_definition(’left’, Abs(x) <= tol)

Figure 5.4: AptoPy code defining a unit square domain for a given tolerance tol.

quately describes whether the spatial location x lies on the boundary component ∂Ωi,

i = 1, . . . , mΩ, within a given numerical tolerance ε. For example, the case of the unit

square domain is shown in Figure 5.4. Although AptoPy currently requires element

faces to be described by piecewise linear functions, potential future functionality is

not restricted from incorporating piecewise quadratic and other higher-order curved

boundaries.

The Mesh class generates a symbolic representation of the whole boundary ∂Ω of the

domain Ω with a call to dS = mesh.boundary(). For individual boundaries, the bound-

ary integration elements are constructed by the Mesh class by providing the required

name in a call to mesh.get_boundary_element(). For example, the left side of the unit

square ∂Ωleft defined in the code example in Figure 5.4 is obtained using dS_left =

mesh.get_boundary_element(’left’).

Operations to find the union and exclusion of these boundary elements are imple-

mented via the addition + and subtraction - operators, respectively. For example, the

AptoPy equivalent of ∂Ωleft ∪ ∂Ωtop would be dS_left + dS_top, where dS_top = mesh.

get_boundary_element(’top’), and the equivalent of ∂Ω \ ∂Ωleft would be dS - dS_left.

These boundary integration elements can then be used in the implementation of Dirich-

let and Neumann boundary conditions, as will be demonstrated in the next sections.
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The diverse range of properties of the Mesh class required to produce the appropriate

code for AptoFEM to generate the mesh (such as element type, external mesh genera-

tion package, characteristic lengths, etc.) are stored in a hash table. For example, choos-

ing the element type of a mesh to be simplex would require the key-value definition

of mesh.define_property(’element_type’, ’simplex’). This somewhat non-specific de-

sign allows for future extensibility, especially when incorporating new external mesh

generation libraries into AptoFEM.

5.1.4 Function Spaces and Dirichlet Boundary Conditions

Let the continuous finite element space of piecewise polynomials defined on the parti-

tion T h
Ω of the domain Ω be defined by

Vh,`(Ω) =
{

v ∈ C(Ω) : v|κ ∈ P `(κ) ∀κ ∈ T h
Ω

}
, (5.1.1)

in which the solution to a finite element problem is sought.

Consider the Poisson equation defined on a domain Ω whose boundary ∂Ω is split

into two components ∂ΩD upon which a Dirichlet condition is enforced, and ∂ΩN ,

where a natural Neumann condition is specified: find u such that

−∇2u = f in Ω, (5.1.2)

u = gD on ∂ΩD, (5.1.3)

∇u · n = gN on ∂ΩN , (5.1.4)

where ∂Ω = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩ ∂ΩN = ∅.

The finite element formulation is to find the finite element solution uh in the space of

piecewise polynomials of a given order `, i.e.,

uh ∈ VE
h,`(Ω) :=

{
v ∈ Vh,`(Ω) : v|∂ΩD

= gD

}
(5.1.5)

such that

ah(uh, vh) = lh(vh) (5.1.6)

for all vh in the space of piecewise polynomials which vanish at the Dirichlet boundary

∂ΩD, i.e.,

vh ∈ VE0
h,`(Ω) :=

{
v ∈ Vh,`(Ω) : v|∂ΩD

= 0
}

. (5.1.7)

Here, the bilinear functional ah : VE
h,`(Ω)×VE0

h,`(Ω)→ R is

ah(uh, vh) =
∫

Ω
∇uh · ∇vh dx, (5.1.8)
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and the linear functional lh : VE0
h,`(Ω)→ R is given by

lh(vh) =
∫

Ω
f vh dx +

∫

∂ΩN

gNvh ds. (5.1.9)

Mimicking mathematical notation for variational problems, the function spaces of

the weak formulation must be appropriately defined with their required bases, poly-

nomial order and whether they are formed based on H1, L2, Raviart-Thomas, Nédélec

or other types of elements.

In AptoPy the finite element function space is represented by an instantiation of the

FemFunctionSpace class which requires a given Mesh object, polynomial order and fi-

nite element type (dictating the numerical scheme) as its construction arguments. For

example, the space of continuous piecewise quadratic polynomials,

VE
h,2 (Ω) =

{
v ∈ Vh,2(Ω) : v|∂ΩD

= gD

}
(5.1.10)

is created in AptoPy using

V_h2 = FemFunctionSpace(mesh, poly_order=2, element_type=’CG’). (5.1.11)

Any Dirichlet conditions which are to be strongly enforced on this function space must

be declared. Referring back to the naming scheme of boundary components of ∂Ω in

the Mesh class in Section 5.1.3, a named component of the boundary such as dS_D = mesh

.get_boundary_element(’left’) can be chosen. A Dirichlet condition is then enforced

in the finite element space by calling V_h2.dirichlet(dS_D, g_D). The trial function,

acquired by calling u = V_h2.trial(), then satisfies uh ∈ VE
h,2(Ω). Furthermore, this

implicitly ensures that the test function associated with vh ∈ VE0
h,2(Ω) acquired from

v = V_h2.test(), vanishes on the Dirichlet boundary.

For more complicated problems, AptoPy has the classes FemVectorFunctionSpace when

vector valued trial and test functions are required, along with the complex function

spaces FemComplexFunctionSpace and FemComplexVectorFunctionSpace. In combination

with the ability to mix function spaces via the FunctionSpaceProduct class which over-

loads the multiplication operator *, finite element spaces such as those required for

Taylor Hood [137] elements, e.g., Vh,2(Ω) × Vh,1(Ω), can be constructed as shown in

Figure 5.5.
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V = FemVectorFunctionSpace(mesh, poly_order=2, element_type=’CG’)

Q = FemFunctionSpace(mesh, poly_order=1, element_type=’CG’)

TH = V * Q

Figure 5.5: Example of constructing Taylor Hood finite element function space

Vh,2(Ω)×Qh,1(Ω) using AptoPy.

5.1.5 Finite Element Formulation and Neumann Boundary Conditions

AptoPy requires that the finite element formulation be expressed in terms of a residual.

For example, the residual formulation of the finite element method defined in (5.1.6) is

to find uh ∈ VE
h,`(Ω) such that

Rh (uh, vh) = 0 (5.1.12)

for all vh ∈ VE0
h,`(Ω), where

Rh (uh, vh) ≡ ah (uh, vh)− lh (vh) . (5.1.13)

The process by which AptoPy parses a weak formulation to translate to Fortran code

for AptoFEM relies on finding coefficient expressions of volume (dx) and boundary

(ds) integration elements. This appropriately assumes that every component of a finite

element formulation is implicitly part of an integral operation. Combined with the

weakly typed nature of Python, this allows for expressive means of representing a finite

element formulation, examples of which are given in Figure 5.6.

The specification of Neumann boundaries is declared as part of the weak formula-

tion. For example, the Neumann boundary condition component of the linear func-

tional in (5.1.9) is a component of the weak formulation, and is therefore written in

AptoPy as g_N*v*dS_N.

5.1.6 Function Encapsulation: The Cost of Symbolic Differentiation

A disadvantage of AptoPy being based on the symbolic algebra package sympy is the

computational cost of evaluating the symbolic derivatives of functions and expressions.

This cost is prevalent for nonlinear PDEs, where the Gâteaux derivative of the system

must be evaluated. AptoPy alleviates this problem by encapsulating user specified

expressions into AptoFunctions. AptoFunctions, when translated for AptoFEM, exist as

a set of user friendly and human readable Fortran functions in a single module. This

also allows AptoPy to cache the results of operations on AptoFunctions to reduce the
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residual = dot(grad(u), grad(v))*dx - f*v*dx - g_N*v*dS_N

def a(u, v):

return dot(grad(u), grad(v))*dx

def l(v):

return f*v*dx + g_N*v*dS_N

residual = a(u, v) - l(v)

Figure 5.6: Examples of the ‘expressiveness’ of the symbolic representation of the fi-

nite element formulation in equation (5.1.6). The first simply writing out

the residual equation, and the second emulating the bilinear functional for-

mulation by defining Python functions a(u, v) and l(v).

computational expense of generating code to solve a given finite element formulation.

The performance benefit offered by the AptoFunction optimisation will be discussed in

detail later in Section 6.6.

For example, when a function such as grad() is called on an AptoFunction which

encapsulates an expression, a new AptoFunction is generated which encapsulates the

derivative of its generator’s expression as its own. This calculation is only performed

once per AptoFunction and derivative variable, after which it is stored in a cache. Any

further attempts to calculate the same derivative will simply return a reference to the

previous evaluation from the cache.

Instantiating an AptoFunction requires three arguments: the expression itself, the ar-

guments of the function and a string name. For example, consider the simple function

f (x) = x2; this can be encapsulated by an AptoFunction by calling f = AptoFunction(x

**2, x, ’f’).

Consider the Poisson equation defined on the domain Ω with diffusion coefficient

D(x), i.e.,

−∇ · (D(x)∇u) = f in Ω, (5.1.14)

u = gD on ∂ΩD, (5.1.15)

(D(x)∇u) · n = gN on ∂ΩN . (5.1.16)

The finite element formulation is given by: find uh ∈ VE
h,`(Ω) such that

∫

Ω
D∇uh · ∇vh dx =

∫

Ω
f vh dx +

∫

∂ΩN

gNvh ds (5.1.17)
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D = AptoFunction(x**2 + y**2 + 1, (x, y), ’diffusion_coeff’)

residual = D*dot(grad(u), grad(v))*dx - f*v*dx - g_N*v*dS

real(db) function diffusion_coeff(x, y)

real(db), intent(in) :: x, y

diffusion_coeff = x**2 + y**2 + 1

end function diffusion_coeff

Figure 5.7: An example of the AptoPy implementation of a diffusion coefficient en-

capsulated by an AptoFunction as required by the finite element problem

in equation (5.1.17), along with the resulting generated Fortran code.

for all vh ∈ VE0
h,`(Ω). An example of choosing the diffusion coefficient to be D(x) =

x2 + y2 + 1 and declaring it in the AptoPy code as an AptoFunction is given in Figure

5.7.

In the case that an expression should have a non-computable derivative, such as

for the min(·, ·) and max(·, ·) functions, AptoPy offers AptoEvaluations. This class is

implemented in exactly the same way as AptoFunction, except that every derivative

will be nullified to return the symbolic representation of 0. For example, this is used

for the dissipation term α of the local-Lax Friedrichs flux (3.4.10).

In the case that custom Fortran code should be inserted into a function, AptoPy of-

fers AptoCustomFunction. This class is implemented in the same way as AptoEvaluation;

however, instead of requiring an expression as the first argument of its constructor,

it requires a string representation of the Fortran code to be used. Just as with the

AptoFunction and AptoEvaluation, this custom function can be manipulated as a math-

ematical function in sympy expressions. An example of an AptoCustomFunction is given

in Figure 5.8.

5.1.7 Parameters

In a similar vein to the AptoFunction class, the AptoParameter class allows for symbolic

representations of real and integer valued parameters. This ensures the symbolic rep-

resentation of a finite element formulation in AptoPy remains identical irrespective

of whether the underlying numeric value assigned to an AptoParameter changes. The

AptoParameter class also allows the underlying numeric value to change between indi-

vidual calculations of a finite element solution, which is key to the implementation of
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fortran_code = ’’’

real(db) function custom_func_name(arg1,arg2)

real(db) :: arg1, arg2

custom_func_name = arg1**2 - Max(arg1, arg2)

end function custom_func_name’’’

f = AptoCustomFunction(fortran_code, (x, y), ’custom_func_name’)

Figure 5.8: An example of the AptoPy implementation of a Fortran function encapsu-

lated by an AptoCustomFunction. This can then be manipulated as if it were

a mathematical function with its given arguments in AptoPy, however; its

derivative is defined as zero.

continuation or changing time step sizes in time discretisation methods, for example.

5.1.8 Function Traces

For some discretisation schemes, such as the DG finite element method, traces of func-

tions are required on inter-element boundaries. Consider the bounded domain Ω with

boundary ∂Ω subdivided into a shape regular mesh T h
Ω of non-overlapping elements κ

such that T h
Ω = {κ}. The interior boundary ΓI is chosen to be the union of the common

interior faces ∂κ+ ∩ ∂κ− of all pairs of neighbouring elements κ+, κ− ∈ T h
Ω . Recalling

the definition of the ‘broken’ Sobolev space from Section 3.2.1

Hs(T h
Ω) = {v ∈ L2(Ω) : v|κ ∈ Hs(κ), κ ∈ T h

Ω}, (5.1.18)

a function u ∈ H1(T h
Ω), when evaluated from the interior of element κ+, is denoted

by u+ and from the interior of the neighbouring element κ− by u−. These function

traces evaluated on the ‘skeleton’ of the mesh are symbolically represented in AptoPy

by calling the function elementwise().

For example, given a mesh upon which a finite element function space is defined V =

FemFunctionSpace(mesh), its trial function u = V.trial() can have its traces represented

by calling u_p, u_m = elementwise(u). These symbolic representations in AptoPy cor-

respond to u+ = u_p and u− = u_m.

The function elementwise() is not limited to simple arguments such as test functions.

Entire expressions including AptoFunctions can be passed as arguments. These expres-

sions are then parsed to find which components can be multivalued on inter-element

boundaries, and their local and neighbouring trace representations will be calculated.
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5.1.9 Jumps and Averages

We refer to the jump [[·]], average {{·}}, tensor jump [[·]] and tangential jump [[·]]T op-

erators defined in Section 3.5 which determine their output based on whether they

are evaluated on ∂Ω or the interior ΓI boundary of a mesh. The symbolic representa-

tion encapsulates this behaviour in the jump(), avg(), tensor_jump() and cross_jump()

functions, respectively, based on whether they are parsed to be coefficients of the inte-

rior faces integration element mesh.interior_faces(), or an exterior component of the

boundary mesh.boundary().

5.2 Geometry Representation

5.2.1 The Polygon Class

Although the concept of a symbolic representation of a mesh T h
Ω has already been in-

troduced in Section 5.1.3, generation of the geometry of its parent domain Ω is not

specified. The use and generation of domains and meshes is not restricted to any one

package by AptoPy, however AptoPy offers a means to construct domains Ω ⊂ R2

with the Polygon class and thereby construct a mesh of that geometry, T h
Ω , by interfac-

ing with the mesh generation package Triangle [124].

The Polygon class requires that all exterior boundary faces of a domain can be repre-

sented by piecewise linear polynomials, and that all points be specified in a Cartesian

geometry x = (x, y). The Polygon class stores and manages pairs of points which de-

scribe the boundary ∂Ω of a domain Ω. Functions can subsequently be applied to all

points of the Polygon allowing for translation, dilation, rotation and other such geo-

metric operations. An example of implementing the Polygon.add_line() and Polygon.

line_to() functions to construct a unit square is demonstrated in Figure 5.9. For each

pair of points a, b, passed to Polygon.add_line() the symbolic piecewise linear polyno-

mial bounding equation f∂Ωi(x) of the boundary component ∂Ωi can automatically be

computed. Here,

f∂Ωi (x) =





y−mx + c if bx − ax > 0,

x− bx otherwise,
(5.2.1)

where

m =
by − ay

bx − ax
, c = by −mbx, (5.2.2)
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poly = Polygon()

poly.add_line((0.0, 0.0), (1.0, 0.0), name=’bottom’)

poly.line_to((1.0, 1.0), name=’right’)

poly.line_to((0.0, 1.0), name=’top’)

poly.line_to((0.0, 0.0), name=’left’)

Figure 5.9: Generating a unit square using the Polygon class.

which upon constructing a Mesh object is used in calling Mesh.add_boundary_definition()

for an appropriate numerical tolerance close to machine precision (see Figure 5.4).

5.2.2 Error Control of the Piecewise Linear Boundary Description

Let K(x) be a function defined on the interval x ∈ [a, b] which describes a component

of the boundary of Ω ⊂ R2, where a, b ∈ R and a < b. We wish to interpolate K by

continuous piecewise linear polynomials such that K can be approximated using the

Polygon class. We denote the subdivision of [a, b] into element subintervals κ each of

length hκ as T h
[a,b] = {κ}. We define the single continuous piecewise linear polynomial

interpolating K as

Kh :=
{

v ∈ C([a, b]) : v|κ ∈ P1(κ), v (x)|∂κ = K(x)|∂κ ∀κ ∈ T h
[a,b]

}
. (5.2.3)

The automatic definition of exterior boundary components with pairs of points dis-

cussed in Section 5.2.1 allows for error control on curved sections of the exterior bound-

ary geometry. The L2 error of the interpolation estimate on element κ is denoted by

eκ := ‖K −Kh‖L2(κ). (5.2.4)

We also introduce the interpolation error on the interval [a, b] by

e := ‖K −Kh‖L2([a,b]) =


 ∑

κ∈T h
[a,b]

e2
κ




1
2

. (5.2.5)

We seek an interpolant Kh of curve K which satisfies a given numerical tolerance

e ≤ TOL. We employ an h-refinement scheme to adapt the subdivision T h
[a,b] into succes-

sively finer meshes until the interpolation error criterion is fulfilled. The outline of this

procedure as computed in AptoPy is given in Algorithm 1. An example for the domain

Ω =
{

x : y > x2, y < 1, 0 < x < 1
}

(5.2.6)
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with curve interpolation add_curve_by_l2_error((0.0, 0.0), (1.0, 1.0), lambda x:

x**2, tol=tol) is demonstrated in Figure 5.10 for various tolerances. Here the argu-

ments (0.0, 0.0) and (1.0, 1.0) are the start and end points (a,K(a)) and (b,K(b)),
respectively, lambda x: x**2 is the expression y = x2 and tol is the numerical tolerance

of the interpolation error.

Algorithm 1 Compute exterior boundary geometry interpolation estimate.
while e ≥ TOL do

For each κ ∈ T h
[a,b] compute eκ

Choose refinement fraction χ ∈ (0, 1]

Compute the
⌈

χ
∣∣∣T h

[a,b]

∣∣∣
⌉

largest values of eκ, ∀κ ∈ T h
[a,b] denoted by E

Let T h
old = {κ : eκ ∈ E}

Compute T h
new =

{
bisect (κ) ∀κ ∈ T h

old

}

Compute fine mesh T h
fine =

(
T h
[a,b] \ T h

old

)
∪ T h

new

Reassign T h
[a,b] = T h

fine

Compute e

end while

5.2.3 Subdomains and Interface Boundaries

In the specification of a Polygon, it may be required to indicate relevant subdomains. In

the context of the MPA-CVD reactor geometry, these subdomains characterise the air

filled cavity, quartz window and hydrogen vacuum regions. Polygon allows for specifi-

cation of subdomains using int identifiers by calling Polygon.define_region(location,

region_number). Here, the location argument is a point in R2 which is enclosed by

the boundary of a subdomain which has been specified in the Polygon instance. The

region_number argument is the int identifier assigned to that subdomain. The Polygon

instance then assumes that when a mesh is generated, all elements in the volume en-

closing the location specified should be categorised by assigning to each the same

identifier region_nubmer.

Once a Mesh object has been instantiated from the provided Polygon with these subre-

gions, the interior interfaces can be requested. For two subdomain regions subdomain1

and subdomain2, the symbolic form of the integration element on their interface is ac-

quired from dInt_12 = mesh.region_interface(subdomain1, subdomain2). AptoPy au-

tomatically evaluates any DG jump and average operators as interior or exterior based

on whether their arguments exist on both or only one side of the interface. AptoPy

95



CHAPTER 5: APTOPY

(a) TOL = 1 (b) TOL = 10−1

(c) TOL = 10−2 (d) TOL = 10−3

(e) TOL = 10−4 (f) TOL = 10−5

Figure 5.10: Examples of meshes of the domain Ω =
{

x : y > x2, y < 1, 0 < x < 1
}

generated from a Polygon class instance, whose exterior boundary is de-

fined using Polygon.add_curve_by_l2_error(). The meshes of the volume

of the domain are generated by interfacing with the mesh generation

package, Triangle [124].
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further handles the orientation of the face normal vectors to automatically point from

the region of highest integer identifier into the lower.

5.3 Discontinuous Galerkin Utility Functions

5.3.1 Penalisation Parameter δ

Recall the penalisation parameter of the interior penalty method (3.5.17), repeated here

for convenience

δ(uh) = CIP
`2

hF
{{G(uh)}}[[uh]]. (5.3.1)

The component `2

hF
is explicitly calculated in AptoFEM for a finite element solution of

polynomial degree ` on each element with diameter measuring hF. This quantity is

represented in AptoPy as a property of the FemFunctionSpace class, FemFunctionSpace

.penalisation(). The positive constant CIP can be selected by the user. For example,

choosing CIP = 20.0 requires 20.0*V.penalisation(). In the case of finite element vector

function spaces or function space products, for example Vd
`(T h

Ω), FemFunctionSpace.

penalisation() is the vector
`2

j

hF
, j = 1, . . . , d, (5.3.2)

where `j is the polynomial degree of finite element function space component
(
Vd

`(T h
Ω)
)

j.

5.3.2 Automatic Treatment of Convective Terms

Recall the definition of the local Lax-Friedrichs flux from Section 3.4, i.e.,

HLF
(
u+

h , u−h , nκ

)∣∣
∂κ

:= 1
2

(
F c (u+

h

)
· nκ +F c (u−h

)
· nκ + α

(
u+

h − u−h
))

. (5.3.3)

The functional HLF(·, ·, ·) and dissipation parameter α can be automatically generated

in AptoPy for the convective componentsF c(·) of a PDE. Calling H = lax_friedrichs_flux

(F_c, alpha) for a callable function F_c() and symbolic representation of alpha, the

generated function H() takes three arguments. These arguments correspond to the

mathematical representation of the local Lax-Friedrichs flux H(u+, u−, nκ). Consider

the application of this AptoPy function to the linear advection equation

∇ · (bu) = f , (5.3.4)

where b ∈ Rd and F c(u) = bu. Here, the dissipation parameter can be shown to be

α|∂κ = |b · nκ|. The AptoPy code example for this problem is given in Figure 5.11.
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alpha = Abs(dot(b,n))

def F_c(u): return b*u

H = lax_friedrichs_flux(F_c, alpha)

interior_residual = H(u_p, u_m, n)*(v_p - v_m)*dInt

Figure 5.11: Example of the AptoPy automatic calculation and symbolic representa-

tion of the local Lax-Friedrichs flux H(u+, u−, nκ) as required for the lin-

ear advection equation shown in (5.3.4)

In some cases the dissipation parameter α cannot be so easily computed analytically.

Recall that for system flux Jacobian

B(u, nκ) :=
d

∑
i=1

∂fc
i

∂u
nκ,i, (5.3.5)

the local Lax-Friedrichs dissipation parameter is defined to be the largest magnitude

eigenvalue, i.e.,

α|∂κ = max
w=u+

h ,u−h
{|λ (B (w, nκ))|} . (5.3.6)

AptoPy offers the utility functions flux_jacobian() and flux_jacobian_eigen_values()

to automatically compute the local Lax-Friedrichs dissipation parameter. AptoPy’s

flux_jacobian() function takes three arguments: the hyperbolic fluxF c(·), the solution

vector u and the element face normal nκ. By calling flux_jacobian(F_c, u, n), AptoPy

employs the symbolic differentiation of sympy to formulate the matrix B(u, uκ). Subse-

quently calling flux_jacobian_eigen_values(), passing the flux Jacobian matrix as the

argument, further employs sympy to compute and solve the characteristic polynomial

of the matrix via the Berkowitz algorithm [16]. An example of using this method to

compute the local Lax-Friedrichs dissipation parameter for the convective component

of the Navier-Stokes equations F c(u) = ρu⊗ u is presented in Figure 5.12.

5.3.3 Automatic Treatment of Viscous Terms

Due to the consistent treatment of the elliptic second order terms of a DG finite element

formulation, AptoPy takes advantage of this by offering utility functions to automat-

ically generate their semilinear residual formulations. Recall from Chapter 3 that the

viscous component of a PDE can be written as

−∇ · F v (u;∇u) = 0. (5.3.7)
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def F_c(u):

return rho*u*u.T

# Calculate the eigenvalues for the dissipation parameter

B = flux_jacobian(F_c, u, n)

lambdas = flux_jacobian_eigen_values(B)

# Calculate the maximum of their magnitudes and encapsulate

lambdas_p, lambdas_m = elementwise(map(Abs, lambdas)))

maximum_lambda = Max(*lambdas_p.row_join(lambdas_m))

alpha = apto_evaluation(maximum_lambda, (u_p, u_m, n), ’alpha’)

Figure 5.12: Automatic symbolic algebra computation of the dissipation parameter re-

quired by the local Lax-Friedrichs flux appled to the Navier-Stokes con-

vective flux component F c(u) = ρu⊗ u.

def F_v(u):

return grad(u)

vt = DGFemViscousTerm(F_v, u, v, penalty)

Figure 5.13: Application of the DGFemViscousTerm class to the elliptic operator of the

Poisson equation −∇2u = f where F v(u;∇u) = ∇u.

The semilinear DG discretisation of the viscous (elliptic) term of this equation, derived

in equation (3.5.15), is repeated here for convenience

N v
Ω (uh; vh) :=

∫

Ω
F v (uh;∇huh) : ∇hvh dx−

∫

ΓI∪∂Ω
{{σ̂h}} : [[vh]] ds

−
∫

ΓI
[[σ̂h]] · {{vh}} ds +

∫

ΓI∪∂Ω
[[ûh − uh]] : {{G>(uh)∇hvh}} ds

+
∫

ΓI
{{ûh − uh}} · [[G>(uh)∇hvh]] ds = 0. (5.3.8)

This semilinear formulation can be calculated in AptoPy by calling DGFemViscousTerm

(F_v, u, v, penalty) for scalar or vector trial and test functions u and v, respectively,

DG penalty quantity penalty = CIP
`2

hF
= C_IP*V.penalisation() used in the automatic

formulation of the interior penalty parameter, and callable function

F_v(u) = F v(u;∇u). (5.3.9)

An example of the application of the DGFemViscousTerm class for the Poisson equation

is given in Figure 5.13. Although DGFemViscousTerm currently only implements the in-

terior penalty method, this is not a restriction, and future support for other methods is

possible.
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The DGFemViscousTerm automatically generates the homogeneity tensor G, and thereby

also the interior penalty parameter δ of equation (3.5.17). Recall that the homogeneity

tensor G(u) is defined for F v(u;∇u) = (fv
1, . . . , fv

d) by

Gkl (u) =
∂fv

k
∂ (∇u)l

, k, l = 1, . . . , d, (5.3.10)

such that for homogeneity tensor product

(G(u)∇u)ik =
m

∑
j=1

d

∑
l=1

(Gkl (u))ij (∇u)jl . (5.3.11)

AptoPy offers the function homogeneity_tensor(F_v, u) to automatically calculate G(u)

in equation (3.5.4) according to Algorithm 2 and the function hyper_tensor_product(G,

tau) to compute the homogeneity tensor product according to Algorithm 3. The

DGFemViscousTerm class uses this function, automatically constructing the homogene-

ity tensor storing it as a member of each instance. This is then used along with the

trial and test function vectors and the penalisation parameter in the calculation of the

semilinear residual stated in equation (3.5.15).

Algorithm 2 Calculating the symbolic algebra representation of the homogeneity ten-

sor G(u).
function HOMOGENEITY_TENSOR(F v(u;∇u), u)

(F_v, grad_u)← (F v(u;∇u),∇u)

G← [[0]m×m]d×d . Initialise homogeneity tensor

for k = 1, . . . , d do . Iterate over number of space variables

for l = 1, . . . , d do

g← [0]m×m

for r = 1, . . . , m do . Iterate over number of PDE variables

for c = 1, . . . , m do . Perform symbolic differentiation

g[r, c]← Differentiate(F_v[r, k], grad_u[c, l])

end for

end for

G[k, l]← g

end for

end for

return G

end function
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Algorithm 3 Calculation of the homogeneity tensor product G(u)τ.
function HOMOGENEITY_TENSOR_PRODUCT(G(u), τ)

(G, tau)← (G(u), τ)

M← [0]m×d

for i = 1, . . . , m do

for k = 1, . . . , d do

xi← 0

for l = 1, . . . , d do

xi← xi + MatrixVectorProduct(G[k, l], tau[:, l])[i]

end for

M[i, k]← M[i, k] + xi

end for

end for

return M

end function

DGFemViscousTerm offers two methods for handling the boundary components of the

DG discretisation in (3.5.15). DGFemViscousTerm.interior_residual() automatically gen-

erates terms associated with the interior boundaries ΓI ; DGFemViscousTerm

.exterior_residual(u_gamma, dS_i) automatically generates the terms associated with

exterior boundary component dS_i with boundary condition uΓ(u) = u_gamma. An

example of the AptoPy code required to generate the semilinear residual form for the

nonlinear Poisson equation

−∇ · ((u + 1)∇u) = f in Ω, (5.3.12)

u = 0 on ∂Ω, (5.3.13)

is demonstrated in Figure 5.14.

In the case of applying the DGFemViscousTerm class in a coordinate system other than

the Cartesian coordinate system, the pattern matching offered by sympy required to

find components of ∇u in F v(u;∇u) when calculating the homogeneity tensor is in-

sufficient. AptoPy therefore offers a more specialised method of calculating G(u) in the

function generalised_homogeneity_tensor(F_v_general, u) for vector u and callable func-

tion

F_v_general(u, grad_u) = F v (u;∇u) . (5.3.14)

When this function is called from generalised_homogeneity_tensor(), its second argu-

ment is a matrix whose elements are symbolic representations of the vector derivative
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def F_v(u): return (u + 1)*grad(u)

vt = DGFemViscousTerm(F_v, u, v, penalty)

residual = dot(F_v(u), grad(v))*dx \

+ vt.interior_residual(dInt) \

+ vt.exterior_residual(0.0, dS) \

- f*v*dx

Figure 5.14: Example of the automatically generated discontinuous Galerkin finite el-

ement formulation of the nonlinear Poisson equation in (5.3.12) using the

DGFemViscousTerm utility class. Compare with the linear case shown pre-

viously in Figure 5.13.

def F_v_general(u, grad_u):

return grad_u

G_general = generalised_homogeneity_tensor(F_v_general, u)

vt = DGFemViscousTerm(F_v, u, v, delta, G=G_general)

Figure 5.15: Example of the automatically generated homogeneity tensor for the Pois-

son equation in (5.3.12), and its subsequent use in the instantiation of a

DGFemViscousTerm object.

such that

(∇u)ij = grad_u[i, j]. (5.3.15)

This simplifies the symbolic derivative calculation required by AptoPy for each coor-

dinate system. An example of generating the generalised homogeneity tensor for the

Poisson equation in (5.3.12) is shown in Figure 5.15.

5.3.4 Automatic Generation of DG Finite Element Formulations

Even with the utility functions provided by AptoPy described in Sections 5.3.2 and

5.3.3, the specification of a DG finite element formulation can be verbose, especially for

large systems of PDEs with many boundary conditions. In order to manage specifica-

tion of large sets of boundary conditions, AptoPy offers the BoundaryCondition abstract

class from which the classes DirichletBC and NeumannBC inherit. These implementations

simply serve to store the boundary condition and the boundary component over which

the condition should be enforced. For example, applying a Dirichlet boundary condi-

tion as required by the Poisson equation in (5.1.14) of u = gD on ∂ΩD simply requires

an instantiation of DirichletBC(dS_D, g_D). Constructing a series of boundary condi-

tions in this manner and placing them in a list allows for iterative generation of exterior
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bcs = [DirichletBC(dS_1, bc_1), DirichletBC(dS_2, bc_2), ...]

vt = DGFemViscousTerm(F_v, u, v, penalty)

ext = sum(vt.exterior_residual(bc.boundary(), bc.condition()) for bc in bcs)

Figure 5.16: Example of the automatic generation of the exterior residual terms of a

given DGFemViscousTerm for a list of Dirichlet boundary conditions.

bcs = [DirichletBC(dS_D, g_D), NeumannBC(dS_N, g_N)]

poisson_equation = PoissonEquation(mesh, V, bcs)

residual = poisson_equation.generate_fem_formulation()

Figure 5.17: Example of implementing the PoissonEquation utility class which in-

herits from the EllipticOperator and in turn the abstract base class

FemFormulation.

boundary terms in a finite element formulation. As an example of a series of Dirich-

let boundary conditions being automatically generated using the DGFemViscousTerm see

Figure 5.16.

This concept is further extended in AptoPy by the introduction of the abstract class

FemFormulation which prescribes one abstract method generate_fem_formulation(). As

its arguments, the FemFormulation constructor requires the symbolic representations of

the PDE boundary value problem mesh, the function space and the list of boundary

conditions. For example, the class EllipticOperator inherits FemFormulation which

requires the extra argument at instantiation of the form of F v(u;∇u). The imple-

mented overridden method generate_fem_formulation() should then be written to au-

tomatically generate the volume, interior boundary and exterior boundary integration

terms, implementing all of the concepts of utility functions for elliptic operators in

Section 5.3.3 and Figure 5.16. In turn, the utility class PoissonEquation inherits from

EllipticOperator which replaces the optional argument of EllipticOperator specify-

ing F v(u;∇u) to the diffusion coefficient D. An example of the automatic generation

of the DG formulation of the Poisson equation (5.1.14) is shown in Figure 5.17.

This class hierarchy scheme for the automated generation of DG FEM formulations

implemented in AptoPy is presented in Figure 5.18. Further implementations of each

member of this class hierarchy need not only be by inheritance. For example, con-

sider an implementation of the steady state heat equation coupled to the incompress-

ible Navier-Stokes equations. I.e., given domain Ω ⊂ Rd with exterior boundary ∂Ω

we seek the DG numerical approximations of velocity field u and temperature field T
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such that

−∇2u + u · ∇u +∇p = 0 in Ω, (5.3.16)

∇ · u = 0 in Ω, (5.3.17)

u · ∇T −∇2T = 0 in Ω, (5.3.18)

subject to the boundary conditions for prescribed functions gD and TD

u = gD on ∂Ω, (5.3.19)

T = TD on ∂Ω. (5.3.20)

The AptoPy implementation could simply be a class inheriting FemFormulation and ag-

gregating single instances of the Poisson, NavierStokes and HyperbolicOperator classes.

When overriding the abstract generate_fem_formulation() method, only the provision

of the convective flux of the system enthalpy with the background velocity is required

to be coded. The remaining is simple management between the velocity, pressure

and temperature function spaces and boundary conditions amongst the aggregated

FemFormulation members.
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Figure 5.18: Class diagram of the DG FEM formulation hierarchy.
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5.4 Solution Procedure

5.4.1 Introduction

By default, AptoPy solves every finite element formulation of a given PDE, as if it were

a nonlinear problem by employing a damped Newton iterative method. Given a finite

element formulation defined by the semilinear residual functional N (uh; vh) and its

Gâteaux derivative

N ′ [w] (u; v) := lim
τ→0

N (u + τw; v)−N (u; v)
τ

, (5.4.1)

then for damping parameter ϑ ∈ (0, 1], each subsequent solution estimate un+1
h is up-

dated according to:

un+1
h = un

h + ϑdn
h. (5.4.2)

Here, dn
h is the update of the previous iterate un

h defined by: find dn
h ∈ Vh such that

N ′ [dn
h] (u

n
h; vh) = −N (un

h; vh) ∀vh ∈ Vh. (5.4.3)

AptoFEM provides the appropriate subroutines and data structures to handle the it-

erative calculation of equation (5.4.2). Therefore AptoPy must parse the computational

symbolic algebra representation of the finite element formulation, and generate the

necessary Fortran code for compilation against AptoFEM and thereby computation of

the FE solution. To this end, in this section an indexing scheme is introduced to match

symbols in AptoPy with the corresponding implementation in AptoFEM. The method

implemented by AptoPy of parsing a finite element solution from a sympy expression

tree and then calculating its Gâteaux derivative is then demonstrated. Lastly the formu-

lation in terms of the basis functions of each finite element function space is introduced

and hence the automatic residual vector and Gâteaux derivative matrix construction in

AptoFEM. Using these principles, the resulting Fortran code AptoPy generates in this

translation procedure is then automatically compiled against the AptoFEM library, and

the resulting executable is run to compute the numerical FE solution.

5.4.2 Indexing Function Spaces and their Associated Variables

The various variables and function spaces of a finite element formulation written in

AptoPy must be correctly indexed in order to translate the symbolic form to the auto-

matically generated Fortran code necessary for AptoFEM to compute the solution.
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In the case of Cartesian coordinates, the spatial variables are indexed in the following

manner

x = (x1, . . . , xd)
>, (5.4.4)

which in turn define the indices used in AptoFEM for the spatial coordinate vector,

such that xj = svars(j). Similarly, the element face unit outward normal vector

nκ = (n1, . . . , nd)
>, (5.4.5)

corresponds to the AptoFEM array with indices nj = face_normals(j).

On a bounded domain Ω with Dirichlet boundary ∂ΩD and Neumann boundary

∂ΩN , where ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅, a given finite element solution

space may be the product of several finite element spaces, i.e.,

W(Ω) = V1
h,`(Ω)×V2

h,`(Ω)× . . .×Vα
h,`(Ω), (5.4.6)

where each trial function is indexed such that uh,j ∈ V j
h,`(Ω), j = 1, . . . , α. The product

of finite element spaces which vanish on the Dirichlet boundary ∂ΩD is denoted by

Ŵ(Ω) = V̂1
h,`(Ω)× V̂2

h,`(Ω)× . . .× V̂α
h,`(Ω), (5.4.7)

where each test function is indexed such that vh,j ∈ V̂ j
h,`(Ω), j = 1, . . . , α. Further-

more, derivatives of the functions belonging to these spaces are indexed with the same

scheme as used for the spatial variables, for example, ∂uh,j/∂xk, j = 1, . . . , α, k = 1, . . . , d.

5.4.3 Parsing the Residual Finite Element Formulation

Initially the residual finite element formulation expression tree is parsed to separate

element and face contributions. The element components are found in coefficients of

the volume integration element dx and face components are found in coefficients of

the boundary integration element ds for each boundary component ∂Ωi, i = 1, . . . , mΩ,

and interior faces ΓI . An example of this process is shown in Figure 5.19.

The following notation is used to denote the solution variable vector for each trial

function uh,j ∈ V j
h,`(Ω), j = 1, . . . , α

u = (uh,1, . . . , uh,α) (5.4.8)

and test function vector for each test function vh,j ∈ V̂ j
h,`(Ω), j = 1, . . . , α

v = (vh,1, . . . , vh,α). (5.4.9)
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Add
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Integer
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Mul

Function

Symbol

’x’

’v’

Function

Symbol

’x’

’u’

Figure 5.19: The expression tree for the AptoPy code u*v*dx + 3*v*dS, which is parsed

for the volume integration element dx by walking the tree as shown by red

branches. The coefficient subtree of dx is then extracted as shown by the

blue branches.

For each function space employed in the definition of the product space W(Ω), each

subtree is parsed to find coefficients of test functions vh,j, j = 1, . . . , α, which are stored

in the tensor Ev
j (u) for element contribution and Bv,∂Ωi

j (u) for boundary contributions.

Furthermore, coefficients of test function derivatives ∂vh,j/∂xk, j = 1, . . . , α, k = 1, . . . , d,

are stored in the element contribution tensor E∇v
j,k (u) and boundary contribution tensor

B∇v,∂Ωi
j,k (u). This then allows for the semi-linear residual formulation to be written: find

uh ∈W(Ω) such that

N (uh; vh) =
∫

Ω

α

∑
j=1

(
Ev

j (uh)vh,j +
d

∑
k=1

E∇v
j,k (uh)

∂vh,j

∂xk

)
dx

+
mΩ

∑
i=1

∫

∂Ωi

α

∑
j=1

(
Bv,∂Ωi

j (uh)vh,j +
d

∑
k=1

B∇v,∂Ωi
j,k (uh)

∂vh,j

∂xk

)
ds (5.4.10)

for all vh ∈ Ŵ(Ω), where mΩ is the total number of boundary components.

5.4.4 Calculating the Gâteaux Derivative

We introduce the tensors:

Ev,u
j,l =

∂Ev
j

∂uh,l
, Ev,∇u

j,l,k =
∂Ev

j

∂
∂uh,l
∂xk

, E∇v,u
j,k,l =

∂E∇v
j,k

∂uh,l
, E∇v,∇u

j,kv,l,ku
=

∂E∇v
j,kv

∂
∂uh,l
∂xku

,

Bv,u
j,l =

∂Bv
j

∂uh,l
, Bv,∇u

j,l,k =
∂Bv

j

∂
∂uh,l
∂xk

, B∇v,u
j,k,l =

∂B∇v
j,k

∂uh,l
, B∇v,∇u

j,kv,l,ku
=

∂B∇v
j,kv

∂
∂uh,l
∂xku

, (5.4.11)
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V = FemFunctionSpace(mesh)

u, v = V.trial(), V.test()

residual = dot(grad(u), grad(v))*dx - f*v*dx

gd = GateauxDerivative(residual, V)

Figure 5.20: AptoPy python code computing the Gâteaux derivative of the finite ele-

ment residual formulation of the Poisson equation.

where j, l = 1, . . . , α and k, ku, kv = 1, . . . , d. These tensors can each be calculated using

sympy, the Gâteaux derivative of the residual expression in (5.4.10) is given by,

N ′ [wh] (uh; vh) =
∫

Ω

α

∑
j=1

α

∑
l=1

(
Ev,u

j,l (uh)wh,lvh,j +
d

∑
k=1

Ev,∇u
j,l,k (uh)

∂wh,l

∂xk
vh,j

)
dx

+
∫

Ω

α

∑
j=1

α

∑
l=1

d

∑
kv=1

(
E∇v,u

j,kv,l (uh)wh,l
∂vh,j

∂xkv

+
d

∑
ku=1

E∇v,∇u
j,kv,l,ku

(uh)
∂wh,l

∂xku

∂vh,j

∂xkv

)
dx

+
mΩ

∑
i=1

∫

∂Ωi

α

∑
j=1

α

∑
l=1

(
Bv,u,∂Ωi

j,l (uh)wh,lvh,j +
d

∑
k=1

Bv,∇u,∂Ωi
j,l,k (uh)

∂wh,l

∂xk
vh,j

)
ds

+
mΩ

∑
i=1

∫

∂Ωi

α

∑
j=1

α

∑
l=1

d

∑
kv=1

(
B∇v,u,∂Ωi

j,kv,l (uh)wh,l
∂vh,j

∂xkv

+
d

∑
ku=1

B∇v,∇u,∂Ωi
j,kv,l,ku

(uh)
∂wh,l

∂xku

∂vh,j

∂xkv

)
ds.

(5.4.12)

Although seemingly verbose, this formulation reduces the computational complex-

ity of calculating the symbolic Gâteaux derivative of the residual form by breaking up

the residual equation into smaller segments. Once translated to Fortran code, opti-

mised linear algebra libraries can also take advantage of the matrix product calcula-

tions between the arrays storing the residual and Gâteaux derivative tensors and the

arrays storing the basis of the test functions and their derivatives. AptoPy implements

the calculation and storage of the symbolic Gâteaux derivative in the GateauxDerivative

class. An example of the automatic computation of the Gâteaux derivative residual for

the finite element formulation of the Poisson equation is demonstrated in Figure 5.20.

We will show later in Section 6.6 that computing the Gâteaux derivative of a finite

element formulation is the most costly computation performed by AptoPy. To allevi-

ate this issue, each computed Gâteaux derivative can be serialised and cached to the

persistent memory of the hard disk. These cached Gâteaux derivatives are indexed

by meta-data generated from the residual from which they were computed, such that

AptoPy will load the corresponding formulation when required on subsequent code

generation.
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5.4.5 Applying Newton’s Method: The Residual Vector and Jacobi Matrix

We write Nj(h) = dimV j
h,`(Ω), j = 1, . . . , α, to denote the dimension of the discrete so-

lution space V j
h,`(Ω), and let V j

h,`(Ω) = span
{

φ
j
1, . . . , φ

j
Nj(h)

}
for linearly independent

basis functions φ
j
n, n = 1, . . . , Nj(h). Thereby, we may write uh,j in the following form

uh,j =
Nj(h)

∑
m=1

U j
mφ

j
m, j = 1, . . . , α, (5.4.13)

for solution vector U j and denote the complete solution vector by

U =
(

U1, . . . , Uα
)

. (5.4.14)

This solution vector is represented in AptoPy by the SolutionVector class whose con-

structor arguments require the function space of the problem. For example, given the

function space of a finite element problem V1
h,`(Ω)× V2

h,`(Ω), an appropriate solution

vector U is constructed by calling U = SolutionVector(V1 * V2). The residual formula-

tion of equation (5.4.10) is then constructed in the vector

R(U) := N
((

N1(h)

∑
m=1

U1
mφ1

m, . . . ,
Nα(h)

∑
m=1

Uα
mφα

m

)
; φ

j
n

)
, (5.4.15)

for j = 1, . . . , α and n = 1, . . . , Nj(h). The Gâteaux derivative is constructed in the

matrix

R′(U) := N ′ [dh]

((
N1(h)

∑
m=1

U1
mφ1

m, . . . ,
Nα(h)

∑
m=1

Uα
mφα

m

)
; φ

j
n

)
(5.4.16)

for j = 1, . . . , α and n = 1, . . . , Nj(h).

The damped iterative Newton method then employs the vector in (5.4.15) and the

matrix in (5.4.16) for each iterative solution vector approximation Un of the Newton

method, i.e.,

Un+1 = Un − ϑ
[
R′ (Un)

]−1
R (Un) (5.4.17)

with initial starting guess U0 =
(
U1

0 , . . . , Uα
0
)
.

The data-structures and subroutines required to set up and store the vectors U and

R and the sparse matrix R′ are provided by AptoFEM, along with subroutines for

evaluating the iterative method in (5.4.17). The AptoPy symbolic representation for

computing a solution to a finite element residual formulation in SolutionVector U is

simply to call newton_solve(residual, U). In this case the Gâteaux derivative of the

residual is computed implicitly based on the properties of the SolutionVector; a custom

GateauxDerivative argument can be passed as an optional argument if required.
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5.4.6 Numerical Quadrature in AptoFEM

In order to evaluate the integration operations required in the finite element formula-

tion, a quadrature method is employed. On each element κ of the mesh T h
Ω , the quadra-

ture points xqk and quadrature weights wqk , qk = 1, . . . , N(qk), where N(qk) indicates

the total number of quadrature points, are provided by AptoFEM. This allows for the

integral operations over the domain Ω to be expressed as a sum of integrals over every

element
∫

Ω
f (x) dx ≈ ∑

κ∈T h
Ω

N(qk)

∑
qk=1

wqk f (xqk). (5.4.18)

AptoFEM also calculates the basis functions and their derivatives of each finite ele-

ment function space at each quadrature point in the arrays

φ
j
n(xqk) = phi(j, qk, n),

∂φ
j
n(xqk)

∂xk
= grad_phi(j, qk, k, n). (5.4.19)

Furthermore, AptoFEM calculates the finite element solution and its derivatives at a

given quadrature point xqk , qk = 1, . . . , N(qk), on an element κ ∈ T h
Ω . These values are

then stored in the arrays

uh,j(xqk) = var(j, qk),

∂uh,j(xqk)

∂xk
= dvdr(j, k, qk). (5.4.20)

AptoPy thereby ensures that the numerical integration of the trial and test functions

from V.trial() and V.test(), respectively, align with the function space and quadra-

ture point indexing of AptoFEM.

5.4.7 Residual Vector and Jacobi Matrix Construction in AptoFEM

AptoFEM assembles the residual vector and Jacobi matrix by iterating over all elements

in the mesh and adding the local contributions of each element to the global system.

Once AptoPy has constructed each of the tensors Ev(u), E∇v(u), Bv(u) and B∇v(u)

and computed their Gâteaux derivatives in the tensors defined in (5.4.11), they are

each translated to arrays in AptoFEM of the appropriate dimension at each quadrature

point of a single element. Thereby AptoFEM computes the each element contribution

in the system assembly. For example, the element residual contribution arrays

Ev
j = e(j),

E∇v
j,k = er(j, k), (5.4.21)
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and the element Jacobi matrix contribution arrays

Ev,u
j,l = dedv(j, l), Ev,∇u

j,l,k = dedvr(j, l, k),

E∇v,u
j,k,l = derdv(j, k, l), E∇v,∇u

j,kv,l,ku
= derdvr(j, k_v, l, k_u). (5.4.22)

An example of the automatically generated Fortran code to form these arrays at a single

quadrature point for the finite element formulation of the Poisson equation is shown

in Figure 5.21.

The vector R and matrix R′ can then be constructed by writing the integral over the

domain Ω in (5.4.15) and (5.4.16) as a sum of numerical quadrature integral calculations

over all elements κ ∈ T h
Ω . An example of the automatically generated Fortran code to

construct these matrices is shown in Figures 5.22 and 5.23, respectively.
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f = 1

residual = dot(grad(u), grad(v))*dx - f*v*dx

subroutine residual_vector(var, dvdr, svars, e, er, ...)

...

e(1) = -1.0d0

er(1,1) = dvdr(1,1)

er(1,2) = dvdr(1,2)

end subroutine residual_vector

subroutine jacobi_matrix(var, dvdr, svars, dedv, derdv, dedvr, derdvr, ...)

...

derdvr(1,1,1,1) = 1.0d0

derdvr(1,2,1,2) = 1.0d0

end subroutine jacobi_matrix

Figure 5.21: AptoPy python code representing the finite element residual of the Pois-

son equation −∇2u = 1, and the resulting automatically generated For-

tran subroutines forming the residual vector and Jacobi matrix arrays.

These functions are called for finite element solution interpolation var(:),

its derivatives dvdr(:,:), spatial variables svars(:) and residual/Jacobi

tensors at a given quadrature point qk.

! Element Residual Vector

do j = 1,no_pdes

do n = 1,no_dofs_per_variable(j)

do qk = 1,no_quad_points

element_residual(j,n) = element_residual(j,n) &

- integral_weighting(qk)*( &

e(j,qk)*phi(j,qk,n) &

+ dot_product(er(j,:,qk), grad_phi(j,qk,:,n)))

end do

end do

end do

Figure 5.22: Fortran code generated for AptoFEM by AptoPy to calculate contribu-

tions to the element residual vector R given the residual tensors e(:,qk)

and er(:,:,qk) at each quadrature point provided by AptoFEM qk.
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! Element Jacobi Matrix

do j = 1,no_pdes

do l = 1,no_pdes

do qk = 1,no_quad_points

do n = 1,no_dofs_per_variable(j)

do m = 1,no_dofs_per_variable(l)

element_matrix(j,l,n,m) = element_matrix(j,l,n,m) &

+ integral_weighting(qk)*( &

dedv(j,l,qk)*phi(j,qk,n)*phi(l,qk,m) &

+ dot_product(derdv(j,1:problem_dim,l,qk), &

grad_phi(j,qk,:,n))*phi(l,qk,m) &

+ dot_product(dedvr(j,l,1:problem_dim,qk), &

grad_phi(l,qk,:,m))*phi(j,qk,n) &

+ dot_product(grad_phi(j,qk,:,n), &

matmul(derdvr(j,1:problem_dim,l,1:problem_dim,qk), &

grad_phi(l,qk,:,m))))

end do

end do

end do

end do

end do

Figure 5.23: Fortran code generated for AptoFEM by AptoPy to calculate contribu-

tions to the element Jacobi matrix R′ given the Jacobian tensors dedv(:,:,

qk), dedvr(:,:,:,qk), derdv(:,:,:,qk) and derdvr(:,:,:,:,qk) at each

quadrature point provided by AptoFEM qk.
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AptoPy Validation and Performance

Validation of mathematical code is essential to ensure its correctness. To this end, the

underlying mathematical operators of AptoPy are verified by the unit test framework

of the sympy library. As an extension to these tests, AptoPy employs its own unit

test suite verifying results of its computations of DG FEM operators, vector calculus

operations, symbolic mesh generation and finite element space construction. A further

suite of regression tests validate the Fortran code generated for AptoFEM by testing a

priori error convergence rates.

In this chapter we demonstrate four of these regression tests featuring boundary

value problems relevant to the MPA-CVD model. We test error convergence rates of

the finite element solution calculated with the code generated by AptoPy, compared

against a known analytical solution. For each of these tests we adopt a cylindrical az-

imuthally symmetric coordinate system. We consider the convection-diffusion-reaction

equation in Section 6.2, the incompressible Navier-Stokes equations in Section 6.3, the

homogeneous cylindrical waveguide in Section 6.4 and the homogeneous empty cylin-

drical microwave resonator cavity in Section 6.5.

6.1 Convergence Rates

In each of the following sections, we test for optimal error convergence rates of the

DG symmetric interior penalty method. For an analytical u ∈
[
H`+1(Ω)

]m which is

approximated by the DG finite element solution uh ∈ Vm
` (T h

Ω), we expect the error to

converge in the L2 and H1 norms according to

‖u− uh‖L2(Ω) ≤ CL2
h h`+1 |u|H`+1(Ω) , (6.1.1)

‖u− uh‖H1(Ω) ≤ CH1

h h` |u|H`+1(Ω) , (6.1.2)
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Figure 6.1: Examples of a coarse mesh and a successively finer mesh employed by a

numerical error convergence rate test.

respectively, for positive constants CL2
h and CH1

h , and element diameter h. In essence,

the error in the L2 norm should converge at the optimal rate O(h`+1) and in the H1

norm at the optimal rate O(h`).

Consider a domain Ω which is subdivided into two separate structured shape regu-

lar meshes, one coarse T hc
Ω and one fine T hf

Ω , such that hκ = hc for all κ ∈ T hc
Ω , hκ = hf

for all κ ∈ T hf
Ω and hc > hf. An example of a coarse and fine mesh for the domain

Ω = (0, 1)× (0, 1) is shown in Figure 6.1. Let uhc ∈ Vm
` (T hc

Ω ) be the finite element so-

lution computed on the coarse mesh and uhf ∈ Vm
` (T

hf
Ω ) be the finite element solution

computed on the fine mesh. The relative rate at which the finite element solution con-

verges to the analytical solution between these successive meshes can be calculated. To

this end, we have convergence rates

RL2 :=
log (‖u− uhc‖L2(Ω)/‖u− uhf

‖L2(Ω))

log (hc/hf)
∼ `+ 1 (6.1.3)

and

RH1 :=
log
(
‖u− uhc‖H1(Ω)/‖u− uhf

‖H1(Ω)

)

log (hc/hf)
∼ `. (6.1.4)

For the case of the optimal convergence rates of the electromagnetic field solution

computed from the DG FEM approximation we refer to [80]. As such, we further seek

optimal convergence rates of the electromagnetic field approximation in the H(curl; Ω)

norm such that

RH(curl) :=
log (‖E− Ehc‖H(curl;Ω)/‖E− Ehf

‖H(curl;Ω))

log (hc/hf)
∼ `, (6.1.5)
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where ‖E‖2
H(curl;Ω) = ‖E‖2

L2(Ω) + ‖∇× E‖2
L2(Ω).

Regarding optimal convergence rates of the eigenvalue computations from the DG

FEM symmetric interior penalty method applied to the Maxwell operator, we refer

to Buffa et al. [25, Theorem 4.3]. We expect the absolute error of the approximate

eigenvalue λh to converge to the true value λ at a rate of O(h2`), i.e., we compute

Rλ :=
log (

∣∣λ− λhc

∣∣/
∣∣λ− λhf

∣∣)
log (hc/hf)

∼ 2`. (6.1.6)

6.2 Convection-Diffusion-Reaction

Adopting a cylindrical coordinate system x = (r, θ, z), let Ω = (0, 1) × {0} × (0, 1)

with boundary ∂Ω. We let T h
Ω be the subdivision of Ω into a structured shape regular

mesh of two dimensional simplices taking advantage of azimuthal symmetry. We seek

the solution u to the convection-diffusion-reaction equation with diffusion coefficient

A, convection vector coefficient b and reaction coefficient c, namely,

−∇ · (A∇u) +∇ · (bu) + cu = f in Ω, (6.2.1)

u = 0 on ∂Ω, (6.2.2)

where c(x)− 1
2∇ · b(x) ≥ 0, x ∈ Ω. Constructing a test case, we select

u = r2 sin(πr) sin(πz) (6.2.3)

and formulate the source term f for coefficients

A = (r + 1)2 + (z + 1)2, (6.2.4)

b =
(
sin(πr)2, 0, cos(πz)2)> , (6.2.5)

c = r2 sin(πr) sin(πz) + 2. (6.2.6)

It is clear that equation (6.2.1) can be rewritten in terms of the convective and viscous

operators

∇ · (F c(u)−F v(u;∇u)) + cu = f in Ω, (6.2.7)

u = 0 on ∂Ω, (6.2.8)

where

F c(u) = bu, F v(u;∇u) = A∇u. (6.2.9)

The DG FEM formulation is given by: find uh ∈ V`(T h
Ω) such that

N c
Ω (uh; vh) +N v

Ω (uh; vh) +
∫

Ω
(cuhvh − f vh) dx = 0 ∀vh ∈ V`(T h

Ω). (6.2.10)
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Using this formulation and the concepts outlined in Section 5.3 for automatic com-

putation of DG FEM formulations, the AptoPy code to construct the DG finite element

formulation of this problem is presented in Figure 6.2. We refer to Section 5.1.3 regard-

ing handling the symbolic form of the mesh, its spatial variables and the boundary and

volume integration elements. The convergence rates of the finite element approxima-

tion to the solution u are listed in Table 6.1, showing clear agreement with the conver-

gence rates predicted by DG finite element approximation theory stated in (6.1.3) and

(6.1.4).
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# Boundary condition and function space

V = FemFunctionSpace(mesh, poly_order=1, element_type=’DG’)

u, v = V.trial(), V.test()

bcs = [DirichletBC(dS, 0.0)]

# Elliptic Term

A = AptoFunction((r + 1)**2 + (z + 1)**2, (r, z), ’A_coeff’)

def F_v(u):

return A*grad(u)

def F_v_v(u, grad_u):

return A*grad_u

eo = EllipticOperator(mesh, V, bcs, F_v=F_v, F_v_v=F_v_v)

# Hyperbolic Term

b = AptoFunction(Matrix([sin(pi*r)**2, 0, cos(pi*z)**2]), (r, z), ’b_coeff’)

def F_c(u):

return b*u

ho = HyperbolicOperator(mesh, V, bcs, F_c=F_c, alpha=Abs(dot(b, n)))

# Reaction and source terms

u_soln = r**2*sin(pi*r)*sin(pi*z)

c = AptoFunction(u_soln + 2, (r, z), ’c_coeff’)

f = div(F_c(u_soln) - F_v(u_soln)) + c*u_soln

res = eo.generate_fem_formulation() + ho.generate_fem_formulation() \

+ c*u*v*dx - f*v*dx

# Cylindrical coordinate system integration element

res *= r

Figure 6.2: AptoPy automatic computation of the DGFEM formulation of the

convection-diffusion-reaction equation in (6.2.1).
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` = 1

h2 ‖u− uh‖L2(Ω) RL2 ‖u− uh‖H1(Ω) RH1

0.50000 6.28400 · 10−2 0.00000 0.63962 0.00000

0.12500 2.37870 · 10−2 1.40151 0.38138 0.74599

3.12500 · 10−2 7.13700 · 10−3 1.73678 0.20104 0.92375

7.81250 · 10−3 1.91640 · 10−3 1.89692 0.10212 0.97722

1.95313 · 10−3 4.92770 · 10−4 1.95941 5.13160 · 10−2 0.99278

4.88281 · 10−4 1.24670 · 10−4 1.98280 2.57050 · 10−2 0.99736

` = 2

h2 ‖u− uh‖L2(Ω) RL2 ‖u− uh‖H1(Ω) RH1

0.50000 1.84710 · 10−2 0.00000 0.26422 0.00000

0.12500 2.40520 · 10−3 2.94103 7.57800 · 10−2 1.80185

3.12500 · 10−2 2.99920 · 10−4 3.00351 1.98130 · 10−2 1.93537

7.81250 · 10−3 3.76450 · 10−5 2.99405 5.02790 · 10−3 1.97842

1.95313 · 10−3 4.72270 · 10−6 2.99477 1.26350 · 10−3 1.99253

4.88281 · 10−4 5.91590 · 10−7 2.99694 3.16470 · 10−4 1.99729

` = 3

h2 ‖u− uh‖L2(Ω) RL2 ‖u− uh‖H1(Ω) RH1

0.50000 3.25760 · 10−3 0.00000 6.48470 · 10−2 0.00000

0.12500 2.29490 · 10−4 3.82731 9.24190 · 10−3 2.81078

3.12500 · 10−2 1.42210 · 10−5 4.01234 1.18030 · 10−3 2.96904

7.81250 · 10−3 8.72460 · 10−7 4.02679 1.47540 · 10−4 2.99998

1.95313 · 10−3 5.39390 · 10−8 4.01569 1.83990 · 10−5 3.00341

4.88281 · 10−4 3.35280 · 10−9 4.00789 2.29590 · 10−6 3.00250

` = 4

h2 ‖u− uh‖L2(Ω) RL2 ‖u− uh‖H1(Ω) RH1

0.50000 5.56980 · 10−4 0.00000 1.34910 · 10−2 0.00000

0.12500 1.98800 · 10−5 4.80824 9.57610 · 10−4 3.81642

3.12500 · 10−2 6.47630 · 10−7 4.94000 6.17030 · 10−5 3.95603

7.81250 · 10−3 2.05220 · 10−8 4.97993 3.88480 · 10−6 3.98943

1.95313 · 10−3 6.43970 · 10−10 4.99403 2.43130 · 10−7 3.99804

4.88281 · 10−4 2.01490 · 10−11 4.99821 1.51970 · 10−8 3.99987

Table 6.1: Numerical convergence rate computations using AptoPy generated code appled to the convection-diffusion-reaction equation (6.2.1).
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6.3 Navier-Stokes Equations

In this section we validate the Fortran code generated by AptoPy when applied to the

incompressible Navier-Stokes equations in cylindrical coordinates. Let Ω = (1, 2) ×
{0} × (0, 1) with boundary ∂Ω = ∂ΩD ∪ ∂ΩN , where ∂ΩN = {2} × {0} × [0, 1] and

∂ΩD = ∂Ω \ ∂ΩN . As in Section 6.2 let T h
Ω be the subdivision of Ω into a structured

shape regular mesh of two dimensional simplices exploiting azimuthal symmetry. We

seek the solutions to the velocity field u and pressure field p of the Navier-Stokes equa-

tions for a given density ρ and viscosity η, i.e.,

∇ · (F c(u)−F v(u;∇u)) = f in Ω, (6.3.1)

∇ · (ρu) = 0 in Ω, (6.3.2)

u = gD on ∂ΩD, (6.3.3)

F v (u;∇u) · n = gN on ∂ΩN , (6.3.4)

where

F c(u) = ρu⊗ u, (6.3.5)

F v(u;∇u) = η

(
∇u +∇u> − 2

3
(∇ · u) I

)
− pI. (6.3.6)

We select f such that the solution for ρ = 1 and µ = 1 is given by

u =




1
r sin(πr) sin(πz)

sin(πr) sin(πz)
1
r cos(πr) cos(πz)


 , p = er+z; (6.3.7)

in this case we prescribe the boundary conditions

gD =




0

0
1
r cos(πr) cos(πz)


 , (6.3.8)

gN =

(
∇gD +∇g>D −

2
3
(∇ · gD) I− er+zI

)
· n. (6.3.9)

The DG FEM formulation is to find (uh, ph) ∈ Vd
`(T h

Ω)×V`−1(T h
Ω) such that

N c
Ω (uh; vh) +N v

Ω (uh; vh) +N cont
Ω (uh; qh) = 0, (6.3.10)

for all (vh, qh) ∈ Vd
`(T h

Ω)×V`−1(T h
Ω).
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The AptoPy code used to generate the DG FEM formulation of this problem is pre-

sented in Figure 6.3. The convergence rates of the velocity and pressure field variables

are presented in Tables 6.2 and 6.3, respectively. The computed convergence rates agree

well with equations (6.1.3) and (6.1.4). We also note that the piecewise constant repre-

sentation (` − 1 = 0) of the DG approximation to the pressure does not converge to

the analytical solution in the H1 norm. This is expected, as the gradient of ph is zero

everywhere in this case.
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# Function spaces

Q = FemFunctionSpace(mesh, poly_order=1, element_type=’DG’)

p = Q.trial()

V = FemVectorFunctionSpace(mesh, poly_order=2, element_type=’DG’)

# Manufactured solution

gD = Matrix([1/r*sin(pi*r)*sin(pi*z),

sin(pi*r)*sin(pi*z),

1/r*cos(pi*r)*cos(pi*z)])

pD = exp(r+z)

gN = dot(grad(gD) + grad(gD).T - 2.0/3.0*div(gD)*eye(3), n) - pD*n

# Boundary conditions

bcs = [DirichletBC(dSD, gD), NeumannBC(dSN, gN)]

# Source term construction

def F_c(u):

return u*u.T

def F_v(u):

return grad(u) + grad(u).T - 2.0/3.0*(div(u))*eye(3) - p*eye(3)

f = div(F_c(gD) - F_v(gD)) + grad(pD)

# DG FEM residual construction

pe = NavierStokesEquationsIncompressible(mesh, V, Q, bcs)

residual = pe.generate_fem_formulation() - pe.generate_forcing_formulation(f)

# Cylindrical coordinate system integration element

residual *= r

Figure 6.3: AptoPy automatic computation of the DG FEM formulation of the Navier-

Stokes equations in equation (6.3.1).
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` = 1

h2 ‖u− uh‖L2(Ω) RL2 ‖u− uh‖H1(Ω) RH1

0.50000 0.22030 0.00000 2.13240 0.00000

0.12500 8.70330 · 10−2 1.33984 1.22040 0.80512

3.12500 · 10−2 2.95520 · 10−2 1.55831 0.62487 0.96573

7.81250 · 10−3 8.64210 · 10−3 1.77380 0.30898 1.01604

1.95313 · 10−3 2.28330 · 10−3 1.92026 0.15318 1.01229

4.88281 · 10−4 5.79430 · 10−4 1.97841 7.63750 · 10−2 1.00406

` = 2

h2 ‖u− uh‖L2(Ω) RL2 ‖u− uh‖H1(Ω) RH1

0.50000 7.45090 · 10−2 0.00000 0.81353 0.00000

0.12500 8.44200 · 10−3 3.14176 0.21439 1.92396

3.12500 · 10−2 8.88430 · 10−4 3.24825 5.20640 · 10−2 2.04188

7.81250 · 10−3 1.00150 · 10−4 3.14910 1.26550 · 10−2 2.04058

1.95313 · 10−3 1.20460 · 10−5 3.05554 3.12550 · 10−3 2.01755

4.88281 · 10−4 1.48830 · 10−6 3.01682 7.77910 · 10−4 2.00641

` = 3

h2 ‖u− uh‖L2(Ω) RL2 ‖u− uh‖H1(Ω) RH1

0.50000 1.10320 · 10−2 0.00000 0.18067 0.00000

0.12500 6.56580 · 10−4 4.07058 2.33310 · 10−2 2.95304

3.12500 · 10−2 3.72040 · 10−5 4.14144 2.81290 · 10−3 3.05212

7.81250 · 10−3 2.14450 · 10−6 4.11674 3.39100 · 10−4 3.05228

1.95313 · 10−3 1.28550 · 10−7 4.06024 4.15980 · 10−5 3.02712

4.88281 · 10−4 7.88930 · 10−9 4.02629 5.15650 · 10−6 3.01205

` = 4

h2 ‖u− uh‖L2(Ω) RL2 ‖u− uh‖H1(Ω) RH1

0.50000 1.75580 · 10−3 0.00000 3.30270 · 10−2 0.00000

0.12500 5.35320 · 10−5 5.03558 2.13040 · 10−3 3.95445

3.12500 · 10−2 1.60410 · 10−6 5.06057 1.33710 · 10−4 3.99395

7.81250 · 10−3 4.90550 · 10−8 5.03122 8.35860 · 10−6 3.99970

1.95313 · 10−3 1.51810 · 10−9 5.01406 5.22400 · 10−7 4.00003

4.88281 · 10−4 4.72290 · 10−11 5.00645 3.26500 · 10−8 4.00000

Table 6.2: Numerical convergence rate computations of the velocity vector field DG FEM approximation using AptoPy generated code applied

to the Navier-Stokes equations in (6.3.1).
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`− 1 = 0

h2 ‖p− ph‖L2(Ω) RL2 ‖p− ph‖H1(Ω) RH1

0.50000 3.89160 0.00000 16.27800 0.00000

0.12500 2.70700 0.52367 16.03600 0.02161

3.12500 · 10−2 1.68420 0.68463 15.89500 0.01274

7.81250 · 10−3 0.94404 0.83514 15.83400 0.00555

1.95313 · 10−3 0.49626 0.92775 15.81400 0.00182

4.88281 · 10−4 0.25344 0.96945 15.80800 0.00055

`− 1 = 1

h2 ‖p− ph‖L2(Ω) RL2 ‖p− ph‖H1(Ω) RH1

0.50000 2.41400 0.00000 20.87500 0.00000

0.12500 0.65897 1.87314 10.35800 1.01103

3.12500 · 10−2 0.18150 1.86024 5.33800 0.95637

7.81250 · 10−3 4.78150 · 10−2 1.92443 2.74400 0.96002

1.95313 · 10−3 1.22270 · 10−2 1.96739 1.39180 0.97933

4.88281 · 10−4 3.08690 · 10−3 1.98584 0.70067 0.99014

`− 1 = 2

h2 ‖p− ph‖L2(Ω) RL2 ‖p− ph‖H1(Ω) RH1

0.50000 0.54864 0.00000 8.09560 0.00000

0.12500 8.62010 · 10−2 2.67008 2.86500 1.49860

3.12500 · 10−2 1.30070 · 10−2 2.72842 0.89859 1.67280

7.81250 · 10−3 1.78210 · 10−3 2.86764 0.24935 1.84949

1.95313 · 10−3 2.31600 · 10−4 2.94387 6.51300 · 10−2 1.93678

4.88281 · 10−4 2.94380 · 10−5 2.97588 1.65940 · 10−2 1.97266

`− 1 = 3

h2 ‖p− ph‖L2(Ω) RL2 ‖p− ph‖H1(Ω) RH1

0.50000 8.61880 · 10−2 0.00000 2.05510 0.00000

0.12500 5.28260 · 10−3 4.02817 0.25833 2.99192

3.12500 · 10−2 2.87590 · 10−4 4.19916 2.84180 · 10−2 3.18434

7.81250 · 10−3 1.65210 · 10−5 4.12164 3.29690 · 10−3 3.10762

1.95313 · 10−3 9.89470 · 10−7 4.06150 3.97640 · 10−4 3.05158

4.88281 · 10−4 6.05620 · 10−8 4.03017 4.88750 · 10−5 3.02429

Table 6.3: Numerical convergence rate computations of the pressure scalar field DG FEM approximation using AptoPy generated code applied

to the Navier-Stokes equations in (6.3.1).
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6.4 Cylindrical Homogeneous Waveguide

We refer to Section 2.3.2 regarding the electromagnetic vector field solution of the time

harmonic formulation of Maxwell’s equations applied to a cylindrical waveguide. Let

Ω = (0, a)×{0}× (0, d), a, d ∈ R, with boundary ∂Ω whose unit outward normal vec-

tor is denoted by n. This domain is the representation of an axial slice of the cylindrical

waveguide geometry. We subdivide the exterior boundary into the axis of symme-

try, the open waveguide port, the field source port and the waveguide wall such that

∂Ω = ∂Ωsym ∪ ∂Ωo ∪ ∂Ωs ∪ ∂ΩD, where

∂Ωsym = {0} × {0} × [0, 1], (6.4.1)

∂Ωo = [0, a]× {0} × {d}, (6.4.2)

∂Ωs = [0, a]× {0} × {0}, (6.4.3)

∂ΩD = {a} × {0} × [0, 1]. (6.4.4)

We let T h
Ω be the subdivision of Ω into a structured shape regular mesh of two dimen-

sional simplices of granularity h exploiting azimuthal symmetry. We seek the TM0p

solutions of the electric field E and Lagrange multiplier p of the time harmonic formu-

lation of Maxwell’s equations in the empty waveguide (σ, ε, µ) = (0, ε0, µ0), subject to

the boundary conditions of symmetry on ∂Ωsym, the excited port boundary on ∂Ωs,

the open port boundary on ∂Ωo (see [86]) and the perfectly conducting wall ∂ΩD, i.e.,

(E, p) satisfies

∇× (∇× E)− µ0ε0∇p − k2
0E = 0 in Ω, (6.4.5)

∇ · (E) = 0 in Ω, (6.4.6)

n× (∇× E) = 0 on ∂Ωsym, (6.4.7)

n× (∇× E) + j
k2

0
βnp

(n× Ew)× n = 0 on ∂Ωs, (6.4.8)

n× (∇× E)− j
k2

0
βnp

(n× E)× n = 0 on ∂Ωo, (6.4.9)

n× E = 0 on ∂ΩD, (6.4.10)

where k0 =
√

ε0µ0ω. The electric vector field solution is

Ew =

(
−j

β0p

k2
c

∂Ez

∂r
, 0, Ez,

)>
, (6.4.11)

where

Ez = E0z J0

(
X0p

a
r
)

e−jβ0pz, β0p =

√
µ0ε0ω2 −

(
X0p

a

)2

, kc =
X0p

a
. (6.4.12)
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We choose an empty waveguide with radius a = 5 cm, enclosing an electromagnetic

field operating at frequency f = 2.45 GHz in a TM01 mode which satisfies the waveg-

uide propagation condition. We further set d = 2.25π/β01, i.e., 9/8 wavelengths of the

incident field. The DG FEM formulation is to find (Eh, ph) ∈ Vd
`(T h

Ω)×V`+1(T h
Ω) such

that

aMax
Ω (Eh, Fh) +N ε∇p

Ω (ph; Fh) +N∇·(εE)
Ω (Eh; qh)−

∫

Ω
k2Eh · Fh dx = 0 (6.4.13)

for all (Fh, qh) ∈ Vd
`(T h

Ω)×V`+1(T h
Ω).

The AptoPy code required to generate the DG FEM formulation of this problem is

shown in Figure 6.4. The convergence rates of the electric field and Lagrange multiplier

variables are presented in Tables 6.4 and 6.5, respectively. As required to verify the

automatically generated code, the computed convergence rates match those predicted

by the theory stated in the L2 norm in equation (6.1.3) and the H(curl) norm stated in

equation (6.1.5).
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# Physical and waveguide constants

X_01 = 2.404825557695772

omega = 2*pi*2.45e9

k_0 = sqrt(mu_0*eps_0)*omega

beta_01 = sqrt(k_0**2 - (X_01/a)**2)

kc = X_01/a

# Analytical solution - see Liao 1990, Microwave Devices & Circuits

Ez = besselj(0, X_01*r/a)*exp(-sympy.I*beta_01*z)

Er = -sympy.I*beta_01/kc**2*diff(Ez, r)

E_wg = Matrix([Er, 0.0, Ez])

V = FemComplexVectorFunctionSpace(mesh, poly_order=1, element_type=’DG’)

E, F = V.trial(), conj(V.test())

Q = FemComplexFunctionSpace(mesh, poly_order=2, element_type=’DG’)

# Port boundary conditions - see Jin 2012, The Finite Element Method in

Electromagnetics

port_o_pc = NeumannBC(dS_p2, sympy.I*k_0**2/beta_01*cross(cross(n, E), n))

port_s_bc = NeumannBC(dS_p1, -sympy.I*k_0**2/beta_01*cross(cross(n, E_wg), n))

symmetry_bc = NeumannBC(dSsym, 0.0)

conductor_bc = DirichletBC(dSD, 0.0)

bcs = [port_s_bc, port_o_pc, symmetry_bc, conductor_bc]

pe = MaxwellOperatorWithInvolution(mesh, V, Q, bcs)

residual = pe.generate_fem_formulation() - k_0**2*dot(E, F)*dx

residual *= r

Figure 6.4: AptoPy automatic computation of the DG FEM formulation of the time

harmonic formulation of Maxwell’s equations applied to a cylindrical

waveguide.
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` = 1

h2 ‖Ew − Eh‖L2(Ω) RL2 ‖Ew − Eh‖H(curl;Ω) RH(curl)

0.5000 0.1661 0.0000 6.0639 0.0000

0.1250 8.2312 · 10−2 1.0129 3.0227 1.0044

3.1250 · 10−2 4.2607 · 10−2 0.9500 1.6156 0.9038

7.8125 · 10−3 1.5216 · 10−2 1.4855 0.6422 1.3310

1.9531 · 10−3 4.1447 · 10−3 1.8762 0.2347 1.4520

4.8828 · 10−4 1.0580 · 10−3 1.9699 9.9853 · 10−2 1.2331

` = 2

h2 ‖Ew − Eh‖L2(Ω) RL2 ‖Ew − Eh‖H(curl;Ω) RH(curl)

0.5000 8.0650 · 10−2 0.0000 2.8598 0.0000

0.1250 9.1898 · 10−3 3.1336 0.4321 2.7265

3.1250 · 10−2 9.4697 · 10−4 3.2786 8.8995 · 10−2 2.2795

7.8125 · 10−3 8.7847 · 10−5 3.4303 2.1463 · 10−2 2.0519

1.9531 · 10−3 9.3860 · 10−6 3.2264 5.3508 · 10−3 2.0040

4.8828 · 10−4 1.1139 · 10−6 3.0749 1.3369 · 10−3 2.0009

` = 3

h2 ‖Ew − Eh‖L2(Ω) RL2 ‖Ew − Eh‖H(curl;Ω) RH(curl)

0.5000 1.3178 · 10−2 0.0000 0.5519 0.0000

0.1250 6.6098 · 10−4 4.3174 5.6578 · 10−2 3.2861

3.1250 · 10−2 3.3570 · 10−5 4.2994 6.9275 · 10−3 3.0298

7.8125 · 10−3 1.9878 · 10−6 4.0779 8.6336 · 10−4 3.0043

1.9531 · 10−3 1.2266 · 10−7 4.0184 1.0761 · 10−4 3.0042

` = 4

h2 ‖Ew − Eh‖L2(Ω) RL2 ‖Ew − Eh‖H(curl;Ω) RH(curl)

0.5000 2.0372 · 10−3 0.0000 0.1171 0.0000

0.1250 5.0226 · 10−5 5.3420 7.0406 · 10−3 4.0561

3.1250 · 10−2 1.5013 · 10−6 5.0642 4.3767 · 10−4 4.0078

7.8125 · 10−3 4.6277 · 10−8 5.0198 2.7102 · 10−5 4.0134

1.9531 · 10−3 1.4407 · 10−9 5.0055 1.6827 · 10−6 4.0095

Table 6.4: Numerical convergence rate computations of the TM01 waveguide electric field vector field DG FEM approximation using AptoPy

generated code applied to the time harmonic formulation of Maxwell’s equations (6.4.5).

129



C
H

A
P

T
E

R
6:A

P
T

O
P

Y
V

A
L

ID
A

T
IO

N
A

N
D

P
E

R
F

O
R

M
A

N
C

E

`+ 1 = 2

h2 ‖p‖L2(Ω) RL2 ‖p‖H1(Ω) RH1

0.5000 9.2716 · 10−4 0.0000 0.1148 0.0000

0.1250 6.0613 · 10−5 3.9351 1.6648 · 10−2 2.7853

3.1250 · 10−2 6.2880 · 10−6 3.2690 2.9678 · 10−3 2.4879

7.8125 · 10−3 7.4759 · 10−7 3.0723 6.1856 · 10−4 2.2624

1.9531 · 10−3 8.8630 · 10−8 3.0764 1.3895 · 10−4 2.1543

4.8828 · 10−4 1.0800 · 10−8 3.0368 3.3182 · 10−5 2.0661

`+ 1 = 3

h2 ‖p‖L2(Ω) RL2 ‖p‖H1(Ω) RH1

0.5000 2.4498 · 10−5 0.0000 1.9097 · 10−3 0.0000

0.1250 1.9204 · 10−6 3.6732 2.7609 · 10−4 2.7901

3.1250 · 10−2 9.4193 · 10−8 4.3496 3.0134 · 10−5 3.1957

7.8125 · 10−3 3.9280 · 10−9 4.5838 3.4157 · 10−6 3.1411

1.9531 · 10−3 1.7274 · 10−10 4.5071 4.0134 · 10−7 3.0893

4.8828 · 10−4 4.6551 · 10−11 1.8917 4.9896 · 10−8 3.0078

`+ 1 = 4

h2 ‖p‖L2(Ω) RL2 ‖p‖H1(Ω) RH1

0.5000 2.5377 · 10−6 0.0000 2.7239 · 10−4 0.0000

0.1250 8.2540 · 10−8 4.9423 1.7595 · 10−5 3.9524

3.1250 · 10−2 2.5452 · 10−9 5.0192 1.0973 · 10−6 4.0031

7.8125 · 10−3 7.8412 · 10−11 5.0206 6.8397 · 10−8 4.0039

1.9531 · 10−3 2.6687 · 10−11 1.5549 7.9664 · 10−8 −0.2200

`+ 1 = 5

h2 ‖p‖L2(Ω) RL2 ‖p‖H1(Ω) RH1

0.5000 3.1701 · 10−7 0.0000 5.2702 · 10−5 0.0000

0.1250 4.8514 · 10−9 6.0300 1.4003 · 10−6 5.2340

3.1250 · 10−2 5.0686 · 10−10 3.2587 6.9033 · 10−8 4.3423

7.8125 · 10−3 4.0781 · 10−10 0.3137 8.4566 · 10−8 −0.2928

1.9531 · 10−3 5.5347 · 10−11 2.8813 4.3736 · 10−8 0.9513

Table 6.5: Numerical convergence rate computations of the TM01 waveguide Lagrange multipler DG FEM approximation using AptoPy gener-

ated code applied to the time harmonic formulation of Maxwell’s equations (6.4.5).
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6.5 Cylindrical Cavity Resonator

We refer to Section 2.3.3 for the derivation of the eigenvalue solution of the cylindrical

cavity resonator employed in this convergence test. As in the waveguide test case, let

the domain Ω = (0, a)× {0} × (0, d) with boundary ∂Ω, whose unit outward normal

vector is denoted by n, be the representation of an axial slice of the cylindrical resonator

geometry. We subdivide the boundary into the axis of symmetry and the perfect con-

ductor cavity walls ∂Ω = ∂ΩN ∪ ∂ΩD. We construct the test case for the empty cavity

of dimensions (a, d) = (1, π) and material properties (σ, ε, µ) = (0, ε0, µ0), enclosing an

azimuthally symmetric electromagnetic field operating in a TM0pq mode. The resonant

frequencies ωr are calculated from the eigenpair solutions (0 6= E, k2
0) ∈ R3 ×R of

∇× (∇× E) = k2
0E in Ω, (6.5.1)

n× E = 0 on ∂Ω \ ∂ΩD, (6.5.2)

n× (∇× E) = 0 on ∂ΩN . (6.5.3)

Here, each resonant frequency ωr = k0/√ε0µ0 of the TM0pq mode is analytically deter-

mined by

ωr =
1√
µ0ε0

√
X2

0p + q2, p ≥ 1, q ≥ 0. (6.5.4)

Let T h
Ω be the subdivision of Ω into a structured shape regular mesh of two dimensional

simplices of diameter h. The discrete form of the eigen problem (6.5.1) is to find (0 6=
Eh, k2

0h) ∈ Vd
`(T h

Ω)×R such that

aMax
Ω (Eh, Fh) =

∫

Ω
k2

0hEh · Fh dx (6.5.5)

for all Fh ∈ Vd
`(T h

Ω).

The AptoPy code required to generate the DG FEM formulation of the eigenpair

problem is shown in Figure 6.5. Examples of the convergence rates of the computed

eigenvalues are presented in Figure 6.6. The computed convergence rate matches well

with that stated in equation (6.1.6), where we note that the convergence rate of the

TM010 (first) eigenvalue with approximating finite element polynomial order ` = 4

is stalled by machine precision on the finer meshes. We also note the numerical ap-

proximation error of the computed eigenvalue increases with the eigenvalue index as

expected, cf. Buffa et al. [25].
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V = FemVectorFunctionSpace(mesh, poly_order=1, element_type=’DG’)

E, F = V.trial(), V.test()

sigma = 10.0*V.penalisation()[0]

def A(u, v):

val = dot(curl(u), curl(v))*r*dx \

- dot(cross_jump(u), avg(curl(v)))*r*(dInt + dS) \

- dot(cross_jump(v), avg(curl(u)))*r*(dInt + dS) \

+ sigma*dot(cross_jump(u), cross_jump(v))*r*(dInt + dS)

return val

lhs = A(E, F)

rhs = dot(E, F)*r*dx

U = eigen_solve(mesh, lhs, rhs, V)

output_eigenvalues(U, lambda ev: ev if ev > 1e-4 else None)

Figure 6.5: AptoPy automatic computation of the DG FEM formulation of the eigen-

value problem of the Maxwell operator.

6.6 Performance

A key issue in the design of AptoPy, whilst ensuring robustness, is the consideration

of computation time. In this section we demonstrate the computation time undertaken

by AptoPy on a standard laptop computer featuring a 2.3 GHz Intel Core i7-3615QM

processor. For a series of equations, a tabulation of example run times required for Ap-

toPy to automatically compute the finite element formulation and output the required

Fortran code for use with AptoFEM is presented in Table 6.6.
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Figure 6.6: Numerical computations of eigenvalue convergence rates of the a) TM010,

b) TM013, c) TM020 and d) TM023 electromagnetic field harmonic modes

corresponding to the 1st, 4th, 6th and 10th non-zero eigenvalues respec-

tively.
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Finite Element Formulation Variables Gâteaux Derivative Total

CG Poisson 1 0.013 023 0.098 761

CG Poisson cylindrical 1 0.031 952 0.139 858

CG Stokes 3 0.175 607 0.329 000

CG incompressible Navier-Stokes 3 0.178 140 0.328 386

DG Poisson 1 0.295 699 0.447 525

DG Poisson cylindrical 1 0.373 568 0.547 341

DG Poisson 3D cube 1 0.577 185 0.799 675

DG Maxwell eigenvalue (real valued) [25] 2 0.932 15 1.117 097

DG Stokes [39] 3 1.582 049 1.903 392

DG incompressible Navier-Stokes 3 2.766 409 3.372 381

DG Maxwell waveguide [80] 4 5.428 481 6.171 783

DG linearised magnetohydrodynamics [82] 6 9.011 347 9.863 774

DG Maxwell waveguide (Lagrange multiplier) [80] 6 12.911 531 14.014 545

DG compressible Navier-Stokes [66] 4 28.173 629 34.051 378

Table 6.6: Examples of the total time elapsed (s) for AptoPy to calculate the finite element formulation and output the Fortran code for use by

AptoFEM, measured using Python’s time module. Note the most expensive operation is the computation of the Gâteaux derivative.

All boundary value problems are calculated on the 2D unit square in Cartesian coordinates unless stated otherwise. We note the large

growth in computation time of the Gâteaux derivative for the DG compressible Navier-Stokes equations. This is due in part to the

greater number of solution variables, but primarily the high degree of nonlinearity. We investigate this issue in detail in Section 6.6.3.
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6.6.1 Gâteaux Derivative

As already briefly mentioned in Section 5.1.6, the cost of symbolic computational alge-

bra is high, particularly differentiation. As the complexity and number of variables in

a given partial differential problem grows, so does the combinatoric complexity of the

sympy expression tree.

To demonstrate the caching optimisation offered by the AptoFunction construct, con-

sider the semilinear PDE: find u such that

−∇ · (A (u)∇u) = 0 in Ω, (6.6.1)

u = 1 on ∂Ω. (6.6.2)

Selecting A(u) to be a power series, the computation time taken for AptoPy to compute

and generate the Fortran code required to solve the DG FEM formulation of (6.6.1) is

shown in Figure 6.7. Two cases are shown, one constructing A(u) as a power series and

the other as a product series, both truncated at the lth term. Growth of computation

time of the Gâteaux derivative is expected to be linear for the power series coefficient.

Exponential growth for the product series is expected as the computation of the chain

and product rules of differentiation become geometrically more expensive as the mul-

tiplication operators in the sympy expression tree become more nested. The use of the

AptoFunction requires that these derivatives each need only be computed once through

the entire process of computing the system Gâteaux derivative, thereby vastly reducing

computational cost.

Once the Gâteaux derivative is computed, the remaining computation time is domi-

nated by forming and generating the required Fortran code. As the complexity of the

coefficient A(u) grows, so does the length of the required Fortran code. The encapsula-

tion of A(u) into an AptoFunction (which at the Fortran level is wrapped in a function)

ensures that the verbosity of code required to compute A(u) is generated only once. In

the context of solving the MPA-CVD reactor model where many coefficients are power

series of solution variables, employing AptoPy’s caching optimisation is a necessity.

6.6.2 Number of Variables

It is evident that the greater the number of variables, and therefore equations, the

greater the computational complexity of computing the finite element formulation.
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, A = 1; for k in range(1, l+1): A *= (u**k + k)**k

Figure 6.7: Computation time comparison between the caching of sympy and the spe-

cialised caching of AptoPy using AptoFunction. Here A(u) is the nonlinear

diffusion coefficient of the Poisson equation (6.6.1). Note that even with

the caching optimisations offered by AptoPy, the time taken to generate

the Fortran code still rises with the complexity of A(u). In each case, the

AptoFunction is generated by calling A_af = AptoFunction(A, u, ’A_%d’%

l).

136



CHAPTER 6: APTOPY VALIDATION AND PERFORMANCE

0 5 10 15 20

n

0

10

20

30

40

50

60

Ti
m

e
E

la
ps

ed
(s

)

Gâteaux derivative
Total

Figure 6.8: Computation time for AptoPy to generate the DG FEM formulation of a

system of n equations (6.6.3).

Given a domain Ω with boundary ∂Ω, consider the series of n simultaneous equations:

−∇ · F v(ui) = 0 in Ω, (6.6.3)

ui = 0 on ∂Ω, (6.6.4)

i = 1, . . . , n, where F v(u) = ∇u. The DG FEM formulation is to find (u1, . . . , un) ∈
V`(T h

Ω)× . . .×V`(T h
Ω) such that

n

∑
i=1
N v

Ω (ui; vi) = 0 (6.6.5)

for all (v1, . . . , vn) ∈ V`(T h
Ω) × . . . × V`(T h

Ω). Here, T h
Ω is the triangulation of Ω. The

number of equations in this linear setting affects the computation time required by Ap-

toPy to formulate and generate the required code for AptoFEM as shown in Figure 6.8.

The exponential growth of the computation time of the Gâteaux derivative is expected

as the number of derivatives required in its calculation is O(n2).

6.6.3 Degree of Interdependence

Consider again the system of n Poisson equations (6.6.3). Serving as a test case for

AptoPy’s performance, we make the modification

F v(u) = D∇u, (6.6.6)
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where the nonlinear diffusion coefficient

D =
m

∑
k=1

uk, m ≤ n. (6.6.7)

Here, m introduces a degree of interdependence in the set of simultaneous PDEs which

affects the computation time required to formulate the Gâteaux derivative of the fi-

nite element formulation. Computation times for a growing number of equations at

maximum interdependence m = n, and a fixed number of equations with growing

interdependence n = 10, 1 ≤ m ≤ 10, are shown in Figure 6.9.

The rate of exponential growth of computation time with the number of equations

at maximum interdependence is drastically increased compared with that of the linear

setting. The use of the AptoFunction construct alleviates this cost, although does not

reduce the growth of computation time to a linear rate. This is due to the number of

symbolic derivatives required to be computed is still O(n2). For the same reasons as

the evaluation of the power series coefficient examined in Section 6.6.1, the degree of

interdependence affects the computation time linearly at fixed n.
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Figure 6.9: Computation time for AptoPy’s generation of Fortran code required to

solve n simultaneous PDEs with viscous operator (6.6.6). The character-

isation of the interdependence of the simultaneous PDEs is determined by

diffusion coefficient D = ∑m
k=1 uk, m ≤ n.
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Numerical experiments

In this chapter we present numerical results for the DG approximation for various CVD

reactor geometries and operating conditions. For each of the geometries implemented

in this thesis, the finite element mesh T h
Ω is generated using Triangle [124], the DG

finite element formulation is generated using AptoPy with underlying sympy frame-

work [133] and AptoPy automatically generates the Fortran code such that the finite

element matrix assembly is computed by AptoFEM [1]. The underlying linear sys-

tems are solved using the MUltifrontal Massively Parallel solver [3–5] and the eigen-

pair solutions of microwave cavity resonance are computed using the Arnoldi Package

(ARPACK) [95]. The chemical data relating to the dissociation of hydrogen and ther-

mal properties of fused silica for all coefficients and parameters were obtained from the

National Institute of Standards and Technology chemistry database [35, 43]. Further-

more, we set the underlying polynomial order ` = 1 for every element in the generated

meshes.

We first present numerical examples demonstrating results of the DG solution of the

model equations in the simplified CVD geometry shown in Figure 7.1. We then present

results calculated for reactor geometries inspired by the ellipsoidal AIXTRON reactor

and the LIMHP reactor, both of which are summarised in [9]. Finally, we demonstrate

an example geometry optimisation procedure using the LIMHP reactor inspired design

as a reference. In each case, we initially solve the DG MPA-CVD model on a coarse

mesh, ensuring that when solving on a finer mesh the solution converges to a more

precise numerical approximation.

Each reactor presented here is designed for operation with incident electromagnetic

field operating at 2.45 GHz. For each geometry, the electromagnetic field will be com-

puted for the case of the empty, air-filled, reactor. The peaks in the magnitude of the
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electric field solution will provide an indication of the location of the ignited plasma

when the hydrogen vacuum portion of the reactor is implemented. Given a satisfactory

electromagnetic field configuration, we then proceed to compute a series of solutions

to the DG MPA-CVD model at hydrogen gas mixture pressures of 50 torr, 150 torr and

250 torr and input power in the range 200 W to 1200 W. The quantities of interest are

the free electron density in the plasma ne, the number density of atomic hydrogen nH,

the reactor temperature T and the microwave power deposition in the plasma Pohm.

7.1 Example 1: A Simple Cylindrical MPA-CVD Reactor

In our first example, we take the arbitrarily designed geometry Ω and mesh T h
Ω pre-

sented in Figure 7.1. The reactor radius from the axis of symmetry to the outer wall is

set at rreactor = 0.12 m and the height of the chamber from the chamber floor to its ceil-

ing is set at hreactor = 0.24 m. Configuring the electromagnetic field frequency to run at

2.45 GHz it is intended to excite the transversal magnetic TM022 harmonic mode. The

substrate surface has radius 3 cm at height 5 mm from the chamber floor. In order to

confine the ignited plasma to reside above the substrate surface, the base of the quartz

window whose width is set at 5 mm is situated 6 cm = 1
4 hreactor from the floor of the

chamber. This position of the quartz window exploits the local maximum of the electric

field TM022 configuration at the base of the reactor. The inlet gas nozzle is situated on

the outer chamber wall 1 cm from the quartz window and has width 3 mm.

The mesh is constructed with a higher density of elements in the quartz window, gas

inlet and outlet pipes, substrate surface and microwave antenna. The intention is to

better resolve the permittivity transition between the vacuum and the air filled cavity,

the re-entrant corners of the geometry, the region with a high density of electrons in

the plasma and the singularities in the electromagnetic field. The resulting mesh for

this simple geometry consists of 44 935 elements with 67 040 interior and 725 boundary

faces. The resulting DG finite element formulation with ` = 1 for the MPA CVD model

in this configuration consists of 1 358 520 unknown degrees of freedom. This is split

between: the velocity field variables u and p, 78 225; the reactor temperature T, 134 805;

the species densities xH and ne, 33 525 each; and the electric field variables E and p,

1 078 440.

Solving for the electric field in the empty air-filled reactor geometry, cf. Figure 7.2,

yields a similar distribution to the cylindrical cavity resonator operating in a TM022
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mode (cf. Figure 2.2). This indicates that the plasma will be ignited as intended above

the diamond substrate surface. Furthermore, the lack of a peak in the electric field in

the hydrogen gas mixture close to the quartz window should eliminate the possibility

of damage to the window from unwanted heating.

With this reactor design, we apply zero inlet gas velocity uinlet = 0, such that diffu-

sive transport effects dominate. The spatial distribution close to the substrate surface of

the plasma density and its properties are presented for varying power input and work-

ing pressures in Figures 7.3, 7.4, 7.5 and 7.6. The exploitation of the resonant electric

field structure is clear with the shape and peak of the plasma density residing above the

substrate surface. Combined with the ignited plasma’s shape and position, this leads

to the localised peak in the microwave power deposition above the substrate surface.

At larger power input the spatial gas temperature distribution is around the temper-

ature required for efficient production of H from H2 by dissociation, i.e., T > 3200 K

at power input of 900 W. Figure 7.7 shows the temperature distribution in the quartz

window, which does not exceed 650 K, well below its softening point ≈ 1343 K.

The electric field resonance property of the CVD reactor is affected by the permit-

tivity of the generated plasma. Figure 7.8 demonstrates this variation in the electric

permittivity in the presence of the plasma. The attenuation of the electric field in the

plasma is clear if we consider that it is damped as∼ e−=(ε)x (see Section 2.3.2). In depth

analysis of this coupling is performed in [63].
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z
r

Figure 7.1: Axial slice of a simple chemical vapour deposition reactor geometry at az-

imuth θ = 0. The lower hydrogen gas vacuum and upper air filled cavity

regions are separated by a quartz window highlighted in blue.

Figure 7.2: Electric field magnitude in the empty simple geometry reactor.
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Figure 7.3: The basic reactor plasma shape operating at 500 W.
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Figure 7.4: The basic reactor plasma shape operating at 600 W.
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Figure 7.5: The basic reactor plasma shape operating at 700 W.
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Figure 7.6: The basic reactor plasma shape operating at 900 W.
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Figure 7.7: Temperature distribution in the quartz window of the simple CVD reactor

geometry in Figure 7.1 when operating at a working pressure of 250 torr

and power input of 900 W.
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900 W.
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7.2 Example 2: The AIXTRON Reactor

Here we apply the DG MPA-CVD model to a design inspired by the ellipsoidal AIX-

TRON reactor depicted in Figure 7.9. The ellipsoid design is intended to take advan-

tage of its two focal points concentrating the microwave radiation at one point above

the substrate surface. Configuring the electric field to run at a frequency of 2.45 GHz

in a TM036 mode, the ellipse is constructed such that the minor radius a = 228 mm and

major radius b = 4
3 a. The base of the reactor is located 208 mm from its ellipsoid cen-

tre. The antenna is positioned into the cavity at the focal point
√

b2 − a2. The diamond

substrate surface has radius 2.5 cm and is raised to a height of 5 mm from the reactor

floor.

We employ the same procedure as with the basic reactor geometry for meshing. The

meshing of the AIXTRON inspired reactor domain is performed with the intention to

have greater density of elements close to regions of interest and where large changes

in the computed solution are expected. These regions are the quartz bell jar, in order to

resolve the change in refractive index of the medium, the gas inlet and outlet pipes, and

the region above the substrate to accurately resolve the plasma. The generated mesh

consists of 34 243 triangle elements and 51 029 interior and 671 exterior faces. The DG

MPA-CVD model computed on this mesh consists of 1 011 102 degrees of freedom.

The DG electric field solution in the empty air-filled cavity is presented in Figure 7.10.

It is clear that the peak in the resonant electric field mode lies on the diamond substrate

surface. In the subsequent computation of the full DG MPA-CVD reactor simulations,

we therefore expect the plasma to reside as intended above the substrate. Furthermore,

the small electric field amplitudes around the quartz bell jar should remove the risk of

damage through unwanted microwave power deposition and hence heating.

With zero gas inlet velocity uinlet = 0, we present the array of spatial distributions

of the plasma density, microwave plasma deposition, gas temperature and atomic hy-

drogen located close to the substrate surface in Figures 7.11, 7.12, 7.13 and 7.14. The

shape of the plasma is improved by the AIXTRON inspired design over the simple ge-

ometry. The peaks in density of the plasma lie closer to the substrate surface and are

more evenly spread. Furthermore, the temperature of the quartz bell jar does not ex-

ceed 400 K. We note that the results presented here for the AIXTRON inspired reactor

are in agreement with those in [127].
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z

r
Figure 7.9: Computational domain and generated mesh of the ellipsoidal AIXTRON

reactor geometry.

Figure 7.10: Electric field magnitude in the empty AIXTRON reactor.
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Figure 7.11: The AIXTRON inspired reactor plasma shape operating at 700 W.
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Figure 7.12: The AIXTRON inspired reactor plasma shape operating at 800 W.
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Figure 7.13: The AIXTRON inspired reactor plasma shape operating at 1000 W.
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Figure 7.14: The AIXTRON inspired reactor plasma shape operating at 1100 W.
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7.3 Example 3: The LIMHP Bell Jar Reactor

In this section, the MPA-CVD model is applied to the geometry shown in Figure 7.15

which approximates the first generation LIMHP bell jar reactor developed by LSPM

Paris and Plassys analysed in [127]. In the geometry employed here, the reactor’s 26 cm

diameter Faraday cage houses a CVD chamber of height 35 cm containing a 10 cm di-

ameter quartz bell jar and 50 mm diameter substrate surface. The reactor is designed

to operate at a mean pressure of 20 torr to 120 torr, power of 0.6 kW to 6 kW and mi-

crowave frequency of 2.45 GHz exciting the TM023 cavity mode.

The mesh generated for the LIMHP domain outline consists of 15 836 elements with

23 432 interior and 644 exterior faces. As usual, regions of interest receive priority for a

higher density of elements such as the quartz bell jar, the microwave antenna and the

substrate surface. The DG MPA-CVD reactor model on this mesh consists of 467 742

degrees of freedom.

The empty air-filled electric field DG solution in the LIMHP reactor is shown in Fig-

ure 7.16. There is a clear peak in the amplitude of the electric field at the substrate

surface, however, attention should also be drawn to the peak lying just above the top

of the quartz bell jar. The primary peak in the electric field indicates that plasma ig-

nition will occur as desired above the substrate surface, however, increasing the input

power in the electric field does lead to a second plasma ball being generated at the

top of the quartz bell jar. The first generation LIMHP reactor is known to exhibit this

double plasma ball phenomenon [70].

Computed results of the DG MPA-CVD reactor model are presented in Figures 7.17,

7.18, 7.19 and 7.20 with zero inlet gas velocity, uinlet = 0. These results show agreement

with the results presented in [127]. Likewise with the AIXTRON inspired reactor de-

sign, the plasma density is distributed more evenly across the substrate surface, as well

as its peak residing in closer proximity to the carbon seed. However, as the power in-

put and density increases, the formation of the second plasma ball at the top of quartz

bell jar becomes prominent. The occurance of this discharge transition is explained in

[63]. Due to both the peak in the electric field at the top of the quartz bell jar and the

creeping temperature increase in the same region, a secondary plasma ball is generated.

The detrimental effect of this secondary plasma ball is to shield the electric potential at

the substrate surface, leading to suboptimal electron densities in the primary plasma.
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The attenuation experienced by the electric field is evident from the distribution of the

dielectric constant shown in Figure 7.21.

z

r
Figure 7.15: Computational domain and generated mesh of the ellipsoidal LIMHP re-

actor geometry.
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Figure 7.16: Electric field magnitude in the empty LIMHP reactor.
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Figure 7.17: The first generation LIMHP inspired reactor plasma shape operating at

700 W.
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Figure 7.18: The first generation LIMHP inspired reactor plasma shape operating at

900 W.
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Figure 7.19: The first generation LIMHP inspired reactor plasma shape operating at

1000 W.
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Figure 7.20: The first generation LIMHP inspired reactor plasma shape operating at

1100 W.
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Figure 7.21: The real and imaginary parts of the dielectric constant in the first LIMHP

generation reactor inspired design operating at a working pressure of

250 torr and power input of 1100 W. The shielding of the primary plasma

is evident from the field attenuation in the secondary plasma ball.
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7.4 Optimisation

In this section, we present an example of the optimisation procedure presented in Sec-

tion 4.4 for reactor design improvement. As a case study, we examine again the LIMHP

reactor shown in Section 7.3. The parameter to be optimised is the depth of the mi-

crowave antenna in the CVD reactor cavity. The microwave antenna will be displaced

over a 40 mm distance between two reference positions. A plot of the starting and

ultimate configuration of the microwave antenna position is shown in Figure 7.22.

The MPA-CVD reactor model was solved using meshes similar to that employed in

Section 7.3 in terms of element density. We present results of the electric field mag-

nitude DG approximation computed from the MPA-CVD model in Figure 7.23. Here

we can see that even small millimetre scale changes in the reactor geometry have a

profound effect on the electric field configuration.

Referring back to the optimisation procedure discussed in Section 4.4, we present

example target functions in Figure 7.24. Here we have plot the ratio of the electric field

magnitude in the plasma with that in the remaining CVD reactor cavity, and the total

power absorbed in the plasma. In Section 4.4 we referred to the work of Füner et al.

[55] optimising reactor design based on a target function of the form

Q f (Φ) =
‖E‖L2(Ωplasma)

‖E‖L2(ΩE-field)
. (4.4.1)

It is evident, however; that this quality factor does not give an indication of the power

absorbed in the plasma. Only when large quantities of the microwave power are ab-

sorbed in the reactor plasma will the gas temperature rise and hence lead to the dis-

sociation of hydrogen. With the ability to solve the self consistent MPA-CVD reactor

model, employing a metric of the power absorbed by the plasma would appear to be

the better control of quality factor; thereby, we would seek to optimise

Q f (Φ) =
∫

Ωplasma

Pohm dx. (7.4.1)

With the self consistent MPA-CVD reactor model we may also optimise the reac-

tor design for the underlying model variables. To this end, we present plots of the

maximum values of the temperature, molar mass fraction of atomic hydrogen and the

plasma electron density in Figure 7.25. Here we see that the range of configurations

which result in the highest temperatures, degree of hydrogen dissociation and plasma

electron density is in the range of the greatest power absorbed by the plasma. It should
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(a) High Position (b) Low Position

Figure 7.22: The start and end configurations of the LIMHP reactor waveguide an-

tenna position range.

be noted that improvements on these metrics should take into consideration the shape

and distribution of the plasma.
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Figure 7.23: Variations in the electric field magnitude in the LIMHP inspired reactor as the position

of the microwave antenna is lowered into the cavity.
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Figure 7.24: Examples of target functions for optimisation. Here the parameter varied

is the depth of the microwave antenna from its reference position shown

in Figure 7.22. The electric field magnitude ratio in and out of the plasma

and the microwave power absorbed in the plasma,
∫

Ωplasma
Pohm dx.
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Figure 7.25: Varying the microwave antenna height from the reference position shown

in Figure 7.22, here we plot the maximum value of the temperature,

atomic hydrogen mass fraction and electron density measured in the nu-

merical simulation.
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Conclusions and Future Work

8.1 Summary

In this thesis we have introduced a simplified model for the physical phenomena which

occur in an MPA-CVD reactor and its contained hydrogen gas plasma discharge, cf.

Chapter 2. The system of simultaneous PDEs underpinning this model provides a great

challenge in determining an approximate solution in an efficient and reliable manner.

Exploiting the DG numerical scheme, the discretisation of each of these equations fol-

lows a rigid procedure for each component of a standard conservation law, including

convective and viscous terms. Furthermore, the DG discretisation of the curl-curl op-

erator arising in Maxwell’s equations allows for the use of the same space of functions

for the entire system of equations. These discrete DG formulations have been collected,

derived and summarised in Chapter 3.

With the MPA-CVD reactor model and a unified method of numerical discretisation,

the full system of equations to be solved, their parameters and boundary conditions

for a CVD reactor geometry were then summarised in Chapter 4. Even with this sys-

tem of equations and discretisation scheme, there still exists the clear barrier of the

difficulty of its implementation. We acknowledge the existence of many finite element

libraries which facilitate the computation of such systems of finite element formula-

tions, but even with these packages, there is a large volume of work to even code one

of the equations of the DG MPA-CVD model. In Chapter 5 we introduce the idea of

automatic computation of not only the underlying code of a DG finite element formu-

lation, but indeed the DG finite element formulation itself. With the specification of

the convective and viscous terms found in a conversation law, the entire process from

DG FEM formulation to computation of its solution is automated. Reducing the effort
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required to discretise and solve large systems of PDEs with AptoPy allows for rapid

prototyping of modelling ideas, ideal for the underlying system of PDEs found in the

MPA-CVD model.

Whilst having a tool such as AptoPy is useful, its utility is measured by its perfor-

mance and the validity of its results. In Chapter 6 we addressed this issue, presenting a

small number of the regression tests written for AptoPy which are most relevant to the

MPA-CVD model. We further addressed the issue of the computation time required to

parse the DG FEM formulation and automatically generate Fortran code, highlighting

that a growing number of simultaneous equations and their interdependence nega-

tively impacts performance. Overall, the one time computation cost of each DG finite

element formulation and the required code to compute the DG finite element solution

using AptoPy was found to be acceptable.

Equipped with AptoPy and the DG MPA-CVD model we were able to compute nu-

merical solutions for several reactor geometries. In Chapter 7 we presented computa-

tions of MPA-CVD simulations for reactor designs inspired by the AIXTRON reactor,

the LIMHP reactor, and a simple cylindrical geometry, serving to highlight the trans-

port phenomena of the model. The results computed for the AIXTRON and LIMHP

reactors were found to be in agreement with those presented in [127]. In the following

section we discuss improvements which should be made in order to more accurately

simulate the plasma physics occurring in the MPA-CVD reactor.

8.2 Further Work

8.2.1 Plasma Chemistry

In order to consider a more physically relevant plasma physics model regime, an ap-

proach similar to that summarised in [70] should be considered. This involves expand-

ing the binary gas phase model discussed in this thesis to a full multiphase model

which includes, at its simplest level, the species of H, H2 and e. Considering the elec-

trons in the plasma discharge as a separate chemical species allows for a more accurate

description of their convective and diffusive mass and energy transport. The treatment

of electrons as a component of the multiphase gas also requires a more precise repre-

sentation of their generation and loss through ionisation, excitation and recombination.
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A standard plasma physics model of the ionisation of the gas mixture in a CVD

reactor models generation of electrons through ionisation by considering average ion-

isation collision cross sections between chemical species [58]. For chemical species s

we denote its ionisation collision cross section σs,i and electron velocity ue, such that

average collision frequency between electrons and the background gas is given by

νe−s = ns 〈σs,iue〉 . (8.2.1)

The ionisation rates of the neutral species in the CVD gas, n, and hence the source of

the electrons in the plasma, is proportional to the electron density in the plasma and

their collision frequencies

G = nenn 〈σs,iue〉 . (8.2.2)

The ionisation frequency of the neutral species in a gas discharge is dependent on the

thermal energy of the electrons. As such, the temperature of the electrons Te which are

heated by the deposited microwave power in the CVD reactor should be considered.

Accounting for the electron temperature provides a consistent description of the

plasma energy density, a key factor in the plasma’s mass and energy transport by con-

vection. The ionisation frequency of each electron impact process with a neutral species

can be approximated by rate coefficients

ks,i (Te) ∼ As,ie−
Es,i/Te , (8.2.3)

for ionisation energy Es,i and rate constant As,i. For example, in the case of hydrogen

dissociation reaction

e + H2 −−→ e + H + H, (8.2.4)

the rate constants can be approximated using AH2,i ∼ 10−14 and EH2,i ∼ 10 eV [117].

The recombination of an electron with an ion is also a function of the electron-ion

collision frequencies, and hence a function of the electron energy. As such, the sink

term of the electron density conservation is of the form

L = neni 〈σrecue〉 . (8.2.5)

Developing this further is a key component in a fully self consistent model of the

plasma physics in an MPA-CVD reactor. We refer again to the review paper [70] which

discusses the multitude of ionisation, recombination and excitation reactions which

take place in a Hydrogen and a Hydrogen-Methane plasma.
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8.2.2 Automation of the CVD Design Optimisation Procedure

In Section 4.4 we briefly discussed an optimisation procedure for improving the effi-

ciency and design of an MPA-CVD reactor. So far, this process has only been auto-

mated given a users’ set of parameters Φ. Provided a given reference geometry and

operating conditions of the underlying reactor, a simple optimisation algorithm could

be considered for designing an optimum reactor targeting the quality factor function

Q f .

8.2.3 3D Numerical Simulation

Although taking advantage of the azimuthal symmetry of most CVD reactor designs in

this thesis allowed for computationally less demanding numerical simulations, some

properties of the gas flow and CVD geometries cannot be resolved. For example, in

the reactor geometries presented in the results in Chapter 7, any gas inlet pipe which

is not centred about r = 0 is indeed coaxial rather than cylindrical. As such, it is not

possible to simulate gas inlet/outlet configurations such as a manifold. Furthermore,

some reactor designs also include asymmetrical features such as view ports and mea-

surement instruments [6, 98, 127, 130, 131]. This not only implies that the gas flow is

not azimuthally symmetric, but also that the TM resonant mode could be perturbed.

The major challenge of moving to a 3D simulation is the very large system of nonlin-

ear equations in the underlying DG formulation. The approach of using a direct solver

implemented in this thesis would be insufficient. Investigating an iterative method

and appropriate preconditioning would be necessary. As such, use of a library such as

PETSc should be considered [12].

8.2.4 Error Control and Adaptive Refinement

When developing and optimising MPA-CVD reactor designs, there are functionals of

interest such as heat flux at the diamond substrate surface. By implementing an a poste-

riori error estimation technique, the meshes used in the DG MPA-CVD simulation can

be adaptively refined to reduce the error in these functionals of interest [64, 65, 77, 138].

The DG method is well suited to mesh refinement as it offers a distinct advantage in not

requiring that a mesh be conforming, i.e., the function spaces incorporated in solving a

DG FEM formulation permit hanging nodes. This could further prove valuable for 3D

computationally expensive problems, refining the granularity of the mesh only where
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required.

8.2.5 Development of AptoPy

Running a solution process using AptoPy involves running AptoPy and AptoFEM in

distinct environments. Specifically, running an AptoPy script generates Fortran code

files which are then compiled against the AptoFEM library to generate an executable.

This executable then runs the required finite element computation separately from the

AptoPy environment.

Connecting the use of the two libraries together in a more natural setting would

provide a more seamless interface between the simple expression of a finite element

formulation, and its computation. The intention would be for AptoPy to generate the

required Fortran code to solve a finite element formulation, as it currently does, whilst

also wrapping the functions and data structures of AptoFEM. This would allow seam-

less communication of data between the two libraries, and hence AptoPy combined

with AptoFEM could constitute a numerical library rather than have a single purpose

of solving finite element problems. This is an idea which has been exploited by the

FEniCS project, whose underlying code is written in C++ and wrapped using the Sim-

plified Wrapper and Interface Generator (SWIG) [103].

Unfortunately there are few libraries as mature as SWIG for wrapping Fortran data

structures. The f2py library [113] available as a component of NumPy [111] could fa-

cilitate this with its feature set of wrapping Fortran primitives, arrays, function call-

backs and modules, however, there is no support for Fortran derived types or class

data structures. The modular nature of AptoFEM and its ability to mix element types

and function spaces fundamentally relies on the polymorphism paradigm offered by

object orientation. The result is that writing the appropriate code to wrap AptoFEM

would require a further intermediate layer. This layer would somehow translate the

derived type and class data structures of Fortran into primitives and arrays, such that

f2py can then be used to wrap those for AptoPy.
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APPENDIX A

MPA-CVD Model Equations and

Parameters

In this section we summarise the set of simultaneous PDEs which arise from the MPA-

CVD reactor model discussed in Chapter 2. We list the unknown system variables in

Table A.1, the MPA-CVD model system parameters and constants in Table A.2, the

system quantities in Table A.3 and finally the interdependency and nonlinearity of the

system of equations in Table A.4.

Navier-Stokes
∂ (ρu)

∂t
+∇ · (ρu⊗ u)−∇ ·

(
−pI + η

(
∇u +∇u> − 2

3 (∇ · u) I
))

= ρg (A.0.1)

Continuity
∂ρ

∂t
+∇ · (ρu) = 0 (A.0.2)

Conservation of molar mass fraction
∂(cxH)

∂t
+∇ · (cxHu)−∇ ·

(
MH2

M
cDHH2∇xH +

DT
H

MH
∇ ln T

)
= RH (A.0.3)

Conservation of energy
∂ (ρh)

∂t
+∇ · (ρhu)−∇ · (κ∇T) = Pohm (A.0.4)

Conservation of electron density
∂ne

∂t
+∇ · (neu)−∇ · (Da∇ne) = G− L (A.0.5)

Time harmonic Maxwell equation

∇×
(

µ−1∇× E
)
+ jω

(
σdc + jωεp

)
E = 0 (A.0.6)

Gauss’s law

∇ ·
(
εpE
)
= 0 (A.0.7)
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Quanitity Description

u gas velocity

p gas relative pressure

xH molar mass fraction of H

T gas mixture temperature

ne electron number density

E electric field

Table A.1: The unknown system variables.

Constant Name Dependence

MH molar mass of H

MH2 molar mass of H2

R gas constant

P mean vacuum pressure

ηH viscosity of H T

ηH2 viscosity of H2 T

g gravitational acceleration

DHH2 diffusivity of H in a mixture of H and H2 T

DT
H thermal diffusivity of H T

kr reverse rate coefficient T

k f forward rate coefficient T

ω electric field frequency

me electron rest mass

qe charge of the electron

σ electric conductivity

µ electric permeability

ε0 electric permittivity of free space

νme electron-neutral collision frequency T

κH thermal conductivity of H T

κH2 thermal conductivity of H2 T

hH specific enthalpy of H T

hH2 specific enthalpy of H2 T

Da ambipolar diffusion coefficient T

Table A.2: MPA-CVD reactor model system constants and parameters. Note that

some system constants indicate temperature dependence. These are ap-

proximations of empirical data as power series expansions of the tempera-

ture variable (cf. [35, 43]).
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Quantity Name Dependence

M = (MHxH + MH2 (1− xH)) mean molar mass xH, T

η = equation (2.2.43) gas viscosity xH, T

ρ = PM/RT gas density xH, T

c = P/RT molar concentration T

RH = 2
(
k f c2 (1− xH)− krc3x2

H

)
rate of production of H xH, T

σdc =
qe

2ne
meνme

cold plasma conductivity T, ne

Pohm = 1
2 |E|

2 σdc
ν2

me
ω2+ν2

me
power density E, T, ne

h = MH
M xHhH +

MH2
M (1− xH) hH2 gas specific enthalpy xH, T

κ = 1
2

(
∑i∈{H,H2} xiκi +

(
∑i∈{H,H2}

xi
κi

)−1
)

gas thermal conductivity xH, T

G = ne A0 |E|2 gain of electrons ne, E

L = R0ne
2 loss of electrons ne

ω2
pe =

qe
2ne

ε0me
natural plasma frequency ne

εp = ε0

(
1− ω2

pe
ω(ω−jνme )

)
cold plasma permittivity T, ne

Table A.3: MPA-CVD reactor model system quantities. We note the dependence of

each quantity on the unknown system variables.

u p xH T ne E p

Navier-Stokes (A.0.1) X X ρ, η ρ, η

Continuity (A.0.2) X ρ ρ

Mass fraction (A.0.3) X X c, DHH2 , DT
H, RH

Energy (A.0.4) X ρ, h, κ X Pohm Pohm

Electron density (A.0.5) X Da X G

Maxwell (A.0.6) νme εp X X

Gauss’ law (A.0.7) νme εp X

Table A.4: Summary of CVD reactor equations and their nonlinear dependencies. We

also note here the Lagrange multiplier term, p, which arises in the DG nu-

merical scheme discussed in Section 3.7.
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Element Boundary Identities

Theorem 1. Given the definitions in Section 3.2.3, let q ∈ H1 (T h
Ω

)
and w ∈

[
H1 (T h

Ω

)]d,

then

∑
κ∈T h

Ω

∫

∂κ
qw · n ds =

∫

ΓI∪∂Ω
[[q]] · {{w}} ds +

∫

ΓI
{{q}}[[w]] ds. (B.0.1)

Proof. Initially we note that since n+ = −n− we may write the identity

1
2

q+w− · n+ − 1
2

q+w− · n+ =
1
2

q+w− · n+ +
1
2

q+w− · n− = 0. (B.0.2)

We then rewrite the integration over element boundaries in terms of mesh faces

∑
κ∈T h

Ω

∫

∂κ
qw · n ds = ∑

κ∈T h
Ω

∫

∂κ∩∂Ω
qw · n ds + ∑

κ∈T h
Ω

∫

∂κ\∂Ω
qw · n ds

=
∫

∂Ω
[[q]] · {{w}} ds +

∫

ΓI

[
q+w+ · n+ + q−w− · n−

]
ds

=
∫

∂Ω
[[q]] · {{w}} ds

+
∫

ΓI

[
1
2

q+w+ · n+ +
1
2

q+w+ · n+

+
1
2

q−w− · n− +
1
2

q−w− · n−
]

ds

Employing (B.0.2) gives

∑
κ∈T h

Ω

∫

∂κ
qw · n ds =

∫

∂Ω
[[q]] · {{w}} ds

+
∫

ΓI

[
1
2

q+w+ · n+ +
1
2

q+w− · n+

+
1
2

q−w+ · n− +
1
2

q−w− · n−

+
1
2

q+w+ · n+ +
1
2

q+w− · n−

+
1
2

q−w+ · n+ +
1
2

q−w− · n−
]

ds
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=
∫

∂Ω
[[q]] · {{w}} ds

+
∫

ΓI

[(
q+n+ + q−n−

)
· 1

2
(
w+ + w−

)

1
2
(
q+ + q−

) (
w+ · n+ + w− · n−

)]
ds

=
∫

ΓI∪∂Ω
[[q]] · {{w}} ds +

∫

ΓI
{{q}}[[w]] ds. (B.0.3)

Theorem 2. Given the definitions in Section 3.2.3, let z ∈
[
H1 (T h

Ω

)]m and τ ∈
[
H1 (T h

Ω

)]m×d,

then

∑
κ∈T h

Ω

∫

∂κ
τ : (z⊗ nκ) ds =

∫

ΓI∪∂Ω
[[z]] : {{τ}} ds +

∫

ΓI
{{z}} · [[τ]] ds. (B.0.4)

Proof. Noting that

(z⊗ n) : τ =
m

∑
i=1

d

∑
j=1

(z⊗ n)ij τij

=
m

∑
i=1

d

∑
j=1

(
zinj

)
τij

=
m

∑
i=1

d

∑
j=1

zi
(
τijnj

)

= z · (τn) , (B.0.5)

the proof follows the same procedure as employed in Theorem 1.

Theorem 3. Given the definitions in Section 3.2.3, let w ∈
[
H1 (T h

Ω

)]d and v ∈
[
H1 (T h

Ω

)]d,

then

∑
κ∈T h

Ω

∫

∂κ
v · (nκ ×w) ds =

∫

ΓI∪∂Ω
[[w]]T · {{v}} ds−

∫

ΓI
{{w}} · [[v]]T ds. (B.0.6)

Proof. Noting that given the identity a · (b× c) = c · (a× b)

1
2
(
n+ ×w+

)
· v− − 1

2
w+ ·

(
n− × v−

)
=

1
2

v− ·
(
n+ ×w+

)
+

1
2

w+ ·
(
n+ × v−

)

=
1
2

v− ·
(
n+ ×w+

)
− 1

2
w+ ·

(
v− × n+

)

= 0, (B.0.7)

the proof follows the same procedure as employed in Theorem 1.
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