
The usefulness of
case in plastic
user interfaces

Robert Eurig Mitchelmore

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

July 2016

Abstract

This thesis addresses a problem that faces developers of applications for mobile
devices. There is an ever-increasing number of mobile platforms and form factors
in the world, and mobile developers have to build applications that can be used on
as many of these as possible while still retaining usability. Furthermore, because
of constraints put on the development process by the companies that develop the
mobile platforms, there is an absolute requirement that the applications produced
by the tool conform to the user interface guidelines for each platform.

To address this problem, this thesis uses the concept of “case”, which is a phe-
nomenon from natural language. In natural languages, case has many functions
and plays a part in many systems. This thesis engages with case in one of these
functions: it permits flexible word ordering. Case is used here to allow flexible or-
dering of elements within the user’s dialogue with the machine. Case may either
be useful because of some analogical process in the developer’s head or because of
deeper ideas in linguistic theory.

To evaluate this idea, a suitable case system was embedded in a tool and this
tool was used in three distinct contexts. First, applications were built for three
external companies. Second, a workshop study was done with external developers.
Third, more external developers were given the tool for a longer period to produce
an application of their choosing. These three contexts gave an excellent view into
the use of the case system during the development of applications.

This evaluation showed that the kinds of functions that case describes are rel-
evant to describing user interfaces; that it is possible to implement a plausible case
system usefully in a software tool, at least for mobile development; that the case
system when embedded within the tool can be used to build useful applications;
and that case can be used and understood by developers other than the author.

2

Acknowledgements

The author was supported by the Horizon Centre for Doctoral Training at the
University of Nottingham (RCUK Grant No. EP/G037574/1) and by the RCUK’s
Horizon Digital Economy Research Institute (RCUK Grant No. EP/G065802/1)

This thesis would not exist without the assistance, efforts and kindness of
many people. These acknowledgements are not exhaustive: and if anyone feels
they ought to be here but aren’t, I beg that they will consider it as due to disor-
ganisation, rather than to ingratitude.

I would like to thank my supervisors, Dr. David Golightly and Dr. Henrik
Nilsson, who have with great good humour put up with far more chaos from me
than anyone should have had to, and who gently guided me from producing baffling
and incomprehensible waffle into producing something presentable. I would also
like to mark my respect and gratitude to the memory of Prof. John Wilson, who
also supervised this Ph.D for its first year until, very sadly, he became too unwell
to do so.

I’d also like to thank the people involved with making the Horizon DTC hap-
pen, and the impressive dedication to interdisciplinary research that led to this
project being accepted. When I initially presented this idea, shorn of evidence
and exegesis, as something I wanted to pursue, it must have sounded outlandish
indeed. I am grateful for the confidence and support that still thought it was worth
pursuing. Prof. Chris Greenhalgh especially helped with the seed of the method-
ology and Prof. Sarah Sharples provided valuable one-on-one time at a point where
the whole thesis-edifice was in danger of slipping into a morass.

My entire family have been very supportive both materially and morally. I am
very grateful to them for this, and for putting up with the alternating phases of
neglect and neediness that the process of writing instilled in me. I am also blessed
with a wide and generous circle of friends, all of whom have been unfailingly sup-
portive. I would like to make special acknowledgement (in no particular order) of
Anna Clarke, who read chapters and kept me sane; Johannes Punkt, likewise; Pao,
who among other things helped me read an important document in Swedish; Mark
Porter, who shared LATEX-related tribulations and who went far beyond the call of
duty in hunting down obscure sources for me from the depths of the Bodleian;

3

and Claire, who shouted—she knows why this is important. I would also like to
thank (again, in no particular order) colleague-friends from various parts of indus-
try who have supported this work in various important ways: Robin Ellis, Matthew
Munson, Malcolm Rooker, Cosimo Turroturro, Colin Williamson, Frantz Meck-
ler, Mike Kelly. My study participants also came from this world and I am grateful
to them all. Finally I would like to acknowledge the invaluable support from my
colleagues—who are now my friends—in the 2009 Horizon DTC cohort.

This work has brought me into contact with many languages and given me
some knowledge of the social situations around them. Therefore, I would also
like to use this space, perhaps perversely, to mark my respect for everyone who
has woken up one morning to find that they are the last speaker of their language,
and with the knowledge that when they die an entire world of lexical, grammatical
and poetic complexity will go with them. It is an experience that I do not envy
them.

“The notion of a ‘major language’ is obviously primarily a so-
cial characterisation …When linguists learned in 1970 that
the last speaker of Kamassian, a Uralic language originally
spoken in Siberia, had kept her language alive for decades
in her prayers—God being the only other speaker of her
language—they may well have wondered whether, for this
person, the world ’s major language was Kamassian.”

—Bernard Comrie, from the Preface to
The world ’s major languages

4

A Contents

Contents 5

List of Figures 10

List of Tables 14

1 Introduction 15
1.1 Background 15
1.2 Research questions 17
1.3 Summary of method, results and conclusions 17

1.3.1 Method of evaluation 17
1.3.2 Results 18
1.3.3 Conclusions 19

1.4 Structure of thesis 19
1.5 Typographical and lexical conventions 20

2 Frameworks, tools and standards 22
2.1 Introduction 22
2.2 The Mobile Platform Problem 23
2.3 Being at home on a number of platforms 24
2.4 Some definitions and terminology 25
2.5 Models and frameworks 26
2.6 Research tools 32
2.7 Industrial tools 40

2.7.1 Mobile application development 40
2.7.2 Other application-level industrial cross-platform tools 46
2.7.3 Web standards and design approaches 49

2.8 Structuring the dialogue component 56
2.9 Summary and conclusions 66

3 Case and its application 68
3.1 Introduction 68

5

3.2 What is case? 69
3.3 Case and word order 71

3.3.1 The Case System of Latin 71
3.3.2 Prose: Caesar’s de Bello Gallico 75
3.3.3 Poetry: Virgil’s Aeneid 76

3.4 Languages surveyed 77
3.5 Kinds of meanings expressed through case 81

3.5.1 Core syntactic verb arguments 81
3.5.2 The indirect object and the beneficiary 83
3.5.3 Possession and category 83

3.6 Blake’s case hierarchy 84
3.7 Why case may be applied to plastic interfaces 85

3.7.1 As an analogy 86
3.7.2 As clues to underlying universal semantic roles 87

3.8 Bridging the tooling gap 90
3.9 Plasticising the dialogue component: a worked example 91
3.10 Research questions 97
3.11 Summary and conclusions 99

4 Methodology 102
4.1 Introduction 102
4.2 Building a tool 103
4.3 Who are the stakeholders? 104

4.3.1 Application users 106
4.3.2 Developers 106
4.3.3 Commissioning customers 106
4.3.4 Platform owners 106

4.4 The three Es 107
4.4.1 Effectiveness 107
4.4.2 Efficiency 107
4.4.3 Expressiveness 108

4.5 Contexts of evaluation 108
4.5.1 Case studies 108
4.5.2 Developer workshop 109
4.5.3 Self-directed development 110

4.6 The three Es in the three scenarios 110
4.6.1 Effectiveness 110
4.6.2 Efficiency 112
4.6.3 Expressiveness 114

4.7 Summary 117

6

5 Design and implementation 120
5.1 Introduction 120
5.2 Accidents of implementation 121
5.3 The case system 121

5.3.1 Application of the case hierarchy 121
5.3.2 Structure of the case system 122
5.3.3 Meanings of the cases 122
5.3.4 User interface patterns 123

5.4 The dialogue notation 133
5.5 The stylesheet 137
5.6 Application architecture 138
5.7 Personal reflection 139
5.8 Summary and conclusion 142

6 Development case studies 144
6.1 Introduction 144
6.2 Goal 145
6.3 Overview of method 145
6.4 Cross-platform challenges 146
6.5 EVENT2: Anatomy of a failure 146

6.5.1 Background 146
6.5.2 Requirements 147
6.5.3 The application map 150
6.5.4 The use of case in the application 152
6.5.5 The use of case in the design process 152
6.5.6 Evaluation 152

6.6 Agritechnik: Anatomy of a partial success 155
6.6.1 Background 155
6.6.2 Requirements 156
6.6.3 The application map 158
6.6.4 How are cases used? 158
6.6.5 How were cases used during the design process? 161
6.6.6 Evaluation 165

6.7 Speakers Associates: Anatomy of a success 172
6.7.1 Background 172
6.7.2 Requirements 172
6.7.3 The application map 175
6.7.4 The use of cases 179
6.7.5 Evaluation 182
6.7.6 Overall feedback from clients 186

7

6.8 Summary 187
6.9 Conclusions 191

6.9.1 Effectiveness 191
6.9.2 Efficiency 192
6.9.3 Expressiveness 192

7 Studies with other developers 194
7.1 Introduction 194
7.2 Goal and approach 195
7.3 Workshop study 196

7.3.1 Introduction 196
7.3.2 Method 196
7.3.3 Results 199
7.3.4 Discussion 206

7.4 Independent development studies 209
7.4.1 Method 209
7.4.2 Results 211
7.4.3 Discussion 213

7.5 Reflection upon method 218
7.6 Summary and conclusion 218

8 Discussion 220
8.1 Introduction 220
8.2 Are the categories delineated by case relevant to user interfaces? 220
8.3 Can a tool be built that embodies case for building plastic user in-

terfaces? 223
8.4 Can case as embodied in this tool be used to build useful applica-

tions? 225
8.4.1 Effectiveness 225
8.4.2 Efficiency 227
8.4.3 Expressiveness 229
8.4.4 Conclusion 230

8.5 Can case as embodied in this tool be used by other developers? 230
8.5.1 Effectiveness 231
8.5.2 Efficiency 231
8.5.3 Expressiveness 231
8.5.4 Conclusions 232

8.6 The scope of case 232
8.7 Comment on methodology 233

8.7.1 The three Es 234

8

8.7.2 The contexts of evaluation 234
8.8 The design of the tool and the understanding of case 235
8.9 Limitations of the research 236

8.9.1 The absence of comparisons 236
8.9.2 The absence of formal methods 238
8.9.3 The absence of quantitative measurements 239
8.9.4 Summary and conclusion 239

9 Conclusion 242
9.1 Introduction 242
9.2 Contributions 242

9.2.1 A comparison between industrial and research tools 242
9.2.2 A demonstration of the usefulness of case 244
9.2.3 An implementation of case 245
9.2.4 The scope of case 245
9.2.5 The MVCD architecture family 246
9.2.6 A generalisable evaluation methodology 247

9.3 Further work 248
9.3.1 The usefulness of sets of semantic roles 248
9.3.2 Case and other frameworks 248
9.3.3 Comparison of outputs 249
9.3.4 What actually is case, anyway? 249

References 251

A Classification of industrial tools 266

B Further data on languages surveyed 269
B.1 Distribution by language family 269

B.1.1 Borrowing 272
B.2 The ages of languages 273

C Applications built by other developers 278
C.1 Participant 1 278
C.2 Participant 2 282
C.3 Participant 3 286
C.4 Participant 4 289
C.5 Participant 5 291
C.6 Participant 6 294
C.7 Participant 7 296

9

A List of Figures

2.1 The Arch model (after Thevenin et al., 2003) 27
2.2 MVC in Smalltalk-80 (simplified from Krasner and Pope, 1988) 28
2.3 Two modern variants on MVC 29
2.4 Models in MDE (after Estublier et al., 2005) 30
2.5 The Plastic UI snowflake (after Thevenin et al., 2003). 31
2.6 An unmodified X application running on Maemo 5 47
2.7 A GTK+ application on multiple desktop platforms 48
2.8 The Boston Globe website at three sizes 55
2.9 Layers of progressive enhancement 56
2.10 An example of CTT notation 58
2.11 A key to the DFN notation 60
2.12 An example of the DFN notation 61
2.13 A storyboard 63
2.14 The Cocoa “Storyboard” mechanism 63
2.15 A NetBeans “Flow” 64
2.16 The NetBeans “Flow” mechanism 64
2.17 Two cards from the HyperCard 1.2 “Home” stack. 65

3.1 Object deletion in Xfig 92
3.2 Object creation in MacDraw 93
3.3 Object modification in MacDraw 94
3.4 The split view on iOS 96

5.1 Genitive of ownership on iOS tablets 124
5.2 Genitive of category on iOS tablets 125
5.3 Partitive genitives on iOS tablets 126
5.4 Genitive of ownership on iOS phones 127
5.5 Genitive of category on iOS phones 127
5.6 Partitive genitives on iOS phones 128
5.7 Genitive of category on Android tablets 129
5.8 Partitive genitive on Android tablets 129

10

5.9 Genitive of category on Android phone 130
5.10 Partitive genitive on Android phone 130
5.11 Dative popover on iOS tablets 131
5.12 Dative on iOS phones 132
5.13 Dative on Android 132
5.14 The graphical automaton editor 133
5.15 “Ideal phone” genitive pattern 134
5.16 “Ideal phone” dative pattern 134
5.17 Genitive dialogue on iOS and Android tablets 134
5.18 Dative dialogue on iOS and Android tablets 135
5.19 Genitive dialogue on iOS and Android phones 135
5.20 Dative dialogue on iOS phones 136
5.21 Genitive graph rules 136
5.22 Dative graph rules 137
5.23 The overall structure of an MVCD architecture 138
5.24 The iOS application store 143

6.1 The display of an anonymous comment. From the Institute of Direc-
tors Annual Debate on Jersey, 2013. 148

6.2 The display of a poll question. From the Institute of Directors Annual
Debate on Guernsey, 2013. 148

6.3 The display of the graph for a poll in progress. From the Institute of
Directors Annual Debate on Guernsey, 2012. 149

6.4 1event poll mockup 150
6.5 1event message mockup 150
6.6 1event main screen mockup 151
6.7 The EVENT2 application map 151
6.8 Datives in EVENT2 153
6.9 Agritechnik application front page 157
6.10 Agritechnik advertisement pages 157
6.11 Agritechnik diagnostic screens 159
6.12 A VIN plate from a vehicle 160
6.13 The application map for the Agritechnik application 160
6.14 Genitive subgraphs in Agritechnik application 161
6.15 Adapted Agritechnik genitive subgraph for tablets 161
6.16 Split view genitives in the Agritechnik application 162
6.17 Datives in advertisements 163
6.18 Datives in diagnostics 164
6.19 Advertisement dialogue: option 1 165
6.20 Advertisement dialogue: option 2 166

11

6.21 Agritechnik application on Windows Phone 167
6.22 Realisations of the genitive under Windows Modern 173
6.23 SpeakersAssociates front page 174
6.24 SpeakersAssociates detail page 176
6.25 SpeakersAssociates categories page 177
6.26 SpeakersAssociates search page 178
6.27 The application map for the Speakers Associates application 179
6.28 Genitives in the category view 180
6.29 Genitives in the search view 181
6.30 Datives in the speaker details view 183
6.31 Core data structure for Speakers Associates application 186

7.1 Satellite navigation application map 197
7.2 Wine shop application: model application map 199
7.3 Wine shop application: participants B and C’s map 200
7.4 Wine shop application: participants D and E’s map 201
7.5 Two adjacent genitive edges 214
7.6 Incorrect rendering of adjacent genitives 215

B.1 The Romance language family 269
B.2 The Italic language family 270
B.3 Distribution of languages discussed in time. 274

C.1 Publishing company application map 279
C.2 Publishing company front page 279
C.3 Publishing company list of categories 280
C.4 Publishing company list of statuses and books on tablet 280
C.5 Publishing company list of books 281
C.6 Book catalogue application map 283
C.7 Book catalogue: search screen 284
C.8 Book catalogue: book details 284
C.9 Book catalogue: settings screen 285
C.10 Geotagged social media application map 286
C.11 GeoNotes: notes list 287
C.12 GeoNotes: viewing a note 287
C.13 Geotagged social media hand-drawn application map 288
C.14 To-do list application map 290
C.15 Venue access application map 292
C.16 Venue access: initial map 293
C.17 Venue access: search facility 293
C.18 Venue access: search results 294

12

C.19 Language flashcard application map 294
C.20 Corrado parts application map 297

13

A List of Tables

2.1 Categorisation of research tools on the Plastic UI snowflake 39
2.2 Categorisation of tool categories on the Plastic UI snowflake 43
2.3 Levels of plasticity in industrial tools. (see appendix A) 44
2.4 Software architectures in industrial tools (see Appendix A) 44
2.5 Declarative notations in industrial cross-platform tools 45
2.6 Categorisation of non-mobile tool categories on the Plastic UI snowflake 49

3.1 Case in Latin nouns (after Weiss, 2009, ch. 21-26) 71
3.2 Blake (2001)’s case hierarchy 85
3.3 The case hierarchy applied to Icelandic 85
3.4 10 most spoken languages in the world (Lewis et al., 2013) 86

4.1 Summary of methodology 118

5.1 Blake (2001)’s case hierarchy 122

14

A Chapter 1
Introduction

1.1 Background

In their 2012 “State of the Network” report, Cisco made the claim that by the end
of that year there would be more mobile devices in the world than human beings.
They were vague—perhaps artfully so—about precisely what constituted a mobile
device in this report, but the basic premise of the statement is backed up by other
large-scale market research (Lipsman and Aquino, 2013) which shows that people
are increasingly using multiple mobile devices per person, and that these mobile
devices are not identical either in form factor or in terms of platform. It is in
developers’ interests to make their applications available, therefore, on as many
platforms and form factors as possible.

In the research community, this problem is part of the wider problem of “user
interface plasticity”. A plastic user interface is one that remains usable under
changing circumstances, those circumstances consisting potentially of what kind
of user is using the application, through what kind of device the application is be-
ing made available to the user and in what context the application is being used
(Thevenin et al., 2003). The research community have created a number of tools
for creating plastic user interfaces. These tools concentrate largely on flexibility,
aiming to address very diverse kinds of devices and modes of interaction. One im-
portant concern of the research tools is adapting the “dialogue” between the user
and the machine, the task structure and the orders in which the user’s choices can
be made, and a number of models have been built to assist in plasticising this di-
alogue (Paternò et al., 1997; Book and Gruhn, 2004). Thevenin et al. (2003) refer
to the dialogue as the “keystone” of the user interface, and its plasticisation as of
high importance.

Independently of the research community, the professional community around
mobile application development have created a very large number of tools that aim
at producing applications for multiple platforms and form factors. In 2012, Vision
Mobile surveyed many of these tools and analysed them (Jones et al., 2012). The

15

concerns of these tools, taken as a body, differ from those of the tools produced
by the research community. They address fewer platforms and form factors (for
example, while several of the research tools target voice-activated devices, none
of the industrial tools do). Instead, they put high value on developer productivity
and on using and repurposing tools that developers already use, and on integrating
well with third-party software.

Both of these approaches have shortcomings. The research tools operate un-
der very unfamiliar sets of assumptions for mobile developers and do not take into
account some very important factors for these developers, such as the structures
of user interface guidelines. The industrial tools do not let the structure of the
user’s dialogue with the machine change easily as it moves between platforms and
form factors. This thesis proposes to attack this gap by using the notion of “case”,
found in natural languages.

In comparison with the fairly recent importance of plastic user interfaces,
the study of case is a very long-running discipline. Research into the nature of
case was out of fashion for much of the twentieth century, because it was often
seen as not being a phenomenon in its own right but merely as an expression of
“deeper” phenomena. However, in the last 25 years it has become obvious that
these explanations of case are insufficient, and that case exhibits strong patterns
across different languages that argue for its right to be treated as a distinct phe-
nomenon (Blake, 2001) that is not necessarily attached purely to language sensu
stricto (Luraghi, 2009).

Case is interesting in the context of plastic user interfaces because one of the
features it brings to languages that possess it is flexible word order in sentences.
This flexibility of word order is, for example, one of the things that gives Latin
poetry its distinct flavour (Clackson, 2008). The fundamental idea of this thesis
is that the categories that case provides cross-linguistically to make word order
flexible in sentences might also be usable to make the orders of users’ choices
flexible in plastic user interfaces for mobile devices.

This thesis, then, is of interest to the HCI engineering community, discussing
as it does a novel mechanism for use in the engineering of plastic mobile user in-
terfaces. HCI engineering approaches were chosen for this, as opposed to broader
software engineering, because the existing work in the area of plastic user inter-
faces is in this discipline. HCI engineering refers to “the application of scientific
knowledge and rigorous design methodology to reliably predict and, thus, help
improve the consistency, usability, economy and safety of solutions to practical
problems” (ACM, 2013, quoted by Blandford, 2013). While a linguistic approach
would seem more appropriate to the analysis of the usefulness of case, there is no
straightforwardly acceptable linguistic methodology that would allow the applica-
tion of case to user interfaces to be evaluated.

16

1.2 Research questions

The thesis explores the application of case to plastic user interfaces by answering
a series of research questions.

Are the categories delineated by case relevant to user interfaces? If the kinds of meaning
that case delineates are not useful for talking about user interfaces, then any
attempt to apply them will fail. If they are, then it should be possible to talk
about user interfaces in terms of these meanings, and to use these meanings
to help plan user interfaces.

Can a tool be built that embodies case for building plastic user interfaces? To be most use-
ful in a development situation, the categories that case provides should be
embodied in a tool that developers can use to build applications.

Can case as embodied in this tool be used to build useful applications? If the use of case can-
not scale to use in the kind of applications that mobile developers build pro-
fessionally, then its use is severely limited.

Can case as embodied in this tool be used by other developers? The author’s experiences in
the case studies can only be generalised if they are backed up by information
involving the use of case by other developers. If only the author is able to
use the case system, then it is not an effective tool.

1.3 Summary of method, results and conclusions

1.3.1 Method of evaluation

To evaluate the usefulness of case to commercial development, this thesis outlines
one set of case studies and two co-operative evaluation studies (Wright and Monk,
1991) that were undertaken in three contexts. Ethical approval was sought and
granted for all work involving participants.

1.3.1.1 Case studies

Three companies were approached to submit commissions for cross-platform mo-
bile applications. The applications were not prototypes but finished applications
intended for release. Meetings throughout the process were recorded. Clients
were asked to comment on the quality of user interface elements that were imple-
mented using the case system and to comment on the use of case in the develop-
ment process.

17

1.3.1.2 Developer Workshop

Seven developers were recruited through the first author’s professional network
for a development workshop. Developers worked in pairs. The workshop was
recorded in both video and audio, and the applications created were collected.
The workshop opened with a training session followed by a question and answer
session. After this, participants were set to building a small application for a hy-
pothetical client. At the end, participants undertook a focus-group review of the
tool.

1.3.1.3 Long-term development study

Seven further developers were recruited through the first author’s professional
network for a longer-term development study. All were commercial software de-
velopers who had commercial mobile development as part of their professional
practice. Participants worked remotely, receiving the same training material as
workshop participants, but presented in writing on paper rather than verbally.
Participants were asked to spend a minimum of two days working on this prob-
lem. Developers were asked to comment on the quality of the user interfaces that
they built as they went, and answer further questions at the end. Where the devel-
oper and the first author were co-located, audio recordings of discussion sessions
were made. Otherwise, email or chat transcripts were saved. Applications were
submitted back and checked against the platform style guides by the first author.

1.3.2 Results

Three key points emerged from the evaluation exercises. First, the parts of the
interface that the case system produced were of a quality comparable to the rest
of the interface, although the quality of the user interface as a whole was not as
good as it would be had it been made with platform-specific tools. This was es-
pecially underlined by the participants who counted web design as part of their
professional practice. Likewise, there was much of the interface that case did not
touch, and the quality of resulting interfaces as a whole still owed a great deal
to the manual intervention of developers. Second, the plasticity effected by case
noticeably reduced the work that needed to be done to produce a user interface
that conformed to the style guides for the platforms being targeted. This reduc-
tion in work was most evident at the early stages of application design, when the
structure of the application was being laid out. Third, case was not found to be
universally applicable across the whole domain of mobile development. Instead,
it was most useful in data-driven applications, where users were interacting with
a dataset, rather than games or communications applications.

18

1.3.3 Conclusions

In commercial contexts, case was useful in effecting plasticity in user interfaces
for mobile applications as they were built. The case system was used readily by
developers in both the workshop and the longer-term studies, who felt case would
be of use in their professional practice.

1.4 Structure of thesis

Chapter 2 summarises the relevant work on plastic user interfaces for the remain-
der of the thesis. It summarises the problem, looks at the vocabulary and
models that inform research tools for building applications plastic user inter-
faces and introduces both research tools and tools from industry for building
applications that are at home on multiple platforms.

Chapter 3 describes what case is and what it does in natural language, illustrating
it with examples from Latin literature. It then uses a sample of twenty lan-
guages from all over the world as an illustrative survey to demonstrate that
case is used in similar ways in different and unrelated languages. It then sum-
marises work on the patterns that are found in case systems and mainstream
theories of case that admit meanings for cases (rather than those theories
which simply consider them as a syntactic convenience). Then it provides
an example of comparing two user interfaces with two different ordering
conventions in terms of case.

Chapter 4 describes the methodology for the design of the tool that embodies a
case system and for the evaluation of the case system through the medium
of this tool.

Chapter 5 describes the implementation of the tool, beginning with the rationale
for the choice of cases to use in the case system. It then looks at how those
cases should be realised in the concrete user interface, how a dialogue com-
ponent and stylesheet mechanism can be defined in terms of case, and finally
describes the software architecture and how the dialogue component of the
application being built interacts with the rest of the software components
needed for that application.

Chapter 6 describes three case studies in which the tool was used to build applica-
tions for three very different small companies. It then evaluates the contri-
butions to the development process made by case.

Chapter 7 describes two studies that evaluated the usefulness of case to other de-
velopers. The first study was a workshop study in which developers eval-

19

uated the usefulness of case in their professional practice in general. The
second was a more focused study in which developers each developed an ap-
plication and then commented specifically on the usefulness and limitations
of case in their experiences.

Chapter 8 synthesises answers to the research questions above from the process of
the development of the tool, the results of the case studies and the results
of the two studies with other developers.

Chapter 9 pulls together the contributions of the thesis and suggests both some
implications of the thesis and future directions in which the research could
be taken.

1.5 Typographical and lexical conventions

Several typographic and lexical conventions are used throughout this thesis.

A paragraph introduced by small capitals such as this one is a definition of
a term or concept.

A paragraph introduced by italics such as this one is a description or a discussion, or
answers a question.

In chapter 3, several analyses of sentences are presented. In keeping with stan-
dard practice these are presented in a three-line format, for example:

(1) Caecilius
Caecilius.nom

est
is

in
in

horto
garden.abl

Caecilius is in the garden

The first line is the text in the source language, split into words. Beneath each
word is a literal translation of that word into English, along with any relevant extra
information that would otherwise be lost in translation. In this thesis, the only
such information presented is the cases that individual words are in. Beneath both
of these are an idiomatic translation of the phrase into English.

Cases have long and Latinate names which almost universally end in the suffix -
ative. For conciseness, both in the analyses of sentences and in tables laying out the
case forms of various words, the names of cases are abbreviated to just their first
three letters presented in small capitals. For example, “nominative” is abbreviated
as Nom and “accusative” is abbreviated as Acc.

When languages are being discussed, some words and phrases begin with an
asterisk (*). These are words or phrases that are not attested: they were never

20

spoken or written. These phrases should be considered as provisional, for the
sake of discussion; but they should not be considered as part of a real language.
This convention is used either for reconstructed words or phrases in an extinct
language that may never have been valid, or for phrases that are ungrammatical in
living languages.

Finally, there is some terminological collision between the disciplines of lin-
guistics and computer science. In this thesis, this affects the use of the words
“syntax”, “semantics” and “grammar”. Except where the computer science mean-
ing is explicitly specified, these words should be assumed to bear their linguistic
meanings. This especially means that other frameworks that have a “grammatical”
basis, where “grammar” is meant in the computer science sense, are not necessarily
comparable to the work done in this thesis. A good example of this terminological
collision is Payne and Green’s (1986) “Task-Action Grammars”.

21

A Chapter 2
Frameworks, tools and standards

2.1 Introduction

The research community has coined the term ‘plastic user interfaces’ to refer to
interfaces that can move between contexts of use while maintaining usability (for
some reasonable definition of usability). This chapter argues that this concept
is important for developers of applications that run on mobile devices and sum-
marises the solutions that are currently available.

The chapter begins with an overview of the nature of a major problem that
developers for mobile devices face: that to capture a large user base it is necessary
to work on multiple platforms (for example, Android and iOS) and multiple form
factors (such as tablets and smartphones), and that developers’ conformance to the
user interface idioms for those platforms is enforced by the companies that create
those platforms. Therefore, developers are forced either into creating multiple
user interfaces, or a single plastic user interface that adapts to the idioms of the
platform and form factor on which it finds itself.

Second, the chapter looks into conceptual models and frameworks that have
been used to talk about plastic interfaces by different people. These models do
not form a single coherent whole, they are not parts of a single large overarching
model: rather, they are ways of examining and comparing different tools in differ-
ent ways, or are guides to building tools, that can be used in different situations as
and when they are helpful.

Third, the chapter examines the efforts that the research community have put
into building tools that can be used to create new applications with plastic user
interfaces. It examines five tools, summarises how they work and their underlying
philosophy, and compares them. Among other parts of the interface, these tools
allow the task structure of the application to change to suit circumstances.

Fourth, the chapter gives an overview of an illustrative sample industrial ap-
proaches and tools to address this problem. There are an enormous number of
these tools, albeit generally more pragmatic and restricted than those from the

22

research community. The chapter classifies and compares this sample of tools. It
also surveys a number of tools from industry that were not designed with mobile
interaction in mind, but that have been repurposed for application in mobile tech-
nologies. It also considers tools from the web community: the availability of web
applications on mobile devices is increasingly important, and the web community
have created a series of standards and design approaches that make it possible.
The line between a web application and a mobile application is increasingly blurry:
many of the industrial tools for cross-platform development use web technologies.
This means that techniques usable by web designers are increasingly useful to ap-
plication designers also. These, too are compared with one another and with the
research tools. Specifically, it is highlighted that unlike the research tools these
industrial tools do not provide adaptation of task structure.

Fifth, it points out that although the industrial tools provide no dialogue adap-
tation, a number of them do use declarative notations to structure their dialogue.
It presents notations in use for dialogue structure in this field, both from the re-
search community and the industrial community are presented.

Finally, it argues that none of the tools from either the research or industrial
spheres are adequate to address the problem that application developers face, and
suggests that case may help to bridge the gap between research and industrial tools
to a useful degree.

2.2 The Mobile Platform Problem

At the beginning of 2013, comScore, a market research company who specialise in
analysing people’s uses of digital technologies, released a report about the kinds
of smartphones and tablets in use over the previous year (Lipsman and Aquino,
2013). There is no single dominant software platform among these devices. In
their worldwide analysis, they identified six major platforms.

Android is an operating system developed and distributed by Google, and used by
a number of equipment manufacturers. As of the publication of the com-
Score report, it was the most used operating system for smartphones in both
the US and the five analysed countries in the EU. It was also the most used
operating system for tablets in the US. Figures for tablet operating systems
in the EU were not given.

iOS is Apple’s proprietary mobile operating system, in use on the company’s smart-
phone and tablet products. It was the second most used operating system
for smartphones in both the US and the five analysed countries in the EU,
and second most used tablet operating system in the US.

23

Blackberry OS is a family of related operating systems developed by Research In
Motion for use on their Blackberry phones and tablets.

Some Windows operating systems are available for phone and tablet use from Microsoft.

webOS is an operating system currently developed by LG for their smart televi-
sions. Previously, it was owned and developed by Hewlett-Packard, who
built smartphones and tablets that used it.

Symbian is an operating system that used to be used on Nokia’s high-end phones
before they switched to using Windows in 2011. There were no tablets run-
ning Symbian. Smartphones that run Symbian are still a major part of the
smartphone ecosystem in the EU.

The challenge to developers is not only in the number of platforms that one
needs to develop for in order to cover all smartphone users, but the volatility of
that set of platforms. Blackberry OS, Symbian, and Windows, all of which are
currently minority players, have all been the dominant platform at one time or an-
other. In addition, new platforms keep emerging, such as the Firefox OS backed by
the Mozilla Foundation and Tizen, backed by Samsung, Intel and others. Others
disappear suddenly: in 2009, Nokia’s great hope was the Maemo operating system,
which they later unceremoniously abandoned to be developed by the community
and changed their focus to working using Windows Phone.

To add further to the difficulties of the developer of mobile applications, many
people use multiple platforms and form factors and expect the same services to be
available on all of them. comScore, in another report (Lipsman, 2013), refer to
this as the “multi-platform majority”. They report that in the US, at least, over
half of all users of mobile technologies now do so in a multi-platform way. Even
in the case of a user who uses only a tablet and a smartphone, it is not uncommon
for these devices to be running different operating systems (Lipsman and Aquino,
2013, p. 30).

These circumstances create a situation where cross-platform and cross-form-
factor development is a problem that needs to be taken seriously by anyone who
wants to create an application for a mobile platform.

2.3 Being at home on a number of platforms

To be at home on a mobile platform, the application needs to conform to the user
interface guidelines published by the developer of the platform. Whether these
guidelines in fact enforce or promote usability is in some ways moot.

Software distribution for mobile platforms is usually very centralised. For each
major platform there is an online application store run by the developer of the

24

operating system, and in nearly all cases application delivery is done from there.
In the cases of iOS and of the versions of Windows that run on mobile devices,
all application delivery (with the exception of some enterprise software) is done
from the platform’s store. In the cases of Android and Blackberry, things are a
little more complicated, but most end-user downloads are still done through the
operating system manufacturer’s store.

Because of this, Google, Microsoft, Apple and Blackberry effectively have a
veto on which applications run on their mobile platforms; and all of these compa-
nies emphasise the importance of their own user interface guidelines. At time of
writing, Google does not enforce their guidelines, and there is no manual checking
of Android applications at all (Google, Inc., 2013c); however Microsoft and Re-
search in Motion both at least check the navigation structure of all applications
(Microsoft Corp., 2013a; Research in Motion, Inc., 2013), and Apple perform care-
ful checking of many aspects of the interface against their UI guidelines (Apple,
Inc., 2014).

This means that adhering to each platform’s user interface guidelines is effec-
tively forced onto developers for mobile devices. Therefore, making sure that an
application complies to these guidelines is an important part of the engineering
of the user interface. This is the point at which the mobile developer’s direct
interests intersect with the research area of “plastic” user interfaces.

2.4 Some definitions and terminology

The terms “cross-platform” and “cross-form-factor” are not precise. To clarify
both the problem space and the aims of the various research tools, Thevenin et al.
(2003) gave definitions for a number of terms. Their definitions are paraphrased
here.

A platform encompasses the resources available to the application. This in-
cludes both software resources such as the facilities that the operating sys-
tem provides and hardware resources, such as screens and input devices and
their characteristics.

A target is a set of three specification elements: the class of user which will
use the system, the platform upon which they will use it, and the physical
environment in which they will use it.

A multi-target interface is an interface which is designed to be usable for more
than one target. This does not mean that adaptation has to occur to differ-
ences in all three elements in the target; an interface that adapts to different
platforms but not to different users or to different environments, or an in-

25

terface that adapts only to different users but remains bound to one platform
and environment is still a multi-target interface.

A multi-platform interface is a multi-target interface which adapts to differ-
ent platforms, but only to one class of user and one physical environment.

A plastic interface is a multi-target interface which maintains usability across
its different targets.

To plasticise an interface is to take a non-plastic interface and make it plastic,
or to derive a plastic interface from it. Plastic user interfaces are, of course,
not at all confined to mobile platforms. This thesis, however, concentrates
on mobile platforms because of the nature of the problem given above.

2.5 Models and frameworks

There are a number of useful models and conceptual frameworks for talking about
the tools that are used to build plastic interfaces, and the software infrastructure
that sits underneath them.

The Arch model (Bass et al., 1992) or the Slinky is a model for describing soft-
ware architectures for interactive systems. It has the specific aim of “guid[ing]
developers in designing a run time system that makes possible the efficient
and robust management of change during the life cycle of a user interface.”
(Sheppard, 1992, p. 31) It was used by Thevenin et al. (2003) to discuss the
levels at which plastic interfaces are able to adapt the interface, and it is in
this way that it is used in the analysis below.

The Arch model is illustrated in figure 2.1. It lays out five areas with which
software architectures for interactive systems must concern themselves. The
first area is the “functional core”: the components in this area concern them-
selves with the application’s logic, and provide the basic functionality of the
application. The second is the “functional core adaptor”: the components
in this area are responsible for selecting which functionality to expose to the
user as the infrastructure that supports the interactive system changes. The
third is the “dialogue controller”: components in this area are concerned
with task structure and the order in which the user should be able to do
things. The fourth is “logical presentation”: components in this area are
concerned with deciding which kinds of “interactors”, or user interface ele-
ments, to use. The fifth is “physical presentation”: components in this area
are concerned with the actual appearance of the interactors.

The Arch model as used in this thesis has been extended by the addition
of a “platform” area. This area corresponds to what Thevenin et al. call

26

Fun
ctio

na
l

Core

Functional

Core Adaptor

Dialogue
Controller Logical

Presentation
Physical

Presentation

Ordering and
task structure

PC

Phone

Domain-specific
code/data

Adaptation of
data structures

Different
interactors,

same function

Same interactor,
different presentation

Search

snakes

cats
goldfish

dogsLabel

Label

Label

Figure 2.1: The Arch model (after Thevenin et al., 2003)

“technical adaptation”, sitting beneath the physical adaptation layer. It is
responsible for the infrastructure necessary to put the physical components
on the screen, and to provide them access to the input devices. It will be
used extensively in the work that follows as a taxonomy of the layers on
which adaptation takes place.

Model-View-Controller (“MVC”) is a collective name for a large and widely-
used family of software architectures for interactive systems. These archi-
tectures share the idea that an interactive system is built out of three funda-
mental kinds of component (models, views and controllers) but differ con-
siderably in their elaboration of this idea.

The first of these three kinds of software component is the “model”. Models
are responsible for providing data access. The second is the “view”: views
are responsible for taking the data from their corresponding model and dis-
playing it to the user. The third is the “controller”: controllers are respon-
sible for reacting to user input and updating the data in their corresponding
model appropriately. A pure MVC system is built of “triads”, collections of
three components where each triad consists of one model, one view and one
controller.

The first, and simplest, elaboration of the MVC idea emerged from Xerox
PARC as part of the Smalltalk system (Reenskaug, 1979; Krasner and Pope,
1988). In the Smalltalk implementation, one controller at a time could be ac-
tive, and input from the system’s “sensors” (Krasner and Pope’s term for var-
ious input devices including, but not limited to, mouse and keyboard) went
directly to the controller. The controller received mouse position changes,
key presses, and mouse button presses. The controller then interpreted this
input and updated the data in the model accordingly.

27

Model

Controller View

From user To user

Notifies views
of changes

Updates data
in model

Transient
view
changes

Figure 2.2: MVC in Smalltalk-80 (simplified from Krasner and Pope, 1988)

In this variant of MVC there is a strong but implicit binding between the
view and the controller: specifically, the view and the controller must have
consistent internal representations of what is being displayed on the screen.
If, for example, the view displays some text at a given position on the screen
with the expectation of the user being able to edit it, then the controller
must also know where this text is so that it can interpret the input from the
mouse.

More modern variants of MVC send user input to the view first, so that it
can interpret the sensor input according to what it is displaying, thus mak-
ing this coupling looser. Two modern variants which exhibit this behaviour
(those used in Apple’s and Sencha’s development tools) are illustrated in fig-
ure 2.3. In Apple’s variant, the view provides the controller with user in-
terface events in terms of the interactors in the view, for example “the user
pressed the ‘Print’ button”. In idiomatic Sencha Touch, this is taken even
further: the view interprets the user’s intent, and the controller contains
actions which enact that intent, for example “the user chose to print”.

MVC is relevant here because it is a widespread architecture family that is
extensively used in industry, as shown by the analysis of software tools below.

Model-driven engineering (“MDE”) is an approach to software engineering
which emphasises the importance of formal domain-specific models (not to
be confused with the “model” component of MVC) and the transformations
between these models (Schmidt, 2006). By using domain-specific models,
designers of systems can express meanings in terms of their domain knowl-
edge: “some of the alleged benefits of [domain-specific languages] stem from

28

Model

Controller View

To user

Notifies controller
of changes

Updates data
in model

Notifies view
of changes

User input

(a) MVC in Apple’s Cocoa and Cocoa Touch (after Apple, Inc., 2013)

Store

Controller View

To user

notifies views
of changes

Updates data
in store

Model

User input

(b) MVC in Sencha’s Ext.js and Touch (after Sencha, 2012)

Figure 2.3: Two modern variants on MVC

the fact that there is a close, intentionally [sic], direct link between the pro-
gram and the modeled reality in the domain.” (Estublier et al., 2005, p. 71)

The first element emphasised within MDE is the domain-specific model
(see Favre, 2004a, for an in-depth discussion of what a model actually is in
MDE). A domain-specific model is expressed in a domain-specific language
(a “DSL”). A DSL is a language—either textual or graphical—which uses fa-
miliar terminology and which enforces domain-specific constraints on the
program. An example of such a language is LOGO. LOGO is a well-known
DSL for control of a drawing robot called a “turtle”, or for a simulation of
such a robot(Papert, 1980). This language uses familiar terminology: the pen
which the robot uses to draw on the paper is referred to as the “pen” in the
language, and the robot is referred to by the same name inside the language

29

Models Systems

Metamodels A set of models

A set of metamodelsMetametamodels

model

model

model

are defined by

are defined by

are one of

are one of

Figure 2.4: Models in MDE (after Estublier et al., 2005)

and outside. This language also enforces domain-specific constraints: it is
not possible, for example, to try to get the robot to leave the ground or to
draw in a colour for which it does not have a pen.

Not all DSLs are part of an MDE approach to building software. LOGO has
no claims to MDE. Neither do many other major DSLs, such as Hypertext
Markup Language (“HTML”, a DSL for authoring hypertext documents,
the current version of which is defined by Berjon et al., 2012), the Struc-
tured Query Language (“SQL”; a DSL for querying and updating databases,
defined in ISO/IEC 9075:2011), or the Open Telecom Platform (“OTP”; a
DSL for building resilient distributed telephony applications, described by
Torstendahl, 1997). The difference between a non-MDE DSL and one for
use in MDE is the existence of a “metamodel”. A metamodel is a model
which models a set of models, and thus “defines the language for expressing
a model” (Object Management Group, 2002, p. Glossary-10). In a hypo-
thetical model-driven version of LOGO, for example, where a program in
the LOGO language is a model of a drawing done on paper, a metamodel
might be expressed in terms of the capabilities of the modelled robot.

Since metamodels are models in their own right, in MDE they are built in a
DSL for modelling models; this DSL is in its turn modelled in a “metameta-
model” which defines a language for creating metamodels (Object Manage-
ment Group, 2002, p. Glossary-10). The relationships between systems,
models, metamodels and metametamodels are summarised in figure 2.4.

The second element emphasised within MDE is that of transformations
between models. Here, as Favre (2004b) puts it, the MDE literature “suf-
fers from a lack of agreement on terminology, especially when talking about
transformations.” (p. 3). Since, however, in MDE “everything is a model”

30

UI Computation Development
phases

Acto
r (r

un
-tim

e) Actor (design-tim
e)

UI Implementation

Ta
rge

t
U

I Softw
are

com
ponents

UI Migration

Physical Presentation

Logical Presentation

D
ialogue C

ontroller

Functional C
ore Adaptor

At run-time

Between sessions

Pre-computed UI
On-the-fly adaptation

Hum
an

Com
pu

ter

H
um

an
C

om
puter

JavaHTMLFlash...

Design

Run-time support

Forward-engineering
Reverse-engineering

Toolbox
Infrastructure

Env
iro

nm
en

t

Plat
for

m
Use

r

Figure 2.5: The Plastic UI snowflake (after Thevenin et al., 2003).

(Bézivin, 2004, p. 21), for the purposes of this description transformations
can simply be considered as models which model such a transformation, and
thus have their own metamodels and metametamodels.

The MDE approach is a major one for the area of plastic user interfaces; in
the research tools given below, which aim to build entire applications with
plastic user interfaces, it is dominant.

The Plastic UI snowflake is a taxonomic framework presented by Thevenin
et al. (2003) that forms half of their reference framework for the develop-
ment of plastic user interfaces. It is intended to be used “for characterising
existing tools or for expressing requirements for future tools”. (p. 32). Each
branch of the snowflake characterises a number of related design points for
existing tools, or a number of decisions which need to be made in the case
of new tools. The snowflake is illustrated in figure 2.5.

The issues it addresses are:

What software components are capable of adaptation. These are expressed in terms
of the Arch model.

31

Kinds of target. Thevenin et al. note that they are unaware of any tool which
addresses all three kinds of target (environment, platform and user)
simultaneously, but give examples of tools that adapt based on each of
the possibilities.

Development phases. Some tools are only active during the design of a system,
some only at the time the application is run, and some have compo-
nents which are active in both phases. If the tool is active during the
design of a system, it may be creating an entirely new system through
forward engineering, or reverse-engineering an existing system to plas-
ticise its user interface. If the tool is active at run-time it may provide
either a reusable infrastructure or a toolkit of small, reusable parts.

How the interface is implemented. There is a very large number of tools for mak-
ing the interface available to the user. The limitations of this imple-
mentation method may affect the nature of the tool being classified.

Which actors are in charge of adaptation. The interface can be adapted both dur-
ing design and when the application is run. At either stage, either a hu-
man, a software tool, or a combination of the two can be responsible
for the process of making the interface usable on a target.

When the computation of the final UI occurs. In some tools, the final UI is gen-
erated before it is ever seen by a user. In others, the final UI is gener-
ated on the fly, as it is needed.

Whether the final UI can migrate between devices, either in the middle of a user’s
interaction with the system or between those interactions.

The plastic user interface snowflake will be used in the work that follows
as a way of comparing the scopes of different tools for building plastic user
interfaces.

2.6 Research tools

The models above are useful for talking about and comparing the behaviour of
tools, but they are not software tools themselves. They do not directly address
the problem of how a mobile developer can build an application that is at home
across multiple devices. In order to produce actual interfaces, they need to be
embodied in software tools that can be used by developers.

The research community has created a number of tools around the idea of
multi-target and plastic interfaces. The ones whose capabilities are summarised
here are the ones that are forward-engineering tools (in the terminology of the
Plastic UI snowflake) and are for the creation of new applications. There do exist

32

others, for reverse engineering of existing interfaces (such as Vanderdonckt et al.,
2001), for creating compositions of existing content (such as Gabillon et al., 2011)
or for building interfaces out of components that themselves manage plasticity
(Calvary et al., 2005) but they are not within scope here because they are either
not forward-engineering tools or not tools for the creation of entire applications
where the concerns of plasticity are dealt with at an application level.

UIML is a model-based application of XML for building interfaces for multiple
devices. It aims to make no assumptions about which toolkits will be used
to make the interface available. It also aims to be easy to learn for people
who are not developers (Phanouriou, 2000, ch. 3). Here, the application of
UIML to mobile application development is described. It can also be used
for the development of other kinds of user interfaces, such as voice-driven
ones.

An interface designed in UIML consists of two basic parts. One of these
parts describes the structure of the interface. The other defines how that
interface will be realised on different platforms and form factors.

The section that defines the structure of the interface defines a logical out-
line of the interface and how different parts of that logical outline map to
actions in the software that backs the interface. It also contains styling hints
for how the interface should look on different platforms. The outline of the
interface is a tree, where related interface elements are grouped.

When the interface is actually instantiated on a system, each element in the
tree is matched up with a corresponding ‘peer’ physical component that pro-
vides the required features. This peer component is styled according to the
hints that the developer gave. These physical components are then grouped
in a way that reflects the tree structure of the interface. The system tries to
show related interface controls together: the smaller the screen space, the
smaller the subtree of the interface it can show at once. If it needs to, it
adds navigation controls to let the user navigate through multiple pages of
interface.

When the user interacts with the physical component that the system has
chosen, the thing that the user did (such as ‘click’) is looked up in the stylesheet
to turn it into a semantic event (such as ‘activated an input field’) and the
appropriate action in the software that backs the interface is called.

Plasticity is effected in this tool in three main ways. The first way is the
separation between the logical and the physical layers. The developer is not
required to design the mappings between the physical and logical layers: a
number already exist (such as Luyten and Coninx, 2005; Binnig and Schmidt,

33

2002; the Java renderer by Phanouriou, 2000; and open-source renderers for
Java’s Swing and Python’s wxWidgets support). The second way is that the
developer can provide different styling hints for different platforms, and so
can manually adapt their application stylistically to different platforms. The
third way is that the system adapts the dialogue between the user and the
machine based on the screen size.

ARTStudio is a tool for building multi-platform applications in a model-driven
way (Thevenin, 2002). It uses a process of “reification”, which Thevenin
et al. (2003) describe as being a process of transforming a model into an-
other which is closer to executable software. An abstract model can be
transformed into executable software by a series of reifications. ARTStudio
allows building of applications for desktop computers and for Palm’s Pilot
personal digital assistants.

ARTStudio reifies in three phases; it starts with a domain model and a hier-
archical task model. From these it generates abstract interfaces, from these
it generates concrete interfaces, and from these in turn it generates the ex-
ecutable software which forms the final user interface. The relationship be-
tween the domain model and the task model is not fully explained either by
Thevenin (2002) or Thevenin et al. (2003).

The task model is defined using Paternò et al.’s ConcurTaskTrees (1997).
Abstract interfaces consists of a set of workspaces. On platforms which
allow multiple overlapping windows to be visible at once, each workspace
corresponds to a window; on platforms where only one full-screen view is
visible at a time, such as most mobile devices, a workspace corresponds to
such a view. There is one abstract interface per platform.

After the reification of the task model into an abstract interface, there is
a one-to-one correspondence between workspaces and tasks. If a task has
subtasks, then its workspace contains the workspaces of its subtasks, and is
called a compound workspace. If a task has no subtasks, then its workspace
contains no other workspaces, and is called an elementary workspace. The
developer can edit the allocations of workspaces to tasks, and change how
they are grouped; for example, a subtask can be removed from the workspace
of its parent task and made into an independent workspace. Since each
platform has its own abstract interface, different platforms can have their
workspaces structured differently.

To generate a concrete interface from an abstract one, ARTStudio uses a
model of the platform for which the concrete interface is being generated.
This model contains information about the screen of the device and how

34

it manages its windows; a description of the programming language used
to implement the interface; and information about each of the interactors
which is available. The information about each interactor contains what
data types it is able to edit, whether it acts as a mechanism for switching be-
tween workspaces, and the system and human resource cost of the interac-
tor. These costs are estimated based on the on-screen area of the interactor.

To generate a concrete interface, ARTStudio performs a constraint satis-
faction algorithm, the precise nature of which is not specified. Workspaces
become either windows or “canvases” (which are not defined, but seem to
refer to a container which opens inside a window). The concepts in the do-
main model which are involved in the workspace are mapped to interactors
based on their data type and their importance using ARTStudio’s model of
the platform for which the concrete interface is intended. The developer is
then free to edit the concrete user interface.

The plasticisation of the interface comes from the adaptation of the various
components by the platform model; any part of the interface can be trans-
formed by the platform model, or by the developer’s explicit interference,
to be more appropriate to the platform on which it finds itself.

Multimodal TERESA (described by Paternò et al., 2008) is a model and transfor-
mation driven tool for building multimodal applications targeted to multiple
platforms. A multimodal application is one which can use multiple modali-
ties.

Modalities are to do with senses: a modality is a sense that the human can
use to communicate with the computer, or a sensor that the developer of
the software can use to communicate with the user. For example, an appli-
cation that uses a visual modality to present information to the user does so
through graphics, or something which the user apprehends through vision.
An application that uses an auditory modality to receive information from
the user does so by processing sound input from the user. An application
which uses an olfactory modality to present information to the user does so
by generating meaningful smells (Bodnar et al., 2004; Brewster et al., 2006).

Multimodal TERESA concentrates on visual and auditory modalities. It
allows building user interfaces which target any number of: interactive tele-
vision (visual modality); VoiceXML (Oshry et al., 2007) telephony interac-
tion (auditory); direct interaction using XHTML (the Extensible Hyper-
text Markup Language) and scalable vector graphics (visual); form-based
XHTML on desktop computers (visual); minimalist XHTML for mobile
devices; graphical and gestural interfaces for Microsoft’s Windows Mobile

35

platform (visual and gestural); and graphical interfaces with vocal cues for
desktop computers (visual and auditory).

Paternò et al. state that TERESA is designed to be used in a top-down fash-
ion, beginning with abstract concepts and working towards executable soft-
ware. This process begins with a hierarchical task model (expressed using
the same ConcurTaskTrees notation as ARTStudio). From this, an “abstract
UI” is generated by transformation. An abstract UI contains a number of
“abstract presentations” along with an abstract view of their contents. A pre-
sentation is “a set of interaction techniques available to the user at a given
time” (Berti et al., 2005, p. 42). An abstract presentation is one where the
contents of that presentation are defined in terms of what they permit the
user to do, rather than in terms of how they will be realised in the physical
user interface. The abstract UI also contains an abstract view of the connec-
tions that the user will be able to use to move between these presentations.

Each element of an abstract presentation can either be a kind of action to be
performed (such as (“permit the user to edit”, “permit the user to select one
of a set of alternatives”, “output”) and a kind of information for this action
to happen to (such as “text” and “number”), or a group of these abstract
actions annotated with a “composition operator” that identifies what kind of
grouping it is. This operator represents a generic logical connection between
the elements within the group; a one-to-many relationship where a change in
one element within the group affects a number of others; that the elements
within the group are ordered in a specific way; or that some elements within
the group are more important than others.

TERESA maps each element of the task model to one or more abstract UI
elements. It then uses the ordering relationships from the task model to
decide what presentations to create and which presentations to put each
element in. For example, if two elements of the task model are marked as
being concurrent, then they can be displayed side by side, and thus can be
put in the same presentation. If two elements are marked as sequential, they
must be put in two different, but linked presentations.

From the abstract UI, a “concrete UI” is generated. The concrete UI is a
model which contains all the necessary information to generate a “final UI”.
A final UI is something that can actually be executed on the target platform
to display the user interface.

The nature of concrete UIs necessarily varies greatly across different plat-
forms. Paternò et al. give details of the different kinds of concrete UI mod-
els and how they are transformed from abstract UI models and to final UIs.
Again it is this process of transformation that provides the plasticity, adding

36

platform-specific features to the interface and making decisions based on
the capabilities of the platform.

MARIAE (Paternò et al., 2009) is the successor to TERESA, but does not ad-
dress entirely the same problem. MARIAE concentrates on engineering
multimodal and multi-platform user interfaces for interacting with web ser-
vices. A web service is a set of functions which run on a server and can
be accessed from a client application. These functions are made accessible
to the client through some kind of web technology, generally XML (“eX-
tensible Markup Language”) over HTTP (“HyperText Transfer Protocol”)
in such a way that a client can submit a request and be returned a result.
The methods that the client should use to access these functions is defined
in a machine-readable format called WSDL (“Web Service Definition Lan-
guage”; described by Booth and Liu, 2007).

The definitions of the web services can be used in two ways. MARIAE can
generate a ConcurTaskTrees model from a WSDL specification, inferring
the nature of the tasks and subtasks from the parameter and return types of
the functionality provided by the web service. Alternatively, the developer
can create a task tree for the application that they are trying to build, and
then annotate parts of the task tree with their corresponding functionality
in the web services. Using the latter approach, functionality from multiple
web services can be integrated into a single task tree.

After the task tree exists and is annotated, the abstract, concrete and final
user interfaces are generated through a transformation process similar to
that of TERESA. The abstract and concrete user interfaces are expressed in
an application of XML which maintains the annotations applied to the task
tree throughout the transformations, so that the resulting final UI remains
bound to the web services as initially specified.

DiaGen (Book et al., 2006) is a tool for adapting web applications to different
sized mobile screens by dynamically generating dialog masks for web forms.
A web form is here defined as a set of user interface components which
accept user input of some kind and which can potentially all be displayed
on screen simultaneously if the screen is large enough. A dialog mask for a
given form and screen is a subset of the components on the form such that
all the components in the mask can fit on the screen at once.

DiaGen adapts forms to smaller displays by creating a set of disjoint dialog
masks so that no component is in more than one mask, then displaying the
masks in sequence. It does this on the server which is providing the web
application to the mobile device, rather than on the mobile device itself.

37

When a request for a form reaches the server, the DiaGen system first iden-
tifies a profile for the kind of device which made the request. This profile
includes information such as screen resolution, screen size and what user
interface elements are supported by the browser on the device. The Dia-
Gen system identifies the kind of device by using the device’s User Agent
Profile (Wireless Application Forum, 2001) information if it exists. If this
information is not provided, the DiaGen system makes an educated guess
as to which profile to apply based on the name of the browser software in
use on the device.

When the client device and its capabilities have been identified, the DiaGen
system performs adaptation at the logical level of the Arch on the definition
of the form, identifying which interactors should be used for which form
element. The form is defined using a small extension to the XForms form
modelling language (Boyer, 2007). Once the interactors to be used to render
the form are known, DiaGen begins laying out the form elements into the
dialog masks. The sizes of the dialog masks are known from the profile of
the device identified earlier, and a rough idea of the sizes of the interactors
can be worked out based on the nature of the interactor and the number of
characters it allows the user to input. In general, DiaGen attempts to lay
out the fields in the same order as they are specified in the form definition.
When a dialog mask becomes full, the system creates a new, empty dialog
mask and starts laying out interactors into that.

Some metadata in the form definition can affect the order in which interac-
tors are laid out: for example, if the XForms grouping constructs are used,
then the interactors inside the group are kept together if possible, and other
interactors are moved around to ensure this grouping can remain on the
same screen.

The masks are then joined together in a Wizard-like format, so that the user
can move back and forwards between them. The dialogue controller on the
server waits until the user has completed the entire form, and then submits
it to the web application as if it had been filled in on a single page.

DiaGen provides adaptation at both the dialogue and logical levels of the
Arch.

A categorisation of these research tools according to the Plastic UI snowflake
is in table 2.1.

A number of patterns emerge from this classification. Firstly, all the research
tools attempt to plasticise the physical, logical and dialogue layers of the interface
(in the terminology of the Arch model). The number of layers of the Arch at

38

Components Target
UIML Up to dialogue Platform/Some User (Internationalisation)
ARTStudio Up to dialogue Platform
TERESA Up to dialogue Platform
MARIAE Up to dialogue Platform
DiaGen Up to dialogue Platform

Phases (design) Phases (runtime)
UIML Forward engineering Toolkit
ARTStudio Forward engineering n/a
TERESA Forward engineering n/a
MARIAE Forward engineering n/a
DiaGen n/a Infrastructure

UI Implementation Actor (design)
UIML Various Human
ARTStudio ? Human/System
TERESA Various Human/System
MARIAE Various Human/System
DiaGen HTML n/a

Actor (runtime) UI Computation
UIML System On-the-fly/Pre-computed
ARTStudio n/a Pre-computed
TERESA n/a Pre-computed
MARIAE n/a Pre-computed
DiaGen System On-the-fly

Table 2.1: Categorisation of research tools on the Plastic UI snowflake

which a tool can effect plasticity provides one way of quantifying the degree of
plasticity it provides. The dialogue component is central and important. Thevenin
et al. (2003) refer to it as the “keystone” of the Arch, and it mediates between the
functional core of the application and the concrete controls that the user interacts
with. Secondly, they all provide plasticity based on the platform that the interface
is running on. UIML extends this by also providing limited plasticity based on the
class of user (allowing for internationalisation).

There are two patterns, however, that do are not taken into account in the
classification on the plastic user interface snowflake: and these need to be taken
into account for the purposes of this thesis.

The first of these is that they share, to a greater or lesser extent, a very model-
driven attitude towards user interfaces and towards the way that development

39

is done. ARTStudio, TERESA and MARIAE are explicitly model-driven engi-
neering tools. DiaGen is not explicitly a model-driven engineering tool, but it
is designed to fit in with an enterprise software development methodology that
includes the use of the Unified Modelling Language (“UML”) and the associated
“Model-Driven Architecture” that the Object Management Group advocates (Miller
and Mukerji, 2003). UIML is less model-driven than the others, sitting as it does
at an uneasy intersection between a declarative notation and an imperative pro-
gramming language (Phanouriou, 2000, ch. 3): but it still relies on the creation of
a model of the platform on which it is running to provide adaptation.

The second is that they do not address the peculiar guideline-driven approach
to usability that, as was noted earlier, is forced on developers for mobile appli-
cations. The literature about the tools does not engage with guideline-based ap-
proaches for creating applications, and this author’s—admittedly subjective—attempts
to use the tools for which software is available (TERESA, MARIAE and UIML)
to produce guideline-compliant non-trivial mobile applications were a struggle.

2.7 Industrial tools

2.7.1 Mobile application development

In addition to the research tools outlined above, there is a large amount of interest
in industry in developing “cross-platform” tools. These cross-platform tools aim
to let developers “create applications for multiple platforms from almost the same
codebase or from within the same design tool.” (Jones et al., 2012, p. 11).

Jones et al., writing in a report published by Vision Mobile, listed one hundred
such tools, and examined fifty-three in detail.

The survey below is based on forty-six of the fifty-three tools that Jones et al.
surveyed. This is a large and rapidly-changing area, and any survey must necessarily
be both partial and a snapshot in time: in the six months following the release of
this report, one of the fifty-three had disappeared entirely; five had changed their
name; and seven had changed ownership. Seven of the tools could not be included
here:

Uxebo apparat.io has disappeared as of May 2013; its website at this time noted
that its beta period was over, and neither software nor documentation was
available.

Antenna AMP Studio, Antix Game Studio, iFactr Monocross, KonyOne and webMethods
Mobile Designer are proprietary and neither software nor documentation is
publically accessible.

40

UxPlus Aqua is only documented in Korean, which the author is unable to read.
No documentation is available in translation, and the comments in the ex-
ample source code included in the software development kit are also in Ko-
rean.

The Vision Mobile report divides the hundred tools into five distinct cate-
gories, based on their technical approach to the problem. These categories are:

JavaScript toolkits provide high-level capabilities embedded within an HTML
renderer using JavaScript and other web technologies. They are agnostic
about the mechanism which delivers the application to the device.

One prominent example of this kind of tool is Sencha Touch (described in
Sencha, 2012). It provides both interface design and software architecture
support. The former is implemented as a themable user interface library
based on HTML 5; the latter is implemented as an extensive MVC frame-
work. Other toolkits provide less complete functionality. jQuery Mobile
(jQuery Team, 2013) provides only the user interface libraries and provides
no support for software architecture at all. FeedHenry (FeedHenry, 2012)
concentrates on providing abstractions for network communication.

App factories are tools which allow non-technical users to generate mobile web
sites or applications by a graphical process. They do not generally require
or allow the designer to write code.

One prominent example of this kind of tool is Wix Mobile (SutherlandGold
Group, 2011). Since these tools are not aimed at developers, they are in-
cluded here only for completeness.

Web-to-native wrappers are tools which enable applications written using web
technologies to behave as if they are native applications running directly on
a device. They also provide access to functions and sensors on the device
that web applications would not have access to, such as capture of images
from the cameras on the device and the ability to retrieve data from the
user’s address book.

One prominent example of this kind of tool is Adobe’s PhoneGap (Adobe
Systems, Inc., 2013). PhoneGap provides two basic functions. The first is
a template native application for each platform which embeds that operat-
ing system’s native web browser component and loads an initial page. The
second is a library which allows the native application to intercept requests
from the web application, to act on them, and to return values to the web
application.

41

On top of these functions, PhoneGap provides a standard library which gives
access to cameras, sensors, local storage, and communication tools.

Runtimes are tools which provide an abstraction layer or a virtual machine be-
tween an application and the underlying platform.

One prominent example of this kind of tool is RunRev’s LiveCode. When
an application that was built using this tool is turned into a mobile applica-
tion which can be installed on a device, a small engine is embedded into the
application. This engine provides the interpreter necessary to run scripts in
the application, and the software necessary for the application to use hard-
ware facilities of the device.

The distinction between runtimes and web-to-native wrappers is purely one
of technological basis: web-to-native wrappers are runtimes which use web
technologies. Beyond this statement, the Vision Mobile report gives no ra-
tionale for separating these two categories.

Code translators are a very general category, in which all the tools are placed
which take either source code or compiled code and turn it into some other
kind of source code or compiled code so that the original code can be run
in a different context.

One prominent example of this kind of tools is XMLVM (Puder, 2005).
This tool converts source code and bytecode to a variety of intermediate
representations, provides transformations between these intermediate rep-
resentations, and then converts these intermediate representations back to
either source code or bytecode.

These five kinds of tool are classified according to the Plastic UI Snowflake in
table 2.2.

This table, and all the subsequent analysis of the industrial tools in this sec-
tion, comes with a significant caveat. The tools are classified based on what they
are intended to do, rather than on a view of the whole of their features. This is im-
portant because a number of these tools are built using repurposed technologies,
and have features from a number of different categories. An example of this can
be found in the web-to-native wrappers: they are built using repurposed web tech-
nologies. Their intention is to provide a technical platform. However, because of
their use of HTML and the technical requirements of the operating systems on
which they run, they provide some functions which provide physical adaptation
(such as HTML forms) and logical adaptation (such as the user interface for image
capture).

42

Components Target
JavaScript frameworks Various Platform
App Factories Various Platform
Web-to-native wrappers Platform Platform
Runtimes Various Platform
Code translators Various Platform

Phases (design) Phases (runtime)
JavaScript frameworks Forward engineering Toolbox
App Factories Forward engineering Infrastructure
Web-to-native wrappers Forward engineering Infrastructure
Runtimes Forward engineering Infrastructure/Toolbox
Code translators Forward engineering Infrastructure

UI Implementation Actor (design)
JavaScript frameworks HTML/JavaScript Human/System
App Factories HTML/JavaScript Human/System
Web-to-native wrappers HTML/JavaScript Human/System
Runtimes Various Human/System
Code translators Various Human/System

Actor (runtime) UI Computation
JavaScript frameworks System On-the-fly
App Factories System On-the-fly
Web-to-native wrappers System On-the-fly
Runtimes System Pre-computed
Code translators System Pre-computed

Table 2.2: Categorisation of tool categories on the Plastic UI snowflake

Some patterns immediately emerge. All these tool categories are forward-
engineering tools. All target the platform; that is to say, Jones et al.’s “cross-
platform tools” are, in Thevenin et al.’s terms, “multi-platform tools”.

One pattern that emerges from the classification in table 2.2 is that the level of
adaptation on the Arch which the tool supports does not depend on its technical
approach. Each individual tool, however, can be categorised according to the level
or levels of the arch at which it performs adaptation. This categorisation of the
forty-six tools is summarised in table 2.3. The full categorisation of each tool is in
appendix A. Note that the total of the numbers in the table is more than forty-six:
this is because several tools operate at more than one level of the Arch model.

The tools are heavily weighted towards physical presentation; there are some
which perform logical presentation adaptation; but none which provide dialogue

43

Level Number of tools
Dialogue 0
Logical Presentation 3
Physical Presentation 26
Platform 29

Table 2.3: Levels of plasticity in industrial tools. (see appendix A)

Architecture family Number of tools
Architecture-neutral 20
MVC 7
Game-specific 7
Other 3
N/A 9

Table 2.4: Software architectures in industrial tools (see Appendix A)

adaptation. This does not, of course, mean that adapting the dialogue to different
devices is impossible; many tools will allow code to retrieve information about the
device and the form factor, which can be used with “if” statements to make simple
adaptations. However, they do not provide adaptation of a centralised dialogue
component, and any adaptation has to be done manually, in an ad-hoc manner,
and ends up spread out in many places in the code.

One other important variable for understanding the nature of these tools,
which is not mentioned by the Plastic UI snowflake, is whether they assume or
provide support for any specific software architecture. A categorisation of the
forty-six tools along these lines is summarised in table 2.4. The full categorisation
is in appendix A.

Most of the tools are either architecture-neutral, and do not make any as-
sumptions about software architecture at all (such as jQuery Mobile, which exists
purely to put concrete components on the screen) or sit outside the entire con-
cept of the software architecture of the system (such as the “App factories” and
the source code translators). Seven of the tools used game-specific architectures.
These vary greatly between the tools, but concentrate on tasks common in game
development, such as putting sprites on the screen and managing events concern-
ing in-game objects. The most popular single architecture family is MVC. Seven
tools provide members of this architecture family. The remaining three tools that
provide software architecture support each use a distinct architecture: one is a
flowchart-based “visual programming” environment (Lunduke, 2012); one uses the
Android “Activity” model (Google, Inc., 2013b); and one uses an architecture based
on the Observer pattern (Erich et al., 1995; Balmer, 2011).

44

Notation type Number of tools
Textual declarative 17
Graphical declarative 5
Direct manipulation 15

Table 2.5: Declarative notations in industrial cross-platform tools

There are no heavyweight model-driven engineering tools among the forty-six.
IBM provides model-driven engineering tools in other contexts (such as the Ra-
tional product line), but their cross-platform tool itself is not a model-driven tool
(IBM Corporation, 2013). Microsoft’s Visual Studio can provide some support for
model-driven engineering (Cook, 2007), but in place of building a model-driven
tool on top of this for cross-platform mobile development, Microsoft instead as-
sisted work on two existing non-model-driven cross-platform tools, PhoneGap
and Sencha Touch (MacFadyen, 2012; Bansod, 2012). XMLVM is designed in a
model-driven way, with models of file formats and CPU architectures, declarative
transformations between them, and metamodels which describe the models, but
this is its internal architecture, and not the way that developers who use the tool
are expected to use it.

There being no model-driven engineering tools does not imply that there are
no declarative domain-specific notations in use among industrial mobile devel-
opment tools. Embarcadero’s cross-platform design tools use a subset of UML,
for data modelling; and as will be described below, Oracle’s and Apple’s develop-
ment tools both provide a modelling language for the user’s dialogue with the ap-
plication. Some of the forty-six cross-platform tools also use declarative domain-
specific notations, and these are categorised in table 2.5 according to the following
types of notation:

Textual declarative notations are those which are edited as text. This includes
notations which are embedded in HTML, XML or JavaScript Object Nota-
tion (“JSON”).

Graphical declarative notations are those which are edited as graphics. This
includes notations such as flowcharts or UML. This does not include direct
manipulation interfaces where the developer directly edits a user interface.

Direct manipulation notations are those which very closely mirror the final
user interface that the user sees. The developer effectively edits the final
user interface.

This table demonstrates that declarative notations are by no means uncom-
mon. Textual declarative languages are the most common. Graphical declarative

45

languages are not as common as textual languages but do exist. This means that a
tool that uses an executable declarative language will not necessarily be unfamiliar
to developers, so long as the nature of that language is familiar: so a tool that em-
bodies case can use a declarative way of specifying other elements of the dialogue,
so long as those declarative ways are familiar to the developer.

2.7.2 Other application-level industrial cross-platform tools

There is a class of industrial tools which provide solutions to cross-platform prob-
lems in a wider sense. Many of these emerged originally from the problem of
building graphical user interfaces on computers running UNIX-based operating
systems, where it is not feasible to make assumptions about the nature of the
hardware upon which the application is running, or even the precise nature of
the operating system. Some of these tools were either designed with mobile de-
velopment in mind or were applied to mobile development some time after their
original implementation, and these are summarised here.

The X Window System (Mansfield, 1993), often known as X or X11, is a windowing
system, graphics framework and network protocol for an enormous number
of operating systems and hardware platforms. It is extremely feature-rich,
and a full description of what it does and what problems it solves would
require a book-length treatment of its own.

Its application to mobile development has largely been to provide basic
graphics support and basic windowing (thus sitting at the platform layer of
the extended Arch model). In addition, the other toolkits outlined below
were originally designed for X, and so making X available makes it consid-
erably easier to make these other toolkits available.

X provides no adaptation above the platform level. While it is often possi-
ble to run an application designed for a desktop context which uses X on a
mobile device which uses X, the very same user interface will be displayed
on the mobile device as on the desktop computer (as in figure 2.6).

X implementations are used in mobile platforms derived from Maemo (in-
cluding MeeGo, Mer and Sailfish OS), in some Sharp Zaurus software, in the
OpenMoko smartphone platform and in Tizen.

GTK+ (Krause, 2007) is an interface toolkit which was originally created for the
GIMP image editing application, but was then adopted by the GNOME
desktop. In terms of the Arch model, it provides physical adaptation, being
able to adapt the appearance of its components to fit in with different con-
texts (see figure 2.7). GTK+ originally used X to provide its platform level

46

Figure 2.6: An unmodified X application running on Maemo 5

features, but more recent versions have interchangeable “backends” which
allow it to use graphics frameworks other than X.

GTK+ was used in the Maemo mobile platform (although not on its descen-
dents MeeGo or Sailfish OS, both of which use Qt) and the GPE palmtop
platform. It continues to be used in the OpenMoko smartphone platform
and the GNOME Mobile and Embedded initiative.

wxWidgets (Smart et al., 2006) is a meta-toolkit which provides a common pro-
gramming interface over a variety of underlying user interface toolkits. It
provides adaptation at the physical layer of the Arch model only. Its appli-
cation to mobile development is in its availability on the iOS, PalmOS and
Windows CE platforms, along with being available for a number of embed-
ded platforms.

XUL is the Mozilla project’s technology for building user interfaces for their ap-
plications. Unlike the toolkits above, XUL is declarative, with the structure
of the interface being specified in an XML file. It provides adaptation at
the physical layer of the Arch model. XUL is flexible, but proved to be
slow and unwieldy on mobile devices (Raju and Duggi, 2008). Neverthe-
less while the Mobile Firefox browser was multi-platform (being available
on both Android and Maemo) it used XUL: but when Nokia abandoned
Maemo, Mozilla stopped maintaining Firefox for Maemo and Mobile Fire-
fox effectively became a single-platform project available on Android only.
In 2011, Mozilla announced that Firefox for Android would begin using a
native, non-cross-platform interface, citing performance issues with XUL
(Nightingale, 2011).

47

(a) MacOS X

(b) Ubuntu Linux

(c) Microsoft Windows XP

Figure 2.7: A GTK+ application on multiple desktop platforms

Physical adaptation can be best seen in scroll bars and drop-down menus.

48

Soft. Components Target
X11 Platform Platform
GTK+ Physical Platform
wxWidgets Physical Platform
XUL Physical Platform

Dev. Phases (design) Dev. Phases (runtime)
X11 n/a Infrastructure/Toolbox
GTK+ Forward engineering Infrastructure/Toolbox
wxWidgets Forward engineering Infrastructure/Toolbox
XUL Forward engineering Infrastructure/Toolbox

UI Implementation Actor (design)
X11 Various Human
GTK+ Various Human/System
wxWidgets Various Human/System
XUL Various Human/System

Actor (runtime) UI Computation UI Migration
X11 System On-the-fly Possible with effort
GTK+ System On-the-fly n/a
wxWidgets System Pre-computed n/a
XUL System On-the-fly n/a

Table 2.6: Categorisation of non-mobile tool categories on the Plastic UI
snowflake

These tools are summarised in table 2.6. They are very similar to the mobile-
specific development tools: each targets the platform area, and they adapt at the
physical layer of the Arch. The only departure is that X11 is the only tool studied
here—including the research tools—that allows the running interfaces to be moved
between devices.

2.7.3 Web standards and design approaches

Perhaps unsurprisingly, much of the industrial work on building plastic user in-
terfaces comes from the building of web applications. In these applications, the
actual application is largely implemented on a web server, and the interface is
served to the client using web protocols.

The web’s lifeblood is not individual tools, but rather standards and design ap-
proaches. There is no longer, for example, any reference implementation of web
page rendering: instead, the method by which it is to be done is laid out in de-

49

tail in a standards document. Software developers who design and build rendering
engines adhere—to a greater or lesser extent—to these standards. Web and In-
ternet standards are generally laid out in a single canonical reference document.
Examples of web standards are the documents published by the World Wide Web
Consortium.

Design approaches are less formal than standards: they do not necessarily pos-
sess a canonical document, but rather they emerge from the community’s attempts
to solve problems. A design approach is at best nebulous, and will usually consist
of some articles or documents demonstrating the usefulness of the approach, its
goals and its approximate methods, and an array of example implementations.

Here follow some characteristics of the major standards in use.

Media queries are a feature of the Cascading Style Sheets (“CSS”) standard which
allows different styles to be applied to elements of an HTML document
based on characteristics of the display on which they are being presented,
and thus to present different versions of an interface or a design depending
on these characteristics.

CSS version 2 introduced a feature called “media types” (Bos et al., 2011)
that allows different styling to be applied based on the type of display which
is in use. The standard mandates a list of types of displays which must be
distinguishable in stylesheets. These types are:

• Letter or line-at-a-time braille devices.

• Page-at-a-time braille devices or braille printers.

• Handheld devices with small screens and limited bandwidth.

• Printers.

• Projected presentations.

• Computer screens.

• Speech synthesisers.

• Devices with a fixed-width character grid and no graphics capability
(such as text-only terminals).

• Television screens.

CSS files consist of a list of rules which map “selectors” to styling instruc-
tions. Selectors are predicates which identify a subset of the HTML ele-
ments within the document. When a rule is applied to the document, any
elements that match the selector are styled according to the styling instruc-
tions in the rules. Media types are applied to sets of rules. Any rule to

50

which a media type is applied will only affect the document if the media
type matches the display mechanism which is actually in use.

Media queries (Rivoal et al., 2012) were introduced in CSS version 3 in order
to make this mechanism more fine-grained . In CSS version 3, the media
type applied to a block of rules can be refined by a set of criteria defining
more precisely when this rule should be applied. Each criterion consists of
a characteristic of the display device and either a range in which the value
associated with this characteristic must fall, or an exact value to which the
characteristic must be equal. The characteristics that CSS version 3 supports
are:

• The width and height of the area of the display device that is being
used to display the page.

• The width and height of the whole display device that is being used to
display the page.

• The orientation of the display device that is being used to display the
page (portrait or landscape).

• The aspect ratio of the area of the display device that is being used to
display the page.

• The aspect ratio of the whole display device that is being used to display
the page.

• The number of colours available to the document.

• The resolution (pixel density) of the device that is being used to display
the page.

• The kind of scan (progressive or interlaced) of the television-type de-
vice that is being used to display the page.

• Whether the display being used to display the page is based on a fixed-
width single-font character grid or whether it can display multiple fonts
and graphics.

Note that this does not permit parameterisation of the rules by these variables:
it is not possible, for example, to use the aspect ratio of the display in some
arithmetic way. They purely enable and disable rules.

Note also that the characteristics are all properties of the display itself. Us-
ing CSS version 3, it is not possible to enable and disable styling rules based
on the types of input device in use. This means, for example, that it is im-
possible to use media queries to increase the size of hyperlinks on touch
screens compared to screens which are paired with a mouse.

51

Since CSS is generally concerned with the appearance of interactors, CSS
version 3 media queries provide adaptation at the physical layer of the Arch
model.

Indie UI is a standardisation project being pursued at the World Wide Web Con-
sortium’s Web Accessibility Initiative. The Indie UI project is currently still
in its very early stages and no standards have yet been published. Therefore,
this section is based on the working group’s drafts as available in May 2013
(Craig and Cooper, 2013; Craig, 2013). The “User Context” specification was
especially fluid at this time.

Indie UI is a “a way for user actions to be communicated to web applications”
so that web applications can “work in a wide range of contexts — different
devices, different assistive technologies (AT), different user needs.” (Henry,
2013). It provides specifications for two scripting application programming
interfaces that can be used by web applications.

The first is a means for a web application to query the user’s context, and to
gather information about what extra accessibility needs the user may have
(Craig, 2013). These are gathered into a number of groups. These are:

General settings. These allow the developer to find out whether the user
needs to be able to use the application using only the keyboard, and
whether they have inverted the colours on their screen.

Type settings. These allow the developer to find out what sizes of text
the user needs, whether they need custom letter or word spacing and
whether they need a custom line height.

Display settings. These allow the developer to find out whether the user
needs increased contrast on their display, whether they need content
to be displayed only in greyscale and whether they need text to be dis-
played in a light colour on a dark background.

Media alternative settings. These allow the developer to find out whether
the user needs subtitles for any video that the application might dis-
play, what language those subtitles should be displayed in if they are
needed, what type of subtitles to use (whether to use specific subtitles
for the hard of hearing or simply to transcribe the spoken content),
whether the user needs a transcript of any video that the application
might display, whether the user prefers to be presented with a video
of sign language where it is available, and whether the user needs an
audible description of content presented visually.

Screen reader settings. These allow the developer to find out whether
the user is using a screen reader, and if so which screen reader is in use.

52

The rationale for the choice of these categories and these accessibility set-
tings is unclear as of May 2013, as the explanatory text around the specifica-
tion of the programming interface has yet to be written.

The second tool is an extension of the way that user interface events are de-
livered to web applications. In standard JavaScript and HTML, many events
directly represent users’ use of input devices. For example, elements of an
HTML page can receive “click” events when the user clicks on them with a
mouse; “touchdown” events when the user puts their finger on them using
a touch screen; and “keydown” when the user presses a key when they have
input focus. There are other events which represent the user’s intent, and
which are decoupled from the specific user input. For example, elements of
HTML page can receive “copy” events when they are copied to the user’s
clipboard to be pasted into another document.

Indie UI’s events framework provides further events, which represent the
user’s intent. This is so that web browsers used by users with accessibility
needs can provide appropriate interaction methods for the user to signal
these intents without the web application needing to be aware of what these
interaction methods are. It also allows web browsers for users with different
kinds of device to let those users use appropriate idioms for their devices.
The Indie UI event framework provides events for users’ intents to undo
the previous action; redo the last undone action; expand a collapsed section
of the page; collapse an expanded section of the page; dismiss a popup or
dialogue; delete an element on the page; move an element of the page; pan
an element on the page; rotate an element on the page; scroll the page; and
zoom in or out.

How the user context specification and the events specification will interact
is not yet clear.

Since the Indie UI events framework abstracts the web application away
from individual interactors and towards the user’s intent when they use the
interactors, it provides adaptation on the logical level of the Arch model.

Responsive web design is a design approach introduced by Ethan Marcotte (2010a)
to allow a designer “to use the same code to deliver an experience to desk-
top browsers, tablets and mobile devices” (Bryant and Jones, 2012, p. 37).
Since the word “experience” as used in the web design community certainly
includes the concept of usability, it is reasonable to examine this approach
as a way of building plastic interfaces.

Responsive web design consists of three techniques used together which
complement each other.

53

The first of these techniques is the use of a “fluid grid”. Web design inherited
from print-based design the concept of a “typographic grid”. A typographic
grid is a regular grid which is laid over the page on which the designer is
laying out text. Text and images are laid out on this grid. The regularity
of the grid ensures that there are visual rhythms in the page that the eye
can easily follow. In print-based design, the size of the grid is expressed
in absolute units (such as millimetres, inches or points). Since the size of
the paper is unlikely to change once it has been printed, this does not put
undue limitations on the kinds of design that the grid can accommodate.
When this technique is used on the web, however, where the size of the
display medium can change at any time, it leads to fixed-size designs which
cannot resize to fit the space available to them. A fluid grid is a typographic
grid where the dimensions of the grid, instead of being expressed in absolute
units, are expressed in units which are proportional to the size of the display
medium (such as percentages) or to the size of the text in use (such as ems)
(Marcotte, 2009). This allows the grid to react to changes in the size of the
display medium without losing its regularity.

The second technique is the use of “fluid images”. Pixel-based images, such
as photographs or textures, have a defined size in pixels. Pixels are an abso-
lute unit of measurement: the size of a pixel may vary from screen to screen,
but it does not vary depending on the size of the display medium in the same
way that a percentage or an em might. Fluid images have a maximum size
specified in the same proportional units as the fluid grid of which they are a
part (Marcotte, 2010b). This prevents them from spilling over the edges of
the design element which contains them.

The third technique is the use of CSS version 3 media queries to allow the
fluid grid to be rearranged to fit the size of the display medium and to hide
unused functionality. Columns of the grid may be dropped, so a three-
column layout may become a two-column layout at a smaller size; horizontal
arrangement may give way to vertical arrangement, so a navigation bar which
is a vertical list of links on the left hand side of a large display medium may
become a horizontal list of links at the top of a small display medium; and
less important content may be dropped entirely, so that infrequently used
navigation links may only be visible on larger display media. Wroblewski
(2012) has identified a number of ways in which the grid has been success-
fully adapted to smaller display media.

One high profile use of the responsive web design approach has been the
web site of the Boston Globe newspaper. This web site can be seen at three
different sizes of display medium in figure 2.8. All three techniques can be

54

Figure 2.8: The Boston Globe website at three sizes

seen operating in this web site. The fluid grid allows the columns of in-
formation to change size as the display medium changes size. The image
illustrating one of the news stories changes size in response to the changes
in the grid. The number of columns in the grid changes downwards as the
display medium size decreases, and unimportant content disappears.

Responsive web design operates at the physical layer of the Arch model, as
it adapts how things appear based on the size of the display medium.

Adaptive web design is a term which was introduced by Gustafson (2011) to refer
to the use of a “progressive enhancement” approach along with the use of

55

HTML Markup

CSS Rules

Client-side scripting

User 1

User 2

User 3

Figure 2.9: Layers of progressive enhancement

multiple, fixed-width designs which are switched between using CSS media
queries.

Progressive enhancement is a technique which aims to provide functional
and usable web interfaces to various devices by considering the design as a
layered entity (illustrated in figure 2.9). The bottom layer consists of sim-
ple, semantic HTML markup. The second layer consists of the CSS styling
rules which are applied to the HTML. The third layer consists of client-side
scripting for design elements which cannot be implemented using CSS. Each
layer may only depend on the layers below it for functionality: a browser
which cannot display CSS or run JavaScript must still be able to provide a
usable and functional experience using only the HTML markup (Wells and
Draganova, 2007).

2.8 Structuring the dialogue component

Each of the research tools above uses a domain-specific language to allow the de-
veloper to specify the dialogue component. The industrial tools do not permit
adaptation at the dialogue level, but some still have domain-specific languages to
specify the dialogue component. These languages, both from the research and
industrial tools, are summarised here.

ConcurTaskTrees (“CTT”) are a notation for task structure and dialogue structure
which concentrates on providing a hierarchical structure based on the activ-
ities that the user is attempting to perform (Paternò et al., 1997).

A ConcurTaskTree consists of two sets of relationships: firstly, a hierarchical
relationship between tasks and subtasks, which is represented as a vertical
tree where each task and subtask is represented by a node; and secondly a
set of temporal relationships between subtasks at the same level, which are
represented as edges between nodes at the same level. Each node carries a

56

rich set of metadata, which specify whether the node represents an action to
be carried out by the user or the computer, what kind of action it represents
(such as “editing” or “monitoring”), how often it is likely to be performed,
whether it has any preconditions and whether or not it is an optional action.

The hierarchical relationship between two nodes, referred to here as parent
and child is one of containment or necessity. Paternò (2003) describe it as
“in order to [perform the parent task] I have to [perform the child task]” (p.
490).

The relationships between nodes on the same level are richer, and can rep-
resent a number of different ways that the nodes depend on each other. The
relationships that the CTT notation can encode are:

Enabling: The second task cannot begin until the first has been performed.
For example, in a satellite navigation application, the system may not
attempt to find the user’s GPS location until the user has requested
their current position.

Choice: Only one of the two tasks can be performed: once one has been
started, the other cannot be performed. For example, in a satellite
navigation application the user may have a choice either to view points
of interest near them, or search for points of interest by name.

Enabling with information passing: The second task cannot begin un-
til the first has been performed; information from the first task is passed
to the second. For example, in a satellite navigation application, the
computer cannot pan the map to the user’s current location until it has
located the user through GPS; and the information gathered from GPS
is used to pan the map to the correct place.

Concurrent tasks: The tasks can be performed in any order, or at the
same time. This includes the possibility of being able to interrupt the
first task to switch to the second, or interrupt the second to switch to
the first, as many times as the user wishes. For example, in a satellite
navigation application, if the user is recording their current route, they
can pan the map around without interrupting or affecting the recording
of the route.

Concurrent communicating tasks: Concurrent tasks which exchange in-
formation with each other. For example, in a satellite navigation ap-
plication, the user can be panning the map around and measuring dis-
tances at the same time. Information flows from the map panning task
to the distance measuring task. If it did not, then if the user started

57

Figure 2.10: An example of CTT notation

measuring a distance then panned the map, then the distance measur-
ing task would have no way of knowing where the far end of the line
was on the map.

Independence: The tasks can be performed in either order, but once one
has been started, it must be finished before the other task can be started.
For example, in a satellite navigation application, a search task may
have this relationship with the tasks that can be performed on the map,
such as panning and distance measurement: there is no specified order,
but once the search task has been started it takes up the entire screen
and the user cannot continue performing actions on the map until the
search has been completed or cancelled.

Disabling: The first task is interrupted permanently by the second task.
For example, in a satellite navigation application, when the user is search-
ing for a point of interest, their entering of data in the search form is
interrupted by their pressing of the “Search” button.

Suspend-resume: The first task can be interrupted by the second; once the
second has been completed then the first can be resumed from where
it was left off. For example, if a satellite navigation application had an
option to email details of a point of interest to another person, then the
process of viewing the point of interest’s details would be suspended by
choosing to send the email, and entering the email address to send it
to. Once the entering of the address was complete, then the viewing
of point of interest details could resume from exactly where it left off.

An example of a task structure in CTT notation, following several of the
examples above, is in figure 2.10.

The CTT notation is used in the ARTStudio, MARIAE and TERESA tools
outlined above.

State networks are a family of notations which share the idea that the system they
describe can be in one of a fixed set of states, and that user input makes the
system change from state to state.

58

In the context of human-computer interaction, states in a state network
correspond to Berti et al. (2005)’s presentations, with the paths that the
user can take out of the state corresponding to the options they have for
interacting with the system while the system is in that state.

State networks are somewhat controversial in use in the area of human-
computer interaction. In his thesis, which described UIML, Phanouriou
(2000) suggested that they are not useful because “most modern user inter-
faces are mode-less (the system can be in more than one state at any time)”
(p. 15) while state networks permit the system to be in one state alone. How-
ever, interactions with a mobile device are modal in a way that interactions
with a desktop are not: Apple’s user interaction guidelines for iOS do not al-
low elements of multiple different presentations to be on the screen at once
(Apple, Inc., 2012a).

A number of variations on state networks have been used to describe inter-
faces. Facebook’s “SproutCore” JavaScript toolkit uses Harel (1987)’s state
charts, which are state networks which can be nested inside one another,
to describe the dialogue layer in mobile applications (Sarnacki et al., 2012).
Thimbleby (2007) also used state charts to define the behaviours of systems;
and (Thimbleby et al., 2011) defined a type of state network which had a con-
ception of numeric “buffers” to store extra information about the state of the
system.

Dialog Flow Notation (“DFN”) is a modified form of state network used by Book
and Gruhn (2004). It is used as part of their Dialog Control Framework,
which is a tool for building web applications using a separate dialogue con-
troller.

DFN diagrams consist of a set of nodes with edges connecting them all con-
tained within a box (a “contour”) that contains the whole diagram. A key
to this notation is in figure 2.11. There are two elementary kinds of node:
a hypertext page that is presented to the user and a piece of logic that is
performed by the application. Two special types of node represent possible
entry points into the state network: the “initial event” type represents the
point at which the user begins the dialogue, and the “abort event” (which
may not be present) represents a point to begin the dialogue should the
user choose to abort the dialogue entirely while engaged in it. This abort
event may, for example, lead to an area of the dialogue in which the user is
prompted to save their changes.

There are three extra kinds of node which are used to embed one diagram
within another. In a diagram that is embedded in another,“terminal events”

59

Page
name

Action
name

Module
name

Container
name

Event
name

Hypertext page

Application logic

Dialogue module

Dialogue container

Initial event

Abort event

Terminal event

Event edge

"Done" edge

"Cancelled" edge

Figure 2.11: A key to the DFN notation

are nodes which return an event to a parent diagram. In the parent diagram,
the child graph is represented as a “dialogue module” node if it generates
events or a “dialogue container” node if it does not. A dialogue module must
have an outgoing event edge for each terminal event node in the diagram it
represents.

Edges between the nodes in a dialogue diagram are labelled with “event
names”, which are arbitrary strings. Events which emerge from a hypertext
page or from an application logic node are defined by the implementation of
that node. Events which emerge from a dialogue module are defined by the
terminal event nodes in the graph that the dialogue module node represents.
There are convenience notations for events which represent the completion
of a child graph or which represent the user choosing a “cancel” option.

An example of a dialogue specified in the DFN notation is shown in figure
2.12. This figure shows part of a dialogue for a satellite navigation system.
This illustrates the features of the DFN: application logic and hypertext be-
ing presented to the user are both represented; the two diagrams are nested,
with the “Search or filter POIs” node in the lower graph corresponding to
the entire upper graph; the upper graph returns events to the lower graph;
and there are shorthand notations for common kinds of edges.

60

Satellite navigation system

Filter or
search

Search
form

choose
type of
filter

free text
search Find

POIs

List of
matching

POIs

POI
details

confirm
search
terms

matching
POIs
identified

POI
chosen

Search or filter points of interest

Find
GPS

position
Map

POI
details

POI
chosen

search
or filter Search or

filter POIs

type of filter

type of
filter

Figure 2.12: An example of the DFN notation

61

The DFN is used in Book and Gruhn’s Dialog Control Framework, which
forms the basis of the DiaGen tool.

Storyboards are a modified form of state network used in Apple’s recent develop-
ment tools for iOS (Apple, Inc., 2012b). They consist of a directed graph
of nodes. Each node is either a view with its corresponding controller or a
standalone controller. One of these nodes is marked as an initial node.

The graph has three kinds of edges. The first kind goes from a “from” node
to a “to” screen and represents a visual transition after which the screen
is displayed. The second kind goes from a “from” node to an action in a
controller, and represents a call to that controller action. Each of these two
kinds of edge is labelled with an event which can be triggered by the node
from which the edge emerges. When this event happens (for example, a user
touch), the edge is followed, either to another screen, or to the controller
action which is then performed. The third kind of edge in the graph goes
from a screen and its controller to another view, and represents containment:
for example, a screen with a tab bar in it would have this kind of edge leading
from it to as many other screens as there are tabs in the bar. These screens
would be visually contained by and managed by the view containing the tab
bar and its corresponding controller.

An example storyboard is given in figure 2.13. The initial node is a “Naviga-
tion controller”, which manages a history stack and provides a “back” button
when the stack contains somewhere to go back to. The icon on the edge that
links this controller with the main screen indicates that this is a management
or containment edge. The “Details” screen is linked to the main screen by
an edge which is labelled with a touch event on the MapView component;
the “Current Location” view is linked to the main screen by an edge which
is labelled with a touch even on the “Current” button.

At run time, each event from the current view is passed to the storyboard,
rather than directly to the view’s controller; the storyboard then is either
responsible for calling a controller action, or for displaying a new view. There
is only one storyboard, regardless of how many views and controllers there
are. The iOS MVC architecture with a storyboard is illustrated in figure
2.14.

Netbeans J2ME Flow diagrams are a specialised form of state network provided by
Oracle’s NetBeans J2ME “flow designer” (Keegan et al., 2006). This al-
lows the developer to edit a directed graph of nodes. The nodes consist
of screens, methods to be performed, named “entry points” at which the di-
alogue can be started, and a special “Mobile device” node which represents

62

Figure 2.13: A storyboard

Controller View

Storyboard

Figure 2.14: The Cocoa “Storyboard” mechanism

the operating system outside the application, and functions as a start and
end node (see figure 2.15).

Edges are labelled with an event which can happen at their starting node,
with a maximum of one edge per event; what these events are varies depend-
ing on what kind of node they emerge from. From forms, for example, the
allowable events are J2ME command objects (JSR271 Expert Group, 2009);
from the “Mobile device” node, the allowable events are the application be-
ing started and the application being resumed from the background. Events
are generated by the screens and are fed to the dialogue component, which
then calls actions in the underlying user code, and changes which screen is
displayed. This is illustrated in figure 2.16.

63

Figure 2.15: A NetBeans “Flow”

Screen
Application

logic

Flow

Figure 2.16: The NetBeans “Flow” mechanism

Card-based approaches are those approaches in which the interface is considered
as a stack of cards which contain information. All the cards are the same
size, and only one card at a time is visible. This approach was introduced
with Apple’s HyperCard tool in 1987. As of mid-2013 RunRev’s LiveCode
(RunRev Ltd., 2010) is the only tool which uses this approach for building
mobile applications.

An application’s interface is referred to as a “stack”. A stack consists of an
ordered list of cards and a set of backgrounds. Cards and backgrounds can
both contain graphics, editable text, hyperlinks and buttons. Additionally,
every card belongs to one background, and the objects which are on that
background are displayed on the card, behind the card’s own content (Apple,
Inc., 1990).

These concepts are illustrated in figure 2.17, which shows two cards from
the “Home” stack from HyperCard 1.2. The icons, time and card title on
the first card, and the text fields, radio buttons and card title on the second
card are on the card itself. The back and forward buttons at the bottom
and the graphic of the stack of cards are on the background, and are shared
between all cards which belong to that background.

64

Figure 2.17: Two cards from the HyperCard 1.2 “Home” stack.

65

Card-based approaches are a lot like state network based approaches: the
system can be in a single state, or showing a single card at once, and on
certain user interface events, the system moves between one state or card to
another state or card. They are not, however, the same: and the reason for
this lies in the way that card-based applications store data.

In a stack, each card stores the data that is entered on it. Users will tend to
create new cards in stacks as they enter data. For example, in the case of an
address book application, the application would provide a background with
the appropriate fields for name, address, telephone number, and so forth.
This background would also provide a button that would create a new card
belonging to this background. In the resulting stack, each address stored
would be on its own card, so the designer cannot know at design-time how
many cards the stack will contain. By contrast, the designer of a state ma-
chine does know at design-time how many states the system can be in.

Note that, following Java, both Sencha Touch and jQuery Mobile (Oracle
Corporation, 2013; Sencha, 2012; jQuery Team, 2013) provide a CardLayout
facility. This is a collision in terminology. These facilities are layout man-
agers which permit only one component to be visible at a time. They do not
implement a card-based approach as implemented in LiveCode or Hyper-
Card.

2.9 Summary and conclusions

The research tools available provide a high degree of plasticity, allowing for adap-
tation up to the dialogue level of the Arch model. However, comparing them to
the tools that the industry has generated for itself reveals two major ways that
they do not address the smartphone developer’s conundrum. These two ways cor-
respond to the two patterns that were identified that were not within the plastic
UI snowflake.

Firstly, they use very different software frameworks and conceptual frame-
works to the ones that mobile developers use every day. An examination of the
industrial tools shows either that those tools make no assumptions about what
software architecture is in use or use one that is not heavily model-driven. This is
unlikely to be through ignorance: as noted above, IBM and Microsoft have both
developed model-driven tooling but chose not to use this in their cross-platform
mobile tools. Taking large companies to be monolithic is inadvisable, as there is
no guarantee that the left hand knows what the right is doing. However, IBM,
at least, provide extensive documentation for integrating applications built with
their cross-platform toolkit into systems built using their enterprise development

66

tools, which do include model-driven tools. Not only, then, is there no evidence of
model-driven tooling in the industrial cross-platform mobile development tools,
but the organisations that one might have expected to use model-driven tooling
in their cross-platform mobile development tools have not done so.

It is important to note here that this does not mean that there is any objec-
tion among these tools to modelling or to declarative notations in general; a num-
ber of declarative models in use in industrial tools were given above for dialogue.
Evidence was also given above that these industrial tools use notations for other
things besides dialogue. What is not present, however, is the explicit model-and-
transformation approach that makes up the core of model-driven engineering and
that explicitly drives the research tools.

Secondly, the research tools do not follow a guideline-based approach to us-
ability. The goal of the industrial tools is generally a very pragmatic one: to let
a developer create a mobile application that they will actually be able to deploy
and sell. The physical and logical adaptation that they provide is designed to be
sufficient to produce applications that are close enough to the platform guidelines
that they can be distributed. The research tools do not have this focus, and do not
engage with a guideline-based approach to interface design.

The industrial tools and standards, while geared to the particular definition of
usability required by mobile developers, have significantly limited expressiveness
compared to the research tools. Every research tool surveyed can effect plasticity,
at least to some extent, up to the dialogue level of the Arch model. None of the
industrial tools can. A number of them have a notation or a declarative concept
of dialogue, but none of them effect plasticity through it.

Therefore, there is a gap in expressiveness between the industrial tools and the
research tools, and that gap is defined by a number of simple requirements. A tool
or model that bridges this gap should provide a useful degree of plasticity at the
dialogue level, should make use of pragmatic methods that are familiar to develop-
ers, and should embrace a guideline-based approach to usability. The next chapter
suggests that the notion of “case” from natural languages can help to bridge that
gap.

67

A Chapter 3
Case and its application

3.1 Introduction

Chapter 2 demonstrated the need for plastic user interfaces among mobile devel-
opers and introduced the state of the art in tools used to create applications with
plastic user interfaces. It also surveyed the ways that these tools manage the dia-
logue between user and machine. The dialogue between the user and machine is a
problem of ordering: users do things in an order that is mapped to a task structure.
Finally, the chapter concluded that there was a gap in the tooling available.

This chapter suggests that the notion of “case” from natural language might be
helpful in bridging this tooling gap. Case is a mechanism that is common in natural
languages and which permits flexible word order (analogous to flexible ordering
of elements in a task in a plastic user interface) while retaining semantic clarity.
Furthermore, the chapter presents some of the evidence that lets linguists argue
that this is a genuine pattern across languages and not just a chance resemblance.
Its commonness suggests that case may be linked to some deeper phenomenon
that is innate to people’s ability to think symbolically, and this could be a natural
and intuitive notion for structuring user interfaces. The discussion of case in the
strict, linguistic sense in this chapter forms a justification for even considering the
use of case in plastic user interfaces.

This chapter starts by explaining what case is and how it appears in natural
languages. In English, sentences have a strict word order; but in other languages,
the word order can change depending on the demands of the context in which the
language is being used. Case provides a major mechanism by which this process of
change can happen. Latin provides very good examples of this. As an illustration
this chapter takes two examples from Latin literature to demonstrate how case
can function to produce flexible word order, and ways in which this flexible word
order can be used.

If case only occurred in Latin, applying it as a concept outside of Latin and
its descendent languages would be dubious. This thesis proposes to apply it out-

68

side of language altogether. Therefore, to demonstrate that case is widespread,
the chapter presents a small illustrative survey of languages that use case. For the
purposes of this chapter, twenty languages are chosen from a wide range of lan-
guage families and a wide range of time periods. This makes it unlikely that all the
case systems are borrowings: some of them at least must reflect a cross-linguistic
phenomenon.

After this, the chapter draws out some common meanings from the case sys-
tems of languages. Four examples of common patterns are given, which are the
patterns that will be engaged with during the remainder of the thesis. These pat-
terns are the top four items in Blake’s (2001) case hierarchy, which is described
next. Blake’s case hierarchy predicts the structures of case systems found in natu-
ral languages, and does so reliably: it is upon Blake’s case hierarchy that the choice
of the cases to be used in the plastic user interface framework will be based.

The application of case to plastic user interfaces is discussed in general terms.
Two potential reasons why case might be useful are summarised, a simple example
is given of different ordering assumptions being used on different platforms, and
examples are drawn from user interface guidelines to demonstrate that the mean-
ings of cases summarised in this chapter have analogies in user interfaces. These
ideas will be carried forward into the remainder of the thesis. Finally the research
questions that the remainder of this thesis will answer are presented in the light
of the information provided in this chapter and in chapter 2.

3.2 What is case?

Case is a means of categorising the relationship between pairs of words; specifi-
cally, as Blake (2001) puts it, “between a noun and its head”.

The head of a phrase is the “dominant” word in the phrase; it is the word that
carries the fundamental meaning, and without which the phrase does not make
sense. The other elements in the phrase or compound modify or clarify one’s
understanding of the head, and are called “dependents”. If one were to draw the
phrase out as a tree, then the head would be at the top of the tree.

Example: In the phrase “the big dog”, the head is “dog”; and the phrase is a noun
phrase, because the head is a noun.

In some circumstances, for example, in attaching a set of adjectives to a noun,
each of the adjectives modify their head in the same way. In the phrase “the circu-
lar purple dog”, “circular” and “purple” indicate orthogonal (if slightly unnatural)
properties of the dog. Reordering the phrase as “the purple circular dog” leaves
the animal in exactly the same state. Likewise, attaching a set of adverbs to an

69

adjective or a verb is generally symmetrical. In the former case, the head of the
phrase is a noun; in the latter case, an adjective or verb.

This symmetry breaks down when attaching nouns to other words; most of
the time, these nouns are not interchangeable or symmetrical with regard to their
head at all.

Example: The sentences “the dog bit the boy” and “the boy bit the dog” are not
in any way equivalent (with respect to the events they are describing).

Example: The sentences “the girl gave the dog to the boy” and “the girl gave the
boy to the dog” are not in any way equivalent.

This means that the relationship between the noun and its head has a meaning
distinct from the meaning of the words themselves. Case refers to the categori-
sation of these relationships in the way that the language is used. Languages that
use case have a set of cases each of which specifies which relationship is meant.
These categories are usually indicated by a modification of the noun. The English
pronoun “he”, for example, exhibits three cases, indicated by the three forms “he”,
“him” and “his”.

Some of these categories are strictly grammatical, but they need not be. Ex-
amples of the former include languages which put the subject and object of a tran-
sitive verb in different cases. A transitive verb is one which takes a subject and an
object. In English, a good example is “bites” (“the dog bites the man”). An intran-
sitive verb takes only a single noun and no object - in English, a good example is
“falls” (“the boy falls”). Some verbs can occur in both patterns - an example being
“feeds” (“the cow feeds”; “the girl feeds the dog”).

This pattern, where the subject and the object are in different cases, can be
seen in English pronouns:

Example: “she hit him” against “he hit her”.

Other cases do not fulfil purely grammatical roles, as these do, but encode
a semantic or locative meaning. Cases in natural languages encompass meanings
such as “by what means?” (instrumental; for example, in Sanskrit), “at what place?”
(locative; for example, in Finnish), and “from where” (ablative; for example, in
Latin)

A case can also straddle this boundary. An example of this would be a dative
case (such as the one in Latin. This case can generally be translated with the
English word “to”, which keeps the same semantic/grammatical ambiguity.), which
can both function as an indirect object marker (grammatical) or as the beneficiary
of an action (semantic).

Example: “he gave the bone to the dog”

70

lupus (“wolf ”) fēmina (“woman”) victor (“victor”)
Sing Plur Sing Plur Sing Plur

Nom lupus lupī fēmina fēminae victor victōrēs
Acc lupum lupī fēminam fēminās victōrem victōrēs
Gen lupī lupōrum fēminae fēminārum victōris victōrum
Dat lupō lupīs fēminae fēminīs victōrī victōribus
Abl lupō lupīs fēminā fēminīs victōre victōribus

Table 3.1: Case in Latin nouns (after Weiss, 2009, ch. 21-26)

3.3 Case and word order

If a language exhibits case, then it can have far greater freedom in word order in
sentences. As shown above, in English, word order is used to convey a lot of infor-
mation about the structure of a phrase. If, in another language, that information
is conveyed explicitly through case, then the word order of the sentence is free to
be used to carry other meanings.

One language that uses comparatively free word order is classical Latin. This
section presents first a brief overview of the case system of Latin, and then two
examples that show two ways that free word order can be useful. The first use
discussed is about allowing an author’s meaning to be clearer when they are writ-
ing prose. It is demonstrated by a brief examination of Caesar’s writing about his
conquests in Gaul. The second use is that in poetry, where there is already a con-
ventional form defining how the lines of poetry should sound, and the words are
being inserted into that framework.

3.3.1 The Case System of Latin

To understand any Latin writing is it necessary to have at least a cursory under-
standing of the Latin case system. Therefore, this case system is summarised here
to render the subsequent discussions of Caesar and Virgil comprehensible. The
definitions presented here apply only to Latin: other case systems will be discussed
in summary later in the chapter.

Latin nouns and adjectives exhibit five cases1. The forms of some nouns are
summarised in table 3.1.

The nominative, abbreviated as Nom, is the form of the noun one would find in
a dictionary. The nominative marks the subject of a transitive verb:

1There is also a sixth form, called the Vocative, that is only used when directly addressing someone.
This form is traditionally counted among the cases of nouns. However, the wider family of noun forms
it fits into have a very unclear relationship with other cases (Spencer and Otoguro, 2005; Daniel and
Spencer, 2009). Therefore, it is ignored here.

71

puella canem habet
girl.nom dog.acc has
a/the girl has a/the dog

It also marks the single argument of an intransitive verb.

servi currunt
slaves.nom run
the slaves run / the slaves are running

In grammars, these two roles are usually clumped together under the name
of the “subject”.

The accusative, abbreviated as Acc, primarily marks the object of a transitive
verb.

puella canem habet
girl.nom dog.acc has
a/the girl has a/the dog

The accusative is also used for the destination of an action of movement.

Romam eo
Rome.acc I.go
I go to Rome

It can also be used to denote extent in time or space.

arbor erat septem pedes altus
tree.nom was seven feet.acc high.nom
the tree was seven feet high

The accusative is also required after some prepositions, such as ad, “to” or
“towards”; apud, “among” or “in the house of”; ob, “because of”; and trans,
“across”.

The genitive, abbreviated as Gen, is primarily used to mark possession or cate-
gorisation of nouns.

canis puellae
dog.nom girl.gen
the girl’s dog

72

turba luporum
crowd.nom wolves.gen
a crowd of wolves

It is also used to indicate the whole of which another noun is a part (compare
the English “a slice of pie”).

plus vini
more wine.gen
more wine

The genitive is also often used to mark the location at which something took
place.

Romae
Rome.gen
at Rome

There are also some verbs and adjectives which must be accompanied by a
noun in the genitive, such as pudere, “to be ashamed of”; accusare, “to accuse”;
memor, “mindful of”; and similis, “similar to”.

The dative, abbreviated as Dat, is used to mark the indirect object. This can
mark, for example, a transfer to a person or away from a person.

donum uxori dat
gift.acc wife.dat he.gives
he gives a gift to his wife

pecuniam mihi ademit
money.acc me.dat he.took
he took money from me

As a generalisation of this idea of transfer, the object of feelings or thoughts
is often in the dative.

puellae credo
girl.dat I.believe
I believe the girl.

73

The datives of some nouns that name feelings can be translated as “an object
of...”.

odio esse
hatred.dat to.be
to be an object of hatred

In addition, there are a number of verbs which require a noun in the dative
case, such as imperare, “to give orders to”; studere, “to be devoted to”; placere,
“to be a pleasure to”; and “nocere”, to harm.

The ablative, abbreviated as Abl, has a bewildering variety of different uses.
Generally, however, it carries one of three meanings. The first is “move-
ment away from”.

ex horto ambulat
out.of garden.abl he.walks
he walks from the garden

It is also used for the name of the instrument or tool that is used to perform
the action denoted by the verb:

hostem gladio necavit
enemy.acc sword.abl he.killed
he killed the enemy with a sword

This extends to techniques or skills, where in English it would usually be
translated with the word ’by’:

hostes virtute vincamus
enemy.acc courage.abl we.shall.beat
We will beat the enemy by courage!

In other cases, the noun in the ablative is preceded by a preposition, and it
is this that specifies the meaning.

In summary then, the case system of Latin divides the functions that nouns
can perform in sentences into five categories, and identifies the category that any
given noun in the sentence is inhabiting by a modification to the noun, generally
by adding a suffix to the noun. This category is not part of the meaning of the noun

74

itself: it is a kind of metadata indicating the function that the noun is performing
in the specific sentence of which it is a part.

Because this metadata is made explicit in the forms of the nouns, word order
can be much freer, which can help the speaker of the language to use word order for
other purposes, such as clarity, sound effects, discourse structure, or the demands
of a predetermined form. Two examples of these from the Latin literature are
described immediately below.

3.3.2 Prose: Caesar’s de Bello Gallico

Julius Caesar’s Commentarii de Bello Gallico (“Commentaries on the Gallic Wars”) is
an account of the military expeditions that Caesar led against the Celtic peoples
of Gaul. It was published in Rome some time before 46 BC (Radin, 1918).

The de Bello Gallico is in very clear, unornamented prose. It was written to
communicate, as clearly as possible, what Caesar wanted people to think had hap-
pened in Gaul. Because of the clarity of its prose, the de Bello Gallico has often
been used in the teaching of Latin.

Caesar used word order for clarity in two distinct ways (Walker, 1918). In gen-
eral, his sentences begin with the word that links them to the previous sentence.
Because of the freedom of word order, this word can be a noun, or an adjective, or
a verb. Sometimes, however, for emphasis, a different word is placed at the front
of the sentence.

The two examples below belong to the first category. The Latin text is taken
from Walpole’s (1882) edition. Examples are all taken from chapter 2.

(2) Apud
Among

Helvetios
Helvetii.acc

longe
by far

nobilissimus
most-noble.nom

fuit
was

et
and

ditissimus
most-wealthy.nom

Orgetorix.
Orgetorix.nom.

Is
He.nom

M.
M.

Messala
Messala.abl

et
and

M.
M.

Pisoni
Piso.abl

consulibus...
consuls.abl...

Among the Helvetii, Orgetorix was by far the richest and most noble. When
Marcus Messala and Marcus Piso were consuls, he...

In example 2, the first word of the second sentence is is (“he”), which creates a
link back to Orgetorix, the scheming nobleman introduced in the first sentence.
Orgetorix is also the grammatical subject of the second sentence. Grammars of
Latin tend to assert that, in general, the subject comes first in Latin sentences (for
example, see Weiss, 2009, ch. 40), so it is not surprising to see this here. However,
in Latin, the pronoun can be omitted; so the explicit insertion of the pronoun and
its positioning here does emphasise the link to the previous sentence.

Caesar does not limit himself to putting the subject first; if another word is
the link to the previous sentence, he uses that instead.

75

(3) ...
...

perfacile
very-easy

esse,
to-be,

cum
as

virtute
in-virtue

omnibus
all.dat

praestatarent,
they-excelled,

totius
all.gen

Galliae
Gaul.gen

imperio
empire.abl

potiri.
gain-possession-of.

Id
It.acc

hoc
this.abl

facilius
more-easily

eis
them.dat

persuasit
he-persuaded

...

...

... as they exceeded everyone in valour, it would be very easy to gain
possession of an empire of all Gaul. By these means, he persuaded them
more easily of this ...

In example 3, the grammatical object is first, followed by the instrument by
which this is done. Both of these are links back to the previous sentence. There
is no explicit grammatical subject, which is not unusual in Latin; instead, the verb
indicates the subject.

In other places in the text, Caesar places other cases, and even verbs in sentence-
initial position if they are the link to the previous sentence. This is a strong de-
parture from the “basic” sentence structure.

Example 4 is an example of the second way in which Caesar uses word order
(Trowbridge, 1907). This sentence is the first to mention Caesar, who famously
speaks of himself in the third person throughout the book.

(4) Caesari
Caesar.dat

cum
when

id
it.nom

nuntiatum
announced

esset,
were,

eos
they.acc

per
through

provinciam
province.acc

nostram
ours.acc

iter facere
to-march

conari
try

...

...

When it had been announced to Caesar that they were trying to march
through our province...

Caesar puts his own name at the front of the sentence. By doing this he marks
his own name as the most important thing in the sentence, even though it is nei-
ther the subject nor the object of either of the first two verbs, and nor is it a link
to any previous sentence.

3.3.3 Poetry: Virgil’s Aeneid

Virgil’s Aeneid is an epic poem which was written during the reign of Augustus. It
is largely a propaganda piece, concerning the mythical origins of the Roman state
(Green, 2004).

Classical Latin poetry is based on a very different set of assumptions from
modern English poetry. It forms its patterns not by the stress of the words or by
rhyme, but by using long and short syllables.

76

The words “long” and “short” here do not have a specialist meaning. They refer
to the length of time that a syllable takes to say. Examples of both long and short
syllables can be found in the English name “Walker”. The first syllable takes a lot
longer to say than the second, because the ’a’ sound is longer.

The rules for how lines of poetry can be put together from long and short
syllables are complicated, and a summary here would not be useful (for such a
summary, see any competent Latin textbook; the quick reference the author uses
is at the beginning of Kennedy and Davis, 1964). For the purposes of this thesis it
is enough to say that a line must obey one of a fixed number of patterns of short
and long syllables.

By choosing the pattern for each line carefully, the poet could make each line
have a sound appropriate to the thing it is describing. For example, the Aeneid
is a poem mostly about warfare. Lines in the Aeneid that deal with melancholy
concepts tend to be composed of long vowel sounds (consider the sound of the
colloquial English phrase “doom and gloom”, which uses a similar sound effect).
Lines that talk about the galloping of horses, for example, can use staccato patterns
of short and long syllables to make the sound of the words echo the actual sound
of horses’ hooves; lines about moving water can use repeated soft consonants to
evoke the sound of waves lapping (Whately, 1945).

Fulfilling the requirements of the poetic style would be hard enough if word
order were fixed; generating the desired sound effects would be almost impossible.
Therefore, poetry tends to depart significantly from the “default” word order.

(5) saxa
rocks.acc

vocant
call

Itali
Italians.nom

mediis
middle.abl

quae
which.acc

in
in

fluctibus
waves.abl

aras
altars.acc

Rocks in the middle of the waves that the Italians call “The Altars”

In example 5 (analysis from Clackson, 2008), Virgil has used a very atypical
word order. The quae, meaning “which”, which goes with saxa (“rocks”), would
normally be next to saxa. Instead, it is a long way to the right, in the middle of
a phrase (mediis ... in fluctibus) meaning “in the middle of the waves”. Even if the
quae is removed, this phrase is in an atypical order. Generally, in would precede
the noun phrase it is attached to; here, it is in the middle of it.

3.4 Languages surveyed

The subset of mobile developers who know Latin well may well not be a large
one (although the author is unaware of any research on this area). If case were

77

restricted to Latin, then its application outside that language would be dubious,
let alone its application outside of language as a whole, as case would be reduced to
an arbitrary outgrowth of linguistic history that just happened to appear in Latin.
There would be no reason to suppose that developers would be able to use it in any
intuitive fashion. It would be far more likely for developers to be able to use case
intuitively if it were a widespread phenomenon among languages in the world: it is
then more likely either that case can operate as a proxy for some deeper underlying
way that people think about the interrelations between objects or that developers
will have come into contact with the concepts involved through contact between
languages and cultures. Whichever of these two is true, they will be more likely
to be able to use case.

Fortunately, the use of case in the languages of the world is not restricted either
to Latin or even to the language family of which it is a part, and the case systems
of the languages of the world show some striking patterns in the kinds of cases
they contain and what they are used for. These widespread patterns can then for
a base for the use of case in plastic interfaces for the reasons suggested above.

To draw out these common uses for cases requires a survey of languages. There
are very many languages in the world; at the time of writing, the current edition
of the SIL Ethnologue (Lewis et al., 2013) contains information on 7,105 living
languages, and there are certainly many languages that exist that have never been
documented at all.

A large subset of these languages exhibit case. Blake (1977) surveyed 116 lan-
guages which exhibited case among the Australian languages alone. Therefore, the
twenty languages discussed here should be taken as an illustrative, rather than as an
exhaustive, survey. They have been chosen to provide evidence from a variety of
times, places, and families of languages. Further information on these languages,
arguing that they do not all receive their case systems from one another, is in ap-
pendix B.

Awngi is a language spoken in the north-west of Ethiopia (Lewis et al., 2013) with
around 489,000 speakers as of the census of 2007 (Central Statistical Agency
- Ethiopia, 2007). There are not many languages in Africa which have a
complex system of cases (König, 2009); but König (2008) noted Awngi as a
language with an unusually expressive set of cases by African standards.

Azoyú Tlapanec is a language spoken in the west of Mexico. Lewis et al. (2013)
quote the Mexican Instituto Nacional de Lenguas Indigenas as saying that the
language has around 590 speakers; but they also note that this number is
likely to be inaccurate because many people who speak this language are
unwilling to admit that they do.

78

Basque is a language spoken on the France–Spain border and in the north of Spain.
It is estimated to have around 500,000 speakers in this area, all bilingual
(Trask, 1997; de Rijk, 2008).

Etruscan is an extinct language which was spoken until around 50 AD in the north
of Italy, eventually being displaced by Latin. It is known from around 12,000
inscriptions and six longer texts (Wallace, 2008, ch. 1)

Finnish is one of the two national languages of Finland, as laid down in the Finnish
constitution (1999, ch. 2, s. 17). It has nearly five million speakers (Lewis
et al., 2013).

Georgian is the national language of Georgia, and is also spoken in Iran and Turkey.
It has around four and a quarter million speakers (Lewis et al., 2013).

Greek is a language with 3,300 years of attested history. Remarkably, through all
this time, it has remained recognisable (Fortson, 2009, para 12.1). Its modern
form is the national language of Greece, and is spoken by around 13 million
people (Lewis et al., 2013). The discussion below mentions two varieties of
Greek: Koine Greek, the first dialect of Greek to be used across the whole
Greek world, and the language of the New Testament (Woodard, 2008; Wen-
ham, 1965); and Dhimotiki, the current official version of the Greek language
(Adams, 1987; Sofroniou, 1962)

Hungarian is the national language of Hungary, spoken by around 12 million people
(Lewis et al., 2013).

Icelandic is the national language of Iceland, spoken by around 240,000 people
(Lewis et al., 2013).

Kalkatungu is a recently extinct language that was spoken in Queensland, Aus-
tralia. Blake’s grammar of Kalkatungu (1979) was based on the speech of the
last dozen speakers; by the time this grammar was published, only one flu-
ent speaker remained alive, and by 1983 there were no known fluent speakers
remaining. Blake recounts:

The elderly speakers we consulted were all very willing to be recorded.
They were all familiar with recording inasmuch as some of their friends
and family owned recorders and they seemed to see some value in having
their language recorded knowing that they were the last speakers. (Blake,
1979, p. 3)

Khalkha Mongolian is the official language of Mongolia. It has around 2,373,000
speakers (Lewis et al., 2013).

79

Latin was the language of Rome and the Roman Republic and Empire. It is an
extinct language: there are now no people whose first language is Latin.
However, a small number of people speak it fluently as a second language
(Lyman, 2005); it is important in the Roman Catholic church, who publish a
dictionary of Latin neologisms for modern concepts (Opus Fundatum “La-
tinitas”, 1992); it is still actively taught in schools; and modern literature is
still occasionally made available in the language (Milne and Lenard, 1960).

Modern Standard Arabic is the official form of the Arabic language, used as the of-
ficial language in 20 countries. It is the only standardised version of a large
spectrum of dialects. The various dialects of Arabic are spoken today by
around 223-250 million people (lower figure from Lewis et al., 2013, higher
from Holes, 2004).

Northern Sami is a language largely spoken in the north of Norway, but also spoken
in the north of Sweden and Finland. It is spoken by around 20,700 speakers
(Lewis et al., 2013).

Old English was the form of English spoken by the Anglo-Saxons from their arrival
in England until around the time of the Norman invasion (Quirk and Wrenn,
1955).

Russian is the national language of the Russian Federation. It is spoken by around
160 million people (Lewis et al., 2013).

Sumerian is the oldest language attested. It has the longest literary tradition of any
ancient language, lasting around 3000 years from around 3200 BC (Michalowsky,
2008). The modern understanding of Sumerian is not complete; nonethe-
less, two descriptive grammars have been produced recently (Edzard, 2003;
Jagersma, 2010).

Tocharian A and B are two closely-related extinct languages which were spoken in
the north of China and are attested from the 6th century to the 8th century
AD (Adams, 1988, ch. 1). The speakers of Tocharian left nearly nothing
written down about themselves, and so the question of who actually spoke
this language is an open one. The texts in Tocharian that have survived are
largely Buddhist religious texts (Fortson, 2009, s. 17.3).

Tsez is a language spoken in the Dagestan region of Russia and in Georgia, with
around 12,500 speakers in Russia (Lewis et al., 2013).

Turkish is the official language of the Republic of Turkey, defined as such in its
constitution (1995, article 3). It is spoken by nearly 51 million people (Lewis
et al., 2013).

80

3.5 Kinds of meanings expressed through case

Every language is different and, of the languages that have case, every language’s
case system is different. However, there are some startling similarities in case
systems that are apparently unrelated. Specifically, there are some very common
meanings and functions that commonly appear in case systems cross-linguistically.

Again, the survey in this section is not exhaustive. Instead, these are the pat-
terns that introduce the concepts necessary for the rest of this chapter and the
main body of this thesis.

3.5.1 Core syntactic verb arguments

The syntactic arguments of a verb are the noun phrases that appear with it that
are grammatically necessary. The core syntactic arguments of a verb are its subject
and, if it is a transitive verb, its object.

Example: “*The dog bit” is missing an object argument, and is thus ungrammati-
cal.

Example: “*Bit the boy” is missing a subject argument, and is thus ungrammatical.

Languages which use case have a tendency to use cases to mark the subject
(referred to as A, for “agent”) and object (referred to as “P”, for “patient”) of tran-
sitive verbs, and the single argument of intransitive verbs (referred to as “S”, for
“single”).

There are three common patterns for how this is arranged. Every one of the
languages in this chapter exhibits one of these three patterns. The first and most
common (Blake, 2001, ch. 5) is called “nominative-accusative”, and refers to lan-
guages where the subject of a transitive verb is in the same case as the single argu-
ment of an intransitive verb. This case is traditionally referred to as the “nomina-
tive”. The object of a transitive verb is then in a second case, traditionally referred
to as the “accusative”.

This pattern can be seen clearly in English pronouns:

Example: “He approached her” and “He slept”. “He” is the nominative form, used
for S and A.

Example: “She approached him”, but never “*Him slept”. “Him” is the accusative
form, used for P only.

The languages of the twenty which use the nominative-accusative pattern are:
Awngi (Hetzron, 1978), Etruscan (Wallace, 2008, ch. 5), Finnish (Karlsson, 1999,
chs. 7 and 9), Greek (Adams, 1987, p.15; Wenham, 1965, p. 9), Hungarian (Rounds,

81

2001, sec. 6.1), Icelandic (Einarsson, 2000, pp. 105–107), Khalkha Mongolian
(Svantesson, 2003), Latin (Wilson, 1968, p. 62), Modern Standard Arabic (Holes,
2004, ch. 4), Northern Sami (Sveriges Utbildningsradio AB, 2011, pp. 9–10), Old
English (Quirk and Wrenn, 1955, pp. 59–61;Marsden, 2004, p. 377), Russian (Wade,
1992, pp. 85–86), Tocharian (Adams, 1988, ch. 5) and Turkish (Lewis, 1985, pp. 35–
36).

The second pattern is called “ergative-absolutive”, and refers to languages where
the object of a transitive verb is in the same case as the single argument of an intran-
sitive verb. This case is traditionally referred to as the “absolutive”. The subject of
a transitive verb is in a case of its own. This case is traditionally referred to as the
“ergative”. The Basque language exhibits this pattern (de Rijk, 2008, chs. 2 and
9). The absolutive case has no ending:

Peruk ogia dakar
Peter.erg the bread.abs is bringing it
Peter is bringing the bread (de Rijk, p. 198, simplified)

Gizona dator
The man.abs is coming
The man is coming. (de Rijk, p.198)

The ergative case can be distinguished by its -k ending:

Peruk ogia dakar
Peter.erg the bread.abs is bringing it
Peter is bringing the bread.

Other languages which exhibit this pattern include Azoyú Tlapanec (Wich-
mann, 2004), Tsez (Comrie et al., 1998, pp. 18–19) and Sumerian (Edzard, 2003,
pp. 35–36; Jagersma, 2010, pp. 154–160 and 295–296).

The third pattern is “split ergativity”. Languages which exhibit this pattern are
those in which some words behave in an ergative-absolutive way and some behave
in another way, often a nominative-accusative way. Two languages which exhibit
this pattern are Kalkatungu, which has ergative-absolutive-like nouns but some
nominative-accusative-like pronouns (Blake, 1979, pp. 36–37 and 41–42) and Geor-
gian, which determines whether a noun or pronoun should exhibit nominative-
accusative-like behaviour or ergative-absolutive-like behaviour based on the prop-
erties of the nearest verb to which it is attached (Aronson, 1990, secs. 2.3, 3.1.1.2
and 5.1).

82

3.5.2 The indirect object and the beneficiary

The indirect object of a verb is another noun that the verb is acting on besides
the subject and the object . This usually implies an idea of a transfer of some
description. In English, it is marked with the preposition “to”:

Example: She gave the ball to the dog

Example: He spoke to the greengrocer

Languages often use a case to mark the indirect object of a verb. These cases
are traditionally referred to as “datives”. Cases that encode the grammatical indi-
rect object are found in Turkish (Lewis, 1985, p. 36), Kalkatungu (Blake, 1979, pp.
44–45), Khalkha (Svantesson, 2003, p. 163), Georgian (Aronson, 1990, para. 7.2.3)
and Tsez (Comrie et al., 1998, p. 19)

This case often encodes the beneficiary or the target of a transfer even when
it is not grammatically an indirect object. This can be found in Latin (Scottish
Classics Group, 1996, p. 10), Koine Greek (Wenham, 1965, p. 245), Old English
(Marsden, 2004, p. 377), Icelandic (Einarsson, 2000, p. 109), Basque (de Rijk,
2008, p. 346), Russian (Wade, 1992, pp. 100–103), Sumerian (Edzard, 2003, p. 40)
and Hungarian (Rounds, 2001, pp. 112-113).

The case of Etruscan is unclear. It has a case which seems to encode an indirect
object, which Bonfante and Bonfante (2002) tentatively named as a dative; how-
ever, both (Rix, 2004) and Wallace (2008) refer to it as a “pertinentive” and argue
that its functions are not sufficiently well known to make any strong statements.

3.5.3 Possession and category

Languages often use a case to mark the possessor of an object. English retains this
on pronouns:

Example: Her cat

These cases are traditionally referred to as “genitives”. Cases specifically for
possessors can be found in Basque (de Rijk, 2008, p. 100), Modern Standard Ara-
bic (Holes, 2004, p. 172), Northern Sami (Sveriges Utbildningsradio AB, 2011),
Tsez (Comrie et al., 1998, p. 6) and Turkish, the with the additional restriction
that the possessor must be a concrete person or object (Lewis, 1985, pp. 36 and
41–42).

Many languages generalise this pattern and use this case to express meanings
about categorisation, such as:

• The name of a category or a set to which an object belongs.

83

• The name of an attribute of an object or of an abstract idea that an object
exemplifies.

• The name of a context in which an object must be understood.

Patterns of this kind can be found in Finnish (Karlsson, 1999, pp. 95–97), Geor-
gian (Aronson, 1990, sec. 3.3.1), Koine Greek(Wenham, 1965, p. 245), Icelandic
(Einarsson, 2000, p. 111), Khalkha (Svantesson, 2003, p. 163), Old English (Quirk
and Wrenn, 1955, pp. 61–62) and Russian (Wade, 1992, pp. 87–92).

Latin and Etruscan have similar patterns, but in a more restricted way: Latin
uses its genitive case to indicate that a person has a quality (compare the English
“a creature of habit”; Wilson, 1968, p. 63), and Etruscan uses its to mark the name
of the family to which a person belongs (Wallace, 2008, pp. 96–97).

In Sumerian, as well as marking the possessor, the genitive marks a noun part of
which is being acted upon by the verb, comparable to the slightly archaic English
“she gave me of the tree, and I did eat” (Gen 3:12, KJV).

These patterns all represent a relationship between two objects where the
noun in the genitive represents a whole, and its head represents a part of that
whole.

Some languages generalise the genitive still further, to encapsulate any asym-
metric relationship between two nouns. This can be found in Awngi (Hetzron,
1978, p. 126).

3.6 Blake’s case hierarchy

Based on an extensive survey of case systems in languages, (Blake, 2001, ch. 5)
identified around 40 basic “case roles” which are instantiated in languages world-
wide. A “case role” is a basic role that a case can perform. He then produced
what he referred to as a “case hierarchy”. The case hierarchy is a model which
encompasses the kinds of case system found in the languages he surveyed, and has
predictive power so that it can be falsified against languages discovered in future.
The case hierarchy has withstood examination and further data well (Malchukov
and Spencer, 2009).

The case hierarchy is an ordered list of the case roles that cases tend to have
(given in table 3.2) arranged so that if a language has a case fulfilling a role that
is on the list, it will usually have all cases that encompass all the roles above that
case on the list. The lowest case on the list that the language has is likely to have
a range of functions with no unifying principle.

So, for example, because English has a distinguishable genitive (see section
3.5.3), it is very likely to have distinguishable nominative and accusative or ergative

84

Nominative
Accusative or Ergative

Genitive
Dative

Locative
Ablative or Instrumental

Other cases

Table 3.2: Blake (2001)’s case hierarchy

Nominative
Accusative or Ergative

Genitive
Dative

Locative
Ablative or Instrumental

Other cases

Table 3.3: The case hierarchy applied to Icelandic

cases as well, because they are above genitive on the hierarchy. This matches what
can be found in English pronouns.

Icelandic, by contrast, has a nominative-accusative system of four cases. By
applying Blake’s case hierarchy, one can make an educated guess that it will prob-
ably have a nominative, an accusative, a genitive and a dative, and that the dative
will have a variety of extra functions (figure 3.3). This is indeed the structure of
the case system in Icelandic (Einarsson, 2000).

Likewise, if one starts at the top of this list and picks any number of cases,
the outlines of a case system will emerge which appears in at least one natural
language.

3.7 Why case may be applied to plastic interfaces

So far, this chapter has argued that case exists, that it is not restricted to one
time, place or language family, that it shows patterns of common meanings, that
these patterns are predictable and that these patterns can be grounded in linguistic
theory. What it has not yet argued is its applicability to plastic user interfaces.
This section discusses this problem.

Case, being a linguistic structure, might purely be applicable to language sensu
strictu. If it were purely to do with the inner workings and the machinery of lan-
guage, then it would likely not be applicable outside of language proper. However,
two situations were alluded to above where it could be useful outside of language:

85

Position Language Speakers (millions)
1 Chinese 1,197
2 Spanish 406
3 English 335
4 Hindi 260
5 Arabic 223
6 Portuguese 202
7 Bengali 193
8 Russian 162
9 Japanese 122
10 Javanese 84.3

Table 3.4: 10 most spoken languages in the world (Lewis et al., 2013)

either where developers use it analogously from their existing familiarity with the
kinds of concepts that it talks about, or where the case systems of languages act
as imprecise proxies for an underlying set of semantic categories that people use
to think about objects, actions and their interrelations.

3.7.1 As an analogy

The first reason is that case may be useful analogously. If languages with case
systems that correspond to Blake’s case hierarchy are suitably widespread, then
the categories they contain will already be familiar to developers who speak those
languages.

Table 3.4 reproduces the table of the ten most populous languages in the world
from the 17th edition of Ethnologue (Lewis et al., 2013). Of these, only Russian
(Wade, 1992) and Japanese (Ogawa, 2009) have complex case systems today; but
the concept of case is entirely alien only to Chinese and Javanese (Lee and Thomp-
son, 1987; Peyraube, 2004; Suharno, 1982). Arabic has a system of three cases
(nominative, accusative and genitive) which have been consistently weak since the
classical period (Holes, 2004). The remaining five languages—Spanish, English,
Hindi, Portuguese and Bengali—are all Indo-European languages which have lost
most of their case-marking in historical times due to phonological change (Car-
dona, 1987; Blake, 2001, s. 6.3).

Case may still be useful as an analogy, however, in those languages. In Indo-
European languages which are losing case, the meanings that were attached to
cases often get attached to prepositions. One often sees descriptions of cases
which map them directly to English prepositions, especially in teaching grammars.
Genitive cases are often introduced with wording such as “If you see a word in
the genitive case, you should preface it with the word ‘of ’.” (Jones, 1998, p. 88)
and “The Icelandic genitive corresponds both to the English -s genitive and the

86

of genitive” (p. 110 Einarsson, 2000, emphasis in original). Likewise, dative cases
are often introduced with wording such as “The Dative [sic] is ... often shown in
English by to and for.” (Wilson, 1968, p. 64, emphasis in original).

3.7.2 As clues to underlying universal semantic roles

The second reason is that cases may actually encode underlying semantic roles
that are not limited to use in language. The theories summarised above are the
major ones that argue this. None of the theories that argue this, however, agree on
which semantic roles are the universal ones, on how these relate to other elements
of human thought, nor even on which cases should be considered to have semantic
content. However, in each theory, the semantic roles have been extracted largely
from the structure of the case systems of natural languages.

If language is not separate from other processes by which people communicate,
there is no reason why the proposed universal semantic roles must be confined to
language rather than being present in other symbol-systems that people create.
More specifically, they may be applicable in user interface design as well (for theo-
retical approaches to interface design based on a semiotic or sign-based approach
see Goguen, 1999; de Souza, 2005).

In this situation, case may be used in the sphere of user interfaces as a proxy
for an underlying set of universal semantic roles.

There are a number of mainstream theories that deal with case as proxies for
underlying sets of semantic roles. These are generally not purely theories about
case. They are trying to explain a set of phenomena in which case plays a role.
These theories hold that there is a set of underlying primitive semantic structures
that surface through case (though not exclusively through case in all languages),
and that these structures are reflective of human cognition as a whole, not just
language; others hold that these roles are valid cross-linguistically and make no
statement about whether they are applicable outside of language itself. Two ma-
jor semantic theories that embrace case as symptomatic of an underlying set of
semantic roles are outlined below.

It is worth noting that these theories do not have the same predictive power
over the structures of case systems as Blake’s case hierarchy. However, this is not
their purpose: their domain is larger than just the structures of case systems.

3.7.2.1 Cognitive grammar

Cognitive grammar is a theory that holds that language is integrated into human
cognition, rather than is separated off into a specialist area of the brain. Because
of this, everything in language has a meaning, rather than grammar just being a
framework on which meaning-bearing words are hung. Grammar as a whole is

87

attached to the human ability to think in symbols; grammatical structures can
have meaning in exactly the same ways that words do (Langacker, 1986). It holds
that case systems are based on a cross-linguistic universal set of semantic roles
(Blake, 2001, p. 62).

In Cognitive Grammar a case sets up a “trajector-landmark asymmetry”. In
a trajector-landmark asymmetry, two objects have an asymmetrical relationship
where one of the objects (the “trajector”) is put into the foreground using the
other (the “landmark”) as a background, or context.

Luraghi (2009) gives an example of this using the Latin phrase domus patris,
“father’s home” 6.

(6) domus
home.nom

patris
father.gen

In this example, the trajector is the house. The house is in the foreground, and
is semantically the most important element in the phrase. The father provides a
background or a context to the house; the house is to be considered in the context
of the father owning it.

All cases set up a trajector/landmark asymmetry. The different cases, how-
ever, set up different kinds of asymmetry; the genitive example above sets up an
ownership relationship, for example. The meaning of the case defines what kind
of relationship is created.

3.7.2.2 Localist case grammars

Localist case grammars are approaches to the problem of grammar that share two
characteristics. First, they hold that cases are semantic and meaningful, and that
they expose an underlying set of semantic roles. Second, they hold that all these
semantic roles are based on spa tial reasoning, and that all cases are, fundamentally,
about location in space and about movement. “Abstract” uses of these roles are
metaphors for their spatial use (Anderson, 1987). The semantic roles are universal
across language (Blake, 2001, p. 62).

Anderson (2009) illustrates this with the phrase “Betty taught Bill that song”.
Here, Betty is a source from which something moves; Bill is a destination at which
the song ends up; and the song is the thing to which the movement is happening.

3.7.2.3 Fillmore’s Case Grammar

Fillmore’s (1968) Case Grammar is one of a large family of theories that is con-
cerned with “deep structure”. The deep structure of a sentence is a theoretical
model of the structure of that sentence, often some kind of tree (although the
precise nature of the structure varies depending on the theory). In these theories,

88

for any given language, there is a set of tree transformations that turn a sentence
of the language into a deep structure tree, and vice versa. No language has ever
been entirely described in this way.

The reason why deep structure is posited at all is that it allows similar sentences
to have similar deep structures even when their surface syntactic structure is quite
different. A good example of this can be found in passive sentences. The two
sentences “The dog bit John.” and “John was bitten by the dog” are, in surface structure,
quite different: the subject and object in the second are reversed compared to the
first. The deep structure of these sentences, however, would be the same or very
similar.

Case Grammar is a theory about verb valency in this deep structure. The va-
lency of a verb is the number and nature of the places it has for nouns. For exam-
ple, the verb “to bite” takes both an agent (the creature who does the biting) and a
patient (the creature who is bitten). These are distinct from the concepts of “sub-
ject” and “object” described above: in the two sentences above, the subject and
object are swapped in the second sentence compared to the first, but the agent
and patient are the same in both sentences.

In Case Grammar, the kinds of relationship a noun and a verb can have in
the deep structure of the sentence are categorised. Elements of this categorisation are
called “deep cases”, and the set of deep cases is a universal across languages. Case
on the surface is one prominent way of generating deep cases in the deep structure
of the sentence: word order (as in English) is another.

3.7.2.4 Natural Semantic Metalanguage

The above theories all propose a set of semantic primitives that explain rela-
tionships between nouns and verbs and that are engaged in some way with the
structures of case systems. Natural Semantic Metalanguage (“NSM”) takes a dif-
ferent approach: it aims to find a small set of “semantic primes” that can be
used to explain all meaning-bearing features in any language and that exist cross-
linguistically (Goddard and Wierzbicka, 2002) . The set of semantic primes in-
cludes ideas such as “I”, “you”, “something”, “one”, “two”, “to be somewhere” and
“to have”. The primes have emerged from a very large amount of empirical work
suggesting that these primes not only exist in all languages but combine in the
same way in all languages (Wierzbicka, 2009).

NSM has been used with success in analyses of the meanings of individual
cases (Wierzbicka, 1980, 2009; Blake, 2001) but it does not attempt to explain
the structure of case systems.

89

3.8 Bridging the tooling gap

That case can be used either in analogy or as a proxy for underlying semantic roles
shows that the use of case in the context of plastic user interfaces is not necessarily
a theoretical faux pas from the perspective of linguistics.

In chapter 2, a gap was identified in the tools available to mobile developers.
Existing tools fail them in one of two ways: the tools available from the research
community target more platforms than developers need, require the use of meth-
ods that are alien to their professional practice, and do not take into account the
guideline-defined requirements on them. The industrial tools provide no adapta-
tion at the dialogue layer.

In section 3.3 two examples were given of how case can be used linguistically
to put words into an order that fit the requirements of the form they are in. This
is where the analogy between word order and dialogue structure of an application
becomes important; if each object that the user selects in a dialogue structure is
annotated with a case, and if rules from the guidelines can be rephrased in terms of
cases, then similar benefits of flexible selection ordering might be obtained. This
is how case can be used to attempt to overcome the issue with the industrial tools.

Case can be used to attempt to overcome the issue with the research tools by its
comparative simplicity. Even remarkably complex case systems, such as those in
Finnish and Hungarian, have fewer than 20 cases (Rounds, 2001; Karlsson, 1999),
and Blake’s case hierarchy notes only five as common. Latin has only five; Attic
and Koine Greek only four: and these languages used it to considerable effect for
making word order flexible. This means that even if the meanings of the cases were
to be entirely arbitrary, the developer would have only four or five meanings to
learn that could be used as part of a known and trusted development methodology,
instead of having to learn an entire MDE system that would displace their existing
tool chains. The situation is in fact better than this, because the meanings of the
cases in use in the tool need not be arbitrary. Comparative linguistics has provided
a set of meanings that occur cross-linguistically and which may well be familiar for
one or both of the reasons outlined above. If either of these are indeed the case,
then the developer will not even have to learn the meanings of the cases, merely
apply the meanings they already know.

These statements about how the gap can be bridged, however, are vague and
wanting in precision. An example will clarify how case can be used to build versions
of an application on platforms with different ordering assumptions.

90

3.9 Plasticising the dialogue component: a worked example

Below is an outline of a conceptual framework showing one way that case can be
applied to interface design. This is the conceptual framework that will be devel-
oped later in the thesis. It cannot claim to be the only possible way of applying
case to user interface design.

The Arch model, as discussed in chapter 2, contains a component which is
responsible for task structure and the order in which users are able to do things.
By its definition, the dialogue component is about ordering, and about the lin-
ear sequence of actions that the user performs to perform the task that they are
intending to perform.

A simple but dramatic example of different platforms having different ordering
conventions can be found by examining two drawing programs with comparable
feature sets that embody different assumptions. These two programs are Xfig
(which is still being maintained) and MacDraw (which is not).

In Xfig, the ordering rule is simple. The user always chooses the tool that they
want to use, and then selects the region of the drawing that that tool is to operate
on. For example, to delete an object, the user chooses the delete tool and then
either clicks on a single object to delete that, or drags out a region on the canvas
to delete all of the objects in that region (figure 3.1).

In MacDraw, the ordering rule is slightly more complicated. Here, tools that
create objects behave as they do in Xfig, putting the software in a mode in which
the user can select an area of the canvas in which the new object should be created
(figure 3.2). On the other hand, tools that adapt, change or delete an existing object
require that object to be selected first, and only then can the tool (usually displayed
as a menu item) be selected (figure 3.2).

As shown above, in natural language, one of case’s major uses is in allowing
the words of a phrase to change order depending on the speaker’s circumstances.
To apply case to plastic user interfaces, these two situations—the one reordering
task elements, and the other reordering words—are considered as comparable.
This comparison is tenable so long as one of the two arguments in the previous
section hold.

Case is applied to the individual objects that the user can interact with, ac-
cording to the task structure. For example, a genitive case will be applied to an
interaction which specifies an owner or a category; and a dative case will be ap-
plied to an interaction which specifies the destination of a transfer or a beneficiary.
This would provide more information for the re-ordering process to work on than
a simple, semantically un-annotated task structure (such as those in section 2.8).

Applying this idea to the drawing programs yields the shadowy outline of a
solution, assuming that some kind of machine-manipulatable declarative notation

91

(a) Select tool

(b) Select region

(c) Objects deleted

Figure 3.1: Object deletion in Xfig

92

(a) Select tool

v(b) Select region

(c) Object created

Figure 3.2: Object creation in MacDraw

93

(a) Select region

(b) Select tool

(c) Object modified

Figure 3.3: Object modification in MacDraw

94

is used for the dialogue controller. It is not possible to work back from the Xfig-
style interface to the MacDraw style interface without knowledge of what each
tool does in some detail; but it is possible to work from the MacDraw style of
interface back to the Xfig style of interface without needing to know any details of
the purposes of the tool. Hypothetically, one could assign an instrumental case to
tool selection and a locative case to the selection of an area of canvas. A rule could
then be applied to the dialogue controller that says if there are situations where
the user would select a locative before the user selects an instrumental, then those
two selections should be swapped, so that the user first selects an instrumental
and after that a locative. Note that this rule is not application-specific: it instead
encodes a broader statement about potentially many applications.

Some weaknesses are showing up in this mechanism even at this high level.
It obviously does not deal well with dependencies: further annotations would be
needed to mark situations where a selection actually must be in a specific place
in the task structure. Also, one cannot run this in reverse without further an-
notations: there is no way to get back to the MacDraw interface from the Xfig
interface, because information has been lost in the process of generating the Xfig
interface. Even with these taken into account, however, the approach may provide
a useful degree of plasticity.

This example, however, does not form any kind of rigorous argument for the
usefulness of case, other than clarifying how it might be applied. Firstly, it does
not talk about user interface quality at all, even with regards to a given set of user
interface conventions. The rule applied to get from one interface to the other
is application-specific and does not correspond to any rule laid down in the user
interface guidelines for either platform. Secondly, it only outlines a single case, and
that in isolation. Previously in this chapter, cases were shown to come in systems,
and to demonstrate the usefulness of case requires the use of a case system that
resembles a natural case system.

The case attached to an interaction in the task model can also be used by the
logical and physical adaptation layers. On the physical layer of the Arch, the phys-
ical arrangement of elements on the screen may need to reflect the relationship
between the data that they contain . A good example of this can be found in the
iOS Human Interface Guidelines on the use of the “split view” screen design on
the iPad, as shown in figure 3.4:

You can use a split view to display persistent information in the left pane
and related details or subordinate information in the right pane. In this design
pattern, when people select an item in the left pane, the right pane should display
the information related to that item. ... Avoid creating a right pane that is
narrower than the left pane. (Apple, Inc., 2012a)

95

Figure 3.4: The split view on iOS

A genitive-like relationship certainly fits into the scope defined by this paragraph:
the left pane allows the user to select the owner or the category, and the right
contains the things within the application that are attached to that owner or cat-
egory.

Its usefulness on the logical layer can also be deduced from the iOS Human
Interface Guidelines. The operating system provides an “Activity View” which is
used to display methods that an application can use to share content:

When users tap the Share button, a set of activities is presented by an ac-
tivity view controller. ... An activity view controller displays a configurable
list of services that the user can perform on the specified content. Users tap the
Share button to reveal the contents of an activity view controller. ... On iPhone
and iPod touch, an activity view controller appears in an action sheet; on iPad,
it appears in a popover.

This leaves the definition of an “activity” somewhat loose; but it can be clarified
by considering the mention of the “Share” button, and looking at the developer
documentation:

96

The system provides several standard services, such as copying items to the
pasteboard, posting content to social media sites, sending items via email or
SMS, and more.

The given activities are all, in some sense, destinations. The pasteboard is a
destination in its own right, as are social media sites or printers. E-mail addresses
and telephone numbers for SMS are also destinations. This pattern therefore cov-
ers dative patterns, and does so by specifying its representation in terms of the
logical layer of the Arch model.

3.10 Research questions

At this point, enough information has been given above (both in this chapter and
in chapter 2) to clarify the research questions and to specify in more detail what
kinds of answers are to be expected to them.

Are the categories delineated by case relevant to user interfaces? In section 3.9 above, a
sketch outline was given of application of categorisations based on case to
talk about re-ordering of user interfaces. This sketch, however, is insuffi-
cient as an answer to this question for two reasons.

The first insufficiency of the sketch is that it takes an instrumental meaning
(which is near the bottom of the case hierarchy) and uses it in isolation.
However, in real languages, the meanings of cases do not exist in isolation.
This chapter, and especially section 3.6 presents evidence that there is a set of
meanings involved in case systems. These meanings are interrelated in ways
that are very consistent across languages and contexts of use. This means
that any system that purports to be based on case must take this interrelation
into account.

Not all of the common meanings of case can be expected to be applicable
to user interfaces. Section 3.5.1 laid out a set of meanings that are to do
with verb valency—to do with attaching nouns to verbs with no regard for
meanings. In the traditional analysis the nominative, accusative, ergative
and absolutive cases do not mean anything at all. They are syntactic, in the
linguistic sense of the word, and specific to language in the strict sense.

However, below these top two in the case hierarchy, semantic meanings are
often found (see section 3.5 above). These categories are potentially applica-
ble to the domain of user interfaces, as suggested in section 3.9. Therefore,
to justify being called “case”, the framework of categories that are being used
to talk about user interfaces should follow the rules that cases follow as far

97

as is possible: specifically, they should adhere to the structure of the lower
part of the case hierarchy, where semantic meanings exist.

The second insufficiency of the sketch is that it does not demonstrate that
case is a living phenomenon. Cases, in natural languages, can be used in un-
expected ways. For example, in section 3.9 above, the dative was described
in terms of social media destinations or other electronic destinations that
come under the definition of what Apple describes as Activities. However,
if the dative can only be used for these things then it becomes, at best, just
another way of talking about what Apple describes as Activity View Con-
trollers. It is only when it is used by developers for unexpected things that
it deserves to be considered as a separate phenomenon.

Thus, an answer to this question should demonstrate not only that the cat-
egorisation is useful for user interfaces but also that it deserves the name
case: the categorisation in use must obey the patterns given above for case
systems, and must be amenable to use in unexpected ways.

Can a tool be built that embodies case for building plastic user interfaces? A tool embody-
ing case means that it can use the categorisations that case provides to do
something. The cases must be implementable.

This implementability comes in two parts. The first part is that the tool
itself must be able to deal with cases. It cannot simply be, for example, a
text editor that recognises the names of cases and highlights them: the way
that the case is to be used needs to be implemented as either an algorithm
or as a rule in a grammar or as some similar executable representation. If
the tool takes no actions based on cases, then those cases have not been
implemented or embodied in the tool.

The second part is that the implemented cases should result in sensible
user interfaces according to the user interface guidelines of the platforms
involved. The importance of the user interface guidelines to mobile plat-
forms was discussed in chapter 2. This is not a formal property of the tool.
Instead, an answer to this question needs to be determined through the use
of the tool: if the uses that developers come up with for the cases match
the user interface guidelines, then case is implementable in terms of those
guidelines.

Can case as embodied in this tool be used to build useful applications? The end point of a
mobile developer’s involvement in a project is usually the handing over of the
application either to their client who has commissioned the application or to
end users. Chapter 3.5 suggested that the tools that the mobile development

98

industry have built are geared towards this end with a minimum of extra
effort for developers.

The word ’useful’ is vague, and the concept of what embodies an applica-
tion that might be useful either to someone commissioning an application
or to an end user is unpredictable. To get a strong answer to the question
of whether case can be used to build useful applications, therefore, needs
case to be used in some of these situations: case needs to be used to build
applications that have requirements imposed from outside.

It is worth noting that a positive answer to this question doesn’t imply that
the tool is widely usable; if one person can use case to build useful applica-
tions, then case can be used to build useful applications, even if the majority
of developers find the concept mystifying. This is what distinguishes this
question from the following question.

Can case as embodied in this tool be used by other developers? As noted, a positive answer
to the previous question does not imply that developers in general can use
case. This question, by contrast, is about the broader development commu-
nity and about whether they can use case and whether it is useful to them.
An answer to this question needs to come from the mouths of developers
who have or have not found the tool useful.

This puts a constraint on the design of the tool. If developers are to com-
ment on the usefulness of case, which is a novel element, then it is necessary
for the rest of the tool to be as familiar as possible to them. If a developer is
also struggling with other conceptual models and frameworks that are alien
to their normal practice then the likelihood that they will be able to give any
useful information about the use of case will be much reduced. This means
that the design of the tool will have to follow the precedents of industrial
tools as summarised in chapter 2, rather than the less-familiar precedents of
the research tools.

3.11 Summary and conclusions

Case is a phenomenon in natural languages which allows for the categorisation of
the relationships between words, and allows the order of words in sentences to
change for contextual reasons or to fit the demands of a form. Case is found in
languages from most of the major language families, on every continent that has
its own languages, and, as far as evidence exists, at all points during the history
of language. It is extremely unlikely that the similarities in case systems this far
apart can be accounted for by chance, by borrowings and by genetic descent.

99

Not only do case systems exist in all these languages, but they are used to
communicate similar meanings in languages the world over. Case is commonly
applied to provide extra information to the speaker or listener about sentence
structure; to express the recipients of transfers, the owners of objects; and for
other meanings that are beyond the scope of this thesis.

In the book which reinvigorated the whole field of case research, Blake (2001)
presented the case hierarchy. The case hierarchy is a typological model of case
systems. It makes a statement about the kinds of case systems that are likely to
exist and the kinds that are not, and what meanings are likely to be expressed
through case. The case hierarchy will form the basis of the use of case throughout
the remainder of this thesis. It has in general stood up well against new data.

Case, including the use of these frequently-expressed meanings could be useful
in plastic user interfaces for one of two reasons. The first of these reasons is that
it may be effective analogically: the meanings are widespread enough in different
languages and widely known enough that developers may have them already in
their heads as ideas that they can use. The second is that cases may tap into an
underlying set of semantic roles which are not only a part of language. This second
proposition is more controversial: some theories that include an explanation of
case would agree that such a set of semantic roles exists, others would emphatically
deny that it does. However, even if there is no such set of semantic roles, then the
first reason might still stand.

To use case in plastic user interfaces consists of using cases to label the user’s
selections within the system. This can be used to attack the problem faced by
mobile developers that was posed in chapter 2: it extends the industrial tools by
providing a degree of dialogue plasticity while only introducing a small number
of concepts (most case systems being fairly small) on top of developers’ existing
practices and tooling, unlike the research tools.

The use of one of the cases was found to be a productive way of examining
differences in ordering assumptions between different platforms: a rule about be-
haviours of instruments or tools could be couched in terms of cases, and then
this rule correctly described a difference in behaviour between two drawing pro-
grams on two different platforms. This analysis indicated two major weaknesses
of a purely case-based dialogue modelling system. First, it is completely blind to
dependencies: there is no absolute guarantee that two selections, the second of
which depends on what the user selected for the first, might not have their order
swapped. Secondly, if an interface is converted into another by means of applying
reordering based on case, that reordering process may be lossy.

The evidence that case might be useful based on the exercise with the two
drawing programs is backed up by the fact that there are parallels between defi-
nitions in the guidelines for iOS mobile applications and the common meanings

100

for the genitive and dative cases. In the light of this evidence the research ques-
tions presented in chapter 1 were re-examined and the shapes of answers to these
questions were sketched out.

This chapter thus suggested that case might be useful for the creation of plastic
user interfaces for mobile developers. The next chapter examines what ‘useful’
means in this context, and exactly how the usefulness of a case system can be
assessed for this purpose.

101

A Chapter 4
Methodology

4.1 Introduction

Chapters 2 and 3 argued for the possibility of a mobile development tool for plastic
multi-platform user interfaces based on the notion of case, and argued that such a
tool might be useful to developers. At the end of chapter 3, the research questions
for the thesis were laid out. This chapter describes how these questions can be
answered.

This is especially necessary for the last two research question, which are about
the usefulness of case as embodied in the tool in building applications and the
usefulness of case as embodied in the tool for developers. This chapter defines
“usefulness” for the purposes of this thesis, and describes how this usefulness will
be evaluated. How this evaluation is to take place must be considered before the
tool is designed, because the tool needed to be amenable to being evaluated in the
intended ways.

First, this chapter briefly discusses the act of building a tool to embody the
principles laid out in the previous chapters, and summarises who the audience of
this tool is. It is important that the tool is comprehensible to its intended users.
It then presents three questions that were used to reflect upon the tool initially,
immediately after its implementation. These questions are based on the imple-
mentation process and the structure of the tool. After this it briefly summarises
the stakeholders in the process of developing mobile applications.

The chapter then describes the “3 Es” against which the tool was evaluated.
These form the definition of ‘usefulness’ for the purposes of this thesis. The first
E is ‘effectiveness’: whether the tool can be used to build high-quality applications
and how the case system contributes to this. The second E is ‘efficiency’: whether
the tool makes the developer more productive for a given amount of effort, and
how case contributes to this. The third E is ‘expressiveness’: whether the tool
allows the developer to build the applications that they want to build.

102

After this the chapter presents the three contexts in which the tool and its un-
derlying notion were evaluated. The first of these was a case study type approach,
where applications were designed for external users; the second was a workshop in
which developers gave initial feedback from an intensive training and exploration
session, and the third was a self-directed development exercise in which develop-
ers were given the tool to use for a longer period to design and build an application
of their own choosing. These contexts emerge from the research questions.

The chapter then combines the three Es and the three contexts to demon-
strate how the three contexts were used to shed light on the three Es. Finally, it
summarises the methodology in the form of a table and in terms of which research
question is answered by what part of the evaluation.

4.2 Building a tool

An abstract idea, in itself, is not something that can be directly used to build appli-
cations or something that can be given to developers or users to gather feedback
and information. To get this kind of feedback for how well an idea actually works,
different approaches to plastic interfaces have tended to be embodied in software
tools, which are then evaluated.

The research tools examined in chapter 2 were all this type of tool. In addi-
tion, the Dialogue Flow Notation also outlined in chapter 2 was embedded into a
software tool for evaluation (Book and Gruhn, 2004). The evaluation of the use of
case in plastic interfaces for mobile applications will follow the same lines; the idea
will be embedded into a tool, and that tool will then be used for the evaluation.

Similarly, to evaluate case, a tool was built, called “AppMaps”. The design and
implementation of this tool are outlined in chapter 5. This tool was then given to
people for them to use and provide feedback about. It was designed (as specified
by the exploration of the final research question in chapter 3) so that the major
novel element would be the case system: every other design decision was aimed
towards making the rest of the tool familiar. This was done so that the users would
be more able to identify the contribution that the case system made to their use
of the tool. The design of the tool itself also contributed to the answers to the
first and second research questions, which are about the relevance of case to user
interfaces and whether case is implementable.

Some immediate questions were posed about the tool itself during the design
process. These questions were

Can a case-based approach be cleanly implemented? What it means for case to be im-
plementable was presented in the second research question, in chapter 3.
The tool itself can contribute a certain amount to the answer to this ques-

103

tion. The design of the tool will make it clear whether or not plausible mean-
ings of cases line up with the user interface guidelines. If the tool proves to
need many special cases to implement the user interface guidelines, then the
implementation of case is not very clean, even if it is possible. If, however,
plausible meanings for the cases can be implemented cleanly in terms of the
user interface guidelines, then the implementation is clean.

How does the expressiveness of this approach compare to that of other tools? A certain amount
about the expressiveness of the tool can be said simply from its structure.
For this, Thevenin et al.’s (2003) Plastic User Interface snowflake, as sum-
marised in chapter 2 was used. This provided a baseline comparison be-
tween the AppMaps tools and the other tools which were classified using
this framework in chapter 2.

What are the limits on the tool’s expressiveness? Some limitations on the possible ex-
pressiveness of the tool became evident immediately after it was built. If,
for example, the way that the dialogue component was modelled made cer-
tain kinds of interface unable to be built with the AppMaps tool, then this
was noted directly after the tool was built.

The answers to these questions are given in chapter 5.
The developer is not, however, the only stakeholder in the success of the sys-

tem, and not the only person to whom the effects of case might be visible.

4.3 Who are the stakeholders?

Developers of all kinds, sometimes to their chagrin, do not work in glorious iso-
lation. This is as true of mobile developers as of other developers. The other
people who have an interest or a concern in the design of an application are the
“stakeholders” in that application.

Exact definitions for “stakeholder” that are useful for this kind of endeavour
are hard to come by. Sharp et al. (1999) give a number of definitions from both the
literature about organisations and their impact on society and the literature about
information systems and their impacts on people. They conclude that these defi-
nitions are not useful for the purpose of actually finding out who the stakeholders
are in any given situation, especially in the early part of the process of building a
system.

Sharp et al. remedy this by giving a method to find the stakeholders in a sys-
tem by starting with a set of known “baseline stakeholders” and working outwards.
This method is recursive, and has no clear termination condition. They leave this
up to common sense; indeed, they say in the conclusions to their paper that “know-
ing when to stop looking is as important as knowing when to look” (p. 390). In

104

the case of evaluating case for mobile applications, simply using the baseline stake-
holders is sufficient, because beyond this one begins to find only people who are
not involved with the application directly, and thus whose interest in how it was
built is minimal.

The baseline stakeholders that Sharp et al. identify are “users”, “developers”,
“decision-makers” and “legislators”.

Users are “the people, groups or companies who will interact with the software
and control it directly, and those who will use the products (information,
results etc) of the system” (p. 389)

Developers include “analysts, designers, programmers, testers, quality assurance
representatives, maintainers, trainers, project managers and so on.” (p. 390).
These are the people who are involved in the technical aspects of building
the system.

Decision-makers are those responsible for managerial oversight. Examples of
this kind of stakeholder are “managers of the development team, user man-
agers and financial controllers in both the developer and the user organisa-
tion” (p. 389).

Legislators are those who set the rules by which the system must abide. This
includes, but is not restricted to, legislators in the governmental sense; the
category includes “professional bodies, government agencies, trade unions,
legal representatives, safety executives, quality assurance auditors and so on”
(p. 389).

For the purposes of this evaluation, the process is being looked at from the per-
spective of the developer developing the mobile application, and so the baseline
stakeholders are:

Users are those who will use the mobile applications produced with the tool.

Developers are those who will use the model to build a mobile application. These
are the immediate users of the tool that embodies case.

Decision-makers are those who will have the final approval of the application.
In cases where a small company or an individual is developing an application,
then most of the decision-making power will rest in their customer.

Legislators are the companies that can make demands on developers about the
user interfaces of the applications; specifically those who set the user in-
terface guidelines that developers have to adhere to in order to get their
applications published.

105

4.3.1 Application users

The relationship between application users and the development tools is a murky
one. The precise nature of the tool that has been used to create an application
is generally not visible to the user of the application: and two applications that
adhere equally to the user interface guidelines for the platform could have been
created in using entirely different tools.

Therefore, for the purposes of this evaluation, the user’s wishes were consid-
ered to be taken into account by adherence to the style guide.

4.3.2 Developers

As noted above, the immediate users of the tool are developers. It is they who will
be sitting in front of the tool and using it: it is they who will need to understand
it in detail and understand how to use it in order to create functional applications.
Therefore, it is their expectations that must be respected in the design of the tool.

However, evaluating developers comes with a complication. Developers are
expert users, and their tools are the tools of expert users. To evaluate a develop-
ment tool fully requires it to be used by expert users of that tool: if a developer
is presented with a new tool, it will take them some time to get to a position of
expertise in the use of that tool.

Since AppMaps is a novel tool, there was only one expert—the author. How-
ever, the existence of this thesis demonstrates in itself that the author may not be
a typical developer. Therefore, the experiences both of the author and of other
developers needed to be taken into account.

4.3.3 Commissioning customers

The person or people who commission the application are not direct users of the
development tools. However, it is often their ideas about functionality and user
interfaces that the developer must turn into working applications.

If their ideas, or the functionality that they want, cannot be implemented using
a tool but could be implemented with another tool, then this potentially shows a
weakness in the first tool.

Therefore, the experiences of commissioning users needed to be taken into
account.

4.3.4 Platform owners

As laid out in chapter 2, the companies that develop mobile platforms tend to
retain a great deal of control over what software runs on those platforms.

106

It was not feasible to involve the manufacturers of mobile companies directly
in the evaluation of the tool. Fortunately, however, their wishes for their platforms
are made available to developers in the user interface guidelines. Thus, evaluating
against the user interface guidelines of a given platform also took into account the
wishes of the mobile platform owners.

4.4 The three Es

Having established the roles in the evaluation process, it is necessary to outline
the criteria that will be used for evaluation. Chris Greenhalgh (private communi-
cation, 2012) suggested a framework for evaluating the usefulness of development
frameworks based on three criteria: effectiveness, efficiency and expressiveness.

4.4.1 Effectiveness

The word ‘effective’ as used here means that the framework can be used to pro-
duce user interfaces that are of high quality. All of the stakeholders have an inter-
est in the quality of the user interface. The developer has an immediate interest
in providing a quality application to their commissioning user (should they have
one) or directly to the world (if they do not). The commissioning person has an
interest in receiving a good quality product from the developer. The user wants
an application they can actually use. The developer of the mobile platforms wants
applications that will not bring their platform into disrepute.

In this thesis, the conception of ‘quality’ is based on the opinions of the stake-
holders. As noted above, the user’s perceptions and those of the developer of the
platform are taken into account by the use of the user interface guidelines.

4.4.2 Efficiency

The term ‘efficient’ here means that the use of case enables developers to be more
productive for a given amount of effort than the tools they already have allow them
to be. ‘More productive’ is a vague term: this thesis mostly concentrates on the
subjective experiences of developers.

This is because actually measuring developer productivity is fraught with is-
sues, largely due to the very large number of variables involved in the development
process. Nelson (1967), in an early study for the United States Air Force, identi-
fied 99 distinct variables in the environment that impacted on the efficiency of
programmers (pp. 54–59) and many more which impacted on the efficiency of the
software engineering process as a whole (throughout the rest of the document).
A more recent analysis by Jones (2000) gives around 250 variables that he claims
affect programmer performance.

107

The stakeholders who have a direct interest in the efficiency of developers are
the developers themselves and their commissioning people: the former because
it directly impacts on their time, and the latter because they have an interest in
getting the application finished. The interests of the users and the companies that
develop the platforms are much less involved.

4.4.3 Expressiveness

The word ‘expressiveness’ is here to do with the range of meanings that the tool can
encompass. The tool is expressive if it lets the developer create an application for
the problem domain and platforms that they want to create for. It is distinct from
‘effectiveness’ because it is by no means impossible that a tool could concentrate
on building very high quality user interfaces in a very restricted range of areas; or
that a tool could be broadly applicable but build very poor quality interfaces.

The stakeholders that have a direct interest in the expressiveness of the tool
are the developer and their commissioning people. The end user does not come
into direct contact with the tool and is likely not even to know what tool was used
to build the application they use; and the developers of the mobile platform have
limited interest in third-party tooling.

4.5 Contexts of evaluation

The tool and its case system were evaluated in three basic contexts, each of which
provided a different kind of information about the development process and take
a different subset of stakeholders into consideration. The three contexts of eval-
uation are not controversial; each has been used elsewhere, and a similar three in
combination were used to evaluate the MARIAE tool (Paternò et al., 2011).

4.5.1 Case studies

Three applications were developed by the author as case studies. In each case
study, a company commissioned the author to develop an application. The three
companies were in very different market sectors and required very different ap-
plications. The results from the case studies are given in chapter 6.

The process of evaluation through case studies is not unique to this thesis.
ARTStudio was evaluated by building an application for the EDF energy company
to control heating in a house (Thevenin et al., 2003). Multimodal TERESA was
demonstrated as being useful through a series of short case studies (Paternò et al.,
2008). DiaGen was also evaluated through a small case study, implementing the
process of registering for a website (Book et al., 2006). As noted above, the process
of evaluation for MARIAE included case studies.

108

The case studies take all the stakeholders above into account. The developer is
the author who, as noted above, was the only expert user of the tool. The commis-
sioning customer was the person inside the company that was the author’s point
of contact with the application. As noted above, the user’s interests and those of
the companies that control the platforms were assumed to be encapsulated in the
relevant user interface guidelines.

The case studies are primarily useful for providing information for the third
research question, about whether case can be used to build useful applications.

4.5.2 Developer workshop

To capture initial developer feedback on the tool, seven mobile developers came
to a workshop. In this workshop, they worked through the development process
of two example applications. The first of these was a guided activity to teach
them how to use the tool: the second was an activity where they were given a
specification from a hypothetical customer and asked to build an application. In
both cases the source code for the application had already been written: their
interaction with the system was limited to putting the application together from
components, so that they only interacted with the dialogue controller and the case
system.

Evaluation of development tools by workshops and self-directed development
by developers is not controversial. Of the tools in chapter 2 UIML was evaluated
in a workshop situation (Phanouriou, 2000, ch. 7) and released for other devel-
opers to use, extend and comment upon (see, for example, Binnig and Schmidt,
2002, and Luyten and Coninx, 2005). Multimodal TERESA was also evaluated in
a workshop event, although the details of the methodology and results are con-
tained within an EU project document that is not, at time of writing, publically
accessible. As noted above, the MARIAE evaluation contained a developer work-
shop.

The results from this workshop only took the developers’ views into account.
None of the other stakeholders were represented. It provided information about
a very specific set of interactions between the developers and the tool. It also pro-
vided information about the quality of the interface of the tool itself that allowed
it to be slightly refined for the following study. The model and mode of opera-
tion of the tool remained unchanged, however. The majority of the information
from this scenario feeds into answering the fourth research question, about the
usefulness of case to other developers.

109

4.5.3 Self-directed development

The third and last study was a longer study also involving external developers. In
this study, seven mobile developers were given the revised tool and asked to build
an application with it. No constraints were put on what applications they could
develop. If they wished to, they could develop an application for a commissioning
customer.

As noted above, the evaluation of UIML has proceeded down this route almost
by default, as developers have picked up the toolkit and written renderers for it
and experimented with it in different situations. The evaluation of MARIAE also
used a longer study, although there the developers had a problem set for them,
rather than being able to choose their own application to build.

The results from this self-directed development study took into account the
points of view of all stakeholders except for commissioning customers: while the
developers were free to build applications for commissioning customers if they
wished to, none of them did this. The majority of the information from this sce-
nario feeds into answering the fourth research question, about the usefulness of
case to other developers.

4.6 The three Es in the three scenarios

Each of the three Es can be considered in each of the three scenarios. This section
presents the questions that will be used to structure this part of the evaluation.

4.6.1 Effectiveness

In the case studies, two areas were examined to understand the effectiveness of
the tool.

Was the commissioning user happy with the application on all platforms and form factors? Free-
form criticism was gathered from commissioning users about the applica-
tion, started by asking them specifically what they liked about the applica-
tion and the development process, what they disliked about the application
and the development process, and how close the application was to the ap-
plication that they had actually wanted. They were also asked to concentrate
on the parts of the application that case had contributed to.

Did case contribute to the application’s conforming to the human interface guidelines for the
desired platforms and form factors? Each part of the application that case con-
tributed to was examined against the user interface guidelines of the rele-
vant platforms. Also, case could not be expected to cover the whole of a set

110

of user interface guidelines: therefore, the proportion of the user interface
guidelines that were covered by case was also assessed.

In the workshop, four areas were examined:

Were developers happy with what they had produced? During a semi-structured discus-
sion session at the end of the workshop, developers were asked to criticise
the quality of the applications that they had produced during the workshop.
They were especially asked to criticise the parts of the application that case
had been applied to.

Did their solutions resemble a sane model answer? For the activity where the develop-
ers built an application following a specification, there was a model answer
that fulfilled that specification. In situations where the developer’s solution
deviated from this model, they were asked why they had chosen the solution
that they had, again specifically with regards to case.

Where did they feel the tool fitted into the problem of plasticity? As stated above, case can-
not be expected to cover the whole of a set of user interface guidelines; nor
can it be expected to cover the entire problem space of plasticity. Develop-
ers were asked during the discussion session to comment on the extent to
which case addressed this problem space.

The problem space here is not meant in the sense of the plastic user in-
terface snowflake (as in chapter 2). Instead, it is meant in the sense of the
problems that they face in their professional practice while building plastic
user interfaces.

Would they find the tool useful in their professional practice? During the discussion ses-
sion developers were asked whether a case-based approach would be useful
in their professional practice and whether it would allow them to produce
plastic user interfaces of a high quality.

In the self-directed development study, three areas were considered, two of which
are analogous to the areas in the case studies.

Were developers happy with what they had produced? At the end of the application de-
velopment process, developers discussed their applications either face-to-
face, by telephone, or by email. They were asked to criticise the quality of
what they had produced with the tool compared to what they could have
produced using other tools, and to note whether the results met their stan-
dards as professional developers.

111

Did case contribute to the application’s conforming to the human interface guidelines for the
desired platforms and form factors? The applications that developers had built
were gathered in at the end of the development process. The parts of each
application that were affected by case were examined for compliance with
the user interface guidelines of relevant platforms, not by the developer of
the application, but by the author.

By these means, the effectiveness criterion gathers information about the perceived
quality of the parts of the interface produced by the case system. It gathers this in-
formation from the developer and from the commissioning user. It also measures
slightly less subjective information about the quality of these pats of the interface
against the user interface guidelines that, as remarked above, stand as a proxy for
the wishes of both the user and the platform owner.

4.6.2 Efficiency

In the case studies, two areas were considered for the evaluation of efficiency.

How many software components are involved in effecting plasticity? Is case responsible for
any reduction compared to the other comparable industrial tools? A software com-
ponent is something that is either a class or singleton object or something
that becomes a class or singleton object at run-time. For example, a class
that implements a view on some data is a software component; a class that
implements the storage of that data is a software component; a stylesheet
is a software component. This question will be answered by counting the
number of these software components.

This is an important measurement because it measures how well the con-
cerns of plasticity are separated from the other concerns in the application,
and how well plasticity is encapsulated.

Consider the problem of plasticising the dialogue layer of an application. In
a tool that had no awareness of the dialogue as a separate software compo-
nent, each view that wanted to avail itself of dialogue plasticity would have
to implement that plasticity itself. In this extreme case, therefore, the num-
ber of software components that effect dialogue plasticity would be linear in
the number of places in the interface that this plasticity is called for. This,
in turn, leads to a higher maintenance load on the developer.

As a concrete example of this, from 2010 to 2014, the author was involved
in the building of a satellite navigation system for the canal system of the
United Kingdom that ran on mobile devices. The development of this ap-
plication was done entirely using orthodox industrial cross-platform tech-
niques. To work well on tablets, the tool needed to have some adaptations

112

made to the user’s dialogue with the machine. At every point where this
adaptation needed to occur, a change had to be made to the source code
that was implementing those views: and every adaptation occurred in a dif-
ferent view, so that the concern of adaptation was spread all over the source
code for the application. In this case, the number of software components
that implemented this plasticity was equal to the number of places in the
application that the dialogue had to be adapted

By contrast, consider an ideal tool that completely encapsulated the problem
of dialogue plasticity. In this tool, it would not matter in how many places
plasticity was required: the number of software components that were in-
volved in effecting that adaptation would remain constant.

Case certainly cannot be expected to be an ideal tool: however, whether the
number of software components that effect plasticity is linear in the number
of uses of case or whether it is constant in common use cases forms an argument
that, in those common cases, it makes the developer more efficient.

Does the use of case provide a tangible benefit in terms of time at any specific point in the de-
velopment process? Since the applications were of different sizes and complex-
ities and for different commissioning users who worked in different ways
and at different speeds, an absolute measurement of time taken to perform
activities would not have been useful. A more useful piece of information
would be what, if any, development activities were noticeably faster than
they would have been otherwise.

In the workshop, two areas were considered.

Would this tool make the development process more efficient, and if so, which parts of it? This
criterion is not merely subjective but also subjunctive: it relied not only on
the developer’s experience but also on their ability to hypothesise accurately
about their use of the tool. This means that information gathered in this
area cannot, on its own, be weighted very heavily.

However, what it does provide is context for evidence for efficiency from
the other two evaluation activities. Agreement between the the speculative
comments of the developers in the workshop and the experiences of the
developers building tools makes the evidence that case increases efficiency
in those areas stronger.

Would the case system of the tool be worth learning for the expected efficiency gains? An ef-
ficiency gain that requires the developer to do so much learning that it can-
cels out the time and productivity gained is not a real efficiency gain at all.
To evaluate whether this was the situation with case, the developers at the

113

workshop were asked whether they felt that the overhead in learning about
the case system would be justified given the efficiency gains they expected
from the tool.

This, again, relies on both the developers’ self-awareness and their abil-
ity to accurately hypothesise about their own professional practice. Again,
though, when combined with information from the other two evaluation
activities it provides context.

In the self-directed development study, three areas were evaluated.

How many software components are involved in effecting plasticity? The same analysis of
software components was done on the applications generated by the self-
directed development study as on the applications generated from the case
studies. Again, this was to evaluate whether the tool provided efficiency
gains by encapsulating the concerns of plasticity that the developer was
likely to run into in normal use.

Does the use of case provide a tangible benefit in terms of time at any specific point in the de-
velopment process? This, again, mirrored the evaluation of the case study ap-
plications to ensure that any results from those were not due to the pecu-
liarity of the author.

Would the case system of the tool be worth learning for the efficiency gains experienced? This
mirrors the evaluation from the workshop, but provides more solid evi-
dence. After their use of the tool, developers were asked whether the ef-
ficiency gains they had seen in the design of their application, if any, had
made it worth learning to use the case system of the tool.

4.6.3 Expressiveness

The case studies evaluated the expressiveness of the case system in three areas.

Does it cope well with the platforms and form factors that the commissioning user needs? As
noted in chapter 2, the list of major mobile platforms is ephemeral and prone
to rapid change. If, however, a platform that the commissioning user needs
is missing from what the tool can do, then that needs examining, because
there are two possibilities as to why this could be the case.

Firstly, it could simply be a vagary of the implementation. In this case, the
ideal would be to port the tool to the platform required to demonstrate the
applicability of case to the platform.

Secondly, it could show up a limit of the model itself. In this case it would
not be trivial to port the tool, even if all the technical factors were easy: and

114

the model of the resulting tool would be noticeably different from the model
of the original tool.

Therefore, under this area of evaluation, the absence of problems would
have been somewhat indicative of broad applicability across mobile plat-
forms in general. A more interesting and definite result would have been a
failure of the tool in one or more platforms for the second reason above, as
this would have set definite limits on the applicability of case.

What kinds of applications can case be useful for? People use their mobile devices for a
large number of purposes, which means that multiple kinds of application
exist. For example, some applications primarily exist to help the user browse
a data set or find answers from data: examples of this kind of application
include satellite navigation applications, library catalogues and interactive
dictionaries. Some applications exist to facilitate communication between
people: examples of this kind of application include instant messaging ap-
plications and videoconferencing applications. Still other applications exist
to allow the user to consume multimedia content: examples of this are film
rental applications and internet radio applications.

Many applications, of course, do not sit in one of these categories. Email
applications both provide the user with the ability to browse the data set of
their own email and to communicate with other people through email. Ap-
plications such as Google’s YouTube allow the user both to consume mul-
timedia content and to communicate with other users about that content.
Therefore, this kind of division of applications into categories should be
taken as a rather imprecise and analogue division, rather than as a set of
absolute categories.

For the purposes of this thesis, no canonical set of kinds of application were
defined in advance: different developers may categorise their applications
different ways, and a pre-defined categorisation risks losing unexpected in-
sights into the development process.

In the case studies, the applications produced were divided according to
their primary function.

Is case more useful for some industries than others? Mobile devices have been found to
be useful in many kinds of human industry. A startling range of problem
spaces are represented in the application stores of the major platforms.

Case is not specifically tied to any one area of human endeavour: it acts
as a semantic framework into which, in theory, any nouns can be placed.
However, there may be some hidden assumptions built either into case itself

115

or into the specific case system used in the tool. If this is the case then it
may be more useful for some industries than others.

In the workshop, three closely-related areas were evaluated:

Are there platforms or form factors to which this tool is not applicable? This question mir-
rors the first question in the expressiveness evaluation of the case studies.
Developers were asked to comment on whether there were platforms or
form factors to which the tool was unsuited, drawing on their own profes-
sional practice and that of their peer group.

Are there kinds of applications to which this tool is not applicable? This question mirrors
the second question in the expressiveness evaluation of the case studies. De-
velopers were asked to comment on what kinds of application the tool was
suited to and was not suited to: and, if there were areas where the tool was
not applicable, how much of an impact would this have on the applicability
of the tool in their professional practice.

Are there industries to which this tool is not applicable? This question mirrors the third
question in the expressiveness evaluation of the case studies. Again, devel-
opers were asked to comment on this based on their own professional prac-
tice and that of their peer group.

In the self-directed development study, a similar three areas were evaluated:

Does case work well with the platforms the developer used? This mirrors the first ques-
tion in both the expressiveness evaluations above. It is distinct from the
case study, though, because the judgements here are further removed from
the author’s: and it is distinct from the workshop because it relies on the
concrete work that the developer did during the self-directed development
study rather than their speculation and hypothesising based on their profes-
sional practice.

Does case work well in the kinds of application the developer created? This mirrors the sec-
ond area in both the expressiveness evaluations above. It is distinct from
the case study, again, because the judgements are not the author’s or the au-
thor’s customer’s. It is distinct from the workshop because it is based on the
concrete work that the developer did during the self-directed development
study rather than developers’ speculation.

There is another distinction that makes this question a valuable addition
to the workshop study’s parallel question. In the workshop study, the de-
velopers were all in the same room, and the vocabulary they used to discuss

116

the kinds of applications they were building would therefore be a negotiated
part of the conversation in that room, so if individual developers had more
idiosyncratic ways of dividing applications into kinds, then those might not
show. By contrast, each developer in the self-directed development study
was working alone: so if their division of applications into kinds agreed
with the other developers’ and with the workshop participants’, then this
suggests that these kinds of application form a genuine basis to compare
the feedback from developers.

Does case work well in the industries that the developer was working in? This mirrors the
third area in the expressiveness evaluations above

4.7 Summary

The above is summarised in table 4.1. This table concisely lays out the structure
of the evaluation: corresponding tables in chapters 6 and 6 present the results of
the enquiries. Each of the research questions then can draw its answers from a
subset of this information.

Are the categories delineated by case relevant to user interfaces? In chapter 3, this ques-
tion was said to require evidence of three things: that the vocabulary of case
is applicable to user interfaces; that the system follows the rules of case suf-
ficiently well to be referred to as case; and that this vocabulary is amenable
to unexpected uses by developers.

Information on the first of these can be gathered from the expressiveness
information gathered from developers and from the case studies; if devel-
opers can use case naturally and find it relevant to user interfaces, then a
positive answer to this question is warranted.

Information on the second of these must be gathered from the implemen-
tation of the tool itself (presented in chapter 6 below). The constraints im-
posed by the case hierarchy need to be taken into account during the build-
ing of the tool.

Information on the third can be gathered from the case studies and the
longer development studies. The design of the tool (outlined in chapter
6) and the documentation given to the developers will provide examples. If
the case studies contain uses of case that are valid but unexpected according
to the design of the tool, or if the developers use cases in ways that meet the
definitions of the cases but are not the ways that the cases were used in the
documentation, then case has a claim to be a living category.

117

Case studies
Effectiveness Efficiency Expressiveness
Was commissioning
user happy?

Evaluation against
human interface
guidelines.

Number of software
components involved.

At what points did case
provide a tangible
benefit?

Did it meet platform
and form factor
requirements?

What kinds of
application suit case?

Is the use of case
industry-specific?

Workshop
Effectiveness Efficiency Expressiveness
Were developers happy?

Comparison with model
answer.

Where did the tool fit
the problem?

Would the tool be
useful to them?

Would the case system
make developers more
efficient?

Would the case system
be worth learning?

Are there platforms or
form factors to which
case is unsuited?

What kinds of
application suit case?

Is the use of case
industry-specific?

Self-directed development
Effectiveness Efficiency Expressiveness
Were developers happy?

Were commissioning
users happy?

Evaluation against
human interface
guidelines

Number of software
components involved.

At what points did case
provide a tangible
benefit?

Would the case system
be worth learning?

Did it meet developer’s
platform and form
factor requirements?
What kinds of
application suit case?
Is the use of case
industry-specific?

Table 4.1: Summary of methodology

118

Can a tool be built that embodies case for building plastic user interfaces? The answer to this
question must be settled by the actual implementation—or a failure to implement—
such a tool. In chapter 3, this question was split into two parts: first, whether
such a tool is technically implementable, and secondly whether such a tool
produces sensible results.

The first part of this question warrants a positive answer if the definitions
of the cases can be turned into software. An answer to this will emerge
from the attempt to build such a tool, in chapter 6. An answer to the sec-
ond part will emerge from the information gathered on whether the use of
case produces applications that conform to the user interface guidelines for
platforms, under the effectiveness criterion of both the case studies and the
longer, self-directed study.

Can case as embodied in this tool be used to build useful applications? The primary source
for information for this will be the case studies and the self-directed devel-
opment study outlined above, evaluated in terms of the three Es.

Can case as embodied in this tool be used by other developers? The primary sources for in-
formation for an answer to this question will be the workshop and the longer,
self-directed development studies, both evaluated in terms of the three Es.

The next chapter begins the process of answering these questions by laying out
the design decisions that were made in the creation of the tool and demonstrating
how the design of the tool emerged from the structure of case systems and from
the requirements placed on it in this chapter.

119

A Chapter 5
Design and implementation

5.1 Introduction

Chapter 4 outlined a way of evaluating the usefulness of case for building plastic
user interfaces for mobile applications. The first part of that evaluation involves
building a tool to encapsulate the idea of case and make it available to develop-
ers. This chapter describes that tool, which is called “AppMaps”. The goal of the
AppMaps tool was to provide a useful degree of plasticity to industrial developers
for building applications for Android and iOS using the idea of case. The goal of
this chapter is to demonstrate how the structure of case systems informed the de-
sign of the tool, and how the plasticity effected by the tool emerges from its case
system. This tool targets iOS and Android phones and tablets, making a total of
four targets. As noted in the previous chapter, the tool should be as familiar as
possible to developers. Therefore, the tool is based on Sencha Touch, which was
the most popular cross-platform tool at the time the Vision Mobile report cited in
chapter 2 was written. Each other component of the software takes its cue from
industrial tools that are in use for building cross-platform mobile applications.

The tool is described as a series of layers, starting from the abstract idea of
case and working outwards to a tool that can be used to build mobile applications.
The innermost, essential layer is the design of a case system for the tool. This
is described in section 5.3 below. The next layer out is how those cases should be
realised in actual concrete user interfaces (section 5.3.4). The next layer is that of a
dialogue controller and stylesheet mechanism that uses case to realise the concrete
user interface patterns (sections 5.4 and 5.5): and the outermost layer is a software
architecture and an implementation of that architecture that can be used to build
applications (section 5.6).

After these layers are described, the chapter summarises the lifecycle of an
AppMaps application, showing how the layers interact to effect a degree of plas-
ticity. This lifecycle stretches from the moment the developer presses the “build”
button to the moment that the application is shut down on a mobile device.

120

Chapter 4 noted some questions about the tool’s expressiveness that could
be answered immediately after the development of the tool. At the end of this
chapter, these questions are answered.

5.2 Accidents of implementation

In several places in his work, Aristotle talked about a distinction between essen-
tial and accidental properties of things, starting a hare which has occupied scholars
ever since. One way of classifying properties into essential and accidental proper-
ties is modal (Robertson and Atkins, 2013): an essential property of a thing is one
that it must have in order to be that thing, whereas an accidental property is one
that it just happens to have and is not key to its identity.

The essential property of AppMaps, the property that makes it a way of an-
swering the research questions asked, is the fact that it embodies a case system. A
case system alone does not a software engineering tool make: and so other parts
of the system had to be built. However, these were not essential: they could
have been built a number of other ways and still produced a tool that could have
answered the research questions. For example, AppMaps does not use a model-
driven engineering approach, but a model-driven tool using cases could have been
used to answer the research questions. In the case of AppMaps, the accidental
properties of the system were generally arranged to make it familiar to industrial
developers of mobile applications.

This chapter will concentrate on describing the essential properties of the tool,
that is to say its case system. Accidental properties will be discussed briefly where
they will play a role in the discussion in future chapters.

5.3 The case system

5.3.1 Application of the case hierarchy

The overall structure of the case system is defined by the case hierarchy. The case
hierarchy was summarised in chapter 3 and is diagrammed again here in table 5.1
for reference.

Recall that natural languages tend to have case systems anchored to the top of
this list. So a case system with two cases will tend to have a nominative and an
accusative or an absolutive and an ergative (these cases were described in section
3.5.1). A case system with three elements will tend to have these two cases plus a
genitive: and so forth.

In the current context, however, the situation is a bit more complicated. In
section 3.10, it was noted that not all the meanings of cases can be applicable to

121

Nominative
Accusative or Ergative

Genitive
Dative

Locative
Ablative or Instrumental

Other cases

Table 5.1: Blake (2001)’s case hierarchy

user interfaces. Specifically, the nominative and accusative or ergative and abso-
lutive are specific to the kinds of sentence structure one gets in natural languages.
Therefore, the case system of the tool begins with the genitive and works down-
wards.

5.3.2 Structure of the case system

The AppMaps case system is a three-element system. Its two specialised cases are
a dative and a genitive. The third, being the lowest on the case hierarchy, gets
everything else rolled into it. Cases that have a lot of different functions are often
called oblique cases in the literature (although this terminology is a little confused;
see Nichols, 1983). Therefore, this case will be referred to in the remainder of the
chapter as the oblique case.

5.3.3 Meanings of the cases

Each case in the AppMaps tool has a range of meanings. Blake’s case hierarchy
deals in very abstracted, stripped-down definitions of what each case is. However,
in actual languages, as shown in chapter 3, cases do not obey strict clean divisions
between them and between the functions and meanings they have. To an extent,
then, allocating meanings to the cases in AppMaps is an act of construction which
must be guided by the meanings of cases in natural languages.

The meanings of the cases are shown below. Comparing these with the exam-
ples given in chapter 3 will show that they correlate well with meanings found in
natural languages.

The genitive is used for ownership or origination. If the user selects somebody
who owns something or from whom something comes, then selects a some-
thing that is owned by or comes from that somebody, then that somebody
should be marked as genitive. For example, in an instant messaging applica-
tion, if the user can browse messages by sender, then that sender could be
marked as a genitive.

122

It is also used for categories, or for qualities or predicates, if things that
have that quality or obey that predicate are being browsed. For example, in
a satellite navigation application that provides the user the ability to filter
based on kind of point, then the user’s selection of the kind of point could
be marked in the genitive. Likewise, in an email application that allows the
user to browse their inbox by folder, the user’s selection of the folder could
be marked as being in the genitive.

It is also used, as an extension of this, with a partitive meaning: the whole of
which a part is being manipulated or looked at can also be marked as genitive.
For example, if the user were browsing a list of documents and looking at
their contents, the list of documents could also be marked as being in the
genitive.

The dative is used for a beneficiary or for the destination of an act of sending.
For example, when the user selects a destination to share a piece of content
to, that should be marked as being in the dative: the options in the share
panel (which at present usually include Twitter, Facebook and a slew of other
sharing destinations) could all be marked as being in the dative.

It is also used for situations where the user needs to be able to provide more
open-ended information about a destination. For example, if the user needs
to enter an email address for the destination of an email message, or the
username of a person in an instant messaging application as the destination
of a message, this too should be in the dative.

Note that it is not used for the spatial destination of a movement: it should
not be used, for example, for the end point of a route planning operation, or
for the spatial destination of the movement of a robot.

The oblique is used in situations when neither of the other two cases are appro-
priate.

5.3.4 User interface patterns

Each case is realised in certain ways in the final user interfaces of applications.
This section summarises how the cases can be realised within the user interface
guidelines of each of the platforms that AppMaps targets.

The genitive has similar, but distinct, realisations on iOS and on Android. The iOS
human interface guidelines and precedent are quite clear; the Android ones
far less so.

On iOS tablets, genitives are displayed as split views (figures 5.1, 5.2 and 5.3).
The genitive selection is in the left hand pane: the objects that belong or are

123

Figure 5.1: Genitive of ownership on iOS tablets

in the category are in the right pane. In the first, the owner or originator of
messages is selected on the right hand side and the message is selected on
the second; in the second, a category of settings is selected on the left and
the individual settings on the right; in the third examples an item (either a
person or an email) is being selected in the left hand pane and the contents
or details of that person are shown on the right.

On iOS phones, genitives are displayed as two screens: the user first makes
the genitive selection, and then the object from the person or category, or
views the details. This is shown in figures 5.4, 5.5 and 5.6. Each of these
figures is of the same applications as its counterparts in figures 5.1, 5.2 and
5.3 above. When both the genitive object and the other object are being
selected from list-like views, each item in the first list shows an arrow (as in
figure 5.5).

On Android tablets, the user interface guidelines are less prescriptive and
so more freedom is left to the individual application designer. However, a
similar pattern is frequent and permitted by the user interface guidelines.
Examples that parallel the iOS examples are in figures 5.7 and 5.8.

On Android phones, there are two patterns for genitives. Which pattern is
in use depends upon the age of the application and the developer’s aesthetic
preferences. Until recent versions of Android, the pattern was the same as
the iOS phone pattern: the user first selected an owner or category or object

124

Figure 5.2: Genitive of category on iOS tablets

and then the objects in the category or details of the object were displayed.
Recently, since Android 4, a second pattern has been suggested by the user
interface guidelines. In this case, the objects are displayed first, displaying
the last category the user chose or a sensible default: a button is then pro-
vided in the top left of the screen to display the list of categories. The list of
categories slides out from the left of the screen. AppMaps implements only
the first of these, because the development of the tool was already finished
by the time the revised Android user interface guidelines were published.
Examples of genitives on Android phones corresponding to the examples
above for tablets are shown in figures , 5.9 and 5.10.

The dative has two realisations on each platform: one for situations where the user
has to choose between a number of pre-defined destinations, where each
destination appears as a button-like control, and one for situations where
the user is entering an address or a phone number, where the box for the
user to enter the destination is not button-like.

On iOS tablets, the first is implemented as a “popover” (figure 5.11). A
popover is a temporary view that appears over the content being browsed,
with a “speech bubble”-like tail pointing to the control that summoned it.
In this popover, the icons for the destinations are displayed. When the user
taps outside the popover the popover is dismissed. In native applications,
this popover is managed by an “activity view controller”.

125

Figure 5.3: Partitive genitives on iOS tablets

126

Figure 5.4: Genitive of ownership on iOS phones

Figure 5.5: Genitive of category on iOS phones

127

Figure 5.6: Partitive genitives on iOS phones

128

Figure 5.7: Genitive of category on Android tablets

Figure 5.8: Partitive genitive on Android tablets

129

Figure 5.9: Genitive of category on Android phone

Figure 5.10: Partitive genitive on Android phone

130

Figure 5.11: Dative popover on iOS tablets

131

Figure 5.12: Dative on iOS phones

Figure 5.13: Dative on Android

On iOS phones, it is implemented as a transitory view that pops up from the
bottom of the screen with the icons for the sharing destinations in it (figure
5.12). There is also a “cancel” button that dismisses the popup. In native
applications this transient view is managed by an “activity view controller”.

The pattern on both Android form factors is that of a drop-down menu, or
a “share action provider”, as outlined in chapter 3 (see figure 5.13).

132

Figure 5.14: The graphical automaton editor

5.4 The dialogue notation

The case system alone, however, is not enough for a developer to specify a dialogue
model. It is a categorisation, not a notation. In AppMaps, the dialogue model of
an application being developed is defined in terms of a finite state automaton. This
automaton is edited visually by the developer (figure 5.14).

With this model of the dialogue between user and application, it is possible
to begin to do some adaptation. To describe the adaptation, it is necessary to
describe both the start point and the end points of that adaptation.

The start point is the set of idioms that the developer should use to design
their dialogue controller. The dialogue controllers of AppMaps applications are
designed for an “ideal phone”. This “ideal phone” is a simplification of both the
iOS and Android phone idioms.

On an “ideal phone”, genitives work as they do on iOS and in the older Android
pattern (both as outlined in section 5.3.4). The user first selects the genitive, and
then the other object (figure 5.15). This is the pattern that the developer should

133

x/gen y

Figure 5.15: “Ideal phone” genitive pattern

x y/dat

Figure 5.16: “Ideal phone” dative pattern

{a:Album}/gen {s:Song}

{a:Album}/gen

Figure 5.17: Genitive dialogue on iOS and Android tablets

use. Datives work as they do on Android: the user chooses a share button and
then the dative destination (figure 5.16).

Graph grammars are used to recognise these patterns during the application
build process. A graph grammar is analogous to the more usual kind of grammar
(in the computer science sense of the word), but instead of replacing substrings of
a string input, it replaces subgraphs of a graph input.

There is one graph grammar for each combination of software platform and
form factor. Since AppMaps supports the Android and iOS platforms and the
phone and tablet form factors, this means there are four distinct graph grammars
in use, each of which has rules for each of the two cases. Four variants on the
application thus result from the build process with four distinct concrete UIs.

On iOS tablets the genitive is rendered as a split view, as shown in section 5.3.4. To
rephrase this in terms of the dialogue, the first thing that the user has to do
is to select the item in the genitive. They are then able to select either the
other object, or another genitive (figure 5.17).

The dative is rendered as a popover. To rephrase this in terms of the dia-
logue, the user first chooses the share button and then the destination to
which to send the thing they are looking at (figure 5.18). Therefore, in the
iOS tablet grammar, dative subgraphs are passed through unchanged.

134

"share" "twitter"/dat

Figure 5.18: Dative dialogue on iOS and Android tablets

{a:Album}/gen {s:Song}

Figure 5.19: Genitive dialogue on iOS and Android phones

On Android tablets the dialogue realisations are the same as on iOS tablets (again,
see section 5.3.4). Genitives again are a split view, and datives are a menu
(which is, from the dialogue perspective, the same as a popover; figure 5.17).

On iOS phones genitives are implemented as a sequence of two views. In the first,
the user selects the genitive; in the second, the other object (figure 5.19).
Thus, genitives remain unchanged between the “ideal phone” and the real
phone (compare figures 5.19 and 5.15).

Datives are implemented as a view that pops up from the bottom of the
screen and has a cancel button. In dialogue terms, the user selects a “share”
button of some description, then either selects the service to share to or the
cancel button (figure 5.20).

On Android phones both realisations are the same as the “ideal phone”. The reali-
sation of the genitive is the same as on the iOS phone (figure 5.19); and the
dative is a straightforward menu where the user picks first the “share” button
and then the service they are sharing to (again, from a dialogue perspective,
this is the same as a popover: see figure 5.17).

135

"share" "twitter"/dat

"cancel"

Figure 5.20: Dative dialogue on iOS phones

x/gen y

Ideal phone:

x/gen y

iOS and Android tablet:

x/gen y

iOS and Android phone:

x/gen

Figure 5.21: Genitive graph rules

These graph grammar rules for every platform and form factor combination
supported by AppMaps are summarised in figures 5.21 and 5.22.

The specific graph grammar framework AppMaps uses is the AGG framework
(Taentzer and Beyer, 1994; Taentzer, 2000, 2004). This framework was chosen af-
ter the desired grammar was designed; it was chosen because it is powerful enough
to implement the above grammar rules and is easy to integrate within other soft-
ware. Note that the users of AppMaps never use the AGG user interface.

136

x y/dat

Ideal phone:

x y/dat

iOS and Android tablet and Android phone:

x y/dat

iOS phone:

"cancel"

Figure 5.22: Dative graph rules

5.5 The stylesheet

The dialogue automaton does not provide enough information on its own to re-
construct the kinds of user interface pattern given in section 5.3.4. For example,
consider the dative pattern for tablets as given in figure 5.17. The middle state of
the three has two edges emerging from it: a genitive edge that returns to that same
state, and an oblique edge that continues onwards. The screen layout calls for a
split view where the left hand view, which displays the genitive, is narrower than
the right hand view, which displays the oblique selections. These adaptations are
on the physical layer, rather than on the dialogue layer, and so they are not the
proper concern of the dialogue controller. Therefore, a mechanism for physical
and logical adaptation also needs to be provided.

In AppMaps, this function is provided by a stylesheet. Each AppMaps applica-
tion contains five stylesheets: one general one, which provides styling information
that must remain consistent across all platforms, and one each for each supported
combination of platform and form factor.

When a new AppMaps application is created, these stylesheets provide rules
that implement the user interface patterns outlined above. The developer is then
free either to change these rules to change the application’s physical appearance
or to add new rules to change the way that parts of the application appear.

137

Model

Controller View

Dialogue

Figure 5.23: The overall structure of an MVCD architecture

5.6 Application architecture

AppMaps follows a “model-view-controller-dialogue” architecture (MVCD) based
on the Sencha Touch MVC architecture. “MVCD” is a novel term: this thesis in-
troduces it because, while individual instances of this architecture pattern already
exist, there is no term for the pattern itself.

The difference between an MVCD architecture and a traditional MVC archi-
tecture is that an MVCD architecture contains a separate dialogue controller, and
thus encapsulates task structure in a way that traditional MVC does not. This
dialogue controller corresponds to the dialogue controller in the Arch model. It
receives processed user input from view components and can either directly affect
the properties of these views (such as which view is visible, or what user interface
elements are enabled for user input), or can call application logic in controllers.
The overall structure of an MVCD architecture is shown in figure 5.23.

These two abilities follow both from the definition of the dialogue controller
and from its position on the Arch model. It must be able to co-ordinate both user
actions and actions performed by the machine. In traditional MVC architectures,
any operation that changes the state of a view should go through a controller; but
if the dialogue controller had to go through a controller to change the state of a
view, then the distinction between task structure and application logic would be
blurred.

The abilities of the dialogue controller to interact both with views and with
controllers directly mirror the split between the user and machine action nodes in
ConcurTaskTree task models.

Apple’s MVC with storyboards is an instance of the MVCD pattern; as is
Sproutcore’s MVC with state charts (section 2.8); as are MVC models built on top
of Oracle’s NetBeans flow designer (Motocoder, 2006). In the case of AppMaps,
the dialogue controller is defined using the automation notation described above.

138

5.7 Personal reflection

In chapter 4, it was noted that it would be possible to do some reflection upon
the expressiveness of the tool purely from its design. Reflections based on the
design of tools are not uncommon. Jones et al. (2012) categorised and evaluated
industrial tools based reflection upon on their design. Likewise, Thevenin et al.
(2003) analysed tools according to the plastic user interface snowflake according
to their design. A number of questions were raised in chapter 4 for this reflection
to answer , and here they can be answered.

Can a case-based approach be cleanly implemented? The mapping between cases and rules
from the UI guidelines is a simple one. There was no need to stretch the
intent of the user interface guidelines to make each case have a simple, co-
herent set of realisations; nor was there any need to make the meanings of
the cases implausible. In AppMaps, there is only one possible realisation of
the genitive per platform. As noted above, in the general case on Android,
there is more than one possible realisation. However, generally one would
only use one of these realisations per application. The meaning is the same:
the reasons for choosing one over the other are aesthetic or ergonomic.

The dative has two possible realisations: AppMaps again only implements
one of them. In this case, the different realisations are triggered by physical
properties of the component. It is worth noting in this connection that
natural languages rarely have only a single realisation of a case: different
words can show the same case differently (see table 3.1 for an example).

Given these circumstances, it is fair to say that there is a clean implementa-
tion of case for all the platforms involved.

How does the expressiveness of this approach compare to that of other tools? In chapter 2,
the Arch model and the Plastic UI Snowflake were used to talk about the
expressiveness of different tools and approaches to the design of plastic user
interfaces. To compare the case-based approach used in AppMaps with
other approaches, AppMaps is here classified on the plastic user interface
snowflake and compared with other tools.

What software components are capable of adaptation. AppMaps allows adaptation
of the physical, logical and dialogue layers of the arch model. As noted
in chapter 2, industrial tools tend to only adapt at the physical and log-
ical layers of the Arch. Thus, AppMaps is more expressive of plastic
user interfaces than the industrial tools are. Note, however, that its
adaptation at the dialogue level of the Arch is not as flexible as that of

139

the research tools: they let the developer define arbitrary transforma-
tions, where AppMaps does not.

Kinds of target. AppMaps only adapts based on the platform (in Thevenin
et al. (2003)’s meaning of the word). It does not adapt based on user
or environment. In this respect, it is on a par with the other develop-
ment tools for the platforms it does adapt to. However, the number of
platforms it adapts to is much lower than the research tools surveyed.

Development phases. AppMaps is active both at design and run-time, although
all adaptation is performed at the end of design-time, as a part of the
build process. At design-time, it is a forward engineering tool for cre-
ating new applications. It provides no reverse-engineering tools. At
run-time, it provides a run-time component that is responsible for the
life cycle of the application and its views, so it provides infrastructure
rather than a toolbox. Both infrastructures and toolboxes are repre-
sented in the existing tools. It is here on a par with the expressiveness
of other tools.

How the interface is implemented. The interface is implemented using JavaScript
and HTML on top of WebKit. It uses the Sencha Touch 1.1 toolkit to
provide physical components. It expressiveness is therefore limited
compared to tools that use the native operating system components.

Which actors are in charge of adaptation. During design-time, both the computer
and the user perform adaptation. At the physical and logical layers of
the arch, both are involved; the user provides the stylesheet and the
AppMaps tool checks it and provides platform-specific defaults. At the
dialogue layer of the arch the computer alone performs adaptation. No
adaptation is performed at run-time; the run-time component provides
support for the adaptation decisions taken at design-time. This poten-
tially makes the tool less expressive than the research tools surveyed
in chapter 2, which allow the developer input into how the dialogue
component is adapted.

When the computation of the final UI occurs. The computation of the final UI
in all its details is done at run-time. The declarative specification (the
stylesheets and the dialogue controller graph) is turned into concrete
components when the application starts running on the mobile device.
The data that populates those components, which also forms part of
the final UI, is fetched by the application as needed. Data loading is
under the control of the developer’s own code. This puts it on a par
with nearly all of both the industrial and academic tools.

140

Whether the final UI can migrate between devices. AppMaps provides no support
for user interface migration. The only tool surveyed in chapter 2 that
can provide this is X11, and to actually implement user interface mi-
gration in this environment requires both persistence and expertise on
the part of the developer and user (Solomita et al., 1994). AppMaps is
therefore about on a par with all the other tools in this respect.

In summary, AppMaps is generally more expressive than the industrial tools
in its support for building plastic user interfaces. This does not mean that it
is more expressive in general: for example, the naïvety of the history mecha-
nism means that it would be difficult to build some applications in AppMaps
that would be trivial in other tools. However, those other tools do not at-
tempt to plasticise the user’s dialogue with the machine at all, and AppMaps
does, so in terms of plasticity, it is more expressive.

AppMaps is less expressive, in general, than the research tools. This follows
from two things. First, AppMaps does not follow a model-driven engineer-
ing approach to the design of the interfaces it produces. It is not a model-
driven engineering tool because, while it does use models and transforma-
tions between them, those transformations are not in themselves models,
and because the developer has no direct access to modify and create new
transformations. As noted above, model-driven engineering is not a com-
mon approach to creating user interfaces in industry, regardless of its merits,
and this makes it unsuitable for the evaluation of case. Second, AppMaps
targets many fewer platforms than the research tools. These limitations are
not the results of the use of case in and of itself: it would likely be possi-
ble to use case in a model-driven engineering context, and it would likely be
possible to use case on platforms that are AppMaps does not cater for.

What are the limits on the tool’s expressiveness? The design of the AppMaps tool puts
some constraints on what developers can express that are due to design de-
cisions that are not attached to the case-based approach.

• The complexity of the dialogue structures that the notation can actu-
ally express is limited. A finite state automaton can only specify regular
languages. The J2ME Flow notation escapes from these limitations by
providing ‘entry’ and ‘exit’ nodes that let the application make a de-
cision in code as to what to do, and thus making the combination of
notation and extra code Turing-complete. The Apple Storyboard no-
tation escapes this by including different kinds of dialogue controller
in the storyboard, and so different parts of the storyboard can have
different behaviour. AppMaps does not provide any such mechanism.

141

• The complexity of the dialogue structures that the notation can cleanly
express is even more limited. State machines with no hierarchical con-
structs become very complicated very quickly.

• The dialogue controller design makes the assumption that the applica-
tion can conveniently categorise the user’s interaction with it into dis-
crete selections. This makes sense for data-driven applications, such
as music players or satellite navigation applications, but is less true of
things like games, where the user is providing a continuous input that
may directly affect objects in the application.

• The history mechanism (which implements the back button) is ex-
tremely naïve, and applications cannot opt out of it.

• The implementation of the stylesheet mechanism removes choices from
the developer that might prevent them from implementing the inter-
face they would want to: edges of the same type are always represented
by the same user interface element, and styling rules cannot be applied
based on the context that the user interface element finds itself in.

• Since AppMaps is a tool designed to evaluate the usefulness of case,
all the plasticity it provides to the dialogue layer of the application
is implemented in terms of case. Case is not a panacea for dialogue
plasticity: this means, for example, that a number of potentially use-
ful dialogue patterns are not automatically implemented at all. A very
visible example of this is tabbed views. In iOS many applications have
tabbed interfaces in order to group different but related functionality
(see figure 5.24 for an example in the iOS App Store). AppMaps does
not support this kind of pattern: if a developer should want this kind
of pattern they would have to build extra code into their application to
do it.

Again, none of these limitations are the fault of case in itself. The limitations
of the automaton and the stylesheet come from the requirement on the tool
to be familiar to developers. The limitation where all dialogue plasticity is
effected by case follows from the requirement that the tool evaluate case.

5.8 Summary and conclusion

This chapter outlined the design and implementation of AppMaps, a develop-
ment tool that uses the notion of case and that should be familiar to developers.
It is designed for these twin purposes by beginning with a case system and then
putting layers on top of it, each of which follows industrial precedents. The dia-
logue model that uses the case system is based on the dialogue models in use in

142

Figure 5.24: The iOS application store

other tools, especially Facebook’s, Apple’s and Oracle’s; the stylesheet mechanism
that provides some physical and logical adaptation is based on CSS and other well-
known stylesheet mechanisms; and the overall software architecture belongs to a
subgenre of MVC that is already widespread. These components link together to
form a development tool that is capable of building applications for deployment
to both tablets and phones running Android or iOS.

This chapter also performed some initial reflection upon the tool purely based
on its development process. In the next two chapters this tool and the case system
that is embedded inside it are put to a more rigorous evaluation first by their use
in three case study applications then by their use by other developers.

143

A Chapter 6
Development case studies

6.1 Introduction

The previous chapter outlined the design and implementation of the AppMaps
tool and made some initial evaluation of it based purely on the design of the tool.
This chapter continues the theme of evaluation by describing and examining the
development of three case study applications using the AppMaps tool and case
system. This process, as outlined in chapter 4, allows for a detailed look at the use
of the case system in the practice of a developer with expertise in using the tool
and the case system.

The three case study applications were free commissions. Companies who had
an existing working relationship with the author were approached to submit ideas
for applications. The only constraint placed on what these ideas could be was
that the time available to develop the application. Prior to idea submission, the
companies had not seen the AppMaps tool. There was no requirement that the
application should be in any way apparently well-suited to a case-based develop-
ment approach. The applications were aimed at a production release.

None of the commissions received had to be rejected due to the size of the
proposed application. Therefore, of the companies approached about taking part
in the study, those chosen were simply the first three that responded. Those three
companies are all small, but are in very different markets. They are not related in
any way other than being companies that the author has worked with before.

For each case study application, some background is given about the context
into which the application fits. Any requirements for the application that affect
the implementation of the user interface are then summarised, followed by the
presentation and explanation of the application map for that applications. For
each application, both the roles that case plays in the application itself and the
roles that it played in the design process are enumerated, and the application is
evaluated against the methodology outlined in chapter 4.

144

6.2 Goal

The goal of the work presented in this chapter is to examine how useful case is in
the commercial development of plastic user interfaces at close quarters.

To this end, the applications presented in this chapter were not created purely
for this thesis. Each application was commissioned by an external organisation to
fill a need that that organisation had, and each application was created and devel-
oped with an aim of that application going into production on mobile devices. The
applications were free commissions: the ideas for the applications came from the
companies concerned and there was no restriction on the nature of the application
other than that it should be possible to implement it within a reasonable amount
of time. The projects were treated by the author as commercial commissions.

This allowed a great deal of access to the details of the application where case
could be useful to the author’s development practice and into the kinds of appli-
cation where case could be useful, likewise relative to the author’s professional
practice.

6.3 Overview of method

In order to make sense of this chapter, it is important to keep separate the ap-
proach taken to the research and the approach taken to the development of the appli-
cations. Although the two interact, they are distinct.

The research approach is case-study based: that is, it is “an empirical enquiry
that investigates a contemporary phenomenon within its real-life context, espe-
cially when the boundaries between phenomenon and context are not clearly evi-
dent” (Yin, 2002, p. 13)

The development approach was one of iterative design and implementation .
Initially one or two meetings were held with the representative or representatives
of the company. In these meetings, the author and the representative of the com-
pany agreed on a first approximation to the final feature set and some ideas as to
how the user interface should fit together. After these initial meetings, there was
an iterative process where each iteration consisted of the creation of a new pro-
totype, followed by a discussion of that prototype that set the goals for the next
prototype. This discussion was sometimes a face-to-face meeting, and at other
times mediated by e-mail or teleconferencing.

An application was considered ready for inclusion as a case study when both
the author and the commissioning person within the company considered the user
interface feature-complete. At this point, a final meeting or set of meetings was
held with the representative or representatives of the company, focussing on cap-
turing their perspective of what had gone well or badly with the development pro-

145

cess from their point of view, and how successful the project had been in capturing
their requirements.

The audio from meetings was recorded, as was the audio from teleconferencing
calls. All correspondence was also kept. The parts of the meetings that had a
bearing on the case system were transcribed. These statements, along with the
parts of the correspondence that had a bearing on the case system, were then
classified in terms of the 3 Es. The classification was performed according to the
definitions of the 3 Es presented in chapter 4. If a statement covered multiple
Es, then it was classified under both. The people with whom the meetings were
held were then asked to check whether the classification accurately reflected their
views.

Ethics approval was granted for this study.

6.4 Cross-platform challenges

The cross-platform user interface challenges that the applications below present
are quite similar. Each application (except for the Agritechnik application, as dis-
cussed below) was needed on both the Android and iOS software platforms, and
on both phone and tablet. On each of these combinations of software platform
and form factor they needed to follow the appropriate user interface guidelines.

In each situation, also, the requirement for a single cross-platform application
rather than multiple single-platform applications was driven by two things. The
first was a desire for consistency across the platforms. The people who commis-
sioned each application all independently said that it was important that the appli-
cation behaved consistently across the platforms. The second was due to the sizes
of the companies: none of the companies that commissioned these applications
had sufficient resources to hire developers to maintain two distinct applications.

6.5 EVENT2: Anatomy of a failure

6.5.1 Background

Between 2010 and 2013, the author was involved in developing a communication
tool for conferences with a company called 1EVENT.

The tool provides two functions. The first is aimed at moderated discussions,
and allows users to submit anonymous questions and comments to a screen that
the moderator can see. The moderator can then choose to put any of these ques-
tions or comments on one or more big screens for discussion (as in figure 6.1). This
function was used in two ways. Firstly, in debate situations where discussion was
going on between a panel and the other attendees, it provided a way to keep the

146

question being discussed in people’s vision, and thus helped keep people on topic
to a certain extent. Secondly, it was used when a conference attendee wanted to
voice a controversial or unfashionable point of view or question, but wished to do
so anonymously. It was then up to the moderator whether this controversial con-
tent would actually be displayed. The moderator had no access to any identifying
details of the person submitting the question or comment.

The second function is a polling function. The moderator can put a multiple
choice question on the screen for the audience’s consideration (as in figure 6.2);
they can then choose one of the options, and a graph is updated on the screen
(figure 6.3) to show the audience’s mood. If statistically useful results are desired,
the graph can be hidden until all votes are in.

Originally, the audience’s interactions with the tool were all done via SMS. A
number was displayed prominently, and the attendees at the conference were in-
vited to send SMSes to it. If a poll was currently active and an incoming SMS
matched one of the poll options, then it was treated as a vote and the appropri-
ate part of the graph was updated. Otherwise, if a poll was not active, or a poll
was active but the SMS didn’t match any of the poll options, it was treated as an
anonymous question and put into the queue for the moderator to look at.

Over time, the number of ways for users to submit their votes increased, al-
though the core idea remained the same. MMS was introduced to let users submit
images; e-mail, twitter and bridges to other instant messaging services were intro-
duced to let users submit votes and text questions. As a part of this process, there
was an investigation into building a mobile application for those users who had
smartphones.

To experiment with the possibilities of mobile applications in this context, the
AppMaps tool was used by the author to develop several iterations of an experi-
mental application.

6.5.2 Requirements

Below are the requirements for the application that impacted on the implemen-
tation of the user interface. The word “server” in these requirements refers to
the computer that is in charge of receiving and aggregating the messages from
members of the audience. Figures are redrawn versions of those in the original
specification.

• Each build of the application is specific to a conference. There is no need
for any mechanism for the user to select a conference.

• As soon as the application loads, it should present the user with a tabbed
screen.

147

Figure 6.1: The display of an anonymous comment. From the Institute of Direc-
tors Annual Debate on Jersey, 2013.

Figure 6.2: The display of a poll question. From the Institute of Directors Annual
Debate on Guernsey, 2013.

148

Figure 6.3: The display of the graph for a poll in progress. From the Institute of
Directors Annual Debate on Guernsey, 2012.

– The first tab should only be available when a poll is running. It should
enumerate the poll options available and allow the user to pick one.
After the user has picked one and the server has been notified, it should
display a brief message indicating that the message has been passed on,
and change the visual appearance of the option picked (see figure 6.4).
If another option is picked then the visual indicator that the choice
has been chosen should be removed from the first and placed on the
second.

– The second tab should always be available. It should consist of a text
field in the middle of the screen accepting up to 160 characters, and a
send button in the platform-appropriate place. When the send button
is pressed, one of two things happen. If the conference has only one
question queue, then the message is immediately sent to that screen.
If the conference has more than one, then the user is given a choice of
which queue to send it to (figure 6.5).

– A third tab allows the user to replicate the main screen of the confer-
ence on their device (figure 6.6).

149

Poll
Carrier 12:00 PM

Poll Message Watch

Q: What is love?

Baby don't hurt me

Don't hurt me

No more

Poll
Carrier 12:00 PM

Poll Message Watch

Q: What is love?

Baby don't hurt me

Don't hurt me

No more

Poll
Carrier 12:00 PM

Poll Message Watch

Q: What is love?

Baby don't hurt me

Don't hurt me

No more

Your vote has been received

Figure 6.4: 1event poll mockup

Send message
Carrier 12:00 PM

Poll Message Watch

This is a message someone has
typed

Send

Send message
Carrier 12:00 PM

Poll Message Watch

This is a message someone has
typed

Send

Send message
Carrier 12:00 PM

Poll Message Watch

Type your message here

Send

Speaker 1 Speaker 2

Your message has been received.

Figure 6.5: 1event message mockup

6.5.3 The application map

The application map is given in figure 6.7. Note that the three states in the dotted
box form a tab bar group: as noted in chapter 5, AppMaps does not provide au-
tomated support for this, so in this application this tab pattern was implemented
separately. The dotted line is provided in this diagram for clarity and because it
was in the original requirements document: it is not part of the formal dialogue
automaton notation.

150

Main screen
Carrier 12:00 PM

Poll Message Watch

Don't hurt me
No more

Figure 6.6: 1event main screen mockup

Poll

View

Qu

Tabs

{choice:PollChoice}

Dest

{msg:Text}

{dst:Screen}/dat

Figure 6.7: The EVENT2 application map

151

6.5.4 The use of case in the application

There is no use of the genitive in this application. The dative, however, is in use.
It is used after the user presses the “send” button to allow them to select a screen
to send their message to (figure 6.8).

6.5.5 The use of case in the design process

The features and the overall structure of the application were defined mostly
by the existing product offerings and APIs; the person who was responsible for
signing-off the design of the application wanted the dialogue design of the appli-
cation to follow the existing dialogue flows of the SMS-based application closely.
In the initial design, therefore, case played little part.

The initial prototype of the application did not have the multi-screen function.
At that time, in fact, the whole product had no such function: there was only one
screen per deployment. Support was subsequently added to the entire system for
multiple screens after the design of a prototype application that had this support
that was built using AppMaps to demonstrate the use of dative edges. This feature
was subsequently removed: during the one and a half years in which it had existed
not a single customer had asked for it or used it. However, AppMaps did make
the addition of this feature to at least the user interface of the application trivial,
and without that the entire experiment could not have taken place.

6.5.6 Evaluation

6.5.6.1 Effectiveness

Two people inside InstantVue had access to the application while it was in devel-
opment and thus could comment on the quality of the application. One was the
commissioning person; one was the person responsible for marketing the product.

Since only the “multiple screens” function was plasticised with the aid of case,
these people’s reactions will only be given as far as they touch on this function.

The commissioning person did not even initially notice the plasticity in this
component of the interface. He intuitively used it correctly, but did not con-
sciously notice that the presentation was different between the phone and tablet
builds. When it was pointed out to him that this adaptation was taking place, he
commented that “it works exactly the same as all the other apps on this thing,
so I didn’t really notice”. He was asked whether this meant that he considered it
to be consistent with the other applications on the system, he said “it looks a lit-
tle different from the vendor apps on here, but I’ve seen much odder third-party
apps. I’ve seen loads that look like this”. By “odder”, he said that he meant “not
things that try to be different or design-y, but just badly-built attempts to look like

152

Figure 6.8: Datives in EVENT2

153

normal apps. This is fine, completely within what I’d consider ‘normal’.” When
asked for aesthetic critique, he replied that “there isn’t much to like or dislike aes-
thetically, really, other than I dislike the Android interface in general, it’s ... awful,
really naff. But the app is just like all the other apps. It looks nicer on iOS, but so
does everything else.”

The person responsible for marketing the project, by contrast, noticed the
plasticity immediately. It was, as noted above, his insistence on using this that
lead to the multiple screens feature of the product: “I’ve tried this on Android
and iOS and the ‘send’ menu looks right on each but I don’t think we’re using
it for the right thing. I was thinking, though, about venues that have different
screens... Can we sell something where different screens can do different things?”
When asked whether he considered it consistent with other applications available,
he said “well, it feels right. It looks a bit weird, but then all the apps built with
HTML5 do—this is built with HTML, isn’t it? It looks like it,” When asked to
clarify what he meant by “weird” he said “The typography is wrong, the fonts look
weird, the icons look slightly odd, but that’s what HTML5 apps are like.”

In chapter 5, the dative on iOS is implemented in terms of the look and feel of
iOS’s “Activity Controllers”. The question of conformance to the user interface
guidelines thus hinges on whether this is being used appropriately in this applica-
tion.

An Activity Controller may contain both application-specific and system-supplied
activities. In the case of this application, all the destinations are application-
specific. The destinations are suitable for activities . The Activity Controller
should display in a pop-over on the iPad and an transient view (an “action sheet”
in Apple parlance) on the iPhone: and the dative appears correctly in this appli-
cation (figure 6.8 above). Individual dative elements are displayed as buttons with
an icon above the title.

However, most of the requirements imposed on activities are to do with phys-
ical adaptation, specifically the appearance of the icon. The icon that represents
the activity should be monochrome for an application-specific activity, with ap-
propriate alpha transparency, and must not include a drop shadow (Apple, Inc.,
2012a, p. 152). These are not issues that case can sensibly attempt to address, at
least in the way that it is implemented in AppMaps. In addition, an activity view
controller must be summoned by a button that has a system-appropriate look and
icon: this is not something that case does in the context of the AppMaps system,
but it is conceivable that a more complex styling system in conjunction with case
could provide this.

On Android, the dative is implemented in terms of the look and feel of An-
droid’s “action provider” that is used (via a specialised subclass) for sharing desti-
nations (see chapter 5). On both phone and tablet, this shows up as a menu. The

154

dative appears correctly on both of these platforms. Individual actions within the
action provider are displayed as items with the icon to the left of their name.

6.5.6.2 Efficiency

In terms of the development of the application itself, in isolation from the rest
of the system, case provided a tiny efficiency benefit. The use of a pre-defined
dative category that very obviously matched the user’s “multiple screens” destina-
tion choice, and the corresponding default styling rules, was perceived by both the
author and the person representing InstantVue as saving time.

In addition, fewer software components needed to be modified to support
plasticity than would have been without case. Multiple dialogue controllers would
have been needed for the multiple platforms (since the dative on iOS phones re-
quires a different dialogue flow to that on iOS tablets and on Android). Likewise,
different versions of the share palette would have been needed at least for iOS
tablet, iOS phone and Android. The number of software components would have
thus been linear in the number of platforms and form factors supported.

6.5.6.3 Expressiveness

Most of the plasticity in the EVENT2 application was not provided by case or
by the AppMaps tool at all. Nearly all of the plasticity was done at the physi-
cal layer of the arch. The “preview” of the main screen that could be displayed
on the mobile display needed to change size and aspect ratio based on the size
and orientation of the screen. This was effected through the mechanisms already
in the product that were also used to adapt the display to different sizes and as-
pect ratios of projection screens. The forms that allowed the user to enter an
anonymous question or respond to a poll both needed to remain centred on the
screen, and needed their text sizes adapting for different platforms. This was done
through standard mechanisms built into Sencha Touch and Webkit and through
the stylesheet mechanism in AppMaps. Case had no part in it.

6.6 Agritechnik: Anatomy of a partial success

6.6.1 Background

The second case study follows an application developed for a company called
Agritechnik. Agritechnik are a small company who have a focus on servicing and
repairing agricultural equipment. Much of the equipment they work on is very
specialised. This means that the number of companies able to service this equip-
ment is quite low. Therefore, this small company has a catchment area of most of
the south of England and has customers all over northern Europe. Much of the

155

equipment they work on is also very large, and must be serviced on-site. Because
of these two circumstances, the people who do the actual physical repairs do a
great deal of travelling. This is both expensive and time-consuming. Having the
ability to do initial diagnostics before sending someone out to repair the equip-
ment was consequently perceived as beneficial for the company, for the company’s
employees, and for the customers.

Many of Agritechnik’s customers have smartphones running iOS or Android.
Because of this, Agritechnik wanted an application that would let customers send
a series of photographs of the equipment needing servicing, including things like
the vehicle identification number plate and any part of the machinery that is ob-
viously worn and damaged, along with some textual details. Having these details
in advance would make it easier to plan what needs to be done before the expert
on the equipment actually arrives, and would also allow the company to provide
more accurate quotations in advance.

Agritechnik also sell and hire out agricultural equipment. As an additional
feature, they wanted their mobile app to display the items that they had for sale
or hire in a browsable list.

6.6.2 Requirements

Here follow the requirements for the Agritechnik application that impacted on
the user interface. Again, figures are redrawn versions of those in the original
requirements document.

• When the user loads the application they should be given either the option
to browse items for sale or for hire, or to submit a new request for quotation
or discussion (figure 6.9).

• When the user chooses to browse the equipment for sale or hire, they should
be presented with a list of currently available items. When they select a
piece of equipment from this list, they should be presented with its details
and a button that they can use to contact Agritechnik about the item. They
should also be able to share adverts on social media (figure 6.10).

• When submitting a request, the user will be guided through a multi-step
process.

– First, the application will ask them to enter their contact details. If the
user has previously given their details, then the form should remember
them. When the form is dismissed, the details will be saved on the
phone (figure 6.11a).

156

Agritechnik
Carrier 12:00 PM

Available for Hire

Available for Sale

Send Help!

Figure 6.9: Agritechnik application front page

Items for Sale
Carrier 12:00 PM

Large Spiky Machine
Carrier 12:00 PM

VW Van
750 light-years on the clock

Big Baler
1 season's warranty

Large Spiky Machine
Brand new!

Small Red Machine
Useful in an ill-defined way

Contact Us

photo goes here

This machine is a must for all your big spiky
needs; it is ten years old and has been fully
reconditioned. It comes with one season's
warranty.

Figure 6.10: Agritechnik advertisement pages

157

– Secondly, the application will prompt the user to take a photograph
of the equipment in question’s Vehicle Identification Number (VIN)
plate (as in figure 6.12). The VIN plate contains information such as
the date of manufacture of the vehicle and what kind of vehicle it is. If
Agritechnik have serviced it before, it provides enough information to
let them consult the service history of the vehicle. If the equipment has
no VIN plate, then there should be an obvious button to skip this step.
An example VIN plate should be shown on this page (figure 6.11b).

– After this the user should be able to take as many further photographs
as they need to in order to show the problem (figure 6.11c). After each,
they should be prompted as to whether they wish to take another (fig-
ure 6.11d).

– When the user has taken enough photographs to illustrate what needs
doing, they should be able to enter a textual description or message,
and then select the department of the company to which the request
should be sent.

6.6.3 The application map

The application map for the Agritechnik application is shown in figure 6.13. The
area below the dotted line comprises the advertisement browser: the area above
comprises the ’remote help’ part of the application. As in the EVENT2 applica-
tion map, the dotted line is included in the figure for clarity and because it was in
the original design documents: it is not a part of the formal notation.

6.6.4 How are cases used?

The genitive is used in the advertisement display section of the application, to
mark a relationship between the advertisement and its details. Note that
it is not marking a relationship here between a category and elements of
that category., but a more general parent-child relationship between the ad-
vertisement and its contents.

The subgraph involving the genitive is of the form shown in figure 6.14. The
first state allows the user to select an advertisement. The view that is used to
allow the user to choose an advert is a list that shows both a thumbnail pho-
tograph (if one exists) and the title of the advertisement. The second state
shows the contents of that advertisement using a details view (see chapter 5
for definition) and provides a share button. On a tablet platform, the geni-
tive rules given in chapter 5 transform this into a subgraph of the form shown
in figure 6.15.

158

Details
Carrier 12:00 PM

Next

Your name:
Placeholder text

Your phone number:
Placeholder text

VIN Plate
Carrier 12:00 PM

Skip

Step 1
Please take a photograph of the VIN plate, if the
equipment has one. If it does not, touch 'Skip'.

Take photo

Example photo
Replaced with real photo

(a) Details page (b) VIN Plate page

Photographs
Carrier 12:00 PM

Skip

Step 2
Please take some photographs of the damage or
the part of the machine where work needs to be
done.

Take photo

Photographs
Carrier 12:00 PM

Skip

Step 2
Please take some photographs of the damage or
the part of the machine where work needs to be
done.

Take photo

Take some more photographs?

Yes No

(c) Taking another photo (d) Confirming further photos

Figure 6.11: Agritechnik diagnostic screens

159

Figure 6.12: A VIN plate from a vehicle

Start

Ads

"for-sale"

"for-hire"

Dets{ad:Advertisement}/gen

"help!"

{cd:ContactDetails}

"skip-vin"

{vinplate:VINPlate}

"done"

{text:Text}{dept:Department}/dat

"share"

{dest:__am_system_shares}/dat

{p:Photo}

Figure 6.13: The application map for the Agritechnik application

160

{ad:Advert}/gen "share"

Figure 6.14: Genitive subgraphs in Agritechnik application

{ad:Advert}/gen "share"

{ad:Advert}/gen

Figure 6.15: Adapted Agritechnik genitive subgraph for tablets

This transformation, along with the default stylesheets, results in iOS and
Android Tablet versions both using a split view where the list of advertise-
ments is on the left hand side of the screen. The user is able to pick ad-
vertisements from the list to see in the right hand, detail pane (figure 6.16).
This is an appropriate use of the split view on both platforms.

The dative is used in both the advertisement display section of the application and
the help request submission section of the application. In the former, it is
used to let people either email the advertisement to themselves or to share
it on social media (figure 6.17); in the latter, it is used to let users choose the
department of the company to which they are sending their request (figure
6.18).

It is worth noting here that the two uses of the dative are connected only by
their meaning (both being about destinations) and by their eventual realisa-
tion in the physical layer of the user interface. The actual implementations
of the actions behind them are entirely different. The first uses the applica-
tion programming interfaces of the social networks in question, and simply
sends the contents of the advertisement and its URL to them; the second
constructs an email internally, then passes it to the operating system to be
sent.

6.6.5 How were cases used during the design process?

Case was directly used as a tool in two situations during the design of the ap-
plication. The first situation involved genitives: there were two potential ways of
structuring the advertisement browsing system. The first way involved focusing on

161

Figure 6.16: Split view genitives in the Agritechnik application

the list of advertisements: the ’for sale’ and ’for hire’ were viewed as categories of
advertisement, and choosing an advertisement displayed that advertisement full-
screen (figure 6.19). The second way treated ’for sale’ and ’for hire’ as separate
branches on the initial screen and focused on the advertisement itself; the list of
advertisements was marked as genitive as in the final application map above (fig-
ure 6.20). A third way, where both the list of kinds of advertisement and the list
of advertisements themselves were marked as genitive, was considered, and the
resulting interface works analogously to the mailbox view in Apple’s Mail applica-
tion. This was probably the most correct according to the Apple human interface
guidelines. However, it was found to be unworkable due to technical limitations
in the AppMaps dialogue controller.

The second situation involved an unexpected request to migrate the applica-
tion to the Windows platform (figure 6.21). There were two major possibilities for
the organisation of the user interface of the application based on different design

162

Figure 6.17: Datives in advertisements

163

Figure 6.18: Datives in diagnostics

164

Figure 6.19: Advertisement dialogue: option 1

patters from the Microsoft Human Interface Guidelines. In the case of this appli-
cation, these could be usefully expressed in terms of case, and by generating two
graph grammars and two sets of default stylesheets, the commissioning user was
able to choose between the two options based on concrete, usable versions of the
application, rather than on wireframe prototypes.

6.6.6 Evaluation

6.6.6.1 Effectiveness

The application was developed in conjunction with a single person inside Agritech-
nik. This commissioning user was asked to give their feedback on the application,

165

Figure 6.20: Advertisement dialogue: option 2

with specific emphasis on the ways that it moved between platforms and form
factors.

Case is used in both the advertisement browsing sections of the application
and at the end of the “request help” section of the application. Therefore, only the
reactions of the commissioning person to those specific parts of the application
will be summarised below.

They perceived the advertisement browsing section as “look[ing] at home as
far as I can see. I mean, I don’t use Android, so... but it certainly looks OK on my
iPad as well [as the on the iPhone]. The other version you sent, with the ‘for hire’
and ‘for sale’ at the side were clumsy, even though the photos were bigger on the
adverts.” When asked for more details on what they meant by ‘clumsy’ they said

166

Figure 6.21: Agritechnik application on Windows Phone

“... it felt right having the adverts on the left and the contents on the right on the
tablet, it works like Mail and Skype and everything, with a set of things on the left
and you’re looking at stuff inside those things on the right. For sale and for hire
are two different things and you’re mixing them up.” Later, on being asked about
the Windows Modern UI version of the application, they said: “... it [the tablet
version]’s quite similar to the phone UI on Windows, isn’t it... it obviously means
the same thing as the iPad and iPhone version of the app, but it looks and feels
like Windows. There’s not much there to have an opinion on, it works, doesn’t
it?”

With regards the dative for sending to departments of the company at the end
of the “request help” function, they said “Yes, fine. It looks like everything else on
the iPad and iPhone and as far as I can see on Android and Windows too. This
came out a lot better than I was expecting, really. I was expecting it to just send
at once as soon as you press the button but it pops up the email for them to fix all
their typos before they send it. Other apps seem to do that, too, for twitter and
stuff, they all pop up a box with settings or a message or something, and this does
too, which is OK.”

This comment is important because it points out a convention that AppMaps
as it currently stands cannot adapt to different platforms. Destinations, in all
the platforms in use, are often followed by a step where the user confirms the
details of what they’re sending and to where they are sending it. This is simply
because different kinds of destination require different kinds of clarification: the
extra details the user would provide to send data to a social network (such as a

167

textual message and possibly a more specific destination user) are clearly radically
different from the kinds of extra details the user would provide to send data to
a printer (such as paper size and orientation). Sometimes this details prompt is
managed by the underlying operating system (such as a popup requesting extra
details for a print job). Sometimes, this details prompt is managed by a piece of
software that is neither an integral part of the application nor part of the operating
system (such as the Twitter and Facebook JavaScript components or an external
e-mail client). For destinations that are internal to the application, however, the
application needs to manage this details prompt (if needed) itself.

Because of the variability in the way that sharing destinations are implemented,
sometimes this can be represented as an edge in the application map, and some-
times it cannot. While this is an issue with the AppMaps implementation of case
rather than with case in the abstract, it is good evidence that the developer would
need to keep in mind the user interface conventions for the platforms for which
they are developing even with a more expressive dialogue controller.

To evaluate the parts of the interface that are affected by case against the
platforms’ human interface guidelines, three items need to be considered on each
platform. The first two are the realisations of the genitive and dative in the ad-
vertisement browsing section, and the third is the realisation of the dative in the
communication section of the application.

On the iPhone, the genitive is a full-screen view. If it is a table view (Apple,
Inc., 2012a, p. 168) then the items in that table view are given disclosure indica-
tors. In this application, this was not correct: disclosure indicators should only
be applied to items in a table view if, when selected, they display another table
view. In this application, when the items were selected, they displayed content
instead (compare figures 5.5 and 5.6 in chapter 5). This is an issue at the inter-
section between the physical and logical layers of the arch. Since case has input
into adaptation at the logical layer, it would seem that this is a problem that the
combination of case and stylesheet should be able to overcome. However, in the
AppMaps implementation of case, this is impossible, for reasons outlined in chap-
ter 5.

Neither of these problems are inherent to the case system. While this appli-
cation provides no evidence that case can be used as part of an approach to this
kind of context-specific logical adaptation, nor does it provide evidence that case
cannot be used here.

By contrast, on the iPad the genitive is indicated using a “split view” (p. 166),
and uses it in a textbook manner (see p. 167). The selection on the left corresponds
to an object that the user is to view the details of on the right. Apple note that
this is such a common use of the split view that the popular terminology for the

168

left pane is “the master pane and the right pane is often called the detail pane ... this
relationship is not enforced in code.”

The Android human interface guidelines are more vague about how this kind
of meaning ought to be conveyed. For devices with small screens, generally only
one “pane” should be visible at once. Genitives in AppMaps on small-screen an-
droid devices are displayed as two screens, one after the other, and this meets this
requirement. No disclosure indicators are permitted in lists (sections “Lists” and
“Pure Android” in Google, Inc., 2013a), and none is added.

By contrast, the guidelines suggest that user interfaces for larger screens should
use “multi-pane layouts” (Google, Inc., 2013a, “Devices and Displays”). This is sim-
ilar to Apple’s “split view” but allows for more flexibility as to how the content is
presented. Unlike Apple’s “split view”, where the leftmost panel is of fixed width,
multi-pane layouts can have variable widths. The use of this pattern for this ap-
plication, where the left pane shows the list of objects and the right pane shows
the details of the selected object, is non-controversial (s. “Multi-pane views”).

The uses of the dative in the advertisement browser and in the communication
section of the application (figures 6.17 and 6.18 above) are very similar to the use
of the dative in the EVENT2 application above. Again, both appear correctly
in a pop-over on the iPad and in a action sheet on the iPhone, and both use an
“action provider”-like interface on Android. Again, the failures in plasticity are
due to requirements at the physical layer, specifically those involving icons (the
same requirements apply as in section 6.5.6.1 above).

6.6.6.2 Efficiency

In the Agritechnik application, only two software components effect plasticity:
the stylesheet and the dialogue component. None of the views, controllers, or
attendant classes check anything about the platform or form factor they are run-
ning on. The stylesheet only contains one rule that is platform or form factor
specific: on Windows tablets, genitive edges that correspond to advertisement
lists are passed a style option to tell them to display more information about each
advertisement. Since this rule is defined in terms of the cases on edges, it is rea-
sonable to assert that all the plasticity in the application is achieved by means of
the use of case.

If the same end result were to be attempted using the facilities built directly
into Sencha Touch (which are similar to those built into the other tools discussed
in chapter 2) then either four or five components would have had to implement
plasticity:

• The two views that implement the advertisement browsing screens. Each
of those would need to be aware of the platform and form factor running

169

the application, so that it could arrange its component parts correctly on
the screen. If these two views were implemented as instances of the same
view class, then they would account for one software component instead of
two. They also need to ensure that they display the “share” destinations in
the correct place on the screen.

• The two views that implement the “destination” selections, the one for shar-
ing advertisements and the other for choosing which department will be the
destination of the request for help. Each of these needs to adapt itself to dis-
play correctly on the platform and form factor in which it finds itself.

• The last screen in the ‘request help’ sequence of screens needs to make sure
it displays its list of destinations in the correct place on the screen.

In this scenario the number of software components that must be modified to
effect plasticity scales linearly in the number of views that change form based on
form factor or platform.

A fairer comparison is one with a hypothetical development system that pos-
sesses the dialogue component and stylesheet but does not use case. In this case,
each pair of platform and form factor would require its own dialogue map. This
means that the number of software components that would be required to ef-
fect plasticity would scale linearly in the number of platforms and form factors
involved.

The result suggested above, where the adapting dialogue controller and stylesheet
make the number of software components required to effect plasticity constant is
not, of course, unique to case. However, if case is expressive enough (in the sense
of chapter 4) to provide the adaptation needed to keep this number of software
components involved near-constant then the efficiency gain can properly be said
to come from case where case is used.

As laid out in chapter 4, the author’s subjective impressions about the effi-
ciency of the development process can also properly be considered here. From
the Agritechnik application, two dominant subjective impressions emerged about
the development process compared to the author’s previous development projects.

First, there was the perception that much less boilerplate code needed to be
written during the development process, especially styling and dialog structure
code. Much of the credit for this must go to the dialogue controller and stylesheet
mechanism, rather than to the presence of case: certainly, compared to writing ap-
plications in unadorned Sencha Touch, having the dialogue controller removes the
need to write code for back buttons and for sequencing, which are omnipresent.
However, even compared to writing applications of similar complexity using the
recent versions of Apple’s development tools that do include a dialogue controller,

170

boilerplate seemed reduced. Notably, in Apple’s scheme, the developer has to
maintain two dialogue controllers for the two different form factors that iOS sup-
ports (see chapter 2). Likewise, even in the Apple system with the dialogue con-
troller, duplicate and boilerplate code for user interface elements that fulfilled
functions that would be under the same case in the AppMaps system still had to
be written. It is worth noting that there was no duplication of styling code at all
in the Agritechnik application. If two user interface elements shared non-trivial
amounts of styling, then they either were of the same type or were of the same
case. The case rules and individual rules for one-off edges (specifying, for exam-
ple, what icons to use for buttons) were enough to specify the styling completely.

The commissioning user also noted efficiency gains in both situations where
case was used in the design process. In the first situation, the cases could be
moved around the dialogue controller very easily, and took the appropriate styling
with them; in context this meant that the alternatives could be rapidly mocked up
within a meeting with the person commissioning the application in a way that the
author would not have attempted otherwise. This is also true of the second situa-
tion: it involved more work than the previous example, but it was still feasible to
do in the context of the conversation with the customer. Again, this is something
that the author would have hesitated to attempt otherwise.

6.6.6.3 Expressiveness

The Agritechnik application has two main functions, both of which use case. The
two functions, however, use case to differing extents. The first is a communication
function not dissimilar from the 1EVENT application presented above. The user
is here constructing a fairly simple thing and sending it somewhere, much as they
might send an email message. There is little scope, therefore, for genitives.

In the second function, which involves navigating and interacting with data,
there is greater scope. Both genitives and datives can be used here quite liberally.
This, combined with the results from the 1EVENT application above, suggest
that the case-based approach is far more useful for data-driven applications than
for other kinds of applications.

The Agritechnik application also provided a good testbed for expressiveness
across platforms. The original application was specified as running on Android
and iOS; at a late stage in the development process, the commissioning person
inside Agritechnik decided that they wanted the application to run on Windows
tablets as well. At this time, the AppMaps system did not support Windows at all.

However, the underlying Sencha Touch toolkit was able to support Windows.
Therefore, the question became one of whether the cases could sensibly be im-
plemented within the Windows Modern User Interface guidelines.

171

Microsoft’s user interface guidelines are arranged very differently from Apple’s
and Google’s equivalents. Apple and Google both give meanings for individual
components: for example, the component that splits a screen into two parts has
a specific use and different kinds of lists have different uses. Microsoft’s, by con-
trast, is laid out in terms of overall layouts for the application: they give a number
of overarching patterns (such as the hierarchical pattern, the flat pattern, and the
semantic zoom pattern Microsoft Corp., 2013b) and then detail how information
should be laid out within those. The first stage of building a Modern Windows ap-
plication, according to Microsoft, is to decide which of these patterns one wishes
to use for one’s application.

Case here fulfilled an unexpected function. The realisations of the cases are
different in the different patterns. For example, in the hierarchical navigation
pattern, categories work much like they do on iOS and Android phones, even on
tablets: the list of items is on a page on its own, and the expectation is that as
the screen gets bigger more details are shown. In the flat navigation pattern, by
contrast, category-type meanings are shown in a bar at the top of the screen which
may only be shown when the user explicitly requests it 6.22. The person within
Agritechnik was not sure which of the kinds of application they wanted. There-
fore, part of the design process for the Windows application involved generating
stylesheets and transformation rules for both of the possible layouts. The person
within Agritechnik could then use both prototypes to make the decision.

6.7 Speakers Associates: Anatomy of a success

6.7.1 Background

The third case study follows an application developed for Speakers Associates.
Speakers Associates is a speaker bureau, which acts as an agent for business con-
ference and event speakers. The application that they wanted was to display their
database of speakers and let customers produce a shortlist of speakers for their
events that could then be sent directly to Speakers Associates for further discus-
sion. They also wanted users to be able to share speakers’ biographies or publica-
tions on social networks. The application was to be used both by their customers
and by agents in the field talking to customers.

6.7.2 Requirements

These are the requirements for the application that impacted on the user experi-
ence. As before, figures are redrawn versions of those in the original requirements
document.

172

Figure 6.22: Realisations of the genitive under Windows Modern

173

Speakers Associates
Carrier 12:00 PM

Logo

Featured Speaker 1

Featured Speaker 2

...3

...4

...5

...6

...7

Categories Search Lang. ShrtLst.

Figure 6.23: SpeakersAssociates front page

• When the user first loads the application, the first screen must contain the
Speakers Associates logo, the list of featured speakers in some appropriate
way for the size of screen, and the ability to view the user’s current shortlist,
view the speakers by category, view the speakers by language, or search by
keyword (see figure 6.23).

174

• Whenever the user taps on the name or image of a speaker, be it in the list
of featured speakers, a shortlist, a category of speakers, or a set of search re-
sults, they should be presented with a page with the speaker’s photograph,
name, biography, languages spoken, publications and testimonials. This
screen should be the same design no matter how the user reaches it; the
screen must not vary if it is invoked from a set of search results, for example
(see figure 6.24).

• By the same token, lists of speakers throughout the application must be
visually consistent and share the same appearance. The list of speakers in
the search results, for example, must use the same physical control that is
used on the front page for the featured speakers, and for the contents of a
category of speakers. This control may differ between different form factors.

• From this screen of details, the user must be able to add the speaker to their
shortlist and to share the speaker to social networks.

• The user’s shortlist must show the speakers from the user’s shortlist using
the standard speaker list for the form factor. There should be a button to
remove a speaker from the user’s shortlist, and a button to contact Speakers
Associates about all the speakers in the user’s current shortlist.

• The option to view speakers by category should initially display a list of cat-
egories; after a category is chosen, then the speakers in that category should
be shown in a standard speaker list. Categories should be identified by their
textual label; there is no image associated with a category. The description
of each category that is in the database should be disregarded for the pur-
poses of the mobile application (see figure 6.25).

• The option to view speakers by language should function identically to brows-
ing by category except that the initial list should be of languages rather than
of categories.

• The option to search the speakers available should allow searching by name
or keyword, as the Speakers Associates web site does (see figure 6.26). Search
results should be displayed in a standard speaker list.

6.7.3 The application map

The application map for the Speakers Associates application is shown in figure
6.27.

175

Speaker Name
Carrier 12:00 PM

Photograph

Share

Biography goes here. Biography goes here. Biography
goes here. Biography goes here. We'll have some
bulleted lists of publications too:

• Book 1
• Book 2
• Book 3

And so on, we should scroll this view vertically so that
the user can read long biographies.

Add to shortlist

Figure 6.24: SpeakersAssociates detail page

176

Categories
Carrier 12:00 PM

Comedians

Management Speakers

... category 3

... category 4

...5

...6

...7

Figure 6.25: SpeakersAssociates categories page

177

Search
Carrier 12:00 PM

Speaker name:
Placeholder text

Keyword:
Placeholder text

Search

Figure 6.26: SpeakersAssociates search page

178

"by-language"

"by-category"

"search"

{l:Language}/gen

{c:Category}/gen

{crit:SearchCriteria}/gen

{s:Speaker}

{s:Speaker}

{s:Speaker}

"shortlist" {s:Speaker}

"toggle-
shortlist"

"share"

{dest:__am_system_shares}/dat

{s:Speaker}

Figure 6.27: The application map for the Speakers Associates application

6.7.4 The use of cases

The genitive is used throughout the application to mark membership of a category.
The application only talks about one kind of object: a speaker. The two
trivial uses of the genitive are those in the category and language browsers:
in these instances there is a finite set of categories that speakers can belong
to, and the genitive edge selects one of these categories (figure 6.28).

The less-trivial use of the genitive can be found in the search option. The
edge where the user specifies the search criteria is marked as a genitive be-
cause it, too, identifies a set of speakers by category or characteristic. If the
list of keywords were finite and the user were choosing between them, then
it would be a non-trivial case of using a genitive. However, since the user
is expected to enter search criteria, both the author and the commission-
ing person inside Speakers Associates wavered as to whether this fell under
the meaning of the genitive. Two alternatives were made, one with and one
without the genitive marking on this. The version with the genitive marker
won immediate approval (figure 6.29).

179

Figure 6.28: Genitives in the category view

180

Figure 6.29: Genitives in the search view

181

The dative is only used in trivial cases in this application: it is used as to mark social
network sharing destinations (see figure 6.30). Note that it is not used in
the “Contact us” function, as there is only one destination within Speakers
Associates to which all such contact attempts are directed: therefore, the
user can have no choice of destination.

6.7.5 Evaluation

6.7.5.1 Effectiveness

The Speakers Associates application was developed in conjunction with one per-
son inside the Speakers Associates company.. this person is multilingual and speaks
two languages that use different case systems. This person was asked to give feed-
back on the quality of the application, with emphasis on its ability to adapt be-
tween platforms and form factors. As above, their remarks on the parts of the
application that use case is summarised here.

The two straightforward uses of the genitive were in the screens that permitted
browsing by language and browsing by category of speaker (figure 6.28 above).
“These screens are fine—you want me to comment on the bit on the left on the
tablet, yes? And the thing that does the same job on the phone? It’s fine, but
it’s not the interesting bit of this screen. It’s the boring bit, but it needs to be
done. You’ve automated the boring bit. That’s good.” They were asked to clarify
“boring”, and said “It looks professional and it’s how it ought to look, but it’s not
the bit that shows off the tablet. The nice big clear photos [in the speaker list]
show off the tablet.”

The less-trivial use of the genitive was in the search screen, where the search
criteria were marked as a genitive (figure 6.29 above). The author’s emails to the
commissioning person inside Speakers Associates note that this was done “more
in hope than in any real expectation of success”. The somewhat laconic reply from
the commissioning person consisted entirely of “It did [succeed]. Don’t change it.”
They were asked to clarify why they thought it succeeded, and replied “It looks
good. It passed the [Company employee] test, and she’s hard to please. And if
categories are on the left, the search criteria should be. And it lets you see what
you searched for while you’re looking at the results. I like it. Don’t change it.”

The dative was used only for social media destinations (figure 6.30 above)s.
Again, the commissioning user referred to it as a “boring bit”: “it’s right. It’s right
on tablets and phones ... but it’s not fun or interesting. I’m surprised this isn’t
already automated everywhere. It should be. You’ve automated the boring bits
again.”

On the iPhone, the “select by category” use of the genitive became two screens,
the first of which showed a list of categories, each with a disclosure indicator, the

182

Figure 6.30: Datives in the speaker details view

183

latter a list of speakers in that category. In this case, the disclosure indicator is
correct: the list of speakers is a table view (HIG p. 170). The “select by language”
use of the genitive worked identically.

On the iPad, these genitives became split views, as in the Agritechnik appli-
cation. Again, these were non-controversial according to the platform guidelines.
The left panel contained the list of categories, and the right panel contained a
“cover-flow” view that showed the speakers in that category. This is an appropri-
ate use of the split view control.

On Android phones, the realisation of the “select by category” and “select by
language” genitives was very similar to the iOS realisation. As in the Agritech-
nik application, no disclosure indicator was added, and so this realisation met the
requirements of the Android human interface guidelines.

On Android tablets, the realisation of the “select by category” and “select by
language” genitives became multi-pane interfaces similar to that for the Agritech-
nik application. Each has a list in its left panel and a “cover-flow” view in its right
panel.

The idiom that both the author and the commissioning user had more concern
over was the search. On the iPhone, this became two pages, the first containing
the search form and the second the search results. On the iPad, this became a split
view, with the search form in the left panel and the search results, after the search
was complete, on the right. This, although seemingly unorthodox, is explicitly
permitted by the iOS guidelines, which state that the split view supports “table,
map, text, web or custom views”. On Android, this is likewise compliant with the
human interface guidelines, as they make no statement whatsoever about what
views should be in use in the different panes of the interface.

6.7.5.2 Efficiency

The Speakers Associates application provides useful evidence for the efficiency
gains of using case, because an initial prototype of this application was built using
a pure Sencha Touch and PhoneGap software stack, so actual comparison of the
development processes involved in building the two versions is possible.

The user interface for the Sencha Touch version of the application consisted,
as far as the software was concerned, of a viewport in which all the screens of the
application were embedded. The set of screens was the same as in the AppMaps
version of the application. The Sencha Touch ’card’ layout manager was used to
make sure that only one screen was visible at once.

The requirements of the application mandate a certain level of logical adapta-
tion: specifically, the list of speakers should use an “appropriate” kind of display to
the size of screen in use. Since this adaptation doesn’t depend on what context the

184

list of speakers is being used in, it cannot have anything to do with case. There-
fore, any software components that are only responsible for this logical adaptation
cannot be used to argue for the efficiency gains of case.

This leaves the software components that are necessary to perform the phys-
ical and dialogue adaptations. In the AppMaps version these are entirely covered
by the dialogue controller and the stylesheet. In the Sencha Touch version, two
versions were made of each screen that needed to adapt, except for the sharing
palette. One of these versions covered tablet platforms, one covered phone plat-
forms. The views that needed to be adapted in this way were the ones that let
the user select speakers by category and by language and the one that let the user
search the database.

This suggests that, as indicated by the Agritechnik example, the AppMaps ver-
sion requires a fairly constant number of software components to effect plasticity,
whereas the number required in the manual approach scales linearly. However, a
lot of this is simply due to having a centralised dialogue controller. If a half-way
house between the two applications had been developed using an AppMaps-like
dialogue controller mechanism but with no case, then there would have needed to
be one dialogue map for each platform and form factor, or at least one for each set
of conventions in use. This is still scaling linearly, but is doing so in the number
of platforms and form factors, which is unlikely to grow in quite the same way as
the complexity of the application.

The author’s subjective impressions of the efficiency of the tool on this project
were largely centred around the economy with which the two categories of da-
tive and genitive captured the structure of the data that backs the application.
The commissioning person inside Speakers Associates was both multi-lingual and
wanted to be highly involved in the details of the development process. When
they understood that the concept of case was the thing that was under evaluation,
they pushed to see where it would be useful in the development process.

This lead to the use of case at the data modelling stage of the project. Even be-
fore the user’s paths through the application had been decided, the links between
the entities involved were marked with cases (figure 6.31). For example, the link
between “Languages” and “Speakers” in the diagram shows it to be a genitive re-
lationship. From this, the application development process for the AppMaps ver-
sion of the application became almost an extremely lightweight pencil-and-paper
model-driven engineering process.

This made the core of the application map nearly a foregone conclusion: the
parts of the application map that did not emerge directly from the data model
were the communication functions (sharing to social media and contacting the
company) and the featured speakers list. This made actually designing the appli-
cation map, complete with cases, very quick indeed.

185

Language

Category

Speaker
gen

gen

Social Media Destination

send to (user action)
dat

Figure 6.31: Core data structure for Speakers Associates application

6.7.5.3 Expressiveness

The Speakers Associates application is primarily concerned with navigating and
exploring a data set. Case played a useful role in this part of the application. There
is a tiny communications function in the allowing of the user to send a message
back to Speakers Associates: case was not at all useful in this part of the appli-
cation. This reinforces the suggestion from the first two applications that case
is more of use in data-driven applications. There was nothing in the application
domain that made the application of case difficult.

The only platforms initially required were iOS and Android on tablets and
smartphones, and the case system captured the dialogue patterns that were re-
quired for the application.

In fact, the Speakers Associates application made the author aware that the
case system of AppMaps is actually slightly more expressive than had been ex-
pected, largely due to the use of the genitive for search criteria.

6.7.6 Overall feedback from clients

The three companies for whom the applications were developed were asked to
provide a brief comment on the development process and the resulting application
and how well it had addressed their needs to summarise their previous comments.
The commissioning person at 1EVENT said: “I’m aware our app didn’t use most
of the special features of your tool. The application was good, but I’m not sure
how much good we got out of it that we wouldn’t have got out of a more con-
ventional cross-platform framework.” The commissioning person at Agritechnik,
whose app was more successful, commented that “[t]he main benefit to us was the
flexibility, I think. We are not a digital technology company and we were, and
still are, experimenting with where an app could be of use.” Speakers Associates,
whose app was nearly an ideal fit for the tool, said “The most useful thing was the

186

speed. The app was good, and you built it very fast. As I said before, the tool took
care of the boring bits.”

6.8 Summary

The table below summarises the conclusions from the case studies.

187

Ef
fe

ct
iv

en
es

s
EV

EN
T

2
A

gr
ite

ch
ni

k
Sp

ea
ke

rs
 A

ss
oc

ia
te

s

C
om

m
iss

io
ni

ng
 p

er
so

n
fo

un
d

ap
pl

ic
at

io
n

to
 b

e
at

 h
om

e
on

 a
ll

de
sir

ed
 p

la
tf

or
m

s.
M

ar
ke

tin
g

pe
rs

on
 sa

id
 it

 lo
ok

ed
 st

ra
ng

e
bu

t
id

en
tifi

ed
 th

is
 a

s
a

pr
ob

le
m

 w
ith

 H
T

M
L5

ap
pl

ic
at

io
ns

 a
s a

 w
ho

le
.

D
at

iv
e,

th
e

on
ly

 c
as

e
us

ed
,r

en
de

re
d

co
r-

re
ct

ly
 a

cc
or

di
ng

 to
 h

um
an

 in
te

rf
ac

e
gu

id
e-

lin
es

 o
n

ph
on

e
an

d
ta

bl
et

 fo
rm

 fa
ct

or
s b

ot
h

un
de

r A
nd

ro
id

 a
nd

 iO
S.

C
om

m
iss

io
ni

ng
 p

er
so

n
fo

un
d

ap
pl

ic
at

io
n

to
 b

e
at

 h
om

e
on

 a
ll

de
sir

ed
 p

la
tf

or
m

s,
“a

s
fa

r a
s I

ca
n

se
e.

I’m
 n

ot
 th

e
ex

pe
rt

 o
n

m
o-

bi
le

 a
pp

s h
er

e.
”

H
e

al
so

 c
on

sid
er

ed
 th

e
ap

pl
ic

at
io

n
ru

nn
in

g
on

 W
in

do
w

s
M

od
er

n
U

I
to

 b
e

go
od

 q
ua

l-
ity

.
Bo

th
 d

at
iv

e
an

d
ge

ni
tiv

e
re

nd
er

ed
 co

rr
ec

tly
ac

co
rd

in
g

to
 h

um
an

 in
te

rf
ac

e
gu

id
el

in
es

 o
n

ph
on

e
an

d
ta

bl
et

 fo
rm

 fa
ct

or
s

bo
th

 u
nd

er
A

nd
ro

id
 a

nd
 iO

S.

C
om

m
iss

io
ni

ng
 p

er
so

n
fo

un
d

ap
pl

ic
at

io
n

to
 b

e
at

 h
om

e
on

 a
ll

de
sir

ed
 p

la
tf

or
m

s.
H

e
co

ns
id

er
ed

 t
he

 t
oo

l
to

 b
e

“a
ut

om
at

-
in

g
th

e
bo

rin
g

bi
ts

” a
nd

 le
av

in
g

en
er

gy
 fo

r
“m

or
e

in
te

re
st

in
g”

 d
es

ig
n

de
ci

sio
ns

.
Bo

th
 d

at
iv

e
an

d
ge

ni
tiv

e
re

nd
er

ed
 co

rr
ec

tly
ac

co
rd

in
g

to
 h

um
an

 in
te

rf
ac

e
gu

id
el

in
es

 o
n

ph
on

e
an

d
ta

bl
et

 fo
rm

 fa
ct

or
s

bo
th

 u
nd

er
A

nd
ro

id
 a

nd
 iO

S.

188

Ef
fi

ci
en

cy
EV

EN
T

2
A

gr
ite

ch
ni

k
Sp

ea
ke

rs
 A

ss
oc

ia
te

s

W
he

n
on

ly
 t

he
 a

pp
lic

at
io

n
co

ns
id

er
ed

,
m

in
im

al
 e

ffi
ci

en
cy

 g
ai

n
ov

er
 a

 p
ur

e
Se

nc
ha

To
uc

h
ap

pr
oa

ch
.

N
um

be
r o

f s
of

tw
ar

e
co

m
po

ne
nt

s e
ffe

ct
in

g
pl

as
tic

ity
 w

as
 lo

w
 an

d
re

m
ai

ne
d

co
ns

ta
nt

 as
ne

w
 p

la
tf

or
m

s w
er

e
ad

de
d.

By
 c

on
tr

as
t,

in
a

va
ni

lla
 S

en
ch

a T
ou

ch
 a

pp
ro

ac
h

th
e

nu
m

-
be

r w
ou

ld
 h

av
e

sc
al

ed
 li

ne
ar

ly
 w

ith
 n

um
be

r
of

 v
ie

w
s t

ha
t n

ee
de

d
to

 a
da

pt
,a

nd
 in

 S
en

-
ch

a
To

uc
h

w
ith

 a
 d

ia
lo

gu
e

co
nt

ro
lle

r,
th

e
nu

m
be

r w
ou

ld
 h

av
e

sc
al

ed
 li

ne
ar

ly
 w

ith
 th

e
nu

m
be

r o
f p

la
tf

or
m

s.
W

as
 u

ne
xp

ec
te

dl
y

us
ef

ul
 a

s
a

w
ay

 o
f

ex
-

pl
or

in
g

al
te

rn
at

iv
e

ve
rs

io
ns

 o
f t

he
 in

te
rf

ac
e

w
ith

 c
om

m
iss

io
ni

ng
 p

er
so

n,
bo

th
 in

 ad
di

ng
a n

ew
 p

lat
fo

rm
 an

d
re

ar
ra

ng
in

g
th

e
ex

ist
in

g
di

al
og

ue
 m

ac
hi

ne
.

D
ev

el
op

er
’s

su
bj

ec
tiv

e
ex

pe
rie

nc
e

su
gg

es
ts

th
at

 it
 w

as
 q

ui
ck

er
 to

 u
se

 to
 d

ev
el

op
 th

an
ei

th
er

 p
ur

e
Se

nc
ha

 T
ou

ch
 o

r o
th

er
 sy

st
em

s
w

ith
 d

ia
lo

gu
e

co
nt

ro
lle

rs
 (A

pp
le

 X
C

od
e,

N
et

Be
an

s J
2M

E
to

ol
ki

t).

N
um

be
r

of
 s

of
tw

ar
e

co
m

po
ne

nt
s

ef
-

fe
ct

in
g

pl
as

tic
ity

 w
as

 lo
w

 a
nd

 r
em

ai
ne

d
co

ns
ta

nt
 a

s
ne

w
 v

ie
w

s
w

er
e

ad
de

d.
N

o
ne

w
 p

la
tf

or
m

s
w

er
e

ad
de

d
in

 t
he

 c
ou

rs
e

of
 t

he
 d

ev
el

op
m

en
t

pr
oc

es
s.

A
pr

ev
io

us
pu

re
 S

en
ch

a
ve

rs
io

n
of

 t
he

 a
pp

lic
at

io
n

co
nfi

rm
ed

 t
ha

t
th

e
nu

m
be

r
of

 s
of

tw
ar

e
co

m
po

ne
nt

s
eff

ec
ti

ng
 p

la
st

ic
it

y
in

 t
ha

t
fr

am
ew

or
k

sc
al

ed
 li

ne
ar

ly
 w

ith
 th

e
nu

m
be

r
of

 v
ie

w
s t

ha
t n

ee
de

d
to

 a
da

pt
.

C
as

e
un

ex
pe

ct
ed

ly
 m

ad
e

av
ai

la
bl

e
a

lig
ht

w
ei

gh
t

pa
pe

r-a
nd

-in
k

“m
od

el
-d

riv
en

en
gi

ne
er

in
g”

 a
pp

ro
ac

h
by

 b
ei

ng
 u

se
d

to
de

sc
rib

e
da

ta
 a

s w
el

l.

189

Ex
pr

es
si

ve
ne

ss
EV

EN
T

2
A

gr
ite

ch
ni

k
Sp

ea
ke

rs
 A

ss
oc

ia
te

s

In
du

st
ry

 is
 p

rim
ar

ily
 m

ob
ile

 c
om

m
un

ic
a-

tio
ns

.
Pu

rp
os

e
of

 a
pp

lic
at

io
n

is
co

m
m

un
ic

at
io

n.
En

co
m

pa
ss

ed
 p

la
tf

or
m

s
th

at
 c

om
m

iss
io

n-
in

g
co

m
pa

ny
 w

an
te

d.
D

id
 n

ot
 r

eq
ui

re
 t

he
 d

ia
lo

gu
e

pl
as

tic
ity

ov
er

rid
in

g
at

 a
ny

 p
oi

nt
.

C
as

e
w

as
 m

or
e

ex
pr

es
siv

e
in

 th
is

 in
st

an
ce

th
an

 th
e

ap
pl

ic
at

io
n

re
qu

ire
d:

th
e

ge
ni

tiv
e

w
as

 n
ot

 u
se

d
at

 a
ll.

In
du

st
ry

 is
 a

gr
ic

ul
tu

ra
l e

qu
ip

m
en

t
se

rv
ic

-
in

g,
sa

le
s a

nd
 h

ire
.

Pu
rp

os
e

of
 a

pp
lic

at
io

n
is

pa
rt

ly
 c

om
m

un
i-

ca
tio

n
an

d
pa

rt
ly

 d
at

a
br

ow
sin

g.
En

co
m

pa
ss

ed
 p

la
tf

or
m

s
th

at
 c

om
m

iss
io

n-
in

g
co

m
pa

ny
 w

an
te

d,
in

cl
ud

in
g

an
 u

ne
x-

pe
ct

ed
 re

qu
ire

m
en

t f
or

 W
in

do
w

s
M

od
er

n
U

Ii
nt

ro
du

ce
d

lat
e

in
 th

e
de

ve
lo

pm
en

t p
ro

-
ce

ss
,t

ho
ug

h
th

is
di

d
re

qu
ire

 se
ve

ra
l g

ra
m

-
m

ar
s f

or
 d

iff
er

en
t s

ty
le

s o
f W

in
do

w
s U

I.
D

id
 n

ot
 r

eq
ui

re
 t

he
 d

ia
lo

gu
e

pl
as

tic
ity

ov
er

rid
in

g
at

 a
ny

 p
oi

nt
.

In
du

st
ry

 is
 e

ve
nt

 m
an

ag
em

en
t a

nd
 sp

ea
ke

r
ag

en
ci

es
.

Pu
rp

os
e

of
 a

pp
lic

at
io

n
is

da
ta

 b
ro

w
sin

g.
En

co
m

pa
ss

ed
 p

la
tf

or
m

s
th

at
 c

om
m

iss
io

n-
in

g
co

m
pa

ny
 w

an
te

d.
D

id
 n

ot
 r

eq
ui

re
 t

he
 d

ia
lo

gu
e

pl
as

tic
ity

ov
er

rid
in

g
at

 a
ny

 p
oi

nt
.

U
ne

xp
ec

te
d

ex
pr

es
siv

e
by

 c
or

re
ct

ly
 p

la
st

i-
ci

sin
g

se
ar

ch
 c

rit
er

ia
 in

 se
ar

ch
 fu

nc
tio

n.
C

om
m

iss
io

ni
ng

 u
se

r,
ha

vi
ng

 a
n

ex
pl

ic
it

aw
ar

en
es

s o
f c

as
e,

fo
un

d
it

a
us

ef
ul

 v
oc

ab
-

ul
ar

y
to

 u
se

 to
 d

es
cr

ib
e

th
e

ap
pl

ic
at

io
n.

190

6.9 Conclusions

6.9.1 Effectiveness

The first criterion for effectiveness given in chapter 4 is:‘Is the commissioning user
happy with the application on all platforms and form factors?’ The commission-
ing users of all three applications felt that the applications were at home on the
platforms they wanted to use. The commissioning user of the Speakers Associates
application noted that what was being automated was the “boring” and formulaic
parts.

The second criterion for effectiveness is: ‘Does case contribute to the appli-
cation’s conforming to the human interface guidelines for the desired platforms
and form factors?’ From the evidence given by these three case studies, the answer
is yes, but with caveats. Certainly the screens that used case to determine their
appearance conformed to the human interface guidelines.

However, case by no means covered all the ground that the user interface guide-
lines cover. The Apple iOS human interface guidelines, for example, filled a 220
page book as of the end of 2013. The rules that guided the implementation of case,
and the rules that were used to evaluate the resulting applications, were contained
on fewer than ten pages of this book.

An equally telling fact can be found in the Android human interface guide-
lines. Android has suffered somewhat from badly ported applications from other
platforms, as the “Pure Android” section in the human interface guidelines shows.
This section gives six specific common problems that cross-platform applications
have (these are directly quoted from the “Pure Android” section):

• Don’t mimic UI elements from other platforms

• Don’t carry over platform-specific icons

• Don’t use bottom tab bars

• Don’t hardcode links to other apps

• Don’t use labelled back buttons on action bars

• Don’t use right-pointing carets on line items

Of these, the only one that has any bearing on the dialogue layer at all is the
using of labelled back buttons on action bars. The proscription about hardcoding
links to other applications is a technical one. The other four are all about physical
adaptation. Case can have no input into any of these conundra.

191

6.9.2 Efficiency

The first criterion for efficiency given in chapter 4 is: ‘How many software com-
ponents are involved in effecting plasticity? Is case responsible for any reduction
compared to the other comparable industrial tools?’ In the case studies, efficiency
gains were demonstrated. It is worth noting that none of the applications de-
scribed above adapted at any level above the dialogue layer on the Arch; there was
no functional core adaptation for different platforms.

In a pure MVC approach with no dialogue controller, the number of soft-
ware components that effected plasticity scaled linearly with the number of views
that were affected by the need for plasticity. In the EVENT2 and Agritechnik
case studies, this was worked out hypothetically. In the Speakers Associates case
study, this was confirmed from actual software. In an MVCD approach, or some
other approach with a centralised dialogue controller, then this is reduced to being
linear in the number of platforms and form factors. In a system with a dialogue
controller that can successfully adapt, for an application such as these where no
functional core adaptation takes place, the number of software components ef-
fecting plasticity is constant or near-constant.

Case was the sole means by which the dialogue component could adapt, and
provided one of the major mechanisms for logical and physical adaptation also.
Since this was so, and since in the case studies the number of software components
effecting plasticity was near-constant and did not scale linearly either with the
number of views involved or the number of platforms, it is reasonable to ascribe
this efficiency gain to the use of case.

The second criterion for efficiency is: ‘Does the use of case provide a tangible
benefit in terms of time at any specific point in the development process?’. Two
of the case studies suggest the usefulness of case for exploring alternative inter-
faces during the design process. Both the Windows UI for Agritechnik and the
search criteria for Speakers Associates are useful examples for this, because they
both hinged on the idea of building alternatives that ‘mean the same thing’ (as the
commissioning person at Speakers Associates put it). The meaning in these two in-
stances was described by the cases and the labels on the kind-of-object edges: and
the different realisations of these meanings were what was being decided between.
The efficiency gain in the design of the advertisement browser for Agritechnik was
simply due to having a rapidly reconfigurable dialogue controller.

6.9.3 Expressiveness

The first criterion for expressiveness given in chapter 4 is: ‘Does it cope well with
the platforms and form factors that the commissioning user needs?’ In these three
cases, case did cope well with these platforms and form factors. Primarily, the

192

requirements were for Android and iOS tablets and phones, although Agritechnik
also requested Windows Modern. That case is expressive enough to deal with the
idioms of these platforms is suggested by the fact that in none of these applications
was it overridden: none of the application maps devolved to being a cluster of maps
maintained by hand, one for each platform and form factor pair.

The second criterion for expressiveness is: ‘What kinds of applications can
case be useful for?’ The case studies contained one application that was purely
designed to let people communicate, one that was purely designed to let people
browse data, and one that had components for both of these functions. As out-
lined above, the application that used case most successfully and pervasively was
the purely data-driven one. The application that integrated both functions used
case most successfully in its data-driven aspect, and the pure communication ap-
plication found little use for it. It would not be surprising if this were true, be-
cause case is fundamentally about the connections of objects with other objects,
and there is more scope for this kind of connection in a data-driven application
than one that does not use complex data. This suggests that case can be far more
useful for data-driven applications than for communication applications, and gives
something to watch for in the results of the studies with other developers.

The third criterion for expressiveness is: ‘Is case more useful for some indus-
tries than others?’ The case studies addressed problems from three very distinct
industries. No evidence emerges from them that case is better suited to any given
industry segment than any other. The comparative failure of the EVENT2 ap-
plication is better explained by its being a communications application than by it
being written for the mobile communications industry.

The three case studies described here provide suggestive information about
the usefulness of case, but they are limited because they are all projects that the
author undertook. The next chapter addresses this shortcoming by examining
other developers’ reactions and use of the AppMaps tool and, through the tool,
the case system.

193

A Chapter 7
Studies with other developers

7.1 Introduction

In chapter 6, a number of applications were described that had been developed
by the author of this thesis for different clients and different industrial situations.
The usefulness of case was analysed in that context through an examination of the
development process and the clients’ reactions to the finished applications.

As noted in chapter 4, an evaluation involving independent developers is needed
for drawing any conclusions about the general usability of case as embodied in
AppMaps. To that end, two studies were undertaken involving, in total, fourteen
developers. The present chapter presents the details and results of these studies.

The first study was a workshop study, in which a number of developers per-
formed a role-play exercise in which the author played the part of a client. The
participants then developed an application map that met the client’s requirements.
They did not have to write any source code during this exercise. Instead, the em-
phasis was on the use of the case system and, to a lesser extent, of the application
map. In this exercise, developers drew on their professional experience to talk
about the usefulness of the tool in a broad sense. They also provided seeds for
iterative design for a second version of the tool for the second study.

The second study was a self-directed development study. In this study, de-
velopers were given the tool to use for a task of their own choosing. They were
provided with documentation on the tool and the case system and provided with
technical support by the author, but no constraints were made on their devel-
opment process or on the kind of application they chose to make. When they
either completed their application or could devote no more time to its creation,
they provided both the application and some discussion around their development
process. This provided more detailed information about the model’s usefulness in
concrete circumstances, and paralleled (although with smaller projects) the case
study approach in chapter 6.

194

These studies were mostly aimed at providing information for the third and
fourth research questions, about whether case can be used to build useful applica-
tions and whether case can be used by other developers. The two evaluation stud-
ies follow the same three Es as were used in the previous chapter, but looked at
from another developer’s point of view. Effectiveness therefore is about whether
other developers managed to produce user interfaces that they considered high-
quality; efficiency about whether other developers would be more productive us-
ing the case system than not; and expressiveness about whether other developers
could build the kinds of application that they wanted to build using the tool and
the case system.

7.2 Goal and approach

The goal of the work presented in this chapter was to provide a wider perspective
on the usefulness of case to the commercial development of plastic user inter-
faces. This is necessary, as noted in chapter 4, to complement the case studies
presented in chapter 6. The case studies only concentrate on a single developer—
the author—who may be atypical, and concentrate on the details of individual
applications. The work presented below adds two extra layers to this: the self-
directed development study widens the perspective to collect information about
other developers building specific applications, and the workshop study widens
the perspective still further with other developers considering how the use of case
would fit into their general professional practice.

Again, it is important to distinguish between the research approach that is used
to gather information and the development approach that is used, in this case to
develop the tool. The development approach was iterative: the workshop was
used to find issues—be they usability issues or software quality issues—with the
tool before it was given to developers for the longer development study.

The research approach used was a co-operative evaluation approach, which
was explicitly designed to fit well with an iterative design development approach.
In the two archetypal co-operative evaluation exercises presented by Wright and
Monk (1991), users were given a task and a manual for the system, encouraged
to think aloud while using the system, and encouraged to consider themselves as
evaluators of the system. In the case of the two evaluation exercises presented in
this chapter, the task was to build an application using the system.

195

7.3 Workshop study

7.3.1 Introduction

As outlined in chapter 4, the first of the two studies that involve other developers
was a workshop study. This workshop had two primary goals. The first was to
gather developers’ feelings about the tool as it applied to their professional prac-
tice in general. This goal was approached through a number of questions, which
were given in chapter 4. The second goal was to find usability issues and software
defects in the tool itself, so that a second iteration of the tool could be given to
the developers in the longer study.

7.3.2 Method

7.3.2.1 Participants

Seven participants (who will be referred to henceforth by the letters A to G in-
clusive) took part in the workshop. The participants were recruited through the
author’s professional network.

All participants except participant C were developers to a professional stan-
dard, and all but participant C were developing for mobile platforms outside the
workshop. These six were all either targetting Android, iOS or both. Three had
used versions of the Apple development tool that include Storyboards (see section
2.8). One had used the Netbeans J2ME mobile toolkit (also described in section
2.8). Four were using existing cross-platform tools . Five identified as knowing
JavaScript well. Participant C was a hobbyist developer.

7.3.2.2 Apparatus

A laptop was provided for each pair of participants. Each laptop was running an
identical virtual machine so that the experience of each participant was as near
identical as possible. This virtual machine contained Windows XP, the AppMaps
tool, a text editor, the sample projects to be used for the workshop, and a mobile
device simulator. As there was an odd number of participants, participant A had
a laptop to themselves. Each pair also had a ‘cheat sheet’ which contained a brief
description of the stylesheet syntax and a definition of each case. Each case defi-
nition contained the same information as the definitions in chapter 5 rendered as
bullet points.

196

{poi:POI}

"by-category"

{cat:POICat}/gen

{poi:POI}

"share"

"twitter"/dat

Figure 7.1: Satellite navigation application map

7.3.2.3 Procedure

All data gathering was undertaken during a single workshop session during which
participants A to G were co-located in a workshop room. Both video and audio
were recorded for the entire workshop session.

The workshop was split into four phases. In the first phase, participants were
shown how to create a simple satellite navigation application. The application
map of the application is given in figure 7.1. Initially, participants were walked
through the tools used to create an application map, and how they could draw out
nodes and edges. After this they were introduced to the difference between one-
off and kind-of-object edges, and were walked through creating the application
map without any plasticisation or use of case. Once participants had created that
map, they were given an overview of the styling language and shown how to change
the visual appearance of buttons in detail. Finally, they were shown how to attach
cases to edges, how this affected the resulting application, and talked through the
definitions of the cases on the cheat sheets.

The second phase took the form of a question and answer session, where par-
ticipants were encouraged to raise any issues they’d had with the use of the tool in
the first half, and any points on which they required clarification. This phase was
freeform, and based around issues that participants had experienced.

In the third phase, the participants were given a series of requirements to build
a small e-commerce application for a wine shop. The author had already built a
model answer application, but this was not shown to participants. The require-
ments were revealed in small sets, so that the participants remained in step with
one another. During the design process, the author walked around the room to

197

check on the progress of each group and to answer any questions that participants
might have.

The first set of requirements were (quoted verbatim from the materials given
to participants):

• A list of featured wines on the front page of the app.

• Buttons to let the user choose by country or by colour.

• When a country or a colour is selected, let the user select wines from that
country or colour.”

The second set were (likewise, quoted verbatim):

• A ‘contact us’ button on every page of the application

• They say the form will be designed later by their developers...

• If you get time, try making the ‘contact us’ buttons red.

At the end of these two sets of requirements, participants would have a simple
phone application that was not plasticised.

Further requirements involved using case to plasticise the application. The
fourth set were:

• On a tablet, the colour and country selections should be in a two-column
view.

• Hint: use cases.

Finally, the fifth set were:

• A “share” button on each wine to send the wine details to someone else.

• This button should pop up a box to let the user choose what service to use.

• For now, they just want twitter.

After participants had finished addressing these requirements, the author went
around to each and compared the resulting application map to the model answer.
Where there was a deviation, participants were asked what their rationale was for
designing that part of the application map.

In the fourth phase a series of discussion prompts were presented. Four prompts
were presented for each of effectiveness, efficiency and expressiveness.

198

"by-country"

"by-colour"

{w:Wine}

{cn:Country}/gen

{c:Colour}/gen

{w:Wine}

{w:Wine}

"share"

"twitter"/dat

Figure 7.2: Wine shop application: model application map

The first discussion prompt for each was the word itself, with a brief descrip-
tion of how it was being used in this context (as in chapter 4). After this, each of
the questions raised for that word in chapter 4 was presented for discussion.

At the end of the discussion period, participants were asked for their criti-
cisms and opinions with regards what ought to be changed in the tool for the next
version. This part of the discussion was divided into two parts, one for the funda-
mental model, and one for the user interface of the tool itself.

Finally, the software that participants had created was collected and archived.
No JavaScript was written as part of the workshop: the purpose of it was to exam-
ine the usefulness and comprehensibility of the case system, rather than evaluate
the participants’ abilities to write JavaScript.

All remarks from the workshop that bore on case were transcribed, along with
the entirety of the discussion section.

Ethics approval was granted for this study.

7.3.3 Results

7.3.3.1 Application map variations

The model answer application map for the wine shop is given in figure 7.2, although
the “contact us” edges are omitted in this figure for the sake of clarity. This model
answer was not intended to be a correct answer as such, but more the author’s
expert opinion on how the application might be constructed.

Two of the pairs of participants produced different application maps from the
model. The application map most divergent from this one was produced by par-

199

"by-country"

"by-colour"

{w:Wine}

{cn:Country}/gen

{c:Colour}/gen

{w:Wine}

{w:Wine}

"share"

"twitter"/dat

"featured"

Figure 7.3: Wine shop application: participants B and C’s map

ticipants B and C and is shown in figure 7.3, in which departures from the model
answer are shown in bold. There are two differences from the model.

• The model application had the list of featured wines on the front page of
the application. Participants B and C put a button on the front page that
the user had to press to get the list of featured wines. Their given reasons for
this were aesthetic: they would have wished to have a “picture or branding
or something” on the front page of the application.

• The model application had a “Contact us” edge from every state. Partici-
pants B and C had removed all these edges because they were making the
map “too crowded”.

Participants D and E had diverged from the model in a smaller way. Their
application map, given in figure 7.4, did not have a separate share button as re-
quested by the “client”, but instead embedded the twitter button directly into the
view that would have shown the details of the wine. The reason they gave for
this was that it looked “silly” having only the one share destination in the activity
palette, and they would have urged the client to have the twitter button embedded
directly on the page. The remaining three participants produced an application
map that was structurally the same as the model.

7.3.3.2 The use of case during the application-building process

In the requirements given in the workshop, the building of the initial phone ap-
plication and its subsequent plasticisation were two different phases, with a fairly

200

"by-country"

"by-colour"

{w:Wine}

{cn:Country}/gen

{c:Colour}/gen

{w:Wine}

{w:Wine}

"twitter"/dat

Figure 7.4: Wine shop application: participants D and E’s map

heavy hint being given to participants that they should use case in this process. In
practice, this does not mirror what the participants actually did.

In fact, by the time they reached the stage where the requirements were asking
them to use case to plasticise the interface, every group had already done this plas-
ticisation. As they had added each edge to the application map they had marked
it with a case. Participants B and C were unusually vocal about their decision
processes:

Participant C: Oh, do we need to make this a category?
Participant B: That’d be /gen

7.3.3.3 Points raised during discussion

The entire discussion is laid out here. No points from the workshop have been
omitted.

Effectiveness The first question prompt was just the word “Effectiveness”, and an
explanation of the word in the sense in which it is used in this thesis. This
prompted immediate discussion about what a “high-quality” plastic user in-
terface was in the context of mobile applications. Participant G (who was
very vocal throughout the workshop) started this line of conversation off:

The gen and dat stuff works well but (pause) it doesn’t address all areas
of plasticity. I mean (pause) I was building an app [not using AppMaps]
where it looked fine on a Galaxy S3 but it didn’t on an S2 because it didn’t
do the text scaling properly and it’s those bits of plasticity, or even not re-
ally plasticity, but it’s those bits that seem to suck up most of my time, or
something. I dunno.

201

Participants then identified a number of other areas other than those that
AppMaps addresses that impact severely on how they perceive the qual-
ity of a cross-platform mobile application: areas identified were text ren-
dering, the precise nature of gestures, the characteristic curves of “iner-
tial” scrolling, graphics anti-aliasing, typography, quality of icon design, and
screen layout. Participants D and E noted, to subsequent general agree-
ment from the group, that shortcomings in these areas were not specific to
AppMaps but seemed to be general shortcomings of cross-platform tools.

Discussion then moved on to whether the developers were happy with the
applications that they had produced. Again, participant G led off the dis-
cussion:

90% of the apps on the app store look exactly like that (gesturing to screen
with phone and tablet apps both displayed)

Participants A, B and C were in agreement that given the limitations in user
interface quality previously discussed, they were happy with their results,
and that the case system had helped them get to results that they liked.
Participants D and E noted that they would have had to have added new
views to the project to get the interface that they had wanted (see section
7.3.3.1 above), but that they had not been told how to do this in the workshop
itself.

Following this, discussion moved on to the topic of where the tool and the
case system fitted in the problem of plasticity. Participant B pointed out
that “an awful lot [had] already been said” about the scope of the problem
and the tool’s part in it in the earlier discussions about what made a high-
quality user interface, mostly by enumerating the things that the tool didn’t
do. Participant F explicitly agreed with this, and pointed out that partici-
pant G had already “put it very well” previously in saying that the case system
worked well but was an extremely partial solution to the problem.

The final area of discussion covered the area of whether the participants felt,
based on their experiences in the workshop, that the tool had a place in their
professional practice as developers. Participant B began the discussion:

Yes, if you fix it.

The author’s enquiring about what he meant by “fix” prompted participants
to provide a number of issues with the tool that would prevent them using
it effectively. The issues they raised were:

202

• The text fields that appear when the user edits the label on an edge
were not sufficiently differentiated from simple display text, making
it difficult to tell whether the user had successfully begun editing the
label.

• No syntax checking was done on labels at editing-time, making it easy
to create edges with illegal labels that would prevent the application
from working in the simulator. Specifically highlighted was an issue
where it was possible to press enter at the end of a label which, instead
of cancelling the editing of the label, would put an invisible carriage
return at the end of the label, which the run-time system of the appli-
cation would then raise an error about.

• The “Quit” menu item did not work.
• Some mechanism for grouping states would be useful: either a statechart-

like approach or by being able to show and hide subsets of states (a
suggestion made by participant E).

• There was a software bug in which the map processing for dative edges
did not produce the correct results.

Participant F was explicit that none of these things touched on the case
system itself and was agreed with. Aside from the software bug mentioned
above nobody highlighted any problems with the case system. The group
finally agreed that participant B’s initial statement was a fair statement about
the tool as a whole with the exception of participant C who said she had no
professional development practice so the tool could not fit in with it.

Efficiency Initially, again, discussion about efficiency started with participants be-
ing prompted just with the word and an explanation of its specific meaning in
the context of this thesis. Participants’ primary—and unsolicited—reaction
was a feeling that attempting to measure developer productivity was a “dubi-
ous” (participant G) undertaking.

The discussion then moved on to gathering, as planned, subjective opinions
about the potential efficiency gains of the tool on developers. The first dis-
cussion prompt was about whether development would be more efficient
using the AppMaps case system, and under what circumstances. Partici-
pant B initiated the conversation by saying that it would provide a major
efficiency benefit when they were building an application where the actual
logic was complicated and they wanted to have some of the load of building
the user interface lifted off their mind:

To be honest, when you’re concerned with, [like things that] I do, something
new, [where] there’s very little help online, you tend to get tied up in how to

203

get the guts of that to work, and you end up with an app that is essentially
an implementation of something novel rather than user-focussed because I
just don’t have the time, but, yeah, like that, you can see what the finished
product is going to look like. User-centred design, I suppose

Other participants agreed that the tool made it feasible, at least in the ex-
amples they had been given, to separate off thinking about dialogue plas-
ticisation from thinking about the individual components in the interface,
although participant G cautioned that sometimes this is such a small con-
cern that they would just ignore it:

Whether the gen and dat are useful depends on how much you care whether
your app is device-specific, really..

Participant E noted that for them, the case system would cause the max-
imum efficiency gain in the situation where the developer is thinking first
and foremost in terms of the data that they’re manipulating, and would like
the dialogue component of the user interface to follow that data structure
in very conventional ways. Participants A and D explicitly agreed with him.

The conversation then moved on to whether the case system provided enough
of a benefit to be worth learning, given that it was an unfamiliar structure
from other development systems. Conversation initially circled around the
terminology, and the obscurity of the words “genitive” and “dative”. None of
the participants said that they had found the terminology particularly dif-
ficult: participant E pointed out that they worked in the application area
“which gave the world the words byte and nybble”. Participant D agreed,
saying

I get what gen does, I just don’t know where the name comes from though
[...] but there’s a lot worse technical gibberish out there.

Participant A pointed out that he had found the case system entirely intu-
itive. Two participants reacted to this by noting that they had found the
initial discussion of the case system somewhat baffling but had understood
it rapidly once they’d started using it.

C: Once we got into doing it ourselves it’s straightforward and ... intu-
itive I think. Now that we are where we are now, building this thing, it’s
very intuitive. For me, it [difficulty in using the tool] is more about the
labelling. I understand it, I get it, it’s just the terminology I don’t under-
stand. Heh, [B’s real name] is really into it now.
B: I am, I am.

204

Participant C had earlier said:

I’m at a drag and drop level... and you have these names, I’m really, what’s
that even mean to me? I’m at the level of, just put things in lay terms. [...]
yeah, no, I get it. I’ve got instructions and even if I didn’t I could get the
hang of it, yeah.

Participant F said that while he had understood the meaning of the cases,
he didn’t feel that he had really understood what was going on in software
terms until he’d worked out what the cases were doing to the application
map.

Expressiveness The conversation about expressiveness began with just the word
“expressiveness’ used as a prompt, and a brief explanation of the word as
it is used in this thesis. Conversation among the participants began with
participant D suggesting

Couldn’t this be most of what is needed for most of the apps out there?
There’s very little actual logic in them.

This immediately lead onto discussion of what kinds of applications the case
system of the tool would be useful for building. There was agreement that
a lot of applications fit the template of being centred around a remote data
set and being able to browse and manipulate it. E-mail and instant messag-
ing clients were raised by participants D and E as being obvious candidates
aside from the e-commerce type applications that had been explored in the
workshop. Other participants provided other application areas that were
not simple browsers for data sets, but carried on a similar “basic model”
(participant D). These were media players and streamers (examples given
were Netflix and Spotify); personal organisation applications such as to-do
list applications, diaries and book cataloguing applications; and the online
browsing of reference books.

This line of conversation was disrupted by a mild dispute that began between
participants F and G as to whether it would be useful for all applications or
merely some of them:

F: It’s obviously useful for a very interesting subset of apps, I mean, with-
out even thinking about it too hard or the subset of apps ... these data
selection and filtering apps, I mean, but there’s no reason why it couldn’t
expand to other apps.
G: I don’t see that as a limitation, myself.

205

Participant G, and with him participants A and E, thought that the case sys-
tem would be worth attempting to apply to any application that they wanted
to build. Participants F and D thought that it would be more use restricted
to applications that had an explicit data model. Participants B and C explic-
itly did not wish to participate in this discussion.

At this point, the conversation moved on to whether any specific areas of
application would be more or less suited to the use of the case system. Par-
ticipant F opined that the type of application (whether it was data-driven or
not) would be more important than the area of industry it occupied. Partic-
ipants G and A agreed explicitly. The only explicit disagreement with this
came from participant B, who slightly contradicted his earlier statement by
saying that it would not be of a great deal of use in his specialist area, which
was geospatial science:

The kind of crap I do’s just very... geospatial science methods heavy... and
I don’t know how well this sort of thing could support it.

After this participants discussed whether certain kinds of mobile platform
would be more suitable for the case system than others. They named sev-
eral platforms as definitely suitable for its use: Android, iOS, Blackberry,
WebOS, the Windows family of mobile operating systems and Nokia’s old
Series 60. None of the participants noted any mobile platforms that were
capable of running applications that were unsuitable for this approach.

Participant D suggested also that it would be a suitable platform for building
apps for modern game consoles, which also have a user interface in which the
user interacts with one presentation (in the sense of the word introduced in
chapter 4) at once. Participant F, whose professional domain was in smart
televisions and multi-screen systems based around smart televisions, con-
tinued this discussion, noting that it would also be suitable for use in smart
televisions. He also stated that in his opinion, the issue that was holding
the AppMaps tool back from being more universally applicable was not the
case system but the automaton. He was of the opinion that if petri nets (see
Peterson, 1977), or some other formal structure that allowed the system as
a whole to be in more than one state at once, were in use instead then the
system would be of use in multi-screen environments.

7.3.4 Discussion

The workshop created a brief and somewhat artificial situation. Developers were
not working in-depth on applications of their own; they had little time to grow

206

used to the tool or the case system; and they were only assembling pre-made com-
ponents, instead of writing their own source code.

With these limitations in mind, however, it was possible to draw out some
brief and cautious answers to the questions posed in chapter 4 with regards to the
workshop, and also some prognostications about the usefulness of the tool and
specifically about its acceptance by developers in the longer study.

Below are presented answers to the questions initially posed in chapter 4.

7.3.4.1 Effectiveness

Were developers happy with what they had produced? Developers during the workshop
said that they were happy with the quality of the parts of the interfaces that
they had produced using the case system.

Did their solutions resemble a sane model answer? The application maps produced by
developers differed, as outlined above. When only the assignment of cases
to edges is examined, however, corresponding edges in the different appli-
cation maps bear the same case.

Where did they feel the tool fitted into the problem of plasticity? Participants used, unprompted,
terminology very similar to that of the Arch model to describe the problem
of plasticity as it applied to their professional practice. Specifically, they
highlighted the importance of the physical layer to making usable mobile
applications. As noted above, participants outlined a number of important
areas that were purely physical that they felt had a huge impact on the qual-
ity of the interfaces that they produced. More specifically, these areas were
not areas that they felt were considered in any of the cross-platform tools
they had used, rather than just being a problem with AppMaps. There was a
general agreement that the AppMaps case system provided useful plasticity
at the dialogue layer, but that the perceived quality of the resulting appli-
cations might depend more on attention-to-detail at the physical layer, no
matter how “good” the dialogue layer was when measured against the user
interface guidelines.

Would they find the tool useful in their professional practice? The most compelling evi-
dence that the participants would have found the tool useful in their pro-
fessional practice came at the very end of the workshop, when the author
was approached separately by four of the seven participants asking whether
they could get a copy of the software for their own use. Three of these had
no particular project in mind, but the fourth wanted to use it in a specific
research project.

207

This adds force to the more nuanced data from the workshop discussion. As
outlined above, when this question was used as a discussion prompt, there
were some concerns about the usability of the tool in its current state. These
concerns, set out above, did not concern the case system, but were to do with
issues of the behaviour of the software tool itself.

Apart from participant C who was, as noted above, not a professional devel-
oper, the group of participants generally agreed that this would be useful in
their professional practice if these issues were addressed.

7.3.4.2 Efficiency

Would this tool make the development process more efficient, and if so, which parts of it? Par-
ticipants felt that the tool would increase their efficiency, especially when
the focus of the application development process was on novel internals,
and they wanted to have a conventional user interface. Participants did not
directly talk about what development phases the tool would be useful in, but
instead talked about changing the way that they structured the process of
user interface development, allowing them to design the dialogue in a sepa-
rate process.

Would the case system of the tool be worth learning for the expected efficiency gains? Here, par-
ticipant C’s status as a self-professed non-expert developer was illuminating.
Her commentary that she felt that she understood the case system of the
tool to a useful extent after having used it for an afternoon, and that it was
no worse than any other technical language backed up assertions by other
participants that they would be glad to put in the effort to learn the tool
because it provided useful assistance.

7.3.4.3 Expressiveness

Are there platforms or form factors to which this tool is not applicable? Participants were
of the opinion that the tool was very widely applicable among mobile de-
vices, and suggested several form factors outside of the mobile sphere where
the tool could be used. It was suggested that the case system itself was not
subject to the same limitations, however, and that a system based on a differ-
ent kind of dialogue model might be applicable to a wider range of platforms.

Are there kinds of applications to which this tool is not applicable? Participants agreed that
the software was useful for “a very interesting subset” (participant F) of ap-
plications, those based around data being manipulated or browsed. This was
identified by them as an extremely prevalent kind of application.

208

Are there industries to which this tool is not applicable? Participant B was the only per-
son who expressed doubts about the usefulness of the AppMaps model to
them on the grounds of application area. No other participant identified
industrial areas in which the tool or model would not apply.

7.4 Independent development studies

The workshop study was followed by a longer study in which developers had more
freedom, and chose for themselves what task to attack using the tool. In this study
participants were given several days with the tool.

To prepare for this study, a number of the user interface issues that participants
brought up in the workshop were addressed: the behaviour of the text fields while
editing labels was made less idiosyncratic, the quit menu item was made to work
correctly and the errors generated by the application runtime when it was given
an invalid dialogue machine were made far more communicative. In addition, the
author’s own work with the tool between the two studies had found two bugs
which meant that certain kinds of invalid application map could generate unstable
applications that did not deal gracefully.

7.4.1 Method

7.4.1.1 Participants

Seven participants (who will be referred to as participants 1 through 7) were re-
cruited from the author’s professional network.

All participants were professional developers who spend a large proportion
of their working time doing software development, and all of whom have mobile
development as part of their professional practice. All were regularly developing
with JavaScript. Five used recent versions of Xcode; three had used the J2ME
mobile toolkit.

7.4.1.2 Apparatus

Each participant was sent a copy of the AppMaps software along with a detailed
user manual and a set of example projects. They were also sent details of how
to obtain a mobile device simulator that would work with the tool. Otherwise,
participants used their existing development tools.

The user manual consisted of a tutorial section, a description of the dialogue
controller and descriptions of the cases following those laid out in chapter 3.

209

7.4.1.3 Procedure

The structure of the independent development studies was essentially the same as
that of the workshop. Participants began by following the same worked example,
then had a question and answer session, then built an application, and then had
a debriefing and discussion session during which they provided feedback to the
author about their experiences with the tool.

Participants worked remotely, being based wherever they normally did soft-
ware development work. Each participant was given a one month window in
which to spend between two and three days working on an application using the
AppMaps tool. With the exception of participant 2, who spent four days on his
application, the other participants stayed within the two to three day expecta-
tion. Participants 1–3 and 5 did their application development while in the same
place as the author, and communication took place face-to-face. Other partici-
pants communicated with the author by telephone or by various internet commu-
nication media. For participants who could be co-located with the author, audio
was recorded of meetings, and any other questions raised were noted in writing.
Where participants were not co-located with the author, voice calls were recorded,
emails were archived and text chat sessions were logged.

Each participant began by working through the same satellite navigation ex-
ercise as in the workshop, but working from the manual rather than from a pre-
sentation. The manual took them through the same steps of building and styling
an application map and plasticising it using case. It then added an extra step in
which the developers added a new view to the project to walk them through using
the JavaScript API.

After this, each participant had a discussion period with the same emphasis
as the first discussion period in the workshop with the author, in which any areas
of the tool’s operation that were immediately unclear could be discussed. Partici-
pants 1–3 and 5, who were co-located with the author, asked their questions face-
to-face. Participant 6’s question and answer session also took place face-to-face.
Participants 4 and 7 requested that their question and answer sessions take place
over Internet Relay Chat (“IRC”). Audio was recorded of face-to-face meetings,
and logs were kept of the IRC sessions.

After this, developers began working on their own application. The author
was available to act as technical support. The author did not interfere in the ar-
chitecture or design of the system that participants built.

The development phase ended when either the participant felt that the ap-
plication was complete or when they were unable to dedicate any more time to
the application. At this point, a second discussion took place between the partic-
ipant and the author, analogous to the second discussion period in the workshop.

210

Similarly to the workshop, the discussion hinged around the three Es, and each
question asked in chapter 4 was used as a conversation prompt. The applications
that the participants had built were returned to the author, at which point the au-
thor counted the software components involved in plasticity for each application
and examined the parts of the application where case had been used in order to
evaluate those parts of the application against the user interface guidelines of the
respective platforms. Again, for participants 1–3, 5 and 6, this took the form of a
face to face meeting where audio was recorded. For participants 4 and 7, this too
occurred over IRC, which was logged.

The participants’ remarks and comments were categorised under the 3 Es ac-
cording to their definitions in chapter 4. In the case of remarks that touched upon
two areas, they were categorised under both. The discussion session at the end
used the three Es as discussion prompts, and this made the categorisation of par-
ticipants’ remarks from this session trivial, as they all remained on topic through
the discussion period. No points raised by participants were discarded.

Ethics approval was granted for this study.

7.4.2 Results

The applications that developers built are summarised here: further details, along
with application maps and screenshots can be found in appendix C.

Participant 1 built an application for internal use in a publishing company that he
runs in addition to his practice as a developer. This application let him
browse data relating to the workflow involved in publishing books, and look
at what stages each book was occupying in this workflow. He considered
the application to be complete when he submitted it.

Participant 1 had reservations about the quality of the user interface pro-
duced, although he was happy with the parts of the interface that the case
system had generated. He felt that case had made a major impact on the ef-
ficiency of his development process, especially in making the jump between
“concept and prototype”. He also felt that the level of plasticity that the tool
provided was sufficient for what he needed. He felt that the case system had
been well worth learning given the efficiency gains that he had appreciated,
but felt that more cases would be useful. Specifically, he mentioned a case
for instrument or tool selections (compare the hypothetical use of the in-
strumental in chapter 3).

Participant 2 built an application to display and browse the catalogue of his book
collection. He considered the application to be complete when he submit-
ted it.

211

Participant 2 was happy with the quality of the user interface produced. He
felt that the case system had made development more efficient and more
predictable. He found the case system very intuitive and did not feel that
much learning had been required. He found that the plasticity provided by
the case system was sufficient for his application.

Participant 3 built a prototype of a social media application that let users leave
textual notes at geographical locations. He considered the application as a
working prototype when he submitted it, but the system as a whole and the
application were unfinished.

Participant 3 was not happy with the quality of the user interface produced,
due to physical factors in the interface. He was happy with the parts of
the interface that case had generated. He had found that case had made
the development process more efficient largely because it had helped him
explore alternative versions of the application more quickly. He felt that
the case system was certainly be worth learning given this efficiency gain.

Participant 4 built a to-do list application. She fell victim to bugs in the AppMaps
tool, and so did not complete her application, but submitted it as unfinished
anyway.

She felt that case had been useful in separating ways in which the user could
interact with the application and that the cases represented these ways well.
She did, however, say that there could be more cases supplied by the ap-
plication, mentioning again a tool or instrument case. She said that if the
tool had worked correctly then case would have provided a significant effi-
ciency gain for her, and that it would probably have provided the degree of
plasticity that she needed.

Participant 5 built a prototype of an application to allow users to browse and con-
tribute to a crowdsourced dataset about the accessibility of venues. The
application was a working prototype when he submitted it.

He was happy with the quality of the user interface that he had created,
saying that his application had little in the way of complex cosmetic needs
and that case had adapted the dialogue well. He mentioned that case had
provided a “huge practical benefit” in terms of efficiency, and that the level
of plasticity was sufficient for his application. He felt that the case system
was intuitive and that he didn’t feel that he had really had to learn it at all.

Participant 6 built a flashcard game for language learners. He submitted the appli-
cation as working but needing more polishing.

212

He was happy with the quality of the user interface for his own use, but
said that the physical user interface looked unprofessional and he would not
want to release it for other people. He did, however, think that the dia-
logue adaptations that the tool made using the case system were appropri-
ate. He felt that he had had an efficiency gain from being able to consider
both the phone and the tablet at once during development, rather than hav-
ing to switch between periods of considering only one platform at once. He
thought this was enough benefit to justify learning the case system.

Participant 7 designed an online shopping website for parts for Volkswagen Cor-
rado cars. He submitted the site as unfinished.

He felt that he was on a path to creating a high-quality user interface using
the tool, although with some reservations about the physical quality of the
underlying Sencha Touch toolkit. He felt that the case system had saved
efficiency by factoring out common patterns that he would otherwise have
had to write boilerplate code for and by allowing exploration and refactoring
of the user interface rapidly.

7.4.3 Discussion

From the software produced by these participants and their ideas and opinions
expressed during discussion (which are presented in detail in appendix C, it is
now possible to synthesise answers to the questions posed in chapter 4.

7.4.3.1 Effectiveness

Were developers happy with what they had produced? Participants 1, 3, 4 and 6 were
not happy with the quality of their user interfaces as a whole. Their rea-
sons for this were centred around the physical user interface: participant
4 especially singled out the visual quality of the controls and the quality of
the scrolling animations, and participant 1 complained about the typogra-
phy. Participant 3 felt that the whole interface was rendered badly because
of the dependence on the web browser. These concerns do not fall under
the responsibility of case.

When the question was reframed to take case into account and to examine
only the areas of the interface that case touched, developers’ responses were
different: the dialogue structure that case produced was perceived as good
quality (with the exception of participant 4, who said that “if case had been
implemented correctly” it would have been good quality) and the physical
adaptation of that bit of the interface was good quality (except, again, for

213

x/gen y/gen

Figure 7.5: Two adjacent genitive edges

participant 4). For these four participants, however, this was not enough to
propel the interface as a whole up to being a good one.

Participants 2, 5 and 7 were happy with their interfaces; they all stated that
their problem spaces were fairly formulaic.

There was no connection between whether participants were happy with
their interface and whether they identified the job they did as ‘design’ or
‘development’. Participants 1, 6 and 7 all identified their job as ‘applica-
tion design or web design’; the others identified themselves as developers.
This suggests that this division between people who were happy and not
happy with their interfaces does not straightforwardly emerge from a de-
signer/developer distinction.

Did case contribute to the application’s conforming to the human interface guidelines for the
desired platforms and form factors? Not all the resulting applications had di-
alogue components that corresponded to the user interface guidelines for
tablets. Specifically, participant 4’s to-do list application did not comply,
and nor did the early version of participant 2’s book catalogue that had a
genitive search edge.

A glance at why this occurred, however, shows that the iniquity sits on the
shoulders of the implementation of case, rather than the model. Specifically,
these cases all happened when two genitive edges were next to one another,
as shown in figure 7.5.

In this situation, according to the definition of the cases and how they map
to user interface elements presented in chapter 5, one should end up with
a split view arrangement. The way that this view works is that if a genitive
is selected in the left hand panel, and there is another genitive selection to
come, then the contents of the left hand panel are replaced with the second
genitive view. This can be seen clearly in Apple’s Mail application for the
iPad (see figure 5.3): first, the user selects a mailbox. The mailbox list is then
replaced in the left hand view with the list of messages: and when the user
selects one of those, only then does the right hand panel change.

However, the graph grammar rule for genitives presented in chapter 5 and
which was used in the implementation of the AppMaps tool does not actu-
ally implement this user interface pattern correctly. Instead, when the rules

214

x/gen

x/gen

y/gen

y/gen

Figure 7.6: Incorrect rendering of adjacent genitives

are actually applied it presents an interface like that in figure 7.6: the middle
state ends up with two genitive edges coming out of it, which are styled ac-
cording to the stylesheet: and the middle state ends up as a three-way split
view, which does not adhere to the guidelines.

According to the case system, however this subgraph with two genitives one
after the other is perfectly permissible and has a well-defined outcome which
does conform to the user interface guidelines both on Android and iOS. If
this nuance of the case system had been correctly implemented, then all the

215

parts of the application touched by case would correctly adhere to the user
interface guidelines for Android and iOS .

In applications that did not use the pattern of two consecutive genitives (all
the final applications but for participant 4’s) the use of the genitive produced
a user interface that obeyed the rules for both Android and iOS. Likewise,
all uses of the dative produced user interfaces that complied to the Android
and iOS human interface guidelines.

7.4.3.2 Efficiency

How many software components are involved in effecting plasticity? In all of the appli-
cations that the developers built, all plasticity was managed by the cases on
the edges of the map and, in some cases, in an application-specific stylesheet.
No platform-specific stylesheets were used, and no individual views per-
formed their own plasticity. In other words, the number of software compo-
nents involved in effecting plasticity in all these applications was constant,
regardless of the number of views that needed to adapt.

If a hypothetical tool were used where views had to provide their own plas-
ticity if they needed to adapt between platforms, then the number of soft-
ware components that were needed to effect plasticity would at least be
equal to the number of views that needed to effect plasticity, and thus would
scale linearly with that figure.

It is worth noting, however, that in these simple applications the number
of edges that bear either a genitive or a dative marker is quite small; and so
the apparent large disparity between being constant and being linear in the
number of views providing plasticity may not be as large in practice.

Does the use of case provide a tangible benefit in terms of time at any specific point in the de-
velopment process? One recurring theme in the feedback from the developers
is that the amount of time taken to build a user interface of the quality that
they got was markedly lower with the AppMaps system than they expected.

The exact point at the development process at which this was perceived to
take place varied; and it is also worth noting that the developers applied
case to their application map at different points. Participants performed
the three stages of building the application map, applying case to it, and
implementing the business logic of the application in a number of different
ways, despite the documentation only demonstrating a single order (in which
the cases were applied after the map was designed).

One strong agreement between participants (explicitly being mentioned by
participants 1, 3, 4, 5 and 7) was at the point where the case system provided

216

the most benefit: it provided it early in the development process, where
the connections between “concept and prototype” (participant 1) were being
made, and when the “big picture” (participant 4) of the application was being
decided on, or a prototype was being refined “in a client situation”.

Would the case system of the tool be worth learning for the efficiency gains experienced? All the
participants except participant 4 indicated that the case system was worth
learning for the efficiency gains that they had experienced. Participant 4
was of the opinion that if the implementation of case were to be corrected
then it would be worth learning. When prompted further, none of the par-
ticipants had any reservations about making this statement. Participant 5
said that he hadn’t really felt like he’d had to learn much, more a process of
“getting used to” how the cases behaved.

Further evidence that the developers learned the case system rather than just
copying the documentation can be found in the uses of case that were not
mentioned anywhere in the documentation: the use of searches as genitive
by participants 2 and 5, and the use of datives for destinations other than
social media by participants 1 and 4. Participant 6 had an application of a
very different form from the wine shop or satellite navigation examples, but
still used the dative and genitive appropriately in this situation.

7.4.3.3 Expressiveness

Does case work well with the platforms the developer used? None of the developers iden-
tified any mobile platforms where the case system would not apply.

Does case work well in the kinds of application the developer created? All of the develop-
ers studied produced data-driven applications. All of these applications used
genitive edges, and most used dative edges. Participants 2 and 4 reinforced
that case had worked well for them because they were working with data-
driven applications, and participant 6 noted that theirs only worked because
they were building an application that involved two distinct data sets, or two
views on the same data at different levels of detail: and that if they had been
trying to build an even simpler application, case would have been entirely
useless. This is logical, given the definition of case as being about the re-
lationships between objects; if there are no relationships between objects
(just, for example, between objects and actions) then case cannot come into
its own. Participant 7 noted that the functionality needed for e-commerce
applications, of browsing, filtering and sharing, was an ideal match for this
case system.

217

Does case work well in the industries that the developer was working in? None of the de-
velopers felt that case was domain-specific or industry-specific. They were
in unanimous agreement that the kind of application was more important
than the industry, and that one could reasonably expect to find data-centred
applications in all industries.

7.5 Reflection upon method

The results above are shaped, both in their essence and in their mode of presen-
tation, by the method used to generate them. The first and most obvious way
they are so shaped is that they are nearly purely qualitative. A second way that
the method shaped the results is that the results of both the workshop and the
self-directed development study are based on fairly short acquaintance with the
tool. More subtle problems with the tool or the underlying model would perhaps
have emerged with time and familiarity.

However, two points suggest that the data is representative. First, it is broadly
in agreement with the results of the case studies, adding detail to the picture
gained from the case studies rather than contradicting them. This, however, could
be a function of similar assumptions being made in each study. Secondly, and per-
haps more tellingly, participants themselves felt that the data recorded,l and the
way that this data was presented, was representative of their experience using the
tool. This also makes it unlikely that the categorisation of discussion into the 3 Es
missed any major issues or aspects of the experience of using the tool.

The methods for these two studies could be reused to perform a similar eval-
uation, with some care. The 3 Es are not independent of one another, and while
for the purposes of these studies they proved to be independent enough to be dis-
cussed separately, it is not certain that they would be sufficiently independent for
the same to hold true for evaluation of some other tool or framework. For exam-
ple, if a developer could not produce a good user interface at all (effectiveness), it
is also meaningless to speak of their efficiency.

7.6 Summary and conclusion

In this chapter, the part of the evaluation of the AppMaps case system that re-
lied on other developers was described. This consisted of two studies, one short
workshop study in which developers gave their feedback in fairly general terms
based on a prescribed application-building exercise, and one longer one in which
developers built an application of their choice and gave feedback on the specific
development process they had experienced.

218

In the next chapter, the results from this chapter and the two preceding chap-
ters will be synthesised into answers to the research questions that were originally
given in chapter 3.

219

A Chapter 8
Discussion

8.1 Introduction

Chapters 6 and 7 presented the results of the evaluation exercises used to work
out if the tool that was produced in chapter 5 did useful things for developers, and
through that whether the case system that was embodied in that tool was of use
to developers. This chapter takes those results and discusses them to draw out
common themes between the evaluation exercises.

First, it returns to the research questions that were presented in chapter 3, and
synthesises answers to them from the results of the evaluation exercises. From
these results, meaningful answers can be given to all of the research questions.

Second, having bounded the applicability of case through the research ques-
tions, the chapter looks at what the scope of case is: under what circumstances the
positive answers to the research questions are valid, and for what platforms and
kinds of application. Third, it reflects upon the methodology that was followed to
reach these answers, and considers whether these methods could be reused else-
where and whether they could be used to reproduce the results given here. Lastly,
it considers the limitations of the research, laying out several points upon which
the results shed no light, and upon which it would be interesting to have light shed.

8.2 Are the categories delineated by case relevant to user
interfaces?

When this question was introduced in chapter 3, three areas were identified as be-
ing critical to getting a positive answer. These three areas were firstly that the case
system should be intuitively usable to developers, secondly that the case system as
used in the tool must behave like a case system, and thirdly that case must be a liv-
ing phenomenon to users of the case system, capable of being used in unexpected
ways. In chapter 4 it was noted that an answer to the first needed to emerge from
the expressiveness information gathered from other developers, an answer to the

220

second needed to emerge from the design of the case system itself, and an answer
to the third must emerge from the case studies and the longer development study.

The workshop and self-directed development study provide good evidence for
the first area. Not a single developer in either study said that the case system had
been unintuitive in use or unpredictable. When participants were asked whether it
was intuitive they all said that it was; and some (such as participant 5) had felt there
was nothing to learn at all. Participant 2 specifically noted that the case system
had contributed to the tool’s predictability; and participant 4, whose project fell
foul of software defects, had a sufficiently strong and accurate mental model of
the case system that she could confidently (and correctly) assert that it was the
software that was at fault rather than her understanding the case system.

Developers did have one major obstacle to overcome to find their intuition
of the system, however. A theme that strongly emerged from the workshop was
that the terminology (genitive, dative, oblique) was obscure and opaque. This was
especially clearly articulated by participant C in the workshop, but was entirely
absent as a concern during the longer development workshop.

It must be said that developers are not alone in finding the terminology sur-
rounding case difficult. The vocabulary used to describe it—not just in this thesis,
but wherever it is studied—is both opaque and often of ancient origin. According
to Butt (2006), the words for the individual cases are first attested in the Greek
grammar of Dionysios Thrax in the second century BC. These names were then
translated—or, in the case of “accusative”, mistranslated—into Latin by Remmius
Palaemon in the first century AD. The names currently used are anglicised ver-
sions of these Latin names. It is, therefore, not surprising that developers found
these names confusing, because the meanings of the names are not transparent.
This failure of terminological clarity does not, however, invalidate the evidence
that developers found the case categories themselves intuitive. Participant C also
articulated this clearly, saying that once she had got past the names, the categories
themselves made sense.

The second area, whether the case system sufficiently resembled the case sys-
tem of a natural language, was addressed by the construction of the tool. The
case system of the tool was based on Blake’s case hierarchy, with the omission
of the top two cases, which are purely linguistic. This follows the normal analy-
sis (presented, for example, on page 33 of Blake, 2001). There are theorists who
would disagree with this, especially with regards to the accusative case: localist
case grammars would count the accusative as having a semantic meaning (such as
in Anderson, 2009), and cognitive grammar frameworks hold that everything in
language has semantics (Luraghi, 2009). Therefore, given the construction alone,
it is very likely but not certain that the constructed case system mirrors natural
case systems closely enough to be worthy of the name.

221

However, there was an unexpected and extremely suggestive piece of evidence
for the case system as embodied in the tool being closely related to case in lan-
guage. This evidence came from participants 1 and 4 in the self-directed develop-
ment study. These participants did not speak any language that had a complicated
case system—participant 1 speaks English and German and participant 4 is mono-
lingual English. Neither had either of them come into contact with academic
writing on case. However, both of these participants suggested that the case sys-
tem could do with being extended, and both suggested the same extension, that
of a case for a tool.

This is suggestive because an instrumental case is also on the case hierarchy,
with the fundamental ‘case function’ of encoding the tool by which an action is
performed (Blake, 2001, section 5.7). It is not the next case down in the hier-
archy after the genitive—the locative, which encodes physical position, fills that
position—but it is worth noting that neither participants 1 nor 4 built applications
that had any geospatial or positioning component at all, and so a locative would
not have been relevant to them anyway.

Two participants is not a large sample, even within the fourteen developers
studied. However, there are not many cases in the case hierarchy. The top four
specific cases were already accounted for by the implementation of the tool. That
two participants who are unaware of the structure of case systems should suggest
one of the remaining two cases on the case hierarchy as a natural extension to the
case system of the tool seems to fit the model too neatly to dismiss immediately
as noise. This is an area that would repay further study.

Evidence for the third area, that case was a living phenomenon to developers,
emerges from both the case studies and the longer workshop studies. The genitive
was originally demonstrated and explained to participants in terms of a list of items
or categories that refines either a second set of items or a details view (as in the
satellite navigation example given to workshop participants in chapter 7). In the
Speakers Associates case study, spurred on by the commissioning person, this was
extended with a genitive search. In the longer self-directed development study,
this genitive search was mirrored in participant 2’s book catalogue and participant
5’s map-based application. Participant 5 considered putting the map in the geni-
tive, because of its partitive meaning, but fell foul of the same software defect as
participant 4. This demonstrates that the genitive was certainly not being used as
a frozen idiom involving a list of items.

The dative was used by fewer participants but with more variety. It was origi-
nally demonstrated to participants for social media destinations; but its uses mul-
tiplied, always with the basic meaning of ‘destination’ or ‘beneficiary’. The case
studies contributed examples of its use for physical devices (EVENT2) and for de-
partments of a company (Agritechnik). The self-directed development study also

222

contributed an example of its use for addressing parts of a company (participant
1) and logical destinations within a filing system inside the application itself (par-
ticipant 4). This demonstrates that the dative, too, was not being used simply as
a way of generating user interfaces for social media destinations.

In summary, then, developers perceived the case system of AppMaps as being
intuitively usable and easy to learn, where learning was required at all. This case
system bore a significant structural similarity to natural language case systems, and
feedback from some participants suggests strongly that they were thinking about
the case system unconsciously in these terms. This case system was not being used
as a set of frozen idioms, but as something capable of being used by developers in
the service of the problem to hand, with a set of meanings that were capable of
being applied outside of expected situations. Therefore, it is reasonable to answer
this question positively: the categories delineated by case do seem to be relevant
to user interfaces, at least in the context of mobile cross-platform development.

8.3 Can a tool be built that embodies case for building
plastic user interfaces?

When this question was raised in chapter 3, two areas were given that needed to be
considered in any answer. The first was that the tool had to do something useful
with the cases that were provided by the developer, and the second was that the
parts of the applications generated by this process that had been touched by case
had to obey the user interface guidelines for the platform. In chapter 4 it was
stated that the information to support the first area needed to come from the act
of building the tool itself (as presented in chapter 5), and the information from the
second emerges from both the case studies and the longer studies.

In chapter 5, the user interfaces that should emerge from the use of the gen-
itive and dative cases were defined. First, they were defined in terms of the user
interface guidelines; and second, they were defined in terms of graph grammar
rules over a simple dialogue state machine (called “the application map”). If the
second had been a perfect implementation of the first, then this answer could have
been extremely short. However, the second was not a perfect implementation of
the first.

The implementation of the genitive on the two tablet platforms had a major
defect in it. On tablets, the genitive was supposed to be implemented as a split
view type display. When two genitives were placed next to one another in the
application map, then the results did not obey the user interface guidelines and
in fact were quite unpredictable (this bug affected the Agritechnik application in
chapter 6 and participants 2 and 4 in the self-directed study in chapter 7).

223

If this defect could not be resolved, then case could not be said to be imple-
mentable. Fortunately, however, it can be resolved. If the graph grammar rule in
figure 5.21 is amended so that the second edge only matches non-genitive edges
then the behaviour no longer occurs. If a chain of subsequent genitives occurs in
the application map, only the last one will have the extra duplicated genitive edge
added to it. This means that no state in the application map will have two dif-
ferent genitive edges going from it, which prevents the situation where multiple
left-hand panels would be created on tablets and a guideline-violating three-way
split view would be generated.

The implementation of the dative on all platforms had a smaller shortcoming.
Two possible realisations in terms of concrete user interface components for the
dative were noted: one for when the user was choosing a destination from a set
of destinations, one for when the user was entering a freeform address or phone
number. The former was to be rendered as a button in a popover, the latter was
to be rendered as a normal freeform field.

In the AppMaps tool as given to participants, only the former was imple-
mented. As before, if this problem is not amenable to being resolved, then case
could not be said to be implementable. Again, however, it is resolvable. The rea-
son why the latter realisation was not implemented in AppMaps is because the
decision as to which realisation to use in the application needed to be done based
on the actual component in use. If the edge marked with the dative were a but-
ton or a set of buttons, then the first realisation needed to be used; if the edge
marked with the dative were a text entry control, then the second needed to be
used. However, because of the way the type system of JavaScript works and the
way that Sencha Touch’s classes work, this information was not available at ap-
plication build time. In the AppMaps system, the decisions about what concrete
realisation to use for cases were made at build time. This meant that no decision
could be made based on the kind of component that was in use.

To resolve this defect would require the use of a toolkit that made that infor-
mation available at design-time. Any object-oriented toolkit where each kind of
component is represented by a distinct, declaratively-defined class would, for ex-
ample, provide this information. This could then be used to make the decision as
to which realisation to use.

By contrast, the evidence that the parts of the resulting applications that are
generated by case obey the user interface guidelines for the platform is clear. None
of the participants—except for those who fell foul of the genitive software defect
described above—produced applications that violated the user interface guidelines
of the platforms they were developing for. Nor was it any effort on the present
author’s part to adhere to the user interface guidelines during the creation of the
case study applications. This suggests that the fairly simple implementation of

224

cases in terms of user interface components that the AppMaps tool embodies is
actually sound, and the two categorisations line up well.

In summary, the AppMaps tool is an example of a tool that implements the
genitive and dative cases in software. The implementations it provides are inad-
equate, but are inadequate in ways that can be addressed. If these inadequacies
were to be addressed then its implementation of cases would produce parts of ap-
plications that obeyed user interface guidelines. This question, too, warrants a
positive answer: cases, at least a genitive and a dative, have been implemented in
software.

8.4 Can case as embodied in this tool be used to build
useful applications?

Chapter 3 stated that a positive answer to this question needed to emerge from
applications built using the tool for other people. Chapter 4 stated that this could
be addressed by examination of the case studies and the self-directed development
study in terms of the three Es. Two of the participants in the longer study have
created applications that they consider as ‘complete’ and which they use in their
everyday lives: these were participant 2’s book catalogue and participant 6’s quiz
application. However, since the other participants were also attempting to create
useful applications, then their feedback should also be considered here.

8.4.1 Effectiveness

In both the case studies and the longer development study, two questions were
considered under the heading of effectiveness. The first of these was to do with
the commissioning user’s or developer’s perception of the quality of the interface,
and the second was to do with whether the parts of the interface that case touched
adhered to the user interface guidelines of the platforms that the developer was
targetting. The second of these has been examined in section 8.3 above, but the
former has not yet been discussed.

There is strong agreement between the results of the case studies and the re-
sults of the two developers from the self-directed development study who pro-
duced useful applications (in the strict sense noted above) about both the quality
of the parts of the interface that case touched and in terms of the limitations of
case. In both, the quality of the parts of the interface that case touched was per-
ceived as good. In chapter 6, the three commissioning users all stated that they
were content with the quality of these parts of the interface in their respective
applications, with the commissioning user of the Speakers Associates application
specifically pointing out that these aspects were formulaic. Likewise, both par-

225

ticipants 2 and 6 considered that the parts of their user interface that case had
touched to be of good quality. This was also the general opinion of the other
participants, who produced applications that they did not go on to use.

However, the parts of the interface that case had touched were by no means
the whole of the interface, and the parts of the interface that case did not touch
outnumbered the parts that it did by a significant margin. The evaluation for ef-
fectiveness in chapter 6 noted that, by volume, case accounted for very few of
the guidelines in the user interface guidelines, and that the specific warnings that
Google make in their guidelines about cross-platform interfaces do not touch any
of the same areas of the interface that case does. In the self-directed development
study, participant 2 thought that the interface he had produced was entirely suffi-
cient “for [his] purposes” and had no opinion beyond the application’s usefulness
to he himself. Participant 6, on the other hand, thought about potential distri-
bution of the application, and reached the conclusion that the user interface was
not in a state where it could sensibly be distributed, because other aspects of the
interface other than those that case touched were not of sufficiently high quality,
notably the parts that the Arch model would refer to as the “physical” layer of the
interface.

In this, participant 6 was not alone: five of the seven participants in the longer
study had concerns about the quality of the physical elements of the interface
that they had produced with the tool. That the dialogue component of the in-
terface might have been slightly imperfect might not have stopped them shipping
their application: but the deficiencies in the physical aspects of the interface did
prevent them from thinking that their application was good enough to release to
other people. Thus, at least as far as participants’ perceptions of the quality of
their interface went, the physical layer was granted more of an importance than
its position as an outlier on the Arch might make it seem like it warrants.

AppMaps delegated the physical layer of the interface to the underlying Sen-
cha Touch toolkit. It provided a stylesheet that let the user set options in that
toolkit, but the actual physical aspects of the interface were up to the developer
and to the underlying toolkit. The other plastic user interface tools follow a simi-
lar approach of farming the physical layer out. UIML2, as defined by Phanouriou
(2000), has a whole set of transformations: but still, the final physical decisions
are delegated to the developer (who specifies the styles of components), the ren-
derer (which implements UIML in terms of an underlying toolkit) and the toolkit
that the renderer finally targets. As noted in chapter 2, the mechanism by which
ARTstudio generates the final interface is unclear: but the reference framework
it exemplifies (see Thevenin et al., 2003) specifies that all stages of the interface
should be under the developer’s control, and from the images provided of the tool
in use it seems to use the inbuilt components for MacOS Classic and PalmOS.

226

TERESA and MARIAE/MARIA both eventually hand off the problems of phys-
ical display to other toolkits, with varying degrees of control over this process for
the developer. DiaGen is designed for web applications and is bound to HTML.
It is also worth noting here that, according to the feedback from the workshop
participants, even the industrial tools, which focus single-mindedly on physical
and logical adaptation (see chapter 2 and the data in appendix A), do not get the
physical adaptation of interfaces even nearly correct. AppMaps gets the physical
layer wrong: but it does so in good company: it is worth noting that when Paternò
et al. (2011) evaluated the MARIAE tool in a workshop situation, the area that was
“most problematic” (p. 1821) was the quality of the final user interface.

AppMaps was, however, first and foremost a tool to evaluate the usefulness of
case. There are limits in how applicable case is, and one of those limits is that there
are many factors that go into a physical user interface—such as those identified by
the workshop participants earlier in this thesis—that it does not capture. How-
ever, the fact that the underlying Sencha Touch toolkit generated poor-quality
physical user interfaces does not undermine the effectiveness of case within its
limits, any more than a poor-quality renderer would undermine the fundamental
ideas of UIML, or a bad HTML renderer would undermine the usefulness of Dia-
Gen. Note also that developers were successful in commenting on the usefulness
of case as distinct from the rest of the tool: in their feedback they were firm that
their answers attached to the underlying case system, rather than to the tool itself.

8.4.2 Efficiency

In both the case studies and the longer development study two questions were
considered under the heading of efficiency. The first of these was to do with how
many software components were necessary to effect plasticity, and the second was
to do with whether developers had felt that the process was more efficient, and
which points in the development process case helped most with. A third was
added for the longer study, where developers were asked whether they thought
case had been worth learning.

In the case studies, the only software components of each application that
were involved in effecting plasticity were the dialogue controller and the stylesheet.
This remained the case even when an unexpected platform was added to the re-
quirements part of the way through the development process, as in the Agritech-
nik case study. Towards the end of chapter 6, this was compared with hypothetical
processes of development using pure MVC and an MVCD architecture that did
not include dialogue plasticity. In the former, the number of software compo-
nents that effected plasticity would at have been linear in the number of views
that needed to adapt to different platforms; in the latter, linear in the number

227

of platforms addressed. The only difference between the latter of these and the
model as implemented in AppMaps was that AppMaps used the case system to
provide dialogue plasticity. Since the number of software components required
to effect plasticity in AppMaps remained constant even when the number of plat-
forms increased, this gain can be ascribed to case. It is unlikely to be purely a
quirk of AppMaps’ implementation of case, as it was shown above that AppMaps’
implementation of the case system follows the structure of said case system very
closely, and introduces no extra meanings or nuances to the cases themselves.

This was backed up by the two participants’ applications in the longer devel-
opment study. In both of these, similarly, the number of software components
required to effect plasticity was constant. Applying the same hypothetical devel-
opment scenarios to the two participants’ efforts gives similar answers, and argues
that case is the agent that permits plasticity to be effected with a constant number
of software components involved.

The phases of development at which case is most useful, according to both the
case studies and the results from the self-directed development study, are the ex-
ploratory ones where different structures are being tried out. Exactly when during
the development process this takes place varies between participants, however.

In the case studies in chapter 6, the major perceived efficiency gain by the
author was in exploring alternatives. This stood out most strikingly in the explo-
ration of alternative realisations of search in the Speakers Associates application,
and the explorations of alternative Windows Phone interfaces for the Agritechnik
application.

Participants in the longer study expressed similar ideas. Participant 1 talked
about case making it easy to move from concept to prototype. Participant 3 said
that he had approached the exercise with a firm idea about how his application
ought to work, and that he thought this had prevented him from using the case
system to its full potential. Overall, as discussed in chapter 7, they thought it would
be useful when the “big picture” (per participant 4) was being decided upon. Also,
as noted in chapter 7, with the exception of one participant, the participants were
unanimous in their feeling that, given the efficiency gains they had experienced, it
had been worth learning case.

Statements about efficiency do emerge from evaluations of other plastic user
interface development systems, but not in sufficient detail to permit immediate
comparison. While the evaluation of MARIAE (in Paternò et al., 2011) seems
mostly to have been concentrated on which parts of the development environ-
ment worked well for users, some indication that developers thought that it would
increase their efficiency do appear. In this evaluation there was a strong response
from developers that the process of generating a task structure from annotations
applied a web service “can help in speeding up the development.” (sic; p. 1820)

228

However, since this part of the evaluation applies to the process of generating the
task structure and not the process of actually making this task structure appear
on multiple devices, the question of a direct comparison of efficiency between
MARIAE and AppMaps remains open. Similarly, the account of the evaluation
of the DiaGen tool (Book et al., 2006) mentions a very impressive reduction in
the amount of code needed to implement a given application feature (user reg-
istration), but does not provide any detail on precisely where this efficiency gain
came from, and acknowledges that this is a very coarse measurement that does
not bear straightforwardly on larger applications. Therefore, the question of di-
rect comparison here also remains open.

8.4.3 Expressiveness

The evaluations of expressiveness in the case studies and longer studies were per-
formed by looking at three areas. The first was whether case adequately covered
the platforms required, the second was whether case was more useful for some
kinds of applications than others, and the third was whether case was more useful
for some industries or domains of application than others.

As stated in chapter 5, in its original form the AppMaps tool catered to Ap-
ple’s iOS and Google’s Android platforms. For the purposes of the Agritechnik
case study, the tool was extended to cover Windows Phone: however, this sup-
port was not sufficiently mature to give to other developers for the self-directed
development study.

In the case studies, the case system met the expectations of the commission-
ing users with regards to what platforms and form factors it was implemented for;
and likewise, participants were unanimous in saying that the tool catered for the
platforms and form factors they wanted to develop for. This is possibly because
Android and iOS, and phones and tablets, are the most visible in the ecosystem
and have the most market share. For the commissioning users, and for the exter-
nal developers, this result is a good thing; but in the context of this thesis it is
disappointing. There have been no failures; so there is no firm evidence for what
the limits of case’s applicability in platform terms is.

The case studies and longer development study are more useful in finding out
whether case is more useful for some kinds of applications than others. Three
kinds of applications were built for the case studies: the first application was pri-
marily a communication application, the third application was purely to do with
browsing a data set, and the second application had a mixture of both functions.
The communication application did not use case very effectively; in the data-
driven application it was extremely useful; and in the application that mixed the
two functions, it was of most use in the data-driven portion. All the developers in

229

the longer study built applications that manipulated or browsed data sets. Again,
however, a strong theme that emerged in their comments was that the case-based
approach would only work with data-driven applications. This follows to a great
extent from the definition of case itself: if case as implemented in the tool is about
the relationships between distinct objects in the application it will mostly be ap-
plicable where there are distinct objects that the user is manipulating for there to
be relationships between.

When compared to the other tools surveyed in chapter 2, AppMaps is def-
initely the poor relation in terms of expressiveness in terms of number of plat-
forms covered. Even ARTStudio, which only covers two platforms (Thevenin,
2002), covers one desktop and one mobile platform; TERESA covers an impres-
sive number of platforms, including desktop, mobile and voice-activated (Paternò
et al., 2008). However, it must be remembered that AppMaps was specifically
trying to solve a problem for mobile developers, and was intended only to address
these platforms. It cannot be concluded from this that case itself is only applicable
in these contexts.

8.4.4 Conclusion

The combination of the case studies and the self-directed development study gives
good indications that case can indeed be used to build useful applications, being
of most use for those which are data-driven in some way. It makes a contribution
to having a good quality interface by plasticising the dialogue layer, but this is not
in itself enough to make the resulting interfaces high-quality. It does, however,
provide a meaningful gain in efficiency compared to the tools that developers cur-
rently use, especially in the early, exploratory stages of the development process.

8.5 Can case as embodied in this tool be used by other
developers?

A broad indication that case as embodied in the AppMaps tool is of use to other
developers can be drawn from the fact that, at the time of writing, there is a
small and nascent group of developers using AppMaps consisting of a subset of
the participants in the longer development study. The tool can be downloaded
from http://appmaps.co.uk/appmaps-bin.zip. Only time will tell whether
this community survives. This broad indication is not enough to generate an an-
swer to this question, however.

In chapter 3 it was stated that any evidence of the usefulness of case for other
developers needed to come out of the mouths of other developers. Chapter 4
refined this to state that an answer should emerge from the workshop and self-

230

directed development study, evaluated in terms of the three Es. On the whole, the
feedback from the workshop and the feedback from the longer study agreed very
well.

8.5.1 Effectiveness

Like the self-directed study participants, the workshop participants were happy
with the quality of the parts of the interface that case had generated, but had
doubts about how large the problem of dialogue adaptation was compared to the
problem of plasticity as a whole. The emphasis in their doubts was also the same
as those of the longer study participants: they considered that the physical ele-
ments of the interface had a major influence on the quality of the resulting inter-
face, that it was this physical adaptation that they put a lot of effort into when
building cross-platform mobile applications, and it was this physical adaptation
that was not supported well by cross-platform tooling in general. Even given this
shortcoming, however, the workshop participants still thought that the use of case
would find a place in their professional practice.

8.5.2 Efficiency

The self-directed study participants felt efficiency gains in the specific projects
they had attempted to build, and the count of software components involved
in plasticity in their projects backed this feeling up. The workshop participants
talked with a wider scope about their professional practice in general. They were
strongly of the opinion that they would find an efficiency benefit from the use
of the tool in projects they undertook, and that it would be worth the effort to
learn the tool. Therefore, it is reasonable to conclude that case could provide an
efficiency benefit not just to the author but to developers in general.

8.5.3 Expressiveness

Much like the evaluation of expressiveness for the self-directed development study,
the evaluation of expressiveness in the workshop study concentrated on three ar-
eas: whether the tool and case system were applicable to the platforms developers
wanted to target, whether the tool and case system were applicable to useful kinds
of applications; and whether the tool and case system were applicable to useful
industries. Again, the results of the workshop study closely mirrored the results
of the self-directed development study.

The results in the first area broadened the picture of which platforms a case-
based approach might be appropriate, but did not help in setting the boundaries
of case’s usefulness. While the self-directed development studies showed that

231

developers thought that case would be useful on the mainstream mobile platforms,
the workshop study expanded this to potentially being applicable to things that
are not mobile platforms at all, such as smart televisions and games consoles. They
did not, however, venture an opinion on where it would not be useful, so the limits
of case’s applicability across platforms remains a murky question.

The results of the second area reinforced and added context to the results from
the self-directed development study. All of the applications that the self-directed
development study generated were data-driven applications, and the developers
considered that this was the kind of application that case was most applicable to.
The participants in the workshop study agreed with this but contextualised it by
noting that these data-driven applications are extremely common, and forms a
very “interesting subset” of mobile applications.

8.5.4 Conclusions

The case system was readily used by other developers in both the workshop and
the self-directed development study. The benefits that other developers derived
from the platform were very similar to those that the author derived during the
case studies.

The developers who participated in the two studies gained much the same
efficiency benefit from using case that appeared in the case studies. Case was
useful to them during exploratory parts of interface-building, and they derived
the same quantified efficiency benefit as was demonstrated in the case studies.

Both the case studies and the workshop provided some indication that case
would be useful to other developers across all the mainstream mobile platforms,
but neither set limits to its usefulness. Therefore, the question of where case
stops functioning in terms of platforms remains unanswered. However, both these
studies also showed that case would be most useful in data-driven applications and
would be less useful outside of this. This, too, agreed with the results from the
case studies.

In conclusion, therefore, other developers derived much the same benefits
from the case system as the author.

8.6 The scope of case

It would not be reasonable to expect case as embodied in AppMaps to be use-
ful in all circumstances. From the above answers, it is possible to extract some
adumbrations of the limits of case.

First, case only works for certain kinds of applications. Both the case studies
and the feedback from the participants in the studies demonstrate that case is of

232

most use when there is data involved, and there are relationships between items
from those data sets and other items, or between items in those data sets and
actions the user can perform. It is of little use for communication applications
or applications where there are no discrete data items. It seems likely that this
can be said to be a limitation of case itself, because case is defined in terms of
the relationships between things. If there are no discrete things for there to be
relationships between, then case will accordingly be less useful.

Second, according to developers who used it, the AppMaps case system is well-
suited to a range of platforms. The platforms that they said would be suitable for
it shared a notable characteristic with mobile platforms: that the user was inter-
acting with only one presentation, or one presentation per application, at once.
This is probably not a limitation imposed by case itself, but a limitation imposed
by the dialogue component. The state machine that forms this component can
only be in one state at a time. This conclusion is indicated by participant F’s not-
ing that if the dialogue model could be somehow in multiple states at once then
the AppMaps system would be useful for display ecology applications; it is indi-
cated by the example in chapter 3 outlining how a case system might apply to an
application on a desktop computer; and it is indicated by the fact that there is
nothing in the structure of case that requires the user only to be interacting with
one presentation at once.

Third, it is most useful at early stages of the development process. This was
evident from both the case studies and the studies with other developers. Later in
the development process, the decisions that case facilitates seem to be overridden
by other concerns. This, too, seems likely to be a limitation of case itself. The
categories delineated with case are to do with the ways that selections that the
user makes relate to one another, and this is quite a high-level structure. As the
changes being made to the application get smaller and smaller and more towards
polishing the application ready for release, the less likely it is that changes on these
scales will happen.

8.7 Comment on methodology

The methodology used, as outlined in chapter 4 and with the details given in chap-
ters 6 and 7 captured a wealth of useful information about developers’ use of the
tools, including, reassuringly, areas that were originally intended as separate evalu-
ation criteria. The methodology as a whole did not rely on specific circumstances:
there was nothing in it specific to that set of participants or the AppMaps tool
and as such it could be easily reused either to attempt to reproduce the results in
this thesis or to evaluate other user interface tools.

233

8.7.1 The three Es

The three Es captured all the information that was expected, and some that was
not. In the original plans for the workshop study, the developer’s ability to use the
tool and the hunting of software defects in the tool before the longer study were to
be enquired about separately as an independent part of the workshop. In practice,
however, these plans were pre-empted by participants who naturally wove these
discussions into the discussion of effectiveness and whether the tool would have
a place in their professional practice. The separateness of the description of the
scope of case does not contradict this: while it was not evaluated within the three
Es, this is not because it did not fit within any of them, but because it drew data
from all of them and synthesised it into a whole.

If used elsewhere, the three Es would need to be used with some care, because
they are not entirely orthogonal. In this thesis, this did not become problematic:
but, for example, the criteria of effectiveness and expressiveness are tied together,
because how good the quality of any given user interface might be (effectiveness)
might well depend on what kind of interface it was or what platform it was on (ex-
pressiveness). Likewise, the criteria of effectiveness and efficiency are somewhat
tied together, because if the tool produced a lower quality user interface that the
developer felt was redeemable, they might spend time polishing the interface and
thus lower their apparent productivity.

With that caveat borne in mind, here is no reason why the 3 Es are specific to
case, or even to plastic interfaces in general. The similar, but non-identical, set of
criteria in ISO 9241-11 (comprising effectiveness, efficiency and satisfaction) are
aimed at evaluation of usability in general. These three criteria concentrate on
the user’s experience in using a system, while the three Es concentrate also on the
developer’s ability to produce output using the system. However, they are similar
enough that they back up a case that the three Es would be generalisable outside
the AppMaps context.

8.7.2 The contexts of evaluation

None of the contexts in which evaluation was done was controversial, as shown
in chapter 4. In the context of this thesis, they demonstrated their worth both
individually and in combination. They provided three views, at three levels of
detail, of developers’ interactions with the AppMaps tool and with the case system
embodied therein. The two most detailed provided quite deep insights into the
usefulness of case and the tool, and the workshop study provided context that was
not elicited by either of the other studies. These three approaches could easily
be reused elsewhere in a similar combination, so long as criteria could be found
that provided points of comparison between the results from each of the contexts.

234

Again, there is nothing specific to AppMaps about the combination of the three
Es and the three contexts: and a very similar methodology combining both could
doubtless be used to evaluate other tools or frameworks and possibly to compare
them with AppMaps or case.

However, there was a very visible weakness of the two longer evaluation meth-
ods, the case studies and the self-directed development studies. They both re-
quired a significant investment of time on the parts of participants. In the first, the
author’s time with the commissioning people inside the companies for whom the
applications were being built was limited by those people’s other commitments.
In the second, many of the participants were taking time away from paid commis-
sions to take part in the study. Participants gave very generously of their time—
they consistently gave more time than was asked of them—but even so, their time
was a limiting factor. This made it a somewhat risky approach: there was a danger
of wasting participants’ time and goodwill and getting few results. Participants
were already hard to recruit for studies of this length.

It is for the reason of this shortage of participants’ time that, for example, only
one of the case studies draws a direct comparison between an application built us-
ing AppMaps and a similar application that does not. It is also for this reason
that the self-directed development study did not provide comparisons between
AppMaps-built applications and similar applications not built using AppMaps:
participants’ time simply did not stretch far enough to make this practicable. This
absence of comparisons is a limitation of the results presented within this thesis,
and forms a fitting point to begin discussing the limitations of the research done.

8.8 The design of the tool and the understanding of case

There are two kinds of understanding that participants might have had about case.
The first kind is a conscious, intellectual knowledge about case: the second kind
is an unconscious knowledge. The first kind corresponds to a linguist or gram-
marian’s understanding of a language: the second to a speaker’s. The design of
AppMaps might potentially have influenced either of these kinds of understand-
ing, or indeed have helped them to interact by bringing an awareness of an uncon-
scious process to awareness.

The design of the AppMaps tool certainly imparted the first kind of knowledge
to most of the participants. One of the participants in the longer study knew some
German, and thus was familiar with the concept of a genitive case; another was
learning Polish, and thus was familiar with both the concept of a genitive and the
concept of a dative case.

Traditionally, case has been understood and taught through a Greco-Roman
lens. As noted above, the very terminology that case distinctions are expressed in

235

is Greco-Roman. The first contact with case that many people have had has been
in compulsory Latin lessons. Whether learning about case from a system like
AppMaps produces similar kinds of understanding to learning about case in the
traditional way is an interesting question, but unfortunately there is no evidence
about this that can be drawn from the studies presented here.

On the second kind of knowledge, there is at least an indication that can
be drawn from participants’ comments. It was noted above that two partici-
pants suggested an extension to the case heirarchy that was consistent with Blake’s
case heirarchy, and also that participants both in the case studies and in the self-
directed development study used case in ways that were not part of the original
design or documentation of the tool, but were consistent with the meanings of
the cases.

This is meagre evidence, but such as it is it suggests that participants’ uncon-
scious understanding of the case system, or of whatever underlies it, was not en-
tirely created by their exposure to AppMaps.

8.9 Limitations of the research

8.9.1 The absence of comparisons

One striking omission in the preceding chapters has been the absence of compar-
isons. Case has been demonstrated as useful, but has not been demonstrated to
be more useful than anything else except the tools that developers currently use.
There are three major areas of comparison that could fruitfully have been pursued.
The first of these is a comparison of case with other tools and frameworks for plas-
tic user interfaces, the second is a comparison of case with other sets of semantic
roles, and the third is a direct user-centred comparison of applications resulting
from a case-based design process with applications built using other methods.

8.9.1.1 Case vs. other plastic UI models and tools

Aside from the case study for Speakers Associates, where a comparison was made
between the application built with AppMaps and a similar application built with
unadorned Sencha Touch, no direct comparison was made between a case-based
approach to plasticity and other approaches.

Taking the research tools summarised in chapter 2 first, this absence is due to
two factors. The first, touching on the case studies, is the author’s complete failure
to produce applications with any of the research tools that were comparable to the
applications built in the case studies. The second is that developers were not aware
of these tools or able to use them. This was a circumstance that was put forward
as likely in chapter 2 and was confirmed by the demographic questionnaires given

236

out before the workshop and before the self-directed development study. In these
questionnaires, not a single developer had used or even heard of any of the research
tools mentioned in chapter 2, so a direct comparison was out of the question.

Taking the industrial tools second, here the situation is slightly more compli-
cated. There was implicit comparison between the case-based process and the
process involved with other tools both in the workshop and in the longer develop-
ment study. Developers drew commonalities and differences between AppMaps
and other cross-platform development tools, especially when comparing their ef-
fectiveness. Developers were also asked whether they were more efficient be-
cause of case, which also involves a comparison between the case-based approach
and their normal approaches. But, apart from the Speakers Associates case study,
there was no direct comparison. In both the case studies and the longer develop-
ment study, this shortcoming arose from the length of time for which the author
had access to participants. In the latter case, especially, attempts to recruit devel-
opers for a study in which they built the same application twice, once with their
normal cross-platform tooling and once using AppMaps, met with a stunning lack
of enthusiasm.

Without these comparisons it is hard to say exactly where case fits in the con-
text of the wider plastic user interface literature and the tooling that this literature
has produced. It is also not possible to say whether the same advantages that case
offers could be provided by different tools in different ways: while this thesis has
argued that case is an effective solution to the problem it sets out to address, it
cannot claim that case is a uniquely powerful solution to this problem.

8.9.1.2 Case vs. other sets of roles

In chapter 3, the theories of cognitive grammar and localist case grammar were
adduced as theories that provided a basis for an idea of case based on an under-
lying set of semantic roles. Other sets of roles, which occupy a variety of areas
in linguistic theory, have also been proposed, and some of those are likely to be
amenable to being implemented in a similar way to the way AppMaps implements
cases.

One immediate candidate would come from the very oldest systematic treat-
ment of case, in the As.t.ādhyāyī of Pān. ini (available in English as Vasu, 1891). The
As.t.ādhyāyī is a grammar of Sanskrit that was written about 600 BC and is still
engaged with in computational linguistics about the Indic languages (for example,
see Subbanna and Varakhedi, 2009 and Goyal et al., 2009). This set of categories
is fit for implementation because, like the case system that it analyses, it is both
small and well-defined.

237

Other candidates that likewise are plausibly implementable are the “Deep Cases”
of Fillmore (1968) and Starosta’s Lexicase (see Starosta and Nomura, 1986) as well
as the two mentioned in chapter 3. These theories are all compared and analysed
by Blake (2001).

Without these comparisons, it is possible to say that case is useful to devel-
opers, but it is not possible to say that case is any more useful than any of the
other semantic sets of categories would be. Nor, without such a comparison, is it
possible to contribute to the debate on how case relates to these categories.

8.9.1.3 Applications vs. Applications

In chapter 4, the user’s interests were said to be represented by the user interface
guidelines. This meant that there was no evaluation of the resulting applications
based on user testing. This meant that there was no comparison from the user’s
point of view between applications built using the case-based approach and appli-
cations that were not, and it is impossible to say whether the user could tell the
difference between the two. As noted above, of the case studies, only the Speak-
ers Associates app was built both using traditional cross-platform tools and using
AppMaps. Even if this had not been the case, and the other two had also had ver-
sions not built with case, and a user-based comparison had been done, this would
not necessarily have proved very much. To complete the picture, the applications
that developers had built would also need to have been built in two forms and
tested and, as noted above, it proved impossible to get participants for a develop-
ment study in which the same application needed to be built twice.

Without this comparison, information about the quality of the interfaces pro-
duced with case relies on the expert opinions of developers and the people who
commissioned the applications, and compliance to the user interface guidelines,
which are far blunter instruments than one might wish.

8.9.2 The absence of formal methods

In chapter 5, the dialogue controller was specified as a formal construct based on
a state machine. The cases, too, are partially defined formally, through the graph
grammar that produces the final dialogue state machine for different platforms.
Even given this definition, however, the subsequent evaluation of the tool had no
formal component whatsoever.

There is a connection between formal properties of a state machine for a sys-
tem and the usability properties of that system (Thimbleby, 2007). Care must be
taken, however, in comparing the use of state machines in AppMaps with other
work, because the state machine in AppMaps does not model the state of the en-
tire system, but only the state of the dialogue component of the user interface.

238

This is a result of using an MVC-based architecture, where much of the state
about the system as a whole is stored in the system’s model objects. This does
mean, however, that the conclusions drawn from a formal analysis of the state ma-
chine would probably be more limited than they would be for a system where the
state machine held the state of the entire system.

The obvious place where formal evaluation might have played a role for AppMaps
is in the expressiveness criterion. This criterion was about what kinds of user in-
terfaces can be created using the tool. What kinds of graph can be created by the
graph grammar might have been a fruitful thing to investigate under this criterion.

8.9.3 The absence of quantitative measurements

No fine-grained quantitative measurements emerged from the evaluation of AppMaps.
Some numbers did emerge: the efficiency evaluation asked about how many soft-
ware components were involved in effecting plasticity and the expressiveness cri-
terion asked how many platforms could be addressed by the case-based approach.
Both of these, however, were low-resolution indications rather than high-resolution
measurements.

For the efficiency criterion, certainly, higher precision measurements could
have been taken, either using lines of code (as Book et al., 2006, did when eval-
uating DiaGen) or using function points. However, as mentioned in chapter 4,
measuring developer productivity is famously difficult, and although the num-
bers might have been more precise, whether they were measuring anything useful
would have been more in doubt. The effectiveness criterion is more doubtful,
although user testing of the generated applications had it been done might have
generated some quantitative data. The expressiveness criterion was not amenable
to direct measurement at all, because it asked questions about a very open-ended
set of platforms and types of application. One approach that could have been
followed was that of the evaluation of MARIAE, where data was gathered from
the workshop and from the study involving external developers by means of a pre-
made questionnaire. However, a reliance upon that might have prevented the
unexpected and interesting remarks made by participants from being made at all
or from being given importance in the results.

The fact that the information gathered from participants was qualitative does
not devalue or invalidate it. However, some direct measurements would have pro-
vided another angle from which the results could have been seen.

8.9.4 Summary and conclusion

The results of the evaluation exercises, which were given in previous chapters,
provides a basis for answering the research questions that were posed near the be-

239

ginning of this thesis. The categories delineated by case do seem to be relevant to
user interfaces: the case system of AppMaps is intuitively graspable by developers
with little effort, the case system of AppMaps does behave like a case system, and
case is a living categorisation to developers, which is capable of being used in the
ways that they want. A positive answer to this question is backed up by some un-
expected evidence from two of the participants in the longer development study,
who suggested extensions of the case system that are in line with the structures of
case systems in general. These participants did not know about the structures of
case systems.

A tool can be built that embodies case for building plastic user interfaces. The
tool was the AppMaps tool as used for evaluation throughout this thesis. It im-
plemented plasticity based on the cases in its case system, rather than just letting
the user manipulate them, and the parts of the applications that it generated that
were based on case stood up well to being analysed in the light of the user interface
guidelines.

Case, as embodied in the AppMaps tool, can be used to build useful appli-
cations. Two of the participants in the longer study are, at the time of writing
this chapter, using the applications that they built in their everyday lives, which
certainly argues for their usefulness. The parts of the applications that case pro-
duced were of high quality, but in other areas AppMaps suffered from the same
shortcomings as other cross-platform tools. Case did provide an efficiency benefit
in the building of useful applications, and its expressiveness was sufficient to this
purpose.

Case, as embodied in the AppMaps tool, can be used by other developers. Its
usefulness is not a peculiar fantasy of the author’s. Other developers took well to
the tool and used it without much difficulty to produce non-trivial applications.

Case as used for user interfaces is, of course, limited in scope. It is of most
use to data-driven applications where there is a set of discrete things being manip-
ulated by the user. It is less useful in situations where there is only very simple
interrelations between the things that the user is using and other things in the
application or actions that they can take.

The methodology that was used to reach these results produced good infor-
mation and, if use with some care, could be reused elsewhere, either to re-evaluate
this tool with other participants or to evaluate other tools either for comparison
with this one or as stand-alone evaluations.

Finally, there are limitations to the research described in this thesis. There
were insufficient comparisons: this means that while this thesis demonstrates the
usefulness of case, it cannot argue that case is any more or less useful than any
other approach. Specifically, it would have been useful to have comparisons be-
tween AppMaps and other tools for creating plastic user interfaces, be they from

240

the industrial or research communities; between the AppMaps case system and
proposed ‘underlying’ sets of semantic roles that have been suggested underlie
language; and between applications built using a case-based approach and simi-
lar applications built using a more traditional approach. In addition, there was an
absence of formal methods used to evaluate the AppMaps tool, which meant that
the formal aspects of the dialogue controller as specified in chapter 5 have not,
perhaps, been evaluated as thoroughly as they might have been. There was also
no quantitative measurement performed.

The next chapter draws this thesis to a close by summarising the contributions
it makes, and by suggesting future work.

241

A Chapter 9
Conclusion

9.1 Introduction

This dissertation has argued that case is a useful conceptual model to mobile appli-
cation developers who need to build plastic mobile applications that react well to
changes in platform and device form factor. To conclude, this chapter summarises
the contributions that it made and discusses work that could be done in future.

9.2 Contributions

9.2.1 A comparison between industrial and research tools

Chapter 2 presented a comparison between the industrial tools for plasticity for
mobile applications and research tools. This comparison was couched in the terms
generated by the research community. That this comparison was useful and suc-
cessful demonstrates that the tools are solving similar enough problems to be
talked about in the same terms. Frameworks such as the Arch model (Bass et al.,
1992) and the Plastic User Interface Snowflake (Thevenin et al., 2003) can be used
to analyse these tools to get an insight into the problems that developers are having
and how they are attempting to solve them.

This evidence leads to an extension Coutaz’s (2010) statement: not only HCI
researchers, but working industrial developers are “address[ing] user interface plas-
ticity from different starting points, depending on their “credo”: at the toolkit
level by those who advocate “hard core development” and fine grained control
of user interfaces, at the infrastructure level with the development of dedicated
middleware by those who strive for generic computational substrates, to task level
modeling by those who believe in the top-down development of user interfaces.”
(p.1) Industrial developers are doing this in a disjoint way with no real overriding
model or principle, much like the research approach that Coutaz deplores. How-
ever, they are inhabiting the same problem space, and are plastic user interface
tools within the definitions of the plastic user interface literature.

242

That they do inhabit this problem space is relevant to work that follows two
different approaches to plastic user interfaces. The first approach, which this the-
sis adopted, was to try to extend the existing practice of developers. This was done
so that developers could rapidly pick up the the tool that was developed and use
it with enough expertise to provide feedback. To follow this approach one must
know about the current practices of developers, because otherwise one cannot
accommodate and expand on those practices. The tool presented in this thesis
adopted and extended not only current practice but current software: it used Sen-
cha Touch, the cross-platform mobile development toolkit that was, at the time
of writing, the most popular among developers. Equally, however, a tool could
be built from scratch but using the models and mental frameworks of the devel-
opment tools should this be a better fit for the specific research question being
examined.

A second approach that can be taken is to investigate the usefulness of a spe-
cific approach to writing software to the problem of plastic user interfaces. This,
for example, is the approach taken by the model-driven tools summarised in chap-
ter 2: they are part of a research programme to investigate and demonstrate the
usefulness of model-driven engineering in this context (see Coutaz, 2010). In this
context, the current practices of industrial developers are not necessarily of a great
deal of interest: if one is looking at the long term development of the software
engineering discipline, paradigms and ways of working have come and gone, and
developers’ practices have changed. JavaScript and MVC will eventually go the
way of the keypunch and the autocoder. If one is looking towards the future and
investigating how things might be done, it is appropriate to disregard more of the
details of how things are currently done.

However, even if one is taking this approach, the industrial tools are not non-
entities. They do not only provide information on how industrial developers are
solving their problems with plastic and multi-target interfaces, but they provide
information on what developers think these problems are and how they prioritise
the parts of these problems. As mentioned above and demonstrated in chapter
2, the industrial tools are amenable to being analysed using the frameworks that
the research community have developed, and this suggests that the shape of the
general problem space that is presented for example by Thevenin et al. (2003) is
sound. However, the industrial tools are not randomly scattered within this prob-
lem space. They have certain qualities in common that reflect the preoccupations
of the developers that use them. These preoccupations embedded into the soft-
ware provide another view on the problem of plasticity, and should be taken into
account.

243

9.2.2 A demonstration of the usefulness of case

The research questions that are central to this thesis centre around the notion of
case and its usefulness, and the main story of the thesis is a demonstration that
case is useful and assists mobile application developers in building plastic user
interfaces for multiple mobile software platforms and form factors. The require-
ment on case was to plasticise the dialogue components of mobile applications in
such a way that it provided some noticeable benefit to the developer of the ap-
plication over and above developing different versions of the application by hand.
Chapter 8 drew the strands of evaluation together to argue that case is useful in
this context, and can be used to build non-trivial and useful applications by devel-
opers in general.

The results show that the parts of the interface produced by case are of high
quality. The apparent connection between the cases and the user interface guide-
lines of Apple’s and Google’s mobile operating systems was backed up by evidence
gained from developers’ experiences, and the tool that embodied case managed to
use this connection to produce adequate quality user interface components. The
results also show that developers got the kind of efficiency gain one would expect
from correctly-functioning dialogue plasticity: they did not have to design special
cases for individual platforms or form factors. The results also show that the ap-
proach is applicable to a large and useful class of mobile applications, although by
no means all mobile applications. Further, these advantages are not peculiarities
of the author’s development practice: other developers who used the tool to create
applications gained much the same advantages as the author, and workshop par-
ticipants backed this up by saying that these were advantages they would expect
to get in their professional practice if they used the tool.

This primarily provides information to people who are looking to engineer
plastic user interfaces. The case-based approach is different from other approaches
that have been tried. It draws the seeds of the plasticity it provides from language
and from linguistic ways of making word order flexible, rather than from an ex-
amination of software. Also, the developer annotates their dialogue model with
semantic categories (such as “destination” and “category”) rather than with “syn-
tactic” constraints on ordering (such as “enabling”, “choice” and so forth as used
in ConcurTaskTrees; see Paternò, 2003).

Secondarily, and if used with care, this information may be of use to linguists
investigating what case is and what the mechanisms behind it are. The method-
ology used in this thesis is one appropriate for evaluating software tools, rather
than a linguistic one, and so work would need to be done to bridge the gap be-
tween these two methodological stances. If this work can be done, however, the
information in this thesis could provide a starting point for an argument within

244

linguistics that some set of roles that underlies case has a wider existence than just
within language sensu strictu.

9.2.3 An implementation of case

One of the research questions presented in chapter 3 was about whether case could
be implemented in a tool. As part of the evaluation of the usefulness of case, this
was done in a tool called “AppMaps”. The AppMaps tool implemented case using
graph grammars and integrates case with an existing MVC architecture.

A description of the way this tool is implemented in chapter 5. Case could be
implemented to a useful degree using graph grammar rules that were not particu-
larly complicated, and this work could form a basis for future investigations of the
scope of case.

In addition, the software tool itself is now available for use, licensed under an
open source license. A description of a software tool may not be enough for many
purposes. Certainly, for the investigations in chapter 2, the present author was very
glad that in many cases the tools themselves—both from the research community
and the industrial community—were available. If the tool itself is available, edge
cases can be explored, the claims made about the tools can be validated, and the
tool can be used in ways that the original authors perhaps did not intend.

At time of writing, the number of users of this tool is very low. Even if, however,
this number does not grow, the software will still be available for continued study
or for critique in the future.

9.2.4 The scope of case

Case is not, of course, a plastic UI panacea. It has its limits, and therefore it has
a scope in which it is useful. Outside of this scope it is irrelevant or possibly even
counterproductive to attempt to apply it.

While some aspects of the scope of case remain obscure, this thesis has con-
tributed information about much of it. It is definitely useful for the three major
mobile operating systems and the two major form factors of device in common
use at the time of writing. Developers indicated that it is likely to be of use for
many other kinds of platform. It is definitely useful for data-driven applications,
in which the user is manipulating datasets that are not entirely defined at the time
the app is designed. Developers noted that this constituted a major part of the ap-
plication ecosystem on mobile devices. It is of much less use outside of this area:
applications where there are no objects represented that can have interrelations
will not benefit much from a mechanism to classify such interrelations, and this is
ultimately what case is.

245

Except in that certain industries have a tendency to build certain kinds of appli-
cations (for example, telephony companies might tend to build non-dataset-driven
communication applications), there is no evidence that this approach is tied to a
certain industry or application domain. The meanings that case, as used in this
thesis, delineates are independent of the meanings of the objects these cases are
attached to.

9.2.5 The MVCD architecture family

Chapter 2 noted that MVC architectures were common among the industrial tools
surveyed. MVC is, it must be reiterated, not a single architecture but a family of
loosely-connected architectures that share key concepts and share some of the
ways that the software components that make up the application are connected
to one another: specifically, they share the concept of a view, which displays in-
formation, a model, which stores information, and a controller, which mediates
between the two and implements business logic.

In some recent tools, another pattern has emerged inside the MVC pattern.
In these architectures, in addition to the three normal kinds of MVC component,
there is an explicit dialogue component. These architectures separate task struc-
ture and navigation structure from the business logic much more than traditional
MVC architectures. In the industrial tool landscape, the most obvious example
of this is Apple’s Storyboards approach (Apple, Inc., 2012b). In this approach the
developer designs the dialogue between the user and the machine in a separate
software component. Other industrial examples can be found in MVC frame-
works built on top of NetBeans’ J2ME Mobile Toolkit (Motocoder, 2006; Keegan
et al., 2006) and the Facebook SproutCore framework (Sarnacki et al., 2012): a
research example that very clearly shows the pattern can be found in the Dialogue
Flow Notation and its application (Book and Gruhn, 2004; Book et al., 2006).

In chapter 5, this thesis drew out commonalities between these tools and out-
lined the nature of the newly-christened MVCD architecture family, then used
this concept to help to structure the AppMaps tool. An MVCD architecture is an
MVC architecture with a separate dialogue controller where the dialogue struc-
ture of the application is defined by that dialogue component, and the business
logic of the application is in the controllers. The MVCD architecture family is
thus as broadly-defined as the MVC architecture family, as most MVC architec-
tures would be amenable to being converted into an MVCD architecture.

Because of its broadness of definition, the term “MVCD” is comparable to the
term “MVC”: it specifies a broad approach, rather than forming a detailed defini-
tion of how the software architecture it applies to is put together. It will therefore
be of more use as a way of grouping architectures together for comparison, or as a

246

guideline for the creation of software architectures, than as a way of pinning down
the behaviour of individual software architectures.

9.2.6 A generalisable evaluation methodology

The methods that this thesis used to evaluate AppMaps and the case system that
it contains are not restricted to this use. Both the combination of the three Es
and the three contexts and the three contexts alone are potentially reusable for
evaluation of other tools. As noted in chapter 4, the most similar methodology
used to evaluate any of the tools in chapter 2 was that used to evaluate MARIAE,
which used a similar threefold division (Paternò et al., 2011)..

The three contexts of evaluation provide a very useful cross-section of the
development process. The broadest perspective is given by the workshop, where
developers gave feedback on the impact of case on their development process in
general. A middle perspective is given by the self-directed development study,
where multiple developers give information about the application of the tool to a
number of projects, but without being expert users of the tool. The finest detail
but narrowest scope is given by the case studies, where a few projects are done and
described in detail by the author of the tool as an expert developer. These three
provide information all the way from nebulous potential future applications of
the tool to the very specifics of using the tool to build applications for customers.
This provides a wider set of perspectives than the three that the evaluation for
MARIAE used, because in that evaluation external developers were given a set
task to solve, rather than being left to pursue their own agendas and projects.

The three contexts were not, however, evaluated in this order, because there
is a second useful property of the three: by doing the case studies first, then the
workshop, then the self-directed development study, many of the software defects
in the tool had already been found and solved by the time of the self-directed de-
velopment study. The most glaring software defects were found during the initial
testing of the tool and the case studies. After this, the workshop provided more
information about software defects and, especially, interface defects. Thus, by the
time that external developers were given the software, they had a far better experi-
ence, and thus could provide better information, than if the contexts of evaluation
had been performed in order of level of detail.

The combination of the three Es and the three contexts made sure that the
information gained from the three contexts were comparable. While the evalua-
tion of MARIAE used a similar three contexts, at least in the published evaluation
(Paternò et al., 2011) no detailed comparisons or contrasts were made between the
three contexts. The account of that evaluation did not give the exact structures of
the questionnaires in use, so it is difficult to say whether such a comparison could

247

fruitfully have been done given the data that they had. Similarly, in the UIML2
evaluation of Phanouriou (2000), the workshop study is used to answer a specific
question about the accessibility of the tool, rather than being part of a framework
of comparisons. As argued in chapter 8, the three Es captured a great deal of useful
information about the usefulness of the case system in a way that again, was not
tightly coupled to anything structural about the tool or the case system. This com-
bination of three Es and three contexts is thus more powerful than the methods
used to evaluate other tools and is potentially useful elsewhere.

9.3 Further work

In chapter 8, some limitations of the research done were listed. These limitations
lend themselves well to becoming seeds for future work. In addition, the research
presented in this thesis could potentially form the seed of a broader contribution
to the theoretical debate about the nature of case.

9.3.1 The usefulness of sets of semantic roles

As noted in both chapters 3 and 8, there have been a number of proposed sets of
universal semantic roles that underlie both case systems and other parts of lan-
guage, such as cognitive grammar (Luraghi, 2009), localist case grammar (Ander-
son, 1987), Lexicase (Starosta and Nomura, 1986) and Fillmore’s (Fillmore, 1968)
Case grammar.

The approach AppMaps takes, with an annotated dialogue state machine, is
not specific to case: any of these sets of roles could be put into the framework.
However, one of the reasons case worked well is that there was a good match
between the meanings of the cases and rules in the user interface guidelines (see
chapter 3). Therefore, a first measurement of how useful these other sets of seman-
tic roles would be in the context of plastic user interfaces would have to emerge
from whether they bear any relationship to the kinds of structures that appear in
user interfaces or user interface style guides.

After this, a similar approach could be taken as was taken evaluating AppMaps:
using the same methodology and the same kinds of questions should produce sets
of results that would be easy to compare with one another.

9.3.2 Case and other frameworks

As also noted in chapter 8, there was no comparison done between case and other
frameworks that have been built to deal with the problem of plasticity. Two
strands of work could be continued on from this thesis to investigate the con-

248

nections and contrasts between the case-based approach used in this thesis and
the other approaches that have previously been used.

The first is simple comparison, attempting to solve similar problems with case-
based approaches and, for example, the model-driven engineering tools whose de-
tails were summarised in chapter 2. Again, a similar methodology could be used,
examining the effectiveness, efficiency and expressiveness that each of the tools
brings to its users, and comparisons could be made.

This is not the only way that case and other approaches could be brought to-
gether, however. Recall that in chapter 5, nearly all of the design decisions made
during the design of the tool were made to maximise the tool’s accessibility to the
developers who would be evaluating it. The exception to this rule was the case
system, as it was this that was being examined and evaluated. If this restriction
is lifted, then many other design decisions could have been made. Case is not
strongly linked to the design of the AppMaps tool and does not require that de-
sign. This means that there is scope to explore ways that a case-based approach
could be linked with, for example, model-driven engineering. There is no obvious
reason why case as a model could not fit within these other approaches. If such a
reason were found, that would be interesting in its own right.

9.3.3 Comparison of outputs

As noted, again, in chapter 8, there was very little comparison of the outputs of
the AppMaps development process to the outputs of either applications that were
created with different approaches to plasticity or applications where the different
interfaces were entirely hand-created.

A straightforward comparison of this kind could be added to the evaluation
found in this thesis, if participants could be found that were amenable. In addi-
tion, it could be added to any of the comparisons proposed above, to explore how
users perceived the results of the differences in development process, if they did
at all.

9.3.4 What actually is case, anyway?

The methodology used to develop and evaluate AppMaps is an appropriate one
for the design and evaluation of a tool for building user interfaces. This is fitting,
because the research questions that were being asked and the problem space that
were being explored were both to do with user interfaces.

However, questions about the origin and nature of case in the general case
are linguistic, or at least semiotic, and as such demand a linguistic or semiotic
methodology. For this reason, the results given in this thesis do not provide any

249

decisive data for what case actually is, instead demonstrating that it is useful in a
specific context.

However, there are hints here that could be followed up with a more linguistic
methodology, especially about how quickly developers picked up the case system,
about how easily it was extended to circumstances beyond its initial design, and
about the extensions that developers proposed to the case system. Also, the ques-
tions raised in chapter 8 about whether the kind of understanding of case gained
through using an AppMaps-like tool and through learning a language deserve at-
tention. These are interesting questions, perhaps more so because they emerge
from a different discipline from the one in which case usually finds its home: and
they open up a new area for dialogue between those who study language and those
who study HCI.

250

A References

ACM (2013). Engineering—message from the engineering chairs. http://
chi2013.acm.org/communities/engineering. Accessed on 1 August 2015.

Adams, D. Q. (1987). Essential modern Greek grammar. Dover Publications, New
York.

Adams, D. Q. (1988). Tocharian historical phonology and morphology. American Ori-
ental Society.

Adobe Systems, Inc. (2013). Phonegap 2.6.0 API documentation. Available at
http://docs.phonegap.com/en/2.6.0/index.html. Accessed on 26 April
2013.

Anderson, J. (1987). Case grammar and the localist hypothesis. In Concepts of case,
pages 103–121. Gunter Narr Verlag.

Anderson, J. (2009). Case in localist case grammar. In Malchukov, A. and Spencer,
A., editors, The Oxford handbook of case, pages 121–135. Oxford University Press.

Apple, Inc. (1990). HyperCard 2.2 reference, chapter 1, pages 1–68. Apple, Inc.

Apple, Inc. (2012a). iOS human interface guidelines. Apple, Inc.

Apple, Inc. (2012b). Storyboards. In Cocoa application competencies for iOS. Apple,
Inc.

Apple, Inc. (2013). Model-view-controller. In Cocoa core competencies. Ap-
ple, Inc. Available at https://developer.apple.com/library/mac/\#
documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html.
Accessed on 1 May 2013.

Apple, Inc. (2014). Submitting your app. In App distribution guide. Apple, Inc. Avail-
ab le a t https://developer.apple.com/library/ios/documentation/
IDEs/Conceptual/AppDistributionGuide/SubmittingYourApp/
SubmittingYourApp.html\#//apple_ref/doc/uid/TP40012582-CH9-SW1.
Accessed on 12 February 2014. Another document, “App Review Guidelines”

251

also exists but at time of writing is not available to anyone except registered
iOS developers.

Aronson, H. (1990). Georgian: a reading grammar. Slavica Publishers, Columbus,
Ohio.

Austerliz, R. (1989). Uralic languages. In Comrie, B., editor, The world ’s major
languages, pages 567–576. Routledge.

Balmer, D. (2011). JoApp documentation: joSubject. Available at http://joapp.
com/docs/\#joSubject. Accessed on 1 April 2013.

Bancroft, H. H. (1882). The native races III: Myths and languages. A. L. Bancroft.

Bansod, A. (2012). Sencha Touch with Windows Phone 8. Blog post. Available
at http://www.sencha.com/blog/sencha-touch-with-windows-phone-8.
Accessed on 20 April 2012.

Barnhart, R. K., editor (1999). Chambers dictionary of etymology. Chambers, Edin-
burgh.

Bass, L., Little, R., Pellegrino, R., Reed, S., Seacord, R., Sheppard, S., and Szczur,
M. (1992). The Arch model: Seeheim revisited (version 1.0). The UIMS devel-
opers workshop (April 1991). SIGCHI Bulletin, 24(1):289–308.

Bergsland, K. (1950). Norwegian research on the language and folklore of the
Lapps. part I. language. Journal of the Anthropological Institute of Great Britain and
Ireland, 80(1):79–88.

Berjon, R., Leithead, T., Navara, E. D., O’Connor, E., Pfeiffer, S., and Hickson, I.,
editors (2012). HTML5: A vocabulary and associated APIs for HTML and XHTML.
World Wide Web Consortium. W3C Candidate Recommendation. A formal
recommendation document is expected at the end of 2014.

Berti, S., Giulio, M., Paterno, F., and Santoro, C. (2005). TERESA: An environ-
ment for designing multi-device interactive services. In Proceedings of the 4th
Italian symposium on human-computer interaction, pages 40–44.

Bézivin, J. (2004). In search of a basic principle for model driven engineering.
CEPIS Upgrade, 5(2):21–24.

Binnig, C. and Schmidt, A. (2002). Development of a UIML renderer for different
target languages: Experiences and design decisions. In Computer-aided design of
user interfaces III, pages 267–274. Springer.

Blake, B. J. (1977). Case marking in Australian languages. Australian Institute of Abo-
riginal Studies, Canberra.

252

Blake, B. J. (1979). A Kalkatungu grammar. Department of Linguistics, Research
School of Pacific Studies, Australian National University.

Blake, B. J. (1983). Structure and word order in Kalkatungu: the anatomy of a flat
language. Australian Journal of Linguistics, 3(2):143–175.

Blake, B. J. (2001). Case. Cambridge University Press.

Blandford, A. (2013). Engineering works: what is (and is not) engineering for in-
teractive computer systems? In Proceedings of the 5th ACM SIGCHI symposium on
Engineering interactive computing systems, pages 285–286. ACM.

Bodnar, A., Corbett, R., and Nekrasovski, D. (2004). Aroma: ambient awareness
through olfaction in a messaging application. In Proceedings of the 6th international
conference on multimodal interfaces, pages 183–190. ACM.

Bonfante, G. and Bonfante, L. (2002). The Etruscan language: an introduction.
Manchester University Press.

Book, M. and Gruhn, V. (2004). Modeling web-based dialog flows for automatic
dialog control. In Proceedings of the 19th international conference on automated soft-
ware engineering, pages 100–109. IEEE, IEEE Press.

Book, M., Gruhn, V., and Lehmann, M. (2006). Automatic dialog mask generation
for device-independent web applications. In Proceedings of the 6th international
conference on web engineering, pages 209–216. ACM.

Booth, D. and Liu, C. K., editors (2007). Web Services Description Language (WSDL)
Version 2.0 Part 0: Primer. World Wide Web Consortium. Available online at
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/. Accessed 1
May 2013.

Bos, B., Çelik, T., Hickson, I., and Lie, H. W., editors (2011). Cascading Style Sheets
Level 2 Revision 1 (CSS 2.1) specification, chapter 7. World Wide Web Consortium.

Boyer, J. M., editor (2007). XForms 1.0. World Wide Web Consortium, third edi-
tion edition.

Brewster, S., McGookin, D., and Miller, C. (2006). Olfoto: designing a smell-based
interaction. In Proceedings of the SIGCHI conference on human factors in computing
systems, pages 653–662. ACM.

Bryant, J. and Jones, M. (2012). Responsive web design. In Pro HTML5 performance,
pages 37–49. Springer.

Butt, M. (2006). Theories of case. Cambridge University Press.

253

Calvary, G., Coutaz, J., Dâassi, O., Balme, L., and Demeure, A. (2005). Towards
a new generation of widgets for supporting software plasticity: the “comet”.
In Engineering human-computer interaction and interactive systems, pages 306–324.
Springer.

Cardona, G. (1987). Indo-Aryan languages. In Comrie, B., editor, The world’s major
languages, pages 440–447. Routledge.

Central Statistical Agency - Ethiopia (2007). The 2007 population and housing cen-
sus of Ethiopia: Statistical report at national level. Central Statistical Agency -
Ethiopia. Available at http://www.csa.gov.et/images/documents/pdf_
files/regional/CountryLevel.pdf. Accessed on 26 June 2013.

Clackson, J. P. T. (2008). Latin. In The ancient languages of Europe, pages 73–95.
Cambridge University Press.

Comrie, B. (1987). Introduction. In The world ’s major languages, pages 1–29. Rout-
ledge.

Comrie, B. and Polinsky, M. (1998). The great Daghestanian case hoax. In Case,
Typology and Grammar: In Honor of Barry J. Blake, pages 95–114. John Benjamins.

Comrie, B., Polinsky, M., and Rajabov, R. (1998). Tsezian languages. Avail-
able at http://scholar.harvard.edu/files/mpolinsky/files/tsezian.
98.description.pdf. Accessed on 20 August 2013.

Cook, S. (2007). Domain-specific development with Visual Studio DSL tools. Addison-
Wesley, Upper Saddle River, NJ.

Coutaz, J. (2010). User interface plasticity: model driven engineering to the limit!
In Proceedings of the 2nd ACM SIGCHI symposium on engineering interactive comput-
ing systems, pages 1–8. ACM.

Craig, J., editor (2013). IndieUI 1.0 user context: Contextual information for user inter-
face independence. World Wide Web Consortium. W3C Editor’s Draft 13 May
2013. Available at https://dvcs.w3.org/hg/IndieUI/raw-file/default/
src/indie-ui-context.html. Accessed on 13 May 2013.

Craig, J. and Cooper, M., editors (2013). IndieUI: Events 1.0: Events for
user interface independence. World Wide Web Consortium. W3C Work-
ing Draft 22 January 2013. Available at http://www.w3.org/TR/2013/
WD-indie-ui-events-20130122/. Accessed on 1 May 2013.

Daniel, M. and Spencer, A. (2009). The vocative—an outlier case. In Malchukov,
A. and Spencer, A., editors, The Oxford handbook of case, pages 626–634. Oxford
University Press.

254

Edzard, D. O. (2003). Sumerian grammar. Brill.

Einarsson, S. (2000). Icelandic: Grammar, text and glossary. Johns Hopkins University
Press.

Erich, G., Richard, H., Ralph, J., and John, V. (1995). Design patterns: elements of
reusable object-oriented software, chapter 5. Addison Wesley Publishing Company.

Estublier, J., Vega, G., and Ionita, A. D. (2005). Composing domain-specific lan-
guages for wide-scope software engineering applications. In Model driven engi-
neering languages and systems, pages 69–83. Springer.

Favre, J.-M. (2004a). Foundations of model (driven)(reverse) engineering: Models.
Episode I: Stories of the fidus papyrus and of the solarus. In Post-proceedings of
Dagsthul seminar on model driven reverse engineering. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI).

Favre, J.-M. (2004b). Towards a basic theory to model model-driven engineering.
In Proceedings of the 3rd workshop in software model engineering. IEEE.

FeedHenry (2012). Feedhenry documentation: Development 101. Available at
http://docs.feedhenry.com/v2/development.html. Accessed on 28 April
2013.

Fillmore, C. J. (1968). The case for case. In Bach, E. and Harms, R. T., editors,
Universals in linguistic theory, pages 1–88. Holt, Rinehart & Winston.

Fortson, B. W. (2009). Indo-European language and culture: An introduction. Wiley-
Blackwell.

Gabillon, Y., Petit, M., Calvary, G., and Fiorino, H. (2011). Automated planning
for user interface composition. In Proceedings of the 2nd international workshop on
semantic models for adaptive interactive systems at IUI 2011. ACM.

Gamkrelidze, T. V. (1966). A typology of Common Kartvelian. Language, 42(1):69–
83.

Garcia-Ontiveros, D. (2011). Treasures from the London Library: Knud Leem: an
accidental ethnologist in Lapland. History Today, 61.

Gençkaya, O. F. (1995). Republic of Turkey. In Flanz, G. H., editor, Constitutions of
the countries of the world. Oxford University Press.

Goddard, C. and Wierzbicka, A. (2002). Meaning and universal grammar: Theory and
empirical findings. John Benjamins Publishing.

255

Goguen, J. (1999). An introduction to algebraic semiotics, with application to user
interface design. In Computation for metaphors, analogy, and agents, pages 242–291.
Springer.

Google, Inc. (2013a). Android: Design patterns. Available at https://
developer.android.com/design/patterns/index.html. Accessed 31 De-
cember 2013.

Google, Inc. (2013b). Android developer documentation: App components: Ac-
tivities. Available at http://developer.android.com/guide/components/
activities.html. Accessed 29 April 2013.

Google, Inc. (2013c). Publishing overview. Available at https://developer.
android.com/tools/publishing/publishing_overview.html. Accessed
26 May 2013.

Goyal, P., Kulkarni, A., and Behera, L. (2009). Computer simulation of
As.t.ādhyāyī: Some insights. In Sanskrit computational linguistics: Selected and in-
vited papers, pages 139–161. Springer.

Green, M. (2004). Introduction. In The Aeneid of Virgil. Wordsworth Classics.

Gustafson, A. (2011). Adaptive web design: Crafting rich experiences with progressive
enhancement. Easy Readers, LLC.

Hale, A. and Manandhar, T. (1973). Case and role in Newari. In Collected papers on
Khaling, Kulunge, Darai, Newari, Chitwan Tharu, pages 79–93. SIL.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274.

Hargreaves, D. (2006). Review of Newār (Nepāl Bhāsā). Himalayan Linguistics
Review, 3:1–4.

Henry, S. L. (2013). IndieUI overview. Available at http://www.w3.org/WAI/
intro/indieui. Accessed 4 May 2013.

Hetzron, R. (1978). The nominal system of Awngi (Southern Agaw). Bulletin of the
School of Oriental and African Studies, 41(1):121–141.

Holes, C. (2004). Modern Arabic. Georgetown University Press.

IBM Corporation (2013). Developing IBM Worklight applications. In IBM Work-
light V5.0.5 information center. IBM Corporation.

Ifrah, G. (2000). The universal history of numbers. John Wiley and Sons, New York.
Translated by Bellos, D., Harding, E. F., Wood, S., and Monk, I.

256

International Organization for Standardization (2011). ISO/IEC 9075:2011: Infor-
mation technology — Database languages — SQL.

Jagersma, A. H. (2010). A descriptive grammar of Sumerian. PhD thesis, Faculty of
the Humanities, Leiden University.

Janhunen, J. (2003a). Preface. In The Mongolic languages, pages xvi–xxiii. Routledge.

Janhunen, J. (2003b). Written Mongol. In The Mongolic languages, pages 30–56.
Routledge.

Job, M., editor (2004). The indigenous languages of the Caucasus. Caravan Books.

Jones, C. (2000). Software assessments, benchmarks, and best practices. Addison-Wesley
Longman Publishing Co., Inc.

Jones, P. V. (1998). Learn ancient Greek. Duckworth, London.

Jones, S., Voskoglou, C., Vakulenko, M., Measom, V., Constantinou, A., and
Kapetanakis, M. (2012). Cross-platform developer tools. Technical report, Vi-
sion Mobile.

jQuery Team (2013). jQuery Mobile 1.3.0 API documentation. jQuery Foundation.
Available at http://api.jquerymobile.com/. Accessed on 28 April 2013.

JSR271 Expert Group (2009). JSR 271: Mobile Information Device Profile for
Java™Micro Edition 3.0, chapter 12, pages 187–614. Motorola, Inc.

Karlsson, F. (1999). Finnish: an essential grammar. Routledge.

Keegan, P., Champenois, L., Crawley, G., Hunt, C., Webster, C., Jullion-
Ceccarelli, J., Prazak, J., Ryzl, M., Sporar, G., and Wielenga, G. (2006). Net-
Beans™IDE field guide: Developing desktop, web, enterprise, and mobile applications,
chapter 14. “Developing Java ME mobile applications”. Prentice Hall, second
edition edition.

Kennedy, E. C. and Davis, A. R. (1964). Two centuries of Roman poetry. Macmillan.

König, C. (2008). Case in Africa. Oxford University Press.

König, C. (2009). Case in an African language: Ik - how defective a case can be.
In The Oxford handbook of case. Oxford University Press.

Krasner, G. E. and Pope, S. T. (1988). A description of the model-view-controller
user interface paradigm in the Smalltalk-80 system. Journal of object oriented pro-
gramming, 1(3):26–49.

Krause, A. (2007). Foundations of GTK+ development. Apress.

257

Langacker, R. W. (1986). An introduction to cognitive grammar. Cognitive science,
10(1):1–40.

Lee, C. N. and Thompson, S. A. (1987). Chinese. In Comrie, B., editor, The world’s
major languages, pages 811–833. Routledge.

Lewis, G. (1985). Turkish grammar. Clarendon Press.

Lewis, M. P., Simons, G. F., and Fennig, C. D., editors (2013). Ethnologue: Languages
of the world. SIL International, seventeenth edition edition. Available at http:
//www.ethnologue.com. Accessed 10 August 2014.

Liddell, H. G., Scott, R., Jones, S. H. S., and McKenzie, R. (1940). A Greek-English
Lexicon. Clarendon Press.

Lipsman, A. (2013). Marketing to the multi-platform majority. Technical report,
comScore.

Lipsman, A. and Aquino, C. (2013). 2013 mobile future in focus. Technical report,
comScore.

Looijenga, J. H. (1997). Runes around the north sea and on the continent AD 150-700;
texts & contexts. PhD thesis, Rijksuniversiteit van Groningen.

Lunduke, B. (2012). Illumination Software Creator: The book. Published Electron-
ically. Available at http://www.lunduke.com/isc/ISC_THE_BOOK.pdf. Ac-
cessed on 1 April 2013.

Luraghi, S. (2009). Case in cognitive grammar. In Malchukov, A. and Spencer, A.,
editors, The Oxford handbook of case, pages 136–150. Oxford University Press.

Luyten, K. and Coninx, K. (2005). UIML.net: an open UIML renderer for the .net
framework. In Computer-aided design of user interfaces IV, pages 259–270. Springer.

Lyman, E. J. (2005). Vatican’s Latin expert no stuffy academic. USA To-
day. 21 March. Available at http://usatoday30.usatoday.com/news/world/
2005-04-21-latin-foster_x.htm. Accessed on 1 August 2013.

MacFadyen, J. (2012). Apache Cordova and Windows Phone 8.
Blog post. Available at http://phonegap.com/blog/2012/12/21/
apache-cordova-and-windows-phone-8/. Accessed on 20 April 2013.

Malchukov, A. and Spencer, A. (2009). Typology of case systems: Parameters of
variation. In Malchukov, A. and Spencer, A., editors, The Oxford handbook of case,
pages 651–667. Oxford University Press.

258

Mallory, J. P. and Adams, D. Q. (2006). The Oxford introduction to Proto-Indo-
European and the Proto-Indo-European world. Oxford University Press.

Mansfield, N. (1993). The joy of X: an overview of the X Window system. Addison-
Wesley Professional.

Marcotte, E. (2009). Fluid grids. A List Apart, 279.

Marcotte, E. (2010a). Responsive web design. A List Apart, 306.

Marcotte, E. (2010b). Responsive web design, chapter 3. A Book Apart.

Marsden, R. (2004). Reference grammar of Old English. In The Cambridge Old
English reader. Cambridge University Press.

Michalowsky, P. (2008). Sumerian. In Woodard, R., editor, The ancient languages of
Mesopotamia, Egypt, and Aksum, pages 6–45. Cambridge University Press.

Microsoft Corp. (2013a). App certification requirements for Windows Phone.
Available at http://msdn.microsoft.com/en-us/library/windowsphone/
develop/hh184843%28v=vs.105%29.aspx. Accessed on 4 January 2014.

Microsoft Corp. (2013b). MSDN developer center: Navigation patterns (Windows
Store apps). Available at http://msdn.microsoft.com/library/windows/
apps/hh761500.aspx. Accessed on 3 January 2014.

Miller, J. and Mukerji, J., editors (2003). The MDA guide. Object Management
Group. OMG document number omg/2006/06/01. Retrieved from http://
www.omg.org/cgi-bin/doc?omg/03-06-01 on January 4th 2014.

Milne, A. A. and Lenard, A. (1960). Winnie ille Pu. E.P. Dutton and Co.

Ministry of Justice of Finland (1999). The constitution of Finland. Non-binding
English version available at http://www.finlex.fi/fi/laki/kaannokset/
1999/en19990731.pdf. Accessed on 20 Jun 2013.

Molnár, J. and Simon, G. (1976). Magyar nyelvemlékek. Tankönyvkiadó.

Motocoder (2006). Introduction of MVC structure in J2ME client. Technical
report, Motorola.

Nelson, E. A. (1967). Management handbook for the estimation of computer pro-
gramming costs. Technical report, Electronic Systems Division, Air Force Sys-
tems Command, USAF.

Nichols, J. (1983). On direct and oblique cases. In Proceedings of the annual meeting
of the Berkeley Linguistics Society, volume 9, pages 170–192.

259

Nightingale, J. (2011). Native UI on Android. October 14. Mozilla Development
Planning mailing list (dev-planning@lists.mozilla.org).

Object Management Group (2002). Meta Object Facility (MOF) 1.4 specification. Ob-
ject Management Group. OMG document number formal/02/04/03. Available
online at http://www.omg.org/spec/MOF/1.4. Accessed on April 28 2013.

Ogawa, A. (2009). Case in a topic-prominent language: Pragmatic and syntactic
functions of cases in Japanese. In Malchukov, A. and Spencer, A., editors, The
Oxford handbook of case. Oxford University Press.

Opus Fundatum “Latinitas” (1992). Lexicon recentis Latinitatis. Libraria Editoria
Vaticana, Urbe Vaticana.

Oracle Corporation (2013). Java Platform SE 6: Class CardLayout. In Java Platform
SE 6 reference. Oracle Corporation. Available at http://docs.oracle.com/
javase/6/docs/api/java/awt/CardLayout.html. Accessed on 17 June 2013.

Oshry, M., Auburn, R., Baggia, P., Bodell, M., Burke, D., Burnett, D. C., Candell,
E., Carter, J., McGlashan, S., Lee, A., Porter, B., and Rehor, K., editors (2007).
Voice Extensible Markup Language (VoiceXML) 2.1. World Wide Web Consortium.
Available at http://www.w3.org/TR/voicexml21/. Accessed on 18 June 2013.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books,
Inc.

Paternò, F. (2003). ConcurTaskTrees: an engineered approach to model-based
design of interactive systems. In The handbook of analysis for human-computer in-
teraction, pages 483–500. Lawrence Erlbaum Associates.

Paternò, F., Mancini, C., and Meniconi, S. (1997). ConcurTaskTrees: A diagram-
matic notation for specifying task models. In INTERACT 97: Proceedings of the
IFIP TC13 international conference on human-computer interaction, volume 96, pages
362–369.

Paternò, F., Santoro, C., Mantyjarvi, J., and Mori, G. (2008). Authoring pervasive
multimodal user interfaces. International Journal of Web Engineering and Technol-
ogy, 4(2):235–261.

Paternò, F., Santoro, C., and Spano, L. D. (2009). Model-based design of multi-
device interactive applications based on web services. In INTERACT 2009: Pro-
ceedings of the 12th IFIP TC 13 international conference on human-computer interaction
vol. 1, pages 892–905. Springer.

Paternò, F., Santoro, C., and Spano, L. D. (2011). Engineering the authoring of
usable service front ends. Journal of Systems and Software, 84(10):1806–1822.

260

Payne, S. J. and Green, T. R. (1986). Task-action grammars: A model of the mental
representation of task languages. Human-computer interaction, 2(2):93–133.

Peterson, J. L. (1977). Petri nets. ACM Computing Surveys (CSUR), 9(3):223–252.

Peyraube, A. (2004). Ancient Chinese. In Woodard, R., editor, Encyclopedia of the
world ’s ancient languages, pages 988–1014. Cambridge University Press.

Phanouriou, C. (2000). UIML: A Device-Independent User Interface Markup. PhD
thesis, Virginia Polytechnic Institute and State University.

Puder, A. (2005). An XML-based cross-language framework. In On the move to
meaningful internet systems 2005: OTM 2005 workshops, pages 20–21. Springer.

Quirk, R. and Wrenn, C. L. (1955). An Old English grammar. Methuen.

Radin, M. (1918). The date of composition of Caesar’s Gallic War. Classical Philol-
ogy, 13(3):283–300.

Raju, V. and Duggi, M. R. (2008). Mobile XUL optimization. Article revision
83115. Mozilla Wiki. Available at https://wiki.mozilla.org/Mobile/
XULOptimization?title=Mobile/XULOptimization&oldid=83115. Ac-
cessed on 1 April 2013.

Reenskaug, T. (1979). Thing-model-view-editor: An example from a planningsys-
tem. Technical report, Xerox PARC. Available at http://heim.ifi.uio.no/
trygver/1979/mvc-1/1979-05-MVC.pdf. Accessed on 2 May 2013.

Research in Motion, Inc. (2013). Blackberry world vetting crite-
ria. Available at https://appworld.blackberry.com/isvportal/
downloadAWVettingCriteriaDoc.do. Accessed on 4 January 2014.

de Rijk, R. P. G. (2008). Standard Basque: a progressive grammar. MIT Press, Cam-
bridge, Mass.

Rivoal, F., Lie, H. W., Çelik, T., Glazman, D., van Kesteren, A., and CSS
Working Group (2012). Media queries. Available at http://www.w3.org/TR/
css3-mediaqueries/. Accessed on 1 May 2013.

Rix, H. (2002). Towards a reconstruction of Proto-Italic: the verbal system. In
Proceedings of the fourteenth annual UCLA Indo-European conference, pages 1–24.

Rix, H. (2004). Etruscan. In Woodard, R., editor, Encyclopedia of the world ’s ancient
languages, pages 943–966. Cambridge University Press.

261

Robertson, T. and Atkins, P. (2013). Essential vs. accidental properties. In Zalta,
E. N., editor, The Stanford Encyclopedia of Philosophy. Center for the Study of Lan-
guage and Information, Stanford University, winter 2013 edition.

Rögnvaldsson, E. (1995). Old Icelandic: A non-configurational language. North-
western European language evolution, 26:3–29.

Rossini, C. C. (1905). Noti sugli agaw. ii. appunti sulla lingua Awiya del Danghela.
Giornale della Societe Asialica Italiana, 18:103–94.

Rounds, C. (2001). Hungarian: an essential grammar. Routledge.

RunRev Ltd. (2010). LiveCode user guide, chapter 2, pages 40–48. RunRev
Ltd., 18 edition. Available at http://downloads.runrev.com/userguide/
userguide.pdf. Accessed on 3 May 2013.

de Sahagun, B. (1585). Historia general de las cosas de Nueva España. Original text avail-
able at http://archive.org/details/historiagenerald02saha. Accessed
on 1 August 2013.

Sarnacki, P., Dale, T., Evans, T., Fangio, T., Pittman, J., and SproutCore 1.8
release team (2012). Getting started, part 2. In SproutCore guides. Sprout-
Core. Available at http://guides.sproutcore.com/getting_started_2.
html. Accessed on 1 August 2014.

Schmidt, D. C. (2006). Model-driven engineering. IEEE Computer, 39(2):25–31.

Scottish Classics Group (1996). The Latin language. Oliver & Boyd.

Sencha (2012). Sencha Touch 2.1.1 documentation. Available at http://docs.
sencha.com/touch/2-1/. Accessed on 10 January 2013.

Sharp, H., Finkelstein, A., and Galal, G. (1999). Stakeholder identification in the
requirements engineering process. In Proceedings of the Tenth International Work-
shop on Database and Expert Systems Applications, pages 387–391. IEEE.

Sheppard, S. (1992). Report on the CHI’91 UIMS tool developers’ workshop. ACM
SIGCHI Bulletin, 24(1):28–31.

Smart, J., Hock, K., and Csomor, S. (2006). Cross-Platform GUI programming with
wxWidgets. Prentice Hall.

Sofroniou, S. A. (1962). Modern Greek. David McKay Company.

Solomita, E., Kempf, J., and Duchamp, D. (1994). XMOVE: a pseudoserver for X
window movement. The X Resource, 11(1):143–170.

262

de Souza, C. S. (2005). The semiotic engineering of human-computer interaction. MIT
Press, Cambridge, Mass.

Spencer, A. and Otoguro, R. (2005). Limits to case - a critical survey of the notion.
In Amberber, M. and de Hoop, H., editors, Competition and variation in natural
languages: The case for case, chapter 5, pages 119–145. Elsevier.

Starosta, S. and Nomura, H. (1986). Lexicase parsing: a lexicon-driven approach to
syntactic analysis. In Proceedings of the 11th conference on computational linguistics,
pages 127–132. Association for Computational Linguistics.

Subbanna, S. and Varakhedi, S. (2009). Computational structure of the As.t.ādhyāyī
and conflict resolution techniques. In Sanskrit computational linguistics, pages 56–
65. Springer.

Suharno, I. (1982). A descriptive study of Javanese. Department of Linguistics, Re-
search School of Pacific Studies, Australian National University.

SutherlandGold Group (2011). New WixMobile helps anyone build a
custom, optimized mobile site in less than 10 minutes. press release.
http://www.businesswire.com/news/home/20110803005418/en/
WixMobile-Helps-Build-Custom-Optimized-Mobile-Site. Accessed
1 April 2013.

Svantesson, J.-O. (2003). Khalkha. In Janhunen, J., editor, The Mongolic languages.
Routledge.

Sveriges Utbildningsradio AB (2011). Giellaoahpas—liten grammatik. Available at
http://www4.ur.se/gulahalan/01_pdf/giellaoahpas.pdf. Accessed on
14 October 2012.

Taentzer, G. (2000). AGG: A tool environment for algebraic graph transforma-
tion. In Applications of graph transformations with industrial relevance: Proceedings of
AGTIVE’99, Kerkrade, The Netherlands, pages 481–488. Springer.

Taentzer, G. (2004). AGG: A graph transformation environment for modeling
and validation of software. In Applications of graph transformations with industrial
relevance: Proceedings of AGTIVE 2003, Charlottesville, VA, USA, pages 446–453.
Springer.

Taentzer, G. and Beyer, M. (1994). Amalgamated graph transformations and their
use for specifying AGG—an algebraic graph grammar system. In Graph transfor-
mations in Computer Science, pages 380–394. Springer.

Thevenin, D. (2002). ARTStudio; tool for multi-target UI design. In 15th annual
symposium on user interface software & technology (UIST 02), pages 27–30. ACM.

263

Thevenin, D., Coutaz, J., and Calvary, G. (2003). A reference framework for the
development of plastic user interfaces. In Seffah, A. and Javahery, H., editors,
Multiple user interfaces, pages 29–49. John Wiley & Sons.

Thimbleby, H. (2007). Press on. MIT Press.

Thimbleby, H., Gimblett, A., and Cauchi, A. (2011). Buffer automata: a UI ar-
chitecture prioritising HCI concerns for interactive devices. In Proceedings of
the 3rd ACM SIGCHI symposium on engineering interactive computing systems, pages
73–78. ACM.

Thomason, S. G. (2001). Language contact. Edinburgh University Press.

Torstendahl, S. (1997). Open telecom platform. Ericsson Review (English Edition),
74(1):14–23.

Trask, R. L. (1997). The history of Basque. Routledge.

Trowbridge, C. R. (1907). The teaching of Latin word-order: Part I. Caesar and
Cicero. The Classical Journal, 2(4):158–164.

Tuite, K. (2004). Early Georgian. In Woodard, R., editor, The ancient languages of
Asia Minor, pages 145–165. Cambridge University Press.

Vanderdonckt, J., Bouillon, L., and Souchon, N. (2001). Flexible reverse engineer-
ing of web pages with VAQUISTA. In Proceedings of the eighth working conference
on reverse engineering, pages 241–248. IEEE.

Vasu, S. C. (1891). The As.t.ādhyāyī of Pān. ini. Motilal Banarsidass.

Vinokur, G. O. (1971). The Russian language: a brief history. Cambridge University
Press.

Wade, T. (1992). A comprehensive Russian grammar. Blackwell.

Walker, A. T. (1918). Some facts of Latin word-order. The Classical Journal,
13(9):644–657.

Wallace, R. (2008). Zikh Rasna: a manual of the Etruscan language and inscriptions.
Beech Stave Press.

Walpole, A. S., editor (1882). Caesar: de bello Gallico I. Macmillan.

Weiss, M. (2009). Outline of the historical and comparative grammar of Latin. Beech
Stave Press.

264

Wells, J. and Draganova, C. (2007). Progressive enhancement in the real world.
In Proceedings of the eighteenth conference on hypertext and hypermedia, pages 55–56.
ACM.

Wenham, J. W. (1965). The elements of New Testament Greek. Cambridge University
Press.

Whately, S. (1945). Noises off: Some sound-effects in Virgil. Greece and Rome,
14(40):17–27.

Wichmann, S. (2004). Tlapanec cases. In Conference on Otomanguean and Oaxacan
languages, pages 19–21.

Wierzbicka, A. (1980). The case for surface case. Karoma Publishers.

Wierzbicka, A. (2009). Case in nsm. In Malchukov, A. and Spencer, A., editors,
The Oxford handbook of case, pages 151–169. Oxford University Press.

Wilson, W. (1968). An essential Latin grammar. Macmillan.

Wireless Application Forum (2001). WAG UAProf: Wireless Application Protocol
WAP-248-UAPROF-20011020-a. Wireless Application Forum.

Woodard, R. D. (2008). Attic Greek. In The ancient languages of Europe, pages 14–49.
Cambridge University Press.

Wright, P. C. and Monk, A. F. (1991). A cost-effective evaluation method for use
by designers. International Journal of Man-Machine Studies, 35(6):891–912.

Wroblewski, L. (2012). Multi-device layout patterns. Available at http://www.
lukew.com/ff/entry.asp?1514. Accessed on 1 May 2013.

Wulf, C. (1982). Zwei Finnische Sätze aus dem 15. Jahrhundert. Ural-Altaische
Jahrbücher, NF Bd. 2:90–98.

Yin, R. K. (2002). Case Study Research: Design and Methods. Sage Publications, third
edition edition.

Zuazo, K. (1995). The Basque Country and the Basque Language: An overview of
the external history of the Basque languages. In Hualde, J. I., Lakarra, J. A., and
Trask, R. L., editors, Towards a history of the Basque language. John Benjamins.

265

A Appendix A
Classification of industrial tools

Mobile Vision’s report divided up the 53 cross-platform tools they surveyed into
five categories, which were summarised in chapter 2. The tools surveyed in these
categories were:

JavaScript toolkits: DHTMLX Touch; impact.js; iUI; JoApp; jQuery Mobile; Net-
Biscuits; Sencha Touch; SproutCore; The M Project; Wink Framework.
Adobe Flex is related to this category, being an ActionScript/AIR toolkit.

App factories: Magmito; iBuildApp; MobileNationHQ; Mobjectify; Verivo Plat-
form; Red Foundry; DragonRAD; WIX Mobile.

Web-to-native wrappers: apparat.io; KonyOne; Exadel Tiggzi; FeedHenry; Applica-
tion Craft; WOPE; PhoneGap.

Runtimes: AMP Studio; Antix Games Studio; Adobe AIR; Corona; Titanium; EDGELIB;
QT; RhoElements/Rhodes; LiveCode; SIO2 Engine; Mobinex Smartface;
Spot Specific; TotalCross; Unity Engine; Unreal Engine; Moai; Aqua Plat-
form.

Code translators: webMethods Mobile Designer; Marmalade; Illuminations Soft-
ware Creator; MonoTouch/Mono for Android; XMLVM; iFactr Monocross;
J2ME Polish; MoSync.

When considering software architecture, only the part of the software which
resides on the mobile device itself is considered, rather than any larger system of
which it is a part. In addition, only software architectures which are explicitly
named in the software and documentation are counted. Some of the tools act
as libraries of physical components and other tools, claiming to provide these in
an architecture-neutral way. These tools are counted as “Neutral”. Others are
purely designers and to these the structure of the code is immaterial, or they are
“codeless”. These, along with XMLVM, which is purely a bytecode translator, are

266

counted as “n/a”. Still others are focussed on games, and provide architecture sup-
port based on agents, controllers, and objects in a game world. These are counted
as “Game architectures”.

MVC and variants: Sencha Touch; SproutCore; The M Project; RhoElements/Rhodes;
MonoTouch; Titanium (via the inbuilt Alloy library). QT versions since 4.0
use a simplified Model/View architecture.

Other defined architectures: Mono for Android uses the Android “Activity” model.
JoApp uses an architecture based on the Observer pattern. Illuminations
Software Creator uses a visual programming/flowchart based architecture.

Game architectures: impact.js; EDGELIB; SIO2 Engine; Unity Engine; Unreal En-
gine; Moai; Marmalade.

Architecture-neutral: Adobe Air; DragonRAD; DHTMLX Touch; iUI; jQuery Mo-
bile; NetBiscuits; Wink Framework; Corona; LiveCode; SmartFace; Total-
Cross; AppMobi; Worklight; J2ME Polish; MoSync; Exadel Tiggzi; Feed-
Henry; Application Craft; WOPE; PhoneGap.

N/A: Magmito; iBuildApp; MobileNationHQ; Mobjectify; Verivo; Red Foundry;
Wix Mobile; Spot Specific; XMLVM.

Classifying the tools according to the Arch model (extended with a “platform”
component as defined above) was done according to the following criteria:

Platform: These tools must provide either an abstraction layer between the hard-
ware and the software such that an app can be deployed onto multiple plat-
forms, a deployment mechanism to get the application onto those multi-
ple platforms, or both. Tools which fall into this category are: QT; The
M Project; RhoElements/Rhodes; MonoTouch/Mono for Android; Appcel-
erator Titanium; iBuildApp; Mobjectify; Verivo; Red Foundry; Spot Spe-
cific; XMLVM; Adobe AIR; Corona; LiveCode; SmartFace; TotalCross;
AppMobi; MoSync; FeedHenry; WOPE; PhoneGap; impact;js; EDGELIB;
SIO2 Engine; Unity Engine; Unreal Engine; Moai; Marmalade; Illumina-
tions Software Creator.

Physical presentation: These tools must adapt the physical components to fit in with
the native appearance and behaviour of those components, either by using
the native controls or by a process of styling non-native components. Tools
which fall into this category are: QT; The M Project; RhoElements/Rhodes;
Titanium; iBuildApp; Verivo; Red Foundry; Spot Specific; XMLVM (by
means of its reimplementation of the Android UI library); DragonRAD;

267

NetBiscuits; LiveCode; Smartface; TotalCross; MoSync; Marmalade; Illu-
minations Software Creator; Touch; SproutCore; DHTMLX Touch; iUI;
jQuery Mobile; Wink Framework; J2ME Polish; JoApp. Corona falls into
this category in a limited way, providing native text controls only.

Logical presentation: These tools must allow components to be replaced with other
components based on the platform or form factor in use. Tools which fall
into this category are: QT (by means of its semantic QML elements); Net-
Biscuits; Sencha Touch (by means of using its Profiles feature).

There are no tools in the survey which provide adaptation of any Arch layer
above logical presentation.

268

A Appendix B
Further data on languages surveyed

B.1 Distribution by language family

To demonstrate that case is a real phenomenon in language and not just a chance
resemblance, it is necessary to demonstrate that the the languages that exhibit
case did not all get it from one place. Besides innovation within a language, t here
are two main ways in which languages can pick up constructs: by inheritance from
a parent language, or by borrowing from another language with which they are in
contact. This section and the next deals with each of those ways in turn.

Languages change and divide over time. Because of this, they can be arranged
into “family trees” which trace their ancestry. French, Spanish and Italian, for
example, all are descendents of Latin. A “language family” consists of all the lan-
guages which are descendents of a common ancestor language. The “Romance”
language family, for example, contains all the languages which share Latin as an
ancestor (figure B.1; note that these diagrams are an extreme simplification of re-
ality, since they do not show intermediate stages in linguistic evolution between
the ancestor and the descendent, or the possibly non-homogenous state of the
ancestor language).

The common ancestor of a language family is not always known or attested in
writing. If this is the case, then the theoretical last common ancestor is called a
“proto-language”, and is named after the language family. In Italy at the time of
the Romans there were a number of related languages, such as Umbrian, Faliscan
and Oscan (Fortson, 2009, chapter 13). These, along with Latin and the descen-

Spanish Italian French

Latin

Others

Figure B.1: The Romance language family

269

Spanish Italian French

Latin

Others

Faliscan Oscan Others

Proto-Italic

Figure B.2: The Italic language family

dents of Latin form a language family called the Italic languages. The last common
ancestor of all these languages existed before writing arrived in Italy, and so it is
unattested. Therefore, linguists construct a theoretical last common ancestor,
called “Proto-Italic” (Rix, 2002). The Italic language family, including its proto-
language, is illustrated in figure B.2.

Because of their common ancestry, languages which share a language family
tend to have grammars which resemble each other. To demonstrate that case is
not a feature of a single language family, the language families that contain the
languages being discussed are listed below.

The Afro-Asiatic languages form a large language family containing around 300 liv-
ing languages, largely spoken in north Africa and the Middle East (Lewis
et al., 2013). Representatives of two of the major subfamilies of Afro-Asiatic
are represented in the languages used in the survey: Arabic is a member of
the Semitic family, and Awngi is a member of the Cushitic family.

The Indo-European languages form another large language family, containing about
400 living languages (Lewis et al., 2013). It includes nearly all of the languages
current in Europe and many of those in use in India and in Iran. It is the
language family which includes Modern English (Fortson, 2009, and Mallory
and Adams, 2006 give overviews of the family). Six subfamilies of Indo-
European are represented in the languages used in the survey: Old English
and Icelandic are members of the Germanic subfamily; Greek is essentially
a subfamily on its own; Latin is a member of the Italic subfamily; Russian
is a member of the Slavic subfamily; and the Tocharian languages form a
subfamily of their own.

The Kartvelian languages form a small language family spoken in the Caucasus, mostly
in Georgia (Gamkrelidze, 1966). In the survey, Georgian represents this lan-
guage family.

270

The Mongolic languages form a family of closely-related languages spoken in and
around Mongolia (Janhunen, 2003a). Khalkha Mongolian, the official lan-
guage of Mongolia, represents this language family in the survey.

The Nakh-Daghestanian languages (or the North-east Caucasian languages) form another
language family used in the Caucasus. There is likely no genetic connection
between the Nakh-Daghestanian languages and the Kartvelian languages,
despite their geographical proximity. One sub-group of the Nakh-Daghestanian
languages is known for its rich case systems, being briefly listed in the Guin-
ness book of Records as having the richest case system in the world (Comrie
and Polinsky, 1998). One of these languages, Tsez, represents the family in
the survey.

The Oto-Manguean languages form a language family spoken widely in Mexico (Lewis
et al., 2013). This family is represented in the survey by Azoyù Tlapanec.

The Pama-Nyungan languages form a large language family which cover most of the
continent of Australia. This family is represented in the survey by Kalkatungu,
although other Pama-Nyungan languages have similar case systems (Blake,
1977).

The Turkic languages form a language family which spreads over a vast area from
the Mediterranean in the west to Siberia in the east (Lewis et al., 2013). The
Turkic languages are represented in the survey by Turkish.

The Tyrsenian languages are an extinct language family consisting of three closely-
related languages which were spoken in Italy, in the Alps and on the island
of Lemnos (Rix, 2004). Etruscan is the most well-attested; the other two
languages (Rhaetic and Lemnian, respectively) are extremely fragmentary.

The Uralic languages form a language family widely spoken in Europe (Austerliz,
1989). The Uralic languages are represented in the survey by Hungarian and
Finnish.

Languages isolate are those which cannot reliably be connected to any other lan-
guage. Two languages isolate are represented in the survey: Basque and
Sumerian.

Two large language families are not represented. The first of these is Sino-
Tibetan, the large language family that includes the Chinese languages and the
Tibetan ones. Case is very uncommon in this family. A notable exception can
be found in Nepal Bhasa, also known as Newari, which has a rich case system
(Hale and Manandhar, 1973). It is not included here for two reasons. First, there
is a vast shortage of reference grammars of the language that are not written in

271

Nepal Bhasa itself (Hargreaves, 2006). Secondly, it has been strongly influenced
by Indo-European languages—specifically, those spoken in India and Iran—and
thus it cannot really be taken as a representative example of the language family.

The other large language family missing is the Niger-Congo family, which is
another large language family that is not prone to exhibiting case. Its geographical
distribution is restricted to sub-Saharan Africa, and König (2008) notes that case
is rare in Africa.

B.1.1 Borrowing

In his introduction to The World ’s Major Languages, Bernard Comrie (1987) makes
the point that if two languages come into contact, any number of elements may
be borrowed by one from the other. English speakers are likely to be aware of this
already, as English is riddled with borrowed vocabulary. Learned terms borrowed
from Latin, Greek and Arabic are perhaps the most obvious, such as “geometry”
from Greek, “algebra” from Arabic and “femur” from Latin. Other borrowings
have been more completely absorbed into English: the word “beef” comes from
Norman French (Barnhart, 1999, p. 85); and the name of the drink “punch” may
come from an Indian word meaning “five”, referring to the number of ingredients
(Barnhart, 1999, p. 863).

These examples are all vocabulary. Larger systems can be borrowed too. For
example, English has borrowed a number of productive prefixes from Greek and
integrated them into the language, as can be seen in the word “television”. This
word consists of a prefix borrowed from the Greek (τῆλε-, “afar” or “at a distance”;
see Liddell et al., 1940) and a Latin root vis- meaning, roughly, “seeing”. What has
been borrowed here is not a whole word; the word “television” certainly never
appeared in either of its parent languages. Instead, what has been borrowed is a
prefix and a rule that says that this prefix can be combined with other words.

Even larger patterns of borrowing are possible: English borrowed its third per-
son plural pronoun system from Old Norse (Barnhart, 1999, pp. 1131 and 1133), and
Japanese borrowed much of its numeric system from Chinese (Ifrah, 2000).

In general, the larger the system, the less it is likely to have been borrowed.
To find that a language had borrowed its entire case system from another would
be startling, but by no means impossible. Case systems can certainly be partially
affected by borrowing: for example in some outlying dialects of Greek, the case
system is being re-formed along more Turkish lines through contact with Turk-
ish (Thomason, 2001, ch. 4). However, if the languages concerned are numerous
enough and spread widely enough in time and space, the probability of any simi-
larities being the result of borrowing becomes near zero.

272

Figure B.3 shows the temporal distribution of the languages discussed over his-
tory. The temporal and geographical distribution of just these twenty languages
makes widespread borrowing unlikely. When the enormous number of other lan-
guages that exhibit case are taken into account, the probability that all case sys-
tems are borrowings from one another becomes vanishingly small.

B.2 The ages of languages

The age of a language is a difficult thing to measure. The two major difficulties in
this area raised by the set of languages surveyed are:

• Languages change gradually and slowly. There is no one point, for exam-
ple, that one can take as the end of Latin as a vernacular tongue. Instead,
over a period of several hundred years, Latin slowly became the Romance
languages. This process of slow change is especially true of Icelandic, which
emerged slowly from Old Norse, and Russian, which emerged slowly from
Old East Slavic.

• Many languages in the world still have no writing system; and many lan-
guages, both ancient and modern, gained their writing systems some time
after the language itself was commonly spoken. Spoken language leaves few
traces: it is extremely hard to tell how long a language existed before its first
written evidence.

To deal with these problems, the dating given uses a number of rules. The
starting date is taken as the earliest of:

• The date of the earliest written evidence in the language, or a recognizably
modern form of the language if there is writing all the way through a period
of strong language change.

• The earliest date that the language is discussed by linguists, anthropologists
or explorers.

• If there is, or was, a separate but related written or elite language or dialect
which was discussed or attested earlier than the language discussed, then
that written dialect is used instead in the above criteria.

If the language is extinct, the ending date is taken as either:

• The last known evidence that shows the language in use as a living language.
The caveat is important—both Sumerian and Latin were in use as liturgical,
formal languages long after their extinction as spoken languages.

273

Ba
sq

ue

Tl
ap

an
ec

Et
ru

sc
an

Fi
nn

ish

G
eo

rg
ia

n

G
re

ek

Hu
ng

ar
ia

n

Ic
el

an
di

c

Ka
lka

tu
ng

u

M
on

go
lia

n

La
tin

Ar
ab

ic

No
rth

er
n

Sa
m

i

O
ld

 E
ng

lis
h

Su
m

er
ia

n

To
ch

ar
ia

n
A/

B

Ts
ez

Tu
rk

ish

Ru
ss

ia
n

Aw
ng

i

30
00

 B
C

20
00

 B
C

10
00

 B
C

AD
 0

AD
 1

00
0

AD
 2

00
0

Le
ge
nd Kn

ow
n

ex
tin

ct
io

n

Kn
ow

n
cr

ea
tio

n

Be
gi

nn
in

g
of

 a
tte

st
at

io
n

En
d

of
 a

tte
st

at
io

n

Sc
al
e 1

ce
nt

ur
y

Fi
gu

re
B.

3:
D

ist
rib

ut
io

n
of

 la
ng

ua
ge

s d
isc

us
se

d
in

 ti
m

e.

274

• The death of the last known speaker of the language.

These rules are unfair to languages that have no writing system and which have
been documented only recently, making them look far younger than they may well
be.

Arabic is treated here in its Classical Arabic dialect. There is some argument as
to whether Classical Arabic and Modern Standard Arabic are the same or
different languages; Arabic sources tend to treat them as two registers of
the same language, whereas English-language sources tend to treat them as
separate. Here, to give a fairer view of the age of the language, and because of
the similarity in their case systems, the two are treated as a single language.
Classical Arabic is attested from around 700 AD (Holes, 2004). Modern
Standard Arabic is still in use.

Awngi was first documented by Rossini (1905). It is still in use.

Basque “opened its doors to history in the 16th century” (Zuazo, 1995). Trask (1997)
notes that the grammar in texts from this period is nearly the same as in
modern Basque. Basque is still spoken is still in use.

Etruscan is known only from inscriptions and from a few longer texts. The earliest
inscription is c. 700 BC; the latest around 50 BC (Bonfante and Bonfante,
2002; Rix, 2004; Wallace, 2008).

Finnish is attested first in a manuscript from around 1470 (Wulf, 1982). It is still in
use.

Georgian became a written language around the middle of the fourth century AD
(Tuite, 2004). It is still in use.

Greek has changed surprisingly little over time. The earlier date given here, of
around 1800BC, is from Fortson (2009). Modern Greek is still spoken.

Hungarian is attested earliest just after 1000 AD (Molnár and Simon, 1976).

Icelandic is continuously attested throughout its transition from Old Norse, which
makes it difficult to give a firm date. The date given here—1540—is the date
of publication of the first translation of the New Testament into vernacular
Icelandic (Rögnvaldsson, 1995). Icelandic is still in use.

Kalkatungu is, according to Blake (1979), first discussed by settlers in Australia in
1886. Lardie Moonlight, the last fluent speaker of Kalkatungu, died between
1979 and 1983 (Blake, 1983).

275

Latin is here shown as being a living language from around 650 BC to around 650
AD. These dates are following Weiss (2009).

Mongolian is here represented by the Written Mongol dialect or language rather
than the Khalkha dialect or language. It is controversial, in the Mongolic
language family, where dialects begin and languages end. Written Mongol is
the old formal, written language, which is still in use today by the Mongolian-
speaking peoples of China. This is first attested around 1250 (Janhunen,
2003b).

Northern Sami as distinct from Sami as a whole was first discussed in 1748 by the
Norwegian linguist Knud Leem (Bergsland, 1950; Garcia-Ontiveros, 2011).
It is still in use.

Old English is first attested in short runic inscriptions. Looijenga (1997) dates the
earliest of these to around 450 AD. Old English becomes Middle English,
and loses its case system, under the influence of Norman French, starting
around the middle of the 11th century AD (Quirk and Wrenn, 1955).

Russian The Russian language became distinct from its parent language in the 14th
century (Vinokur, 1971).

Sumerian is attested as a living language from around 3000 BC to around 2000
BC, although it was used as liturgical language afterwards (Jagersma, 2010).

Tlapanec seems to have been something of a mystery until recently. It is first
mentioned as a language in the Historia general de las cosas de Nueva España
of Bernardino de Sahagun (1585), but is not described. As late as the late
19th century, Hubert Howe Bancroft could still say “Wedged in between
the Miztec and Zapotec are several tongues, of which, excepting a few Lord’s
Prayers, I find nothing mentioned but the names ... there are mentioned the
Chatino, Tlapanec, and Popoluca” (Bancroft, 1882, p. 752). The date of the
earlier mention is used here, although neither of these refer to the specific
Azoyú dialect or language (again, here, the distinction between language and
dialect is controversial). Azoyú Tlapanec is still in use.

Tocharian A and B remain to linguists in the form of religious texts written be-
tween 500-800 AD (Fortson, 2009). Very little is known about the speakers
of the language.

Tsez was first discussed in the middle of the 20th century (Job, 2004).

Turkish as spoken today is a constructed language based on the earlier Ottoman
Turkish; but it sufficiently different to be considered a different language. It
appeared during the rule of Ataturk, in 1932. It is still spoken today.

276

277

A Appendix C
Applications built by other developers

This appendix presents the details of the applications and comments from devel-
opers in the self-directed development study, presented in Chapter 7.

C.1 Participant 1

In addition to his professional practice as a developer, participant 1 ran a small
publishing company. In his capacity as a publisher, he visited trade shows and
other such industry events, and on those occasions found it limiting to have to
get his laptop out in order to get information about the books that the company
had in production, such as dates when things would be published or the expected
prices of books. The company already kept this information in a database that was
accessible through a web service, so the participant felt that it would be a good
trial for the AppMaps tool and case system.

The purpose of the application was to let the participant answer several ques-
tions quickly:

• Given a book, how far through the publication process is it? What details
have already been decided about it?

• Given a stage in the publishing process, how many books are in that stage?

• Which books are waiting on author input, and which on publisher input?

The application map is shown in figure C.1. In the initial state, the user has a
list of all the books currently in the publishing process (that is to say, all the books
in the publisher’s catalogue that aren’t out of print). This screen also lets the user
filter by books that are published, those that are in production, and those for which
essential data is missing from the database, as well as filter based on specific stages
in the publication process (see figure C.2; note that all the screenshots of this
application are using placeholder data, as the data that the application is actually
used with is confidential).

278

{books:Books}

{books:Books}

{books:Books}

{books:Books}

{books:Books}

{status:Status}/gen

"Status"

"Production"

"Published"

"Missing Data"

"Share"

{d:Dest}/dat

Figure C.1: Publishing company application map

Figure C.2: Publishing company front page

279

Figure C.3: Publishing company list of categories

Figure C.4: Publishing company list of statuses and books on tablet

280

Figure C.5: Publishing company list of books

Most of these buttons just lead to another list of books, but the button that
filters by the book’s status leads to a list of possible statuses for the book (figure
C.3), and then each of these gives rise to a list of books (figure C.5 and figure C.4).
The list of statuses is a genitive edge: the participant said that it fit his mental
model of the process that these were categories of books. The resulting interface
is compliant with the human interface guidelines on both iOS and Android phones
and tablets.

The viewing of a book gives the user the choice to share it, and when this
option is chosen, a destination must be chosen. This destination is marked as
dative. Note that the destinations here are not social networks but are instead
other people within the company.

The participant designed the application map in two phases: in the first, he
designed the application map for an ideal phone. He then built the views, and
checked that they worked well in the ideal phone application map. After that, he
went through and added genitive and dative markers to the appropriate edges in
the application map, after which he checked that the views worked in that context,
found that they did, and declared the application complete.

None of the views perform any plasticity of their own, nor in this case were
any device-specific modifications made to the stylesheet. All the plasticity that the

281

participant felt necessary for the application was managed by the default stylesheets
for the platform and by the cases on the edges of the application map.

Participant 1 did not feel that his application was, in his words, “production-
ready”. He had reservations about the quality of the physical layer of the interface
as a problem, especially with regards the typography: he also noted that his appli-
cation consisted almost entirely of list boxes, which he considered possibly not the
best user interface control for the application. He had chosen these because he
“didn’t have the time [during the study] to properly investigate other alternatives”.
He did, however, say that the dialogue component met his quality standards and
that the application as a whole was a “very useful prototype”.

He mentioned that case had provided a marked efficiency gain compared to
his normal practice while “making the transition between concept and prototype
very rapid”. This early phase of the development process was the one at which he
had found case most useful; as an application would progress towards production,
he would have expected to spend more and more time “concentrating on what it
looks like on different platforms from a design perspective”. The level of plasticity
provided was what was “needed” for the application because “it added the ability
to adapt between [form-factors] without making me do much extra thinking”.

Participant 1 felt that the case system was “very definitely” worth learning in
terms of the efficiency gains he had experienced during the development process.
He thought that case as it was implemented here was applicable to all the mobile
platforms he had used. He thought that case would work well in the kind of appli-
cation that he built (by which he meant data-driven) but did point out that in the
AppMaps tool there was no “built-in way to override the case system”, and that if
this were added then the case system would be potentially applicable to any data-
driven application he could think of. He also was of the opinion that there was no
reason why case conflicted with the industry domain in which he was developing
applications, nor any of the domains for which he had built applications or mobile
websites in the past.

C.2 Participant 2

The application that participant 2 built was also, by chance, book-themed. Partic-
ipant 2 was a keen book collector, who had previously catalogued all their books
in LibraryThing, which is an online book catalogue. He wanted to make an ap-
plication for himself and some likeminded friends which could be used while in a
bookshop or otherwise away from home.

The application map for the application is given in figure C.6. The user’s initial
entry to the application is a search form. The user can either fill this form in
and initiate a search, or can choose to display books that they have not yet read,

282

{book:Book}/gen

{book:Book}/gen

{book:Book}/gen

{search:Search}

"All Books"

"To Read"

"Mis-tagged"

{book:Book}/gen

"Settings"

Figure C.6: Book catalogue application map

books that are wrongly tagged (for this application, this means that the catalogue
does not specify whether they are physical books or electronic books), or just to
display all books (figure C.7). Choosing any of these options takes the user to a
list of books: the edges that correspond to choosing the books are all marked as
genitives. At this point the user can view the details of the book (figure C.8). From
the front page, the user can also enter a settings view: this is so that they can put
in their LibraryThing username and API key (figure C.9).

There is no use of the dative whatsoever in this application: participant 2
stated that he understood what it did, he had just found no use for it in the appli-
cation that he was building.

Participant 2 used case as he went along to plasticise the application, rather
than going back and adding case in a separate pass. As each edge went in, he con-
sidered what case it should be in, then created views to implement the application
map, then went back and checked and reconsidered the case assignments to edges.
The major reconsidering that he undertook involved thinking hard about whether
to make the “search” a genitive edge, given that it produced a subset of books.
Eventually, he made the decision to leave it as a non-genitive edge, as reflected
in the final application map. This was because he definitely wanted to have the
choice of book as a genitive edge, and because there was an issue with the software
which prevented multiple genitives working correctly (the same issue that arose
in the Agritechnik application; see section 6.6.5).

283

Figure C.7: Book catalogue: search screen

Figure C.8: Book catalogue: book details

284

Figure C.9: Book catalogue: settings screen

None of the views perform any plasticity of their own. A device-specific stylesheet
was used to modify the physical appearance of the search form slightly depending
on whether it was running on a phone or a tablet. All other plasticity was managed
by the default stylesheets and by the cases on the edges of the application map.

Participant 2 stated that he was “very happy” with the quality of the resulting
user interface was “sufficient for my needs especially given the time spent mak-
ing it”. He said that it sped up the development process in general compared to
his previous cross-platform mobile efforts, but that the big time-saver was pre-
dictability: when he added an edge to the application map with a case on it, he
felt that he knew that the system was going to do what he expected it to: it “made
it easy to know what behaviour to expect from the system for a given type of
link/state transition”. He said that it had been worth learning the case system for
the efficiency gains, but felt that he had intuitively understood the concepts any-
way, so not a great deal of learning was called for. He felt that the case system was
well-suited for development on the current set of mobile platforms, said that he
could think of “no reason” why it wouldn’t be well-suited to use in any other ap-
plication whose purpose was primarily to do with browsing and editing data as his
was, although he noted that the demands his application put on the user interface
tool were scarcely intensive. He felt that what industry an application was aimed

285

"compose"

"ok"

{n:Note}/gen

"voteForDeletion"
"ok" "cancel"

{g:GPS}

Figure C.10: Geotagged social media application map

at was irrelevant to the success or failure of case as a way of developing an applica-
tion, and felt that whether it was data-driven or not was a much more important
criterion.

C.3 Participant 3

Participant 3 designed a social media application which allowed people to leave
public textual notes at physical places. Whenever the user opened the application
they would receive a list of the notes that had been left within a certain distance
of them, along with the directions they were in. Moderation was done by people
voting for the deletion of a note.

The application map for the application is given in figure C.10. In the start
state the user can select a note: this note is in the genitive, as something whose
details will later be displayed (figure C.11). The user may also create a new note.
The GPS edge on the initial state is a pseudo-view, which permits user input while
having no visual component. In this case, the user input in question is the user’s
movements over the face of the earth, as measured by the phone’s satellite navi-
gation system. As the user moves around, the list of notes that they can choose
from changes.

286

Figure C.11: GeoNotes: notes list

Figure C.12: GeoNotes: viewing a note

287

Figure C.13: Geotagged social media hand-drawn application map

When the user has chosen a note they can read it, and they may have the
option of voting to delete it (figure C.12). When they choose to vote for deletion
they need to confirm their vote.

As is shown by his original draft of the application map on paper (figure C.13),
participant 3 first designed the application map without cases, and added them
on a subsequent pass. With regards to this, he said that for him the design of the
application map for the ideal phone and its subsequent plasticisation were two
separate tasks during the development process.

None of the views provided any plasticity of their own: nor was anything but
the standard stylesheet used. All plasticity was managed by the default stylesheets
and the case on the edge.

Participant 3 was not particularly pleased with the quality of the interface he
created, mainly criticising the physical aspects of the interface. He stated that the
quality of the interfaces of HTML-based applications suffers because the devel-
oper is “beholden to how a browser renders the toolkit I’m using” and because
it does not provide access to “more powerful visual features such as 2D [and 3D]
graphics libraries”, and that he tends to have a “a predisposition to go for a native
framework such as Cocoa Touch” but acknowledged that this was partly due to
prejudice on his part. The dialogue structure and the parts of the physical inter-
face mediated by case were of a quality he was happy with, except for the unpre-
dictability and low rendering quality forced on him by the browser component.

288

Case had saved time for him by allowing him to explore alternatives more
quickly: “once the data structures were defined, I could try out different views
over them and see how these would produce use cases.” He added later that “I
have been on many GUI app development processes where one person’s idea of
what the metaphor to represent the data should be makes it harder for the users to
understand what they’re looking at, because it is greatly at odds with their own... I
think [the AppMaps case system] succeeds in doing this because it makes the [ex-
ploratory] process of building a picture of a concept explicit.” Several days later,
he added: “I think I’ve done it a bit wrong because I can see how appmaps is par-
ticularly useful if you’re actually using it in the early stages, given a data structure,
to play with ways to define a view on it. Whereas I thought [how the application
should work] up in advance.”

He felt that the case system would definitely be worth learning for the effi-
ciency gains he had experienced: “it lets you explore how a data structure pro-
duces a use case, so if that’s the way you are approaching your app design (which I
think is common - lots of applications, especially mobile ones, are built to provide
a view on some currently existing data source) it makes it easy to figure out how
to do it in a usable way.”

He was unable to think of any mobile platforms on which the concept of case
was not applicable and added that he saw no reason why it should be restricted
to mobile platforms at all. He though that the concept of case fitted well with
the kind of application he had built, and that the kind of application was more
important than the industry that it was in.

C.4 Participant 4

Participant 4’s application was a to-do list application. The application stored a
list of tasks locally on the mobile device in a database, and allowed the user to edit
tasks, add notes to those tasks and mark them as complete. Participant 4 did not
finish building her application.

The application map for the application is given in figure C.14. The user begins
in a state where they can either choose an existing task, choose to filter the task
list, or choose to add another task. Once they’re in a task, they can either mark it
as complete or delete it.

Participant 4 used the genitive in both for categories and for its partitive (see
section 5.3.3) meaning. She said that tasks, when they appeared in the application
map, were in the genitive because the details of the task was what the application
was focussing on: the categories and priorities are subsets of the lists of tasks.
This matched the model exactly but actually produced a “very strange” concrete
user interface on the tablet due to a software issue (the same software issue as

289

"By Category"

"By Priority"

{cat:Category}/gen

{pri:Priority}/gen

{task:Task}/gen

{task:Task}/gen

{task:Task}/gen

"Add Item"

{ni:NewItemDetails}/gen

"markAsDone"

"Bin"/dat

"Send to"

Figure C.14: To-do list application map

described in section C.2 and section 6.6.5). She (correctly) identified this as a bug
in the software because it did not behave as her understanding of the genitive case
did; and rather than making her software incorrect according to her understanding
of the model informed the author firmly that she would wait for a newer version
of the software.

Datives were used for logical destinations within the software, rather than for
destinations outside of the software. The only destination that made it into the
final version of the software was a “rubbish bin” for deleting items.

Participant 4 used the cases to label edges as she went along. Rather than
creating the application map as a unified whole and then filling it in with views,
however, she started with a small, seed application map consisting of the data
viewing part of the application, and created all the views for that; after this, she
added on extra features, adding each to the application map first along with its
attendant case labels and then to the code. She felt that she understood what the
cases meant, but not necessarily how to apply them: this was due, she thought, to
ambiguities in the documentation for the tool that she had been given.

Participant 4 was not happy with the quality of the user interface that she
produced, because her application was unfinished and did not work. She had hit
far more software bugs in the AppMaps tool than any other participant or the
author, and felt that this also contributed to her not finishing her application. She
also had doubts about the quality of the physical interface that the underlying
Sencha Touch toolkit had produced, stating that it didn’t “look good or feel good.
Buttons looked wrong and scrolling was jerky”.

She did, however, feel that case was “very helpful for segregating modes of
interaction with the application and making them easier to style appropriately
across form factors”. By “modes” here she did not mean modes as the word is
used in chapter 2: instead, she said that she meant that each case represented a

290

coherent way of interacting with the machine independent of what data it was that
the application was actually doing. She also highlighted that case would “probably
also be quite useful as a means of encouraging the developer to see the ‘big picture’
of user interaction with the application early in its development”.

She did feel that the case system would be worth using for applications that
needed to be present on multiple form factors, and felt that possibly it did not
go far enough: she said she would be “curious to know whether the cases can be
extended beyond genitive and dative however, as these only cover a small range of
interactions.” She especially noted the absence of a “tool” or “instrument” case.

Participant 4 did not identify any areas in major mobile platforms where the
approach would not be applicable. She thought that her application area contained
a number of “modes” (in the sense used above in this section) that were not covered
by case.

C.5 Participant 5

Participant 5’s application was a prototype of an application to let users browse a
crowdsourced data set about access for disabled people at venues local to them.
The application used the GPS position of the user to show nearby points of inter-
est on a map, and then allowed them to look at the accessibility of those points of
interest.

The application map of the application is presented in figure C.15. At the start,
the user is presented with a map centred around their current location (figure
C.16). They can either view details of points of interest around them, use the “go
to” button to move the map to another location or search for points that match
certain criteria (figure C.17). These points are then displayed on another map view
(figure C.18).

Participant 5 said that he used the genitive in a categorial sense. It is the edge
that corresponds to the search criteria that is in the genitive, and his reasoning for
putting this edge in the genitive was that by entering search criteria the user would
be effectively creating a categorisation of the data points to meet their current
needs. He used the dative to let users share the details of points of interest on the
map; this dative used the built-in sharing controls to share to social media and to
email.

Participant 5 was happy with the quality of the interface that he had produced,
saying that for the things that he was building the physical and cosmetic aspects
of the interface were usually simple. He said that he could easily have turned the
prototype into a “real-world app”, and that the reason that the app had remained
as a prototype was only that of time constraint. He stated that “the reduction in
implementation required [using the case system] to develop for multiple platforms

291

"Search" {search:Criteria}/gen

{poi:POI}{poi:POI}

"Go To..."

{g:GoTo}

{s:__am_share_destination}/dat

"Share"

Figure C.15: Venue access application map

was a huge practical benefit” and that in hindsight the modelling of applications
this way, with objects and the “semantic” modelling of relationships between them
“seems obvious, once you get used to the idea, yet it is not something I have en-
countered before.” He felt that the case system took little to no actual learning
but did take some “getting used to”: once he had got a feel for the concept of case
the actual meanings of the cases were entirely natural.

Participant 5 could not think of any mobile platforms where the model of case
would not work. He was unsure how well it would integrate with larger and more
complicated data models than that of his prototype, but considered that it would
certainly be worth attempting. He thought that case would be useful except where
“the interaction with the user was very small”, and cited text messaging as an ex-
ample of an application domain where case would offer little or no benefit. He
also said that future work in his specific application would need to centre around
“timelines of user tasks (in this case directions in a navigation application)” and
was not sure how well this would interact with case. Both after discussing the
complexity of data models and the timelines of user tasks, he stressed that he
would be keen to evaluate case in these situations, but that the prototype he had
built had given him no basis to make statements about case’s usefulness for them.

292

Figure C.16: Venue access: initial map

Figure C.17: Venue access: search facility

293

Figure C.18: Venue access: search results

{cat:Category}/gen {w:Word}

"skip"

"Share"

{s:__am_share_destination}/dat

Figure C.19: Language flashcard application map

C.6 Participant 6

Participant 6’s application was a simple flashcard game for language learners. He
himself was trying to learn both Church Latin and Polish, and used the same appli-
cation with two different data sets to produce applications for his own use. The
purpose of these applications was to allow him and other learners to revise and
learn vocabulary quickly while on buses or trains or similar. It therefore had very
few states and few features.

294

The application map for the quiz application is given in figure C.19. When the
user starts the application, they are required to choose a category of words. Once
they’ve done that, they find themselves presented with a word, and they can either
choose an answer or to skip the word. They can also share a word: this is for a
learning method where for each word they get, they should attempt to use it in a
sentence on twitter.

Participant 6 used the genitive in a categorial sense, to delimit categories of
words. The dative was used for social media applications. He remarked, while
building the map, that these were “textbook uses of the cases, just like in the
manual”. He also noted that as a learner of two Indo-European languages with
case systems, the cases in use in the AppMaps case system seemed to be consistent
with analogous cases in Latin and Polish as he understood them.

Participant 6 created the application map in two stages: first, he created the
map for the ideal phone. Then he added the cases to the map. After this, he
designed and created the views themselves.

None of the views in this application performed any plasticity themselves at all.
An application-specific stylesheet was used to ensure that the flashcards remained
visually centred on larger screens. No logical or dialogue plasticity was used except
for the cases on the edges.

Participant 6 was happy with the quality of the user interface of the application
for his own use but stated that the physical presentation was not “professional”
enough that he would want to release it for other people’s use: he said that HTML5
applications—not just AppMaps ones—tended to look “unfinished”. He thought
that both the results of the genitive and the dative were good quality within this
constraint. He had found during development that there was a time advantage in
using case, and that it came because he could “think about the tool being on phone
or tablet once at the beginning”, deal with the plasticity then, and then “as long
as I stuck to the right coding style” he didn’t have to think about it while writing
the code itself. He was of the impression that this was easily enough of a benefit
to justify learning the case system.

He could not think of any mobile platform that the case system would be inap-
propriate for; he himself ran it on Android, but found the iOS versions perfectly
palatable. He also tried using the experimental Windows Phone support outlined
in chapter 6 and felt that the model worked well on that platform also. He had
doubts as to the wider applicability of case to games, which “are often about con-
trol and directly interacting with things” rather than data sets. He also mentioned
that his application was “probably the simplest data set that case is any use with”,
because it only had “two layers: categories and the things in them”.

295

C.7 Participant 7

Participant 7 designed a mobile website rather than a mobile application: it was
designed to be fetched dynamically from the web and display live information,
rather than to be installed on a device. It was designed for an e-Commerce com-
pany selling parts for Volkswagen Corrado cars. Participant 7 had not finished
building the site by the time the study ended.

The application map for this application as sent to the author is sent in figure
C.20. When users go to the site, they have a number of choices. “About us” and
“Contact” take the user to static pages with information about the company selling
the parts. They can also select one of “Interior” and “Exterior” to select categories
of parts or “view basket” to view the parts currently in their shopping basket. From
the list of interior or exterior parts, they can select a part, view its details, and add
it to their basket or share it on Twitter. From the shopping basket view, they can
check out and pay.

In this application, the genitive is used categorially. The “Exterior” and “Inte-
rior” edges defined categories of part based on whether those parts were for the
exterior or the interior of the car. Participant 7 said that the “view basket” edge
was not marked as a genitive because the basket did not constitute purely a cate-
gory of parts: the page that that edge led to was distinct from the lists of parts and
would let the user see shipping pricing and other information in addition to the
contents of their basket. The dative is used much as it is in the example projects,
to share to social media.

Participant 7 created the map in two phases: in the first, he created the map
without cases. He then created the views to fill in the “ideal phone” version of the
application, and then iterated through several iterations of how the cases should
be assigned to the edges until he found one that gave the meaning that he felt the
application should have. In the first such variant, for example, he added only a
dative onto the twitter share edge; after this he added the genitive in a partitive
meaning onto the “Part” selection edges, but decided that that did not match the
“conceptual model” he was trying to put across, and finally settled on adding cat-
egorial genitives to the “Exterior” and “Interior” edges. The parts of the interface
where the genitive and dative were used did fulfil the relevant requirements of the
Android and iOS user interface guidelines.

Participant 7 felt that they were on track to creating a “quality looking applica-
tion”, although simple in functional terms. They had some reservations about the
ability of Sencha Touch to create the views that they wanted, but the parts of the
application that involved case were of good enough quality for them. He felt that
it had made the development of the system faster: it “allowed me to avoid writing
boilerplate code for targeting specific device viewports” and “allowed refactoring

296

"About Us"

"Contact"

"Exterior"/gen

"Interior"/gen

"View Basket"

"View Basket"

"View Basket"

"View Basket"

"Check out"

{part:Part}

{part:Part}

"Add to Basket"

"Share"

"Twitter"/dat

Figure C.20: Corrado parts application map

or making changes to interfaces very simpl[y], which is extremely useful for quickly
prototyping ideas”. He said that the case system would certainly be worth learning
for these reasons, especially the latter: “in a client situation, it would allow you to
make changes [to the plasticity] from feedback very quickly, which would greatly
reduce the time associated with making those changes.” He could not think of any
mobile platforms that the model would not apply to. He said that the model was
certainly well-suited to simple e-commerce applications which consisted largely of
“functionality such as filtering products (gen case) and sharing products (dat case)
[and] these [cases] worked very effectively”.

297

298

“Time hath endless rarities, and shows of all varieties; which
reveals old things in heaven, makes new discoveries in earth,
and even earth itself a discovery. That great antiquity Amer-
ica lay buried for thousands of years, and a large part of the
earth is still in the urn unto us.’

—Sir Thomas Browne, Hydriotaphia, I

299

