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Abstract 

 

This thesis deals with different types of uncertainty in various macroeconomic contexts 

and investigates ways in which these can be accommodated by adopting flexible 

techniques that allow a robust inference in estimation, testing and prediction. This thesis 

covers a wide range of aspects in macroeconomic analysis, including the choice of an 

appropriate unit root test, inference when the presence of breaks and the 

autocorrelation properties of data are unknown, characterisation of inflation dynamics 

when structural and specification uncertainty are present, as well as model uncertainty 

in forecasting when real-time data are available.  

Chapter 1 presents the general motivations and describes the main research objectives 

and methodology for each chapter, providing a thesis outline at the same time. 

Chapter 2 we examine the behaviour of OLS-demeaned/ detrended and GLS-demeaned/ 

detrended unit root tests that employ stationary covariates in situations where the 

magnitude of the initial condition of the time series under consideration may be non-

negligible. We show that the asymptotic power of such tests is very sensitive to the 

initial condition; OLS- and GLS- based tests achieve relatively high power for large and 

small magnitudes of the initial condition, respectively. Combining information from both 

types of test via a simple union of rejections strategy is shown to effectively capture the 

higher power available across all initial condition magnitudes. 

 In Chapter 3, we consider a two-step procedure for estimating level break size(s) when 

the presence of the structural break(s) is uncertain and when the order of integration of 

the data is unknown. In other words, we deal with uncertainty over the appropriate 

filtering of the data, as well as structural uncertainty over the existence of a break. Our 
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approach is motivated by the well known interplay between the unit roots and structural 

changes: Evidence in favour of unit roots can be a manifestation of structural changes 

and vice versa. The proposed procedure is shown to exhibit substantial accuracy gains in 

estimating the level break-size and breakpoint. 

Chapter 4 provides a characterisation of U.S. inflation dynamics within a generalised 

Phillips Curve framework that accommodates uncertainties about the duration a given 

Phillips Curve holds and the specification of the relationship, in addition to parameter 

and stochastic uncertainties accommodated within a typical Phillips Curve analysis. Our 

approach is based on an innovative method to deal with such uncertainties based on 

Bayesian model averaging techniques. Employing data for the U.S. in the period 1950q1-

2012q4, the estimated version of the "meta" Phillips Curve provides an interesting 

characterisation of inflation dynamics which is in accordance with a number of 

distinguished studies. 

Chapter 5 investigates the extent to which nowcast and forecast performance is 

enhanced by the use of real-time datasets that incorporate past data vintages and 

survey data on expectations in addition to the most recent data. The paper proposes a 

modelling framework and evaluation procedure which allow a real-time assessment and 

a final assessment of the use of revisions and survey data judged according to a variety 

of statistical and economic criteria. Both survey data and revisions data are found to be 

important in calculating density forecasts in forecasting the occurrence of business cycle 

events. Through a novel "fair bet" exercise, it is shown that models that incorporate 

survey and/or revisions data achieve higher profits in decision-making. The analysis also 

highlights the need to focus on future growth and inflation dynamics relevant to 

decision-makers rather than relying on simple point forecasts. 
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Chapter 1

Introduction

Policymakers are continually faced with the eminently important issue of model uncertainty when

designing economic plans or tailoring decisions, with di¤erent models often resulting in signi�-

cantly di¤erent policy prescriptions. Structural breaks, �awed econometric practises, as well as

fundamentally complex mechanisms embedded in economic environments, are among many factors

complicating the model selection process. Relying on a single model, without paying the required

attention to the uncertainty surrounding the true data generating process, can result in ambigu-

ous outcomes that often entail severe macroeconomic repercussions. For this reason, research was

directed towards accommodating model uncertainty in applied macro-econometric modelling, with

the model averaging technique becoming increasingly attractive and empirically relevant. This

thesis explores innovative model averaging techniques in various macroeconomic contexts, ranging

from structural breaks inferences and in�ation dynamics to forecasting using real-time data. At

the same time, emphasis is placed in making valid inference in unit root testing, where uncertainty

surrounding the true data generating process can also dramatically undermine the credibility of

test outcomes.

Since this thesis covers a wide range of aspects in macroeconomic analysis, the chapters evolve

around independent research questions, albeit linked with the common axiom of model uncertainty.

In e¤ect, the diversity of macro-econometric topics addressed in this thesis creates a stimulating

framework in which we explore innovative and robust techniques that deal with uncertainty in

various contexts which are often critical for empirical researchers. The remainder of this chapter

provides the motivation, exact research questions and methodology for each of the main thesis

chapters.
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1.1 Chapter 2: Initial Condition and Testing Choice Uncertainty

1.1.1 Motivation and Research Questions

Research for this chapter has been motivated by the observation that di¤erent unit root tests behave

di¤erently depending of the structure of time series under consideration. E¤ectively, di¤erent unit

root tests can result in di¤erent test outcomes, creating uncertainty regarding the true time-series

properties of the data. In particular, Müller and Elliott (2003) show that tests based on the OLS-

demeaning/detrending procedure of Dickey and Fuller (1979) and the GLS- demeaning/detrending

procedure of Elliott, Rothenberg and Stock (1996) exhibit very di¤erent power pro�les depending on

the magnitude of the initial condition (the deviation of the initial observation from the underlying

mean/trend in the data). In this chapter we examine the behaviour of covariate augmented unit

root test over a range of initial condition values and propose a robust procedure for mitigating

against the uncertainty arising from di¤erent test outcomes.

Hansen (1995) has shown that augmenting the traditional OLS regression model with that

covariate can substantially increase the power of the OLS-based unit root test while Elliott and

Jansson (2003) and Westerlund (2013) demonstrate that similar advantages are obtained in a GLS-

demeaning/detrending setting. In this chapter we demonstrate that for a small initial condition,

the GLS-based test (Elliott and Jansson (2003) test) can have substantially more power than its

OLS- based counterpart (Hansen (1995) test), while the reverse is true for a large initial condition.

Typically, the power of the OLS-based test is an increasing function of this magnitude, whereas

the GLS-based test demonstrates the opposite behaviour.

The initial condition is not known and it cannot be consistently estimated. It cannot be said

whether the initial condition is small or large since di¤erent conclusions are reached depending on

the sample window considered. This creates considerable uncertainty regarding the choice of the

appropriate unit root test as it is not clear which of the two types of test to apply.

1.1.2 Methodology

To accommodate uncertainty regarding the choice of the covariate augmented unit root test, we

follow Harvey et al. (2009a) who propose a simple union of rejections strategy whereby the unit
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root null hypothesis is rejected whenever either of the individual OLS- or GLS- based unit root

tests rejects. This methodology is shown to capture the superior power properties of the GLS-based

test for a small initial condition and the superior power properties of the OLS-based test for a large

initial condition. Accordingly, a union of rejections decision rule between the Elliott and Jansson�s

test and Hansen�s test is fruitfully explored in order to maintain good power properties across both

large and small initial conditions. Reported asymptotic evidence suggests that our approach o¤ers

good robust power performance in the presence of uncertainty over the magnitude of the initial

condition, retaining attractive power levels across zero, small and large initial condition magnitudes.

1.2 Chapter 3: Structural Breaks or Unit Roots?

1.2.1 Motivation and Research Questions

Structural breaks uncertainty can arise when the break size is small and di¢ cult to detect or locate.

If there is a break and the researcher fails to account for it, then this can have detrimental e¤ects

on modelling, estimation and forecasting. The usual practice in applied econometrics is to perform

a structural break test, such as the test proposed by Andrews (1993) and Andrews and Ploberger

(1994). If the test rejects the null of no structural break, then estimation and inference is carried

out conditional on the presence of the break. However, Hansen (2009) highlights the poor sampling

properties associated with pretesting routines while Harvey, Leybourne and Taylor (2012) show

that unit-root tests which are based on auxiliary statistics for the detection of breaks can deliver

power function with undesirable properties.

Concurrently, the detection and location of breaks can be obscured by uncertainty regarding the

autocorrelation properties of the series, and in particular, whether the underlying process accepts

a unit root or not. Research has been directed towards making structural breaks inferences when

the order of integration is unknown (inter alia Vogelsang (1998), Harvey, Leybourne and Taylor

(2009b, 2010) and Perron and Yabu (2009)). It has been suggested that one way to deal with this

uncertainty is to pretest for a unit root and then conduct a structural breaks analysis by choosing

the break fraction that minimises the sum of squared residuals from a regression on the level or

the �rst-di¤erence of the series, depending on the unit root outcome in the �rst phase. Carrion-i-
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Silvestre, Kim and Perron (2009) also suggest choosing the break location based on quasi-di¤erenced

regressions. However, a unit root test will only inform the researcher whether a unit root is present

and will not indicate the appropriate �ltering of the data needed to construct the quasi-di¤erenced

series. In addition, a unit root test that does not account for structural breaks when they occur can

substantially distort inferences since the power of such tests is severely reduced when the process

is stationary but subject to breaks (Perron (1989)). E¤ectively, whether the emphasis is placed on

unit roots or structural breaks, the interplay between structural breaks and unit root tests poses a

threat to valid inference.

Consequently, the motivation for this chapter is the interplay between unit root tests and

structural breaks: Evidence in favour of unit roots can be a manifestation of structural breaks

and vice versa. Should the researcher perform a unit-root test before testing for the presence of

structural breaks or should he/she test for the presence of structural breaks before conducting unit

root tests? Accordingly, this chapter considers break size estimation when the presence of breaks

is uncertain and the order of integration of the data is unknown.

1.2.2 Methodology

We propose a two-step procedure that simultaneously deals with uncertainty over the existence

of breaks and the autocorrelation properties of data. In the �rst step, we follow Harvey and

Leybourne (2013) whose procedure selects between �rst di¤erences estimators and a number of

quasi-di¤erenced alternatives according to which achieves the smallest minimum sum of squared

residuals, mitigating against the possibility of erroneously selecting purely between the level of the

series and �rst-di¤erenced series. The method is particularly conservative since a break is included

a priori, so that the choice of the �ltering parameter is considered credible, even when no break

has actually taken place.

The second step exploits the advantages of model averaging in estimation, so that the most

robust inferences can be obtained when the existence of break is uncertain. After applying the

selected �ltering, as indicated in the �rst step, we distinguish between a restricted and unrestricted

model. The restricted model speci�es that no break takes place, so that the break size is zero, while

the unrestricted model allows for a break. The second step involves taking a weighted average of
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the break size under the two models with the weights selected to minimise a modi�ed Mallow

information criterion (Hansen (2009)). It is found that the approach attains substantial accuracy

gains relating to the location of the break and its size. This superiority over Hansen�s (2009)

original proposal is a result of the application of an appropriate �ltering parameter.

1.3 Chapter 4: In�ation Dynamics and Structural Uncertainty

1.3.1 Motivation and Research Questions

This chapter considers structural instability of the new-Keynesian Phillips Curve and examines

the suitability of various driving force measures that can enter the relationship. The aim of this

chapter is to characterise the U.S. in�ation dynamics accommodating structural instability arising

from regime breaks and changes in the underlying drivers of price-setting decisions.

The potential of structural instability, which arises as central banks revise their monetary poli-

cies according to the macroeconomic environment that prevails, creates signi�cant uncertainty re-

garding the response of in�ation to expectations, past in�ation and the real activity. The chapter is

motivated by the numerous and dramatic changes that in�ation dynamics have undergone through:

The abrupt shifts in the level of in�ation, the �attening of the Phillips Curve and the decline in

in�ation persistence are likely to be important determinants of the changing in�ation dynamics, es-

tablishing di¤erent in�ation regimes. Accordingly, we expect that this �regime uncertainty�makes

the choice of the appropriate sample window a challenging task.

Moreover, work on this chapter has been motivated by the ongoing debate about which variable

that captures changes in the real economy should enter the Phillips Curve relationship. The real

marginal cost that enters the relationship is an unobservable variable that has to be estimated.

Several authors, such as Fuhrer and Moore (1995a, b) and Neiss and Nelson (2002), suggest using

the output gap as a measure of capacity utilisation but the use of the output gap does not deliver

theoretically consistent results as emphasised by Galí and Gertler (1999). Instead, Sbordone (2002)

Galí et al.(2001) and Galí and Gertler (1999) suggest using labour share, documenting that this

measure incorporates both productivity and wage pressures to in�uence in�ation. Here, the gap

created by this controversy is investigated in a �exible way, using model averaging techniques.
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1.3.2 Methodology

Against this backdrop, this chapter provides an interesting characterisation of U.S. in�ation dy-

namics that embeds the substantial uncertainties arising from structural breaks and speci�cation

issues, through robust model averaging techniques, proposed by Lee et al. (2015). The approach

involves a set of speci�c Phillips Curves which are distinguished by the sample size over which they

are estimated as well as the speci�c measure of real marginal cost that enters the relationship. The

idea is that if there is a break, a new Phillips Curve prevails, so that the sample period over which

it holds is small. If there is regime continuity so that no break occurs, the sample size over which

a given Phillips Curve holds is augmented by one additional observation as we move through the

sample. The individual Phillips Curves are estimated through Generalised Methods of Moments

but are combined using Bayesian Model Averaging techniques, employed in a recursive setup.

The model weights are determined by the ability of individual Phillips Curves to explain in�ation

dynamics, allowing them to evolve and providing the most reliable inferences of in�ation dynamics

in a �exible setting. In particular, a model�s weight depends on the probability of observing the

last observation in the sample and the probability that the model remains relevant, which itself

depends on last period�s weights and the transition probability which re�ects the possibility of a

break. The approach is shown to perform well in characterising in�ation dynamics, capturing all

the major changes in in�ation history, while it provides important evidence on the usefulness of

di¤erent measures of the real activity.

1.4 Chapter 5: Forecast Evaluation and the Usefulness of Real-

Time Data

1.4.1 Motivation and Research Questions

The purpose of this chapter is to judge the usefulness of real-time data in decision-making, focusing

on the use of revision and survey data in nowcasting and forecasting quarterly in�ation and output

growth in the U.S. using novel evaluation criteria and model averaging techniques. The advantages

of model averaging in forecasting have been widely examined (see for instance Harvey and Newbold
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(2005)) so one of the scopes of this chapter is to investigate these bene�ts in the real-time data

context. Since �rst release data are published with a delay, agents often use information from

surveys as direct measures of expectations of the contemporaneous and future values of the variables

of interest. In addition, statistical agencies usually provide preliminary estimates of the variables

at the earliest opportunity, subsequently revising them as more complete information �ows in.

While the incorporation of survey and revisions data in real-time analysis has been widely

examined, evidence on the usefulness of such data in forecasting has been mixed. Koenig, Dolmas

and Piger (2003) argue that because researchers tend to mix heavily revised data with �rst-release

and lightly revised data, the conventional approach of using all types of data is unlikely to yield

good forecasts. On the other hand, Garratt et al. (2008), Clements and Galvão (2013) and Jacobs

and van Norden (2011) all provide evidence that the forecast performance is signi�cantly improved

when modelling data revisions. Consensus has not been reached on the usefulness of survey data

either. Among others, Matheson et al. (2010) and Bańbura and Rünstler (2011) demonstrate that

expectations data enhance the predictive ability of models while Croushore (2010) reports evidence

from studies that uncover the biases relating to expectational errors. This chapter addresses the

mixed evidence in literature and sets out a modelling framework that accommodates revisions data

and survey data alongside the �rst-release data.

In addition, research on this chapter is also motivated by the vast literature on forecast eval-

uation. Recently researchers have shifted attention from point forecasts to density forecasts in an

attempt to incorporate forecast uncertainty, relying more on logarithmic scores than root mean

squared errors when evaluating a model�s forecast performance. Even more importantly, a strand

of literature focuses on the economic value of a model�s value, judging the performance of a model in

speci�c decision making settings (see Granger and Machina (2006), Granger and Pesaran (2000)).

Accordingly, we judge the usefulness of real-time data not just in terms of statistical evaluation

criteria, but also their contribution in accumulating pro�ts to investors predicting relatively rare

events.
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1.4.2 Methodology

To address this chapter�s research aims, we adopt a simple modelling framework in which we

incorporate revisions and survey data alongside the most recent data measures to characterise the

data generating process of the variables of interest. The usefulness of revisions and survey data

is judged according to the nowcasting and forecasting performance of models that fully make use

of the data compared to the performance of models that only make partial use of information or

that are based only on the most recent vintage of data. In doing so, we employ model averaging

techniques in a recursive set-up, diversifying against structural breaks.

The analysis provides a real-time assessment and a �nal assessment of forecast performance.

The real-time assessment involves a recursive estimation of individual VAR models, distinguished

by the use of revisions and survey data and combined using model averaging methods. The weights

re�ect the relative nowcasting performance of each model according to statistical criteria such as

the mean root squared error or logarithmic score. This real assessment exercise results in four

average models: (i) the average model that uses both revisions and survey data to di¤erent extent,

(ii) the average model that makes no use of revisions data, (iii) the average model that makes no

use of survey data and (iv) the average model that makes no use of revisions and survey data.

The �nal assessment then judges the performance of the four average models based on statis-

tical criteria, as well as economic criteria which are based on explicit investment decision making

strategies. In the latter case, we focus on a set of events involving output and in�ation that are

frequently discussed in business cycle analysis and introduce a novel means of evaluating probability

forecasts which is built on fair-bets.

This methodology is shown to deliver interesting research outcomes: Judged by statistical crite-

ria, the performance of models that nowcast and forecast output growth and in�ation is considerably

enhanced by taking into account information available in survey data and revisions data. We also

show that relating to economic signi�cance, both revisions data and survey expectations are impor-

tant in calculating density forecasts in forecasting the occurrence of a number of events. Moreover,

the use of revisions and survey data can substantially boost investors�pro�ts in decision-making

based on forecasts, as shown by a "fair bet" exercise. In addition, the analysis demonstrates that
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evaluating forecasts based on future growth and in�ation dynamics that are relevant to decision-

makers is a much more reliable practice than relying solely on point forecasts.
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Chapter 2

The Impact of the Initial Condition

on Covariate Augmented Unit Root

Tests

2.1 Introduction

Conventional testing for a unit root in a time series is typically carried out using the OLS-

demeaning/detrending procedure of Dickey and Fuller (1979), or the GLS- demeaning/detrending

procedure of Elliott, Rothenberg and Stock (1996). When the series under consideration covaries

with an available stationary variable, Hansen (1995) showed that it is possible to substantially

increase the power of the OLS-based unit root tests by augmenting the underlying OLS regression

model with that covariate. Elliott and Jansson (2003) and Westerlund (2013) show that incorpo-

rating covariates in a GLS-demeaning/detrending setting also improves the power of GLS- based

unit root tests.

As shown in Müller and Elliott (2003), the powers of conventional OLS-based and GLS-based

unit root tests are sensitive to the magnitude of the unobserved initial condition of a time series.

For a small initial condition, GLS-based tests can have substantially more power than their OLS-

based counterparts, while the reverse is true for a large initial condition. Typically, the power of

OLS-based tests is an increasing function of this magnitude, whereas GLS-based tests demonstrate

the opposite behaviour. In any practical testing situation, the magnitude of the initial condition

is not known (nor can it be consistently estimated) and it is therefore unclear whether it is best

to apply an OLS- or GLS-based unit root test in order to extract the most information about the
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presence, or otherwise, of a unit root. Harvey et al. (2009a) examine the behaviour of a simple

union of rejections strategy whereby (in its simplest guise) the unit root null hypothesis is rejected

whenever either of the individual OLS- or GLS- based unit root tests rejects. This procedure is

shown to perform well in practice since it captures the superior power of the GLS-based test for a

small initial condition and the superior power of the OLS-based test for a large initial condition.

In this chapter, we show that the patterns of sensitivity of the power of OLS- and GLS-based

covariate augmented unit root tests to the magnitude of the initial condition are actually very similar

to that of their non-covariate augmented counterparts. This implies that the same considerations

are relevant as in the non-covariate augmented case, when deciding which of the OLS- or GLS-based

covariate augmented unit root tests to apply. Our proposed solution is once again to employ a union

of rejections strategy, which we demonstrate is very e¤ective in the covariate augmented context.

The plan of the chapter is as follows. The next section sets out the model and describes the Hansen

(1995) and Elliott and Jansson (2003) covariate augmented unit root tests. Here we also consider

a simpler variant of the Elliott and Jansson (2003) GLS-based test following Westerlund (2013)

which proves useful in the context of the union of rejections strategy. Section 2.3 derives the local

asymptotic power functions of the tests in the presence of possibly non-negligible initial conditions

and examines their asymptotic local powers. Section 2.4 introduces the union of rejections strategies

and examines their large sample power properties. Finite sample power comparisons are shown in

section 2.5, which also includes discussion of issues regarding the practical implementation of the

recommended procedure. Section 2.6 includes an empirical illustration of the proposed strategy.

Section 2.7 concludes the chapter. In what follows, k (:) denotes the indicator function, L denotes

the lag operator, �! denotes convergence in probability and =) denotes weak convergence.

2.2 The model and covariate augmented unit root tests

For purposes of transparency we will conduct our analysis within the context of a fairly simple

model that admits a single covariate and abstracts from serial correlation in the innovations. We
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consider the following model for the series yt and the covariate xt, t = 1; :::; T :264 yt

xt

375 =
264 �y + �yt

�x + �xt

375+
264 uy;t

ux;t

375 (2.1)

where 264 uy;t � �uy;t�1

ux;t

375 =
264 vt

et

375 : (2.2)

Within this generic data generating process (DGP) speci�cation we identify three alternative spec-

i�cations for the deterministic components of yt and xt, with varying restrictions concerning the

trend component of yt and xt:

Model A : �y = �x = 0 (2.3)

Model B : �y 6= 0; �x = 0 (2.4)

Model C : �y 6= 0; �x 6= 0 (2.5)

In Model A, no trends are assumed present in either yt or xt; in Model B, a trend is permitted

in yt alone, while both yt and xt admit a trend in Model C. We make the following assumption

regarding the innovations vt and et:

Assumption 1. The stochastic process "t =
�
vt et

�0
is a martingale di¤erence sequence

with variance E("t"0t) = 
 where


 =

264 �2v �ev

�ev �2e

375 (2.6)

and suptE(k et k4) <1: Let the squared correlation between the innovation vt and the covariance

ux;t = et be denoted by

R2 =
�2ev
�2v�

2
e

: (2.7)

Within (2.2), for the autoregressive process uy;t we set � = 1 + c=T for c � 0, with c = 0 and

c < 0 corresponding to unit root and local-to-unit root autoregressive processes, respectively. Here

ux;t = et is the covariate which is correlated with the innovation term of uy;t when �ev 6= 0 (i.e.

when R2 > 0).

In this chapter we wish to allow for the possibility that the initial condition of the autoregressive

process uy;t, i.e. uy;1, is asymptotically non-negligible, so that its limiting e¤ect on covariate aug-
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mented unit root tests can be ascertained. Speci�cally, the following assumption is made regarding

the behaviour of uy;1:

Assumption 2. For c < 0, the initial condition is generated according to uy;1 = a
p
�2v=(1� �2),

where � is a �xed parameter. For c = 0, we may set uy;1 = 0 without loss of generality, due to the

exact similarity of the covariate augmented unit root tests to the initial condition in this case.

In Assumption 2, the parameter � controls the magnitude of the �xed initial condition uy;1 (i.e.

the deviation of the initial observation from the underlying mean/trend in the data) relative to the

standard deviation of a stationary AR(1) process with parameter � and innovation variance �2v.

This form for the initial condition is closely related to that given in Müller and Elliott (2003) and

Harvey and Leybourne (2005). Notice also that, when c < 0, the initial value is not asymptotically

negligible because T�1=2uy;1 ! ��v=
p
�2c as T !1:

Our focus in this chapter is on testing the unit root null H0 : � = 1 against the stationary

alternative H0 : � < 1, in the case where a covariate is available. In the context of the model (2.1)-

(2.2) and Assumption 1 we now outline statistics that derive from the Hansen (1995) and Elliott

and Jansson (2003) approaches to covariate augmented unit root testing, which are respectively

based on OLS and GLS detrending of the yt data.

2.2.1 OLS-based statistics

The Hansen (1995) approach tests for a unit root in yt using a Dickey-Fuller-type regression,

augmented by the covariate as an additional regressor, and implicitly employs OLS demean-

ing/detrending of the yt and xt series (note that Hansen does not consider Model C, but extension

to this case is trivial). Based on our components representation of the DGP in (2.1), we express

this type of statistic as follows:

t�̂ =
�̂

s:e:(�̂)
(2.8)

where �̂ and s:e:(�̂) are the OLS estimate and associated standard error of � obtained from the

regression

�ûy;t = �ûy;t�1 + �ûx;t + �t (2.9)
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with ûy;t and ûx;t denoting residuals from the OLS demeaned/detrended yt and xt series

ûy;t =

8><>: yt � �̂y for Model A

yt � �̂y � �̂yt for Models B, C
(2.10)

ûx;t =

8><>: xt � �̂x for Models A,B

xt � �̂x � �̂xt for Model C
(2.11)

where in the demeaned cases, �̂y and �̂x denote the estimated intercepts in the regressions of yt

and xt, respectively, on a constant, while in the detrended cases, �̂y, �̂y and �̂x, �̂x denote the

intercept, trend coe¢ cient estimates in the regressions of yt and xt, respectively, on a constant and

linear trend.

2.2.2 GLS-based statistics

Elliott and Jansson (2003) propose an approach to covariate augmented unit root testing based

on a likelihood ratio principle combined with GLS demeaning/detrending for yt but retaining OLS

demeaning/detrending for the covariate xt. Speci�cally, for our basic model, their statistic is given

by:

�̂ = T

8<:tr
0@" TX

t=1

ût(1)ût(1)
0

#�1 " TX
t=1

ût(��)ût(��)
0

#1A� 1� ��
9=; (2.12)

where, for r = �� = 1 + �c=T (for some chosen �c < 0) and r = 1,

ût(r) = zt(r)� dt(r)0�̂(r) (2.13)

with

zt(r) =

264 (1� r k (t > 1)L)yt
xt

375 (2.14)

dt(r)
0 =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

264 1� r k (t > 1) 0

0 1

375 for Model A

264 1� r k (t > 1) 0 (1� r k (t > 1)L)t

0 1 0

375 for Model B

264 1� r k (t > 1) 0 (1� r k (t > 1)L)t 0

0 1 0 t

375 for Model C

(2.15)
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and

�̂(r) =

"
TX
t=1

dt(r)
̂
�1dt(r)

0

#�1 " TX
t=1

dt(r)
̂
�1zt(r)

#
(2.16)

where 
̂ is a consistent estimator of 
:

An alternative approach to covariate augmented unit root testing that also makes use of GLS

demeaning/detrending for yt is to adapt the Hansen (1995) Dickey-Fuller-based statistic, where

the deterministic coe¢ cients in (2.1) are estimated using GLS rather than OLS, an approach

suggested by Westerlund (2013). Speci�cally, we consider the following GLS-based variant of

Hansen�s statistic:

t~� =
~�

s:e:(~�)
(2.17)

where ~� and s:e:(~�) are obtained from the �tted OLS regression

�~uy;t = ~�~uy;t�1 + ~�ûx;t + ~�t (2.18)

with ûx;t denoting residuals from the OLS demeaned/detrended xt series as before, but now ~uy;t

denoting the GLS demeaned/detrended yt series, obtained from an OLS regression of (1� �� k (t >

1)L)yt on 1��� k (t > 1) for Model A, and (1��� k (t > 1)L)yt on [1� �� k (t > 1); (1� �� k (t > 1)L)t]0

for Models B and C.

Both the �̂ and t~� GLS-based statistics rely on specifying a value of �c. Elliott and Jansson

(2003) and Westerlund (2013) suggest using the Elliott et al. (1996) values of �c = �7 for Model A

and �c = �13:5 for Models B and C. These choices are motivated by the value of c = �c for which

the nominal 0:05-level asymptotic Gaussian local power envelope is at 0:50 in the non-covariate

augmented case, which corresponds to the case of R2 = 0 in the context of the covariate augmented

tests. As Elliott and Jansson (2003) and Westerlund (2013) note, it is also possible to select �c

according to the value of R2, so that the asymptotic Gaussian local power envelope is at 0:50 for

any given R2, but these authors do not recommend such an approach, arguing that unit root test

power is increasing in R2 (for a given c), and so base their choice of a single �c parameter on the

lowest power scenario (R2 = 0). In what follows, we follow such previous work and set �c = �7 for

Model A and �c = �13:5 for Models B and C.
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2.3 Asymptotic Results

In this section we derive the local asymptotic distributions for t�̂ , t~� and �̂ under Assumptions 1

and 2, when � = 1 + c=T , c � 0. We make use of the following weak convergence result

T�1=2
brT cX
t=1

264 vt

et

375 =)

264 �v 0

�eR
p
�2e(1�R2)

375
264 W1(r)

W2(r)

375 (2.19)

=

264 �vW1(r)

�e

n
RW1(r) +

p
1�R2W2(r)

o
375 (2.20)

where W1(r) and W2(r) are independent Brownian motions. The initial condition manifests itself

via the result (see, for example, Müller and Elliott, 2003)

T�1=2(uy; brT c � uy;1 ) �vKc(r) (2.21)

where

Kc(r) =

8><>: W1(r) c = 0

�(erc � 1)=
p
�2c+W1c(r) c < 0

(2.22)

and W1c(r) is the Ornstein-Uhlenbeck process

W1c(r) = c

rZ
o

ec(r�s)W1(s)ds+W1(r): (2.23)

The following theorem now provides the limit distributions of the three covariate augmented unit

root statistics1.

Theorem 1 For the DGP given by (2.1)-(2.2), under Assumptions 1 and 2, with � = 1+ c=T;

c � 0;

(i) For model i (i=A, B, C),

t�̂ )
cp

1�R2

vuuut 1Z
0

Lic(r)
2dr +

p
1�R2

1R
0

Lic(r)dW1(r)s
1R
0

Lic(r)
2dr

�R

1R
0

Lic(r)
2dW2(r)s

1R
0

Lic(r)
2dr

(2.24)

where

1Proofs are provided in Appendix A.
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LAc (r) = Kc(r)�
1R
0

Kc(s)ds

LBc (r) = LCc (r) = Kc(r)� f4
1R
0

Kc(s)ds� 6
1R
0

sKc(s)dsg � f12
1R
0

sKc(s)ds� 6
1R
0

Kc(s)dsgr:

(ii) For model i (i=A, B, C),

t~� ) cp
1�R2

vuuut 1Z
0

M i
c;�c(r)

2dr +
p
1�R2

1R
0

M i
c;�c(r)dW1(r)s
1R
0

M i
c;�c(r)

2dr

�R

1R
0

M i
c;�c(r)

2dW2(r)s
1R
0

M i
c;�c(r)

2dr

(2.25)

+
c�p

�2c(1�R2)

1R
0

M i
c;�c(r)drs

1R
0

M i
c;�c(r)

2dr

+
1p

1�R2

N i
c;�cfc

1R
0

rM i
c;�c(r)dr �

1R
0

M i
c;�c(r)drgs

1R
0

M i
c;�c(r)

2dr

(2.26)

+
Rp
1�R2

P i
1R
0

M i
c;�c(r)dr +Q

i
1R
0

M i
c;�c(r)drs

1R
0

M i
c;�c(r)

2dr

(2.27)

where

MA
c;�c(r) = Kc(r)

MB
c;�c(r) =MC

c;�c(r) = Kc(r)� f�c�Kc(1) + 3(1� �c�)
1R
0

sKc(s)dsgr

NA
c;�c = 0

NB
c;�c = NC

c;�c = �c
�Kc(1) + 3(1� �c�)

1R
0

rKc(r)dr

PA = PB = RW1(1) +
p
1�R2W2(1)

PC = 4fRW1(1) +
p
1�R2W2(1)g � 6fR

1R
0

rdW1(r) +
p
1�R2

1R
0

rdW2(r)g

QA = QB = 0

QC = 12fR
1R
0

rdW1(r) +
p
1�R2

1R
0

rdW2(r)g+ 6fRW1(1) +
p
1�R2W2(1)g

with �c� = (1� �c+ �c2=3)�1(1� �c):

(iii) For model i (i=A, B, C),

�̂) Gic;�c +H
i
c;�c +

R2

1�R2 (�c
2 � 2c�c)

1Z
0

Sic(r)
2dr +

R2p
1�R2

2�c

1Z
0

Sic(r)dW2(r) (2.28)

where

GAc;�c = �c
2
1R
0

Kc(r)
2dr � �cKc(1)

GBc;�c = GCc;�c = �c
2
1R
0

Kc(r)
2dr + (1� �c)Kc(1)

2 � k�1�c f(1� �c)Kc(1) + �c
2
1R
0

rKc(r)drg2
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HA
c;�c = HC

c;�c = 0

HB
c;�c = k�1�c f(1� �c)Kc(1) + �c

2
1R
0

rKc(r)drg2 � fk�c + �c2R2

12(1�R2)g
�1�

[(1� �c)Kc(1) + �c
2
1R
0

rKc(r)dr +
R2

1�R2 f
�c(1��c)
2

1R
0

Kc(r)dr � �c(c� �c)
1R
0

rKc(r)drg

+ Rp
1�R2 f�c

1R
0

rdW2(r)� �c
2

1R
0

dW2(r)g]2

SAc (r) = SBc (r) = Kc(r)�
1R
0

Kc(s)ds

SCc (r) = Kc(r)� (4� 6r)
1R
0

Kc(s)ds� (12r � 6)
1R
0

sKc(s)ds

with k�c = 1� �c+ �c2=3:

We now consider numerical results for the asymptotic properties of the tests presented so far in

this chapter. In Table 2.1 we report asymptotic null (left-tail) critical values for R2 = f0; 0:1; :::; 0:9g

for all tests at the nominal 0:10�, 0:05- and 0:01-levels, which were obtained by direct simulation

of the limit representations of Theorem 1 with c = 0 (note from (2.22) that the limits are not

dependent on when c = 0). For all asymptotic results in this chapter, we conducted Monte Carlo

simulations using Gauss 9.0 with 50; 000 replications, approximating the Brownian motion processes

W1(r) and W2(r) using independent NIID(0; 1) random variates for each, and approximating the

corresponding integrals by normalized sums of 2000 steps.
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Table 2.1: Asymptotic ��level critical values of covariate augmented unit root tests

t�̂ t~� �̂

R2 � = 0:10 � = 0:05 � = 0:01 � = 0:10 � = 0:05 � = 0:01 � = 0:10 � = 0:05 � = 0:01

Model A

0.0 �2:57 �2:86 �3:40 �1:61 �1:94 �2:60 4:60 3:30 1:92

0.1 �2:52 �2:82 �3:39 �1:57 �1:91 �2:57 4:80 3:36 1:67

0.2 �2:46 �2:77 �3:37 �1:52 �1:88 �2:53 5:08 3:44 1:42

0.3 �2:40 �2:72 �3:33 �1:47 �1:82 �2:51 5:45 3:60 4:22

0.4 �2:33 �2:65 �3:28 �1:41 �1:77 �2:46 5:95 3:85 1:06

0.5 �2:25 �2:58 �3:21 �1:34 �1:71 �2:41 6:64 4:28 0:98

0.6 �2:16 �2:50 �3:15 �1:27 �1:64 �2:35 7:72 4:99 1:08

0.7 �2:05 �2:40 �3:06 �1:18 �1:57 �2:29 9:61 6:25 1:52

0.8 �1:92 �2:27 �2:95 �1:07 �1:48 �2:21 13:37 8:99 2:90

0.9 �1:74 �2:10 �2:78 �0:95 �1:39 �2:16 24:82 17:64 7:97

Model B

0.0 �3:13 �3:42 �3:98 �2:56 �2:85 �3:43 6:90 5:66 3:92

0.1 �3:05 �3:35 �3:90 �2:52 �2:81 �3:37 7:22 5:70 3:55

0.2 �2:98 �3:28 �3:83 �2:46 �2:77 �3:32 7:71 5:90 3:30

0.3 �2:89 �3:20 �3:76 �2:41 �2:71 �3:28 8:43 6:23 3:14

0.4 �2:79 �3:10 �3:69 �2:34 �2:65 �3:23 9:46 6:88 3:15

0.5 �2:68 �3:00 �3:59 �2:27 �2:58 �3:16 11:01 7:96 3:48

0.6 �2:54 �2:88 �3:49 �2:19 �2:50 �3:10 13:47 9:75 4:30

0.7 �2:39 �2:73 �3:36 �2:10 �2:43 �3:03 17:68 12:99 6:20

0.8 �2:20 �2:55 �3:19 �2:02 �2:34 �2:95 26:34 19:96 10:79

0.9 �1:94 �2:30 �2:97 �1:97 �2:31 �2:91 52:20 41:10 25:74
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Table 2.1 (Continued): Asymptotic ��level critical values of covariate augmented unit root tests

t�̂ t~� �̂

R2 � = 0:10 � = 0:05 � = 0:01 � = 0:10 � = 0:05 � = 0:01 � = 0:10 � = 0:05 � = 0:01

Model C

0.0 �3:13 �3:42 �3:98 �2:56 �2:85 �3:43 6:90 5:66 3:92

0.1 �3:05 �3:35 �3:90 �2:50 �2:79 �3:35 7:24 5:71 3:64

0.2 �2:98 �3:28 �3:83 �2:43 �2:74 �3:30 7:71 5:90 3:38

0.3 �2:89 �3:20 �3:76 �2:35 �2:67 �3:24 8:36 6:27 3:29

0.4 �2:79 �3:10 �3:69 �2:27 �2:59 �3:18 9:30 6:86 3:34

0.5 �2:68 �3:00 �3:59 �2:17 �2:49 �3:10 10:70 7:82 3:65

0.6 �2:54 �2:88 �3:49 �2:06 �2:39 �3:01 12:90 9:47 4:39

0.7 �2:39 �2:73 �3:36 �1:93 �2:27 �2:91 16:75 12:52 6:15

0.8 �2:20 �2:55 �3:19 �1:78 �2:14 �2:81 24:79 18:97 10:61

0.9 �1:94 �2:30 �2:97 �1:60 �2:00 �2:70 49:76 39:30 25:13

To gain some insight into the relative power performance of the three tests t�̂, t~� and �̂ , we

�rst abstract from the e¤ect of the initial condition by making the usual assumption that it is

asymptotically negligible. The limit distributions of the statistics are then as given in Theorem 1

on setting � = 0. Figures 2.1-2.3 show the local asymptotic powers of the tests conducted at the

nominal 0:05-level as functions �c = f0; 0:5; :::; 20:0g (with c = 0 corresponding to asymptotic size,

i.e. 0:05) for Models A, B and C, respectively, for R2 = f0:2; 0:4; 0:6; 0:8g.
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(a) R2 = 0:2 (b) R2 = 0:4

(c) R2 = 0:6 (d) R2 = 0:8

Figure 2-1: Local asymptotic power of nominal 0.05-level tests: Model A, � = 0;

t�̂: � �t~�: ���̂: - - -
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(a) R2 = 0:2 (b) R2 = 0:4

(c) R2 = 0:6 (d) R2 = 0:8

Figure 2-2: Local asymptotic power of nominal 0.05-level tests: Model B, � = 0;

t�̂: � �t~�: ���̂: - - -
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(a) R2 = 0:2 (b) R2 = 0:4

(c) R2 = 0:6 (d) R2 = 0:8

Figure 2-3: Local asymptotic power of nominal 0.05-level tests: Model C, � = 0;

t�̂: � �t~�: ���̂: - - -

Consider �rst the results for Model A in Figure 2.1. We observe that for smaller values of R2,

the familiar result of the GLS-based tests delivering a substantial power advantage relative to the

OLS-based test t�̂ is borne out. These power advantages, however, diminish as R
2 increases, so

that by R2 = 0:8, there is considerably less di¤erence between the power pro�les of the three tests.

For the two GLS-based tests, there is very little to choose between them for small to moderate

R2, while for larger R2, the �̂ test has slightly lower power than t~� for small �c but modestly

higher power for some larger �c. In Figure 2.2 (Model B), as expected we see a reduction in power

of all tests relative to Model A, brought about by the allowance of a trend in yt. However, it

is still the case that for small R2, the GLS-based tests outperform t�̂, and have similar levels of
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power to each other. Interestingly, as R2 increases, t~� becomes generally more powerful than �̂,

and by R2 = 0:8, the relative power levels of �̂ have reduced to values generally below those of

the OLS-based test t�̂. In contrast, t~� retains a power advantage over t�̂ for all R
2 considered.

Finally, for Model C (Figure 2.3), similar comments apply as were made for Model B in Figure 2.2,

with the additional detrending of xt causing relatively little change to the powers of the tests. One

noteworthy distinction between the results for Figures 2.2 and 2.3 is that for R2 = 0:8, for Model

C we now �nd that the power of the t~� test also drops slightly below that of t�̂, so that here the

OLS-based t�̂ test generally outperforms both GLS-based tests. Overall, however, from the results

of Figures 2.1-2.3 we conclude that, if we abstract from potentially non-negligible initial conditions,

on balance the test t~� o¤ers arguably the most appealing power pro�le of the tests considered.

We now examine the e¤ects of an asymptotically non-negligible initial condition on local as-

ymptotic power. Figures 2.4-2.6 report local asymptotic powers of the �ve tests conducted at the

nominal 0:05-level, as functions of � = f0; 0:1; :::; 4:00g (� = 0 corresponding to an asymptotically

negligible initial condition); note that replacing � with �� would give the same results. Figure

2.4 presents results for Model A, where a representative local alternative setting of c = �5 is used.

Figures 2.5 and 2.6 give results for Models B and C, respectively, using c = �10:
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(a) R2 = 0:2 (b) R2 = 0:4

(c) R2 = 0:6 (d) R2 = 0:8

Figure 2-4: Local asymptotic power of nominal 0.05-level tests: Model A, c = �5;

t�̂: � �t~�: ���̂: - - -, UR(t�̂; t~�): ��� , UR(t�̂; �̂): �N�
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(a) R2 = 0:2 (b) R2 = 0:4

(c) R2 = 0:6 (d) R2 = 0:8

Figure 2-5: Local asymptotic power of nominal 0.05-level tests: Model B, c = �10;

t�̂: � �t~�: ���̂: - - -, UR(t�̂; t~�): ��� , UR(t�̂; �̂): �N�
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(a) R2 = 0:2 (b) R2 = 0:4

(c) R2 = 0:6 (d) R2 = 0:8

Figure 2-6: Local asymptotic power of nominal 0.05-level tests: Model A, c = �10;

t�̂: � �t~�: ���̂: - - -, UR(t�̂; t~�): ��� , UR(t�̂; �̂): �N�

Considering �rst Model A in Figure 2.4, the stand out feature of these power curves is that

while the power of the OLS-based t�̂ test is increasing in the magnitude of the initial condition

�, the powers of both GLS-based tests decrease to zero as � increases. Hence, while the GLS

tests are more powerful for � = 0 (cf. Figure 2.1) and for small values of �, they are much less

powerful than t�̂ for larger initial conditions. This pattern of results closely mirrors what is found

when analysing the e¤ects of initial conditions on standard, non-covariate augmented OLS and

GLS demeaned/detrended unit root tests, and highlights the fact that GLS-based unit root tests

do not deliver reliable unit root test inference in the presence of large initial conditions. Between

the two GLS-based tests, there is little di¤erence between the power pro�les for R2 = 0:2 and
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R2 = 0:4, while as R2 increases to 0:6 and then 0:8, it is clear that t~� emerges as the more powerful

procedure. For Model B (Figure 2.5), we observe the same broad patterns of results vis-à-vis the

power of t�̂ compared to the GLS-based tests. Once again, t�̂ has power that increases in �, while

the GLS-based tests have higher power when � = 0, but then a decreasing power pro�le as � rises.

Between the GLS-based tests, in contrast to Model A, here we see that t~� o¤ers generally the best

levels of power across �, particularly for larger � and R2 values. Finally, the results for Model C in

Figure 2.6 again highlight the general result that the GLS-based tests are typically more powerful

than t�̂ for zero and small �, while this ranking reverses for larger �. Of the two GLS-based tests,

once again the powers are very similar for R2 = 0:2 and R2 = 0:4, while for larger R2, �̂ is the

better performing test.

2.4 A union of rejections strategy

The results of the previous section demonstrate that when the initial condition is small, we would

want to apply one of the two GLS-based tests (t~� or �̂); on the other hand, when the initial condition

is larger, applying such a test would result in a (potentially substantial) loss of power relative to

applying the OLS-based test t�̂. In practice, given uncertainty regarding the magnitude of the

initial condition, we wish to have available a procedure that capitalises on both the relatively high

power of the GLS approach when is small, and the relatively high power of t�̂ otherwise. A similar

issue arises in the case of non-covariate augmented unit root testing, and the approach proposed

by Harvey et al. (2009) is to take a union of rejections of the OLS- and GLS-based tests, whereby

the null hypothesis is rejected if either of the individual tests rejects. In the present context, this

implies taking a union of rejections between t�̂ and either one of the GLS-based tests.

We now set out the union of rejections approach based on t�̂ (here denoted by tOLS) and a

GLS-based test (t~� or �̂) denoted by tGLS . Denoting the asymptotic ��level critical values of these

tests by cvOLS� and cvGLS� , respectively, we can de�ne the simple union of rejections strategy by

the decision rule

Reject H0 if
�
tOLS < cvOLS� or tGLS < cvGLS�

	
: (2.29)

An alternative way of representing this decision rule is to express it in terms a single test statistic,
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tUR, as follows:

Reject H0 if

(
tUR = min

 
tOLS ;

cvOLS�

cvGLS�

tGLS

!
< cvOLS�

)
: (2.30)

If we use LOLS and LGLS to denote the generic joint limit distributions of tOLS and tGLS , respec-

tively (i.e. the right-hand-side expressions given in Theorem 1), an application of the continuous

mapping theorem establishes that

tUR ) min

 
LOLS ;

cvOLS�

cvGLS�

LGLS
!
: (2.31)

The Bonferroni bound for the asymptotic size of this procedure under the null is 2� (since it simply

involves rejecting the null when either of the individual tests reject). Harvey et al. (2009) suggest

restoring the union of rejections asymptotic size to the nominal level � by applying a common

positive scaling constant,  � > 1, to the (negative) critical values cv
OLS
� and cvGLS� (so that tOLS

is compared with  �cv
OLS
� and tGLS with  �cv

GLS
� ), such that in the limit, rejection of the null

occurs with probability �.

While this approach extends naturally to the covariate augmented unit root testing problem

when using t~� for tGLS , since here both cv
OLS
� and cvGLS� are negative, we cannot apply such a

simple adjustment when using �̂, since the latter test has positive critical values, and scaling by

 � > 1 would induce greater asymptotic size. An adjustment that is applicable in all cases is to �rst

apply a common additive adjustment to both tGLS and cvGLS� , say tGLS ��� and cvGLS� ���, such

that the GLS-based test decision rule is unchanged, but that the adjusted critical value cvGLS� ���

equals cvOLS� , i.e. �� = cvGLS� �cvOLS� . Once the critical values are lined up in this way, the critical

values are both negative, and a Harvey et al. (2009)-type multiplicative scaling can be applied to

control the asymptotic size. More formally we propose the following union of rejections decision

rule:

Reject H0 if
�
tOLS <  �cv

OLS
� or tGLS � �� <  �cv

OLS
�

	
(2.32)

or, equivalently,

Reject H0 if
�
t�UR = min (tOLS ; tGLS � ��) <  �cv

OLS
�

	
: (2.33)

In the limit we obtain

t�UR ) min
�
LOLS ;LGLS � ��

�
(2.34)
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and we compute  � by simulation of the limit distribution of t
�
UR, calculating the �-level null critical

value for this distribution, say cvUR� , and then evaluate  � as  � = cvUR� =cvOLS� . In what follows,

we consider two union of rejections procedures, one based on a union of t�̂ and t~�, the other based

on a union of t�̂ and �̂; hereafter we denote these unions by UR(t�̂; t~�) and UR(t�̂; �̂) respectively.

Values for  � for R
2 = f0; 0:1; :::; 0:9g at the nominal 0:10�, 0:05� and 0:01�levels are given in

Table 2.2 for each of these union of rejections strategies.
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Table 2.2: Asymptotic  � values for �-level union of rejections procedures

UR(t�̂; t~�) UR(t�̂; �̂)

R2 � = 0:10 � = 0:05 � = 0:01 � = 0:10 � = 0:05 � = 0:01

Model A

0.0 1:099 1:081 1:062 1:200 1:132 1:071

0.1 1:105 1:083 1:057 1:212 1:143 1:080

0.2 1:108 1:086 1:056 1:226 1:157 1:090

0.3 1:111 1:091 1:057 1:240 1:168 1:099

0.4 1:113 1:093 1:064 1:261 1:184 1:106

0.5 1:119 1:097 1:068 1:276 1:205 1:117

0.6 1:126 1:102 1:070 1:297 1:223 1:135

0.7 1:135 1:106 1:073 1:336 1:236 1:149

0.8 1:152 1:115 1:076 1:389 1:271 1:172

0.9 1:179 1:136 1:082 1:502 1:352 1:207

Model B

0.0 1:063 1:053 1:039 1:134 1:107 1:058

0.1 1:063 1:055 1:042 1:148 1:115 1:064

0.2 1:065 1:055 1:041 1:162 1:128 1:082

0.3 1:065 1:055 1:039 1:179 1:130 1:091

0.4 1:066 1:057 1:040 1:197 1:149 1:098

0.5 1:066 1:058 1:047 1:220 1:160 1:107

0.6 1:068 1:061 1:045 1:248 1:178 1:111

0.7 1:070 1:060 1:045 1:285 1:204 1:133

0.8 1:075 1:060 1:044 1:364 1:261 1:152

0.9 1:088 1:067 1:047 1:499 1:362 1:205
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Table 2.2 (Continued): Asymptotic  � values for �-level

union of rejections procedures

UR(t�̂; t~�) UR(t�̂; �̂)

R2 � = 0:10 � = 0:05 � = 0:01 � = 0:10 � = 0:05 � = 0:01

Model C

0.0 1:063 1:053 1:039 1:134 1:107 1:058

0.1 1:065 1:055 1:042 1:147 1:113 1:067

0.2 1:067 1:056 1:040 1:157 1:119 1:074

0.3 1:069 1:056 1:042 1:169 1:130 1:085

0.4 1:072 1:061 1:041 1:183 1:135 1:095

0.5 1:075 1:063 1:048 1:197 1:144 1:102

0.6 1:080 1:065 1:047 1:222 1:155 1:107

0.7 1:085 1:071 1:048 1:251 1:186 1:121

0.8 1:095 1:075 1:049 1:318 1:235 1:147

0.9 1:126 1:093 1:061 1:491 1:353 1:202

The union of rejection strategies UR(t�̂; t~�) and UR(t�̂; �̂) are by construction asymptotically

correctly sized. We now consider the asymptotic local power properties of UR(t�̂; t~�) and UR(t�̂; �̂)

in relation to the powers of the individual tests, the results for which are also displayed in Figures

2.4-2.6. Consider �rst Model A in Figure 2.4, and to aid comparison of the union of rejections

procedures, consider an informal (and infeasible) power �envelope�formed from the limit power of

�̂ for values of � up to the point where �̂ and t�̂ have the same power, and from the limit power

of t�̂ for � beyond this point. With reference to this envelope, both UR(t�̂; t~�) and UR(t�̂; �̂) do

a decent job of tracking its broad shape, o¤ering decent power levels across the range of � values

considered. Both UR(t�̂; t~�) and UR(t�̂; �̂) capture much of the power advantage that �̂ holds

over t�̂ for small �, while also achieving the substantial power gain that t�̂ holds over either of the

GLS-based tests for larger �, with power pro�les that are increasing in � as opposed to approaching

zero. Of the two union of rejections procedures, a trade-o¤ clearly exists between the higher power

� for small that UR(t�̂; �̂) achieves, and the higher power for larger � that UR(t�̂; t~�) displays.
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However, in the small-� region where UR(t�̂; �̂) outperforms UR(t�̂; t~�), the power di¤erences are

relatively modest, while in the larger-� range where UR(t�̂; t~�) outperforms UR(t�̂; �̂), the gains

can be quite substantial. For this reason, we consider that UR(t�̂; t~�) arguably o¤ers the more

preferable power pro�le of the two procedures overall. For Models B and C in Figures 2.5 and

2.6, broadly similar comments can be applied, with both UR(t�̂; t~�) and UR(t�̂; �̂) tracking the

shape of the informal envelope comprised of the best performing tests for each region of �. What is

noticeable is that, compared to Model A, the power di¤erences between UR(t�̂; t~�) and UR(t�̂; �̂)

are less marked for small �, yet still quite substantial for large �, adding weight to the argument

for our preference for UR(t�̂; t~�) over UR(t�̂; �̂).

2.5 Finite sample performance

In this section we consider the �nite sample behaviour of the individual tests of section 2.2 and the

proposed union of rejections procedures UR(t�̂; t~�) and UR(t�̂; �̂) under Assumptions 1 and 2. In

order to implement the tests in such a setting, we �rst require a consistent estimator of R2, given

that all the tests have critical values that depend on this unknown quantity (the union of rejections

procedures also require R2-dependent scaling values ). Under our assumptions, the estimator

R̂2 =
�̂2ev
�̂2v�̂

2
e

(2.35)

where

�̂2v = T�1
TX
t=2

v̂2t ; �̂2e = T�1
TX
t=1

ê2t ; �̂ev = T�1
TX
t=2

êtv̂t (2.36)

with êt = ûx;t and v̂t being the residual from a regression of ûy;t on ûy;t�1 can be shown to provide

a consistent estimator of R2: Additionally, as highlighted in section 2.2.2, the �̂ statistic requires a

consistent estimator of 
. Given that 
 is also comprised of �2v, �
2
e and �ev a natural estimator is

to use


̂ =

264 �̂2v �̂ev

�̂ev �̂2e

375 (2.37)

which can be shown to be consistent for 
: Note that both R̂2 and 
̂ remain consistent when � in

Assumption 2 is not equal to zero; in contrast, the corresponding estimators outlined in Elliott and

Jansson (2003, p.81) are only consistent under the local-to-unit root alternative when the initial
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condition is asymptotically negligible (i.e. � = 0), due to their reliance on a �rst di¤erence-based

(cf. GLS-based) demeaning/detrending of yt:

Our Monte Carlo simulations are based on generating (2.1)-(2.2) for T = 150 using 50; 000

replications, with "t =
�
vt et

�0
s IIN(0;
), �2v = �2e = 1; �ev = R2 = f0:2; 0:4; 0:6; 0:8g ; and

with �y = �y = �x = �x = 0: We �rst simulated the empirical size of the t�̂, t~�, �̂ tests and the

UR(t�̂; t~�), UR(t�̂; �̂) procedures at the nominal 0:05-level, setting � = 1 in (2.2). Asymptotic

critical values were used, linearly interpolating between the values in Tables 2.1 and 2.2 on the

basis of R̂2. The results for Models A, B and C are reported in Table 2.3, and we observe only

modest �nite sample size distortions across the di¤erent tests and values of R2. For larger R2 in

the case of Models B and C, �̂ and UR(t�̂; �̂) are a little under-sized, while t~� and UR(t�̂; t~�) are

a little over-sized for all cases. However, all sizes for t~� and UR(t�̂; t~�) are below 0:07 and 0:06

respectively, hence �nite sample size distortion does not appear to be a major concern for these

procedures.

36



Table 2.3: Finite sample size of nominal 0:05-level

covariate augmented unit root tests: T = 150

R2 t�̂ t~� �̂ UR(t�̂; t~�) UR(t�̂; �̂)

Model A

0.2 0.053 0.064 0.053 0.059 0.053

0.4 0.053 0.065 0.051 0.057 0.050

0.6 0.050 0.064 0.048 0.056 0.048

0.8 0.048 0.061 0.041 0.054 0.042

Model B

0.2 0.054 0.064 0.049 0.059 0.050

0.4 0.053 0.063 0.047 0.057 0.049

0.6 0.052 0.060 0.043 0.055 0.044

0.8 0.048 0.053 0.029 0.049 0.032

Model C

0.2 0.054 0.064 0.047 0.059 0.049

0.4 0.053 0.063 0.045 0.058 0.047

0.6 0.051 0.062 0.040 0.056 0.043

0.8 0.047 0.059 0.027 0.053 0.030

Of most interest are the relative �nite sample powers of the procedures, and Figures 2.7, 2.8

and 2.9 present results for Models A, B and C, for settings that correspond to the local asymptotic

power results in Figures 2.4, 2.5 and 2.6. Here, we set � = 1+c=T with c = �5 for Model A (Figure

2.7) and c = �10 for Models B and C (Figures 2.8 and 2.9), and report the estimated powers of

nominal 0:05-level tests across � = f0:; 0:1; :::; 4:0g. In each case, we �nd that the relative �nite

sample powers bear a very close resemblance to the corresponding local asymptotic results, with the

powers of t�̂ increasing in �, the powers of t~� and �̂ initially higher than that for t�̂ for small �, but

then falling towards zero as � increases, and the UR(t�̂; t~�) and UR(t�̂; �̂) procedures capturing a

proportion of the higher t~� and �̂ power for small �, and a proportion of the higher power of t�̂
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for larger �. Compared to the asymptotic results, t�̂ and UR(t�̂; t~�) appear to have higher relative

power for T = 150, which arises as a result of the small over-size seen for these procedures, but

otherwise the �nite sample and large sample results are very similar. What is clear is that the

union of rejections procedures o¤er robust power pro�les across the full range of initial conditions,

avoiding the low power that can arise from use of the GLS-based tests alone while retaining a good

proportion of the additional power o¤ered by the GLS-based tests over the OLS-based variant. Of

the two, UR(t�̂; t~�) emerges as the test with arguably the most attractive power properties overall,

and on the basis of both the asymptotic and �nite sample results, it is this procedure that we

recommend for practical applications.

(a) R2 = 0:2 (b) R2 = 0:4

(c) R2 = 0:6 (d) R2 = 0:8

Figure 2-7: Finite sample power of nominal 0.05-level tests: Model A, T = 150, c = �5;

t�̂: � �t~�: ���̂: - - -, UR(t�̂; t~�): ��� , UR(t�̂; �̂): �N�

38



(a) R2 = 0:2 (b) R2 = 0:4

(c) R2 = 0:6 (d) R2 = 0:8

Figure 2-8: Finite sample power of nominal 0.05-level tests: Model B, T = 150, c = �10;

t�̂: � �t~�: ���̂: - - -, UR(t�̂; t~�): ��� , UR(t�̂; �̂): �N�
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(a) R2 = 0:2 (b) R2 = 0:4

(c) R2 = 0:6 (d) R2 = 0:8

Figure 2-9: Finite sample power of nominal 0.05-level tests: Model C, T = 150, c = �10;

t�̂: � �t~�: ���̂: - - -, UR(t�̂; t~�): ��� , UR(t�̂; �̂): �N�

In practice, when implementing UR(t�̂; t~�) we would want to allow for additional serial corre-

lation in uy;t and ux;t. In order to admit more general serial correlation into our DGP, we consider

the following simple autoregressive-based extension to (2.2):264 a(L)(uy;t � �uy;t�1)

b(L)ux;t

375 =
264 vt

et

375 (2.38)

with

a(L) = 1� a1L� :::� apLp; (2.39)

b(L) = 1� b1L� :::� bqLq (2.40)
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where the roots of a(L) and b(L) all lie outside the unit circle, and where "t =
�
vt et

�0
continues

to satisfy Assumption 1. We also modify Assumption 2 so that, when c < 0, uy;1 = �
p
!2=(1� �2),

where !2 denotes the long run variance of a(L)�1vt, i.e. !2 = �̂2v=a(1)
2:

In this setting, consider t�̂ and t~� statistics, computed as in section 2.2 but on replacing (2.9)

and (2.18) with the �tted regressions

�ûy;t = �̂ûy;t�1 +

pX
j=1

�̂j ûy;t�j +

qX
j=0

�̂j ûy;t�j + �̂t; (2.41)

�~uy;t = ~�~uy;t�1 +

pX
j=1

~�j ~uy;t�j +

qX
j=0

~�j ûy;t�j + ~�t (2.42)

It can then be shown that the large sample results for t�̂, t~� and UR(t�̂; t~�) from sections 2.3

and 2.4 continue to hold. Moreover, R2 is now consistently estimated using the form of R̂2 given

in the previous section, but with êt and v̂t replaced with residuals from q�th and p + 1�th order

autoregressions �tted to ux;t and uy;t, respectively. In practice, since p and q are unknown, they

can be determined endogenously using typical lag order selection rules such as downward testing

or application of an information criterion.

2.6 Empirical illustration

In this section we provide two empirical examples to illustrate the behaviour of the Elliott and

Jansson�s (2003) and Hansen�s (1995) unit root tests. The �rst empirical example tests the unit

root null hypothesis on the U.S. industrial production series over the period 1973q1 � 2007q4.

Industrial production is based on the Industrial Production Index which measures real output for

manufacturing, mining and electric and gas utilities. The covariate used is the unemployment rate.

The second empirical example performs the unit root tests on in�ation calculated as the annualised

growth rate of CPI i.e. ln(CPIt=CPIt�1) � 400, using the change of the long-term government

bond yields as the stationary covariate, over the period 1969q3 � 2005q2: All data are obtained

from the Federal Reserve Bank of St. Louis database.
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2.6.1 Unit Root Test on Industrial Production

The �rst step in conducting this empirical illustration is to test the stationarity of covariate i.e. the

unemployment series over the period 1973q1� 2007q4: We employ the standard ADF test (not the

covariate augmented ADF test), denoted by tADF . The lag selection was performed based on Ng

and Perron (1995). The authors suggest setting an upper bound pmax and estimating the ADF test

regression with lag length, p, equal to pmax: If the coe¢ cient on the last lagged term is signi�cant

then the unit root test is performed with p = pmax. Otherwise, the lag length is reduced by one and

the process is repeated. Performing this procedure, we concluded that the ADF regression should

be augmented by only one lag.

Moreover, since there is uncertainty about whether the series admits a trend or only a mean, we

follow the procedure set by Enders (2004). As it is outlined in Ender�s (2004) chapter 4, p.213-214,

we start we the least restrictive model in which both a trend and a mean are admitted i.e.

�xt = �+ �t+ xt�1 + �1�xt�1 + �t;

where xt denotes the unemployment rate at time t, and use the ADF t-statistic, tADF =
̂

s:e:(̂) ;

where ̂ denotes the OLS estimate of  and s:e:(̂) denotes the standard error of the coe¢ cient, to

test the unit root null hypothesis that  = 0: Unit root tests based on less restrictive models which

contain more deterministic components have low power to reject the null hypothesis; hence if the

unit root null hypothesis is rejected, there is no need to determine whether too many deterministic

regressors were included. If the unit root test rejects, the sequence fxtg does not contain a unit

root. In this example, the ADF t-statistic is equal to tADF = �3:97 which is less than the 5%

critical value of �3:45 and therefore, we reject the unit root null hypothesis. Following Ender�s

procedure, there is no need to examine whether too many deterministic regressors are included and

we conclude that the unemployment rate is stationary over the period 1973q1� 2007q4.

Individual covariate augmented unit root test that do not admit a trend in the industrial

production series, yt; do not reject the unit root null hypothesis across almost all start dates while

rejections are often obtained for covariate augmented unit root tests that admit a trend, suggesting

that a trend is present in the data. Besides, a mere observation of the industrial production index

series clearly suggests a trend is present. As a result, inferences on the performance of unit root tests
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based on tests that only admit a constant will be misleading given the misspeci�cation. Moreover,

such tests do not shed light on the sensitivity of the tests to the initial observation as the tests

decisions do not really vary. In addition, we �t a trend in the covariate, xt. We, therefore, illustrate

the impact of the initial condition on the relative performance of test based on t�̂; t�̂ and �̂, under

model model C, as summarised in section 2.2. To absorb serial correlation, we set p = 2 and q = 2

in equations (2.41) and (2.42) when computing the statistics t�̂ and t�̂:

We conduct the individual covariate augmented unit root tests and the size-corrected union of

rejections strategy to the industrial production series repeatedly, each time moving the start date in

order to observe the robustness of the test decisions to the initial condition. Speci�cally, we apply

the OLS and GLS tests based on t�̂; t~� and �̂ and follow the union of rejections strategies, based on

UR(t�̂; t~�) and UR(t�̂; �̂) procedures, in order to test for a unit root in the industrial production

index using unemployment as a stationary covariate. To gauge the impact on the initial condition,

we repeat the tests based on 50 consecutive start dates: 1973q1 � 1985q2 with common ending

date 2007q4. The idea is that with di¤erent starting dates, we observe di¤erent values of the initial

condition, thereby measuring the sensitivity of the tests to the size of the initial condition.Table 2.4

shows the tests results. The null rejections implied by these tests and procedures are reported in

the last �ve columns of the table while the �rst column records the start date; the second column

shows the estimated correlation coe¢ cient for each regression and the third column shows the initial

condition for each start date. To gauge the relevant size of the initial observation the following

procedure is followed:

1) Regress the industrial production index (denoted by IPt) on a constant and a trend compo-

nent:

IPt = �IP + �IP t+ "IP;t

2) Obtain the estimates, �̂IP and �̂IP , as well as the residuals, "̂IP;t.

3) Obtain the standard error of the regression:

ŝIP =

vuuut TP
t=1

"̂2
0
IP;t

T � 2 .
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4) Compute the initial condition, IC, as:

IC =
IP1 � �̂IP � �̂IP � t

ŝIP

In order to easily observe the impact on initial condition on the tests decisions, the initial

condition column in table 2.4 is sorted in ascending order. As it can be seen, the biggest initial

conditions are reported in 1979 and early 1980, while the smallest initial conditions are reported for

1982� 1983. The initial condition varies from 0:021 to 2:456, giving considerable scope to analyse

the behaviour of the two tests over this range. Table 2.4 also shows that there is a strong correlation

between the industrial production index and unemployment as R̂2 is signi�cantly large (above 0:5)

in almost every case, indicating that signi�cant power gains are achieved by including information

from the covariate.

The signi�cant gains achieved by the union of rejection strategy are pronounced as shown in

table 2.4. The union of rejection strategy based on UR(t�̂; �̂) consistently rejects the unit root

null across the full range of start dates and only in 9 out of the 50 start dates considered fails

to reject. Additionally, the procedure based on UR(t�̂; t~�) yields good results, rejecting the unit

root null hypothesis in most cases. As explained in the previous sections, the t�̂�based test has

low power across small values of the initial condition and the power is increasing as the magnitude

of the initial condition increases, and results validate these �ndings to some extent. It is shown

that the OLS test attains higher power than GLS tests for larger initial conditions, as the rejection

frequency of the OLS test is much higher than that of GLS tests for large initial condition values.

Results reported in table 2.4 also re�ects the power properties of GLS-type tests. The t�̂�based

and �̂�based tests almost always reject for small values of the initial observation while they clearly

fail to reject when the initial observation is big. The relative robustness of the union of rejection

strategy, which rejects over the full range of the start dates, is clearly illustrated in this application.
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Table 2.4: Covariate Augmented Unit Root Tests Outcomes on

U.S. Industrial Production, using unemployment rate as covariate

Start Date R̂2 Initial Condition t�̂ t~� �̂ UR(t�̂; t~�) UR(t�̂; �̂)

1983q1 0.973 0.021 R R - R R

1982q4 0.971 0.022 - R - R -

1983q2 0.979 0.147 R R - R R

1982q3 0.968 0.431 - R R R R

1975q2 0.943 0.441 - R R R R

1983q3 0.983 0.510 R - - R R

1975q3 0.946 0.587 - - R - R

1975q1 0.940 0.674 - R R R R

1975q4 0.945 0.704 - R R R R

1983q4 0.984 0.773 R R R R R

1982q2 0.969 0.804 - R - R -

1976q1 0.941 0.931 - R R R R

1985q2 0.984 0.976 R R R R R

1976q2 0.939 0.983 R - - R R

1976q3 0.944 1.039 R R R R R

1985:q1 0.983 1.091 R R R R R

1984:q1 0.984 1.123 R R R R R

1982:q1 0.972 1.136 - R R R R

1976:q4 0.948 1.158 R R R R R

1984:q4 0.983 1.168 R R R R R

1984:q2 0.983 1.263 R R R R R

1984:q3 0.984 1.273 R R R R R

1977:q1 0.946 1.305 R R - R R

1974:q4 0.906 1.454 - - - - -

1980:q3 0.969 1.481 R - - R R

1981:q4 0.973 1.575 - R R R R
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Table 2.4 (Continued): Covariate Augmented Unit Root Tests Outcomes on

U.S. Industrial Production, using unemployment rate as covariate

Start Date R̂2 Initial Condition t�̂ t~� �̂ UR(t�̂; t~�) UR(t�̂; �̂)

1977q2 0.945 1.593 R - - R R

1978q1 0.935 1.614 R - - R R

1977q3 0.948 1.672 R - - R R

1977q4 0.947 1.701 R - - R R

1980q2 0.970 1.795 R - - R R

1973q1 0.863 1.886 R - - R R

1981q2 0.971 1.928 - - - - -

1974q3 0.855 1.935 - - - - -

1973q2 0.866 1.939 R - - R R

1981q1 0.971 1.941 R - - R R

1980q4 0.971 1.960 R - - R R

1973q3 0.856 2.003 R - - R R

1974q2 0.861 2.009 - - - - -

1981q3 0.972 2.010 - - - - -

1974q1 0.872 2.023 - - - - -

1978q2 0.937 2.048 R - - R R

1973:q4 0.867 2.139 R - - R R

1978:q3 0.936 2.140 R - - R R

1979:q3 0.939 2.358 R - - R R

1978:q4 0.941 2.362 R - - R R

1979:q4 0.939 2.403 - - - - -

1979:q2 0.938 2.404 R - - R R

1979:q1 0.940 2.423 R - - R R

1980:q1 0.955 2.456 R - - R R
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2.6.2 Unit Root test on CPI In�ation

In the second empirical example, we test the unit root null hypothesis on the annualised CPI

in�ation rate using the change in the long-term government bond yields as covariate. As before,

the �rst task is to perform a standard ADF unit root test on the government bond yields over the

period 1969q3�2005q2. The lag selection procedure as outlined by Ng and Perron (1995) indicated

a lag order of 7. Following the Enders (2004) procedure, we �rst perform a unit root null hypothesis

for the extended model in which the ADF regression admits both a mean and a trend component:

�gt = �+ �t+ gt�1 +
7X
j=1

�j�gt�j + �t;

where gt, denotes the government bond yield at time t. Since the test statistic, tADF = �1:687 is

greater than the 5% critical value of �3:44, we do not reject the unit root null hypothesis. Since

unit root tests which contain many deterministic components have low power, and given that the

test failed to reject, we need to examine whether too many deterministic regressors are included.

We, thus, perform a joint F-test to check the null hypothesis that  = � = 0: Since the F-statistic,

equal to 2:778, is less than the critical value of 3:064, we cannot reject the null hypothesis that

the trend component is absent from the government bond yields series. As a result, we continue

according to Enders and estimate a mean-only ADF regression:

�gt = �+ gt�1 +
6X
j=1

�j�gt�j + �t:

According to Ng and Perron (1995), the appropriate lag length in this case is 6. Since the ADF

statistic on  is tADF = 1:751 which is greater than the 5% critical value of �2:89, we fail to reject

the unit root null hypothesis and proceed with testing the joint hypothesis that  = � = 0 using

an F-test. The F-statistic is equal to 0:808, so we cannot reject that the series has zero-mean.

We, therefore, estimate the ADF regression with 7 lags as indicated by Ng and Perron (1995) but

without a mean or trend:

�gt = gt�1 +
7X
j=1

�j�gt�j + �t:

The ADF statistic is �1:272 is not less than the 5% critical value of �1:95 so we cannot reject the

unit root null hypothesis. The Enders procedure stops here and we conclude that the government

bond yields series has a unit root. To transform the series into a stationary one, we take the �rst
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di¤erence of the government bond yields series and perform a unit root test on the di¤erenced series.

Let ~g denote the di¤erenced government bond yields series. We begin with the less restrictive model

in which the ADF regression admits both a mean and a trend:

�~gt = �+ �t+ ~gt�1 +
6X
j=1

�j�~gt�j + �t:

Since the ADF statistic is �5:911 which is less than the 5% critical value of �3:44, we reject the unit

root null hypothesis and conclude that the change in the government bond yields is a stationary

series. If the least restrictive model, which has low power, was successful in rejecting the unit root

null hypothesis, then we are con�dent that the sequence does not have a unit root.

Table 2.5 reports the results for the individual unit root tests and the size-corrected union of

rejections strategy to the CPI in�ation series for the mean case (model A in section 2.2). Again

we perform the tests repeatedly each time moving the start date in order to observe the sensitivity

of test outcomes to the initial condition. The initial condition here, shown in the 3rd column of

table 2.5, is obtained by dividing the demeaned �rst observation by the standard error of all the

observations in the sample for each regression. As it can be seen, the biggest initial conditions

are reported in 1980 and 1981; a period with double digit in�ation rates, while the smallest initial

conditions are observed for the early 1970s.

We perform covariate augmented unit root tests and apply the union of rejections procedure

on CPI in�ation series using the change in government bond yields as covariate, based on 50

consecutive start dates: 1969q3� 1981q4 and common ending point 2005q2. The superiority of the

union of rejections strategies UR(t�̂; t~�) and UR(t�̂; �̂) is clearly demonstrated in table 2.5 since the

strategies consistently reject the unit root null across the full range of the start dates and only in

very few cases the procedures fail to reject. The GLS tests based on t~� and �̂ always reject for small

values of the initial condition whereas they rarely reject for large values of the initial condition with

the OLS test based on t�̂ behaving in exactly the opposite way. The union of rejection strategy,

which maintains good power properties across the full range of initial condition values, gives a clear

picture that individual tests fail to convey: The CPI in�ation series is stationary.
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Table 2.5: Covariate Augmented Unit Root Tests Outcomes on

CPI In�ation using the change in government bond yields as covariate

Start Date R̂2 Initial Condition t�̂ t~� �̂ UR(t�̂; t~�) UR(t�̂; �̂)

1976q1 0.209 0.103 - R R R R

1970q3 0.197 0.154 - R R R R

1975q2 0.225 0.159 - R R R R

1972q4 0.096 0.171 - R R R R

1971q3 0.146 0.207 - R R R R

1976q2 0.261 0.224 - R R R R

1969q3 0.081 0.264 - R R R R

1971q2 0.151 0.300 - R R R R

1970q2 0.169 0.300 - R R R R

1970q4 0.134 0.372 - R R R R

1971q1 0.089 0.400 - R R R R

1972q1 0.113 0.434 - R R R R

1977q3 0.125 0.436 - R R R R

1972q3 0.104 0.454 - R R R R

1969q4 0.082 0.472 - R R R R

1973q1 0.090 0.484 - R R R R

1976q4 0.159 0.507 - R - R -

1971q4 0.100 0.525 - R R R R

1977q4 0.122 0.551 - R R R R

1970q1 0.099 0.555 - R R R R

1972q2 0.111 0.644 - R R R R

1976q3 0.223 0.684 - R R R R

1978q1 0.143 0.868 - R R R R

1977q2 0.179 0.896 - R R R R

1973q3 0.121 0.979 R R R R R

1977q1 0.214 1.000 - R R R R
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Table 2.5 (Continued): Covariate Augmented Unit Root Tests Outcomes on

CPI In�ation using the change in government bond yields as covariate

Start Date R̂2 Initial Condition t�̂ t~� �̂ UR(t�̂; t~�) UR(t�̂; �̂)

1975q4 0.273 1.004 - - - - -

1973q2 0.128 0.118 R R - R R

1975q3 0.287 1.205 - R R R R

1975q1 0.092 1.361 - R - R -

1978q2 0.129 1.585 - - - - -

1973q4 0.048 1.661 R - - R R

1978q3 0.107 1.679 R - - R R

1978q4 0.142 1.703 R - - R R

1980q3 0.002 1.881 R - - R R

1974q2 0.151 1.914 R - - R R

1979q1 0.160 1.987 R - - R R

1974q3 0.213 2.120 R - - R R

1981q4 0.137 2.150 R - - R R

1974q1 0.062 2.223 R - - R R

1974q4 0.111 2.497 - - - - -

1981q2 0.154 2.782 R - R R R

1979q2 0.027 2.907 R - - R R

1979q3 0.006 3.105 R - - R R

1979q4 0.343 3.194 R - - R R

1980q4 0.029 3.654 R - - R R

1981q1 0.092 3.884 R - - R R

1980q2 0.336 4.189 R - R R R

1981q3 0.807 4.483 R - - R R

1980q1 0.568 4.546 R - R R R
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2.7 Conclusion

In this chapter we have considered the power of covariate augmented unit root tests, based on OLS

demeaning/detrending and GLS demeaning/detrending, in the presence of asymptotically non-

negligible initial conditions. In particular, based on a general structure for the initial condition,

which encompasses the set-up of Müller and Elliott (2003) and Elliott and Müller (2006) as special

cases, we �nd that where the initial condition is not asymptotically negligible, the quasi-di¤erenced

demeaned/detrended unit root tests of Elliott and Jansson (2003) can perform very badly indeed

with their power against a given alternative rapidly decreasing towards zero as the size of the initial

observation increases. Since we cannot be sure that such large initial conditions will not arise, this

limits the reliability of such GLS-based tests in practice. In contrast, the OLS demeaned/detrended

ADF tests of Hansen (1995) exhibit an increase in power as the size of the initial condition increases.

This suggests that the Elliott and Jansson�s tests are preferred when the initial condition is small

while the Hansen�s tests are far preferable when the initial condition is large. Consequently, a

union of rejections decision rule between the Elliott and Jansson�s tests and Hansen�s tests could

be fruitfully explored in order to maintain good power properties across both large and small initial

conditions. Speci�cally, we followed the work of Harvey, Leybourne and Taylor (2009) whereby the

unit root null hypothesis is rejected if either of the Elliott and Jansson�s or Hansen test rejects.

Reported asymptotic evidence suggests that our approach o¤ers good robust power performance in

the presence of uncertainty over the magnitude of the initial condition, retaining attractive power

levels across zero, small and large initial condition magnitudes. Despite its impressive performance

and e¢ ciency, the strategy is easy to implement. Our �ndings mirror those found in the standard

non-covariate augmented unit root testing environment, and our recommended procedure adds

to the suite of available unit root testing procedures a covariate augmented approach that o¤ers

reliable power levels across the range of possible (unknown) initial conditions.

2.8 Appendix A

Here we provide a proof of the results for the most general model, Model C. The proofs for Models

A and B follow in a similar fashion. In what follows we can set �y = �x = �y = �x = 0 without
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loss of generality, so that

yt = uy;t

�yt = �uy;t = cT�1uy;t�1 + vt

xt = ux;t = et:

Note that, in addition to the result in (2.21), we can also write

T�1=2uy;xrTy ) �vK
0
c(r)
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K
0
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8><>: W1(r) c = 0

�erc=
p
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p
�2c:

We �rst establish tha part (i) result for t�̂. Here264 T�1=2�̂y

T 1=2�̂y

375 =

2664 1 T�2
TP
t=1

t

T�2
TP
t=1

t T�3
TP
t=1

t2

3775
�1 2664 T�3=2

TP
t=1

uy;t

T�5=2
TP
t=1

tuy;t

3775

)

264 1 1=2

1=2 1=3

375
�1
2664 �v

1R
0

K
0
c(r)dr

�v
1R
0

rK
0
c(r)dr

3775

=

2664 �v

�
4
1R
0

K
0
c(r)dr � 6

1R
0

rK
0
c(r)dr

�
�v

�
12

1R
0

rK
0
c(r)dr � 6

1R
0

K
0
c(r)dr

�
3775 (2.43)

and 264 T 1=2�̂x

T 3=2�̂x

375 =

2664 1 T�2
TP
t=1

t

T�2
TP
t=1

t T�3
TP
t=1

t2

3775
�1 2664 T�1=2

TP
t=1

et

T�3=2
TP
t=1

tet

3775

)

264 1 1=2

1=2 1=3

375
�1
2664 �e

n
RW1(1) +

p
1�R2W2(1)

o
�e

1R
0

rd
n
RW1(r) +

p
1�R2W2(r)

o
3775 (2.44)

=

264 �eP
C

�eQ
C

375 :
52



Next,
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û2x;t � T�1
�
T�1

TP
t=2
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We also �nd

T�1
TX
t=2

�ûy;tûy;t�1 = T�1
TX
t=2

�(uy;t � �̂y � �̂yt)(uy;t�1 � �̂y � �̂yt)

= T�1
TX
t=2

(uy;t�1 � �̂y � �̂yt)�uy;t

) �2v

1Z
0

LCc (r)dK
0
c(r) (2.47)

T�1
TX
t=2

�ûy;t�1ûx;t = T�1
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(cT�1uy;t�1 + vt � �̂y)(et � �̂x � �̂xt)

= T�1
TX
t=2

vtet + op(1)

! �ev (2.49)

giving
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�2e�
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1R
0

LCc (r)dK
0
c(r)� �ev�e�vR

1R
0
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p
1�R2

1R
0

LCc (r)dW2(r)

�2e�
2
v
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0

LCc (r)
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= c+ (1 +R2)

1R
0

LCc (r)dW1(r)

1R
0

LCc (r)
2dr

�R
p
1�R2

1R
0

LCc (r)dW2(r)

1R
0

LCc (r)
2dr

: (2.50)

For s.e.(�̂), we have

s:e:(�̂)2 = �̂2�

TP
t=2

û2x;t

TP
t=2

û2y;t�1
TP
t=2

û2x;t � (
TP
t=2

û2y;t�1ûx;t)
2

54



�̂2� = (T � 1)�1
TX
t=2

�(ûy;t � �̂ûy;t�1 � �̂ûx;t)2:

Consider the limit behaviour of �̂2�: First we have, using the results (2.45)-(2.49),

�̂ =
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û2y;t�1
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t=2
�ûy;tûx;t �
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! �ev
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: (2.51)

Then using

T�1
TX
t=2

(�ûy;t)
2 = T�1

TX
t=2

(�uy;t � �̂y)2

= T�1
TX
t=2

(�uy;t)
2 + op(1)

= T�1
TX
t=2

v2t + op(1)

! �2v
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along with (2.45)-(2.51), we �nd
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û2x;t � 2�̂T�1
TX
t=2
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giving the part (i) result
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:

We now provide the proof of the part (ii) result for t~�: Here we have
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In line with the results of Müller and Elliott (2003), it can be shown that
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where the last line is obtained using

dMC
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The following results also obtain in a similar way as for OLS detrending:
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For the remaining term in T ~� we have
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For s:e:(~�), we again have
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and hence
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) �2v(1�R2)�2e

�2e�
2
v

1R
0

MC
c;�c(r)

2dr

=
1�R2

1R
0

MC
c;�c(r)

2dr

giving the part (ii) result
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Finally, the part (iii) result for �̂ follows from the limit result in Theorem 1 of Elliott and Jansson

(2003) for Case 5, on replacing W1c(r) with Kc(r).
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Chapter 3

Dealing with Uncertainty over both

the existence of structural break and

autocorrelation properties of the data

3.1 Introduction

In recent years a vast strand of literature is motivated by the apparent presence of breaks in the

level and/or trend in macroeconomic time series (Stock and Watson (1996, 1999, 2005), Perron

and Zhu (2005)). Correct speci�cation of the break in the deterministic component of the series is

extremely signi�cant for modelling, estimation and forecasting. However, considerable structural

uncertainty can be embedded when the existence of the break is not obvious or is questioned.

This led to the development of a number of structural break tests (Andrews ((1993), Andrews and

Ploberger (1994)) so that if the tests reject the no structural break hypothesis, a structural break

model is estimated in the second stage. This two-step approach requires that a restricted estimator

should be applied when the structural break test is insigni�cant, while the unrestricted estimator,

that accounts for a break point, should be implemented once the test is signi�cant. However, it has

been shown that pretest estimators have poor sampling properties. In particular, the squared error

of the pretest estimators is parameter-dependent and can be quite high relative to the unrestricted

estimation (Hansen (2009)). Moreover, Harvey, Leybourne and Taylor (2012) show that in with-

break unit root tests, that employ break detection methods based on auxiliary statistics (such as

Carrion-i-Silvestre et al. (2009) and Harris et al. (2009)), valley power functions prevail in �nite

samples, despite the fact that these methods are near asymptotically e¢ cient.
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At the same time, uncertainty also exists as to whether the underlying stochastic component is

best modelled by a stationary I(0) or unit root I(1) process. Vogelsang (1998), Harvey, Leybourne

and Taylor (2009, 2010) and Perron and Yabu (2009) are just some of recent research directed

to testing for structural breaks when the order of integration of the series is unknown. If the

innovations are stationary, estimates are obtained by minimising the sum of squared residuals from

a regression of the level of the series on the appropriate deterministic components. On the other

hand, if it is known that a unit root is present, more e¢ cient estimates are obtained by minimising

the sum of squared residuals from a �rst-di¤erenced version of the relevant regression (Harris et al.

(2009)). Carrion-i-Silvestre, Kim and Perron (2009) also suggest minimising the sum of squared

residuals based on a quasi-di¤erenced regression when appropriate. Since the order of integration

is usually unknown, one way to proceed is to pretest for a unit root and condition on the results

of the pretests in performing second-stage break inference. However, as Elliott and Stock (1994)

show in their Monte Carlo experiment, this procedure introduces substantial size distortions in

the second-stage test. If the innovations of the regressor and the second-stage regression error are

correlated, the size of the second stage test cannot be controlled e¤ectively, even asymptotically.

Moreover, performing a unit root test will not serve to answer what is the best �lter that should

be applied. It will only tell whether a unit root is present.

In this chapter, we consider estimating the level break size when the presence of a structural

break is uncertain and when the order of integration of the data is unknown. The co-existence of

these two types of uncertainties can severely undermine inferences on the behaviour of macroeco-

nomic times series: Evidence in favour of unit roots can be a manifestation of structural changes

and vice versa (Perron (1989)). In particular, the power of unit root tests is severely reduced when

the process is stationary but subject to structural breaks (Perron (1989)), suggesting that a pre-test

for the presence of a break is necessary, in which case all the undesirable sampling properties of

pre-testing will have to be incurred. However, structural change tests will reject the no-change

null hypothesis when the process contains a unit root with constant parameters, suggesting that a

pre-test for the presence of unit roots is needed. Thus, a vicious circle is created and an apparent

question arises: Should the researcher perform a unit-root test before testing for the presence of

structural breaks or should he/she test for the presence of structural breaks before conducting unit
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root tests?

In order to deal with this interplay and account for both of these kinds of uncertainties, we

suggest a two-step procedure. The �rst stage involves the application of the practice developed

by Harvey and Leybourne (2013) who select between �rst di¤erences estimators and a number of

quasi-di¤erenced alternatives according to which achieves the smallest minimum sum of squared

residuals. As it has been found, this approach achieves "most of the desirable properties of the

appropriate estimators for the stationary and unit root worlds, without the inherent downsides

involved in selecting purely one approach" (Harvey and Leybourne (2013, p.19)). While a unit-

root test will only tell whether a unit root exists and will not point to the appropriate �ltering of

the data, this approach does not require a clear stand on the integration order, thus avoiding the

need to defend a possible incorrect view on the series properties. Most importantly, the approach is

conservative because a break is imposed a priori. If there is no break present in data, the approach

is just ine¢ cient. If on the other hand, there is a break, we do exactly what we should and thus

avoid the detrimental e¤ects of ignoring the break.

In the second stage, we follow work by Hansen (2009) and use a weighted average of the break

size under a restricted model which does not allow for a break and, therefore, the break size is

zero, and the unrestricted model which allows for a break and thus the break size is non-zero.

Acknowledging the uncertainty over the existence of a structural break, Hansen (2009) avoids the

inherent downsides of pre-testing and suggests a much better practice involving model averaging,

with weights selected to minimise a modi�ed Mallow information criterion (Mallow (1973)), con-

structed as an unbiased estimate of the in-sample �t and is a simple function of the sum of squared

errors, the Andrews SupF test statistic and a penalty term.

The outline of the chapter is as follows: In section 3.2 we provide a literature review on the

econometrics of structural break detection and estimation. In section 3.3 we consider the possibility

of a single break in the level of the series and perform the two-step procedure, whereby in the �rst

step we select the appropriate �ltering parameter, while in the second step we use a weighted

average of the estimators. The results from the Monte-Carlo experiments, which consider a range

of autoregressive structures, are then compared to Hansen�s approach that assumes that innovations

are white noise. It is shown that the proposed estimator performs very well across a wide range
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of possible DGPs, outperforming Hansen�s un�ltered approach. Section 3.4 extends the approach

to allow for two breaks in the level of the series. Section 3.5 of this chapter shows an empirical

example which demonstrates the strength of the approach. Section 3.6 concludes. Due to the high

volume of graphs in this chapter, all �gures are shown at the end of the chapter in section 3.7. In

what follows, �b:c�denotes the integer part of its argument, �=)�denotes weak convergence, and

1(:) denotes the indicator function.

3.2 Literature Review

3.2.1 Estimation and Inference about Break Dates

Bai (1997) and Bai and Perron (1998) develop a methodology explicitly designed for estimating

and testing regression models with multiple breaks. Consider the multiple linear regression with m

breaks:

yt = x
0
t� + z

0
t�j + ut; (3.1)

t = Tj�1; :::; Tj ; for j = 1; :::;m + 1 where xt (p � 1) and zt (q � 1) are vectors of covariates, �

and �j are the associated coe¢ cients and ut is the disturbance at t: The break points, denoted by

(T1;:::;Tm) are treated as unknowns and the benchmark case is that T0 = 0 and Tm+1 = T: As the

authors emphasise, the aim is to estimate both the unknown regression coe¢ cients and the break

points, given the observed dataset (yt; xt; zt). This speci�cation allows for both a partial structural

change model, in which the parameter � is not subject to shifts and is therefore estimated based

on the whole sample, and for a pure structural change model, where p = 0 and all coe¢ cients are

subject to change. Using a partial structural change model can be bene�cial in allowing potential

savings in the number of degrees of freedom, which is particularly useful when we deal with multiple

changes.

The multiple linear regression system (3.1) can be written in matrix form as:

Y = X� + Z� + U;

where Y = (y1; :::; yT );
0
X = (x1; :::xT );

0
U = (u1; :::; uT );

0 � = (�
0
1�

0
2; :::; �

0
m+1)

0
and Z is the matrix

which diagonally partitions Z at (T1; :::; Tm). Let the true value of the parameter be denoted with
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a 0 superscript so that the true data-generating process is given by:

Y = X�0 + Z
0
�0 + U (3.2)

Equation (3.2) is estimated using least squares. For each m partition (T1; :::; Tm), the least squares

estimates of � and �j are generated by minimising the sum of squared residuals, i.e.

ST (T1;:::;Tm) = (Y �X� � Z�)
0
(Y �X� � Z�) =

m+1P
i=1

TiP
t=Ti�1+1

[yt � x
0
t � z

0
t�i]

2: (3.3)

Let b�(fTjg) and b�(fTjg) denote the estimates based on the given m-partition (T1; :::; Tm), de-
noted by {Tj}. Substituting these in the objective function, equation (3.3), the estimated break-

points are generated by:

(T̂1; :::; T̂m) = arg min
(T1;:::;Tm)

ST (T1; :::; Tm):

Thus, the breakpoint estimators correspond to the global minimum of the sum of squared residuals

objective function. Having estimated the breakpoints, the corresponding least squares parameters

are calculated as b�(fT̂jg) and b�(fT̂jg):
Restrictions on the parameters

Perron and Qu (2006) consider multiple structural changes allowing for linear restriction on the

parameters of the conditional mean. Consider the model:

y = �Z� + u;

where

R� = r;

with R a k � (m + 1)q matrix with rank k and r, a k dimensional vector of constants. A partial

structural model can arise as a special case when restricting some coe¢ cients to remain unchanged

across regimes. This provides some �exibility when estimating models which speci�es a number

of states less than the number of regimes, with some coe¢ cients remaining stable in consecutive

regimes. Perron and Qu (2006) show that the same consistency and rate of convergence results

prevail while the limit distribution of the break point estimates remain una¤ected by the imposition

of parameter restrictions. An important advantage of their method is that when valid restrictions

are imposed, the tests become more powerful.
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Dynamic Programming and Global Minimisers

Estimation of structural breaks models requires global minimisers of the objective function (3.3)

with least squares operations of order O(Tm) which is di¢ cult for multiple structural breaks. Bai

and Perron (2003) developed an e¢ cient algorithm to obtain global minimisers of the sum of squared

residuals based on dynamic programming requiring least squares operations of order O(T 2) at most

for any number of breaks.

The �rst step is to compute the sum of squared residuals of the relevant segments and use the

dynamic algorithm to detect the partition which yields a global minimisation of the overall sum of

squared residuals. The method requires a sequential detection of the optimal one-break partitions.

Let SSR({Tr;n}) denote the sum of squared residual obtained from the optimal partition containing

r breaks using the �rst n observations. The optimal partition solves the recursive problem:

SSR(fTm;Tg) = min
mh�j�T�h

[SSR(fTm�1;jg) + SSR(J + 1; T )]

The optimal one-break partition is �rst evaluated for all sub-samples that allow a possible break

ranging from observations h to T �mh, storing the optimal one-break partitions and associated

sum of squared residuals. Each partition corresponds to sub-samples ending at dates ranging from

2h to T � (m� 1)h. The next step is to evaluate optimal partitions with two breaks corresponding

to sub-samples ending at dates ranging from 3h to T � (m�2)h. The method searches for the one-

break partition minimising the sum of squared residuals for each ending date giving a set of optimal

two-breaks partitions. The procedure continues until a set of optimal (m� 1) breaks partitions are

obtained with ending dates ranging from (m� 1)h to T � 2h. The �nal step is to see which of the

optimal (m�1) break partitions yields an overall minimal sum of squared residuals when combined

with an additional segment. For models with restrictions and partial structural change models, the

dynamic programming method to obtain global minimisers of the sum of squared residuals cannot

be applied directly, so a di¤erent method is followed based on a simple iterative procedure.

The limit distribution of break dates estimates

Bai (1997) and Bai and Perron (1998, 2003) show that a number of factors a¤ect the limit distrib-

utions of the break dates estimates which include:
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(1) The size of shift in the coe¢ cients, with larger shifts increasing accuracy.

(2) The sample moment matrices of the regressors for the segments before and after the true

break date.

(3) The long-run variance of {wtut}, which allows for serial correlation in the errors

(4) The existence of trends in the regressor series.

Con�dence intervals are then constructed based on the consistently estimated nuisance para-

meters.

Estimating Breaks sequentially

Bai (1997) and Bai and Perron (1998) show that when allowing for only one break model when

in fact the regression experiences multiple breaks, the estimated break fraction converges to the

true break fraction which allows for the greatest reduction in the sum of squared residuals. The

second one break model can then be estimated, after imposing the �rst identi�ed break, so that

it converges to the second most dominant true break point, the one which allows for the second

greatest reduction in the sum of squared residuals. In particular, Bai and Perron (1998) explain

that when the number of breaks points is known, for example m, and the �rst break point is

identi�ed, the sample is split into two sub-samples separated by the estimated break point. For

each sub-sample, a one break is estimated and the second breakpoint is chosen which allows the

greatest reduction in the sum of squared residuals. The sample is then split into three regimes

and one-break model is estimated in each regime. The third break point is selected such that the

reduction in the sum of squared residuals is the biggest. The process continues until the m breaks

are identi�ed.

Bai (1997) also shows that the limit distribution of the estimates obtained sequentially di¤ers

from the limit distribution derived from the simultaneous estimation of the break points. For

example, when break dates are estimated simultaneously, the limit distribution of the date depends

exclusively on the parameters of the regimes next to it, while when breaks are estimated sequentially,

the limit distributions depend on the parameters of all regimes. Re-estimating each break date

conditional on the adjacent break dates, as suggested by Bai (1997), makes the limit distributions

under both estimation methods identical.
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3.2.2 Tests for structural change

There is a long history of diagnostic testing based on �tted econometric models to see if the �tted

parameters are stable across the available sample data. Here we mention the main ones that are

more closely related to our work.

Tests for parameter constancy in models that do not allow for a break

The CUSUM test The recursive least squares estimates of � are based on estimating

yt = �
0
txt + �t; t = 1; :::; n

by least squares recursively for t = k + 1; :::; n giving n � k least squares estimates (�̂k+1; :::; �̂T ).

The recursive least squares estimates can be e¢ ciently computed using the Kalman �lter. If there

is no structural change, � is constant over time and all n� k estimates will have a common value.

Let the recursive residuals be noted by:

wt =
vtp
ft
=
yt � �

0
t�1xtp
ft

ft = �2[1 + x
0
t(X

0
tXt)

�1xt];

where Xt contains the observations on the regressors up to time t. Then the CUSUM statistic of

Brown, Durbin and Evans (1975) is given by:

CUSUMt =
tX

j=k+1

ŵj
�̂w

;

where �̂2w =
1

n�k

nP
t=1
(wt � �w)2: Under the null hypothesis that � is constant, CUSUM statistic has

mean zero and variance that is proportional to t�k�1. The limit distribution of the CUSUM test

can be expressed in terms of the maximum of a weighted Wiener process i.e.

CUSUM ! sup
0�t�1

���� W (t)1 + 2t

���� ;
where W (t) is a unit Wiener process de�ned on (0; 1).
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The CUSUMsq test Brown, Durbin and Evans (1975) provide an alternative, the CUSUM of

squares test whose statistic is given by:

CUSUMSQt =

tP
j=k+1

ŵ2j

nP
j=k+1

ŵ2j

:

Ploberger and Krämer (1990) considered the local power function of CUSUMQt and show that it

has power equal to size for local changes that specify a one-time change in the coe¢ cients.

Generalised Fluctuation tests These tests were developed by Ploberger, Krämer and Kontrus

(1989) and Kuan and Hornik (1995). They examine the maximum di¤erence between the OLS

estimate of � using the full sample and the OLS estimates using subsets of the sample, either

chosen recursively or by a moving window that rolls through the sample at constant width. If

the true coe¢ cients remain constant over time i.e. there is no structural break, the two types of

estimates should be similar. The resulting processes should not �uctuate too much under the null.

If, on the contrary, the process exhibits large �uctuations, there is evidence of structural break.

A problem with the �uctuation tests as with the CUSUMSQ test is that for a given sample size,

the power function are not monotonic and might decrease as the alternative becomes further away

from the null value. For example, considering a one-o¤ shift in the mean, it has been shown that

the power of the tests decreases as the shift becomes larger and might even reach zero. This can

be attributed to di¤erent scaling of the variance under the null and the alternative hypotheses. As

Perron (2006) explains, because the break is not modelled, the variance estimated is contaminated

by the shift under the alternative and as the magnitude of the shift becomes greater, the estimate

gets in�ated and, therefore, we experience losses in power. Overall, among the tests considered,

CUSUM is to be preferred since it avoids these drawbacks.

The Nyblom test Consider the stochastic time-varying parameter models (TVP) in which we

treat the breaks in � as stochastic or the result of a continuous process. The regression equation

can then by written as

yt = �
0
tXt + et; t = 1; :::; T (3.4)

�t = �t�1 + vt;
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where �0 = � and where et and vt are uncorrelated and vt is serially uncorrelated with E(v
0
tvt) =

�2G: Under the null hypothesis, � is constant i.e. H0 : E(v
0
tvt) = 0 for all t while under the

the alternative E(v
0
tvt) > 0 for some t. In the context of (3.4) our alternative of interest is that

H1 : vt~IIDN(0; �
2G); where G is a known k by k matrix. Here �t evolves as a random walk,

so it evolves smoothly but randomly over the sample period. It can be shown that the Lagrange

multiplier statistic of H0 against H1 in (3.4) is given by:

L := T�1
TP
t=1

ST (s=T )
0
(
�̂2

T

TP
t=1

XtX
0
t)
�1ST (s=T );

where �̂2 := T�1
P
ê2t and ST (�) := T�1=2

TP
R=[T�]+1

êtXt; and where fêtgTt=1 are OLS residuals from

regressing yt on Xt; t = 1; :::; T . The decision rule is to reject the null hypothesis if the L statistic is

large and greater than the critical value. The above test is for the choice of G = [T�1
TP
t=1

XtX
0
t]
�1

which makes for a neat limiting distribution. Critical values are calculated by simulation by Nyblom

(1989). It is important to note that the approach only works if we assume that Xt is stationary. If

there is a deterministic trend or the regressors contain unit roots, di¤erent distribution of L applies.

Moreover, the test is applicable for models estimated by methods other than OLS. A drawback of

this model is that the test is not informative about the date or the type of structural change.

Tests allowing for a single break in the model

The Chow (1960) test Suppose we have the classical linear regression model

yt = �
0
tXt + et; t = 1; :::; T (3.5)

and we wish to test the null H0 : �t = � against the alternative H1 : �t = �; t � r and �t + ;

t > r: Classically, when {Xt; et} satisfy standard stationarity and regularity conditions we can use

the Chow (1960) test. Assuming for simplicity that et~IID(0; �2) and Xt is �xed, the Chow test is

given by:

Ft(r=T ) :=
SSR1;T � (SSR1;r + SSRr+1;T )
(SSR1;r + SSRr+1;T )=(T � 2k)

;

where SSRa;b is the residual sum of squares from estimating (3.5) on the sample observations a; :::; b

and k is the dimension of �t: For �xed r=T , i.e. for a known break point, Ft(r=T ) w�! x2k under H0:

We reject the null hypothesis of no structural break if the sum of squared residuals corresponding to
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the model with no breaks is signi�cantly greater than the sum of squared residuals corresponding

to the model with a break at period r: The problem with the Chow (1960) test is that is not

operational if the breakpoint is unknown i.e. when we do not hold strong beliefs about the exact

timing of the break.

The Quandt (1960) test When the break point is unknown, i.e. r is not known, the problem

becomes non-standard since as Perron (2006) explains one parameter is only identi�ed under the

alternative hypothesis because under the null, there is no break. This is known as the Davies

problem (1977). Quandt (1960) introduces the sup F test and suggests estimating (3.5) over a

range of possible dates r0;:::; r1; and maximise over these, giving a likelihood ratio test. In other

words, Quandt (1960) formulates a likelihood ratio test for a change in parameters evaluated at

the break date that maximises the likelihood function. Thus, the test statistic is given by:

QLR := max
r=r0;:::;r1

fFT (r=T )g:

Davies (1977) showed that if estimated parameters are unidenti�ed under the null, standard �2

inference does not obtain. Kim and Siegmund (1989), therefore, found that the limiting distribution

of the QLR under the H0 is given by:

QLR w�! sup
�2[�0;�1]

f
B�k (�)

0
B�k (�)

�(1� �) g;

where B�k (r) :=Wk(r)� rWk(1); where Wk(r) is a k-dimensional Brownian motion and B
�
k (r) is a

k�dimensional Brownian bridge. Also, �i := limT!1 ri=T; i = 0; 1: The trimming parameters �0

and �1 must be set so that we cannot have �0 = 1 and �1 = 1 because breaks are hard to identify

near the beginning and end of the sample. Andrews (1993) suggests �0 = 0:15 and �1 = 0:85 if

there is no knowledge of the break date. Implicitly, the break date r and the break fraction � are

estimated using

r̂ = argmax
r
FT (r=T )

�̂ = r̂=T:

Andrews (1993) shows that if the trimming parameters �0 = �1 = 0 so that no restrictions are

imposed, the test diverges to in�nity under the null hypothesis indicating that critical values increase

71



while the power of the test decreases as the trimming parameters get smaller. As Perron (2006,

p.25) note, "the range over which we search for a maximum must be small enough for the critical

values not to be too large and for the test to retain descent power, yet large enough to include break

dates that are potential candidates." Critical values for a range of dimensions and for trimming

intervals are tabulated by Andrews (1993).

Andrews (1993) test Andrews (1993) also considers tests based on the maximal value of the

Wald and LM tests showing that they have the same limit distribution under the null and under

a number of alternative hypotheses. Tests considered are consistent and have non trivial local

asymptotic power against alternatives for which the parameters of interest exhibit instability over

the interval speci�ed by �0 and �1:

Optimal tests

Andrews and Ploberger (1994) test Optimal tests which maximise the weighted average

power have been designed by Andrews and Ploberger (1994). Two weighting schemes have been

applied. The one applies weights to the parameter identi�ed under the alternative assigning a

weight function J(�1) which can be viewed as a prior distribution over the possible break dates.

The other scheme considers the distance between the alternative value and the null hypothesis in an

asymptotic framework which treats the alternative values as local to the null. The optimal test is a

weighted function of the test statistics for all permissible �xed break dates. In particular, optimal

tests turn out to be weighted averages of the Chow breakpoint statistics FT ( rT ) used to compute

the QLR statistic:

ExpFT = ln(
1

r2 � r1 + 1
)
r2P
t=r1

exp(
1

2
k � FT (

t

T
)))

AveFt =
1

r2 � r1 + 1
r2P
t=r1

k � FT (
t

T
);

where k is the number of regressors being tested. Asymptotic null distributions are non-standard

and depend on k, �0 and �1: The critical values are tabulated in Andrews and Ploberger (1994)

for symmetric trimmings. In general using either of the basic statistics (i.e. Wald, LM, LR) leads
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to tests that are asymptotically equivalent. Simulations reported by Andrews, Lee and Ploberger

(1996) show that the tests perform well in practice.

3.3 One Level-Break

3.3.1 Model and Estimation

In this section, the model to be estimated is a linear time-series regression with a possible structural

break in the level. The model for estimation is:

yt = �1 + 1DUt(�
�) + ut; t = 1; :::; T; (3.6)

ut = �ut�1 + "t; t = 2; :::; T ,

with u1 = "1, where DUt(��) = 1(t > b��T c) with b��T c the break point with associated break

fraction �� and level break magnitude 1: Here, �
� is unknown but satis�es �� 2 �; where � = [�L;

�U ] with 0 < �L < �U < 1: We assume that the innovation process {"t} of equation (3.7) is an IID

sequence with variance !2" and �nite fourth moment.

Uncertainty over the existence (and subsequently the location) of the break means that the

researcher does not know whether the break-size is di¤erent from zero. If there is no break in the

level of the series, then 1 = 0; and the model simpli�es to:

yt = �1 + ut; t = 1; :::; T (3.7)

ut = �ut�1 + "t; t = 2; :::; T:

With pre-testing for the existence of a break, the researcher had to make a �rm decision between

model (3.6) and model (3.7). However, pre-testing is shown to exhibit bad sample-properties

(Hansen (2009)) and, in this context, is not recommended. At the same time, the researcher

is uncertain about the autocorrelation structure of the series, and thus about the correct �ltering

parameter, �. In order to deal with both uncertainty over the existence of the break and uncertainty

over the autocorrelation properties of the data, we employ a two-step procedure in which the �rst

step involves a conservative method which allows for a break and selects the appropriate �ltering

parameter in order to absorb serial correlation. The second step involves estimating both the
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model with a break, as characterised by (3.6) and the model without a break (model (3.7)) so that

a weighted average of the break size is obtained, (Hansen (2009)). In what follows we describe the

procedure in full.

Step 1: Selecting the appropriate �ltering parameter

The approach is conservative so despite the fact that the structural break is uncertain, the �rst

step involves selecting the �ltering parameter based on the equation that allows a structural break.

This means that if the true data generating process does not involve a break, the approach is just

ine¢ cient. If, on the other hand, the true process involves a break, the approach achieves the best

results and avoids the detrimental e¤ects of excluding the break a priori. Since the true value of � is

unknown in practice, we use Harvey and Leybourne�s (2013) hybrid fraction estimator that selects

between a range of possible values for � in the set Dm = f��1; ��2; :::; ��m�1; 1g. The estimate of the

break fraction �� is then selected by minimising the residual sum of squares from a quasi-di¤erenced

version of equation (3.6), that is

�̂Dm = arg min
�2�;��2Dm

S(��; �)

where S(��; �) denotes the residual sum of squares from an OLS regression of y�� on Z��;� with

y�� = [y1; y2 � ��y1; :::; yT � ��yT�1]0;

Z��;� = [x1;x2 � ��x1; :::;xT � ��xT�1]0 with xt = [1; DUt(�)]0:

More explicitly, the procedure simultaneously estimates the break fraction and selects a �ltering

parameter according to which achieves the smallest residual sum of squares. As Harvey and Ley-

bourne (2013) show, the procedure works extremely well in selecting a �� which is almost identical

to the true �; even in sample sizes of practical relevance. The hybrid estimator is shown to perform

competitively against the better of the levels- and �rst di¤erenced-based estimators across a range

of I(0) and I(1) data generating processes since, as the authors explain, the autoregressive �ltering

inherent in �̂Dm is only intended to remove the dominant autoregressive behaviour present in a

series and not to whiten the series entirely.
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Step 2: Weighted Average Break Size

Having obtained the relevant information from the �rst step, we proceed with dealing with uncer-

tainty over the existence of the break. Based on the �ltered data, if we believe a structural break

has occurred then we estimate equation (3.6) by least squares written as:

y�� = Z��;� �̂(�̂) + ût(�̂) (3.8)

where

�̂(�̂) =

264�̂1
̂1

375 : (3.9)

ût(�̂) = û then denotes the T � 1 residuals from equation (3.8) while the sum of squared errors,

given the estimated break fraction, �̂ ; is given by ût(�̂)0ût(�̂): To estimate the break fraction, � ;

based on equation (3.8) one needs to minimise the criterion:

�̂ = arg min
�L����U

ût(�̂)
0ût(�̂):

It is important to note here that the estimated break fraction, �̂ , is exactly equal to �̂Dm (the �rst

stage estimated break fraction) because this second stage estimate minimises the sum of squared

residuals conditional on the �ltering parameter. Since the selected �ltering parameter corresponds

to the global minimum sum of squared residuals (across the whole range of �ltering parameters

considered), it is intuitive that �̂ = �̂Dm :

On the other hand, if we are certain that no structural break has occurred then we de�ne

�xt = [1]
0 and �Z��;� = [�x1;�x2 � ���x1; :::; �xT � ��xT�1]0

and estimate equation (3.7) by least squares written as

y�� = �Z��;� ~� + ~ut (3.10)

where

~� =

�
~�1

�
(3.11)

and ~ut = ~u now represents the T � 1 residuals from equation (3.10). Since no break is allowed

in the level, the break size, ~1, is equal to zero.
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The standard practice in testing model (3.6) against model (3.7) is based on Andrews (1993)

supF test. The test statistic is given by

F =
(~u0~u� û0û)

s2
(3.12)

where

s2 =
1

T � 2 û
0û (3.13)

is the bias-corrected estimator of the error variance from model (3.8). This model selection proce-

dure dictates that for an a% signi�cance level, the test rejects model (3.7) in favour of model (3.6),

if F > c�; where c� is the (1 � �)% upper quantile of the distribution of F. In other words, the

pretest estimator uses the unrestricted estimator (3.9) when F is signi�cant and otherwise uses the

restricted estimator (3.11). So a pretest estimator for the level-break size can be written as:

̂p1 = ̂11(F > c�) + 0 � 1(F < c�)

= ̂11(F > c�):

Hansen (2009) has shown that averaging based on Mallow weights exhibits substantial e¢ ciency

gains over selection between the two models based on pretesting. In particular, the asymptotic

mean-squared error of the pretest estimator is very large, for certain regions of the parameter

space, while the asymptotic mean-squared error of their proposed weighted average estimator is

close to the infeasible minimum. Averaging assigns a weight w to model (3.6), the structural break

model, and a weight 1 � w to model (3.7). Hansen (2009) suggests minimising a variant of the

Mallow criterion given by:

C(w) = (ûw + ~u(1� w))0(ûw + ~u(1� w))+2s2(1 + �pw) (3.14)

where �p is a feasible penalty coe¢ cient constructed as an average of limiting cases and depends on

the number of structural breaks allowed and � = (1��L)2
�2L

. Hansen tabulates the penalty coe¢ cients

as function of the number of structural breaks and the trimming parameter �L: The Mallow weight

is the value in [0; 1] that minimises C(w). Hansen (2009) demonstrates that optimal weights are

given by:
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ŵ =

8><>: 0 if F < �p

1� �p
F if F � �p:

(3.15)

Our analysis is based on Hansen�s weighted average estimates of the model parameters as weighted

averages using the weight ŵ. The level-break size is, then, given by:

̂Hyb1 = ̂1(1�
�p

F
)1(F > �p):

3.3.2 Finite sample performance

In this section we compare the �nite sample performance of the hybrid estimators ̂Hyb1 ; which is

based on the �ltered data, with the estimator suggested by Hansen based on un�ltered data. In

particular, Hansen assumes that innovations are white noise so that the weighted average estimators

of the break size are based on un�ltered data. In what follows, we show results for a range of

autocorrelation structures, namely, for � = f0; 0:5; 0:9; 1g: As we will subsequently show, the

results of the two procedures, i.e. Hansen�s and our proposed hybrid procedure, are identical when

� = 0: This is natural given that our approach only di¤ers to Hansen�s when innovations are not

white. The simulation DGP is equation (3.6), with u1 = "1, "t~NIID(0; 1) and �1 = 0 (without

loss of generality) while we use �� = 0:5: In the simulations here and in the remainder of the chapter,

we set � = [0:15; 0:85]. We consider break sizes in the set 1 = f1; 1:5; 2; �2:5g: Regarding Dm;

we set Dm = f0; 0:1; 0:2; :::; 0:8; 0:9; 0:95; 0:98; 0:99; 1g: To perform the Hansen approach, we use the

penalty term value of 2:49, as suggested in Hansen (2009, p.1506). The results are based on 1; 000

simulations and sample size of T = 200: All simulations were programmed in Gauss 9.0.

Figures 3.1-3.14 compare histograms of the estimates of both the break fraction and the level

break size under the approach of Hansen (2009) to the corresponding histograms developed under

our new proposed hybrid approach, for di¤erent data-generating processes. Figures 3.1 and 3.2

represent histograms for the I(0) case for 1 = 1 and 1 = �2:5 respectively. What is immediately

apparent is the fact that the histograms of the two approaches are identical. The reason is obvious:

Because the approach by Harvey and Leybourne (2013) is extremely e¤ective in capturing the true

autoregressive parameter, our hybrid approach applied the Hansen�s method based on un�ltered

data. This means that the two approaches deliver the same results. What we further observe is
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that as the break magnitude becomes larger, the more e¤ective are the methods in picking up the

correct break-fraction. However, the accuracy of estimating the correct break-size does not improve

with the actual size of the break. The two approaches systematically detect the true break-size

with probability of 62%.

The relative performance of the two approaches can be observed as soon as we allow some

serial correlation. Figures 3.3-3.6 represent the histograms under the two approaches for � = 0:5:

As we can see, the hybrid approach is always better than Hansen�s approach in estimating the

break-fraction and the superiority becomes stronger as the break-size becomes larger. As far as

the break-size estimates are concerned, the mean estimates of both approaches are very close to

the true break-size while the variance does not seem to di¤er much. However, as the true-break

size becomes larger, the hybrid approach detects the true-break size with greater accuracy than

Hansen�s. For instance, in �gure 3.8 in which the true-break size is �2:5, the hybrid approach

detects the true-break size with probability 56% compared to Hansen�s approach which accurately

estimates the break-size with 50% probability.

As mentioned before, as the autoregressive behaviour becomes more dominant, i.e. as � becomes

larger, our approach dramatically does better than Hansen�s un�ltered approach in accurately

estimating the break size. This is expected since the stronger autoregressive component begins to

erode Hansen�s estimator ability to identify the true break size. This becomes even more apparent

in histograms represented in �gures 3.7-3.10, which concern the case of � = 0:9; so that the series is

nearly integrated of order one. As an indication, consider �gure 3.7 which represents results for a

break size of 1. The Hansen�s approach is completely wrong in estimating the true break-fraction,

as it implies that the break fraction is more likely to have occurred at break fraction 0:8, compared

to 0:5 which is the truth. The hybrid approach is more accurate in predicting the break-fraction,

which explains why it does better in estimating the break-size. As the break-size becomes bigger,

the advantages of the hybrid approach are further highlighted. Figure 3.10, which shows results

for 1 = �2:5, demonstrates that the hybrid approach correctly picks up the break-size 26% of the

times, compared to Hansen�s approach which detects the true break-size only 18% of the times.

Results are similar but more pronounced when we consider the I(1) case i.e. when � = 1;

represented by histograms in �gures 3.11-3.14. As it is expected, the superiority of our approach is
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further highlighted. In particular, the majority of break size estimates based on the hybrid approach

is much closer to the true break size than the majority of estimates suggested by Hansen�s procedure.

For instance, consider �gure 3.13b which represents results for a level break-size of 2. The hybrid

procedure is much more consistent in capturing the break-size compared to Hansen�s procedure

which delivers a very big variance. More concretely, the Hansen procedure fails to identify whether

the break is negative or positive. On the contrary, the hybrid estimates correctly detect the true

break-size with probability 20%. Even though this probability is not high enough to draw �rm

conclusions about the true-break size, the other estimates of the break-size lie within a very close

range from the true break-size of 2. This superiority is likely to be stemmed from the excellent

accuracy advantages of the hybrid approach in estimating the break-fraction. As we see from �gures

3.11-3.14, while Hansen�s break-fraction estimates are all over the place ranging from 0:15 to 0:85

with almost equal probability (see �gure 3.14a for the most obvious example), the hybrid approach

captures the true break-fraction with a far greater accuracy.

Allowing a simultaneous break in level and trend

The analysis so far considered a level-break in the series. Here, we show that the two-stage hybrid

procedure does not work equally well when we allow for a broken trend. In particular, the hybrid

approach does not deliver signi�cant improvements in the accuracy of trend break-size estimation.

To show this, we consider a model that allows a simultaneous break in the level and trend:

yt = �1 + �2t+ 1DUt(�
�) + 2DTt(�

�) + ut; t = 1; :::; T;

ut = �ut�1 + "t; t = 2; :::; T

with u1 = "1, where DUt(��) = 1(t > b��T c) and DTt(��) = 1(b��T c)(t � b��T c) with b��T c

the break point with associated break fraction �� and level and trend break magnitudes 1 and 2

respectively. Here, �� is unknown but satis�es �� 2 �; where � = [�L; �U ] with 0 < �L < �U < 1

as before: If there is no break in the level and trend, then 1 = 2 = 0; and the model simpli�es to

yt = �1 + �2t+ ut; t = 1; :::; T
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ut = �ut�1 + "t; t = 2; :::; T:

We follow the two-step procedure as outlined above: We �rst select the autoregressive �lter

parameter that minimises the sum of squared residuals and then average the break size estimators

according to Hansen�s (2009) weight scheme. Figure 3.15 shows the results for the I(1) case setting

1 = 3 and 2 = 3 and �
� = 0:5: As it can be seen, our hybrid approach detects the break-fraction

with great accuracy: 98% of the times, the estimates of the hybrid approach are exactly equal to

the true break-fraction, outperforming Hansen�s un�ltered approach which accurately estimates the

true break-fraction only 48% of the times. Due to its superiority in estimating the break-fraction,

the hybrid approach clearly outperforms Hansen�s methodology in estimating the level -break size.

The Hansen approach delivers level break-size estimates that range from �15 to 10 occurring at

equal frequencies while the observation with the highest frequency is �1, well below the true level-

break size of 3. On the contrary, our hybrid approach yields a much smaller variance for the

estimates while the mean of the estimates is close to 3. More explicitly, the mean level break-size

estimate given by Hansen�s approach is �0:45 with variance 7:19 while our hybrid approach yields

a mean level-break size of 2:70 with variance 1:66. Despite the outstanding accuracy in estimating

the level-break size, the hybrid approach does not seem to perform any better in estimating the

trend-break size. The mean is 2:93 for both approaches and the variance is very similar. This

indicates that in a univariate framework, such as the one examined in this chapter, the hybrid

approach is not worth pursuing when there is a broken trend.

3.4 Two Level-Breaks

Our proposed approach can be extended to consider multiple structural breaks in the levels. Al-

though analysis in Hansen (2009) only considers breaks that happen simultaneously, we show that

the approach also works well when we multiple consecutive breaks are allowed. In what follows we

explain how the hybrid procedure works with two structural breaks in the level.
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3.4.1 Model and Estimation

In this section, the model to be estimated is a linear time-series regression with two possible struc-

tural breaks in the level. The model for estimation is:

yt = �1 + 1DU1t(�
�
1) + 2DU2t(�

�
2) + ut; t = 1; :::; T; (3.16)

ut = �ut�1 + "t; t = 2; :::; T ,

with u1 = "1, where DU1t(��1) = 1(t > b��1T c) and DU2t(��2) = 1(t > b��2T c) with b��1T c and b��2T c

the break points with associated break fractions ��1 and �
�
2 and level break magnitudes 1 and 2:

Here, ��1 and �
�
2 are unknown but satisfy �

�
1; �

�
2 2 �; where � = [�L; �U ] with 0 < �L < �U < 1:

We assume that the innovation process {"t} of equation (3.16) is an IID sequence with variance !2"

and �nite fourth moment.

Uncertainty over the existence of the breaks means that the researcher does not know whether

the break-sizes are di¤erent from zero. If there are no breaks in the level of the series, then

1 = 2 = 0; and the model simpli�es to

yt = �1 + ut; t = 1; :::; T (3.17)

ut = �ut�1 + "t; t = 2; :::; T:

In order to deal with both uncertainty over the existence of the break and uncertainty over the

autocorrelation properties of the data, we extend the two-step procedure outlined in the previous

section to allow for two-level breaks. The procedure is summarised below.

Step 1: Selecting the appropriate �ltering parameter

The approach is conservative so despite the fact that the structural breaks are not de�nite, the �rst

step involves selecting the �ltering parameter based on the equation that allows for two structural

breaks in the level of the series. This means that if the true data generating process does not

involve breaks, the approach is just ine¢ cient. If, on the other hand, the true process involves

level-breaks, the approach achieves the best results and avoids the detrimental e¤ects of ignoring

structural breaks a priori. Since the true value of � is unknown in practice, we use Harvey and

Leybourne�s (2013) hybrid fraction estimator that selects between a range of possible values for �
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in the set Dm = f�01; �02; :::; �0m�1; 1g where j�0ij < 1 for all i and, without loss of generality, �1 <

�01 < �02; :::; �
0
m�1 < 1: The estimates of the break fractions �

�
1 and �

�
2 given by �̂Dm = f�̂1Dm ; �̂2Dmg

are then selected by minimising the residual sum of squares from a quasi-di¤erenced version of

equation (3.16), that is

�̂Dm = arg min
�2�;��2Dm

S(��; �),

where S(��; �) denotes the residual sum of squares from an OLS regression of y�� on Z��;� with

y�� = [y1; y2 � ��y1; :::; yT � ��yT�1]0;

Z��;� = [x1;x2 � ��x1; :::;xT � ��xT�1]0 and xt = [1; DU1t(�); DU2t(�)]0:

The procedure simultaneously estimates the break fractions and selects a �ltering parameter

according to which achieves the smallest residual sum of squares. As we subsequently show, the

procedure delivers extremely good results in selecting an autoregressive parameter which is very

close to the true � even in small sample sizes across a range of I(0) and I(1) data generating

processes.

Step 2: Weighted Average Break Size

Once we obtain the �ltered data based on information prevailed in the �rst step, we move on to

deal with uncertainty over the existence of the break. Based on the �ltered data, if we believe that

structural breaks have taken place in the level, we estimate equation (3.16) by least squares written

as:

y�� = Z��;� �̂(�̂) + ût(�̂) (3.18)

where

�̂(�̂) =

266664
�̂1

̂1

̂2

377775 : (3.19)

ût(�̂) = û then denotes the T � 1 residuals from equation (3.18) while the sum of squared errors,

given the estimated break fractions, �̂ = f�̂1; �̂2g are given by ût(�̂)0ût(�̂): To estimate the break
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fractions based on equation (3.16) one needs to minimise the criterion:

�̂ = arg min
�L��̂��U

ût(�̂)
0ût(�̂):

It is important to note here that the estimated break fractions, �̂ , are exactly equal to �̂Dm (the �rst

stage estimated break fractions) because this second stage estimate minimises the sum of squared

residuals conditional on the �ltering parameter. Since the selected �ltering parameter corresponds

to the global minimum sum of squared residuals (across the whole range of �ltering parameters

considered), it is intuitive that �̂ = �̂Dm :

On the other hand, if no breaks are assumed, the regressors are as follows:

�xt = [1]
0 and �Z��;� = [�x1;�x2 � ���x1; :::; �xT � ��xT�1]0

and estimate equation (3.17) based on the �ltered data:

y�� = �Z��;� ~� + ~ut, (3.20)

where

~� =

�
~�1

�
(3.21)

and ~ut = ~u now represents the T � 1 residuals from equation (3.20). Since no breaks are

allowed, the level break sizes, ~1 = ~2 = 0, are equal to zero.

The standard practice in testing model (3.16) against model (3.17) is based on Andrews (1993)

supF test. The test statistic is given by equations (3.12) and (3.13). The pretest estimator uses

the unrestricted estimator (3.19) when F is signi�cant and otherwise uses the restricted estimator

(3.21). The pretest estimators for the two level-break sizes can then be written as:

̂p1 = ̂11(F > c�) + 0 � 1(F < c�)

= ̂11(F > c�)

̂p2 = ̂21(F > c�) + 0 � 1(F < c�)

= ̂21(F > c�).

Although Hansen (2009) does not show the analytics for two consecutive structural breaks, the

approach is shown to perform competitively when extended to allow for two structural breaks in

83



the level. Instead of selecting purely between model (3.16) and (3.17), we follow Hansen (2009) and

apply the model averaging technique where weights are selected to mimimise the Mallow criterion

(3.14). The weights are given by (3.15) where �p is the penalty coe¢ cient corresponding to the

two-break case. The weighted average level-break sizes are, then, given by:

̂Hyb1 = ̂1(1�
�p

F
)1(F > �p)

̂Hyb2 = ̂2(1�
�p

F
)1(F > �p):

3.4.2 Finite sample performance

In this section we compare the �nite sample performance of the hybrid estimates ̂Hyb1 and ̂Hyb2

with Hansen�s estimates which are based on un�ltered data. In what follows, we show results for a

range of autocorrelation structures, namely, for � = f0; 0:5; 0:9; 1g: The simulated DGP is equation

(3.16), with u1 = "1, "t~NIID(0; 1) and �1 = 0 (without loss of generality) while we use ��1 = 0:25

and ��2 = 0:75: We consider 1 = f3; 4;�5; 6g and 2 = f3; 4; 5;�6g. As before; we set Dm =

f0; 0:1; 0:2; :::; 0:8; 0:9; 0:95; 0:98; 0:99; 1g: The results are based on 1; 000 simulations and sample

size of T = 200: Although Hansen (2009) does not tabulate penalty terms for the two consecutive

breaks, we use 4:05 which is the penalty term for two simultaneous breaks, acknowledging that the

penalty term is not likely to di¤er much.

Figures 3.16 and 3.17 show histograms for � = 0: As it can be seen, the results for the two

procedures are almost identical since our proposed approach only di¤ers to Hansen�s approach

when innovations are not white. Since data require no �ltering when � = 0, and given that the

hybrid approach correctly selects �� = 0, the two procedures yield identical results. As with the one

break case, the two approaches work well in identifying the break-fractions. Indeed, the estimated

break-fraction is equal to the true break-fraction more than 95% of the occasions.

Figures 3.18-3.21 show results for the � = 0:5 case. Although it is not immediately apparent, the

hybrid approach performs marginally better in estimating the two break fractions and, therefore, in

estimating the break-sizes. However, because the degree of autocorrelation is not strong enough to

erode the ability of Hansen�s approach in detecting the true break-fractions, the di¤erence between

the two approaches is not dramatic. The advantages of the hybrid approach become more apparent
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in �gures 3.22-3.25, which present results for � = 0:9. The hybrid approach is much more e¤ective

in detecting the true break fraction and this is why estimates of the break-sizes are much more

accurate. For instance, consider �gure 3.25b, where the true break-sizes are 6 and �6 for the �rst

and second break respectively. The hybrid approach correctly estimates the �rst break-size of 6

with probability 22% compared to Hansen�s approach which accurately estimates the �rst break-

size with probability 14%. In addition, the hybrid procedure is right in estimating the second

break-size 20% of the times compared to Hansen�s procedure which correctly estimates the second

break-size with probability of 14%. Although the di¤erence is not huge, the variance and range of

the break-size estimates under the hybrid approach are substantially smaller compared to Hansen�s

procedure.

The superiority of the hybrid approach becomes even more acute when we consider the I(1)

case (�gures 3.26-3.29). Results are substantial: The Hansen procedure completely fails to identify

the location of the two breaks. On the contrary, the hybrid approach, which applies the correct

�lter of the data, is particularly e¤ective in identifying the true break-fractions at 0:25 and 0:75.

The di¤erence in performance between the two approaches becomes even more apparent when we

consider larger break sizes. For instance, consider �gure 3.29 where the �rst level break-size is 6 and

the second level break-size is �6. Even though the mean estimate of the �rst break-size under the

Hansen procedure is 5:20, which is close to the true break size, the variance is 7:89. Indeed, Hansen�s

methodology correctly estimates the �rst break-size only 4% of the times. On the contrary, the

hybrid approach delivers accurate results 20% of the times. Hansen�s estimates of the second break

size are all over the place, ranging from �25 to 20. By contrast, the corresponding histogram for

the hybrid approach is tall and thin, without extreme values and estimates concentrating around

�6.

3.5 Empirical Illustration

In this section, we provide an empirical example to illustrate the ability of the proposed hybrid

approach to detect breaks and evaluate their sizes when the autocorrelation properties of the data

are unknown and when the existence of breaks is uncertain. We employ quarterly data on the
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seasonally adjusted U.S. civilian unemployment rate over the period 1965q1 to 2014q2, obtained

from the Federal Reserve Bank of St. Louis database. Since the seminal paper by Blanchard

and Summers (1986) that introduced the hypothesis of unemployment hysteresis, according to

which cyclical �uctuations will have a permanent e¤ect on the level of unemployment, a number

of studies have been conducted to examine the autocorrelation properties of the unemployment

series. Evidence however is mixed: Among others, Elmskov and MacFarlan (1993); Mitchell (1993),

and Camarero and Tamarit (2004) all conclude that unemployment rates are non-stationary while

authors like Papell et al. (2000) and Camarero et al. (2006) provide evidence that unemployment

is mean-reverting for the majority of countries examined. Could this disagreement be attributed

to the fact that many studies ignore the possibility of structural breaks? Even though numerous

studies have attempted to locate structural breaks in the unemployment rate of a particular country,

there is no consensus about the existence of the break at a particular point in time, suggesting that

considerable uncertainty also prevails about whether a break has taken place. Oil crises, changes

in monetary policy and central bank operating procedures, important policy changes, such as

trade agreements and tax reforms, are just some of potential sources of structural breaks in the

unemployment series. Despite that, current procedures in identifying breaks do not lead to the

same conclusions about the location of breaks.

We analyse the U.S. unemployment rate over the period 1965q1 to 2014q2, allowing for two

consecutive breaks in the level of the series. Figure 3.30 plots the U.S. civilian unemployment rate

over the period considered. A mere observation indicates that the series only admits a level and

that a trend is absent1. We follow the procedure outlined in previous section, using the trimming

parameters � = [0:15; 0:85], so that we only search for breaks over the period 1972q2�2007q1. Step

1 from the hybrid approach selects the autoregressive parameter to be equal to 0:98, indicating that

the unemployment rate is nearly integrated, and it is, therefore, not surprising that unit root tests

against stationary alternatives have low power (see also Cochrane (1991) and DeJong et al. (1992)).

The results of the hybrid approach also point that the �rst structural break in the level occurred

in 1974q4, while the second structural break in the level occurred in 1983q3. These �ndings are

1Clemente et al. (2005) and Lee and Chang (2008) provide evidence that the unemployment series admits only a

level.
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consistent with a number of studies that provided evidence of a mean shift in the unemployment

series around the reported dates (Gil-Alana (2002), Arestis et al. (1999) Clemente et al. (2005),

Lee et al. (2009)). The average break-sizes, as found by the hybrid procedure, are 1:53 for the

�rst break and �0:76 for the second break. The �rst structural break occurred around the �rst

energy crisis that caused a signi�cant and deep recession. As it can be seen from �gure 3.30, in

the new regime, starting from 1974q4, the unemployment rate �uctuated around 8% until early

1980s. The second breaks coincides with the emergence of a depressive cycle caused by the second

oil-shock crisis. As it is shown, the hybrid two-stage procedure, that addresses uncertainty over

the existence of the break and uncertainty over the autocorrelation properties of the series, is very

e¤ective in identifying important structural changes in the series so that the researcher can make

valid economic inferences.

3.6 Conclusion

In summary, we have examined the �nite sample performance of break size estimators that deal

with both the uncertainty over the autoregressive properties of the data and uncertainty over the

existence of a break. Since knowledge about the exact autoregressive properties of the stochastic

component is typically limited, we design a two-stage procedure that works well without having to

defend a potentially wrong view on the data�s order of integration. At the same time, we employ

weighted average estimators to account for the fact that breaks are not always obvious and often

uncertainty whether a change has taken place in the behaviour of the series exists. In particular,

we extended previous work by Hansen (2009), that used weighted average estimators, by using

quasi-di¤erenced or �rst di¤erenced data depending on the selected autoregressive parameter that

minimises the sum of squared residuals across a number of options, following the approach developed

by Harvey and Leybourne (2013). It was found that the approach works well and achieves accurate

predictions about the break size. The advantage of the procedure lies on the fact that it accurately

predicts the break fraction, if it exists, so that it subsequently estimates the break size with great

precision, irrespective of the autocorrelation properties of the series. We showed that the hybrid

estimators proposed in this article goes a long way in improving Hansen�s un�ltered approach and
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should therefore have practical appeal. The empirical example provided, picks up all the important

changes the U.S. unemployment series has gone through over the period examined.
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3.7 Figures

a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-1: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5, � = 0, 1 = 1.
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a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-2: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5, � = 0, 1 = �2:5.
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a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-3: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5, � = 0:5, 1 = 1.
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a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-4: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5, � = 0:5, 1 = 1:5.
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a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-5: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5, � = 0:5, 1 = 2.
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a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-6: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5, � = 0:5, 1 = �2:5.
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a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-7: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5, � = 0:9, 1 = 1.
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a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-8: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5, � = 0:9, 1 = 1:5.
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a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-9: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5, � = 0:9, 1 = 2.
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a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-10: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5, � = 0:9, 1 = �2:5.
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a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-11: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5, � = 1, 1 = 1.
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a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-12: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5, � = 1, 1 = 1:5.

100



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-13: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5, � = 1, 1 = 2.
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a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-14: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5, � = 1, 1 = �2:5.
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a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the level and trend break-size estimators as given by Hansen and Hybrid approaches

Figure 3-15: Finite Sample performance of the Hansen and Hybrid approaches with �� = 0:5,

� = 1, 1 = 3; 2 = 3. 103



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the two level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-16: Finite sample performance of the Hansen and Hybrid approaches with ��1= 0:25; �
�
2= 0:75;

�= 0; 1= 3; 2= 3. 104



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the two level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-17: Finite Sample performance of the Hansen and Hybrid approaches with ��1= 0:25; �
�
2= 0:75;

�= 0; 1= 6; 2= �6. 105



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the two level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-18: Finite sample performance of the Hansen and Hybrid approaches with ��1= 0:25; �
�
2= 0:75;

�= 0:5; 1= 3; 2= 3. 106



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the two level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-19: Finite Sample performance of the Hansen and Hybrid approaches with ��1= 0:25; �
�
2= 0:75;

�= 0:5; 1= 4; 2= 4. 107



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the two level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-20: Finite Sample performance of the Hansen and Hybrid approaches with ��1= 0:25; �
�
2= 0:75;

�= 0:5; 1= �5; 2= 5. 108



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the two level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-21: Finite Sample performance of the Hansen and Hybrid approaches with ��1= 0:25; �
�
2= 0:75;

�= 0:5; 1= 6; 2= �6. 109



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the two level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-22: Finite sample performance of the Hansen and Hybrid approaches with ��1= 0:25; �
�
2= 0:75;

�= 0:9; 1= 3; 2= 3. 110



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the two level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-23: Finite Sample performance of the Hansen and Hybrid approaches with ��1= 0:25; �
�
2= 0:75;

�= 0:9; 1= 4; 2= 4. 111



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the two level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-24: Finite Sample performance of the Hansen and Hybrid approaches with ��1= 0:25; �
�
2= 0:75;

�= 0:9; 1= �5; 2= 5. 112



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the two level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-25: Finite Sample performance of the Hansen and Hybrid approaches with ��1= 0:25; �
�
2= 0:75;

�= 0:9; 1= 6; 2= �6. 113



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the two level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-26: Finite sample performance of the Hansen and Hybrid approaches with ��1= 0:25; �
�
2= 0:75;

�= 1; 1= 3; 2= 3: 114



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the two level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-27: Finite Sample performance of the Hansen and Hybrid approaches with ��1= 0:25; �
�
2= 0:75;

�= 1; 1= 4; 2= 4: 115



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the two level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-28: Finite Sample performance of the Hansen and Hybrid approaches with ��1= 0:25; �
�
2= 0:75;

�= 1; 1= �5; 2= 5: 116



a) Histograms of break-fraction estimators as given by Hansen and Hybrid approaches

b) Histograms of the two level break-size estimators as given by Hansen and Hybrid approaches

Figure 3-29: Finite Sample performance of the Hansen and Hybrid approaches with ��1= 0:25; �
�
2= 0:75;

�= 1; 1= 6; 2= �6: 117



Figure 3-30: Percentage (%) of Quarterly U.S. Civilian Unemployment Rate (Seasonally Adjusted).
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Chapter 4

Regime Change, In�ation Dynamics

and the meta-Phillips Curve

4.1 Introduction

There has been a long history of examining the in�ation process empirically through estimated

Phillips curves, culminating in the New Keynesian Phillips Curve (NKPC) which is now widely

adopted in macroeconomic models. Despite plenty of evidence of shifts in the mean and persistence

of in�ation over time in many countries, many studies based on the NKPC assume that structurally

stable relationships exist. This means di¤erent in�ationary episodes might be misinterpreted and

tests of the underlying behavioural relations could be misleading. For example, Russell et al.

(2010) demonstrate empirically that Galí and Gertler�s (1999) widely-believed view that forward-

looking in�ation expectations are important in determining in�ation today could be due to a failure

to adequately take into account structural breaks. The numerous shifts in the level of in�ation,

volatility changes, the decreasing slope of the Phillips Curve and the decline in in�ation persistence

are just some of the dramatic changes that took place in in�ation dynamics that make modelling

and forecasting in�ation a challenging task.

In this chapter, we describe an analysis of the U.S. in�ation which is able to accommodate

structural instability arising from regime breaks and changes in the underlying drivers of price-

setting decisions, in a �exible way. The analysis follows the approach of Lee, Morley and Shields

(2015) who suggest combining Taylor rule models that are estimated over di¤erent sample periods

using model averaging techniques. Our work contributes to literature by constructing a meta-

Phillips Curve, which involves estimation and inference of a set of speci�c Phillips Curves obtained
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through Generalised Methods of Moments (GMM), but combined using Bayesian Model Averaging

(BMA) techniques. The weights employed in combining individual Phillips Curves to obtain the

"meta-Phillips Curve" are determined according to the ability of the individual Phillips Curves to

explain past in�ation behaviour. The fact that weights change over time provides a useful and

�exible structure with which we can interpret the changing in�ation dynamics. The analysis shows

that, despite the considerable structural instability observed, the meta-Phillips Curve provides a

useful vehicle with which to explain in�ation dynamics, and supports the view that forward-looking

expectations play a key role in in�ation determination. The estimated meta-Phillips Curve also

provides a coherent characterisation of in�ation dynamics in the U.S. over the last �fty years, often

matching regime changes in monetary policy and Central Bank�s reactions to economic situations.

The remainder of this chapter is as follows: Section 4.2 discusses recent developments in the

Phillips Curve literature and discusses the considerable structural uncertainty embedded in in�ation

dynamics. Section 4.3 describes the modelling approach, focusing on the estimation method and the

construction of weights. Section 4.4 presents the results of the estimation of the U.S. meta-Phillips

Curve over the period 1959 : Q4�2012 : Q4, emphasising the phases of in�ation dynamics in which

expectations were more or less anchored, where anti-in�ationary policies were pursued more or less

aggressively and when responses to the real economic activity became more or less acute. Section

4.5 concludes.

4.2 Literature Review

4.2.1 The New Keynesian Phillips Curve

The collapse of the traditional Phillips Curve gave way to the expectations-augmented Phillips

Curve:

�t = a+ Ut + �
NP
i=1

�i�t�i + "t;

where �t and Ut respectively denote the in�ation and unemployment rate at time t, assuming

that agents form expectations adaptively. The expectations-augmented Phillips Curve unfolded

a renowned sequence of heavily cited research investigating in�ation dynamics using the unem-
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ployment rate as the forcing variable. The NKPC, on the other hand, emerged to reconcile the

microfoundations of the Real Business Cycle School with rational forward-looking expectations.

The NKPC speci�cation abandons the trade-o¤ between unemployment and in�ation and intro-

duces a markup gap as the forcing variable for in�ation dynamics. The NKPC is, then, given

by:

�t = �Et�t+1 + mct; (4.1)

where Et�t+1 represents in�ation expectations for t + 1 as formed at t, and mct denotes real

marginal cost. The NKPC in (4.1) is derived from Rotemberg�s (1982) and Calvo�s (1983) price

setting formulation as a solution to �rms�pro�t maximisation problem. These models are set in

a monopolistically competitive environment, in which �rms are constrained by the frequency at

which they can adjust their prices, for example due to menu costs, and they all reduce to the

forward-looking Phillips Curve as shown by Roberts (1995) and Clarida, Galí and Gertler (1999).

Note that under some assumptions about the labour supply process (Rotemberg and Woodford

(1997)), the output gap is linearly related to the real marginal cost, implying that mct = kxt; where

xt is the di¤erence between the log of output and the log of its natural level i.e. xt = yt � y�t so

that equation (4.1) can be written as:

�t = �xt + �Etf�t+1g (4.2)

Iterating forward equation (4.2) gives

�t = �k

1X
k=0

�kEtfxt+kg; (4.3)

implying that in�ation depends exclusively on the discounted sequence of future output gaps.

Despite its popular implementation, the model met �erce criticisms about the extent it really re�ects

the observed in�ation behaviour. In particular, the New Keynesian Phillips curve in equation

(4.3) implies that disin�ation of any size can be achieved costlessly and immediately by a central

bank that could commit to setting the path of future output gaps to zero, something which is

not supported empirically. In addition, Fuhrer (1997) and Roberts (1998) provide evidence that

in�ation dynamics are characterised by a high degree of persistence which the NKPC in (4.2) fails

to account for. Although the NKPC is based on price level stickiness, the in�ation is assumed to

be perfectly �exible something which is also out-of-line with the empirical evidence.
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4.2.2 The Hybrid New Keynesian Phillips Curve

The well-argued weaknesses of the New Keynesian Phillips Curve led to the emergence of the

Hybrid Phillips Curve as a convex combination of expected future in�ation and lagged in�ation.

The addition of the lagged in�ation serves to capture the observed in�ation persistence while

implying that disin�ations now involve costly output reductions. Several theoretical motivations

led to the Hybrid Phillips Curve (e.g. the relative wage model by Fuhrer and Moore (1995 a, b),

indexation by Christiano et al. (2005)) but here we concentrate on the rule of thumb price-setting

behaviour as captured by Galí and Gertler (1999).

Rule of thumb price-setters

Here we follow Galí and Gertler (1999) who extend the basic Calvo model and capture in�ation

inertia by allowing a subset of �rms to use a backward-looking rule of thumb when setting their

prices. In particular, following Calvo (1983), the probability that each �rm is able to change its

price in any given period is 1� �: From those �rms that adjust their prices, a proportion 1�! are

forward looking and set their prices optimally taking into account the constraints on the timing of

the adjustments using all available information to forecast future marginal costs. The remaining

fraction of �rms, !, are backward looking using a rule of thumb based on the history of price

behaviour. This allows us to write the aggregate price level as:

pt = �pt�1 + (1� �)p�t ;

where p�t is the price newly set in period t which itself evolves according to:

p�t = (1� !)p
f
t + !p

b
t ;

where, pft is the price set by forward looking �rms and p
b
t is the price set by backward-looking �rm.

Because the forward looking �rms behave exactly in the same manner as in the Calvo setting, pft

can be expressed as:

pft = (1� ��)
1P
k=0

(��)kEtfmcnt+kg:

Assuming that backward-looking price setters rely solely on information in period t�1 or earlier

to adjust their price in period t, and that in the steady state the rule is consistent with optimal
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behaviour, pbt can be written as:

pbt = p0�t�1 + �t�1;

where p0�t�1 denotes the average price set in period t � 1. This indicates that backward looking

�rms set their prices based on past price adjustments corrected by previous in�ation. Although ad

hoc, this framework allows the rule to converge to the optimal price in the long-term provided that

in�ation is a stationary process. Moreover, because p0�t�1 partially incorporates the forward-looking

behaviour, the deviation of �rms that use rule of thumb from the optimal price will be of second

order, given that the percent di¤erence between backward and forward price is not large. As Galí

and Gertler (1999) emphasise, this is likely to be the case when the fraction of backward-looking

�rms is small. Putting all the above equations together yields the hybrid Phillips Curve:

�t = �mct + fEtf�t+1g+ b�t�1; (4.4)

where

� = (1� !)(1� �)(1� ��)��1;

f = ����1

b = !��1

� = � + ![1� �(1� �)]:

The derivation of the hybrid Phillips Curve allows the coe¢ cients to be functions of deep

model parameter: �, which measures the degree of price stickiness; !, which re�ects the fraction

of backward-looking price setters; and �, the discount factor. One weakness of this rationale

behind the hybrid model is that it is unclear why some parts of the population appear to be less

sophisticated than others.

4.2.3 Issues in empirical application

The hybrid model sparked o¤ an ongoing debate over its empirical performance. The importance of

empirical evidence on the forward- and backward-looking components in the hybrid Phillips Curve

models is crucial for policy prescriptions. Although many studies are based on a common dataset,

�ndings are mixed due to the choice of the forcing variable, estimation methods, speci�cation issues
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and choice of the instrument set. In this subsection we summarise the most important problems

faced in empirical work.

The choice of the forcing variable

Galí and Gertler (1999) and Galí and Gertler and Lopez-Salido (2005) employ GMM using unit

labour cost as the measure of marginal cost, and �nd that in�ation inertia is a much less signi�cant

contributor to current in�ation than what Fuhrer and Moore (1995 a, b) and Fuhrer (1997) claim

it to be, concluding that the purely forward-looking NKPC provides a good approximation to the

dynamics of in�ation. Consistent with Galí and Gertler (1999), Sbordone (2002, 2005) uses a two-

step estimation procedure to con�rm the dominant role of the forward-looking term in the hybrid

Phillips Curve. As Roberts (2001) emphasises, the con�icting evidence on the performance of the

Hybrid NKPC can be rationalised by the choice of the forcing variable. Gagnon and Khan (2005)

highlight that the choice of the production function and the decision about the relevant measure

of marginal cost dramatically in�uence the empirical weight on the backward-looking term.

Omitted variable bias

Rudd and Whelan (2005b) demonstrate that the omitted variable bias and speci�cation issues raise

questions over the empirical validity of results based on the NKPC. As Rudd andWhelan emphasise,

the omitted variable problem means that the regression error is no longer an expectational error

since it also includes the e¤ect of the omitted variables and, therefore, estimates on the forward-

looking component will be biased upwards as long as future in�ation and its instruments are

correlated with the omitted variable. As Rudd and Whelan (2006, p.13) indicate, "Galí and Gertler

included additional lags of in�ation, commodity prices, and detrended output in their instrument

set" and consequently "the constructed proxy for Et�t+1 will capture the in�uence of these omitted

variables and receive a large coe¢ cient even if Et�t+1 itself has no independent in�uence whatsoever

on in�ation."
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The weak instruments problem

The parameters of the hybrid NKPC are typically estimated by replacing the unobserved term

Et(�t+1) in equation (4.4) by �t+1��t+1, where �t+1 is the one-step-ahead forecast error in �t+1 so

that the transformed equation can be estimated using any predetermined variables as instruments.

Instruments are weak whenever the correlation of the endogenous variable with the instruments

is small relative to the sample size. The weak identi�cation leads to GMM statistics with non-

normal distributions, so that the conventional GMM inferences are misleading. As Atkeson and

Ohanian (2001) emphasise, the NKPC is weakly identi�ed because changes in in�ation are hard to

predict so that instruments which are thought to be exogenous are almost irrelevant. Mavroeidis

(2005) shows that identi�cation failure is likely to occur when the forcing variable is irrelevant

for in�ation determination such that the Phillips Curve is almost �at. When cost-push shocks

are unpredictable, in�ation is also unpredictable so that the forward-looking term is completely

unidenti�ed since no predetermined instruments exist. Given that many studies document a �at

Phillips Curve, identi�cation failure prevails without too much controversy. In addition, Kleibergen

and Mavroedis (2009) demonstrate that "the size of the identi�cation robust statistics becomes

sensitive to the number of instruments when a Heteroskedasticity and Autocorrelation Consistent

(HAC) estimator is used and the size distortions can be rather large." Pesaran (1987), Ma (2002)

and Mavroeidis (2005) emphasise that weak instruments may provide a convincing explanation of

the con�icting evidence on the estimates of the hybrid NKPC1.

4.2.4 Regime Changes and the Phillips Curve

With the deep structural changes the U.S. economy has undergone through (Willis 2003) and the

changing monetary policy (Judd and Rudebusch (1998) and Clarida et al. (1999, 2000)), it is very

likely that in�ation dynamics have experienced major shifts2. Besides, the Phillips Curve is an

1Dufour (1997), Staiger and Stock (1997), Stock, Wright and Yogo (2002) and Kleibergen (2002) demonstrate that

standard asymptotic procedures which do not correct for local-almost-identi�cation lead to spurious over-rejections

and this is likely to be the reason why studies that rely on weak instruments yield misleading estimates.

2 Inter alia, Alogoskou�s and Smith (1991), Kim and Nelson (1999) and Blanchard and Galí (2007) all provide

evidence of Phillips Curve instability.
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important ingredient in monetary policy analysis (Clarida, Galí and Gertler (1999)) and, thus, it

is only natural that shifts in monetary policy regimes will induce changes in in�ation dynamics.

Because b and f are functions of deep parameters related to �rms�pricing behaviour which is

itself a¤ected by monetary policy changes, the relative signi�cance of these coe¢ cients is likely to

change over time.

Work by Russell et al. (2010) demonstrates that not taking into account the breaks in in�ation

dynamics may lead to biased and spurious estimates of the Phillips Curve. The paper establishes

nine "in�ation regimes" of shifting mean of U.S. in�ation emphasising that the common �nding

of the dominance of the forward dynamic in�ation term in the new-Keynesian Phillips Curve is

partly attributed to the unaccounted shifts in the mean of in�ation. In e¤ect, breaks manifest

themselves through the increasing importance of the forward looking term, highlighting the need to

properly accommodate structural changes in order to make the correct inferences on the estimated

coe¢ cients on the dynamic terms. As the debate on the dominance of the backward-looking vis-

a-vis the forward-looking term is still ongoing, accounting for breaks constitutes an important

contribution to literature. We will argue that according to the prevailing economic environment

and monetary policy in place, the relative importance of each term may vary. In what follows, we

describe how di¤erent monetary policy regimes, as well as the prevailing economic conditions, can

lead to changes in the underlying deep parameters characterising the hybrid NKPC.

� Although rational expectations has been an underlying assumption so far, we argue that

according to the prevailing economic conditions and the monetary policy in place, agents

may temporarily depart from rational expectations and adopt to an imperfect information

environment. For instance, if information is costly, agents may wilfully decide not to obtain

such information and this may be a rational choice. Similarly, if signal extraction is impeded

and information becomes available with lags, forecast errors may persist due to information

rigidities. We argue that private sector�s learning about the monetary policy in�ation target

depends on the insistence of Central Bank to communicate its commitment in situations where

information may become sticky. Consequently, there may be situations where expectations

can become anchored or de-anchored as emphasised by Orphanides and Williams (2006, 2012),

in�uencing the �rm�s price setting behaviour.
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The commitment of Central Bank to maintain price stability and its strong anti-in�ation

stance can substantially in�uence the price-setting behaviour of �rms. For instance, Volcker-

Greenspan�s adoption of a proactive stance towards managing in�ation has led to a greater

control over in�ation expectations3. As Mishkin (2007) emphasises, with expectations of

in�ation well-anchored, any given shock has a more transient and smaller e¤ect so that agents

are more capable of predicting the future outcomes of the variables of interest. Accordingly,

monetary policy that brings stability and assurance of the future prospects of the economy

can lead to a decrease in the deep parameter ! and an increase in f ; a decrease in b and

an increase in �:

� The price-setting behaviour of �rms is also a¤ected by the nature of current in�ation, as de-

veloped by the monetary policy in place. Mishkin (2007) highlights that low and less-variable

in�ation in�uences the frequency with which �rms change their prices. Along the same lines,

Ball, Mankiw and Romer (1988) argue that, the lower and more stable in�ation regime estab-

lished post-1982 led to less-frequent price adjustments. The idea is that low-in�ation allows

�rms to leave their prices �xed for long periods of time at little cost. Accordingly, low in�a-

tion leads to an increase in the deep parameter � and an increase in f ; a decrease in b and

a �attening Phillips Curve, as captured by a smaller � parameter.

� In�ation persistence, de�ned as the speed with which in�ation returns to baseline after shock,

is also shown to in�uence the price-setting behaviour of �rms as documented by Taylor (2000)

and Kim and Kim (2008). In particular, when in�ation is highly persistent, past in�ation con-

tains more relevant information for �rms�pricing practices, so that the fraction of backward-

looking �rms is high. The increase in ! due to an increase in persistence can therefore lead to

a decrease in f ; an increase in b and a fall in �: The decline in in�ation persistence post-1980

(Cogley and Sargent (2001), Willis (2003) and Levin and Piger (2004)) was attributed to the

underlying monetary policy as documented by Gaspar, Smets and Vestin (2006) validating

the idea that monetary policy regime can induce structural breaks in in�ation dynamics4.

3See Erceg and Levin (2003), Taylor (2000) and Kim and Kim (2008).

4 Indeed, Roberts (2006), Borio and Filardo (2007) and Musso et al.(2009) attribute the recent �attening of the
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� Globalisation and the decline in the degree to which �rms �pass through�changes in costs to

prices (often known as a reduction in the pricing power of �rms) can also in�uence the deep

parameters and alter parameters in the hybrid NKPC (see for example Blanchard and Galí

(2007) and Taylor (2000)). Willis (2003) explains that as trade barriers decline, the increase

in global competition dampens the ability of �rms to increase prices so that the proportion of

�rms that leave prices unchanged i.e. the deep parameter �; increases resulting to an increase

in f ; and a fall in b and �: Indeed, the well documented �attening of the Phillips Curve

in recent years is attributed to the globalisation process (Ihrig et al. (2007) and Melick and

Galati (2006)).

In addition to the changes in the parameters of the hybrid NKPC, monetary policy and the

prevailing economic conditions can induce shifts in the drivers of in�ation and the appropriate

forcing variables that should enter the Phillips Curve relationship. We argue that another form of

structural instability is that the best measure of resource utilisation may change over time depending

on the underlying economic environment. For instance labour share (de�ned as the di¤erence

between the log of compensation to employees and the log of nominal GDP in deviation from

sample average) may become more useful in driving the in�ation process when a large proportion

of �rms are backward-looking since labour share is a more immediate and real-time measure of

marginal cost. Conversely, the output gap (de�ned as the deviation of real output from its trend)

is a little more forward-looking as its construction is based on both past and future values of output

so that it is a more appropriate measure of resource utilisation in periods where agents are more

forward-looking. Given that the debate about the appropriate measure of resource utilisation is

still ongoing5, uncovering when each measure is more relevant is deemed important.

Phillips Curve to the monetary policy in place.

5Galí and Gertler (1999), Gali et al. (2001) and Sbordone (2002) are among the advocates of labour share while

many authors such as Rudd and Whelan (2007) and Neiss and Nelson (2002) condemn using labour share as the

forcing variable and strongly encourage researchers to use the output gap.
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4.3 Modelling Framework

The chapter explores in�ation dynamics through a novel modelling framework that accommodates

structural breaks by adopting model averaging techniques in a recursive set-up. The method

involves estimation of a set of hybrid NKPCs, estimated over di¤erent sample sizes, providing

the most reliable estimates of model parameters whatever sample window is used, accounting for

the possibility that the responsiveness of in�ation to expectations, past in�ation and the real

activity measure changes over time. In what follows we describe our modelling techniques and the

construction of model weights.

Breaks due to policy change or changes in the appropriate measure of the real activity can

be thought of as regime-type uncertainty and speci�cation-type uncertainty. Both these types

of uncertainty can be accommodated in a "meta-Phillips Curve," following the approach of Lee,

Morley and Shields (2015). Speci�cally, we consider a set of hybrid NKPC models, MijT ; each

distinguished according to the measure of real activity, i, and the sample period for which the

model is relevant. Speci�cally, the set of models characterising in�ation dynamics over the period

T1 + jmax � 1,...,Tn is given by:

Mijt : �t = �ijtmcit + fijtEtf�t+1g+ bijt�t�1 + "ijt (4.5)

: where mcit is the real marginal cost measure

: i =

8><>: 1 if the labour share is used

2 if the output gap is used

: j = jmin; :::; jmax; t = T1 + jmax � 1; :::; Tn;

In any model, the subscript, i, indicates which measure of real activity used. The models are

also distinguished by the time span over which a given Phillips Curve is assumed to hold, considered

here to be in operation for j periods ending in period t. When there is a regime break the new

period starts afresh so that the new model starts again. In practice, we might use a minimum

sample size of 16 observations (jmin = 16), noting that the choice of the minimum regime length is

driven by the need to have enough observations for estimation purposes. The maximum period for

the survival of an unchanged in�ation behaviour is theoretically unlimited. In practice, though, we

expect in�ation dynamics to change whenever there is a change in monetary policy stance which
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is itself a¤ected by the di¤erent Chairmen of the Federal Reserve. In the U.S. there have been six

Federal Reserve Chairs since the mid-sixties so that, even in the absence of any other information,

one might anticipate that there would be breaks every six or seven years and that a given policy rule

would not last longer than ten years, i.e. using quarterly data jmax = 40: Hence, for each measure

of the real activity, there are 40�16+1 = 25 models that explain data ending at time T1+jmax�1,

so that there are 50 candidate Phillips Curve models that di¤er according to the forcing variable

and their relevant sample size. The next set of 50 models can be estimated for the period ending

T1+jmax and further sets of 50models are estimated as we roll through the sample from T1+jmax�1

to Tn, allowing for considerable �exibility in characterising regime change and shifts in the way the

driver of in�ation, i; is best measured. The left panel of Figure 4.1 shows the �rst set of candidate

hybrid NKPC models which explain in�ation dynamics at time T1 + jmax � 1. As we roll through

the sample, we obtain the second set of candidate hybrid NKPC models that explain in�ation at

time T1+ jmax as shown in the right panel of �gure 4.1: The estimated parameters in the individual

hybrid NKPC, Mijt, are denoted by ̂fijt; ̂bijt and �̂ijt:

The models MijT can be brought together in a "meta" model using methods based on Bayesian

Model Averaging (BMA) techniques, allowing researchers to conduct econometric analysis without

conditioning on a single model. The BMA attaches probabilities to models, or some parameters of

interest, given the evidence found in the data. Seminal contributions by Draper (1995) and Raftery,

Madigan and Hoeting (1997) examine the bene�ts of BMA extensively.

4.3.1 Bayesian Model Averaging

The considerable structural uncertainty surrounding in�ation dynamics is re�ected by the idea that

in�ation observed at time t could be explained by any of the 2 � (jmax � jmin + 1) = 2 � 25 = 50

di¤erent models according to (4.5) if we set jmin = 16 and jmax = 40 and use two measures of

the real activity. Our meta-Phillips Curve accommodates regime uncertainty by using a weighted

average of the model parameters in (4.5). Denoting the vector of parameters in the hybrid Phillips
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Figure 4-1: The �rst and second set of individual hybrid NKPC needed for the estimation of the meta-Phillips

Curve.

Curve (equation (4.5)) at time t as:

�ijt =

0BBBB@
�ijt

fijt

bijt

1CCCCA (4.6)

and noting that Zt = (z1; :::; zt) represents all available information up to time t, our aim is to

compute the average of the posterior probability of the parameters of interest i.e. �t under each

model weighted by the corresponding posterior model probabilities. Using the BMA formula, taken

from Draper (1995) and Hoeting et. al. (1999), this is given by:

Pr(�ijtjZt) =
2P
i=1

40P
j=16

Pr(�ijtjMijt;Zt)� Pr(MijtjZt); (4.7)

Essentially, Pr(�ijtjZt) is the weighted average of the distributions of parameters in the hybrid new-

Keynesian Phillips Curve given the individual models. Pr(�ijtjMijt;Zt) is the distribution of �ijt on

a speci�c model alone while the weights Pr(MijtjZt) is the posterior probability of modelMijt given

the data in the sample period re�ecting how well model Mijt �ts the data. Since posterior model
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probabilities add up to one
2P
i=1

40P
j=16

Pr(MijtjZt) = 1, they are treated as weights. The BMA formula

deals with structural uncertainty embedded within Pr(�ijtjZt) by decomposing it into a weighted

average of the conditional distributions (i.e. conditional on a speci�c model), Pr(�ijtjMijt;Zt); using

as weights the posterior model probabilities, Pr(MijtjZt):

Conditional Distributions

A typical Phillips Curve analysis considers the �rst element on the right-hand side of (4.7) only,

i.e. Pr(�ijtjMijt;Zt), working only with a particular model, (M�), which is assumed to be true

and making inferences that are based on stochastic and parameter uncertainties. The conditional

distribution can be approximated using the maximum likelihood (ML) estimator of the parameters

in M� and its associated density so that

Pr(�ijtjM�;Zt) =
R
Pr(�ijtjM�; �;Zt) Pr(�jM�;Zt)d�:

In the case of a standard linear regression model, we know that the departure of the ML

estimated parameters, �̂
�
t , from their true value i.e. (�̂

�
t � �tjM�; Zt) follows a normal distribution

N(0; V̂ �t ) with mean zero and variance V̂
�
t where V̂

�
t is the ML estimated variance. Although �ijt

is taken as �xed at the estimation stage, it can be viewed as a random variable at the inference

stage, so that Pr(�ijtjM�;Zt) is approximated by N(�̂
�
ijt; V̂

�
t ) and standard inference carried out.

Moreover, this simpli�cation can be made for any model so that we can look at all 50 of our models

of interest and base Pr(�ijtjM�;Zt) on the models�maximum likelihood estimates.

The Model Weights

Model weights are constructed according to:

Pr(MijtjZt) = Pr(MijtjZt�1; zt) (4.8)

/ Pr(ztjMijt;Zt�1) � Pr(MijtjZt�1)

= Pr(ztjMijt;Zt�1) �
2P
k=1

40P
l=16

Pr(Mijt;Mklt�1;Zt�1) � Pr(Mklt�1jZt�1):

In practice, we can choose model weights so that they evolve over time, recursively updating them

to re�ect the extent to which they remain useful. A model�s weight, Pr(MijtjZt) , depends on:
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� the probability of observing the �nal observation, zt; in the sample t�j; :::; t, i.e. Pr(ztjMijt;Zt�1),

which, under standard normality assumptions, is proportional to the value of squared residuals

at the end of the sample and

� the likelihood that the model remains relevant based on data up to t�1; Pr(MijtjZt�1): This

in turn depends on:

� last period�s weights, Pr(Mklt�1jZt�1), and

� the transition probability, Pr(Mijt;Mklt�1;Zt�1): A simple structure for the transition

probability is available if we assume that irrespective of in�ation dynamics so far, there

is a constant probability of a break in the way in�ation behaves, probability �. If

there is a break, in�ation is assumed to enter a new regime starting again with the

minimum sample size of 16 observations, using either measure of real activity with equal

probability. That is,

Pr(Mij;tjMklt�1;Zt�1) =

8><>: 1� � if there is no break in the PC

�=2 if a break in the PC occurs.
(4.9)

If in�ation is explained by a previously estimated Phillips Curve, i.e. there is no break,

the model just gets bigger by one additional observation while updating the weights

on the di¤erent models recursively from one period to the next to re�ect the likelihood

that the models remain relevant. Thus, the transition probability is equal to 1 � �. If

a new Phillips Curve now explains in�ation dynamics, such that a new in�ation regime

is "born", then the transition probability is equal to �=2: Notice that we divide by two

because there are equal chances that the new Phillips Curve uses either measure of the

real activity i.e. labour share and output gap. Taken together, (4.8) and (4.9) dictate

the models�weights in each period. The models�weights for the �rst set i.e. the �rst

period are assumed to be equal across all models.

This pragmatic approach to choosing weights and averaging over models accommodates both

speci�cation and structural uncertainty by combining individual Phillips Curves. The approach can

capture the e¤ect of complicated structural changes that are hard to disentangle using conventional
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one-o¤ structural breaks methods. The fact that model weights evolve over time allows for consid-

erable �exibility in the way changes develop. In particular, the approach accounts for periods in

which the responsiveness of in�ation to the di¤erent factors changes both gradually from one state

to another and abruptly. As Lee et. al. (2015) emphasise, the approach is more �exible than a

standard time-varying parameter (TVP) model which deals with a pre-speci�ed form of instability

and more complex forms of instability require computationally more demanding estimation meth-

ods. The key advantages of his meta-modelling approach are, therefore, its easy implementation

and provision of results that are easy to interpret and analyse.

The meta-Phillips Curve then consists of the individual estimated models, distinguished by the

estimation period, sample size, and measure of real activity, and their weights and it is denoted by

�MTn = fMijt;wijt for i = 1; 2; j = 16; :::; 40; t = 41; :::; Tng (4.10)

where wijt denotes the weight for model Mijt; i.e. Pr(MijtjZt): Since the estimated parameters

in the individual hybrid NKPCs are given by ̂fijt; ̂bijt and �̂ijt; the estimated parameter on

the forward-looking term in the meta-Phillips Curve is given by �ft =
2P
i=1

40P
j=16

wijt � ̂fijt; the

estimated parameter on the backward-looking term is given by �bt =
2P
i=1

40P
j=16

wijt � ̂bijt; the

estimated parameter on the forcing variable is given by ��t =
2P
i=1

40P
j=16

wijt � �̂ijt while the average

sample size over a given Phillips Curve holds is given by �jt =
2P
i=1

40P
j=16

wijt � jijt.

4.3.2 Estimation

Since under rational expectations the error in the forecast of �t+1 is uncorrelated with information

dated t and earlier, it follows from (4.4) that

Etf(�t � �mct � f�t+1 � b�t�1)ztg = 0; (4.11)

where zt is a vector of variables dated t and earlier so that it is orthogonal to the in�ation shock in

price t+1. We use Generalised Methods of Moments (GMM) to estimate the models based on the

orthogonality condition as given by equation (4.11). Note, that we also account for endogeneity in

the forcing variable, since as noted by Roberts (1995), the marginal cost variable may be correlated

with the error term since they could both be driven by cost-push shocks. In addition, measurement
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errors in the construction of the unobservable output gap and more general the resource utilisation

variable, call for using GMM.

Our estimation method aims to deal with issues raised in section 4.2.2. We particularly ad-

dress the "weak instruments problem" and use a small instrument set, following the practice of

Gali, Gertler and Lopez-Salido (2005). We use HAC, Newy-West type standard errors and with

bandwidth (lag truncation parameter) equal to 2. (Usually the bandwidth is set equal to T
1
4 where

T is the sample size. In our framework, the sample size is variable, with maximum sample size

of 40 observations, the rule requires a bandwith set to 2:5 while with the minimum sample size

of 16 observations, the rule requires a bandwith equal to 2. Setting the bandwidth equal to 2,

therefore, is a sensible choice). As a matter of fact, the approach is not really sensitive to the choice

of bandwidth.

The construction of con�dence bands for the meta-Phillips Curve is based on simulation methods

in which arti�cial histories of the in�ation series are generated to obtain the distribution of the

meta-Phillips Curve estimated parameters. Full details are provided in appendix A.

4.4 Empirical Analysis

4.4.1 Data

We now turn to our empirical analysis of the U.S. in�ation dynamics. Our dataset consists of U.S.

aggregate time series at a quarterly frequency extending from 1950 : Q1 to 2012 : Q4 focusing on the

variables used in Galí, Gertler and Lopez-Salido (2005) for comparability with their work. Series

have been downloaded from the St. Louis Fed�s FRED database and the U.S. Bureau of Labour

Statistics. The data includes: the economy-wide GDP de�ator; Non-farm business sector total

compensation needed to compute labour share; hourly compensation and real output for the non-

farm business sector; and commodity PPI (needed to construct commodity in�ation). All growth

rates are logarithmic and quarterly. For the construction of the output gap we use the log of real

non-farm business sector output which is detrended using the HP �lter with smoothing parameter

equal to 1; 600. We use the log of (demeaned) labour income share in the non-farm business sector

and HP detrended log of real output in the non-farm business sector for measures of real activity.
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Figure 4-2: The U.S. In�ation Rate (Annualised (log) change of economy-wide GDP de�ator).

Our measure of in�ation is the economy-wide percent change in the GDP de�ator. We use the

overall de�ator rather than the non-farm de�ator for our analysis because we are interested in

evaluating how well our model accounts for the movement in a standard broad measure of in�ation.

This series is plotted in Figure 4.2, demonstrating the dramatic changes in the in�ation rate since

the 1950s. Even from a mere observation, the researcher can identify the high in�ation episodes

and the switching in�ation regimes. Accordingly, accounting for the potential structural instability

in in�ation dynamics is considered a key aspect of our empirical analysis.

4.4.2 Results

Our characterisation of U.S. in�ation is based on our estimated meta-Phillips Curve, obtained as

a weighted average of the various models described in (4.5)6, obtained using the U.S. data for the

period 1950 : Q1�2012 : Q4. The set of models considered is that described by (4.5), (4.8) and (4.9)

and model weights are constructed accordingly. The instrument set used to estimate the models

is the same as in Galí, Gertler and Lopez-Salido (2005) and includes four lags of in�ation, two

6 In order to account for non-zero steady-state in�ation rate, we include an intercept in our models, following a

number of studies including Russell at al. (2010) and Kim and Kim (2008). Russell at al. (2010) show that by

including the intercept mean we accommodate structural breaks that exist in the mean of in�ation.
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lags of labour share, the output gap and wage in�ation. To ensure su¢ cient degrees of freedom in

estimating our Phillips Curves, we assume that regimes last a minimum of 4 years (i.e. jmin = 16)

and regimes do not last longer than 10 years (i.e. jmax = 40) while we make use of two measures

of the real activity. Given our setup, the �rst set of 50 Phillips Curves (25 models estimated over

di¤erent sample sizes for each of the two forcing variables) that were estimated relate to the sample

window of 40 observation from 1950 : Q1 � 1959 : Q4, estimating two curves (one using labour

share and one using the HP �ltered output gap) over the whole period, then two curves over the

period 1950 : Q2 � 1959 : Q4, and so on, �nishing with two models estimated over the minimum

sample size of sixteen observations, i.e. over 1956 : Q1 � 1959 : Q4. Weights were calculated for

each of these 50 models according to (4.8) and (4.9) which, among other things, also account for

the ability of models to explain the �nal observation in 1959 : Q4. The second set of 50 Phillips

Curves was estimated relating to the 40 observations from 1950 : Q2�1960 : Q1 and so on, moving

recursively through the dataset.

The weighted average sample size is plotted in �gure 4.3 and gives an idea of the timing of

any in�ation regime changes. The estimated meta-Phillips Curve parameters are plotted in �gures

4.4-4.6 while �gure 4.7 shows the cumulative sum of weights allocated to models that use the labour

share as the forcing variable.

The eight in�ation regimes

Figure 4.2 shows the U.S. in�ation rate, calculated based on the GDP de�ator. The �gure conveys

the signi�cant structural breaks the in�ation process exhibited and demonstrates that there are

identi�able periods of high and highly volatile in�ation in which the behaviour of price-setting is

likely to have changed. Continuity in the way in�ation dynamics are characterised is re�ected by a

rising average sample size in �gure 4.3. The bigger the average sample size, the longer the duration

of a given hybrid NKPC. On the contrary, a sharp decline in the average sample size is a signal

that in�ation dynamics changed at that time. Accordingly, we can broadly identify eight in�ation

regimes, the start of which is captured by the sharp decrease in the average sample size. Table

4.1 summarises the key characteristics of these eight in�ation regimes which are mostly driven by

shifts in the conduct of monetary policy and signi�cant developments in the economic environment.
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Figure 4-3: The evolution of the weighted average sample size, �jt, over which a given hybrid

NKPC holds. (Con�dence bands constructed by bootstrap as plus/minus two times the coe¢ cient�s

standard deviation).

In what follows we examine the evolution of the weighted average coe¢ cients on the forward- and

backward-looking terms and the forcing variable in the meta-Phillips Curve. As one might observe,

the evolution of the average coe¢ cient on the forward-looking term a mirror image of the evolution

of the average coe¢ cient on the backward-looking term. This is a by-product of the fact the we

have restricted the sum of the two coe¢ cients to sum to unity, which is a common assumption

(see for example Galí and Gertler (1999)) that ensures that the discount factor is very close to one

and that the long-run Phillips Curve is vertical. Here we focus attention on the behaviour of the

coe¢ cient on the forward-looking term since the two graphs tell the same story.
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Table 4.1: The phases the meta-Phillips Curve has undergone through and their key characteristics

Phase Duration Summary Overview

Martin/ 1959 : Q4� Bretton Woods system of �xed exchange rates

Bretton Woods I 1963 : Q2 Strong tightening policy when in�ationary

pressures in place

Mean In�ation = 0.53%. Variance of In�ation = 0.04.

Martin/ 1963 : Q3� Rapid �scal expansion

Bretton Woods II 1968 : Q4 Perceptual shift in policy making

Fed pursuing goals other than dollar and price stability

De-anchoring of in�ation expectations

Mean In�ation = 1.21%. Variance of In�ation = 0.33.

Burns and Miller/ 1969 : Q1� Collapse of Bretton Woods system

The Great In�ation 1978 : Q1 High in�ation episodes due to uncontrolled

budget de�cits and mounting oil prices

Policy emphasis on stabilising real economic activity

Mean In�ation = 2.06%. Variance of In�ation = 0.26.

Volcker I/ 1978 : Q2� Major shift in U.S. monetary policy

The Big Disin�ation 1984 : Q2 Proactive stance towards controlling in�ation

Mean In�ation = 2.89%. Variance of In�ation = 1.05.

Volcker II and 1984 : Q3� Strong anti-in�ation credibility

Early Greenspan I/ 1991 : Q2 Well anchored expectations

The Onset of Mean In�ation = 1.39%. Variance of In�ation = 0.15.

Great Moderation
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Table 4.1 (Continued): The phases the meta-Phillips Curve has undergone through

and their key characteristics

Phase Duration Summary Overview

Early Greenspan II/ 1991 : Q3� Early 1990s prolonged deep recession

The deep recession 1996 : Q2 Policy directed towards managing demand

In�ation tamed in the fear of overheating

Mean In�ation = 0.93%. Variance of In�ation = 0.02.

Mid-Greenspan/ 1996 : Q3� First positive output gap after early 1990s recession

The Boom Years 2000 : Q2 Boom years until 2000.

Shift of policy to pre-empt in�ation

Strong responses to in�ation in the Taylor Rule

Low and stabilised in�ation

Mean In�ation = 0.69%. Variance of In�ation = 0.08.

Late Greenspan/ Bernake 2000 : Q3� Early 2000s: outbreak of dot.com bubble

The dot.com bubble and 2012 : Q4 High unemployment, substantial business failures

The Great Recession Con�dence plagued

2007� 2008: start of Great Recession

Mean In�ation = 0.95%. Variance of In�ation = 0.20.

Note: Average in�ation rate calculated using the (log of) economy-wide GDP de�ator
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Figure 4-4: The evolution of the weighted average coe¢ cient on the forward-looking term, �ft,

in the meta-Phillips Curve (4.10) as generated by recursive GMM estimation. (Con�dence bands

generated by bootstrap and constructed as plus/minus 2 times the coe¢ cient�s standard deviation).
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Figure 4-5: The evolution of the weighted average coe¢ cient on the backward-looking term, �bt,

in the meta-Phillips Curve (4.10) as generated by recursive GMM estimation. (Con�dence bands

generated by bootstrap and constructed as plus/minus 2 times the coe¢ cient�s standard deviation).
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Figure 4-6: The evolution of the weighted average coe¢ cient on the forcing variable, ��t, in the meta-

Phillips Curve (4.10) as generated by recursive GMM estimation. (Con�dence bands generated by

bootstrap and constructed as plus/minus 2 times the coe¢ cient�s standard deviation).

147



Table 4.2: The average parameters in the meta-Phillips Curve in each phase

Phase Duration Average �ft Average �bt Average ��t

Martin/ Bretton Woods I 1959 : Q4� 1963 : Q2 0:985 0:0152 0:00751

Martin/ Bretton Woods II 1963 : Q3� 1968 : Q4 0:688 0:3123 0:00468

Burns and Miller 1969 : Q1� 1978 : Q1 0:569 0:431 0:0226

Volcker I 1978 : Q2� 1984 : Q2 0:654 0:346 0:00848

Volcker II/ Early Greenspan I 1984 : Q3� 1991 : Q2 0:766 0:234 0:00794

Early Greenspan II 1991 : Q3� 1996 : Q2 0:741 0:259 0:0143

Mid-Greenspan 1996 : Q3� 2000 : Q2 0:654 0:346 0:00814

Late Greenspan/ Bernake 2000 : Q3� 2012 : Q4 0:652 0:347 0:00631

Phase 1: Bretton Woods I As table 4.1 summarises, 1960 � 1963 was a period of low and

very stable in�ation which is attributed to the stability established under the �xed exchange rate

system. The monetary policy mechanism in place was automatic: Signs of overheated aggregate

demand that threatened to accelerate in�ation and undermine the country�s competitiveness were

promptly addressed by triggering a strong tightening policy. The Fed�s commitment to maintain

price stability reinforced its credibility and anchored in�ation expectations. The fact that any shock

had only transient e¤ects meant that �rms were more capable to predict the future prospects of

in�ation, so that the fraction of the backward-looking �rms, !, was small. Since the parameters in

the hybrid NKPC are functions of deep parameters, it is not surprising that the weighted average

coe¢ cient on the forward-looking term was very close to one, as shown in �gure 4.4. Indeed, table

4.2, which shows the average estimates on the meta-Phillips Curve parameters over the di¤erent

in�ation regimes, suggests that in this �rst regime in�ation dynamics could be described by a

purely forward-looking Phillips Curve, as average �ft was as high as 0:985. The weighted average

coe¢ cient on the forcing variable over this period was relatively stable and remained at very low

levels, as shown in �gure 4.6.

Phase 2: Bretton Woods II In the second in�ation regime, in�ation doubled and became

much more volatile as conveyed by table 4.1. Bordo and Eichengreen (2008) emphasise that in

1963, there has been an important perceptual shift in the assumed responsibilities of the Fed that

148



considered itself free to pursue goals other than dollar stabilisation, undermining the importance

of controlling in�ation. E¤ectively, policymakers placed high importance on stabilising the real

economic activity and paid much less attention to price stability, unmooring in�ation expectations

(Orphanides and Williams (2012)). The uncertain prospects for the in�ation and the loss of credi-

bility for the Central Bank meant that �rms became less forward-looking when setting their prices,

and the fraction of backward-looking �rms, !, increased. This is re�ected by the drop in coe¢ cient

on the forward-looking term in the meta-Phillips Curve. Table 4.2 shows that average �ft dropped

to 0:688, while the average ��t did not exhibit any major shifts. Despite the adverse developments,

the forward-looking term remained dominant.

Phase 3: The Great In�ation The third regime, starting from 1969 : Q1 and ending in

1978 : Q1; was marked by unusual economic turmoil. The collapse of the Bretton Woods system

plagued in�ation expectations while the oil price shocks brought in�ation to unprecedentedly high

levels. The high and highly volatile in�ation environment did not leave price-setter una¤ected.

Ball, Mankiw and Romer (1988) show that low and stable in�ation leads to less-frequent price

adjustments (Ball-Mankiw-Romer conjecture). The idea is that low-in�ation allows �rms to leave

their prices �xed at little cost. Accordingly, the Great In�ation forced �rms into more frequent

price adjustments, so that the proportion of �rms that left their prices unchanged, �, dropped

signi�cantly. This change in the deep parameter meant that the coe¢ cient on the forward-looking

term in the hybrid NKPC exhibited a downward path, while the coe¢ cient on the forcing variable

increased substantially. Table 4.2 validates the argument since average �ft dropped to its lowest

levels during the Great In�ation period, while average ��t more than tripled. The steepening of the

meta-Phillips Curve over this period is also evident in �gure 4.6.

Phase 4: The Big Disin�ation The period 1978 : Q1� 1984 : Q2 remained in history as the

Big Disin�ation. By the end of this period, Volcker managed to bring in�ation down substantially.

In contrast to policies in the previous years, Volcker�s programme involved a proactive stance

towards controlling in�ation. The meta-approach has successfully identi�ed this major shift since

the weighted average coe¢ cient on the forward-looking term escaped from the 0:5 neighbourhood

and remained as high as 0:65 during Volcker years. The average coe¢ cient on the forcing variable

dropped signi�cantly in response to policy changes. Our approach, therefore, validates a number
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of studies that found a structural break around 1982=3 (Ball, Mankiw and Romer (1988), Zhang,

Osborn and Kim (2008), and Fuhrer, Olivei and Tootell (2009)).

Phase 5: The Onset of Great Moderation The late 1980s period was considered to be the

onset of the Great Moderation where output volatility reduced substantially after the government�s

economic stabilisation policy. This was the time when the Central Bank regained back its credibility

after in�ation was tamed, while its wider independence meant that monetary policy became free

from �scal concerns. Changes in the way Fed communicated monetary policy plans brought greater

transparency resulting in more e¤ective policies. Accordingly, con�dence in the Central Bank and

the future prospects of in�ation allowed �rms to become more forward-looking, decreasing the

proportion of backward-looking �rms, !, causing �ft in the meta-Phillips Curve to rise. Indeed,

table 4.2 shows that average �ft over this period was as high as 0:766, and this increase becomes

apparent in �gure 4.4.

The decline in in�ation persistence7 in late 1980s, as documented by a number of studies, (Taylor

(2000), Cogley and Sargent (2001) and Levin and Piger (2004)) can also explain the increase in

the weighted average coe¢ cient on the forward-looking term. Roberts (2006) explains that when

in�ation is persistent, agents use the lagged in�ation as predictor of future in�ation so that the

proportion of backward-looking �rms, !, is large. The decline in in�ation persistence is thought to

have decreased !, putting an upward pressure on �ft:

Although table 4.2 indicates that on average coe¢ cient ��t did not experience major shifts

relative to previous regime, �gure 4.6 conveys an important message: During this regime the slope

of the meta-Phillips Curve has switched sign, becoming positive and steep again. This can be

attributed to the decline in the proportion of backward-looking �rms, !, which determines the

level of f in the hybrid NKPC, as shown in (4.4).

Phase 6: Recessionary Years Despite that this regime was marked by a prolonged and

deep recession that brought about high unemployment, in�ation was kept under control. Table 4.1

indicates that in�ation was maintained at very stable and low levels. According to Ball-Mankiw-

Romer conjecture low and stable in�ation leads to less frequent price adjustments, so that the

7 In�ation persistence is de�ned as the speed with which in�ation returns to baseline after a shock.
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fraction of �rms that leaves prices unchanged, �, increases. This is re�ected in the coe¢ cients

of the meta-Phillips Curve, and particularly the weighted average coe¢ cient on the forcing term

that dropped signi�cantly as a result of the increase in �: Although the weighted coe¢ cient on the

forward-looking term, �ft; did not exhibit too much variation relative to the previous period, it

remained at high levels, echoing the infrequent price adjustments.

Phase 7: The Boom Years The mid-Greenspan phase was characterised by a shift of the

policy to pre-empt in�ation involving strong responses to in�ation in the Taylor rule, while shifting

attention towards responding more rigorously to output gap. This was the time when the output

gap became positive for the �rst time after the early 1990s recession. The meta-approach has

successfully captured this change in policy, as shown by the declining weighted average coe¢ cient

on the forward-looking term, as shown in �gure 4.4. The weighted average coe¢ cient on the

forcing variable remained relatively stable on average but exhibited highly volatile behaviour over

the interval.

Phase 8: The dot.com Bubble and Great Recession The �nal in�ation regime was

characterised by high uncertainty due to the dot.com bubble and a number of business failures in

early 2000s which mounted in 2007 � 2008 with the outbreak of the global �nancial crisis and a

series of bank failures. Unlike the 1970s crisis, in�ation was not a worry since with interest rates

hitting the zero lower bound policymakers were more concerned on how to avoid de�ation. The

high uncertainty, in combination with fears of uncontrolled budget de�cits, de-anchored in�ation

expectations and brought unrest among price-setters, consumers and investors. The erratic and

highly volatile path that the weighted average coe¢ cient on the forward-looking term experienced

re�ects the uncertain times. On average, the average �ft over the period remained high at 0:652;

as shown in table 4.2.

The most important change during this periods is the well-documented �attening of the Phillips

Curve as seen by the steady drop in the forcing variable coe¢ cient, ��t: A mere observation of �gure

4.6 reveals that there has been an important structural break in early 2000s with the weighted

average coe¢ cient on the forcing variable declining steadily and reaching negative values, although

con�dence bands included positive values. The Ball-Mankiw-Romer conjecture can partly explain

the �attening of the hybrid NKPC: The low and stable in�ation environment led to less frequent

151



price adjustments, and an increase in �, reducing the slope of the Phillips Curve. Blanchard and

Galí (2007) attribute the �attening of the Phillips Curve to globalisation and the reduction in the

pass-through of oil prices to prices charged to consumers. The decrease in �rms�pricing power and

global competition results in more �rms leaving their prices unchanged (� increases).

The dominance of the forward-looking term

Figures 4.4 and 4.5 demonstrate that the forward-looking component is more dominant that the

backward-looking component for the determination in�ation dynamics. With few exceptions, the

weighted average coe¢ cient on the forward-looking term was above 0:5, suggesting that expectations

are important drivers of current in�ation and the characterisation of in�ation dynamics based purely

on a backward-looking component is surely misleading.

Russell et al. (2010) show that if structural breaks are not accounted for, estimated coe¢ cients

on the dynamic in�ation terms will be biased. More importantly, the authors illustrate that once

shifts in the mean rate of in�ation have been addressed, expected in�ation in the hybrid NKPC

becomes insigni�cant, arguing that price-setting agents are not as forward-looking as modelled in

the hybrid theories. While we show that, depending on the prevailing economic conditions and the

monetary policy in place, price-setting agents may become more or less forward-looking, we �nd

that expected in�ation plays a dominant role in in�ation dynamics, even when structural breaks are

incorporated in estimation and analysis. This �nding validates a number of studies that support

the view that the forward-looking term is important (see for instance, Gali and Gertler (1999),

Rotemberg and Woodford (1997)).

Labour share vs Output Gap

Figure 4.7 shows the distribution of weights among models that use the labour share as the forc-

ing variable and models that use the HP �ltered output gap. With very few exceptions, labour

share models attract the highest portion of weights, sometimes receiving almost the whole share

of weights, (for example, 2001) with 99% of weights favouring labour share as the forcing variable.

The graph validates Galí and Gertler�s (1999) argument that output gap is not an appropriate mea-

sure of real activity and labour share appears to explain current in�ation better than output gap.
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Figure 4-7: The evolution of weights allocated to models that use labour share as the forcing

variable.

As the authors argue (1999, p.197), labour share �directly accounts for the impact of productivity

gains on in�ation, a factor that simple output gap measures often miss.�

One additional observation is that the share of models that use the labour share increases

whenever the weighted average coe¢ cient on the backward-looking term in the meta-Phillips Curve

increases. One possible interpretation is that the labour share is a more immediate/ real-time

measure of the marginal cost, while the HP output gap is more forward-looking, being based on

both past and future values of the real GDP.

4.4.3 Robustness Check

Using a larger and a smaller instrument set

In section 2.3.3 we have discussed the weak instruments and identi�cation problems that usually

arise in empirical Phillips Curve analysis. The idea that weak instruments lead to imprecise model
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estimates is carefully incorporated in our chosen weight structure. Model weights depend on the

likelihood of observation in the sample which is proportional to the value of squared residuals at

the end of the sample for each model. Models that strongly in�uenced by the weak instruments

problem are badly estimated so that they produce large squared residuals, resulting in smaller

weights.

An important implication of the weak instruments problem is that estimates are very sensitive

to the choice of the instrument set. E¤ectively, very di¤erent parameter estimates are usually

obtained when a di¤erent instrument set is used in estimation. Our meta approach is shown to

lessen the weak-instruments problem since the choice of di¤erent instrument set does not appear

to alter the resulting estimates and in�ation dynamics. Figures B4.1-B4.5 in Appendix B provide

the evolution of the weighted coe¢ cients of the meta-Phillips Curve, together with the weighted

average sample size and cumulative sum of weights allocated to models that used the labour share

as the forcing variable, based on an expanded instrument set that includes four lags of in�ation,

four lags of the labour share, two lags of the HP �ltered output gap, two lags of wage in�ation

and two lags of PPI commodity in�ation. The graphs look very similar to �gures 4.3-4.7 based

on the benchmark instrument set, illustrating that the approach is not sensitive to the choice of

instrument set. Similarly, Figures C4.1-C4.5 in Appendix C, showing results based on a smaller

instrument set, which includes two lags of in�ation, two lags of labour share, two lags of the output

gap and two lags of wage in�ation, are very similar to graphs 4.3-4.7 based on the benchmark

instrument set. In�ation regimes exactly coincide with those obtained in the benchmark case, and

the interpretation of results hardly changes.

Choosing a di¤erent probability of break

Figures D4.1-D4.5 suggest that the meta-Phillips Curve is not a¤ected by the choice of the prob-

ability of a break. The benchmark case assumed that the probability of breaks is 0:01. In their

paper, Russell et al. (2010) �nd that U.S. in�ation exhibited nine breaks over a period spanning 50

years, implying a probability of breaks of 0:058. Figures D4.1-D4.5 were based on the assumption

89 breaks in 200 quarters, implies that the probability of break is 9=200 ' 0:05:
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that the probability of break is 0:05. While the �gures showing the evolution of weighted average

coe¢ cients are very similar to the benchmark case, �gure D4.1 which plots the weighted average

sample size exhibits some variation. Despite the fact that the shape of D4.1 is almost identical

to �gure 4.4, the entire graph appears to have shifted down. While the location of breaks is not

a¤ected by the larger probability of break, the duration of any given hybrid NKPC is shown to de-

crease. This is intuitive: Higher probability of break implies that on average, the expected duration

of a given Phillips Curve becomes shorter.

4.5 Conclusion

This chapter exploits model averaging in the context of behavioural modelling and inference in

order to characterise in�ation dynamics since the 1960s in a very �exible way. The model averaging

technique is employed so that the modeller can overcome the regime uncertainty related to changing

monetary policies and economic conditions. Our �ndings are threefold: First, we �nd that the

combined Phillips Curve provides a �exible but compelling characterisation of in�ation dynamics

in the United States over the last �fty years with no single Phillips Curve dominating at any

point in time. The combined Phillips Curve captures important shifts in the conduct of monetary

policy and highlights key changes in in�ation dynamics. The eight in�ation regimes, identi�ed by

the meta-approach, re�ect eminent developments ranging from the collapse of the Bretton Woods

System, the oil-price shocks of the 1970s, the Great Moderation and the well-documented �attening

of the Phillips Curve.

Second, our �ndings make important contributions to the ongoing debate about which of the

forward-looking and backward-looking component dominates in�ation dynamics. The meta-Phillips

Curve accommodates breaks and so, if studies that demonstrate that the forward-looking compo-

nent is a manifestation of unaccounted breaks (see for example Russell et al. (2010)) the coe¢ cient

on the forward-looking component should have been close to zero. We discover that even when

accounting for structural breaks in the Phillips Curve relationship, the forward-looking term is still

the dominant term, validating a number of studies that suggest that forward-looking expectations

are important drivers of current in�ation.
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Third, we �nd that although the usefulness of labour share vis-a-vis the HP detrended output

gap changes over time, on average, labour share appears to be a better measure of the marginal

cost and the real activity since models that use the labour share as the forcing variable attract a

higher proportion of weights across time. This validates a number of studies which demonstrate the

superiority of labour share in allowing both productivity and wage pressures to in�uence in�ation.

4.6 Appendix A: Con�dence bands for estimated parameters in

the meta-Phillips Curve

The construction of the con�dence bands involves three steps:

(i) Generate S arti�cial series for in�ation, denoted by �(s)t s = 1; :::; S; t = T1; :::; Tn where

S = 10; 000. The simulated in�ation series, obtained through the sth replication is based on a

particular NKPC, Mijt, and is computed by:

�
(s)
t = �̂ijtmcit + ̂fijt

~Etf�(s)t+1g+ ̂bijt�
(s)
t�1 + "

(s)
ijt (4.12)

where the error "(s)ijt is computed parametrically based on a random draw from a standard normal

distribution. In particular, "(s)ijt are found by multiplying the random number drawn from the normal

distribution by the standard error of the regression from the original estimated model, Mijt: Since,

for each replication, the in�ation series is computed recursively, we cannot use the future values of

the simulated in�ation rates, i.e. Etf�(s)t+1g; as they are unknown. Instead, we use the �tted values

of �t+1; from the �rst stage regression of actual future in�ation on the instruments (denoted by

~Etf�(s)t+1g).

(ii) Estimate a meta-Phillips Curve model, �M (s)
Tn
, for each of the simulated in�ation histories,

thereby obtaining a set of estimates of the individual NKPCs parameters, denoted by �̂
(s)

ijt , ̂
(s)
fijt

and ̂(s)bijt, as well as the weighted average parameters that characterise the meta-Phillips Curve

��
(s)
t , �

(s)
ft and �

(s)
bt :

(iii) The set of the meta Phillips Curve parameters, ��(s)t , �
(s)
ft and �

(s)
bt across s = 1; :::; S provides

a distribution of estimated values. Con�dence bands are then constructed as two times the standard

errors of estimated parameters, each side of the mean estimates.

156



To generate each simulated history of �(s)t s = 1; :::; S; t = T1; :::; Tn in step (i) we follow two

stages. In stage 1, jmax � 1 = 39 "initial" simulated observations (�(s)t for t = T1; :::; T39) are

generated in the absence of any information on the probability of any one of the 50 candidate

models being true. In stage 2, the remaining simulated observations (�(s)t for t = T40; :::; Tn) take

account of the probability that the data is generated by model Mijt which is subject to structural

breaks.

In detail, in stage 1, for the generation of each of the �rst jmax � 1 = 39 observations i.e. for

the time t = T1; :::; T39; we use equation (4.12) based on a randomly chosen model out of the 50

models in the �rst set of candidate hybrid NKPCs.

In stage 2, the generation of the remaining observations re�ects that at each point in time

there is a constant probability of break. For the generation of the ( jmax)th = 40th observation

of the in�ation series for time T1 + jmax � 1; it is assumed that in�ation enters a new regime.

Consequently, the 40th observation is generated according to (4.12) based on either the estimated

model M1;16;T1+jmax�1 or M2;16;T1+jmax�1 : To determine whether we should use the labour share

model or the output model, we take a random draw from a uniform distribution. If this is greater

than 0:5 then the labour share model is used and the output gap model is used otherwise. For the

generation of the 41st observation of the in�ation series for time T41 = T1 + jmax, we acknowledge

the possibility that a break can take place. As a result two cases arise:

(a) If a break occurs, the 41st observation is based on either model M1;16;T1+jmax or

M2;jmin;T1+jmax (whether the labour share or output gap model is used is determined like before).

(b) If there is regime continuity, the 41st observation is generated according to either model

M1;17;T1+jmax if model M1;16;T1+jmax�1 was used to generated the previous observation or model

M2;17;T1+jmax if model M2;16;T1+jmax�1 was used to generated the previous observation.
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Figure A1: The construction of con�dence bands, accounting for the constant probability of break

at each point in time.

Figure A1 summarises the contigencies that occur when there is a constant probability of break

at each point in time. To determine whether a break takes place, a random number from the

uniform distribution is drawn. If this number is smaller than the probability of a break, then we

assume that a break occurs and the new observation is generated according to (a) above. The

procedure continues until we reach the end of the sample, where we generate the last observation

for time Tn.

Once the �rst simulated history of the in�ation series is obtained, we estimate the meta-

Phillips Curve, following the methodology described in sections 4.3.1-4.3.3, and obtain the GMM

estimates ��(s)t , �
(s)
ft and �

(s)
bt for s = 1. The procedure is repeated 10; 000 times, obtaining for

each s, the meta-Phillips Curve estimates ��(s)t , �
(s)
ft and �

(s)
bt thereby obtaining a distribution of the

weighted coe¢ cient estimates which allows us to determine the standard deviation of the estimated

weighted average coe¢ cients. Con�dence bands are then constructed by multiplying the standard

deviation of each weighted average coe¢ cient by two.
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4.7 Appendix B: Larger Instrument Set

Figure B4.1: The evolution of the weighted average sample size, �jt, over which a given hybrid

NKPC holds, using a larger Instrument Set.

Figure B4.2: The evolution of the weighted average coe¢ cient on the forward-looking term, �ft, in

the meta-Phillips Curve as generated by recursive GMM estimation, using a larger Instrument Set.
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Figure B4.3: The evolution of the weighted average coe¢ cient on the backward-looking term, �bt,

in the meta-Phillips Curve as generated by recursive GMM estimation, using a larger Instrument

Set.

Figure B4.4: The evolution of the weighted average coe¢ cient on the forcing variable, ��t, in the

meta-Phillips Curve as generated by recursive GMM estimation, using a larger Instrument Set.
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Figure B4.5: The evolution of weights allocated to models that use the labour share as the forcing

variable, based on a larger Instrument Set.

4.8 Appendix C: Smaller Instrument Set

Figure C4.1: The evolution of the weighted average sample size, �jt, over which a given hybrid

NKPC holds, using a smaller Instrument Set.
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Figure C4.2: The evolution of the weighted average coe¢ cient on the forward-looking term, �ft,

in the meta-Phillips Curve as generated by recursive GMM estimation, using a smaller Instrument

Set.

Figure C4.3: The evolution of the weighted average coe¢ cient on the backward-looking term, �bt,

in the meta-Phillips Curve as generated by recursive GMM estimation, using a smaller Instrument

Set.
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Figure C4.4: The evolution of the weighted average coe¢ cient on the forcing variable, ��t, in the

meta-Phillips Curve as generated by recursive GMM estimation, using a smaller Instrument Set.

Figure C4.5: The evolution of weights allocated to models that use the labour share as the forcing

variable, based on a smaller Instrument Set.
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4.9 Appendix D: Larger Probability of Break

Figure D4.1: The evolution of the weighted average sample size, �jt, over which a given hybrid

NKPC holds, based on a higher probability of break.

Figure D4.2: The evolution of the weighted average coe¢ cient on the forward-looking term, �ft, in

the meta-Phillips Curve as generated by recursive GMM estimation, based on a higher probability

of break.
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Figure D4.3: The evolution of the weighted average coe¢ cient on the backward-looking term, �bt, in

the meta-Phillips Curve as generated by recursive GMM estimation, based on a higher probability

of break.

Figure D4.4: The evolution of the weighted average coe¢ cient on the forcing variable, ��t, in the

meta-Phillips Curve as generated by recursive GMM estimation, based on a higher probability of

break.
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Figure D4.5: The evolution of weights allocated to models that use the labour share as the forcing

variable, based on a higher probability of break.
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Chapter 5

Nowcast and Forecast Evaluation

when Real-Time Data are Available

5.1 Introduction

The use of real-time datasets has become increasingly popular since they can shed light on how

policymakers design policies based on information that is available at the time decisions are taken.

The datasets contain the available history of data vintages, showing the preliminary estimates

of variables at the earliest opportunity alongside their subsequent revision as more complete in-

formation becomes available. The datasets also often include direct measures of expectations as

expressed in surveys published at the time, describing agents� beliefs on expected future values

of the macroeconomic variables and the expected contemporaneous value when the �rst-release

data are published with a delay. In recent years, real-time datasets have become the forefront of

macroeconomic analysis as researchers extend the methods of using such datasets in prescribing

and evaluating policy (see, for example, Croushore (2011) for recent developments).

One area in which real-time data are potentially important is in forecasting since the data

provide a comprehensive description of the context in which forecasts and subsequent decisions are

made. However, while real-time data are employed in forecasting, there remains some scepticism

about their usefulness and they do not �gure in forecasting exercises as often as might be expected.

The purpose of this chapter then is to judge the usefulness of real-time datasets in decision-making,

focusing on the importance of using revisions data and survey data in nowcasting and forecasting

quarterly output growth and price in�ation in the US.

The contribution to literature is threefold. First, we propose a simple canonical modelling
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framework that can readily accommodate revisions and survey data alongside the most recent data

measures to characterise the underlying data generating process of the variables of interest as well

as the expectation formation and measurement processes. Secondly, we investigate the importance

of revisions and survey data by comparing the nowcasting and forecasting performance of models

that fully make use of the data compared to the performance of models that are based only on the

most recent vintage of data or which make only partial use of the information contained in real-time

datasets. To enable this, we adopt model averaging methods in a recursive set-up, accommodating

the possibility that the usefulness of real-time data changes over time (diversifying against possible

structural breaks). A robustness exercise explicitly allows for structural breaks by averaging across

di¤erent estimation windows, gaining important insights about the trade-o¤ between achieving

more accurate parameter estimates and delivering forecasts that re�ect the existence of breaks.

Thirdly, the chapter considers a range of evaluation criteria to judge the usefulness of real-time

data in forecasting, drawing an important distinction between �real-time forecast evaluation�and a

��nal assessment�of forecast performance. We judge the usefulness of real time data according to

statistical criteria that distinguish between the performance of point forecasts and density forecasts

and we also consider the forecast performance according to economic criteria. In the latter case, we

focus on a set of events involving output and in�ation that are frequently discussed in business cycle

analysis and introduce a novel means of evaluating these probability forecasts, based on fair-bet,

to investigate the role of real-time data in forecast-based decisions involving relatively rare events.

The three aspects of our modelling exercise are motivated by di¤erent strands of the literature.

The incorporation of both survey information and data revisions in real-time data analysis has been

widely examined by a number of researchers who often rely on mixed-frequency data, dealing with

unsynchronised in�ow of data as the nowcast of a series of interest, such as quarterly output, is

almost continuously updated in the light of new information (Giannone, Reichlin and Small (2008),

Arouba et al. (2009), Ghysels and Wright (2009), and Faust and Wright (2009)). However, whether

survey and revisions data can become useful to the researchers has been viewed with scepticism. As

far as revisions data are concerned, Mankiw and Shapiro (1986) were among the �rst to conclude

that revisions contain unforecastable new information and are certainly not noise, indicating that

there is little scope for using other observed data to improve the estimate of the underlying series.
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Croushore and Stark (2003) and Croushore and Evans (2006) demonstrate the problems associated

with the characterisation of the revision process while Koenig, Dolmas and Piger (2003) argue that

because researchers tend to mix heavily revised data with �rst-release and lightly revised data,

the conventional approach of using all types of data is unlikely to yield good forecasts. As they

demonstrate, under certain circumstances �rst-release data should be preferred to real-time data

since the linkages between observed data and forecasts are likely to be di¤erent at the start of

the sample period, where data are heavily revised. The authors emphasise the biases arising in

standard analysis of data subject to revisions, where the most recent measures of the variables are

used in forecasting models. Patterson (2002), Kishor and Koenig (2005), Garratt et al. (2008),

Clements and Galvão (2013) and Jacobs and van Norden (2011) all argue that revisions contain

useful information.

There has not been a consensus on the usefulness of survey data either. Some authors support

the view that surveys can contain important information held at the time of implementation of

decisions which is not captured by the available measures of actual variables. In other words,

surveys re�ect the real time use of information and can therefore improve models�nowcast and

forecast performance. Croushore (2010), Ang et al. (2007) and Aretz and Peel (2010) show that

survey expectations are often hard to beat in real time forecasting exercises. Bańbura and Rünstler

(2011) demonstrate the need to use survey data in nowcasts based on mixed-frequency modes while

Matheson et al. (2010) argue that survey data are particularly helpful when predicting actual series

and their revisions.

The second aspect of the chapter focuses on the usefulness of revisions and survey data in

forecasting and relates to the use of information when there are many potential predictor variables,

as discussed in Clements and Hendry (2005) and Stock and Watson (2006) for example. This

literature recognises that, with the samples of data typically available, parameter estimation error

can dominate model�s forecast performance. This means, for example, that adding a variable to a

forecasting model can undermine its forecasting performance even if the variable is part of the true

data generating process. One way to mitigate against this problem is to average across forecasts

from di¤erent models (see, for example, Harvey and Newbold (2005) and Timmermann (2006) for

discussion). The idea is that if two models are misspeci�ed and provide incomplete information
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about the true data generating process, then some combination of the two could potentially reduce

the bias generated by the individual models themselves. This is the approach taken here, producing

forecasts using various �average�models each constructed using model averaging techniques. The

average models are distinguished according to their use of the real time data (making use of vintage

data only, survey data only or both). The averaging allows for time-varying weights and ensures

that each average model makes best use of the information available to it in forecasting. Comparison

of the forecasts across the average models then provides an assessment of the contributions of the

di¤erent types of real-time data.

The third aspect of the chapter relates to the ambiguity on the criteria to be used in forecast

evaluation. This partly arises from an increasing awareness of the importance of properly charac-

terising forecast uncertainties which has shifted attention from point forecasts to density forecasts,

and evaluation criteria from models� root mean squared errors (RMSEs) to their probability in-

tegral transforms (PITs) and logarithmic scores; see, for example, the June 2010 Special Issue of

Journal of Applied Econometrics for an overview. But there is also increasing interest in judging

the economic value of a model�s forecast, concentrating on the usefulness of the models in a spe-

ci�c decision-making context rather than on its statistical performance, as discussed in Granger

and Machina (2006) for example. Certainly economic and statistical evaluation criteria highlight

di¤erent features of the models and their forecast performance and so, in this chapter, we judge

the usefulness of real time data not just in terms of their use in generating point and density fore-

casts of output growth but also their role in forecasting the probability of relatively rare/extreme

recessionary events.

The layout of the remainder of the chapter is as follows1. Section 5.2 carefully describes our

modelling framework, distinguishing between the real-time assessment in which model weights are

determined, and the �nal assessment in which the out-of-sample forecast performance of the various

average models is compared. Moreover, we explain how the use of density and probability forecasts

can be used in model evaluation based on both statistical and economic criteria. The evaluation

is performed by considering a range of events around a fair bet. Section 5.3 applies the methods

1The work in sections 5.1-5.3 of this chapter is based on Aristidou, Lee and Shields (2015).
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to US data over 1968q4� 2014q3, including all the data vintages available for actual and expected

output and price data from surveys aver the period. We conclude that judged by statistical criteria,

the performance of models that nowcast and forecast output growth and in�ation is considerably

enhanced by taking into account information available in survey data and revisions data. We

also show that relating to economic signi�cance, both revisions data and survey expectations are

important in calculating density forecasts in forecasting the occurrence of a number of events related

to the real business cycle. Moreover, the use of revisions and survey data can substantially boost

investor�s pro�ts in decision-making based on forecasts, as shown by a "fair bet" exercise. In

addition, the analysis demonstrates that evaluating forecasts based on future growth and in�ation

dynamics that are relevant to decision-makers is a much more reliable practice than relying solely

on point forecasts. In section 5.4 we consider an extension of our methodological framework to

explicitly allow for the possibility of structural breaks in the relationships of interest. The real

and �nal assessments are repeated but we also average across di¤erent sample sizes over which

individual models hold. Results on this approach are presented in section 5.4.2. As it turns out,

we show that averaging across di¤erent sample sizes to address structural breaks does not change

results signi�cantly with the weight structure assigning more weights to models estimated over

longer sample periods. Section 5.5 concludes with a brief summary of the �ndings.

5.2 Assessing the Usefulness of Real-Time Information

5.2.1 A Modelling Framework to Accommodate Real-Time Information

In what follows, we write the (logarithm of the) variable x at time t � s as xt�s, and denote the

measure of variable x at time t� s that is released at time t by txt�s; s = 0; 1; 2; :::; while txet+s is

a direct measure of the expected value of the variable at t+ s, with the expectation formed on the

basis of information available at the time the measure is released, t. Here we consider more than one

variable (output, tyt�s; and price in�ation, tpt�s) so we write txt�s = (tyt�s;t pt�s)0, a 2� 1 vector

of variables. Throughout, we shall assume that data is published with a one period delay, and

the time-t vintage of data is denoted Xt = ftx1, tx2, ..., txt�2, txt�1, txet , txet+1,..., txet+F g which

includes the time-t measures of the actual variables at t = 1; :::; t � 1 and the time-t measures of
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Figure 5-1: The form of the real time data set employed. Figures in bold denote the actual post-

revision series, assuming revisions continue no longer than three periods, the red �gures denote the

�rst release output series. The shaded �gures denote information from surveys.

expected contemporaneous and future values of the variables published for up to F periods ahead.

In our real-time forecast evaluation exercise, we denote the period in which decisions are made by

� for � � T and X� is termed �the most recent data vintage�while XT is the ��nal data vintage�.

The information set grows with the addition of successive vintages of datasets by including the:

� news on the variables in the previous period (the "�rst release" of information on the output

and price level in that period);

� news on the revisions of the output series in the previous periods, i.e. {(t+1yt�1�tyt�1),(t+1yt�2�t

yt�2),...} and

� news on the expectations of the contemporaneous and future values of the variables.

Figure 5.1 illustrates the form of the real time data set employed. Here, we assume that revisions

continue no longer than three periods. Accordingly, the �rst release information on output at t i.e.

t+1yt, is revised three times so that the �nal post-revision output series is given by t+4yt: Figure

5.1 also demonstrates the use of survey information. Since data is published with one period delay,

agents use information from surveys for the contemporaneous realisation of the output series, as
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well as for future values of the output series. Here we assume that the survey horizon extends no

longer than four periods ahead.

For the modelling exercise, we assume that the variables x1t,..., xmt are all di¤erence stationary,

that revisions are stationary and that expectational errors are stationary. If revisions continue for

no longer than R periods after the �rst-release and if the surveys provide measures of the expected

values of x for up to F periods ahead, then in making a decision at time � we will require a model

that explains the following n = 1 +R+ F + 2 series over the period t = 1; ::; � :

Dxt = �xt�1 � �xt�2 : growth in the most-recent data vintage for x;

Dxrt = txt�1�r � t�1xt�1�r : r
th revision of x, r = 0; :::; R; (5.1)

Dxft = tx
e
t+f � tx

e
t+f�1 : expected growth of x from surveys, f = �1; 0; :::; F:

A simple p-order vector autoregressive model that explains these series for t = 1; :::; � can be

written:

Dxt = A10 +

pX
i=1

24A11i Dxt�i + RX
r=1

A12ri Dxr;t�i +
FX
f=1

A13fi Dxf;t�i

35+ "1t; (5.2)

Dxr;t = A20 +

pX
i=1

24A21i Dxt�i + RX
r=1

A22ri Dxr;t�i +
FX
f=1

A23fi Dxf;t�i

35+ "2rt (5.3)

r = 0; ::; R

Dxf;t = A30 +

pX
i=1

24A31i Dxt�i + RX
r=1

A32ri Dxr;t�i +
FX
f=1

A33fi Dxf;t�i

35+ "3ft (5.4)

f = �1; 0; :::; F

where the A�s are matrices of coe¢ cients and "�s are vectors of mean-zero shocks. We denote

this model by MR;F;� in what follows, with the subscript �R;F; ��highlighting that the estimated

model will di¤er depending on the underlying assumptions on the maximum number of revisions,

the forecast horizon in the survey and on the estimation period.

Noting that the variables in Dxt, Dxr;t, and Dxf;t involve the x variables measured at t and

earlier, the equations in (5.2)-(5.4) can be stacked and transformed to obtain the (p + 1)th-order
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autoregressive model

zt = B0 +

p+1X
i=1

B1i zt�1 + "t; t = 1; :::; � (5.5)

where zt = (txt�1, txt�2; :::;t xt�R+1, txet ; :::, tx
e
t+F )

0, and B0 is a mn � 1 vector of parameters

derived from the A�s and the B1i are mn �mn matrices similarly derived. The structure of the

model in (5.2)-(5.4) means that it can be rewritten in the form of a cointegrating VAR in which

the parameters are restricted to re�ect the assumptions that revisions and expectational errors

are stationary.2 The cointegrating VAR can then be rewritten in the form at (5.5) which is more

convenient for describing simulation and forecasting exercises but which will retain the property

that the various measures of the variables in x converge to the same values in the long run.

It is worth noting that the above transformation incorporates the assumption that the data is

revised no more than R times. Taken literally, this means that the most recent vintage of data x�

describes the post-revision series for observations dated at � � R and earlier (i.e. tx��s = �x��s,

t = 1; :::; � ; s = R + 1; :::). If model (5.5) is estimated in real-time based only on the most recent

vintage of data, so that it does not account for either past vintages of data or the expectations of

the contemporaneous or future values of x as provided in surveys, then is called the �conventional

model�or �quasi model,�denoted by M0;�1;� :

5.2.2 Assessing Nowcasting/Forecasting Performance

In judging the usefulness of real-time data in decision-making, we shall assume that decisions in

time � require a nowcast to be made of the true current state of the economy which we take to

be measured by the post-revision measure �+R+1x� . Our assessment of the usefulness of real-time

data in decision-making is based on the nowcasting performance of decision-making strategies that

make full use of the revisions and survey data compared to simpler strategies that make only partial

use of the data (including the conventional real-time modelling approach, for example). It is worth

providing a brief overview of the approach to assessment before formalising it in detail below. Our

approach includes two complementary elements: a real-time assessment and a �nal assessment.

2This means that there are R cointegrating relations between tyt�1 and each of the txt�1�R, and F+1 cointegrating

relations between txt�1 and each of the txet+F , all of the form (1, �1). See Garratt et al. (2008) for details.
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The real-time assessment is based on the estimation of an �average model�obtained using model

averaging methods applied to models that are all estimated on data available at the time but are

distinguished by their di¤erent use of the survey and revisions data. The use of model averaging

methods means the advantages of forecast combinations are exploited and the value of the real-

time data is captured properly. Further, the weights given to the di¤erent models are chosen to

re�ect their relative nowcasting performance so that they provide a straightforward summary of

the usefulness of the revision and survey data in nowcasting as it would be judged in real time.

The real-time assessment of models could change over time since survey and revisions data

might be more or less useful in di¤erent circumstances. It is therefore useful to consider the extent

to which the real-time data is helpful in strategic decision-making judged over a longer evaluation

period therefore. The average model obtained following the steps described above would form the

basis of decisions made in any given period (each time making use of all the revisions and survey

data available). The nowcasting performance of the average models obtained in this way for each

period in our sample of data, up to and including the �nal vintage, can be used to judge the

usefulness of the real-time data over the whole sample. The �nal assessment obtained in this way

can be compared to equivalent assessments based on an alternative set of average models obtained

from analyses in which survey and/or revisions data are not used. This comparison judges the

overall usefulness of real-time data, asking whether it is a good idea to include real-time data in

the forecasting exercise generally even though, at particular times, it might not appear useful.

In terms of the criteria to be used, it is worth noting that recent years have seen a growing

interest in a decision-based approach to the evaluation and comparison of forecasts. Here, fore-

cast accuracy is judged according to its economic value given an explicitly de�ned decision-making

context. This re�ects the recognition that the statistical criteria used to evaluate models, are

typically based solely around point forecasts and measured using mean squared forecasting error

(MSE), provide information on the economic value of their forecasts only under certain condi-

tions. The preponderance of studies employing the decision-based approach to forecast evaluation

are in the area of applied �nance where investment strategies and their outcomes are relatively
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straightforward to describe and measure.3 The decision-making context in macroeconomics is not

so straightforward and there is no generally accepted decision-based criterion with which to judge

models�forecasts of output and in�ation �uctuations. However, a comprehensive statement on the

usefulness of real time data in forecasts of these variables should include an evaluation element that

re�ects the variety of ways in which recession and business cycle �uctuations are experienced by

di¤erent individuals so that the economic worth of the forecast can be judged in addition to using

statistical criterion.

Real-time assessment

The VAR model of (5.2)-(5.5) provides a simple framework within which all the real-time data

available can be accommodated in a coherent way. But such a model could be very highly para-

meterised, depending on the number of revisions available, the length of the survey horizon and

the chosen order of the VAR, and this could undermine its value as a forecasting tool. Similarly, it

is possible that di¤erent parts of the real-time data become more or less useful for forecasting at

di¤erent times. For example, statistical agencies�procedures could mean that measurement errors

contained in the �rst-release of data are more pronounced in times of very high or very low growth,

making revisions data more useful. Or forecasters may watch incoming news more carefully at

times of crisis so that survey data becomes more informative at these times.4

To mitigate against these problems, we estimate a set of models of the form in (5.2)-(5.5)

(distinguished by their use of real-time information) and combine these using model averaging

techniques into an average model. The weights used to combine the models, and their associated

forecasts, can be chosen so that forecast performance is maximised (avoiding the problems of over-

parameterisation) and can change over time so that di¤erent parts of the real-time data can be

used when they are helpful. The approach exploits the fact that forecast performance is improved

through a linear combination, as established by Harvey and Newbold (2005).

3See, for example, Leitch and Tanner (1991), Abhyankar et al. (2005) and Garratt and Lee (2010).

4See, Loungani et al. (2013), for example, for discussion on the changing impact of information rigidities on survey

data at di¤erent points of the business cycle.
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A strategy that makes full use of the data could base its decisions at � on forecasts from model

MR;F;� or indeed any model Mr;f;� for r = 0; :::; R and f = �1; :::; F , or a weighted average of

these models in what we term an �average model�. The weights can be chosen to re�ect the relative

forecasting performance over the recent past, where performance is judged according to the question

of interest. So here, the weights are based on the models� (R + 1)-period-ahead forecasts of the

(post-revision) measure of output, �+R+1y� , if the �true� variable level is of interest. Then the

average model that makes full use of the real-time data is obtained as follows:

� Split the currently available sample into two sub-samples: an estimation period t = 1; :::; ���;

and a �training period�t = � � � + 1; :::; � .

� Estimate model de�ned in (5.2)-(5.4) over t = 1; :::; ��� and for r = 0; :::; R and f = �1; :::; F ,

providing (R+ 1)� (F + 2) alternative models.

� Evaluate the forecast performance of these individual models by comparing the nowcasts

based on the models, E [���+1+Ry��� j Mr;f;���], with the observed post-revision value

���+1+Ry��� through the calculation of a chosen statistical criterion. If the interest is pri-

marily on the performance of models in terms of point forecasts, then the squared forecast

error spr;f;��� = (���+1+Ry��� � E [���+1+Ry��� j Mr;f;���])
2 is used. If the whole density

forecast is of interest, we use the logarithmic score sdr;f;��� = ln(g(���+1+Ry���j Mr;f;���))

where g(���+1+Ry���j Mr;f;���) is the nowcast density for model Mr;f;���:

� Repeat exercise for samples over the whole of the training period. So, for instance, the next

(R+ 1)� (F + 2) versions of models are estimated over t = 1; :::; � � �+ 1; and the nowcast

performance of modelMr;f;���+1 is based on E [���+2+Ry���+1 j Mr;f;���+1] ; producing the

squared forecast error, spr;f;���+1, and logarithmic score, s
d
r;f;���+1. The process continues

until the �nal versions of model Mr;f;� are estimated producing the corresponding s
p
r;f;� and

sdr;f;� .

� Calculate weights for the models, wr;f;� , on the basis of the relative forecast performance of

the individual models over the training period, using the average mean squared forecast error
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for each model over the training period (i.e. MSEr;f;� =
1
�

�P
�=0

spr;f;���+�), as follows:

wr;f;� =
(
p
MSEr;f;� )

�1P
r

P
f

(
p
MSEr;f;� )�1

(5.6)

or the average of the logarithmic score over the training period, (i.e. MLSr;f;� =
1
�

�P
�=0

sdr;f;���+�)

and weights are given by:

wr;f;� = exp(MLSr;f;� )=
X
r

X
f

exp(MLSr;f;� ) (5.7)

The �average model�that makes full use of the real-time data over the period t = 1; :::; � consists

of the the individual estimated models and their weights and it is denoted by:

MR;F;� = fMr;f;� , wr;f;� for r = 0; :::; R and f = �1; :::; Fg. (5.8)

The average model can be used to obtain point forecasts and density forecasts using the weighted

average of the models�individual point forecasts and aggregating over the models�individual den-

sities.

The nature of the average model obtained at time � can be summarised by the statistics

�r� =
RX
r=0

r � wr;f;� and �f� =
FX

f=�1
f � wr;f;� : (5.9)

The �r� and �
f
� statistics capture the relative importance of the revision data and the survey data

in de�ning the average model at time � . If they deviate from 0 and �1 respectively, they show

that the revisions data and the survey data would have made a contribution to an out-of-sample

forecasting exercise if it had been conducted in real time. This provides a real-time assessment of

the usefulness of the revisions and survey data in MR;F;� . Di¤erent values for the weights could be

obtained for di¤erent � , allowing the possibility that the usefulness of the revision and survey data

changes over time.

Final-time assessment

The average modelMR;F;� can be used to provide the nowcast of x� for any decision-date � . If this

exercise is repeated over an evaluation period (� = � ; :::; T , say), then the performance criterion
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can be calculated in each exercise judged from the perspective of the whole sample of data up to

and including the �nal vintage. The overall performance over the evaluation period provides a �nal

assessment of the usefulness of the decision-making strategy which makes full use of the available

revisions and survey data and fully exploits the potential contribution the real time data can make

to forecasting. Corresponding exercises could also be undertaken to obtain a �nal assessment of

strategies where

� no use is made of the survey data throughout (i.e. based on the average model MR;�1;� for

� = � ; :::; T );

� no use is made of the revisions data throughout (i.e. based on the average model M0;F;� for

� = � ; :::; T ); and

� no use is made of either the revisions or survey data throughout (i.e. based on the conventional

real time model M0;�1;� for � = � ; :::; T ).

These three models are nested within MR;F;� , and, in principle, could be chosen if zero weights

are placed on the models involving revisions or surveys at all times when deriving MR;F;� . In

practice, zero weights might be unlikely and so comparison of the forecast criteria obtained from

the four models provides an overall assessment of the usefulness of the revisions and survey data

taking into account that they might be more or less useful at di¤erent times.

Statistical forecast evaluation criteria The evaluation of nowcasts/forecasts obtained from

average models can be based on statistical criteria such as MSE or logarithmic score. The MSE

concentrates on the point forecast of the post-revision series and, in the �nal assessment, it is

measured by
PT
�=�

�
�+1+Ry� � E

�
�+1+Ry� j MR;F;�

��2
in the case of the average model in which

all the real time data is used.5 Of course, at the point at which the �nal assessment of the average

model is made, the weights have already been calculated. If the �nal assessment is based on

the MSE, then the weights underlying the average model should also be based on the forecast

5E
�
�+1+Rx� j MR;F;�

�
is replaced by E

�
�+1+Rx� j MR;�1;�

�
in the case of the model where no survey data is

used; by E
�
�x� j M0;F;�

�
in the model where no survey data is used; and by E

�
�x� j M0;�1;�

�
in the conventional

model.
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performance of the individual models judged by the MSE over the training period; e.g. which gives

a high weight to models with relatively low MSE�s.

The logarithmic score is based on the combined forecast density de�ned, in the case of the

average model MR;F;� for example, by p(y� j �MR;F;� ) =
X

r

X
f
wr;f;� g(y� j Mr;f;� ) where g(y� j

Mr;f;� ) is the nowcast density for model Mr;f;� . The logarithmic score at � evaluates the nowcast

density at the post-revision value, i.e. ln
�
p(�+1+Ry� jMR;F;� )

�
; giving a high score to a density that

assigns a high probability to the outcome that actually occurs. In the �nal assessment, the average

logarithmic score calculated over the evaluation period therefore re�ects the model�s performance

in terms of its ability to re�ect the range of possible outcomes for the variables of interest (see

Mitchell and Wallis (2011) for further discussion). Naturally, if the �nal assessment of the forecast

performance of the average models is based on the logarithmic score, the weights used in the average

model should also be based on the average logarithmic scores obtained over the training period for

the individual models.6

Economic forecast evaluation criteria The MSE and logarithmic score measures represent

purely statistical criteria that re�ect the economic worth of forecasts only in particular circum-

stances. Recent years have seen a growing interest in a decision-based approach to the evaluation

and comparison of forecasts. Here, forecast accuracy is judged according to its economic value given

an explicitly de�ned decision-making context7. We believe that a judgement on the usefulness of

real time data in forecasts of these variables should include an evaluation element that re�ects the

economic worth of the forecast. In what follows, we describe a fair bet exercise that provides an

economic evaluation of forecast performance in forecasting the likely occurrence of a number of

events involving (the logarithm of) output, yt, and price level, pt, which capture di¤erent features

6The de�nition of the average model changes according to the weights and evaluation criteria that will be subse-

quently employed and we might distinguish between M
MSE
R;F;� and M

LS
R;F;� depending on whether weights are based on

MSE or logarithmic score, for example. As the weights used are usually clear from the context, we will suppress the

superscript in what follows for notational convenience.

7This recognises that the statistical criteria used to evaluate models, typically measured using mean squared

forecasting error (MSE), provide information on the economic value of their forecasts only under certain conditions.

See Granger and Pesaran (2000) for an overview of this discussion.
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of the output and price nowcasts; namely:

� DROP1 : f ( �+1+Ry�� �+Ry��1 < 0)g; i.e. a nowcast of one period of negative growth at �

(calculated using post-revision measures);

� DROP2 : f ( �+1+Ry�� �+Ry��1 < 0)\ ( �+Ry��1� �+R�1y��2 < 0) g; i.e. a nowcast of two

consecutive periods of negative growth at � (calculated using post-revision measures);

� BPEAK : f �+1+Ry� < max( �+Ry��1, �+R�1y��2, �+R�2y��3,...) g; i.e. period � output lies

below its previous peak level;

� BTREND : f �+1+Ry� < ey� , where ey� = 1
5( �+R�1y��2+ �+Ry��1+ �+1+Ry�+ �+2+Ry�+1+

�+3+Ry�+2) g; i.e. output lies below trend, de�ned as the centred �ve-period moving average

of output;

� TURN : f turning point observed at � g; where, following Harding and Pagan (2005), a peak

in output at time � is nowcast to occur when

( �+1+Ry� � �+Ry��1) > 0; ( �+1+Ry� � �+Ry��1)� ( �+Ry��1 � �+R�1y��2) > 0

( �+2+Ry�+1 � �+1+Ry� ) < 0; ( �+3+Ry�+2 � �+2+Ry�+1)� ( �+2+Ry�+1 � �+1+Ry� ) < 0

and a corresponding de�nition holds for a trough;

� IRRISE : f (1:5�+1�� + 0:5�+1+R~y� ) > (1:5����1 + 0:5�+R~y��1), where �+1+Rey� = 1
5(

�+R�1y��2+ �+Ry��1+ �+1+Ry�+ �+2+Ry�+1+ �+3+Ry�+2) and �+Rey� = 1
5( �+R�2y��3+

�+R�1y��2+ �+Ry��1+ �+1+Ry�+ �+2+Ry�+1)g; i.e. a nowcast of an interest rate rise based

on simple Taylor rule involving the nowcasts of in�ation and the output gap.

The probability of these events occurring at � can be nowcast using the average modelsMR;F;� ,

M0;F;� , MR;�1;� and M0;�1;� and comparison of the probability forecasts again provides an indica-

tion of the usefulness of real-time data. A straightforward statistical evaluation of a model�s event

probability forecast, �� , is through a contingency table approach. Here, the forecast probability is

converted to a prediction on whether the event will happen or not (rt = 1 or 0 respectively) depend-

ing on whether the probability is greater or less than 0:5. The performance of the model can then
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be described by the �hit rate�(i.e. the proportion of accurate predictions) or the Kuipers Score (a

statistic that takes values between �1 and 1 and summarises the degree of correspondence between

predictions and outcomes similar to a correlation coe¢ cient). Both statistics are calculated based

on table 5.1 showing a standard contingency matrix of realisations of events and model forecasts,

Table 5.1: Contingency Matrix

Event Occurs

Event Forecast Yes; No;

Yes; rt = 1 Tby Tgy

No; rt = 0 Tbn Tgn

where Tby represents the number of times the model correctly predicted the occurrence of the

event, Tbn represents the number of times the model incorrectly predicted that the event will not

occur, Tgy represents the number of times the model incorrectly predicted that the event will take

place when in fact the event did not happen and Tgn gives the number of times the model correctly

predicted that the event will not take place. The Hit rate is given by:

HIT =
Tby + Tgn

Tby + Tgy + Tbn + Tgn
. (5.10)

The Kuipers score statistic is given by:

KS = H � F; (5.11)

where H is the fraction of events that have taken place and the model correctly predicted their

occurrence while F is the fraction of events that have not taken place and had been incorrectly

forecast to have occurred (the "false alarm" rate, see Granger and Pesaran (2000)). In terms of the

contingency table, F = Tgy
Tgy+Tgn

and H =
Tby

Tby+Tbn
:

In addition, formal tests can be applied against the null that there is no relationship between

the outcome and the predictions. Pesaran and Timmermann (1992) provide a test of a model�s

ability to predict the occurrence of an event based on the proportion of occasions in which the

model correctly predicts that the event will or will not happen. The test assumes the outcomes

are uncorrelated over time, however, and Pesaran and Timmermann (2010) propose an alternative

approach based on canonical regression methods to test for predictability in the presence of serial
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dependence. Both approaches are purely statistical in the sense that they provide a test of the null

of no predictability and take no account of the potential bene�ts of accurately predicting the event.

They evaluate the model from the perspective of the producer of the forecast.

Assigning economic signi�cance to events A more �economic�evaluation might be based on

an explicit investment scenario in which a model is used to predict the outcome of one of the events

listed above. This attempts to evaluate the model from the perspective of the user of the model�s

forecasts. One example of such an investment scenario is where an investor pays a �xed charge

each period to participate in a scheme, predicts whether the event will occur or not and receives

a payment if the prediction turns out to be true. Alternatively, the scenario might be asymmetric

in that a payment is received only if the investor correctly predicts that the event will occur. In

either scenario, the pro�ts obtained from decision-making directly measure the economic value of

the model over the evaluation period.

To formalise the ideas, note that any event de�ned at � as a set of outcomes involving outputs

and/or prices up to h periods ahead can be written as R(X�+1;�+h). The probability that the event

occurs is

probability of event = �� =

Z
R
Pr(X�+1;�+hj X1;� ; MR;F;� ) @X�+1;�+h: (5.12)

In a simulation exercise, the forecast probability is obtained simply as the proportion of the

simulations in which the event is observed to occur. In a decision-making context, where an

individual�s objective function �(r� , R(X�+1;�+h)) depends on the outcome of a choice variable r�

and the occurrence of the recessionary event, the decision-maker�s problem can be written as

max
r�

� Z
�(r� ; R(X�+1;�+h)) Pr

�
X�+1;�+h j X1;� ; MR;F;�

�
dX�+1;�+h

�
: (5.13)

In terms of the simulations, the decision involves simply choosing the value of r� that maximises the

value of the objective function when averaging across the simulations. We can denote the optimal

value of the choice variable chosen using model MR;F;� by rR;F;� . Pesaran and Skouras (2002) then

suggest using the statistic

	R;F;� =

T+kX
�=T

�(rR;F;� ; R(X�+1;�+h)); (5.14)
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calculated over an out-of-sample evaluation period T; :::T +k and based around the values of rR;F;�

chosen using modelMR;F;� in each period. Similar statistics can be calculated for any other model,

with associated optimal choice variable, and these provide the basis of a comparison of the forecast

performance of the models on economic grounds.

The payout contingencies relating to the symmetric and asymmetric bets described above are

summarised as:

Payout contingencies for outcomes

of a symmetric fair bet

Payout contingencies for outcomes

of an asymmetric fair bet

Recession Occurs Recession Occurs

Recession

Forecast
Y es No

Recession

Forecast
Y es No

Y es s� 1 �1 Y es s� 1 �1

No �1 s� 1 No 0 0

where the �xed charge is 1 unit (payable every period in the symmetric case and only when

participating in the asymmetric case) and where s represents the payment received with a successful

prediction. In other words, in the symmetric case, it is assumed that the investor gambles £ 1

predicting whether the event will take place or not. If the prediction is correct, the investor gets a

payout of £ s but otherwise, loses the £ 1. In the asymmetric version, the investor only gambles with

a £ 1 stake if she believes that the event will take place and wins £ s if the prediction is correct. The

bet is fair in each case because the payout is chosen so that the investor would break even if she made

the choice randomly on the basis of the unconditional probability, pu, that the event occurs. In the

symmetric investment scenario this requires that expected pro�t (s�1)(p2u+(1�pu)2)�2pu(1�pu) =

0, i.e. s = 1
2p2u�2pu+1

:8 Alternatively, it requires (s � 1)p2u � pu(1 � pu) = 0; i.e. s = 1
pu
in the

asymmetric case investment scenario. If the model�s forecast probability is � and if the investor

bets on recession when � exceeds some critical value �c, then the decision to bet on recession or not

8 If �YY�indicates a recession is forecast and it occurs, �YN�indicates a recession is forecast but it is not realised,

and so on, then, the probability of �YY�and �NN�is equal to p2u and (1 � pu)2 respectively while the probability of

�YN�and �NY�is equal to pu(1� pu):
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(rR;F;� = 1 or 0) is equivalent to choosing the critical value. In the symmetric case, the investor�s

expected end-of-forecast-period wealth corresponding to �(r� ; R(X�+1;�+h)) in (5.13) is given by:

E[W�+h] =

8><>: (s� 1)� � (1� �) = �
2p2u�2pu+1

� 1 if � > �c , rR;F;� = 1

(s� 1)(1� �)� � = 1��
2p2u�2pu+1

� 1 if � < �c , rR;F;� = 0

and maximum expected wealth is achieved by choosing a critical value of �c = 0:5 since �
2p2u�2pu+1

>

1��
2p2u�2pu+1

if � > 0:5 and vice versa if � < 0:5. In the asymmetric case, wealth is given by

E[W�+h] =

8><>: (s� 1)� � (1� �) = �
pu
� 1 if � > �c , rR;F;� = 1

0 if � < �c , rR;F;� = 0

and maximum expected wealth is achieved by choosing a critical value of �c = pu since �
pu
� 1 > 0

if � > pu. In both cases, model MR;F;� can be used to predict the occurrence of a recession or not

in each observation through the evaluation period and, depending on the actual outcome, this will

generate a sequence of �nancial returns that can again be used to judge the model as in (5.14).

Carrying out the same exercise for modelsMR;�1;� ,M0;F;� andM0;�1;� provides a $ value for each

model which are comparable across models and which conveys directly the economic usefulness of

each of these models (and of the di¤erent elements of the real-time data).

The criterion function clearly depends on the decision-making context. However, the use of

a range of alternative investment scenarios can provide a sense of the robustness of the model

evaluation to changes in the detail of the scenario. The break-even payment is largest when pu = 0:5

in the symmetric case re�ecting the conservative economic setting in which returns are greatest

when correctly predicting an event that is as likely to occur as not. In the asymmetric scenario,

however, the payment becomes in�nitely large as pu ! 0 so that there are large gains to be made

from predicting unlikely events in this case. These two scenarios provide quite di¤erent economic

contexts therefore. A model that performs well in both would have established itself as useful in

quite di¤erent situations while good performance in one but not another provides information on

the contexts in which the model is and is not useful.
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5.3 Nowcasting Recessionary Events using US Real-Time Data

The empirical work of the chapter considers nowcasts of output and price outcomes and business

cycle features based on the �rst-release and revised measures of output and price and the direct

measures of output and price expectations obtained from the real-time datasets of the Federal

Reserve Bank of Philadelphia available at www.phil.frb.org/econ/forecast/. The o¢ cially-released

�backward-looking�series consist of 196 quarterly vintages of data; the �rst was released in 1965q4

and the �nal vintage used in this chapter is dated 2014q3. All vintages include observations dated

back to 1947q19. The �forward-looking�series are the experts�forecasts on output provided in the

Survey of Professional Forecasters (SPF) from 1968q4�2014q3. The forecasts in the SPF are made

around the mid-point of quarter t and include nowcasts of the current quarter and forecasts of up

to four quarters ahead. In fact, the data on US real GDP in quarter t � 1 are released for the

�rst time at the end of the �rst month of quarter t so the �rst-release information on the previous

quarter�s output is available to the professional forecasters at the time they make their forecasts.

Nevertheless, it is reasonable to assume tyt�1 and tyet+f , f = 0; :::; 4 are determined simultaneously

when working at the quarterly frequency.

Assuming that output data is revised for three quarters while the price series is not revised,

then actual quarter-on-quarter output growth at time t, can be measured by the post-revision

series t+4yt� t+4yt�1. Figure A1 in the appendix illustrates the nature of the output series under

investigation. The output series has an average annualised rate of 0:61% (with standard deviation

of 0:83%) and is plotted in Figure A1 alongside the �rst-release and �rst-revision series. Figures

A2-A4 plot the revisions of output series showing that revisions are small on average but the �rst

and second revisions have a range of [�1:58%; 1:63%] and [�1:23%; 1:55%], and standard deviation

of 0:41% and 0:34%, respectively and so are often of a similar order of magnitude to the actual

growth �gures themselves. Figures A2-A4 also demonstrate that there are occasionally some very

9The analysis distinguishes between standard �revisions�and once-and-for-all �benchmark adjustments�arising out

of the re-de�nition or reclassi�cation of a series. The latter are announced in advance and we assume these are

entirely taken into account in forecasting and decision-making. To do this, we adjust the data by splicing the pre-

and post-benchmark-adjustment series to eliminate the e¤ects prior to the analysis. Benchmark adjustments took

place in 1976q1, 1981q1, 1986q1, 1992q1, 1996q1, 1999q4, 2004q1 and 2009q3.
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large revisions, with a relatively large number in excess of 0:5% occurring during the late seventies

and mid-eighties and a large number less than �0:5% in the early eighties and after 2007. The

fact that these episodes coincide with periods of unusually strong or weak growth suggests that the

measurement errors are (understandably) related to business cycle conditions and suggests that

revisions may be more or less useful in forecasting growth outcomes at di¤erent times.

The expectations series obtained from the SPF are shown in �gure A5, again set against ac-

tual post-revision growth. This �gure shows that the output expectations series also display some

volatility but they move more conservatively than the actual growth series itself. The conservatism

becomes more pronounced as the forecast horizon grows so that four-period-ahead survey expec-

tations rarely move outside the [0:5%; 1:0%] range, especially over the latter half of the sample.

De�ning expectational errors observed in the SPF series by t+4yt� t�fy
e
t for f = 0; :::; 3, i.e. com-

paring the post-revision series to the survey forecasts for up to 3 quarters earlier,10 �gure A6 plots

the expectational errors directly, showing some very large errors in the four-period-ahead forecasts.

As far as the price series is concerned, we assume that it is not revised (indeed revisions are

minimal) so actual in�ation is measured by the growth in GDP de�ator based on the most-recent

vintage i.e. T pt� T pt�1 : Figure A7 shows the irregularities the in�ation series has experienced with

the dramatic increase in in�ation during the turmoil years of the 1970s and fast disin�ation during

the 1980s. The price series has an average annualised rate of 0:91% (with standard deviation of

0:64%). As �gure A7 conveys, the revisions are small as the �rst-release in�ation series and in�ation

based on the most-recent vintage are almost identical.

The expectations of the price series as given by SPF are shown in �gure A8. As with the

output series, while the prices expectations exhibit some volatility, they �uctuate more moderately

than actual in�ation series. Indeed, the four step ahead expected in�ation displays less pronounced

�uctuations. For example, during the early 1970s when actual in�ation exceeded 3:25%, the four

step ahead expected in�ation remained well below 1:5% and followed actual in�ation�s upward

movements in a much more conservative rate. De�ning expectational errors observed in the SPF

series by t+4pt� t�fp
e
t for f = 0; :::; 4; �gure A9 shows great variability in errors. The �gure shows

10This is the appropriate measure of �expectational error� only if the survey participants report predictions of

actual, post-revision output in their returns, not the predictions of the �rst-release measure.
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large periods when the expectational errors are close to zero while substantial spikes are observed

especially for errors in the four-period-ahead price forecasts.

5.3.1 Real-time evaluation of point and density forecasts

The purpose of the empirical work is to �nd whether the information contained in the revision

and survey data is useful in nowcasting the actual output series and/or the business cycle features

re�ected in these series. All of the models that we estimate can be accommodated by the average

model MR;F;� de�ned in (5.8), with r = 0; 1; 2; 3 and f = �1; 0; 1; 2; 3, and in (5.2)-(5.4)11. Hence,

twenty versions of the model in (5.2)-(5.4) are estimated with the most general including three

revisions and survey forecasts up to three quarters ahead in addition to the �rst release data, while

the most simple version of the model is the �conventional model�which uses the �rst-release data

only.

This exercise begins by estimating the average model MR;F;1991q2 de�ned in (5.8) and using the

real time data available for 1968q4 � 1991q2 using the 80-quarter period 1968q4 � 1988q3 in esti-

mation and holding back the 12 quarters�data for 1988q3� 1991q2. Each of the twenty underlying

models are used to produce forecasts of the various measures of output, including for example,

the one-step ahead forecast of the �rst release measure of contemporaneous output, 1988q4y1988q3,

say, and the four-period-ahead forecast of the post-revision measure of contemporaneous output,

1989q3y1988q3. For the purpose of obtaining the model weights, we focus here on the forecast of

post-revision measure, comparing this to the post-revision outcome observed during the training

period. The twenty models are then estimated over the 81-quarter period 1968q4� 1988q4 and the

forecast of the post-revision measure 1989q4y1988q4 is obtained and compared to the observed out-

come. This is repeated over the whole training period, moving recursively and judging the relative

performance of the twenty models each time to obtain the set of weights, wr;f;1991q2, de�ned in (5.6)

for the RMSE and (5.7) for the log scores, for r = 0; :::; 3 and f = �1; :::; 3: Moving on one period,

this entire exercise can then be repeated over the sample 1969q1 � 1991q3 using 1988q4 � 1991q3

as the training period, to derive the set of weights wr;f;1991q3 and so on to the �nal vintage data

11 In other words, for the empirical exercise, R = 3 and F = 3:
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Figure 5-2: The real-time assessment of the usefulness of expectations survey data in post revision

output forecasts, based on the �r� statistic:

2013q2:

Figure 5.2 shows �r� de�ned in (5.9) i.e. the weighted average of the revision length of the

models included in the model MR;F;� for � = 1991q3; :::; 2014q3 based on the models� forecast

and judged according to their RMSE (when using weights as in (5.6)) and to logarithmic scores

(when using weights as in (5.7)). The plot based on RMSE shows a greater degree of stability: the

average revision horizon is around 1:5 and lies in the range [1:00, 2:00] for nearly all the sample.

Although the statistic exhibits some variation through time, it also re�ects the �nding that, when

using RMSE as the criterion, many models appear to perform equally well so that the average of

their revision lengths is mid-way between zero and three, the minimum and maximum values. In

contrast, the plot based on log score weights is much more discerning, showing a very low average

revision length -i.e. with few revisions used - during the �rst part of the evaluation period (weighted

average revision length remained below 1:5 for the �rst part of the sample) but rising above 1:5
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Figure 5-3: The real-time assessment of the usefulness of expectations survey data in post revision

output forecasts, based on the �f� statistic:

during the early 2000�s and to close to 3:0 - making full use of revisions - over the evaluation period

after 2007. As noted above, there were a number of large revisions in the output data released in

the early 2000�s and again in the years following the �nancial crisis and it appears that the average

model adjusts to exploit the extra information contained in the revisions at this time, placing more

weight on models that include the long revisions.

Figure 5.3 shows �f� de�ned in (5.9) i.e. the weighted average of the survey horizon of the

models included in the model M3;3;� for � = 1991q1; :::; 2014q3 based on the models�forecast and

judged according to their RMSE (i.e. using weights as in (5.6)) and to logarithmic scores (i.e.

using weights as in (5.7)). The main message from �gure 5.3 is that survey data are relatively

important over the whole sample and the statistic never becomes negative, indicating that at least

contemporaneous measures of output and price level are useful in nowcasting and forecasting. The

weights based on RMSE �uctuate around 1, mid-way between the minimum and maximum values

195



of �1 and 3, once more re�ecting the di¢ culty in discriminating between models according to their

point forecasts. Nevertheless, at the end of the evaluation period, the weighted average forecast

horizon based on RMSE weights declines substantially, showing that agents used information from

surveys only for the contemporaneous values of output and price outcomes. The weights based on

log scores show greater variability, taking values which are close to zero towards the end of the

sample. This pattern is less easy to interpret, although given the timing, we might speculate that

the surveys could become less reliable in density forecasting during recession or that the relative

conservatism in survey data may force a spurious precision in the density forecasts during periods

of volatility. In any case, the real time evaluation exercise indicates that survey data that provide

information on output and price expectations for the current and one-step ahead values can be

useful for forecasting but their usefulness changes over time.

Figures 5.4 and 5.5 provide some further insight on this shift in the weights over time, showing

the observed post-revision output series alongside the point forecasts and 5th/95th percentile of

the forecast densities for the most general model MR;F;� and for the simplest model M0;�1;� ; based

on logarithmic score weights, during two illustrative episodes. Figure 5.4, which relates to the

period 1994q1 � 1995q4 at the beginning of the evaluation period, shows that the point forecasts

of the two models are broadly the same. However, the forecasts density is rather narrower for

the MR;F;� model, suggesting that models that do not make use of revisions and survey data

embed higher uncertainty about the true value of post-revision outcome, so that the MR;F;� model

outperforms the simplerM0;�1;� model in terms of log score. Figure 5.5 shows that over the period

2009q2�2011q1, when there were some large revisions in the data, the point forecasts of theMR;F;�

model are closer to the actual than those from model M0;�1;� and the densities are also wider so

that the observed outcome lies in the body of the forecast density much more often. This illustrates

the idea that, by placing more weight on the models including long revisions, the average model

adjusts to incorporate the information contained in the revisions during the periods when revisions

become signi�cant.
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Figure 5-4: Mean, 5th percentile and 95th percentile of forecast density of models �MR;F;� and

�M0;�1;� under the logarithmic score weight scheme over the period 1994q1� 1995q4 (Post-revision

outcome).
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Figure 5-5: Mean, 5th percentile and 95th percentile of forecast density of models �MR;F;� and

�M0;�1;� under the logarithmic score weight scheme over the period 2009q2� 2011q1 (Post-revision

outcome).
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5.3.2 Final-assessment of model predictability based on economic events

The shifting weights over time provide insights on the usefulness of revisions and survey data in

forecasting as would be judged at the time. The ��nal assessment� statistics of Table 5.1 judge

their usefulness over the whole evaluation period by comparing the forecast performance of four

alternative average models which are more or less constrained in their use of the revisions and survey

data. Speci�cally here, we compare the performance of: (i) the general average model discussed

above, MR;F;� for � = 1991q2� 2013q2 which uses the revisions and survey data as the estimated

weights indicate; (ii) the average model MR;�1;� , obtained from models that di¤er in their use of

revisions but make no use of the survey data at all; (iii) M0;F;� making no use of revisions; and

(iv) the �conventional�meta model, M0;�1;� , making no use of revisions data or survey data. In

principle, we could conduct a separate forecast evaluation at every forecast horizon and for each

of our output measures (i.e. the �rst-release measure and various revisions and survey expectation

measures at di¤erent future dates). In what follows, we focus on the four-period-ahead forecast

of the post-revision measure of contemporaneous output which is a natural way of thinking of the

�nowcast of current actual output�.

The results of table 5.2 show the �conventional�average model, M0;�1;� has an average RMSE

of 1:14% when judged over the whole evaluation period 1991q2�2013q2. The three average models

MR;F;� , MR;�1;� and M0;F;� all outperform the conventional model, with smaller average RMSEs

reported in each case but onlyMR;�1;� shows a statistically signi�cant improvement according to the

Giacomini-White (GW) test of equal forecasting performance (where the GW tests are performed

using Newey-West robust standard errors with automatic selection for bandwidth). When weights

are chosen according to the log scores, models MR;F;� and MR;�1;� , both of which make use of the

revisions data, show an improvement in the log-score over that of the conventional average model,

but only MR;�1;� shows a statistically signi�cant improvement. Average model M0;F;� , which uses

surveys but not revision data, actually has a deterioration in forecast performance compared to the

conventional model, but the di¤erence is not statistically signi�cant. Hence, the ��nal evaluation�

results suggest it is a good idea to include real-time data when forecasting output although the

argument for the use of revisions is more compelling than for the use of surveys. In every case, it
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is a good idea to take into account the fact that the real-time data might be more or less useful at

di¤erent times.

Table 5.2: RMSE and Average Logarithmic Predictive Scores for Output Growth Nowcasts:

1991q2� 2013q2 (Post-Revision Outcome)

Actual RMSE and Average Logarithmic scores for model M0;�1;�

Scaled di¤erence from model M0;�1;� for other models

Average Model RMSE Log-score

Actual for M0;�1;�

M0;�1;� 0.0114 -2.562

Relative to M0;�1;�

MR;�1;� -0.0010�� 0.7041���

M0;F;� -0.0010 -0.2640

MR;F;� -0.0012� 0.7503

Note: The average modelMR;F;� is as de�ned in (5.8). In particular, modelMR;F;� denotes the unrestricted

average model which includes use of the full available revisions and survey data on expectations for � =

� ; :::; T ; M0;F;� denotes the model where no use of the revisions data is made for � = � ; :::; T ; MR;�1;�

denotes the model where no use is made of the survey data for � = � ; :::; T and M0;�1;� denotes the

model where no use is made of either the revisions or survey data throughout (i.e. based on the conventional

real time model), for � = � ; :::; T: A ���denotes signi�cance at the 10% level, ����denotes signi�cance

at 5% level and �� � �� signi�cance at the 1% level of the Giacomini-White (2006) test of equal forecast

performance testing whether the RMSE and the logarithmic predictive score are signi�cantly smaller or

larger, respectively, than the corresponding statistics from model M0;�1;� .

Evaluation of event probabilities and fair bet outcomes

We have argued that models�forecast performance might also be judged by their ability to predict

recession and to enhance decision-making. We also consider the models against this criterion then,

with predictions again based on density forecasts of the post-revision output measures and outcomes

measured by the realised post-revision series. In what follows, we use six events, described in
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Figure 5-6: Probability forecasts of one period of negative output growth (post-revision outcome), as

generated by average models �M0;�1;� ; �M0;F;� ; �MR;�1;� and �MR;F;� ; under the RMSE weight scheme.

Vertical lines denote when the event has taken place.

section 5.2.2, that capture di¤erent recessionary features of the business cycle at time � . Generally,

and in the absence of speci�ed pay-out contingencies, a forecasted probability of recession that

exceeds 0:5 is interpreted as predicting that recession will occur. Figures 5.6 and 5.7 illustrate the

type of results obtained, showing the forecast probabilities of one period of negative output growth

(DROP1) according to each model under the two weight schemes, as well as showing when the event

actually occurred. As is clear, this event occurs relatively infrequently with a run of consecutive

events during the �nancial crisis.

What becomes immediately apparent from �gure 5.6 is that, under the RMSE weight scheme,

the quasi model M0;�1;� is exceptionally bad in nowcasting one period of negative output growth

as it fails to identify the occurrence of the event in all cases that it takes place. This makes

model M0;�1;� redundant for the nowcasting of one period of negative output growth, suggesting

that useful information is excluded from the model. Even more importantly, model M0;�1;� often

results in false alarms since it signi�es that the event will take place at times when the event does not

actually take place (such as in 1991q3 and 2011q1). While the event takes place six times during the
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Figure 5-7: Probability forecasts of one period of negative output growth (post-revision outcome),

as generated by average models �M0;�1;� ; �M0;F;� ; �MR;�1;� and �MR;F;� ; under the logarithmic score

weight scheme. Vertical lines denote when the event has taken place.

sample period, all average models under the RMSE weight scheme fail to identify the occurrence

of the event in three cases (2001q3, 2007q4; 2008q3). Despite this insu¢ ciency, average models

that make use of survey data appear to predict the occurrence of events with greater con�dence,

delivering probability forecasts that are close to 1 in a number of cases where the event actually

takes place. Moreover, models MR;F;� and M0;F;� attain low predicted probabilities, mostly below

0:4, when the event does not take place. Very similar conclusions are drawn from �gure 5.7.

Tables 5.3a and 5.3b provide measures of the extent to which the models meet the challenges

of forecasting recessions de�ned in the various ways. For Tables 5.2a and 5.2b, the 89 predictions

and outcomes observed over 1991q2 � 2013q2 are arranged into a two-by-two contingency table.

Table 5.3a shows the proportion of forecasts that are correct, as shown in (5.10) for each model and

Table 5.3b reports the Kuipers scores, as calculated based on (5.11). Table 5.3b also reports, in

parentheses, the results of two tests described in Pesaran and Timmermann (2009): a static �2 test

of whether a model�s forecast performance is any better than would have been achieved guessing

randomly based only on the unconditional probability of the event pu; and a dynamic version in
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which the random guess also takes account of the possibility that the event is known to occur in

runs.

The events DROP1, DROP2 and TURN occur relatively infrequently and so the hit rates (pro-

portion correct) of Table 5.3a - which treat correct predictions of non-occurrence in the same way

as correct predictions of occurrence - are high across all models as would be expected. Nevertheless,

it appears that the average modelsMR;�1;� andMR;F;� , for the RMSE weight scheme, andMR;F;� ,

for the log score weight scheme, achieve the highest hit rates in most cases while in many cases, the

model M0;�1;� attains the lowest hit rates. The inadequacy of the conventional model M0;�1;� and

the superiority of average model MR;F;� matches the plots of Figures 5.6 and 5.7: Average model

MR;F;� generates low event probabilities during most of the evaluation period but indicates a high

probability of recession during the relevant quarters of the �nancial crisis. The dominance of the

average model model MR;F;� is con�rmed, and exaggerated, in the Kuipers scores of Table 5.3b

which focus more on the models�ability to correctly predict the rare events. The Kuipers score also

highlight the superiority of the average model M0;F;� under both weights schemes, validating the

idea that survey data enhance model�s ability to predict rare events. In general, the �2 tests also

con�rm that the performance of MR;F;� and M0;F;� is signi�cantly better than would be achieved

by chance, unlike the �conventional�average model, M0;�1;� . The over-riding conclusion then is

that the models provide a valuable tool for forecasting rare recessionary events and that the models

which include the survey data typically perform best in predicting these rare events12.

12The results show that none of the models perform well in predicting event TURN. This is perhaps unsurprising

given the complexity of the event. Nevertheless, this illustrates the important point that there are events that are

di¢ cult for any model to predict and that forecasters should consider when models are �t for purpose and when they

are not.
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Table 5.3a: Forecasting Events: Hit Rate:

1991q2� 2013q2 (Post-Revision Outcome)

pu RMSE Weights Log Score Weights

M0;�1;� MR;�1;� M0;F;� MR;F;� M0;�1;� MR;�1;� M0;F;� MR;F;�

DROP1 7% 0:910 0:943 0:943 0:943 0:933 0:933 0:932 0:943

DROP2 5% 0:955 0:966 0:966 0:966 0:955 0:966 0:966 0:966

BPEAK 22% 0:899 0:921 0:910 0:899 0:910 0:876 0:887 0:887

BTREND 48% 0:550 0:505 0:550 0:573 0:595 0:550 0:629 0:550

TURN 2% 0:978 0:978 0:978 0:978 0:978 0:978 0:978 0:978

IRRISE 48% 0:606 0:674 0:685 0:629 0:584 0:640 0:662 0:685

Note: The average modelMR;F;� is as de�ned in (5.8). Event DROP1 is one-period negative output growth;

DROP2 is two successive periods of negative output growth; BPEAK is output level below previous peak;

BTREND is output level below 5-period moving average; TURN is a turning point in output; IRRISE is inter-

est rate rise by Taylor rule. pu is the unconditional probability of the event for the period 1991q2� 2013q2.

Emboldened �gures show the largest hit rate.
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Table 5.3b: Forecasting Events: Kuipers Score:

1991q2� 2013q2 (Post-Revision Outcome)

pu RMSE Weights Log Score Weights

M0;�1;� MR;�1;� M0;F;� MR;F;� M0;�1;� MR;�1;� M0;F;� MR;F;�

DROP1 7% �0:024
(�;�)

0:166
(���;��)

0:321
(���;�)

0:321
(���;�)

0:000
(�;�)

0:154
(��;�)

0:309
(���;�)

0:321
(���;�)

DROP2 5% 0:000
(�;�)

0:250
(���;��)

0:488
(���;���)

0:488
(���;���)

0:000
(�;�)

0:250
(���;��)

0:488
(���;���)

0:488
(���;���)

BPEAK 22% 0:550
(���;�)

0:650
(���;��)

0:671
(���;�)

0:621
(���;�)

0:600
(���;�)

0:521
(���;�)

0:571
(���;�)

0:571
(���;�)

BTREND 48% 0:091
(�;�)

0:013
(�;�)

0:102
(�;�)

0:148
(�;�)

0:194
(�;�)

0:106
(�;�)

0:258
(��;��)

0:103
(�;�)

TURN 2% 0:000
(�;�)

0:000
(�;�)

0:000
(�;�)

0:000
(�;�)

0:000
(�;�)

0:000
(�;�)

0:000
(�;�)

0:000
(�;�)

IRRISE 48% 0:212
(�;�)

0:345
(���;���)

0:368
(���;���)

0:256
(�;�)

0:159
(�;�)

0:277
(��;��)

0:322
(���;���)

0:367
(���;���)

Note: The average model MR;F;� is as de�ned in (5.8). pu is the unconditional probability of the event for

the period 1991q2� 2013q2; emboldened �gures show the largest Kuipers score; the �gures in parentheses

(a,b) below the Kuipers Scores show the outcome of the static and dynamic versions of the Pesaran and

Timmermann (2009) tests of no additional predictive power beyond that of the unconditional probability; a

�� � ��indicates signi�cance at 1% level, ����indicates signi�cance at 5% level, ���indicates signi�cance at

10% level, and ���indicates no signi�cance at 10% level.

Table 5.4a and 5.4b provide the results of evaluating forecasting performance in the more

sophisticated �fair bet� decision-making context, reporting the returns achieved by a forecaster

using each of the average models in the symmetric and asymmetric scenarios, described in (5.13)

and (5.14). The actual return is reported for model M0;�1;� and the improvement over M0;�1;� is

reported for other models. Table 5.4a relates to the symmetric fair bet in which the investor bets

every period, gains the same payout for correctly predicting the occurrence and non-occurrence

of events and compares the forecast recession probability against the same 0:5 threshold used in

Tables 5.3a and 5.3b. Given that the set up is similar to that underlying the Kuipers score, it is not

surprising that the results are very similar to those in Table 5.3b: the rank ordering of the models
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obtained for each event is broadly the same with average models M0;F;� and MR;F;� dominating

under both weight schemes. The results are a little di¤erent in Table 5.4b, where the asymmetric

setup delivers a higher payout on events that are more rare and the forecast probability is compared

against the unconditional probability. Under the RMSE weight scheme, the average model MR;F;�

achieves the highest returns in most cases while under log score weights, average model M0;F;� is

the dominant model and attains the highest returns in four out of six events considered. Again,

the over-riding conclusion is that models which include survey data perform best in predicting rare

recessionary events.

Table 5.4a: Forecasting Events: Returns to Fair Bet with Symmetric Payo¤s,

1991q2� 2013q2 (Post-revision outcome)

(Actual Return for model M0;�1;� ; Improvement over M0;�1;� for other models)

RMSE Weights Log Score Weights

M0;�1;� MR;�1;� M0;F;� MR;F;� M0;�1;� MR;�1;� M0;F;� MR;F;�

DROP1 3.65 3.43 3.43 3.43 5.94 0.00 0.00 1.14

DROP2 3.98 1.09 1.09 1.09 3.98 1.09 1.09 1.09

BPEAK 33.78 3.07 1.53 0.00 35.32 -4.60 -3.07 -3.07

BTREND 8.89 -7.99 0.00 4.00 16.88 -7.99 5.99 -7.99

TURN 2.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00

IRRISE 18.88 11.98 13.98 3.99 14.88 9.99 13.98 17.98
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Table 5.4b: Forecasting Events: Returns to Fair Bet with Asymmetric Payo¤s,

1991q2� 2013q2 (Post-revision outcome)

(Actual Return for model M0;�1;� ; Improvement over M0;�1;� for other models)

RMSE Weights Log Score Weights

M0;�1;� MR;�1;� M0;F;� MR;F;� M0;�1;� MR;�1;� M0;F;� MR;F;�

DROP1 -47.17 36.33 61.17 61.17 -9.83 17.83 27.83 24.83

DROP2 18.25 47.75 41.50 52.75 59.75 -1.75 0.00 8.25

BPEAK 28.85 11.25 10.90 3.35 26.30 8.80 10.45 3.90

BTREND 4.60 -2.79 -1.86 2.35 7.23 -1.13 0.65 -3.42

TURN -13.50 24.50 28.50 24.50 4.00 6.00 15.00 5.00

IRRISE 6.30 8.67 8.67 8.74 7.91 7.07 6.93 7.00

Note: The events are described in notes to Table 5.2a. The actual return is reported for modelM0;�1;� and

the improvement in return over M0;�1;� is reported for other models. Emboldened �gures show the largest

return.

5.4 Structural breaks and the usefulness of real-time data

Among others, Pesaran and Timmermann (2007) and Pesaran, Pick and Pranovich (2011) deal

with forecast evaluation in the presence of regime or structural break uncertainty. Following the

suggestion of Pesaran and Timmermann (2007), the empirical exercise described above can also be

extended to include additional models de�ned using di¤erent sample periods as well as using more

or less of the real-time data. This allows the combined model to trade o¤ the advantage of extra

precision on parameter estimates gained from longer samples of data against the danger of using

samples that include structural breaks. Hendry and Clements (2002) suggest that the existence

of structural breaks can change the ordering of models based on their forecasting performance,

implying that model averaging is particularly bene�cial in this case. The �nding of Stock and

Watson (2006) reinforces Hendry and Clements (2002) conclusions, showing that combinations

of forecasts through model averaging can results in better forecasts that the ones delivered by
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individual unstable models.

In this section we extend the analysis to explicitly allow for the possibility of structural breaks

in the models of interest and, consequently, in the usefulness of real-time data. We adopt the meta-

analysis, which is also used in chapter 4, and employ the model averaging technique in a recursive

setup, allowing for the possibility that the relevant sample characterising relationships may change.

In particular, all models are estimated over di¤erent sample sizes at each point in time while,

through statistical forecast evaluation criteria, a weight scheme assesses whether a given estimated

model still holds over time or alternatively, whether it experiences a structural break. The weights

employed to obtain the "meta-model" are determined according to the forecasting performance

of individual models, as well as on the possibility of a structural break. The fact that weights

change over time allows us to gauge the extent to which a given model that uses revisions and/or

survey data is stable over time while it provides a useful structure with which we can interpret the

changing usefulness of revisions and survey data in forecasting.

Work by Pesaran and Timmermann (2007), Clark and McCracken (2010) and Giacomini and

Rossi (2010) is particularly relevant here. The former suggest a combination of forecasts from

models that are estimated over di¤erent sample windows using weights that are proportional to the

inverse of out-of-sample loss are likely to deliver better forecasting performance if the breaks are

small. Since considerable uncertainty regarding the existence of breaks is often present in applied

work, this strategy provides a means of risk mitigation that is likely to result in more accurate

combined forecasts. This strategy becomes especially advantageous when the breaks are small and

di¢ cult to detect since it avoids the need to locate the break point.

Moreover, the meta exercise allows us to consider the extent to which the averaging technique

employed in the previous section is su¢ ciently �exible to incorporate the changing conditions that

characterise the usefulness of revisions and survey data and whether the averaging technique is

adequately robust against structural breaks. In principle, there are two possibilities:

� The averaging technique, applied in the previous section, accommodates di¤erent types of

structural innovation changes and the weight scheme adopted does a good job in shifting

from one model to another over time when actually, a structural break takes place;
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� The averaging technique is not robust against structural breaks.

If the meta analysis conveys the same messages with the averaging technique, it means that

the averaging process is su¢ ciently �exible to characterise data well, even in the presence of struc-

tural breaks. The estimation in rolling windows, together with the appropriate weight structure

may explain why the averaging approach captures any changes in the usefulness of revisions and

survey data. Since the averaging technique is much less cumbersome than the meta analysis, if

the averaging technique is robust enough against breaks, the researcher is safe to use the averaging

technique. But whether the averaging technique is su¢ ciently �exible, remains to be seen.

5.4.1 Introducing structural breaks in the real-assessment

Our assessment of the usefulness of real-time data is carried out as before but we additionally

consider the changing sample period for which a given model remains relevant in forecasting. The

p-order vector autoregressive model that explains data (5.1) is written as before, but is now distin-

guished by the sample size, j = jmin; :::; jmax; over which it is estimated, in addition to the reference

period, � . We, therefore, denote the individual model by Mr;f;j;� with the subscript �r; f; j; ��high-

lighting that the estimated model will not only di¤er depending on the underlying assumptions on

the number of revisions, the forecast horizon in the survey and on the estimation period but also

on the sample size over which the model holds.

More concretely, we compare decision-making strategies that make full use of revisions and

survey data with simpler strategies that only make partial use of the available data (as before) but

now decision making strategies at time � will be based on forecasts from model that makes use of

revisions and survey data, denoted byMr;f;j;� for r = 0; :::; R; f = �1; :::; F and j = jmin; :::; jmax;

where j speci�es the number of observations over which the model is estimated.

Essentially, we estimate a set of models and combine these using model averaging techniques,

taking into account the possibility that the sample period over which a model is relevant can change

through time. We call the weighted average model of these models as the "meta model" re�ecting

the fact that we also average across di¤erent sample sizes. The assumption is that when there is a

structural break, a model is relevant over the minimum sample size. If on the other hand, there is

continuity in a model�s forecasting relevance, the sample over which the model holds is augmented
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my additional observations as we move through time. The evolution of the average sample size

over which models that use the same number of revisions and survey horizons hold provides a

straightforward means for detecting potential structural breaks.

Real-time assessment

The construction of the meta model that makes full use of the real-time data available at time � is

obtained by the following procedure:

� We split the currently available sample into two sub-samples: an estimation period t =

1; :::; � � �; and a training period. t = � � � + 1; :::; � :

� For each combination of r = 0; :::; R and f = �1; :::; F we estimate the model Mr;f;j;���

over di¤erent sample sizes for j = jmin; :::; jmax: The smallest models are estimated over

t = � ��� jmin; :::; � ��: Models that are taken to hold for one additional observation are

estimated over t = � � � � jmin�1; :::; � � � while the biggest models are estimated over

the whole available sample t = 1; :::; � ��; so that the biggest sample size over which models

are assumed to hold is given by jmax. As a result, (R + 1) � (F + 2) � (jmax�jmin+1)

versions of model Mr;f;j;��� are estimated for di¤erent sample sizes over t = 1; :::; � � �

and for r = 0; :::; R, f = �1; :::; F and j = jmin; :::; jmax: In other words, the models are

distinguished by the use of revisions and survey data as well as by the time span over which

they are assumed to hold, considered here to be in operation for j periods ending in period

� � �: When there is a break, a new period starts afresh so that the new model starts from

the minimum sample size jmin. If there is no break, then when evaluating decisions at time

� � � + 1, the model is assumed to continue from the previous period while the period over

which it holds is extended by one additional observation.

� The forecast performance of the individual models is judged by comparing the nowcast ob-

tained by the models, E [���+1+Ry��� j Mr;f;j;���] ; with the post-revision value ���+1+Ry���

through the calculation of mean squared error, spr;f;j;���, or the logarithmic score, s
d
r;f;j;���,

as discussed in section 5.2.
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� The whole forecasting exercise is repeated, moving recursively, for samples over the whole of

the training period. In particular, the next (R+1)� (F +2)� (jmax�jmin+1) models are

estimated over one additional observation producing nowcasts for ���+2+Ry���+1: E¤ectively,

the largest models are estimated over t = 1; :::; ���+1 while the shortest models are estimated

over t = ����jmin; :::; ���+1. spr;f;j;���+1 or sdr;f;j;���+1 are calculated accordingly. The

process continues until the �nal (R+ 1)� (F + 2)� (jmax�jmin+1) models are estimated

producing the post-revision nowcasts of �+1+Ry� . The the largest models are estimated over

t = 1; :::; � while the shortest models are estimated over t = � � �� jmin; :::; � :

� The weights for the models, wr;f;j;� ; are calculated on the basis of forecast performance of the

individual models over the training period. The average mean squared forecast error for each

model over the training period is given by MSEr;f;j;� =
1
�

�P
�=1

spr;f;j;���+�and the average of

the logarithmic score over the training period, is given by MLSr;f;j;� =
1
�

�P
�=1

sdr;f;j;���+�.

If there is a break, the new regime is based on a model that uses the minimum sample size,

while if there is regime continuity, a model becomes relevant for one additional observation

in the sample, so that the sample size over which it holds is augmented by one. The weights

under the RMSE weight scheme are, then given by:

wr;f;j;� =

8>><>>:
Pr(break)

(R+1)�(F+2) for j = jmin

wr;f;j�1;����1 �
(
p
MSEr;f;j;� )

�1P
r

P
f

P
j
(
p
MSEr;f;j;� )�1

� (1� Pr(break)) for all j 6= jmin

(5.15)

where Pr(break) denotes the probability of break which is chosen a priori.

When the logarithmic-score is used as the statistical criterion that determines a model�s nowcast

accuracy, the weights are given by:

wr;f;j;� =

8>><>>:
Pr(break)

(R+1)�(F+2) for j = jmin

wr;f;j�1;����1 �
exp(MLSr;f;j;� )P

r

P
f

P
j
exp(MLSr;f;j;� )

� (1� Pr(break)) for all j 6= jmin
(5.16)

According to this weight structure, a model�s weight depends on the model�s relative now-

casting performance based on mean squared error or logarithmic score, on last period�s weights,
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wr;f;j�1;����1, and on the probability of observing a break in the sample. The justi�cation of

including the probability of a break is that irrespective of the time series behaviour of the variables

involved, there is a constant probability of a break, and if there is a break, the model enters a new

regime starting again with the minimum sample size. If a previously estimated model is still relevant

in forecasting, i.e. there is no break, the model just gets bigger by one additional observation as we

move through the sample. At the same time, the weights are updated recursively in each period

in time to re�ect the extent to which di¤erent model are relevant in forecasting. If a new regime

is born, such that a new model now explains the usefulness of revisions and survey data, then, the

weights for each new models are given by the probability of break divided by (R+1)� (F +2) since

there are equal chances that the new regime is characterized by each of the individually estimated

models, Mr;f;jmin;� , for r = 0; :::; R and f = �1; :::; F . The models�weights for the �rst period are

assumed to be equal across all models.

The meta model explaining the data over the period t = 1; :::; � then consists of the individually

estimated models and their weights and it is denoted by:

�MR;F;J;� = fMr;f;j;� ; wr;f;j;� for r = 0; :::; R; f = �1; :::; F and j = jmin; :::; jmaxg: (5.17)

The meta model can be used to obtain point forecasts and density forecasts using the weighted

average of the models�individual point forecasts and aggregating over the models�individual den-

sities. The statistics that follow provide a clear characterisation of the nature of the meta models

obtained at time � :

~�r� =
RX
r=0

r � wr;f;j;� (5.18)

~�f� =
FX

f=�1
f � wr;f;j;� (5.19)

~�j� =

jmaxX
j=jmin

j � wr;f;j;� : (5.20)

As with the average models, the ~�r� and ~�
f
� statistics capture the relative importance of the revision

data and survey data in de�ning the meta model at time � : Any deviation from 0 and�1 respectively

shows that revision and survey data make a contribution to the out-of-sample forecasting exercise.

The statistic ~�j� shows the weighted average sample size over which the meta model holds. A rising
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~�j� over time is a sign of regime continuity and that a particular meta model continues to be relevant

in forecasting. On the other hand, if a structural break has taken place then it should be re�ected

as a decline in the ~�j� statistic. In other words, if the weighted average sample length drops to low

levels, then the usefulness of revision and survey data has changed compared to previous periods.

The evolution of ~�j� statistic across time and di¤erent economic phases re�ects the changes in

the usefulness of revision and survey data sometimes occurring abruptly and sometimes gradually.

Taken together, the three statistics provide a straightforward real-time assessment of the usefulness

of the revision and survey data in the meta model �MR;F;J;� at di¤erent points in time.

Final assessment

As before, the �nal assessment entails judging the usefulness of real time data based on models�

ability to predict a set of economic events involving output and in�ation. Using a decision-based

approach we compare the nowcasting performance of decision-making strategies that make full use

of the revision and survey data to simpler strategies that make only partial use of the data. Ac-

cordingly, the �nal assessment compares strategies based on the all-inclusive meta model �MR;F;J;�

to simper strategies that make use of models without survey data ( �MR;�1;J;� ), or without revisions

data ( �M0;F;J;� ) and even the model that does not incorporate either revisions or survey data (i.e.

the conventional real-time model �M0;�1;J;� ).

In terms of statistical evaluation criteria, the nowcasts/forecasts obtained from meta models are

judged according to MSE or the logarithmic score, as described in section 5.2. Most importantly,

the judgement on the usefulness of real time data involves economic evaluation criteria that re�ect

the associated returns from predicting rare events in an explicit investment scenario. The events

considered are the same as in section 5.2, namely, DROP1, DROP2, BPREAK, BTREND, TURN

and IRRISE. The probability of these events are nowcast using the meta modelsMR;F;J;� ,M0;F;J;� ,

MR;�1;J;� and M0;�1;J;� delivering hit rates and Kuipers scores as given by (5.10) and (5.11)

respectively. The returns associated with explicit investment scenarios are computed for each

meta model, MR;F;J;� , M0;F;J;� , MR;�1;J;� and M0;�1;J;� , according to the procedure outlined in

section 5.2 and based on equations (5.12)- (5.14).
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5.4.2 Results

Employing the same real time dataset as in section 5.3, we make additional modelling choices. In

particular, we set the probability of break, Pr(break); equal to 0:01. Robustness check has shown

that the choice of the probability of break does not a¤ect the results. Nonetheless, the choice of

0:01 for the probability of break was made in order to re�ect the results from structural break tests

applied to the series involved. While most of the series experienced no break and their time series

properties remained stable over time, some series exhibited some form of instability exhibiting two

or three breaks over the 184-quarter period 1968q4 � 1914q3: Taken probabilistically, this means

that there is almost 0:01 chance of observing a break in the sample.

The second modelling choice we make is that we set jmin = 45 quarters, noting that the choice

of the minimum regime length is driven by the need to have enough observations for estimation

purposes. To be consistent with the exercise performed based on the model averaging technique

(section 5.3), we set the maximum period for the survival of unchanged usefulness of survey and

revisions data equal to jmax = 80 quarters while we maintain the assumption that output revisions

continue no longer than three periods after the �rst release and investors make use of survey data

up to three periods ahead i.e. r = 0; 1; 2; 3 and f = �1; 0; 1; 2; 3: Thus, for every point in time,

there are 80� 45 + 1 = 36 candidate sample sizes over which individual models are likely to hold.

Given this setup, there are (jmax�jmin + 1) � (R+ 1) � (F + 2) = 36 � 4 � 5 = 720 versions of the

model Mr;f;j;� for r = 0; 1; 2; 3, f = �1; 0; 1; 2; 3 and j = 45; :::; 80:

Real-time forecast evaluation of point and density forecasts

The models� weights for the �rst period are assumed to be equal across all models, so that

wr;f;j;1991q2 = 1=720 for all r = 0; 1; 2; 3, f = �1; 0; 1; 2; 3 and j = 45; :::; 80: Thus, the average

sample size in the �st set of results is equal to 45+80
2 = 62:5: The next step involves estimating

the meta model MR;F;1991q3 using the real time data available for 1969q1 � 1991q3 and using the

80-quarter period 1969q1 � 1988q4 in estimation while the training period holds from 1988q4 to

1991q3: Twenty versions of the modelMr;f;jmax;1988q4 for r = 0; 1; 2; 3 and f = �1; 0; 1; 2; 3 are esti-

mated over the 80-quarter period 1969q1�1988q4: Twenty versions of model Mr;f;jmax�1;1988q4 for

r = 0; 1; 2; 3 and f = �1; 0; 1; 2; 3 are estimated over the 79-quarter period 1969q2 � 1988q4 and
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Figure 5-8: The weighted average sample size, ~�j� ; based on meta-modelling.

so on until the smallest models Mr;f;jmin;1988q4 for r = 0; 1; 2; 3 and f = �1; 0; 1; 2; 3 are estimated

over the 45-quarter period 1977q4�1988q4: Each of these 720 models are used to produce the four-

period ahead forecast of post-revision measure of contemporaneous output and this is compared

to the observed outcome, 1989q4y1988q4. We then move through the training period: The largest

models are now estimated over the 81-quarter period 1969q1 � 1989q1 while the smallest models

are estimated over the 46-quarter period 1977q4 � 1989q1: Each of the 720 are used to predict

the post-revision nowcast, 1990q1y1989q1. This is repeated over the whole training period moving

recursively and judging the relative performance of the 720 models each time to obtain the set of

weights, wr;f;1991q3, de�ned in (5.15) for the RMSE and (5.16) for the log scores. Moving on one

period, this entire exercise can be repeated over the sample 1969q2�1991q4, using 1989q1�1991q4

as the training period, to derive wr;f;1991q4.

Figure 5.8 shows the weighted average sample size, ~�j� ; given by (5.20), under the logarith-

mic score and RMSE weight schemes. The �gure demonstrates that, with very few exceptions,
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the weighted average sample size �uctuated above 62:5 observations which is the average sample

considered in the meta approach. (Remember jmin = 45 and jmax = 80). This clearly pro-

vides evidence that most of the time, the weight structure allocated most of the weights to the

larger models. In many cases, the weighted average sample size exceeded 70 observations and was

very close to the maximum of 80 observations, which is the constant sample size considered in the

averaging technique presented in the previous section.

Our �ndings echo results by Pesaran and Timmermann (2007) who demonstrate that pre-break

data, which one might be tempted to characterise as irrelevant or misleading for the forecasting

exercise, may actually contain useful information to such an extent that it can be optimal to

include them in the estimation window. This tactic is shown to deliver forecasts that have lower

variance. The fact that the meta technique outcomes call for larger models indicates that bene�ts

from increased precision of parameter estimates due to larger estimation window overshadow the

bene�ts from using small estimation samples to account for the possibility of breaks. The model

averaging technique gives important insights about the trade-o¤ between bias and forecast error

variance as outlined in Pesaran and Timmermann (2007) since the exercise has shown than the

forecasting performance is enhanced when models are estimated over longer sample sizes rather

than using post-break data only.

Figure 5.9 shows ~�r� , de�ned in (5.18) i.e. the weighted average of the revision length of the

models included in the meta model MR;F;J;� . The weighted average revision length for the �rst

period in 1991q2, is exactly equal to 1:5 which is mid-way between zero and three, the minimum

and maximum values since it was speci�ed that all models received equal weights in the �rst period.

Unlike the case of average models, the plots under the two weight schemes move together and there

is not too much di¤erence between the message conveyed by each of them. The plots based on

RMSE and log score illustrate that while the average revisions horizon remained stable at just

below 1 until 2001q3, the weighted average revision length increased substantially from then on.

In the years after the �nancial crises the weighted average revision length reached the maximum of

three using the log score as the criterion, while the statistic based on RMSE weights also reached

2.5. This matches the �ndings from �gure 5.2 which demonstrates that revisions become more

important towards the end of the sample: In the early 2000s and in the years after the �nancial
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Figure 5-9: The weighted average use of revisions data in post revision output forecasts,~�r� ; based

on meta-modelling.
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Figure 5-10: The weighted average use of revisions data in post revision output forecasts,~�f� ; based

on meta-modelling.

crisis there were a number of large revisions in the output data so that the meta model adjusts to

exploit the extra information in revisions.

Figure 5.10 provides the evolution of the weights average survey horizon, ~�f� , de�ned in (5.19).

Again, the statistic starts from 1;mid-way between the maximum and minimum horizon considered,

as we set the �rst period�s weights to be equal across models. Although the statistics based RMSE

and logarithmic score weights follow di¤erent directions over the start of the sample, the bigger

picture is that the usefulness of expectations data declines over time, indicating that the inclusion of

survey data did not enhance the ability of individual models to predict the post-revision outcome

of output. As the graph suggests, after 2009q3, the average survey horizon hardly exceeds zero

implying, that models that make no use of survey data received higher weights.

Although the average survey horizon under the averaging technique (�gure 5.3) remains above

zero throughout the sample, the two approaches (averaging and meta) collectively emphasise that

in the real-assessment, the role of survey data in forecasting is undermined as we move through
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time.

Final-assessment of model predictability based on economic events

The �nal assessment is carried out as before, albeit based on the meta models obtained by accom-

modating the possibility of structural breaks in the relationships of interest. The meta models, that

di¤er in their use of real-time data and the sample size over which they hold, compete themselves

in predicting the occurrence of six events, as outlined above.

Table 5.5 shows the results based on the GW test of equal forecasting performance. The

conventional meta modelM0;�1;J;� has an average RMSE of 1:11% over the whole evaluation period

with the three meta models MR;F;J;� , MR;�1;J;� and M0;F;J;� achieving lower RMSEs but only

meta modelsMR;F;J;� andMR;�1;J;� show a statistically signi�cant improvement. The conventional

modelM0;�1;J;� delivers an average log score of �2:56 while the meta modelsMR;F;J;� andMR;�1;J;�

outperform it achieving higher values. However, the improvement is not statistically signi�cant.

The meta model M0;F;J;� is shown to deteriorate in forecast performance compared to M0;�1;J;�

but the deterioration is not statistically signi�cant. The test results suggest that incorporating

real-time data can improve the forecasting of output although the argument for the use of revisions

is more compelling than for the use of surveys, a result that also prevails in section 5.2 where the

analysis was based on average models.

Table 5.5: RMSE and Average Logarithmic Predictive Scores for Output Growth Nowcasts:

1991q2� 2013q2 (Post-revision Outcome)

Actual RMSE and Average Logarithmic scores for model M0;�1;J;�

Scaled di¤erence from model M0;�1;J;� for other models

Average Model RMSE Log-score

Actual for M0;�1;J;�

M0;�1;J;� 0.0111 -2.326

Relative to M0;�1;J;�

MR;�1;J;� -0.0003��� 0.4731

M0;F;J;� -0.0004 -0.1533

MR;F;J;� -0.0002�� 0.4586
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Note: The meta model MR;F;J;� is as de�ned in (5.17). In particular, model MR;F;J;� denotes the unre-

stricted meta model which includes use of the full available revisions and survey data on expectations for

� = � ; :::; T estimated over di¤erent sample sizes;M0;F;J;� denotes the model where no use of the revisions

data is made for � = � ; :::; T and is estimated over di¤erent sample sizes; MR;�1;J;� denotes the model

where no use is made of the survey data for � = � ; :::; T and is estimated over di¤erent sample sizes while

M0;�1;J;� denotes the model where no use is made of either the revisions or survey data throughout (i.e.

based on the conventional real time model), for � = � ; :::; T , estimated over di¤erent sample sizes: A ���

denotes signi�cance at the 10% level, ����denotes signi�cance at 5% level and �� � ��signi�cance at the 1%

level of the Giacomini-White (2006) test of equal forecast performance testing whether the RMSE and the

logarithmic predictive score are signi�cantly smaller or larger, respectively, than the corresponding statistics

from model M0;�1;J;� .

Evaluation of event probabilities and fair bet outcomes Tables 5.6a and 5.6b summarise

the degree of correspondence between model�s prediction of the occurrence of events and the actual

realisation of events. In particular, table 5.6a shows the proportion of forecasts that are correct,

as shown in (5.10) for each meta model and Table 5.6b reports the Kuipers scores, as calculated

by (5.11). Table 5.6b also reports, in parentheses, the results of the static and dynamic versions of

Pesaran and Timmermann (2009) tests of the null that a model�s forecast performance is no better

than what would have been achieved if predictions were made randomly. When the RMSE is the

criterion, it appears that the meta model M0;F;J;� achieves the highest hit rates in most cases.

The other meta models, MR;F;J;� ; MR;�1;J;� and M0;�1;J;� , achieve the highest hit rates in certain

occasions but their superiority is only marginal. For instance, M0;�1;J;� achieves a high hit rate

when predicting event DROP1 but it appears that other models perform equally well attaining the

same value. Another example is the prediction of event IRRISE. The conventional model M0;�1;J;�

achieves the highest hit rate together with model MR;F;J;� but the improvement over the other

meta models is only minimal. When log score weights are used, the meta models MR;�1;J;� and

M0;F;J;� appear to achieve the highest hit rates in most cases.

The pattern of results based on the Kuipers score is less easy to interpret. The meta models

are not particularly successful in predicting relatively frequent events such as BTREND which is
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as likely to happen as not. Accordingly the Pesaran and Timmermann tests indicate that models�

predictions are not better than what would have been achieved if predictions were random. It

appears that models�performance is very similar when predicting BTREND and IRRISE. In addi-

tion, none of the meta models is good in predicting the very rare event TURN. All models achieve

zero Kuipers score. However, under the RMSE weight scheme, the meta model MR;�1;J;� achieves

the highest Kuipers score when predicting DROP1 and DROP2 and appears to be somewhat more

dominant. Similar conclusions are drawn based on log score weights.

Table 5.6a: Forecasting Events: Hit Rate:

1991q2� 2013q2 (Post-revision Outcome)

pu RMSE Weights Log Score Weights

M0;�1;J;� MR;�1;J;� M0;F;J;� MR;F;J;� M0;�1;J;� MR;�1;J;� M0;F;J;� MR;F;J;�

DROP1 7% 0:933 0:933 0:933 0:921 0:933 0:921 0:933 0:933

DROP2 5% 0:955 0:966 0:955 0:955 0:955 0:966 0:955 0:955

BPEAK 22% 0:899 0:888 0:910 0:910 0:910 0:876 0:921 0:910

BTREND 48% 0:528 0:517 0:573 0:517 0:584 0:584 0:584 0:506

TURN 2% 0:978 0:978 0:978 0:978 0:978 0:978 0:978 0:978

IRRISE 48% 0:618 0:607 0:607 0:618 0:607 0:652 0:607 0:629

Note: The meta modelMR;F;J;� is as de�ned in (5.17). Event DROP1 is one-period negative output growth;

DROP2 is two successive periods of negative output growth; BPEAK is output level below previous peak;

BTREND is output level below 5-period moving average; TURN is a turning point in output; IRRISE is inter-

est rate rise by Taylor rule. pu is the unconditional probability of the event for the period 1991q2� 2013q2.

Emboldened �gures show the largest hit rate.
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Table 5.6b: Forecasting Events: Kuipers Score:

1991q2� 2013q2 (Post-revision Outcome)

pu RMSE Weights Log Score Weights

M0;�1;J;� MR;�1;J;� M0;F;J;� MR;F;J;� M0;�1;J;� MR;�1;J;� M0;F;J;� MR;F;J;�

DROP1 7% 0:000
(�;�)

0:155
(��;�)

0:000
(�;�)

�0:012
(�;��)

0:000
(�;�)

0:142
(�;�)

0:000
(�;�)

0:000
(�;�)

DROP2 5% 0:000
(�;�)

0:250
(���;��)

0:000
(�:�)

0:000
(�;�)

0:000
(�;�)

0:250
(��;��)

0:000
(�:�)

0:000
(�;�)

BPEAK 22% 0:550
(���;�)

0:536
(���;���)

0:636
(���;��)

0:671
(���;�)

0:600
(���;�)

0:557
(���;�)

0:650
(���;���)

0:671
(���;�)

BTREND 48% 0:060
(�;�)

0:039
(�;�)

0:156
(�;�)

0:039
(�;�)

0:174
(�;�)

0:173
(�;�)

0:176
(�;�)

0:013
(�;�)

TURN 2% 0:000
(�;�)

0:000
(�;�)

0:000
(�;�)

0:000
(�;�)

0:000
(�;�)

0:000
(�;�)

0:000
(�;�)

0:000
(�;�)

IRRISE 48% 0:244
(��;�)

0:218
(��;�)

0:221
(��;�)

0:243
(��;�)

0:226
(��;�)

0:309
(���;��)

0:219
(��;�)

0:264
(��;��)

Note: The meta model MR;F;J;� is as de�ned in (5.17). pu is the unconditional probability of the event for

the period 1991q2� 2013q2; emboldened �gures show the largest Kuipers score; the �gures in parentheses

(a,b) below the Kuipers Scores show the outcome of the static and dynamic versions of the Pesaran and

Timmermann (2009) tests of no additional predictive power beyond that of the unconditional probability; a

�� � ��indicates signi�cance at 1% level, ����indicates signi�cance at 5% level, ���indicates signi�cance at

10% level, and ���indicates no signi�cance at 10% level.

Tables 5.7a and 5.7b summarise the results on the fair bet investment scenarios, reporting the

returns achieved by the conventional model M0;�1;J;� and the improvement over the returns of

M0;�1;J;� for the remaining meta models. Table 5.7a which reports results for the symmetric fair

bet, shows that, under RMSE weight scheme, meta model M0;F;J;� achieves the highest returns in

many cases while the meta model MR;�1;J;� achieves lower returns than the conventional model in

certain occasions. When weights are based on log scores, the meta models that incorporate real-

time data to a certain extent achieve higher returns than the conventional model in most cases,

while each of M0;F;J;� ; MR;�1;J;� and MR;F;J;� attain strictly the highest returns in predicting

BREAK, DROP2 and IRRISE respectively. It should be emphasised that the results are not as
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dramatic as described in section 5.2 where analysis is based on average models. The inability of

meta models to predict frequent or very rare events partly accounts for this discrepancy.

The results on the symmetric scenario have not been particularly enlightening, despite the fact

that to a certain extent it has been shown that the predictive ability of models is enhanced by

the use of real-time data. The asymmetric setup delivers higher payout on rare events and so

emphasises the ability of meta models to predict more infrequent events. Using RMSE weights,

the meta model M0;F;J;� is the dominant model, achieving the highest returns even for the most

rare events such as DROP1 and TURN which have unconditional probabilities equal to 7% and

2% respectively. Moreover, model MR;�1;J;� appears to perform decently achieving the highest

returns in two occasions. When log score weights are used, meta model MR;F;J;� together with

meta model M0;F;J;� collectively achieve the highest returns for the vast majority of events. The

over-riding conclusion is that models which include survey data perform best in predicting rare

events, re�ecting the �ndings from the analysis based on average models.

Taking everything into consideration, the results based on the meta approach have shown that

the weight structure assigned the biggest portion of weights to meta models that were biggest in

sample size, suggesting that the bene�ts of more accurate estimation exceed the possible advantages

of accounting for structural instability. To this end, the average technique considered in section 5.2,

estimated models over the largest sample size, is su¢ ciently �exible and reliable as it is carried out in

a recursive manner so there is no need to run into cumbersome exercises in order to explicitly allow

for structural breaks. In addition, the meta exercise has shown that under the RMSE weight scheme

the model that delivered overall the best hit rates, Kuipers scores and pro�ts in the asymmetric

and symmetric case investment scenarios is meta model M0;F;J;� , while model M0;F;J;� together

with MR;F;J;� are the winners under the logarithmic score weight scheme.
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Table 5.7a: Forecasting Events: Returns to Fair Bet with Symmetric Payo¤s,

1991q2� 2013q2 (Post-revision Outcome)

(Actual Return for model M0;�1;J;� ; Improvement over M0;�1;J;� for other models)

RMSE Weights Log Score Weights

M0;�1;J;� MR;�1;J;� M0;F;J;� MR;F;J;� M0;�1;J;� MR;�1;J;� M0;F;J;� MR;F;J;�

DROP1 5.94 0.00 0.00 -1.14 5.94 -1.14 0.00 0.00

DROP2 3.98 1.09 0.00 0.00 3.98 1.09 0.00 0.00

BPEAK 33.78 -1.54 1.53 1.53 35.32 -4.60 1.53 0.00

BTREND 4.89 -2.00 8.00 -2.00 14.88 0.00 0.00 -13.98

TURN 2.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00

IRRISE 20.88 -2.00 -2.00 0.00 18.88 4.00 0.00 7.99

Table 5.7b: Forecasting Events: Returns to Fair Bet with Asymmetric Payo¤s,

1991q2� 2013q2 (Post-revision Outcome)

(Actual Return for model M0;�1;J;� ; Improvement over M0;�1;J;� for other models)

RMSE Weights Log Score Weights

M0;�1;J;� MR;�1;J;� M0;F;J;� MR;F;J;� M0;�1;J;� MR;�1;J;� M0;F;J;� MR;F;J;�

DROP1 -17.67 22.67 38.67 33.67 4.00 0.00 5.00 8.00

DROP2 37.50 25.50 22.25 31.50 58.75 -15.00 0.00 11.25

BPEAK 38.75 4.35 3.00 2.45 31.30 4.35 7.45 3.90

BTREND -2.12 5.14 5.28 2.07 9.30 -2.14 -2.00 -11.49

TURN 16.00 -13.00 0.00 -5.00 1.00 4.00 8.00 8.00

IRRISE 9.37 2.79 0.79 0.86 9.44 2.79 2.86 3.86

Note: The events are described in notes to Table 5.5a. The actual return is reported for model M0;�1;J;�

and the improvement in return over M0;�1;J;� is reported for other models. Emboldened �gures show the

largest return.
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5.5 Conclusion

The empirical exercise provides clear-cut evidence that forecasts of output growth and recessionary

events are enhanced through the use of real-time data. The �real-time� and ��nal� evaluations

of the forecasts from the VAR models considered in this chapter show that point forecasts and

density forecasts are improved by using survey data on expected future output movements and by

using �rst-release and revisions data. The exercise shows that this is especially true if, as here,

the modelling takes into account that the data can be more or less helpful at di¤erent times,

with the revisions data appearing to be particularly important during downturns when larger (but

predictable) measurement errors appear in the �rst-release data. On the other hand, it is the

survey data which seems particularly important when forecasting the likelihood of recessionary

events. These are relatively rare and extreme events which conventional linear forecasting models

might struggle to accommodate but which are incorporated into professional forecasters�predictions

reasonably quickly. Survey data therefore provides the means to quickly include this information

in a time series model so that, again, forecast performance is improved by allowing the data to be

used more or less intensively at di¤erent times.

The chapter also uses meta analysis, which accommodates uncertainty regarding the existence

of breaks, and allows for changing sample sizes as well as the changing usefulness of real time data,

captured by the averaging technique. Results demonstrate that relatively few weights are given

to models with shorter sample sizes implying that gains from the improved precision of parameter

estimates found in long samples outweigh any bene�ts of explicitly capturing structural breaks.

This suggests that the averaging technique used in the �rst part of this chapter is su¢ ciently

�exible to accommodate the changing usefulness of data over time.

The current work in this chapter can be extended to allow model weights to vary with evaluation

criteria. For example a model�s weight could depend on the fair-bet pro�ts accummulated by an

investor.
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5.6 Appendix A

Figure A1: Post-Revision, First-Release and First-Revised Output Growth de�ned as t+4yt �t+4

yt�1, t+1yt �t yt�1 and t+2yt �t+1 yt�1, respectively.

Figure A2: The �rst revision of the real GDP series (Percentage Change)
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Figure A3: The second revision of the real GDP series (Percentage Change)

Figure A4: The third revision of the real GDP series (Percentage Change)
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Figure A5: Expected Contemporaneous, Expected Four-Period Ahead and Post-Revision Output

Growth, de�ned as tyt �t yt�1, t�4yt �t�4 yt�1 and t+4yt �t+4 yt�1 respectively.

Figure A6: Contemporaneous and Four-Period Ahead Expectational Errors for the Output Series
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Figure A7: Actual Growth and First Release Growth in GDP De�ator de�ned as T pt �T pt�1 and

t+1pt �t pt�1 respectively.

Figure A8: Expected Contemporaneous, Expected Four-Period Ahead and Actual Growth in GDP

De�ator de�ned as tpt �t pt�1, t�4pt �t�4 pt�1 and T pt �T pt�1 respectively.
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Figure A9: Contemporaneous and Four-Period Ahead Expectational Errors for the GDP De�ator

Series
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