
An Empirical Study Towards Efficient
Learning in Artificial Neural Networks

by Neuronal Diversity

Abdullahi S. Adamu
Department of Computer Science

University of Nottingham

A thesis submitted for the degree of

Doctor of Philosophy

November 2015

for my mother and father ...

Acknowledgements

There are a lot of people I will like to acknowledge for their support and friend-
ship during my Ph.D., and not all of them might be mentioned in my acknowl-
edgments, regardless I treasure my time with them during my journey as a
Ph.D. student.

Firstly, I will like to start by thanking my family, and friends as they have
played the role of being amazing people to be with that made this experience
memorable. I will also like to reiterate my deep appreciation of the supportive
role my parents had during my time. I also really appreciate my wifes role in
being both understanding and supportive, and my child’s role in giving me lots
of reasons to laugh.

I will like to thank my supervisors Dr. Tomas Maul and Prof. Bargiela, for their
guidance, patience, insights, valuable advice, and support. They have offered
words of encouragement at much needed times. I really appreciate their help
in reviewing and giving me valuable feedback on various works during my
study, including this thesis. Dr. Christopher Roadknight and Dr. Chong Siang
Yew have also played a supporting role during my time as research student;
they offered their insights, valuable advice at various times, which I appreciate
greatly. I’d not forget Mr. Hoo Soi Hock and Mr. K.R Selveraj, who have
both been very helpful, since my time as an undergraduate at the University.
I appreciate their role in giving me the opportunity to connect back to my
days as an undergraduate through the teaching assistantship program. I have
benefited greatly from them. Finally, I’d also like to thank Richard Crossland,
who helped me in the final checks of this thesis by proofreading for minor
errors.

There have been lots of people who have written in an amazing chapter of my
life through this journey, and I am glad they were part of it.

Abstract

Artificial Neural Networks (ANN) are biologically inspired algorithms, and it is nat-

ural that it continues to inspire research in artificial neural networks. From the recent

breakthrough of deep learning to the wake-sleep training routine, all have a common

source of drawing inspiration: biology. The transfer functions of artificial neural net-

works play the important role of forming decision boundaries necessary for learning.

However, there has been relatively little research on transfer function optimization

compared to other aspects of neural network optimization. In this work, neuronal di-

versity - a property found in biological neural networks- is explored as a potentially

promising method of transfer function optimization.

This work shows how neural diversity can improve generalization in the context of

literature from the bias-variance decomposition and meta-learning. It then demon-

strates that neural diversity - represented in the form of transfer function diversity- can

exhibit diverse and accurate computational strategies that can be used as ensembles

with competitive results without supplementing it with other diversity maintenance

schemes that tend to be computationally expensive.

This work also presents neural network meta-features described as problem signatures

sampled from models with diverse transfer functions for problem characterization.

This was shown to meet the criteria of basic properties desired for any meta-feature,

i.e. consistency for a problem and discriminatory for different problems. Furthermore,

these meta-features were also used to study the underlying computational strategies

adopted by the neural network models, which lead to the discovery of the strong dis-

criminatory property of the evolved transfer function.

The culmination of this study is the co-evolution of neurally diverse neurons with their

weights and topology for efficient learning. It is shown to achieve significant general-

ization ability as demonstrated by its average MSE of 0.30 on 22 different benchmarks

with minimal resources (i.e. two hidden units). Interestingly, these are the properties

associated with neural diversity. Thus, showing the properties of efficiency and in-

creased computational capacity could be replicated with transfer function diversity in

artificial neural networks.

List of Publications

The following were the publications made during the course of the thesis [73, 4, 5, 6, 7]:

• Maul, T., Bargiela, A., Chong, S-Y., Adamu, A.,”Towards evolutionary deep neural
networks”, ECMS 2014 Proceedings of the European Conference for Modeling and
Simulation, Brescia, Italy, 27-30 May 2014. doi:10.7148/2014-0319.

• Adamu A.S, Maul T, Bargiela A, ”Efficient Learning by Co-evolution of Neurally
Diverse Artificial Neural Networks”, In the 2014 IEEE Symposium on Computers &
Informatics, Kota Kinabalu, Malaysia. (In Press)

• Adamu A.S, Maul T, Bargiela A, ”On Training Neural Networks with Transfer func-
tions diversity”, In the proceedings of the third International Conference on Compu-
tational Intelligence and Information Technology, CIIT&ITC 2013 (pp. 295–304).
Elsevier - ISBN 978-81-910691-6-3. (Print)

• Adamu A.S, Maul T, Bargiela A, C. Roadknight ”Preliminary Experiments with
Ensembles of Neurally Diverse Artificial Neural Networks for Pattern Recognition”,
Recent Advances in Information and Communication Technology 2015, Springer
International Publishing, 2015, 361, 85-96. doi:10.1007/978-3-319-19024-2 9.

• Adamu A.S, Maul T, Bargiela A,”Assessing the feasibility of approximating higher-
order problem signatures in Artificial Neural Networks with hybrid transfer func-
tions”, International Journal of Computer Science Issues, 11(2), 8–18. ISSN (On-
line): 1694-078.

• Adamu A.S, Maul T, Bargiela A, Chong S.Y, ”Cooperative Co-evolution of Neuronal
Diversity Towards Self-adaptive Artificial Neural Networks”, Neural Processing Let-
ters (undergoing revision).

5

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Major Contributions . 6

1.2.1 Establish the Relationship of Neural Diversity to Generalization
Ability . 6

1.2.2 Meta-features for Problem Characterization and Analysis of Com-
putational Strategies . 7

1.2.3 Co-evolution of Neural Diversity and their Topologies for Self-
Adaptive and Efficient Learning 8

1.3 Overview . 9

2 Background 11
2.1 The Biological Neural Network . 11

2.1.1 Learning in Biological Neural Networks 13
2.1.2 Neural Diversity in Biology . 14
2.1.3 Multifunctional Neurons . 15

2.2 Artificial Neural Network(ANN) . 16
2.2.1 The Perceptron . 20
2.2.2 Decision Boundaries and Linear Separability 21
2.2.3 Multilayer Perceptron (MLP) . 22
2.2.4 Radial Basis Functions Networks (RBFN) 23
2.2.5 Generalization and Model Complexity 24

2.3 Evolutionary Computation . 26
2.3.1 Genetic Algorithms (GA) . 27
2.3.2 Differential Evolution (DE) . 28

2.4 Hybrid Artificial Neural Networks . 29
2.4.1 Evolutionary Artificial Neural Networks 29

i

3 The Notion of Transfer Functions Diversity 31
3.1 Motivation . 31
3.2 Related Works . 36
3.3 Contributions . 38
3.4 Chapter Overview . 38
3.5 Chapter Background . 39

3.5.1 The Nature of the Search Space 39
3.5.2 The Role of Bias in learning . 41

3.6 Transfer Functions Diversity Can Improve Generalization 44

4 Ensemble of Neurally Diverse Artificial Neural Networks 48
4.1 Motivation . 48
4.2 Related Works . 49
4.3 Contributions . 51
4.4 Overview . 52
4.5 Neural Diversity Machine Ensembles (NeuDiME) 52

4.5.1 Neural Diversity . 53
4.5.2 Optimization . 55
4.5.3 Ensemble Member Selection . 60

4.6 Experimental Setup . 60
4.6.1 Measures . 62

4.7 Results . 63
4.8 Discussion . 65
4.9 Conclusion . 70

5 Problem Signatures 71
5.1 Motivation . 72
5.2 Contributions . 73
5.3 Chapter Overview . 74
5.4 Signatures . 75

5.4.1 Lower-Order Computational Signatures 77
5.4.2 Higher-Order Computational Signatures 79
5.4.3 Signature Criteria . 81

5.5 Signature Analysis Visualization and Techniques 82
5.5.1 Thresholding . 82
5.5.2 Neural Computation Path Analysis 82
5.5.3 Measuring Differences between Signatures 84

ii

5.6 Transfer Function Initialization and Complexification 85
5.6.1 Motivation . 85
5.6.2 Experimental Setup . 87
5.6.3 Results . 90
5.6.4 Discussion . 93
5.6.5 Conclusion . 95

5.7 Consistent and Discriminatory Properties of Lower-Order Signatures 95
5.7.1 Motivation . 96
5.7.2 Experimental Setup . 96
5.7.3 Results . 97
5.7.4 Discussion . 115
5.7.5 Conclusion . 118

5.8 Consistent and Discriminatory Properties Of Higher-Order Signatures . . . 119
5.8.1 Motivation . 119
5.8.2 Experimental Setup . 120
5.8.3 Results . 121
5.8.4 Discussion . 136
5.8.5 Conclusion . 147

6 Co-evolution of Neurally Diverse Neurons and their Topology 148
6.1 Motivation . 148
6.2 Compounding Bias and Information transfer 150
6.3 Related Works . 151
6.4 Contribution . 153
6.5 Chapter Overview . 154
6.6 Co-operative Co-evolution of Neural Network Sub-spaces 154

6.6.1 Representation . 156
6.6.2 Optimization . 157

6.7 Performance on PROBEN1 Benchmark 160
6.7.1 Experimental Setup . 160
6.7.2 Results on PROBEN1 . 163
6.7.3 Comparison with other algorithms 165
6.7.4 Discussion . 181
6.7.5 Conclusion . 182

6.8 Transfer function Injection . 183
6.8.1 Motivation . 183

iii

6.8.2 Results . 183
6.8.3 Discussion . 184
6.8.4 Conclusion . 188

7 Conclusion 189
7.1 Established the notion of neural diversity for efficient learning from differ-

ent perspectives . 189
7.2 Meta-features for problem characterization and analysis of neural network

models . 190
7.3 Co-evolution of neural diversity and their topologies for efficient learning . 192

Bibliography 194

A Appendix 204
A.1 Consistency of Lower-Order Signatures 204

A.1.1 Noise Levels . 204
A.1.2 Size of N . 222

A.2 Consistence Likelihood of Higher-Order Problem Signatures 234
A.2.1 Coexistence Matrices Heat Map 234
A.2.2 Path Analysis with Increasing level of Noise 237

A.3 Cooperative Co-evolution of Neurally Diverse Neural Networks 243
A.3.1 Convergence Graphs . 243

iv

List of Figures

2.1 An axon terminus of a neuron connecting to the body of another neuron.
(Courtesy of Wikimedia Commons) . 12

2.2 Components of a typical neuron. 17
2.3 Common neural network topologies. 18

3.1 Scatter plots of feet size and height for both genders. 33
3.2 Some of the various possible hypotheses with linear functions. 34
3.3 Linear decision boundary not accounting for overlap showing relatively

more misclassified patterns as a result of the inherent bias (i.e. bias-error). . 34
3.4 Ellipsoid decision boundary showing relatively fewer instances misclassified. 35
3.5 State graph defining the hypothesis space H` for the neural network ` 45
3.6 Graph from the state of h1, this also highlights refinements of the states. . . 46

4.1 The hierarchical nature of the search space. 57
4.2 An illustration of the sequential encoding of components of the neural net-

work by their types. 58
4.3 Results on the popular data sets for NeuDiME- The testing error was av-

eraged over the 10-fold cross-validation results, except in the case of Aus-
tralian credit card problem which was set to 12-fold cross-validation as
used in the literature. 64

4.4 Visualizations of two models that evolved different strategies for the Dia-
betes problem. 67

5.1 The transfer function likelihood visualization for the Iris problem showing
the relative expectations of the transfer functions to be used in elite models.
The intensity represents the degree of usage with dark and light signifying
heavy and light usage, respectively. 78

5.2 An illustration of the connection density for the Iris dataset. 79
5.3 Higher-order problem signatures on the Iris dataset : (a) coexistence likeli-

hood, (b) connection strength. 81

v

5.4 Bar chart of the mean squared error for the various initialization methods. . 90
5.5 Bar chart of the convergence rate for the various initialization methods. . . 91
5.6 Mean squared error of the various approaches tested on the datasets. 92
5.7 Bar chart of the mean squared error for the various methods of transfer

function complexification. 93
5.8 Bar chart of the convergence rate of the various methods of transfer func-

tion complexification. 94
5.9 An illustration showing the average transfer function likelihood for the

noise levels within the range of γ ∈ {0.1..0.6} on the Iris dataset. 97
5.10 An illustration showing the average transfer function likelihood for the

noise levels within the range of γ ∈ {0.7..1.0} on the Iris dataset. 98
5.11 The average transfer function likelihood after thresholding for the noise

levels within the range of γ ∈ {0.1..0.6} on the Iris dataset. 99
5.12 The average transfer function likelihood after thresholding for the noise

levels within the range of γ ∈ {0.7..1.0} on the Iris dataset. 100
5.13 The average transfer function likelihood for the noise levels within the

range of γ ∈ {0.1..0.6} on the Sonar dataset. 101
5.14 The average transfer function likelihood for the noise levels within the

range of γ ∈ {0.7..1.0} on the Sonar dataset. 102
5.15 The average transfer function likelihood after thresholding for the noise

levels within the range of γ ∈ {0.1..0.6} on the Sonar dataset. 103
5.16 The average transfer function likelihood after thresholding for the noise

levels within the range of γ ∈ {0.6..1.0} on the Sonar dataset. 104
5.17 The average transfer function likelihood for the noise levels within the

range of γ ∈ {0.1..0.6} on the XOR dataset. 105
5.18 The average transfer function likelihood for the noise levels within the

range of γ ∈ {0.6..1.0} on the XOR dataset. 106
5.19 The average transfer function likelihood after thresholding for the noise

levels within the range of γ ∈ {0.1..0.9} on the XOR dataset. 107
5.20 The average transfer function likelihood after thresholding for the noise

levels within the range of γ ∈ {0.6..1.0} on the XOR dataset. 108
5.21 The correlation between the connection densities of the problems with and

without thresholding. (a) and (b) represent results without thresholding,
while (c) and (d) are results with thresholding. 109

vi

5.22 Correlation between the transfer function likelihoods of the problems both
with and without thresholding. (a) and (b) are Pearson correlations coeffi-
cients, (d) and (c) are Spearman correlation coefficients. 110

5.23 Correlation between the association associated error of the problems both
with and without thresholding. (a) and (b) are Pearson correlations coeffi-
cients, (d) and (c) are Spearman correlation coefficients. 111

5.24 The correlation between the connection densities of the problems both with
and without thresholding as the size of N is increased {1..4}. 112

5.25 Correlation between the transfer function likelihoods of the problems both
with and without thresholding as the size of N is increased {1..4}. (a) and
(b) are Pearson correlations coefficients, (d) and (c) are Spearman correla-
tion coefficients. 113

5.26 Correlation between the transfer function association of the problems both
with and without thresholding as the size of N increases {1..4}. (a) and (b)
are Pearson correlations coefficients, (d) and (c) are Spearman correlation
coefficients. 114

5.27 Iris heat-map of signatures showing how the features get more pronounced
as the population size used for the signature sampling is increased. 122

5.28 Sonar heat-map of signatures showing how the features get more pronounced
as the population size used for the signature sampling is increased. 123

5.29 XOR heat-map of signatures showing how the features get more pronounced
as the population size used for the signature sampling is increased. 124

5.30 Heat maps showing the connection strengths as the size of N increases for
the Iris dataset. 125

5.31 Heat maps showing the connection strengths as the size of N increases for
the Sonar dataset. 126

5.32 Heat maps showing the connection strengths as the size of N increases for
the XOR dataset. 127

5.33 The coexistence likelihood for the Iris dataset for increasing sizes of N. . . 128
5.34 The coexistence likelihood for the Sonar dataset for increasing sizes of N. . 129
5.35 The coexistence likelihood for the XOR dataset for increasing sizes of N. . 130
5.36 Path analysis for the Iris as the size of N is increased. 131
5.37 Path analysis for the Sonar problem as the size of N is increased. 132
5.38 Path analysis results for the XOR problem as the size of N is increased. . . 133

vii

5.39 Generally, there was a correlation between coexistence likelihood and con-
nection strength as illustrated by the scatter plot annotated with the Pearson
correlation coefficient (r). 134

5.40 Correlation between coexistence likelihood and connection strength for in-
creasing level of noise γ . 134

5.41 Correlations between problems as the population size and alpha are increased.135
5.42 Correlations between the Sonar and XOR as the population size and alpha

are increased. 135
5.43 Connection strengths correlations between problems as the population size

and alpha are increased. 136
5.44 An illustration of the path analysis done on a XOR computational signature

showing its neural computational paths for when only the single most elite
model is used for sampling the signatures, i.e. N = 1. 137

5.45 An illustration of the neural computational paths for the Iris dataset, ex-
tracted from the signature with path analysis where the size of the top N = 1.142

6.1 In some cases of fixed network size and topology, bias can accumulate. . . . 150
6.2 The interdependence of the three sub-spaces (i.e. weights, topology and

transfer function) that make up the neural network’s model space. 155
6.3 The sub-population of diverse candidate neurons created for each hidden

and output unit. 157
6.4 The information encoded for candidate neurons. 157
6.5 The sub-population of weights created for each layer in the neural network

model, i.e. input-to-hidden (IH), hidden-to-hidden (HH), hidden-to-output
(HO). 158

6.6 The sub-population of topologies created for each layer in the neural net-
work model, i.e. input-to-hidden (IH), hidden-to-hidden (HH), hidden-to-
output (HO). 158

6.7 Elman context layer consisting of the context units for each hidden unit. . . 162
6.8 Box plot of some of the benchmark results. In general the error seems

to suggest good generalization properties. However, the lenses dataset
showed high error variance. 163

6.9 Box plot of the rest of the benchmark results. In general the error seems
to suggest good generalization properties. Large datasets such as the Dia-
betes dataset seem to have closely clustered errors, while relatively smaller
benchmarks suggest a relatively higher variance. 164

viii

6.10 Australian credit card benchmark box-plots showing competitive results of
CoevoNDM. 166

6.11 Breast Cancer (Prima) benchmark box-plots showing similar results. 166
6.12 Abalone benchmark box-plots for the algorithms. 168
6.13 Diabetes benchmark box-plots. 168
6.14 Echocardiogram benchmark box-plots. 169
6.15 Heart benchmark box-plots for the algorithms. 169
6.16 Hepatitis benchmark illustrated in box-plot. 170
6.17 Ionosphere benchmark results for the algorithms in box-plots. 170
6.18 Iris benchmark results in box-plots. 171
6.19 Lenses benchmark results in box-plots. The Lenses dataset is relatively

much smaller compared to the rest of the benchmarks having only 24 ex-
amples. 171

6.20 Box plot of some of the Lung Cancer benchmark results for the algorithms. 172
6.21 Box plot of the Monks1 benchmark results for the algorithms. 172
6.22 Box plot of some of the Monks2 benchmark results for the algorithms. . . . 173
6.23 Box plot of some of the Monks3 benchmark results for the algorithms. . . . 173
6.24 Box plot of some of the Parkinson’s disease benchmark results for the al-

gorithms. 174
6.25 Box plot of some of the Sonar benchmark results for the algorithms. 174
6.26 Box plot of some of the SPECT Heart benchmark results for the algorithms. 175
6.27 Box plot of some of the Vertebral Column (2 class) benchmark results for

the algorithms. 175
6.28 Box plot of some of the Vertebral Column (3 class) benchmark results for

the algorithms. 176
6.29 Box plot of some of the Bankruptcy benchmark results for the algorithms. . 177
6.30 Results of the Azure Neural Network Regressor on the datasets. 179
6.31 Results of the Azure boosted decision tree on the datasets. 179
6.32 Excerpts from the results of the CoevoNDM on the same datasets. 180
6.33 Results of the conditions of with and without transfer function injection on

the several benchmarks. 184
6.34 In terms of the Card dataset, the results with random injection showed sig-

nificant improvement than without it; while convergence typically started
from a testing error of 0.3 for the condition without injection, the results
with random injection of transfer function started from 0.15 on average . . 185

ix

6.35 The same pattern was also repeated for the Heart dataset which showed
significant improvement when random injection was used. 185

6.36 Likewise, in the case of the Diabetes dataset the random injection also
showed significant improvement in convergence. 186

6.37 The Cancer dataset convergence graph also shows a significant improve-
ment when random injection of transfer function is used. 186

6.38 Iris showed similar results of the convergence for the condition with ran-
dom injection. 187

A.1 The average connection density for the range of noise levels γ ∈ {0.1,0.2}
on the Iris dataset. 204

A.2 The average connection density for the range of noise levels γ ∈ {0.3..0.6}
on the Iris dataset. 205

A.3 The average connection density for the range of noise levels γ ∈ {0.7..1.0}
on the Iris dataset. 206

A.4 The average connection density after thresholding for the range of noise
levels γ ∈ {0.1..0.4} on the Iris dataset. 207

A.5 The average connection density after thresholding for the range of noise
levels γ ∈ {0.5..0.8} on the Iris dataset. 208

A.6 The average connection density after thresholding for the range of noise
levels γ ∈ {0.9,1.0} on the Iris dataset. 209

A.7 The average connection density for the range of noise levels γ ∈ {0.1..0.4}
on the Sonar dataset. 210

A.8 The average connection density matrices for the range of noise levels γ ∈
{0.5..0.8} on the Sonar dataset. 211

A.9 The average connection density for the range of noise levels γ ∈ {0.9,1.0}
on the Sonar dataset. 212

A.10 The average connection density after thresholding for the range of noise
levels γ ∈ {0.1..0.4} on the Sonar dataset. 213

A.11 The average connection density after thresholding for the range of noise
levels γ ∈ {0.5..0.8} on the Sonar dataset. 214

A.12 The average connection density after thresholding for the range of noise
levels γ ∈ {0.9,1.0} on the Sonar dataset. 215

A.13 The average connection density for the range of noise levels γ ∈ {0.1..0.4}
on the XOR dataset. 216

x

A.14 The average connection density for the range of noise levels γ ∈ {0.5..0.8}
on the XOR dataset. 217

A.15 The average connection density for the range noise levels γ ∈ {0.9,1.0} on
the XOR dataset. 218

A.16 The average connection density after thresholding for the range of noise
levels γ ∈ {0.1..0.4} on the XOR dataset. 219

A.17 The average connection density after thresholding for the range of noise
levels γ ∈ {0.5..0.8} on the XOR dataset. 220

A.18 The average connection density after thresholding for the range of noise
levels γ ∈ {0.9,1.0} on the XOR dataset. 221

A.19 The average transfer function likelihood for the sizes of N ∈ {1..4} on the
Iris dataset. 222

A.20 The average transfer function likelihood after thresholding for the sizes of
N ∈ {1..4} on the Iris dataset. 223

A.21 The average connection density for the sizes of N ∈ {1..4} on the Iris dataset.224
A.22 The average connection density after thresholding for sizes of N ∈ {1..4}

on the Iris. 225
A.23 The average transfer function likelihood for sizes of N ∈ {1..4} on the

Sonar dataset. 226
A.24 The average transfer function likelihood after thresholding for sizes N ∈

{1..4} on the Sonar dataset. 227
A.25 The average connection density matrices for various sizes of N ∈ {1..4}on

the Sonar. 228
A.26 The average connection density after thresholding for sizes of N ∈ {1..4}

on the Sonar dataset. 229
A.27 The average transfer function likelihood for sizes of N ∈{1..4} on the XOR

dataset. 230
A.28 The average transfer function likelihood for sizes of N ∈{1..4} on the XOR

dataset. 231
A.29 The average connection density for sizes of N ∈ {1..4} on the XOR dataset. 232
A.30 The average connection density for various sizes of N ∈ {1..5} on the XOR. 233
A.31 The heat map of the average coexistence matrix for Iris as the size of N was

increased. 234
A.32 The heat map of the average coexistence matrix after thresholding for Iris

dataset as the size of N was increased. 234

xi

A.33 The heat map of the average coexistence matrix for Sonar dataset as the
size of N increases. 235

A.34 The heat map of the average coexistence matrix after thresholding for Sonar
dataset as the size of N increases. 235

A.35 The heat map of the average coexistence matrix for XOR dataset as the size
of N increases. 236

A.36 The heat map of the average coexistence matrix after thresholding for XOR
dataset as the size of N increases. 236

A.37 Path analysis results for the Iris dataset with increasing levels of noise γ =

{0.1..0.6}. 237
A.38 Path analysis results for the Iris dataset with increasing levels of noise γ =

{0.7..1.0}. 238
A.39 Path analysis results for the Sonar dataset with increasing levels of noise

γ = {0.1..0.6}. 239
A.40 Path analysis results for the Sonar dataset with increasing levels of noise

γ = {0.7..1.0}. 240
A.41 Path analysis results for the XOR dataset with increasing levels of noise

γ = {0.1..0.6}. 241
A.42 Path analysis results for the XOR dataset with increasing levels of noise

γ = {0.7..1.0}. 242
A.43 Cancer convergence graph . 243
A.44 Card convergence graph . 243
A.45 Diabetes convergence graph . 244
A.46 SPECT Heart convergence graph . 244
A.47 Bankruptcy convergence graph . 245
A.48 Heart convergence graph . 245
A.49 Inflammations convergence graph . 246
A.50 Monks2 convergence graph . 246
A.51 Monks3 convergence graph . 247
A.52 Seeds convergence graph . 247
A.53 Monks1 convergence graph . 248
A.54 Vertebral2C convergence graph . 248
A.55 Vertebral3C convergence graph . 249
A.56 Lenses convergence graph . 249
A.57 Parkinsons convergence graph . 250
A.58 Sonar convergence graph . 250

xii

A.59 Echocardiogram convergence graph . 251
A.60 Hepatitis convergence graph . 251
A.61 Iris convergence graph . 252
A.62 Abalone convergence graph . 252

xiii

List of Tables

2.1 List of activation (input combination) and output functions found in the
literature [36]. 18

4.1 List of some input combination and output functions used by Neural Diver-
sity Machines and their visualization color codes. 54

4.2 List of output functions for Neural Diversity Machines and their visualiza-
tion color codes. θ - is a threshold that is learned during optimisation. . . . 54

4.3 Neuron (node) parameters. 55
4.4 Details of the output function parameters encoded onto the genetic string.

Some of the output function parameters, in particular, p2 and p3 were not
used, but encoded onto the genes for future experiments that might require
encoding additional output function parameters. 56

4.5 Listing of other components encoded onto the genetic string. 56
4.6 Constraints on the parameters encoded onto the genetic string. 57
4.7 The list of benchmarks acquired from the UCI machine learning repository

[13]. 61
4.8 Experimental setup for the benchmarks showing the maximum number of

hidden units allowed for each ensemble member, the size of the ensemble,
and the number of folds used for K-fold cross-validation. These were set
to reflect parameters in published works [1, 2, 79] as well as findings from
preliminary experiments. 61

4.9 The optimization parameters used for the neuroevolution of the ensemble
members. These parameters were chosen after some pilot experiments to
determine the parameters that worked best. 61

4.10 Likelihood (%) of using combinations of input combination and output
functions for the Diabetes problem - The most likely combination was stan-
dard deviation and identity, and standard deviation and hyperbolic tangent. . 65

4.11 Associated error of using combinations of input combination and output
functions for the Diabetes problem. 66

xiv

4.12 Likelihood (%) of using combinations of input combinations and activation
functions for the Iris problem. 68

4.13 Associated errors of using combinations of input combinations and activa-
tion functions for the Iris problem. 69

5.1 Problem signature types and visual representations. 76
5.2 Experimental setup for the benchmarks showing the maximum number of

hidden units allowed for each ensemble member, and the number of folds
used for K-fold cross-validation. 87

5.3 Results comparing some of the cases. 91
5.4 Results of the complexification approaches applied with the problem sig-

nature detection methods. 93
5.5 Conditions under which the lower-signatures were tested. 97
5.6 Conditions under which the higher-order signatures were tested. 121

6.1 List of the activation function set. This includes additional activation func-
tions such as the Manhattan distance (also known as Taxicab distance) and
Max distance (also known as Chebyshev distance). In addition, there was
also the mean activation function. 156

6.2 List of the output function set. The additional output function here was the
Arc tangent, which is an inverse of the hyperbolic tangent. 156

6.3 The list of benchmarks acquired from the UCI machine learning repository
[13]. 161

6.4 Network and optimization parameters . 162
6.5 The results showing the mean squared error and standard error of the algo-

rithms on the benchmarks. 167

A.1 T-test results for the Abalone benchmark. 253
A.2 T-test results for the Bankruptcy benchmark. 254
A.3 T-test results for the cancer benchmark. 255
A.4 T-test results for the Card benchmark. 256
A.5 T-test results for the Diabetes benchmark. 257
A.6 T-test results for the Echocardiogram benchmark. 258
A.7 T-test results for the Heart (Pima) benchmark. 259
A.8 T-test results for the Hepatitis benchmark. 260
A.9 T-test results for the Ionosphere benchmark. 261
A.10 T-test results for the Iris benchmark. 262

xv

A.11 T-test results for the Lenses benchmark. 263
A.12 T-test results for the Lung Cancer benchmark. 264
A.13 T-test results for the Monks1 benchmark. 265
A.14 T-test results for the Monks2 benchmark. 266
A.15 T-test results for the Monks3 benchmark. 267
A.16 T-test results for the Parkinsons benchmark. 268
A.17 T-test results for the Sonar benchmark. 269
A.18 T-test results for the Spect-Heart benchmark. 270
A.19 T-test results for the VertebralCol2C benchmark. 271
A.20 T-test results for the VertebralCol3C benchmark. 272

xvi

Chapter 1

Introduction

Artificial Neural Networks are biologically inspired machine learning algorithms, which
are made up of a set of interconnected units known as neurons. The artificial neurons, just
as their biological counterparts, are responsible for cooperatively coordinating a response
which translates into a unanimous response to some input. Neurons are designated into
three classes of layers: the input layer, hidden layer, and the output layer. The Input layer
consists of neurons that relay information to the hidden layer, much like sensory neurons
found in biological neural networks. The hidden layers consist of neurons that connect
to other neurons on an adjacent hidden layer or the output layer and is where most of the
computation takes place. The output layer is essentially a layer of neurons that presents
the output in response to the given inputs. The response will differ depending on how
these neurons are connected, and the various connection strengths between them - modeled
as weighted connections. Much like how the biological neural networks adapt and learn,
artificial neural networks optimize the various connection strengths between neurons, and
in some cases even prune some.

In artificial neural networks, this is done using optimization algorithms that adapt these
weights with respect to the error of the output neurons, typically measured by the mean
squared error (MSE). However, while weight optimization is one of the leading aspects that
contribute to learning in artificial neural networks, there are other aspects of learning in bi-
ological neural networks that also contribute significantly to learning. These include depth
of the hidden layer, the connection pattern of neurons between layers, self-connections (i.e.
recurrent connections), and much more. All these findings have been incorporated into neu-
ral networks with significant successes, from deep learning to recurrent neural networks.

Among all the components modeled into the architecture of artificial neural networks,
transfer function optimization has received relatively little attention as also highlighted by
W. Duch [37]. The transfer functions of neurons models the firing behavior of the bio-
logical neurons and is responsible for projecting decision boundaries critical for learning.

1

Traditional transfer functions such as the ones used in the Multilayer Perceptron (MLP)
and the Radial Basis Network (RBF) are used as an informal standard across all sort of
problems, even though there can be significant differences between one choice of a transfer
function to the other.

The main argument of this work is that incorporating neural diversity as a means to
optimizing transfer functions in artificial neural networks can result in the same efficiency
associated with it in biological neural networks. Neural diversity is believed to be one of
the major factors that behind efficient learning in biological neural networks [69, 70, 18].
It is only natural that it inspires a research direction for optimizing the transfer function of
neurons in artificial neural networks. This is the major difference with other related works
[61, 47, 48, 3, 54, 55, 38, 28] which are motivated by either the theory of duality of func-
tions or the universal approximation capabilities of the units in RBF and MLP networks.
As such, these works use a set of projection, and radial-basis functions alone. However,
in our study, we have a variety of other classes of transfer functions that include higher-
order units, and statistical units to replicate diversity in the classes of transfer functions.
The resulting effect is that the neural networks can exhibit a wider variety of computa-
tional strategies for any given problem. The three major contributions of this thesis can be
summarized as follows:

Firstly, this study explores how neural diversity can improve generalization ability in the
context of the literature that links generalization to bias and variance, i.e. the bias-variance
decomposition and meta-learning. Experiments with ensembles of neurally diverse artifi-
cial neural networks were then used to show that it can produce diversity in the form of
various computational strategies, which is an essential part of ensembles. The resulting
members of the ensemble were both compact and accurate and had competitive results
without the need for explicit diversity maintenance - which tends to be computationally
expensive.

Secondly, the study then explores the problem of dimensionality as a result of the in-
creased number of possible computational strategies when working with neural diversity in
the next chapter (Chapter 5). The hypothesis is that it is possible to characterize problems
by their computational strategies, which is made up of their learned topology, weights, and
choice of transfer functions. It was shown that their pattern of computation can characterize
problems, and some of these patterns were explored using neuroscience-inspired measures
to unveil their insights and uniqueness to different problems. The chapter also presented
the possibility of these being used as meta features which can help guide the choice of
transfer functions, and as a result, significantly reduce the dimensionality problem.

2

Finally, the study culminates the findings of the thesis in the following chapter (Chap-
ter 6) by presenting a holistic approach to neural network optimization that trains the three
major components of the artificial neural network: weights, connectivity/topology, and
transfer function choice (with their respective parameters) simultaneously. The objective
was to tackle the problems associated with the bias as a result of neglecting other com-
ponents of the neural networks during training, which accumulates and contributes to the
error of the neural network on patterns, and its generalization ability in general.

The subsequent sections of this chapter will highlight in more detail the motivation,
major contributions, and overview of this thesis.

1.1 Motivation

There are various approaches to training neural networks. Among the least researched -
as also expressed by Duch [37] - are approaches that depend on optimizing the choice
of transfer functions simultaneously with other essential components like topology and
their weights. The notion of transfer function diversity is one of the nature inspired facets
of transfer function optimization. Transfer function optimization is important for many
reasons, one of which includes its important role in forming decision boundaries necessary
for learning. Other motivations for researching ways of optimizing transfer functions are
to improve the efficiency and robustness of learning in artificial neural networks (ANNs).
Interestingly apart from its biological plausibility, results from neuroscience have found
that neural diversity is one of the reasons why biological neural networks are both efficient
and robust [69, 70, 18]. In this chapter, we introduce the critical role of transfer functions
in learning as well as the motivations for researching on the benefits of neural diversity in
ANNs.

The transfer function of an artificial neuron, h is composed of an activation function,
jh = gh(x,W) and an output function, fh(jh); the activation function computes the action
potential, jh from the input and weight values (i.e. x = {i1...ik}, and W = {w1...wk}) of the
incoming connections. The output function computes the output of the neuron in response
to the action potential. This transfer function zh = fh(gh(x,W)) is responsible for forming
the decision boundaries in the input space among other tasks such as feature selection.
The shape and form of these decision boundaries vary with the types of transfer functions.
Radial basis functions (RBF), for example, have a cluster-like behavior of creating decision
boundaries: points in the input space closer to its center have a higher response while
points further away from the center tend towards progressively lower responses. Linear
functions are more discrete in the way they form boundaries: they form a hyperplane in

3

the input space, which divides the points. Sigmoid functions are similar but differ because
they tend to be continuous, rather than discrete. Any learning algorithm attempting to
learn a classification problem has to be able to form boundaries that classify observations
(i.e. points in the input space) into their respective classes. This has to be done on a
sub-sample of the data set that is representative of the whole sample to avoid the learning
algorithm from forming an incorrect generalization of the problem. Ideally, the neural
network should learn the underlying function of the problem and be able to predict unseen
data with significant accuracy, and that is the essence of generalization. Although transfer
functions have a critical role in learning, there has been relatively little research in this
direction compared to other aspects such as the training algorithm, as Duch also explained
in [37].

Studies have shown that neural networks with transfer function optimization are more
efficient [54, 55, 38, 49, 71, 6, 5]. By efficient we are referring to models of relatively low
complexity (i.e. regarding the number of hidden neurons) that learn a problem with pos-
sibly better generalization ability. Traditional and well established ANNs such as Radial
Basis Function Networks (RBFN) and Multilayer Perceptrons (MLP) use predetermined
classes of transfer functions for the neurons of each layer as part of their distinct archi-
tectural properties [40]. Often, the neurons of each layer are homogeneous (i.e. are the
same) in their choice of transfer functions. An RBFN typically uses a combination of a
distance-based activation function, and a radial basis function such as a Gaussian or multi-
quadratic function. In the case of Multilayer Perceptron, it is typically an inner-product
activation function accompanied with a sigmoid output function such as the hyperbolic
tangent. Though it is proven that both Radial Basis Functions Networks and Multilayer
Perceptrons can approximate any function, given the complexity of the network’s model is
matched with the complexity of the problem [17]; this does not guarantee that the models
produced are the most optimal or practical for all problems. This is because matching the
complexity of unusually complicated problems typically involves growing the neural net-
work’s hidden layer. Although the computational capabilities of computers are continually
being improved especially with the advent of cloud computing; training can become more
difficult as the neural network gets larger. Besides, it is preferable to have neural networks
of lower complexity because they are often associated with good generalization ability [33],
and are much easier to analyze.

Furthermore, transfer function optimization can lead to more robustness in learning
[54, 55, 38, 49, 71, 6]. This all boils down to the no free lunch theorem; no algorithm is
universally the most optimal for all possible problems. However, for a small subset of chal-
lenges, there can be an algorithm that is more robust. In other words, learning algorithms

4

can’t be perfect for all problems. However, the interest in machine learning is usually not
to develop learning algorithms that can solve all problems; it’s to develop algorithms that
are robust enough to learn as many practical and useful problems as possible - which is
a much smaller set of challenges, such as pattern recognition, autonomous control, and
more. For a learning algorithm to be robust, it should be able to adapt its bias to search
for the computational strategy or hypothesis that best describes the underlying function of
problems. In the case of ANNs, the weights, topology and transfer functions are among the
components that have an inherent bias [75, 102], which will need to be optimized according
to the problem to enable the neural network models to adapt to a variety of problems. The
increased computational capacity as a result of transfer function optimization and appro-
priate training leads to a robust learner. In this work, we especially focus on the study of
transfer functions and topology because of their critical role in learning.

Finally, ANNs are nature inspired, so it’s only natural that discoveries from neuro-
science continue to guide and inspire the research direction of ANNs. One of those dis-
coveries is neural diversity. There is a lot of diversity in biological neurons; in the retina
alone, there are more than 50 different types of neurons. Marder [69, 70] also found that
even in neurons that are anatomically identical, there are some behavioral differences be-
tween them when they are subjected to the same stimuli. Briggman et. al. [18] also found
that diversity in biological neural networks is responsible for their efficiency, making them
more compact. In addition to that, they also believed it enables biological neural networks
to exhibit a wider range of responses without the need for more neurons. In other words, it
is one of the reasons behind the enormous computational and representational capacity of
biological neural networks.

In summary, transfer functions perform a critical role in learning. They are behind a
significant portion of learning which involves approximating the underlying function that
describes problems, by forming decision boundaries. However, to be robust and efficient,
ANNs have to adapt their bias according to the nature of the problem. Transfer function
optimization is one such approach for optimizing the transfer function according to the
problem among other components such as weights and topology. Unfortunately, there has
been relatively little research in this direction [37]. This work is particularly novel as it is
inspired by the property known to be responsible for efficiency, robustness, and compact-
ness in biological neural networks; i.e. neural diversity.

5

1.2 Major Contributions

This thesis presents contributions across various aspects of efficient and robust learning
using the property of neural diversity found in biological neural networks. The major
contributions can be summarized as follows:

• Establishing the relationship of neural diversity to generalization ability in the con-
text of the literature, and providing empirical results to support that.

• Showing that neural network meta-features (described as problem signatures) can
characterize problems, and can be a valuable tool in analyzing underlying computa-
tional strategies evolved by neural networks.

• Finally, a holistic approach to optimizing artificial neural networks that involve the
co-evolving neural diversity with topologies and weights to reduce bias, and increase
the ability to perform more efficient information transfer between components using
evolutionary operators such as crossover.

1.2.1 Establish the Relationship of Neural Diversity to Generalization
Ability

The first contribution of the thesis was to review the various related works done in transfer
function optimization, classify them according to their motivation, and establish a notion of
how neural diversity could lead to better generalization in the context of the bias-variance
decomposition. There were three major motivations behind works found in the literature
[61, 47, 48, 3, 54, 55, 38, 28]: (i) Donoho’s theory of duality of functions; (ii) meta-
learning; and (iii) transfer function flexibility. Though these works presented promising
results, there are still relatively few works on transfer functions in general. Also, most
of these works were mostly not extensive. Furthermore, as per the writing of this thesis,
there is a lack of works that specifically and explicitly relates transfer function optimiza-
tion to generalization. This thesis contributes to the literature by presenting a biologically
inspired facet of transfer function optimization, which has been found to have promising
results in preliminary experiments [71]. Furthermore, it also explains specifically how the
bias of components of neural networks affects generalization ability in the context of the
bias-variance decomposition. It then explains how neural diversity, represented as trans-
fer function diversity in this thesis, can enable the neural network to adopt more forms of
bias which result in being able to access and search more regions of the hypothesis space.
In other words, neural diversity increases the computational capacity of artificial neural

6

networks. Consequently, this increases the probability of finding the most appropriate so-
lution that describes the problem’s underlying function. Additionally, experimental results
are used to show that transfer functions can be used as a diversity maintenance scheme for
neural network ensembles. This is due to the ability of neurally diverse artificial networks
to adopt different inherent biases by adapting the choice of transfer functions. This argu-
ment is further emphasized by analyzing the computational strategies which lead to the
unveiling of two distinct computational strategies evolved for the diabetes dataset. Those
findings pave the way for the next contribution which exploits the performance differences
of transfer functions to characterize problems, among other tasks.

1.2.2 Meta-features for Problem Characterization and Analysis of Com-
putational Strategies

The second major contribution of this thesis, which constitutes the computational signa-
tures chapter contributes to the literature in several forms. Firstly, it explains the idea of
computational signatures, which could be regarded as meta-features. Meta-features in the
literature have typically been considered to be either a set of features resulting from an-
alyzing a dataset [102, 103], or performance information of various learning algorithms
on a dataset which also provides some degree of insight into the nature of the problem
[61, 103, 3]. Though performance data of different learning algorithm could arguably pro-
vide some level of information regarding the properties of problems, it was the opinion of
the author that more reliable features can be unveiled by studying the models that learn the
problem. Related works include the use of features such as the depth of decision trees after
training on a dataset as a meta-feature [81]. Unfortunately, just like the study of transfer
functions: there seems to have been very limited work in this direction, specifically for ar-
tificial neural networks. This works contributes to the literature, by specifically developing
meta-features based on neural network models. It also shows that these meta-features have
the desirable properties of features, i.e. consistency in being discriminative between prob-
lems that are different, as well as a significant degree of invariance for a problem regardless
of changes to various parameters. Additionally, it was also shown that these signatures can
be used to form digraphs representing the building blocks of the model that learned the
problem, which in essence represents some information about the nature of the problem.
These graphs are then used to verify the feasibility of the neural network computational
signatures as meta-features.

This was also partially motivated by the tendency of neural networks to be used as black
box learning algorithms. There is yet to be a significant contribution in the direction of
techniques for analyzing the hypotheses learned by ANN models. However, neuroscience

7

has a variety of established methods used for studying biological networks. Another con-
tribution of this thesis is the development of neuroscience-inspired analysis techniques for
the study of ANNs. The graph-based approach which uses the meta-features to form an
expectation of the computational strategies found to be most appropriate for the problem
also provided a method of not only understanding the neural network models, but also
the nature of the problem itself. The results of these have been used to show interesting
computational strategies, including one that shows how a neural network model creatively
used min and max activation functions to filter the most important features of the diabetes
problem, namely age, and skin fold thickness. Interestingly, these features were found to
be some of the leading factors that increase the risk of diabetes by the American Diabetes
Association (ADA) [10].

1.2.3 Co-evolution of Neural Diversity and their Topologies for Self-
Adaptive and Efficient Learning

The third contribution of this thesis was the co-evolution of neural diversity with the topol-
ogy and weights. In traditional representations of artificial neural networks meant to be
optimized using evolutionary algorithms (EAs), a single genetic string is usually used.
Though there have been very promising results from this approach [108, 110, 12, 34, 97,
98]. It has also presented problems such as the cross-over operations being particularly
detrimental to the performance of the neural networks. This thesis contributes to the field
by particularly co-evolving a representation of the model space regarding its major com-
ponents, i.e. weight, topology and transfer functions to achieve better information transfer
during evolutionary operations. Transfer function diversity, the flexibility to evolve any
form of topology, and the improvement in knowledge transfer are all meant to reduce the
bias of the neural network thereby increasing the chances of achieving better generaliza-
tion ability. Though there are related works that have co-evolved neural networks using
various representation, evaluation, and optimization techniques, such as SANE [78], COV-
NET [44] CoSyNE [46], and EPNET [111], this work differs as it co-evolves the three
primary components of the neural network represented as three interdependent sub-spaces.
The third sub-space, unlike the aforementioned approaches, lends itself to the property of
neural diversity incorporated into the neural networks for transfer function optimization. In
other words, it was a holistic approach to optimizing artificial neural networks.

The results show that co-evolving the components of neural networks with neural diver-
sity can enable them to achieve significant generalization ability with comparatively less
complex models consisting of two hidden units [6]. In particular, the results tested on 22
benchmarks from the machine learning repository (UCI) [13] and on the PROBEN1 [89]

8

benchmark show an average mean squared error (MSE) of 0.30, which is significant for a
neural network of that complexity. Finally, another contribution was to show that injecting
more neural diversity during the co-evolutionary process also significantly increased both
the generalization ability of the neural network and its convergence.

1.3 Overview

The thesis constitutes four main chapters while the remaining chapters present the literature
review of the subject area and the conclusion of the thesis.

Chapter 2 reviews the literature on the subject. Apart from presenting some of the
basic knowledge of both biological and artificial neural networks, it presents some of the
works from neuroscience on neural diversity. In particular, it highlights the works which
have associated neural diversity with efficiency and increased representational capacity. It
also highlights related works from the field of artificial neural networks, particularly on
hybrid neural networks, that were motivated by a variety of reasons for optimizing transfer
functions.

Chapter 3 explains the nature of the search space of artificial neural networks. It then
highlights the related works in transfer function optimization and the motivation for using
neural diversity in artificial neural networks. In particular, it shows how transfer function
diversity can improve generalization ability in the context literature that links generalization
to bias. Specifically, the bias-variance decomposition and the meta-learning theory on the
search space of learning algorithms.

Chapter 4 then shows conclusive results of neural diversity leading to a repertoire of
accurate computation strategies for neural networks in an ensemble. Neurally Diverse Ar-
tificial Neural Networks (NeuDiME) was used to show that neural diversity is also an effec-
tive diversity maintenance scheme for ensembles as it exhibits a broad spectrum of accurate
computational strategies, which is an essential part of ensembles. The indication of differ-
ences in the use of transfer functions for different problems in the results of this chapter
paved the way for the next chapter on computational signatures.

Chapter 5 highlights the problem of increased dimensionality of the search space, which
results from transfer function optimization. Computational signatures are presented as a
means to both initializing and managing the set of transfer functions during optimization,
thus strategically overcoming the complexity of the search space. The chapter presents
related works from meta-learning. It then highlights how neuroscience-inspired measures
can be used to examine artificial neural networks. Furthermore, it shows how the results
of the computational signatures produced from the analysis of neural network models with

9

the neuroscience-inspired measures can be consistent for a problem and discriminatory
between different problems. It also shows results of using a graph-based analysis technique
developed to study the expected computational strategy for various problems.

Chapter 6 culminates the observations of chapters 3 and 5 into a holistic approach to
optimizing artificial neural networks by co-evolving neurally diverse neural networks with
their weights and topologies. It highlights the issues of compounding bias and informa-
tion transfer and how they can affect generalization ability. The chapter then highlights the
framework design and justifications. It also presents the results of using co-evolving neu-
rally diverse artificial neural networks with their weights and topologies on 22 benchmarks
and compares them to some of the state of the art learning algorithms in addition to learning
algorithms such as the MLP, RBF, and SVM (Support Vector Machines). The chapter also
compares the results from NeuDiME to the results obtained using the framework. It also
highlights interesting results of hybrids and the variance of these learning algorithms such
as the MLP-RBF, which consists of a projection layer and a radial basis layer as used in
some related works.

Chapter 7 then concludes with the implications of the findings made in the thesis as
well as their contributions.

10

Chapter 2

Background

“These networks represent functions in much the same way that circuits
consisting of simple logic gates represent Boolean functions.” - Russel &
Norvig (1995)

In this chapter, a brief background is given for the topics involved in the scope of
this thesis. Some basic familiarity with neural networks and evolutionary algorithms is
assumed; thus, the background does not highlight all the aspects of each topic.

2.1 The Biological Neural Network

In general, the most fundamental unit in a nervous system is a single cell, called the neuron

[68]. We know that each neuron is made up of a cell body, also known as the soma,
which like other types of cells contains a nucleus within the walls of the cell (i.e. the
membrane). There are strands of fibers that extend from this cell body to the proximity of
other neurons, known as dendrites. These are responsible for receiving signals from other
neurons. Furthermore, each neuron also has a long branch-like fiber that extends farther
than the dendrite to the proximity of the dendrites of other neurons, where it fans out in
branches. This branch-like fiber, known as the axon, is specialized at conducting a certain
type of electric impulse and is insulated by a membrane, known as the myelin sheath. As
illustrated in Fig.2.1, the axon is much thicker than the dendrites. Axons conduct electric
impulses from somewhere between the cell body and the axon hillock, where the impulses
are generated and transmitted through the length of the axon and then along its branches to
its tips.

There are various ways in which neurons communicate; the connection illustrated in
Fig.2.1 is the tip of each axon ending (or axon terminal) with one neuron being really close
to the cell body of another cell, though not quite being in contact. The connection of an

11

axon termini to a cell body or dendrite is known as a synapse, and the gap in the synapse
where the fibres do not quite make contact is called the synaptic cleft. It is known that
neurons are not restricted to making connections with neurons alone; they also make con-
nections to various other types of cells within the nervous system. Essentially, neurons like
the ones illustrated in Fig.2.1 connected in a neighborhood are defined as neural networks.

Figure 2.1: An axon terminus of a neuron connecting to the body of another neuron.
(Courtesy of Wikimedia Commons)

Some of the important agents that aid the transmission of signals between cells in the
network are neurotransmitters. Neurotransmitters are chemicals stored in vesicles found
at axon terminals that are released by the cell at the transmitting side of the synapse (i.e.
the pre-synaptic cell) and diffuse to the cell at the receiving end of the synapse (i.e. the
post-synaptic cell). It’s release is caused by a series of actions initiated by an electric im-
pulse, known as the action potential. The action potential is a type of electric impulse
that is characterized by a series of changes in the electric voltage in the axon body which
result in spike-like graphs when measured. It is generated as a result of significant stimu-
lation caused by the signals of other cells in the network. This results in an impulse being
generated between the cell body and the axon of the stimulated cell, which quickly gets
conducted along the length of the axon. It then fans out to all the terminals of the axon
where it causes a rise in calcium ions (Ca2+) concentration. This in turn causes the vesi-
cles containing the neurotransmitters to fuse with the plasma membrane (i.e. the cell wall)
leading to them being opened in the direction of the synaptic cleft. The neurotransmit-
ters travel to the post-synaptic neuron’s where it increases the electric potential of the cell

12

at that moment (the membrane electric potential) by changing the ion permeability of the
membrane. Given that the cell at the end of the of connection is a neuron, and that the
stimulation is sufficient, this will result in the neuron generating an action potential. This
process is then repeated at the end of the axon termini of the excited neuron. Depending
on the properties as well as the presence of hormones, the response of each neuron will be
different [101, 18].

The chemical signals at the post-synaptic neuron are eliminated in various ways; one
method is through the use of enzymes attached to the network which destroys the neuro-
transmitter [68]; others include either leaving chemical signals to fade away by diffusion
or to be taken back by the neuron that initiated the signal.

2.1.1 Learning in Biological Neural Networks

There are a variety of things that aid learning in the brain. As highlighted in the earlier
section, these include the use of hormones, enzymes, neurons and various other forms of
communication that lead to learning and a coordinated response.

Learning in the brain is a highly complex process. Generally, stimuli from experiences
form, reinforce or prune connections between neurons, which results in an adaptation of
the neural circuitry [104, 24]. The process of refining connections between neurons is
lifelong; the most active connections are continually strengthened, while connections that
are relatively inactive get weaker. At some point connections that are not active get pruned.
This process results in both specialization and efficiency [104, 24]. This finding influenced
the concept of the McCulloch Pitts neuron, which eventually gave rise to the Perceptron.

Other mechanisms that are believed to be important for learning include components
within the biological network - such as neurotransmitters, and feedback signals - and ele-
ments in the form of behavior, such as sleeping. The neurotransmitter is also a complex
signal pre-processor and is crucial for learning and adaptation [104]. Another role of neu-
rotransmitters is sending feedback signals, after activation of a post-synaptic neuron. These
feedback signals - sometimes in the form of soluble gasses - are sent backward to modify
the behavior of the pre-synaptic neuron [104, 24]. In the category of mechanisms that
aid learning from a behavioral perspective is sleep, where our brain has been found to
strengthen memory, by stimulating itself in the form of dreams [23]. In general, there are
various mechanisms both from behavior and within the biological neural network that are
related to learning, either in part of full.

In the context of the human brain, learning can be characterized by its developmental
stages. At infancy the brain has an almost fully connected set of neurons relative to its
adulthood stage [104, 24], which enables it to adapt to almost any environment. To be

13

specific there are an estimated 15 - 32 billion neurons [24], with each having about 10,000
connections. Towards its later stages, the human brain is shaped and refined by experiences.

In hindsight, it is interesting to see how all these neuroscience findings have directed
research in the direction of Artificial Neural Networks. The findings of neuroscience and
their inspired artificial neural network research can be listed as follows: Firstly, the findings
of the Hebbian learning theory and the excitation of neurons by McCulloch-Pitts inspired
Perceptrons. Secondly, the finding of hormones that affect the behavior of neighboring
neurons inspired ART (Adaptive Resonance Theory) by Grossberg (1976). In our current
time, deep learning has been inspired by findings relating to the deep nature of the brain,
which has also had a lot of success [14]. Also, findings related to sleeping have also
inspired training routines for neural networks that stimulate them with random stimuli to
consolidate learned patterns in a sleep-wake learning cycle [51].

In summary, it can be said that neuroscience is likely to play an even greater roles in Ar-
tificial Neural Network research as more technologies for studying the brain and unraveling
its mysteries are developed.

2.1.2 Neural Diversity in Biology

This thesis presents research in the direction inspired by the neural diversity property [18,
101, 99] of biological neural networks towards artificial neural networks that are more
efficient and with better generalization ability.

Neural diversity is one of the characteristic properties found in biological systems; for
example, there are no less than twenty classes of interneurons in the hippocampus alone.
In areas such as the retina, there are more than fifty neuronal types. And it is not just
coincidental, as research shows that neuronal diversity in these systems has some intrinsic
advantages [101, 18, 99].

Apart from neurons being distinct by structure, it is also proven that neurons of the same
group are also diverse in terms of behavior. Initially, slight differences in the responses of
neurons to incoming stimuli were believed to be noise. However, isolating the neurons
and testing their responses to stimuli showed that the response of each neuron - though
anatomically similar - varied. Further research at Carnegie Mellon University has taken
the research further to alter the stimuli delivered to the neurons; the results showed that
neurons responded based on the characteristics of the stimuli [101]; for example, while
stimuli characterized by rhythms triggered responses in some, it did not in others, and
while some responded to stimuli characterized by rapid changes, others did not. As this
research explains, the variations in neuronal responses in a group of heterogeneous neurons

14

are many folds more than those found in a group of homogeneous neurons, which suggests
that the variations of this diversity are not just coincidental.

The concluding finding of the work [101] was that neural diversity is essential for the
efficient and effective functionality of biological systems such as the brain. Additional re-
search by Thivierge [99] suggested that diversity plays complex roles in aspects concerning
our representation and interpretation of the world. He further proposed that the diversity of
neurons in a network enables a wider variety of responses with less effort.

In summary, neural diversity is another prevalent property of biological neural net-
works, whose constituent neurons have shown to vary in their responses even when they
belong to the same group. The variance allows for a broader range of output responses
from the network than if they were made up of a homogeneous group. In addition, it
also enhances efficiency in terms of the relatively fewer number of neurons required, and
to improve the effectiveness of neural networks in terms of the representational capacity
associated with it.

2.1.3 Multifunctional Neurons

Apart from the diversity between neurons even of the same anatomy, which was highlighted
in the previous section, neurons also foster more representational capacity by their ability
to be polymorphic.

The early belief about the nervous system was that it stimulates a pool of interneurons,
known as command neurons, which were responsible for the intended behavior. Eventu-
ally, it was found that interneurons - a class of neurons usually linking neurons to motor
neurons, glands, or organs - can exhibit a variety of responses depending on many factors;
including synaptic input, modulation state, and plasticity. These neurons are classed as
multifunctional neurons [18]. Multifunctional neurons can also, therefore, be regarded as
one of the facets of neural diversity. This is because they are not restricted in their behavior,
which would have made them strictly homogenous; but they exhibit a variety of behaviors
depending on the incoming signal and their individual properties.

There have been efforts to understand this property of neurons better; for example, work
by Marder et. al. [69] has shown that interneurons that activated for some motor behaviors
such as respiratory gill movements in invertebrates are also activated for other actions such
as spontaneous gill movements and sensory induced gill movements. The findings showed
that these interneurons are being shared to exhibit various behaviors. Further study by
Briggman [18] which focused on the multifunctional nature of neural circuits summarized
and inferred from earlier research, the factors that cause these several functional switches.

15

These factors were reported to include: inputs from sensory or projection neurons, the in-
fluence of neuromodulatory substances, and movement constraints on the organism’s body.

Two distinct projection neurons responsible for distinct behaviors (i.e. mill rhythms)
found in lobsters that were activated in parallel resulted in a switch in the configuration
of the network, enabling two distinct rhythms. Similarly sensory neurons, specifically
mechanosensory neurons, when activated simultaneously can cause a reconfiguration that
can result in different rhythm behaviors [18].

In addition to synaptic inputs, another influencing factor that can cause a neuron to
switch between behaviors is neuromodulator type. Neuromodulators are chemical sub-
stances that are released either to alter the properties of neurons, thus changes the way they
react to stimuli, or to alter the synaptic strength of a population of neurons. The release
of the neuromodulator could be targeted at specific cells, thus being released locally by
projection neurons or released in a more hormonal pattern to affect the whole population
of neurons. When released, these substances can alter the movement in organisms, switch
between movements or even create new movements [18].

In summary, multifunctional neurons could be considered a neural feature that enables
a smaller population of neurons to carry out tasks that otherwise would have required a lot
more neurons. In other words, it can be regarded as an efficiency-enhancing property.

2.2 Artificial Neural Network(ANN)

Artificial Neural Networks incorporate a variety of the properties of biological neural net-
works associated with learning and generalization. Typical examples of this include weight
adjustments to simulate the strengthening and weakening of connections, and transfer func-
tions to model the firing response of neurons based on incoming stimuli. Additional ex-
amples include weight decay to replicate the pruning of relatively unused connections over
time, which has been used as a regularization method. More recent examples of biologi-
cally inspired learning include the sleep-wake training routine modeled after the process of
memory refinement that occurs during sleeping in the human brain [51, 23], and the prop-
erty of depth (i.e. several interconnected layers of units) found in the brain, which inspired
deep neural networks [14].

In general, the architecture of artificial neural networks consists of neurons, topology,
and weights. The neurons are typically classified by their role as input neurons, hidden
neurons or output neurons. In analogy to the biological neural network, input neurons could
be regarded as the sensory neurons, hidden neurons as the inter-neurons which in artificial

16

i2 w2 Σ f

Activate
function

y
Output

i1 w1

i3 w3

Weights

Bias
b

Inputs

Figure 2.2: Components of a typical neuron.

neural networks do most of the computations, and finally, the output neurons - which are
the equivalent of either a motor neuron or the terminal neuron for the sub-network.

In artificial neural networks, the input neurons are typically not involved in any compu-
tation of the incoming signals. However, there are exceptions such as in relational neurons,
where input neurons have been used to produce additional sets of features by performing
some computation on the original set of features [92, 40]. The hidden and output neurons,
on the other hand, are typically involved in most of the computation. This is made possible
by the transfer functions assigned to each of the neurons in the hidden and output layer,
as well as by their topology and weights. The transfer functions in conjunction with the
topology to a large extent define the architecture of the neural network.

The transfer function is made up of an input combination function, also commonly
referred to as activation function or weight function, which essentially computes an activa-
tion value from incoming signals (x = {i1, i2, i3}) and the weights of their connections(W =

{w1,w2,w3}) (see Fig. 2.2). There are a variety of activation functions, some of the most
popular ones include distanced based functions such as Euclidean distance, Manhattan
distance, maximum distance, and dot product based functions such as the inner-product
[35, 36]. Table 2.1 showcases some of the popular activation functions. In conjunction
with the activation function, there is an output function which computes the output signal
of the neuron from the already computed activation value. There is a variety of these as
well (see Table 2.1), from projection-basis functions, which include the sigmoid, and the
hyperbolic tangent, and from radial basis functions, which include the Gaussian function,
and the multi-quadratic Gaussian [35, 36]. The activation function and the output function
make up the transfer function for a neuron and determine the type of transformation applied
to signals from other neurons. The component responsible for routing the signals produced
is the topology, which defines the connectivity between the neurons.

17

Table 2.1: List of activation (input combination) and output functions found in the litera-
ture [36].

Activation functions Output functions
Inner-Product Linear
Euclidean Distance Step
Maximum Distance Hyperbolic Tangent
Manhattan Distance Sigmoid
Minkovski Distance Gaussian

Multiquadratic
Bi-radial [38]

(a) A recurrent neural network topology. (b) A feed-forward neural network
topology.

Figure 2.3: Common neural network topologies.

The most common topologies of artificial neural networks are feed-forward, or recur-
rent. A feed-forward topology connects all the neurons from the previous layer to all the
neurons in the next layer, thus feeding forward the signals through the neural network (see
Fig. 2.3b). A canonical representation of recurrent topology, on the other hand, has self-
connections, typically used for the hidden units (see Fig. 2.3a). The self-connection enables
the neural network to have a temporal dimension/depth, which gives the neural network
memory that is useful for pattern recognition where having some context of other trends is
necessary. However, topologies are not strictly confined to these type of connections, espe-
cially in artificial neural networks that evolve their topologies [42, 97, 98, 6, 71, 5, 44, 46].

Learning in artificial neural networks involves optimizing each of its components, his
minimally includes adjusting the topology, weights and functional parameters of the trans-
fer functions. Relative to other components of the artificial neural networks, the least
researched direction is transfer function optimization. Typically, in the case of weight
optimization, the weights of the connections are adjusted using learning algorithms that it-
eratively adjust the weights. Examples of these include gradient-based approaches such as
Least Mean Squared (LMS), Backpropagation (BP) or Evolutionary Algorithm (EA) based

18

approaches [22, 112, 16, 12, 34, 109, 41, 25, 67]. In both cases, an objective function
such as a Mean Squared Error (MSE) approximates the generalization performance on the
dataset. The objective function also forms an error surface which needs to be minimized.
In the case of gradient-based approaches such as back-propagation, weight adjustments are
made by computing the gradient of the error surface in relation to the weights, and ad-
justments are then made accordingly. In the case of evolutionary algorithms, the cost of
the objective function is typically assigned as the fitness of the weights, and evolutionary
operators are applied to genetic representations of the more promising weights candidates
to produce variations. Both algorithms are essentially traversing the search space for the
set of weights with the least cost. In general, evolutionary algorithms - before the advent of
deep learning - have tended to be more robust due to their ability to escape local minima.

Topologies are also among the principal components optimized during learning. This
involves making or pruning connections. However, a fixed topology such as a feed-forward
architecture can be maintained, which makes it easier to train and significantly reduces
the complexity of the search space. Furthermore, it is also easier to study the underlying
computational strategy learned.

Transfer functions, on the other hand, are optimized by adjusting parameters such as
the bias weight, and output function parameters. In later chapters, we shall explore in more
detail some of the approaches of transfer function optimization found in the literature.

During training, a dataset is used to train the neural network on possible inputs; and de-
pending on the method of training; the desired output might be given to the neural network.
In which case, it becomes a supervised learning model. Alternatively, only the feedback of
the network’s output is given, in which case it becomes an unsupervised learning model.

Regardless of the training method, each pattern from a dataset is used to stimulate the
input neurons of the neural network. This pattern is then propagated through the network
through the connections between the neurons to the output neurons. In the case of a neural
network having more than one output neuron - such as in a multi-class classification; the
output of the neuron with the largest output value is typically selected, in what is known
as a winner-take-all method. Errors of each output neuron for all the patterns are then
calculated afterward using objective functions such as the Sum of Squared Error (SSE)
difference or Mean Squared Error (MSE).

In summary, there are many design parameters to consider, keeping in mind the in-
tended application of the Artificial Neural Network. These include: the number of neurons
in each layer, and if multiple layers would be needed. Connections are usually directly
proportional to the number of neurons used in a neural network; so a large network is
likely to have a greater number of connections, and consequently, a large search space -

19

if not constrained. The number of nodes and connections in a network essentially defines
its complexity. For optimal generalization ability of a neural network to be achieved, the
complexity of the neural network has to be matched with the complexity of the problem
[17]. This tends to be a delicate task which requires balancing between underfitting and
overfitting the problem.

Another crucial choice in the design of neural networks is the choice of transfer func-
tions for each layer, and if there are going to be layers that have hybrid neurons (i.e. differ-
ent combinations of transfer functions). As several studies have found [71, 6, 55, 49], some
choices of activation functions work more effectively than others for a subset of problems:
there is no one-size-fits-all choice for all problems. For example, linear output functions
work well as output nodes for regression problems, but might not be as suitable for proba-
bility estimation as a sigmoidal node function. Therefore, for every problem an appropriate
configuration of transfer functions for the problem is required. Although there has been
research towards transfer functions that adapt to the nature of problems [78, 98, 116, 115],
most of the popular transfer functions have usually been used as informal standards. This is
perhaps because of their use in various architectures such as the Multilayer Perceptron and
Radial Basis Function Network that are proven universal approximators [17]. Regardless,
the no free lunch theorem applies to all the components of the artificial neural network.

2.2.1 The Perceptron

The perceptron can be regarded as a simplified model of a single biological neuron, and
is the simplest form of an Artificial Neural Network. It is characterized by both input (x)
and output pathways (y). The input pathways act like dendrites, receiving features from
a given pattern, which is then operated on by the activation function. In the case of the
perceptron, this is an inner-product of the weights and input pattern vectors. Thus, the
weight vector W is given by {w1,w2 . . .wk,wbias} , and the input pattern x is represented
as {i1, i2 . . . ik, ibias}. Each input pattern can be thought of as a feature vector which holds
various measurements of a given state (such as car instrument readings, medical readings,
shuttle instrument readings), objects (facial features measurements), or any other form of
data that can be represented as a pattern recognition problem.

There is a bias as illustrated above in the perceptron, which is another parameter that
gives the learning algorithm more control of how it projects the decision boundary [17, 58].
A neuron in a neural network is usually accompanied by a bias value, ibias, which is usually
set to one, and its weight, wbias, is optimized as a parameter by the learning algorithm.

20

j =
k

∑
i

wiii +wbiasibias (2.1)

The inner product activation function, given by Eq. 2.1, of the weight vector and input
pattern results in the action value. It is then applied to the output function that determines
the networks output. This can come in various forms; from step functions which produce
binary outputs, to sigmoids which can be regarded as smoothed step-functions that produce
a continuous output over a range of values.

The perceptron can learn with great accuracy various linearly separable problems. How-
ever for problems such as the XOR that are classified as non-linearly separable problems;
it not capable of learning, and performs poorly. In the following section, the reason behind
this is explained.

2.2.2 Decision Boundaries and Linear Separability

The perceptron is applicable to classification problems which require that given a set of
input patterns xi = {i1, ...iK} be classified into their respective categories (or classes) yi ∈
c1, ..cN . Such problems might involve more than two classes and can be categorized as
either linearly separable and non-linearly separable problems. Basically, this to a large
extent defines the difficulty of the problem.

Classification problems of N classes are essentially a class of problems that involves
forming decision boundaries projected by transfer functions onto the K dimensions of the
input space (each dimension representing a feature of the input pattern xi), which general-
ize the membership of patterns based on the training dataset (xi,yi) ∈D. Depending on the
transfer functions, these boundaries will differ in shape and form. Thus, the goal of train-
ing is to fit the decision boundaries to the training dataset while maintaining the delicate
balance between underfitting and overfitting. In the next chapter, this is explained more in
the context of the bias-variance decomposition.

In the case of linearly separable problems, the members of each class can be dissected
into their respective classes linearly. However, in most cases the hyperspace of classifica-
tion problems is non-linear and cannot be separated with a linear hyperplane alone. This
is essentially the core argument of Minsky’s paper that discredited the perceptron as high-
lighted in [17]. Undoubtedly, this is the nature of real world problems which are complex.
The hyperspace of such problems would require increased network complexity to be better
able to separate members of each class appropriately [17]; specifically, regarding the net-
work architecture such as number of nodes, the number of hidden layers, the number of
nodes per layer, and transfer functions.

21

In the next few sections, we present neural networks that have been proven to be able to
approximate any arbitrary function - provided they are allowed to match their complexity
with the complexity of the problem. These are Multilayer Perceptron (MLPs), and Radial
Basis Function Network (RBFNs). We also briefly highlight the topic of generalization and
model complexity.

2.2.3 Multilayer Perceptron (MLP)

The Multilayer Perceptron is an example of a neural network architecture that is theo-
retically proven to be able to approximate any arbitrary decision boundaries; thus, it is
described as universal approximator. A universal approximator can approximate any arbi-
trary function. However, this is provided it can adopt sufficient complexity - in the form
of more hidden units and layers [17]- that matches the problems complexity. However in
practical terms, network size is limited by the computational capacity. Also, large models
are computationally expensive to train.

The Multilayer Perceptron differs from the Perceptron as it has multiple layers of neu-
rons. Training the connection weights of the layers is traditionally done using the Back-
propagation (BP) algorithm: a gradient descent algorithm which is typically characterized
with some drawbacks such as its vulnerability to getting stuck in local minima. The basic
framework of the Multilayer Perceptron is that a network uses linear or sigmoidal output
functions, and should consist of at-least one hidden layer. It is an architecture that revolves
around having a hierarchy of processing units (neurons) in the hidden layer and adapting
the number of layers in this hierarchy, and the number of nodes contained in each according
to the problem.

Each node in the hidden layer of the network projects a decision boundary, as does
a perceptron in the hyperspace. The form of the decision boundary projected depends
on the activation function adopted by the neuron; taking the form of a linear hyperplane,
if it’s a linear activation function, and the form of a continuous ramp, if it is a sigmoid.
The hierarchy of layers in the Multilayer Perceptron enables it to combine these decision
boundaries into more complex non-linear decision boundaries.

The Multilayer Perceptron is a model that has had various extensions; one example
of such an extension is the proposition of using a multiplicative rather than a summative
combination of inputs, which increases the representational capacity of the neural network.
Such a unit will perform input signal combination as a product operation, instead of a
summation (see equation 2.2).

22

j =
k

∏
i

iwi
i (2.2)

Given that the weights of input connections to this node are binary, this unit is referred
to as a higher order processing unit or sigma-pi unit. However, in cases where the weights
are not fixed and can be real values, it becomes a product unit(PU) activation function.
The advantage of using higher order units such as the product unit is increased information
capacity [17]. Thus, fewer units would be required as compared to when a summation unit
is used resulting in smaller network architectures. However, the use of higher order units
causes a disturbance in the weight space [40]. Specifically, it is characterized with more
local minima. This is a consequence associated with increased computational capacity
which presents various alternatives of sub-optimal computational strategies.

MLPs have been used in a wide variety of problems [72, 116, 92, 22, 59, 76], some of
which include segmentation problems, an example being an implementation by Magnotta
et al. (1999), where image intensities of neighboring voxels were used as image features.
This was further developed by Powell et al. (2008) for the segmentation of brain structures
such as putamen, caudate, thalamus, and cerebellar regions of interest as highlighted in
[76]. While an extension of it such as the higher order neural network has been applied in
areas like invariant pattern recognition by structure [9], where it was modified to improve
computational time.

2.2.4 Radial Basis Functions Networks (RBFN)

An RBF is another neural network architecture that has found several applications in real
world problems. Like the MLP, it has also been proven by Hartman et al.(1990) to be a
universal approximator, provided there is a sufficient number of hidden nodes [17]. It is a
model that implements hidden nodes that use non-linear transformation functions on input
signals. The transfer functions of the hidden units typically consist of a distance-based
activation function, and a radial-basis output function.

RBFs are functions that are generally characterized by a center, which is the peak of
the function. Points away from the base of this peak decrease rather rapidly, forming an
almost bell-shaped curve. It is also characterized by a width, which determines how wide
the bell spans. Examples of some of these types of functions include: (i) the Gaussian (ii)
multi-quadratic, and (iii) inverse multi-quadratic functions.

The Radial Basis Function Network is a three-layer network [17, 62]. The first layer of
connection weights between the inputs and the hidden units, act as a vector that represents
the centers of the radial basis units. For each of the hidden units, the distance between

23

each feature value ii ∈ x and its corresponding weight wi ∈W is calculated, usually with a
distance-based function such as the Euclidean distance given by equation (2.3).

j =

√√√√ k

∑
i
(wi− ii)

2 (2.3)

where,

• W - is the weight vector of incoming connections.

• x - is the input vector.

g(x) = e−(j−µ)2
/

2σ2
(2.4)

Afterward, the differences are summed to an activation value which represents the dis-
tance between the feature vector (pattern) and the center of the radial basis unit. This is
then transformed by a radial basis function - such as a Gaussian function, g(.) (see equation
2.4). Thus, the resulting output value for each node in the hidden layer of a radial basis
function is given by equation (2.5).

z = g(j) (2.5)

The variance (σ) of the function specifies the region covered by the function in the in-
put space while the mean (µ) determines the peak of the Gaussian function. The centers of
each of the basis functions have to be evenly spread across the input space for more optimal
performance. In addition to that, there has to be a sufficient number of basis functions to
cover the input space [40, 17]. Thus, the more the number of basis functions; the better the
approximation of the problem’s underlying mapping function. However, it is a balancing
act; if the basis functions are more than necessary, it can cause an increase in the computa-
tion complexity, and risk overfitting the dataset. Radial Basis function Networks have been
used in many applications [113, 114, 115, 56].

2.2.5 Generalization and Model Complexity

The Artificial Neural Networks are noted for robustness in their learning ability, and abil-
ity to generalize. However, designing an ANN requires choosing parameters such as the
transfer functions, topology of the neural network (i.e. feedforward or recurrent), and the
number of layers and nodes, which is a delicate task. This is because these define the com-
putational capacity of the neural networks, which subsequently directly affect its ability to

24

generalize. If it is designed with relatively less complexity than the problem, then it may
underfit the problem, and if it is relatively more complex than the problem it may lose its
ability to generalize to unseen datasets. Considering also that there is yet to be a defined
method for designing neural networks, and knowing the role of that their architecture plays
in its successful application for a given task; it makes the task of finding approaches to
optimizing neural network architectures essential.

It is known that matching the complexity of neural network’s architecture to the prob-
lem’s complexity is one way optimal generalization ability can be achieved by a neural
network [17], and various methods have been suggested to achieve this. These were sum-
marized to be classifiable into three categories according to Jankowski [55], and include
(i) regularization (ii) ontogenic grow/shrink network, and (iii) choice of appropriate trans-
fer functions (i.e. transfer function optimization). However, in this section, only the first
two methods mentioned will be explained, while the approach dealing with the choice of
transfer functions is left to be discussed in more detail in later chapters.

In regularization methods, a penalisation scheme is applied to the objective function,
which typically factors in the neural network’s size and penalizes accordingly. There are
various forms of penalization that have been used in studies [55]. One approach is weight
decay, which diminishes the weights of connections towards zero. The effect of this is that
weaker connections, which are assumed to be of less importance, are pruned in the course
of training. However, this does not consider that stronger connection weights are also be-
ing equally penalised as weaker connections, making it counterproductive as explained by
Engelbrecht [40]. However, a variant by Hansen - highlighted in [40] - used functions
such as hyperbolic and exponential functions to determine the amount of penalization to
be made for each weight; weaker connection weights are penalized more than relatively
stronger connection weights. Some other approaches similar to regularization include pe-
nalizing based on the number of weights and a regulatory constant, proposed by Weightend
et al, minimisation of networks energy, measured as the sum of each hidden unit’s activa-
tion squared as proposed by Chauvin, and regulating the sharing of hidden units between
output nodes studied by Yasui - as highlighted in [40].

The second approach to complexity control is the use of grow/prune methods in an at-
tempt to find the appropriate network size for a given problem. In constructive or growing
methods, operations that add nodes to the network are included in the training process, and
usually, rules are implemented to govern this growth. The network starts off with a small
network architecture and grows the network if the networks architectural complexity is still
not able to learn the problem with a desired estimated generalization error. Engelbrecht
[40] explains that the rule that governs when to increase the network size and when to stop

25

is crucial for obtaining optimal network architectures. This is due to the rule directly in-
teracting with the network’s complexity and in consequence, its generalization ability. Its
counterpart are the pruning methods that remove nodes and connections to shrink the size
of the network from a predetermined size. The decision of which node or connection to
prune is usually based on a rule that relies on measurements of how useful the node or con-
nection is to the network performance. It could also involve statistics based methods such
as saliency tests. This approach towards complexity regularization could be expected to
have faster convergence. Also, though Engelbrecht argues that this approach is guaranteed
to learn the underlying mapping function for the data; this is only under the precondition
that the network’s initial size is sufficiently complex. If the initial complexity of the net-
work is relatively less than that of the problem; it might result in the training process not
being able to learn the underlying function of the problem. Bishop’s analogy on polyno-
mial curve fitting describes the delicate nature of finding the balance between overfitting
and underfitting problems [17].

Various approaches for pruning in artificial neural networks have also been studied,
and can be classified into: pruning by evolutionary algorithms [12, 34, 98, 71], and pruning
by statistical test [32]. Intuitive pruning methods assume that nodes that are frequently
activated and have larger connection weights are more important, and nodes that lack this
are less important. However, this assumption is not without its flaws; weights that are weak
are important between hidden and output nodes [40]. Evolutionary pruning methods allow
pruning of nodes to be done by the evolutionary algorithm; it can be by adding operations
in the form of mutation operators [12, 34, 98], or encoding binary values representing the
status of the connections onto the gene string to be switched off or on [71]. However, neural
networks are sensitive to a node or weight removal. This is the motivation for the use of
sensitivity analysis by other approaches [32].

In summary, model complexity plays a significant role in determining the generaliza-
tion ability of neural networks. This relationship is further explained in a later chapter in
relation to the bias-variance decomposition. In the following sections, we highlight some
evolutionary algorithms and hybrids of artificial neural networks which evolve the archi-
tectural components of artificial neural networks, and as a result, control their complexity.

2.3 Evolutionary Computation

Evolutionary Algorithms (EAs) are a set of algorithms that model problems as an evolu-
tionary process and implement the characteristic events such as mutation, recombination,

26

and population seeding. Evolutionary Algorithms (EAs) are ideal for exploring complex
search spaces.

In this section, we highlight only some evolutionary algorithms briefly, as it is not the
primary focus of the research. Firstly, the Genetic Algorithm (GA) which is one of the
most widely used in optimization problems, with so many variations that extend from it
[39, 74]. Afterward, the working principles of another evolutionary algorithm, Differential
Evolution (DE) is explained.

2.3.1 Genetic Algorithms (GA)

The Genetic Algorithm (GA) is a widely popular population-based algorithm that is bio-
logically plausible. The concept of this algorithm is basically to form a representation of
the problems parameters that are then encoded onto an array, commonly referred to as the
chromosome, and adopt evolutionary operators such as mutation and cross-over to find an
optimal solution. There are various representation schemes possible, though these can all
be classified as binary or real value representations [107, 109]. In binary representational
schemes, these chromosomes will represent the parameters of the problem in binary, while
in real values representations, real values are used to represent parameters. Depending
on the number of parameters and encoding approach, the chromosomes will vary in their
length. However, canonical genetic algorithms use binary representations of a problem, so
the parameters have to adopt an approach that encodes parameters onto a chromosome as
binary representations. Such representations typically have to compensate with relatively
complicated encoding methods so that the length of the chromosome is not too long -as
this complicates the search space, and not too short that it causes a loss of weight preci-
sion, which will significantly affect the accuracy of approximating the mapping function
(i.e underlying function of the problem) [112, 109, 108, 111].

However, in the case of real value representations [98, 4, 11], the precision of weights
can be modified without altering the length of the chromosome. Standard evolutionary
operators have to be modified to deal with these changes.

Once the problem has been represented in the form of a chromosome, a finite popu-
lation of m chromosomes with different parameter variations is generated randomly and
encoded, P = {c1,c2,c3 . . .cm}. However, to ensure a better performance advantage, prior
knowledge of the context of an application can be used to optimize properties of the ini-
tialization process such as the distribution of the random number generated, and range.
This significantly reduces the search space complexity, thereby increasing the convergence
speed. The next step in the process is to evaluate the solutions using an evaluation function,
f (.). This function is another crucial element of the evolutionary process which can affect

27

its performance in a number of ways. One of such ways includes its ability to find optimal
solutions. There is no general evaluation function for all problems, and one would ideally
want to carefully craft a problem specific evaluation function, which takes into account the
nature of the domain [107, 108, 112, 109]. All chromosomes or candidate solutions are
scored using the evaluation function. This scoring process is the biological equivalent of
the process that determines the fitness of individuals in the population. The next process
in line is the selection process. It relates to the survival of the fittest trait found in biology
and has two steps; the first step, selection, selects candidates that will make up the next
generation of candidates solutions based on fitness. The other step, reproduction, creates
new individuals that will replace weaker candidates using evolutionary operators (i.e. mu-

tation and cross-over). The mutation operation alters fitter individuals selected typically at
random to alter their chromosomes while the cross-over operation forms new candidate so-
lutions by exchanging chunks of genes from the gene strings (chromosomes) of two parent
individuals. The choice of which operator to apply can be selected on a probabilistic basis.

These processes are repeatedly executed until a stopping criterion is met, which could
be after a maximum number of generations (i.e. iterations), or/and if a solution in the
population has reached the desired fitness level.

2.3.2 Differential Evolution (DE)

Differential Evolution is also a population-based evolutionary algorithm developed by Storn
and Price (1996) as highlighted in [40]. Although, its efficiency at converging on near opti-
mal solutions has yet to be formally proven as explained by Jones [58]; it has been found to
be efficient and effective for a wide variety of problems. It can be considered an extension
of the Genetic Algorithm. The only significant difference between differential evolution
and other classical evolutionary algorithms is its approach towards mutation and recom-
bination of individuals in the population. It also introduces two new parameters: (1) a
weighting factor and, (2) a probability of cross-over.

In differential evolution, the mutation operation starts off by randomly selecting three
solution vectors from the population. Assuming these solution vectors are labeled as Vx,Vy

and Vz; then the next step is to find the difference between the first two vectors, i.e. Vx

and Vy, which is multiplied by the weighting factor, F , and then added to the solution
vector of the third solution, i.e. Vz, resulting in the mutant solution’s vector, Vn (refer to
equation 2.6). This not only helps explore more regions of the search space as a result of
its stochastic property but also results in a property found in particle swarm optimisation -
another population-based algorithm that accounts for the effects of other members of the
population on each individual vector - known as the flocking behavior.

28

Vn =Vz +F (Vx−Vy) (2.6)

Extensions of this algorithm such the one used to evolve Neural Diversity Machines
[71] implements a recombination stage which follows afterward, where the mutant solution
and the third solution, Vz, create a new vector (or solution) by competing on a probabilistic
basis (i.e. probability of cross-over) to contribute to the new solution Vn. In other words,
if a random number generated is less than the probability of cross-over; a gene from the
mutant vector is copied. However, If it is greater, then the gene from the third solution is
copied instead. This vector is then evaluated and is only copied into the next generation if
it has better fitness than the third solution. This behavior helps to relief pressure that might
otherwise lead to premature convergence.

2.4 Hybrid Artificial Neural Networks

In this section, we highlight some of the works on evolutionary artificial neural networks.
However, chapter-specific literature reviews provide more in depth reviews of some of the
literature, and the contributions to the literature.

2.4.1 Evolutionary Artificial Neural Networks

A relatively new direction for designing the architecture of Artificial Neural Networks us-
ing Evolutionary Algorithms (EA) has gained some attention from its potential in finding
near-optimal architectural designs for ANN [110, 108, 42, 71, 78, 46, 44, 39]. The idea is
to use evolutionary algorithms in the task of optimizing design and training parameters of
ANN such as weights, transfer functions, and architecture (topology), among other compo-
nents. In general, the significant developments in the field of evolutionary ANN have been
on a number of aspects of neural networks [107, 108, 110], including - but not limited to:
(1) weight optimization (2) transfer function optimization, and (3) architectural optimiza-
tion. The task of optimizing these aspects was explored using evolutionary methods, such
as Genetic Algorithm (GA), and Genetic Programming (GP).

2.4.1.1 Weight and Architecture Optimization using Evolutionary Algorithms

The classical approach to optimizing the weights of an ANN is to use gradient-descent
based algorithms such as Backpropagation (BP). Backpropagation tackles the task of opti-
mizing the weight by reducing the error associated with the weights relative to the networks

29

error by computing their respective gradients, which is followed then by proportionate ad-
justments. It does this iteratively until there is an acceptable difference between the ac-
tual error and the desired error. However, due to its reliance on the gradient, the canonical
Backpropagation was known for its vulnerability to being stuck at local minima [17]. Thus,
somewhat limiting its potential. However, with Evolutionary Algorithms such as Genetic
Algorithms (GA), its feasible to make near-optimal weight optimizations, and also have
relatively less worry about local minima, due to its stochastic property. An example of the
implementation of an Evolutionary Algorithm as highlighted in Azzini, A. & Tettamanzi’s
[11] survey paper was the use of Genetic Algorithms (GA) by binary encoding weights,
GENITOR, by Whitley et al. [105], which ranks genetic strings according to their fitness
values. A recombination routine did this with a bias towards selecting genetic strings with
higher ranks as parents. The parents are then recombined, and the offspring is evaluated
and replaces the weaker parent. Another related work is by Montana and Davis [77], where
they used an array of real numbers, which were initialized randomly using a distribution
function. Their results showed that using their evolutionary algorithm training process was
much faster than the traditional BP (Backpropagation) for the problems they considered
[11].

In terms of architecture optimization, one of the prominent works was by Stanley and
Miikkulainen [97, 98] referred to as NEAT (NeuroEvolution of Augmenting Topologies).
It augmented the topologies of an evolutionary neural network using structural mutation
and crossover operators, and population seeding in the initial phase using uniform distri-
bution. One of the unique contributions of this work was the ”historic marking” of the
neural networks, which influenced cross-over without computationally expensive topolog-
ical analysis. In addition to serving as a more efficient means to crossing over, it also
doubled as a diversity maintenance scheme. However, fitness sharing was also used as a
more explicit diversity maintenance scheme. The resulting effect was a speciation effect
which protected various computational strategies from being dominated. Another work re-
lated to NEAT which also modified topologies by cross-over was SimBa [34] and SimBa2
[12], which relied on topological similarity analysis for cross-over operations. In compari-
son to NEAT this approach has a computational overhead introduced by the analysis. Other
relatively recent works discussed in more detail in the final contributory chapter of this the-
sis, use co-evolutionary algorithms to represent neural networks. These include COVNET
[44], SANE [78], and CoSyNE [46] which have all shown promising results.

30

Chapter 3

The Notion of Transfer Functions
Diversity

This chapter explores how neural diversity can improve generalization ability in the context
of theoretical proof from the literature [17] that links generalization to bias and variance,
i.e. the bias-variance decomposition and the more qualitative meta-learning theories [102,
103, 75]. It does this by presenting both definitions of bias from both the statistical and
meta-learning perspectives in the literature [17, 102, 103, 75], which form the basis of the
arguments that we use to relate generalization to transfer function diversity, and how it can
improve it.

The following introductory sections will present the motivations behind transfer func-
tion optimization, related works regarding transfer function optimization, and the contribu-
tions of this chapter. This is then followed by a detailed chapter overview.

3.1 Motivation

The transfer function of an artificial neuron, h is composed of the activation function,
gh(x,W) and output function, fh(gh(x,W)); the activation function computes the action
potential, ah from the input and weight values (i.e. x = {i1...ik}, and W = {w1...wk}, re-
spectively) of the incoming connections. The output function computes the output of the
neuron in response to the action potential. The transfer functions yh = fh(gh(x,W)) are
responsible for forming the decision boundaries in the input space among other tasks such
as feature selection. The shape and form of these decision boundaries vary with the type
of transfer function. Radial-basis functions, for example, have a cluster-like behavior of
forming decision boundaries: points in the input space closer to the center of a radial basis
function generate a higher response while points further away from the center tend towards
progressively lower responses. Linear functions form a hyperplane in the input space which

31

separates the points. Sigmoid functions are similar but differ because they form sinusoidal-
like hyperplanes. Neural Networks learn classification problems by optimizing these deci-
sion boundaries to classify observations (i.e. points in the input space) into their respective
classes. Training is typically done on a subset of the data set that should be representative
of the whole sample. Ideally, the neural network should learn the underlying function of the
problem and be able to predict unseen data with significant accuracy. This is the essence of
generalization.

However, though transfer functions have a critical role in learning, there has been rel-
atively little research in this direction as compared to other aspects - such as weight opti-
mization methods, as explained by Duch [37]. A closely related aspect of neural networks
- topological optimization - also has had relatively less research as well. By comparison,
other aspects such as training methods and regularization methods have received relatively
more attention as compared to transfer function optimization [49, 54, 55, 38, 49, 71, 6, 5].

Furthermore, there is also the heavy reliance on using projection basis functions such
as inner-products with sigmoids, and radial basis functions such as Euclidean distance with
Gaussian function as informal standards for transfer functions. These transfer functions
are used as generic transfer functions for all problems. This is to a large extent due to the
theoretical work with regards to their universal approximation capabilities [17]. However,
this does necessarily guarantee that the models produced are efficient and effective. By
efficient, we are referring to using a minimal number of hidden units to learn a problem,
and by effective we are denoting significant generalization ability. Usually, the complexity
of the neural network is increased to reduce the training error. However, some portion of
the error could be as a result of the inherent bias of the chosen transfer function which
might not be suitable for the problem.

Like other components of a neural network such as its weight optimization algorithm
and constraints; transfer functions have a bias usually based on assumptions [103, 102, 75,
3, 61]. In the case of radial basis units, such as Gaussian functions, it is assumed that the
points representing instances of the classes in the input space have a normally distributed
class membership, and as such can be modeled with adjustments to a Gaussian function.
It is more biased to producing higher responses towards features close to its center, but
this progressively decreases further away from the center. In the case of inner-product
with sigmoid transfer functions, the assumption is that the points in the input space can be
classified using discriminatory hyperplanes.

Moreover, the bias of the transfer functions can compound with other biases, such as
the bias of constraints on optimization parameters or even regularization methods, to have
a limiting effect on the neural network’s ability to find a solution with the most optimal

32

generalization ability [102, 103, 75]. Notably, constraints such as the maximum number of
hidden units can compound with the bias of the transfer function to limit or even prohibit
learning. This can have a significant effect especially in cases where the transfer function
being used has an inappropriate bias for the given problem.

An unsuitable transfer function bias can affect learning accuracy, and generalization
ability (approximated by the testing error). This can be illustrated with an example of
a simple classification problem. Suppose the intent was to classify the gender of people
based on their height and feet size, and we built up a balanced dataset. Upon visualizing
the distributions of feet size according to gender, we should observe normal distributions
for both men and women (as illustrated in Figure 3.1(a)). Likewise, we should also ex-
pect to see a normal distribution for the height of both men and women (as illustrated in
Figure.3.1(b)).

(a) (b)

Figure 3.1: Scatter plots of feet size and height for both genders.

If we are experimenting with linear functions, then the set of hypotheses available for
such a learner, HL will be solutions that are linear functions or made up of linear functions.
This includes the hypothesis set {h1,h2,h3} as illustrated in Fig. 3.2. The hypothesis h2

seems to have the best decision boundary among the three. We can expect this to result in
better generalization ability as compared to the other hypothesis.

However, the bias of linear functions is clearly not suitable for this problem. The
chances are that h2 might have a generalization ability that gets worse as the testing set
gets larger. This is because points in the overlap region which have been previously un-
known are likely to increase, and the rigid boundary that divides the two classes does not
account for this overlap. If the neural network’s complexity is increased such that it can
access more complex hypotheses from the global Hypothesis Space HG, then it is likely to

33

Figure 3.2: Some of the various possible hypotheses with linear functions.

find a decision boundary that reduces the training error. Though, this increases the risk of
over-fitting. The bottom line is that the bias of the transfer function is clearly not suited to
the problem.

Figure 3.3: Linear decision boundary not accounting for overlap showing relatively more
misclassified patterns as a result of the inherent bias (i.e. bias-error).

As illustrated in Fig. 3.3, although the classifier has separated a majority of the points
from the two classes into their respective classes, there are still points that remain misclas-
sified as a result of the bias of the decision boundary. In this case, the bias of the decision
boundary is a consequence of the assumption that the classes should be linearly separable.

34

Figure 3.4: Ellipsoid decision boundary showing relatively fewer instances misclassified.

However, if we consider an ellipsoid decision boundary (Fig. 3.4) - such as one that
can be exhibited by a radial basis function unit. We can see that it has relatively fewer
points that have been misclassified, which might not purely be as a result of the bias of the
transfer function, but as a consequence of the noise in the dataset. In this case, we have a
more appropriate form of bias that assumes that the instances in the input-space produced
by the classes can be modeled with a Gaussian function. Indeed, that was the case.

In a nutshell, transfer functions like any other neural network building block contributes
to its generalization error with either some level of bias-error, such as the transfer functions
not having the right sort of bias, or having very little of it as a result of its flexibility, re-
sulting in over-fitting: in which case, it results in increased variance error. As such, in
retrospect to the role of the transfer function in learning and generalization, there is a need
for more approaches towards transfer function optimization oriented approach towards ef-
ficient learning.

Transfer function diversity is a nature inspired facets of transfer function optimization
[71]. Transfer function optimization is important for many reasons: firstly, it the important
role in forming decision boundaries necessary for learning. Secondly, another reason for
researching ways of optimizing transfer function is to improve the efficiency of neural
networks, since optimized decision boundaries are likely to result in more efficient and
effective neural network models -given appropriate training [37].

Thirdly, transfer function optimization can lead to more robustness in learning. This all
boils down to the no free lunch theorem; no algorithm is universally the most optimal for
all possible problems. However, for a small subset of problems, there could be an algorithm
that is more robust. For a learning algorithm to be robust, it will have to be able to adapt
its bias to enable the search for the computational strategy that best describes the underly-
ing function. In the case of artificial neural networks, the weights, topology and transfer

35

functions among other components will need to be optimized according to the problem to
enable the neural networks models to be applied to a variety of problems. The increased
computational capacity as a result of transfer function optimization and appropriate training
leads to a robust learner. In this work, we specifically emphasize on the study of transfer
functions and topology because of their critical role in learning.

Finally, the field of artificial neural networks has been driven by a variety of neuro-
science findings. Artificial neural networks are nature inspired after all, so it is only natural
that discoveries from neuroscience continue to guide research of artificial neural networks.
There is a lot of diversity in biological neurons, in the retina alone, there are more than
50 different types of neurons. Marder [69, 70] also found that even in neurons that were
anatomically identical, there were some behavioral differences between them when they
were subjected to the same stimuli. Briggman [18] and Marder [69, 70] have found that
diversity of biological neural networks is responsible for the efficiency of biological neural
networks, making them more compact. In addition to that, they also stated that this diversity
enables biological neural networks to exhibit a wider range of responses without the need
for more neurons. In other words, neural networks are likely to have more computational
and representational capacity.

This work essentially introduces neural diversity in the form of transfer function diver-
sity in artificial neural networks, as a facet of transfer function optimization for efficient
learning. This has shown promising results in preliminary work done by Maul [71], which
showed similar properties associated with neural diversity in biological neural networks.
Specifically, the neural network models produced showed efficiency and promising gener-
alization ability.

3.2 Related Works

There are various works that have been done in relation to transfer function optimization.
These works can be classified by their main argument as : (i) meta-learning [3, 61], (ii)
theory of duality of functions [47, 55, 30, 31], (iii) nature inspired computing [71], and (iv)
flexibility enhancements of transfer functions [28, 41].

From the meta-learning perspective, it is believed that since there is no one-size-fits-
all for the choice of artificial neural networks, then it makes sense to make as many of
the components adaptable. This also involves the use of meta-rules or a meta-learner, to
determine which architecture should be used. Often meta-features are used to measure
the similarity between the problem at hand, and the knowledge-base of models and their
performance on problems. The model architecture that works best for the most similar

36

problem encountered before is then used. Usually, this knowledge of the performance of
architectures, and the features of the problems are accumulated as the learning algorithm
encounters more problems [3, 61, 103]. In the context of transfer function optimization,
works done in this respect include [3, 61], where transfer functions are selected from a pool
of transfer functions made up radial-basis and projection-basis transfer functions.

The second class of works [47, 54, 55, 38, 49] is based on the theory of duality of
functions by Donoho (Donoho, 1992). The theory proves that any continuous function can
be decomposed into two functions: a projection basis function and a radial basis function.
However, there is yet to be any standard methods for approximating the underlying function
of problems with the component functions as Gutiérrez highlighted [47]. Works done in
this respect also choose the transfer functions of the target neurons from a pool of transfer
functions from both classes of these component functions, i.e. radial basis and projection-
basis functions. In essence, these models are related to the works from the meta-learning
perspective [3, 61] regarding their choice of transfer functions.

Biological neural networks inspire the third class of works [71] on transfer function
optimization. One of such inspirations is neural diversity. Neural diversity is one property
of biological neural networks which is believed to be one of the reasons why they are so
efficient [18, 101]. Works done in this respect are quite a few, among which is that of Maul
[71], where a pool with a variety of transfer functions is used to optimize the choice of
transfer functions for each hidden and output layer neurons. Unlike works from the other
classes from the literature, these include higher-order, and statistical transfer functions -
which bears resemblance to transfer functions being used for deep learning. These were
found to evolve feature filters frequently.

The final class of works [38] is to have universal transfer functions that are capable
of morphing into different forms (i.e. polymorphic/flexible) according to the nature of
the problem. Examples of this include the bi-radial transfer function [38] which can ex-
hibit a wider range of shapes and forms. It can even take the form of a Gaussian transfer
function. Other works, in this regard, include the q-Gaussian transfer function [41], and
a self-adaptive sigmoid function [95]. Both introduce parameters that give the learning
algorithm additional representational capacity.

It is worth mentioning that most of the works from these diverse perspectives obtained
similar findings. Especially in the case of transfer function pooling [47, 71, 5, 6, 61, 3]
and polymorphic/flexible transfer functions [55, 28, 41, 38, 54], where they found that the
models were relatively less complex, yet had better generalization ability. Interestingly,
the polymorphism and diversity in the biological neuron are believed to be responsible for

37

the same property of efficiency and representational capacity in biological neural networks
[18, 101].

3.3 Contributions

There is still need for extensive research particularly in the area of transfer functions opti-
mization. Related works [47, 71, 61, 3, 55, 38, 28, 41], have already shown the exceptional
properties of generalization and relatively lower complexity that emerges in models of ar-
tificial neural networks that have their transfer functions optimized one way or another.

The gap in the literature is that there is hardly any studies that draw from findings of
neuroscience for the purpose of transfer function optimization, even though it has been
one of the primary sources of inspiration for the field since it’s inception. Furthermore,
there has been relatively little research on studying the underlying strategies that result
from these hybrid artificial neural networks to uncover insights as to how they achieve
significant generalization ability with significantly less complexity in terms of hidden layer
size.

This chapter’s main contribution is that it explicitly shows that neural diversity in the
form of transfer function diversity can improve generalization performance in the context
of literature [17, 103] that links generalization ability to bias and variance. It does this by
using works from the literature [17, 102, 103, 75] that relates bias and variance to gener-
alization performance as the basis for the argument of how transfer function diversity can
improve generalization ability.

3.4 Chapter Overview

In this chapter, we shall look at the literature related to transfer function diversity. In par-
ticular, we will show the critical role of bias in learning and how transfer functions -among
other neural network components- introduce a bias that directly affects the generalization
ability of artificial neural networks. This is explained in the light of both the meta-learning
and statistical perspectives and presents one of the contributions of this chapter. The main
contribution of this chapter is then presented, which shows that transfer function diversity
can improve learning by resulting in a neural network with a self-adaptive bias, and why
that is essential for generalization in learning. This is elaborated formally with the help of
a state-graph.

In this chapter, the nature of the search space of learning algorithms is described in
general. This specifically includes sections that explain the input space, computational

38

strategies space, and the bias space. This is followed by an explanation of the role of bias
in learning. This consists of sections that consider the definition of bias from both the
meta-learning and statistical perspectives and shows that both essentially explain the same
effects. It also contains sections that illustrate how transfer function diversity can improve
diversity by modeling the computational strategies space as a state-graph. Afterward, it
is shown that bias substantially determines the set of hypotheses or computational strate-
gies available to the neural network, and as such needs to be self-adaptive to ensure better
generalization ability and robustness.

3.5 Chapter Background

3.5.1 The Nature of the Search Space

Literature from the meta-learning perspective presents a stacked representation of the input
space, where there are three layers: the input space, hypothesis space, and the bias space.
In our work, we describe the hypothesis space as the computational strategy space. In this
section, we shall highlight the role of these search spaces in learning.

3.5.1.1 Input Space

The input space (feature space) is a hyperspace of k dimensions, where the number of
the dimensions is determined by the number of features for the problem, x = {i1, i2...ik}.
Ideally, the points in this search space - which are meant to represent a case of the problem
- should be representative of the problem. This includes having a balanced set of points
in the dataset D such that each outcome (i.e. class) has about the same number of cases.
An unbalanced set of points for the outcomes C = {c1...cn} (where n is number of classes)
of these cases will not be entirely representative of the nature of the problem. This can
mislead the neural network to form an incorrect hypothesis about the nature of the problem,
resulting in an inaccurate generalization. This happens when computational strategies that
ought to describe the problem are incorrectly scored due to the imbalance in the data set. In
addition to a balanced dataset, the set of features x used to describe the problem also plays
a significant role in the choice of the computational strategy used by the trained model. An
inadequate set of features is likely to fail in capturing certain dimensions of the problem,
and consequently, it’s true nature. This incomplete information is likely to result in an
inaccurate hypothesis of the underlying function of the problem. As a consequence of this,
the neural network learner is likely to adopt a computational strategy that will be unable
to make the correct generalization of the problem. Likewise, a feature set that has higher

39

dimensionality than required is likely to make learning more difficult. This is because the
additional dimensions introduced by the additional features of the problem might clutter
the true nature of the problem by providing information that might not be related to the
required prediction. This makes it difficult to select a computational strategy that forms the
correct decision boundaries which separate the outcomes of the problem.

In summary, the input space is a hyperspace that represents the dataset. This points
to the significant role of dataset gathering in machine learning. It has a role that is as
significant as the learning algorithm.

3.5.1.2 Computational Strategy Space

The computational strategies space consists of all the possible strategies HG = {h1(.)...hp(.)}
of forming the decision boundaries that split the points in input space, which might or might
not divide them into their respective classes. This can be related to the various ways of
shattering the points used in the measure of the VC dimension. This space includes strate-
gies that might not describe the underlying function of the problem. As such applying the
evaluation function on this space will result in a fitness surface, with the most appropriate
strategies being the lowest points (forming valleys), while the least appropriate strategies
being the higher points (forming hills). One can speculate that as a model becomes more
complicated, the number of local minima in this space increases. This is because an in-
creased complexity should introduce more computational strategies, including those that
don’t describe the most appropriate decision boundaries for the given problem. Others
might fit the dataset completely, resulting in over-fitting. This increase in the number of
potential strategies results in the formation of more local minima. However, because ev-
ery neural network model is limited by constraints such as the range of weights to search,
maximum number of hidden units, and the transfer functions being used; the model l is
limited to only a subset of this search space, as such the search space available for the
model Hl = {h1(.)...hq(.)} is a fraction of the global search space containing all the possi-
ble strategies HG. Thus, Hl ⊂ HG. This is to some extent, can be considered to be a good
thing, since the model is exposed to relatively less local minima as a result. However, from
the standpoint of the likelihood of the model finding the most appropriate computational
strategy, it is a disadvantage.

A model of a neural network is, in essence, choosing a computational strategy from
this space based on the dataset D presented to it. The choice of which hypothesis to choose
is heavily dependent on the data set, and the evaluation function. Noise or dataset imbal-
ance can mislead the choice of the most appropriate computational strategy. Likewise, the
evaluation function also affects the choice of the hypothesis adopted by the neural network

40

model; an evaluation function with a penalty for complex models is likely to bias the choice
of the computational strategy adopted.

3.5.1.3 Bias Space

In the earlier section, we have discussed how the evaluation function and the dataset affect
the choice of a models’ computational strategy. Thus, the model of a neural network is
biased towards a certain set of strategies over others. This effect and others similar to
it such as constraints on optimization parameters limit the region of the computational
strategy space being searched for solutions. The set of biases imposed on a neural network
(i.e. Bl = {b1...bm}) compound and dictate the region of the computational strategy space
available to the model. The VC dimension of a model dVC could be a suitable measure
that should be able to roughly approximate the size of the search space available to the
neural network model, i.e. dVC ' q = |Hl|. The size of this search space |Hl| gives us an
idea of the computational complexity of the neural network model and consequently tells
us about the degree of bias the model has. This is because a coverage of a large space is
actually a consequence of the model having a considerable complexity which enables it to
exhibit a wider range of decision boundary forms. Also, this increased capacity to form a
broader range of decision boundaries is as a result of a small degree of bias. This is also
true, vice-versa.

The bias space is thus a search space containing all the possible bias sets that any
learning algorithm can have, i.e. BG = {b1...bM}, which both influence the choice of the
computational strategy, as well as dictate the size (i.e. |Hl|) and region of the search space
available for searching (i.e. Hl). This is explained later on in more detail.

In a nutshell, the computational strategies space HG can be described as a search space
containing all the possible functions that map the input space into classes. These mappings
vary in the degree of correctness, which is why a fitness surface has hills (representing
relatively worse solutions) and valleys (representing relatively better solutions) projected
by the evaluation function. Finally, and most importantly, we have seen that the input space
(projected by the dataset), and the fitness landscape generated by the evaluation function
influence the choice of the models strategy. In other words, they bias the model towards
choosing some strategies over others.

3.5.2 The Role of Bias in learning

In this section we present the role of bias in learning; firstly we start by providing the
definitions of bias both from literature from both the statistical and meta-learning point

41

of view. We illustrate that these definitions describe the same effect. Afterward, these
definitions of bias and their established relationship in the literature is used to show how
transfer function diversity can result in increased generalization ability.

3.5.2.1 Definition of Bias

From a statistical point of view, as in the bias-variance decomposition; the bias in relation
to a given data point xi ∈D is the expected difference between the predictions of the trained
model for the data point h(xi) and the target value yi = f (xi) of the data point for the given
dataset D. It is expressed as a component in the bias-variance decomposition in terms of
the mean squared error (MSE), given as:

ED[Generalisation] = (Bias)2 + (Variance).

ED[(h(xi)− f (xi))
2] = (ED[h(xi)]− f (xi))

2 +ED[(h(xi)−ED[h(xi)])
2]

To achieve the best generalization, the bias and variance components need to be mini-
mized, such that the learning algorithm has little variations in the predictions between the
models it produces on different samples of the problem. In other words, the difference
between each model’s prediction and the average prediction of the whole lot of the models
should be minimal. This has a grouping effect which ensures some consistency between the
models in their predictions. However, it is not enough that the models have a tight cluster,
they also have to be accurate. Being accurate requires that learning algorithm considers the
dataset in making its hypothesis about the underlying function of the problem. Having a
preconceived notion of the hypothesis is a bias, and is quantified by the bias component.

In the context of meta-learning, the bias is regarded in its more linguistic meaning of
anything that influences the learning algorithm [90, 75, 102, 103, 100]. This could be the
limits on an individual parameter, or inherent tendencies of an initialization method, feature
selection method, or the choice of transfer functions for the hidden units.

It can be said that both definitions of bias are essentially referring to the same effect,
however while one is of a quantitative nature (i.e. bias-variance decomposition), the other
is of a qualitative nature (i.e. meta-learning definition). This is because both describe the
two primary properties of bias:

• Restriction: Dictating the size of the search space available to the optimization al-
gorithm for any learning algorithm.

42

• Inherent Tendency: This is the inherent tendency of components, such as the ten-
dency of transfer functions towards certain responses due to their inherent design; it
is born from the assumption that lead to the design of the components. This tendency
could be regarded as an inherent heuristic. (e.g. tendency of the selection phase of
learning algorithms to choose solutions with the least errors on patterns).

We shall explain why both definitions are indeed the same. In the case of the bias-
variance decomposition, which we refer to as bias-error, the effect of restriction is mea-
sured with the bias-error. The first extreme of the restriction effect is when the bias for
the learning algorithm is not able to adapt to the training set, possibly due to the lack of a
viable solution as a result of a bias that is too restrictive. We shall assume that the model
produces a constant output, in this case, k.

h(xi) = k

ED[(h(xi)− f (xi))
2] = (ED[k]− f (xi))

2 +(ED[(k−ED[k])2])

= (k− f (xi))
2 +(ED[(k− k)2])

= (k− f (xi))
2 +(ED[0])

= (k− f (xi))
2 = (k− f (xi))

2

In this case, there will be no variation in predictions of the models produced on the
dataset. The expected error will be the bias-error, which is the error between the constant
value k and the target output of a pattern yi, given the pattern xi, i.e. yi = f (xi). The second
component of the decomposition, variance-error on the other hand will be zero, signifying
that the learning algorithm is not receptive of the dataset. In meta-learning, this is described
as a strong bias [75, 103].

The opposite extreme is when the learning algorithm is very receptive of the dataset
such that it always predicts the target output exactly, in which case the bias component will
be zero. In other words, the learning algorithm has more free parameters than is probably
required; thus, it essentially memorizes the dataset D. Let’s assume that the output of the
learning algorithms on a pattern xi is the same as the target yi for the dataset D, i.e. the
bias-error is (ED[h(xi)]− f (xi))

2 = 0. This can be expressed as:

h(xi) = f (xi) = yi

However, the target for the data point xi in the dataset is likely to have some inherent
irreducible noise ηi ∈ N(0,σ), which is independent of the dataset [45], and as such yi is
likely not exactly the true target value produced by the underlying function f (xi) portrayed
by the dataset D. Thus, the function being portrayed by the dataset can be expressed as:

43

f (xi) = g(xi)+ηi

Therefore, regarding the bias component of the generalization error:

ED[(h(xi)−g(xi))
2] = (ED[h(xi)]−g(xi))

2

= (ED[g(xi)+η]−g(xi))
2

= (ED[ηi])
2

= (σ)2

= σ
2

In such a case, the error for the dataset D will be the variance of the noise squared
σ2 in the dataset, since the noise η has zero mean [45]. In this case, the algorithm has
overfitted the dataset, as well as its noise. In other words, the algorithm is too receptive. In
meta-learning, this is described as a weak bias [75, 103]. In a case where the variance of
the noise σ is high; the learning algorithm will incur a high degree of variance as a result.
In which case, it becomes overly sensitive to noise.

3.6 Transfer Functions Diversity Can Improve General-
ization

It can be shown that the transfer function of artificial neural networks contributes towards
the generalization performance of neural networks by their bias using state graphs. It can
also be shown that the bias of neural networks needs to be self-adaptive according to the
problem for them to be effective [45] as well as applicable to a wider range of problems.

We start by defining a state graph representing the hypothesis space H` of a neural net-
work, ` as in Fig. 3.5 generated by the function γ in Eq. 3.1, which returns the search space
H` = {h1...hK} of the neural network ` based on its set of biases, i.e. B` = {bi...bn}. The
size of the hypothesis space is represented by K , which is dependent on the computational
capacity of the neural network.

H`← γ(B`) (3.1)

In this case, bi in the set of biases B could be a range for parameters of the neural
network components such as the transfer functions, weights or topology - which can result
in the restrictive effect, or inherent tendencies in the components of the neural network. For
example, the inclination of a radial basis function unit to respond to values in proportion to
how close they are to its center [103, 52]. These also have a combined effect that contributes

44

h1

h2

h3

h4

p1

p2

p3

p4

p5p6

p7

p8
p9

p10

p11

p12

Figure 3.5: State graph defining the hypothesis space H` for the neural network `

towards determining the probability of the neural network traversing the edges in the state
space of our neural network `. Thus, the probability pi j represents the tendency of the
neural network towards a hypothesis j, from a hypothesis i given the set of biases B`.
One of the contributing components that influences these probabilities is the error function
(or loss function) L (., .) defined by the optimization algorithm. For example, the Mean
Squared Error (MSE) that approximates the discrepancies between the hypothesis and the
underlying function f (x) which also belongs the global space of functions HG that produces
the dataset D. In other words, f (x) ∈ HG.

L (hi(x), f (x)) (3.2)

and squared error loss function defined as:

L (hi(x), f (x)) = (h(x)− f (x))2

Another component which contributes to determining the probabilities is the optimiza-
tion function which directs the search towards finding the hypothesis that minimizes the
loss function:

argminhi(x)∈H`
L (hi(x), f (x))≤ e (3.3)

the goal is to find the hypotheses hi(x) from the set of hypotheses H` which minimizes
the loss function below a target error e.

If we consider a single state in the graph, for example h1, the set of hypothesis or states
that it can traverse to from its current configuration, given operators that can change the
neural network model such as local learning, mutation of weights, back-propagation, and

45

h1

h2 h4 h1

Figure 3.6: Graph from the state of h1, this also highlights refinements of the states.

others; it can be represented as a tree. The children {h2,h4} of the parent h1 node can then
be described as the hypotheses that can be adopted after applying an optimization operation
or a sequence of them on the neural network model.

In this case (Fig. 3.6), the graph also has a state of choosing to remain with the hypoth-
esis h1, by operations that result in variations of the same hypothesis. The optimization
algorithm guided by the optimization function (Eq. 3.3) steers the neural network around
this state graph with its operators to converge on a hypothesis represented as a local mini-
mum in the fitness surface over the hypothesis space H`, defined by the loss function - as
in Eq. 3.2.

It becomes more apparent that the optimization process depends on the set of biases
of the neural network B` in searching through the hypothesis space available to the neu-
ral network H`. This is because the states or hypotheses accessible during the search are
implicitly determined by the combined effect of biases of the neural network as defined in
Eq. 3.1. In other words, if there is a set of biases B` such that the hypothesis h2 cannot
be approximated with every available optimization process applied to the neural network,
then such a state will not exist in H`. Likewise, if there was a hypothesis hi that could be
approximated given a set of biases b1...bm, then that hypothesis will exist in the hypothe-
sis space for the neural network H`. As Vilalta [103] also explained, bias determines the
region of the hypothesis space being searched. And as German et. al [45] also concluded,
this is one of the reasons why the bias needs to be purposefully designed and introduced
in a way that it provides access to the a search space with the underlying function being
approximated or an approximation of it.

Given the function for state generation (Eq. 3.1), we can show that the set of biases
adopted by a neural network B` influences the likelihood of finding a hypothesis that gen-
eralizes well, i.e., the neural network’s ability to learn and generalize the problem.

Using the optimization function given in Eq. 3.3, we can define a subset of the hypoth-
esis space for the neural network H ′` which consist of hypotheses that minimize the loss
function, such as a mean squared error, to at least a target error θ .

46

H ′`← argminhi∈H`
L (hi(x), f (x))≤ θ

As such, convergence less than or equal to θ will be within the set hypotheses described
in H ′`. This has the effect of thresholding other sub-optimal local minima (or hypotheses)
and considers only those with the desired generalization error.

Eventually, the final hypothesis converged on that minimizes the loss function will be
a member of the H ′` set. But, H ′` is a subset of H`, i.e. H ′` ⊂ H`. In other words, the set of
biases B` of the neural network ` defines the hypothesis space, thereby influencing whether
or not the hypothesis with the most generalization ability is found. If the hypothesis space
doesn’t have the most appropriate bias for the problem, then it is unlikely that a hypothesis
that generalizes well will be found. In other words:

6 ∃ hi(.) ∈ Hl : ED[(hi(i j)− f (i j))
2]≤ e

However, it can be expected that as neural network gains more access to more computa-
tional strategies (or hypotheses) from the global set of all possible computational strategies,
HG then one can expect that there will be an increased likelihood of it finding a function
that describes the underlying function with the desired error, e. In other words:

lim|Hl |→|HG|Pr(∃ hi(i j) ∈ Hl : ED[(hi(i j)− f (i j))
2]≤ e) = 1

As |Hl| → |HG| then there is certainly going to be a computational strategy hi(.) that
best describes the underlying function f (.) with the desired error e. However in practice, as
|Hl|→ |HG|, there will be a high degree of variability, because of the hypothesis space hav-
ing various other sub-optimal hypotheses, or local minima. This also heightens the danger
of overfitting in which a hypothesis hi(x) memorizes the examples {(xi,yi)...(xn,yn)} ∈ D.
This is because of the increased computational capacity, which typically entails additional
free parameters.

In a nutshell, we can conclude that there is a need for the adaptation of the biases
B = {bi...bm} of the neural network according to the problem. This is also supported
by various other works from both meta-learning [103, 75, 100, 90] and statistical [45]
perspectives. In the case of neural networks, one of the components that plays the important
role of forming decision boundaries is the transfer function, which also has inherent biases.
The motivations for diversifying transfer functions apart from its biological plausibility is
so that the optimization algorithm can optimize the bias of the neural network.

47

Chapter 4

Ensemble of Neurally Diverse Artificial
Neural Networks

In the previous chapter, an explanation of how neural diversity in the form of transfer func-
tion diversity was provided in light of the literature that links bias to generalization ability,
namely the bias-variance decomposition and the meta-learning concept of the search space.

This chapter experiments with ensembles of neurally diverse artificial neural networks
to show that it can produce diversity in the form of diverse computational strategies, which
is an essential part of ensembles. This is significant because it shows empirical results that
transfer function diversity can result in the ability to exhibit more computational strategies,
which is the basis of the argument on how neural diversity in the form of transfer func-
tion diversity can improve generalization. It also provides conclusive evidence of how the
computational strategies differ such as the ones for Diabetes, XOR, and Iris problems by
studying the models produced.

4.1 Motivation

There are several reasons for using ensembles for experimenting with neural diversity; the
first being that the whole concept of ensembles is based on diversity of biases in the mem-
bers of the ensemble. Showing that neural diversity can achieve significant generalization
ability without other explicit diversity maintenance such as bagging or boosting will imply
that neural diversity is helping the neural networks to exhibit diverse computational strate-
gies. Furthermore, we also provide conclusive evidence that the neural networks are diverse
by studying their computational strategies. The second is that it also helps us address the
gap in the literature of lack of works that use neural networks with hybrid transfer functions
in ensembles as highlighted by Brown et. al [19]. In general, the area of transfer function
optimization, of which hybrid transfer function is a part of, is generally under-researched.

48

Ensembling is an elegant solution towards the restrictive nature of bias in learning. It is
a method of learning that typically involves several diverse learners trained on a common
problem. There are various works [19, 94, 83, 106, 50, 66, 82] that have shown that neural
networks combined as ensembles exhibit an improved generalization ability provided there
is diversity in the bias of its members. In other words, if there are differences in the limita-
tions of the learners, then an ensemble of such learners should result in increased learning
accuracy. In addition to these promising empirical findings, it is also proven [19] that the
error of an ensemble is guaranteed to be the same or better than the average error of its
members.

The importance of diversity in ensembles is quite intuitive. If the individual members
of an ensemble were all identical, the performance of the ensemble would not differ from
any of the members of the ensemble. This is because they are likely to have the same set
of biases. Without any form of diversity maintenance, the learners will have similar gen-
eralization errors on patterns. However, if all the members of the ensemble were different
from each other such that the decision boundaries that they project onto the input-space are
varied yet accurate, then one can expect that the averaged decision boundary of the learners
is likely to be significantly more accurate, or at the very least the same. The significance
also depends on some other factors such as the method used to combine the outputs of
the members, the number of members of the ensemble, and the accuracy of the members
of the ensemble. The diversity of the members of the ensembles (e.g. different learning
algorithms) means that they will have different biases. Essentially, these learners will be
searching different regions of the computational strategies search space, as a result of their
bias. Thus, they are more likely to adopt different hypothesis with different generalization
errors. Combining the classifiers is essentially compensating for the bias-error of each of
the members of the ensemble in predicting patterns.

The fact that ensembling depends on the members being diverse and accurate makes
it ideal for showing that neural diversity can produce diverse, and accurate computational
strategies within one experiment. It also enables us to study the different computational
strategies that make up the ensemble of models produced for the problems. In addition to
these, it also helps cover a gap in the literature of ensembles that

4.2 Related Works

Most of the promising methods for creating diversity in ensembles can be categorized into
three according to their area of focus [19]: data set, model, and training algorithm. In the

49

first case, approaches found in the literature typically use re-sampling and pattern distor-
tion methods to achieve some variations in the training data set thereby implicitly induc-
ing behavioral differences in members of the ensemble. This is due to differences in the
input space which essentially affect the error surface and consequently, the final compu-
tational strategy adopted by each member. Popular re-sampling methods include bagging
and boosting [19]. In bagging, random samples of the data set (with replacement) are used
to train each member of the ensemble. Boosting differs because it creates an ensemble in a
sequential process. It doesnt assume equal weights but assigns weights to the patterns based
on the error of a base learner. Patterns that are predicted correctly get higher weights while
the pattern corrected wrongly get lower weights. The main idea is to get each classifier to
perform better than its the base classifiers.

Another method used by some studies that was highlighted by Brown et. al. [19]
is to re-sample the features of each pattern in the training data set. This also essentially,
causes changes in the dimensions of the input space, and as a result indirectly influences the
hypotheses adopted by each member. On the other hand, distortion methods used include
the addition of Gaussian noise or non-linear transformations of the training patterns in
the data set. One of the non-linear transformation approaches found [19, 94] found to be
effective was to stimulate a randomly generated neural network with the training pattern
and then use its output as the distorted pattern. Gaussian noise was also found to be helpful
[19, 94]. Memetic Pareto Evolutionary Artificial Neural Networks (MPANN) [1] used this
approach to generate a validation set, which was then used as the second objective function
apart from the objective of optimizing the training error. Thus, two objectives needed to
be optimized; the training and validation errors. The pareto-front, which consists of a set
of models that optimize both the training and validation error better than the rest of other
models, was then used for form the ensembles.

In the case of diversity creation methods focusing on models [19], some methods use a
mixture of models. The most popular include the use of similar models with varied param-
eters [19], such as neural networks of different hidden layer sizes as used in Constructive
Cooperative Neural Network Ensembles (CNNE) [53]. In the study, the training epoch and
hidden unit size were varied between the members of the ensemble or different types of
architectures - such as Multilayer Perceptrons and Radial Basis Function networks [19].
Other methods [19] use mixed models, such as decision trees and neural networks within
an ensemble. The final category consists of methods which focus on the training algorithm,
some of which include the use of different training algorithms [94, 27]. Another is the in-
troduction of an additional term in the objective function [66, 82, 67], such as in neural
network ensembles trained by evolutionary algorithms [26, 19].

50

There are still some aspects of ensembles that have yet to be studied. One such aspect
is the topic of model diversification approaches for neural network ensembles. Intuitively,
it makes sense that if we are aiming for diversity in the bias within our neural network
ensemble, an equally likely approach to the others that could yield significant diversity is
an approach that is explicit. By explicit, we mean an approach that takes a direct approach,
such as the combination of diverse architectural models of neural networks. Though there
has been work with different architectures of neural networks, according to our knowl-
edge, there is a lack of experiments with ensembles using hybrid artificial neural networks,
specifically architectures implementing a set of diverse transfer functions, which we would
expect to increase diversity in ensembles. This was also highlighted in the thorough survey
of ensembles by Brown et. al[19] as an aspect that needs studying. The only partially re-
lated work done so far was by Partridge who used pure models of Multilayer Perceptron’s
(MLP) and Radial Basis Functions (RBF) in an ensemble to achieve diversity. However,
even that work was suggested to be a preliminary study by [19].

4.3 Contributions

This chapter’s main contribution is that it empirically shows that neural diversity in the
form of transfer function diversity can improve generalization performance. It does this by
demonstrating that it can exhibit diverse and accurate computational strategies, which is
one of the bases for the argument of how it can improve generalization ability in artificial
neural networks (as presented in the previous, i.e. Chapter 3). This is because the diverse
and accurate models in the ensembles complement each other, thus resulting in promising
results on five popular benchmarks with an ensemble of relatively low complexity models.

It also addresses the general lack of literature on transfer function optimization meth-
ods in general and lack of results from their use in ensembles. Specifically, it presents
transfer function diversity as a biologically plausible alternative to diversity maintenance
in neural network ensembles. In particular, it is shown that the bias adaptation property
of transfer function diversity can produce neural network ensembles with promising gen-
eralization ability. Finally, this chapter contributes by proposing measures for artificial
neural networks that are then used for unveiling the underlying computational strategies
the ensemble members have learned.

51

4.4 Overview

Firstly, the section presents the application of hybrid neural networks in ensembles and
provides a study on some of the effects of transfer function diversity in neural network
ensembles. Secondly, it shows that this neural network framework can develop different
strategies for a problem that can be used in ensembles without explicit diversity mainte-
nance that can be expensive, such as selection of the Pareto front for use as ensembles, or
fitness sharing. It also shows that this approach can evolve a relatively smaller ensemble
of small networks that has a competitive performance. Finally, it demonstrates how neural
diversity can result in diverse classifiers by analyzing two computational strategies evolved
for the diabetes problem. Furthermore, this also illustrates how the strategies contribute to
the model’s overall performance with their strong discriminatory property using the XOR
problem; thus, conclusively showing the role of neural diversity in the generalization per-
formance.

Experiments with hybrid neural network ensembles implementing a diverse transfer
function set, also known as Neural Diversity Machine Ensembles (NeuDiME) are con-
ducted. This is unlike other approaches found in the literature which have used a mixture
of pure models as reported by Brown et. al [19]. We study the performance of this method
in different circumstances; specifically, we test it on popular pattern recognition problems
such as the Iris, Sonar, Hepatitis, Diabetes, and the Australian credit card data sets, com-
monly found in the UCI machine learning repository [13].

4.5 Neural Diversity Machine Ensembles (NeuDiME)

Neural Diversity Machine Ensembles (NeuDiME) is an ensemble of neural networks with
transfer function diversity. As explained earlier, the framework of neuronal diversity in
the form of transfer function diversity was proposed by Maul [71], where he highlighted
their promising results in preliminary experiments. It uses a transfer function set consisting
of various activation functions (see Table 4.1) and output functions (see Table 4.2). This
enables the optimization algorithm to evolve clever solutions to problems as we shall see
in the experiment with NeuDiME, which sometimes involves the use of rare activation
functions such as standard deviation, max and min as filters as we highlighted in [4, 71].
This work builds on the work by using them in ensembles to address: the lack of literature
using hybrid transfer functions in ensembles, and to empirically demonstrate that neural
diversity can exhibit diverse and accurate computational strategies, which was the basis for
the argument in the previous chapter.

52

Diversity in transfer function set is a form diversity promotion mechanism, as also high-
lighted in [19]. There has been little work on ensembles with hybrid models, specifically,
those using a diverse set of transfer functions for neural networks. A diverse set of compu-
tational strategies as a result of this form of diversity should lead to more diverse computa-
tional strategies or hypotheses available for the neural network, i.e., the hypothesis space H`

should be expected to consist of a lot more variety. Consequently, this is expected to result
in the desired diversity of bias required by ensembles. In terms of the bias-variance decom-
position, a more diverse ensemble of classifiers adapting computational different strategies
should compensate for the bias-error of the individual classifiers when their output is com-
bined; thus, reducing bias-error. In terms of variance, the other criteria of having accurate
members of the ensemble should result in less variance between the models. This could be
supplemented with other penalty functions attached to the objective function as in negative
correlation learning [53, 66, 67, 20]. However, NeuDiME does not implement any penalty
function.

It is intuitive that an ensemble made up of different yet accurate models will likely yield
more useful diversity. By useful, we are referring to the diversity that results in significant
improvements in the generalization ability of the ensemble. This work differs from other
approaches which have attempted the use of neural networks of different sizes within an
ensemble or a diverse selection of classifiers types [19]. While ensembles of neural net-
works with varying sizes will result in having various regions of the computational strate-
gies search space, the inherent bias of the transfer functions of the neural network remains
the same. There is a need for a more explicit approach to creating diversity of bias, and
neuronal diversity is one of such approaches which is also biologically inspired.

4.5.1 Neural Diversity

There are only a handful of studies that have proposed using hybrid models implementing
neural networks with a variety of transfer functions [47, 55, 61, 3, 31, 30]. While the other
works were mostly motivated by the theory of duality of functions for their pool of transfer
functions, which shows that any continuous function can be decomposed into a radial basis
and projection basis component; this work is primarily motivated by the biological design
pattern of neuronal diversity [18, 101].

Neuronal diversity is prevalent in biological neural networks. As already stated, it is
believed to be one of the primary reasons behind the efficiency, and computational capacity
of biological neural networks [18, 99, 101, 70]. In this work, it is used to achieve better
generalization ability and efficiency in artificial neural networks with relatively limited
computational resources (i.e. in the form of hidden units, and connection weights).

53

Table 4.1: List of some input combination and output functions used by Neural Diversity
Machines and their visualization color codes.

Indices Activation Functions Color Code
1 Inner-Product (j = ∑

k
i wiii +wbias) Red Solid Edge

2 Higher-Order Product (j = ∏
k
i cwi ∗ ii) Yellow Solid Edge

3 Higher-Order Subtractive (j = ∑
k
i=1 |x0− xi|) Yellow Dashed Edge

4 Euclidean Distance (j =
√

∑
k
i (wi− ii)

2) Magenta Dashed Edge
5 Standard Deviation (j = stdDev(wiii,wi+1ii+1...wkik)) Blue Solid Edge
6 Min (j = min(wiii,wi+1ii+1...wkik)) Gray Dashed Edge
7 Max (j = max(wiii,wi+1ii+1...wkik)) Black Dashed Edge

Table 4.2: List of output functions for Neural Diversity Machines and their visualization
color codes. θ - is a threshold that is learned during optimisation.

Indices Output Functions Color Codes
1 Linear (z = α ∗ j) Yellow Node Outline
2 Hyperbolic tangent (z = 1−e−α∗ j

1+e−α∗ j) Cyan Node Outline
3 Sigmoid (z = c

1+e−α∗ j) Red Node Outline

4 Gaussian (z = e
−(j)2
width) Blue Node Outline

5 Gaussian II (z = e
−(j)2
width i f z > θ then z = 1) Dark-Blue Node Outline

This implementation mimics that property by using a pool of diverse classes of activa-
tion and output functions, which can then be combined and adopted by any of the hidden
or output units of the neural network. The list of activation functions available to the op-
timization algorithm are as in Table 4.1, while the list of output functions are as in Table
4.2. There are no restrictions on the type of activation functions that can be combined with
output functions, nor are there restrictions on certain combinations of activation functions
and output functions occurring more than once in the neural network model. The neural
network model is completely free to adopt any form of transfer functions for the hidden
and output units. This flexibility has enabled the study of the computational strategies that
emerge as solutions. As we shall see, this approach tends to evolve creative strategies for
problem-solving.

Regarding the topology, there are also no restrictions on inter-layer connections or intra-
layer connections for this implementation. The global stochastic algorithm can optimize
the topology by applying any of the evolutionary operators (i.e. cross-over and mutation)
or the differential evolution operation on a probabilistic basis.

54

Table 4.3: Neuron (node) parameters.

Node Parameters Description
i(g(x)) Index of the activation function
i(f (x)) Index of the output function

p1 First output function parameter
p2 Second output function parameter
p3 Third output function parameter
b Bias

bw Bias weight

4.5.2 Optimization

The use of evolutionary algorithms for optimizing the transfer functions of neural networks,
among other architectural components such as the connectivity and weights, is partly due
to the nature of some of the transfer functions, which makes other algorithms such as
Backpropagation not applicable due to its reliance on gradients.

Direct encoding is used to represent the encoded components and their parameters using
real values on the genetic string. The components encoded include: the weights between
neurons, the transfer function choices of each neuron and their functional parameters, and
the bias of neurons (See Tables 4.3 and 4.5).

Encoded Components

In terms of neurons, the choice of the activation function i(g(.)), is encoded as the index of
the activation function in the pool of activation functions (Table 4.1), and the choice of the
output function i(f (.)), is encoded as the index of the output function in the pool of output
functions (Table 4.2). The output function parameters {p1, p2, p3} such as variance in the
case of Gaussian functions are also encoded onto the genetic string. In addition, the bias
typically used for neurons in the literature, i.e. b and its weight bw are also encoded onto the
genetic string for optimizing. The encoding of these parameters with the exception of the
neuron bias and its weight are made in sequence such that their context (i.e. of belonging
to a certain neuron) is preserved. Table 4.3 shows the list of parameters encoded.

{i(g((.)), i(f (.)), p1, p2, p3}

The bias and its weight for each neuron i was also encoded in sequence as well but at
the tail of the genetic string in the form of {bi,bwi,bi+1,bwi+1...}. In a later chapter, we
present an implementation that encoded the network in a more contiguous manner.

55

Table 4.4: Details of the output function parameters encoded onto the genetic string. Some
of the output function parameters, in particular, p2 and p3 were not used, but encoded onto
the genes for future experiments that might require encoding additional output function
parameters.

Output function Parameters Description

Hyperbolic Tangent (tanh)
p1 steepness
p2 N/A
p3 N/A

Sigmoid
p1 steepness
p2 numerator (c)
p3 N/A

Gaussian
p1 width
p2 N/A
p3 N/A

Gaussian II
p1 variance
p2 threshold (for wider center)
p3 N/A

Table 4.5: Listing of other components encoded onto the genetic string.

Component Description
C Connectivity matrix for the neural network model
W Weight matrix for the neural network model

The set of output functional parameters {p1, p2, p3} encoded varied depending on the
type of output function. Table 4.4 lists the output functions, and their respective parameters
and descriptions.

Regarding topology and weights, the components encoded included the connectivity
matrix C and weight matrix W of the neural network model.

Constraints

There were some constraints introduced to regulate the complexity of the search space.
These included the acceptable range of parameters such as the output function parameters
{p1, p2, p3}. These are listed in the table 4.6.

Some of the constraints were transfer function specific, in particular; the minpi and
maxpi constraints were different for different output functions. In other words, there are
constraints for the minpi and maxpi parameter for a sigmoid output function’s parameters
pi, and a separate range of output function parameter for a Gaussian output function’s
parameter pi. This was because the pi played different roles in different functions.

56

Table 4.6: Constraints on the parameters encoded onto the genetic string.

Constraint Description
minbw weight bias minimum
maxbw weight bias maximum
minpi output function parameter pi minimum
maxpi output function parameter pi maximum
minxi minimum allowed range for any other parameter xi in the genetic string.
maxxi maximum allowed range for xi

Weight Space

Transfer Functions Space

Topology Space

Figure 4.1: The hierarchical nature of the search space.

Representation and Encoding

The method of encoding considers an intuitive knowledge of the hierarchical nature of
the search space of artificial neural networks. In artificial neural networks, the size of the
neural network determines the size of the connectivity space, weight space and the transfer
function space. This is because as the size of the neural network N is grown, so does
the number of possible connections and their weights. The same applies to the transfer
function space, which in our case consists of the various transfer function choices and their
functional parameters. Some of these sub-spaces grow at a larger rate than others, for
example, the connectivity space will consist of at most N2 possible connections between
all the neurons in the neural network model. However, the weight space will be composed
of all the possible real values that can be used as weights between these connections (i.e.
wn∗n ∈ R), which is an infinite search space - if not constrained by precision and range.

The size of the neural network N influences the computational strategies or hypotheses
made available H` by the bias it introduces, and in turn the computational strategies and size
of the neural network influence the connectivity space and the fitness of the members of that
search space. Finally, there is the weight space which depends on the connectivity space for
its dimension and fitness as well. In a later chapter, we shall see how this interdependence
can be represented in an artificial neural network, and show its promising generalization
ability on real world datasets.

57

Figure 4.2: An illustration of the sequential encoding of components of the neural network
by their types.

As such the neural network search space is hierarchically dependent on the size of the
neural network, which determines the size of the connectivity space, and in turn dictates
the dimensions of the weight space (see Fig. 4.1). Thus the connectivity space can be
considered to be a sub-space above the weight space, in the sense that it influences the di-
mensions of the weight space. Selecting a single connectivity pattern Ci from the topology
space then results in a set of possibilities for weights {wi

n∗n, ...} that can be given for each
of the active connections.

The method of encoding takes these into account and optimizes the dimensionality of
the search by only encoding parameters of active nodes onto the genetic string. Information
about nodes and connections that are not active are not encoded. This helps to reduce the
dimensionality of the search space, as it removes information about nodes and connectivity
related to it (i.e. either from, or to it) that does not have any effect on the phenotype yet
complicates the search space further.

Another feature of the encoding method is that the genes are encoded according to the
context as highlighted earlier in section 4.5.2 (Page 55). In addition, components of sim-
ilar types are also encoded in close proximity onto the genetic string by keeping them in
sequence (see Fig. 4.2). This was intended to help improve the cross-over of learned in-
formation between solutions. Cross-overs usually select random cross-over points which
has the potential for making incomplete information transfer between solutions, such as the
case of a radial basis unit trained to approximate a cluster of points in the input space, but
is crossed-over without some of its functional parameters. In this case, some learned infor-
mation is lost and an offspring of such an operation would need to relearn the functional
parameters left out. Though this could be a good thing from the perspective of diversifying
the solutions in the neural network, there are studies which argue that cross-overs can be
quite detrimental for neural networks [12, 34, 97, 112].

Optimization Algorithm

The global stochastic algorithm (GSO) adopted was a hybrid that consisted of a differential
evolution (DE) algorithm with additional operators such as crossover and mutation. The
optimization process is as follows (see Algorithm 1).

58

Algorithm 1 The underlying process of the hybrid optimization that optimizes the mem-
bers of the ensembles.
Require: Pop← initPopulation()
Require: Pop← evaluate(Pop)

for i : maxGen do
nextGen← di f f Evolution(Pop) {differential evolution on a subset of Pop}
nextGen.append(crossOver(Pop)) {cross-over on a subset of Pop}
nextGen.append(mutate(Pop)) {mutation on a subset of Pop}
nextGen.append(generateRandomCandidates())
Pop← evaluate(Pop) {evaluate train and validation errors}
Pop← sort(Pop) {sort the population by their training and validation errors}
Pop← selection(Pop) {select top n as ensemble members}

end for

Firstly, the genes representing the choice of the input combination function and output
function are randomly generated for each node; this also includes their functional param-
eters, which are all encoded onto the genetic string. This is followed by encoding the
connectivity between the layers and their weights. A population of these genes is gener-
ated with varying lengths. The variation in length is as a result of the probabilistic nature
of hidden unit creation. Hidden units were created on a probabilistic basis to increase the
diversity within the population of neural network architectures. In this case, due to the
constraints on cross-overs and differential evolution only solutions of the same length are
allowed to interact (e.g. hidden layer size), this also helps in providing some degree of
niching or specialization; thus, protecting computational strategies of various complexi-
ties. Varying the hidden layer size of neural networks in an ensemble has been used in
related works as a diversity maintenance mechanism [19, 53, 94].

The next stage consists of evaluating the population of neural network solutions rep-
resented as genetic strings. This involves decoding genes into phenotypes (i.e. the actual
neural network models) and then evaluating them on the training set. This is followed by
the next step which consists of applying differential evolution to generate offsprings from
a subset of the population. Cross-over operations were not biased towards the fitness of
the parents. This helps in preserving the diversity of the computational strategies being
evolved such that no strategy dominates the population. Also, it encourages some degree
of competition, which can help in converging on the neural network species with the most
appropriate architecture.

In some of the experiments, two fitness values were assigned to the neural networks.
One was the fitness on the original training dataset, while the second was the fitness of the
neural network model on another variant of the dataset which has received Gaussian noise

59

treatment, i.e. (xi,yi)...(xn,yn) ∈ D, then x′i = xi +η . This has been used in a related work
[2, 1] as a method of diversity maintenance as well.

4.5.3 Ensemble Member Selection

In this experiment, we use the Top N solutions for its relative simplicity and also because it
has been used in related works [80]. This method lacks the relatively higher computational
cost of other selection methods, such as selecting solutions from the Pareto-front [1, 2].
In those works, Abbass selects a set of members of the population with the least training
and validation errors as the members of the ensemble. Another is the selection of members
using a hill climbing approach while maintaining diversity with fitness sharing as used in
[26, 60].

The method of selection selects the fittest N solutions from the population after sorting
by fitness, where N is the desired size of the ensemble, example for an ensemble of 10
members, N = 10. This helps in improving the chances of picking the N solutions with the
most generalization ability.

This selection method relies on diversity in the population, and as such, if the top N so-
lutions are selected after sorting, they should still be a diverse set. In the case of NeuDiME,
this diversity is introduced by the use of a diverse set of transfer functions, which allows for
a variety of computational strategies to be explored by the neural network models during
optimization. In addition to that, there is also diversity in terms of the sizes of the neural
networks which helps to provide a niching effect for the computational strategies being
evolved. A niche is essentially a sub-population that has little or no interactions with other
sub-populations. In this case, the niching effect occurs as a result of the restriction that
only allows solutions of the same size (i.e., hidden units) interact by getting involved in
evolutionary events, such as cross-over and differential evolution.

4.6 Experimental Setup
The benchmarks used consisted of some commonly used in the ensemble literature: Iris,
Sonar, Australian credit card, Hepatitis and Diabetes datasets retrieved from the machine
learning repository [13] (Table 4.7) . To conform to the standard measure of generalization
ability found in the literature [47, 63, 50], 10-fold cross-validation was used. The net-
works used all had feed-forward connectivity at initialization, with two layers of randomly
generated weights. However,t hey could mutate their topologies during optimization with-
out restrictions. A feed-forward connectivity was favored as it provides a bias towards an
informal standard of topologies that is known to work well.

60

Table 4.7: The list of benchmarks acquired from the UCI machine learning repository
[13].

No. Benchmarks No. of Samples No. Of Attributes
1 Australian Card 690 7
2 Diabetes 768 8
3 Iris 150 4
4 Sonar 208 60
5 Hepatitis 155 19

Table 4.8: Experimental setup for the benchmarks showing the maximum number of
hidden units allowed for each ensemble member, the size of the ensemble, and the number
of folds used for K-fold cross-validation. These were set to reflect parameters in published
works [1, 2, 79] as well as findings from preliminary experiments.

Benchmarks Max Hidden units Members(Ensemble) Folds (K-fold CV)
Iris 5 10 10

Sonar 5 10 10
Diabetes 5 20 10
Hepatitis 5 20 10

Card (Australian) 5 20 12

The optimization parameters for the optimization algorithm are given in Table 4.9.
Table 4.9: The optimization parameters used for the neuroevolution of the ensemble mem-
bers. These parameters were chosen after some pilot experiments to determine the param-
eters that worked best.

Optimization Parameter(s) Value(s)
Max Iterations 100
Population size 30

Percent to eliminate 0.3
Min cost (elimination) 0.66
Min age (elimination) 3

Cross Over True
Probability of Cross Over 0.2

Differential Evolution (DE) Iterations 3
DE alpha 0.2

Gene range [-0.9, 0.9]
Probability of Mutation 0.2

Gaussian Mutation (Mean,Std) (0.0, 0.2)

61

4.6.1 Measures

In addition to standard measures, two additional measures were developed for analyzing
the underlying computational strategies adopted by the neural diversity neural networks
(i.e. NeuDiME). These are referred to as signatures and are studied in more detail in the
next chapter. These measures include the following:

4.6.1.1 Likelihood of Occurrence

This measures the likelihood of an activation function g j(.) and an output function fi(.)

being used together as a transfer function fi(g j(.)) in elite solutions for any of the hidden
or output units. This entails some information about the building blocks of the elite com-
putational strategies, as well as some degree of implicit information about the nature of the
problem among other valuable details. This is referred to as a likelihood since it represents
the probability of the transfer functions based on a sample s ∈ S - which in our case are the
results of the experiments. The true probability of the transfer functions will require all the
samples in S. However, for practicality, a sufficiently large sample s, which approximates
the true probability should be adequate.

This was calculated by counting the frequency of appearance of transfer functions
fi(g j(.)) in the elite models during evaluation, which is then normalized by the number
of possible transfer function combinations. Normalizing by the number of runs usually re-
sulted in small likelihoods that were hard to work with. As such, it could be regarded as a
relative likelihood of the transfer function occurring in relation to other possibilities. Thus,
it can be expressed as in Eq.4.1.

la,b =
na,b

|I| ∗ |J|
(4.1)

Here, a, i ∈ I, j,b ∈ J, a is the activation function being considered, b is the output
function being considered, and la,b is the likelihood of a transfer function with an activation
function a and output function b. na,b is the number of times we find the combination of the
activation function a and the output function b in a model (i.e fi(g j) : i = a, j = b) during
the sampling process.

4.6.1.2 Associated Error

This measures the error associated with having the occurrence of a transfer function for
any of the hidden or output units in elite neural network models. This essentially adopts
the computation of the error associated with the immediate hidden units to the output units
in back-propagation. It associates error to a transfer function by multiplying the weight

62

who of the connection of the transfer function to the output unit δ (oi). Thus giving an error
associated with the transfer function. In back-propagation, this associated error is back-
propagated again further back into the neural network model to associate an error to each
weight according to its contribution. In this case, only the error associated with the transfer
function is of interest and as such the error is associated with the transfer function.

The limitation however is that this is likely to have a noisy measurement of the perfor-
mance of the transfer function in the model, as weights and biases can also contribute to
the error. In addition to that, it is not known to what degree all these factors, including the
chosen transfer functions and their parameters, contribute to the error. The hope is that this
noise will be averaged out over a significant number of runs (20 runs of more is usually
recommended for sampling in statistics). The associated error for each transfer function af-
ter evaluation represents the accumulated associated error of the transfer functions. Thus,
it can be expressed as in Eq.4.2.

e′a,b = ∑
i

who.δ (o) (4.2)

Here, e′a,b is the associated error for the transfer function (i.e., the combination of acti-
vation function a, output function b) being considered, who is the hidden to output weight,
and δ (o) is the error being back-propagated from the output unit for the pattern i.

4.7 Results

In this section, we present the results of the neural network ensembles on the mentioned
data sets.

Results on popular benchmarks

The results produced were competitive with relatively less complexity.
There are a variety of reasons that might explain why this was so for the Australian

credit card problem, which includes its relatively higher dimensionality (i.e input space be-
ing {x}51 and sample size being 690). Problems of higher dimensionality in terms of their
input space often require relatively complex solutions. This is because as the dimensions
of a problem increase, solutions have to account for these new dimensions by making var-
ious decisions, including the decision of which subset of dimensions has more relevance
to the prediction over others, and form decision boundaries through these dimensions that
approximates the class boundaries as accurately as possible. As one can imagine, this prob-
lems gets consistently harder with increased dimensionality. In the case of NeuDiME, its

63

Figure 4.3: Results on the popular data sets for NeuDiME- The testing error was aver-
aged over the 10-fold cross-validation results, except in the case of Australian credit card
problem which was set to 12-fold cross-validation as used in the literature.

improved access to a wider variety of solutions comes with both potential for performance
gain, such as it’s statistical activation functions, which have been found to filter important
features. However, at the same time, there is a trade-off. The advantage is that it increases
its chances of finding computational strategies with creative hypotheses that describe the
problem with simplicity and usually better generalization [55, 30, 31, 47, 71, 6]. The trade-
off, if not handled carefully, is that this can present more local minima. In the case of
the results for the Australian Credit card and Sonar, the dimensionality of the benchmarks
is likely to have played some role in the slight performance difference; while the Card
benchmark had 51 inputs, the Sonar had 60. In addition to having relatively more local
minima, one can also expect that convergence might also be relatively slower as a result of
the increased computational capacity.

64

4.8 Discussion

Interesting Computational Strategies Evolved for Prediction

In this subsection, we explore the statistics of the transfer functions used for some of the
datasets used in the experiments. These include the likelihoods of each of the input com-
bination functions and output functions being combined in the fittest members of the en-
semble and the associated error with each combination. In addition to that, we also reveal
some of the creative strategies used by the members of the ensemble towards solving the
diabetes problem using these statistics.

Diabetes

The diabetes problem showed an emphasis on strategies that relied on combining standard
deviation and an output function such as the identity function, or hyperbolic tangent. The
least error was associated with the combination of Euclidean distance and Gaussian II,
which is essentially a variant of a radial basis function unit with a wider center. This is
because of the threshold parameter in Gaussian II which makes the boundaries of the peak
response wider, as such a peak response can be given for a wider range of values. This was
found to improve performance as presented by Maul [71]. Higher-order products combined
with an identity function also showed a relatively lower associated error.

The statistics are presented in Table 4.10 and Table 4.11.

Table 4.10: Likelihood (%) of using combinations of input combination and output func-
tions for the Diabetes problem - The most likely combination was standard deviation and
identity, and standard deviation and hyperbolic tangent.

Identity Sigmoid Gaussian Hyperbolic Tangent Gaussian II
Inner Product 0 0 0 3.57143 3.57143

Euclidean Distance 0 0 0 0.0 3.57143
Higher Order Product 3.57143 3.57143 0 0.0 3.57143

Higher Order Subtractive 0 0 0 0.0 7.14286
Standard Deviation 17.85714 0 0 14.28572 3.57143

Min 3.57143 7.14286 0 7.14286 0.0
Max 3.57143 7.14286 3.57143 3.57143 0.0

65

Table 4.11: Associated error of using combinations of input combination and output func-
tions for the Diabetes problem.

Identity Sigmoid Gaussian Hyperbolic Tangent Gaussian II
Inner Product - - - 0.01709 0.01161

Euclidean Distance - - - - 0.00125
Higher Order Product 0.00210 0.00644 - - 0.01319

Higher Order Subtractive - - - - 0.02434
Standard Deviation 0.03476 - - 0.05334 0.00405

Min 0.01357 0.00539 - 0.01066 -
Max 0.00500 0.02989 0.02224 0.00543 -

In the following discussion, we will present a study of two diverse and interesting com-
putational strategies evolved by NeuDiME for the diabetes problem. This reveals the ability
of NeuDiME to exhibit diverse neural computation strategies that are accurate.

One of the most accurate strategies evolved for the diabetes problem was a fully con-
nected network consisting of four hidden units, implementing the following transfer func-
tions found in Fig. 4.4(a)&(b).

It seems that the range of the values for the features was a vital part of this strategy as it
frequently made use of min and max activation functions. It is likely that these were being
used as filters in this case to extract certain attributes values from the set of features. In
other words, min and max functions were relaying information from an attribute that was
probably highly correlated to the class. This might explain why it was being conveyed to
the projection unit (i.e. the perceptron output unit), which evolved as the output unit. To
understand why this is essential for this strategy, we compared the min and max of the raw
data set, and the results were impressive; most of the time, the max value corresponds to the
2nd feature of the data set, i.e. glucose concentration reading. While the min value usually
corresponded to either the 4th or the 5th feature, i.e. skin fold thickness and serum insulin

reading, respectively. Based on the connection weights of these features to the hidden
layers using min and max as a relay; the 4th feature (skin fold thickness) was given more
weight as compared to the rest. The 2nd feature (glucose concentration) and 5th feature
(serum insulin reading) were both given a medium weight, perhaps to normalize its values
with the rest of the features, as they usually have the highest values. The most important
feature relayed by these relay units based on their weights to them was age.

Interestingly, age and skin fold thickness are regarded as features that are recognized to
be highly correlated to diabetes. The American Diabetes Association, for example, regards
age as one of the leading contributing factors that increase the risk of a person having type-2
diabetes [10].

66

(a) (b)

(c) (d)

Figure 4.4: Visualizations of two models that evolved different strategies for the Diabetes
problem.

In general, this strategy seems to be taking advantage of the variety of input combina-
tion function and output functions to extract relevant features using unusual and creative
combinations of transfer functions to obtain useful information. These included obtaining
the minimum feature value, the weighted variance between features, proximity of the fea-
ture vector to the center of the RBF unit, and maximum feature value, and finally using
these features for training a simple perceptron in the output layer. In other words, the hid-
den layer in this case has been mostly used as a feature selection layer. The relatively lower
dimensionality of these features is then taken advantage of to train a simple hyperbolic
tangent perceptron to learn the problem.

Another strategy evolved was a fully connected network with two hidden units where
one adopted a min input combination function and a sigmoid output function and the other
adopted a standard deviation output function with a hyperbolic tangent output function (see

67

Fig. 4.4(c)&(d)). The output unit differed from the other strategy, consisting of a max input
combination which has a winner-take-all effect on the hidden nodes. It’s hyperbolic tangent
output function has another normalizing effect.

Once again, there is a similarity with the earlier strategy in the use of the min input
combination function. However, in this case, it is coupled with a sigmoid output function,
which has a normalizing effect on the output value - restricting it between 0.0 and 1.0. In
addition to that, in this case, it seems to act as a threshold for the other hidden node using
the weighted variance. This is because of the choice of using max as the input combination
function by the output unit, which would tend to pick the value from the hidden units with
the highest output. In other words, the skin-fold thickness parameter was being squashed
and used as a threshold for the other hidden unit, which seems to have adopted the standard
deviation as an averaging mechanism.

In general, the normalizing effect of the output functions of both hidden nodes allows
the hidden node using the min input combination to essentially emulate the role of a bias
node that is dependent on the features.

4.8.0.3 Iris

Interestingly, the Iris problem emphasized on the utilization of a different set of input com-
bination and output functions as shown by the probabilities of transfer functions used (see
Table 4.12). This demonstrates that neuronal diversity can offer a variation of diverse com-
putational strategies evolved specifically to problems with different characteristics.

On the Iris problem, the main strategies seemed to emphasize the use of a combination
of Standard deviation input combination and Gaussian II activation functions. Given the
way standard deviation works, this combination can be regarded as a distant relative of the
radial basis function unit, which uses the difference between feature vectors and the mean
value of the feature vector, instead of the canonical measurement approach of the Euclidean
distance which uses the center vector for the radial basis unit.
Table 4.12: Likelihood (%) of using combinations of input combinations and activation
functions for the Iris problem.

Identity Sigmoid Gaussian Hyperbolic Tangent Gaussian II
Inner Product 0.000 0.000 0.000 7.407 3.704

Euclidean Distance 3.704 0.000 0.000 7.407 0.000
Higher Order Product 0.000 3.704 7.407 3.704 0.000

Higher Order Subtractive 3.704 3.704 3.704 0.000 0.000
Standard Deviation 3.704 0.000 7.407 7.407 14.815

Min 0.000 0.000 0.000 0.000 0.000
Max 7.407 3.704 0.000 7.407 0.000

68

Table 4.13: Associated errors of using combinations of input combinations and activation
functions for the Iris problem.

Identity Sigmoid Gaussian Hyperbolic Tangent Gaussian II
Inner Product 0.000 0.000 0.000 0.003 0.001

Euclidean Distance 0.003 0.000 0.000 0.002 0.000
Higher Order Product 0.000 0.001 0.001 0.001 0.000

Higher Order Subtractive 0.000 0.003 0.002 0.000 0.000
Standard Deviation 0.000 0.000 0.003 0.003 0.008

Min 0.000 0.000 0.000 0.000 0.000
Max 0.007 0.000 0.002 0.000

In general, the transfer function statistics (i.e. likelihood of occurrence and associated
error) of the Iris and Diabetes datasets not only reveal some hint to us regarding which
transfer functions are being used and what strategies are being evolved, but they also show
that different problems require different strategies, and as such need an adaptable form of
bias.

Discriminatory Property of the Transfer functions

Further experiments on the XOR problem, was used to conclusively show that the perfor-
mance gain was mainly as a result of the diversity of transfer functions. XOR is a problem
that is easy to analyze, as such it makes it an ideal problem for studying the computational
strategies.

Transfer functions with strong discriminatory property were being evolved. One of
the more interesting strategies was the use of Euclidean distance with hyperbolic tangent,
which assuming the weights are [1,1], results in an error of 0.26 on the XOR. Another inter-
esting strategy seemed to be exploiting the property of parity to enhance its discriminatory
property; this was the combination that used the combination of a max activation function,
and a Gaussian output function. The MSE error for the transfer function alone, assuming
the weights are [1,1] computes to just 0.17. This is significant because a single transfer
function is doing it without the cooperation of other neurons in the neural network. One
can expect that the other transfer functions will only need to use a strategy that addresses
the blind spots of these transfer functions to achieve outstanding performance.

This particularly highlights the ability of transfer function diversity to evolve diverse
strategies for problems and their accuracy, which conclusively shows that neural diversity
in the form of transfer function diversity is the main contributor to the performance here.

69

4.9 Conclusion

In this chapter, the application of hybrid neural networks in the field of ensembles was
presented, and it was shown that neural diversity in an artificial neural network can exhibit
diverse and accurate computational strategies as a result of neural diversity. This was fol-
lowed up by further analysis which conclusively showed the strategies associated with the
evolved transfer functions had strong discriminatory properties. Neural diversity was also
shown to be effective in ensembles without the need of other explicit diversity maintenance
measures that tend to be computationally expensive. Specifically, it was shown by revealing
the two different strategies for the diabetes problem, where clever functions such as feature
filters and feature normalizers were evolved for pre-processing. The filter function was
used to extract important features such as age and skin fold thickness, which were found to
be correlated to the risk of diabetes. Interestingly, these features are among the factors that
increase the risk of diabetes as recognized by the American Diabetes Association (ADA)
[10]. It was shown that this approach can evolve relatively small ensembles of compact
networks that have a competitive performance, as seen in the case of the diabetes problem
which had a small number of ensemble members of no more than 20, each with relatively
fewer hidden units of no more than 5 hidden units, relative to those found in the literature
which tend to have at least 20 members with 10 hidden units or more [79, 19, 82]. The re-
sults suggest that neural diversity not only shows the ability to significantly produce diverse
computational strategies with diverse biases; it also shows that it can evolve creative solu-
tions to complex problems. However, it also had limitations which include the increased
local minima, as a result of the increased access to the global search space of computational
strategies. In addition, relatively slower convergence is also a concern. However, consid-
ering the increased probability of generalization gains and efficiency (i.e. in terms of using
limited resources), it is arguable that this significantly outweigh the drawbacks.

70

Chapter 5

Problem Signatures

In the previous chapter, we introduced neuronal diversity in the form of transfer function di-
versity and how it can produce accurate and diverse computational strategies for problems.
We also showed that it was able to evolve computational strategies with strong discrimina-
tory properties, which contributes significantly to the performance of the neural network.
While doing so, we also showed how neuronal diversity helps with ensemble diversity.

In this chapter, we explore more details on ways of overcoming the dimensionality
increase of the search space as a result of neuronal diversity. This increased dimensionality
is significant for many reasons. It has the potential of having both positive and negative
impacts, which directly affects generalization ability. As explained in the previous chapter
(i.e. Chapter 4), as the size of the computational strategy space (or hypothesis space) for
the learner expands, the variance-error increases as well - as a result of the high variation in
models. This is mainly due to the increased complexity of the search space, which allows
the models to adopt a wider range of hypotheses. Though this can be advantageous in
cases where the most ideal hypothesis hi ∈ H` is found as a result; the randomness of the
weights, and transfer functions at initialization, in addition to the increased sub-optimal
solutions (or local minima) makes it difficult for the neural network to be consistent in
finding and possibly refining that hypothesis.

The primary objective of this chapter is to explore the feasibility of using measures
in the previous chapter (i.e. transfer function likelihood and associated error) as well as
others inspired by neuroscientific measures as meta-features. These can then be used for
transfer function initialization, and other bias-adjustments before training. In other words,
this is a presented as a pre-processing step. The neuroscience-inspired measure includes
connection density, coexistence likelihood, and connection strength. Connection density
measures the ratio of active connections to total connections to a transfer function (i.e.
combination of an activation function g j() and output function fi(g j())), it can indicate
the importance of transfer functions in a computational strategy. Coexistence likelihood

71

measures the likelihood of a pair of transfer functions being connected to each other. This
measure also captures the direction of the connection, which helps in knowing the chain
of computation being done on the inputs of the neural network. Finally, the connection
strength measures the accumulated weight used between a pair of transfer functions. This
also captures the direction of the connection and helps in knowing the degree to which
the transfer function at the receiving ends, considers the outputs of any connected transfer
function in its calculation.

The criteria used to qualify the generated results of the measures as meta-features were
two: firstly, the ability to produce consistent results for a given problem, i.e. given a par-
ticular problem such as the iris, the results of the measures for that problem should be
consistent. Secondly, the ability to produce different results for different problems, i.e.
given a set of problem, the results of each should differ from the others. These measures
were then used in studying the underlying computational strategies learned by the neural
network models, to provide further evidence that conclusively shows their ability to pro-
duce diverse computational strategies.

The following introductory sections provide the motivation, literature and our contribu-
tions.

5.1 Motivation

Transfer function optimization can lead to an increased dimensionality of the search space,
thus, exposing the neural network to more potential local minima [48]. In particular, ap-
proaches such as increasing transfer function flexibility by increasing its adjustable param-
eters [29, 41, 54, 38], and transfer function pooling [49, 55, 3, 61, 30, 31] have relatively
larger search spaces as a result of the additional possibilities introduced.

One of the effects of the larger search space is that it affects the ability to consistently
convergence on promising computational strategies, which affects generalization. The in-
creased size of the search space introduces more local minima due to the increase of sub-
optimal solutions. At which point, the starting points of the optimization algorithm are
likely to vary more as a result of variability in the transfer functions of the neurons. Sub-
sequently, one can expect there will be more variability in the consistency of convergence.
The consistency of convergence will rely on the ability of the optimization algorithm to
escape various local minima to converge on a promising computational strategy. The com-
mon approach in the literature is the use of evolutionary algorithms to evolve the artificial
neural networks [65, 98, 34, 12, 34, 71, 77, 44, 46, 78]. However, there is a lack of litera-

72

ture that addresses ways of initializing other architectural components of neural networks
apart from weights, such as transfer function choice, and topology.

In this chapter, we explore ways of exploring the neural network hypotheses (i.e. com-
putational strategies) space before training to get an idea of the predisposed architecture
for the neural network, and subsequently the promising computational strategy (hi) more
likely to be a fit for the problem. In particular, we use measures from the previous Chapter
(i.e. associated error and transfer function likelihood), in addition to measures commonly
used in the study of biological neural networks to artificial neural networks, to enable us to
understand how transfer function preference varies between problems (i.e. discrimination).
In addition, we also study how it can be consistent for the same problem (i.e. consistency).
This also helps us to get a glimpse of both their underlying computational strategies and
some insights into the problem. It also helps to lift the lid of complexity that hides the
underlying workings of the neurally diverse artificial neural networks.

There is also the lack of literature related to model-based meta-features; the most
closely related study used features of a trained decision tree [81] such as depth, to de-
termine properties of the problem and fascinate the choice of the learning algorithm to
be used. This work differs because the models are of neural networks for the purpose of
directly initializing the neural networks.

5.2 Contributions

The main contribution in this chapter includes the novelty of application of the modified
analytic techniques [96, 21, 91] used in neuroscience on artificial neural networks and
the insights generated from it. Artificial neural networks tend to be used as black-box
learning algorithms, just as their biological counterparts are also veiled in the mystery of
their complexity, although recent decades have seen a significant acceleration in research
findings [96, 18, 70, 69, 101, 99]. It is intuitive that techniques applicable in the study
of biological neural networks be applicable -with modifications- in the study of artificial
neural networks as well.

This was done by utilizing graph-theoretic measures for the purpose of further analyz-
ing the results of the neuroscience-inspired techniques. It involved isolating the set of con-
nections to the transfer function with the most connection density (i.e. the highest ratio of
active to non-active connections), and visualizing these neural computational paths. Thus,
capturing vital information such as the transfer function choice with the highest connection
density, in addition to the sets of transfer functions which connect to it.

73

Additionally, we also propose a set of criteria for problem signatures and show that
problem signatures can be consistent for the same problems and discriminatory between
different problems as we illustrated in [7], thus making them a viable meta-feature specific
to neurally diverse neural networks.

5.3 Chapter Overview

This chapter consists of various sections that explore the various properties of different
types of problem signatures, in particular, their consistency and discriminatory ability. In
addition to that, it also explores transfer function initialization and complexification, which
are some of the applications of problem signatures in artificial neural networks.

The signatures section (section 5.4), defines problem signatures, and then further de-
scribes the classification of signatures. Specifically, lower-order and higher-order signa-
tures. This is followed by the explanation of the criteria for signatures. In particular, it
describes some of the properties necessary for a potential signature to exhibit to be consid-
ered a signature.

The next section (section 5.4.3), describes some of the tools used for analyzing these
signatures. This includes the popular threshold function and another analysis tool derived
from graph theory.

Afterward, the next section (section 5.6) presents some of the preliminary application
results of lower-order signatures in initializing, and gradually growing the set of transfer
functions made available for optimization. These were meant to improve convergence and
generalization ability by managing the effects of the dimensionality increase as a result of
transfer function diversity.

This is followed by sections (section 5.7 and section 5.8) that show that both lower-
order and higher-order signatures meet our proposed criteria for problem signatures. Specif-
ically, that the signatures of the different datasets tested have many neural computation
paths in common, which makes them similar at a glance, but after a path analysis, their
differences become more apparent and conclusive. In addition to that, we also show that
both lower-order and higher-order signatures are consistent regardless of the size of the
population used for sub-sampling (P), the level of noise (γ), or size of the set of elite mod-
els used to sample the signatures (N). We also show that increasing the size of this set (N),
introduced new neural computational paths suggesting differences in the strategies of the
elite models, which also suggests that transfer function diversity is also a viable method of
introducing diversity in ensembles as highlighted in the previous chapter.

74

In this chapter, we refer to models as the neural networks that adopt the hypothesis

or computational strategies from the Hypothesis space or Computational strategies space.
We use the term hypothesis space and computational strategy space interchangeably to
define the search space containing the various types of hypotheses and neural computa-
tional strategies available. We also use the terms problem signatures and computational

signatures interchangeably.

5.4 Signatures

In this chapter, we refer to data gathered from measures in the previous chapter as well
as our neuroscience-inspired measures as signatures. Preliminary results showed that these
signatures seemed to be different between problems and show some consistency for a prob-
lem as highlighted in the earlier chapter, however these are approximations of the nature
of problems. This is because the signatures are extracted from the neural network models
trying to learn the problem, and the problem’s nature is something that is unknown. Mod-
els are not always completely representative of the underlying strategy even after training.
This is because a model doesn’t always adopt a hypothesis hi(.) that completely minimizes
the loss function with respect to the underlying function of the problem f (.). There is
always some error which is measured as the expected bias-error in the bias-variance de-
composition i.e ED[(hi(x)− f (x))2]. Therefore, the signature identification process is an
effort to approximate of the nature of the problem. An analogy can be drawn from prob-
ability, where the probability according to a certain set of observations n from an infinite
set of observations N (n ⊂ N) is usually described as a likelihood or relative probability.
This is because it is an approximation of the probability that gets more accurate as more
observations are sampled; thus, making it closer to the true probability of the event.

Problem signatures are essentially meta-features of neural network models proposed
in this thesis for sampling from the three major components of the neural network, i.e.
weights, topology and transfer functions. These helps in analyzing the underlying com-
putational strategies of the sampled models. In our experiments, the sampled models are
from a population of randomly generated neural networks consisting of various topologies,
weights, transfer functions and hidden layer size.

The process of signature extraction is a sampling process (see 2), which samples only
from the set of elite neural network models. Measures classified into higher-order and
lower-order (i.e. first and second-order) signatures are used to sample features of the fittest
models, which indirectly are hints to the nature of the problem. Lower-order signatures

75

measure the statistics on the components of transfer functions, specifically the pair of acti-
vation g() and output functions f (). Higher-order signatures measure statistics of a pair of
transfer functions.
Algorithm 2 The process of signature extraction.

for i : maxSamples do
Pop← initPopulation()
Pop← evaluate(Pop) {evaluate train and validation errors}
Pop← sort(Pop) {sort the population by their training and validation errors}
samplei← topN(Pop) {select top n for signature extraction}
signature← extract(samplei) {extract both lower and higher-order signatures}

end for

In this following sections, lower and higher-order signatures used for the experiments
and the methods of sampling them are described (see also Table 5.1). Subsequently, a set
of criteria for problem signatures is also described.

Table 5.1: Problem signature types and visual representations.

Order Signature Visualization

Lower-Order
Transfer function Likelihood see Fig. 5.1
Associated Error -
Connection Density see Fig. 5.2

Higher-Order
Coexistence Likelihood see Fig. 5.3
Connection Strength see Fig. 5.3

76

5.4.1 Lower-Order Computational Signatures

In the previous chapter, we introduced two measures used for analyzing the computational
strategies evolved using neural diversity. In this section, we classify as well as describe the
nature of these signatures and other variations of lower order signatures.

5.4.1.1 Transfer Function Likelihood

The transfer function likelihood (or likelihood of occurrence - as described in the previous
chapter) captures the likelihood of each transfer appearing in the best neural network model,
either before or after training. A high likelihood of a certain transfer function to exist in the
best model can be regarded as an indicator that that transfer function provides access to a
region of the search space that might have the most appropriate hypothesis. In other words,
the transfer functions might be more suited for the given problem.

This was described as the number of times a transfer function appears in the best model
normalized by the total number of possible transfer functions as in Eq. 4.1 on page 62.
This gives an relative likelihood of the transfer function appearing in the best models
E[fa(gb(.))] = la,b. Given the role of transfer functions as the components that play the
important role of forming decision boundaries, we will expect that the likelihoods of each
of the transfer functions for a certain dataset D, will give us some hints regarding the nature
of the problem. In addition to that, it also gives us a hint of the underlying computational
strategy (hi(x)) adopted by the best neural network model, which could then be used to
refine the choice of transfer functions among other possibilities.

We consider two conceivable forms of capturing this information; the first approach
was to obtain the likelihood of the activation function or in other another case the output
function irrespective of their combination. In other words, the likelihood of an activation
function g(.) like the Euclidean distance will be captured from the neural network model
without regard for the output function f (.) it is combined with. We refer to this as a dis-

joint signature extraction, denoted as first-order problem signature of the transfer function
likelihood. This is because the measure is essentially capturing statistics of the decoupled
components of the transfer function.

The second approach was to capture the likelihood of transfer functions as a unit, in
other words the likelihood of all the possible combinations of activation and output func-
tions. We referred to this as joint signature extraction, and is classified as second-order

problem signature of the transfer function likelihood . This is recorded in a matrix with the
x-axis representing the output functions, while the y-axis represent the activation functions.
As such the value for the likelihood of a transfer function of a certain activation function

77

g(.), and a certain output function f (.), is given by the value found at the index of activation
function i(g(.)), and output function i(f (.)), i.e (i(g(.)), i(f (.))) (see Fig. 5.1).

Figure 5.1: The transfer function likelihood visualization for the Iris problem showing
the relative expectations of the transfer functions to be used in elite models. The inten-
sity represents the degree of usage with dark and light signifying heavy and light usage,
respectively.

5.4.1.2 Associated Error

While the transfer function likelihood captures the likelihood of transfer functions being
used, the associated error captures a different aspect. The associated error measures the
error associated with a transfer function. It does so by back-propagating the error of the
output unit on a pattern xi to each hidden unit. The associated error e′ for each hidden unit
is then calculated as in Eq. 4.2 on page 63, and this is associated with the transfer function
of the hidden unit. This would have required a different approach in the case of a neural
network with multiple layers of hidden units since the error of the neurons from the deeper
layers depends on differentiating and then propagating the error backward. However; in
our case, the neural network had one hidden layer, i.e. two layers of weights.

The associated error is averaged over several runs (samples) to get an approximate
error that should be somewhat representative of the expected error for the transfer function.

78

The associated error also has disjoint first-order, as well as joint second-order problem
signatures.

5.4.1.3 Connection density

Connection density is one of the measures used in neuroscience for studying biological
neural networks [96, 91, 21], and was adopted for studying neural diversity machines. It
is calculated for each neuron in the hidden and output layers as the sum of the active (i.e.
turned on and takes part computation) connections to the neuron, normalized by the number
of all the connections (both active and inactive). This can be expressed as in Eq. 5.1.

di = pi/qi (5.1)

Where qi and pi, are the total number of connections, and the total number of active
connections for neuron i, respectively. This is accumulated over the number of sampling
runs for signature extraction. Figure 5.2 shows the example of an illustration of the con-
nection density for the Iris dataset.

Figure 5.2: An illustration of the connection density for the Iris dataset.

5.4.2 Higher-Order Computational Signatures

Another analysis tool used in neuroscience to understand biological neural networks is
graph theory [96, 91, 21]. Regions of interest in the brain are defined, and their struc-
tural or functional connectivity are represented in a two-dimensional connectivity matrix.

79

Each intersection in this matrix could then represent the presence of structural or functional
connectivity.

We adopt this graph theoretical analysis for discovering the signatures of problems in
our neural network models. This produces two sorts of matrices: coexist-on-path matrix
(or the coexistence likelihood), and connection strength matrix. These were classified as
higher-order signatures (HOS).

Higher-order computational signatures capture information of a higher-level represent-
ing statistics, such as the likelihood of transfer functions either being connected to each
other (on a path) or coexisting in the same model. Examples of these signatures include
the coexistence likelihood, and connection strength. In our experiments, the coexistence
likelihood captures the likelihood of transfer functions being connected to each other on a
path, while connection strength captures the cumulative weights of those connections (see
Fig. 5.3). The direction of the connections is also captured, where the y-axis represents
the origin of the path, and the x-axis represents the receiving end of the path. As expressed
earlier, the transfer function is represented as a tuple (a,b) where, a and b are indices of
the activation function and the output function, respectively (see Table 4.1 and Table 4.2).
Thus, a connection from (7,2) on the y-axis and (1,2) on the x-axis represents information
about a connection from a transfer function consisting of a max and sigmoid connecting to
another consisting of an inner-product and sigmoid. As with the transfer function likeli-
hood, darker regions indicate higher values, while lighter regions indicate lower values.

The coexistence likelihood can be expressed as in Eq. 5.2.

E[px,y] =
nx,y

N
(5.2)

Here x,y are both transfer functions in consideration, nx,y is the number of times we
encounter the transfer functions x and y, and N is the total possible transfer functions.
E[px,y] is then the expectation of the coexistence likelihood of transfer functions x and y on
a path px,y. In the case of connection strength (see Eq. 5.3), we are mainly accumulating
the connection weights between the transfer functions.

cx,y = ∑wx,y (5.3)

Here, wx,y represents the connection weight between the transfer functions x and y.cx,y

is then the connection strength between the transfer functions in consideration. This was
not normalized in practice as it yielded very small values that were hard to work with.

80

(a) (b)

Figure 5.3: Higher-order problem signatures on the Iris dataset : (a) coexistence likeli-
hood, (b) connection strength.

5.4.3 Signature Criteria

Upon inspecting the visualization of the coexist-on-path and connection strength matrices
(see Fig. 5.3(a) and Fig. 5.3(b)), there are signs of a consistent pattern that emerges in
the form of some strongly shaded vertical regions. These show some of the neural com-
putation paths most likely to be found in the fittest sub-sample of neural network models.
The question is if these were conclusively consistent and if they differed between unre-
lated problems. This pattern of consistency was also seen in the other forms of signatures
described.

In summary, the criteria for computational signatures to be feasible as a reliable de-
scription of the computational strategy for problems are as follows:

• Consistency of signatures belonging to the same problem.

• Difference between signatures belonging to unrelated problems, i.e. discriminative
ability.

• Similarity between signatures of problems that are related.

In our work, we only address the first two criteria, i.e. the consistency and discrimina-
tory properties of signatures. This is because the third criterion of proving that signatures

81

of similar problems should be similar requires a reliable measure of similarity between
problems in the problem space. However, this extends beyond the scope of this thesis.

5.5 Signature Analysis Visualization and Techniques

In this section, we highlight the tools and techniques used for showing the consistency and
discriminatory property of signatures. These include thresholding, neural computation path
analysis, and correlation measures (i.e. Pearson and Spearman correlation coefficients).

5.5.1 Thresholding

Thresholding is one of the key tools that was used in the analysis of the computational
signatures. It is a standard technique used in various analyses including the study of data
from graph theoretical analyses of the brain [96]. It is valuable in revealing relatively
notable features by filtering out some that are below the threshold.

In our work thresholding was done to filter out the values that were below the mean
value to reveal information that could be of interest. The mean (µ) was chosen because it
is relative to the range of values being considered. Thus, it makes it unlikely to filter out
some information that might be important or not filter out signatures that are not useful.

We also used another adjustment parameter (α), which can be used to increase the
threshold expressed as in Eq. 5.4.

T = µ +α (5.4)

Here T is the threshold, µ is the mean of the given data (e.g. coexistence likelihood
matrix), and α is the adjustment parameter.

5.5.2 Neural Computation Path Analysis

Though computational signatures present a holistic view of the underlying strategies being
used for a problem by various models using their meta-features (i.e. likely neural computa-
tion paths and their connection strengths), it is hard to examine the most prevalent building
blocks common to these models for specific problems. There is a need for a method that
combines the results of some of these signatures to present a simplistic and informative
representation of the signatures. As such, we use the neural computational paths found
in the higher-order signature to reconstruct portions of these strategies. We define neu-
ral computational paths as the connections between neurons (i.e. transfer functions) in the

82

neural network, which transforms data using these paths. Thus, a path between two transfer
functions fx and fy could be expressed as (fx, fy).

This approach involves the use of a graph-based analysis of the neural computational
paths from the resulting higher-order signatures (i.e. coexistence likelihood and connection
strength). The analysis involved using the neuron (transfer function) with the most connec-
tion density from the signatures as a reference for recreating the most likely portion of the
strategy by visualizing the transfer functions that were most likely to connect to it. This
was reproduced in the form of a graph, with the edges representing the connections, and the
intensity of the edges representing the connection strength of the edges. Only connections
with the most likelihood to connect to the reference neuron (i.e. with the most connection
density) relative to the other transfer functions connecting to it were used in the recreation.
This was done by using the average (µ) as the threshold, which allows for a more adaptive
form of thresholding; thus, showing only those that were above average.

The steps of the neural computational path analysis were as follows:

• Find the transfer function fterminal that had the highest connection density.

• Add it to a directed graph (di-graph) G.

• Trace back the transfer functions connected to it Tin = { fi... fn}, where Tin refers to
set of transfer functions sending inputs to the terminal transfer function (i.e. Tin).

• Find the mean connection strength for all the transfer functions from the set mconnStrength.

• Remove transfer functions from the set Tin with connection strengths lower than
mconnStrength

• Add the transfer functions to the graph G and connect them with the fterminal node/vertex.

The resulting graph is a reconstruction of the most likely neural computational paths
connecting to the neuron with the highest connection density, which gives an empirical
expectation of the primary building blocks for the neural computation strategy with the
fittest score for the problem. These building blocks further reveal hints of the underlying
computational strategy predisposed to the problem.

In the context of showing that the signatures are consistent for problems, and indicating
the differences between signatures for different problems, path analysis is especially use-
ful. This is because demonstrating that the primary building blocks for the signatures are
consistent regardless of changes to factors such as the size of the population used for signa-
ture extraction, or the number of independent samples collected (i.e. runs R), conclusively

83

shows that they are consistent under those conditions. Similarly, if different problems ex-
hibit different building blocks, then they can be conclusively shown to be discriminatory
for problems.

5.5.3 Measuring Differences between Signatures

Measuring the similarity between signatures was done using correlation measures such
as the Pearson correlation coefficient, and the Spearman correlation coefficient built into
the Python SciPy library [57]. This is especially useful for evaluating the differences in
correlation between signatures and was used to conclusively verified with results from the
neural computational path analyses. This has also been used to verify the findings of the
discriminatory ability of higher-order problem signatures in conjunction with thresholding.

The Pearson correlation coefficient is expressed as follows:

r =
∑

i
∑

j
(Aij−E[A])(Bij−E[B])[

∑
i

∑
j
(Aij−E[A])2

][
∑

i
∑

j
(Bij−E[B])2

] (5.5)

Where A and B are m×n matrices representing higher-order signatures or second-order
signatures such as the transfer function likelihood. Expectation of A (E[A]) and B (E[B])
are defined as:

E[A] =


E[A1,1] E[A1,2] E[A1,3] . . . E[A1,n]
E[A2,1] E[A2,2] E[A2,3] . . . E[A2,n]

...
...

...
E[Am,1] E[Am,2] E[Am,3] . . . E[Am,n]

 (5.6)

and

E[B] =


E[B1,1] E[B1,2] E[B1,3] . . . E[B1,n]
E[B2,2] E[B2,2] E[B2,3] . . . E[B2,n]

...
...

...
E[Bm,1] E[Bm,2] E[Bm,3] . . . E[Bm,n]

 (5.7)

E[Ai j] - the expectation of a neural computation path i j, where i and j are both transfer
functions, and E[A] is a simple average/expectation of the elements of A.

84

5.6 Transfer Function Initialization and Complexification

5.6.1 Motivation

Artificial neural networks capture information about the nature of the problems within their
structure; including weights, connectivity patterns and the functional parameters of the
transfer functions. These can be harvested as meta-features and help in not only deciding
the choice of transfer functions that might be more appropriate for any given problem
but also to reveal their underlying computational strategies. In the previous section, we
described some of these measures which were described as problem signatures.

The most related work regarding capturing information from the features of models is
from the meta-learning domain [84, 81, 102, 100]. In particular, the most similar work is
one which uses the features of decision trees (e.g. depth) trained on a problem to determine
its characteristics. The features were then used to identify the classifier that is most suitable
[81].

This work contributes to the field by exploring the use of signatures as meta-features of
neural network models to enable us to understand the underlying hypothesis that they learn,
and identify possibilities of more suitable starting positions in the search space, i.e. initial-
ization. However, initialization does not always guarantee the most appropriate starting
position due to limitations of the signatures, especially concerning the size of the sample,
as well as noise as a result of parameters with high dimensionality such as weights. It
may give rise to a restrictive bias since the set of transfer functions is determined by the
signatures (or meta-features), and is a subset of the transfer function set used for our neu-
rally diverse networks. As such, there is also a need for a method of gradually expanding
the search space by introducing other transfer functions into the set of transfer functions
previously not included. This is referred to as transfer function complexification.

The decision of the choice of transfer functions for the neurons of artificial neural net-
works is not apparent. Earlier works [47] have raised the concern of the lack of a standard
method of using radial and projection functions in neural networks within the context of the
theory of duality of functions. There have also been reports of techniques that use k-means
clustering to identify the number of clusters as the number of radial basis functions units.
This is followed by initializing the rest of the hidden units with projection basis functions
[47]. Though this can be applicable in the context of neural networks dealing with only
radial basis functions and projection basis functions alone; it does not completely apply to
the problem of neural diversity. This is because of the nature of other transfer functions
included in the set such as Higher-order transfer functions.

85

Transfer function complexification is one approach which could be argued to be bi-
ologically plausible. Complexification is one of the biological design patterns found in
biological neural networks, especially during the development stage [24]. The idea is to
regulate the complexity of the search space by introducing the transfer functions in stages.
One of the advantages of this approach is that the optimization algorithm will be exposed
to a fraction of the local minima since it’s focusing on a relatively small region of the
search space in the early stages of optimization. Subsequently, after giving some time for
the neural network to convergence on a local minimum, a new set of activation and output
functions is introduced into the transfer function set. This has the effect of introducing
more species of computational strategies to be considered, and this is the second advantage
which might help in escaping local minima.

There are various possibilities for initializing transfer functions. In this section, we ex-
plore three possibilities of detecting the meta-features of neural network models (i.e. DSI,
JSI, RBFI, and All), which can be used for identifying and possibly initializing the transfer
functions of artificial neural networks having a diverse transfer function set. We also ex-
plore the effects of two complexification techniques on all the three techniques (i.e. DSI,
JSI, RBFI, and All). The first method involved the random injection of transfer functions
into the pool of transfers not included in the set used for optimization. This is likely to have
the effect of randomly introducing sub-spaces into the search space of the neural network.
This concept was explored in a later chapter where it is shown to result in dramatic perfor-
mance improvements. The second was the fitness-based introduction of transfer functions
whereby the associated error signature of the problem with respect to the transfer function
set, was used to choose which transfer functions ought to be introduced before the others.
In other words, the transfer functions are ranked by their associated error and introduced
in sequence. The injection of transfer functions was done on an interval basis for both
techniques.

In relation to the literature, the related works include NEAT [97] which explored com-
plexification in an evolutionary approach by adding hidden units to grow a neural network
and adapt its topology. However, in this section, the approach is different. It finds promis-
ing transfer functions for the neural network model using either of the three techniques,
uses the promising subset for initialization, and gradually introduces the other members of
the promising transfer function set into the pool of available transfer functions for the neu-
ral network models in either a fitness-based or randomly manner. This enables us to verify
if there might be any advantages in complexification if it is based on some prior knowl-
edge, i.e. fitness in this case. This differs from work from the literature by introducing an
approach towards increasing the complexity of artificial neural networks while retaining its

86

size. This approach also doubles as a method of controlling the complexity of the search
space by systematically expanding the search space in search of strategies that might be
more promising. The resulting effect is the ability to escape local minima.

5.6.2 Experimental Setup

In this subsection, we present the experimental setup. This includes the datasets used, and
the respective maximum number of hidden nodes stipulated in addition to other details.

The experiment consisted of two stages; the first stage was to form the set of initial
transfer functions used for the neural network before the optimization process. This in-
volved sampling the signatures and using the first three most likely set of transfer functions
as the initial transfer function set. The second process was the training process where the
initial set of transfer functions was then used to optimize the neural networks, and depend-
ing on the experiment, additional transfer functions are introduced at intervals during the
optimization process.

The general idea of sampling signatures is not new and Duch [37] has suggested a simi-
lar method as a way of selecting the most suitable transfer functions for different problems.
It is basically to generate a vast and diverse population of neural network models using all
the transfer functions, then to evaluate them without training on the problem and to select
the fittest model. This can be repeated for many times until an apparent pattern in the use
of transfer functions and associated errors is noticed. In the case of this experiment, the
results were averaged over 30 trials and a population size of 1000 neural network models,
of which the top solution is selected, and its meta-features are sampled.

In terms of the optimization, all the experiments were allowed to run for 100 genera-
tions, even though there was a stopping criteria that terminated a trial when the target error
of 0.0 was met. The setup for the datasets was as follows:
Table 5.2: Experimental setup for the benchmarks showing the maximum number of
hidden units allowed for each ensemble member, and the number of folds used for K-fold
cross-validation.

Benchmarks Max Hidden units Members(Ensemble)
Iris 5 10

Sonar 5 10
Diabetes 5 10

Double Spiral 15 N/A
XOR 5 N/A

Double Spiral In this case, the networks were allowed to adopt a larger number of hidden
nodes. The networks could adopt anywhere between 1 and 15 hidden nodes for this

87

problem. This was setup to match the number of hidden nodes used by other works
for easier comparison. The double spiral did not use cross-validation, instead, it was
trained using 300 data points uniformly sampled from the 2D image of the double
spiral. To get a reliable measure of generalization ability, another 300 data points
were randomly sampled from the same 2D image to serve as the test set. The results
were averaged over 30 runs.

XOR Finally, in the case of the XOR dataset, the maximum number of hidden nodes
stipulated was the same as that of the Iris, Diabetes, and Sonar datasets. However,
because this dataset was relatively smaller. The training set and test set were both the
same, and the results were average over 30 runs as was the case for the double spiral.
In other words, this did not produce a test error.

The following are descriptions of experimental conditions relating to means of initial-
izing the set of transfer functions before optimization.

All (Baseline) This condition was used as the baseline for the rest of the cases in the ex-
periments. It was implemented to use all the available activation and output functions
of the neurally diverse neural networks throughout the optimization process.

Joint signature set Initialization (JSI) This case consists of using joint problem signa-
ture detection to determine the transfer functions predisposed to the given problem
and uses a subset of them as the initial set of transfer functions usable. This set is
gradually grown by selecting a random activation function and output function from
the transfer function set at intervals.

Disjoint signature Initialization (DSI) Like the previous case, this case uses problem sig-
natures to determine the predisposed transfer functions to the given problem and uses
a subset of those with the highest likelihood of occurrence as the initial set of transfer
functions usable. However, this case uses the disjoint method of problem signature
detection. Likewise, the usable set of transfer functions is grown in the same manner
as in the previous case.

Radial Basis Functions Initialization (RBFI) In this case, Radial Basis Function net-
work’s transfer functions are used as the initial transfer function set. This set is
then grown in the same way as the previous cases (i.e. DSI and JSI).

The following are descriptions of the experimental conditions relating to the gradual
introduction of transfer functions during optimization, i.e. transfer function complexifica-
tion.

88

Joint signature Initialization with Random Complexification (JSI-R) This case is an ex-
tension of JSI which starts with an initial set that has only one transfer function (i.e.
one activation function, and one output function). The set is grown by selecting a
random activation function, and an output function at intervals during the optimiza-
tion process. It differs from JSI because it uses a smaller subset and has a relatively
smaller interval.

Disjoint signature Initialization with Random Complexification (DSI-R) This extends
the DSI by starting with an initial set that has only one transfer function. The set is
grown in the same way as the previous case (i.e. JSI-R). Likewise, this also differs
from DSI by its use of a smaller subset at initialization and has a relatively smaller
interval.

Joint Signature Initialization with Fitness-Based Complexification (JSI-FB) This case
is also another extension of the JSI and starts with an initial set that has only one
transfer function. However, the set is grown by selecting the next activation function
and output function based on its likelihood of occurrence in elite solutions from the
joint problem signature detection stage.

Disjoint Signature Initialization with Fitness-Based Complexification (DSI-FB) Likewise,
this case also extends the DSI and also starts with an initial set that has only one trans-
fer function. Like the previous case (i.e. JSI-FB) it grows the usable transfer function
set based on associated fitness values.

5.6.2.1 Measures

The measures were as follows:

• Mean squared Error: This is the usual error measure used in most of the literature on
machine learning, sometimes the mean absolute error is also used. The mean squared
error is expressed as in Eq. 5.8.

MSE =
∑

N
i (yi− ti)2

N
(5.8)

• Cross-validation: It is used as a more reliable measure of generalization ability. In
this work, we used k-fold cross validation. It works by shuffling, then dividing the
dataset into k portions defined by the number of folds (k). Each portion i is then used
as a testing set in one of the rounds ri ∈ {1..K} during the evaluation process. This
helps to avoid cases of a biased assessment as a result of uneven class distributions

89

favoring a particular model. The mean squared errors for the all the rounds {ri...rk}
is then averaged to get an approximation of the expected generalization error.

5.6.3 Results
Transfer Function Initialization

The results that follow show the performance of the cases: All, JSI, DSI, and RBFI on the
given datasets.

Figure 5.4: Bar chart of the mean squared error for the various initialization methods.

The results of the Iris and Sonar datasets indicate that the JSI and DSI were not sig-
nificantly different (see Fig. 5.6 and 5.6), and this was regardless of the complexification
methods used. Both show improvements over All and RBFI. The exception was in the case
of the XOR dataset where the JSI performed better than the DSI both regarding error and
convergence (see Fig 5.5 and 5.6).

For the Diabetes and Double spiral datasets, there was no statistically notable improve-
ment (as suggested by a t-test) for the other cases (i.e. JSI, DSI, RBFI) with regards to the
All condition in terms of cross-validation error (see Table 5.3 and 5.4). However, regarding
convergence ratios, while JSI and RBFI were better off for the Diabetes dataset, the DSI
condition was better off for the Double spiral dataset.

90

Figure 5.5: Bar chart of the convergence rate for the various initialization methods.

Table 5.3: Results comparing some of the cases.

XOR Spiral Iris Sonar Diabetes
All 0.135 0.105 0.071 0.195 0.178
JSI 0.076 0.100 0.045 0.191 0.179
DSI 0.139 0.102 0.053 0.191 0.176
RBFI 0.103 0.103 0.073 0.199 0.176

In general, JSI performed better than the other approaches (see Fig. 5.5 and 5.6) -
especially in terms of convergence. Sometimes this was significant such as in the case of
the Iris, XOR, and Sonar, and other times not - such as for the Diabetes and Double spiral
datasets.

Transfer Function Complexification

In the case of the XOR problem, the DSI performed better than the JSI with random com-
plexification applied on both. This was the same for the fitness-based complexification case
which also showed that they were not statistically different from each other for the given
dataset.

However, although this was true for the Diabetes dataset regardless of the complexifi-
cation scenario it was different in the case of the Double-spiral (see Table 5.4).

Interestingly, in the case of the double spiral dataset; the JSI was better than the DSI
with random complexification (i.e. JSI-R and DSI-R) with a statistically significant dif-
ference. However, and interestingly this was not the case with the other complexification
method, i.e. fitness based: in this case, the JSI-FB and DSI-FB were similar.

91

(a) Iris (b) XOR

(c) Sonar (d) Double Spiral

(e) Diabetes

Figure 5.6: Mean squared error of the various approaches tested on the datasets.

In general, the complexification approaches did not show any statistically significant
difference. Though there we two cases (i.e. XOR and double spiral) which showed slight

92

Table 5.4: Results of the complexification approaches applied with the problem signature
detection methods.

XOR Spiral Iris Sonar Diabetes
JSI-R 0.145 0.105 0.057 0.191 0.177
JSI-FB 0.128 0.105 0.068 0.197 0.179
DSI-R 0.123 0.109 0.064 0.191 0.177
DSI-FB 0.127 0.105 0.069 0.196 0.180

Figure 5.7: Bar chart of the mean squared error for the various methods of transfer func-
tion complexification.

differences between the methodologies. This could have been as a result of the interval
based introduction of transfer functions which might have been too fast. In such a case,
there will be no time for the neural network to converge on a hypothesis (local minimum
in that subspace).

5.6.4 Discussion
Transfer Function Initialization

The Joint signatures and disjoint signatures, in general, don’t seem to be statistically dif-
ferent from each other in terms of improving generalization error; however, JSI does help
in improving the convergence rate for the neural network models. One explanation for
the reason behind this is that both disjoint and joint signature information could be argued
to both capture similar information. They are both essentially capturing the likelihood of
transfer functions occurring in the elite models of the neural network, which is expected
to represent the most optimal local minima within the set of hypothesis available to the
learner `. Capturing the input combination and output function’s joint likelihood is similar

93

Figure 5.8: Bar chart of the convergence rate of the various methods of transfer function
complexification.

to obtaining the likelihood of each of them separately since they are being sampled from
the same source (i.e. the best model). This is because the increase in the joint likelihood of
capturing a certain input combination function with another output combination function
also translates as an increase in the likelihood of that input combination. In other words,
they are somewhat proportionate.

However, it is important also to point out that they are not completely the same, as
the convergence rate results illustrate: the additional information captured by the joint
probabilities seems to help in improving the convergence. This is arguably a consequence
of the signature providing more information about the starting point, which gives a head
start to the optimization process.

Transfer Function Complexification

The results seem to suggest that regardless of introducing transfer functions according to
their associated fitness (i.e. some prior knowledge), or just doing it randomly; there is no
significant difference. This is quite profound in the sense that it is not intuitive. There are a
variety of reasons that could be argued for the performance of the complexification methods
being the same. We believe that one contributing factor could be that intervals need to be
adaptive to other factors in the optimization process such as convergence, and stagnation.
Complexification could be more useful when there has been stagnation in the training error
over a long number of generations. It is likely to be less so when the neural network models
are converging on a hypothesis and are making small adjustments to approximate it. This is
because diversity in the species of solutions, or global spread of the search space is found to

94

act usually as an antagonistic pair to convergence. This has been the motivation for works
such as some hybrid algorithms that use both global and local search. We believe that in
the case that the interval for introducing the transfer function is not optimized according
to other variables such as convergence, stagnation, and spread over the search space, it’s
unlikely to yield different results regardless of if it’s fitness-based or just random. This is
because if the interval was faster relative to the convergence rate, such that new transfer
functions push towards more exploration, the advantages of the relatively smaller search
space in the early stages will be lost very quickly.

5.6.5 Conclusion

In terms of the initialization results, we have shown that disjoint or joint signatures are not
statistically different with regards to improving the generalization of the neural networks.
This because they are both measures that sample the same information in different ways
and were bound to produce proportionate results. It was pointed out that with regards to
convergence, their results were not similar and that the additional information captured
by the joint signatures is useful in this regard. This was explained to be a result of the
increased information regarding the starting position of the neural network, which might
give it a head start in optimization.

We have also explored the complexification of an initial set of promising transfer func-
tions using two methods; one using prior information such as fitness, and the other based
on randomness to introduce transfer functions gradually into the search space of artificial
neural networks. It has been found that both methods didn’t result in significant differ-
ences except in the case of the double spiral where JSI-R was better than DSI-R in these
experimental conditions. It has been suggested that these results were likely due to the
interval not being adaptive to the stage of the search, and possibly being too fast relative to
convergence ratios as a result.

5.7 Consistent and Discriminatory Properties of Lower-
Order Signatures

In this section we explore the consistent properties of lower-order signatures, in particular:
connection density and transfer function likelihood.

95

5.7.1 Motivation

In this section, we perform analysis meant to reveal if consistency is part of the properties
of lower-order signatures; in particular, connection density and transfer function likelihood.
There was the concern that because lower-order signatures captured information on a finer
scale, and might be unable to capture any pattern, which could be explained with regards
to the under-sampling common to other domains such as image processing. This section
specifically seeks to explore the ability of lower-order signatures to be consistent for a
problem, and discriminatory between different problems.

Another motivation is that there have been relatively few works in the meta-learning
domain [81, 84, 15] in developing meta-features for learners in general, and even fewer for
works that derive meta-features from models [81]. Unlike other works, this work presents a
meta-feature for artificial neural networks that use neural diversity as their transfer function
optimization approach.

5.7.2 Experimental Setup

The datasets used for the experiments in this section consisted of the Iris, Sonar, Diabetes
and XOR datasets. The Iris, Diabetes, and Sonar datasets were retrieved from the UCI
machine learning repository [13].

The signature extraction process remained the same as described earlier. The compu-
tational signatures were extracted from a subset of the population, in particular, the top N

solutions after sorting. Independent samples of these signatures were accumulated over a
number of runs R. For various conditions of the experiments, these parameters (i.e. R and
N) were varied to examine their effects on the consistency of the signatures. In this sec-
tion, we are mainly interested in lower-order problem signatures. The Mean squared error
was used to evaluate the neural networks. The populations consisted of not only neural
networks with diverse transfer functions but also of varying complexities (i.e. hidden layer
size), which provided a broader set of regions from the search space to be sampled.

In summary, this section seeks to answer if the following affected the signature consis-
tency:

• Size of the of fittest N solutions collected for signature extraction.

• Noise level injected into the training examples (γ).

As such, the conditions for the experiments were as in Table 5.5.

96

Table 5.5: Conditions under which the lower-signatures were tested.

Condition Description
Size of fittest N Tests for various sizes of N ∈ {1...4} solutions to be selected after sorting
Noise levels γ Tests for some range of runs γ ∈ {0.1...0.9}.

5.7.3 Results

In this section, we present the results for the Iris, Sonar, and XOR. These included the
lower-order signatures with varying levels of noise and sizes of N. The results of the con-
nection densities can be found in the appendix (see Appendix A.1.1); likewise, the results
of the effects of the sizes of N has been moved to the appendix (see Appendix A.1.2).

(a) γ = 0.1 (b) γ = 0.2 (c) γ = 0.3

(d) γ = 0.4 (e) γ = 0.5 (f) γ = 0.6

Figure 5.9: An illustration showing the average transfer function likelihood for the noise
levels within the range of γ ∈ {0.1..0.6} on the Iris dataset.

97

(a) γ = 0.7 (b) γ = 0.8 (c) γ = 0.9

(d) γ = 1.0

Figure 5.10: An illustration showing the average transfer function likelihood for the noise
levels within the range of γ ∈ {0.7..1.0} on the Iris dataset.

Fig. 5.9 and Fig. 5.10 shows the average transfer function likelihood for the levels
of noise γ ∈ {0.1...1.0}. It was apparent that some of the transfer functions were more
likely in comparison to other possibilities. In particular, the combination of the (7,4) -
which according to the indices of the transfer functions refers to the combination of a max

activation function (7), and a hyperbolic tangent output function (4). This has been found
to work as both a filter mechanism that extracts and normalizes a given feature of the
problem as discussed in the earlier chapter.

98

(a) γ = 0.1 (b) γ = 0.2 (c) γ = 0.3

(d) γ = 0.4 (e) γ = 0.5 (f) γ = 0.6

Figure 5.11: The average transfer function likelihood after thresholding for the noise
levels within the range of γ ∈ {0.1..0.6} on the Iris dataset.

99

(a) γ = 0.7 (b) γ = 0.8 (c) γ = 0.9

(d) γ = 1.0

Figure 5.12: The average transfer function likelihood after thresholding for the noise
levels within the range of γ ∈ {0.7..1.0} on the Iris dataset.

Fig. 5.11 and Fig. 5.12 shows the results after thresholding was applied to the signatures
in Fig. 5.9 and Fig. 5.10. After thresholding, more consistent patterns of the transfer
function likelihoods were apparent.

100

(a) γ = 0.1 (b) γ = 0.2 (c) γ = 0.3

(d) γ = 0.3 (e) γ = 0.5 (f) γ = 0.6

Figure 5.13: The average transfer function likelihood for the noise levels within the range
of γ ∈ {0.1..0.6} on the Sonar dataset.

101

(a) γ = 0.7 (b) γ = 0.8 (c) γ = 0.9

(d) γ = 1.0

Figure 5.14: The average transfer function likelihood for the noise levels within the range
of γ ∈ {0.7..1.0} on the Sonar dataset.

Similarly, the transfer functions likelihoods for the Sonar dataset shown in Fig.5.13 and
Fig. 5.14 have some apparent patterns, however not completely obvious.

102

(a) γ = 0.1 (b) γ = 0.2 (c) γ = 0.3

(d) γ = 0.4 (e) γ = 0.5 (f) γ = 0.6

Figure 5.15: The average transfer function likelihood after thresholding for the noise
levels within the range of γ ∈ {0.1..0.6} on the Sonar dataset.

103

(a) γ = 0.7 (b) γ = 0.8 (c) γ = 0.9

(d) γ = 1.0

Figure 5.16: The average transfer function likelihood after thresholding for the noise
levels within the range of γ ∈ {0.6..1.0} on the Sonar dataset.

Interestingly, as shown by the more obvious and consistent patterns of likely transfer
functions for the Sonar with increasing levels of noise (see Fig. 5.15 & Fig. 5.16); one of
the likely transfer functions is the combination of a standard deviation activation function
and a hyperbolic tangent output function. This is one of the transfer function that has
been found to be used as a mechanism for relaying a normalized average of features as
highlighted in the earlier chapter. This was considered to be particularly useful for the
diabetes problem as well.

104

(a) γ = 0.1 (b) γ = 0.2 (c) γ = 0.3

(d) γ = 0.4 (e) γ = 0.5 (f) γ = 0.6

Figure 5.17: The average transfer function likelihood for the noise levels within the range
of γ ∈ {0.1..0.6} on the XOR dataset.

105

(a) γ = 0.7 (b) γ = 0.8 (c) γ = 0.9

(d) γ = 1.0

Figure 5.18: The average transfer function likelihood for the noise levels within the range
of γ ∈ {0.6..1.0} on the XOR dataset.

Regarding the XOR dataset, Fig. 5.17 & Fig. 5.18 show its result of transfer function
likelihood as the level of noise is increased. It also shows consistent patterns as with the
later results of the other datasets.

106

(a) γ = 0.1 (b) γ = 0.2 (c) γ = 0.3

(d) γ = 0.4 (e) γ = 0.5 (f) γ = 0.6

Figure 5.19: The average transfer function likelihood after thresholding for the noise
levels within the range of γ ∈ {0.1..0.9} on the XOR dataset.

107

(a) γ = 0.7 (b) γ = 0.8 (c) γ = 0.9

(d) γ = 1.0

Figure 5.20: The average transfer function likelihood after thresholding for the noise
levels within the range of γ ∈ {0.6..1.0} on the XOR dataset.

After thresholding, the figures (i.e. Fig. 5.17 & Fig. 5.18), the resulting transfer func-
tion likelihoods are as in Fig. 5.19 & Fig. 5.20. This made the most likely transfer func-
tions more obvious, and also showed the consistency of the signatures as the level of noise
was increased. One observation, as with the later datasets is that some transfer functions
likelihoods faded out from the resulting transfer function likelihoods post-thresholding as
the noise level was increased. One example is (4,3), which appeared at noise levels of
γ ∈ {0.2,0.3,0.4,0.5}. Another observation is the that like the other datasets, there was a
consistency of a significant number of the most likely transfer functions as the noise level
was increased. Additionally, another interesting the most likely transfer functions for the
different datasets appeared to be unique. This was one of the motivations for studying the
consistency and discriminatory ability of problem signatures.

108

(a) (b)

(c) (d)

Figure 5.21: The correlation between the connection densities of the problems with and
without thresholding. (a) and (b) represent results without thresholding, while (c) and (d)
are results with thresholding.

The results of the correlation between the various types of signatures presented were
used to answer the question of whether lower-order problem signatures were discriminatory
by nature.

In terms of the correlation between the problems, it was apparent that the comparison
of the connection densities between problems showed weak correlations for both the cor-
relation measures used. The results in Fig. 5.21 (a) and (b) illustrates the correlation of the
problems connection densities without thresholding as the level of noise was increased, i.e.
γ ∈ {0.1...0.9}. While the Figures Fig. 5.21 (c) and Fig. 5.21 (d) presents the results after
thresholding as the noise was increased over the same range. This was intended to explore

109

the possibilities of the correlations differing in both cases. In general, the results show a
weak correlation between problems in terms of their connection densities.

(a) (b)

(c) (d)

Figure 5.22: Correlation between the transfer function likelihoods of the problems both
with and without thresholding. (a) and (b) are Pearson correlations coefficients, (d) and (c)
are Spearman correlation coefficients.

The results of the correlation between the transfer function likelihoods of the problem
both with and without thresholding are highlighted in Fig. 5.22. Interestingly, these showed
even weaker correlations of between 0.1 and 0.3, in general. Another observation is that
the correlations results for the connection densities seemed to be relatively smoother as the
level of noise was increased, compared to the transfer function likelihood.

110

(a) (b)

(c) (d)

Figure 5.23: Correlation between the association associated error of the problems both
with and without thresholding. (a) and (b) are Pearson correlations coefficients, (d) and (c)
are Spearman correlation coefficients.

Similar results were also observed for the correlation of the associated error of the trans-
fer functions between the problems. It also showed what was within the range that indicates
weak or no correlation between the problems associated error. Thus, further suggesting that
the lower-order signatures were distinct.

111

(a) (b)

(c) (d)

Figure 5.24: The correlation between the connection densities of the problems both with
and without thresholding as the size of N is increased {1..4}.

The results in Fig. 5.24 shows the correlation between the connection densities of the
problem the size of N was increased. As expressed earlier, N represents the number of
elite models to be sampled from during the extraction process. Fig. 5.24 (a) and (b) show
the Spearman and Pearson correlations of the connection densities prior to thresholding.
While Fig. 5.24 (c) and (d) show the Spearman and Pearson correlations of the connection
densities after thresholding. Interestingly, relative to the results of increasing the level of
noise γ , the results of the correlations showed much weaker correlations. Specifically, while
the results of the condition of increasing noise seemed to increase gradually to a correlation
of 0.5, which is still regarded as a weak correlation, the results of increasing the size of N

had a maximum correlation of 0.3.

112

(a) (b)

(c) (d)

Figure 5.25: Correlation between the transfer function likelihoods of the problems both
with and without thresholding as the size of N is increased {1..4}. (a) and (b) are Pearson
correlations coefficients, (d) and (c) are Spearman correlation coefficients.

In terms of the correlation of the transfer function likelihoods, the correlations results
between the problems are highlighted in Fig. 5.25. Similarly, the results also portrayed
suggest that there are either no correlations or very weak correlations between the prob-
lems.

113

(a) (b)

(c) (d)

Figure 5.26: Correlation between the transfer function association of the problems both
with and without thresholding as the size of N increases {1..4}. (a) and (b) are Pearson
correlations coefficients, (d) and (c) are Spearman correlation coefficients.

Similarly, the results of the correlations for the associated error of the transfer functions
between the problems as shown in Fig. 5.25, also suggested that they were very weakly
correlated.

114

5.7.4 Discussion

In this section, we discuss the consistency of firs and second order signatures on the various
circumstances including noise levels (γ), population size (P), and size of the top (N).

5.7.4.1 Consistency with Noise Levels γ

In general, lower-order signatures showed consistency for the different values of noise γ

as seen in the figures (see Fig. 5.9, 5.13, and 5.17), and this was even clearer after a
threshold function was applied (see Fig. 5.11, 5.15, and 5.19). However, it was apparent
that there was some degree of randomness in lower-order signatures. This was likely due to
the lower-order signatures representing a lower-level of information which is seems to be
more susceptible to noise than higher level information, as we shall see in the next section.

Some of the transfer functions that make up the consistent pattern for the transfer func-
tion likelihood include the following:

• (6,2) - Min and Sigmoid

• (4,1) - Higher-Order subtractive and Identity

• (1,4) - Inner product and Hyperbolic tangent

• (5,5) - Standard Deviation and Gaussian II

• (7,4) - Max and Hyperbolic tangent

Interestingly, these were also correlated with the connection densities of the transfer
functions. However, there was some degree of randomness in some of the correlations
where it showed a correlation in some but not in others, for example, (1,4).

These results highlight some of the advantages of the higher-order problem signatures
over lower-order; while lower-order signatures generally seem to have a lot more random-
ness or sensitivity to the whole sampling process, higher-order signatures appeared to be
more resilient - as shown in the next section. In addition to that, lower-order provide little
information about the underlying computation which might help in reconstructing it. This is
because the information is not in the context of other computations done by other neurons,
as it is very specific. In other terms, it could be said to be of a low granularity. However,
regardless of that, it is also a significant finding to show that there were consistencies in
first and second order signatures.

115

5.7.4.2 Consistency with Size of N

In terms of consistency with the size of N (i.e. the number of elite solutions selected
for sampling the lower-order signatures), there was also a consistent pattern in general.
However, like the results of the tests with the different levels of noise; it also seems to have
some randomness that is also visible within the signatures as with the other signatures.

In terms of the Iris dataset, the results for the range of N ∈ {1,2,3,4} shows consistency
in the patterns as N was increased. The transfer functions that made up the consistent
patterns in the signatures included the following:

• (7,4) - Max and Hyperbolic tangent

• (5,5) - Standard deviation and Gaussian II

• (5,4) - Standard deviation and Hyperbolic Tangent

• (5,1) - Standard deviation and Identity

• (4,2) - Higher-Order Subtractive and Sigmoid

Interestingly, as we shall see in the next section, this was consistent with the higher-
order problem signatures.

In terms of the Sonar problem, the results for the same range of N ∈ {1,2,3,4}, some
patterns also remained consistent as the size of N was increased. The transfer functions
that made up the consistent patterns, in this case, included the following:

• (7,5) - Max and Hyperbolic Tangent

• (5,3) - Standard Deviation and Gaussian

• (4,5) - Higher-Order subtractive and Gaussian II

• (4,3) - Higher-Order subtractive and Gaussian

• (1,1) - Identity and Inner product

It was interesting to see that these were different from those presented for the Iris
dataset. Thus, suggesting that lower-order signatures also have a discriminatory property
between different problems. Intuitively, consistency on an individual problem should also
help result in a discriminatory property for signatures.

In terms of the XOR dataset, the results also showed a different pattern from the rest of
the problems. In addition, it was also consistent for the range of values for N ∈ {1,2,3,4}.

116

In particular, some of the consistent transfer functions for the elite N models included the
following:

• (1,1) - Inner-product and Identity

• (1,4) - Inner-product and Hyperbolic Tangent

• (5,3) - Standard deviation and Gaussian

• (4,2) - Higher-Order subtractive and Sigmoid

• (5,4) - Standard Deviation and Hyperbolic tangent

Interestingly, this was consistent with the pattern of transfer function likelihood for the
higher-order problem signatures, as we shall also see in the next section.

5.7.4.3 Discriminatory Property between Problems

In terms of the connection densities between the three problems (i.e. Iris, Sonar, and XOR);
the correlation seems to be on an increasing trajectory with a slow rate of increase in the
range of noise levels γ = {0.1..0.9}. This was likely as a result of distortion from the
noise generated from a normal distribution. The figure (see Fig. 5.24) shows the results
for the Pearson correlation, which measures for linear correlations. A Spearman correla-
tion measure was also used to determine if there were monotonic relationships between the
signatures of the different problems. In this results, the range of correlations seemed to be
within [-0.1, 0.5] for both the Spearman and Pearson (see Fig. 5.24). This is usually con-
sidered to be somewhere between no correlation and a weak correlation. In other words,
there is likely no linear or monotonic correlation between the signatures for different prob-
lems. The implication of this is that the signatures of different problems are unlikely to
correlate under the condition given (i.e. noise levels). This suggests that the connection
density signatures were discriminatory between the problems, but also somewhat sensitive
to noise.

In terms of the correlation measures for the transfer function likelihood, relatively lower
correlations were observed (see Fig. 5.22). Especially when increasing the level of noise,
there was particularly a very weak correlation and sometimes no correlation between the
signatures of problems. The results post-thresholding also showed also showed no or very
weak correlations. It was interesting that these were less correlated between problems as
compared to connection densities. This is likely as a result of the order of the signatures,
connection densities are first-order signatures which tend to capture information without

117

context while second-order signatures such as the transfer function likelihoods capture in-
formation with some degree of context. Additional information in signatures seems to help
improve their discriminatory property. This is because additional information increases
specificity, and increased specificity makes it easier to discriminate between signatures.
This could be one reason for the connection densities showing more correlation as com-
pared to both the transfer function likelihood and their associated errors.

5.7.5 Conclusion

In a nutshell, we have shown the results the signatures of different problems; both the
first-order (connection density) and second-order signatures (transfer function likelihood).
These were for two conditions, the levels of noise, and the sizes of N. The signatures, in
general, showed no to weak correlation for the signatures between problems. Visually, the
signatures were also apparently consistent. However, there was some disturbance. Specifi-
cally, some patterns that emerge in the signatures with thresholding applied to them seemed
to disappear as the different levels of the condition was changed, e.g. as in the case where
the noise levels were increased. We have also noticed the potential for better discrimi-
nation of second-order signatures in particular. This was hypothesized to be because of
the additional information in second-order signatures which helps in increasing specificity,
which helps in improving the discriminatory property of signatures. Though first-order sig-
natures also seemed discriminatory after thresholding, the correlations between problems
was a lot higher than that of second-order signatures. Thus, suggesting that it had weaker
discriminatory property. These results were consistent with the results of the higher-order
problem signatures, which are also discriminatory after thresholding. In general, the sig-
natures showed potential of being consistent and discriminatory between problems. This
can be explained in terms of the differences in relationship to input space of problems,
the error surface over the hypothesis space of artificial neural networks, and the law of
central tendency. The input space and the nature of problems define the error surface of
the hypothesis space, with the most optimal solution being the global minima in that error
surface and various other alternative solutions that form local minima. As features of the
architecture of the fittest models are sampled, by the law of central limit this will eventu-
ally converge on an expected pattern for the fittest models. The fittest models, in this case,
are likely approximating a hypothesis of a local minimum, and as such that expectation
of the features will be of the features of the model that approximates that local minimum.
Indirectly, this also tells us something about the hypothesis being approximated, or in other
words, the computational signature. In terms of the literature, there has been very few work
with regards to the meta-analysis of neural networks. This provides a contribution towards

118

understanding neural networks by understanding what computational strategies are learned
after learning. In turn, this presents an avenue for other applications such as the initializa-
tion of neural network topologies and transfer functions based on the problem. In other
words, architectures that adapt to the problem. This presents a significant and important
contribution.

5.8 Consistent and Discriminatory Properties Of Higher-
Order Signatures

In this section, we show that higher-order problem signatures are consistent for the condi-
tions experimented with; specifically, the varying levels of noise, sizes of the population
and size of the set of elite solutions selected for sampling the signatures.

5.8.1 Motivation

As explained earlier, there was a need for verifying the consistency of higher-order sig-
natures on problems. This was mainly to explore the feasibility of higher-order problem
signatures being used as meta-features. The implications include the possibility of initial-
izing the architectural components of artificial neural networks such as topology and set of
transfer functions, as illustrated in the earlier section. Higher-order problem signatures will
need to satisfy the criteria explained in section 5.4.3 to be considered feasible meta-features
for artificial neural networks. We hypothesize that sampling the elite models of artificial
neural networks without training should result in convergence on promising regions of the
search space.

Another property that was tested for was the discriminatory property of higher-order
computational signatures. Showing that signatures are discriminative is one step closer to
showing that they can be used as meta-features for artificial neural networks. As expressed
earlier, this has significant implications: it shows that higher-order properties of problems
can be sampled. In terms of applications, these can be used to determine which neural
network architecture might work best for problems based on higher-order signatures.

In relation to the literature, the closest work is from the domain of meta-learning which
uses the features of a decision tree, such as the depth trained on a problem, as meta-features
[81]. These model properties are then used to decide which learning algorithm would be
more suitable for learning the problem.

As of the time writing, there is yet to be a general framework of neural network meta-
features that could be used to both understand the underlying strategy, and also help ini-

119

tialize the architectural components of neural networks. Thus, showing that higher-order
problem signatures are feasible to be used as meta-features presents a significant contribu-
tion with potential applications that include neural network architecture initialization and a
deeper understanding of neural computational strategies.

The experiments that follow show that higher-order problem signatures are also con-
sistent. In the previous section, lower-order signatures were shown to have consistent and
discriminatory properties. In addition, it was demonstrated that they could be used to im-
prove convergence in neurally diverse artificial neural networks. In this section, we show
that higher-order problem signatures are also consistent. We also show that higher-order
problem signatures are relatively more consistent than lower-order signatures, and could be
used to gain valuable insight into the neural computation strategies evolved by the neurally
diverse artificial neural networks.

5.8.2 Experimental Setup

The datasets used for the experiments in this section consisted of the Iris, Sonar and XOR
datasets. These datasets were retrieved from the UCI machine learning repository [13].

The signature extraction process remained the same as in the previous chapter. The
computational signatures were extracted from a subset of the population, in particular, the
top N solutions after sorting. Independent samples of these signatures were accumulated
over a number of runs R, from a population of neural networks with size P. For various
conditions of the experiments, these parameters (i.e. P, R, and N) were varied to examine
their effects on the consistency of the signatures. In this section, we are mainly interested in
higher-order problem signatures. The Mean squared error was used to evaluate the neural
networks which had to be recreated from their genetic string representation. The neural
diversity machines used were consistent with the description given in the earlier chapter
and the original framework for neural diversity machines [71]. This means the populations
consisted of not only neural networks with diverse transfer functions but also of varying
complexities (i.e. hidden layer size). This has the potential of increasing the spread of the
regions from the model space being sampled.

Also, the average of the signatures for each of the experiments was used to generate a
heat map. This helped to reveal some of the most used neural computation paths from the
fittest neural network models.

In summary, this section seeks to answer if the following affected the signature consis-
tency:

• Size of the of fittest N solutions collected for signature extraction.

120

• Population size (P).

• Noise level injected into the training examples (γ).

As such, the conditions for the experiments were as in Table 5.6.
Table 5.6: Conditions under which the higher-order signatures were tested.

Condition Description
Size of fittest N Tests for various sizes of N ∈ {1...4} solutions to be selected after sorting

Population size P Tests for various sizes of P ∈ {100...1500} used for signature extraction
Noise levels γ Tests for some range of runs γ ∈ {0.1...0.9}.

5.8.3 Results

In this section, we present the results of extracting the computational signatures for the Iris,
Sonar and XOR datasets under various conditions. Specifically, varying the levels of noise,
sizes of the top N models selected for signature extraction, and finally the population size
P.

The figures (Fig. 5.27, 5.28 and 5.29) show the signatures for the Iris, Sonar , and
XOR datasets, respectively. There was an apparent pattern of heavy usage of some transfer
functions as illustrated in figures (i.e. Fig. 5.27, 5.28 and 5.29) . Fig. 5.27 presents the
results of the iris dataset with various population sizes, from 100 to 1500. It also presents
the results after filtering with the mean as the threshold (i.e. α = 0.0), with filtering with
an adjustment value (α = 1.5). The α value of 1.5 was found to be within the upper limit,
beyond which there was barely any usable information left. The figures Fig. 5.28 and 5.29
present similar results for the Sonar and XOR datasets, respectively.

121

Fi
gu

re
5.

27
:

Ir
is

he
at

-m
ap

of
si

gn
at

ur
es

sh
ow

in
g

ho
w

th
e

fe
at

ur
es

ge
tm

or
e

pr
on

ou
nc

ed
as

th
e

po
pu

la
tio

n
si

ze
us

ed
fo

r
th

e
si

gn
at

ur
e

sa
m

pl
in

g
is

in
cr

ea
se

d.

122

Fi
gu

re
5.

28
:

So
na

rh
ea

t-
m

ap
of

si
gn

at
ur

es
sh

ow
in

g
ho

w
th

e
fe

at
ur

es
ge

tm
or

e
pr

on
ou

nc
ed

as
th

e
po

pu
la

tio
n

si
ze

us
ed

fo
rt

he
si

gn
at

ur
e

sa
m

pl
in

g
is

in
cr

ea
se

d.

123

Fi
gu

re
5.

29
:

X
O

R
he

at
-m

ap
of

si
gn

at
ur

es
sh

ow
in

g
ho

w
th

e
fe

at
ur

es
ge

tm
or

e
pr

on
ou

nc
ed

as
th

e
po

pu
la

tio
n

si
ze

us
ed

fo
rt

he
si

gn
at

ur
e

sa
m

pl
in

g
is

in
cr

ea
se

d.

124

(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure 5.30: Heat maps showing the connection strengths as the size of N increases for
the Iris dataset.

Fig. 5.30 shows the heat map of the connection strength between transfer functions for
the Iris dataset. It presents the results for increasing sizes of N ∈ {1..4}, which is the size
of the set of elite models used for sampling. It was apparent that just as the heat maps
for increasing population sizes P, there were consistencies with regards to the connection
strengths between transfer functions.

125

(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure 5.31: Heat maps showing the connection strengths as the size of N increases for
the Sonar dataset.

Fig. 5.31 shows the results of the heat maps of the connection strength between transfer
functions as the size of N increases. Like the results of the Iris dataset, there were also
visibly consistent patterns shown in the heat maps. Another observation is the apparent
thickening of some of the faded patterns as the size of N is increased. This is because as
the sample size increases, more dormant signatures of relatively less fit models from the
top N models are also sampled. Hence, suggesting that the top N models of the population
use different sets of transfer functions, and as a result different computational strategies.

126

(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure 5.32: Heat maps showing the connection strengths as the size of N increases for
the XOR dataset.

Similarly, Fig. 5.32 depicts the heat maps of the connection strengths for the XOR
dataset. As the results of the previous datasets, there were visibly consistent patterns shown
by the heat maps as well as the apparent increase in the use of connection strengths between
other transfer functions.

127

(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure 5.33: The coexistence likelihood for the Iris dataset for increasing sizes of N.

Fig. 5.33, 5.34 and 5.35 shows the results of the coexistence likelihoods of transfer
functions with increasing size of N for the Iris, Sonar and XOR datasets, respectively. Fig.
5.33 visibly shows similar patterns of the likelihood of transfer functions connecting to
each other with the patterns observed for the connection strengths.

128

(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure 5.34: The coexistence likelihood for the Sonar dataset for increasing sizes of N.

Interestingly, the coexistence likelihoods of the transfer functions for increasing sizes
of N as shown in the heat maps of Fig. 5.34 differ from the ones observed for the Iris
dataset. This suggests that different computational strategies are being used. Additionally,
it also suggests that the coexistence likelihoods of transfer functions are discriminatory by
its nature.

129

(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure 5.35: The coexistence likelihood for the XOR dataset for increasing sizes of N.

Similar observations were also made for the XOR dataset in Fig. 5.35, where the coex-
istence likelihoods differed from those of the other datasets. Additionally, it is also visibly
apparent that the coexistence likelihood was consistent with increases size of N.

5.8.3.1 Results Of The Signatures Path Analysis

Path analysis was then performed on both the coexistence likelihood and connection strength
signature types. This allows us to reconstruct the neural computational path that should be
most likely to be found in the fittest neural network for that particular problem. As ex-
plained in the experimental setup, the terminal transfer function represents the neuron with
the highest connection density, and other transfer functions connected to it are those most
likely to connect to it after filtering with the mean as the threshold. The figures below show

130

the results as the size of N is increased for Iris, Sonar, and XOR datasets.

(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure 5.36: Path analysis for the Iris as the size of N is increased.

The path analysis of the Iris dataset reconstructed as Fig. 5.36, shows an interesting
pattern that confirms the earlier observation of more transfer functions being more likely to
co-exist on a connection path as the size of N increases. Compared to (a), the results in (b),
(c) and (d) all have some additional path to the most densely connected transfer function.

131

(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure 5.37: Path analysis for the Sonar problem as the size of N is increased.

Similarly, the same can be said for the Sonar dataset reconstruction of the paths in Fig.
5.37 as the size of N increases. Furthermore, it was also observed that the neuron most
densely connected to for the Sonar dataset was different to the one for the Iris dataset,
which also further suggests that the problems used different computational strategies.

132

(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure 5.38: Path analysis results for the XOR problem as the size of N is increased.

Likewise, similar results were also observed for XOR reconstructed paths in Fig. 5.38
for an increasing size of N. It also showed the pattern of new transfer functions being
included in the signature of coexistence likelihood of transfer functions on a path. Addi-
tionally, the paths shown were also different from those of the other two problems, which
also further suggests that these problems have different computational strategies.

In addition to the other experimental conditions, another that was tested for was the
increasing levels of noise γ ∈ {0.1,0.2,0.3...1.0} on both the correlation of the higher-
order problem signatures (i.e. coexistence likelihood and connection strength) and the
consistency of the signatures.

The noise levels were simulated by increasing the probability of Gaussian noise being
added to the input pattern xi ∈ D; as the level the probability of noise being introduced
into the input patterns of the dataset increases, so does the noise levels in the dataset D.
The results also showed similar consistencies with the results of increasing the population
of neural network models P, and the size of the top N solutions sampled (see Appendix

133

A.2.2).
In addition to these results, the correlation between connection strength and coexistence

likelihood was noticeable in most results, so a Pearson correlation was used to measure the
degree of correlation between the two signatures. As expected, there was a significant cor-
relation between the coexistence likelihoods and connection strengths in general as shown
in Fig. 5.39.

Figure 5.39: Generally, there was a correlation between coexistence likelihood and con-
nection strength as illustrated by the scatter plot annotated with the Pearson correlation
coefficient (r).

Figure 5.40: Correlation between coexistence likelihood and connection strength for in-
creasing level of noise γ .

134

Another set of intriguing results is the correlation of higher-order problem signatures
between problems. While they seem to have a lot of neural computational paths in common,
their underlying strategies are different in terms of the set of most likely neural computa-
tional paths for the problem. The Figures 5.41, 5.43, & 5.42 illustrate that as the threshold
for filtering the signatures was raised using the adjustment parameter (α) to reveal the set
of most likely neural computational paths, the Pearson correlation between the problems’
higher-order signatures reduced exponentially.

Figure 5.41: Correlations between problems as the population size and alpha are increased.

Figure 5.42: Correlations between the Sonar and XOR as the population size and alpha
are increased.

135

Figure 5.43: Connection strengths correlations between problems as the population size
and alpha are increased.

5.8.4 Discussion

In this section, we discuss some of the major findings of the results presented. These
include: the correlation between the connection strengths and coexistence likelihood ma-
trices, the primarily neural computational paths for the Iris and XOR datasets, and the
consistent and discriminatory nature of the signatures under various conditions.

5.8.4.1 Correlation between Coexistence Likelihood and Connection Strengths

As expected, there was a significant correlation of r > 0.9 found between the coexistence
signatures and connection weights for all the datasets. Intuitively, there is likely to be a
correlation because while the coexistence signatures captures the expectation of a neural
computational path ED[Ai, j] occurring in the fittest models, the connection strength cap-
tures the cumulative weights between those connections. As such for signatures that are
connected more often, their cumulative weights over the independent sampling of signa-
tures will start to correlate. In this case, the correlation was linear for the given range of
tests, as the Pearson correlation coefficient captures linear relationships (see Fig. 5.39).

5.8.4.2 Primary Neural Computational Paths

It is interesting to see a few transfer functions being preferred as was the case in the earlier
results in the previous chapter. In particular, for the XOR problem, transfer functions
combining an Euclidean distance with a Hyperbolic Tangent, is shown to be quite a clever
solution to the XOR problem. Assuming the weights connecting to the neuron with such

136

a transfer function is [1,1] then the discrepancies between the output and target values
measures to a Mean Squared Error of 0.26.

Figure 5.44: An illustration of the path analysis done on a XOR computational signature
showing its neural computational paths for when only the single most elite model is used
for sampling the signatures, i.e. N = 1.

XOR

Euclidean distance with Hyperbolic tangent:

weights: [1. 1.]

inputs: [0. 0.]

activation: 2.0

output: 0.964027580076

target: 0.0

error: 0.929349175147

weights: [1. 1.]

inputs: [0. 1.]

activation: 1.0

output: 0.761594155956

target: 1.0

error: 0.0568373464744

weights: [1. 1.]

inputs: [1. 0.]

activation: 1.0

137

output: 0.761594155956

target: 1.0

error: 0.0568373464744

weights: [1. 1.]

inputs: [1. 1.]

activation: 0.0

output: 0.0

target: 0.0

error: 0.0

*** Performance ***

- MSE:0.26

As illustrated above, the combination of Euclidean distance and Hyperbolic tangent
had strong discriminatory property in the case of the XOR. Another example is the most
densely connected to neuron that adopted the inner product and hyperbolic tangent, which
is a sigmoidal unit (see Fig. 5.44). As illustrated below, the sigmoid unit also had strong
discriminatory property in the case of the XOR as well.
Inner-Product with Hyperbolic tangent:

weights: [1. 1.]

inputs: [0. 0.]

activation: 0.0

output: 0.0

target: 0.0

error: 0.0

weights: [1. 1.]

inputs: [0. 1.]

activation: 1.0

output: 0.761594155956

target: 1.0

error: 0.0568373464744

weights: [1. 1.]

inputs: [1. 0.]

138

activation: 1.0

output: 0.761594155956

target: 1.0

error: 0.0568373464744

weights: [1. 1.]

inputs: [1. 1.]

activation: 2.0

output: 0.964027580076

target: 0.0

error: 0.929349175147

*** Performance ***

- MSE:0.26

Furthermore, The transfer functions that connected to the Perceptron the most was the
combination of a max and Gaussian function (See Fig. 5.44). The behavior of the transfer
function was such that the output is only weak when both values from the inputs [x1,x2]

are 1 (see below). It is possible this could be used as part of a computational strategy, in
which this edge in the neural computation path successfully isolates one of the members
of the class zero (as illustrated in the input-output values for the neural computational path
above). Another part of this strategy could also isolate the other pattern in class zero, thus
resulting in an accurate classification.
Max with Gaussian:

weights: [1. 1.]

inputs: [0. 0.]

activation: 0.0

output: 0.0

target: 0.0

error: 0.0

weights: [1. 1.]

inputs: [0. 1.]

activation: 1.0

output: 0.761594155956

target: 1.0

139

error: 0.0568373464744

weights: [1. 1.]

inputs: [1. 0.]

activation: 1.0

output: 0.761594155956

target: 1.0

error: 0.0568373464744

weights: [1. 1.]

inputs: [1. 1.]

activation: 1.0

output: 0.761594155956

target: 0.0

error: 0.580025658386

*** Performance ***

- MSE:0.17

Another transfer function from the subset of transfer functions that are likely to connect
to it is the combination of an Euclidean distance with a Gaussian function or sigmoid out-
put function, i.e either (2,5), or (2,4) as illustrated in Fig. 5.44. The unusual combination
of Euclidean distance and sigmoid/tanh functions is usually used to generate more features
from the datasets which are then normalized between [0,1] or [-1,1] depending on whether
the sigmoid or hyperbolic tangent is being considered. In the case of the XOR problem,
the Euclidean distance could help generate really vital information that is discriminative.
If it is assumed that both the weights for the hidden unit are [1.0, 1.0], or [0.0, 0.0], then
the Euclidean distance of the inputs (1,1) and (0,0) would both produce a number of even
parity. The other two patterns of the dataset, on the other hand, would both produce a num-
ber of odd parity. This is one of many clever feature pre-processing techniques evolved
with neural diversity; in this case, it has evolved a method of pre-processing features that
has discriminative information. The Perceptron receiving such information can learn the
problem on a simplified dimension of the problem. This is demonstrated by the outputs of
the Euclidean distance below.
Euclidean Distance:

weights: [1. 1.]

140

inputs: [0. 0.]

activation: 2.0

parity: 0.0

target: 0.0

error: 0.0

weights: [1. 1.]

inputs: [0. 1.]

activation: 1.0

parity: 1.0

target: 1.0

error: 0.0

weights: [1. 1.]

inputs: [1. 0.]

activation: 1.0

parity: 1.0

target: 1.0

error: 0.0

weights: [1. 1.]

inputs: [1. 1.]

activation: 0.0

parity: 0.0

target: 0.0

error: 0.0

*** Performance ***

- MSE:0.07

Apart from the parity information, it is also easily noticeable that the activation after
calculating the Euclidean distance, once passed to the hyperbolic tangent is also discrimi-
native, and actually classifies the problem somewhat accurately.

Iris

In the case of the Iris dataset, the transfer function with the most connection density utilized
the combination of max input combination and Gaussian output function. This has been

141

found to have filter-like properties which utilize the property of un-normalized features to
filter out a particular attribute that seems to contribute towards the final classification - as
presented in our previous work [4]. Specifically, this has been found to filter out the age
of people for diabetes prediction. Interestingly, aging is one of the factors associated with
increased risk of type-2 diabetes [10]. In this case, its is likely that the transfer function
is also filtering out a particular activation of interest and learning the distribution of the
attribute using the Gaussian function. This could be very useful if the attribute has a high
correlation with the final classification.

Figure 5.45: An illustration of the neural computational paths for the Iris dataset, extracted
from the signature with path analysis where the size of the top N = 1.

5.8.4.3 Consistency with population size P

Regarding consistency, the patterns portrayed in the signatures did not change significantly
when the number of populations used for signature extraction was significantly modified
for the range between [100 .. 1500]. Each member of the population represents a point in
the search space, and as such this represents the number of points spread around the search
space H` for sampling using the learning algorithm `. Due to the diversity of transfer
functions of the artificial neural networks used, these points are more than likely to be
relatively more spread out as compared to that of a canonical neural network using only a
single class of functions (e.g. inner-product and sigmoids) as their transfer functions. The
patterns illustrated in Fig 5.27, 5.28, and 5.29 show consistency in the pattern of neural
computational paths as shown by the heat map.

Visual inspection of the graphs also revealed other interesting observations: the ex-
pectations of neural computational paths seem to slightly differ between each other as the
threshold is increased (see Fig. 5.27, 5.28, and 5.29). Increasing P basically increases the
points in the search space considered during the sampling, which gives a wider range of

142

computational strategy variants to be considered. As such, as long as the error of the local
minima from the subspaces is not optimal, it gets more likely that a local minimum that is
more optimal is found as the size of P is increased. This is also partially as a result of the
randomness of weights and the transfer function initialization, which means the sub-spaces
vary with each run. In addition to the law of central tendency, there is likely going to be
an expected neural computational strategy for each problem depending on their biases (i.e.,
the range of weights, transfer functions, and the input space).

Another observation that can be made is that the features of the signatures become
more pronounced (i.e. thickened) as the size of the population P used for sub-sampling is
increased (see Fig.5.27, 5.28, and 5.29). However, this is to be expected when the sampling
points for the signatures is increased as the expectation for each of the neural computational
paths is likely to gain more density (i.e. thickness).

Furthermore, another interesting observation is that the pattern of expected co-existence
of connectivity for some transfer functions - which produces the vertical lines on the heat
map - consistently appears for all the cases of P.

5.8.4.4 Consistency with size of N

With regards to sampling from a wider range of fitness values, i.e. considering the top N
solutions, where N ∈ {1..4} is the number of solutions to be selected from the population
after sorting (by fitness), the core signatures remained the same but additional neural com-
putational paths were introduced each time N was increased (see Fig. 5.36, 5.37, and 5.38).
This suggests that the various models of ` not only have varying fitness values, there are
differences in the computational strategies as well, however the primary neural computa-
tional paths (or building blocks) remained the same (see computational signatures: Figures
5.33, 5.34 and 5.35). This is also an indication that the error surface over the computational
strategy space is made up of diverse computational strategies. This could be desirable for a
number of reasons including a wider coverage of the computational strategy search space.

5.8.4.5 Consistency with Noise levels γ

In terms of the result with various noise levels, there were also similarly interesting find-
ings: firstly, some of the datasets seemed to adopt a computational strategy that was differ-
ent at lower noise levels, and then appears to converge as the levels of noise in the dataset
was increased (See Appendix A.2.2). Secondly, another interesting finding is the effect of
increasing the correlation between the signatures as the level of noise was increased (see
Fig. 5.40). It is likely that the noise generated from a normal distribution distorted the input
space, thus making the problem-space less distinct.

143

In the case of the Iris dataset, the neuron most densely connected to seemed to assume
a transfer function that was not consistent with the earlier results; instead it assumed (2,2),
which is the combination of an Euclidean distance and a sigmoid output function. As
the noise level was increased, this progressed to adopt a transfer function (7,2), which
combines the usage of a max and sigmoid. Finally, it seemed to converge on the transfer
function discussed in the earlier sections as the neuron with the most input connections
density among the neural computational paths; i.e. (7,3), which is the combination of a
max and Gaussian function.

A similar result was also observed in the case of the XOR dataset, which had inconsis-
tencies in the first two levels of noise {0.1,0.2}, which was then more consistent as with the
earlier results as the noise level increased (See Appendix A.2.2). Specifically, it converged
on the neuron with the most input connection density neuron from the neural computational
path as (1,2), which is a sigmoidal unit. Interestingly, this was from the same family of
transfer functions as the one in the earlier section (projection-basis units), which used an
inner product and hyperbolic tangent (1,4).

It is unclear how lower noise levels cause the perceived discrepancies observed in the
results. One possibility is that the noise might have distorted the input space just enough to
make the learners less sensitive to the patterns of the dataset, thus making them less prone
to over-fitting.

Another interesting observation pertained to differences in connection strengths of the
neural networks which lead to a slightly different arrangement of the neural computa-
tional paths as compared to those observed in the results of other consistency experiments
(see Appendix A.2.2). In the case of the XOR dataset, the neural computational paths
that contributed to this density in the previous section were mostly present in the neural
computational paths presented by these results (See Appendix A.2.2). This was also the
same for the Sonar and Iris datasets. However, the connection strengths for the Iris neu-
ral computational paths seemed to have remained consistent in terms of their connection
strength as in the earlier results (see Appendix A.2.2). Variations in weights reflected by
the connection strengths should be expected; elements such as weights which have a high-
dimensional space compared to the rest such as choice of transfer functions or topological
pre-disposition, are bound to exhibit lots of variation. In contrast, the finding that the con-
nection strengths of two different conditions closely matches is a significant one, due to the
complexity involved (i.e., the search space) and the sensitivity of neural networks. It makes
randomness an unlikely explanation.

In a nutshell, it seems to be the case that there is a small range of noise that interferes
with the consistency of the neural computational paths. However, in general, the signatures

144

remained consistent with the ones from the other tests which presents a significant finding
in itself. It seems like the Law of large numbers has a role to play in the consistency of
signatures. Specifically, as more randomly generated models are sampled, the expectation
of the neural computation strategy appropriate for that problem - given the constraints (i.e.
learner, the range of weights and other biases) - converges to an average expectation which
might represent a local minimum. This is given a robust sampling method which samples
diverse computational strategies, i.e. a sampling method that is not just sampling similar
strategies.

5.8.4.6 Discriminatory Property between Problems

In general, the Pearson correlation values for the Iris, Sonar, and XOR datasets consis-
tently decreased as the threshold was increased (i.e. α). One might argue that this was as
a result of the variance in the models - as was the case for consistency with regards to the
population size being increased (See Fig. 5.27, 5.28 and 5.29). However, there were differ-
ences in the primary neural computational paths used for all the problems. While the Iris
dataset primarily relied heavily on neural computational paths involving the max activa-
tion function and sigmoid output function; the sonar differed by using a combination of an
Euclidean distance activation function and a sigmoid output function. Likewise, the XOR
problem also differed by using a combination of an inner-product activation function and a
hyperbolic tangent output function, in other words, a simple sigmoidal unit. Additionally,
they also differed generally from the set of neural computational paths ending with these
neurons.

Transfer functions and neural computational paths are bound to vary between problems
as long as the input spaces of the problems are different. This is because of the bias in-
duced by an input space, which influences the fitness values of the set of hypothesis H`

adoptable by the learner. In other words, it defines the error surface for the transfer func-
tions, the connectivity between them and their weights. In this case, we have explored the
neural computational paths of problems, which are the building blocks that help project
hypersurfaces that could hypothetically match the underlying function of the problem f (.).

Among the neural computational paths with most coexistence likelihood and connec-
tion strength for the problems are the following.

Sonar

• (1,4) - inner product and hyperbolic tangent (projection-basis unit)

• (2,3) - Euclidean distance and Gaussian (Radial-bais unit)

145

• (1,3) - Inner product and Gaussian

Iris

• (1,4) - inner product and hyperbolic tangent (Projection-basis Unit)

• (5,2) - Standard deviation and Sigmoid

• (1,3) - Inner product and Gaussian

XOR

• (2,3) - Euclidean distance and Gaussian (Radial-basis unit)

• (7,5) - Max and Gaussian II

• (3,2) - Higher order product and Sigmoid (Higher Order Unit)

In the case of the Sonar dataset, it was interesting to see that the traditional projection-
basis and radial-basis units were among the set of neurons contributing most according
to their connectivity weight. There have been various works [55, 30, 31, 49] that have
explored using both of these transfer functions motivated by the work by Donoho (Donoho,
1992) on the theory of duality of functions, which showed that any continuous function
could be decomposed into a projection basis and a radial-basis component. It is possible
that this might be exploited here to learn the underlying function. Apart from that, there
was the unusual combination of an inner-product and a Gaussian output function.

In the case of the Iris dataset, there was also the familiar projection-basis function
among the subset of the top three selected from the set of likely neural computational
paths. However, there was the unpopular combination of standard deviation and the sigmoid

output unit. The standard deviation has been found to be evolved as an input combination
method that behaves in a manner that averages the inputs, as reported earlier in the previous
chapter.

Finally, in the case of the XOR dataset, there was on transfer function apart from the
familiar radial-basis unit, namely max-Gaussian, which uses the max function to isolate the
input feature with the highest activation value. This is then passed to a Gaussian function.
In the previous section, this was found to produce discriminatory information about the
problem, which had a notable correlation to the problem’s classes.

146

5.8.5 Conclusion

In conclusion, we have shown the resilience of higher-order computational signatures for a
wide spectrum of conditions considered; specifically, changing noise levels, the number of
sampling points, and the number of models sampled. Given that the models in the popula-
tion are randomly initialized, and not trained before sampling, intuitively, one might expect
randomness. However, the signatures were shown to be consistent. This is significant due
to the complexity involved, particularly, the dimensionality of the search space. However,
by the central limit theorem, as more samples are taken, a system will tend to converge on
a normal distribution, with a mean and variance. In our case, the mean accounts for the
consistency in the signatures, while the variance accounts for the randomness.

Furthermore, it was also shown that higher-order problem signatures of the different
problems shared neural computational paths between problems; however, the primary neu-
ral computational paths used for each problem differed. Additionally, this was supported
by the results shown by increasing the threshold value to filter out more neural computa-
tional paths that were less likely to appear in the fittest models for the problem. In other
words, given the dataset D, the neural computational paths filtered were those that satisfied
the given criteria: p((fx, fy)|D) < µ +α . This enabled us to visualize the more primary
neural computational path used for each problem. Furthermore, path analysis was applied
to these signatures, which enabled us to confirm that their primary building blocks were
different. They had different sets of neural computational paths, which meant it was un-
likely that they were doing similar computations. Contrary to that, they were adapting their
hypotheses to the nature of the problem’s hyperspace. In conclusion, it could be said with
a high degree of confidence that higher-order problem signatures are discriminative. The
significance of this finding, as highlighted earlier is that this presents a significant contribu-
tion in terms of meta-features specifically for artificial neural networks utilizing a pool of
transfer functions. This could be applied to help address the dimensionality problem that
arises from transfer function optimization. It could also be extended to topology selection
as well.

147

Chapter 6

Co-evolution of Neurally Diverse
Neurons and their Topology

In the earlier chapter, we explored various ways of analyzing the underlying portions of the
computational strategy of problems. This was used to analyze the computational strategy
for the Iris, Sonar, and XOR datasets.

This chapter presents a holistic approach to optimizing neurally diverse artificial neural
networks with their topology and weights by co-evolution. As explained chapter relating
neural diversity to generalization, a neural network can be robust and achieve good gener-
alization, if it is able to adapt its bias to the nature of the problem. This was the conclusion
of one the works that explained bias-variance decomposition in relation to neural networks
[45]. We present a coevolutionary optimization approach as a means of evolving more
adaptable neurally diverse artificial neural networks.

This chapter presents a component-wise representation that enables the adaptation of
the three major components responsible for learning in artificial neural networks. These
are the transfer functions, weights and topology. These components are interdependent of
each other, and each influences the error of the other components. This chapter presents a
more holistic approach to optimizing transfer functions which considers other components.
This differs from the work on NeuDiME primarily from the representation aspect which
incorporates the interdependence of components explicitly.

The following sections present the motivation, problem, related works, contribution,
and overview of this chapter.

6.1 Motivation

There are various motivations for proposing a component-wise representation to optimizing
neurally diverse transfer functions.

148

First and foremost, it presents a holistic approach to optimizing the transfer functions
of the artificial neural network, which considers both the role of other components, as well
as their interdependence to each other.

Secondly, the component-wise representation of the proposed co-evolutionary approach
reduces the risk of eliminating a solution with a portion of the solution that is promising.
In traditional encoding, due to the encoding of the components onto a single genetic string,
portions of the solutions evolved in solutions with poor fitness values might be eliminated
or dominated. This is because the fitness value of a single-genetic string solution overly
generalizes the fitness of the individual components encoded onto the genetic string and
as such, is not truly representative of their individual fitness values. A co-evolutionary
optimization approach reduces this bias, thus preserving these portions of the solution.

Additionally, cross-overs are somewhat tricky and have been regarded by some as detri-
mental to the evolution of artificial neural networks [74, 98, 34, 12]. This is because opera-
tions such as removing nodes in particular represent significant changes to an artificial neu-
ral network’s computational strategy, which results in a significant effect on performance.
However, we believe crossovers still remain one of events that underpins the central theme
of evolutionary algorithms; information transfer. This view is also shared by other neu-
roevolution researchers such as Xin Yao [109, 107, 108] among others [46, 78, 44], who
use cross-overs in their work. It can be said that cross-overs needs to be used with appro-
priate representations of problems. In the case of traditional encoding (used in NeuDiME),
which does not differentiate components, it is more intuitive that randomly selecting points
of cross-over will not yield the most ideal results. This is so for a number of reasons; firstly,
because each component of the genetic string does not have a fitness, there is no way of
telling which component encoded onto the genetic string has useful information. Secondly,
while the cross-over might have the chance to transfer some information that is useful, it
might also package this with other information from other components that are causing
issues with learning when selecting the cross-over point. This is because of the random
nature of cross-over point selection. However, a component-wise representation explicitly
represents fitness of a candidate component, and its information. Thus, making cross-overs
more effective as they are more informed.

In addition, the component-wise representation of the neural network also paves the
way for future works such as sampling of signatures, architecture initialization and com-
plexification without the need for the computational overhead of finding the genes of a
particular component as in single-genetic string representations.

149

Weight Space

Transfer Functions Space

Topology Space

Figure 6.1: In some cases of fixed network size and topology, bias can accumulate.

6.2 Compounding Bias and Information transfer

In the previous section, we explained some of the consequences of encoding individual
components of an artificial neural network onto a single genetic string, which includes
overly generalizing the fitness values of the individual components. In this section, we
explain with more detail other consequences such as its bias compounding effect and effects
on information transfer capabilities.

Artificial neural networks are made of components that depend on each other to ap-
proximate a hypothesis of the underlying function of a problem. These dependencies result
in the bias of the components compounding to form a bias that forms the overall bias of
the learner as explained in the earlier chapter (Chapter 3). This can be a problem if there
is no efficient method of transferring learned information between members of the popula-
tion. Evolutionary operators that facilitate information transfer between solutions include
cross-over and other variants, which factor in the fitness of the solutions to determine the
probability of crossing over individual genes [40]. The canonical cross-over typically in-
volves picking random cross-over points, which are then used as cut-off points to determine
which genes are transferred to the offspring. In the case of a single genetic string represent-
ing the neural network, cross-over operations can do more harm than good. In fact there
are some that discourage the use of canonical cross-over operations due to their damaging
effects [12, 34]. These effects occur when learned information such as the connections be-
tween neurons are pruned. This leads to a change in the neural computation strategy, which
could possibly result in degraded performance [12, 34].

However, this is not purely a cross-over issue, it could be regarded to be a problem
of representation. In particular, the representation of neural networks onto a single genetic
string might not be the most optimal in terms of information transfer. Firstly, as the size of a
neural network grows, so do the genetic strings, which leads to an increased dimensionality
of the problem search space. Subsequently, we also speculate that this makes it harder
to transfer learned information more efficiently. A view which has also been shared in

150

[78, 44]. This is because if there is an optimal cross-over point for transferring a particular
chunk of learned information, the chances of making this optimal cross-over of learned
information from the parents to their offspring gets more unlikely as the length of the
genetic string is increased. In other words, the representation might not be scalable. An
ideal representation of a complex system such as a neural network might be to encode
components onto corresponding genetic strings that represent their parameters in such a
way that the cross-over operation is more invariant to the length of the genetic string, and
consequently, the complexity of the neural network. In addition to that, context is also
maintained in the representation of the neural network.

Co-operative co-evolution of sub-components by Porter presents a representation [85,
86] that sheds light on a co-evolutionary optimization framework which co-evolves com-
ponents of a complex system. In particular, each of the components such as the weights,
neurons, and topologies of the neural network have a dedicated population of candidates
which represents their respective candidate parameters. This is likely to provide some de-
gree of efficiency in cross-over operations which enables them to cross-over information
about a component without changing other components. In particular, this can be particu-
larly suitable for neural networks due to their sensitive and complex nature - as Porter also
suggested [86, 85].

6.3 Related Works

In the terms of co-evolution of neural network sub-components, some of the related works
include SANE [78], COVNET [44], and CoSyNe [46]. Another which uses a slightly
different approach, i.e. Evolutionary Programming, is EPNet [111].

COVNET [44] is made up of a population of sub-networks that the authors described as
nodules. A nodule is composed of a set of artificial neurons that can freely connect to each
other, in addition to the input and output layer, thus creating sub-networks in the hidden
layer. A population of neural networks then adopts any number of these nodules to form
a neural network model. However, there are restrictions on inter-nodule connections. In
[44], a co-evolutionary approach was used cooperatively to evolve the sub-populations of
networks and nodules until a suitable model was learned. Evolutionary operations such
as mutation introduced the variations needed to traverse the search space. In particular,
mutation operations included the addition or pruning of artificial neurons or connections in
nodules. Additional mutation on parameters such as the weights or functional parameters
of the transfer functions used simulated annealing to tune these parameters locally. The

151

results showed that COVNET produced neural networks that were relatively more compact
with competitive results.

Another related work is SANE [78], which is an acronym for Symbiotic Adaptive neu-
ral evolution, which co-evolves a dedicated population of candidate neurons for each node
position in the hidden layer [78] - as opposed to sub-networks as in COVENET [78]. Indi-
vidual neurons are co-evolved with other hidden neurons to form complete neural networks.
A genetic algorithm is used to optimize these populations. Each sub-population in SANE
is a partial solution to the problem. Individual neurons from each sub-population have
to maintain a symbiotic relationship with neurons from other sub-populations to achieve
higher fitness. The fitness of an individual neuron is the average fitness of the individual
in n : n ∈ {1,2,3...} random subsets of complete solutions it participated in. Interestingly,
the partial solutions were found to speciate and specialize towards different aspects of the
problem. This was also found to promote diversity, as well as prevent premature conver-
gence. Evaluation starts with selecting random neurons from each species(sub-population)
to create a network model, which is then evaluated. Once the neurons have participated in
a sufficient number of networks, their fitness is evaluated and assigned to them.

Cross-over is then performed with the fittest neurons to create variations. Afterward,
the neurons are ranked based on their fitness for selection. Selection by rank is then used
to ensure bias towards best performing neurons. This was tested on the pole-cart prob-
lem, with a network that had two-layers of weights. The results suggested that symbiotic
evolution was efficient at genetic search without reliance on high mutation rates. Thus,
further indicating more efficient traversal of the model space. Also, it also achieved fast,
and efficient learning.

EPNet [111] used a hybrid algorithm for training the neural networks, which consisted
of a modified back-propagation (MBP) and an evolutionary programming algorithm. The
modified BP had an adjustable learning rate which worked in a hill-climbing approach us-
ing the networks error as a reference. EPNet emphasized on maintaining the link between
parents and offspring to make evolution more effective. This was done by introducing
evolutionary operators such as node splitting, which grows the hidden layer by making a
slightly modified copy of a selected neuron. This was intended to cause as little disturbance
as possible to the computational strategy being converged upon. Preference was given to
connection and node deletion to bias towards architecturally simpler models. The networks
were trained on the train set using the MBP, evaluated using the validation set to prevent
over-fitting, and tested for generalization ability on the test set. Like the other related
works, it was also found to evolve relatively small networks with sometimes novel solu-

152

tions. However, the author mentioned concerns over the user specified parameters being
excessive in number.

Finally, a work that revolved around co-evolving weights for a fixed topology in a pre-
determined neural network model was CoSyNE [46]. Each connection in the topology
had a sub-population of potential weights, which were initialized uniformly for a given
range, [wmin, wmax]. One of the distinct contributions of this work was to probabilistically
permutate the weights which are likely to result in a different neural network model, thus
increasing the spread of the search, as well as addressing the issue of premature conver-
gence.

6.4 Contribution

Though the works in the literature such as SANE, COVNET and CoSyNE contribute to ar-
tificial neural networks by presenting different representations and optimization approaches
to co-evolution of artificial neural networks, there is yet to be work on co-evolution which
also optimizes the transfer functions of the artificial neural network. In this chapter, we
present experiments on a holistic approach to transfer function optimization by co-evolution
of neurally diverse neurons, and their weights and topologies, i.e. the three major compo-
nents of artificial neural networks.

This work is motivated by neuronal diversity and as such is a biologically inspired ap-
proach. This diversity was achieved by forming a set of of different classes of functions,
namely: projection basis functions, radial basis functions, higher-order functions, and sta-
tistical functions. However, there were no restrictions on the transfer functions that could
be exhibited since any activation function (input combination function) could be paired
with any output function to produce a transfer function from 35 different possible combi-
nations for any of the neurons in the hidden or output layer. As such there are a variety of
transfer functions that are exhibited during the course of the cooperative co-evolution.

Another distinguishing feature of our work lies in how it represents the hypotheses of a
model space specifically for artificial neural networks, which consists of three interdepen-
dent sub-spaces: weight space, topology space, and neuron space. This was represented as
three sub-populations, each consisting of smaller sub-populations within them for specific
components of the network. In other words, in a sub-population of potential weights W ,
there is a niche for the sub-population of weights for the input-to-hidden layer wih, hidden-
to-hidden layer whh, and hidden-to-output layer who. Finally, there are other differences in
the methodology of optimization (see section 6.6.2). In particular, the method of fitness
assignment for each of member of the sub-populations used was as proposed in [85, 88].

153

Additionally, cross-validation was used for selecting the sub-components of a neural net-
work model. This was done by assigning a tuple of errors to the components (i.e. neurons,
weights and topologies) that represented their performance on both the training and valida-
tion set, and selecting using tournament selection based on this fitness tuple. This helps in
selecting components associated with good generalization ability.

6.5 Chapter Overview

The rest of this chapter is organized as follows; firstly, the next section introduces co-
operative co-evolutionary neurally diverse networks. This consists of subsections that de-
scribe the relation to generalization, and how networks are represented and optimized. This
is followed by the experimental sections which highlight, and discuss the results of the co-
evolutionary neurally diverse networks. This also includes comparisons to NeuDiME, and
other neural network models such as the classic Multilayer Perceptron and Radial Basis
Function Network implemented by pyBrain [93]. Various types of support vector ma-
chines (SVM) implemented in mlpy [8] were also included in the comparison. Finally, the
results also include comparisons to some of the state of the art learning algorithms in the in-
dustry, specifically those made available by Microsoft on their machine learning platform,
Microsoft Azure.

The is followed by a section that presents the significant generalization effects of in-
jecting random transfer functions to sub-populations of the potential neurons.

6.6 Co-operative Co-evolution of Neural Network Sub-spaces

Neural networks work towards approximating the underlying function that describes a
problem by making their components work together towards finding a model in the model
space that has a hypothesis, which closely describes the nature of the problem being con-
sidered. As described in Chapter 3, the hypothesis space accessible to a neural network is
limited by its bias - which represents the bias of all of its components as well as its train-
ing routines and constraints. In this chapter, we describe a model space of artificial neural
networks consisting of three major components; i.e. weights, topology and transfer func-
tions. There are various works that have described the model space of learning algorithms
[75, 103, 102] from a more theoretical perspective. This chapter contributes by attempting
to consolidate the discussion in chapter 3 by showing the practical implications of reduc-
ing the bias of artificial neural networks with diverse transfer functions. This was done
by defining a representation of the model space representing the three major components:

154

weights, topology and transfer functions which are interdependent of each other due to
their influence on each other’s error-surface, and subsequently their fitness. In other words,
the fitness values of these major components are interdependent. These three sub-spaces
(topology space, weight space, and neuron space) indirectly form another search space;
the model space M (Figure 6.2), which contain instances of the elements of the abstract
hypothesis space H. We further adopt the general notion in theoretical works which have
established that the model space has a many-to-one relationship with the hypothesis space
[75, 103, 102]. This is because a variety of models with slightly different weights - which
constitutes a set of different model instances m1(X)...mn(X) - could actually all be an ap-
proximation of the same hypothesis fi(X) : fi(X) ∈ H in the hypothesis space. In addition,
the set of models Ml accessible to the neural network l is determined by the pressures of the
accumulated bias of the neural network, optimization algorithm and their constraints on the
model space as expressed earlier. In other words, depending on the pressures of the bias,
not all elements of the global model space M , might be contained in the set of accessible
models for the neural network Ml . Therefore, it is just a subset of the global model space,
i.e. Ml ⊂M .

Figure 6.2: The interdependence of the three sub-spaces (i.e. weights, topology and
transfer function) that make up the neural network’s model space.

Representing the model space with the defined components (i.e. weights, topology and
transfer function) should help to increase the ability of the neural networks to explore more
promising regions of the search space as a result of the component-wise representation,
and subsequently increase the likelihood of converging on promising regions of the hy-
pothesis space. This is because the representation assigns to each candidate component it’s
respective fitness value. This enables candidate components that cooperate towards bet-
ter generalization to be preserved. In addition, the representation can also provide more
consistent performance with operations such as cross-over as the complexity of the neural
network increases. This is particularly a problem for single-genetic string representations,
where the length of the genetic string is affected by the complexity of the model, and could
indirectly affect the cross-over performance. However, in a component-wise representation

155

Table 6.1: List of the activation function set. This includes additional activation functions
such as the Manhattan distance (also known as Taxicab distance) and Max distance (also
known as Chebyshev distance). In addition, there was also the mean activation function.

Activation Functions
Inner-Product (j = ∑

k
i wiii +wbias)

Higher-Order Product (j = ∏
k
i cwi ∗ ii)

Higher-Order Subtractive (j = ∑
k
i=1 |x0− xi|)

Euclidean Distance (j =
√

∑
k
i (wi− ii)

2)
Manhattan Distance (j = ∑

k
i (wi− ii))

Max Distance (j = max(|wi− ii|, |wi+1− ii+1|...|wk− ik|))
Standard Deviation (j = stdDev(wiii,wi+1ii+1...wkik))
Mean (j = mean(wiii,wi+1ii+1...wkik))
Min (j = min(wiii,wi+1ii+1...wkik))
Max (j = max(wiii,wi+1ii+1...wkik))

Table 6.2: List of the output function set. The additional output function here was the Arc
tangent, which is an inverse of the hyperbolic tangent.

Output functions
Linear (z = α ∗ j)
Hyperbolic tangent (z = 1−e−α∗ j

1+e−α∗ j)
Arc tangent (z = tanh−1(α ∗ j))
Sigmoid (z = c

1+e−α∗ j)

Gaussian (z = e
−(j)2
width)

Gaussian II (z = e
−(j)2
width i f z > θ then z = 1.0)

of the genetic strings, the length of the genetic string is invariant to the complexity of the
neural network, as it is traded-off for additional sub-populations.

6.6.1 Representation

The representation offered by the cooperative co-evolutionary framework, also known as
Cooperative Co-evolutionary Genetic Algorithm (i.e. CCGA) [86, 87], provides an explicit
representation of the elements highlighted above. Specifically, it makes it possible to co-
operatively co-evolve the sub-spaces of the three components, i.e., neurons, topology, and
weights. In our work, the three components of the neural network - neurons, weights, and
topology - were cooperatively co-evolved using the framework presented in [86, 87]. An
evolutionary algorithms library in python, DEAP [43], was used to implement this frame-
work.

Once the size of the hidden layer, H ∈ {1,2,3...}, is decided before optimization, a
sub-population of candidate neurons is created, where the number of sub-populations is

156

equal to the size of the hidden layer. Each sub-population contains potential neurons that
could be used for a particular neuron position of the hidden layer. Likewise, for each of the
neurons in the output layer, a sub-population of candidate neurons is also created, where
the size of the output layer is O ∈ {1,2,3...}. Fig. 6.3 shows an illustration of this.

Figure 6.3: The sub-population of diverse candidate neurons created for each hidden and
output unit.

At initialization, the neurons are allowed to select any combination of input combina-
tion functions (or activation functions - Table 6.1) and output functions (see Table 6.2). This
enables a variety of transfer functions to be exhibited during the course of the optimization,
some of which were found to act as filter-like functions that relay important information.
The information encoded onto genetic strings representing the neurons includes the param-
eters of the transfer functions (i.e. the functional parameters). In addition, it also encodes
the bias value of the neuron (which is by default set to 1) and it’s bias weight as illustrated
in Fig. 6.4.

Figure 6.4: The information encoded for candidate neurons.

Likewise, there are sub-populations initialized for the candidate topologies and weights
between the layers, i.e. input-to-hidden, hidden-to-hidden, and hidden-to-output layers. In
other words, each layer has a population of candidate weights and topologies as shown in
Fig. 6.5 and Fig.6.6.

6.6.2 Optimization

The optimization starts off by initializing the members of each sub-population by gener-
ating random candidates to populate each sub-population. Afterward, a representative is
selected from each sub-population randomly as the population’s representative. The set

157

Figure 6.5: The sub-population of weights created for each layer in the neural network
model, i.e. input-to-hidden (IH), hidden-to-hidden (HH), hidden-to-output (HO).

.

Figure 6.6: The sub-population of topologies created for each layer in the neural network
model, i.e. input-to-hidden (IH), hidden-to-hidden (HH), hidden-to-output (HO).

of representatives R from each sub-population - which constitutes all the components for
building a complete neural network model- is then used for evaluation. To evaluate any
member mi (i.e. candidate component), the member substitutes its respective representa-
tive ri ∈ R. The new set of representatives R′ are then used to build a model, which is
evaluated on the dataset. The fitness of the model is then assigned to the member mi. This
is done for all the members m j ∈ ci of the sub-populations ci ∈C.

For each a sub-population ci ∈C, this process is repeated until each member of the sub-
population has been assigned a fitness. This is followed by evolutionary operators such as
mutation and cross-over - as illustrated in Algorithm 3. The offsprings resulting from the
operators are also evaluated. This is followed by a tournament selection which then selects
the best member of the sub-population as the new representative.

158

Algorithm 3 The underlying process of the cooperative co-evolutionary algorithm. This
was proposed by Potter and De Jong in [87] as a co-evolutionary framework, which they
explained could be useful for learning algorithms such as neural networks.

Require: C = initComponentCandidates()
Require: R = pickRandomComponents(C)

for i : maxGen do
for sub-population/component ci ∈C do

for candidate m j ∈ ci do
R[ri]← m j {replace representative ri with candidate m j}
(ft , fv)← evaluate(R) {evaluate train and validation errors}
xi. f itness← (ft , fv) {assign train and validation errors to component m j}

end for
nextGen← crossOver(ci)
nextGen.extend(Mutate(ci))
nextGen.extend(generateRandomCandidates()) {injects randomly gen. mem-
bers to candidates}
nextGen← evaluate(nextGen) {evaluate component candidates}
ci← tournamentSelect(nextGen)
sort(ci) {sort the components by their training and validation errors}
R′[ri]← ci[0] {Pick the best component candidate as new representative}

end for
R← R′ {replace old representatives with new representatives}

end for

The sub-population of weights representing the layers are mutated by Gaussian muta-
tion. Likewise, neurons were mutated using Gaussian mutation, which generates a random
real value from a Gaussian distribution with mean µ and variance σ to add to a gene value.
The topologies on the other hand are mutated using flip-bit mutation, which switches on
connections by flipping on/off the connections between the layers, represented as connec-
tivity matrices. These mutations were carried out based on an independent probability,
which determines the probability of mutating the independent genes of the parents. There
was no explicit exchange of information between the sub-populations such as a cross-
over. These were restricted to only intra-population two-point cross-over. The restriction
was intended to help preserve the learned information’s context within its respective sub-
populations. Specifically, because each subpopulation represents the three components of
the neural network defined earlier, i.e. weights, topology and transfer functions; it is es-
sential to maintain the context of the information by not subjecting members of different
sub-populations to cross-overs.

In the case of neurons, a two-point cross-over was carried out on the string of real
numbers representing the functional parameters of the transfer functions, the bias value of
the neuron and its bias weight. This provided a mechanism for information sharing between

159

neurons of the same sub-population. However, these were also restricted to cross-over
with candidate neurons of the same neuron subpopulation and as such candidate neurons
meant for a particular hidden unit in the hidden layer did not cross-over with another sub-
population of neurons meant for another hidden unit. Topologies were also crossed-over
with other candidates within their respective sub-populations, and this was the same for
the sub-population of weights. This was meant to preserve learned information within the
sub-population, and enable the sub-populations to specialize towards converging on their
respective part of the solution. Like the flip-bit mutation operation, cross-over was also
carried out based on a probability of crossover set prior to optimization.

The next-generation of members for each subpopulation was selected based on the
training error and validation error of the members after sorting. This is about the same
as selecting the members of the Pareto-front, which have relatively better fitness on both
training and validation error. The members of the populations were selected from both
the parents and offspring of the population. The advantage of selecting based on both the
training and validation error of the components is that it reduces the chances of keeping
elements of the neural network model that might contribute toward over-fitting or under-
fitting the problem. This is because members that contribute towards overfitting or under-
fitting the problem will tend to have a weaker validation error. It is also meant to purely
keep the candidate components that cooperate towards a model that adopts a strategy with
good generalization ability which is characterized by strong training and validation errors.
Tournament selection (see Table 6.4) was used to achieve this without risking premature
convergence as a result of the selection pressure (i.e. bias towards solutions with better
training and validation error). Tournament selection relieves this pressure by incorporating
some randomness in the selection process. It works by selecting n individuals at random,
where n is the tournament size. This is then followed by selecting the best individual from
the pool/tournament of n individuals with a probability p. This is repeated as required, until
the desired number of individuals is accumulated.

6.7 Performance on PROBEN1 Benchmark

In this section, we highlight the results of CoevoNDMs on 22 popular benchmark datasets
and compare them to variants of SVM and Neural Network algorithms.

6.7.1 Experimental Setup

Benchmarks for the experiments were obtained from the UCI repository [13]. However,
some of the benchmarks - though also found in the UCI repository- were acquired from the

160

PROBEN1 set of benchmarks [89], which are formatted and split up into a train, validation
and test set. The PROBEN1 Benchmarks included: diabetes, card, cancer, and hepatitis
(see Table 6.3).
Table 6.3: The list of benchmarks acquired from the UCI machine learning repository
[13].

No. Benchmark No. of Examples No. Of Attributes

1 Australian Card 690 7
2 Diabetes 768 8
3 Brest Cancer (Cancer) 699 10
4 Lung Cancer 32 56
5 Echocardiogram 132 12
6 Parkinsons 197 23
7 Lenses 24 4
8 Iris 150 4
9 Sonar 208 60
10 Bankruptcy 250 7
11 Seeds 210 7
12 Abalone 4177 8
13 Monks1 432 7
14 Monks2 432 7
15 Monks3 432 7
16 Vertebral2C 310 6
17 Vertebral3C 310 6
18 Heart 920 35
19 SPECT Heart 267 22
20 Ionoshphere 351 34
21 Hepatitis 155 19
22 Acute Inflammations 120 6

Most of the benchmarks were evaluated using 10 fold cross-validation. However, some
of the smaller benchmarks were assessed with smaller folds. In particular, these were:
Lenses, and Lung Cancer datasets. It was 3 folds for 10 runs in the case of the Lenses
dataset, and 2 folds for 10 runs in the case of Lung Cancer dataset. The error function used
for evaluation was the Mean Squared Error (MSE).

Each of the benchmarks was split up into two parts, a train set and a test set, except for
the PROBEN1 benchmarks which are already split into three parts. The train set was used
for cross-validation while the test set was used for testing. As explained earlier, there was
a need for a validation set for selecting the candidate components during the optimization
process, where the candidates of each sub-population for the next generation were selected
using a tuple of their training and validation error.

161

Table 6.4: Network and optimization parameters

Parameter Value

Hidden nodes 2
Sup-population size 15
Max. Iterations 100
Cross-over Yes
Mutation Yes
Prob. Cross-over 0.6
Prob. Mutation 0.6
Gauss. Mutation (µ = 0.0, σ =0.2)
Topology at init. Fully-connected Recurrent(Elman)
Tournament Selection (rounds) 3

As such, there had to be an unseen dataset to evaluate the test error. In the case of the
benchmarks from the PROBEN1 dataset, the first part of the pre-partitioned dataset was
used for cross-validation, while the third part was used for testing.

The network models were allowed to have a maximum of two hidden units in the hid-
den layer. As expressed earlier, this work is motivated by the neuronal diversity which
is associated with efficiency (i.e. relative fewer neurons required) [101, 18, 99, 69, 70]
and computational capacity, as such there was a need to replicate the limited number of
neurons.

Networks were fully connected at initialization. There were no restrictions on the con-
nectivity between the layers; input-to-hidden, hidden-to-hidden, and hidden-to-output con-
nections were allowed. There was a context layer (see Fig. 6.7) which stored the output
values of the hidden layer each time (ti) to be injected with the activation values of the
next pattern for the next pattern at (ti+1). Thus, the networks being evolved are recurrent,
which gives them temporal depth, which gives context to the patterns. This opens more
possibilities for the computational strategies that can be evolved.

Figure 6.7: Elman context layer consisting of the context units for each hidden unit.

162

Figure 6.8: Box plot of some of the benchmark results. In general the error seems to
suggest good generalization properties. However, the lenses dataset showed high error
variance.

6.7.2 Results on PROBEN1

As illustrated in Fig. 6.8 and Fig. 6.9, the results of the CoevoNDM exhibits impressive
accuracy for a network of 2 hidden units.

The Lenses dataset had a relatively higher variance. However, it was also interesting to
see other benchmarks having relatively low variance and a low median; which is indicative
of a low mean test error. In particular, these included the Vertebral Column (3 Class), Iris,
Cancer, Diabetes, Bankruptcy, Abalone and Monks2 datasets. Some of the benchmarks
had some outliers, particularly for the SPECT Heart, Bankruptcy, Monks3, and Abalone
benchmarks.

163

Figure 6.9: Box plot of the rest of the benchmark results. In general the error seems to
suggest good generalization properties. Large datasets such as the Diabetes dataset seem
to have closely clustered errors, while relatively smaller benchmarks suggest a relatively
higher variance.

164

6.7.3 Comparison with other algorithms

In this section, we compare co-evolutionary neural diversity machines to variants of Sup-
port Vector Machines, and Neural Networks. The set of algorithms is made up of support
vector machines of various kernels, specifically: radial basis function, polynomial and lin-
ear kernels. The comparison also includes neural networks with different architectures,
specifically: Multilayer Perceptron (MLP), Radial Basis Function Neural Network (RBF),
and a hybrid Neural Network (MLP-RBF) with two layers: the first consisting of radial
basis functions, and the second consisting projection basis functions. This is somewhat
similar to the architecture proposed by [64].

The MLP and MLP-RBF hybrid neural networks were configured to have two hidden
layers consisting of 10 hidden units each. As for the RBF, the Neural Network was con-
figured to have 20 hidden units in a single layer. In the case of the MLP, the projection
units used were Hyperbolic tangents, which offer a wider output range as compared to Sig-
moid units. The Radial basis function used for the RBF was a Gaussian function. The
same choice of projection and radial basis functions were used for the MLP-RBF hybrid.
Implementation of the Neural Network was achieved with the help of pyBrain [93] - a
python package for neural networks. Back-propagation was used to train the weights of
the neural networks for 100 iterations. All the learning algorithms were evaluated using
cross-validation on the PROBEN1 benchmark [89], which provides a standardized dataset
that makes comparison reproducible and fair. The Support Vector Machine implementa-
tion was one offered as a package by mlpy [8] - a machine learning package for the Python
programming language.

In addition to these learning algorithms, others from Microsoft’s Azure Machine Learn-
ing platform were also compared to the results of CoevoNDM. The learning algorithms
evaluated on the datasets include Azure’s Boosted Decision Tree, and its Neural Network
regressor. The Neural Network regressor was allowed to have a maximum of 20 hidden
units, and allowed to run for a maximum of 100 iterations. 10 fold cross-validation was
used to train the model on the training set. The boosted decision tree on the other hand was
allowed to have 20 decision trees in its ensemble - which is within the range of ensemble
size in literature with good results [79, 26, 19]. Finally, there is also a comparison with the
results of NeuDiME as presented in Chapter 4.

The comparison results for the pyBrain and mlpy learning algorithms are as shown
in Fig. 6.10 - 6.29. Table 6.5 shows the performance results of the algorithms on the
benchmarks consisting of their mean squared error and standard error. The Appendix has
additional data of two-tailed t-test results for all the algorithms performance results on the
given benchmarks.

165

Figure 6.10: Australian credit card benchmark box-plots showing competitive results of
CoevoNDM.

Figure 6.11: Breast Cancer (Prima) benchmark box-plots showing similar results.

166

Ta
bl

e
6.

5:
T

he
re

su
lts

sh
ow

in
g

th
e

m
ea

n
sq

ua
re

d
er

ro
ra

nd
st

an
da

rd
er

ro
ro

ft
he

al
go

ri
th

m
s

on
th

e
be

nc
hm

ar
ks

.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

A
ba

lo
ne

0.
18

19
(+

/-
)0

.0
09

0.
39

64
(+

/-
)0

.0
22

0.
18

33
(+

/-
)0

.0
05

0.
16

92
(+

/-)
0.

00
3

0.
39

26
(+

/-
)0

.0
42

0.
37

79
(+

/-
)0

.0
38

0.
38

81
(+

/-
)0

.0
45

B
an

kr
up

tc
y

0.
01

25
(+

/-)
0.

00
5

0.
06

69
(+

/-
)0

.0
23

0.
06

25
(+

/-
)0

.0
12

0.
01

31
(+

/-
)0

.0
03

0.
32

33
(+

/-
)0

.0
37

0.
31

67
(+

/-
)0

.0
27

0.
32

33
(+

/-
)0

.0
33

ca
nc

er
0.

02
31

(+
/-

)0
.0

04
0.

35
49

(+
/-

)0
.0

52
0.

12
05

(+
/-)

0.
01

2
0.

02
43

(+
/-

)0
.0

02
0.

53
41

(+
/-

)0
.0

16
0.

53
41

(+
/-

)0
.0

11
0.

53
75

(+
/-

)0
.0

15
ca

rd
0.

07
33

(+
/-

)0
.0

06
0.

36
03

(+
/-

)0
.0

35
0.

15
39

(+
/-

)0
.0

03
0.

11
1(

+/
-)

0.
00

7
0.

36
59

(+
/-

)0
.0

16
1.

19
42

(+
/-

)0
.1

03
0.

36
59

(+
/-

)0
.0

15
di

ab
et

es
0.

11
07

(+
/-)

0.
00

5
0.

32
67

(+
/-

)0
.0

38
0.

14
67

(+
/-

)0
.0

02
0.

12
27

(+
/-

)0
.0

02
0.

29
(+

/-
)0

.0
07

0.
28

79
(+

/-
)0

.0
08

0.
28

79
(+

/-
)0

.0
13

E
ch

oc
ar

di
og

ra
m

0.
14

73
(+

/-
)0

.0
34

0.
37

05
(+

/-
)0

.0
57

0.
19

73
(+

/-
)0

.0
11

0.
06

01
(+

/-)
0.

00
4

0.
29

7(
+/

-)
0.

03
4

0.
31

05
(+

/-
)0

.0
57

0.
29

7(
+/

-)
0.

05
6

he
ar

t
0.

09
31

(+
/-)

0.
00

8
0.

38
81

(+
/-

)0
.0

38
0.

14
02

(+
/-

)0
.0

06
0.

12
44

(+
/-

)0
.0

06
0.

36
74

(+
/-

)0
.0

07
0.

36
74

(+
/-

)0
.0

19
0.

36
74

(+
/-

)0
.0

14
H

ep
at

iti
s

0.
08

83
(+

/-
)0

.0
34

0.
11

34
(+

/-
)0

.0
65

0.
07

55
(+

/-)
0.

03
1

0.
20

45
(+

/-
)0

.0
05

0.
74

52
(+

/-
)0

.0
36

0.
74

52
(+

/-
)0

.0
26

0.
74

52
(+

/-
)0

.0
26

Io
no

sp
he

re
0.

13
38

(+
/-

)0
.0

14
0.

34
1(

+/
-)

0.
04

7
0.

17
39

(+
/-

)0
.0

17
0.

10
28

(+
/-)

0.
00

6
0.

41
(+

/-
)0

.0
26

0.
41

47
(+

/-
)0

.0
21

0.
41

(+
/-

)0
.0

32
IR

IS
0.

03
66

(+
/-

)0
.0

14
0.

32
62

(+
/-

)0
.0

29
0.

09
89

(+
/-

)0
.0

11
0.

02
5(

+/
-)

0.
00

4
0.

37
42

(+
/-

)0
.0

34
0.

37
42

(+
/-

)0
.0

35
0.

37
42

(+
/-

)0
.0

19
L

en
se

s
0.

15
69

(+
/-)

0.
03

8
0.

21
49

(+
/-

)0
.0

46
0.

28
14

(+
/-

)0
.1

48
0.

17
41

(+
/-

)0
.0

15
0.

33
67

(+
/-

)0
.0

98
0.

29
(+

/-
)0

.0
2

0.
33

67
(+

/-
)0

.0
67

L
un

g
C

an
ce

r
0.

09
11

(+
/-)

0.
01

9
0.

39
04

(+
/-

)0
.1

02
0.

13
94

(+
/-

)0
.0

33
0.

11
(+

/-
)0

.0
08

0.
39

04
(+

/-
)0

.0
78

0.
39

04
(+

/-
)0

.0
59

0.
39

04
(+

/-
)0

.0
33

M
on

ks
1

0.
15

76
(+

/-)
0.

01
7

0.
49

38
(+

/-
)0

.0
57

0.
20

8(
+/

-)
0.

00
6

0.
19

2(
+/

-)
0.

01
0.

40
5(

+/
-)

0.
02

0.
39

83
(+

/-
)0

.0
27

0.
39

83
(+

/-
)0

.0
41

M
on

ks
2

0.
18

37
(+

/-
)0

.0
07

0.
35

99
(+

/-
)0

.0
48

0.
19

28
(+

/-
)0

.0
06

0.
16

77
(+

/-)
0.

00
2

0.
30

88
(+

/-
)0

.0
41

0.
31

89
(+

/-
)0

.0
27

0.
30

38
(+

/-
)0

.0
24

M
on

ks
3

0.
14

19
(+

/-
)0

.0
13

0.
36

1(
+/

-)
0.

03
3

0.
21

05
(+

/-
)0

.0
04

0.
11

96
(+

/-)
0.

01
3

0.
39

98
(+

/-
)0

.0
48

0.
39

98
(+

/-
)0

.0
43

0.
42

48
(+

/-
)0

.0
34

Pa
rk

in
so

ns
0.

14
34

(+
/-)

0.
01

5
0.

42
51

(+
/-

)0
.0

75
0.

23
43

(+
/-

)0
.0

58
0.

16
39

(+
/-

)0
.0

14
0.

60
3(

+/
-)

0.
02

3
0.

60
3(

+/
-)

0.
03

3
0.

62
1(

+/
-)

0.
03

4
SO

N
A

R
0.

12
74

(+
/-)

0.
00

7
0.

38
65

(+
/-

)0
.0

66
0.

15
97

(+
/-

)0
.0

09
0.

21
44

(+
/-

)0
.0

18
0.

42
14

(+
/-

)0
.0

3
0.

41
(+

/-
)0

.0
57

0.
42

14
(+

/-
)0

.0
52

Sp
ec

t
H

ea
rt

0.
17

09
(+

/-
)0

.0
17

0.
36

62
(+

/-
)0

.0
52

0.
15

74
(+

/-
)0

.0
13

0.
10

73
(+

/-)
0.

00
9

0.
41

(+
/-

)0
.0

42
0.

41
(+

/-
)0

.0
58

0.
41

(+
/-

)0
.0

49
V

er
te

br
al

C
ol

2C
0.

16
23

(+
/-

)0
.0

03
0.

43
4(

+/
-)

0.
04

1
0.

16
19

(+
/-)

0.
00

3
0.

19
42

(+
/-

)0
.0

23
0.

41
8(

+/
-)

0.
02

8
0.

41
(+

/-
)0

.0
36

0.
40

2(
+/

-)
0.

03
5

V
er

te
br

al
C

ol
3C

0.
13

31
(+

/-
)0

.0
12

0.
36

49
(+

/-
)0

.0
36

0.
12

48
(+

/-
)0

.0
11

0.
08

72
(+

/-)
0.

00
2

0.
41

66
(+

/-
)0

.0
31

0.
40

2(
+/

-)
0.

04
1

0.
41

65
(+

/-
)0

.0
51

167

Figure 6.12: Abalone benchmark box-plots for the algorithms.

Figure 6.13: Diabetes benchmark box-plots.

168

Figure 6.14: Echocardiogram benchmark box-plots.

Figure 6.15: Heart benchmark box-plots for the algorithms.

169

Figure 6.16: Hepatitis benchmark illustrated in box-plot.

Figure 6.17: Ionosphere benchmark results for the algorithms in box-plots.

170

Figure 6.18: Iris benchmark results in box-plots.

Figure 6.19: Lenses benchmark results in box-plots. The Lenses dataset is relatively much
smaller compared to the rest of the benchmarks having only 24 examples.

171

Figure 6.20: Box plot of some of the Lung Cancer benchmark results for the algorithms.

Figure 6.21: Box plot of the Monks1 benchmark results for the algorithms.

172

Figure 6.22: Box plot of some of the Monks2 benchmark results for the algorithms.

Figure 6.23: Box plot of some of the Monks3 benchmark results for the algorithms.

173

Figure 6.24: Box plot of some of the Parkinson’s disease benchmark results for the algo-
rithms.

Figure 6.25: Box plot of some of the Sonar benchmark results for the algorithms.

174

Figure 6.26: Box plot of some of the SPECT Heart benchmark results for the algorithms.

Figure 6.27: Box plot of some of the Vertebral Column (2 class) benchmark results for
the algorithms.

175

Figure 6.28: Box plot of some of the Vertebral Column (3 class) benchmark results for
the algorithms.

The MLP and MLP-RBF Hybrids were significantly better than the SVM variants in
terms of their consistency of errors, and showed signs of good generalization ability. This
is because there are variations in the test errors, which suggest that different computational
strategies are being tried out. In addition, because these are tightly clustered on the rela-
tively lower mean squared errors, it suggests that the collective bias of the neural network
is guiding the neural network towards the region of the search space with variations of
hypotheses that have promising estimated generalization errors.

Interestingly, both MLP and MLP-RBF produce somewhat similar results in general,
even though the RBF produces results that are relatively less competitive. However, in one
case, such as for the Bankruptcy dataset (see Fig. 6.29), the neural network variants (i.e.
MLP-RBF and RBF) had relatively similar errors.

The algorithms show a lot of variance for the Lenses benchmark, just as co-evolutionary
neural diversity machines. This could be because of its relatively small size, which might
be making the learning algorithms vary their extrapolation of the problem when different
folds of the dataset are being learned. Interestingly, there was a lot more variation in the
errors of the vertebral column with two classes dataset (i.e. VerteberalCol2C) compared to
that with three classes (i.e. VertebralCol3C) for the SVM variants as well as the RBF-NN.

In general, though, MLP seems to be the best competition to the co-evolutionary neural

176

Figure 6.29: Box plot of some of the Bankruptcy benchmark results for the algorithms.

diversity machines even though all the MLP related networks were configured to have the
same number of hidden units, and training algorithm (i.e. a gradient descent algorithm,
specifically, backpropagation).

In terms of the comparison of the results obtained by these algorithms to the co-evolutionary
neural diversity machine (CoevoNDM), it was interesting to observe that CoevoNDM
achieved a competitive performance with the other algorithms with much fewer hidden
units (i.e. 2) suggesting it is working more efficiently. Thus, suggesting that replicating
neural diversity in the form of transfer function diversity produces similarities in the per-
formance properties of biological neural networks.

In terms of the t-test results (see Appendix), CoevoNDM exhibited statistically signifi-
cant results for some of the datasets, while having non-statistically significant results for the
others. Specifically, it had statistically significant differences in results for the card, heart,
Monks 2, Sonar, SPECT Heart, and the vertebral column. In other cases, the CoevoNDM
had similar results to the MLP as also illustrated by the box-plots. However, in general the
CoevoNDM had relatively more consistency in terms of the errors which resulted in less
variance of the errors as illustrated by the box-plots.

Relative to the other algorithms, co-evolutionary neural diversity machines seem to
have a more tightly clustered estimated generalization error that is very competitive, which
suggest signs of generalization ability as well as an ability for more consistent convergence.

177

In general, the neural network algorithms have a more tightly clustered estimated gen-
eralization ability as illustrated by the box-plots in comparison to the support vector ma-
chines. This suggests that the support vector machines are likely manifesting a higher
degree of variance.

It was interesting to observe that CoevoNDMs seemed to be relatively more competitive
as compared to the other hybrid, i.e the MLP-RBF hybrid. This could be for a variety of
reasons, one of which could be the architectural configuration. While the CoevoNDM is
able to evolve layers of connections in its hidden units, it is also flexible in making the
connections as well as choosing the transfer functions of the hidden units in the layers.
This enables it to evolve some clever computational strategies for solving problems, hence
one of the reasons it was so competitive. The MLP-RBF hybrid on the other hand is only
trained using the canonical back-propagation on a predetermined architecture that has a
radial basis layer, fully connected to a projection basis layer. The rigidity in the design
as well as the gradient descent’s proneness to getting stuck at local minima could have a
compounding effect which might severely affect its performance potential. In other words,
this could build up some restrictive bias for the hybrid.

Interestingly, while flexibility of evolving the hidden layers’ connectivity patterns and
the transfer functions of hidden units comes with the challenge of a weaker bias, and sig-
nificantly larger search space, which could both have negative effects on generalization
ability, the CoevoNDMs showed no signs of such effects as there was both consistency of
convergence and signs of competitive generalization ability. One could speculate that the
small size of the CoevoNDMs of just two hidden units has a role to play. A smaller hidden
layer size means the CoevoNDMs will help keep the size of the computational strategies
search space small, while also driving the optimization algorithm to evolve clever solutions
with less computational complexity. In general, less computational complexity has been
also associated with good generalization ability [33, 47, 98, 55, 53].

In terms of the comparison to the Microsoft’s Azure learning algorithms - specifically,
the Neural Network Regressor (Fig. 6.30), and Boosted Decision Trees (Fig. 6.31) - The
results revealed that CoevoNDM was competitive in terms of generalization ability, and was
also efficient with regards to its relative complexity. This is because the Neural Network
Regressor was allowed to have a maximum of 20 hidden units, and was optimized for
a maximum of 100 iterations. The boosted decision tree on the other hand was allowed
to have 20 decision trees in its ensemble - which is within the range of ensemble size in
literature with good results [79, 26].

In terms of its comparison to Boosted decision tree’s results (Fig. 6.31), a t-test per-
formed with α = 0.05 suggested that CoevoNDM was significantly different from the

178

Figure 6.30: Results of the Azure Neural Network Regressor on the datasets.

Figure 6.31: Results of the Azure boosted decision tree on the datasets.

boosted decision trees on all the six datasets. Likewise, it was also statistically differ-
ent from Azure Neural Network regressor. However, the CoevoNDM was in general able
to achieve competitive generalization error with significantly less complexity, for example

179

Figure 6.32: Excerpts from the results of the CoevoNDM on the same datasets.

the CoevoNDM had particularly promising results for the Diabetes dataset. Essentially, this
further suggests that competitive generalization ability can be achieved with significantly
less hidden units using neuronal diversity.

In terms of its comparison to NeuDiME results as presented in Chapter 4, the results
show that the CoevoNDM were also really interesting as it’s results were better for 3 out
of 5 of the benchmarks. One has to keep in mind that the NeuDiME was an ensemble
that typically had 10 neural networks, each with the capacity to have 5 hidden units. That
puts the total capacity attainable at 50 hidden units. By comparison, the CoevoNDM was
just allowed to have two hidden units, since one of the main points of this work was to
show that neural diversity can result in efficiency in learning. By our definition, that means
having relatively little resources (i.e. hidden units) to produce competitive generalization
performance. As such, by that measure the CoevoNDM has succeeded in showing that
conclusively both in comparison to state of the art algorithms from Microsoft Azure, and
implementation of popular algorithms like the SVM, MLP and RBF in open source ma-
chine learning toolkits.

The results specifically show that CoevoNDM had more consistency in terms of conver-
gence as shown in Fig. 6.32, where the grouping of the errors was more tightly clustered
and is a sign of good generalization ability. This was more so for the diabetes dataset,
where the CoevoNDM even had best results. By comparison, the box plot of NeuDiME

180

seemed to show signs of being stuck at local minima, as indicated by the high variance in
errors as shown in Fig. 4.3.

In a nutshell, in the context of the complexity of the networks, and consistency in con-
vergence as shown by the box plots of both the CoevoNDM and NeuDiME; the CoevoNDM
is clearly the better algorithm for the given set of problems.

6.7.4 Discussion

In general, the performance of co-evolving diverse neurons, their weights, and topologies
shows signs of promising generalization performance. Firstly, the estimated generalization
error measured by the mean squared error for all the problems averages at 0.30 for all the
22 benchmarks, which suggest both adaptability and generalization ability. There are a
variety of factors that have contributed towards this from the design of the neural networks.

First of all the diverse set of neurons provides access to a variety of adoptable hy-
potheses, enabling the neural network models to explore and evolve creative solutions to
problems. Secondly, the selection approach for choosing the components that cooperate
well with others towards good generalization- i.e. selection based on both training and val-
idation error - helps to prevent premature convergence on local minima as well and apply
pressure towards converging on components that cooperate better towards good generaliza-
tion performance. In the next section, we show that the injection of neurons with diverse
transfer functions into the neuron subpopulations has a significant positive effect on both
generalization and convergence of the neural networks.

In terms of the comparison to the other learning algorithms, the pyBrains’s MLP was
also very competitive, but so was the CoevoNDM which was in most cases on par and
sometimes even better than pyBrain’s MLP. And in a few cases, the MLP achieved better
results. However, these were statistically not significant as shown by the t-test results (see
Appendix). It seemed to be the case that neuronal diversity could be used to scale down the
hidden layer size of neural networks without a significant effect on performance. Addition-
ally, in comparison to the industry standard algorithms from the Azure machine learning
platform, CoevoNDM was shown to have competitive performance in terms of general-
ization. It also further shows the efficiency that can be achieved with neural diversity, in
addition to the clever solutions that can be evolved. This was the main motivation of the
use of neuronal diversity in this research and the results suggest that the biological design
pattern is repeating itself in the artificial neural networks domain as well. Neuronal diver-
sity is one of the reasons why biological neural networks are smaller [18, 99, 101], making
them more efficient and even having an ability to exhibit more computational strategies.

181

The results of this experiment show that neuronal diversity results in both competitive per-
formance with far less hidden units, suggesting efficiency; but also supports the argument
of CoevoNDM’s ability to exhibit creative and clever computational strategies for problem
solving.

Porter explained that there is a limitation in the evaluation approach proposed for the
cooperative coevolutionary framework for complex interdependent components [87]. Fit-
ness assignment for cooperative co-evolution is particularly not as straight forward as in
traditional genetic algorithms. The fitness values of the sub-components are usually not
disjoint, on the contrary the fitness of one sub-component warps the fitness surface (or
error surface) of the other sub-component, and the assigned fitness depends on the other
components. The components of neural networks are interdependent as they affect each
others error surfaces, and as such makes them susceptible to the limitations of the eval-
uation method (i.e. fitness assignment). Therefore, there is still potential for improving
co-evolutionary neural diversity machines by exploring other evaluation methods.

6.7.5 Conclusion

In conclusion, it has been shown that co-evolutionary neural diversity machines are efficient
and show signs of more representational power as well as an ability to converge on promis-
ing solutions with consistency. This is supported by the fact that CoevoNDMs achieved a
competitive performance with relatively fewer hidden units without a significant effect on
generalization ability. On the contrary, as shown in earlier chapters; neuronal diversity has
the ability to exhibit a wide variety of creative and clever computational strategies. This
was particularly apparent in the analysis of the neural networks which showed the compu-
tational signatures produced by neural networks with neuronal diversity were also diverse
due to the differences in their neuronal computational paths. In addition, CoevoNDMs
show an ability to converge with relatively more consistency on promising computational
strategies, as indicated by the relatively smaller spread of errors in the box plots figures
(see Fig. 6.8 and 6.9) for a majority of the problems. Finally, it has also been suggested
that a point of improvement for CoevoNDMs could be the exploration of more fitness as-
signment methods for the components, due to the interdependent nature of neural network
components. This is because of the interdependent nature of the components of neural net-
works which as Porter suggests [87], may have an effect on the performance potential of
the optimization algorithm.

182

6.8 Transfer function Injection

6.8.1 Motivation

Apart from the offspring that result from mutation and cross-over, there was also the injec-
tion of randomly generated neurons into each neuron subpopulation after the evolutionary
operations. Randomly generated neurons with random transfer functions, and parameters
were created and included in the subpopulation prior to the evaluation on the validation set
for selection. Although this might be regarded as a standard practice, in this case it differs
because of the transfer function diversity factor. Any form of transfer function can be exhib-
ited by pairing any of the activation functions with any output functions. In other words,
this actually promotes diversity beyond the generation of random functional parameters
alone. It specifically increases behavioral diversity which encourages the search for more
computational strategies. It can be regarded as a method of reducing the transfer function
bias in the sub-population of neurons by introducing more candidates that might cooperate
well with the other sub-components, either by means of having a useful functionality such
as feature filtering, or just having a more promising set of functional parameters. In other
words, it could be useful in getting out of local minima. In this section, we explore the
advantages in performance and convergence of injecting random transfer functions during
optimization.

6.8.2 Results

The experimental setup was the same as that used in section 6.7.1 for assessing the perfor-
mance of the co-evolutionary neural diversity machines (CoevoNDM) on the PROBEN1
benchmarks. The results highlight the estimated generalization performance and the con-
vergence with and without the injection of transfer functions into neuron subpopulations.

It was interesting to see a significant difference in performance between the two con-
ditions, i.e. with random transfer function injection and without it. Specifically, it can ob-
served (in Fig. 6.33) that the testing error with arbitrary transfer functions is significantly
better than without it (see Fig. 6.33). This effect was also found in terms of convergence
performance (as in Fig. 6.34 - Fig. 6.38) as well as the generalization performance (Fig.
6.33).

One added advantage of random transfer function injection could be its stochastic na-
ture which encourages more exploration, thereby improving convergence. Additional pos-
sibilities for exhibiting other computational strategies are introduced when new combina-
tions of transfer functions are injected in the subpopulation of neurons. These combinations

183

might already exist in the pool of transfer functions, but with varying parameters that might
be sub-optimal. Thus, it provides variations in the building blocks that could be co-evolved
towards finding the most appropriate computational strategy (or hypothesis). This enables
the optimization algorithm to escape local minima, by increasing the chances of finding a
more optimal computational strategy.

Figure 6.33: Results of the conditions of with and without transfer function injection on
the several benchmarks.

Interestingly, the difference in convergence for the Iris dataset - which is a relatively
less complicated problem - was not as significant as seen in the earlier results (see Fig.
6.38).

6.8.3 Discussion

In general, both in term of generalization performance and convergence, the condition with
the random injection of transfer functions was shown to be better for the conditions of
this experiment and the given datasets, and can be generalized to be an expected trend,
especially for more complex problems.

It was apparent that the random injection of transfer functions significantly reduced the
transfer function bias, which allowed it to access a wider range of hypotheses by being
able to exhibit a wider variety of neural computational strategies. This has the advantage

184

Figure 6.34: In terms of the Card dataset, the results with random injection showed signif-
icant improvement than without it; while convergence typically started from a testing error
of 0.3 for the condition without injection, the results with random injection of transfer
function started from 0.15 on average

Figure 6.35: The same pattern was also repeated for the Heart dataset which showed
significant improvement when random injection was used.

of not only increasing the likelihood of co-evolving a model with a hypothesis that best
describes the problem, it also helps in escaping local minima, whereby a more promising
fit for the problem is discovered. This is apparent in the convergence difference of the

185

Figure 6.36: Likewise, in the case of the Diabetes dataset the random injection also
showed significant improvement in convergence.

Figure 6.37: The Cancer dataset convergence graph also shows a significant improvement
when random injection of transfer function is used.

conditions characterized by presence or absence of random transfer function injection (see
Fig. 6.34 - 6.38). Specifically, it can be seen that the rate of convergence in the early stages
of optimization were more promising than without it.

It was expected that introducing more variations of neurally diverse transfer functions
to each sub-population of neurons might have a slowing effect on convergence. However,

186

Figure 6.38: Iris showed similar results of the convergence for the condition with random
injection.

contrary to that, the injection of random variations of transfer functions accelerated the con-
vergence of CoevoNDM. In addition to convergence, the estimated generalization ability of
CoevoNDM with transfer function injection was significantly better than without it. There
is the possibility that CoevoNDM might converge on a similar or even better hypothesis,
however the uncertainty associated with the convergence makes it somewhat impractical.
Specifically, it can be observed that for relatively more complex problems, the difference
in convergence between the two conditions were significant as compared (see Fig. 6.37,
6.34, 6.36, and 6.35). This pattern is likely to repeat itself in other real world problems that
are much more complex than the current datasets.

However, fast convergence does not necessarily improve generalization, slowing a fast
convergence can be useful as it has been shown to improve the generalization performance
of co-evolutionary neural networks - as in SANE [78]. This is because a convergence
that is too fast, might lead to premature convergence on a local minimum. In the case
of CoevoNDM, the faster convergence is kept under control by the fitness assignment.
Assigning two fitness values representing how much the candidate component contributes
towards better training and validation error is meant to balance the objectives of training
error and the estimated generalization performance represented by the validation error. This
is an important contributor towards helping prevent a premature convergence. It is likely
that the results would have been otherwise without the validation error.

187

6.8.4 Conclusion

In conclusion, it can be said that inducing diversity of transfer functions by randomly in-
jecting them into the sub-population of neurons being co-evolved has a significant positive
effect on both generalization ability and convergence given that the fitness assignment also
accounts for the estimated generalization performance. This is because of the decreased
bias on the transfer functions, which enables the co-evolutionary algorithm to explore a lot
more neural computational strategies, consequently allowing it to explore more hypotheses
that might have better potential for describing the underlying nature of the problem. This
also improves the chances of finding a more optimal model, thus escaping local minima -
as also shown by the improvement in convergence speed. It was also explained how fitness
assignment was essential in making sure a premature convergence on a sub-optimal hy-
pothesis was avoided as much as possible. In our case, the fitness values of each candidate
component consisted of fitness values representing both training and estimated generaliza-
tion performance. The multi-objective optimization of both fitness values helps the selec-
tion mechanism apply pressure on finding solutions that contribute towards learning the
training data, and generalizing to other portions of the problems hyperspace (represented
by the validation set).

188

Chapter 7

Conclusion

This thesis presented contributions across various aspects of efficient and robust learning
using the property of neural diversity found in biological neural networks. The major
contributions include: (i) establishing the relationship of neural diversity to generalization
ability in the context of the bias-variance decomposition and meta-learning; (ii) neural
network meta-features (describe as problem signatures) shown to be able to characterize
problems, as well as be a valuable tool in analyzing underlying computational strategies
evolved by neural networks with diverse transfer functions; (iii) finally, a framework that
involves co-evolving neural diversity with their topology and weights to self-adapt the bias
of the neural network, and increase ability to perform more efficient information transfer
between components using evolutionary operators, such as crossover.

7.1 Established the notion of neural diversity for efficient
learning from different perspectives

The thesis reviewed the various related works done in transfer function optimization, clas-
sified them according to their motivation, and established a notion of how neural diversity
could lead to better generalization in the context of the bias-variance decomposition. There
were three major motivations behind works found in the literature [61, 41, 47, 3, 31, 30,
55, 29]: (i) Donoho’s theory of Duality of functions; (ii) meta-learning; and (iii) transfer
function flexibility. Though these works showed promising results, there are relatively few
works on transfer function in general. Also, most of these works are not as extensive rel-
ative to research on other components of artificial neural networks. Furthermore, as per
the writing of this thesis, there is yet to be a work that specifically and explicitly relates
transfer function optimization to generalization, supplemented with significant empirical
results. This thesis contributes to the literature by presenting a biologically inspired facet

189

of transfer function optimization, which has been found to have promising results in pre-
liminary experiments [71]. It also explained specifically how the bias of neural network
components affect generalization ability in the context of the bias-variance decomposition
and meta-learning. It then outlined how neural diversity, represented as transfer function
diversity in this study, can enable the neural network to adopt more forms of bias which
result in being able to access and search more regions of the hypothesis space. In other
words, neural diversity increases the computational capacity of artificial neural networks.
Consequently, this increases the probability of finding the most appropriate hypothesis that
describes the problem’s underlying function.

Experimental results were used to show that transfer function diversity can exhibit di-
verse computational strategies and as such can be used as a diversity maintenance scheme
for neural network ensembles without the need of other explicit diversity maintenance mea-
sures that tend to be computationally expensive. This was shown by revealing two differ-
ent strategies for the diabetes problem, where clever functions such as feature filters were
evolved for pre-processing. The evolved filter function was used to extract essential fea-
tures such as age and skinfold thickness- that the strategies found to be correlated to the
risk of diabetes. Interestingly, these features are among the factors that increase the risk
of diabetes as recognized by the American Diabetes Association (ADA) [10]. It was also
shown that this approach can evolve relatively small ensembles of compact networks that
have a competitive performance, as in the case of the diabetes problem which had a small
number of ensemble members of no more than 20 networks, each with relatively fewer hid-
den units of no more than five hidden units. Those found in the literature tend to have 20
members with ten hidden units [19, 79]. The results suggested that neural diversity not only
shows signs of ability to significantly produce diverse computational strategies with diverse
biases; it also demonstrated that it can evolve creative solutions to complex solutions. How-
ever, its limitations included the increased local minima as a result of its greater access to
the global search space of computational strategies. Also, relatively slower convergence
was also a concern. However, this was addressed in a later chapter.

These findings paved the way for the next contribution which exploited the performance
differences of transfer functions to characterize problems, among other tasks.

7.2 Meta-features for problem characterization and anal-
ysis of neural network models

The second significant contribution was showing the feasibility of computational signa-
tures being used as meta-features by demonstrating they had both the consistency and the

190

discriminatory properties proposed. Firstly, the chapter explains the idea of computational
signatures, which could be regarded as meta-features. Meta-features in the literature have
typically been considered to be either a set of features resulting from analyzing a dataset
[103, 81], or the performance information of various learning algorithms on a dataset which
also provides some degree of insight into the nature of the problem [84, 61, 103, 3]. Though
performance information of various learning algorithm could arguably provide some level
of information regarding the properties of problems, it was the opinion of the author that
more reliable features can be unveiled by studying the models that learn the problem. Re-
lated works include the use of features such as the depth of decision trees after training on
a dataset as a meta-feature [81]. Unfortunately, just like the study of transfer functions:
there seems to have been very little work in this direction, specifically for artificial neu-
ral networks. There has been work by Ajith [3] and Kordik [61] on meta-learning neural
networks which learn to adopt transfer functions from a pool of the traditional transfer
functions consisting of projection and radial basis units.

This work contributes to the literature, by specifically developing various meta-features
based on neural network models described as problem signatures. It was shown that these
signatures could be used to improve convergence by initializing the transfer functions of
artificial neural networks. It also demonstrated that problem signatures exhibit the defined
properties that are desirable for meta-features, i.e. consistency in being discriminative
between problems that are different, as well a significant degree of invariance for a problem
regardless of tweaks to various parameters.

Additionally, it was also shown that higher-order signatures can be analyzed further by
using them to generate a digraph that represents the building blocks of the elite models
that had promising fitness values for the problem, which in essence inherently represents
some information about the nature of the problem. These graphs are then used to verify the
feasibility of the neural network computational signatures as meta-features. Furthermore,
our graph-based approach which uses the meta-features to form an expectation of the com-
putational strategy found to be most appropriate for the problem also presents a method of
not only understanding the neural network models, but also the nature of the problem itself.
The results of these have been used to show interesting computational strategies, including
one that shows how the neural network creatively used min and max activation functions to
filter the most important features of the diabetes problem, namely age, and skin fold thick-
ness. Interestingly, this was found to be established as some of the factors that increase the
risk of diabetes by the American Diabetes Association (ADA) [10].

Finally, the thesis then utilizes neuroscience-inspired analysis techniques for the study
of artificial neural networks. This was mainly motivated by the tendency of neural networks

191

to be used as black box learning algorithms. There is yet to be a significant work in the
direction of techniques for analyzing the hypothesis learned by artificial neural network
models. However, Neuroscience has a variety of established methods used for studying
biological networks.

7.3 Co-evolution of neural diversity and their topologies
for efficient learning

The third contribution of this thesis was the presentation of a holistic approach to optimiz-
ing an artificial neural network that involves the co-evolution of neural diversity with their
connection weights and topology. In traditional representations of artificial neural networks
meant to be optimized using evolutionary algorithms, a single genetic string is usually
used. Though there have been very promising results from this approach [112, 12, 34, 97],
it has also presented problems such as the cross-over operations being particularly detri-
mental to performance in some cases. This thesis contributes by particularly co-evolving
a representation of the model space with regards to its principal components; i.e. weight,
topology and transfer functions, to achieve better information transfer during evolutionary
operations. The transfer function diversity, flexibility to evolve any form of topology, and
improvement in information transfer are all meant to reduce the bias of the neural net-
work thereby increasing chances of better generalization ability. Though there have been
related works that have co-evolved neural networks using various representations, evalu-
ations and optimization techniques such as SANE [78], COVNET[44], CoSyNe [46] and
EPNET [111]; this work differs as it co-evolves the three major components of the neu-
ral network represented as three interdependent sub-spaces. In particular, the property of
neural diversity makes this approach significantly different from the other approaches.

The results showed that co-evolving the components of neural networks with neural
diversity can enable it to achieve significant generalization ability with comparatively less
complex models consisting of two hidden units [6]. In particular, the results tested on 22
popular benchmarks from the machine learning repository (UCI) [13] and PROBEN1 [89]
benchmark show an average mean squared error of 0.30, which is significant for a neural
network of that complexity. This suggested signs of more representational power as well
as an ability to converge on promising solutions with consistency. This was because the
CoevoNDM achieved a competitive performance, particularly of the neural network breed
with relatively fewer hidden units without a significant effect on generalization ability. On
the contrary, neuronal diversity can exhibit a wide variety of creative and clever computa-
tional strategies. This has been particularly evident in the analysis of the neural networks

192

which showed the computational signatures produced by neural networks with neuronal
diversity were also diverse due to the differences in their neuronal computational paths.
Furthermore, CoevoNDMs show an ability to converge with relatively more consistency
on promising computational strategies for a majority of the problems and was on average
found to be better than NeuDiME.

It was also shown that injecting more neural diversity during the co-evolutionary pro-
cess also significantly increases both the generalization ability of the neural network and its
convergence rate. This was because of the decreased bias on the transfer functions, which
enables the co-evolutionary algorithm to explore a lot more neural computational strate-
gies, consequently allowing it to explore more hypotheses that might have better potential
for describing the underlying nature of the problem. This also improved the chances of
finding a more optimal model, thus escaping local minima - as also shown by the improve-
ment in convergence speed. It was also explained how fitness assignment was essential in
making sure a premature convergence on a sub-optimal hypothesis was avoided as much as
possible. In our case, the fitness values of each candidate component consisted of fitness
values representing both training and estimated generalization performance. The multi-
objective optimization of both fitness values helps the selection mechanism apply pressure
on finding solutions that contribute towards learning the training data, and generalizing to
other portions of the problems hyperspace (represented by the validation set).

193

Bibliography

[1] H. Abbass. A memetic pareto evolutionary approach to artificial neural networks.
AI 2001: Advances in Artificial Intelligence, 2001.

[2] H. H. Abbass. Pareto neuro-evolution: Constructing ensemble of neural networks
using multi-objective optimization. In The 2003 Congress on Evolutionary Compu-

tation 2003 CEC 03 (2003), volume 3, pages 2074–2080, Cancun, 2003. IEEE.

[3] A. Abraham. Meta learning evolutionary artificial neural networks. Neurocomput-

ing, 56(1- 4):1–38, Jan. 2004.

[4] A. Adamu, T. Maul, A. Bargiela, and C. Roadknight. Preliminary experiments with
ensembles of neurally diverse artificial neural networks for pattern recognition. In
Recent Advances in Information and Communication Technology 2015, pages 85–
96. Springer, 2015.

[5] A. S. Adamu, T. H. Maul, and A. Bargiela. On Training Neural Networks with Trans-
fer function Diversity. In International Conference on Computational Intelligence

and Information Technology, CIIT ’13, pages 295–304, Mumbai, 2013. Elsevier.

[6] A. S. Adamu, T. H. Maul, and A. Bargiela. Efficient Learning by Coevolution of
Neurally Diverse Artificial Neural Networks. In 2014 IEEE Symposium on Comput-

ers & Informatics (ISCI 2014), Kota Kinabalu, Malaysia, Sept. 2014.

[7] A. S. Adamu, M. Tomas, and A. Bargiela. Assessing the feasibility of approximating
higher-order problem signatures in Artificial Neural Networks with hybrid transfer
functions. International Journal of Computer Science Issues, 11(2):8–18, 2014.

[8] D. Albanese, R. Visintainer, S. Merler, S. Riccadonna, G. Jurman, and C. Furlanello.
mlpy: Machine learning python, 2012.

[9] E. Artyomov and O. Yadid-Pecht. Modified high-order neural network for invariant
pattern recognition. Pattern Recognition Letters, 26(6):843–851, 2005.

194

[10] A. D. Association. Lower Your Risks: Age, Race, Gender & Family History, 2013.

[11] A. Azzini and A. G. Tettamanzi. Evolutionary anns: A state of the art survey. Intel-

ligenza Artificiale, 5(1):19–35, 2011.

[12] A. Azzini, A. G. B. Tettamanzi, and M. Dragoni. SimBa-2 : Improving a Novel
Similarity-Based Crossover for the Evolution of Artificial Neural Networks. In
2011 11th International Conference on Intelligent Systems Design and Applications,
pages 374–379, 2011.

[13] K. Bache and M. Lichman. {UCI}Machine Learning Repository, 2013.

[14] Y. Bengio, I. J. Goodfellow, and A. Courville. Deep learning. Book in preparation
for MIT Press, 2015.

[15] H. Bensusan and C. Giraud-Carrier. Discovering task neighbourhoods through land-
mark learning performances. Principles of Data Mining and Knowledge Discovery,
2000.

[16] S. A. Billings and G. L. Zheng. Radial basis function network configuration using
genetic algorithms. Neural Networks, 8(6):877–890, 1995.

[17] C. M. Bishop. Neural networks for pattern recognition. Oxford university press,
1995.

[18] K. L. Briggman and W. B. Kristan. Multifunctional pattern-generating circuits. An-

nual review of neuroscience, 31:2710294, 2008.

[19] G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: a survey and
categorisation. Information Fusion, 6(1):5–20, Mar. 2005.

[20] G. Brown and X. Yao. On the effectiveness of negative correlation learning. Pro-

ceedings of First UK Workshop on Computational Intelligence, 2001.

[21] E. Bullmore and O. Sporns. Complex brain networks: graph theoretical analysis
of structural and functional systems. Nature reviews. Neuroscience, 10(3):186–98,
Mar. 2009.

[22] M. Castellani and H. Rowlands. Evolutionary artificial neural network design and
training for wood veneer classification. Engineering Applications of Artificial Intel-

ligence, 22(4):732–741, 2009.

195

[23] B. I. D. M. Center. To learn better, take a nap (and don’t forget to dream), April 26
2010.

[24] CERI. Understanding the Brain: The Birth of a Learning Science. CERI, 2007.

[25] A. Chandra and X. Yao. Evolutionary Framework for the Construction of Di-
verse Hybrid Ensembles. In European Symposium on Artificial Neural Networks

(ESANN), pages 253–258, 2005.

[26] A. Chandra and X. Yao. Ensemble Learning Using Multi-Objective Evolutionary
Algorithms. Journal of Mathematical Modelling and Algorithms, 5(4):417–445,
Mar. 2006.

[27] A. Chandra and X. Yao. Evolving hybrid ensembles of learning machines for better
generalisation. Neurocomputing, 69(7-9):686–700, Mar. 2006.

[28] P. Chandra and Y. Singh. A case for the self-adaptation of activation functions in
FFANNs. Neurocomputing, 56(1-4):447–454, Jan. 2004.

[29] P. Chandra and Y. Singh. An activation function adapting training algorithm for
sigmoidal feedforward networks. Neurocomputing, 61:429–437, Oct. 2004.

[30] I. Ciocoiu. Hybrid feedforward neural networks for solving classification problems.
Neural Processing Letters, pages 81–91, 2002.

[31] S. Cohen and N. Intrator. A Hybrid Projection-based and Radial Basis Function Ar-
chitecture: Initial Values and Global Optimisation. Pattern Analysis & Applications,
5(2):113–120, June 2002.

[32] Y. L. Cun, J. S. Denker, and S. A. Solla. Optimal Brain Damage. In Advances in

Neural Information Processing Systems, volume 2, pages 598–605. Morgan Kauf-
mann, 1990.

[33] P. Domingos. A few useful things to know about machine learning. Communications

of the ACM, 55(10):78, Oct. 2012.

[34] M. Dragoni, A. Azzini, and A. G. Tettamanzi. SimBa: A novel similarity-based
crossover for neuro-evolution. Neurocomputing, pages 1–15, July 2013.

[35] W. Duch and N. Jankowski. Survey of neural transfer functions. Neural Computing

Surveys, 2:163–212, 1999.

196

[36] W. Duch and N. Jankowski. Taxonomy of neural transfer functions. Proceedings of

the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN

2000. Neural Computing: New Challenges and Perspectives for the New Millen-

nium, 3:477–482, 2000.

[37] W. Duch and N. Jankowski. Transfer functions: hidden possibilities for better neural
networks. In 9th European Symposium on Artificial Neural Networks, ESANN ’01,
pages 81–94, Bruges, 2001.

[38] W. Duch, N. Jankowski, and W. Duch. Bi-radial transfer functions. 9th European

Symposium on Artificial Neural Networks, 7(1):81–94, 1996.

[39] T. A. El-Mihoub, A. A. Hopgood, L. Nolle, and A. Battersby. Hybrid genetic algo-
rithms: A review. Engineering Letters, 13(2):124–137, 2006.

[40] A. P. Engelbrecht. Computational intelligence: an introduction. John Wiley & Sons,
2007.

[41] F. Fernández-Navarro, C. Hervás-Martı́nez, P. A. Gutiérrez, and M. Carbonero-Ruz.
Evolutionary q-Gaussian radial basis function neural networks for multiclassifica-
tion. Neural Networks, 24(7):779–84, Sept. 2011.

[42] D. Floreano, P. Dürr, and C. Mattiussi. Neuroevolution: from architectures to learn-
ing. Evolutionary Intelligence, 1(1):47–62, Jan. 2008.

[43] C. Gagn. DEAP : Evolutionary Algorithms Made Easy. Journal of Machine Learn-

ing Research, 13(13):2171–2175, 2012.

[44] N. Garcı́a-Pedrajas. Covnet: a cooperative coevolutionary model for evolving ar-
tificial neural networks. IEEE Transactions on Neural Networks, 14(3):575–596,
2003.

[45] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance
dilemma. Neural computation, 1992.

[46] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated Neural Evolution
through Cooperatively Coevolved Synapses. Journal of Machine Learning Research,
9:937–965, 2008.

[47] P. Gutiérrez, C. Hervás, M. Carbonero, and J. Fernández. Combined projection and
kernel basis functions for classification in evolutionary neural networks. Neurocom-

puting, 72(13-15):2731–2742, Aug. 2009.

197

[48] P. Gutiérrez and C. Hervás-Martnez. Hybrid Artificial Neural Networks : Models ,
Algorithms and Data. Lecture Notes in Computer Science, 6692(PART 2):177–184,
2011.

[49] P. P. Gutiérrez, C. Hervás, M. Carbonero, and J. J. Fernández. Combined projec-
tion and kernel basis functions for classification in evolutionary neural networks.
Neurocomputing, 72(13-15):2731–2742, Aug. 2009.

[50] L. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 12(10):993–1001, 1990.

[51] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The ”wake-sleep” algorithm for
unsupervised neural networks. Science, 268(5214):1158–1161, 1995.

[52] International Joint Conference on Artificial Intelligence. Version spaces: A can-

didate elimination approach to rule learning, volume 1 of 5. Morgan Kaufmann
Publishers Inc., 1977.

[53] M. M. Islam, X. Yao, and K. Murase. A constructive algorithm for training coopera-
tive neural network ensembles. IEEE transactions on neural networks / a publication

of the IEEE Neural Networks Council, 14(4):820–34, Jan. 2003.

[54] N. Jankowski. Flexible transfer functions with ontogenic neural networks. Toru,

Poland, 1(6):1–6, 1999.

[55] N. Jankowski and W. Duch. Optimal transfer function neural networks. In 9th

European Symposium on Artificial Neural Networks, ESANN 2001, pages 101–106,
Bruges, 2001.

[56] N. Jankowski and V. Kadirkamanathan. Artificial Neural Networks — ICANN’97:

7th International Conference Lausanne, Switzerland, October 8–10, 1997 Proceeed-

ings, chapter Statistical control of RBF-like networks for classification, pages 385–
390. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[57] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for
Python, 2001–. [Online; accessed 2016-05-16].

[58] M. T. Jones. Artificial Intelligence A System Approach. Laxmi Publications, Ltd.,
2008.

198

[59] M. Kaul, R. L. Hill, and C. Walthall. Artificial neural networks for corn and soybean
yield prediction. Agricultural Systems, 85:1–18, 2005.

[60] K. Kim and S. Cho. Evolutionary ensemble of diverse artificial neural networks
using speciation. Neurocomputing, 71(7-9):1604–1618, Mar. 2008.

[61] P. Kordı́k, J. Koutnı́k, J. Drchal, O. Kovárı́k, M. Cepek, and M. Snorek. Meta-
learning approach to neural network optimization. Neural networks : the official

journal of the International Neural Network Society, 23(4):568–82, May 2010.

[62] D. Kriesel. A Brief Introduction to Neural Networks. 2007.

[63] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active
learning. Advances in Neural Information Processing Systems, 7:231–238, 1995.

[64] M. Lehtokangas and J. Saarinen. Centroid based Multilayer Perceptron Networks.
Neural Processing Letters, 7(2):101–106, 1998.

[65] Y. Liu and X. Yao. Evolutionary design of artificial neural networks with different
nodes. Proceedings of IEEE International Conference on Evolutionary Computa-

tion, pages 913–917, 1996.

[66] Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural networks :

the official journal of the International Neural Network Society, 12(10):1399–1404,
Dec. 1999.

[67] Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation
learning. IEEE Transactions on Evolutionary Computation, 4(4):380–387, 2000.

[68] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, et al.
Overview of neuron structure and function, 2000.

[69] E. Marder. Invertebrate Neurobiology: Polymorphic neural networks. Current Biol-

ogy, 4(8):752–754, Aug. 1994.

[70] E. V. E. Marder. Polymorphic neural networks Recent work on small invertebrate
nervous systems. Current Biology, 4(8):752–754, 1994.

[71] T. Maul. Early experiments with neural diversity machines. Neurocomputing,
113:36–48, Mar. 2013.

199

[72] T. Maul and S. Baba. Unsupervised learning in second-order neural networks for
motion analysis. Neurocomputing, 74(6):884–895, 2011.

[73] T. H. Maul, A. Bargiela, U. Malaysia, C. S. Yew, and A. S. Adamu. Towards evolu-
tionary deep neural networks. ECMS, 2014.

[74] R. J. Meuth. Mutation operator evolution for ea-based neural networks. 2005.

[75] T. M. Mitchell. The Need for Biases in Learning Generalizations. Readings in

Machine Learning, (CBM-TR-117):184–191, 1980.

[76] M. J. Moghaddam and H. Soltanian-Zadeh. Medical Image Segmentation Using

Artificial Neural Networks. INTECH Open Access Publisher, 2011.

[77] D. J. Montana and L. Davis. Training feedforward neural networks using genetic
algorithms. In IJCAI, volume 89, pages 762–767, 1989.

[78] D. E. Moriarty and R. Miikkulainen. Efficient reinforcement learning through sym-
biotic evolution. Machine Learning, 22:11–32, 1996.

[79] D. Opitz and R. Maclin. Popular ensemble methods: An empirical study. Journal of

Aritificial Intelligence Research, 11:169–198, 2011.

[80] D. Opitz and J. Shavlik. Generating Accurate and Diverse Members of a Neural-
Network Ensemble. Advances in neural information processing Systems, 8:535–541,
1996.

[81] Y. Peng, P. Flach, P. Brazdil, and C. Soares. Decision tree-based data characteriza-
tion for meta-learning. In 2nd International Workshop on Integration and Collab-

oration Aspects of Data Mining, Decision Support and Meta-Learning, IDDM ’02,
number 3, pages 111–122. Helsinki, 2002.

[82] M. Perrone and L. Cooper. When networks disagree: Ensemble methods for hybrid
neural networks. Neural Networks for Speech and Image Processing, pages 126–
142, 1993.

[83] S. Peter and A. Krogh. Learning with ensembles: How over-fitting can be useful.
In Advances in Neural Information Processing Systems, volume 8, pages 4–10. MIT
Press, 1996.

200

[84] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Meta-Learning by Landmarking
Various Learning Algorithms. Proceedings of the Seventeenth International Confer-

ence on Machine Learning ICML2000, 951(2000):743–750, 2000.

[85] M. Potter and K. D. Jong. A cooperative coevolutionary approach to function opti-
mization. Parallel Problem Solving from Nature - PPSN III, pages 249 – 257, 1994.

[86] M. A. Potter and K. A. De Jong. A cooperative coevolutionary approach to function
optimization. In Parallel problem solving from naturePPSN III, pages 249–257.
Springer, 1994.

[87] M. A. Potter and K. A. De Jong. Cooperative coevolution: an architecture for evolv-
ing coadapted subcomponents. Evolutionary computation, 8(1):1–29, Jan. 2000.

[88] M. A. Potter, K. A. De Jong, and K. D. Jong. Cooperative coevolution: An architec-
ture for evolving coadapted subcomponents. Evolutionary computation, 8(1):1–29,
Jan. 2000.

[89] L. Prechelt. Proben1: A set of neural network benchmark problems and benchmark-
ing rules. Technicak Report, 21(19/94):94, 1994.

[90] L. Rendell, R. Seshu, and D. Tcheng. Layered concept-learning and dynamically-
variable bias management. In Proceedings of the International Joint Conference on

Artificial Intelligence, IJCAI ’87., pages 308—-314, Milan, 1987.

[91] M. Rubinov and O. Sporns. Complex network measures of brain connectivity: uses
and interpretations. NeuroImage, 52(3):1059–69, Sept. 2010.

[92] S. Russell, P. Norvig, and A. Intelligence. A modern approach. Artificial Intelli-

gence. Prentice-Hall, Egnlewood Cliffs, 25, 1995.

[93] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rückstieß, and
J. Schmidhuber. PyBrain. Journal of Machine Learning Research, 11:743–746,
2010.

[94] A. Sharkey and N. Sharkey. Combining diverse neural nets. The Knowledge Engi-

neering Review, 12(3):231–247, 1997.

[95] Y. Singh and P. Chandra. A class +1 sigmoidal activation functions for ffanns. Jour-

nal of Economic Dynamics and Control, 28(1):183–187, Oct. 2003.

201

[96] O. Sporns. Graph theory methods for the analysis of neural connectivity patterns. In
Neuroscience Databases, pages 169–183. Springer, 2003.

[97] K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Evolving adaptive neural networks
with and without adaptive synapses. In Evolutionary Computation, 2003. CEC ’03.,
volume 4, pages 2557–2564. IEEE, Dec 2003.

[98] K. O. Stanley and R. Miikkulainen. Efficient Reinforcement Learning Through
Evolving Neural Network Topologies. In Proceedings of the Genetic and Evolu-

tionary Computation Conference , GECCO-2002, volume 10, pages 569–577, San
Francisco, 2002. Morgan Kaufmann.

[99] J.-p. Thivierge. Neural diversity creates a rich repertoire of brain activity. Commu-

nicative & integrative biology, 1(2):188–189, 2008.

[100] S. Thrun. Learning to learn: Introduction. In Learning To Learn, 1996.

[101] S. J. Tripathy, K. Padmanabhan, R. C. Gerkin, and N. N. Urban. Intermediate in-
trinsic diversity enhances neural population coding. Proceedings of the National

Academy of Sciences of the United States of America, 110(20):8248–53, 2013.

[102] R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. Artificial

Intelligence Review, 18(2):77–95, 2002.

[103] R. Vilalta, C. Giraud-Carrier, and P. Brazdil. Meta-learning - concepts and tech-
niques. In O. Maimon and L. Rokach, editors, Data Mining and Knowledge Discov-

ery Handbook, pages 717–731. Springer US, 2010.

[104] K. A. Wesson. From Synapses to LearningUnderstanding Brain Processes, 2012.

[105] L. D. Whitley et al. The genitor algorithm and selection pressure: Why rank-based
allocation of reproductive trials is best. In ICGA, pages 116–123, 1989.

[106] Z. Wu and Y. Chen. Genetic algorithm based selective neural network ensemble.
Proceedings of the Seventeenth International Joint Conference on Artificial Intelli-

gence, IJCAI 201, 1:797–802, 2001.

[107] X. Yao. A review of evolutionary artificial neural networks. International Journal

of Intelligent Systems, 8(4):539–567, 1993.

[108] X. Yao. Evolutionary Artificial Neural Networks. International Journal of Intelli-

gent Systems, 4(3), 1993.

202

[109] X. Yao. Evolving Artificial Neural Networks. Proceedings of the IEEE, 87:1423–
1447, 1999.

[110] X. Yao and M. Islam. Evolving artificial neural network ensembles. IEEE Compu-

tational Intelligence Magazine, 3(1):31–42, Feb. 2008.

[111] X. Yao and Y. Liu. A new evolutionary system for evolving artificial neural net-
works. IEEE transactions on neural networks / a publication of the IEEE Neural

Networks Council, 8(3):694–713, 1997.

[112] X. Yao and Y. Liu. Towards designing artificial neural networks by evolution. Ap-

plied Mathematics and Computation, 91(1):83–90, 1998.

[113] L. Yu, K. K. Lai, and S. Wang. Multistage RBF neural network ensemble learning
for exchange rates forecasting. Neurocomputing, 71(16-18):3295–3302, Oct. 2008.

[114] G. Zhang. Forecasting with artificial neural networks: The state of the art. Interna-

tional Journal of Forecasting, 14(1):35–62, Mar. 1998.

[115] G. Zhang. Neural networks for classification: a survey. IEEE Transactions on

Systems, Man and Cybernetics, Part C (Applications and Reviews), 30(4):451–462,
2000.

[116] G. Zhang, B. E. Patuwo, and M. Y. Hu. Forecasting with artificial neural networks::
The state of the art. International journal of forecasting, 14(1):35–62, 1998.

203

Appendix A

Appendix

A.1 Consistency of Lower-Order Signatures

A.1.1 Noise Levels

The figures below show the results of connection density and transfer function likelihood
averages for various levels of noise γ . It also presents the results of the connection density
and transfer function likelihood averages after thresholding for the various noise level.

(a) γ = 0.1 (b) γ = 0.2

Figure A.1: The average connection density for the range of noise levels γ ∈ {0.1,0.2} on
the Iris dataset.

204

(a
)γ

=
0.

3
(b

)γ
=

0.
4

(c
)γ

=
0.

5
(d

)γ
=

0.
6

Fi
gu

re
A

.2
:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

fo
rt

he
ra

ng
e

of
no

is
e

le
ve

ls
γ
∈
{0
.3
..

0.
6}

on
th

e
Ir

is
da

ta
se

t.

205

(a
)γ

=
0.

7
(b

)γ
=

0.
8

(c
)γ

=
0.

9
(d

)γ
=

1.
0

Fi
gu

re
A

.3
:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

fo
rt

he
ra

ng
e

of
no

is
e

le
ve

ls
γ
∈
{0
.7
..

1.
0}

on
th

e
Ir

is
da

ta
se

t.

206

(a
)γ

=
0.

1
(b

)γ
=

0.
2

(c
)γ

=
0.

3
(d

)γ
=

0.
4

Fi
gu

re
A

.4
:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

af
te

rt
hr

es
ho

ld
in

g
fo

rt
he

ra
ng

e
of

no
is

e
le

ve
ls

γ
∈
{0
.1
..

0.
4}

on
th

e
Ir

is
da

ta
se

t.

207

(a
)γ

=
0.

5
(b

)γ
=

0.
6

(c
)γ

=
0.

7
(d

)γ
=

0.
8

Fi
gu

re
A

.5
:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

af
te

rt
hr

es
ho

ld
in

g
fo

rt
he

ra
ng

e
of

no
is

e
le

ve
ls

γ
∈
{0
.5
..

0.
8}

on
th

e
Ir

is
da

ta
se

t.

208

(a
)γ

=
0.

9
(b

)γ
=

1.
0

Fi
gu

re
A

.6
:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

af
te

rt
hr

es
ho

ld
in

g
fo

rt
he

ra
ng

e
of

no
is

e
le

ve
ls

γ
∈
{0

.9
,1
.0
}

on
th

e
Ir

is
da

ta
se

t.

209

(a
)γ

=
0.

1
(b

)γ
=

0.
2

(c
)γ

=
0.

3
(d

)γ
=

0.
4

Fi
gu

re
A

.7
:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

fo
rt

he
ra

ng
e

of
no

is
e

le
ve

ls
γ
∈
{0

.1
..

0.
4}

on
th

e
So

na
rd

at
as

et
.

210

(a
)γ

=
0.

5
(b

)γ
=

0.
6

(c
)γ

=
0.

7
(d

)γ
=

0.
8

Fi
gu

re
A

.8
:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

m
at

ri
ce

s
fo

rt
he

ra
ng

e
of

no
is

e
le

ve
ls

γ
∈
{0

.5
..

0.
8}

on
th

e
So

na
rd

at
as

et
.

211

(a
)γ

=
0.

9
(b

)γ
=

1.
0

Fi
gu

re
A

.9
:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

fo
rt

he
ra

ng
e

of
no

is
e

le
ve

ls
γ
∈
{0
.9
,1
.0
}

on
th

e
So

na
rd

at
as

et
.

212

(a
)γ

=
0.

1
(b

)γ
=

0.
2

(c
)γ

=
0.

3
(d

)γ
=

0.
4

Fi
gu

re
A

.1
0:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

af
te

rt
hr

es
ho

ld
in

g
fo

rt
he

ra
ng

e
of

no
is

e
le

ve
ls

γ
∈
{0
.1
..

0.
4}

on
th

e
So

na
rd

at
as

et
.

213

(a
)γ

=
0.

5
(b

)γ
=

0.
6

(c
)γ

=
0.

7
(d

)γ
=

0.
8

Fi
gu

re
A

.1
1:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

af
te

rt
hr

es
ho

ld
in

g
fo

rt
he

ra
ng

e
of

no
is

e
le

ve
ls

γ
∈
{0
.5
..

0.
8}

on
th

e
So

na
rd

at
as

et
.

214

(a
)γ

=
0.

9
(b

)γ
=

1.
0

Fi
gu

re
A

.1
2:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

af
te

rt
hr

es
ho

ld
in

g
fo

rt
he

ra
ng

e
of

no
is

e
le

ve
ls

γ
∈
{0
.9
,1
.0
}

on
th

e
So

na
rd

at
as

et
.

215

(a
)γ

=
0.

1
(b

)γ
=

0.
2

(c
)γ

=
0.

3
(d

)γ
=

0.
4

Fi
gu

re
A

.1
3:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

fo
rt

he
ra

ng
e

of
no

is
e

le
ve

ls
γ
∈
{0
.1
..

0.
4}

on
th

e
X

O
R

da
ta

se
t.

216

(a
)γ

=
0.

5
(b

)γ
=

0.
6

(c
)γ

=
0.

7
(d

)γ
=

0.
8

Fi
gu

re
A

.1
4:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

fo
rt

he
ra

ng
e

of
no

is
e

le
ve

ls
γ
∈
{0
.5
..

0.
8}

on
th

e
X

O
R

da
ta

se
t.

217

(a
)γ

=
0.

9
(b

)γ
=

1.
0

Fi
gu

re
A

.1
5:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

fo
rt

he
ra

ng
e

no
is

e
le

ve
ls

γ
∈
{0
.9
,1
.0
}

on
th

e
X

O
R

da
ta

se
t.

218

(a
)γ

=
0.

1
(b

)γ
=

0.
2

(c
)γ

=
0.

3
(d

)γ
=

0.
4

Fi
gu

re
A

.1
6:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

af
te

rt
hr

es
ho

ld
in

g
fo

rt
he

ra
ng

e
of

no
is

e
le

ve
ls

γ
∈
{0
.1
..

0.
4}

on
th

e
X

O
R

da
ta

se
t.

219

(a
)γ

=
0.

5
(b

)γ
=

0.
6

(c
)γ

=
0.

7
(d

)γ
=

0.
8

Fi
gu

re
A

.1
7:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

af
te

rt
hr

es
ho

ld
in

g
fo

rt
he

ra
ng

e
of

no
is

e
le

ve
ls

γ
∈
{0
.5
..

0.
8}

on
th

e
X

O
R

da
ta

se
t.

220

(a
)γ

=
0.

9
(b

)γ
=

1.
0

Fi
gu

re
A

.1
8:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

af
te

rt
hr

es
ho

ld
in

g
fo

rt
he

ra
ng

e
of

no
is

e
le

ve
ls

γ
∈
{0
.9
,1
.0
}

on
th

e
X

O
R

da
ta

se
t.

221

A.1.2 Size of N

This shows the results for various sizes of N, i.e. the number of solutions top solutions
selected for sampling the signatures after sorting.

(a) γ = 0.1 (b) γ = 0.2

(c) γ = 0.3 (d) γ = 0.4

Figure A.19: The average transfer function likelihood for the sizes of N ∈ {1..4} on the
Iris dataset.

222

(a) γ = 0.1 (b) γ = 0.2

(c) γ = 0.3 (d) γ = 0.4

Figure A.20: The average transfer function likelihood after thresholding for the sizes of
N ∈ {1..4} on the Iris dataset.

223

(a
)N

=
1

(b
)N

=
2

(c
)N

=
3

(d
)N

=
4

Fi
gu

re
A

.2
1:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

fo
rt

he
si

ze
s

of
N
∈
{1

..
4}

on
th

e
Ir

is
da

ta
se

t.

224

(a
)N

=
1

(b
)N

=
2

(c
)N

=
3

(d
)N

=
4

Fi
gu

re
A

.2
2:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

af
te

rt
hr

es
ho

ld
in

g
fo

rs
iz

es
of

N
∈
{1

..
4}

on
th

e
Ir

is
.

225

(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure A.23: The average transfer function likelihood for sizes of N ∈ {1..4} on the Sonar
dataset.

226

(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure A.24: The average transfer function likelihood after thresholding for sizes N ∈
{1..4} on the Sonar dataset.

227

(a
)N

=
1

(b
)N

=
2

(c
)N

=
3

(d
)N

=
4

Fi
gu

re
A

.2
5:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

m
at

ri
ce

s
fo

rv
ar

io
us

si
ze

s
of

N
∈
{1

..
4}

on
th

e
So

na
r.

228

(a
)N

=
1

(b
)N

=
2

(c
)N

=
3

(d
)N

=
4

Fi
gu

re
A

.2
6:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

af
te

rt
hr

es
ho

ld
in

g
fo

rs
iz

es
of

N
∈
{1
..

4}
on

th
e

So
na

rd
at

as
et

.

229

(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure A.27: The average transfer function likelihood for sizes of N ∈ {1..4} on the XOR
dataset.

230

(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure A.28: The average transfer function likelihood for sizes of N ∈ {1..4} on the XOR
dataset.

231

(a
)N

=
1

(b
)N

=
2

(c
)N

=
3

(d
)N

=
4

Fi
gu

re
A

.2
9:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

fo
rs

iz
es

of
N
∈
{1
..

4}
on

th
e

X
O

R
da

ta
se

t.

232

(a
)N

=
1

(b
)N

=
2

(c
)N

=
3

(d
)N

=
4

Fi
gu

re
A

.3
0:

T
he

av
er

ag
e

co
nn

ec
tio

n
de

ns
ity

fo
rv

ar
io

us
si

ze
s

of
N
∈
{1

..
5}

on
th

e
X

O
R

.

233

A.2 Consistence Likelihood of Higher-Order Problem Sig-
natures

A.2.1 Coexistence Matrices Heat Map
A.2.1.1 Size Of N

Figure A.31: The heat map of the average coexistence matrix for Iris as the size of N was
increased.

Figure A.32: The heat map of the average coexistence matrix after thresholding for Iris
dataset as the size of N was increased.

234

Figure A.33: The heat map of the average coexistence matrix for Sonar dataset as the size
of N increases.

Figure A.34: The heat map of the average coexistence matrix after thresholding for Sonar
dataset as the size of N increases.

235

Figure A.35: The heat map of the average coexistence matrix for XOR dataset as the size
of N increases.

Figure A.36: The heat map of the average coexistence matrix after thresholding for XOR
dataset as the size of N increases.

236

(a) γ = 0.1 (b) γ = 0.2

(c) γ = 0.3 (d) γ = 0.4

(e) γ = 0.5 (f) γ = 0.6

Figure A.37: Path analysis results for the Iris dataset with increasing levels of noise γ =
{0.1..0.6}.

A.2.2 Path Analysis with Increasing level of Noise

237

(a) γ = 0.7 (b) γ = 0.8

(c) γ = 0.9 (d) γ = 1.0

Figure A.38: Path analysis results for the Iris dataset with increasing levels of noise γ =
{0.7..1.0}.

238

(a) γ = 0.1 (b) γ = 0.2

(c) γ = 0.3 (d) γ = 0.4

(e) γ = 0.5 (f) γ = 0.6

Figure A.39: Path analysis results for the Sonar dataset with increasing levels of noise
γ = {0.1..0.6}.

239

(a) γ = 0.7 (b) γ = 0.8

(c) γ = 0.9 (d) γ = 1.0

Figure A.40: Path analysis results for the Sonar dataset with increasing levels of noise
γ = {0.7..1.0}.

240

(a) γ = 0.1 (b) γ = 0.2

(c) γ = 0.3 (d) γ = 0.4

(e) γ = 0.5 (f) γ = 0.6

Figure A.41: Path analysis results for the XOR dataset with increasing levels of noise
γ = {0.1..0.6}.

241

(a) γ = 0.7 (b) γ = 0.8

(c) γ = 0.9 (d) γ = 1.0

Figure A.42: Path analysis results for the XOR dataset with increasing levels of noise
γ = {0.7..1.0}.

242

A.3 Cooperative Co-evolution of Neurally Diverse Neural
Networks

A.3.1 Convergence Graphs

Figure A.43: Cancer convergence graph

Figure A.44: Card convergence graph

243

Figure A.45: Diabetes convergence graph

Figure A.46: SPECT Heart convergence graph

244

Figure A.47: Bankruptcy convergence graph

Figure A.48: Heart convergence graph

245

Figure A.49: Inflammations convergence graph

Figure A.50: Monks2 convergence graph

246

Figure A.51: Monks3 convergence graph

Figure A.52: Seeds convergence graph

247

Figure A.53: Monks1 convergence graph

Figure A.54: Vertebral2C convergence graph

248

Figure A.55: Vertebral3C convergence graph

Figure A.56: Lenses convergence graph

249

Figure A.57: Parkinsons convergence graph

Figure A.58: Sonar convergence graph

250

Figure A.59: Echocardiogram convergence graph

Figure A.60: Hepatitis convergence graph

251

Figure A.61: Iris convergence graph

Figure A.62: Abalone convergence graph

252

Ta
bl

e
A

.1
:

T-
te

st
re

su
lts

fo
rt

he
A

ba
lo

ne
be

nc
hm

ar
k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
00

02
05

68
22

0.
89

14
86

4
0.

23
66

77
6

0.
00

06
76

79
46

0.
00

05
28

82
2

0.
00

13
39

96
8

R
B

F
0.

00
02

05
68

22
1

0.
00

04
50

13
99

0.
00

04
32

14
83

0.
93

88
03

3
0.

68
13

4
0.

87
26

06
5

M
L

P-
R

B
F

0.
89

14
86

4
0.

00
04

50
13

99
1

0.
03

71
09

81
0.

00
07

55
99

14
0.

00
06

04
14

55
0.

00
14

56
83

9
C

oe
vo

N
D

M
0.

23
66

77
6

0.
00

04
32

14
83

0.
03

71
09

81
1

0.
00

04
88

36
92

0.
00

03
76

84
37

0.
00

09
45

47
41

SV
M

-L
in

ea
r

0.
00

06
76

79
46

0.
93

88
03

3
0.

00
07

55
99

14
0.

00
04

88
36

92
1

0.
79

83
38

2
0.

94
23

95
3

SV
M

-R
B

F
0.

00
05

28
82

2
0.

68
13

4
0.

00
06

04
14

55
0.

00
03

76
84

37
0.

79
83

38
2

1
0.

86
55

78
3

SV
M

-P
O

LY
0.

00
13

39
96

8
0.

87
26

06
5

0.
00

14
56

83
9

0.
00

09
45

47
41

0.
94

23
95

3
0.

86
55

78
3

1

253

Ta
bl

e
A

.2
:

T-
te

st
re

su
lts

fo
rt

he
B

an
kr

up
tc

y
be

nc
hm

ar
k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
04

54
43

29
0.

00
25

18
84

7
0.

92
60

92
2

1.
36

17
46

e-
05

7.
63

60
66

e-
07

4.
73

45
67

e-
06

R
B

F
0.

04
54

43
29

1
0.

86
94

42
1

0.
04

64
17

2
3.

17
54

09
e-

05
1.

52
84

35
e-

06
9.

21
71

99
e-

06
M

L
P-

R
B

F
0.

00
25

18
84

7
0.

86
94

42
1

1
0.

00
26

68
01

2
3.

75
19

91
e-

05
1.

15
87

72
e-

06
1.

10
11

21
e-

05
C

oe
vo

N
D

M
0.

92
60

92
2

0.
04

64
17

2
0.

00
26

68
01

2
1

1.
49

12
98

e-
05

9.
70

85
41

e-
07

5.
39

45
58

e-
06

SV
M

-L
in

ea
r

1.
36

17
46

e-
05

3.
17

54
09

e-
05

3.
75

19
91

e-
05

1.
49

12
98

e-
05

1
0.

88
60

83
1

SV
M

-R
B

F
7.

63
60

66
e-

07
1.

52
84

35
e-

06
1.

15
87

72
e-

06
9.

70
85

41
e-

07
0.

88
60

83
1

0.
87

70
48

5
SV

M
-P

O
LY

4.
73

45
67

e-
06

9.
21

71
99

e-
06

1.
10

11
21

e-
05

5.
39

45
58

e-
06

1
0.

87
70

48
5

1

254

Ta
bl

e
A

.3
:

T-
te

st
re

su
lts

fo
rt

he
ca

nc
er

be
nc

hm
ar

k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
00

01
31

79
83

8.
11

75
67

e-
06

0.
79

66
75

4
1.

96
95

2e
-1

1
2.

52
96

31
e-

14
6.

52
70

8e
-1

2
R

B
F

0.
00

01
31

79
83

1
0.

00
14

47
11

2
0.

00
01

39
21

62
0.

00
78

01
09

9
0.

00
76

60
81

7
0.

00
69

43
59

7
M

L
P-

R
B

F
8.

11
75

67
e-

06
0.

00
14

47
11

2
1

1.
76

80
94

e-
05

2.
91

54
94

e-
13

1.
58

89
14

e-
15

6.
35

43
96

e-
14

C
oe

vo
N

D
M

0.
79

66
75

4
0.

00
01

39
21

62
1.

76
80

94
e-

05
1

1.
11

29
95

e-
10

1.
98

26
31

e-
12

5.
17

98
53

e-
11

SV
M

-L
in

ea
r

1.
96

95
2e

-1
1

0.
00

78
01

09
9

2.
91

54
94

e-
13

1.
11

29
95

e-
10

1
1

0.
87

61
55

2
SV

M
-R

B
F

2.
52

96
31

e-
14

0.
00

76
60

81
7

1.
58

89
14

e-
15

1.
98

26
31

e-
12

1
1

0.
85

34
69

1
SV

M
-P

O
LY

6.
52

70
8e

-1
2

0.
00

69
43

59
7

6.
35

43
96

e-
14

5.
17

98
53

e-
11

0.
87

61
55

2
0.

85
34

69
1

1

255

Ta
bl

e
A

.4
:

T-
te

st
re

su
lts

fo
rt

he
C

ar
d

be
nc

hm
ar

k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

1.
55

33
02

e-
05

2.
72

34
45

e-
08

0.
00

10
62

49
4

1.
66

74
11

e-
09

1.
69

69
49

e-
06

5.
66

87
71

e-
10

R
B

F
1.

55
33

02
e-

05
1

0.
00

02
38

94
31

4.
59

23
06

e-
05

0.
88

77
29

4
9.

47
23

98
e-

06
0.

88
65

73
4

M
L

P-
R

B
F

2.
72

34
45

e-
08

0.
00

02
38

94
31

1
0.

00
01

88
16

14
2.

27
82

29
e-

07
3.

28
17

42
e-

06
1.

15
43

e-
07

C
oe

vo
N

D
M

0.
00

10
62

49
4

4.
59

23
06

e-
05

0.
00

01
88

16
14

1
3.

28
54

18
e-

09
2.

22
15

34
e-

06
1.

04
03

51
e-

09
SV

M
-L

in
ea

r
1.

66
74

11
e-

09
0.

88
77

29
4

2.
27

82
29

e-
07

3.
28

54
18

e-
09

1
1.

77
34

19
e-

05
1

SV
M

-R
B

F
1.

69
69

49
e-

06
9.

47
23

98
e-

06
3.

28
17

42
e-

06
2.

22
15

34
e-

06
1.

77
34

19
e-

05
1

1.
81

37
16

e-
05

SV
M

-P
O

LY
5.

66
87

71
e-

10
0.

88
65

73
4

1.
15

43
e-

07
1.

04
03

51
e-

09
1

1.
81

37
16

e-
05

1

256

Ta
bl

e
A

.5
:

T-
te

st
re

su
lts

fo
rt

he
D

ia
be

te
s

be
nc

hm
ar

k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
00

02
89

92
48

2.
24

00
79

e-
05

0.
04

03
16

99
7.

88
29

46
e-

13
1.

86
49

91
e-

11
3.

71
28

88
e-

08
R

B
F

0.
00

02
89

92
48

1
0.

00
10

83
41

2
0.

00
04

59
59

44
0.

36
72

97
8

0.
34

37
81

7
0.

35
57

65
2

M
L

P-
R

B
F

2.
24

00
79

e-
05

0.
00

10
83

41
2

1
1.

58
06

06
e-

08
3.

08
06

04
e-

09
1.

80
80

54
e-

08
1.

42
31

61
e-

06
C

oe
vo

N
D

M
0.

04
03

16
99

0.
00

04
59

59
44

1.
58

06
06

e-
08

1
5.

68
86

4e
-1

0
3.

62
59

65
e-

09
3.

48
14

59
e-

07
SV

M
-L

in
ea

r
7.

88
29

46
e-

13
0.

36
72

97
8

3.
08

06
04

e-
09

5.
68

86
4e

-1
0

1
0.

85
07

94
4

0.
88

91
7

SV
M

-R
B

F
1.

86
49

91
e-

11
0.

34
37

81
7

1.
80

80
54

e-
08

3.
62

59
65

e-
09

0.
85

07
94

4
1

1
SV

M
-P

O
LY

3.
71

28
88

e-
08

0.
35

57
65

2
1.

42
31

61
e-

06
3.

48
14

59
e-

07
0.

88
91

7
1

1

257

Ta
bl

e
A

.6
:

T-
te

st
re

su
lts

fo
rt

he
E

ch
oc

ar
di

og
ra

m
be

nc
hm

ar
k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
00

45
95

70
9

0.
19

07
84

7
0.

03
10

67
68

0.
00

58
65

71
6

0.
02

71
19

98
0.

03
80

31
83

R
B

F
0.

00
45

95
70

9
1

0.
01

47
81

26
0.

00
04

23
99

18
0.

28
76

37
0.

46
83

88
0.

37
25

34
8

M
L

P-
R

B
F

0.
19

07
84

7
0.

01
47

81
26

1
1.

03
44

58
e-

07
0.

01
69

71
79

0.
08

11
68

17
0.

11
32

93
3

C
oe

vo
N

D
M

0.
03

10
67

68
0.

00
04

23
99

18
1.

03
44

58
e-

07
1

5.
56

64
91

e-
05

0.
00

17
42

65
3

0.
00

22
40

10
5

SV
M

-L
in

ea
r

0.
00

58
65

71
6

0.
28

76
37

0.
01

69
71

79
5.

56
64

91
e-

05
1

0.
84

14
38

6
1

SV
M

-R
B

F
0.

02
71

19
98

0.
46

83
88

0.
08

11
68

17
0.

00
17

42
65

3
0.

84
14

38
6

1
0.

86
80

71
8

SV
M

-P
O

LY
0.

03
80

31
83

0.
37

25
34

8
0.

11
32

93
3

0.
00

22
40

10
5

1
0.

86
80

71
8

1

258

Ta
bl

e
A

.7
:

T-
te

st
re

su
lts

fo
rt

he
H

ea
rt

(P
im

a)
be

nc
hm

ar
k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

1.
87

47
93

e-
05

0.
00

02
63

33
57

0.
00

59
98

68
2.

35
45

78
e-

15
8.

82
30

18
e-

09
6.

51
72

17
e-

11
R

B
F

1.
87

47
93

e-
05

1
8.

74
88

02
e-

05
5.

49
63

41
e-

05
0.

60
03

07
4

0.
62

91
98

7
0.

61
54

51
1

M
L

P-
R

B
F

0.
00

02
63

33
57

8.
74

88
02

e-
05

1
0.

07
48

13
98

5.
03

69
16

e-
15

1.
60

17
38

e-
07

2.
97

92
48

e-
09

C
oe

vo
N

D
M

0.
00

59
98

68
5.

49
63

41
e-

05
0.

07
48

13
98

1
1.

71
36

44
e-

15
1.

04
26

73
e-

07
2.

24
61

03
e-

09
SV

M
-L

in
ea

r
2.

35
45

78
e-

15
0.

60
03

07
4

5.
03

69
16

e-
15

1.
71

36
44

e-
15

1
1

1
SV

M
-R

B
F

8.
82

30
18

e-
09

0.
62

91
98

7
1.

60
17

38
e-

07
1.

04
26

73
e-

07
1

1
1

SV
M

-P
O

LY
6.

51
72

17
e-

11
0.

61
54

51
1

2.
97

92
48

e-
09

2.
24

61
03

e-
09

1
1

1

259

Ta
bl

e
A

.8
:

T-
te

st
re

su
lts

fo
rt

he
H

ep
at

iti
s

be
nc

hm
ar

k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
73

65
65

1
0.

78
49

28
0.

00
75

61
63

8
9.

70
68

07
e-

11
2.

37
26

96
e-

11
2.

37
26

96
e-

11
R

B
F

0.
73

65
65

1
1

0.
60

72
42

3
0.

19
46

42
9

6.
38

17
72

e-
07

1.
13

74
13

e-
06

1.
13

74
13

e-
06

M
L

P-
R

B
F

0.
78

49
28

0.
60

72
42

3
1

0.
00

24
01

40
7

4.
67

95
18

e-
11

4.
29

45
01

e-
12

4.
29

45
01

e-
12

C
oe

vo
N

D
M

0.
00

75
61

63
8

0.
19

46
42

9
0.

00
24

01
40

7
1

7.
48

74
04

e-
08

3.
25

77
79

e-
09

3.
25

77
79

e-
09

SV
M

-L
in

ea
r

9.
70

68
07

e-
11

6.
38

17
72

e-
07

4.
67

95
18

e-
11

7.
48

74
04

e-
08

1
1

1
SV

M
-R

B
F

2.
37

26
96

e-
11

1.
13

74
13

e-
06

4.
29

45
01

e-
12

3.
25

77
79

e-
09

1
1

1
SV

M
-P

O
LY

2.
37

26
96

e-
11

1.
13

74
13

e-
06

4.
29

45
01

e-
12

3.
25

77
79

e-
09

1
1

1

260

Ta
bl

e
A

.9
:

T-
te

st
re

su
lts

fo
rt

he
Io

no
sp

he
re

be
nc

hm
ar

k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
00

14
86

83
4

0.
08

41
15

55
0.

06
96

68
57

1.
76

15
29

e-
07

8.
96

58
01

e-
09

2.
94

87
67

e-
06

R
B

F
0.

00
14

86
83

4
1

0.
00

60
90

49
3

0.
00

06
15

78
87

0.
21

64
86

1
0.

17
58

81
7

0.
23

94
26

9
M

L
P-

R
B

F
0.

08
41

15
55

0.
00

60
90

49
3

1
0.

00
19

04
55

3
1.

04
50

35
e-

06
8.

07
34

83
e-

08
1.

31
88

42
e-

05
C

oe
vo

N
D

M
0.

06
96

68
57

0.
00

06
15

78
87

0.
00

19
04

55
3

1
3.

35
53

83
e-

07
3.

37
54

91
e-

08
2.

96
92

23
e-

06
SV

M
-L

in
ea

r
1.

76
15

29
e-

07
0.

21
64

86
1

1.
04

50
35

e-
06

3.
35

53
83

e-
07

1
0.

88
90

36
1

SV
M

-R
B

F
8.

96
58

01
e-

09
0.

17
58

81
7

8.
07

34
83

e-
08

3.
37

54
91

e-
08

0.
88

90
36

1
0.

90
31

82
8

SV
M

-P
O

LY
2.

94
87

67
e-

06
0.

23
94

26
9

1.
31

88
42

e-
05

2.
96

92
23

e-
06

1
0.

90
31

82
8

1

261

Ta
bl

e
A

.1
0:

T-
te

st
re

su
lts

fo
rt

he
Ir

is
be

nc
hm

ar
k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

6.
76

81
53

e-
07

0.
00

32
79

90
5

0.
45

21
00

5
8.

98
37

22
e-

07
1.

14
15

78
e-

06
6.

33
87

11
e-

11
R

B
F

6.
76

81
53

e-
07

1
1.

26
80

56
e-

05
2.

43
37

18
e-

06
0.

30
03

39
6

0.
30

55
76

8
0.

18
66

09
4

M
L

P-
R

B
F

0.
00

32
79

90
5

1.
26

80
56

e-
05

1
6.

15
63

54
e-

05
1.

02
40

52
e-

05
1.

24
65

93
e-

05
2.

39
14

51
e-

09
C

oe
vo

N
D

M
0.

45
21

00
5

2.
43

37
18

e-
06

6.
15

63
54

e-
05

1
2.

60
51

41
e-

06
3.

07
46

89
e-

06
7.

27
42

36
e-

09
SV

M
-L

in
ea

r
8.

98
37

22
e-

07
0.

30
03

39
6

1.
02

40
52

e-
05

2.
60

51
41

e-
06

1
1

1
SV

M
-R

B
F

1.
14

15
78

e-
06

0.
30

55
76

8
1.

24
65

93
e-

05
3.

07
46

89
e-

06
1

1
1

SV
M

-P
O

LY
6.

33
87

11
e-

11
0.

18
66

09
4

2.
39

14
51

e-
09

7.
27

42
36

e-
09

1
1

1

262

Ta
bl

e
A

.1
1:

T-
te

st
re

su
lts

fo
rt

he
L

en
se

s
be

nc
hm

ar
k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
38

62
52

7
0.

49
26

78
7

0.
70

43
12

0.
20

07
32

5
0.

05
20

89
24

0.
09

61
22

02
R

B
F

0.
38

62
52

7
1

0.
70

42
90

6
0.

47
15

66
1

0.
34

74
87

5
0.

23
91

50
3

0.
21

57
61

2
M

L
P-

R
B

F
0.

49
26

78
7

0.
70

42
90

6
1

0.
54

48
6

0.
77

34
92

3
0.

95
89

88
9

0.
75

76
97

5
C

oe
vo

N
D

M
0.

70
43

12
0.

47
15

66
1

0.
54

48
6

1
0.

23
78

15
1

0.
00

66
00

26
1

0.
12

87
47

8
SV

M
-L

in
ea

r
0.

20
07

32
5

0.
34

74
87

5
0.

77
34

92
3

0.
23

78
15

1
1

0.
68

41
45

7
1

SV
M

-R
B

F
0.

05
20

89
24

0.
23

91
50

3
0.

95
89

88
9

0.
00

66
00

26
1

0.
68

41
45

7
1

0.
56

22
82

SV
M

-P
O

LY
0.

09
61

22
02

0.
21

57
61

2
0.

75
76

97
5

0.
12

87
47

8
1

0.
56

22
82

1

263

Ta
bl

e
A

.1
2:

T-
te

st
re

su
lts

fo
rt

he
L

un
g

C
an

ce
rb

en
ch

m
ar

k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
09

41
69

15
0.

28
36

74
9

0.
43

30
66

8
0.

05
40

78
5

0.
02

69
54

7
0.

00
31

51
13

7
R

B
F

0.
09

41
69

15
1

0.
12

20
89

5
0.

10
96

76
2

1
1

1
M

L
P-

R
B

F
0.

28
36

74
9

0.
12

20
89

5
1

0.
46

28
00

4
0.

06
76

18
73

0.
03

10
77

8
0.

00
54

68
11

6
C

oe
vo

N
D

M
0.

43
30

66
8

0.
10

96
76

2
0.

46
28

00
4

1
0.

06
76

00
89

0.
03

90
15

52
0.

00
98

70
65

8
SV

M
-L

in
ea

r
0.

05
40

78
5

1
0.

06
76

18
73

0.
06

76
00

89
1

1
1

SV
M

-R
B

F
0.

02
69

54
7

1
0.

03
10

77
8

0.
03

90
15

52
1

1
1

SV
M

-P
O

LY
0.

00
31

51
13

7
1

0.
00

54
68

11
6

0.
00

98
70

65
8

1
1

1

264

Ta
bl

e
A

.1
3:

T-
te

st
re

su
lts

fo
rt

he
M

on
ks

1
be

nc
hm

ar
k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
00

01
64

15
97

0.
01

60
83

14
0.

10
17

81
2

2.
83

79
3e

-0
8

2.
03

97
24

e-
06

0.
00

01
48

40
66

R
B

F
0.

00
01

64
15

97
1

0.
00

06
77

46
14

0.
00

04
34

22
13

0.
16

72
98

6
0.

15
31

63
0.

18
97

62
9

M
L

P-
R

B
F

0.
01

60
83

14
0.

00
06

77
46

14
1

0.
20

76
68

9
1.

77
78

14
e-

06
5.

21
47

53
e-

05
0.

00
11

32
66

7
C

oe
vo

N
D

M
0.

10
17

81
2

0.
00

04
34

22
13

0.
20

76
68

9
1

2.
67

86
5e

-0
7

1.
70

91
59

e-
05

0.
00

05
95

78
15

SV
M

-L
in

ea
r

2.
83

79
3e

-0
8

0.
16

72
98

6
1.

77
78

14
e-

06
2.

67
86

5e
-0

7
1

0.
84

52
74

6
0.

88
43

27
6

SV
M

-R
B

F
2.

03
97

24
e-

06
0.

15
31

63
5.

21
47

53
e-

05
1.

70
91

59
e-

05
0.

84
52

74
6

1
1

SV
M

-P
O

LY
0.

00
01

48
40

66
0.

18
97

62
9

0.
00

11
32

66
7

0.
00

05
95

78
15

0.
88

43
27

6
1

1

265

Ta
bl

e
A

.1
4:

T-
te

st
re

su
lts

fo
rt

he
M

on
ks

2
be

nc
hm

ar
k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
00

50
76

99
1

0.
30

87
92

7
0.

04
09

99
16

0.
01

37
63

41
0.

00
06

91
49

9
0.

00
06

07
39

02
R

B
F

0.
00

50
76

99
1

1
0.

00
68

72
56

3
0.

00
30

66
99

7
0.

42
87

18
8

0.
46

97
91

7
0.

31
33

52
8

M
L

P-
R

B
F

0.
30

87
92

7
0.

00
68

72
56

3
1

0.
00

17
43

41
5

0.
01

98
19

15
0.

00
11

53
66

9
0.

00
10

96
99

6
C

oe
vo

N
D

M
0.

04
09

99
16

0.
00

30
66

99
7

0.
00

17
43

41
5

1
0.

00
73

16
75

2
0.

00
03

48
06

13
0.

00
02

83
14

99
SV

M
-L

in
ea

r
0.

01
37

63
41

0.
42

87
18

8
0.

01
98

19
15

0.
00

73
16

75
2

1
0.

83
95

98
8

0.
91

64
11

SV
M

-R
B

F
0.

00
06

91
49

9
0.

46
97

91
7

0.
00

11
53

66
9

0.
00

03
48

06
13

0.
83

95
98

8
1

0.
68

01
36

4
SV

M
-P

O
LY

0.
00

06
07

39
02

0.
31

33
52

8
0.

00
10

96
99

6
0.

00
02

83
14

99
0.

91
64

11
0.

68
01

36
4

1

266

Ta
bl

e
A

.1
5:

T-
te

st
re

su
lts

fo
rt

he
M

on
ks

3
be

nc
hm

ar
k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

4.
53

74
59

e-
05

0.
00

04
59

41
55

0.
23

47
39

9
0.

00
03

67
70

95
0.

00
01

55
90

52
7.

04
17

52
e-

06
R

B
F

4.
53

74
59

e-
05

1
0.

00
12

16
69

5
1.

89
67

91
e-

05
0.

51
23

16
3

0.
48

28
82

7
0.

19
41

62
5

M
L

P-
R

B
F

0.
00

04
59

41
55

0.
00

12
16

69
5

1
3.

05
45

6e
-0

5
0.

00
33

52
33

3
0.

00
17

63
50

4
0.

00
01

44
94

33
C

oe
vo

N
D

M
0.

23
47

39
9

1.
89

67
91

e-
05

3.
05

45
6e

-0
5

1
0.

00
01

95
13

94
7.

99
74

66
e-

05
3.

55
84

34
e-

06
SV

M
-L

in
ea

r
0.

00
03

67
70

95
0.

51
23

16
3

0.
00

33
52

33
3

0.
00

01
95

13
94

1
1

0.
67

74
32

9
SV

M
-R

B
F

0.
00

01
55

90
52

0.
48

28
82

7
0.

00
17

63
50

4
7.

99
74

66
e-

05
1

1
0.

65
67

43
8

SV
M

-P
O

LY
7.

04
17

52
e-

06
0.

19
41

62
5

0.
00

01
44

94
33

3.
55

84
34

e-
06

0.
67

74
32

9
0.

65
67

43
8

1

267

Ta
bl

e
A

.1
6:

T-
te

st
re

su
lts

fo
rt

he
Pa

rk
in

so
ns

be
nc

hm
ar

k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
00

45
50

7
0.

15
94

83
7

0.
33

48
89

4
3.

64
17

79
e-

11
1.

60
00

26
e-

08
1.

67
50

67
e-

08
R

B
F

0.
00

45
50

7
1

0.
06

09
22

11
0.

00
70

44
20

2
0.

04
60

78
67

0.
05

08
45

47
0.

03
46

30
08

M
L

P-
R

B
F

0.
15

94
83

7
0.

06
09

22
11

1
0.

26
55

77
9

7.
62

13
09

e-
05

6.
92

34
25

e-
05

4.
30

16
2e

-0
5

C
oe

vo
N

D
M

0.
33

48
89

4
0.

00
70

44
20

2
0.

26
55

77
9

1
8.

77
47

16
e-

11
3.

17
84

95
e-

08
3.

23
37

71
e-

08
SV

M
-L

in
ea

r
3.

64
17

79
e-

11
0.

04
60

78
67

7.
62

13
09

e-
05

8.
77

47
16

e-
11

1
1

0.
66

91
85

6
SV

M
-R

B
F

1.
60

00
26

e-
08

0.
05

08
45

47
6.

92
34

25
e-

05
3.

17
84

95
e-

08
1

1
0.

70
87

80
7

SV
M

-P
O

LY
1.

67
50

67
e-

08
0.

03
46

30
08

4.
30

16
2e

-0
5

3.
23

37
71

e-
08

0.
66

91
85

6
0.

70
87

80
7

1

268

Ta
bl

e
A

.1
7:

T-
te

st
re

su
lts

fo
rt

he
So

na
rb

en
ch

m
ar

k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
00

35
50

38
9

0.
01

27
48

3
0.

00
07

00
31

09
3.

02
08

6e
-0

6
0.

00
07

69
76

49
0.

00
02

80
21

38
R

B
F

0.
00

35
50

38
9

1
0.

00
76

14
79

1
0.

03
04

96
83

0.
64

04
09

1
0.

79
14

59
4

0.
68

30
01

1
M

L
P-

R
B

F
0.

01
27

48
3

0.
00

76
14

79
1

1
0.

01
69

27
94

6.
11

10
46

e-
06

0.
00

17
04

85
2

0.
00

06
23

88
88

C
oe

vo
N

D
M

0.
00

07
00

31
09

0.
03

04
96

83
0.

01
69

27
94

1
3.

55
65

31
e-

05
0.

00
77

24
2

0.
00

29
54

23
4

SV
M

-L
in

ea
r

3.
02

08
6e

-0
6

0.
64

04
09

1
6.

11
10

46
e-

06
3.

55
65

31
e-

05
1

0.
86

24
99

5
1

SV
M

-R
B

F
0.

00
07

69
76

49
0.

79
14

59
4

0.
00

17
04

85
2

0.
00

77
24

2
0.

86
24

99
5

1
0.

88
37

39
7

SV
M

-P
O

LY
0.

00
02

80
21

38
0.

68
30

01
1

0.
00

06
23

88
88

0.
00

29
54

23
4

1
0.

88
37

39
7

1

269

Ta
bl

e
A

.1
8:

T-
te

st
re

su
lts

fo
rt

he
Sp

ec
t-

H
ea

rt
be

nc
hm

ar
k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
00

46
56

61
4

0.
53

95
85

8
0.

00
59

40
68

8
0.

00
02

08
76

71
0.

00
23

67
24

3
0.

00
07

78
73

74
R

B
F

0.
00

46
56

61
4

1
0.

00
30

52
19

8
0.

00
07

41
75

54
0.

52
38

79
0.

58
16

29
9

0.
55

12
01

1
M

L
P-

R
B

F
0.

53
95

85
8

0.
00

30
52

19
8

1
0.

00
64

01
81

5
0.

00
01

48
39

12
0.

00
16

74
63

8
0.

00
05

46
58

99
C

oe
vo

N
D

M
0.

00
59

40
68

8
0.

00
07

41
75

54
0.

00
64

01
81

5
1

3.
87

27
53

e-
05

0.
00

04
93

65
29

0.
00

01
49

42
51

SV
M

-L
in

ea
r

0.
00

02
08

76
71

0.
52

38
79

0.
00

01
48

39
12

3.
87

27
53

e-
05

1
1

1
SV

M
-R

B
F

0.
00

23
67

24
3

0.
58

16
29

9
0.

00
16

74
63

8
0.

00
04

93
65

29
1

1
1

SV
M

-P
O

LY
0.

00
07

78
73

74
0.

55
12

01
1

0.
00

05
46

58
99

0.
00

01
49

42
51

1
1

1

270

Ta
bl

e
A

.1
9:

T-
te

st
re

su
lts

fo
rt

he
V

er
te

br
al

C
ol

2C
be

nc
hm

ar
k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

0.
00

01
01

37
94

0.
92

55
24

9
0.

19
84

19
3

6.
65

26
01

e-
06

6.
66

95
23

e-
05

6.
72

36
99

e-
05

R
B

F
0.

00
01

01
37

94
1

9.
87

32
79

e-
05

0.
00

01
69

48
93

0.
75

26
41

3
0.

66
62

55
3

0.
56

10
20

8
M

L
P-

R
B

F
0.

92
55

24
9

9.
87

32
79

e-
05

1
0.

19
45

74
6

6.
18

55
85

e-
06

6.
43

93
52

e-
05

6.
48

01
13

e-
05

C
oe

vo
N

D
M

0.
19

84
19

3
0.

00
01

69
48

93
0.

19
45

74
6

1
8.

62
42

62
e-

06
0.

00
01

26
74

64
0.

00
01

39
99

28
SV

M
-L

in
ea

r
6.

65
26

01
e-

06
0.

75
26

41
3

6.
18

55
85

e-
06

8.
62

42
62

e-
06

1
0.

86
20

12
5

0.
72

33
35

6
SV

M
-R

B
F

6.
66

95
23

e-
05

0.
66

62
55

3
6.

43
93

52
e-

05
0.

00
01

26
74

64
0.

86
20

12
5

1
0.

87
42

09
5

SV
M

-P
O

LY
6.

72
36

99
e-

05
0.

56
10

20
8

6.
48

01
13

e-
05

0.
00

01
39

99
28

0.
72

33
35

6
0.

87
42

09
5

1

271

Ta
bl

e
A

.2
0:

T-
te

st
re

su
lts

fo
rt

he
V

er
te

br
al

C
ol

3C
be

nc
hm

ar
k.

M
L

P
R

B
F

M
L

P-
R

B
F

C
oe

vo
N

D
M

SV
M

-L
in

ea
r

SV
M

-R
B

F
SV

M
-P

O
LY

M
L

P
1

8.
21

91
e-

05
0.

61
93

14
2

0.
00

44
30

18
9

2.
60

21
54

e-
06

6.
35

34
13

e-
05

0.
00

02
83

94
21

R
B

F
8.

21
91

e-
05

1
6.

58
74

11
e-

05
3.

08
86

76
e-

05
0.

29
51

90
1

0.
50

41
22

7
0.

42
00

54
5

M
L

P-
R

B
F

0.
61

93
14

2
6.

58
74

11
e-

05
1

0.
00

67
05

44
5

2.
39

89
34

e-
06

5.
31

39
41

e-
05

0.
00

02
36

26
36

C
oe

vo
N

D
M

0.
00

44
30

18
9

3.
08

86
76

e-
05

0.
00

67
05

44
5

1
2.

22
54

12
e-

06
2.

75
41

69
e-

05
0.

00
01

11
65

84
SV

M
-L

in
ea

r
2.

60
21

54
e-

06
0.

29
51

90
1

2.
39

89
34

e-
06

2.
22

54
12

e-
06

1
0.

77
89

83
3

0.
99

86
70

3
SV

M
-R

B
F

6.
35

34
13

e-
05

0.
50

41
22

7
5.

31
39

41
e-

05
2.

75
41

69
e-

05
0.

77
89

83
3

1
0.

82
59

26
7

SV
M

-P
O

LY
0.

00
02

83
94

21
0.

42
00

54
5

0.
00

02
36

26
36

0.
00

01
11

65
84

0.
99

86
70

3
0.

82
59

26
7

1

272

