Hyper-heuristics for grouping problemsTools Elhag, Anas (2015) Hyper-heuristics for grouping problems. PhD thesis, University of Nottingham.
AbstractGrouping problems are hard to solve combinatorial optimization problems which require partitioning of objects into a minimum number of subsets while another additional objective is simultaneously optimized. Considerable research e ort has recently been directed towards automated problem-independent reusable heuristic search methodologies such as hyper-heuristics, which operate on a space formed by a set of low level heuristics rather than solutions, directly. Hyper-heuristics are commonly split into two main categories: selection hyper-heuristics, which are the focus of the work presented in this thesis, and generation hyper-heuristics. Most of the recently proposed selection hyper-heuristics are iterative and make use of two key methods which are employed successively; heuristic selection and move acceptance. At each step, a new solution is produced after a selected heuristic is applied to the solution at hand and then the move acceptance method is used to decide whether the resultant solution replaces the current one or not.
Actions (Archive Staff Only)
|