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Abstract 

Generally, most of the in vitro tests used in neurotoxicology are limited to 

transformed cell lines which are derived from rodent or human. For an in vitro 

test to have high rate of predictability of neurotoxicity and teratogenicity it should 

undergo the important processes of embryological development, such as cell 

proliferation, cell migration, and differentiation. Human neural stem cells have 

been proposed for this purpose, which have the ability to divide, differentiate, and 

migrate. In this study, it was found that double coating of laminin with either poly 

D lysine or poly L lysine was most suitable for growing human neural stem cells 

rather than coating with a single extracellular molecule. Several chemicals and 

drugs were then chosen to assess the utility of neural stem cells as an assay for 

neurotoxicity: methyl mercury and lead acetate; four anti-epileptics drugs (sodium 

valproate, phenytoin, carbamazepine, and phenobarbitone); anti-oxidants (folic 

acid and melatonin). These anti-oxidants were tested alone and when added to 

sodium valproate and to phenytoin (which are well known in their teratogenicity), 

and other drugs (lithium, diazepam, and amitriptyline), which are weak 

teratogens. To assess the effects of these molecules on human neural stem cells 

cell survival, total cellular protein, neuronal process length, neurosphere sizes, 

migration distance, Glial Fibrillary Acidic Protein, and tubulin III protein 

expression were measured.  

The study shows that methyl mercury caused significant reduction in most of the 

end points from the dose of 1µM and it led to significant increase in Glial 

Fibrillary Acidic Protein expression (which is a sign of reactive gliosis). Lead 

acetate led to a significant reduction in cell migration 48hours after treatment with 
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10µM. In the case of the anti-epileptics, sodium valproate appeared to reduce 

neurosphere size significantly from the dose of 500µM and decrease migration 

distance significantly 48hours after treatment with 1000µM. Moreover, phenytoin 

treatment resulted in significant reduction in neurosphere sizes from the dose of 

25µM and reduced cell migration significantly from the dose of 50µM. However, 

the other anti-epileptics (carbamazepine and phenobarbitone) revealed their effect 

only at high doses which are above their therapeutic range. On the other hand, 

adding the anti-oxidants (Folic acid or Melatonin) to sodium valproate or 

phenytoin had to some extent beneficial effects, by making their toxic effect 

appear at doses which were higher than when used alone. Regarding the other 

drugs (lithium, diazepam, and amitriptyline), it seems that their toxic effect 

appeared only at doses which are higher than the therapeutic range. 

Therefore, it can be concluded that human neural stem cells are a sensitive model 

in detecting the neurotoxicity of methyl mercury and lead acetate at low doses and 

can predict the neurotoxicity of sodium valproate and phenytoin at their 

therapeutic doses. 
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1.1 Historical Background 

The history of neuroscience goes back over a century but started in a meaningful 

way with the advent of in vitro systems. One of the earliest theories had been 

proposed by Cajal in 1890, which was based on microscopic analysis of 

histological sections, who stated that immature neuronal cells can send out 

neurites which elongate freely, having a growth cone at the tip. Competing 

theories proposed that growth of neurites did not occur, but the neurites formed 

from elements produced from other cells, or formed by stretching of a 

protoplasmic bridge between the central and peripheral cell bodies of a 

multinucleated cells (y Cajal, 1989). These theories could not be tested at that 

time because the histological methods were primitive and the growth of neurites 

of living neurons could not be observed, since the old histological techniques 

were not applied to live cells. Harrison was the first who developed a culture 

system for living neural tube tissue for the long term examination of neuronal 

differentiation (Harrison et al., 1907) and he proved that Ramon Cajal theory in 

1890 concerning the development of nerve fibres was correct. His finding that the 

growth of neurites was from cell bodies has been considered as “ one of the most 

revolutionary results in experimental biology” (Shephard, 1994).  

50 years later, the discovery of nerve growth factor (NGF) by Levi-Montalcini, 

Hamberger, and Cohen provided a profound advance in tissue culture (Cohen et 

al., 1954). NGF became the basis for the discovery of other neuronal growth and 

differentiation factors. Those investigators used a chick ganglion bioassay 

technique to detect NGF in other sources. Neurons in the chick ganglion explants 

extended neurites toward NGF when they perceived its presence in extracts of 

snake venom, submaxillary gland of male mouse, and S-180 mouse sarcoma. 
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Levi-Montalcini won the Nobel Prize, which was published in the journal of the 

Tissue Culture Association with the consideration of its editor, Gordon Sato, that 

the award to Levi-Montalcini and Cohen was “ an affirmation of the growing 

importance of cell culture in biological research” (Levi-Montalcini, 1987). 

1.2 Brain Spheroid in In vitro Neurotoxicology 

In 1950s Garber and Moscona showed that a single cell suspension taken from the 

fetus at a specific time from mammalian or avian sources can reaggregate on 

constant gyratory agitation to form a three dimensional structure called a spheroid 

(Moscona, 1952, Garber and Moscona, 1972). Close observation of the spheroids 

demonstrated that they could reproduce the complex cellular organization and 

development of the tissue from which the cells had been isolated. In monolayer 

cell culture, the cells lost their phenotype as they remain in the culture for a long 

time. However, the brain spheroid restricts cell division and stimulates 

morphological and biochemical differentiation similar to in vivo development 

(Seeds et al., 1980). The dissociated cells are avid to attach with their counterparts 

to form neurospheres, and the cells within the neurosphere are able to migrate and 

to interact with the neighbouring cells by direct cell- cell junctions and through 

the exchange of nutritional and signaling factors. This environment enables the 

cells to form tissue-specific structures such as synapses and myelin . Under 

certain environmental conditions, the cells within the neurosphere can migrate 

and reorganize themselves to form aggregates which histologically resemble the 

tissue from which the cells had been isolated (DeLong, 1970). The maturation 

process of the neurosphere makes it a suitable model in evaluating the effect of 

some chemicals on the developmental maturation of the neurosphere and whether 

these chemicals can produce structural or functional defects. 



 

4 
 

1.3 Cellular development in the CNS 

Stem cells are the cells which have the ability first to proliferate and make 

identical copies of themselves, several times for several generations, and second 

to differentiate into the cell lineages of the tissue they are derived from 

(pluripotency and multipotency in case of embryonic stem cells and neural stem 

cells respectively), third they can regenerate the tissue and organ they resided in 

(Ahmed, 2009). Stem cells are present in all tissues to some extent, under strict 

growth control to maintain them, to prevent over growth and tumour formation 

and to mobilize them during injuries in a bid to compensate and replace the cell 

loss (Evans and Potten, 1991). 

All the cells in the central nervous system are formed from the neuroectoderm, 

the neural plate, which located along the dorsal midline of the developing 

embryo. This neuroepithelium is a single layer of pseudostratified epithelium 

which grows and proliferates continuously to close the developing neural groove 

and form the hollow neural tube. The neural tube later on gives rise to the 

ventricular system of the CNS, while the epithelial layer will form the neuronal 

cells and glial cells (Clarke, 2003). The neuroepithelial stem cells differentiate 

into neural cells at first, then into glial cells. Neural differentiation is an early 

event in mammalian embryogenesis. It appears that the neural plate formed by 

suppression of signals that induce non-neural differentiation, examples for these 

signals are bone morphogenic proteins (BMPs) and transforming growth factors- 

β (TGF-β) superfamily molecules (Wilson and Edlund, 2001). Several molecules 

that enhance neural differentiation such as noggin, follistatin, and chordin are 

BMP- antagonists. BMPs suppress neural fate differentiation of neuroepithelium 
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and there are two receptors for BMPs: BMPR-1A and BMPR-1B. The expression 

of these two receptors is inhibited by sonic hedgehog (Panchision et al., 2001) 

The differentiation of neuroepithelium proceeds in a temporal way, which is 

specific for each region of the developing embryo (Rao, 1999). This patterning of 

the neural tube is thought to start from the stage of neural plate development by 

inductive cellular interactions which form organizing centres in both poles 

(Altmann and Brivanlou, 2001), the ventral and the dorsal one. These specialized 

cells release signals, sonic hedgehog (Shh) and (BMPs) in variable 

concentrations, to form a gradient of signal concentration. This induces the 

expression of patterning genes in the adjacent cells of neuroepithelium in a 

concentration dependant manner. These genes encode homeodomain transcription 

factors, and their expression divides the cells into different domains (Kobayashi et 

al., 2002). These patterning genes may specify the identity of the neurons and 

might control the duration of neurogenesis during each developmental process. 

The neural tube in the human is formed during the third and fourth weeks of 

gestation. Initially, the neuroepithelium consists of a single layer of neural stem 

cells. These cells proliferate symmetrically and asymmetrically to enrich the pool 

of neural stem cells and to provide more progenitor cells from which more mature 

neuronal and glial cells develop. The signals which determine the symmetry and 

asymmetry are still unknown (Jan and Jan, 1998), presumably, BMPs are 

involved. Retroviral labelling studies have shown that 48% of the dividing cells in 

Ventricular Zone (VZ) remain in colonies suggesting self- renewal in this area 

(Cai et al., 1997). The active division of these progenitor cells is controlled by 

apoptosis to maintain a constant population but the mechanisms are not clarified 

yet (Raoul et al., 2000). 
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The neural stem cells in the neuroepithelium locate at the luminal surface of the 

neural tube called the Ventricular Zone (VZ). These stem cells start to proliferate 

generating the neuroblasts which accumulate in this zone and activate a series of 

genes which are involved in neuronal differentiation. These genes also activate 

the expression of specific cascades of factors which control neuronal 

determination and differentiation in different areas in the neocortex. The newly 

matured neuroblasts migrate beyond the VZ of the neuroepithelium with the aid 

of the radial glial cells which provide the essential substrate for neuronal 

migration (Clarke, 2003). The radial glial cells extend from the ventricular surface 

to the outer pial surface of the neural tube, guiding neuronal migration away from 

the VZ and forming a second zone called the SubVentricular Zone (SVZ) as 

shown in the figure below. 

 

Figure 1: The neuroepithelium in the neocortex of the brain (Clarke, 2003) 
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When the formation of neuroblast has stopped, the remaining cells in the 

neuroepithelium will differentiate into glioblasts. Clonal studies pointed out that 

most of the glial cells originate from the stem cells of the neuroepithelium (Barres 

and Barde, 2000) and these cells migrate to the adjacent area, the SVZ, to reside 

there and proliferate and differentiate into astrocytes and oligodendrocytes. 

Lineage tracing studies showed that most of the progenitors in the germinal 

matrix are glial precursors that differentiate into either astrocytes or 

oligodendrocytes (Levison and Goldman, 1997). The glioblast formation ceases 

after birth shortly, then the VZ disappears throughout the neuroaxis and most of 

the remaining neuroepithelium differentiate into ependymal cells. Ependymal 

cells line the ventricular system of the brain and the central canal of the spinal 

cord throughout adulthood. These cells have multiple cilia at their apical surfaces 

which help the cerebrospinal fluid to pass effectively through these regions. The 

SVZ also decreases in size and persists adjacent to the ependymal cell layer 

throughout all ventricular region. 

In CNS development, the temporal patterning leads to the generation of neuronal 

cells before oligodendrocytes. In spinal cord development, it appears that these 

two cells develop from the same precursor and the final step in cell differentiation 

relies on extrinsic signals and activation of specific transcriptional factors (Jessell, 

2000). There are two main groups of transcriptional factors which determine 

cellular fate, which are the homeodomain factors such as NKx2.2 (Vetter, 2001) 

and the basic helix-loop-helix family of transcription factors such as Olig1 and 

Olig2 (Zhou et al., 2001). The expression of Olig transcription factors is 

controlled by extrinsic factors, such as Shh, and their expression leads to the 

formation of oligodendrocytes. With the progression of development, Olig1 and 
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Olig2 expression continues and starts to overlap with homeodomain 

transcriptional factor NKx2.2, these cells with double expression migrate from the 

midline and differentiate into oligodendrocytes. Olig1 and Olig2 mutant mice 

showed absence of oligodendrocytes, the stem cell progeny which normally 

differentiate into neuronal cells then into oligodendrocyte. Instead they developed 

into interneurons and then into astrocytes (Zhou and Anderson, 2002). 

The expression of the pro-gliogenic transcription factor might be controlled 

through receptors on the surface of the cells such as notch. A notch ligand- 

jagged-1 which is signalled by neurons suppresses the oligodendrocyte phenotype 

(Rogister et al., 1999). When the number of neurons become enough, jagged-1 is 

diminished and pro-oligodendrocyte signals enhance oligodendrocyte formation 

and stimulate myelination. When the neural precursor has committed to the 

oligodendrocyte lineage, the final step to differentiate into myelin forming cells 

needs the presence of SOX10. Lacking this factor in the neural stem cells leads to 

failure in axon myelination (Stolt et al., 2002). 

1.4 Neuronal Migration 

Neuronal migration is an important process in the development of the nervous 

system that determines the final position of the neurons, and also provides the 

basis for the subsequent contact with other cells to complete the neural circuitry. 

This process is so complicated, started by instruction from extracellular 

compartment which cause activation of certain receptors with their downstream 

signalling pathways, and this enables the newborn neurons to migrate through the 

developing nervous system until they reach their final destination. The migratory 

cycle of the neuron is defined by leading process dynamics (see below), by which 
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process the migration is directed, and somal translocation involving the migration 

of the nucleus, perinuclear organelles and materials takes place (Valiente and 

Marín, 2010). This cycle is not applied to all the neurons, some classes of neurons 

may modify and change some of the basics of the cycle depending on the 

pathways by which the neurons migrate. For example, pyramidal cells in cerebral 

cortex, pass through three different phases during their migration towards the 

cortical plate (Kriegstein and Noctor, 2004) during which the pyramidal cells 

adopt different morphologies each of which require special molecules whose 

disruption might lead to neurological deficits (LoTurco and Bai, 2006).  

1.4.1 The leading process dynamics 

Several experiments have studied the behavioural dynamics of the leading process 

of the migrating neurons. Figure (2) shows that the leading process has a special 

morphology, reflecting their ability to adapt to different environment. The rear 

part of the nucleus and the proximal part of the leading process are enriched with 

actin and myosin filaments. The migration cycle starts with extension of the 

leading process, dilatation of the perinuclear area and forward movement of the 

nucleus and adjacent organelles, such as Golgi complex and the centrosomes. 

This simple dynamic is applied to some cells such as pyramidal cells which 

migrate radially (Rakic, 1972), but in case of tangentially migrated neurons, such 

as the interneurons and immature enteric neurons, these have distinct leading 

process morphology, all of which have branched leading processes (Marín and 

Rubenstein, 2001). The branches continue to extend and retract until one of them 

has been selected. At this time, the nucleus and perinuclear organelles move 

forward until reaching the branching point as shown in figure (2), then the branch 

selected to be the leading process continues to grow and extend its branch while 
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the other branches start to retract, and the cycle is repeated (Martini et al., 2009). 

Thus, the guidance cues control the orientation and the frequency of branching to 

form a new leading process, to change the direction of migration without having 

to change the orientation of the preceding leading process. This migration 

guidance differs from that described for axon growth, in which the growth cone 

steering controls movement direction (Lin and Holt, 2007). 

 

Figure 2 : The cell biology of neuronal migration (Valiente and Marín, 2010) 

The branching of the leading process has been suggested to be the general 

strategy for neuronal migration, which may be in certain conditions suppressed, 

like that during the glial guided radial migration (Marín et al., 2006). The figure 

below (3) shows the steps of glial guided radial neuronal migration of pyramidal 

cells. The radial glial cells which are located at the VZ are the progenitors of 

cortical neurons. They send out a long branch that extends from the VZ to the pial 

surface over the marginal zone (MZ). The newly born neurons start to polarize 

and migrate close to the radial glial cells at VZ; when they actively interact with 

the radial glial cells (Kriegstein and Noctor, 2004), at the SubVentricular Zone 
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(SVZ), the migrating neurons stop their migration toward the cortical plate (CP) 

and begin to change their morphology to be multipolar neurons by preventing the 

interaction with the radial glial fibres (Elias et al., 2007). The cells at this stage 

form multiple processes around the cells and start to make tangential 

displacements. After that, the cells return back to be polarized and acquire bipolar 

morphology and migrate through the intermediate zone (IZ) toward the CP. One 

of the proteins which regulates this process is GTP binding protein-Rnd2. 

Knocking down this protein lead to disturbed transition of migrating neurons from 

multipolar to unipolar cells and the cells which manage to polarized appear to 

have multiple leading processes (Heng et al., 2008). The migrating neurons at this 

phase in the IZ are in close contact with the long process of the radial glial cell, 

the interaction between these cells is by connexin Cx26 and Cx43. Silencing these 

two proteins might result in the same abnormalities as knocking down Rnd2. 

The stability of the leading process depends on a system of microtubules which 

are longitudinally arranged to link the leading edge of the cells with the soma. 

This arrangement provides structural support for the leading process and allows 

the flow of vesicles required for intracellular communication. This system is 

directly controlled by a novel microtubule associated protein (MAP) called p600 

(also known as Ubr4) which interacts with the endoplasmic reticulum (ER). 

Knocking down this protein resulted in the absence of ER in the leading process 

and excessive reduction in acetylated tubulin which made the leading process to 

have a wavy appearance and affected migration (Shim et al., 2008) as shown in 

figure (3). These findings support the notion that the stability of microtubules and 

membrane trafficking are essential for the leading process. 
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The signalling mechanism that controls leading process branching still unknown, 

but work in cerebellar granular cells indicated that Ca
+2

 and cAMP might 

modulate this process. Increasing the intracellular concentration of Ca
+2

 or 

stimulating adenlyl cyclase increased leading process branching. On the other 

hand, reducing intracellular concentration of Ca
+2

 decreased the frequency of 

branching (Kumada et al., 2009). 

 

Figure 3: Glial guided radial migration. The steps in the wild type, RGC (radial glial cell) which 

reside in the ventricular Zone (VZ) send out a long process extending from VZ to the marginal 

zone (MZ). 1: The newly born neuron becomes bipolar and interacts with RGC. 2: The migrating 

neuron stops migration and becomes multipolar. 3: The neuron returns back to bipolar type and 

interact with the RGC by Connexin 43and 26 (Cx43, 26). The other figures show the 

abnormalities in migrating cells when there is a deficiency in one factor which control cell 

migration.(Valiente and Marín, 2010). 

1.4.2 Nucleokinesis 

While the leading process determines the direction of migration, effective 

neuronal migration is performed only when this is followed by translocation of 
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cell soma, the small organelles and the nucleus. Translocation of soma occurs in 

two phases, one following the other. In the first step, there is a swelling or 

dilatation of the cytoplasm in the proximal part of the leading process, towards 

which the centrosomes and the Golgi complex move. This is followed by forward 

movement of the nucleus to invade the cytoplasmic swelling (Solecki et al., 

2004), as shown in figure (2). The movement of the nucleus and the centrosomes 

is highly controlled and relies mainly on a rich microtubule array that extends 

between them. The microtubules surrounding the nucleus are tyrosinated, which 

mean that they are dynamic while the microtubules which located in the anterior 

pole of the nucleus, near the centrosomes, are acetylated which mean that they are 

more stable (Solecki et al., 2004).  

It has been suggested that the microtubules surrounding the nucleus are anchored 

to the centrosome, which is the microtubule-organizing centre of the cell. 

Therefore, it was thought that the pulling force of the microtubules on the nucleus 

converge at the centrosome (Higginbotham and Gleeson, 2007). However; 

another study pointed out that the microtubules are not attached to the nucleus but 

instead they are extending distally toward the leading process, and this fact was 

confirmed by the finding that the nucleus moves forward passing the centrosomes 

(Umeshima et al., 2007). Therefore; the exact mechanism which explains nuclear 

movement is not fully revealed. 

Microtubules Associated Proteins (MAPs) and other related proteins are crucial 

regulators for the movement of the organelles. Regardless of the exact function of 

MAPs and the other proteins in soma translocation, they are unlikely to be the 

only force which propels the nucleus and the organelles forward. It has been 

shown that there are Myosin II filaments behind the nucleus of the migrated 
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neurons, and the pharmacological blocking of its ATPase activity inhibits nuclear 

movement, suggesting that the contraction of actomyosin filaments might move  

the nucleus forward (Schaar and McConnell, 2005). 

1.4.3 Cell adhesions in neuronal migration 

Neural migration in the developing nervous system requires dynamic regulation 

interaction is integrin-mediated adhesion in many cell types, but the exact 

mechanism of this system in neuronal migration is unclear (Lauffenburger and 

Horwitz, 1996). Cell adhesion dynamics in the CNS has been well studied in the 

glial guided neuronal migration. The locomotion occurs in several steps, in which, 

there is a breakage and formation of new cell adhesions between the migrating 

neurons and the radial glia. Because of this unique property, the integrins, a 

family of cell adhesion receptors  mediating cell- cell and cell- ECM interactions, 

have been speculated to have a role in this process (Huang, 2009). Integrin 

heterodimer α3β1 are expressed in migrating neurons and α3 integrin gene 

knocking down resulted in abnormal cytoskeleton dynamics and slow radial 

migration (Schmid et al., 2004).  

Other studies showed that gap junction proteins Connexin 26 and 43 are found 

concentrated at the points of contact between the migrating neurons and the radial 

glia and their downregulation can result in abnormal radial neural migration (Elias 

et al., 2007). These junctions are well known in their capability in electrical and 

chemical cellular coupling, or releasing of some materials from the cells to the 

extracellular space. The dynamic adhesions between the migrating neurons and 

the radial glia, which is provided by the gap junctions, help in stabilizing the 

leading process of the migrating neurons along the radial glia (Elias et al., 2007). 

Limited information is available about the mechanism of controlling the dynamics 
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of gap adhesion, but it was thought that the C-terminal tail of connexin is essential 

for this process. It has been shown that this domain interacts with several types of 

cytoskeleton proteins and it has been thought that it can regulate mobility in 

several cell types (Cina et al., 2009). 

1.5 Dendrite Growth 

The nervous system is composed of a huge number of neurons with different 

characteristic afferent and efferent projections and dendritic morphologies. In 

general, the neurons in various parts of the nervous system show different patterns 

of dendritic arbors with highly specialized membrane properties. As the dendrites 

represent the site of synaptic contact, dendritic development determines the 

number and pattern of synapses in each neuron. Consequently, any defect in 

dendrite growth might result in neurodevelopmental disorders. 

In the first stage of nervous system development, the neurons are formed and 

migrate to their final destination. The neurons then elaborate their axons and 

dendrites in a pattern which is cell specific. Finally, the neurons make special 

contacts with other cells - the synapses. In many cases, early synaptic connections 

are remodelled by neuronal activity to result in the mature pattern of neuronal 

connectivity (Katz 1996).  

More than a century ago, Ramon y Cajal proposed that the dendrites (he described 

them as protoplasmic processes) are special morphological structure which 

receive neuronal input (Cajal, 1995). Before elaboration of dendrites, the neurons 

undergo polarization in which axon and dendrites are specified with their distinct 

functions and morphologies. In most neurons, the development of the axon occurs 

before the development and arborisation of dendrites (Cajal, 1995), although 
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some neuronal types adopt their specific programs of dendritic development at an 

earlier stage. In general, dendrite morphogenesis, can be defined in four steps 

(Puram and Bonni, 2013), as shown in the figure (4): 

First, the dendrites extend from the cell body into their target by using guidance 

cues to steer toward them. During that time, the dendrites grow to attain length 

and width. Whereas the dendrites and axons extend with actin based structure, 

dendritic shafts are rich in microtubules and have dendrite specific microtubule 

associated proteins (MAP), which play an important role in regulating dendritic 

size and stability (Harada et al., 2002). Second, as the dendrites grow and extend 

further, branching is essential to cover the target field. Dendrites can ramify 

several times, with extensive secondary and tertiary branches. Primarily, dendrite 

branching occurs through interstitial branching in which the branches appear from 

the side of a pre-existing dendritic shaft. Branches appear at first as filopodia then 

become cone like structures and extend to become stable branches (Dailey and 

Smith, 1996). Third, as the dendritic arbor reaches the defined area, dendritic 

growth would be restrained, giving rise to the mature shape of the dendritic tree 

(Gao et al., 1999). Fourth, dendrites differentiate into a special structure to house 

the synapses, as in formation of dendritic spines in hippocampal pyramidal 

neurons or formation of dendritic claws in cerebellar granular neurons (Puram and 

Bonni, 2013). Finally, pruning, is an important step in establishing the mature 

dendritic tree, refers to modification of arbors through retraction and elimination 

of unwanted dendrites. For example, in rodent cerebellum, the exuberant 

dendrites are pruned to establish their mature shape and undergo postsynaptic 

differentiation (Cajal, 1995). The process of pruning exempts the properly 

innervated dendrites, leaving them for full maturation (Ramos et al., 2007). 
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Figure 4: The steps of dendritic growth and arborization (Puram and Bonni, 2013) 

Once the newly formed neuron is polarized, early dendrites sprout and start to 

branch to form the dendritic tree. At the same time, filopodia formed from the 

new dendritic shaft, some of these filopodia will be stabilized and form the 

dendritic spines, depending on whether or not they participate in synapse 

formation (Togashi et al., 2002). The shape and size of the dendritic tree reflects 

the function of that neuron (Jan YN, 2001). For example, when hamlet, a 

transcription factor in Drosophilia, is expressed in a multidendritic neuron, it will 

change it into a simple dendritic neuron. This shows that the intrinsic program of 

the neurons is controlled genetically. In general, the extent of dendritic 

arborisation is regulated by the intrinsic program and the extrinsic environmental 

factors: 



 

18 
 

1.5.1 Extrinsic cues regulate dendrite formation 

Developing neurons are surrounded by a complex environment containing other 

neurons, glia. Afferent input of axons from other neurons, which arrive before or 

at the start of dendritic growth have a potential effect on dendritic development, 

since early exposure of the dendrites to neurotransmitters and action potential 

regulate the growth of the dendritic tree (Wong and Ghosh, 2002). The neurons 

also encounter several growth factors such as neurotrophins during development 

which strongly stimulate dendritic growth. 

1.5.1.1 Neurotrophins 

Neurotrophins are one of the molecular signals which control the growth of 

dendrites. These include four groups of growth factors which are: nerve growth 

factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), 

and neurotrophin-4 (Arevalo and Chao, 2005). These factors play an important 

role in nervous system development. They interact with two types of receptors, 

Trk tyrosine kinase receptors (TrkA, TrkB and TrkC) and p75 neurotrophin 

receptors (p75
NTR

). These two receptors signal independently or together to 

regulate neuronal survival, cell differentiation and synaptic plasticity. The Trk 

receptor can interact with ion channels and p75 can associate with membrane–

associated Nogo receptors, which are involved in axonal regeneration (Chao, 

2003). The neurotrophins and their receptors are highly expressed in the 

developing nervous system when there is active neuronal growth and cell 

differentiation. Also, these factors demonstrated a dramatic effect on axonal 

growth of the peripheral and central nervous system (Snider, 1994). Adding 

neurotrophins to slices of cortex caused an increase in the length and complexity 

of dendrites of cortical pyramidal neurons (McAllister et al., 1995). In addition to 
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neurotrophins, there are many other factors which are involve in dendrite growth 

and maturation, such as Semaphorins (Sema3A), Cpg15 gene expression, 

Epherin, Osteogenic proteins, Notch protein, and cell adhesion molecules 

(McAllister et al., 1995). 

A general hypothesis stated that the growth of the axon is supported by a group of 

trophic factors and matrix molecules while dendrite growth is supported by 

another set of signals (Goldberg, 2004), as shown in the figure (5) . For example,  

sympathetic and cortical neurons show dendritic growth in response to bone 

morphogenetic proteins (Withers et al., 2000). Similarly, other adhesion and 

matrix molecules may stimulate axon growth but not dendrites, for example, 

chick retinal ganglion cells (RGCs) cultured on top of glial endfeet showed 

growth of axons, while RGCs cultured on top of glial somata showed growth of 

dendrites only (Bauch et al., 1998). 

1.5.2 Intrinsic factors regulating dendrite formation 

Different neuronal types encounter the same environment during development. 

However, an intrinsic program within the neurons regulates their interpretation of 

the external cues and forms distinct pattern of dendritic trees. For example, 

neurotrophin-4 induces dendrite growth and increases its complexity in cortical 

pyramidal neurons layer V, but has no effect on layer IV neurons. Brain derived 

neurotrophic factor (BDNF) highly stimulates dendrite arborisation in layer IV 

and moderately affects the neurons in layer V (McAllister et al., 1995). 

Differential expression of neurotrophin receptors may explain the different 

response of each cortical layer to different neurotrophins, explaining that cell-

intrinsic mechanisms control the cell response to the external cues (Puram and 

Bonni, 2013).  
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Figure 5: Extrinsic factors control hypothesis (a) and intrinsic factors control hypothesis (b) on 

axonal and dendritic growth (Goldberg, 2004) 

Intrinsic refers to a phenotype expressed independently from the environment.  

Many intrinsic phenotypes are programmed at the progenitor stage and 

maintained throughout part or all the life of the neurons. The expression of the 

complement of receptors of survival, growth and initial axonal guidance may be 

intrinsic to the neurons. For example, BDNF is able to enhance axonal growth 

from retinal ganglion cells (RGCs). If BDNF is removed for few days and added 

again, RGCs are still able to respond to this growth factor and axonal growth is 

stimulated. This demonstrates that the responsiveness to BDNF is intrinsic to the 

cells (Goldberg et al., 2002). The differences in the intrinsic phenotypes of the 

adjacent neurons make them respond differently when they are exposed to the 

same environment, and this lead to appearance of variable neuronal patterns. 
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Thus, the same growth factor has a different axon or dendritic effect on different 

neurons, this explain the diversity in their final phenotype (Goldberg, 2004). 

Regarding the intrinsic control of axon and dendrite growth, in the CNS, most of 

projection neurons extend axons at first, which are then followed by dendrite 

arbor growth. This suggests that axon and dendritic growth in vivo are separated 

by time. Another fact about the intrinsic control has come from in vivo studies 

showing that embryonic spinal projection neurons are able to regenerate their 

axons after injury, whereas this ability is lost completely after birth (Saunders et 

al., 1992). Other study using explant slice cultures showed that young explants 

illustrated better axon regeneration than the older explants (Chen et al., 1995). 

Therefore, it appears that there is a developmental modification in neuronal 

ability to regenerate their axon, but these studies are confounded by the 

simultaneous changes which occur in the extrinsic glial environment during 

development which inhibit axon growth and regeneration (Schwab and Bartholdi, 

1996). However, the lack of successful regeneration of axons in studies designed 

to overcome the CNS glial cues confirm the intrinsic regulation for axon growth, 

For example, axon regeneration in adult RGCs take 2 months through a peripheral 

neuronal graft (Bray et al., 1987). These experiments also were confounded by the 

finding that reactive astrocytosis, may contribute to developmental changes 

through residual axon growth inhibitors. Therefore, it is difficult to explain 

developmental modification in axonal growth whether due to intrinsic or due to 

environmental changes. 

1.6 The Time of Brain Development 

Brain development in humans occurs from sixth week of gestation to several 

years after birth as shown in the figure (6). In the CNS, the organs build by cell 
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proliferation, migration and differentiation. The neurogenesis of specific neuronal 

populations has been shown in rodent brain and the results were extrapolated to 

human brain (Bayer et al., 1992). This study showed that different brain areas 

develop at different times, and even in a single brain area, groups of neurons 

develop at different times and at a variable rate. For example, cerebellar Purkinje 

cells develop during embryonic days 13-15 of gestation in rat which corresponds 

to 5-7 week of gestation in humans, on the other hand, granular cells are formed 

later,  about 4-19 postnatal days, which correspond to 24-40 week of gestation in 

human (Bayer et al., 1992).   

 

Figure 6: Illustrate the brain growth spurt in humans and rats, the units of time for humans are 

months and for rats days (Ikonomidou and Turski, 2010) 

 

Figure 7: Illustrate brain development  adopted from (Rice and Barone Jr, 2000) 
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2.1 Teratogenesis and Malformation 

A congenital anomaly is an anatomical, metabolic or functional defect in the 

newborn due to several factors, such as maternal exposure to infectious agents, 

drugs or due to genetic or environmental factors. It is the cause of high mortality 

and long lasting disability for surviving children and has a significant impact on 

families, social communities and health care. 5% of all the newborns have a birth 

defect, 3.2 million birth defects are registered annually, 270,000 newborns died 

by 28 days of age in 193 countries in 2010 due to congenital anomalies (WHO, 

2012). 90% of these birth defects are of unknown cause and the confirmed causes 

account for only 10 %. Drugs as a cause for these congenital malformations 

represent only 1% or less of all congenital defects (De Santis M., 2001). 

Teratology is the science that deals with developmental abnormalities which 

result from maternal exposure to physical, chemical or environmental factors 

during pregnancy which affect normal development, differentiation and/or 

behaviour. A teratogen is that factor which causes an irreversible effect on the 

development of the embryo anatomically and/or functionally. Therefore, a 

teratogen may be a xenobiotic which includes a wide range of chemicals that are 

used during pregnancy or to which a pregnant women is exposed such as 

pharmacological materials, cosmetics, food additives, heavy metals, cigarette 

smoking. Also, it can be other factors, for instance, stress, nutritional deficiency 

or infection with some viruses (cytomegalovirus and rubella) which can cause 

developmental abnormalities to the foetus (Stegmann and Carey, 2002).  

This science was brought to light in the 1920s when piglets were born from 

mothers which ate a diet deficient in vitamin A; those piglets suffered from 

several congenital anomalies including absence of eyes (Hale, 1933). In the 
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human, the first confirmed case reported to have congenital malformation was 

due to pelvic X irradiation of the pregnant mother (Goldstein L, 1921). After 

several decades, Gregg  (1991) was the first to report a case of congenital cataract 

due to infection of the mother with Rubella virus in Austria, but the evidence 

which proved that chemicals can cause foetal defects occurred after 

administration of high doses of a folic acid antagonist (aminopterin) which was 

used to induce abortion; the aborted foetuses and the living children showed 

multiple malformations (Tiersch, 1952). About 10 years later, the thalidomide 

disaster happened, in which  thalidomide was used as an antiemetic drug during 

pregnancy from 1957-1961, more than 10000 children from mothers who had 

taken the drug exhibited variable anomalies ranging from Amelia (absence of the 

limb), phocomelia (shortening of the limb), absence of the ear and deafness and 

others. These birth defects happened especially when the drug was taken during 

day 35-50 of gestation (Branch, 2004). Thalidomide had minimal effect on the 

adults but it was very toxic to the embryos (McBride, 1961). From that time, the 

regulatory agencies especially the Food and Drug Administration (FDA) in the 

USA instigated the requirement to study the drugs thoroughly on animals before 

marketing them and they issued guide lines for perfect evaluation of drugs for 

human use (Goldenthal, 1966), identification of teratogenic agents is crucial in 

preventing birth defects, since 10% of all the congenital malformations are due to 

teratogens (Brent, 1995) which affect the quality of life for millions of individuals 

in the world and also can cost billions of dollars in health care every year. Many 

studies were undertaken to identify the teratogencity and embryotoxicity of these 

compounds. 
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Wilson (1959) summarized 6 principles for teratology and these are as follows: 

1- The susceptibility of the conceptus to the teratogen depends on the 

genotype and how it interacts with the environment: 

The differences in the genetic composition, environmental factors, metabolic 

pathways and the placental features explain inter and intra-species variability 

in response to teratogens     (Schardein, 1993). 

2- The susceptibility of the conceptus depends on the gestational age at 

which it is exposed to the teratogens 

This principle brings to light the concept of the critical period of 

organogenesis which is day 22-55 of human gestation, and is the most 

sensitive period to drugs. Before that time the embryo either reacts with the 

drug and grows normally, or dies, so it follows the role either all or none. 

When the exposure occurred in the early part of the critical period, this leads 

to damage to the CNS, and when there is late exposure, this leads to 

urogenital malformation and growth retardation. Lastly, after organogenesis 

the foetus will be less vulnerable to teratogenesis, rather it causes a functional 

deficit (Bailey et al., 2005), figure (1). 
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Figure 8: Demonstrates the critical periods in human development (Keith L. Moore, 2016) 

3- Teratogens act in different ways to produce developmental abnormalities, such 

as modification in the cell matrix, cell membrane, changes in the transport 

processes and cell migration, alteration in RNA and protein synthesis or 

interference with energy resources. Also each teratogen can act in different ways 

and it is not necessary that a specific cellular change is related to specific 

teratogen (Bailey et al., 2005) 

4- The final manifestations of a developmental abnormality are malformation, 

growth retardation, fetal death or functional impairment   

5- Several factors affect the ability of any agent to influence the development of 

the conceptus which are the nature of the agent itself, the dose and the duration of 

exposure, the rate of placental transfer, and maternal metabolism of that agent in a 

bid to eliminate it (Polifka and Friedman, 1999). 

6- The final manifestation of developmental abnormality depends on the dose of 

the teratogen. The teratogenicity appears when the dose exceeds the lower limit -
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the threshold (Brent, 1995). Each teratogen has its own threshold; if the conceptus 

is exposed to a dose lower than that of threshold there will be no effect but once it 

is exposed to a higher dose, this will affect its development in a dose dependent 

way 

Also Branch (2004) realized that when a teratogen is described, three principles of 

it must be considered: 

1- The teratogen may be organ specific. 

2- The teratogen could be species specific. 

3- It can be dose specific. 

FDA categorized drugs according to their pregnancy risk in to five categories 

(Briggs et al., 2012): 

Category A: Controlled studies in women showed no evidence of risk to the fetus 

(in the first and other trimester) 

Category B: Animal studies showed no foetal risk but there are no controlled 

studies on pregnant women. 

Category C: The drug has foetal risk, but there are no controlled studies in the 

human, the drug can be administered when a benefit outweighs the risk. 

Category D: The studies confirmed that the drug showed a positive fetal risk, the 

uses of these drugs is restricted to life threatening condition when safe drugs are 

not effective. 

Category X: The drug is contraindicated in pregnant women, the risk outweighs 

the benefit, the risk has been demonstrated in both animal and human. 
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2.2 Mechanism of teratogenesis 

Some of the mechanisms which are involved in teratogenesis are folate 

antagonism, neural crest disruption, endocrine disruption, oxidative stress, 

specific receptor or enzyme mediated teratogenesis (Van Gelder et al., 2010). In 

general, the teratogenicity and embryotoxicity of any drug is often not due to the 

parent compound (which is then called the proteratogen), but due to toxicity of 

the intermediate metabolites that are produced through bioactivation by 

cytochrome P450, prostaglandin H synthase and lipoxygenase. The metabolites 

are usually into electrophilic materials and/ or free radical reactive intermediates 

that oxidize or covalently bind to the macromolecules of the cells (protein, lipid 

and DNA) which may lead to cell death (Juchau et al., 1992).  

The teratogenic effect of any drug depends on the balance between the teratogenic 

activity of the intermediates and the protective mechanisms, such as maternal 

proteratogen elimination, embryonic detoxification, cytoprotection against 

oxygen reactive species and repairing of the damaged cells (Wells et al., 1997). 

2.3 Teratogenic testing: 

Before the thalidomide tragedy, chemicals were tested by what is called the Litter 

test, in which the animals, usually male and female rodents, were exposed to the 

chemicals during the reproductive cycle and monitored for two successive 

pregnancies. Foetal survival was the only parameter for toxicity (Ujházy et al., 

2005). The thalidomide disaster in the early 1960s instigated governments and 

scientific communities to test chemicals more thoroughly. Since that time, drug 

teratogenicity testing has been a subject of great interest, to discover harmful 

drugs and to save the developing embryos. The Food and Drug Administration 

(FDA) established guidelines which made the tests more comprehensive than 
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before. Since then, in 1994, new testing protocols were issued with acceptance by 

the International Conference of Harmonization (ICH) (Branch, 2004). Given the 

complexity of the reproductive system and the large number of tissue targets 

where birth defects or postnatal effects could be induced, there was reason for the 

standardization of the tests and there followed international acceptance (Tandon 

and Jyoti, 2012). 

Embryo foetal development is a very sophisticated process; it involves many 

events such as gene expression, cellular proliferation, interaction, migration, 

differentiation, organ formation and the achievement of the physiological 

functions of the embryo. The ideal test is one which can provide full information 

about the whole process of embryonic development.   

In general, there are two types of teratogenesis testing: 

1- In vivo tests 

The main advantage of using animals for product safety tests is that it is an 

inclusive model of all the factors that are involved in human exposure. Dosing 

can be by the oral or parenteral route, and the chemical is distributed and 

submitted to physiological and biochemical mechanisms that determine the 

concentration of the chemical or its active metabolite at the affected organs. 

Orally administered chemicals are first distributed in the liver to be modified into 

a water soluble compound so that the chemical can be eliminated from the body 

with the waste products. Sometimes, the liver metabolizes chemicals into long 

lasting active metabolites, which can be toxic in their own right, such as 

cyclophosphamide to acrolein and phosphoramide mustard (Garattini, 1985a), or 

they can be converted to toxic reactive metabolites in a remote organs such as the 
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nephrotoxicity of S-cysteine conjugates of haloalkenes (Chen et al., 1990). These 

interactions are not available in the in vitro models.  

Using animals for product safety testing does not necessarily predict human 

toxicity. An example for that is the anti-viral drug fialuridine which caused 

hepatic failure in the human, but this was undetected in preclinical animal studies 

(Colacino, 1996). Another example is the anti- allergy drug 6,8- diethyl-5-

hydroxy-4-oxo-4H-1- benzobyran-2-carboxylic acid (DHBC), which induced 

mild hepatotoxicity in the human, which was not predicted by laboratory animal 

tests (Clarke et al., 1985). These interspecies differences are due to differences in 

pharmacokinetics, drug metabolism, and organ perfusion rates (Garattini, 1985b). 

Therefore, it is impossible to rely completely on animal data until humans are 

exposed, and it is necessary to attempt to evaluate the human risk of these 

chemicals by any of those scientifically valid models. 

In vivo tests can give a wide range of information about development, while in 

vitro tests reflect only one aspect of the process. Therefore, a combination of 

more than one test can provide a good view (Piersma, 2006). In vivo teratogenic 

testing is impractical for the huge number of chemicals that are produced annually 

because it could be highly expensive, time consuming, require large amount of 

chemicals to be used in the experiments and needs a large number of animals to 

be sacrificed. The advantages of In vitro methods are their being cheaper, quicker 

and they can serve as a pre-screen test for all the compounds to rank which need 

further studies by in vivo methods.  
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2. Alternative methods: 

The drive to develop alternatives to animal studies in developmental toxicity has 

been increased in the last decades. The increased interest in this field stemmed 

from Russell (1959) who proposed the principle of 3 R,s (Reduction, Refinement, 

Replacement). The European Union white paper suggested the harmonization of 

testing requirements for chemicals marketed before September 2001 

(Registration, Evaluation, Authorization of Chemicals- REACH) which involves 

about 30,000 chemical (Hartung et al., 2003). If these substances were tested by 

animal based methods, this would need 12.8 million animals and cost about 11 

billion dollars for a period extending to up to 45 years (Hartung et al., 2003). The 

estimated number of chemicals that humans are exposed to exceeds 50,000 and 

there are more than 400 new chemicals introduced in to the market annually  

(Bournias-Vardiabasis, 1994). The alternative test methods in developmental 

toxicity include cell culture, organ culture and whole embryo culture. Cell culture 

can be the simplest and easiest and sometimes does not require animals.  These 

tests reflect information about only one mechanism and can detect the effect of a 

drug on only one aspect of development, such as cell proliferation (Pratt and 

Willis, 1985) or cell adhesion (Braun et al., 1979).  Flint and Orton (1984) used a 

high density of embryonic limb bud cells and brain cells to see the effects of 

xenobiotics on the differentiation of these cultured cells. However, this method is 

unable to provide enough information about the whole integrated system and its 

regulatory mechanisms.  

While organ culture can present some parts of organogenesis in vitro, this method 

requires animal materials which make it laborious. The animal organs may 

involve lung, intestine, reproductive organs, limb bud etc (Faustman, 1988). In 
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the case of whole embryo culture, this provides an example of a complete in vitro 

alternative test. It presents embryogenesis in its full complexity from cell division 

and proliferation to pattern formation (Piersma, 2006). 

Wilson  (1978) summarized the main criteria for the ideal in vitro test: 

1- Simple, easy and give interpretable results. 

2- Rapid, use large number of samples. 

3- Yield less false positive results. 

4- Relevant to teratogenic mechanism. 

5- Have some aspects of progressive development. 

6- Can use different kinds of agents. 

7- The used organism should be capable to absorb, circulate and excrete 

chemicals. 

More than 30 in vitro tests using vertebrates and invertebrates have been proposed 

for assessing embryotoxicity (Tandon and Jyoti, 2012). Three of them have been 

validated, which are limb bud micromass-MM (Flint and Orton, 1984), rat post-

implantation whole embryo culture- WEC (New et al., 1976), and the embryonic 

stem cells EST (Spielmann, 1997). 

2.4 Chick Micromass System 

Micromass culture is a good example of using cell culture. This test was devised 

by Umansky (1966) when he used undifferentiated mesenchymal cells of the 

chick embryo limb and cultured them in small volume in high concentration, 

when they formed numerous small foci of differentiated chondrocytes in a 

background of undifferentiated cells. The Micromass system involves some of the 

main mechanisms in development which are cell division, movement, cell-cell 
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communication, cell-matrix interaction and differentiation (Flint, 1983, Umansky, 

1966). Therefore it has been proposed as a good screening test for detecting 

toxicity (Spielmann et al., 2001). This system is based on culturing cells from 

mesencephalon or limb of different species such as the rat (Flint and Orton, 

1984), mouse  (Tsuchiya et al., 1991) and chick (Wiger et al., 1988). In the 

micromass system, Formation of chondrocytes and neural cells is used as an end 

point, therefore, the ability of chemicals to disrupt the normal differentiation of 

primary cells can be identified with the aid of other cytotoxicity tests. 

Chick can be considered as an attractive species in screening purposes because of 

its rapid development, and the avoidance of mother sacrifaction. Also, chick 

micromass system has been proven to be efficient in teratogen detection 

(Atterwill et al., 1991). It has been observed that there is no significant 

differences between rat and chick micromass systems in detecting teratogens 

(Brown and Methods, 1995, Brown and Wiger, 1992). For this purpose, sodium 

valproate and lithium carbonate have been used to detect their embryotoxicity on 

both cardiac and neural chick micromass systems. 

2.4.1 Materials and Methods 

2.4.1.1 The source of cells 

Chick cells: Chick embryonic cardiomyocyte and neural cells were obtained from 

5 day old embryos of white fertile Leghorn chicken eggs. These eggs were 

purchased from (Henry Stewart Company. UK) 

2.4.1.2 Eggs storage and Incubation 

White fertile Leghorn chicken eggs were stored in a cooled incubator at 12
ₒ
C to 

suspend the embryonic development (SLACK, 2006). These eggs should be used 
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within 2 weeks from the first day being placed in the incubator. For each 

experiment, at least 2 dozen eggs were kept (for 5 days) in the warm incubator on 

an automatic egg turner with the broader ends faced up. The temperature was 37
ₒ 

C and the relative humidity was 100%. The day of incubation was regarded as day 

0.  

2.4.1.3 Cardiomyocytes and Neural cell culture 

In the day of explantation, the eggs were swabbed by 70% alcohol then 

transferred to a class I laminar flow hood which was cleaned by Trigene 10% and 

sterilized by 70% ethanol. By gentle striking of eggs with the broader end of 

sterilized forceps the egg shell was broken and peeled off; the vitelline and 

chorioallantoic membranes were removed to reveal the embryo which was lifted 

up and placed in a 100ml Petri dish containing Hank’s Balanced Salt Solution 

(HBSS). Under the dissecting microscope, the heart and midbrain were removed 

and placed in Bijou tubes containing 50% Horse Serum/HBSS. When all the eggs 

had been explanted and 24 hearts and midbrains were collected, the hearts and 

brains were washed twice with HBSS to remove the excess of horse serum. 2 ml 

0.05% Trypsin and 0.02% EDTA was added to both these tubes and kept inside 

the incubator at 37
ₒ 
C, 5% CO2 and 100% humidity for 20 minutes with frequent 

shaking to enhance cellular disintegration, after that 8 ml of full culture medium 

(Dulbecco Modified Eagle Medium-DMEM, 10% Foetal Bovine Serum, 

Glutamine, penicillin and streptomycin) (see appendix 1) was added to stop the 

action of Trypsin and centrifuged at 1500 rpm for 5 minutes. The supernatant was 

aspirated and 1 ml medium was added to the pellet with frequent resuspension by 

pipette to produce a cellular suspension. A cell count was performed using a 

haemocytometer and the cell number was fixed on 3*10
6
/ml. 20µl cell 
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suspensions were placed at the bottom of each well of the 24 well plate, first left 

column was left without cells, with only media, then the cells were left for 2 hours 

to allow cellular attachment followed by adding 500µl medium. The drug was 

added 24 hours after cell seeding in a concentration double the required dose in a 

further 500µl medium. The treatment was for 6 days. The media  changed every 3 

days. 

2.4.1.4 Cardiomyocytes Contractility Scoring 

In the Cardiac Micromass System, the contractile activity of the cardiomyocytes 

was recorded every 24, 48 and 144 hours after cell seeding by using an inverted 

microscope and scoring depending on the number of contracting foci in the well. 

If the whole well shows contracting foci a score 3 is given, and the number of 

contracting foci decreasing the score decrease accordingly and becomes zero 

when there are no contracting foci.  

The score  

0 No contractile activity 

1 Few contracting foci in the well 

2 Numerous contracting foci in the well 

3 All the well is contracting 

2.4.1.5 Neuronal processes number 

1*10
5
 cells from the trypsinized midbrain were seeded on glass coverslips which 

were coated with Poly D-Lysine and Laminin and left for 6 days, after that, 3 

photos were taken blindly (for each coverslip) for the neurospheres that formed 

over these coverslips which start to attach and send neurites between them, as 
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shown in the figure (17). Neurite number was determined by using ImageJ 

software. 

2.4.1.6 Resazurin Assay  

Resazurin, a 7 –hydroxy-3H- phenoxazin-3-one 10 oxide redox dye (Bueno et al., 

2002) has been used to detect bacterial and yeast contamination in milk and to 

detect semen quality for 50 years (Erb and Ehlers, 1950). It is also called the 

Alamar Blue test. The Resazurin test is easy, simple, rapid, performed by a one-

step procedure, sensitive (it can detect viability even for 80 cells), efficient and 

cost effective (O'Brien et al., 2000). Non fluorescent blue resazurin is reduced by 

the action of mitochondrial enzymes (O'Brien et al., 2000); also cytosolic, 

microsomal enzymes can contribute to this reaction (Gonzalez and Tarloff, 2001), 

into fluorescent  pink material called resorufin, then the fluorescence can be 

detected by optical density and the amount of fluorescent produced is directly 

related to the number of viable cells. This test is ideal for cells in primary cell 

culture, since the resazurin is not toxic to the cells and the test can be repeated 

several times per day. In addition to that, the cells can be reserved for other tests. 

Further reduction of resorufin produces colourless, non-fluorescent product which 

can be the cause of under estimation of large numbers of viable cells  

The cell viability test was performed on the 6
th

 day of the cell culture by 

aspiration of the media and adding pre-warmed resazurin solution (see appendix 

1) to each well and placing in the incubator at 37°C, 100% humidity, 5% CO2 for 

one hour. Optical density was measured by using FLUOR star plate reader with 

an excitation filter wavelength of 530±10nm and emission filter wavelength of 

590±12.5 nm, and a gain of 60. The obtained data of optical density indicates the 

amount of resorufin produced by the cultured cells which was plotted from the 
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resorufin standard curve to know the exact amount of resorufin produced. After 

that, 300µl of Kenacid blue fixative (see below) was added to each well overnight 

for the Kenacid blue assay. 

2.4.1.7 Resazurin Standard Curve 

Different concentration of resorufin solution: 2000ng/ml, 1000ng/ml, 500ng/ml, 

250ng/ml, and 125ng/ml were prepared in HBSS. 500µl of each concentration 

was added to each well leaving the first column of the 24 well-plate as a blank. 

The optical density was measured with the excitation filter wavelength 0f 

530±10nm and emission filter wavelength of 590±12.5 nm, with a gain of 60. The 

data were plotted on a graph and the values were linked by the best fit straight 

line. 
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Figure 9: Resazurin assay standard curve 

2.4.1.8 Kenacid Blue 

Kenacid blue dye binds to cellular protein which is proportional to the total 

protein in the whole cell number in culture media (Clothier et al., 2006). This dye 

combines with NH3
+
 terminal ends of the protein molecules (de St Groth et al., 

1963). This assay is based on the idea that if a chemical or drug has an effect on 
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protein production, or membrane integrity, this will affect the rate of cell growth 

and cell number. 

Kenacid Blue protein assay 

After the resazurin assay, kenacid blue fixative (300µl) (see appendix 1) was 

added to each well and left to evaporate overnight, 500µl of kenacid blue working 

solution (see appendix 1) was added to the wells and kept on the plate shaker for 

2 hours. At this time the kenacid blue dye will react with cell protein. Excess dye 

was removed by rinsing the well with kenacid blue washing solution (see 

appendix 1) then agitating the plate on the plate shaker for 20 minutes. The 

washing solution was replaced with 500µl kenacid blue desorb (see appendix 1), 

and left on the shaker for 1 hour to take the dye from the surface. The solution 

was transferred into a 96 well plate, and the optical density was determined by 

using ASYS HITEC Expert plate reader with reading filter 570nm and reference 

filter 405nm. 

Kenacid Blue Standard Curve 

In order to measure the amount of protein, a Kenacid blue standard curve was 

plotted by using bovine serum albumin (BSA). 2.4 mg BSA dissolved in 3 ml 

distilled water followed by adding 7 ml 100% ethanol to obtain 70% ethanol, 

240µg/ml BSA. By adding 6ml 70% ethanol to 3 ml 240µg/ml solution, 80µg/ml 

BSA was obtained, then a serial dilution of this solution was done to obtain 70, 

60, 50, 40, 30, 20, 10µg/ml. The 24-well plate was left in the refrigerator 

overnight to allow the ethanol to be evaporated, 300µl of kenacid blue fixative 

was added to each well overnight and the same steps were performed as described 

in the kenacid blue protein assay. The data were plotted on a graph and the values 

were linked by the best fit straight line.  
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Figure 10: Kenacid blue assay standard curve 

2.4.1.9 Drug preparation 

Sodium Valproate and Lithium Carbonate stock solutions were prepared by 

dissolving them in Hank’s Balanced Salt Solution (HBSS) and distilled water 

respectively. Different stock solutions were prepared at high concentration, the 

final required concentrations are: 500, 750, 1000, 1500, and 2000µM for each. 

The drug was added on the next day of the culture system. The first left column 

was without cells or drug, we only put media. The second column of the 24 well-

plate was left without drug as control, as shown below. The stock solutions were 

kept in the fridge. 
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Figure 11: 24 well- plate showing the way of adding drugs, the left black column left as blank 

(only media), Green column as control (No drugs were added, only the solvent), the other blue 

columns are the treated groups, and the red arrow represent the direction of increasing the doses. 

2.4.1.9 Statistical analysis  

The raw data of 3 experimental repeats was analysed by using one way ANOVA 

test, because these parametric data belong to more than 2 groups and is normally 

distributed, then Dunnet’s multiple comparison test to check the significance of 

difference. When the P value was >0.05 it was considered to be not significant. 

All statistical analysis was done by using Prism software version 6. 

2.4.2 The results 

1. Cardiomyocyte Micromass System 

Different doses of Sodium Valproate (SV) were used to test the effect of these 

drugs on beating activity of the differentiating cardiomyocytes. It appears that 

with increasing the dose, (F (5,36)=40.01, p<0.0001), and with increasing the 

duration, (F (2,36)=52.49, p<0.0001), the inhibitory effect of this drug became 

more significant. Statistical analysis shows that 750µM causes significant 

reduction in the beating score of the cardiomyocyte after 6 days when compared 

with that of control, (concentration versus time: F (10,36)=4.595, p<0.0003, post- 

hoc: 750µM vs control: p<0.01). While the doses 1000 and 1500µM show their 
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inhibitory effect 48 hours and 6 days after drug treatment, and the highest dose, 

2000µM inhibit beating activity of differentiated cardiomyocytes from the first 

day (24 hours), (2000µM vs control: p<0.0001) . 

SV effect on cell viability appeared to be significantly affected at 1500 and 

2000µM when compared with the control, (F (5,12)=91.82, p<0.0001, post-hoc: 

1500µM vs control: p<0.0001), however, its significant effect on total protein 

amount revealed only at 2000µM, (F (5,12)=7.803, p=.0018, post-hoc: 2000µM 

vs control: p<0.01), figure (12). 
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Figure 12: Sodium valproate effect on cardiac micromass. A- beating score 24, 48, and 144 hrs 

after drug treatment. B- Resazurin assay. C- Kenacid blue assay, and  a video showing a 

contracting focus. The data here is represented by mean ± S.E, n=3 (average 4 wells  from each 

experiment). *sign of significance when the P<0.05, ** when P<0.01, *** when P<0.001, **** 

when P<0.0001.The data was analysed by using two way ANOVA for  beating score analysis, and 

One way ANOVA for  resazurin and Kenacid blue assays, then Dunnett’s multiple test was 

performed  to compare the mean of control group with that of treated groups. 
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On the other hand, Lithium Carbonate has significant effect on the beating score 

of differentiating cardiomyocytes with increasing the dose, (F (5,36)=43.72, 

p<0.0001), and with increasing the  duration, (F (2,36)=35.96, p<0.0001). Only at 

1500µM, a significant reduction in the beating score appeared 48hrs after 

treatment, (concentration versus time: F (10,36)=8.217, p<0.0001, post-hoc: 

1500µM vs control: p<0.05), but, at 2000µM, the inhibitory activity of Lithium 

appeared earlier after 24 hours of treatment, (2000µM vs control: p<0.05). The 

viability of differentiating cardiomyocytes, (F (5,12)=4.644, p=0.0137, post-hoc: 

2000µM vs control: p<0.05), and total protein amount, (F (5,12)=5.782, 

p=0.0061, post-hoc: 2000µm vs  control: p<0.01) were reduced significantly only 

at highest dose which seems to be significantly reduced when compared with 

control group, figure (13). 
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Figure 13: Lithium carbonate effect on cardiac micromass. A- beating score 24, 48, and 144 hrs 

after drug treatment. B- Resazurin assay. C- Kenacid blue assay, and  a vedio showing a 

contracting focus. The data here is represented by mean ± S.E, n=3 (average 4 wells from each 

experiment). *sign of significance when the P<0.05, ** when P<0.01, *** when P<0.001, **** 

when P<0.0001. The data was analysed by using two way ANOVA for beating score, and one way 

ANOVA for resazurin and Kenacid blue assays, then Dunnett’s multiple test was performed  to 

compare the mean of control group with that of treated groups. 

2. Brain Micromass System 

Sodium Valproate in brain micromass culture reduce cell viability, (F 

(5,12)=9.130, p=0.0009, post-hoc: 2000µM vs control: p<0.01), and total protein 

amount, (F (5,12)=8.280, p<0.0014, post-hoc: 2000µm vs control: p<0.01), 

significantly only at the highest dose, while its effect on neuronal process number 

appeared to be at lower doses, 1000µM, (F (5,12)=136.9, p<0.0001, post-hoc: 

1000µM vs control: p<0.05), figure (14). 

Similarly, the same effect was observed after lithium treatment on cell viability, 

(F (5,12)=7.092, p=0.0027, post-hoc: 1500µM vs control: p<0.05), and total 
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protein amount, (F (5,12)=5.397, p=0.0079, post-hoc: 2000µM vs control: 

p<0.01), figure (15). 
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Figure 14: Sodium valproate effect on brain micromass. A- Resazurin assay. B- Kenacid blue 

assay. C- Neuronal process number. The data here is represented by mean ± S.E, n=3 (average 4 

wells from each experiment). *sign of significance when the P<0.05, ** when P<0.01, *** when 

P<0.001, **** when P<0.0001. The data was analysed by using one way ANOVA, then, 

Dunnett’s multiple test was performed to compare the mean of control group with that of treated 

groups. 
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Figure 15: Lithium carbonate effect on brain micromass. A- Resazurin assay. B- Kenacid blue 

assay. C- Neuronal process number. The data here is represented by mean ± S.E, n=3 (average 4 

wells from each experiment).  

*sign of significance when the P<0.05, ** when P<0.01, *** when P<0.001, **** when 

P<0.0001. The data was analysed by using one way ANOVA, then, Dunnett’s multiple test was 

performed to compare the mean of control group with that of treated groups. 
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Figure 16: Morphological changes on brain micromass culture after treatment with Sodium 

Valproate. A, B represent the control group which show the neurosphere (NS) and how these NSs 

are connected to each other (black arrow) and notice the large population of neural cells as shown 

inside the white circle, C represents the treated group with 1000µM shows the disappearance of 

neuronal processes between the NSs. D represents the treated group with 1500µM showing floated 

(dead) cells inside the black circle. E&F treated group with 2000µM showing disintegrated NSs 

and small floated neurospheres. The scale bar is 100µm for all photos but for B it represents 

250µm.  
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Figure 17: Chick Brain Micromass, 1*10
5
 cells from trypsinized midbrain seeded on coated glass 

coverslips illustrates the effect of Lithium treatment. A & B represent the control group, which 

show the normal spherical appearance of neurospheres, and how they attached with each others by 

neuronal processes, C: represents the treated group with 1500μM, and D represents the treated 

group with 2000μM lithium, these figures show the reduction in the number of neuronal processes 

between the neurospheres.  The scale bar is 100μm. 

2.4.3 Discussion 

2.4.3.1 Sodium Valproate 

SV appears to have a significant effect on the beating score of differentiating 

cardiomyocytes, this reduction is time and dose dependent, and appeared to be 

significant within the therapeutic range, 400-800µM (Chiu et al., 2013). There 

was significant reduction in beating score at the dose of 750µM, this indicate that 

cardiac micromass culture is a sensitive in-vitro method to test the embryotoxicity 

of the drugs. Also, its effect on cell viability and protein content was not 
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significant at lower doses, but those end points started to be reduced significantly 

at high doses. SV is well known in its teratogenic potential, SV administration 

during pregnancy associated with broad spectrum of congenital diseases, 

including cardiac and neural tube defects (Nau, 1994). SV is well known as 

Histone Deacetylase inhibitor (HDAC) (Gurvich et al., 2005), SV has been 

reported to cause chromatin condensation, changes in gene expression and cell 

death by apoptosis (Phiel et al., 2001) and leads to DNA methylation which result 

in change in gene expression which can associate with several developmental 

anomalies (Detich et al., 2003). SV has been recorded to inhibit mesodermal 

differentiation of embryonic stem cells (Murabe et al., 2007a) and resulted in 

oxidative stress and release of free radicals (Na et al., 2003) which may explain 

the reduction in cell viability and total protein in both cardiac and brain 

micromass culture systems. 

2.4.3.2 Lithium Carbonate 

In general, lithium  carbonate can  be considered as a  weak teratogen, however, it 

has been reported that lithium treatment may associated with developmental 

abnormalities in the heart (Giles and Bannigan, 2006) and the nervous system 

(Jurand, 1988). These experiments reveal that Lithium Carbonate has no 

significant effect on the beating score of differentiating cardiomyocytes in the 

doses which are close to therapeutic doses, which is 600-1200µM (Su et al., 

2007b), it inhibitory effect on beating score of differentiated cardiomyocytes 

appeared only at first at 1500µM, 6 days  after lithium treatment and at 2000µM 

appeared after the first  day of treatment.  

 Lithium acts by several mechanisms; it inhibits glycogen synthase kinase-3 

(GSK-3) thereby affecting gene transcription leading to anti-apoptotic activity and 
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by which cell structure integrity can be improved (Chin et al., 2005) and might be 

a cause of teratogenesis (Giles and Bannigan, 2006). Also lithium prevents the 

conversion of Inositol 1,4,5 triphosphate (IP3) into myoinositol by blocking the 

Inositol monophosphatase (IMPase), this leads to depletion of inositol from the 

cells. Dampening of the phosphoinositol (PI) cycle causes downregulation in 

MARCKS which is actin binding protein, its down regulation is essential in 

stabilizing the cell membrane (Machado‐Vieira et al., 2009). It has been 

postulated that pretreatment supplement with myoinositol can prevent the 

teratogenic effect of lithium (Giles and Bannigan, 2006) and (Giles and Bannigan, 

1999). IP3 in developing heart regulates pace maker activity, enhance 

cardiogenesis, and controlling myocardial contraction by enhancing calcium 

release and influx, therefore, inhibition on PI cycle can disturb early 

developmental events of the heart and great  vessels (Kockskämper et al., 2008). 

Additionally, lithium is well known drug as neuroprotective agent, it induces 

BDNF production (Hashimoto et al., 2002), and control the release of GDNF in 

vivo and in vitro (Paratcha and Ledda, 2008) which are  involve in maintaining 

cell survival and many other cellular activities. Moreover, lithium has an anti-

apoptotic activity in several mechanisms, like enhancing Bcl2 protein, 

downregulation of P53 (pro-apoptotic protein) (Chen and Chuang, 1999). Also, it 

can activate PI3K/Akt, MEK/ERK pathways which stimulate the release of anti-

apoptotic factors (Chiu et al., 2013), these may explain our finding that lithium 

has no significant effect on cell survival and total proteins throughout all the 

doses except in the highest doses in both cardiac and brain micromass system. 

Finally, microsystem system has been used to detect the toxicity of herbicides, 

insecticides and mycotoxins (Daniels et al., 1996). To overcome species 
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difference in chick micromass system, and to rely on cells which have the 

capability to undergo most of the important processes in embryonic development, 

human neural stem cells have been suggested which are also reflect to some 

extent the normal cellular status, and not derived from tumours. The rest of this 

thesis will aim to establish a system using human neural stem cells to test drugs 

for neurotoxicity.  
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Chapter 3 

Methods of Developing of Human Neural 

Stem Cell Culture as a Model in In vitro 

Neurotoxicology  
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3.1 The Neural stem cell niche 

Embryonic Neural Stem Cells (NSCs) in vivo undergo time dependant changes in 

their microenvironment (which can also be called their niche) to enable them to 

fulfil their roles in the development of the CNS. NSCs have the capability to 

proliferate (self- renew) and to differentiate into the three major CNS lineages; 

astrocytes, oligodendrocytes, and neurons. NSCs have been the subject of 

intensive investigation because of their potential use in therapy of 

neurodegenerative disorders such as Parkinson disease and multiple sclerosis 

(Hall et al., 2008). Because of the scarcity of primary human tissue from which 

NSCs can be isolated, the need to develop a protocol to culture them in vitro has 

been escalated. As a first step toward accomplishing this goal, it is essential to 

know the composition of their niche in developing CNS and to identify the factors 

that regulate their growth and differentiation. The observation that the NSCs are 

not randomly distributed throughout the brain is one of the important clues for the 

nature of these factors. They are located in Ventricular and Subventricular zones 

in the developing CNS and in the Subependymal zone of the adult CNS (Temple, 

2001). Studies on niche in different organisms and various tissues have shown 

that there are common signalling molecules which are involved in maintenance of 

stem cell populations and enhance their growth in cell culture. These molecules 

include growth factors, cell-cell signalling molecules, adhesion molecules and 

extracellular matrix molecules (ECM) (Li and Xie, 2005).  

The evidence that laminins have a direct contact with adult NSC through the basal 

lamina of the blood vessel in SVZ (Kerever et al., 2007) and with the embryonic 

NSC in VZ, highlights the likelihood of involvement of this ECM in NSC 

regulation (Lathia et al., 2007). Laminin  acts through the interaction with the 
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integrin family of receptors, which are the key regulators of all aspects of cellular 

processes such as cell proliferation, survival, migration and differentiation (Qin et 

al., 2004). Integrins are transmembrane αβ heterodimers which make 

conformational changes with ligand binding that lead to downstream effects, like 

actin polymerization and growth factor signalling (Qin et al., 2004). The elevated 

expression of integrin, especially the laminin-binding α6β1 heterodimer, is used 

for the isolation of stem cells from more differentiated cells (Fujimoto et al., 

2002). Integrin β1 has been shown to maintain prostatic stem cells (Heer et al., 

2006). Integrin-laminin interaction has been shown to regulate migration of 

human NSC in an integrin α6-dependant way (Flanagan et al., 2006). 

Isolation of NSCs from CNS was first described by Reynolds through a 

neurosphere formation assay (NFA) (Reynolds and Weiss, 1992). The idea behind 

NFA is that the cells which have the ability to form the neurosphere (NS) are stem 

cells since they have the ability to proliferate (self-renew) and to differentiate into 

the main cell types in the CNS. These two criteria confirm cell ‘stemness’. NS are 

spheroid 3D structures consisting of cells with a rich extracellular matrix. These 

NS produce their own ECM molecules (laminin, fibronectin, chondroitin sulphate 

proteoglycans) and growth factors (Fibroblast growth factor- FGF and Epidermal 

growth factor-EGF) (Lobo et al., 2003). Initial cell-cell contacts are retained by 

the proliferating cells, and the NS can create a niche which is more relevant 

physiologically than 2D culture models, and also can allow dynamic changes in 

the environment such as changes in growth factors or nutrient materials (Ahmed, 

2009). The important features of NFA are; the identification of NSC, the 

simplicity, as a starting point in studying the neurodevelopment, and it can offer a 

model to screen chemicals and drugs for brain tumours and CND diseases.  
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3.1.1 Role of Growth factors 

1- Basic Fibroblast Growth factor (bFGF) and Epidermal Growth factor 

(EGF) 

Progenitors from developing brain of different species can grow in vitro in the 

presence of several growth factors, by which, the cells can preserve their 

capability to proliferate and differentiate into neurons and glial cells (Armstrong 

and Svendsen, 1999). The factors which stimulate these cells to proliferate are 

complex, and they are likely to involve contact and diffusible molecules 

(Svendsen et al., 1998), although it is well known that Epidermal growth factor 

(EGF) and Fibroblast growth factor (FGF) are important mitogens in stimulating 

these cells to proliferate. The receptors of these two factors are expressed in the 

highly proliferating NSCs of the adult brain (Doetsch et al., 2002, Frinchi et al., 

2008). Supplementation of these mitogens to aged mouse brain stimulates 

proliferation of NSCs (Jin et al., 2003). Deletion of them from the genome results 

in reduction of proliferation of these cells (Zheng et al., 2004).  

During early stages of embryogenesis, the neural tube is composed of a 

homogenous population of cells, the neuroepithelial stem cells, which reside in 

Ventricular zone (VZ) and lack the markers for any differentiated cells, such as 

neurons, or glial cells. These cells can be maintained and proliferate in culture 

with the presence of basic FGF (bFGF) (Qian et al., 1997). There is undetectable 

or low expression of EGF receptors in the ventricular zone neuroepithelial stem 

cells, therefore, it has been difficult to generate neurospheres from these stem 

cells by EGF alone (Pevny and Rao, 2003). As development progresses, by 

proliferation of neuroepithelial cells and migration of differentiated cells, the 
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subventricular zone (SVZ) will be demarcated, and a new population of stem cells 

can be isolated and maintained in culture (Reynolds and Weiss, 1992, Reynolds 

and Weiss, 1996), this type of stem cell has been called EGF-responsive stem 

cells, since there is high expression of EGF and EGF receptors in this area. Both 

EGF and FGF are able to stimulate their growth to form neurospheres (Vescovi et 

al., 1993).  

Both FGF and EGF can be used to drive the stem cells to form neurospheres, but, 

a combination of these factors is able to generate more neurospheres than either 

factor alone (Lobo et al., 2003). It seems that there is a synergistic effect of both 

EGF and FGF on NSCs proliferation (Kelly et al., 2005). It has been proposed 

that EGF responsiveness of the cells could be primed by exposure to FGF 

(Ciccolini and Svendsen, 1998). 

2- Role of Heparin 

Heparin is also one of the important factors for the growth of NSCs in vitro. It has 

been shown that heparin is required for the growth of progenitor cells of primary 

tissue of the mesencephalon, combined with FGF-2 (Caldwell and Svendsen, 

1998). Heparin appears to potentiate the action of EGF and FGF on rat embryonic 

neural progenitor expansion when these factors used individually or in 

combination. However, its potential effect was higher when these factors were 

combined (Kelly et al., 2005). FGF’s are typically found bound to heparin 

sulphate components in the extracellular matrix (Gospodarowicz and Cheng, 

1986). The importance of this interaction is thought to be due to activation or 

protection of FGF-2 molecules (Mason, 1994). Previous studies failed to generate 

free floating neurospheres from mouse by using FGF-2 alone in the absence of 
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heparin (Reynolds and Weiss, 1992). However, other studies succeeded in 

propagating them from adult murine brain after adding heparin to the growth 

media (Gritti et al., 1996, Caldwell and Svendsen, 1998). 

The following experiment is to demonstrate cell behaviour in the media and to 

describe the neurospheres.  

3.2 Neural stem cell growth and behaviour in media 

3.2.1 Materials and methods 

The foetal material was provided by the Joint MRC)/Wellcome Trust (grant # 

099175/Z/12/Z) Human Developmental Biology Resource (www.hdbr.org). 

Foetal brain tissue was washed, dissociated mechanically into single cell 

suspension (Uchida et al., 2000). Single cell suspension of multipotent NSCs 

were grown in NSC maintenance medium (Dulbecco Modified Eagle Medium- 

DMEM and Ham’s nutrient F12 in 1:1 ratio, bFGF, EGF, Glutamine, Heparin, 

N2, and B27 supplements) in 25 cm
2
 non treated flasks and left in the incubator at 

5% CO2, 100% humidity, 37C° for several days. 

3.2.2 Result and discussion 

Our findings demonstrate that NSCs aggregate to form spherical structures which 

are called neurospheres, the progeny of neurosphere are variable in size, as shown 

in the figure (18) below. Neurospheres can grow more to become darker in the 

centre as they enlarge, the dark core suggesting necrotic event which may occur 

due to reduction in the amount of nutrition from the external medium (Bez et al., 

2003). The cytoarchitecture of the neurosphere depend on the access of 

neurosphere forming cells to the nutrients in the medium and to the oxygen and 

also to the possibility to eliminate the waste products to the outside of the 

http://www.hdbr.org)/
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neurosphere. Smaller neurospheres appear translucent and appear healthier. The 

cells in the external layer of the neurosphere may show small cytoplasmic 

processes similar to cilia. The behaviour of the neurosphere described above can 

be explained as an adaptation of NSCs to the in vitro culture environment. The 

NSCs may aggregate to form clusters to survive in the non-physiological 

conditions of the in vitro environment. The cells adapt themselves and optimize 

their interaction to acquire the most advantageous shape, the sphere, from the 

thermodynamic point of view (Bez et al., 2003). The neurosphere itself can be 

considered as a microsystem, in which the cells can survive, grow, and proliferate 

to reach a critical stage by which there is no self-restoration mechanism (Bez et 

al., 2003). Therefore, the neurosphere can be considered as an example of 

environmental adaptability.  

  

Figure 18: Variable sizes of neurospheres appear a few days after keeping NSCs in the medium, 

the larger spheres showing darker zones in the centre which denote cell necrosis, while the smaller 

spheres are transparent. The scale bar is 100µm. 

3.3 Neural stem cell Identification: 

Neural stem cells have the capability to divide, self-renew, and differentiate into 

their main three lineages. The ability of the cells to form neurospheres in vitro 

indicates that these cells are stem cells, because they fulfil the criteria of neural 
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stem cells in dividing and differentiation (Ahmed, 2009). Intermediate filaments,  

nestin, can be considered as an indicator for these stem cells (Miyagi et al., 2006). 

Nestin expression starts from the early embryonic period in the neural stem cells, 

and is used for stem cells identification, isolation, and cultivation as a marker 

protein. This protein can be re-expressed when there is brain injury; therefore, it 

has been used as a quick, early responding marker of brain impairment (Jin-ping, 

2009). The expression of these intermediate filaments is down regulated when 

there is a transition from proliferating neural stem cells into post-mitotic neuronal 

cells (Zimmerman et al., 1994). There are several transcription factors which are 

used as a marker for neural stem cell, such as SOXB1 and three other related 

genes which are SOX1, SOX2, and SOX3. This family universally mark neural 

progenitor and stem cells throughout the vertebrate CNS. SOX2 is highly 

expressed in neuroepithelial stem cells and persists in neural stem cells until 

adulthood. This factor is well known to stimulate neuroectoderm development 

and inhibit mesendodermal development (Thomson et al., 2011). SOX2 

expression has been shown to inhibit cellular differentiation and maintain the 

stem cell characteristics, while inhibiting SOX2 signaling leads to delamination of 

neural progenitor cells from the ventricular zone, which is accompanied by the 

loss of stem cell markers and the starting of expression of neuronal differentiation 

markers (Graham et al., 2003). SOX2 knock down in mouse leads to death around 

the implantation stage (Miyagi et al., 2006). 

Other transcriptional factors used in addition to SOX2 to identify NSCs are 

OCT4, Klf4, and c-Myc. These four transcriptional factors are used to reprogram 

human astrocytes (Ruiz et al., 2010) and mouse and human fibroblasts (Kim et al., 

2011) into induced pluripotent stem cells (iPSCs) with similar efficiency to NSCs. 
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Well controlled OCT4 expression leads to generation of tripotent neural stem 

cells which have extensive self-renewing capacity (Kim et al., 2011). Over-

expression of OCT4 alone in adult NSCs can induce pluripotent stem cell (iPS) 

formation, which are similar to embryonic stem cells in vivo and in vitro which 

are able to differentiate into NSCs, cardiomyocytes and germ cells in vitro, but  

are also capable of teratoma formation in vivo (Kim et al., 2009). NANOG is 

another transcription factor which acts, at physiological state, in concert with 

SOX2 and OCT4 to maintain embryonic stem cell identity (Hanna et al., 2010). 

There are some molecular mechanisms which serve to maintain the general 

cellular characteristics of stem cells, such as the ability to divide and to 

differentiate into their lineage. For example, one well-known molecular 

mechanism which is shared by neural progenitor cells is the Notch signalling 

pathway. This pathway seems to play a critical role in preserving the 

stem/progenitor cell pool. During development and in adulthood, Notch1 

expression, or its downstream regulators, like HES-1, prevents neuronal 

differentiation and leads to preservation of the progenitor pool (Graham et al., 

2003). The exact mechanism in which the Notch signalling pathway controls cell 

fate is not well determined. Another study suggested that Notch signalling, rather 

than inhibiting neuronal differentiation and maintaining the stem cell pool, may 

enhance glial differentiation (Gaiano and Fishell, 2002). 

In order to establish the phenotype of cells within our neurospheres, we carried 

out immunohistochemistry (below).  
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3.3.1 Immunohistochemical staining of neurosphere sections 

Neurospheres were collected from the flasks by centrifugation of the culture 

medium and they were fixed using 4% Paraformaldehyde (PFA) for 20 minutes. 

PFA was aspirated after centrifugation. The neurospheres were placed in 2% 

Agarose for a few minutes with gentle stirring of the solution to ensure even 

distribution of the neurospheres. Then the samples were transferred into an 

automatic tissue processor for dehydration, xylene, wax impregnation and wax 

embedding. Using an automatic microtome, 10µm thickness slices were taken 

from these samples and placed on gelatinized slides. 

To prepare the slides for ICC, the slides were submitted into: 

-Xylene 5 min*2 to dissolve wax from the slide, followed by keeping the slides in 

alcohol in different decreasing concentrations to rehydrate the samples as follows: 

-Alcohol 100% 5 min*2 

-Alcohol 90% 5 min 

-Alcohol 70% 5 min 

-Alcohol 50% 5 min 

-Tap water 5 min 

Then the sections were washed for 5 minutes 3 times with 0.01 PBS and 

permeabilized with a solution containing 0.01 PBS, 0.3% triton and 1 % Goat 

serum for 1 hour. The sections were washed again 3 times for 5 minutes. Anti-

nestin primary antibody (Mouse monoclonal –BD Biosciences pharmingen) and 

was added to the sections in 1:1000 dilution and Anti-SOX2 primary antibody 

(Rabbit polyclonal-Abcam) in 1:2000 dilution was added to other sections, then 

the sections were incubated overnight at 4
ₒ 

C. On the next day, the primary 
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antibody was washed with 0.01 PBS for 5 min 3 times, and the secondary 

antibody in 1:500 dilution was added in a light protected area for 1 hour followed 

by washing by 0.01 PBS for 5 minutes 3 times, then mounting was performed in 

fluorescent mounting medium. Examination of slides was performed using 

Fluorescent microscope. 
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Figure 19: Immunohistochemistry staining for Nestin and SOX2 in Neurospheres of HNCs, the 

blue colour represent the nuclei stained with DAPI. The images at the bottom are the merged 

images. Left column shows Nestin positive cells in the neurosphere while right column illustrating 

SOX2 positive cells.  

3.3.2 Immunocytochemistry of seeded slides 

In order to compare the phenotype of floating neurospheres with the same cells 

seeded onto slides, immunohistochemistry was carried out.   2*10
4
 were seeded 

over glass coverslips which were coated with PDL and laminin, then NSC 
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maintenance media was added to the wells in which the coverslips were placed 

and left for 6 days, after that the media was aspirated and 4% PFA was added for 

15 minutes to fix the cells. Blocking and permiabilization was performed by 

solution containing PBS, 0.3% triton and 1% Goat serum, then, we followed the 

same steps as in immunohistochemistry. 

  

Figure 20: Immunocytochemical staining for NSCs after plating them on glass coverslips which 

was coated with PDL and Laminin. This figure illustrates the loss of cell stemness after 

attachment since the cells have become Nestin and SOX2 negative. 

  25µm 
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3.4 Neuronal cell Markers 

Neurons are diverse from a functional and morphological point of view, albeit 

they are structurally unique, once they have completed their migration to their 

final destination in the nervous system. The distinct morphology of neurons 

depends on their ability to elaborate elongated cell processes which are known as 

neurites. The growth, maintenance, stability and functionality of these neurites 

depend on subcellular structural organization, the cytoskeleton system, which is 

formed by three main filaments microtubules (neurotubules), intermediate 

filaments (neurofilaments) and microfilaments (actin filaments) (Pannese, 1994). 

The microtubules are 25nm hollow cylindrical structures, serving a variety of 

functional and structural roles, such as formation and control of cell morphology, 

mitosis, cell migration (especially during embryonic development), and cytosolic 

transport of cellular organelles and secretory vesicles (Ludueña, 1997). The 

structural constituent of microtubules is the globular protein tubulin, which 

interacts with a host of accessory microtubule associated proteins (MAPs), 

histones, chaperonins, G proteins and protein kinases. Tubulin is composed of 

two subunits, α and β, to form heterodimers. Six α- and seven β-tubulin isotopes 

have been identified in mammals and birds (Ludueña, 1997). In mammalian and 

avian development, β-tubulin III is considered to be among the earliest neuronal- 

associated cytoskeletal marker proteins. Its expression, before or during terminal 

mitosis in the CNS, is coincident with the lack of expression of this protein in 

other embryonic or adult cells (Katsetos et al., 2003), which indicates that this 

tubulin is controlled by transcriptional factors which are concerned with neuronal 

lineage commitment and morphological differentiation (Dennis et al., 2002). Β-

tubulin III is abundant in the central and peripheral nervous system and in the 
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brain it is prominently expressed during fetal and postnatal development 

(Katsetos et al., 2003). It is widely used  to identify  neurons in developmental 

studies as a neuronal marker (Svendsen et al., 2001). 

3.5 Astroglial cells 

Astroglial lineage consists of protoplasmic and fibrous astrocytes, together with 

specialized astrocytes which have specific development, function, and 

biochemistry, such as radial glial cells. They are related by the presence of glial 

fibrillary acidic protein (GFAP) and their developmental characteristics (Eng et 

al., 2000). 

3.5.1 Radial glial cells 

Radial glial cells are the first glial form in the developing CNS. These cells 

develop earlier and transiently in prenatal and postnatal neurogenesis in 

vertebrates. In general, they are bipolar cells, one of their processes extending to 

the ventricular surface and the other to the pial surface. These cells provide a 

framework during development for migrating neurons (Pentreath, 1999). Thus, 

these cells are essential for the normal construction of the CNS. The radial cell 

processes may provide information between the surface of the ventricles and 

centre of proliferation. Once the neuronal migration is finished, the cells 

transform into protoplasmic or fibrous astrocytes or other type of specialized 

astrocytes (Rakic, 1995). 

3.5.2 Astrocytes 

Astrocytes make up about half of the volume of grey matter (Pentreath, 1999). 

The overall functions of astrocytes in physiological condition are supportive and 
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protective for the neurons, which can be summarized as follows (Pentreath, 

1999): 

1- Taking up, inactivating, reusing neurotransmitters, and having receptors for 

these neurotransmitters and they may release some neurotransmitters. This 

function is critical for controlling synaptic activity. 

2- Releasing growth factors, cytokines, secreting some of the extracellular matrix 

components and some molecules for cell adhesion. This is related to growth, and 

survival of the neurons. 

3- Blood brain barrier formation by their interaction with the endothelial cells of 

brain capillaries. 

4- Potassium siphoning, distributing potassium away from active neurons. 

5- Detoxification of some exogenous and endogenous toxins. 

Injury to the CNS in the form of trauma, degenerative diseases, or chemical 

exposure makes the astrocytes proliferate and hypertrophy. This form of reaction 

is called reactive astrogliosis, which is characterized by increased synthesis and 

expression of GFAP intermediate filaments (Zurich et al., 2004). Astrogliosis can 

be detected before the occurrence of the toxic effect on neurons, therefore it can 

be regarded that GFAP is an early indicator in neurotoxicity (O'callaghan, 1991). 

These reactive astrocytes secrete several molecules which can modulate the 

neurotoxicity of xenobiotics and may have neuroprotective  and 

neurodegenerative effects (Aschner et al., 2002). 

It is well established that GFAP is the principle intermediate filaments (8-9nm) of 

mature astrocytes and it has been proven to be a reliable marker for normal and 
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neoplastic astrocytes. As a member of the cytoskeleton system, GFAP is thought 

to play a role in regulating astrocyte motility and morphology by stabilizing the 

extension of the astrocytes (Eng et al., 2000). 

For the purpose to identify neuronal cells and astrocytes, the same protocol of 

immunocytochemistry in 3.3.2 was performed on cells seeded on a slide, but with 

different antibodies, mouse monoclonal anti-tubulin III antibody (1:500), and 

rabbit polyclonal anti-GFAP antibody (1:800) were added, then goat polyclonal 

secondary antibodies to mouse (1:500) and rabbit (1:500) respectively were added 

(appendix 3).  

 

Figure 21: Immunocytochemistry staining of human neural stem cells, the nuclei stained blue 

with DAPI, Tubulin positive cells are green, and GFAP positive cells are red. The scale bar is 

50µm. 
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3.6 Evaluation of different Extracellular molecules for coating: 

Different ECMs have been used in our study for coating the plates and the slides 

to find out which one is best for the neurospheres and the cells to be attached on 

the surface. Normally NSCs are in the floating state in the medium, otherwise, 

once the cells attach, they would differentiate into their three main lineages; 

astrocytes, neurons, and oligodendrocytes. These ECMs are; Poly D-Lysine 

(PDL), Poly L-Lysine (PLL), Collagen I, and Laminin. 

3.6.1 Materials and methods: 

1- PDD, PLL, and collagen I alone protocol: 

PDL and PLL were used independently at 5μg/cm
2
 and collagen I was at 10μg/ 

cm
2
. They were dissolved in sterile distilled water, PDL, PLL, and collagen I 

were added to separate plates and left overnight in the hood at room temperature. 

On the next day, the plates were washed with sterile distilled water three times, 

then, the plates were ready for use. Single cell suspensions were added to the 

wells of the plates and left in the incubator at 37C°, 5% CO2, and at 100% 

humidity for several days to see whether the neurospheres were attaching, or not, 

to the bottom of the wells. 

2- PDL and Laminin or PLL and Laminin 

In this protocol, the first coating was with PDL or PLL which followed the same 

steps mentioned above. On the next day, after washing the plates from PDL or 

PLL, Laminin at 2μg/cm
2
 was added to the wells and left in the incubator at 37C°, 

5% CO2, and 100% humidity for two hours, then the plate was washed by sterile 

distilled water three times, and when it dried, the plate would be ready for use. 
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3.6.2 The results: 

NSCs in the wells which are already coated with PDL, PLL, or collagen I alone, 

aggregated to form floating neurospheres which were not attaching to the bottom 

of the wells as shown in the figure below. In contrast, the cells that were seeded in 

wells which were coated with PDL and laminin or PLL and laminin form a 

monolayer sheet of cells that attached rapidly to the bottom of the wells. The 

figure also demonstrates the morphology of the differentiated cells and how they 

elaborate their processes.  

 

Figure 22: NSCs after seeding them on coated wells, A: PDL, B: PLL, C: Collagen I, D: PDL+ 

Laminin. The scale bar is 100µm. 
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3.6.3 Discussion 

PDL, PLL, and collagen I alone was not enough to enhance cell attachment. It 

seems that the addition of laminin to PDL or PLL is the best to enhance 

attachment to the base of the wells. It was mentioned above that laminin is one of 

the important molecules which are present in the NSCs niche during development 

(Kerever et al., 2007). This molecule also can make interaction with the integrin 

family molecules of the NSCs, which are the key regulators for cell proliferation, 

migration and differentiation (Qin et al., 2004). 

Extracellular Molecules (ECMs), when used in in vitro culture, can enhance 

cellular behaviour. Cell response depends on the cell phenotype and on the type 

of ECMs that have been used. The cells in vitro usually behave better when the 

ECMs used are similar to ECMs which are found in vivo. Cells in this case 

survive for a longer duration with these ECMs, and the existence of such ECMs 

can make the cells grow in the absence of serum and other growth factors 

(Kleinman et al., 1987). 

The ECM is secreted by the cells located within it. It is composed of proteins, 

proteoglycans and hyaluronan. These components interact with each other and 

with the proteins on the outer surfaces of the cells. It has been considered that 

ECM plays a structural role, and it has been shown that ECM is critically 

important in determining the functional responses of the cells toward the 

environment. Thus, in the CNS, ECM plays an important role in regulating 

several functions during development and adulthood. ECMs send signals for cell 

growth, maturation, differentiation, cellular migration, tissue homeostasis and 

tumour cell invasion. These activities are very important in CNS development and 

organization and any disruption of ECM might lead to severe developmental 
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abnormalities (Novak and Kaye, 2000). Several molecules in ECM have been 

reported to control rodent NSC proliferation, migration, and differentiation 

(Kearns et al., 2003). Cells express some receptors on their surfaces for ECM 

components to mediate their response. 

ECM is a component of the NSC niche which regulates their behaviour.  

Permissive substances may underlie the pathway of migration for neurosphere 

differentiation, while the non-permissive substances mark the more sedentary 

cellular zone. Laminin is one of the potent permissive substances for different 

types of cells in vitro. It is mainly present in the basal lamina but it is not present 

in high amounts in adult animal and humans (Novak and Kaye, 2000). It has been 

shown that laminin is present in developing cerebellum and it acts to facilitate 

migration of granular cell precursors from the external granule cell layer into the 

internal granule cells layer (Pons et al., 2001).  

Laminins are large flexible proteins of three polypeptide chains which are 

connected by disulfide bonds. This protein has several domains which facilitate 

its interaction with type IV collagen, heparin sulfate, entactin, and laminin 

receptors of the integrins (Ryan and Christiano, 1996). It is a multifunctional 

protein and it plays roles in development, migration, and differentiation, as it 

interacts with cell surface receptors. Several genes encode the three different 

types of polypeptide chains and mutation or deletion of these genes produces a 

range of congenital abnormalities such as a form of muscular dystrophy and 

epidermolysis bollusa (Novak and Kaye, 2000). 
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3.7 Migration study: 

3.7.1 Materials and methods 

We tried to find out which method is suitable to study cell migration of NSCs, 

two methods were investigated: The first method was by making a scratch with 

the tip of a pipette through a monolayer of cells, which was formed by using a 

single cell suspension placed on a surface coated with PDL and laminin, and the 

second method was by placing the neurospheres on a surface which was already 

coated with the same coating materials (PDL and laminin). This was followed by 

monitoring cell migration from the edge of the scratched monolayer and from the 

edge of the attached neurospheres.     
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Figure 23: Illustrate cell migration in scratch method, the gap between these cells represent the 

scratch. On the right side, there is two merged small neurospheres showing their cell migration. A: 

2days, B: 4 days, C: 6 days after cell seeding. The scale bar is 200µm 
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Figure 24: Two large and one small neurospheres attaching to the surface migrate away from their 

edges. A: 0 hour, B: after 24 hours, C: after 48 hours. The scale bar is 200µm. 
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Figure 25: Migrating neurosphere after its attachment, showing radial cellular migration 10X, 

20X 

200µM 

200µM 
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 Two videos showing neurosphere migration and merging with each other. 

3.7.2 Discussion 

It appears that the first method was less reliable since all the cells were 

differentiated at the time of cell attachment with no more cell proliferation. It 

showed migration and cellular processes for only the cells which resided at or 

near the edge of the scratch, therefore, migration distance was short and did not 

represent the real migration of all cells. On the other hand, using neurosheres, as 

shown in the videos, the cells still had the capability to proliferate, not all the cells 

were differentiated, and they continued to migrate for a long distance away from 

the edge of neurospheres, therefore the second method can be recommended to 

study cellular migration. 

 

 

 

 

 

 

 

 

 

 



 

77 
 

 

 

 

 

 

Chapter 4 

Materials and Methods 
 

 

 

 

 

 

 

 

 

 

 



 

78 
 

4.1 Human Neural Stem Cell source and Cryopreservation 

The human embryonic and foetal material was provided by the Joint 

MRC)/Wellcome Trust (grant # 099175/Z/12/Z) Human Developmental Biology 

Resource (www.hdbr.org). It was stored in a special  medium composed of 70% 

Neural Stem Cell maintenance medium (DMEM, F12 Ham’s Nutrient, 

Glutamine, B27 supplement, N2 supplement, Basic Fibroblast Growth factor, 

Epidermal Growth factor, and Heparin), 20% Foetal Calf Serum and 10% DMSO. 

The number of cells in each cryovial ranged from 1 to 3*10
6
. Cryovials were 

labelled with the passage number and the date of storage. The vials were kept at 

first in -80
ₒ 
C freezer for one day; then, the cryovials were transferred into liquid 

nitrogen for long term storage. The passage number used was 20-25. 

4.2 Resuscitation of cryopreserved Human Neural Stem Cells 

The stored cryovials of hNSCs were removed from liquid nitrogen and thawed 

rapidly in the water bath at 37
ₒ
C for 2-3 minutes. 3ml NSC maintenance media 

was added then centrifugation was performed at 1200 rpm for 5 minutes, the 

supernatant was aspirated and 1ml NSC maintenance medium was added and 

through re-suspension by pipette, a homogenous cell suspension was produced. 

Cell counting was carried out using haemocytometer. After that, the cell 

suspension was transferred to a non-treated tissue culture flask and more NSC 

medium was added to it. The flasks were kept in the incubator at 37
ₒ 
C, 5% CO2 

and 100% humidity.  

4.3 Subculturing of Human Neural Stem Cells 

The single cell suspension of human neural stem cells was grown in stem cell 

maintenance media (1:1 DMEM and F12 Ham’s nutrient, N2 (1ml of 100X in 

http://www.hdbr.org)/
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100ml media) and B27 supplements (2ml of 50X in 100ml media), Glutamine 

2mM, Heparin 5µg/ml, EGF 20ng/ml, and bFGF 10ng/ml), and kept in 25 cm
2
 

non-treated flasks. The flasks were placed in the incubator at 37°C with 100% 

humidity, 5% CO2 for several days.  The cells proliferate to form neurospheres 

which start to increase in size with time. When the diameter of the neurospheres 

became more than 500µm, the culture medium was collected in 15 ml conical 

centrifugation tubes. Centrifugation was performed at 800rpm for 3 minutes. The 

supernatant was aspirated and 1 ml of Accutase was added to the pellet at the 

bottom of the tube to enhance cellular dissociation. The tube was placed in a 

water bath at 37
ₒ
C for 5 minutes with shaking to prevent the neurospheres settling 

down. Cellular dissociation was completed by frequent resuspensions by 

pipetting. 2ml medium were added to the cell suspension to stop the action of 

Accutase followed by centrifugation at 1200 rpm for 5 minutes. The supernatant 

was removed and 1ml medium was added to the pellet and re-suspended to obtain 

a single cell suspension. Cell number counting was performed using a 

haemocytometer, then the cell suspension was transferred into 25 cm
2 

tissue 

culture non treated flasks, 4ml medium was added to the flasks, passage number, 

cell number and the date of splitting were recorded on the flasks. 

4.4 Drug preparation 

A stock solution was prepared for each dose of each drug at high concentration, 

300-500 times the final required concentration (depending on the drug), by 

dissolving the drug in its specific solvent. At the time of the experiment, these 

stock solutions were diluted by the media to achieve the final required 

concentrations to make the volume of the solvent fixed in all concentrations (0.2-

0.3%). Also, the same volume of the solvent was added to the control group. 
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The drug The solvent 

Methyl mercury Distilled water 

Lead  acetate DMSO-Dimethylsulfoxide 

5,5-Diphenylhydantoin (phenytoin) DMSO 

Sodium valproate HBSS- Hank’s Balanced Salt Solution 

Carbamazepine DMSO 

Phenobarbitone DMSO 

Folic acid NaOH 

Melatonin Ethanol 

Lithium carbonate Distilled  water 

Amitriptyline DMEM 

Diazepam Ethanol 

 

4.5 Cell seeding  

48 well plates were used and were coated first with Poly D-Lysine (PDL) and 

laminin as described before. After splitting the neurospheres using Accutase, as 

described previously, the cells were seeded into the wells at 30,000 cells per well 

to form a monolayer, then NSC differentiation medium: 1:1 DMEM and F12 

Ham’s nutrient, N2 (1ml of 100X in 100ml media) and B27 supplements (2ml of 

50X in 100ml media), and Glutamine 2mM containing the drug was added, 500µl 

in each well for 6 days. The media was changed every 3 days. Then, resazurin test 

was performed. 

4.6 Resazurin Assay 

Has been described in chapter 1, 1.2.6  

4.7 Kenacid Blue 

Has been described in chapter1, 1.2.7 
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4.8 Immunocytochemistry 

8 well chamber slides were coated with Poly D-Lysine and laminin as described 

before. In order to perform double immunostaining for Tubulin III and GFAP 

proteins, 20,000 cells were seeded in each well of the slide and 500µl NSC 

differentiation media with the drug in different concentrations were added for 6 

days, with changing media every 3 days. At the end of 6 days, the medium was 

aspirated, and paraformaldehyde (4%) was added for 15 min to fix the cells. 

Permeabilization and blocking was done by Triton (0.25%) and BSA (1%) for 30 

minutes followed by washing with Phosphate Buffered Saline- PBS three times, 

5min for each wash. Primary antibodies, anti-tubulin III (Mouse monoclonal) in 

1:500 dilution and anti-GFAP (Rabbit polyclonal) in 1:800 dilution were added 

together for double staining. The cells were incubated with the antibodies at 4° C 

for 24h in the cold room. On the next day, three washes with PBS (5 minutes 

each) was followed by adding the secondary antibodies in 1:500 dilution for 1h. 

Again the same washing with PBS three times, after that, DAPI in 1:1000 dilution 

was added for 2 minutes then washed with PBS. Non fluorescent mounting media 

was used to cover the slides with suitable coverslips; nail varnish was used to seal 

the coverslips. Lastly the slides were examined by Leica microscope DMIRE2. 

4.9 Neuronal processes length 

Several random photos were taken at 40X magnification by the same microscope 

blindly from each sample for three repeats. By using Volocity software version 

6.3.1 neuronal processes were measured to examine the effect of different doses 

of drug on the length of these processes. 
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Figure 26: The method of measuring the length of neuronal processes by using Volocity software 

version 6.3.1, the length of each neurite appears inside the box which appears beside each neurite. 

4.10 Neuronal proliferation study 

An ultra-low attachment 96 well plate was used. 1x10
4 

cells/100µl stem cell 

maintenance media
 
were seeded in each well, then the plate was centrifuged at 

300 RCF/3 minutes and left for 3 days to form only one neurosphere, after that 

the drug was added to the wells. 10 days later, during which the media was 

changed every three days, the neurosphere sizes were determined by measuring 

the diameter and comparing the mean for each group with that of the control 

group. 

4.11 Cell migration study 

The method mentioned above promoted formation of only one neurosphere in 

each well and with similar sizes. When the neurospheres reached a diameter of 

350-400µm, they were transferred into uncoated 48 well plates to be incubated for 

1 day with stem cell differentiation media and the drugs, 500µl in each well. 

Then, they were transferred into another 48 well plate which was coated with 

Poly D- Lysine and laminin. Normally, the neurospheres attached to the bottom of 
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the wells within few hours and started migration. Photographs were taken at 0, 24 

and 48 hours after incubation. To study migration distance, all the migrated cells 

were outlined, 2 diameters were taken, one perpendicular to the other, and the 

mean of these 2 readings was taken, neurosphere diameter was deducted, then, the 

result was divided by 2 to get the net migration distance, as shown in the figure 

below. 

 

Figure 27: Illustrates the way of measuring the migration distance of the migrating cells from the 

neurosphere. 

4.12 Western Blot Analysis: 

4.11.1 Lowry test: 

For western blots, 48 well plates were used with 10*10
4 

cells seeded in each well, 

6 wells for each group. The drug and media were added on the same day, 500µl in 

each well. On the next day, the cells started to proliferate and form the 

neurospheres. The media and the drug were changed every 3 days. After 6 days, 

the media and the neurospheres were aspirated and placed in the Eppendorf tubes 
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and centrifuged at 13000 RPM for 1 minute. The supernatant was removed and 

the pellets were washed twice with ice cold PBS. A freshly prepared lysis buffer 

and protease inhibitor 1:1 (see appendix 1) was added and mixed with the pellet 

by pipetting up and down to produce a homogenous solution of cell lysate. Some 

of the cell lysate was used for a Lowry protein test and the rest was mixed with 

6X solubilisation buffer (see appendix 1), vortexed and kept in the freezer at -20 

C° to be ready for Western Blotting. 

A Bovine Serum Albumin (BSA) standard curve was prepared by using 1mg/ml 

BSA. 1 ml Lowry solutions (A&B) (see appendix 1) were added for both the cell 

lysate of the samples and the standards. 10 minutes later, 100μl of Folin solution 

and water 1:1 was added and the tubes were incubated at room temperature for 45 

minutes. 200μl of each sample and BSA standard were pipetted in triplicate in a 

96 well plate, as shown the figure.  The plate was read at 750nm. 

 

Figure 28: Illustrate the method of Lowry test, the blue arrows represent the standard samples 

and the reds represent the experimental samples 

4.11.2 Western Blotting: 

For western blot analysis for tubulin III and GFAP proteins, the cell lysate was 

heated at 95°C for 5 minutes followed by vortex mixing and centrifugation at 

13000 RPM for 5 minutes.  6μg protein, were loaded in each well in the precast 
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polyacrylamide gel (4-20%, 12 well comb). The gel was run in 1X electrophoresis 

buffer (see appendix 1) at 175 V for 40 minutes.  After that the gel bands were 

transferred to a nitrocellulose membrane by running in cold transfer buffer (see 

appendix 1) at 100 V for 60 minutes. The membrane was collected after 60 

minutes, and a few drops of Ponceau stain were added to reveal the protein bands. 

The membrane was divided into 2 pieces, one for Tubulin III and GFAP and the 

other was for GAPDH. The membrane was washed quickly with TBST (see 

appendix 1) to remove the Ponceau stain. 5% milk solution in TBST was used as 

a blocking solution to incubate the membrane for 1 hour on a plate shaker at room 

temperature. The primary antibodies (see appendix 3) were diluted in 5% milk 

solution and the dilution was as follow: Anti- tubulin III (mouse monoclonal 

antibody-Abcam) 1:2000, Anti-GFAP (Rabbit polyclonal antibody-Abcam) 

1:20000, Anti-GAPDH (mouse monoclonal antibody-Sigma) 1: 5000. 

Appropriate amounts of these antibodies were used in sealed nylon bags to 

incubate the blots overnight in the refrigerator at 4°C on a plate shaker. On the 

next day, the blots were washed by TBST, 3X quick washes, 3X- 5 minutes 

washes and 3X- 15 minutes washes to remove the non-specific binding. The 

secondary antibodies (see appendix 3) (Goat anti-mouse, and Goat anti-Rabbit- 

Li-Cor Odyssey) were diluted in 5% milk solution in TBST and the dilution was 

1:30000. The blots were incubated with the secondary antibodies for 1 hour on a 

plate shaker at room temperature, after that, the blots were washed with TBST, 

3X quickly, 3X- 5 minutes, and 3X-15 minutes. At the end, the blots were 

scanned by using an Odyssey scanner at resolution of 84μm. 
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4.12 Statistical analysis 

The parametric data which represent three experimental repeats was analysed by 

using Prism version 6. Since we need to make comparison between more than two 

groups, one way ANOVA was performed for the all the data except for cell 

migration, two-way ANOVA was performed - two sets of data were used (1
st
 set - 

after 24 hours, 2
nd

 set - after 48 hours); then Dunnett’s multiple comparison test 

was undertaken to check the significance of difference by comparing the mean of 

the control group with that of experimental group. 
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Chapter 5 

Evaluation of This Model with Neurotoxic 

Chemicals 
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5.1 Neurotoxic Chemicals 

5.1.1 Mercury 

Mercury is present in the environment because of either natural processes or due 

to human activities (anthropogenic). It can be found in three different chemical 

forms: mercury vapour, inorganic mercury salt and organic mercury (Clarkson, 

2002). Methyl mercury (MeHg) has been studied thoroughly because it can reach 

the CNS and result in a neurotoxic effect (Aschner et al., 2007). MeHg is an 

environmental contaminant that has neurotoxic effects on both humans and 

animals (Farina et al., 2010). As a result of methylation of inorganic mercury, 

which is released from local industrial discharge into the aquatic environment, 

MeHg- containing fish represents the major source of human exposure. 

Communities which rely greatly on fish for food are liable to be exposed to highly 

toxic levels of MeHg (Clarkson et al., 2003). For more than 150 years human 

poisoning by MeHg has been reported in the laboratory by accidental exposure 

(Edwards, 1865). Most of the information about the toxic effect of MeHg has 

come from the catastrophic episodes of poisoning which occurred in the 1950s 

and  1960s in Japan (Harada, 1978) by consumption of fish from water which was 

heavily polluted with MeHg daily for long periods. Another major health disaster 

occurred in Iraq in the 1970s, where hundreds of people died and thousands 

became clinically ill when they ate bread made from grain which was treated with 

an organo-mercury fungicide (Bakir et al., 1973). 

 Adult intoxication with MeHg is characterized by damage to focal anatomical 

areas in the brain such as the visual cortex, and the granular layer of the 

cerebellum. Its effect on the peripheral nervous system manifest themselves by 

axonal degeneration with myelin disruption of the sensory branches of peripheral 
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nerve, excluding the motor part (Hunter and Russell, 1954, Takeuchi, 1981). The 

signs and symptoms of adult intoxication (Minamata disease) may  take several 

weeks to be manifested. These include constriction of the visual field, 

paraesthesia to the extremities (glove and stock type) and in perioral area, 

cerebellar ataxia, hearing loss, muscle weakness, tremor and mental retardation 

(Castoldi et al., 2001). On the other hand, the immature CNS is extremely 

sensitive to MeHg and the fetal brain may be affected even if the mother was 

asymptomatic. The effects of MeHg poisoning on the developing brain is diffuse 

unlike that in adult intoxication, with a high dose of MeHg resulting in cerebral 

palsy, blindness, hearing loss, and severe mental retardation (Castoldi et al., 

2001). 

5.1.2 Lead 

Lead (Pb) is a heavy metal that is normally found in the earth’s crust and is 

considered a ubiquitous pollutant in the ecosystem (Nava-Ruiz et al., 2012). 

Environmental levels of Pb have increased 1000 times in the last 3 centuries; the 

maximum increase was in 1950-2000 (ATSDR, 2007). The general population is 

exposed to Pb through air and food, while occupational exposure to Pb occurs in 

workers in Pb refining, battery plants, mines, welding of lead painted metals. Pb 

emissions in developed countries have decreased significantly in the last few 

decades due to the use of unleaded fuel (Jarup, 2003). Blood Pb levels were 

revised in the general population because the results showed the negative effect of 

Pb on child neurodevelopment, therefore, Pb levels which were considered 

hazardous were reduced to 40μg/dl in 1971, 30μg/dl in 1975, 10μg/dl in 1991 

(Bellinger and Bellinger, 2006). In spite of efforts to reduce exposure through 

regulation, excessive exposure still exists and Pb still is a public health concern.  
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The targets of Pb toxicity are cardiovascular, kidney, bone, the haematological 

system, whilst the CNS is the most susceptible system to its effect (ATSDR, 

2007). Children are the most sensitive to the effect of Pb. Pb exposure in utero, 

infancy, and early childhood produces dramatic effects manifested by behavioural 

disturbances, difficulties in learning, reduction in IQ scores even at low doses. 

This is because the developing CNS is more sensitive to PB than the adult CNS 

(Sharma et al., 2015). The high vulnerability of children to Pb toxicity is due to 

the different exposure pathway and due to variable toxicokinetics (Bellinger and 

Bellinger, 2006). Childhood lead exposure contributes to about 600,000 new 

cases of intellectual disabilities yearly, 99% of them are living in developing 

countries (Sharma et al., 2015). In humans, about half of Pb enters the human 

body through the inhalation route, while only 10-15% is absorbed by the oral 

route. In both these cases, 90% of the internalised Pb is retained in the body and 

distributed in the bones (Links et al., 2001). In the human, acute intoxication is 

less common than chronic intoxication and is manifested by central abdominal 

pain, headache, neurological signs; chronic poisoning is characterized by 

sleeplessness, poor attention span, convulsion, vomiting and coma (Bellinger et 

al., 1992). In children, Pb encephalopathy is characterized by lethargy, anorexia, 

vomiting, irritability, mental dullness; in severe cases, exposure for a long 

duration can decrease cognitive function and increase behavioural disorders like 

aggression and hyperactivity (Bellinger et al., 1992, Jarup, 2003, ATSDR, 2007). 

In summary, methyl mercury and lead acetate have been chosen because they are 

well known in their neurotoxicity, as mentioned above. They have been used to 

evaluate human neural stem cell model in predicting their neurotoxicity, and to 

know at which level it can detect their toxicity. 
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5.2 The results 

5.2.1 Mercury 

Our study shows that Methyl mercury MeHg affects cell viability and total 

protein content of cultured cells. It appears that cell viability significantly reduced 

from the dose of 2.5µM, (F (7,16)=26.99, p<0.0001, post-hoc: 2.5µM vs control: 

p<0.001), also, total protein amount was reduced significantly from the same 

dose, (F (7,16)=98.06, p<0.0001, post-hoc: 2.5µM vs control: p<0.0001) as 

shown in the figure 29A and B. However, MeHg reduced neurite length 

significantly at lower doses (1μM) than that of cell viability and protein, (F 

(5,12)=69.55, p<0.0001, post-hoc: 1µM vs control: p<0.05). Similarly, the 

neurosphere sizes were reduced significantly from the that dose, (F (5,12)=85.25, 

p<0.0001, post-hoc: 1µM vs control: p<0.05). This means that neurite length and 

neurosphere sizes are more sensitive measures than cell viability and total protein 

amount. Neurite length and neurosphere reduced more with increasing the doses 

as shown in figure 29C and D and figure 30. 

In the case of the effect on GFAP and tubulin III proteins in the western blot, it 

appears that MeHg significantly increases GFAP from the dose of 1μM, (F 

(5,12)= 64.02, p<0.0001, post-hoc: 1µM vs control: p<0.05), while in the effect of 

MeHg on tubulin III protein, it seems that this protein is reduced significantly at 

the same dose, (F (5,12)= 6.574, p<0.0036, post-hoc: 1µM vs control: p<0.05), as 

shown in figure 29E and F and figure 31. Regarding the effect on cell migration, 

it seems that MeHg at low dose does not have any significant effect on cell 

migration at either 24 or 48 hours of treatment. Cell migration appears to be 

significantly reduced at the dose of 1μM, (concentration vs time: F (5,24)= 1.568, 

p=0.2071, post hoc: 1µM vs control: p <0.05) (24hrs after treatment), and P<0.01 
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(48hrs after treatment), then migration distance reduced more with increasing the 

doses (F (5,24)=35.66, p<0.0001) and with increase the  duration, (F 

(1,24)=228.4, p<0.0001). 
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Figure 29: Effect of Methyl Mercury at different doses on A: Resorufin production, B: Total 

protein. Mean± SE., n=3 (average 6 wells from each experiment), C: The length of neuronal 

processes. Mean ± SE. n=3 (average 35 neurons from each experiment), D: The neurosphere size 

changes with different doses. Mean ± SE, n=3 (average 10 from each experiment), E: GFAP 

(Western Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: Cell migration 2 days 

after drug treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 30: The effect of different doses of  Methyl Mercury on the sizes of neurospheres. This 

figure illustrates photos of 24 wells of the same plate at the same magnification. The scale bar is 

700µm. 

 

Figure 31: Western blot analysis for hNSC cultured cells illustrating GFAP, Tubulin III, and 

GAPDH proteins after adding methyl mercury. 
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5.2.2 Lead 

Our study found that Lead (Pb) caused significant reduction in cell viability at a 

dose of 75μM, (F (7,16)=3.587, p=0.0163, post-hoc: 75µM vs control: p<0.05). It 

appears that cell viability was severely affected with increasing the doses. 

However, total protein amount was reduced significantly at 50µM, (F (7,16)= 

12.12, p<0.0001, post-hoc: 50µM vs control: p<0.05), as shown in figure 32A and 

B.  Pb treatment results in significant reduction in neurite length and neurosphere 

sizes from the dose of 25μM, (F (5,12)=23.07, p<0.0001, F (5,12)=43.88, 

p<0.0001 respectively, post-hoc: 25µM vs control: p<0.05), figure C and D. 

Regarding its effect on GFAP and tubulin III proteins, it seems that this chemical 

has no significant effect on tubulin III protein, but it increase GFAP significantly 

at 25μM, (F (5,12)=5.144, p<0.0094, post-hoc: 25µM vs control: p<0.05), and the 

GFAP expression increased significantly with increasing the doses, figure 32E 

and F and 33. In case of its effect on cell migration, it appears that Pb has no 

significant effect at the dose of 5μM, however, it reduce migration distance with 

increasing the dose, (F (5,24)=26.14, p<0.0001), and with increasing the duration, 

(F (1,24)=199.4, p<0.0001). Lead reduces migration distance 48 hours after 

treatment at the dose of 10μM, (concentration vs time: F(5,24)=1.944, p=0.1, 

post-hoc: 10µM vs control: p<0.05) and has no significant effect 24 hours after 

treatment, but at 25, 50 and 75μM, Pb causes highly significant reduction in cell 

migration 24, and 48 hours after treatment, figure G. 
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Figure 32: Effect of lead acetate at different doses on A: Resorufin production, B: Total protein. 

Mean± SE. n=3 (average 6 wells from each experiment), C: The length of neuronal processes. 

Mean ± SE. n=3 (average 35 neurons from each experiment), D: The neurosphere size changes 

with different doses. Mean ± SE, n=3 (average 10 from each experiment), E: GFAP (Western 

Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: Cell migration 2 days after drug 

treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 33: Western blot analysis for hNSC cultured cells illustrating GFAP, Tubulin III, and 

GAPDH proteins after adding Lead acetate. 

5.3 Discussion 

5.3.1 Mercury 

Methyl mercury (MeHg) is well known as environmental neurotoxicant for both 

humans and animals. Transplacental passage of MeHg readily occurs in humans 

and the developing CNS is more vulnerable to its neurotoxicity (Costa et al., 

2004, Grandjean and Landrigan, 2006). High affinity of MeHg for sulfhydryl 

(thiol) groups makes proteins and peptides containing cysteines vulnerable to 

structural and functional changes. Combination of MeHg with sulfhydryl group in 

enzymes leads to inhibition of these enzymes (Rocha et al., 1993). Also, 

combination of MeHg to thiol groups in non- protein compounds such as 

glutathione GSH disturbs the antioxidant GSH system of the cells. Therefore, 

these facts represent the keys to the mechanism of MeHg neurotoxicity (Aschner 

and Syversen, 2005). 

In this study, it appears that MeHg affects cell viability and total protein in a dose 

dependant way. MeHg can cause cell death in two ways, either by apoptosis 
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(programmed cell death) (Nagashima, 1997, Bulleit and Cui, 1998, Ceccatelli et 

al., 2010) or by necrosis (Miura et al., 1987, Nakada and Imura, 1983). The dose 

of MeHg determines the type of cell death; cell death at lower doses is by 

apoptosis, while at higher doses, is by necrosis (Castoldi et al., 2000). It seems 

that high doses of MeHg >5μM cause rapid impairment in mitochondrial activity 

and also causes plasma membrane lysis which results in massive cell necrosis. At 

low doses, the cell death seems to be by apoptosis (Castoldi et al., 2001) which 

appears to be caspase dependant (Chang et al., 2013). 

Regarding the effect of MeHg on neurite length and cell migration, microtubule 

integrity is important in the development of the CNS such as cell proliferation, 

migration to form cortical layers of the cerebrum and cerebellum, neurite 

formation, extension and stabilization. MeHg appears to affect the cytoskeleton 

especially microtubules. MeHg has been found to have a high affinity for 

sulfhydryl groups, to depolymerize microtubules in vitro, and inhibit their 

assembly (Sager et al., 1981). Cytoskeleton fragmentation and neural network 

disruption have been shown in cultured cerebellar granular cells when exposed to 

MeHg, and it seems that these effects appear earlier than cell death (Castoldi et 

al., 2000). MeHg interference with microtubules is clear by the findings in the 

autoptic brains of full term infants from the Iraq outbreak in 1970s, who were 

exposed in utero to MeHg in early pregnancy, these include, brain size reduction, 

abnormal neuronal arrangement and alteration in cerebral cortex alignment 

(CHOI et al., 1978). MeHg caused a dose dependant reduction in cell migration, 

which is consistent with the finding of Kunimoto when he used cerebellar granule 

neurons and explained the reduction in cell migration due to extensive cell death 

(Kunimoto and Suzuki, 1997). 
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Calcium ions play an important role in cell death in the CNS. Ca
+2

 overload has 

been shown to trigger cell death either by apoptosis or by necrosis. The 

mechanism by which Ca
+2 

causes this problem is unknown, but raised calcium 

ions may lead to activation of degradative enzymes like proteases, endonuclease, 

phospholipase, mitochondrial dysfunction, and disruption in the cellular 

cytoskeleton (Orrenius and Nicotera, 1993). MeHg has been reported to affect 

Ca
+2

 homeostasis and elevate Ca
+2

 intracellularly in cerebellar neuron cultures 

(Okazaki et al., 1997, Oyama et al., 1994), as shown in figure 33. Calcium 

channel blockers, such as nifedipine and MVIIC, delay MeHg induced elevation 

of Ca
+2

 significantly. Also, the Ca
+2

 chelating agent BAPTA protects granule cells 

from cell death induced by MeHg. Additionally, in agreement with these findings, 

voltage gated Ca
+2

 channel blockers prevent the appearance of neurological 

disorders in rats which received MeHg in vivo (Sakamoto et al., 1996). 

The results show that MeHg reduced neurons (tubulin III protein) in a dose 

dependant way; this can be explained by MeHg accumulating in astrocytes to 

induce cell swelling and inhibit excitatory amino acid uptake (Aschner et al., 

2000). Glutamate represents the major excitatory neurotransmitter in the 

mammalian CNS. However, glutamate at high levels in the synaptic space is 

considered as a toxin, which causes injury and death to neuronal cells (Meldrum, 

2000). MeHg causes a significant reduction in glutamate uptake in astrocyte 

cultures; the efflux of glutamate from astrocytes increased significantly, which 

lead to increased glutamate in the extracellular space and accelerated excitotoxic 

neurodegeneration (Aschner et al., 2007). Glutamate neurotoxicity, which is 

referred to as excitotoxicity, is due to over-activity of N-methyl D-asparatate 

(NMDA) glutamate receptors which result in an increase in Na
+
 and Ca

+2
 influx 
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(Pivovarova and Andrews, 2010), figure 33. Increased intracellular Ca
+2

 leads to 

activation of certain pathways which lead to cell death and to the generation of 

oxidative stress and neurotoxicity (Ceccatelli et al., 2010). In vitro co- application 

of nontoxic dose of MeHg and glutamate results in neuronal damage like that of 

excitotoxic damage (Matyja and Albrecht, 1993). Neuronal damage can be 

explained also by astrocytes dysfunction (Brookes, 1992). 

 

Figure 34: Mechanism of MeHg induced oxidative stress. It inhibit glutamate reuptake by the 

astrocytes which led to increase in glutamate in the extracellular spaces, and it increase Ca
+2

 and 

and Na
+
 influx which induce excitotoxicity by over activate NMDA receptors  (Farina et al., 

2011). 

Our study shows that MeHg causes a dose dependant increase in astrocytes 

(GFAP). As MeHg is a neurotoxic chemical, this may cause astrocytes to be 

reactive and increase the synthesis of GFAP, which is called reactive astrogliosis, 

and which occurs after injury, either due to trauma, diseases, genetic disorders, or 
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due to chemical exposure, as in the case of MeHg (Eng et al., 2000). Astrogliosis 

considered as an early sign of neurotoxicity (Zurich et al., 2004, O'callaghan, 

1991). Reactive astrocytes are able to release bioactive substances to modulate the 

neurotoxicity of these chemicals, some of them have neuroprotective while the 

others may have neurodegenerative potentials (Aschner et al., 2002). 

5.3.2 Lead 

In spite of remarkable success in abating lead (Pb) exposure, Pb remains an 

important health problem to children in both developed and developing countries 

(Bellinger, 2013). Pb is an ubiquitous environmental pollutant that can pass 

through the placenta and can cross the blood brain barrier to induce neurotoxicity. 

Exposure to Pb, even at low doses, can be hazardous (Yu et al., 2011). The results 

reported here show that lead decreases cell viability and total protein  

significantly at 50μM and more, and this can explained by Pb leading to 

mitochondrial and Golgi apparatus dysfunction (Strużyñska et al., 2001) and Pb 

exposure can result in cell death by apoptosis, which has been described before 

when cerebellar cells were exposed to it (Sharifi et al., 2002). Pb can affect the 

nervous system by several pathways; Pb is able to pass through the blood brain 

barrier due to its capability to substitute for calcium ions, therefore Pb gains entry 

into the cells through one or more of the various types of Calcium channels 

(ATSDR, 2007). Within the cells, Pb interferes with calcium release from the 

mitochondria leading to formation of a permeability transition pore which 

enhances programmed cell death and mitochondrial self- destruction (Mason et 

al., 2014). Additionally, Pb interferes with the phosphorylation of protein kinase 

C (PKC) which is activated due to increased intracellular Ca
+2

 concentration and 

Diacylglycerol (DAG), which in turn increases cell permeability to water and 
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other ions, which result in oedema and cell damage (Bressler and Goldstein, 

1991). 

Oxidative damage is another important mechanism of lead neurotoxicity; 

experimental evidence has shown that Pb induces oxidative stress through the 

disruption of pro-oxidant/anti-oxidant balance (Daniel et al., 2004, Villeda-

Hernandez et al., 2006). The reduction of antioxidant activities might be due to 

the high affinity of Pb for sulfhydryl groups or metal cofactors in antioxidant 

enzymes (Gurer and Ercal, 2000). It has been shown that Pb causes significant 

reduction in the activity of superoxidase dismutase (SOD) and catalase (CAT) in 

rat and mouse brains (Nehru and Kanwar, 2004). Moreover, it has been found that 

Pb exposure during pregnancy reduces SOD, glutathione perioxidase (GPx) and 

glutathione (GSH) in rat brains (Wang et al., 2006), figure 35. 

The two important pathways which are concerned with Pb are those for 

calmodulin and PKC. Ca
+2

 binds to calmodulin and also converts it to its active 

form, while Pb displace Ca
+2

 bound to calmodulin; Pb activation of calmodulin 

results in protein phosphorylation altering the cAMP messenger pathways (Goyer, 

1997). Normally, Ca
+2

 activates PKC, which is a serine threonine protein kinase 

involved in dendritic branching, neurotransmitter synthesis and synaptic 

transmission (Bressler et al., 1999). This might explain the significant reduction 

in neurite length. 

Several neurotransmitters also are affected by Pb interaction during development 

of the CNS. In animals exposed to low doses of Pb during development, high 

level of dopamine and catecholamine neurotransmission have been observed in 

the cerebral cortex, cerebellum, and hippocampus. While rats exposed to high 
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dose of Pb have a decrease in dopamine and catecholamine neurotransmission in 

the same areas of the brain (Devi et al., 2005), figure 35. 

Pb enters astrocytes from receptor-operated and voltage-dependant Ca
+2

 channels 

which mediate Pb uptake into the cells; Pb is deposited in the lysosomes, nucleus, 

and other organelles of astrocytes, a process which might be occuring through Pb-

binding proteins (Tiffany-Castiglioni and Qian, 2001). Astrocytes play an 

important role in protecting neurons against Pb neurotoxicity (Harry et al., 1996); 

this may explain there was no significant effect on tubulin III protein ( the 

neuronal cells). GFAP in these result was increased significantly and in a dose 

dependant way. As it was suggested by O’Callaghan that this intermediate 

filament can be considered as an early sign of neurotoxicity (O'callaghan, 1991). 

The increase in this protein represents astrogliosis, in which the astrocytes react to 

the toxic insult by an increase in synthesis of GFAP and the astrocytes become 

hypertrophied and increased in number (Strużyñska et al., 2001). Several studies 

confirm that rat brain exposed to Pb showed an increase in the concentration of 

GFAP as well as the number of astrocytes (Strużyñska et al., 2001, Tiffany-

Castiglioni and Qian, 2001). 

 

Figure 35: Mechanisms of lead toxicity (Nava-Ruiz et al., 2012) 
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It can be concluded that HNSC culture method can detect the neurotoxicity of 

methyl mercury at low level (1µM) in most of the end points that were tested and 

the neurotoxicity of lead acetate at 10µM in cell migration.  
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Chapter 6 

Evaluation of This Model with Anti-epileptics 
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6.1 Anti-epileptics and Teratogenesis 

Epilepsy is a common brain disorder characterize by recurrent seizures; it affects 

about 1% of the whole population and the highest incidence is in the first year of 

life (Hauser, 1994). Anti-epileptic drugs (AEDs) are used to control seizures but 

they are also used in the treatment of other neurological and psychiatric disorders 

such as bipolar disorders, migraine, movement disorders, and neuropathic pain 

(Rogawski and Löscher, 2004b). AEDs act on ion channels, metabolic enzymes, 

neurotransmitter transporters in the CNS. They change the bursting activities of 

neurons, prevent spread of epileptic activity and decrease synchronization 

(Rogawski and Löscher, 2004a). Additionally, AEDs interfere with neuronal 

migration, cell differentiation and plasticity, and they can lead to neuronal cell 

death in the developing brain in rodent (Olney et al., 2004). 

About 3 to 7 out of 1000 pregnant women have epilepsy (Viinikainen et al., 

2006); these women should have medication to control seizure activity; otherwise 

it will be harmful for both, the mother and the baby. The convulsion itself carries 

a lot of risks to the fetuses; it can cause intracranial haemorrhage and alteration in 

fetal heart rate (Fountain, 2009). Therefore; continuation of antiepileptic drugs is 

mandatory to save the life of the mother and her baby.  

It is well known that the use of antiepileptic drugs during pregnancy can cause a 

wide range of congenital abnormalities (Meador et al., 2006); the original reports 

about the association between these drugs and congenital anomalies goes back to 

the 1960,s (Mullers-Kuppers, 1963). Meador et al. (2008) state that a 

monotherapy regimen for epileptic pregnant women can increase the incidence of 

congenital anomalies in their children threefold compared to that of healthy 
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women and polytherapy makes the incidence higher than that of monotherapy. 

Nearly all antiepileptic drugs are not safe and not free from teratogenic potential 

(Prabhu et al., 2008). The teratogenicity of these drugs is also dose dependant 

(Tomson et al., 2011). 

6.1.1 Mechanism of action of antiepileptics 

1- Interaction with ion channels 

The main target of AEDs is the voltage-gated ion channel, because these channels 

are critical in determining the excitability of neurons and regulation of 

neurotransmitter release. By AEDs interaction with ion channel, they inhibit 

epileptic bursting activities, seizure propagation and synchronization. Sodium or 

calcium blockage with facilitation of potassium channels results in control of 

seizure activity in epileptic animal models (Tatulian et al., 2001). 

Voltage gated sodium channels are composed from several subunits, which 

undergo conformational modification when the neuron is depolarized at the action 

potential threshold. This modification changes the channel into the open 

conductive state to allow sodium influx for only few milliseconds. Channels 

inactivate quickly and could be reactivated after repolarization. This quick 

changing between open and closed status of sodium channels is important for 

both the normal brain and for seizure discharge (Leach et al., 1986). Phenytoin 

and carbamazepine act by changing voltage gated sodium channels. Blockage of 

these channels can also be achieved by sodium valproate. These drugs do not 

affect the physiological activity of the neurons, but they inhibit the frequent 

repetitive firing. This means that these drugs do not make any impairment in 

general brain function. Also, these AEDs decrease the output of transmitter at the 



 

107 
 

synapses but they do not alter the excitatory or inhibitory synaptic responses 

(Prakriya and Mennerick, 2000). 

Voltage gated calcium channels have two types; high voltage-activated (HVA) 

and low voltage-activated families. HVA can only be opened when there is a 

strong depolarization and can regulate calcium and neurotransmitter release from 

the presynaptic neuronal terminals, so it reduces neuronal excitability. 

Phenobarbitone blocks this type of calcium channel (Barker and Rogawski, 

1993). The low voltage-activated channels (T-type) control neuronal firing and 

regulate bursting and intrinsic oscillations (Perez-Reyes, 2003). In ‘absent 

seizures’ there is abnormal oscillatory behaviour (Huguenard, 1996). This type of 

calcium channel generates a low threshold spike of calcium and stimulates a burst 

of action potential with the aid of sodium channels in thalamic reticular neurons 

(Suzuki and Rogawski, 1989). Sodium valproate is effective in the treatment of 

seizures by blocking this type of channel (Sankar and Holmes, 2004). 

2- Interaction with neurotransmitters: 

Several AEDs act by inhibition of synaptic activities or by reducing synaptic 

excitation. By interaction with neurotransmitter receptors and the ion channels 

which regulate the neurotransmitters, these drugs can reduce bursting and seizure 

spread. There are two neurotransmitter systems which are the target of AEDs; the 

inhibitory GABAergic system and the excitatory glutamatergic system. AEDs 

exert their anticonvulsant action either by enhancing the inhibitory system 

mediated by GABA (γ-amino butyric acid) receptors or blocking the excitatory 

glutamate receptors (such as N-methyl-D-aspartate – NMDA, α-amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid – AMPA, kainite, group I 
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metabotropic receptors) (Kaindl et al., 2006). There are other neurotransmitter 

systems which are also involve in controlling seizure activities such as the glycine 

system, monoamines, neuropeptides, galanin, neuropeptide Y, adenosine, 

serotonin and histamine (Rogawski and Löscher, 2004a). 

6.1.2 GABA inhibitory system 

Inhibitory synapses are essential in regulating the excitatory neurons and 

preventing synchronized epileptiform discharge (Miles and Wong, 1987). 

Mediating GABA inhibition is the major mechanism of action of AEDs. GABA 

stimulates chloride-permeable GABAA receptors and slower metabotropic G-

protein-coupled GABAB receptors. Therefore, any compound that blocks GABAA 

receptors can be considered as a proconvulsant. Mutations of this subunit have 

been associated with broad spectrum of epilepsy syndromes like childhood 

absence epilepsy, febrile convulsion, Dravet’s syndrome, and Juvenile myoclonic 

epilepsy (Wallace et al., 2001, Cossette et al., 2002).  

Barbiturates like phenobarbitone modulate GABAA receptors. Phenobarbitone at 

the clinically relevant concentration makes the channels  open  for a 

proportionally longer duration (Macdonald and Olsen, 1994), Barbiturates act on 

both sodium and calcium channels (Barker and Rogawski, 1993). 

6.1.3 Glutamate Excitatory system 

Glutamate receptors are glutamate-gated cation channels which facilitate 

excitatory neurotransmission in the CNS (Dingledine et al., 1999). The 

compounds that block NMDA, AMPA, and kainite receptors are effective 

anticonvulsants in epileptic animal models (Rogawski et al., 2003). AMPA and 

kainite receptors control seizure propagation and regulate seizure induced brain 
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damage (Meldrum, 1995). Kainate receptors also mediate glutamate release from 

excitatory afferent neurons and reduce GABA release from inhibitory 

interneurons (Lerma et al., 2001). 

Drug GABA 

system 

Glutamate 

receptors 

Sodium 

channels 

Calcium 

channels 

Sodium valproate +  + + 

Phenytoin   +  

Carbamazepine  + +  

Phenobarbitone + + + + 

 

6.1.4 The Anti-epileptics 

1- Sodium Valproate 

Sodium Valproate (SV) is Valproic acid sodium salt. It was discovered by 

accident as an anticonvulsant in 1963 when SV was used as a solvent for other 

compounds which were administered to animals used in experimental models of 

epilepsy. Since then, SV has been used for different types of seizures. It is used 

for the treatment of epilepsy in more than 100 countries (Loescher, 2002). SV is 

also used as a mood stabilizing agent in bipolar mood disorder and it is 

recommended by many psychiatric and pharmacological societies as a first line 

drug for treatment of acute mania and as maintenance therapy for the prevention 

of mania and sometimes recommended for depression (Fountoulakis et al., 2005). 

In addition to that SV is prescribed as prophylactic drug against headaches in 

migraine (Chronicle and Mulleners, 2004) and has been proposed for the 

treatment of cancer (Blaheta et al., 2002), Alzheimer Disease (Tariot et al., 2002) 

and also it is used for the treatment of latent HIV infection (Lehrman et al., 2005). 
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6.1.4.1 Mechanisms of action of SV 

1- SV administration causes an increase in the inhibitory neurotransmitter 

GABA by direct inhibition of GABA transaminase which is responsible 

for GABA breakdown (Maitre et al., 1974). Potentiation of GABA 

signaling can prevent seizure activity while inhibiting GABA signaling 

can cause seizures, therefore, this can explain the anticonvulsant property 

of SV 

2- SV  indirectly inhibits slow sodium currents and calcium currents (De 

Sarro et al., 1992). Sodium and calcium channels are very important in 

neuronal excitability. SV has been reported to block neuronal excitability 

and action potential firing  (McLean and Macdonald, 1986). SV acts to 

normalize neuronal firing and to increase the threshold of neural 

discharge. This mechanism can explain the action  of this drug in migraine 

(Casucci et al., 2008). 

3- SV is a potent inhibitor for HDACs (Histone Deacetylase) (Phiel et al., 

2001). The discovery of this fact opens a wide window to understand the 

teratogenecity of this drug and to explain its uses in cancer and treatment 

of latent HIV infection.  



 

111 
 

 

Figure 36: The targets of VPA (valproic acid) and its potential use in medicine (Terbach and 

Williams, 2009) 

 

Figure 37: The chemical structure of VPA (valproic acid) and its related compounds (Terbach and 

Williams, 2009) 

2- Phenytoin 

Phenytoin-PHN (Diphenylhydantoin) is the most common drug that used for 

treatment of epilepsy; it was used as an anticonvulsant in the 1930s (Merrittt and 

Putnam, 1938). PHN exert its anticonvulsant action at serum level 10-20μg/ml, 
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which correspond to 40-80μM, without causing sedation or interfering with the 

normal CNS function (Yaari et al., 1986). It is highly effective and is the drug of 

choice for several types of epilepsy (Temiz et al., 2009). PHN is well known in its 

teratogenicity for different species such as rabbit (Danielsson et al., 1992), rats 

and mice (Finnell and Dansky, 1991) as well as humans (Dansky and Finnell, 

1991). Because it is well documented concerning its teratogencity in humans and 

animals, it is placed in FDA pregnancy category D (Ozolins et al., 1995). 

Maternal exposure to PHN during pregnancy increases the risk of having a child 

with congenital anomalies by two to three fold with a characteristic anomaly Fetal 

Hydantoin Syndrome (Ozolins et al., 1995), which is characterized by different 

signs such as facial, skull abnormalities, like short nose, low nasal bridge, 

hypertelorism, epicanthal fold, low hair line, hypoplasia of distal phalanges and 

nails. This syndrome can be observed in 10% of PHN treated mothers (Ornoy, 

2006). The exact mechanism for its teratogenicity is unknown and needs to be 

clarified. The pattern of birth defects in humans, rabbits, rats and mice is similar; 

this suggest that the teratogenicity follows the same pathway (Azarbayjani et al., 

2006). Azarbayjani thought that PHN teratogenicity is mostly related to excessive 

generation of reactive oxygen species or to impaired antioxidant defence 

mechanisms.  

3- Carbamazepine 

Carbamazepine (CBZ) is an iminostilbene structurally related to tricyclic 

antidepressants (Ambrósio et al., 2002) and shares some clinical similarities with 

structurally unrelated  valproic acid, which has a short chained fatty acid structure 

(Beutler et al., 2005). Since its introduction in clinical practice for treating 
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epileptic patients in the mid-1960s, it has become the most frequently prescribed 

first line drug for the treatment of generalized tonic-clonic and partial seizures 

(Loiseau, 1995). Additionally, CBZ can be used in the treatment of neuropathic 

pain (Sindrup and Jensen, 1999) and psychological disorders (Albani et al., 1995). 

In spite of being effective and safe in treating epileptic patients, 30-40% of 

patients do not respond completely to CBZ treatment (Shorvon, 1996). 

Sometimes, CBZ may cause side effects. Acute toxicity at therapeutic doses affect 

the central nervous system and gastrointestinal system, causing sedation, ataxia, 

dizziness, nausea, vomiting, constipation, and diarrhoea. While chronic treatment 

with CBZ may lead to alteration in plasma lipids, hyponatraemia, increased 

appetite and weight gain, reduced white blood cell number and allergic reactions 

(Albani et al., 1995). The mechanisms by which this drug causes these side 

effects are not clear. The mechanism of action of this drug is still not known but it 

is widely accepted that this drug acts by more than one mechanism. It has been 

thought that it may block or enhance voltage gated Na+, Ca+2, and K+ channels, 

and it may modify uptake, release, receptor binding of neurotransmitters in 

serotonergic, dopaminergic, and glutamergic systems (Ambrósio et al., 2002). It is 

most commonly used in Europe by women of child bearing age; it can increase 

the risk of major congenital anomalies by 3.3%, the main congenital anomalies 

that associated with CBZ are spina bifida, cardiovascular, and other minor 

anomalies; but in general, it is less teratogenic than Valproate (Jentink et al., 

2010b). 

4- Phenobarbitone 

Phenobarbitone (PHB) (phenyl-ethyl-barbiturate-acid), also known as 

phenobarbital, is one of the oldest anticonvulsants. It was first discovered by 



 

114 
 

German chemist Emil Fischer (Kwan and Brodie, 2004). The anticonvulsant 

activity of PHB was published by German physician Alfred Hauptmann in 1912 

(Kumbier and Haack, 2004). At that time, bromide was used as standard drug for 

treating epileptic cases. Hauptmann used PHB for severe cases that were resistant 

to bromide, he found that PHB reduce the frequency of seizures and decrease 

their severity. Eventually PHB became the drug of choice in treating epilepsy 

around the world. 

PHB was first approved by the FDA in 1939 (Salas, 2012). It is commonly used 

as an anti-epileptic for all the types of epilepsy except petit mal (absence seizure), 

as a sedative, for treatment of hyperbilirubinemia and insomnia. Animal studies 

on chicks and rodents have shown that maternal exposure to PHB at several times 

the average human dose might lead to increased risk for cleft palate, cardiac 

defect, and other major structural defects (Finnell and Dansky, 1991). Also, 

animal studies showed that the number of major structural defects was directly 

related to the exposure doses of PHB during pregnancy (Finnell et al., 1987). 

While the animal data confirmed the teratogenicity of PHB, human data is not 

clear. It has been shown that in utero exposure to PHB may result in long lasting 

neurobehavioral effects in the human such as impairment in cognitive 

development (van der Pol et al., 1991) and low IQ scores (Reinisch et al., 1995). 

Instead of that, the embryo toxicity and teratogenicity of PHB seem to be less 

than that of other AEDs in animal models (Holmes et al., 2001). In vivo and in 

vitro animal studies demonstrated that PHB is associated with biochemical and 

morphological abnormalities (Bergey et al., 1981b). Several studies on the 

association of PHB with major congenital anomalies in the human have been 

published (Pennell, 2008). The same author showed also that the risk of having a 
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baby with a birth defect is higher when PHB was combined with another 

antiepileptic, polytherapy. An epidemiological study showed that PHB drug 

exposure during the first trimester is associated with major and minor structural 

defects (Salas, 2012). Postnatal exposure to PHB especially during the first 3 

years of life may lead to impairment in cognitive function which persists 

throughout adulthood (Reinisch et al., 1995). A pattern of minor structural defects 

has been identified with the use of AEDs known as fetal anticonvulsant 

syndrome, with similar features to the syndrome being identified in infants of 

mothers who are exposed to PHB during pregnancy. These features include nail 

hypoplasia, midface hypoplasia, depressed nasal bridge, hypertelorism, and 

epicanthal fold (Salas, 2012). Other studies found an association between PHB 

exposure during pregnancy and facial clefts and cardiovascular defects (Arpino et 

al., 2000) and it increased the risk of having infants with a smaller head 

circumference and low birth weight (Dessens et al., 2000). 

Mechanism of action of Phenobarbitone: 

PHB acts as anticonvulsant by increasing the threshold for stimulating the motor 

cortex and by inhibiting seizures in the cortex, thalamus, and limbic system. PHB 

works by facilitating GABA, an inhibitory neurotransmitter; it stimulates GABA 

binding to GABA-A receptors which leads to hyperpolarization of neuronal cell 

membranes and thus it prevents propagation of seizure activity (Salas, 2012). 

Additionally, PHB decreases the effect of glutamate, the excitatory 

neurotransmitter in the brain (Platt, 2007). PHB increases the time of the chloride 

channel to be in the open state (Macdonald and Olsen, 1994) and also PHB acts 

on both sodium and calcium channels (Barker and Rogawski, 1993). 
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The anti-epileptics have been chosen because most anti-epileptics are well known 

in their teratogenicity, sodium valproate or phenytoin administration during 

pregnancy associate with high rate of congenital anomalies. While the other, 

(Carbamazepine and phenobarbitone), are less teratogenic. Therefore, human 

neural stem cell culture model was used to test if it can predict the neurotoxicity 

of these anti-epileptics at their therapeutic level. 

6.2 Results 

6.2.1 Sodium Valproate 

SV at doses of 250, 500, 750 and 1000µM, which lie around the therapeutic range 

(400-800µM) had no significant effect on the resazurin assay when compared 

with the control group, (figure 38-A&B), At 1000µM, the protein content was 

reduced significantly, (F(7,16)=17.27, p <0.0001, post-hoc: 1000µM vs control: 

p<0.01) and at higher doses, 1500, 2000, and 2500µM there was a highly 

significant reduction in both cell activity, (F (7,16)=40.16, p<0.0001, post-hoc: 

1500 vs control: p<0.0001), and protein content when compared with the control 

group (1500µM vs control: p<0.0001), which would indicate that valproate is 

very toxic at these doses.  

On the other hand, figure 38-C shows no significant effect of SV on the length of 

neuronal processes, except at the dose of 2000µM when there was significant 

reduction in the neuronal length when compared with the control group, (F 

(5,12)=8.637, p=0.0011, post-hoc: 2000µM vs control: p<0.05). Figures 38-D and 

39 show that SV has a highly significant effect on the sizes of neurospheres 

through all the doses, including the therapeutic doses 500µM, (F (5,12)=23.21, 

p<0.0001, post-hoc: 500µM vs control: p<0.01, and 750µM vs control: p<0.001), 

probably due to its anti-proliferative action on the neural stem cells.  
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SV seems to have no significant effect on tubulin III protein in all doses in spite 

of the non-significant increase in therapeutic range, while SV decreases GFAP 

significantly at high doses 1500µM, (F (5,12)=3.657, p=0.0305, post-hoc: 

1500µM vs control: p<0.05, and 2000μM vs control: p<0.01), figure 38-E and F 

and figure 40. In the case of cell migration, SV has no significant effect on cell 

migration after the 1
st
 24 hours at all the doses, but the detrimental effect was 

significant with increasing the duration, (F (1,24)=148.6, p<0.0001), and with 

increase concentration, (F (5,24)=8.041, p=0.0001). From the doses of 1000µM 

there is significant reduction in migration distance when compared with the 

control, (concentration vs time: F (5,24)=1.611, p=0.1953, post-hoc: 1000µM vs 

control: p<0.05), 1500µM vs control (p<0.01), and 2000µM vs control (p<0.001) 

after 48 hours of treatment, figure 38-G. 
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Figure 38: Effect of Sodium Valproate at different doses on A: Resorufin production, B: Total 

protein. Mean± SE. n=3 (average 6 wells from each experiment), C: The length of neuronal 

processes. Mean ± SE. n=3 (average 35 neurons from each experiment), D: The neurosphere size 

changes with different doses. Mean ± SE, n=3 (average 10 from each experiment), E: GFAP 

(Western Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: Cell migration 2 days 

after drug treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 39: The effect of different doses of sodium valproate on the sizes of neurospheres. This 

figure illustrates photos of 24 wells of the same plate at the same magnification, the scale bar is 

700µm. 

 

Figure 40: Western Blot analysis for the cells after Sodium Valproate treatment showing the 

bands of Tubulin III, GFAP, and GAPDH proteins, illustrating the progressive reduction in the 

band of GFAP with increasing the dose of the drug. 
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6.2.2 Phenytoin 

PHN was used in doses which lie slightly below, within, and above the 

therapeutic range (40-80µM). Figure 41-A and B show that the doses of 20, 50, 

100, and 150µM have no significant effect on both resorufin production, and 

protein amount, respectively when compared with the control, but, the resorufin 

production significantly reduced in the dose range, 200, 330, and 660µM, (F 

(7,16)=43.26, p<0.0001, post-hoc: 200µM vs control: p<0.0001), and protein 

amount start to be affected significantly from the dose of 200µM, (F 

(7,16)=8.959, p=0.0002, post-hoc: 200µM vs control: p<0.01). It seems that PHN 

has no significant effect on the length of the processes around the therapeutic 

doses; however, it cause highly significant reduction at the dose of 150µM, (F 

(5,12)=21.54, p<0.0001, post-hoc: 150µM vs control: p<0.001), figure 41-C.  

The neurosphere sizes were affected severely by PHN in all doses, in which there 

is highly significant reduction in the sizes of the neurospheres from the dose of 

20µM when compared with that of control group, (F (5,12)=299.9, p<0.0001, 

post-hoc: 20µM vs control: p<0.001), figure 41-D. GFAP decreased significantly 

at 100μM dose, (F (5,12)=11.67, p=0.0003, post-hoc: 100µM vs control: p<0.05), 

and the GFAP expression decreased significantly with increasing the doses, while 

tubulin III protein started to decrease significantly at 150μM, (F (5,12)=8.953, 

p=0.0010, post-hoc: 150µM vs control: p<0.05), figure 41-E and F and 42. 

Regarding cell migration, it appears that PHN reduces cell migration in direct 

proportion to the duration, (F (1,24)=126.3, p<0.0001), and to the dose, (F 

(5,24)=32.83, p<0.0001). Ph seems to reduce migration distance significantly at 

50μM, (concentration vs time: F (5,24)=2.475, p=0.0607, post-hoc: 50µM vs 

control: p<0.01) after 24hrs  and p<0.0001 after 48 hours, figure 41-G. 



 

121 
 

C
o
n
tr

o
l

2
0

5
0

1
0
0

1
5
0
 

2
0
0

2
5
0

3
3
0
m

M

0

5 0 0

1 0 0 0

1 5 0 0
A

P h e n y to in  d o s e s  M

R
e

s
o

r
u

fi
n

 n
g

/m
l

**** ****

****

 
C

o
n
tr

o
l

2
0

5
0

1
0
0

1
5
0
 

2
0
0

2
5
0

3
3
0

M

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0 B

P h e n y to in  d o s e s  M

P
r
o

te
in


g

/m
l  ** ** ***

 
C

o
n

tr
o

l
2
0

5
0

1
0
0

1
5
0
 

2
0
0

M

0

2 0

4 0

6 0 C

P h e n y to in  d o s e s  M

N
e

u
r
o

n
a

l 
p

r
o

c
e

s
s

e
s


m

****
***

 

C
o
n
tr

o
l

2
0

5
0

1
0
0

1
5
0
 

2
0
0

M

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0 D

P h e n y to in  d o s e s  M

N
e

u
r
o

s
p

h
e

r
e

 s
iz

e
s


m

 ***

 ****

     ****
 ****

****

 
C

o
n

tr
o

l
2
0

5
0

1
0
0

1
5
0

2
0
0

M

0 .0 0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

E

P h e n y to in  d o s e s  M

G
F

A
P

* ** **

 
C

o
n

tr
o

l
2
0

5
0

1
0
0

1
5
0

2
0
0

M

0

2

4

6

8

1 0 F

P h e n y to in  d o s e s  M

T
u

b
u

li
n

 *

**

 

2
4
h

rs

4
8
h

rs

2
4
h

rs

4
8
h

rs

2
4
h

rs

4
8
h

rs

2
4
h

rs

4
8
h

rs

2
4
h

rs

4
8
h

rs

2
4
h

rs

4
8
h

rs

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0 G

P h e n y to in  d o s e s

M
ig

ra
ti

o
n

 d
is

ta
n

c
e


m

C o n tro l

20

50

1 0 0

1 5 0

2 0 0 M

* *
* * * * *

* * *

* * * *     * * * *  * * * *

* * * *

 

Figure 41: Effect of Phenytoin at different doses on A: Resorufin production, B: Total protein. 

Mean± SE. n=3 (average 6 wells from each experiment), C: The length of neuronal processes. 

Mean ± SE. n=3 (average 35 neurons from each experiment), D: The neurosphere size changes 

with different doses. Mean ± SE, n=3 (average 10 from each experiment), E: GFAP (Western 

Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: Cell migration 2 days after drug 

treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 42: Western Blot analysis for the cells after Phenytoin treatment showing the bands of 

Tubulin III, GFAP, and GAPDH proteins. 
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6.2.3 Carbamazepine  

At the dose range 5-100µM, CBZ has no significant effect on resorufin 

production, taking into consideration that the therapeutic dose of this drug is 25-

50µM. However, at high doses of 250µM-1mM the resorufin production was 

reduced significantly when compared with the control, (F (7,16)=104.9, 

p<0.0001, post-hoc: 250µM vs control: p<0.0001). However, total protein amount 

was not significantly affected until the dose of 500µM and 1mM in which there is 

highly significant reduction in total protein amount when compared to control 

group, (F (7,16)=18.49, p<0.0001, post-hoc: 500µM vs control: p<0.0001), as 

shown in figure 43-B. 

The effect on the length of neuronal processes appears to be not significant in all 

doses except at 200µM where they appears to be a highly significant reduction, (F 

(5,12)= 30.04, p<0.0001, post-hoc: 200µM vs control: p<0.0001), as shown in 

figure 43-C. The sizes of the neurospheres started to be reduced significantly also 

at 200μM, (F (5,12)=8.715, p=0.0011, post-hoc: 200µM vs control: p<0.05), 

figure 43-D. GFAP and tubulin III proteins was not affected significantly in all 

doses except in the last extreme dose 375μM at which they were reduced 

significantly, (F (5,12)=4.190, p=0.0196, post-hoc: 375µM vs control: p<0.05) for 

GFAP and (F (5,12)=3.562, p=0.0332, post-hoc: 375µM vs control: p<0.05) for 

Tubulin III, figure 43-E,F and 44. CBZ seems to reduce cell migration at 100μM, 

(F (5,24)=0.8282, p=0.5422, post-hoc: 100µM vs control: p<0.05), and there was 

no increase in significance with increasing the dose or increase the duration and 

its effect appears just 48 hours after treatment, figure 43-G. 
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Figure 43: Effect of Carbamazepine at different doses on A: Resorufin production, B: Total 

protein. Mean± SE. n=3 (average 6 wells from each experiment), C: The length of neuronal 

processes. Mean ± SE. n=3 (average 35 neurons from each experiment), D: The neurosphere size 

changes with different doses. Mean ± SE, n=3 (average 10 from each experiment), E: GFAP 

(Western Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: Cell migration 2 days 

after drug treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 44: Western Blot analysis for the cells after Carbamazepine treatment showing the bands 

of Tubulin III, GFAP, and GAPDH proteins. 
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6.2.4 Phenobarbitone 

It appears that PHB has no significant effect on cell viability and total protein of 

the cells in the dose range 100μM-2000µM. However, it reduces both these 

parameters at the extreme doses 3000 and 4000µM in which there is a significant 

reduction in cell viability, (F (7,16)=10.97, p<0.0001, post-hoc: 3000µM vs 

control: p<0.05) and total cellular protein, (F (7,16)=3.911, p=0.0113, post-hoc: 

3000µM vs control: p<0.05), figure 45-A and B. The figure 45-C shows that PHB 

has no significant effect on the process length except in high dose 2000µM, in 

which there high significant effect on neuronal processes length, (F (5,12)=7.598, 

p=0.0020, post-hoc: 2000µM vs control: p<0.01). In other hand, PHB seems to 

reduce the neurosphere size at a significant rate at the doses of 1000µM, (F 

(5,12)=8.715, p=0.0011, post-hoc: 1000µM vs control: p<0.05) and (2000µM vs 

control p<0.0001) when compared with that of control group, figure 45-D.  

Neuronal cell population, which is represented by Tubulin III protein, appears to 

be not affected in all doses of PHB, but the astrocyte population, which was 

marked by GFAP was reduced only at high doses 1000µM, (F (5,12)=9.598, 

p=0.0007, post-hoc: 1000µM vs control: p<0.05) and (2000µM vs control 

p<0.01), figure 45-E,F and 46. In the case of cell migration, PHB has no 

significant effect on migration except at high dose 2000µM and only after 48hr 

from drug treatment there is high significant reduction in cell migration when 

compared with the control group, (concentration vs time: F (5,24)=1.057, 

p=0.4099, post-hoc: 2000µM vs control: p<0.001), figure 42-G. 
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Figure 45: Effect of Phenobarbitone at different doses on A: Resorufin production, B: Total 

protein. Mean± SE. n=3 (average 6 wells from each experiment), C: The length of neuronal 

processes. Mean ± SE. n=3 (average 35 neurons from each experiment), D: The neurosphere size 

changes with different doses. Mean ± SE, n=3 (average 10 from each experiment), E: GFAP 

(Western Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: Cell migration 2 days 

after drug treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 46: Western Blot analysis for the cells after Phenobarbitone treatment showing the bands 

of Tubulin III, GFAP, and GAPDH proteins. 

6.3 Discussion 

6.3.1 Sodium Valproate 

Sodium valproate has several therapeutic applications as an anticonvulsant, anti-

manic and anti-cancer drug and is also used for migraine prophylaxis. Its use in 

pregnancy has been shown to carry risks to the developing embryo and could 

result in a wide spectrum of developmental anomalies such as neural tube defects, 

craniofacial, cardiac and genital birth defects (Nau et al., 1991) and  (Nau, 2008). 

The first report which suggested teratogenicity of valproate in the human was 

published in 1980, which demonstrated the association of sodium valproate intake 

during pregnancy with neural tube defects (meningocele and meningomyelocele) 

(Dalens et al., 1980).  

SV appears to have no significant effect on cell activity or total protein levels at 

the doses which locate around the therapeutic range. However, at higher doses 

(1500, 2000, and 2500µM) SV caused a highly significant reduction in both these 
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parameters and appears to be very toxic. It has been reported that SV can stop the 

cell cycle at phase G0/1 and can arrest cell proliferation and induce apoptosis in 

vitro (Pandolfi, 2001). This may explain the reduction in cell activity and total 

protein only being apparent at high doses. However; Chiu et al. (2013)  pointed 

out that SV supplement within or close to the human therapeutic dose  results in 

hyperacetylation of histone which leads to changes in chromatin and alters 

transcriptional activity, modulates gene expression, enhances cell differentiation 

and increases apoptosis (Phiel et al., 2001). Gurvich et al. (2005) suggest that the 

teratogenesis of SV is through its inhibition of Histone Deacetylase (HDAC). 

Furthermore, SV causes demethylation of DNA which occurs due to acetylation 

of H3 histones. DNA demethylation leads to alteration in gene expression  and 

various congenital anomalies (Detich et al., 2003). Therefore; it appears that these 

reports can explain only the results of high doses since the resorufin and protein 

amount was not affected in the dose range 500-1000µM. It may be that in the in 

vitro model there is no bioactivation of the drug, which make its effects appear 

mainly at high doses. 

The results show that SV had no significant effect on the length of neuronal 

processes at low doses. SV acts in a way similar to the action of neurotropic 

factors on CNS cells by stimulating the ERK pathway (extracellular signal 

regulated kinase). This is involved in neurite growth, neural stem cell 

proliferation and maturation, neurogenesis and neural regeneration and it also 

regulates neural survival. Moreover, SV has been shown to increase the level of 

protective bcl-2 protein in the CNS which enhance cell survival when exposed to 

adverse stimuli and promotes neuronal regeneration (Hao et al., 2004). This may 

explain the tendency to increase the process length at the doses which are near the 
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therapeutic range especially at 750µM. Murabe et al. (2007b) also supported this 

finding that SV can enhance neuronal differentiation in embryonic stem cell 

culture. Additionally, what mentioned above might explain that SV makes no 

significant changes on neuronal cell population which represented by Tubulin III 

protein. However, it decreases GFAP protein significantly at 1500 and 2000μM 

doses.  

This model of human neural stem cells can predict the anti-proliferative action of 

SV, even at its therapeutic doses, where there was a highly significant reduction 

in the sizes of treated neurospheres when compared with that of control group 

(Fig 37-D & 38). This study also shows that the neurosphere size decreased with 

increasing doses of SV. This may give human neural stem cell culture an 

advantage over other in vitro tests with its capability to predict neurotoxicity and 

teratogenicity of drugs. 

On the other hand, SV seems to reduce cell migration significantly at 1000µM 

and above (figure 37-G). The inhibition of cell migration is thought to be due to 

the indirect inhibition by SV of Glycogen Synthase Kinase 3 beta (GSK-3β) in 

the Wnt signaling pathway, which is involved in neural proliferation and cell 

migration (Blaheta et al., 2002, De Sarno et al., 2002). This inhibition is probably 

due to the changes in gene expression which are involved in several cell 

activities(Bosetti et al., 2005). Again, this model shows its ability to detect 

neurotoxicity of SV through this end point, which is related to one of the 

important cellular events in embryonic development that might be affected to 

produce anatomical and/or physiological defects in the growing embryo. 
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6.3.2 Phenytoin 

Phenytoin (PHN) was used as antiepileptic drug for more than 60 years. It acts by 

stabilizing the cell membrane of neurons undergoing seizure activity through 

inhibition of sodium influx to inside the cells and thus will prevent spreading 

seizure (Tunnicliff, 1996). It is well known for its teratogenicity and can cause a 

wide variety of anomalies in offspring. Several mechanisms have been proposed 

to explain this. One of these mechanisms involves the  formation of toxic 

intermediate metabolites, when PHN is bioactivated by Cytochrome P450 to 

arene oxide intermediates which should be detoxified by Glutathione S-

Transferases, otherwise they will covalently bind to embryonic protein and result 

in teratogenesis (Ozolins et al., 1995). In the second mechanism, PHN is bio-

activated by peroxidase, such as Prostaglandin H Synthase and Lipoxygenase, to 

free radicals which form reactive oxygen species that oxidize embryonic protein, 

DNA, and lipid which initiate teratogenesis. Also, the anti-folate activity of PHN 

can explain its toxicity (ibid). Additionally, unmetabolized PHN itself may 

interact with some receptors reversibly and induce congenital abnormalities 

(Ozolins et al., 1995). 

It appears from the results reported here that PHN does not affect the viability and 

protein content in doses from 5-200µM, taking in consideration that the 

therapeutic doses of PHN is 40-80µM (Yaari et al., 1986). But, it shows a 

significant reduction in cell viability and protein content at the dose of 250, 330 

and 660 µM. It appears that these doses are extremely toxic by causing distortion 

in cellular morphology and cell death. The cytotoxicity of PHN can be attributed 

to its inhibition of Ca
+2

 influx (SOHN and FERRENDELLI, 1973) which cause 

severe damage to the cytoskeleton (Schlaepfer, 1977). Furthermore, it inhibits or 
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change the phosphorylation status of Microtubule Associated Proteins (MAPs) 

which are involved in cell division, movement, the growth of neural processes 

and axons, transport of materials along the axons and dendrites, and also 

participates in preserving cell morphology (Bahn et al., 1993). Perturbation of 

cellular cytoskeleton by phenytoin might explain the tendency of this drug to 

decrease the length of neuronal processes with increasing the dose to be highly 

significant at high doses and explain the significant reduction in migration 

distance even at low therapeutic doses 50μM when compared with the control 

group.  

6.3.3 Carbamazepine 

Carbamazepine (CBZ) has been used for treatment a variety of disorders such as 

epilepsy, neuropathic pain, mania and other psychological illnesses. It is known to 

be a teratogen (Shepard et al., 2002) particularly causing neural tube defects, 

cardiovascular and urinary tract anomalies. It appears from the results that CBZ 

has no effect on both the cell viability and cell proteins especially in the doses 

which lie below, within, and slightly above the therapeutic dose. Normally, the 

therapeutic serum level which used as a target for treatment in epilepsy and mood 

disorders is 25-50µM (McNamara, 2001). But, at the dose 250µM and more, CBZ 

starts to affect cell viability, in which the resorufin production reduced 

significantly and the protein amount decreased to high extent. 

CBZ can modify the release, uptake, transmission and receptor binding of 

neurotransmitter in serotonergic, dopaminergic, and glutaminergic neurons 

(Ambrósio et al., 2002), therefore, modulation in neurotransmitters can affect 

critical aspects in CNS development, since neurotransmitters regulate 

proliferation of NSCs, control cell migration and cell differentiation (Nguyen et 
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al., 2001), this may explain the significant reduction in neurosphere sizes and in 

migration distance at 100μM dose which reside near the therapeutic dose. Also, it 

is well known as a HDAC inhibitor, like Sodium Valproate (Beutler et al., 2005), 

and its teratogenicity may be related to its anti-HDAC activity. CBZ has been 

identified to cause apoptosis to cultured cerebellar granular cells, by making DNA 

fragmentation in in a ladder pattern in a concentration dependant manner (Gao et 

al., 1995) and it is toxic to cultured hippocampal neuron in higher than the 

therapeutic doses (Araújo et al., 2004). It seems that its neurotoxicity is due to the 

blocking of NMDA-activated current, since this neurotoxicity can be prevented 

by NMDA treatment (Gao and Chuang, 1992). 

The results show that CBZ has a tendency to increases tubulin III but is 

statistically not significant, this agrees with the finding of (Murabe et al., 2007b) 

who pointed out that CBZ treatment for embryonic stem cells can enhance 

neuronal differentiation. On the other hand, CBZ appears to be toxic on astrocytes 

and neurons just at extreme high doses 375μM. In general, CBZ seems to have 

less developmental neurotoxicity in comparison with other AEDs. Its 

teratogenicity and embryo toxicity appears in poly therapy especially when 

combined with phenytoin by which the children of epileptic mother exposing to 

CBZ and PHN have lower developmental and language scores (Kaindl et al., 

2006). 

6.3.4 Phenobarbitone 

PHB is widely used in medicine for pregnant women and neonates for variable 

purposes including epilepsy. PHB can be used orally or by injection. The dose in 

adult is 60-240mg/day, which is the lowest dose to decrease its side effect. This 

dose is used to achieve a constant therapeutic plasma concentration at 40-130μM 
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(Finnell et al., 1987). Previous in vitro animal studies have shown biochemical 

and morphological changes in cultured neuronal cells after chronic exposure to 

PHB (Serrano et al., 1988). In our study, the neuronal marker, tubulin III, was not 

significantly affected by all the doses of PHB and the astrocyte marker, GFAP, 

was affected just at high doses. However, it was confirmed that PHB has 

neurotoxic effect in vitro and in vivo (Yanai et al., 1979, Bergey et al., 1981b). 

The neurotoxic mechanism of PHB is unclear, but there is a hypothesis that PHB 

blocks the action of trophic factors which are critical for neuronal survival, these 

growth factors are present in vivo and in vitro (Brenneman et al., 1987). Another 

mechanism is the blockage of electrical activity, which might reduce cell viability 

(Bergey et al., 1981a). Also, growth cone elongation process is dependent on Ca
+2

 

influx (Bolsover and Spector, 1986), and as mentioned before, PHB acts by 

inhibiting this influx into the neurons, prolonged inhibition may explain the 

reduction in neuronal process growth and branching (Serrano et al., 1988). 

Overall, it seems that neurotoxicity of PHB appears just with chronic exposure, 

more than 2 weeks (Neale et al., 1985, Bergey et al., 1981b, Serrano et al., 1988) 

and despite of its developmental neurotoxicity, its teratogenic effect on embryos 

is less than any other AEDs (Holmes et al., 2001). These studies pointed out that 

neurotoxicity of PHB is dose and time dependant, the toxicity increase with 

increasing the dose and the duration. This may explain the significant reduction in 

cell survival, total protein amount, cell migration, and other parameters only at 

high doses. 

Overall, human neural stem cell culture model is sensitive in detecting the 

neurotoxicity of sodium valproate and phenytoin within their therapeutic level, 
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while the neurotoxicity of carbamazepine and phenobarbitone were detected only 

at high levels 
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Chapter 7 

Evaluation of This Model with Anti-oxidants 

and anti-oxidants with Anti-epileptics 
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7.1 The Anti-oxidants 

7.1.1 Folic acid 

Folic Acid (FA), pteroyl-L-glutamic acid, vitamin B9, folate, is made up of a 2-

amino-4-hydroxypterine (purine and pyrazine parts fused to form a pterin ring). 

The pterine moiety is fully oxidized, in vivo is reduced to 7,8 dihydrofolate 

(DHF), DHF is subsequently reduced to 5,6,7,8 tetrahydrofolate (THF), which is 

converted enzymatically into 5-methyltetragydrifolate (5-MTHF) (Gliszczyńska-

Świgło, 2007). Reduced forms of FA act as cofactors for the biosynthesis of 

purine, pyrimidine, and DNA (Stanger, 2002). The biochemical role of folate is 

well established in DNA synthesis and repair. It also, catalyses the reactions 

concerned with metabolism of nucleic acids and proteins (Stokstad, 1988). 

 

Figure 47: Folate, homocysteine, methionine metabolism; DHFR, dihydrofolate reductase; 

MTHF, methyltetrahydrofolte; MTHFR, methyltetrahydrofolate reductase (Van Gelder et al., 

2010). 

This vitamin has antioxidant properties (Gliszczyńska-Świgło, 2007) and by this 

activity, it has been proposed that FA can reduce the incidence of several diseases 

such as cardiovascular diseases (Verhaar et al., 2002), neurological and 
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psychiatric diseases (Alpert and Fava, 1997), and neural tube defects (Olney and 

Mulinare, 2002). It has been suggested that the protective properties of FA are 

related to its anti-oxidant activities (Joshi et al., 2001, Gliszczyńska-Świgło, 

2007) and due to its free radical scavenging activity (Joshi et al., 2001), since it 

has been recognized that free radicals play major roles in the oxidative stress 

which leads to several diseases (Stocker and Frei, 1991). FA has been reported to 

have activity against radical mediated oxidative damage in human blood (Stocker 

et al., 2003). As mammals do not have the necessary enzymes to produce FA de 

novo (Murray, 1999, Friedrich, 1988), its presence should depend entirely on 

external supplementation in the diet. Good sources of FA are green leafy 

vegetables, mushrooms, and liver (Gliszczyńska-Świgło, 2007) 

7.1.2 Melatonin 

Melatonin (N-acetyl-5-methoxytryptamine) derived from serotonin and is the 

main secretory product of the pineal gland at night. It was discovered by Lerner in 

1958 (Lerner et al., 1958). Its effect is well known with regard to circadian 

rhythmicity and reproductive function (Reiter et al., 2009, Dominguez‐Rodriguez 

et al., 2010). Additionally, it has been discovered to have direct free radicals 

scavenger activities and to detoxify the highly reactive hydroxyl radical (OH) in 

vitro (Tan et al., 1993). Reiter (1998) reported that melatonin acts as free radical 

scavenger for a wide range of free radicals. Moreover, it can reduce oxidative 

stress by stimulating antioxidant enzymes by mechanisms which are mediated by 

membrane receptors or through nuclear or cytosolic binding sites (Tomás‐Zapico 

and Coto‐Montes, 2005). 



 

139 
 

 

Figure 48: Mechanism of action of melatonin in nitro-oxidative stress. The oxygen reactants are 

in red, nitrogen reactant in blue, and chlorine reactant in green.  Melatonin is reported to 1. 

Scavenge the reactants marked with an asterisk. 2. Stimulate (↑) the anti-oxidative enzymes, like 

glutathione peroxidase (GPx). Glutathione reductase (GRd), and superoxide dismutase (SOD). 3. 

Increase the level of glutathione (GSH). 4. Inhibit the prooxidative enzymes nitric oxide synthase 

(NOS) and myeloperoxidase (MPO) (Reiter et al., 2009, Tomás‐Zapico and Coto‐Montes, 2005). 

NO., nitric oxide; CAT, catalase; 
1
O2 , singlet oxygen; O2

.-
, superoxide anion radical; GSSG, 

oxidized glutathione; hy, photic energy. 

Because of these properties, melatonin treatment has been tested to know if it can 

reduce the oxidative damage which happens in several neurological disorders and 

it seems to be effective (Reiter et al., 1998). Moreover, the ability to scavenge 

free radicals extends into its metabolites (Galano et al., 2013). In mammals, 

melatonin is not only produced by the pineal gland, but also by the retina and 

gastrointestinal tract (Reiter, 1991). The brain tissue expresses the key enzyme 

which is involved in melatonin synthesis, arlyalkylamine N- acetyltransferase 

(AA-NAT) (Jimenez‐Jorge et al., 2007) and a report suggests that its production 

is from glial cells (Liu et al., 2007). Its high concentration in the brain may be 

related to its neuroprotective function (Hardeland, 2012). Melatonin is not only a 

mammalian product, but could also be produced in non-mammalian vertebrates 
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and invertebrates, and therefore, it could be ingested (Reiter, 1998). The 

physiological concentration of melatonin is from 10
-9 

to 10
-11

M and the 

pharmacological concentration is 10
-7

-10
-5

M (Hill and Blask, 1988).  

Several diseases that happen during pregnancy may get benefit from melatonin 

treatment. Of particular note is preeclampsia, a major disorder which develops in 

5-7% of all pregnancies all over the world, which is characterized by elevated 

systolic and diastolic blood pressure and proteinurea in the second half of 

pregnancy (Brown et al., 2001). Given the antioxidant activity of melatonin, and 

ready transfer of melatonin from maternal to foetal circulation, its administration 

may be helpful in reducing the systemic oxidative stress which is associated with 

preeclampsia and it could rescue the developing nervous system of the foetus 

(Wakatsuki et al., 2001).  

In summary, Folic acid and melatonin have antioxidant and free radical 

scavenging activities; therefore, they have protective and reparative effect against 

several diseases, as mentioned before. And as sodium valproate and phenytoin 

treatment associated with oxidative stress; therefore, folic acid and melatonin will 

be added with them to the cells to know if they have protective effect or not. 

7.2 The results 

7.2.1 Folic acid 

Our study shows that FA throughout all the doses which lie below and above the 

therapeutic level has no significant effect on all the end points except the 

neurosphere size, where FA appears to increase the neurosphere size significantly 

at doses ≥50μM when it compared with the control, (F (5,12)=3.624, p=0.0314, 

post-hoc: 50µM vs control: p<0.05), (figure 49- D). 



 

141 
 

C
o
n
tr

o
l

1
0

2
0

3
0

5
0

7
5

1
0
0

2
0
0

M

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0
A

F o lic  a c id  d o s e s

R
e

s
o

r
u

f
i
n

 
n

g
/
m

l

C
o
n
tr
o
l

1
0

2
0

3
0

5
0

7
5

1
0
0

2
0
0

M

0

3 0

6 0

9 0

1 2 0
B

F o lic  a c id  d o s e s

P
r
o

t
e

i
n


g

/
m

l

C
o

n
tr

o
l

2
0

3
0

5
0

7
5

1
0
0

M

0

2 0

4 0

6 0

C

F o lic  a c id  d o s e s

N
e

u
r
o

n
a

l 
p

r
o

c
e

s
s

e
s


m

C
o

n
tr

o
l

1
0

2
5

5
0

7
5

1
0
0

M

0

2 0 0

4 0 0

6 0 0

8 0 0

D

F o lic  a c id  d o s e s

N
e

u
r
o

s
p

h
e

r
e

 s
iz

e
s


m

* **

C
o
n
tr

o
l

2
0

3
0

5
0

7
5

1
0
0

M

0 .0 0

0 .0 3

0 .0 6

0 .0 9

0 .1 2 E

F o lic  a c id  d o s e s

G
F

A
P

C
o

n
tr

o
l

2
0

3
0

5
0

7
5

1
0
0

M

0

3

6

9

1 2
F

F o lic  a c id  d o s e s

T
u

b
u

li
n

 

2
4

h
rs

4
8

h
rs

2
4

h
rs

4
8

h
rs

2
4

h
rs

4
8

h
rs

2
4

h
rs

4
8

h
rs

2
4

h
rs

4
8

h
rs

2
4

h
rs

4
8

h
rs

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

G

F o lic  a c id  d o s e s

M
ig

ra
ti

o
n

 d
is

ta
n

c
e


m C o n tro l

25

50

75

1 0 0 M

10

 

Figure 49: Effect of Folic acid at different doses on A: Resorufin production, B: Total protein. 

Mean± SE. n=3 (average 6 wells from each experiment), C: The length of neuronal processes. 

Mean ± SE. n=3 (average 35 neurons from each experiment), D: The neurosphere size changes 

with different doses. Mean ± SE, n=3 (average 10 from each experiment), E: GFAP (Western 

Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: Cell migration 2 days after drug 

treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 50: Western Blot analysis for the cells after Folic acid treatment showing the bands of 

Tubulin III, GFAP, and GAPDH proteins. 

7.2.2 Melatonin 

Melatonin treatment seems to have no significant effect on the end points except 

for the neurite length at the doses 10, 25μM, (F (5,12)=3.520, p=0.0344, post-hoc: 

10µM vs control: p<0.05), and (25µM vs control: p<0.05), and neurosphere size 

at the doses 5, 10, and 25μM, (F (5,12)=8.755, p=0.0011, post-hoc: 5µM vs  

control: p<0.05), in which there are significant increase in neurite length, and 

neurosphere size, when it compared with control group, as shown in figure 51. 
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Figure 51: Effect of Melatonin at different doses on A: Resorufin production, B: Total protein. 

Mean± SE. n=3 (average 6 wells from each experiment), C: The length of neuronal processes. 

Mean ± SE. n=3 (average 35 neurons from each experiment), D: The neurosphere size changes 

with different doses. Mean ± SE, n=3 (average 10 from each experiment), E: GFAP (Western 

Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: Cell migration 2 days after drug 

treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 52: Western blot image showing Tubulin III, GFAP, and GAPDH after Melatonin 

treatment to the cultured cells in different doses. 

7.2.3 Anti-epileptics and Anti-oxidants 

7.2.3.1 Sodium Valproate  

By comparing the result of SV alone treatment, figure 38, with the results of 

adding Folic acid (FA) to SV treated cells, it seems that adding FA makes an 

improvement in most of the end points. It appears that the cell survival and total 

protein amount reduction at 1500μM became not significance, but at 2000µM, 

cell viability was reduced significantly, (F (8,18)=4.143, p=0.0059, post-hoc: 

2000µM vs control: p<0.05) and total protein amount also was reduced 

significantly, (F (8,18)=9.544, p<0.0001, post-hoc: 2000µM vs control: p<0.01) 

respectively. Also, the neurite length appears not significantly affected throughout 

all the doses. In the case of neurosphere sizes, this study demonstrated that FA 

supplement with SV improves neurosphere size since there is no significant 

change in their sizes at 500, 750 and 1000μM compared to the control, but at 

1500µm the size reduction was significant, (F (6,14)=19.85, p<0.0001, post-hoc: 

1500µM vs control: p<0.01). Additionally, GFAP protein reduction became 
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significant at 2000μM, (F (6,14)=2.479, p=0.0758, post-hoc: 2000µM vs control: 

p<0.05), and cell migration appears to be significantly affected at 1500μM, (F 

(6,24)=2.445, p=0.0500, post-hoc: 1500µM vs control: p<0.05), figure 53 and 54. 
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Figure 53: Effect of Sodium valproate at different doses + Folic acid (50µM) on A: Resorufin 

production, B: Total protein. Mean± SE. n=3 (average 6 wells from each experiment), C: The 

length of neuronal processes. Mean ± SE. n=3 (average 35 neurons from each experiment), D: The 

neurosphere size changes with different doses. Mean ± SE, n=3 (average 10 from each 

experiment), E: GFAP (Western Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: 

Cell migration 2 days after drug treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 54: Western blot image showing Tubulin III, GFAP, and GAPDH after Sodium valproate 

and folic acid treatment to the cultured cells in different doses 

Similarity, adding melatonin, to some extent had the same effect of adding FA to 

SV treated cells, but in melatonin supplement, it seems that the improvement in 

cell survival and total protein amount reached higher doses, 2000μM, in which, it 

appears to be not significant from control group, and at 2500µM, both cell 

viability, (F (8,18)=8.592, p<0.0001, post-hoc: 2500µM vs control: p<0.0001) 

and also the total protein amount, (F (8,18)=4.412, p=0.0043, post-hoc: 2500µM 

vs control: p<0.01), were significantly reduced figure 55. 
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Figure 55: Effect of Sodium valproate at different doses + Melatonin (10µM) on A: Resorufin 

production, B: Total protein. Mean± SE. n=3 (average 6 wells from each experiment), C: The 

length of neuronal processes. Mean ± SE. n=3 (average 35 neurons from each experiment), D: The 

neurosphere size changes with different doses. Mean ± SE, n=3 (average 10 from each 

experiment), E: GFAP (Western Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: 

Cell migration 2 days after drug treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 56: Western blot image showing Tubulin III, GFAP, and GAPDH after Sodium valproate 

and Melatonin treatment to the cultured cells in different doses 
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7.2.3.2 Phenytoin  

PHN treated cells appears to get beneficial effect after adding FA to them, it 

seems that cell survival became not significant at 150 and 200μM unlike what 

happened with PHN treatment alone, however cell survival started to be 

significant at 250µM, (F (8,18)=11.60, p<0.0001, post-hoc: 250µM vs control: 

p<0.01), figure 41. Total protein amount appeared to be not significantly affected 

throughout all the doses. The neurite length reduction at 200μM seems to be 

significant, (F (6,14)=4.849, p=0.0071, post-hoc: 200µM vs  control: p<0.01), 

also, the neurosphere size started to be significant at 100μM when it was 

compared to the control group, (F (6,14)=28.85, p<0.0001, post-hoc; 200µM vs 

control: p<0.05). Our results show no changes on the result of GFAP and tubulin 

III proteins in comparison with PHN treatment alone. Regarding the effect on cell 

migration, it appears that migration distance was significantly reduced at 100µM, 

(concentration vs time: F (6,28)=7.628, p=0.0003, post-hoc: 100µM vs control: 

p<0.0001), figure 57 and 58. 

On the other hand, adding melatonin to PHN treated cells had the same changes 

of adding FA to the cells relatively, except the effect on GFAP was not significant 

at 100μM when it compared to PHN treatment alone, but significantly reduced 

from 150µM, (F (4,14)=8.560, p=0.0005, post-hoc: 150µM vs control: p<0.05), 

figure 59 and 60. 
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Figure 57: Effect of Phenytoin at different doses + Folic acid (50µM) on A: Resorufin 

production, B: Total protein. Mean± SE. n=3 (average 6 wells from each experiment), C: The 

length of neuronal processes. Mean ± SE. n=3 (average 35 neurons from each experiment), D: The 

neurosphere size changes with different doses. Mean ± SE, n=3 (average 10 from each 

experiment), E: GFAP (Western Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: 

Cell migration 2 days after drug treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 58: Western blot image showing Tubulin III, GFAP, and GAPDH after Phenytoin and 

folic acid treatment to the cultured cells in different doses 
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Figure 59: Effect of Phenytoin at different doses + Melatonin (10µM) on A: Resorufin 

production, B: Total protein. Mean± SE. n=3 (average 6 wells from each experiment), C: The 

length of neuronal processes. Mean ± SE. n=3 (average 35 neurons from each experiment), D: The 

neurosphere size changes with different doses. Mean ± SE, n=3 (average 10 from each 

experiment), E: GFAP (Western Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: 

Cell migration 2 days after drug treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 60: Western blot image showing Tubulin III, GFAP, and GAPDH after Phenytoin and 

melatonin treatment to the cultured cells in different doses 

7.3 Discussion 

7.3.1 Folic acid 

It appears from these findings that folate administration increased the sizes of 

neurospheres from the dose of 25μM and more. It has been considered that 18μM 

of FA is low concentration while >70μM as high concentration (Liu et al., 2010, 

Luo et al., 2013). This means that folate supplement to the medium may stimulate 

neural stem cell proliferation to make the neurosphere larger than those without 

folate supplementation. It has been reported that anti-folate treatment like 

methotrexate inhibits embryonic neural stem cell proliferation in cell culture 

(Kruman et al., 2005), while folate treatment can enhance proliferation in these 

cells (Sato et al., 2006). Liu found that folic acid supplementation to rat 

embryonic NSCs can stimulate them to proliferate and maintain their stemness in 

the presence of basic fibroblast growth factor in the medium. Also, he found that 

FA treatment increased the percentage of nestin/BrdU double positive cells in 

embryonic neurospheres (Liu et al., 2010). This study shows that FA 
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supplementation has no significant effect on GFAP and tubulin III proteins at all 

doses and this may be due to the suggestion that FA supplementation may 

enhance both neurogenesis and gliogenesis through stimulation of Notch1 

signalling pathways in embryonic NSCs (Liu et al., 2010). It has been found that 

genetic disruption of Notch signalling leads to a reduction in NSC markers and an 

increase in neuronal cell markers (Yoon and Gaiano, 2005). However, it has been 

shown that FA supplementation to rat embryonic NSCs enhances the stem cell 

differentiation into neuronal cells at the expense of astrocyte cells (Luo et al., 

2013), which disagrees with our findings. 

Low intake of folate during pregnancy may lead to CNS pathologies (neural tube 

defects) and other neurological disorders which appear later on such as seizures, 

dementia, and depression (Djukic, 2007, Ho et al., 2003, Clarke, 2006). 

Therefore, it is recommended for women who are or may become pregnant to 

take folic acid daily to protect the foetus from having neurodevelopmental 

abnormalities, since FA is involved in several processes in DNA biosynthesis 

such as enhancing de novo pathways (Sato et al., 2006).  

It has been considered that 18μM of FA can be considered as a low concentration 

while >70μM as a high concentration (Luo et al., 2013, Liu et al., 2010), therefore 

the concentration of 50μM of FA was used here as an intermediate value between 

them. 

 It appears that adding Folic acid to  SV cultured cells has to some  beneficial 

effects on the end points that are being testing (figure 53) when compared to the 

results with SV treatment alone figure (38). Since SV has an anti-folate effect 

(Van Gelder et al., 2010), addition of FA can explain this improvement in these 
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parameters. Additionally, FA controls intracellular signalling pathways which 

regulate mitosis and apoptosis (Ho et al., 2003). It has been found that FA 

treatment increased mRNA expression of Notch signalling in neurospheres 

derived from NSCs of the rat (Zhang et al., 2008). The Notch pathway is 

important for cellular communication that involves gene regulation which in turn 

regulates cellular differentiation. The Notch gene has the ability to suppress 

apoptosis and stimulates cell proliferation through a growth factor- mediated 

survival pathway (Liu et al., 2010). This may explain the improvement against the 

neurotoxicity of SV. 

Moreover, by comparing the results of PHN treatment alone figure (41) with the 

results of adding FA to PHN figure (57), it seems that adding FA also allows an 

improvement in the outcome of PHN treatment. PHN has a well- known 

mechanism of action as an anti-folate agent, as it impairs folate absorption and 

reduces methionine synthase activity (Van Gelder et al., 2010). Therefore adding 

folic acid to PHN treated cells can improve the neurological end points that are 

being tested. PHN as mentioned before, can lead to the generation of oxidative 

stress and release free radicals by bioactivation of PHN by cytochrome P450 into 

arene oxide intermediates (Ozolins et al., 1995), FA has antioxidant activity 

(Gliszczyńska-Świgło, 2007) and has free radical scavenging capacity (Joshi et 

al., 2001, Stocker et al., 2003) and these might explain why FA treatment with 

PHN could have some protective effect against PHN teratogenicity. 

7.3.2 Melatonin 

This study demonstrates that melatonin supplementation alone to the cultured 

cells has no significant effect on cell viability and total protein, but, causes a 

significant increase in neuronal process length. It has been assumed that 
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melatonin stimulates dendritogenesis in an organotypic culture of hippocampus 

(Domínguez‐Alonso et al., 2012), and, it can promote neuritogenesis through 

vimentin filament reorganization by protein kinase C (PKC) activation and 

microfilament rearrangement, which are necessary process in growth cone 

formation in neurite outgrowth (Bellon et al., 2007). This study also shows that 

melatonin increases the sizes of neurospheres significantly, which means that 

melatonin stimulates NSCs proliferation. It has been reported that melatonin 

enhanced cell proliferation in embryonic neural stem cells (Fu et al., 2011, 

Sotthibundhu et al., 2010), avian astrocytes (Paulose et al., 2009), dentate neurons 

(Kim et al., 2004b), and mesenchymal stem cells (Zhang et al., 2013). It has been 

suggested that melatonin stimulates proliferation through receptor dependant 

signalling pathways (Fu et al., 2011) by phosphorylating the extracellular 

signalling regulated kinase (ERK1/2), which in turn activates several 

transcriptional factors that regulate the downstream proliferative activity (Pandi-

Perumal et al., 2008).  

By comparing the results obtained from Sodium Valproate treatment in figure 

(38) with the results of adding melatonin (10μM- pharmacological dose) to it 

(figure 55), it seems that melatonin exerts some neuroprotective effects on SV 

treated cells. These results show that melatonin reduced the neurotoxicity of SV 

in regard to cell viability, total protein amount, neuronal process length, 

neurosphere sizes, GFAP and migration distance. SV treatment of chick cardiac 

cells and embryonic stem cells can lead to generation of reactive oxygen species 

(Qureshi, 2012). This may explain the improvement of SV neurotoxicity on 

human treated cells after adding melatonin. As mentioned before, melatonin has 

antioxidant (Tomás‐Zapico and Coto‐Montes, 2005) and free radicals scavenging 
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activity to a wide range of free radicals (Reiter, 1998), therefore, melatonin can 

inhibit apoptosis (Mayo et al., 1998). Moreover, the anti-apoptotic activity of 

melatonin is related to increased expression of Bcl2 and inhibition of caspase-3 

activation (Fu et al., 2011). 

Similarly, melatonin supplementation of PHN treated cells can demonstrate 

beneficial effect against the neurotoxicity of PHN in cultured cells in the end 

points that were tested, see figure (41) for the result of adding melatonin to PHN 

figure (59).   

Lastly, it can deduce that combining either folic acid or melatonin to sodium 

valproate or phenytoin has protective effect in reducing the neurotoxicity of these 

anti-epileptics and cause their toxicity to appear in doses which are higher than 

those when these anti-epileptics used alone.    
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Chapter 8 

Evaluation of This Model with Other 

Neuroactive Drugs 
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8.1 Other Neuroactive Drugs 

8.1.1 Lithium Carbonate 

Lithium is a classic mood stabilizer and has been used for the treatment of bipolar 

diseases for more than 50 years. Now it is used for acute episodes, prevention and 

as a prophylactic drug. It was introduced into the psychiatric pharmacy by John 

Cade in 1949 (Shorter, 2009). Its efficiency in the treatment of bipolar disorder 

was well documented but the exact mechanism of its action in mood stabilization 

was still not clear. Lithium has been registered to be teratogenic since the 1960s 

(Lewllyn A; Stowe Z, 1998). The serum therapeutic concentration in human 

ranges from 600-1200μM (Su et al., 2007b) and there is only a small gap between 

the therapeutic and toxic doses. Chronic administration of lithium may lead to 

developmental malformation (Giles and Bannigan, 2006). This drug is associated 

with a spectrum of developmental anomalies, such as cardiac abnormalities 

including Ebstein anomaly, and increased baby weight. Animal studies showed 

that high doses of lithium can inhibit vasculogenesis  (Giles and Bannigan, 2006). 

In mice, when lithium was given during the critical period of neural tube closure, 

it caused exencephaly, kinking of the spinal cord and dilatation of the ventricular 

system  (Jurand, 1988). Recent studies showed that Lithium has a neuroprotective 

role in many neurological diseases including brain ischemic disease and 

depression. It has been shown that lithium improved the neurological deficits, 

behavioural disorders and can decrease the size of infarcted area in ischaemic 

attacks by enhancing neurogenesis and stimulating hippocampal neural progenitor 

cell differentiation into neural cells in vivo and in vitro  (Kim et al., 2004a). 
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8.1.2 Diazepam 

Diazepam (DZP) is one of benzodiazepine derivatives which has been used for 

treatment of different clinical disorders as an anxiolytic, muscular relaxant, 

sedative-hypnotic and as an anticonvulsant (Haefely et al., 1981).  It has also been 

used in managing preeclampsia and eclampsia (Iqbal et al., 2014). DZP belongs to 

the long acting type of benzodiazepine, which has interestingly been suggested to 

be excreted in breast milk and can also pass smoothly through placenta to the 

fetus (Iqbal et al., 2014). It has been reported that this drug may associate with 

neural tube closure defects in explanted chick embryo (Nagele et al., 1981). Also, 

it can induce exencephaly in the mouse and hamster (Weber, 1984), while in 

human, an epidemiological study has shown that DZP may contribute to various 

congenital anomalies such as neural tube closure defects, cleft palate, pyloric 

stenosis, cardiovascular, skeletal and urogenital anomalies (Kjær et al., 2007). 

Another epidemiological study reported that maternal exposure to DZP might 

resulted in ‘Neonatal withdrawal syndrome’ and embryofetopathy which 

resembles foetal alcohol syndrome (Iqbal et al., 2014). 

Both Diazepam and its metabolite, N-desmethyldiazepam, are pharmacologically 

active and can pass freely through the human placenta because of their 

lipophilicity and they are more highly bound to foetal plasma proteins than to 

maternal plasma proteins (Kunz and Nau, 1984). High concentrations of DZP can 

be found in the brain, lung and heart. Its lipophilicity allows easy penetration to 

the brain white matter and its long retention in the neural tissue make human 

brain tissue a depot for DZP. Neonates can metabolize small doses of DZP slowly 

and it has been shown that DZP and its metabolites can last for at least a week in 
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their active form after administration in a high dose to the mother. The plasma 

half-life in the neonate is about 31 hours (Mandelli et al., 1975) 

8.1.3 Amitriptyline 

Tricyclic antidepressant (TCA) drugs have been used for the treatment of 

depression for over 50 years. Amitriptyline (AMT) after much  research since that 

time is still the leading antidepressant(Barbui and Hotope, 2001). Most of the 

antidepressants act by inhibition of reuptake of neurotransmitters (noradrenaline 

and serotonin) in presynaptic spaces. By this means, the extracellular content of 

these monoamines is increased, which occurs soon after treatment, but the clinical 

effect of these antidepressants occurs slowly over several weeks of continuous 

administration (Nestler et al., 2002). The effectiveness of TCA cannot be 

explained simply by their action on monoamines. The molecular and cellular 

mechanisms of their antidepressant action are still not fully understood. The 

therapeutic level of AMT in human plasma is 0.5-0.8μM (Ziegler et al., 1976) and 

the toxic concentration is more than 3μM (Braithwaite et al., 1979).  

Women have been identified to be at risk of developing depression during 

pregnancy and during the postpartum period. Women who report symptoms of 

depression during pregnancy comprise about 12%. Additionally, of women who 

develop depression in the postpartum period, 40% develop depression originally 

during gestation (Chambers et al., 1996). Studies showed that women who are  

known cases of depression who discontinue treatment during pregnancy show a 

high relapse rate compared to those who continue treatment (Cohen et al., 2006). 

There are significant maternal risks during pregnancy if depression is left 

untreated. Suicides have been reported as a major cause of maternal death in 
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several studies (Shadigian and Bauer, 2005, Oates, 2003). Maternal depression is 

associated with several factors which have a negative impact on foetal wellbeing, 

such as poor attendance at antenatal clinics, smoking, drug abuse, and alcohol 

(Bonari et al., 2004). Moreover, maternal depression may be associated with 

obstetric complications like preeclampsia (Kurki et al., 2000). Maternal 

depression is also associated with poor maternal-infant attachment and poor child 

outcome (Murray and Cooper, 1997). 

These molecules lithium, diazepam, and amitriptyline are weak teratogens. We 

will use these molecules with our cell culture model to test their effect on the end 

points of our experiment. 

8.2 Results 

8.2.1 Lithium 

Lithium treatment seemed to reduce cell survival significantly at the dose of 

3000μM and more, (F (7,16)=11.22, p<0.0001, post-hoc: 3000µM vs control: 

p<0.01). On the other hand, total protein was significantly increased at 500 and 

750μM, (F (7,16)=37.69, p<0.0001, post-hoc: 500µM vs control: p<0.05), and 

(750µM vs control: p<0.05), which is located around the therapeutic plasma level. 

The figure below shows there was no significant effect on neuronal process and 

neurosphere sizes, (F (5,12)=3.091, p=0.0507( and (F (5,12)=4.643, p=0.0137) 

respectively. The results demonstrated no significant effect on tubulin III protein, 

(F (5,12)=0.3989, p=0.8404) but caused a significant dose dependant reduction in 

GFAP protein started from 1500µM, (F (5,12)=11.56, p=0.0003, post-hoc: 

1500µM vs control: p<0.01).  The figure below illustrates that lithium treatment 

caused a significant increase in migration distance 48 hours after treatment at the 
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dose of 750μM, (F (5,24)=4.691, p=0.0040, post-hoc: 750µM vs  control: p<0.05) 

and resulted in significant reduction in cell migration 24hrs after treatment, (F 

(5,24)=4.691, p=0.0040, post-hoc: 2000µM vs control: p<0.05), and 48hrs 

(P<0.0001) after treatment with 2000μM, figure 61 and 62. 
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Figure 61: Effect of Lithium at different doses on A: Resorufin production, B: Total protein. 

Mean± SE. n=3 (average 6 wells from each experiment), C: The length of neuronal processes. 

Mean ± SE. n=3 (average 35 neurons from each experiment), D: The neurosphere size changes 

with different doses. Mean ± SE, n=3 (average 10 from each experiment), E: GFAP (Western 

Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: Cell migration 2 days after drug 

treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 62: Western Blot Image illustrating GFAP, tubulin, and GAPDH after treating the cells 

with Lithium. 

8.2.2 Diazepam 

The results demonstrate that DZP treatment had no significant effect on cell 

survival and total protein at all doses, But from the dose of 100μM, cell survival, 

(F (7,16)=6.568, p=0.0009, post-hoc: 100µM vs control: p<0.01), total protein, (F 

(7,16)=17.74, p<0.0001, post-hoc: 100µM vs control: p<0.001), neuronal process 

length, (F (5,12)=6.351, p=0.0042, post-hoc: 100µM vs control: p<0.05), and 

neurosphere sizes, (F (5,12)=127.5, p<0.0001, post-hoc: 100µM vs control: 

p<0.0001) were reduced significantly when compared with the control group. 

There was no significant effect on both GFAP, (F (5,12)=0.3060, p=0.9000), and 

tubulin III proteins, (F (5,12)=0.4165, p=0.8285). While cell migration distance 

was not affected at any dose other than at the highest dose (200μM) and only 48 

hours after treatment, (F (5,24)=1.301, p=0.2965, post-hoc: 200µM vs control: 

p<0.001), figure 63 and 64. 
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Figure 63: Effect of Diazepam at different doses on A: Resorufin production, B: Total protein. 

Mean± SE. n=3 (average 6 wells from each experiment), C: The length of neuronal processes. 

Mean ± SE. n=3 (average 35 neurons from each experiment), D: The neurosphere size changes 

with different doses. Mean ± SE, n=3 (average 10 from each experiment), E: GFAP (Western 

Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: Cell migration 2 days after drug 

treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 64: Western blot image showing Tubulin III, GFAP, and GAPDH after Diazepam 

treatment to the cultured cells in different doses 

8.2.3 Amitriptyline 

Cell survival,  (F (7,16)=71.80, p<0.0001, post-hoc: 5µM vs control: p<0.001), 

total protein, (F (7,16)=58.27, p<0.0001, post-hoc: 5µM vs control: p<0.0001), 

and neurosphere size, (F (5,12)=9.015, p<0.0009, post-hoc: 5µM vs control: 

p<0.05) were significantly decreased at 5 μM and more. The effect of AMT 

treatment on neuronal process length, (F (5,12)=35.34, p<0.0001, post-hoc: 

2.5µM vs control: p<0.050 appeared to be significant at lower doses; they were 

seen at 2.5μM and more. Also, AMT reduce cell migration distance in time 

dependant way, (F (1,24)=106.9, p<0.0001), and dose dependant, (F 

(5,24)=7.306, p=0.0003). At 2.5µM, AMT reduce and cell migration 

significantly, (concentration vs time: F (5,24)=1.031, p=0.4222, post-hoc: 2.5µM 

vs control: p<0.05). Additionally, AMT appeared to have no significant effect 

either on GFAP, (F (5,12)=0.4591, p=0.7992) or tubulin III proteins, (F 

(5,12)=0.1086, p=0.9883), when compared with the control group, figure 65 and 

66. 
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Figure 65: Effect of Amitriptyline at different doses on A: Resorufin production, B: Total 

protein. Mean± SE. n=3 (average 6 wells from each experiment), C: The length of neuronal 

processes. Mean ± SE. n=3 (average 35 neurons from each experiment), D: The neurosphere size 

changes with different doses. Mean ± SE, n=3 (average 10 from each experiment), E: GFAP 

(Western Blotting); n=3, F: Tubulin protein (Western Blotting); n=3, G: Cell migration 2 days 

after drug treatment, mean ± SE. n= 3 (average 6 from each experiments).  

Significance: * when P<0.05, ** when P<0.01, *** when P<0.001, and **** when P<0.0001. 

A-F statistical analysis was performed by using One way ANOVA, while in G, two way ANOVA 

was performed, then Dunnett multiple test was used to compare the mean of each group with that 

of control group. 
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Figure 66: Western blot image showing Tubulin III, GFAP, and GAPDH after Amitriptyline 

treatment to the cultured cells in different doses 

 

8.3 Discussion 

8.3.1 Lithium Carbonate 

Lithium Carbonate was considered to be a weak teratogenic substance that is 

associated with several congenital anomalies, especially cardiovascular (Giles and 

Bannigan, 2006) and nervous system malformation (Jurand, 1988). Animal 

studies showed that treatment with lithium at a dose close to the human 

therapeutic dose did not demonstrate any congenital defects but higher doses were 

associated with a lot of skeletal, neurological, vascular and cardiac abnormalities 

(Giles & Bannigan, 2006). 

The results reported here reveal that Lithium Carbonate has no significant effect 

on the cell viability at the doses which are close to the therapeutic range, while it 

seems that lithium treatment leads to a significant increase in total protein at the 

doses 500 and 750μM. It has been suggested that Lithium has a neuroprotective 
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effect in mood disorders and has been used for the treatment of these disorders for 

several decades. It acts by inducing several molecular and biochemical effects on 

neurotransmitter signalling, signalling cascades, gene expression, ion exchange 

and hormonal and circadian regulation (Manji and Lenox, 2000). Lithium 

treatment shows an increase in the volume of the grey matter in many areas in the 

brain which are involved in mood regulation, by stimulating proliferation of 

neural progenitor cells and enhancing neurogenesis through different mechanisms 

(Su et al., 2007b). Lithium inhibits GSK directly by binding to its magnesium-

sensitive site (Klein and Melton, 1996) and indirectly by enhancing 

phosphorylation of this kinase (Chalecka-Franaszek and Chuang, 1999). It has 

been postulated that GSK dysfunction is involved in pathogenesis in mood 

disorders (Jope, 2011).  

Moreover, lithium exerts its neuroprotective effect through induction of BDNF 

and stimulation of its receptor. Lithium protects primary cortical neurons from 

glutamate excitotoxicity and using a BDNF neutralizing antibody deprived the  

cells from neuroprotection (Hashimoto et al., 2002). Additionally, Lithium 

controls GDNF in vivo and in vitro, which is involved in maintaining cell 

survival, axonal growth, chemo- attraction, and cell migration (Paratcha and 

Ledda, 2008). This drug has an anti-apoptotic activity by upregulation of mRNA 

expression of the Bcl2 anti-apoptosis protein, decreasing the expression of P53, 

which is a pro-apoptotic protein and reducing mitochondrial release of 

cytochrome c (Chen and Chuang, 1999). Lithium prevents the activation of 

caspase-3 which leads to mitochondrial release of cytochrome c which induces 

apoptosis. Also it can modify NMDA receptor activity (Hashimoto et al., 2003). 

Another mechanism of action for lithium, is activation of PI3K/Akt, MEK/ERK, 
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Wnt/β-catenin pathways which enhance release of anti-apoptotic factors and 

induce growth production (Chiu et al., 2013). These mechanisms may explain the 

significant increase in total protein, neurosphere size, and migration distance in 

the treated cells. 

Lithium appears to not affect the length of neuronal processes even at a high dose 

(2000µM) and this agrees with (Jeerage et al., 2012) who pointed out that lithium 

has no effect on neurite length of rat cortex progenitor cells in this range of doses, 

but at high doses (10mM and more) lithium treatment resulted in significant 

reduction in neurite length. The effect on GFAP and tubulin III proteins would 

indicate that lithium is toxic to astrocytes since GFAP expression decreased in a 

dose dependant way, which may explain its teratogenicity, but had no significant 

effect on tubulin III, since it has neuroprotective effect. 

8.3.2 Diazepam 

Diazepam (DZP) acts in various ways to exert its actions. Its anticonvulsant 

property is explained by reducing action potential firing (Drexler et al., 2010), and 

it enhances GABAergic inhibition in dose dependant way (Skerritt et al., 1984). A 

study on genetically modified mice showed that DZP treatment resulted in 

hypnosis and sedation by acting on GABAA receptors, which are located in 

glutamatergic cortical neurons (Baur et al., 2008). Additionally, it caused Na
+
 

current disruption in the neurons of the CNS (Nagele et al., 1981). DZP has been 

shown to inhibit Ca
+2

 uptake by synaptosomes; therefore, it may result in a 

reduction of neurotransmitter release which results in suppression of spontaneous 

firing (Skerritt et al., 1984). DZP also, enhances the inhibitory transmission of 

synapses and reduces neuronal activity and cerebral cortex excitability, this may 
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explain the key mechanism of DZP to produce sedation and hypnosis (Baur et al., 

2008). 

The therapeutic plasma level of DZP as an anxiolytic agent is 0.35-6.0μM 

(http://www.nhtsa.dot.gov/people/injury/research/job185drugs/diazepam.htm) and 

as an anticonvulsant is around 50µM (Regan et al., 1990). The results show that 

DZP had no effect on cell viability and total cellular proteins at the doses 1, 5, 20, 

50µM, but, there is significant reduction  in those parameters at doses 100µM and 

200µM. Regan et al. (1990) pointed out that DZP has an anti-proliferative action 

on cells lines derived from  mouse cultured brain cortex at a concentration 2-3 

fold higher than the therapeutic concentration. In addition to that, this drug can 

suppress the proliferation of human Glioblastoma cells in a dose dependant way, 

by inducing Go/G1 phase arrest (Chen et al., 2013). This may explain the 

significant reduction in neurosphere size at the doses 100 and 200μM. Regarding 

the effect of DZP on the length of neuronal processes, the results demonstrate that 

DZP has no significant effect statistically on the length, except at high 

doseswhere the length was reduced significantly. Additionally, it appears that 

DZP has no significant effect on both GFAP and tubulin III proteins when 

compared with that of control group. 

In general, DZP is considered to be safe and studies have reported that there is no 

association between DZP exposure during pregnancy and major congenital 

malformation even in the first trimester of gestation (Bellantuono et al., 2013). 

However, another study suggested that that DZP would be safe if it had been used 

in small dose and for short duration and it recommended to avoid DZP 

administration at high doses for long duration (Iqbal et al., 2014). 
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8.3.3 Amitriptyline 

As there are high risks on both mothers and babies if depression is left untreated 

during pregnancy, clinicians have become aware of the importance of treating 

depressed mothers. Several studies have shown fetal exposure to antidepressants 

during pregnancy by placental passage (Hendrick et al., 2003) and through 

amniotic fluid analysis (Loughhead et al., 2014). In general it seems that the 

association between prenatal exposure to antidepressants and abnormal 

development is not clear and needs more investigation and studies. 

It appears that AMT has no significant effect on all the parameters tested at the 

doses which are around the therapeutic level (0.5-1μM). Cell survival and total 

protein were reduced significantly after 5μM. This agrees with (Braithwaite et al., 

1979), who reported that AMT is toxic >3μM. It has been proposed that AMT 

triggers apoptosis in neuronal cells, glioma C6 cells, and even lymphocytes 

(Spanova et al., 1996, Xia et al., 1998, Post et al., 2000). AMT has been shown to 

increase the generation of reactive oxygen species and decrease intracellular 

glutathione levels and consequently it reduces the antioxidant capacity of the 

cells. Also it has been suggested that AMT activates NF-kB subsequently, which 

is a transcriptional factor that when activated induces cell death and it is 

considered as a pro-apoptotic factor (Post et al., 2000). AMT treated cell culture 

showed mitochondrial depolarization, release of cytochrome c and activation of 

caspase-3, which are markers of apoptosis (Lirk et al., 2006). This may explain 

the significant reduction in cell survival, total protein and neurosphere size. 

Moreover, AMT treatment resulted in a significant reduction in the length of 

neuronal processes at the dose of 2.5μM and neurite length reduction was dose 

dependant. This agrees with the studies on chick and rat cerebrum (Farbman et 
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al., 1988). It has been believed that AMT reduces adenylate cyclase, which is 

crucial for neurite growth (Wong et al., 1991). The results also show that AMT 

has no significant effect on both tubulin III and GFAP proteins. This is may be 

due to  this drugs is toxicity which may and trigger cell death for both neuronal 

(Post et al., 2000) and glial cells (Spanova et al., 1996) equally. 

It seems that these neuroactive molecules do not have any toxic effect within their 

therapeutic level and the toxic effect appeared only at high doses which are higher 

than the therapeutic level. 
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Chapter 9 

General Discussion 
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General Discussion 

The development of the nervous system includes a series of sophisticated and 

critical events such as gene expression, neural stem cell proliferation, cell 

interactions, cell differentiation, cell migration and neural process formation and 

elongation (Sanes, 2006). Early exposure of the developing nervous system to 

chemicals which interfere with these events may result in developmental 

neurotoxicity (DNT). There is increasing concern about the association between 

environmental exposure to chemicals and a broad spectrum of congenital 

abnormalities including learning difficulties and neurodevelopmental disorders 

including autism, attention deficit and hyperactivity syndrome (Grandjean and 

Landrigan, 2006). Presently, there are more than 30000 chemicals in the markets 

of Europe, Canada and the USA for which there are little toxicity data (Judson et 

al., 2009). The USA and European Regulatory Agencies developed guidelines for 

in vivo studies to evaluate the developmental neurotoxicity of chemicals (USEPA, 

1998) and (OECD, 2007); these guidelines specify studying behavioural and 

neuropathological endpoints in the offspring of rodents treated with these 

chemical during pregnancy and lactation.  

These traditional in vivo studies (animal based) are impractical for the huge 

number of chemicals that are produced annually. It would be expensive, time 

consuming, requiring a large amount of chemical to be used in the experiments 

and needing a large number of animals to be sacrificed. Therefore, according to 

the 3R principle (Reduction, Replacement, and Refinement) of Russell and Burch 

1959 (Russell WMS, 1959), alternative testing strategies are required to reduce 

animal numbers and to establish other methods which should be cheaper, quicker, 

and yet still sensitive. In 2007 the National Research Council’s (NRC) Committee 
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on Toxicity Testing and Assessment of Environment Agents adopted this strategy 

and cited the need for in vitro tests which can prioritize the chemicals that need 

further investigation (NRC, 2007). REACH (Registration, Evaluation, 

Authorisation and Restriction of Chemicals) legislation also prompted the need 

for a new strategy (Hartung, 2009). Until recently, in vitro tests for studying the 

effects of chemicals on the development of the nervous system were mainly 

limited to transformed cell lines from human or rodents, these cell lines being 

derived from tumours and  not necessarily reflecting  normal neural cells.  

Neural tissue culture was used for the first time more than 100 years ago for the 

purpose of studying neural process growth (Harrison et al., 1907). In order to 

achieve an in vitro test with a high level of predictability for developmental 

neurotoxicology, a test should ideally recapitulate the whole process of 

development of the human nervous tissue, including proliferation, migration, 

differentiation, and synaptogenesis. Deriving such a test is challenging. Human 

neural stem cells have been proposed for this purpose; they can offer several 

advantages over the other in vitro tests in providing a good source of normal cells 

which have the ability to divide and differentiate into the other cells of the central 

nervous system. Also these cells may have a better predictive power in detecting 

human neurotoxicity, since the extrapolation of the results is less (Breier et al., 

2010) as species differences are circumvented (Coecke et al., 2007). 

The end points in neurotoxicology are divided into two groups: general and 

specific. The general tests are related to the basal level of cell functioning which 

are indicators for cell survival. These tests are nonspecific and could be the end 

points for other non-neuronal cells and may be for all eukaryotic cells. These 

include: test for mitochondrial function, total cellular proteins, reactive oxygen 
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species, cell-cell communications, energy regulation (oxidation-reduction status), 

ion transport, cell respiration, …etc. (Harry et al., 1998).  

On the other hand, there are specific end points which are peculiar to the cells of 

the nervous system, such as differentiated neural cells. Among these tests is the 

measurement of process outgrowth which receive the most attention since axonal 

and dendritic processes are the hallmarks of neural morphology and critical in cell 

connectivity and function. Neurite outgrowth is a critical event in nervous system 

development, in which neurons extend specialized processes to establish contacts 

(synapses) and facilitate the flow of information throughout the neural network 

(Sanes, 2006). Neurites refer to both axons and dendrites that are sprouted from 

the cells growing in culture; they are critical in defining the morphology of 

neurons. Abnormalities in the morphology of the neurites have been found after in 

vivo exposure of laboratory rodents to developmental neurotoxicants (Morrow et 

al., 2005). Neurite outgrowth has been studied in vitro using a variety of neural 

cell culture models such as tumour derived or transformed neural cell lines (e.g. 

PC-12) and dissociated primary cultures from developing animals (Radio and 

Mundy, 2008). In the present study, primary neural stem cells have been used as a 

new model to study neurite outgrowth after exposure to chemicals which are 

known to be teratogenic, such as sodium valproate. 

Neuronal proliferation is another event in nervous system development; alteration 

in this by genetic, environmental or chemical influences can result in 

developmental abnormalities and neurotoxicity (Barone Jr et al., 1999). 

Therefore, cell proliferation can be a target for neurotoxicant chemicals and could 

be incorporated as an endpoint in in vitro screening batteries. Neural cell 

proliferation has been used in several studies as an end point to detect the 
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neurotoxic potential of chemicals (Costa et al., 2007, Jacobs and Miller, 2002). 

Cellular proliferation is controlled by multiple factors which affect the cell cycle 

(Ohnuma and Harris, 2003) and represents a potential site of action for chemicals. 

Since the mechanism(s) of action of different chemicals on cell proliferation are 

often unknown, detecting the effect of these chemicals regardless the site of 

action would be a suitable endpoint for screening purposes. 

Cell migration is another essential process in development of the nervous system. 

Neural cells migrate within the developing brain to reach their final position and 

form the correct connections with other cells in the brain. Disturbed neural 

migration during development of the nervous system may result in improper 

neural outcome, as in foetal alcohol syndrome (Guerri, 1998), epilepsy and 

mental retardation (McManus and Golden, 2005). 

Several in vitro methods have been used in studying cell migration such as the 

scratch method in confluent cell monolayers, the transwell method, video 

microscopy, live cell imaging, or hippocampal slice cultures and these have been 

used to observe and track migrating cells. In these techniques, the source of the 

cells is usually either animal or tumour cells, which may not resemble normal 

human cells. Therefore, species differences and the discrepancies between the 

normal and tumorigenic cells are disadvantages of using these techniques in 

neural cell migration assays. 

Levels of GFAP and tubulin III proteins were measured and considered as end 

points. In the case of GFAP, it is well known that this protein is a sensitive and 

early bio marker of neurotoxicity when studied quantitatively and qualitatively 

(O’Callaghan and Sriram, 2005). Injury to the brain causes astrocytes to transform 
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into reactive astrocytes and start to proliferate and result in a state called 

astrogliosis, and this can occur before the appearance of the toxic effect on 

neurons (O'callaghan, 1991). Astrogliosis appears clearly with methyl mercury 

and lead acetate and a reduction in tubulin III protein (neuronal cells) appears 

obvious with methyl mercury. This indicates that this model has the capability to 

detect chemical toxicity. 

Physiological cell death, which is the deletion (by apoptosis) of redundant or 

unsuccessful neurons in the developing nervous system, has been considered as a 

regular phenomenon in brain development. It has been reported that drugs like 

sedatives or anticonvulsants, can stimulate a wave of neuronal apoptosis in the 

developing brain when administered to immature rodents (Bittigau et al., 2002, 

Ikonomidou et al., 1999), such compounds include, phenytoin, valproate, GABA 

receptor agonists (benzodiazepine and barbiturate), and NMDA receptor blockers. 

The developmental period of the human brain which is vulnerable to drug induced 

neuro-apoptosis extends from the 6
th

 month of gestation to several years after 

birth. This coincide with a brain growth spurt as shown in the figure (16) 

(Ikonomidou and Turski, 2010). Exposure to these compounds at therapeutic 

doses during the vulnerable period in the rat, which is the first two postnatal 

weeks, triggers immature neurons to commit cell suicide (apoptosis) (Bittigau et 

al., 2002). 

It is well known that anti-epileptic administration during pregnancy is associated 

with a broad spectrum of congenital anomalies (Meador et al., 2006) and most of 

the anti-epileptics in use are not safe  during pregnancy (Prakash et al., 2008) and 

the  teratogenicity is dose dependant (Tomson et al., 2011). It appears from this 

study that human neural stem cell culture is a sensitive model to predict the 
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teratogenesis of these compounds, especially phenytoin and sodium valproate, in 

which the end points  tested, neuronal process length, neurosphere sizes and cell 

migration, were significantly reduced at the doses which lie within therapeutic 

range. However, phenobarbitone and carbamazepine seem to be toxic only at high 

doses and have no significant effect at therapeutic doses. It has been pointed out 

that carbamazepine is less teratogenic than sodium valproate (Jentink et al., 

2010a). The teratogenicity of carbamazepine appears if it is combined with other 

anti-epileptic (like phenytoin) and it has been found that epileptic mothers who 

received carbamazepine and phenytoin had children with low developmental and 

language scores (Kaindl et al., 2006). Regarding phenobarbitone, it has been 

shown that it is less toxicity than other anti-epileptics (Holmes et al., 2001). 

Additionally, the anti-oxidants, folic acid and melatonin appear to have no 

significant effect on most of the end points, however, they enhance neural stem 

cell proliferation by increasing the sizes of neurospheres, this agree with previous 

study about folic acid (Liu et al., 2010) and about melatonin (Fu et al., 2011), 

which reported that these drugs stimulate neural stem cell proliferation, but 

adding them with sodium valproate and phenytoin has to some extent some 

beneficial effect on the end points by making their toxic effect appear at doses 

which were higher than those when these drugs were used alone 

On the other hand, regarding the effect of other neuroactive drugs (lithium, 

diazepam, and amitriptyline) on the neural stem cell culture, this study indicates 

that these drugs may be safe within their therapeutic doses and the toxicity 

appears only at high doses which are away from the therapeutic doses. Lithium 

has been considered as a weak teratogen and animal studies showed that lithium 

treatment did not result in developmental abnormalities (Giles and Bannigan, 
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2006), but it has a narrow gap between the therapeutic and the toxic dose (Su et 

al., 2007a). Diazepam treatment also has no significant effect on the cultured 

cells, other than at extremely high doses. It has been suggested that diazepam is 

safe even when administered to pregnant women during the first trimester 

(Bellantuono et al., 2013), however, another study showed that benzodiazepine 

treatment could be safe if it has been used in small dose and for a short duration 

(Iqbal et al., 2002). Similarly, amitriptyline appears safe during the therapeutic 

dose, but its association with developmental anomalies remains unclear. 
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Future work 

Study the effects of chemicals and drugs for longer duration, more than 2 

weeks, to study their effect at a chronic level. We recommend also to study 

synaptogenesis, which is an important end point in neurotoxicology, and to 

study cellular distribution within the neurosphere whether it is affected or not. 

Also, the effects of these chemicals on myelination process and microglia 

should be considered. Lastly, Study this model with other models such as 

neural stem cells from mice or rats to compare the sensitivity of this model 

with the others. 

 

 

 

 

 

 

 

 

 

 

 

 



 

183 
 

 

 

 

 

 

References 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

184 
 

 
AHMED, S. 2009. The culture of neural stem cells. Journal of cellular biochemistry, 106, 

1-6. 
ALBANI, F., RIVA, R. & BARUZZI, A. 1995. Carbamazepine clinical pharmacology: a 

review. Pharmacopsychiatry, 28, 235-244. 
ALPERT, J. E. & FAVA, M. 1997. Nutrition and depression: the role of folate. Nutrition 

Reviews, 55, 145-149. 
ALTMANN, C. R. & BRIVANLOU, A. H. 2001. Neural patterning in the vertebrate embryo. 

International review of cytology, 203, 447-482. 
AMBRÓSIO, A. F., SOARES-DA-SILVA, P., CARVALHO, C. M. & CARVALHO, A. P. 2002. 

Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 
2-093, and BIA 2-024. Neurochemical research, 27, 121-130. 

ARAÚJO, I. M., AMBRÓSIO, A. F., LEAL, E. C., VERDASCA, M. J., MALVA, J. O., SOARES-DA-
SILVA, P., CARVALHO, A. P. & CARVALHO, C. M. 2004. Neurotoxicity Induced by 
Antiepileptic Drugs in Cultured Hippocampal Neurons: A Comparative Study 
between Carbamazepine, Oxcarbazepine, and Two New Putative Antiepileptic 
Drugs, BIA 2-024 and BIA 2-093. Epilepsia, 45, 1498-1505. 

AREVALO, J. C. & CHAO, M. V. 2005. Axonal growth: where neurotrophins meet Wnts. 
Current opinion in cell biology, 17, 112-115. 

ARMSTRONG, R. & SVENDSEN, C. N. 1999. Neural stem cells: from cell biology to cell 
replacement. Cell transplantation, 9, 139-152. 

ARPINO, C., BRESCIANINI, S., ROBERT, E., CASTILLA, E. E., COCCHI, G., CORNEL, M. C., DE 
VIGAN, C., LANCASTER, P. A., MERLOB, P. & SUMIYOSHI, Y. 2000. Teratogenic 
effects of antiepileptic drugs: use of an International Database on 
Malformations and Drug Exposure (MADRE). Epilepsia, 41, 1436-1443. 

ASCHNER, M., SONNEWALD, U. & TAN, K. H. 2002. Astrocyte modulation of neurotoxic 
injury. Brain pathology, 12, 475-481. 

ASCHNER, M. & SYVERSEN, T. 2005. Methylmercury: recent advances in the 
understanding of its neurotoxicity. Therapeutic drug monitoring, 27, 278-283. 

ASCHNER, M., SYVERSEN, T., SOUZA, D., ROCHA, J. B. T. D. & FARINA, M. 2007. 
Involvement of glutamate and reactive oxygen species in methylmercury 
neurotoxicity. Brazilian Journal of Medical and Biological Research, 40, 285-291. 

ASCHNER, M., YAO, C. P., ALLEN, J. W. & TAN, K. H. 2000. Methylmercury alters 
glutamate transport in astrocytes. Neurochemistry international, 37, 199-206. 

ATSDR, U. 2007. Toxicological profile for lead (Atlanta, GA: US Department of Health and 
Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), 
Public Health Service). US EPA (2006) Air quality criteria for lead. 

ATTERWILL, C., JOHNSTON, H. & THOMAS, S. 1991. Models for the in vitro assessment 
of neurotoxicity in the nervous system in relation to xenobiotic and 
neurotrophic factor-mediated events. Neurotoxicology, 13, 39-53. 

AZARBAYJANI, F., BORG, L. & DANIELSSON, B. R. 2006. Increased susceptibility to 
phenytoin teratogenicity: Excessive generation of reactive oxygen species or 
impaired antioxidant defense? Basic & clinical pharmacology & toxicology, 99, 
305-311. 

BAHN, S., GANTER, U., BAUER, J., OTTEN, U. & VOLK, B. 1993. Influence of phenytoin on 
cytoskeletal organization and cell viability of immortalized mouse hippocampal 
neurons. Brain research, 615, 160-169. 

BAILEY, J., KNIGHT, A. & BALCOMBE, J. 2005. The future of teratology research is in 
vitro. Biogenic Amines, 19, 97-145. 



 

185 
 

BAKIR, F., DAMLUJI, S., AMIN-ZAKI, L., MURTADHA, M., KHALIDI, A., AL-RAWI, N., 
TIKRITI, S., DHAHIR, H., CLARKSON, T. & SMITH, J. 1973. Methylmercury 
poisoning in Iraq. Science, 181, 230-241. 

BARBUI, C. & HOTOPE, M. 2001. Amitriptyline v. the rest: still the leading antidepressant 
after 40 years of randomised controlled trials. The British Journal of Psychiatry, 
178, 129-144. 

BARKER, J. & ROGAWSKI, M. 1993. Calcium current block by (-)-pentobarbital, 
phenobarbital, and CHEB but not (+)-pentobarbital in acutely isolated 
hippocampal CA1 neurons: comparison with effects on GABA-activated Cl-
current. The Journal of neuroscience, 13, 3211-3221. 

BARONE JR, S., DAS, K., LASSITER, T. & WHITE, L. 1999. Vulnerable processes of nervous 
system development: a review of markers and methods. Neurotoxicology, 21, 
15-36. 

BARRES, B. A. & BARDE, Y.-A. 2000. Neuronal and glial cell biology. Current opinion in 
neurobiology, 10, 642-648. 

BAUCH, H., STIER, H. & SCHLOSSHAUER, B. 1998. Axonal versus dendritic outgrowth is 
differentially affected by radial glia in discrete layers of the retina. The Journal of 
neuroscience, 18, 1774-1785. 

BAUR, R., TAN, K. R., LÜSCHER, B. P., GONTHIER, A., GOELDNER, M. & SIGEL, E. 2008. 
Covalent modification of GABAA receptor isoforms by a diazepam analogue 
provides evidence for a novel benzodiazepine binding site that prevents 
modulation by these drugs. Journal of neurochemistry, 106, 2353-2363. 

BAYER, S. A., ALTMAN, J., RUSSO, R. & ZHANG, X. 1992. Timetables of neurogenesis in 
the human brain based on experimentally determined patterns in the rat. 
Neurotoxicology, 14, 83-144. 

BELLANTUONO, C., TOFANI, S., DI SCIASCIO, G. & SANTONE, G. 2013. Benzodiazepine 
exposure in pregnancy and risk of major malformations: a critical overview. 
General hospital psychiatry, 35, 3-8. 

BELLINGER, D. C. 2013. Prenatal exposures to environmental chemicals and children’s 
neurodevelopment: an update. Safety and health at work, 4, 1-11. 

BELLINGER, D. C. & BELLINGER, A. M. 2006. Childhood lead poisoning: the torturous 
path from science to policy. Journal of Clinical Investigation, 116, 853. 

BELLINGER, D. C., STILES, K. M. & NEEDLEMAN, H. L. 1992. Low-level lead exposure, 
intelligence and academic achievement: a long-term follow-up study. Pediatrics, 
90, 855-861. 

BELLON, A., ORTÍZ‐LÓPEZ, L., RAMÍREZ‐RODRÍGUEZ, G., ANTÓN‐TAY, F. & BENÍTEZ‐KING, 
G. 2007. Melatonin induces neuritogenesis at early stages in N1E‐115 cells 
through actin rearrangements via activation of protein kinase C and Rho‐
associated kinase. Journal of pineal research, 42, 214-221. 

BERGEY, G., FITZGERALD, S., SCHRIER, B. & NELSON, P. 1981a. Neuronal maturation in 
mammalian cell culture is dependent on spontaneous electrical activity. Brain 
research, 207, 49-58. 

BERGEY, G., SWAIMAN, K., SCHRIER, B., FITZGERALD, S. & NELSON, P. 1981b. Adverse 
effects of phenobarbital on morphological and biochemical development of 
fetal mouse spinal cord neurons in culture. Annals of neurology, 9, 584-589. 

BEUTLER, A. S., LI, S., NICOL, R. & WALSH, M. J. 2005. Carbamazepine is an inhibitor of 
histone deacetylases. Life sciences, 76, 3107-3115. 

BEZ, A., CORSINI, E., CURTI, D., BIGGIOGERA, M., COLOMBO, A., NICOSIA, R. F., PAGANO, 
S. F. & PARATI, E. A. 2003. Neurosphere and neurosphere-forming cells: 
morphological and ultrastructural characterization. Brain research, 993, 18-29. 



 

186 
 

BITTIGAU, P., SIFRINGER, M., GENZ, K., REITH, E., POSPISCHIL, D., GOVINDARAJALU, S., 
DZIETKO, M., PESDITSCHEK, S., MAI, I. & DIKRANIAN, K. 2002. Antiepileptic 
drugs and apoptotic neurodegeneration in the developing brain. Proceedings of 
the National Academy of Sciences, 99, 15089-15094. 

BLAHETA, R. A., NAU, H., MICHAELIS, M. & CINATLJR, J. 2002. Valproate and valproate-
analogues: potent tools to fight against cancer. Current medicinal chemistry, 9, 
1417-1433. 

BOLSOVER, S. & SPECTOR, I. 1986. Measurements of calcium transients in the soma, 
neurite, and growth cone of single cultured neurons. The Journal of 
neuroscience, 6, 1934-1940. 

BONARI, L., PINTO, N., AHN, E., EINARSON, A., STEINER, M. & KOREN, G. 2004. Perinatal 
risks of untreated depression during pregnancy. Can J Psychiatry, 49, 726-735. 

BOSETTI, F., BELL, J. M. & MANICKAM, P. 2005. Microarray analysis of rat brain gene 
expression after chronic administration of sodium valproate. Brain research 
bulletin, 65, 331-338. 

BOURNIAS-VARDIABASIS 1994. An alternative in vitro method to detect teratogens 
utilizing Drosophilia melanogaster embryos. Humane Innovations and 
alternatives, 630-634. 

BRAITHWAITE, R., CROME, P. & DAWLING, S. 1979. Amitriptyline overdosage: plasma 
concentrations and clinical features [proceedings]. British journal of clinical 
pharmacology, 8, 388P-389P. 

BRANCH, S. 2004. A TEXTBOOK OF MODERN 

TOXICOLOGY, A JOHN WILEY & SONS, INC., PUBLICATION. 
BRAUN, A. G., EMERSON, D. J. & NICHINSON, B. B. 1979. Teratogenic drugs inhibit 

tumour cell attachment to lectin-coated surfaces. 
BRAY, G. M., VILLEGAS-PEREZ, M. P., VIDAL-SANZ, M. & AGUAYO, A. J. 1987. The use of 

peripheral nerve grafts to enhance neuronal survival, promote growth and 
permit terminal reconnections in the central nervous system of adult rats. 
Journal of experimental biology, 132, 5-19. 

BREIER, J. M., GASSMANN, K., KAYSER, R., STEGEMAN, H., DE GROOT, D., FRITSCHE, E. & 
SHAFER, T. J. 2010. Neural progenitor cells as models for high-throughput 
screens of developmental neurotoxicity: state of the science. Neurotoxicology 
and teratology, 32, 4-15. 

BRENNEMAN, D. E., NEALE, E. A., FOSTER, G. A., D'AUTREMONT, S. W. & WESTBROOK, 
G. L. 1987. Nonneuronal cells mediate neurotrophic action of vasoactive 
intestinal peptide. The Journal of cell biology, 104, 1603-1610. 

BRENT, R. 1995. The application and principles of toxicology and teratology in evaluating 
the risks of new drugs for treatment of drug addiction in women of reproductive 
age. NIDA Res. Monogr, 130-184. 

BRESSLER, J., KIM, K.-A., CHAKRABORTI, T. & GOLDSTEIN, G. 1999. Molecular 
mechanisms of lead neurotoxicity. Neurochemical research, 24, 595-600. 

BRESSLER, J. P. & GOLDSTEIN, G. W. 1991. Mechanisms of lead neurotoxicity. 
Biochemical pharmacology, 41, 479-484. 

BRIGGS, G. G., FREEMAN, R. K. & YAFFE, S. J. 2012. Drugs in pregnancy and lactation: a 
reference guide to fetal and neonatal risk, LWW. 

BROOKES, N. 1992. In vitro evidence for the hole of glutamate in the CNS toxicity of 
mercury. Toxicology, 76, 245-256. 

BROWN, M. A., LINDHEIMER, M. D., DE SWIET, M., ASSCHE, A. V. & MOUTQUIN, J.-M. 
2001. The classification and diagnosis of the hypertensive disorders of 
pregnancy: statement from the International Society for the Study of 
Hypertension in Pregnancy (ISSHP). Hypertension in pregnancy, 20, ix-xiv. 



 

187 
 

BROWN, N. & WIGER, R. 1992. Comparison of rat and chick limb bud micromass cultures 
for developmental toxicity screening. Toxicology in vitro, 6, 101-107. 

BROWN, N. A. & METHODS, E. C. F. T. V. O. A. 1995. Screening chemicals for 
reproductive toxicity: the current alternatives, Fund. 

BUENO, C., VILLEGAS, M., BERTOLOTTI, S., PREVITALI, C., NEUMANN, M. & ENCINAS, M. 
2002. The Excited‐State Interaction of Resazurin and Resorufin with Aminesin 
Aqueous Solutions. Photophysics and Photochemical Reaction¶. Photochemistry 
and photobiology, 76, 385-390. 

BULLEIT, R. F. & CUI, H. 1998. Methylmercury antagonizes the survival-promoting 
activity of insulin-like growth factor on developing cerebellar granule neurons. 
Toxicology and applied pharmacology, 153, 161-168. 

CAI, L., HAYES, N. L. & NOWAKOWSKI, R. S. 1997. Synchrony of clonal cell proliferation 
and contiguity of clonally related cells: production of mosaicism in the 
ventricular zone of developing mouse neocortex. The Journal of neuroscience, 
17, 2088-2100. 

CAJAL, S. R. 1995. Histology of the nervous system of man and vertebrates, Oxford 
University Press, USA. 

CALDWELL, M. A. & SVENDSEN, C. N. 1998. Heparin, but not other proteoglycans 
potentiates the mitogenic effects of FGF-2 on mesencephalic precursor cells. 
Experimental neurology, 152, 1-10. 

CASTOLDI, A. F., BARNI, S., TURIN, I., GANDINI, C. & MANZO, L. 2000. Early acute 
necrosis, delayed apoptosis and cytoskeletal breakdown in cultured cerebellar 
granule neurons exposed to methylmercury. Journal of neuroscience research, 
59, 775-787. 

CASTOLDI, A. F., COCCINI, T., CECCATELLI, S. & MANZO, L. 2001. Neurotoxicity and 
molecular effects of methylmercury. Brain research bulletin, 55, 197-203. 

CASUCCI, G., VILLANI, V. & FREDIANI, F. 2008. Central mechanism of action of 
antimigraine prophylactic drugs. Neurological Sciences, 29, 123-126. 

CECCATELLI, S., DARÉ, E. & MOORS, M. 2010. Methylmercury-induced neurotoxicity and 
apoptosis. Chemico-biological interactions, 188, 301-308. 

CHALECKA-FRANASZEK, E. & CHUANG, D.-M. 1999. Lithium activates the 
serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of 
Akt-1 activity in neurons. Proceedings of the National Academy of Sciences, 96, 
8745-8750. 

CHAMBERS, C. D., JOHNSON, K. A., DICK, L. M., FELIX, R. J. & JONES, K. L. 1996. Birth 
outcomes in pregnant women taking fluoxetine. New England Journal of 
Medicine, 335, 1010-1015. 

CHANG, S.-H., LEE, H. J., KANG, B., YU, K.-N., MINAI-TEHRANI, A., LEE, S., KIM, S. U. & 
CHO, M.-H. 2013. Methylmercury induces caspase-dependent apoptosis and 
autophagy in human neural stem cells. The Journal of toxicological sciences, 38, 
823-831. 

CHAO, M. V. 2003. Neurotrophins and their receptors: a convergence point for many 
signalling pathways. Nature Reviews Neuroscience, 4, 299-309. 

CHEN, D. F., JHAVERI, S. & SCHNEIDER, G. E. 1995. Intrinsic changes in developing retinal 
neurons result in regenerative failure of their axons. Proceedings of the National 
Academy of Sciences, 92, 7287-7291. 

CHEN, J., OUYANG, Y., CAO, L., ZHU, W., ZHOU, Y., ZHOU, Y., ZHANG, H., YANG, X., MAO, 
L., LIN, S., LIN, J., HU, J. & YAN, G. 2013. Diazepam Inhibits Proliferation of 
Human Glioblastoma Cells Through Triggering a G0/G1 Cell Cycle Arrest. Journal 
of Neurosurgical Anesthesiology, 25, 285-291. 



 

188 
 

CHEN, J. C., STEVENS, J. L., TRIFILLIS, A. L. & JONES, T. W. 1990. Renal cysteine conjugate 
β-lyase-mediated toxicity studied with primary cultures of human proximal 
tubular cells. Toxicology and applied pharmacology, 103, 463-473. 

CHEN, R.-W. & CHUANG, D.-M. 1999. Long term lithium treatment suppresses p53 and 
Bax expression but increases Bcl-2 expression A prominent role in 
neuroprotection against excitotoxicity. Journal of Biological Chemistry, 274, 
6039-6042. 

CHIN, P. C., MAJDZADEH, N. & D'MELLO, S. R. 2005. Inhibition of GSK3 beta is a common 
event in neuroprotection by different survival factors. Molecular Brain Research, 
137, 193-201. 

CHIU, C.-T., WANG, Z., HUNSBERGER, J. G. & CHUANG, D.-M. 2013. Therapeutic 
potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. 
Pharmacological reviews, 65, 105-142. 

CHOI, B. H., LAPHAM, L. W., AMIN-ZAKI, L. & SALEEM, T. 1978. Abnormal neuronal 
migration, deranged cerebral cortical organization, and diffuse white matter 
astrocytosis of human fetal brain: a major effect of methylmercury poisoning in 
utero. Journal of Neuropathology & Experimental Neurology, 37, 719-733. 

CHRONICLE, E. & MULLENERS, W. 2004. Anticonvulsant drugs for migraine prophylaxis. 
Cochrane Database Syst Rev, 3. 

CICCOLINI, F. & SVENDSEN, C. N. 1998. Fibroblast growth factor 2 (FGF-2) promotes 
acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal 
precursor cells: identification of neural precursors responding to both EGF and 
FGF-2. The Journal of neuroscience, 18, 7869-7880. 

CINA, C., MAASS, K., THEIS, M., WILLECKE, K., BECHBERGER, J. F. & NAUS, C. C. 2009. 
Involvement of the cytoplasmic C-terminal domain of connexin43 in neuronal 
migration. The Journal of neuroscience, 29. 

CLARKE, A., CLARK, B., EASON, C. & PARKE, D. 1985. An assessment of a toxicological 
incident in a drug development program and its implications. Regulatory 
Toxicology and Pharmacology, 5, 109-119. 

CLARKE, D. 2003. Neural stem cells. Bone marrow transplantation, 32, S13-S17. 
CLARKE, R. 2006. Vitamin B~ 1~ 2, Folic Acid, and the Prevention of Dementia. New 

England Journal of Medicine, 354, 2817. 
CLARKSON, T. W. 2002. The three modern faces of mercury. Environmental health 

perspectives, 110, 11. 
CLARKSON, T. W., MAGOS, L. & MYERS, G. J. 2003. The toxicology of mercury—current 

exposures and clinical manifestations. New England Journal of Medicine, 349, 
1731-1737. 

CLOTHIER, R., GOTTSCHALG, E., CASATI, S. & BALLS, M. 2006. The FRAME alternatives 
laboratory database. 1. In vitro basal cytotoxicity determined by the Kenacid 
blue total protein assay. ATLA. Alternatives to laboratory animals, 34, 151-175. 

COECKE, S., GOLDBERG, A. M., ALLEN, S., BUZANSKA, L., CALAMANDREI, G., CROFTON, 
K., HARENG, L., HARTUNG, T., KNAUT, H. & HONEGGER, P. 2007. Workgroup 
report: incorporating in vitro alternative methods for developmental 
neurotoxicity into international hazard and risk assessment strategies. 
Environmental health perspectives, 115, 924. 

COHEN, L. S., ALTSHULER, L. L., HARLOW, B. L., NONACS, R., NEWPORT, D. J., VIGUERA, 
A. C., SURI, R., BURT, V. K., HENDRICK, V. & REMINICK, A. M. 2006. Relapse of 
major depression during pregnancy in women who maintain or discontinue 
antidepressant treatment. Jama, 295, 499-507. 



 

189 
 

COHEN, S., LEVI-MONTALCINI, R. & HAMBURGER, V. 1954. A nerve growth-stimulating 
factor isolated from sarcomas 37 and 180. Proc Natl Acad Sci USA, 40, 1014-
1018. 

COLACINO, J. M. 1996. Mechanisms for the anti-hepatitis B virus activity and 
mitochondrial toxicity of fialuridine (FIAU). Antiviral research, 29, 125-139. 

COSSETTE, P., LIU, L., BRISEBOIS, K., DONG, H., LORTIE, A., VANASSE, M., SAINT-HILAIRE, 
J.-M., CARMANT, L., VERNER, A. & LU, W.-Y. 2002. Mutation of GABRA1 in an 
autosomal dominant form of juvenile myoclonic epilepsy. Nature genetics, 31, 
184-189. 

COSTA, L. G., ASCHNER, M., VITALONE, A., SYVERSEN, T. & SOLDIN, O. P. 2004. 
Developmental neuropathology of environmental agents. Annual Review of 
Pharmacology and Toxicology, 44, 87. 

COSTA, L. G., FATTORI, V., GIORDANO, G. & VITALONE, A. 2007. An in vitro approach to 
assess the toxicity of certain food contaminants: methylmercury and 
polychlorinated biphenyls. Toxicology, 237, 65-76. 

DAILEY, M. E. & SMITH, S. J. 1996. The dynamics of dendritic structure in developing 
hippocampal slices. The Journal of neuroscience, 16, 2983-2994. 

DALENS, B., RAYNAUD, E.-J. & GAULME, J. 1980. Teratogenicity of valproic acid. Journal 
of Pediatrics, 97, 332-333. 

DANIEL, S., LIMSON, J. L., DAIRAM, A., WATKINS, G. M. & DAYA, S. 2004. Through metal 
binding, curcumin protects against lead-and cadmium-induced lipid 
peroxidation in rat brain homogenates and against lead-induced tissue damage 
in rat brain. Journal of inorganic biochemistry, 98, 266-275. 

DANIELS, K., REITER, R. & SOLURSH, M. 1996. Other Mesenchyme. Methods in Avian 
Embryology, 51, 237. 

DANIELSSON, B. R., DANIELSON, M., RUNDQVIST, E. & REILAND, S. 1992. Identical 
phalangeal defects induced by phenytoin and nifedipine suggest fetal hypoxia 
and vascular disruption behind phenytoin teratogenicity. Teratology, 45, 247-
258. 

DANSKY, L. V. & FINNELL, R. H. 1991. Parental epilepsy, anticonvulsant drugs, and 
reproductive outcome: epidemiologic and experimental findings spanning three 
decades; 2: Human studies. Reproductive Toxicology, 5, 301-335. 

DE SANTIS M., C. B., CAVALIERE A., DE SANTIS L., STRAFACE G AND CARUSO A 2001. 
Drug–Induced Congenital Defects Strategies to Reduce the Incidence. Drug 
Safety 24 889-901. 

DE SARNO, P., LI, X. & JOPE, R. S. 2002. Regulation of Akt and glycogen synthase kinase-
3β phosphorylation by sodium valproate and lithium. Neuropharmacology, 43, 
1158-1164. 

DE SARRO, G., ASCIOTI, C., DI PAOLA, E. D., VIDAL, M. J. & DE SARRO, A. 1992. Effects of 
antiepileptic drugs, calcium channel blockers and other compounds on seizures 
induced by activation of voltage-dependent L calcium channel in DBA/2 mice. 
General Pharmacology: The Vascular System, 23, 1205-1216. 

DE ST GROTH, S. F., WEBSTER, R. & DATYNER, A. 1963. Two new staining procedures for 
quantitative estimation of proteins on electrophoretic strips. Biochimica et 
biophysica acta, 71, 377-391. 

DELONG, G. R. 1970. Histogenesis of fetal mouse isocortex and hippocampus in 
reaggregating cell cultures. Developmental biology, 22, 563-583. 

DENNIS, K., UITTENBOGAARD, M., CHIARAMELLO, A. & MOODY, S. A. 2002. Cloning and 
characterization of the 5′-flanking region of the rat neuron-specific Class III β-
tubulin gene. Gene, 294, 269-277. 



 

190 
 

DESSENS, A., COHEN‐KETTENIS, P., MELLENBERGH, G., KOPPE, J., POLL, N. V. D. & BOER, 
K. 2000. Association of prenatal phenobarbital and phenytoin exposure with 
small head size at birth and with learning problems. Acta Paediatrica, 89, 533-
541. 

DETICH, N., BOVENZI, V. & SZYF, M. 2003. Valproate induces replication-independent 
active DNA demethylation. Journal of Biological Chemistry, 278, 27586-27592. 

DEVI, C., REDDY, G., PRASANTHI, R., CHETTY, C. & REDDY, G. 2005. Developmental lead 
exposure alters mitochondrial monoamine oxidase and synaptosomal 
catecholamine levels in rat brain. International journal of developmental 
neuroscience, 23, 375-381. 

DINGLEDINE, R., BORGES, K., BOWIE, D. & TRAYNELIS, S. F. 1999. The glutamate 
receptor ion channels. Pharmacological reviews, 51, 7-62. 

DJUKIC, A. 2007. Folate-responsive neurologic diseases. Pediatric neurology, 37, 387-
397. 

DOETSCH, F., PETREANU, L., CAILLE, I., GARCIA-VERDUGO, J.-M. & ALVAREZ-BUYLLA, A. 
2002. EGF converts transit-amplifying neurogenic precursors in the adult brain 
into multipotent stem cells. Neuron, 36, 1021-1034. 

DOMÍNGUEZ‐ALONSO, A., RAMÍREZ‐RODRÍGUEZ, G. & BENÍTEZ‐KING, G. 2012. 
Melatonin increases dendritogenesis in the hilus of hippocampal organotypic 
cultures. Journal of pineal research, 52, 427-436. 

DOMINGUEZ‐RODRIGUEZ, A., ABREU‐GONZALEZ, P., SANCHEZ‐SANCHEZ, J. J., KASKI, J. 
C. & REITER, R. J. 2010. Melatonin and circadian biology in human 
cardiovascular disease. Journal of pineal research, 49, 14-22. 

DREXLER, B., ZINSER, S., HENTSCHKE, H. & ANTKOWIAK, B. 2010. Diazepam decreases 
action potential firing of neocortical neurons via two distinct mechanisms. 
Anesthesia & Analgesia, 111, 1394-1399. 

EDWARDS, G. 1865. Two cases of poisoning by mercuric methide. Saint Bartholomew’s 
Hosp Rep, 1, 141-150. 

ELIAS, L. A., WANG, D. D. & KRIEGSTEIN, A. R. 2007. Gap junction adhesion is necessary 
for radial migration in the neocortex. Nature, 448, 901-907. 

ENG, L. F., GHIRNIKAR, R. S. & LEE, Y. L. 2000. Glial fibrillary acidic protein: GFAP-thirty-
one years (1969–2000). Neurochemical research, 25, 1439-1451. 

ERB, R. & EHLERS, M. 1950. Resazurin reducing time as an indicator of bovine semen 
fertilizing capacity. Journal of Dairy Science, 33, 853-864. 

EVANS, G. S. & POTTEN, C. S. 1991. Stem cells and the elixir of life. BioEssays, 13, 135-
138. 

FARBMAN, A. I., GONZALES, F. & CHUAH, M. I. 1988. The effect of amitriptyline on 
growth of olfactory and cerebral neurons in vitro. Brain research, 457, 281-286. 

FARINA, M., ROCHA, J. B. & ASCHNER, M. 2011. Mechanisms of methylmercury-induced 
neurotoxicity: evidence from experimental studies. Life sciences, 89, 555-563. 

FARINA, M., ROCHA, J. B. T. & ASCHNER, M. 2010. Oxidative stress and methylmercury-
induced neurotoxicity. Developmental Neurotoxicology Research: Principles, 
Models, Techniques, Strategies, and Mechanisms, 357-385. 

FAUSTMAN, E. M. 1988. SHORT-TERM TESTS FOR TERATOGENS. Mutation Research, 
205, 355-384. 

FINNELL, R. H. & DANSKY, L. V. 1991. Parental epilepsy, anticonvulsant drugs, and 
reproductive outcome: epidemiologic and experimental findings spanning three 
decades; 1: Animal studies. Reproductive Toxicology, 5, 281-299. 

FINNELL, R. H., SHIELDS, H. E., TAYLOR, S. M. & CHERNOFF, G. F. 1987. Strain differences 
in phenobarbital‐induced teratogenesis in mice. Teratology, 35, 177-185. 



 

191 
 

FLANAGAN, L. A., REBAZA, L. M., DERZIC, S., SCHWARTZ, P. H. & MONUKI, E. S. 2006. 
Regulation of human neural precursor cells by laminin and integrins. Journal of 
neuroscience research, 83, 845-856. 

FLINT, O. 1983. A micromass culture method for rat embryonic neural cells. Journal of 
cell science, 61, 247-262. 

FLINT, O. & ORTON, T. 1984. An< i> in vitro</i> assay for teratogens with cultures of rat 
embryo midbrain and limb bud cells. Toxicology and applied pharmacology, 76, 
383-395. 

FOUNTAIN, N. B. 2009. A Pregnant Pause to Consider Teratogenicity of Topiramate. 
Epilepsy Currents, 9, 36-38. 

FOUNTOULAKIS, K. N., VIETA, E., SANCHEZ-MORENO, J., KAPRINIS, S. G., GOIKOLEA, J. M. 
& KAPRINIS, G. S. 2005. Treatment guidelines for bipolar disorder: A critical 
review. Journal of Affective Disorders, 86, 1-10. 

FRIEDRICH, W. 1988. Vitamin B12. Vitamins, de Gruyter, Berlin, 837-928. 
FRINCHI, M., BONOMO, A., TROVATO-SALINARO, A., CONDORELLI, D. F., FUXE, K., 

SPAMPINATO, M. G. & MUDÒ, G. 2008. Fibroblast growth factor-2 and its 
receptor expression in proliferating precursor cells of the subventricular zone in 
the adult rat brain. Neuroscience Letters, 447, 20-25. 

FU, J., ZHAO, S. D., LIU, H. J., YUAN, Q. H., LIU, S. M., ZHANG, Y. M., LING, E. A. & HAO, A. 
J. 2011. Melatonin promotes proliferation and differentiation of neural stem 
cells subjected to hypoxia in vitro. Journal of pineal research, 51, 104-112. 

FUJIMOTO, K., BEAUCHAMP, R. D. & WHITEHEAD, R. H. 2002. Identification and isolation 
of candidate human colonic clonogenic cells based on cell surface integrin 
expression. Gastroenterology, 123, 1941-1948. 

GAIANO, N. & FISHELL, G. 2002. The role of notch in promoting glial and neural stem cell 
fates. Annual review of neuroscience, 25, 471-490. 

GALANO, A., TAN, D. X. & REITER, R. J. 2013. On the free radical scavenging activities of 
melatonin's metabolites, AFMK and AMK. Journal of pineal research, 54, 245-
257. 

GAO, F.-B., BRENMAN, J. E., JAN, L. Y. & JAN, Y. N. 1999. Genes regulating dendritic 
outgrowth, branching, and routing in Drosophila. Genes & development, 13, 
2549-2561. 

GAO, X.-M. & CHUANG, D.-M. 1992. Carbamazepine-induced neurotoxicity and its 
prevention by NMDA in cultured cerebellar granule cells. Neuroscience Letters, 
135, 159-162. 

GAO, X.-M., MARGOLIS, R. L., LEEDS, P., HOUGH, C., POST, R. M. & CHUANG, D.-M. 1995. 
Carbamazepine induction of apoptosis in cultured cerebellar neurons: effects 
of< i> N</i>-methyl-d-aspartate, aurintricarboxylic acid and cycloheximide. 
Brain research, 703, 63-71. 

GARATTINI, S. 1985a. Active drug metabolites. Clinical pharmacokinetics, 10, 216-227. 
GARATTINI, S. 1985b. Toxic effects of chemicals: difficulties in extrapolating data from 

animals to man. CRC critical reviews in toxicology, 16, 1-29. 
GARBER, B. B. & MOSCONA, A. 1972. Reconstruction of brain tissue from cell 

suspensions: I. Aggregation patterns of cells dissociated from different regions 
of the developing brain. Developmental biology, 27, 217-234. 

GILES, J. J. & BANNIGAN, J. G. 1999. The effects of lithium on vascular development in 
the chick area vasculosa. Journal of anatomy, 194, 197-205. 

GILES, J. J. & BANNIGAN, J. G. 2006. Teratogenic and developmental effects of lithium. 
Current Pharmaceutical Design, 12, 1531-1541. 

GLISZCZYŃSKA-ŚWIGŁO, A. 2007. Folates as antioxidants. Food Chemistry, 101, 1480-
1483. 



 

192 
 

GOLDBERG, J. L. 2004. Intrinsic neuronal regulation of axon and dendrite growth. 
Current opinion in neurobiology, 14, 551-557. 

GOLDBERG, J. L., ESPINOSA, J. S., XU, Y., DAVIDSON, N., KOVACS, G. T. & BARRES, B. A. 
2002. Retinal ganglion cells do not extend axons by default: promotion by 
neurotrophic signaling and electrical activity. Neuron, 33, 689-702. 

GOLDENTHAL, E. I. 1966. Chief, Drug Review Branch, Division of Toxicological Evaluation, 
Bureau of Scientific Standards and Evaluation),  Guidelines for Reproduction 
Studies for Safety Evaluation of Drugs for Human Use. 

GOLDSTEIN L, M. D. 1921. Eatiology of ill–health in children born after maternal pelvic 
irradiation.II. Defective children born after postconception pelvic irradiation. 
Amer J Roentgenol Radium Ther Nucl Med, 322–31. 

GONZALEZ, R. J. & TARLOFF, J. B. 2001. Evaluation of hepatic subcellular fractions for 
Alamar blue and MTT reductase activity. Toxicology in Vitro, 15, 257-259. 

GOSPODAROWICZ, D. & CHENG, J. 1986. Heparin protects basic and acidic FGF from 
inactivation. Journal of cellular physiology, 128, 475-484. 

GOYER, R. A. 1997. Toxic and essential metal interactions. Annual review of nutrition, 17, 
37-50. 

GRAHAM, V., KHUDYAKOV, J., ELLIS, P. & PEVNY, L. 2003. SOX2 functions to maintain 
neural progenitor identity. Neuron, 39, 749-765. 

GRANDJEAN, P. & LANDRIGAN, P. J. 2006. Developmental neurotoxicity of industrial 
chemicals. The Lancet, 368, 2167-2178. 

GREGG, N. M. 1991. Congenital cataract following German measles in the mother. 1941. 
Epidemiology and Infection, 107, iii. 

GRITTI, A., PARATI, E., COVA, L., FROLICHSTHAL, P., GALLI, R., WANKE, E., FARAVELLI, L., 
MORASSUTTI, D., ROISEN, F. & NICKEL, D. 1996. Multipotential stem cells from 
the adult mouse brain proliferate and self-renew in response to basic fibroblast 
growth factor. The Journal of neuroscience, 16, 1091-1100. 

GUERRI, C. 1998. Neuroanatomical and neurophysiological mechanisms involved in 
central nervous system dysfunctions induced by prenatal alcohol exposure. 
Alcoholism: Clinical and Experimental Research, 22, 304-312. 

GURER, H. & ERCAL, N. 2000. Can antioxidants be beneficial in the treatment of lead 
poisoning? Free Radical Biology and Medicine, 29, 927-945. 

GURVICH, N., BERMAN, M. G., WITTNER, B. S., GENTLEMAN, R. C., KLEIN, P. S. & GREEN, 
J. B. 2005. Association of valproate-induced teratogenesis with histone 
deacetylase inhibition in vivo. The FASEB journal, 19, 1166-1168. 

HAEFELY, W., PIERI, L., POLC, P. & SCHAFFNER, R. 1981. General pharmacology and 
neuropharmacology of benzodiazepine derivatives. Psychotropic agents. 
Springer. 

HALE, F. 1933. Pigs born without eye balls. Journal of Heredity, 24, 105-106. 
HALL, P. E., LATHIA, J. D. & CALDWELL, M. A. 2008. Laminin enhances the growth of 

human neural stem cells in defined culture media. BMC neuroscience, 9, 71. 
HANNA, J. H., SAHA, K. & JAENISCH, R. 2010. Pluripotency and cellular reprogramming: 

facts, hypotheses, unresolved issues. Cell, 143, 508-525. 
HAO, Y., CRESON, T., ZHANG, L., LI, P., DU, F., YUAN, P., GOULD, T. D., MANJI, H. K. & 

CHEN, G. 2004. Mood stabilizer valproate promotes ERK pathway-dependent 
cortical neuronal growth and neurogenesis. The Journal of Neuroscience, 24, 
6590-6599. 

HARADA, A., TENG, J., TAKEI, Y., OGUCHI, K. & HIROKAWA, N. 2002. MAP2 is required 
for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal 
transduction. The Journal of cell biology, 158, 541-549. 



 

193 
 

HARADA, M. 1978. Congenital Minamata disease: intrauterine methylmercury 
poisoning. Teratology, 18, 285-288. 

HARDELAND, R. 2012. Neurobiology, pathophysiology, and treatment of melatonin 
deficiency and dysfunction. The Scientific World Journal, 2012. 

HARRISON, R. G., GREENMAN, M., MALL, F. P. & JACKSON, C. 1907. Observations of the 
living developing nerve fiber. The Anatomical Record, 1, 116-128. 

HARRY, G. J., BILLINGSLEY, M., BRUININK, A., CAMPBELL, I. L., CLASSEN, W., DORMAN, D. 
C., GALLI, C., RAY, D., SMITH, R. A. & TILSON, H. A. 1998. In vitro techniques for 
the assessment of neurotoxicity. Environmental health perspectives, 106, 131. 

HARRY, G. J., SCHMITT, T. J., GONG, Z., BROWN, H., ZAWIA, N. & EVANS, H. L. 1996. 
Lead-induced alterations of glial fibrillary acidic protein (GFAP) in the developing 
rat brain. Toxicology and applied pharmacology, 139, 84-93. 

HARTUNG, T. 2009. Toxicology for the twenty-first century. Nature, 460, 208-212. 
HARTUNG, T., BREMER, S., CASATI, S., COECKE, S., CORVI, R., FORTANER, S., GRIBALDO, 

L., HALDER, M., ROI, A. J. & PRIETO, P. 2003. ECVAM's response to the changing 
political environment for alternatives: consequences of the European Union 
chemicals and cosmetics policies. ATLA-NOTTINGHAM-, 31, 473-482. 

HASHIMOTO, R., FUJIMAKI, K., JEONG, M. R., CHRIST, L. & CHUANG, D.-M. 2003. 
Lithium-induced inhibition of Src tyrosine kinase in rat cerebral cortical neurons: 
a role in neuroprotection against N-methyl-D-aspartate receptor-mediated 
excitotoxicity. FEBS letters, 538, 145-148. 

HASHIMOTO, R., TAKEI, N., SHIMAZU, K., CHRIST, L., LU, B. & CHUANG, D.-M. 2002. 
Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent 
cortical neurons: an essential step for neuroprotection against glutamate 
excitotoxicity. Neuropharmacology, 43, 1173-1179. 

HAUSER, W. A. 1994. The prevalence and incidence of convulsive disorders in children. 
Epilepsia, 35, S1-S6. 

HEER, R., COLLINS, A. T., ROBSON, C. N., SHENTON, B. K. & LEUNG, H. Y. 2006. KGF 
suppresses α2β1 integrin function and promotes differentiation of the transient 
amplifying population in human prostatic epithelium. Journal of cell science, 
119, 1416-1424. 

HENDRICK, V., STOWE, Z. N., ALTSHULER, L. L., HWANG, S., LEE, E. & HAYNES, D. 2003. 
Placental Passage of Antidepressant Medications. American Journal of 
Psychiatry, 160, 993-996. 

HENG, J. I.-T., NGUYEN, L., CASTRO, D. S., ZIMMER, C., WILDNER, H., ARMANT, O., 
SKOWRONSKA-KRAWCZYK, D., BEDOGNI, F., MATTER, J.-M. & HEVNER, R. 2008. 
Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. 
Nature, 455, 114-118. 

HIGGINBOTHAM, H. R. & GLEESON, J. G. 2007. The centrosome in neuronal 
development. Trends in neurosciences, 30, 276-283. 

HILL, S. M. & BLASK, D. E. 1988. Effects of the pineal hormone melatonin on the 
proliferation and morphological characteristics of human breast cancer cells 
(MCF-7) in culture. Cancer research, 48, 6121-6126. 

HO, P. I., ASHLINE, D., DHITAVAT, S., ORTIZ, D., COLLINS, S. C., SHEA, T. B. & ROGERS, E. 
2003. Folate deprivation induces neurodegeneration: roles of oxidative stress 
and increased homocysteine. Neurobiology of disease, 14, 32-42. 

HOLMES, L. B., HARVEY, E. A., COULL, B. A., HUNTINGTON, K. B., KHOSHBIN, S., HAYES, 
A. M. & RYAN, L. M. 2001. The teratogenicity of anticonvulsant drugs. New 
England Journal of Medicine, 344, 1132-1138. 

HTTP://WWW.NHTSA.DOT.GOV/PEOPLE/INJURY/RESEARCH/JOB185DRUGS/DIAZEPAM.
HTM. 

http://www.nhtsa.dot.gov/PEOPLE/INJURY/RESEARCH/JOB185DRUGS/DIAZEPAM.HTM
http://www.nhtsa.dot.gov/PEOPLE/INJURY/RESEARCH/JOB185DRUGS/DIAZEPAM.HTM


 

194 
 

HUANG, Z. 2009. Molecular regulation of neuronal migration during neocortical 
development. Molecular and Cellular Neuroscience, 42, 11-22. 

HUGUENARD, J. 1996. Low-threshold calcium currents in central nervous system 
neurons. Annual review of physiology, 58, 329-348. 

HUNTER, D. & RUSSELL, D. S. 1954. Focal cerebral and cerebellar atrophy in a human 
subject due to organic mercury compounds. Journal of neurology, neurosurgery, 
and psychiatry, 17, 235. 

IKONOMIDOU, C., BOSCH, F., MIKSA, M., BITTIGAU, P., VÖCKLER, J., DIKRANIAN, K., 
TENKOVA, T. I., STEFOVSKA, V., TURSKI, L. & OLNEY, J. W. 1999. Blockade of 
NMDA receptors and apoptotic neurodegeneration in the developing brain. 
Science, 283, 70-74. 

IKONOMIDOU, C. & TURSKI, L. 2010. Antiepileptic drugs and brain development. 
Epilepsy research, 88, 11-22. 

IQBAL, M. M., SOBHAN, T. & RYALS, T. 2002. Effects of commonly used benzodiazepines 
on the fetus, the neonate, and the nursing infant. Psychiatric Services. 

IQBAL, M. M., SOBHAN, T. & RYALS, T. 2014. Effects of commonly used benzodiazepines 
on the fetus, the neonate, and the nursing infant. Psychiatric Services. 

JACOBS, J. S. & MILLER, M. W. 2002. Proliferation and death of cultured fetal neocortical 
neurons: effects of ethanol on the dynamics of cell growth. Journal of 
neurocytology, 30, 391-401. 

JAN, Y. N. & JAN, L. Y. 1998. Asymmetric cell division. Nature, 392, 775-778. 
JAN YN, J. L. 2001. Dendrites. Genes Dev, 15, 2627-2641. 
JARUP, L. 2003. Hazards of heavy metal contamination Br Med Bull 68: 167–182. Find 

this article online. 
JEERAGE, K. M., ORESKOVIC, T. L. & HUME, S. L. 2012. Neurite outgrowth and 

differentiation of rat cortex progenitor cells are sensitive to lithium chloride at 
non-cytotoxic exposures. Neurotoxicology, 33, 1170-1179. 

JENTINK, J., DOLK, H., LOANE, M. A., MORRIS, J. K., WELLESLEY, D., GARNE, E. & DE 
JONG-VAN DEN BERG, L. 2010a. Intrauterine exposure to carbamazepine and 
specific congenital malformations: systematic review and case-control study. 
BmJ, 341, c6581. 

JENTINK, J., DOLK, H., LOANE, M. A., MORRIS, J. K., WELLESLEY, D., GARNE, E. & DE 
JONG-VAN DEN BERG, L. 2010b. Intrauterine exposure to carbamazepine and 
specific congenital malformations: systematic review and case-control study. 
BMJ: British Medical Journal, 341. 

JESSELL, T. M. 2000. Neuronal specification in the spinal cord: inductive signals and 
transcriptional codes. Nature Reviews Genetics, 1, 20-29. 

JIMENEZ‐JORGE, S., GUERRERO, J. M., JIMENEZ‐CALIANI, A. J., NARANJO, M. C., 
LARDONE, P. J., CARRILLO‐VICO, A., OSUNA, C. & MOLINERO, P. 2007. Evidence 
for melatonin synthesis in the rat brain during development. Journal of pineal 
research, 42, 240-246. 

JIN-PING, L. 2009. Nestin and Neural Stem Cells. Modern Diagnosis & Treatment, 6, 014. 
JIN, K., SUN, Y., XIE, L., BATTEUR, S., MAO, X. O., SMELICK, C., LOGVINOVA, A. & 

GREENBERG, D. A. 2003. Neurogenesis and aging: FGF‐2 and HB‐EGF restore 
neurogenesis in hippocampus and subventricular zone of aged mice. Aging cell, 
2, 175-183. 

JOPE, R. S. 2011. Glycogen synthase kinase-3 in the etiology and treatment of mood 
disorders. Frontiers in molecular neuroscience, 4. 

JOSHI, R., ADHIKARI, S., PATRO, B., CHATTOPADHYAY, S. & MUKHERJEE, T. 2001. Free 
radical scavenging behavior of folic acid: evidence for possible antioxidant 
activity. Free Radical Biology and Medicine, 30, 1390-1399. 



 

195 
 

JUCHAU, M. R., LEE, Q. P. & FANTEL, A. G. 1992. Xenobiotic Biotransfor 
Mation/Bioactivation in Organogenesis-Stage Conceptal Tissues: Implications 
for Embryotoxicity and Teratogenesis. Drug metabolism reviews, 24, 195-238. 

JUDSON, R., RICHARD, A., DIX, D. J., HOUCK, K., MARTIN, M., KAVLOCK, R., DELLARCO, 
V., HENRY, T., HOLDERMAN, T. & SAYRE, P. 2009. The toxicity data landscape for 
environmental chemicals. Environ Health Perspect, 117, 685-695. 

JURAND, A. 1988. Teratogenic activity of lithium carbonate: an experimental update. 
Teratology, 38, 101-111. 

KAINDL, A., ASIMIADOU, S., MANTHEY, D., VD HAGEN, M., TURSKI, L. & IKONOMIDOU, 
C. 2006. Antiepileptic drugs and the developing brain. Cellular and Molecular 
Life Sciences CMLS, 63, 399-413. 

KATSETOS, C. D., HERMAN, M. M. & MÖRK, S. J. 2003. Class III β‐tubulin in human 
development and cancer. Cell motility and the cytoskeleton, 55, 77-96. 

KATZ , S. C. 1996. Synaptic activity and the construction of cortical circuits. Science, 274, 
1133-1138. 

KEARNS, S., LAYWELL, E., KUKEKOV, V. & STEINDLER, D. 2003. Extracellular matrix 
effects on neurosphere cell motility. Experimental neurology, 182, 240-244. 

KEITH L. MOORE, T. V. N. P., MARK G. PORCHIA 2016. The Developing Human: Clinically 
Oriented Embryology, Philadelphia, USA, Elsevier. 

KELLY, C. M., TYERS, P., TER BORG, M., SVENDSEN, C. N., DUNNETT, S. B. & ROSSER, A. E. 
2005. EGF and FGF-2 responsiveness of rat and mouse neural precursors 
derived from the embryonic CNS. Brain research bulletin, 68, 83-94. 

KEREVER, A., SCHNACK, J., VELLINGA, D., ICHIKAWA, N., MOON, C., ARIKAWA‐
HIRASAWA, E., EFIRD, J. T. & MERCIER, F. 2007. Novel extracellular matrix 
structures in the neural stem cell niche capture the neurogenic factor fibroblast 
growth factor 2 from the extracellular milieu. Stem cells, 25, 2146-2157. 

KIM, J., EFE, J. A., ZHU, S., TALANTOVA, M., YUAN, X., WANG, S., LIPTON, S. A., ZHANG, 
K. & DING, S. 2011. Direct reprogramming of mouse fibroblasts to neural 
progenitors. Proceedings of the National Academy of Sciences, 108, 7838-7843. 

KIM, J. B., SEBASTIANO, V., WU, G., ARAÚZO-BRAVO, M. J., SASSE, P., GENTILE, L., KO, K., 
RUAU, D., EHRICH, M. & VAN DEN BOOM, D. 2009. Oct4-induced pluripotency in 
adult neural stem cells. Cell, 136, 411-419. 

KIM, J. S., CHANG, M. Y., YU, I. T., KIM, J. H., LEE, S. H., LEE, Y. S. & SON, H. 2004a. 
Lithium selectively increases neuronal differentiation of hippocampal neural 
progenitor cells both in vitro and in vivo. Journal of neurochemistry, 89, 324-
336. 

KIM, M. J., KIM, H. K., KIM, B. S. & YIM, S. V. 2004b. Melatonin increases cell 
proliferation in the dentate gyrus of maternally separated rats. Journal of pineal 
research, 37, 193-197. 

KJÆR, D., HORVATH‐PUHÓ, E., CHRISTENSEN, J., VESTERGAARD, M., CZEIZEL, A. E., 
SØRENSEN, H. T. & OLSEN, J. 2007. Use of phenytoin, phenobarbital, or 
diazepam during pregnancy and risk of congenital abnormalities: a case‐time‐
control study. Pharmacoepidemiology and drug safety, 16, 181-188. 

KLEIN, P. S. & MELTON, D. A. 1996. A molecular mechanism for the effect of lithium on 
development. Proceedings of the National Academy of Sciences, 93, 8455-8459. 

KLEINMAN, H., LUCKENBILL-EDDS, L., CANNON, F. & SEPHEL, G. 1987. Use of 
extracellular matrix components for cell culture. Analytical biochemistry, 166, 1-
13. 

KOBAYASHI, D., KOBAYASHI, M., MATSUMOTO, K., OGURA, T., NAKAFUKU, M. & 
SHIMAMURA, K. 2002. Early subdivisions in the neural plate define distinct 
competence for inductive signals. Development, 129, 83-93. 



 

196 
 

KOCKSKÄMPER, J., ZIMA, A. V., RODERICK, H. L., PIESKE, B., BLATTER, L. A. & BOOTMAN, 
M. D. 2008. Emerging roles of inositol 1, 4, 5-trisphosphate signaling in cardiac 
myocytes. Journal of molecular and cellular cardiology, 45, 128-147. 

KRIEGSTEIN, A. R. & NOCTOR, S. C. 2004. Patterns of neuronal migration in the 
embryonic cortex. Trends in neurosciences, 27, 392-399. 

KRUMAN, I. I., MOUTON, P. R., EMOKPAE JR, R., CUTLER, R. G. & MATTSON, M. P. 2005. 
Folate deficiency inhibits proliferation of adult hippocampal progenitors. 
Neuroreport, 16, 1055-1059. 

KUMADA, T., JIANG, Y., KAWANAMI, A., CAMERON, D. B. & KOMURO, H. 2009. 
Autonomous turning of cerebellar granule cells in vitro by intrinsic programs. 
Developmental biology, 326, 237-249. 

KUMBIER, E. & HAACK, K. 2004. Alfred Hauptmann (1881–1948). Journal of Neurology, 
251, 1288-1289. 

KUNIMOTO, M. & SUZUKI, T. 1997. Migration of granule neurons in cerebellar 
organotypic cultures is impaired by methylmercury. Neuroscience Letters, 226, 
183-186. 

KUNZ, W. & NAU, H. 1984. Differences in In Vitro Binding of Diazepam and N-
Desmethyldiazepam to Maternal and Fetal Plasma Proteins at Birth: Relation to 
Free Fatty Acid Concentration and Other Parameters. Obstetric Anesthesia 
Digest, 4, 18-19. 

KURKI, T., HIILESMAA, V., RAITASALO, R., MATTILA, H. & YLIKORKALA, O. 2000. 
Depression and anxiety in early pregnancy and risk for preeclampsia. Obstetrics 
& Gynecology, 95, 487-490. 

KWAN, P. & BRODIE, M. J. 2004. Phenobarbital for the treatment of epilepsy in the 21st 
century: a critical review. Epilepsia, 45, 1141-1149. 

LATHIA, J. D., PATTON, B., ECKLEY, D. M., MAGNUS, T., MUGHAL, M. R., SASAKI, T., 
CALDWELL, M. A., RAO, M. S. & MATTSON, M. P. 2007. Patterns of laminins and 
integrins in the embryonic ventricular zone of the CNS. Journal of Comparative 
Neurology, 505, 630-643. 

LAUFFENBURGER, D. A. & HORWITZ, A. F. 1996. Cell migration: a physically integrated 
molecular process. Cell, 84, 359-369. 

LEACH, M. J., MARDEN, C. M. & MILLER, A. A. 1986. Pharmacological studies on 
lamotrigine, a novel potential antiepileptic drug. Epilepsia, 27, 490-497. 

LEHRMAN, G., HOGUE, I. B., PALMER, S., JENNINGS, C., SPINA, C. A., WIEGAND, A., 
LANDAY, A. L., COOMBS, R. W., RICHMAN, D. D. & MELLORS, J. W. 2005. 
Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. The Lancet, 
366, 549-555. 

LERMA, J., PATERNAIN, A. V., RODRÍGUEZ-MORENO, A. & LÓPEZ-GARCÍA, J. C. 2001. 
Molecular physiology of kainate receptors. Physiological reviews, 81, 971-998. 

LERNER, A. B., CASE, J. D., TAKAHASHI, Y., LEE, T. H. & MORI, W. 1958. Isolation of 
melatonin, the pineal gland factor that lightens melanocyteS1. Journal of the 
American Chemical Society, 80, 2587-2587. 

LEVI-MONTALCINI, R. 1987. The nerve growth factor: thirty-five years later. Bioscience 
Reports, 7, 681-699. 

LEVISON, S. W. & GOLDMAN, J. E. 1997. Multipotential and lineage restricted precursors 
coexist in the mammalian perinatal subventricular zone. Journal of neuroscience 
research, 48, 83-94. 

LEWLLYN A; STOWE Z, S. 1998. Lithium in the Treatment of Maniac-Depressive Illness: 
An Update. Symposium , Sea Island, Ga , ETATS-UNIS (30/05/1997) The Journal 
of clinical psychiatry, s 59, 57-65. 



 

197 
 

LI, L. & XIE, T. 2005. Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol., 
21, 605-631. 

LIN, A. C. & HOLT, C. E. 2007. Local translation and directional steering in axons. The 
embo journal, 26, 3729-3736. 

LINKS, J. M., SCHWARTZ, B. S., SIMON, D., BANDEEN-ROCHE, K. & STEWART, W. F. 2001. 
Characterization of toxicokinetics and toxicodynamics with linear systems 
theory: application to lead-associated cognitive decline. Environmental health 
perspectives, 109, 361. 

LIRK, P., HALLER, I., HAUSOTT, B., INGOROKVA, S., DEIBL, M., GERNER, P. & 
KLIMASCHEWSKI, L. 2006. The neurotoxic effects of amitriptyline are mediated 
by apoptosis and are effectively blocked by inhibition of caspase activity. 
Anesthesia & Analgesia, 102, 1728-1733. 

LIU, H., HUANG, G.-W., ZHANG, X.-M., REN, D.-L. & WILSON, J. X. 2010. Folic Acid 
supplementation stimulates notch signaling and cell proliferation in embryonic 
neural stem cells. Journal of clinical biochemistry and nutrition, 47, 174. 

LIU, Y. J., ZHUANG, J., ZHU, H. Y., SHEN, Y. X., TAN, Z. L. & ZHOU, J. N. 2007. Cultured rat 
cortical astrocytes synthesize melatonin: absence of a diurnal rhythm. Journal of 
pineal research, 43, 232-238. 

LOBO, M. V., ALONSO, F. J. M., REDONDO, C., LOPEZ-TOLEDANO, M. A., CASO, E., 
HERRANZ, A. S., PAÍNO, C. L., REIMERS, D. & BAZÁN, E. 2003. Cellular 
characterization of epidermal growth factor-expanded free-floating 
neurospheres. Journal of Histochemistry & Cytochemistry, 51, 89-103. 

LOESCHER, W. 2002. Valproic acid mechanisms of action  In: Antiepileptic Drugs, 
Philadelphia, Lippincott Williams & Wilkins. 

LOISEAU, P. 1995. Carbamazepine-clinical use. Antiepileptic drugs, 555-566. 
LOTURCO, J. J. & BAI, J. 2006. The multipolar stage and disruptions in neuronal 

migration. Trends in neurosciences, 29, 407-413. 
LOUGHHEAD, A. M., FISHER, A. D., NEWPORT, D. J., RITCHIE, J. C., OWENS, M. J., 

DEVANE, C. L. & STOWE, Z. N. 2014. Antidepressants in amniotic fluid: another 
route of fetal exposure. American Journal of Psychiatry. 

LUDUEÑA, R. F. 1997. Multiple forms of tubulin: different gene products and covalent 
modifications. International review of cytology, 178, 207-275. 

LUO, S., ZHANG, X., YU, M., YAN, H., LIU, H., WILSON, J. X. & HUANG, G. 2013. Folic acid 
acts through DNA methyltransferases to induce the differentiation of neural 
stem cells into neurons. Cell biochemistry and biophysics, 66, 559-566. 

MACDONALD, R. L. & OLSEN, R. W. 1994. GABAA receptor channels. Annual review of 
neuroscience, 17, 569-602. 

MACHADO‐VIEIRA, R., MANJI, H. K. & ZARATE JR, C. A. 2009. The role of lithium in the 
treatment of bipolar disorder: convergent evidence for neurotrophic effects as a 
unifying hypothesis. Bipolar disorders, 11, 92-109. 

MAITRE, M., CIESBELSKI, L. & MANDEL, P. 1974. Effect of 2-methyl 2-ethyl caproic acid 
and 2-2-dimethyl valeric acid on audiogenic seizures and brain gamma 
aminobutyric acid. Biochemical Pharmacology, 23, 2363-2368. 

MANDELLI, M., MORSELLI, P., NORDIO, S., PARDI, G., PRINCIPI, N., SERENI, F. & 
TOGNONI, G. 1975. Placental transfer to diazepam and its disposition in the 
newborn. Clinical pharmacology and therapeutics, 17, 564-572. 

MANJI, H. K. & LENOX, R. H. 2000. Signaling: Cellular insights into the pathophysiology of 
bipolar disorder. Biological Psychiatry, 48, 518-530. 

MARÍN, O. & RUBENSTEIN, J. L. 2001. A long, remarkable journey: tangential migration 
in the telencephalon. Nature Reviews Neuroscience, 2, 780-790. 



 

198 
 

MARÍN, O., VALDEOLMILLOS, M. & MOYA, F. 2006. Neurons in motion: same principles 
for different shapes? Trends in neurosciences, 29, 655-661. 

MARTINI, F. J., VALIENTE, M., BENDITO, G. L., SZABÓ, G., MOYA, F., VALDEOLMILLOS, M. 
& MARÍN, O. 2009. Biased selection of leading process branches mediates 
chemotaxis during tangential neuronal migration. Development, 136, 41-50. 

MASON, I. J. 1994. The ins and outs of fibroblast growth factors. Cell, 78, 547-552. 
MASON, L. H., HARP, J. P. & HAN, D. Y. 2014. Pb neurotoxicity: neuropsychological 

effects of lead toxicity. BioMed research international, 2014. 
MATYJA, E. & ALBRECHT, J. 1993. Ultrastructural evidence that mercuric chloride lowers 

the threshold for glutamate neurotoxicity in an organotypic culture of rat 
cerebellum. Neuroscience Letters, 158, 155-158. 

MAYO, J. C., SAINZ, R. M., URIA, H., ANTOLIN, I., ESTEBAN, M. M. & RODRIGUEZ, C. 1998. 
Melatonin prevents apoptosis induced by 6‐hydroxydopamine in neuronal cells: 
implications for Parkinson's disease. Journal of pineal research, 24, 179-192. 

MCALLISTER, A. K., LO, D. C. & KATZ, L. C. 1995. Neurotrophins regulate dendritic growth 
in developing visual cortex. Neuron, 15, 791-803. 

MCBRIDE, W. G. 1961. Thalidomide and congenital abnormalities. Lancet, 2. 
MCLEAN, M. J. & MACDONALD, R. L. 1986. Sodium valproate, but not ethosuximide, 

produces use-and voltage-dependent limitation of high frequency repetitive 
firing of action potentials of mouse central neurons in cell culture. Journal of 
Pharmacology and Experimental therapeutics, 237, 1001-1011. 

MCMANUS, M. F. & GOLDEN, J. A. 2005. Topical Review: Neuronal Migration in 
Developmental Disorders. Journal of child neurology, 20, 280-286. 

MCNAMARA, J. O. 2001. Drugs effective in the therapy of the epilepsies. The 
pharmacological basis of therapeutics, 521-548. 

MEADOR, K., BAKER, G., FINNELL, R., KALAYJIAN, L., LIPORACE, J., LORING, D., MAWER, 
G., PENNELL, P., SMITH, J. & WOLFF, M. 2006. In utero antiepileptic drug 
exposure Fetal death and malformations. Neurology, 67, 407-412. 

MEADOR, K., REYNOLDS, M. W., CREAN, S., FAHRBACH, K. & PROBST, C. 2008. 
Pregnancy outcomes in women with epilepsy: A systematic review and meta-
analysis of published pregnancy registries and cohorts. Epilepsy Research, 81, 1-
13. 

MELDRUM, B. S. 1995. Excitatory amino acid receptors and their role in epilepsy and 
cerebral ischemia. Annals of the New York Academy of Sciences, 757, 492-505. 

MELDRUM, B. S. 2000. Glutamate as a neurotransmitter in the brain: review of 
physiology and pathology. The Journal of nutrition, 130, 1007S-1015S. 

MERRITTT, H. H. & PUTNAM, T. J. 1938. A new series of anticonvulsant drugs tested by 
experiments on animals. Archives of Neurology & Psychiatry, 39, 1003-1015. 

MILES, R. & WONG, R. 1987. Inhibitory control of local excitatory circuits in the guinea‐
pig hippocampus. The Journal of Physiology, 388, 611-629. 

MIURA, K., IMURA, N. & CLARKSON, T. W. 1987. Mechanism of methylmercury 
cytotoxicity. CRC critical reviews in toxicology, 18, 161-188. 

MIYAGI, S., NISHIMOTO, M., SAITO, T., NINOMIYA, M., SAWAMOTO, K., OKANO, H., 
MURAMATSU, M., OGURO, H., IWAMA, A. & OKUDA, A. 2006. The Sox2 
regulatory region 2 functions as a neural stem cell-specific enhancer in the 
telencephalon. Journal of Biological Chemistry, 281, 13374-13381. 

MORROW, B. A., ELSWORTH, J. D. & ROTH, R. H. 2005. Prenatal exposure to cocaine 
selectively disrupts the development of parvalbumin containing local circuit 
neurons in the medial prefrontal cortex of the rat. Synapse, 56, 1-11. 

MOSCONA, A. 1952. Cell suspensions from organ rudiments of chick embryos. 
Experimental Cell Research, 3, 535-539. 



 

199 
 

MULLERS-KUPPERS, V. 1963. Embryopathy during pregnancy caused by taking 
anticonvulsants. Acta Paedopsychiatr, 30, 401-405. 

MURABE, M., YAMAUCHI, J., FUJIWARA, Y., HIROYAMA, M., SANBE, A. & TANOUE, A. 
2007a. A novel embryotoxic estimation method of VPA using ES cells 
differentiation system. Biochemical and biophysical research communications, 
352, 164-169. 

MURABE, M., YAMAUCHI, J., FUJIWARA, Y., MIYAMOTO, Y., HIROYAMA, M., SANBE, A. & 
TANOUE, A. 2007b. Estimation of the embryotoxic effect of CBZ using an ES cell 
differentiation system. Biochemical and biophysical research communications, 
356, 739-744. 

MURRAY, G. 1999. Harper's Biochemistry, Appleton and Lange. 
MURRAY, L. & COOPER, P. J. 1997. Editorial: Postpartum depression and child 

development. Psychological medicine, 27, 253-260. 
NA, L., WARTENBERG, M., NAU, H., HESCHELER, J. & SAUER, H. 2003. Anticonvulsant 

valproic acid inhibits cardiomyocyte differentiation of embryonic stem cells by 
increasing intracellular levels of reactive oxygen species. Birth Defects Research 
Part A: Clinical and Molecular Teratology, 67, 174-180. 

NAGASHIMA, K. 1997. Review Article: A Review of Experimental Methylmercury Toxicity 
in Rats: Neuropathology and Evidence for Apoptosis. Toxicologic Pathology, 25, 
624-631. 

NAGELE, R., PIETROLUNGO, J., LEE, H. & ROISEN, F. 1981. Diazepam‐induced neural tube 
closure defects in explanted early chick embryos. Teratology, 23, 343-349. 

NAKADA, S. & IMURA, N. 1983. Susceptibility of lipids to mercurials. Journal of Applied 
Toxicology, 3, 131-134. 

NAU, H. Valproic acid-induced neural tube defects.  Neural Tube Defects. Ciba 
Foundation Symposium, 1994. 144-160. 

NAU, H. Valproic acid-induced neural tube defects.  Neural Tube Defects. Ciba 
Foundation Symposium, 2008. 144-160. 

NAU, H., HAUCK, R. S. & EHLERS, K. 1991. Valproic Acid‐Induced Neural Tube Defects in 
Mouse and Human: Aspects of Chirality, Alternative Drug Development, 
Pharmacokinetics and Possible Mechanisms. Pharmacology & toxicology, 69, 
310-321. 

NAVA-RUIZ, C., MÉNDEZ-ARMENTA, M. & RÍOS, C. 2012. Lead neurotoxicity: effects on 
brain nitric oxide synthase. Journal of molecular histology, 43, 553-563. 

NEALE, E. A., SHER, P. K., GRAUBARD, B. I., HABIG, W. H., FITZGERALD, S. C. & NELSON, 
P. G. 1985. Differential toxicity of chronic exposure to phenytoin, phenobarbital, 
or carbamazepine in cerebral cortical cell cultures. Pediatric neurology, 1, 143-
150. 

NEHRU, B. & KANWAR, S. 2004. N-acetylcysteine exposure on lead-induced lipid 
peroxidative damage and oxidative defense system in brain regions of rats. 
Biological trace element research, 101, 257-264. 

NESTLER, E. J., BARROT, M., DILEONE, R. J., EISCH, A. J., GOLD, S. J. & MONTEGGIA, L. M. 
2002. Neurobiology of depression. Neuron, 34, 13-25. 

NEW, D. A. T., COPPOLA, P. T. & COCKROFT, D. L. 1976. IMPROVED DEVELOPMENT OF 
HEAD-FOLD RAT EMBRYOS IN CULTURE RESULTING FROM LOW OXYGEN AND 
MODIFICATIONS OF CULTURE SERUM. Journal of Reproduction and Fertility, 48, 
219-&. 

NGUYEN, L., RIGO, J.-M., ROCHER, V., BELACHEW, S., MALGRANGE, B., ROGISTER, B., 
LEPRINCE, P. & MOONEN, G. 2001. Neurotransmitters as early signals for central 
nervous system development. Cell and tissue research, 305, 187-202. 



 

200 
 

NOVAK, U. & KAYE, A. H. 2000. Extracellular matrix and the brain: components and 
function. Journal of clinical neuroscience, 7, 280-290. 

NRC 2007. Toxicity Testing in the Twenty-First Century: A Vision and a Strategy, 
Washington ,D.C, The National Academic press. 

O'BRIEN, J., WILSON, I., ORTON, T. & POGNAN, F. 2000. Investigation of the Alamar Blue 
(resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. 
European Journal of Biochemistry, 267, 5421-5426. 

O'CALLAGHAN, J. 1991. Assessment of neurotoxicity: use of glial fibrillary acidic protein 
as a biomarker. Biomedical and environmental sciences: BES, 4, 197-206. 

O’CALLAGHAN, J. P. & SRIRAM, K. 2005. Glial fibrillary acidic protein and related glial 
proteins as biomarkers of neurotoxicity. Expert opinion on drug safety, 4, 433-
442. 

OATES, M. 2003. Suicide: the leading cause of maternal death. The British Journal of 
Psychiatry, 183, 279-281. 

OECD 2007. Organization for the Economic Co-operation and Development. Guideline for 
the testing Chemicals. Section 4: Health Effect Test No. 426: Development Txicity 
Study, Paris ,France. 

OHNUMA, S.-I. & HARRIS, W. A. 2003. Neurogenesis and the cell cycle. Neuron, 40, 199-
208. 

OKAZAKI, E., OYAMA, Y., CHIKAHISA, L., NAGANO, T., KATAYAMA, N. & SAKAMOTO, M. 
1997. Fluorescent estimation on cytotoxicity of methylmercury in dissociated 
rat cerebellar neurons: its comparison with ionomycin. Environmental 
toxicology and pharmacology, 3, 237-244. 

OLNEY, J. W., YOUNG, C., WOZNIAK, D. F., JEVTOVIC-TODOROVIC, V. & IKONOMIDOU, C. 
2004. Do pediatric drugs cause developing neurons to commit suicide? Trends in 
pharmacological sciences, 25, 135-139. 

OLNEY, R. S. & MULINARE, J. Trends in neural tube defect prevalence, folic acid 
fortification, and vitamin supplement use.  Seminars in perinatology, 2002. 
Elsevier, 277-285. 

ORNOY, A. 2006. Neuroteratogens in man: an overview with special emphasis on the 
teratogenicity of antiepileptic drugs in pregnancy. Reproductive Toxicology, 22, 
214-226. 

ORRENIUS, S. & NICOTERA, P. 1993. The calcium ion and cell death. Journal of neural 
transmission. Supplementum, 43, 1-11. 

OYAMA, Y., TOMIYOSHI, F., UENO, S., FURUKAWA, K. & CHIKAHISA, L. 1994. 
Methylmercury-induced augmentation of oxidative metabolism in cerebellar 
neurons dissociated from the rats: its dependence on intracellular Ca 2+. Brain 
research, 660, 154-157. 

OZOLINS, T. R., WILEY, M. J. & WELLS, P. G. 1995. Phenytoin covalent binding and 
embryopathy in mouse embryos co-cultured with maternal hepatocytes from 
mouse, rat, and rabbit. Biochemical pharmacology, 50, 1831-1840. 

PANCHISION, D. M., PICKEL, J. M., STUDER, L., LEE, S.-H., TURNER, P. A., HAZEL, T. G. & 
MCKAY, R. D. 2001. Sequential actions of BMP receptors control neural 
precursor cell production and fate. Genes & development, 15, 2094-2110. 

PANDI-PERUMAL, S. R., TRAKHT, I., SRINIVASAN, V., SPENCE, D. W., MAESTRONI, G. J., 
ZISAPEL, N. & CARDINALI, D. P. 2008. Physiological effects of melatonin: role of 
melatonin receptors and signal transduction pathways. Progress in 
neurobiology, 85, 335-353. 

PANDOLFI, P. P. 2001. Transcription therapy for cancer. Oncogene, 20, 3116. 
PANNESE 1994. Neurocytology, New York, Thieme Medical Publisher. 



 

201 
 

PARATCHA, G. & LEDDA, F. 2008. GDNF and GFRα: a versatile molecular complex for 
developing neurons. Trends in neurosciences, 31, 384-391. 

PAULOSE, J. K., PETERS, J. L., KARAGANIS, S. P. & CASSONE, V. M. 2009. Pineal melatonin 
acts as a circadian zeitgeber and growth factor in chick astrocytes. Journal of 
pineal research, 46, 286-294. 

PENNELL, P. B. 2008. Antiepileptic drugs during pregnancy: what is known and which 
AEDs seem to be safest? Epilepsia, 49, 43-55. 

PENTREATH, V. W. 1999. NeurotoxicologyIn Vitro, USA and Canada, Taylor and Francis. 
PEREZ-REYES, E. 2003. Molecular physiology of low-voltage-activated t-type calcium 

channels. Physiological reviews, 83, 117-161. 
PEVNY, L. & RAO, M. S. 2003. The stem-cell menagerie. Trends in neurosciences, 26, 351-

359. 
PHIEL, C. J., ZHANG, F., HUANG, E. Y., GUENTHER, M. G., LAZAR, M. A. & KLEIN, P. S. 

2001. Histone deacetylase is a direct target of valproic acid, a potent 
anticonvulsant, mood stabilizer, and teratogen. Journal of Biological Chemistry, 
276, 36734-36741. 

PIERSMA, A. H. 2006. Alternative methods for developmental toxicity testing. Basic & 
clinical pharmacology & toxicology, 98, 427-431. 

PIVOVAROVA, N. B. & ANDREWS, S. B. 2010. Calcium‐dependent mitochondrial function 
and dysfunction in neurons. Febs Journal, 277, 3622-3636. 

PLATT, S. R. 2007. The role of glutamate in central nervous system health and disease–a 
review. The Veterinary Journal, 173, 278-286. 

POLIFKA, J. E. & FRIEDMAN, J. 1999. Clinical teratology: identifying teratogenic risks in 
humans. Clinical Genetics, 56, 409-420. 

PONS, S., TREJO, J. L., MARTÍNEZ-MORALES, J. R. & MARTÍ, E. 2001. Vitronectin regulates 
Sonic hedgehog activity during cerebellum development through CREB 
phosphorylation. Development, 128, 1481-1492. 

POST, A., CROCHEMORE, C., UHR, M., HOLSBOER, F. & BEHL, C. 2000. Differential 
induction of NF‐κB activity and neural cell death by antidepressants in vitro. 
European Journal of Neuroscience, 12, 4331-4337. 

PRABHU, L., RAI, R., PAI, M., YADAV, S., MADHYASTHA, S., GOEL, R., SINGH, G. & NASAR, 
M. 2008. Teratogenic effects of the anticonvulsant gabapentin in mice. 
Singapore medical journal, 49, 47-53. 

PRAKASH, P. L., RAI, R., PAI, M., YADAV, S., MADHYASTHA, S., GOEL, R., SINGH, G. & 
NASAR, M. 2008. Teratogenic effects of the anticonvulsant gabapentin in mice. 
Singapore Med J, 49, 47-53. 

PRAKRIYA, M. & MENNERICK, S. 2000. Selective Depression of Low–Release Probability 
Excitatory Synapses by Sodium Channel Blockers. Neuron, 26, 671-682. 

PRATT, R. M. & WILLIS, W. D. 1985. In vitro screening assay for teratogens using growth 
inhibition of human embryonic cells. Proceedings of the National Academy of 
Sciences, 82, 5791-5794. 

PURAM, S. V. & BONNI, A. 2013. Cell-intrinsic drivers of dendrite morphogenesis. 
Development, 140, 4657-4671. 

QIAN, X., DAVIS, A. A., GODERIE, S. K. & TEMPLE, S. 1997. FGF2 concentration regulates 
the generation of neurons and glia from multipotent cortical stem cells. Neuron, 
18, 81-93. 

QIN, J., VINOGRADOVA, O. & PLOW, E. F. 2004. Integrin bidirectional signaling: a 
molecular view. PLoS biology, 2, 726-729. 

QURESHI, W. M. S. 2012. The chick cardiomyocyte micromass system and stem cell 
differentiation along specific pathways: Prediction of embryotoxic effects and 
their mechanism. Ph.D, Nottingham University. 



 

202 
 

RADIO, N. M. & MUNDY, W. R. 2008. Developmental neurotoxicity testing in vitro: 
models for assessing chemical effects on neurite outgrowth. Neurotoxicology, 
29, 361-376. 

RAKIC, P. 1972. Mode of cell migration to the superficial layers of fetal monkey 
neocortex. Journal of Comparative Neurology, 145, 61-83. 

RAKIC, P. 1995. Radial glial cells: scaffolding for brain construction. Neuroglia. Oxford 
University Press, New York, 746-762. 

RAMOS, B., GAUDILLIÈRE, B., BONNI, A. & GILL, G. 2007. Transcription factor Sp4 
regulates dendritic patterning during cerebellar maturation. Proceedings of the 
National Academy of Sciences, 104, 9882-9887. 

RAO, M. S. 1999. Multipotent and restricted precursors in the central nervous system. 
The Anatomical Record, 257, 137-148. 

RAOUL, C., PETTMANN, B. & HENDERSON, C. E. 2000. Active killing of neurons during 
development and following stress: a role for p75 NTR and Fas? Current opinion 
in neurobiology, 10, 111-117. 

REGAN, C., GORMAN, A., LARSSON, O., MAGUIRE, C., MARTIN, M., SCHOUSBOE, A. & 
WILLIAMS, D. 1990. < i> In vitro</i> screening for anticonvulsant-induced 
teratogenesis in neural primary cultures and cell lines. International journal of 
developmental neuroscience, 8, 143-150. 

REINISCH, J. M., SANDERS, S. A., MORTENSEN, E. L. & RUBIN, D. B. 1995. In utero 
exposure to phenobarbital and intelligence deficits in adult men. Jama, 274, 
1518-1525. 

REITER, R. J. 1991. Pineal Melatonin: Cell Biology of Its Synthesis and of Its Physiological 
Interactions*. Endocrine reviews, 12, 151-180. 

REITER, R. J. 1998. Oxidative damage in the central nervous system: protection by 
melatonin. Progress in neurobiology, 56, 359-384. 

REITER, R. J., GARCIA, J. J. & PIE, J. 1998. Oxidative toxicity in models of 
neurodegeneration: responses to melatonin. Restorative neurology and 
neuroscience, 12, 135-142. 

REITER, R. J., TAN, D.-X., MANCHESTER, L. C., PAREDES, S. D., MAYO, J. C. & SAINZ, R. M. 
2009. Melatonin and reproduction revisited. Biology of reproduction, 81, 445-
456. 

REYNOLDS, B. A. & WEISS, S. 1992. Generation of neurons and astrocytes from isolated 
cells of the adult mammalian central nervous system. Science, 255, 1707-1710. 

REYNOLDS, B. A. & WEISS, S. 1996. Clonal and population analyses demonstrate that an 
EGF-responsive mammalian embryonic CNS precursor is a stem cell. 
Developmental biology, 175, 1-13. 

RICE, D. & BARONE JR, S. 2000. Critical periods of vulnerability for the developing 
nervous system: evidence from humans and animal models. Environmental 
health perspectives, 108, 511. 

ROCHA, J., FREITAS, A., MARQUES, M., PEREIRA, M., EMANUELLI, T. & SOUZA, D. 1993. 
Effects of methylmercury exposure during the second stage of rapid postnatal 
brain growth on negative geotaxis and on delta-aminolevulinate dehydratase of 
suckling rats. Brazilian journal of medical and biological research= Revista 
brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de 
Biofisica...[et al.], 26, 1077-1083. 

ROGAWSKI, M. A., GRYDER, D., CASTANEDA, D., YONEKAWA, W., BANKS, M. K. & LI, H. 
2003. GluR5 kainate receptors, seizures, and the amygdala. Annals of the New 
York Academy of Sciences, 985, 150-162. 

ROGAWSKI, M. A. & LÖSCHER, W. 2004a. The neurobiology of antiepileptic drugs. 
Nature Reviews Neuroscience, 5, 553-564. 



 

203 
 

ROGAWSKI, M. A. & LÖSCHER, W. 2004b. The neurobiology of antiepileptic drugs for the 
treatment of nonepileptic conditions. Nature medicine, 10, 685-692. 

ROGISTER, B., BEN-HUR, T. & DUBOIS-DALCQ, M. 1999. From neural stem cells to 
myelinating oligodendrocytes. Molecular and Cellular Neuroscience, 14, 287-
300. 

RUIZ, S., BRENNAND, K., PANOPOULOS, A. D., HERRERÍAS, A., GAGE, F. H. & IZPISUA-
BELMONTE, J. C. 2010. High-efficient generation of induced pluripotent stem 
cells from human astrocytes. PLoS One, 5, e15526. 

RUSSELL WMS, B. R. 1959. The Principles of Humane Experimentation Technique., 
Wheathampstead, UK, The University Federation for Animal Welfare. 

RUSSELL, W. M. S. B. R. 1959. The principles of humane experimental technique, London, 
Methuen & Co Ltd. 

RYAN, M. C. & CHRISTIANO, A. M. 1996. The functions of laminins: lessons from in vivo 
studies. Matrix biology, 15, 369-381. 

SAGER, P., DOHERTY, R. & OLMSTED, J. Interactions of methylmercury with 
microtubules.  JOURNAL OF CELL BIOLOGY, 1981. ROCKEFELLER UNIV PRESS 
1114 FIRST AVE, 4TH FL, NEW YORK, NY 10021 USA, A330-A330. 

SAKAMOTO, M., IKEGAMI, N. & NAKANO, A. 1996. Protective effects of Ca2+ channel 
blockers against methyl mercury toxicity. Pharmacology & toxicology, 78, 193-
199. 

SALAS, E. L. 2012. Phenobarbital Exposure in Human Pregnancy. Master, San Diego State 
University. 

SANES, D. H., REH, T.A., HARRISS, W.A. 2006. Development of the nervous system, 
Burlington, MA., Elsevier Academic Press. 

SANKAR, R. & HOLMES, G. L. 2004. Mechanisms of Action for the Commonly Used 
Antiepileptic Drugs: Relevance to Antiepileptic Drug—Associated 
Neurobehavioral Adverse Effects. Journal of child neurology, 19, S6-S14. 

SATO, K., KANNO, J., TOMINAGA, T., MATSUBARA, Y. & KURE, S. 2006. De novo and 
salvage pathways of DNA synthesis in primary cultured neurall stem cells. Brain 
research, 1071, 24-33. 

SAUNDERS, N. R., BALKWILL, P., KNOTT, G., HABGOOD, M., MLLGARD, K., TREHERNE, J. 
& NICHOLLS, J. 1992. Growth of axons through a lesion in the intact CNS of fetal 
rat maintained in long-term culture. Proceedings of the Royal Society of London 
B: Biological Sciences, 250, 171-180. 

SCHAAR, B. T. & MCCONNELL, S. K. 2005. Cytoskeletal coordination during neuronal 
migration. Proceedings of the National Academy of Sciences of the United States 
of America, 102, 13652-13657. 

SCHARDEIN, J. L. 1993. Chemically Induced Birth Defects, New York., Marcel Dekker. 
SCHLAEPFER, W. W. 1977. Structural alterations of peripheral nerve induced by the 

calcium ionophore A23187. Brain research, 136, 1-9. 
SCHMID, R. S., SHELTON, S., STANCO, A., YOKOTA, Y., KREIDBERG, J. A. & ANTON, E. 

2004. α3β1 integrin modulates neuronal migration and placement during early 
stages of cerebral cortical development. Development, 131, 6023-6031. 

SCHWAB, M. E. & BARTHOLDI, D. 1996. Degeneration and regeneration of axons in the 
lesioned spinal cord. Physiological reviews, 76, 319-370. 

SEEDS, N., HAFFKE, S. & KRYSTOSEK, A. 1980. Cell migration and recognition in 
cerebellar reaggregate cultures. Tissue Culture in Neurobiology. Raven Press 
New York. 

SERRANO, E. E., KUNIS, D. M. & RANSOM, B. R. 1988. Effects of chronic phenobarbital 
exposure on cultured mouse spinal cord neurons. Annals of neurology, 24, 429-
438. 



 

204 
 

SHADIGIAN, E. M. & BAUER, S. T. 2005. Pregnancy-associated death: a qualitative 
systematic review of homicide and suicide. Obstetrical & gynecological survey, 
60, 183-190. 

SHARIFI, A. M., BANIASADI, S., JORJANI, M., RAHIMI, F. & BAKHSHAYESH, M. 2002. 
Investigation of acute lead poisoning on apoptosis in rat hippocampus in vivo. 
Neuroscience Letters, 329, 45-48. 

SHARMA, P., CHAMBIAL, S. & SHUKLA, K. K. 2015. Lead and Neurotoxicity. Indian Journal 
of Clinical Biochemistry, 30, 1-2. 

SHEPARD, T., BRENT, R., FRIEDMAN, J., JONES, K., MILLER, R., MOORE, C. & POLIFKA, J. 
2002. Update on new developments in the study of human teratogens. 
Teratology, 65, 153-161. 

SHEPHARD, G. M. 1994. Neurobiology, Oxford University Press. New York. 
SHIM, S. Y., WANG, J., ASADA, N., NEUMAYER, G., TRAN, H. C., ISHIGURO, K.-I., SANADA, 

K., NAKATANI, Y. & NGUYEN, M. D. 2008. Protein 600 is a 
microtubule/endoplasmic reticulum-associated protein in CNS neurons. The 
Journal of neuroscience, 28, 3604-3614. 

SHORTER, E. 2009. The history of lithium therapy. Bipolar disorders, 11, 4-9. 
SHORVON, S. D. 1996. The epidemiology and treatment of chronic and refractory 

epilepsy. Epilepsia, 37, S1-S3. 
SINDRUP, S. H. & JENSEN, T. S. 1999. Efficacy of pharmacological treatments of 

neuropathic pain: an update and effect related to mechanism of drug action. 
Pain, 83, 389-400. 

SKERRITT, J. H., WERZ, M. A., MCLEAN, M. J. & MACDONALD, R. L. 1984. Diazepam and 
its anomalousp-chloro-derivative Ro 5-4864: comparative effects on mouse 
neurons in cell culture. Brain research, 310, 99-105. 

SLACK, J. M. W. 2006. Essential Developmental Biology, Blackwell Publishing. 
SNIDER, W. D. 1994. Functions of the neurotrophins during nervous system 

development: what the knockouts are teaching us. Cell, 77, 627-638. 
SOHN, R. S. & FERRENDELLI, J. A. 1973. Inhibition of Ca++ transport into rat brain 

synaptosomes by diphenylhydantoin (DPH). Journal of Pharmacology and 
Experimental Therapeutics, 185, 272-275. 

SOLECKI, D. J., MODEL, L., GAETZ, J., KAPOOR, T. M. & HATTEN, M. E. 2004. Par6α 
signaling controls glial-guided neuronal migration. nature neuroscience, 7, 1195-
1203. 

SOTTHIBUNDHU, A., PHANSUWAN‐PUJITO, P. & GOVITRAPONG, P. 2010. Melatonin 
increases proliferation of cultured neural stem cells obtained from adult mouse 
subventricular zone. Journal of pineal research, 49, 291-300. 

SPANOVA, A., KOVÁRŮ, H., LISÁ, V., LUKASOVA, E. & RITTICH, B. 1996. Estimation of 
apoptosis in C6 glioma cells treated with antidepressants. Physiological 
research/Academia Scientiarum Bohemoslovaca, 46, 161-164. 

SPIELMANN, H., GENSCHOW, E., SCHOLZ, G., BROWN, N., PIERSMA, A., BRADY, M., 
CLEMANN, N., HUUSKONEN, H., PAILLARD, F. & BREMER, S. 2001. Preliminary 
results of the ECVAM validation study on three in vitro embryotoxicity tests. 
ATLA. 

SPIELMANN, H., POHL I, DORING B, LIEBSCH M & MOLDENHAUER F 1997. The 
embryonic stem cell test (EST), an in vitro embryotoxicity test using two 
permanent mouse cell lines; 3T3 fibroblasts and embryonic stem celss. Toxicol. 
In vitro, 119-127. 

STANGER, O. 2002. Physiology of folic acid in health and disease. Current drug 
metabolism, 3, 211-223. 



 

205 
 

STEGMANN, B. J. & CAREY, J. C. 2002. TORCH Infections. Toxoplasmosis, Other (syphilis, 
varicella-zoster, parvovirus B19), Rubella, Cytomegalovirus (CMV), and Herpes 
infections. Current women's health reports, 2, 253-258. 

STOCKER, P., LESGARDS, J.-F., VIDAL, N., CHALIER, F. & PROST, M. 2003. ESR study of a 
biological assay on whole blood: antioxidant efficiency of various vitamins. 
Biochimica et Biophysica Acta (BBA)-General Subjects, 1621, 1-8. 

STOCKER, R. & FREI, B. 1991. Endogenous antioxidant defences in human blood plasma. 
Oxidative stress: oxidants and antioxidants, 1991, 213-243. 

STOKSTAD, E. A HISTORICAL-PERSPECTIVE ON KEY ADVANCES IN THE BIOCHEMISTRY 
AND PHYSIOLOGY OF FOLATES.  ABSTRACTS OF PAPERS OF THE AMERICAN 
CHEMICAL SOCIETY, 1988. AMER CHEMICAL SOC 1155 16TH ST, NW, 
WASHINGTON, DC 20036, 156-AGFD. 

STOLT, C. C., REHBERG, S., ADER, M., LOMMES, P., RIETHMACHER, D., SCHACHNER, M., 
BARTSCH, U. & WEGNER, M. 2002. Terminal differentiation of myelin-forming 
oligodendrocytes depends on the transcription factor Sox10. Genes & 
development, 16, 165-170. 

STRUŻYÑSKA, L., BUBKO, I., WALSKI, M. & RAFAŁOWSKA, U. 2001. Astroglial reaction 
during the early phase of acute lead toxicity in the adult rat brain. Toxicology, 
165, 121-131. 

SU, H., CHU, T.-H. & WU, W. 2007a. Lithium enhances proliferation and neuronal 
differentiation of neural progenitor cells in vitro and after transplantation into 
the adult rat spinal cord. Experimental neurology, 206, 296-307. 

SU, H., CHU, T.-H. & WU, W. 2007b. Lithium enhances proliferation and neuronal 
differentiation of neural progenitor cells< i> in vitro</i> and after 
transplantation into the adult rat spinal cord. Experimental neurology, 206, 296-
307. 

SUZUKI, S. & ROGAWSKI, M. A. 1989. T-type calcium channels mediate the transition 
between tonic and phasic firing in thalamic neurons. Proceedings of the 
National Academy of Sciences, 86, 7228-7232. 

SVENDSEN, C. N., BHATTACHARYYA, A. & TAI, Y.-T. 2001. Neurons from stem cells: 
preventing an identity crisis. Nature Reviews Neuroscience, 2, 831-834. 

SVENDSEN, C. N., TER BORG, M. G., ARMSTRONG, R. J., ROSSER, A. E., CHANDRAN, S., 
OSTENFELD, T. & CALDWELL, M. A. 1998. A new method for the rapid and long 
term growth of human neural precursor cells. Journal of neuroscience methods, 
85, 141-152. 

TAKEUCHI, T. 1981. Pathology of Minamata disease. With special reference to its 
pathogenesis. Acta Pathologica Japonica, 32, 73-99. 

TAN, D.-X., CHEN, L., POEGGELER, B., MANCHESTER, L. & REITER, R. 1993. Melatonin: a 
potent, endogenous hydroxyl radical scavenger. Endocr j, 1, 57-60. 

TANDON, S. & JYOTI, S. 2012. Embryonic stem cells: An alternative approach to 
developmental toxicity testing. Journal of pharmacy & bioallied sciences, 4, 96. 

TARIOT, P. N., LOY, R., RYAN, J. M., PORSTEINSSON, A. & ISMAIL, S. 2002. Mood 
stabilizers in Alzheimer’s disease: symptomatic and neuroprotective rationales. 
Advanced Drug Delivery Reviews, 54, 1567-1577. 

TATULIAN, L., DELMAS, P., ABOGADIE, F. & BROWN, D. 2001. Activation of expressed 
KCNQ potassium currents and native neuronal M-type potassium currents by 
the anti-convulsant drug retigabine. The Journal of neuroscience, 21, 5535-5545. 

TEMIZ, C., TEMIZ, P., DEMIREL, A., SAYıN, M., UMUR, A. & ÖZER, F. 2009. Effect of 
sodium phenytoin concentration on neural tube development in the early 
stages of chicken embryo development. Journal of clinical neuroscience, 16, 
307-311. 



 

206 
 

TEMPLE, S. 2001. The development of neural stem cells. Nature, 414, 112-117. 
TERBACH, N. & WILLIAMS, R. S. 2009. Structure–function studies for the panacea, 

valproic acid. Biochemical Society Transactions, 37, 1126-1132. 
THOMSON, M., LIU, S. J., ZOU, L.-N., SMITH, Z., MEISSNER, A. & RAMANATHAN, S. 2011. 

Pluripotency factors in embryonic stem cells regulate differentiation into germ 
layers. Cell, 145, 875-889. 

TIERSCH, J. 1952. Therapeutic abortions with folic acid antagonist 4–aminopteroil–
glutamic acid (4–amino P.G.A.) administered by oral route. Amer J Obstet 
Gynecol 1298–1304. 

TIFFANY-CASTIGLIONI, E. & QIAN, Y. 2001. Astroglia as metal depots: molecular 
mechanisms for metal accumulation, storage and release. Neurotoxicology, 22, 
577-592. 

TOGASHI, H., ABE, K., MIZOGUCHI, A., TAKAOKA, K., CHISAKA, O. & TAKEICHI, M. 2002. 
Cadherin regulates dendritic spine morphogenesis. Neuron, 35, 77-89. 

TOMÁS‐ZAPICO, C. & COTO‐MONTES, A. 2005. A proposed mechanism to explain the 
stimulatory effect of melatonin on antioxidative enzymes. Journal of pineal 
research, 39, 99-104. 

TOMSON, T., BATTINO, D., BONIZZONI, E., CRAIG, J., LINDHOUT, D., SABERS, A., 
PERUCCA, E., VAJDA, F. & GROUP, E. S. 2011. Dose-dependent risk of 
malformations with antiepileptic drugs: an analysis of data from the EURAP 
epilepsy and pregnancy registry. The Lancet Neurology, 10, 609-617. 

TSUCHIYA, T., BÜRGIN, H., TSUCHIYA, M., WINTERNITZ, P. & KISTLER, A. 1991. 
Embryolethality of new herbicides is not detected by the micromass teratogen 
tests. Archives of toxicology, 65, 145-149. 

TUNNICLIFF, G. 1996. Basis of the antiseizure action of phenytoin. General 
Pharmacology: The Vascular System, 27, 1091-1097. 

UCHIDA, N., BUCK, D. W., HE, D., REITSMA, M. J., MASEK, M., PHAN, T. V., TSUKAMOTO, 
A. S., GAGE, F. H. & WEISSMAN, I. L. 2000. Direct isolation of human central 
nervous system stem cells. Proceedings of the national academy of sciences, 97, 
14720-14725. 

UJHÁZY, E., MACH, M., DUBOVICKY, M., NAVAROVÁ, J. & BRUCKNEROVÁ, I. 2005. 
Developmental toxicology-An integral part of safety evaluation of new drugs. 
BIOMEDICAL PAPERS-PALACKY UNIVERSITY IN OLOMOUC, 149, 209. 

UMANSKY, R. 1966. The effect of cell population density on the developmental fate of 
reaggregating mouse limb bud mesenchyme. Developmental Biology, 13, 31-56. 

UMESHIMA, H., HIRANO, T. & KENGAKU, M. 2007. Microtubule-based nuclear 
movement occurs independently of centrosome positioning in migrating 
neurons. Proceedings of the National Academy of Sciences, 104, 16182-16187. 

USEPA 1998. US Environmental Protection Agency Health Effects test Guidelines. OPPTS 
870.6300. Developmental Neurotoxicity Study. EPA Document 712-C-98-239. 

, Washington, DC. 
VALIENTE, M. & MARÍN, O. 2010. Neuronal migration mechanisms in development and 

disease. Current opinion in neurobiology, 20, 68-78. 
VAN DER POL, M. C., HADDERS-ALGRA, M., HUISJES, H. J. & TOUWEN, B. C. 1991. 

Antiepileptic medication in pregnancy: late effects on the children's central 
nervous system development. American journal of obstetrics and gynecology, 
164, 121-128. 

VAN GELDER, M. M., VAN ROOIJ, I. A., MILLER, R. K., ZIELHUIS, G. A. & ROELEVELD, N. 
2010. Teratogenic mechanisms of medical drugs. Human reproduction update, 
16, 378-394. 



 

207 
 

VERHAAR, M., STROES, E. & RABELINK, T. 2002. Folates and cardiovascular disease. 
Arteriosclerosis, thrombosis, and vascular biology, 22, 6-13. 

VESCOVI, A. L., REYNOLDS, B. A., FRASER, D. D. & WEISS, S. 1993. bFGF regulates the 
proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) 
EGF-generated CNS progenitor cells. Neuron, 11, 951-966. 

VETTER, M. 2001. A turn of the helix: preventing the glial fate. Neuron, 29, 559-562. 
VIINIKAINEN, K., HEINONEN, S., ERIKSSON, K. & KÄLVIÄINEN, R. 2006. Community-

based, Prospective, Controlled Study of Obstetric and Neonatal Outcome of 179 
Pregnancies in Women with Epilepsy. Epilepsia, 47, 186-192. 

VILLEDA-HERNANDEZ, J., MENDEZ ARMENTA, M., BARROSO-MOGUEL, R., TREJO-SOLIS, 
M., GUEVARA, J. & RIOS, C. 2006. Morphometric analysis of brain lesions in rat 
fetuses prenatally exposed to low-level lead acetate: correlation with lipid 
peroxidation. 

WAKATSUKI, A., OKATANI, Y., SHINOHARA, K., IKENOUE, N. & FUKAYA, T. 2001. 
Melatonin protects against ischemia/reperfusion‐induced oxidative damage to 
mitochondria in fetal rat brain. Journal of pineal research, 31, 167-172. 

WALLACE, R. H., MARINI, C., PETROU, S., HARKIN, L. A., BOWSER, D. N., PANCHAL, R. G., 
WILLIAMS, D. A., SUTHERLAND, G. R., MULLEY, J. C. & SCHEFFER, I. E. 2001. 
Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile 
seizures. Nature genetics, 28, 49-52. 

WANG, J., WU, J. & ZHANG, Z. 2006. Oxidative stress in mouse brain exposed to lead. 
Annals of Occupational Hygiene, 50, 405-409. 

WEBER, L. 1984. Benzodiazepines in pregnancy--academical debate or teratogenic risk? 
Biological research in pregnancy and perinatology, 6, 151-167. 

WELLS, P. G., KIM, P. M., LAPOSA, R. R., NICOL, C. J., PARMANA, T. & WINN, L. M. 1997. 
Oxidative damage in chemical teratogenesis. Mutation Research/Fundamental 
and Molecular Mechanisms of Mutagenesis, 396, 65-78. 

WHO. 2012. Congenital anomalies Fact sheet N°370 [Online]. Available: 
http://www.who.int/mediacentre/factsheets/fs370/en/index.html [Accessed 
6th of February 2013]. 

WIGER, R., STØTTUM, A. & BRUNBORG, G. 1988. Estimating chemical developmental 
hazard in a chicken embryo limb bud micromass system. Pharmacology & 
toxicology, 62, 32-37. 

WILSON, J. 1959. Experimental studies on congenital malformations. J Chronic Dis 111-
30. 

WILSON, J. G. 1978. Survey of in vitro systems. their potential use in teratogenicity 
screening, in: 

Handbook of Teratology, New 

York., Plenum Press. 
WILSON, S. I. & EDLUND, T. 2001. Neural induction: toward a unifying mechanism. 

nature neuroscience, 4, 1161-1168. 
WITHERS, G., HIGGINS, D., CHARETTE, M. & BANKER, G. 2000. Bone morphogenetic 

protein‐7 enhances dendritic growth and receptivity to innervation in cultured 
hippocampal neurons. European Journal of Neuroscience, 12, 106-116. 

WONG, K. L., BRUCH, R. C. & FARBMAN, A. I. 1991. Amitriptyline‐Mediated Inhibition of 
Neurite Outgrowth from Chick Embryonic Cerebral Explants Involves a 
Reduction in Adenylate Cyclase Activity. Journal of neurochemistry, 57, 1223-
1230. 

WONG, R. O. & GHOSH, A. 2002. Activity-dependent regulation of dendritic growth and 
patterning. Nature Reviews Neuroscience, 3, 803-812. 

http://www.who.int/mediacentre/factsheets/fs370/en/index.html


 

208 
 

XIA, Z., DEPIERRE, J. W. & NÄSSBERGER, L. 1998. Modulation of apoptosis induced by 
tricyclic antidepressants in human peripheral lymphocytes. Journal of 
biochemical and molecular toxicology, 12, 115-123. 

Y CAJAL, S. R. 1989. Recollections of my life, MIT Press. 
YAARI, Y., SELZER, M. E. & PINCUS, J. H. 1986. Phenytoin: mechanisms of its 

anticonvulsant action. Annals of neurology, 20, 171-184. 
YANAI, J., ROSSELLI-AUSTIN, L. & TABAKOFF, B. 1979. Neuronal deficits in mice following 

prenatal exposure to phenobarbital. Experimental neurology, 64, 237-244. 
YOON, K. & GAIANO, N. 2005. Notch signaling in the mammalian central nervous 

system: insights from mouse mutants. nature neuroscience, 8, 709-715. 
YU, X.-D., YAN, C.-H., SHEN, X.-M., TIAN, Y., CAO, L.-L., YU, X.-G., ZHAO, L. & LIU, J.-X. 

2011. Prenatal exposure to multiple toxic heavy metals and neonatal 
neurobehavioral development in Shanghai, China. Neurotoxicology and 
teratology, 33, 437-443. 

ZHANG, L., ZHANG, J., LING, Y., CHEN, C., LIANG, A., PENG, Y., CHANG, H., SU, P. & 
HUANG, D. 2013. Sustained release of melatonin from poly (lactic‐co‐glycolic 
acid)(PLGA) microspheres to induce osteogenesis of human mesenchymal stem 
cells in vitro. Journal of pineal research, 54, 24-32. 

ZHANG, X., LIU, H., CONG, G., TIAN, Z., REN, D., WILSON, J. X. & HUANG, G. 2008. Effects 
of folate on notch signaling and cell proliferation in neural stem cells of neonatal 
rats in vitro. Journal of nutritional science and vitaminology, 54, 353-356. 

ZHENG, W., NOWAKOWSKI, R. S. & VACCARINO, F. M. 2004. Fibroblast growth factor 2 is 
required for maintaining the neural stem cell pool in the mouse brain 
subventricular zone. Developmental neuroscience, 26, 181-196. 

ZHOU, Q. & ANDERSON, D. J. 2002. The bHLH transcription factors OLIG2 and OLIG1 
couple neuronal and glial subtype specification. Cell, 109, 61-73. 

ZHOU, Q., CHOI, G. & ANDERSON, D. J. 2001. The bHLH transcription factor Olig2 
promotes oligodendrocyte differentiation in collaboration with Nkx2. 2. Neuron, 
31, 791-807. 

ZIEGLER, V., CO, B., TAYLOR, J., CLAYTON, P. & BIGGS, J. 1976. Amitriptyline plasma 
levels and therapeutic response. Clinical pharmacology and therapeutics, 19, 
795-801. 

ZIMMERMAN, L., LENDAHL, U., CUNNINGHAM, M., MCKAY, R., PARR, B., GAVIN, B., 
MANN, J., VASSILEVA, G. & MCMAHON, A. 1994. Independent regulatory 
elements in the nestin gene direct transgene expression to neural stem cells or 
muscle precursors. Neuron, 12, 11-24. 

ZURICH, M.-G., HONEGGER, P., SCHILTER, B., COSTA, L. & MONNET-TSCHUDI, F. 2004. 
Involvement of glial cells in the neurotoxicity of parathion and chlorpyrifos. 
Toxicology and applied pharmacology, 201, 97-104. 

 

 

 

 

 



 

209 
 

 

 

 

 

 

Appendices 

 

 

 

 

 

 

 

 

 

 

 



 

210 
 

Appendix 1: Preparation of solutions 

Full culture medium                                                                            500ml 

Dulbecco modified eagle medium-DMEM                                          440ml 

10% heat inactivated foetal bovine serum                                            50ml 

2oomM Glutamine                                                                                   5ml 

50µg/ml penicillin/streptomyecin                                                           5ml 

Resazurin stock solution 

Resazurin 5mg added to 5ml of HBSS to give the Resazurin stock (5ml, 1mg/ml in 

HBSS) then the solution was filter sterilized in to a 50ml universal container.  

HBSS (45ml) with calcium and magnesium was added to create a working 

dilution of 100µg/ml (This stock solution was wrapped with aluminium foil and 

stored at -20° C). This was subsequently diluted 1:10 in HBSS and the tube also 

wrapped in aluminium foil to avoid photo reduction. Resazurin solution 

(10μg/ml) was stored at 4oC and used within 2 weeks. Resazurin solution was 

warmed to 37oC prior to exposure to cells. 

Kenacid blue fixative                                                                        1 litre 

Glacial Acetic acid                                                                              10ml 

Ethanol                                                                                               500ml 

DH2O                                                                                                  490ml 

Prepared and kept at room temperature 

Kenacid blue stock solution                                                              890ml 

Kenacid blue                                                                                        0.4g   
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Ethanol and                                                                                         250ml 

DH2O                                                                                630ml 

Prepared and kept at room temperature 

Kenacid blue working solution                                         50ml 

Acetic acid to                                                                                      6ml 

Stock solution                                                                                     44ml    

It was made up immediately prior to use. 

Kenacid blue washing solution                                                       1 litre 

Glacial acetic acid                                                                              50ml 

Ethanol                                                                                               100ml 

DH2O                                                                                                  850ml 

Prepared and kept at room temperature 

Kenacid blue desorb solution                                                         1 litre 

Potassium acetate                                                                             98.15g 

Ethanol                                                                                               700ml 

DH2O                                                                                                 300ml 

Prepared and kept at room temperature 

Neural Stem cell maintenance media                                             100ml 

DMEM (Dulbecoo’s Modified Eagle Medium )-Sigma                      47.5ml 

Ham’s Nutrient F12 -Sigma           47.5ml 

200mM L- Glutamine- Sigma           1ml 

100X N2- Invitrogen           1ml 
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50X B27- Invitrogen           2ml 

5µg/ml Heparin- Sigma           100µl 

10ng/ml bFGF (basic Fibroblast Growth Factor)-Gibco       100µl 

20ng/ml EGF (Epidermal Growth Factor)- Gibco           100µl 

Neural Stem Cell Differentiation Media                                         100ml 

DMEM (Dulbecoo’s Modified Eagle Medium)  47.5ml 

Ham’s Nutrient F12            47.5ml 

200mM L- Glutamine            1ml 

100X N2           1ml 

50X B27           2ml 

10X electrophoresis buffer:                                                              1 litre 

Tris                                                                                      30.3gm 

Glycine                                                                                                144gm 

SDS                                                                                                      10gm 

Distilled water                                                                                    1 litre 

Prepared and kept at room temperature 

Transfer buffer:                                                                                 10 litres 

Tris                                                                                                     30.3gm 

Glycine                                                                                               144gm 

Methanol                                                                                           2 litres 

DH2O                                                                                                 8 litres 

Prepared and kept at 4° C 
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TBST:                                                                                                 10 litres 

Tris                                                                                                    30.3gm 

NaCl                                                                                                  73.12gm 

DH2O                                                                                                1 litre  

The pH should be adjusted to 7.6 by using Hcl. Then 9 litres and10 ml tween 

were added to the final solution. Prepared and kept at room temperature 

Lysis Buffer:                                                                                     500ml 

Tris                                                                                                   12.1gm 

EGTA                                                                                                1.9gm 

Sucrose                                                                                            51.7gm 

Triton X100                                                                                     500µl 

NaF                                                                                                  0.021gm 

Betaglycerophosphate                                                                   1.08gm 

DH2O                                                                                              500ml 

Prepared and kept in fridge at 4°C 

100µl of protease inhibitor was added to 10ml of lysis buffer to be used within 2 

weeks 

6X Solubilisation Buffer                                                                10ml 

SDS                                                                                                  2.4gm 

Glycerol                                                                                          3.0ml 

Betamercaptoethanol                                                                    3ml 

BPB                                                                                                 240µl 
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Tris Hcl                                                                                           2.5ml of 1.5M 

Prepared and kept in freezer at -20°C 

Lowry A Solution                                                                         500ml 

NaoH                                                                                              2gm 

SDS                                                                                                1gm 

NaCO3                                                                                          10gm 

DH2O                                                                                            500ml 

Prepared and kept at room temperature 

Lowry B Solution 

CuSO4                                                    1.0% 100µl in 20ml DH2O 

NaK Tartrate                                                      2.0% 100µL in 20ml DH2O 

Prepared and kept in fridge at 4°C  
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Appendix 2: Materials 

Plastic and Glass Wares: 

100 mm round Petri dishes Sterilin, UK 

24 well plates Nunc, UK 

48 well plate                                                                Nunc, Uk 

96 well plate (ultra-low attachment)        Corning 

96 well plates Costar and Nunc, UK 

Bijou tubes Sterilin, UK 

Eppendorf tubes Sterilin, UK 

Serological Pipette Gilson, France 

25 cm
2
 Tissue Culture Flasks (untreated) SPL Life Sciences- Korea 

75 cm
2 

Tissue Culture Flasks (untreated) SPL Life Science- Korea                                        

Universal tubes, 20 and 50 ml Sterilin, UK 

Conical centrifugation tubes, 15 ml BD Falcon, USA 

Filter 0.22 Sartorius Stedim, Germany 

Equipments: 

FLUORStar Galaxy BMG Cambridge, UK 

ASYS HITEC EXPERT 96 SLS, UK 

Balance A &D Intsrument, UK 

Centrifuge (Centaur 2) Fisons and Sigma, UK 

Class 1 laminar flow hood Faster, Italy 

Class 2 Laminar flow hood Heraeus Instrument, UK       

CO2 Incubator Sanyo, Japan and Heraeus, UK                                          
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Cooled Incubator Gallenkamp, UK 

Egg Incubator ChickTec, UK 

Haemocytometer Hawksley, UK 

Inverted phase microscope Zeiss, Germany and Olympus, Japan 

Plate shaker Luckham Ltd, UK  

Microtome Leica, Germany 

Automatic processor Leica, Germany 

Florescent microscope Leica, Germany 

Cell culture reagents: 

100% Ethanol Sigma-Aldrich, UK  

DMEM (Dulbecco’s Modified Eagle Medium)         Sigma-Aldrich, UK 

Ham’s Nutrient F12 Sigma-Aldrich, UK     

0.05% Trypsin -0.02% EDTA Sigma-Aldrich, UK 

B27 supplement Invitrogen, UK                                                                                      

N2 supplement Invitrogen, UK 

bFGF (Basic Fibroblast Growth Factor)    Gibco by Life technology, UK 

EGF (Epidermal Growth Factor)           Gibco by Life technology, UK 

Heparin Sigma-Aldrich, UK 

Foetal Calf Serum (heat Inactivated) Sigma-Aldrich, UK 

Hank’s Balanced Salt Solution (HBSS) Sigma- Aldrich, UK 

Dimethylsulfoxide (DSMO) Sigma- Aldrich, UK 

Horse Serum Sigma-Aldrich, UK 

L- Glutamine Sigma- Aldrich, UK   
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Penicillin-Streptomycin Sigma- Aldrich, UK 

Accutase                                                                     Sigma-Aldrich,UK 

Phosphate Buffer Saline tablet (PBS) Sigma- Aldrich, UK 

Paraformaldehyde PFA Sigma, UK 

Trigene Medichem International 

Poly D Lysine                                                              Sigma- Aldrich, UK 

Poly L Lysine                                                              Sigma- Aldrich, UK 

Collagen I rat tail                                                        Sigma- Aldrich, UK 

Laminin                                                                       Sigma- Aldrich, UK 

Drugs: 

Methyl mercury                                                           Sigma- Aldrich, UK 

Lead acetate                                                                 Sigma- Aldrich, UK 

Sodium Valproate Sigma- Aldrich, UK 

Phenytoin                                                                     Sigma- Aldrich, UK 

Phenobarbitone                                                            Sigma- Aldrich, UK 

Carbamazepine                                                            Sigma- Aldrich, UK 

Lithium Carbonate Fischer Scientific, UK 

Diazepam                                                                     Sigma- Aldrich, UK   

Amitriptyline                                                               Sigma- Aldrich, UK 

Folic acid                                                                     Sigma- Aldrich, UK 

Melatonin                                                                     Sigma- Aldrich, UK 

Chemicals for Cell Viability Assay:  

Resazurin Sigma- Aldrich, UK 
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Resorufin 95% dye colour Sigma- Aldrich, UK 

Chemicals for protein detection assay:  

Bovine Serum Albumin Sigma- Aldrich, UK 

Ethanol Sigma- Aldrich, UK 

Glacial Acetic acid Fischer Scientific, UK 

Kenacid Blue dye Sigma- Aldrich, UK 

Potassium Acetate Fischer Scientific, UK 

Western Blot Analysis: 

Precast gel                                                                   Biorad 

Tris                                                                              Invitrogen 

Glycine                                                                       Fisher Scientific 

SDS                                                                            Acros Organics 

Methanol                                                                    Sigma 

Nacl                                                                            Fisher Chemicals 

EGTA                                                                         Sigma 

Sucrose                                                                       Fisher Scientific 

Triton X100                                                                Sigma 

NaF                                                                             Sigma 

Betaglycerophosphate                                                Sigma 

Glycerol                                                                      Fisher Scientific 

Betamercaptoethanol                                                  Fisher scientific 

Bromophenolblue                                                       BDH 

NaOH                                                                         Fisher Scientific 
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NaCO3                                                                       Fisher Chemicals 

CuSO4                                                                       Fisher Scientific 

NaK Tartrate                                                              Fisher Scientific 

Software: 

Endnote X6                                                               Thomas Reuters, USA      

Prism statistical software version 6.0           Graph pad, USA 

Volocity version 6.3.1                                               PerkinElmer, USA 

Odyssey                                                                Li-Cor BioSciences, UK                                 
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Appendix 3: The Antibodies 

1. Primary and secondary antibodies in Western blot: 

 Primary Antibodies M.W Dilution Sources Cat. no 

1 Mouse monoclonal Anti-Tubulin 

III antibody 

50Kda 1:2000 Abcam ab78078 

2 Rabbit polyclonal Anti-GFAP 

antibody 

55Kda & 

48Kda 

1:20000 Abcam ab7260 

3 Mouse monoclonal Anti-GAPDH 

antibody 

37Kda 1:5000 Sigma G8795 

 

 Secondary Antibodies Dilution Sources Cat. no 

1 Goat Anti-mouse 1:30000 Li-Cor Odyssey 926-32211 

2 Goat Anti-rabbit 1:30000 Li-Cor Odyssey 926-68020 

 

2. Primary and secondary antibodies in Immunocytochemistry and 

Immunohistochemistry: 

 Primary Antibodies Dilution Sources Cat. no 

1 Mouse monoclonal Anti-Tubulin III 

antibody 

1:500 Abcam ab7751 

2 Rabbit polyclonal Anti-GFAP antibody 1:800 Abcam ab7260 

3 Rabbit polyclonal Anti-SOX2 antibody 1:2000 Abcam ab97959 

4 Mouse monoclonal Anti-Nestin 

Antibody 

1:1000 BD 

Biosciences  

611658 

 

 Secondary Antibodies Dilution Sources Cat. no 

1 Goat polyclonal secondary antibody to 

mouse IgG, Alexa  Fluor 488 

1:500 Abcam ab150113 

2 Goat polyclonal secondary antibody to 

rabbit IgG, Alexa  Fluor 555 

1:500 Abcam ab150098 

 


