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ABSTRACT 

 

 

Oil palm is an important commercial crop in Malaysia where Malaysia is the 

second largest producer and exporter of palm oilin the world. In order to meet 

the increasing demand for palm oil, elite oil palm planting materials with higher 

palm oil yield are the desirable planting materials. Hence, the oil palm plantation 

companies have incorporated in vitro micropropagation technique through 

somatic embryogenesis in producing elite oil palm. However, low 

embryogenesis rate has hampered large production of elite oil palm ramets. In 

this study, proteomic technology was deployed to compare protein expression 

and identify differential expressed protein between high and low proliferated 

embryogenic lines of oil palm tissue culture. From the study, total protein of oil 

palm young and old leaves was extracted using an optimized trichloroacetic 

acid/acetone precipitation protocol followed by polyethylene glycol (PEG) 

fractionation to isolate low abundance proteins. Then, the extracted proteins 

were separated on two-dimensional (2D) gel electrophoresis and protein 

profiles between the high and low proliferated embryogenic lines were 

compared. Total of 40 differentially expressed protein spots were isolated from 

the 2D gel for mass spectrophotometry (MS/MS) identification. However, only 

26 out of 40 protein spots were identified and just 8 of the identified protein 

spots were isolated from young leaves. Quantitative real-time PCR were 

conducted on 17 proteins candidates to study on the relationship between the 

protein and mRNA expression level. There was 29% of the 17 proteins’ 

expression showed linear correlation with their mRNA expression. These 

proteins candidates were highlighted for further validation in the future.   

. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

 The oil palm, Elaeis guineensis, native to West Africa and was first introduced 

to Malaysia as an ornamental plant in 1870. Since then, the oil palm plantation in the 

country increased rapidly. Tennamaran Estate in Selangor was the first commercial 

oil palm estate established in Malaysia in 1917. Malaysia was the first country to 

invest in large-scale planting of oil palm and processing of its products. Today, 

Malaysia is one of the world’s largest producers of palm oil after Indonesia (Pakiam, 

2013). Cultivation of oil palm in Malaysia has expanded rapidly as palm oil becomes 

a major source of sustainable and renewable raw material for the world’s food and 

biofuel industries (Mosarof et al., 2015).  

 

 

Over the past 50 years, research and development (R&D) activities and 

advances in technology have played important roles in increasing palm oil production 

(Basiron et al., 2007). Many studies have been carried out to improve the yield of oil 

palm especially through cross breeding between species, tissue culture, and genetic 

engineering in order to improve the yield and quality of palm oil. Genetic 

improvement of oil palm is time consuming and costly due to the 10 years long 

breeding cycle. This brought about the interest in vegetative propagation of oil palm. 

Hence, commercial propagation of oil palm through tissue culture has played a vital 

role to increase the production of quality ramets through rapid multiplication of 

uniform planting materials with desired characteristics.  

 

 

Currently, the market has demand more than 100 million tissue culture 

plantlets in Malaysia and other countries (Zamzuri et al., 1999). Tissue culture 

methods are linked to an effective oil palm breeding with desired explants. Based on 
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the field performance data, clonal materials has increased oil yield between 20-30% 

compared to seedling planting materials (Soh et al., 2001). 

 

 

However, some challenges still exist in this technology. For examples, the low 

efficiency of callusing and embryogenesis exist in large scale micropropagation of oil 

palm. Even though tissue culture materials have been subjected to optimized 

conditions, the conversion rate of oil palm explant to callus is reported to be only 

19% while the rate of embryogenic competent callus to embryos is as low as 6% 

(Kushairi et al., 2010). Such low conversion rate causes major problems in tissue 

culture laboratories especially due to increases in the expenditure in terms of culture 

media, growth regulators and also electricity consumption.   

 

Despite much understanding is achieved in the practical aspects of somatic 

embryogenesis to increase production, the mechanisms involved in somatic 

embryogenesis of plants have much more to explore and investigate. Hence, the key 

questions focus on the mechanism that causes cells to change their destiny and 

become embryogenic. Many studies have focused on gene expression during 

somatic embryogenesis (Zuo et al., 2002; Boutilier et al., 2002), transcription factors 

that participate in somatic embryogenesis (Stone et al., 2001, 2008) and potential 

molecular markers for embryogenesis competent cells (Schmidt et al., 1996; 

McCabe et al., 1997; Braybrook and Harada, 2008).  

 

 

Vital cellular functions in somatic embryogenesis require coordinated actions 

of a large number of proteins that interact together in protein-protein interaction 

networks and it needs to be studied especially with the dynamic behavior of cells at a 

particular time and place. More recently, proteomic techniques have evolved as a 

powerful application in the study of proteins expressed within a cell, tissue or 

organism. The use of high resolution two-dimensional electrophoresis for protein 

separation combined with identification of proteins by advanced instrument such as 

mass spectrometry is a powerful and reliable approach to study a large diversity of 

protein molecules.  In this project, proteomic approach was employed to study the 
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differential protein expression of somatic embryogenesis in tissue culture of oil palm 

with the aim of identifying those proteins that are differentially expressed in 

embryogenic oil palm explants. 

 

In Chapter 3, the optimal protein extraction method for oil palm leaf samples 

was identified. In this study, two main materials, namely the mature and young leaf 

samples were studied. With the best extraction method selected, the proteins were 

extracted and separated using two-dimensional gel electrophoresis (2-DE). There 

were a few parameters for 2-DE gel running optimized. The 2-DE protein gels for two 

categories (high proliferation rate and low proliferation rate samples) were compared 

using the PDQuest software and protein species were identified using mass 

spectrometry and discussed in Chapter 4.  

 

After comparison, most of the differential proteins identified were involved in 

photosynthetic roles and present in higher abundance in the leaf samples. It is not 

surprised as total protein extraction will extract most of the abundance proteins.  Yet, 

in Chapter 5, with the aims to improve protein species between the two categories 

(high proliferation rate and low proliferation rate samples), polyethylene glycol (PEG) 

based fractionation was carried out to remove the high abundance proteins to allow 

low abundance protein to be shown in the 2-DE gels. PEG fractionation is able to 

provide a supplement data to the total protein extraction method and allows more 

differential protein species to be identified. 

 

 

Lastly, there were a total of 12 protein species selected to undergo the real 

time reverse transcription-polymerase chain reaction (RT-qPCR) to study on their 

mRNA expression in Chapter 6. The protein candidates presenting a concordance 

between their protein abundance and mRNA expression were highly recommended 

as a potential biomarker to differentiate the high and low proliferation rate samples in 

oil palm ortet prior to tissue culture.  
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Objectives of the study: 

 

 

The aim of this study is to deploy a proteomic approach to determine the 

expression profiles of oil palm callus tissue that displays low and high regeneration 

rates in order to find the major proteins that take part in the induction of plant 

regeneration in oil palm. The output from this study can further be used to identify 

and isolate markers associated with embryogenesis of oil palm. In order to achieve 

the overall aim of the study, the following specific objectives were defined: 

 

a) To optimize the protein extraction protocol and two-dimensional gel 

electrophoresis for oil palm leaves  

b) To compare the proteome maps between oil palm with high and low 

proliferation rate  samples 

c) To study the low abundance proteins that exhibit differential expression levels 

in high and low proliferation rate samples 

d) To investigate the corresponding mRNA expression of the differential proteins 

identified in oil palm leaves 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

 

2.1 History of oil palm 

 

 The family of palms, the Arecaceae, are placed in the order Arecales 

(Cronquist, 1981) which comprises three accepted species. The first two species are 

Elaeis oleifera and Elaeis guineensis and the third species was known previously as 

Barcellaodora, but was renamed Elaeis odora by Wessels-Boer (1965), 

Barcellaodora is less known because this species was less cultivated. The genus 

Elaeis was initiated on palms and received its botanical name from Jacquin (Bailey, 

1933). Elaeis is derived from the Greek word elaion, meaning oil, while the specific 

name guineensis indicates its origin of the Guinea coast in West Africa. 

 

The American oil palm (Elaeis oleifera) is native to central and South America 

while the African oil palm (Elaeis guineensis Jacq.) is a perennial oleaginous 

monocotyledonous plant, which is originated from West Africa and has been 

predominantly cultivated across Latin America and Southeast Asia (Konan et al., 

2006). In the past, African oil palm (Elaeis guineensis Jacq.) has been considered as 

food crop and consumed locally in West Africa. The fruit quality is judged by the 

thickness of the mesocarp layer, however, there is little effort put in to extract the oil.  

 

The foundation of the oil palm industry is generally accredited to M. Adrien 

Hallet, is a Belgian with vast knowledge of oil palm plantings in Africa. He pioneered 

the planting of oil palms with Deli origin, Africa in 1911 in the first large commercial 

plantation in Sumatra, Indonesia. Hallet reported that the oil palms grown in Deli are 

more productive and had superior fruit composition compared to the ordinary dura 

palms of the west coast. An oil content of 30 percent in the Deli fruits was recorded 

(Leplae, 1939).  
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Initially, there were 6,500 acres of oil palm planted. However, progress was 

slow due to insufficient information on the oil palm extraction method and probable 

profit obtained. The First World War has also affected the economic progress in the 

oil palm industries. While, M. H.  Fauconnier is the person who first brought oil palm 

of Deli origin into Malaysia and started to plant them as ornamentals in Rantau 

Panjang in the Tennamaram state of Selangor with seedling obtained from 1911 and 

1912 importation (Sambanthamurthi et al., 2009).  

 

 

The Second World War put the whole of the Far Eastern industry out of the 

export market and caused restrictions in shipping. After the war, there was a big 

fluctuation in prices for both palm oil and kernel which can be four and five times of 

their prewar level. The palm oil and kernel therefore increases to a record high 

production. In Malaysia, the acreage and planting of oil palm proceeded at a fast rate. 

In 1980, oil palm planted area in Malaysia achieved close to one million hectares. 

The total planted area for oil palm was 5.392 million hectare in year 2014 (Figure 

2.1). 

 

 

 

Figure 2.1: Total planted area of palm oil in Malaysia in 2014 (Million hectares) 

(Sourced from: http://www.mpob.org) 
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To date, oil palm has become a valuable commercial crop in Southeast Asia, 

especially in Malaysia and Indonesia. Both countries are now the principal exporters 

of palm oil. Palm oil has been labeled as the largest international traded vegetable oil 

globally in the main market in China, European Union, Pakistan, India, Japan and 

Bangladesh (Soh et al., 2009).  

 

Malaysia has an established oil palm industry. The infrastructure of the oil 

palm industry was greatly developed to improve the market value of palm products. 

There are local refineries to process, fractionate, and extract the oil from the oil palm 

fruits. In order to minimize the pollutants caused by the oil palm mills, reliable and 

proper methods of effluent disposal according to the recommendation of 

environmental impact assessment of mills are always in practice.  

 

 

 

2.2 Botany of Oil Palm 

 

2.2.1 The plant 

 

Elaeis guineensis (E. guineensis) is a large feather-palm with short internodes 

at solitary columnar stem. Short spines are formed on the leaf base and within the 

fruits bunch. Irregular set of leaflets on the leaf becomes the distinct characteristic of 

the E. guineensis. It grows well in the humid tropics in the coastal belt between 10 

degrees north latitude and 10 to 20 degrees south latitude with small rainfall (Hartley, 

1988). Oil palm trees are single- stemmed and can reach 18-24 m in height in the 

wild, but rarely more than 10 m in cultivation (referred to Figure 2.2(a)). 
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 The leaves are pinnate and up to 7 m in length with 200-300 leaflets per leaf. 

Leaflets take over 2/3 of the leaf and the remaining lower part of leaves is filled with 

spines which increase in length acropetally. Thirty leaves per annum will grow on a 

young palm tree and the production of leaves decreases by 30% when the palm 

trees are over 10 years old. Like other palms, early growth of the oil palm focuses on 

the formation of the stem base rather than internode elongation. The rate of 

extension of the stem depends on both the environment and hereditary factors. Stem 

growth will be slower under shaded and low temperature conditions. Under standard 

plantation conditions, palm height increases by 0.3 to 0.6 m per annum. 

 

 

 

Figure 2.2: (a) Elaeis guineensis, oil palm tree (b) Oil palm fruit  

(c) Oil palm male and female flowers 

  

(Sources: http://toptropicals.com/cgibin/garden_catalog/cat.and 

http://www.gourmetindia.com/topic/526-konkan-fruit-festival-in-goa) 
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2.2.2 The fruits 

 

 

Oil palm fruits (referred to Figure 2.2 (b)) known as drupes, vary in shape from 

nearly spherical to ovoid or elongated at the top and develop into compact and 

dense bunches. The seed is surrounded by a thick layer of mesocarp which is rich in 

nutrient content including oil. This enables the oil palm seed to support a growing 

seedling for many weeks after germination. The fruits develop gradually in size. They 

have a small embryo palm seed and cotyledon. The cotyledon apex will 

subsequently enlarge to absorb food as storage for endosperm (Tomlinson, 1961). 

 

 

In general, palm fruits take 5 to 6 months from pollination to reach maturity. 

Before the Nigerian population palm fruit ripen, they show deep violet to black in the 

apex and pale greenish yellow at the base. The palm fruits will grow in large bunches 

with a reddish appearance after maturation. The exocarp of the fruit on the outside 

bunch is more pigmented than the internal fruit. The mesocarp of all fruits consists of 

fibres which run longitudinally through the oil-bearing tissue. 

 

 

The oil palm seed is the nut that remains after removal of the soft oily 

mesocarp from the fruits. It consists of an endocarp and one, two or three kernels. 

The size of the nut greatly depends on the thickness of the shell and size of the 

kernel and it might differ across oil palm species. Typical African dura nuts are 2-3 

cm in length and an average of 4 g in weight. Deli and some African dura nuts are 

larger with an average weight of 13 g. African tenera nuts are usually less than 2 cm 

in length and have an average weight of 2 g (Hartley, 1988).   
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2.2.3 The flowers 

 

 

Oil palm exhibits monoecious with either male or female, but sometimes 

hermaphrodite inflorescences developing in the axils of the leaves. The flowers are 

in dense clusters. There are three sepals and petals each for an individual single 

flower. Female flowers are arranged spirally around the rachis of the spikelet and 

subtended by a bract; sharp spines will be formed from these bracts. There is an 

average of about ten flowers per spikelet in 3 year old palms, increasing to over 15 

flowers after 10 years (Corley and Gray, 1976).  

 

 

The male inflorescence is borne on a longer pedicle with long, finger-like, 

cylindrical spikelets (referred to figure 2.1(c)). Each male inflorescence contains from 

25 to 100 g of fresh pollen. The pollen remains viable for at least 4 to 6 days after 

their release (Hardon and Turner, 1967). Thirty to sixty percent of flowers will 

successfully develop into fruits, depending on the pollination efficiency. Sets of 

bunches can carry from 500 to 4000 fruits and the fruit bunch weight increases as 

the palm grows older. 

 

 

Some of the palm tends to produce mixed inflorescences. The mixed spikelets 

have the male flower at the apex and followed by the female flower at the base. 

Besides that, there may be pairs of male flowers present close to each other without 

any female flowers between them (Beirnaert, 1935). William and Thomas (1970) 

found that of these mixed inflorescences, hermaphrodites only occur when a male 

transition into the female phase during the flowering cycle, while andromorphous 

inflorescences occur only during the reverse change. 
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2.3 Industries of palm oil 

 

 

Palm oil is a versatile oil with 80% of its volume contributing to food 

production as cooking oil, margarine, vegetable ghee and shortening. The remaining 

20% is used as non-food derivatives, such as oleochemicals which function as 

mineral oil in the detergent, cosmetics and plastics industries. The high demand of 

vegetable oil has led to the expansion in hectare for planting oil palm, as it can 

produce high quality oil from its fruits and kernel. Crude palm oil can be obtained 

from the mesocarp of the fruit, while the palm kernel oil is extracted from the kernel 

of the nut (Vijaya et al., 2010).  

 

 

The cost of oil production from oil palms is the lowest among all the oil 

producing crops. High productivity yield of oil palm can reach up to 5-7 tonnes oil per 

hectare per annum under optimum agro-ecological conditions. Palm oil became 

prominent in the world oils and fat trade due to its minimal cost of production, large 

supply for exportation, competitive pricing and technically superior in terms of the 

wide range of uses (Basiron et al., 2004). Additionally, by-products from the palm oil 

industry have generated many new industries. These include in the pharmaceutical 

field to produce antioxidant health supplements. Palm oil also serves some of the 

higher-value market products, such as high vitamin A and E oils. It is also involved in. 

oleichemicals such as bioplastics and ricinoleate oil (Kushairi and Sambanthamurthi, 

2006). Even the kernel oil that is mostly used in non-edible applications such as 

detergents is increasingly incorporated into edible applications as high-energy sport 

drinks and infant food formulations (Murphy, 2007). On the other hand, the waste 

kernel of the oil palm can be processed as animal feeds and organic fertilizers.  
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Another factor for the increase demand in palm oil is due to the growth of 

population and wealth (Lee, 2012). Food security is the imminent issue that concerns 

people. Food demand is estimated to be increased by approximately 50% in year 

2030 (Dyson, 1999; Pandya-Lorch et al., 2001). Mielke (2001) predicted that the 

demand for palm oil will double by 2020 as the demand for fats and oils would 

increase proportionally with the demand for food.  

 

 

Furthermore, with the rising trend in petroleum prices, an alternative way to 

substitute renewable energy instead of petroleum has been sought. Therefore the 

demand for palm oil, a potential source as a biofuel, is expected to increase in the 

future (Soh et al., 2009). Production of biodiesel from superior tenera oil palm is not 

an impossible mission but has been initiated in some countries like Thailand. The 

“biodiesel effect” is now distorting the oil palm market, not only in Malaysia. Since the 

beginning of 2006, investment of $ 515 million has been approved by the Malaysian 

Government on 20 biodiesel projects. In summary, this is a good prospect for 

expanding oil palm production in the next decade. 

 

 

 

2.4 The importance of conducting research studies in the oil palm industry 

 

 

 Although oil palm is native to Africa, Malaysia was the first country to initiate 

large-scale oil palm planting with technology together with the incorporation of 

innovative policies. A key element of this policy was research and development 

(R&D) through establishment of research institute in the country. As in most 

industries, R&D plays an important role in generating information, discovering new 

methods to increase production, and investigating the obstacles that are faced. 
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Since Malaysia is the leading country in the oil palm industry, other countries 

has no readily available custom-made technologies or relevant R&D findings. This 

makes the development process of oil palm industry is slow. In order to overcome 

the obstacles, government intervention provided quality control legislation, which 

was followed by the implementation of public research programmes led by the Palm 

Oil Research Institute of Malaysia (PORIM) in 1979, now known as Malaysia Palm 

Oil Board (MPOB).  

 

 

Research and development has contributed to yield improvement, estate 

management of oil palm and cost effectiveness (Chew, 2001). Other than that, crop 

improvements of oil palm have been practiced through breeding, genetic engineering, 

and tissue culture. In addition, intensive research on palm oil contributes significantly 

to the oils and fats industry globally (Wahid et al., 2004) 

 

 

2.5 Selection and breeding of oil palm in Malaysia  

 

 

Due to land limitation for oil palm plantation, there is a need to produce high 

genetic potential planting material for oil palm. These come across to the breeding 

activities in oil palm plantation. The main objective of oil palm breeding is to increase 

the oil and kernel production and thus contribute to plantation economics. There will 

be some criteria that breeders choose to select for breeding purposes. The breeder 

will select parent palms for high oil and kernel content, high production of fruit and 

make crosses between the best individuals.  

 

 

Since long time ago, oil palm breeders made crosses between different cultivars with 

the aim to get the highest oil yielding palms. Races of E. guineensis were 
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differentiated by their fruit pigmentation and their characteristics. In Malaysia, the 

most common cultivars are Dura (D), Tenera (T) and Pisifera (P) (referred to figure 

2.3). They are classified according to their shell thickness and mesocarp content. 

Pisifera palms have no shell with 95% high mesocarp content, tenera has 0.5-3 mm 

thick endocarp and high mesocarp content of 60-95% while Dura palms have the 

thickest shell (2-8 mm) and low mesocarp content which is only 35-55% of the fruit 

weight (Latiff, 2000).  

 

 

 

Figure 2.3: Thick shelled dura (D), shell-less pisifera (P), and thin shelled hybrid 

tenera (T) fruits of oil palm. 

(Source from: http://aarsb.com.my/AgroMgmt/OilPalm/PlantBreeding/Intro.html) 

 

 

Breeders can now rely on marker-assisted selection to obtain the few plants 

that are likely to express the desired characteristics from amongst tens of thousands 

of progeny without having to wait for the palm to grow to maturity in order to examine 

their phenotype. Thousands of young plantlets can be screened for some useful trait 

like disease resistance, improved nutritional quality or higher yield with specific 

marker without having to undertake any physiological or biochemical assays. This 

DNA marker-assisted selection can decrease the timescale of crop breeding 

programs for years and at the same time is cost effective for crops like oil palm with 

lengthy life cycles before reaching maturity and fruiting stages. Recently, a 1.8 

gigabase (Gb) genome sequence of the E. guineensis had published, this is very 
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useful especially in the path to discovery of useful genes for important traits 

(Rajinder et al., 2013). 

 

 

2.6 In vitro propagation of oil palm through somatic embryogenesis 

 

 

Cultivation of oil palm has expanded rapidly due to the increase demand for 

palm oil in Malaysia and globally. There is an estimation of ready market for oil palm 

plantlet with a demand of more than 100 million tissue culture plantlets annually 

(Zamzuri et al., 1999). However, current annual production capacity is about 2.5 

million ramets from 12 commercial oil palm tissue culture laboratories in Malaysia. 

There are about 3.5 million ramets produced annually worldwide (Table 2.1) 

(Kushairi et al., 2010). 

 

Table 2.1: Estimated World Production of Oil Palm Tissue culture plantlet 

 

 

Oil palm starts to bear fruits at about 7 years old. After that, it has an average 

lifespan of 25 years and can still produce fruit till it reached the age 50 years. Due to 

the longer growth life span in conventional practices, mass propagation through 

tissue culture can serve as a faster and cheaper alternative to supply the elite oil 

palm plantlets (Thuzar et al., 2011). First clonal palms were planted in Malaysia in 

the year 1977 and replications of the clones have been planted in other fields in 

subsequent years. Favourable results were obtained (Corley et al., 1979). This led to 

a rapid expansion of adoption of clonal tissue culture plantlets in the field. More than 

ten tissue culture laboratories in Malaysia were established within a period of 10 

years (Wooi, 1990). A number of studies on successful in regeneration of oil palm 
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using tissue culture techniques have been reported (Paranjothy and Othman., 1982; 

Duval et al., 1988; Rival et al., 1998; Tarmizi et al., 2004).  

 

 

At the early stage of tissue culture practice, the root, inflorescences and leaf explants 

were used as the starting material for tissue culture. Generally, the current tissue 

culture process that practice in MPOB was using the leaf explants as the starting 

material. Young leaves explants has less contamination risk but it has to be cut from 

the unopened part of the bases of old leaves which can cause a huge damage to the 

growth of palm. Roots are not commonly used as they are more likely to get 

contaminated with soil fungus or bacteria. The young inflorescences will not cause 

damage to the palm trees but the initiation of the callus and embryogenesis occur 

slower than the leaf explants. Currently, young leaf spears are the most preferred 

choice as a starting material for mass propagation of oil palm in tissue culture due to 

high clonability rate (Rajanaidu et al., 1997). Based on the reported field data, clonal 

material D x P from tissue culture has contributed to an oil yield increment of 20% to 

30% over planting material derived from seeds (Soh et al., 2001). 

 

 

Plant growth regulators have been extensively used previously to increase the 

cloning efficiency. However, incidences of plant abnormality caused by plant growth 

regulator have been reported (Kushairi et al., 2010). The abnormality of plantlets 

cannot be fully eliminated but with good cultural practice, it is able to reduce the 

occurrence of abnormality down to a level below 5% (Maheran et al., 2005). In 

addition, liquid culture technology has been established for oil palm clonal production 

and it offer favourable reproducibility as well as the amenability for scalling up the 

production of oil palm clones (referred to Figure 2.4). Besides, liquid system provided 

shorter duration of micropropagation cycle compared to gel system. In the meantime, 

Malaysian Palm Oil Board (MPOB) has used the bioreactor technology with semi or 

full automation process for mass oil palm clonal production (Tarmizi et al., 2003). 
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Figure 2.4 Culture stage and duration in gel vs liquid systems to produce 5000 

shoots. 

 

 

Somatic embryogenesis is a process by which somatic cells can be regulated 

to differentiate into embryos with similar morphological appearance as parental plant 

by the use of plant growth regulators. There are three main developmental stages of 

somatic embryogenesis, namely, induction of embryogenesis from undifferentiated 

mass of cells known as callus, maturation of somatic embryos, and plantlets 

regeneration (referred Figure 2.5).  
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The somatic embryos can produce either directly from a cell or a group of 

cells or indirectly through the production of an intervening callus. There are some 

publications for plants that cultured through direct somatic embryogenesis, such as 

Arachis hypogea (Hazra et al., 1989), Brassica juncea (Eapen et al., 1989), and 

Coffea canephora (Quiroz-Figueroa et al., 2006).  

 

 

Indirect somatic embryogenesis is more common compared to direct somatic 

embryogenesis methods. This method has applied to many plant species including 

Coelogyne Cristata orchid (Naing et al., 2011) and Dendrobium Chiengmai Pink 

(Chung et al., 2005). Another special type of indirect somatic embryogenesis is the 

secondary somatic embryogenesis. This method uses somatic embryos produced as 

the initial material to proceed through the tissue culture process and frequently show 

low conversion rates to plants (Vicient and Martínez, 1998). 

 

 

 

Figure 2.5 Event of somatic embryogenesis occur in tissue culture 
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Applications of somatic embryogenesis include clonal propagation of 

genetically uniform plants, large production of quality plant materials, plant virus 

elimination, metabolite production, and might contribute to the in vitro mychorrhizal 

initiation (Vicient and Martínez, 1998). Somatic embryogenesis provides an 

alternative method to the plant breeders to produce genetically uniform plants with 

selected superior genotypes. 

 

 

Somatic embryogenesis has been widely applied in many plant species such 

as mass propagation of timber-yielding leguminous tree, Dalbergia sissoo Roxb 

(Singh and Chand, 2003), improve salt and disease resistance in Citrus (Litz et al., 

1985), virus resistance in sugarcane (Oropeza and de Gracia, 1996), metabolite 

production such as toxoids compound from Taxus species (Lee and Son, 1995; 

Wann and Goldner, 1994), germplasm preservation on hormone-free medium in 

some species including asparagus (Dalbreil et al., 1994), Hevea brasilensis (Cailloux 

et al., 1996) in and medicinal Ephedra foliate (Dhiman et al., 2010). 

 

 

 

2.6.1 Problems of somatic embryogenesis  

 

 

In vitro propagation of oil palm has been initiated in Malaysia since 1980s. 

The regeneration efficiency of oil palm through in vitro propagation in tissue culture is 

depending on the genotypes used. At present, there are several bottlenecks 

encountered in the large scale production of oil palm tissue culture materials. Early 

results showed low yields of fruits and emergence of fruiting abnormalities. Another 

prevalent issues occurred in the tissue culture process are the low rate of 

embryogenesis and clonal abnormality. 
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 Besides, plantlets derived from the in vitro culture have the tendency to 

exhibit abnormal phenotypes, which is known as somaclonal variation. A number of 

critical issues needed to be considered besides somaclonal variation. For examples, 

cloning efficiency, ortet selection efficiency, feasibility of recloning, condition or 

acclimatization of plant produced in vitro and field testing. To investigate the 

problems, a study on the potential effect of somaclonal variation on genome size has 

been done for tissue culture and seed derived plant (Fabienne et al., 2006) using 

cytometric approach since it is a rapid and powerful method to estimate nuclear DNA 

content (Galbraith et al., 1983). However, the results show that the ploidy level of 

both is same which reinforced the hypothesis that an epigenetic origin is involved for 

the somaclonal variation in oil palm. 

  
 

Table 2.2: The success rate (%) of callogenesis, embryogenesis and shoot 

regeneration in palms and explants (Source: Kushairi et al., 2010). 

 

    
Success rate 
(%)     

Culture Stage 
Based on 

Palms   
Based on 
Explants   

  Ortets a(n=216) Reclones b(n=110) Ortets a(n=400,000) Reclones b(n=200,000) 

Callogenesis 100 100 19 (1 to 67) 14 (1 to 41) 

Embryogenesis 72 88 3 (1 to 6) 7 (6 to 20) 

Shoot 
Regeneration 56 85 96 95 

a = Cloning of palms derived from seeds 

b = Recloning of palm derived from tissue cultured ramets 

c = Based on embryogenic lines 

( ) = range 

 

According to the data collected for oil palm tissue culture, only some of the oil 

palm species are able to produce callus with high proliferation rate, while many 

others produce low proliferation callus (Kushairi et al., 2010). This account for a very 

low callogenesis and embryogenesis rate of oil palm explants i.e. at 19% and 6% 

respectively from the proliferating callus culture (Table 2.2). This has been one of the 

major problems hampering the progress of oil palm tissue culture which 
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subsequently will affect the production for oil palm seedlings in order to meet the 

demands. 

 

 

2.6.2 Studies of somatic embryogenesis on genome level 

 

 

 Since somatic embryogenesis is a complex mechanism, there are areas 

needed to be explored and understood especially at the cellular level. Since 1980s, 

scientists were started to investigate on the somatic embryogenesis until now, it is 

still very little information gained. Previous studies have been conducted on 

embryogenic and callus specific protein in carrot (Sung et al., 1981), rice (Chen et al., 

1987) and grass (Hahne et al., 1988). 

 

 

Most of the studies use model plants to investigate the process of somatic 

embryogenesis.  Through the studies, several potential molecular markers on 

embryogenic competent cells have been identified such as somatic embryo receptor-

like kinase (SERK) gene (Schmidt et al., 1996), LEAFY COTYLEDON (LEC1), 

FUSCA3 (FUS3), ABA INSENSITIVE3 (ABI3) and Late embryogenesis abundant 

(LEA) gene (Braybrook and Harada, 2008).  

 

Other studies indicated that overexpression of WUSCHEL (WUS) genes (Zuo 

et al., 2002) and BABY BOOM (Boutilier et al., 2002) proved to have a role in 

inducing somatic embryogenesis by promoting stem cell identity and enhances 

apical meristem development. WUS act as meristem organizers or embryos 

organizers and first localized to the shoot meristem in the heart stage embryo, and it 

makes plant continue produce organs by regulating the stem cell pool. At the same 

time, somatic embryogenesis-related genes have been successfully isolated from 

orchardgrass (Dactylis glomerata L.), they are Dactylis glomerata embryogenesis 1 

(DGE1) and Dactylis glomerata embryogenesis 2 (DGE2). DGE1 showed 81% 

homolog with the WRKY DNA-binding protein 21 in Arabidopsis thaliana 

(Alexandrova and Conger, 2002). 
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Malaysia Palm Oil Board (MPOB) has been actively working on gene 

expression studies in both embryogenesis and clonal abnormality in oil palm. Some 

possible gene markers have been identified but functionality of these proteins 

associated with embryogenesis is still unknown (Sambanthamurthi et al., 2009). 

Initially, specific gene approaches have been applied to identify potential genes 

related to somatic embryogenesis in oil palm such as auxin-inducible genes and 

stress response genes (Meilina and Ooi, 2006). Following that, Ooi (2008) found that 

a typical embryogenesis marker, serine kinase has been found to be involved in the 

signal transduction pathway in oil palm somatic embryogenesis.  

 

 

Improvement in the technology made it possible to identify several interesting 

expressed sequence tags (ESTs) such as granule-bound starch synthase (GBSS) 

and putative transcription factor (Myb1). These ESTs can be used to screen calli for 

the embryogenic potential. More oil palm tissue culture ESTs have been analysed, 

marked and brought together to identify genes associated with callogenesis and 

embryogenesis (Low et al., 2008). Nonetheless, the actual mechanisms controlling 

plant gene expression in somatic embryogenesis remain unclear. Thus future trends 

involve characterization of development-specific gene in somatic embryogenesis are 

required (Khurana and Chugh, 2002). 

 

 

So far, most of the studies on somatic embryogenesis were focused on the 

genomic level. The advance development of proteomics techniques provides a new 

alternative way to understand the mechanism involved in somatic embryogenesis at 

the protein level. Hundreds of proteins can be translated by a particular gene. Thus, 

identification of the differential gene expression in somatic embryogenesis may 

provide a lead to fully understand the mechanism involved. Since the proteins play a 

vital role in regulating the biological mechanism and determining the phenotypic 

traits, there is a need to understand the somatic embryogenesis process by looking 

at the protein species that are highly expressed or vice versa. 
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2.7 Proteomics Approaches and their Application 

 

2.7.1 Introduction to Proteomics 

 

The word “proteome” is derived from PROTEins expressed by a genOME. 

Proteomics is the characterization of the entire protein complement expressed by a 

genome of a given organism (Wilkins et al., 1996). The proteome is the time- and 

cell-specific protein complement of genome in a cell at any given time. It is the large 

scale study of protein properties such as expression, modification and interaction of 

proteins to gain an overview of cellular processes at protein level.  

 

 

The first complete genome of unicellular eukaryote, Saccharomytes 

cerevisiae (Goffeau et al., 1996), followed by Escherichia coli (Blattner et al., 1997) 

and even human (Lander et al., 2001) have now been fully sequenced. With the 

complete genome sequence, it provides good starting materials for research 

scientists to study precisely on all the gene functions. The study of proteomic is 

therefore relevant. However, there are additional challenges in proteomic analysis as 

compared to the genomic. Firstly, the genome is static while each proteome is 

dynamic and changes in response to metabolic state and intracellular and 

extracellular signal molecules (Michael et al., 2008). The second concern is the 

relative amounts of the components within the genome and proteome. Some 

proteins are often expressed in low quantity and with high turnover rates, especially 

those proteins that are involved in signal transduction mechanisms. This makes a 

very high variability in protein profiling as proteins can alter over very short periods of 

time.  

 

 

Plant biologists in all disciplines are now incorporating high-throughput “-

omics” technologies principally transcriptomics, proteomics and metabolomics to 

facilitate the discovery pathways for functionality of genes in a systematic manner. 

Proteomics aids in giving an understanding towards cellular function at the level of 
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any cells, organs, tissues and even organisms. It has been described as one of the 

strong approaches which are able to complement and relate to transcriptomics and 

metabolomics (Agrawal et al., 2011). Proteomics approaches becoming one of the 

main directions for researchers to get the fundamental molecular-level knowledge 

that can be used in characterizing plant subspecies and used wisely to identify 

molecular markers especially in breeding program (Subhra et al., 2015). 

 

 

Currently, the most intensive studies on proteomics have been performed on 

model plants Arabidopsis thaliana and rice which give the highest number of 

publications in the proteome references. Publication of the proteome research on 

plant is steeply increasing especially after the publication of draft genome sequence 

of Arabidopsis (The Arabidopsis Genome Initiative, 2000) and rice (Goff et al., 2002 

and Yu et al., 2002) in 2000 and 2002 respectively. More recently, many researchers 

have employed proteomics approaches such as maize (Majeran et al., 2010), wheat 

(Peng et al., 2009), barley (Møller et al., 2011 and Rasoulnia et al., 2011), soy bean 

(Mohammadi et al., 2012), chickpea (Subba et al., 2013) and date palm 

(Marondedze et al., 2014). 

 

 

Identification of proteins will be expanded with the existence of significantly 

increasing amounts of genomic DNA and EST sequences being deposited in the 

public databases. Proteomics would not be feasible without the previous 

accomplishment of genomics (Tyers and Mann, 2003). Lacking database information 

especially in novel plant species will bring huge challenges in the protein 

identification (Jorrín et al., 2007). There are a lot of ongoing efforts to create a 

comprehensive plant database but until now there are more that can represent a 

complete collection of proteins in any plants (Subha et al., 2015).  
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Even though proteomics is beginning to achieve at an advanced level, there 

are limited fraction of cells in a few biological system that have been fully 

characterized and there are still a lot more proteins remains to be investigated. In 

general, proteomics can be subdivided into different areas including descriptive 

proteomics, differential expression proteomics, posttranslational modifications, and 

interactomics (Jorrín-Novo et al., 2009).  

 

 

2.7.2 Gel-based proteomics approaches  

 

 

The steps for proteomics involve protein extraction, depletion, purification, 

separation, mass spectrometry analysis and finally application of bioinformatics tools 

for data analysis and database searching. Generally, in order to create a protein 

profile or a particular sample, proteomics two-dimensional gel electrophoresis (2-DE) 

technique coupling with mass spectrometry can be used. The gel-free method allows 

extracted protein to be immediately channalised through liquid chromatography 

mass spectrometry/mass spectrometry (LC MS/MS). While, gel-based proteomics 

requires running the extracted proteins in sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) gels. Interestingly, gel based proteomics with IPG 

strips remain the only technique that can consistently be applied for expression 

profiling of complex protein mixtures (Wang et al., 2008). Moreover, 2D gels have 

been extensively used in differential proteomics expression studies since the 

commercialization of the DIfference Gel Electrophoresis (DIGE) technology in early 

2000 (Freidman and Lilley, 2009; Lilley and Friedman, 2004; Unlu et al., 1997). 

 

 

Two-dimensional gel electrophoresis has long been widely used to analyze 

protein expression in organs and tissues. A normal plant cell comprises more than 

20,000 different individual polypeptides but only a limited number of spots count i.e. 

in the thousands are able to produce with the 2-DE PAGE gels. The proteomic 

approaches currently used are mostly restricted to organ, tissue and cell specific 

proteome before building into a complete proteome map of a species (Newton et al., 
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2004). Most studies come to the aim to discover possible markers of different 

genotypes or phenotypes. Conversely, most of the identified proteins could not come 

into a conclusion due to technically difficult in the mass spectrometry analysis.  Apart 

from that, a lot of proteins remain unknown and unidentified when blast through the 

existence databases. These cause huge challenges for researchers to identify their 

proteins and unable to process the unknown proteins.  

 

 

 

2.7.2.1 Protein extraction for plant tissues 

 

 

There are three critical phases in plant protein extraction. Firstly, the tissue 

disruption phase. This involves crushing of the plant cell wall that is made up of 

mainly polysaccharides in liquid nitrogen to reduce protein degradation during 

grinding. Higher protein yields can be obtained with finer ground tissue (Wang et al., 

2003). Once fine powder is obtained, the second phase to consider is the efficiency 

of the extraction buffer. Vascular plants are abundant secondary metabolites which 

normally accumulate in the vacuoles of plant cells. There are approximately 8000 

kinds of different compounds grouped into plant phenolics comprising lignin, 

stilbenes, tannins, flavonoids and phenols (Stalikas, 2007). In order to effectively 

remove the phenolic contaminant, several methods of cleanup have been suggested 

such as TCA/acetone with 10% TCA precipitation, water soluble 

polyvinylpyrrolidonen (PVP) (King, 1971) or polyvinyl polypyrrolidone (PVPP) (Wang 

et al., 2009). The final phase is protein solubilization. The best solubilization methods 

allow most of the non-covalent bound protein complexes to separate into single 

polypeptides, thus performing well in 2D gels. Application of reducing agents such as 

Dithiothreitol (DTT), in the solubilization buffer can effectively reduce disulfide bonds 

of proteins. The combination of different degree and concentration of the solubilizing 

buffers will be very useful in solubilize a good number of proteins in this process.  
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2.7.2.2 Two-Dimensional Gel Electrophoresis (2-DE) 

 

 

Two-dimensional gel electrophoresis separates protein in the first dimension 

by their intrinsic isoelectric point (pI) using isoelectric focusing (IEF), followed by the 

second dimension by their molecular weight (Mr). 2-DE is one of the most powerful 

tools for protein profiling especially to visualize protein isoforms that result from 

charged posttranslational modification (Huang et al., 2008).  

 

 

Isoelectric focusing (IEF) is an electrophoretic separation method which 

separates amphoteric molecules such as protein and peptide based on their charge 

(Westermeier et al., 2009). The isoelectric point defined as the pH at which there is 

zero net electric charge of a protein or protein become immobilize in an electric field. 

In this IEF process, the extracted protein will need to rehydrate overnight with a 

rehydration buffer using a strips known as Immobilised pH gradient strips (IPG). The 

IPG strips technology has the pH gradient which made by acidic and alkaline 

buffering groups which copolymerized with the polyacrylamide matrix during gel 

preparation (Westermeier, 2005). The IPG strips are dried for long term storage. The 

rehydration buffers containing high chaotrope concentration, a zwitterionic detergent, 

a reducing thiol, and carrier ampholytes to prevent the formation of aggregates 

between proteins. Carrier ampholytes play a role to provide an amphoteric buffer. 

Besides, it also helps to improve conductivity and protein solubility.  

 

 

After first dimensional separation, IEF, it is then move to second dimensional 

separation based on the molecular weight which is SDS-PAGE. SDS-PAGE has long 

been a method for resolving intact proteins according to their electrophoretic mobility 

(Laemmli, 1970) (a function of the length of a polypeptide chain and its charge) and 

widely used in biochemistry, forensic, and molecular biology. SDS is a best 

solubilizing detergent that would allow hydrophobic proteins, basic proteins and all 

proteins to migrate in the same direction, and separate according to their molecular 
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weight. The proteins will form anionic micelles with a constant negative net charge 

per mass unit when excess SDS is added to the samples. The secondary and 

tertiary structures of the protein will be disrupted and the polypeptides become 

unfolded. Reducing agent such as DTT and 2-mercaptoethanol can be added to 

break the disulfide bonds between cysteines (Freidman et al., 2009). 

 

 

2.7.2.3 Protein Identification by Mass Spectrometry (MS) 

 

 

Currently, mass spectrometry has been established as a primary method for 

protein identification from complex proteins. Proteins are proteolyic digested to 

produce the peptide sequence and the mass/charge (m/z) of the peptide sequence 

was captured by the mass spectrometry analyzer which facilitate the protein 

identification. The most commonly used enzyme is trypsin, which targets the C-

terminal side of lysine and arginine. 

 

The development of mass spectrometry has been rather limited due to the 

lack of reliable methods to conduct soft ionization and effectively transfer ionized 

molecules from condensed phase to the gaseous phase. Recent advances in 

instrumentation and software analyze have facilitated mass spectrometry (MS) 

identification and imaging of biological molecules. A mass spectrometry basically 

consists of an ion source, a mass analyzer that measure mass-to-charge and a 

detector which measure the quantity and abundance of particular ionized ions.  

 

The inventions of matrix-assisted laser desorption/ionization (MALDI) and 

electrospray ionization (ESI) enabled the polypeptides to volatize and ionized for 

mass spectrometry analysis. A proton source that promotes sample ionization, and a 

matrix will co-crystallize with the protein samples before the MS analysis.  MALDI will 

sublimate the samples out of dry, crystalline matrix via laser pulse. Mass analyzer 

must have the ability to generate rich information of ion mass spectra from peptide 

fragment by measuring the travel time of each peptide. The spectrum of masses of 

all peptides is then compared with databases of known proteins (Mann et al., 2001). 
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2.7.3 Proteomics in somatic embryogenesis 

 

 

 The current progress in the proteomics field provides a platform to study 

somatic embryogenesis in plant at molecular level. Two dimensional gel 

electrophoresis have been applied in somatic embryogenesis study in carrot (Choi 

and Sung, 1984), cichorium (Helleboid et al., 2000), Vitis (Gianazza et al., 1992), 

Cupressussempervirens (Sallandrouze et al., 1999) and Cyclamen persicum Mill 

(Fuhua et al., 2010). 

  

 

 There are three major somatic embryogenesis related proteins that have been 

identified in Cichorium as pathogenesis-related (PR) proteins. The study showed that 

direct somatic embryogenesis in Cichorium „474‟ is associated with the increase in 

the level of β-1,3-glucanases, 32 kDa chitinase and 25 kDa osmotin-like proteins. 

This study indicated that specific proteins involved in somatic embryogenesis might 

be involved in other pathways as well (Helleboid et al., 2000). 

 

 

 In a study on Picea glauca, a group of scientists from Canada found that early 

somatic embryogenesis was associated with a total of 79 proteins that show 

differential expression when subjected to MS/MS analysis. Unfortunately, there are 

only 48 proteins successfully identified. In this study, they found that a storage 

protein, vicilin has shown to increase in abundance throughout the maturation of 

somatic embryos. This study also found enolase protein expressed during embryo 

development (Lippert et al., 2005). 
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 In another study, proteomic analysis has been carried out on somatic 

embryos induced in Medicago truncatula culture that grown under 6-

Benzylaminopurine and 1-Naphthaleneacetic acid treatment. The study found that 54 

proteins are differentially expressed and only 16 proteins are able to be identified 

with high confidence. The results showed a decrease trend of Rubisco small chain 

proteins, expression of Thioredoxin H protein in the early development of somatic 

embryogenesis and indicated that 1-Cys Peroxiredoxin might play a role in 

embryogenesis (Imin et al., 2005). 

 

 

 Two years later, Medicago truncatula protoplasts were used on proliferation 

study. A total of 886 protein spots showed significant differential changes but only 89 

proteins were able to be identified using MALDI-TOF MS. The identified proteins 

were grouped based on their function. The results showed that more than 50% of the 

identified proteins were involved in energy metabolism. Several pathogenic related 

(PR) proteins were shown to be highly abundance, i.e. up to five fold, which might be 

due to the effect of wound or stress response from protoplast isolation (Jong et al., 

2007). 

 

 More recently, in a study by Fuhua et al (2010) on Cyclmen persicum Mill, it 

shown that 460 total proteins resolved in 2-DE gels, 35 protein spots were found to 

be significant in expression. And there were 10 out of 35 protein spots were able to 

be identified by MALDI-TOF-MS and MALDI-TOF-TOF MS.  There are few 

interesting proteins found such as proteasome subunit which is closely related to cell 

proliferation processes (Amsterdam et al., 1993). This protein has also been 

reported in previously on early somatic embryo development in Picea galuca. 

Besides, there are some proteins found to be involved in metabolism mechanism 

such as triosephosphate isomeras which is one of the the key regulatory enzyme 

that took part in glycolysis and tricarboxylic acid cycle (Ito et al., 2003). 
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2.7.4 Real-time Reverse transcription Polymerase Chain Reaction (RT-qPCR) in 

proteomics study 

 

 

Quantitative reverse transcription Polymerase Chain Reaction (RT-qPCR) 

commonly used to quantify the relative expression levels of gene of interest in an 

organism. By using the qPCR coupled with a RT step approaches, messenger RNA 

(mRNA) expression for a particular gene is quantified. Quantification of total RNA is 

necessary prior to the real time RT-PCR step to ensure standardised RNA amount is 

used during verification analysis amongst samples. Despite the quantities of the 

RNA, quality of the RNA is very important for analysis. If the RNA sample is shown 

to be partially degraded, it is advisable not to use it because the integrity of the 

samples will affect the overall expression level by underestimating lower transcript 

level. This affects the assay sensitivity leading to the incorrect target ratio (Stephen 

et al., 2009). 

 

 

Real time RT-qPCR which also known as messenger RNA approach is a 

powerful tool as it allowing massive screening of a group of genes at one time. It 

provides the quantification of expression level for a particular transcript within a 

tissue at specific time as what proteome does. However, it is important to understand 

that there is dissimilitude between the messenger (transcript) and protein (final 

effector). Phenotypic behavior of an organism is highly affected by the expression on 

final effector like proteins or metabolites rather than mRNA.  

 

 

Since there is no direct information given by the mRNA expression level on 

the protein abundance in particular samples, many researches will start to question 

on the necessity of carrying out the real time RT-qPCR.  There are a lot of studies 

showed that the poor correlation between the mRNA and protein abundance (Tien et 

al., 2004., Carpentier et al., 2008), but in the other hand, some of the proteomic 
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studies did show the correlation between mRNA and metabolites in their samples 

(Goossens et al., 2003 and Hirai et al., 2004). This is a challenge to researchers as 

the information that is provided through transcript profiling cannot be independent, 

and it needs a bridge to connect the information between transcripts and proteins. 

There are a lot of information needs to be compiled such as the mRNA level, protein 

expression level and even possible posttranslational modifications in order to give a 

full understanding on the mechanism that occurred in an organism.  
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  CHAPTER 3 

OPTIMISATION OF PROTEIN EXTRACTION AND TWO-DIMENSIONAL GEL 

ELECTROPHORESIS FOR OIL PALM LEAF 

 

3.1 Introduction 

 

In proteomic studies, the quality of samples is a vital factor. The ideal protein 

extraction method should be able to present a comprehensive set of protein 

profiles for the species to be studied. Unfortunately, there is no single protein 

extraction protocol that can capture the full proteome (González-Fernández et al., 

2010). Sample preparation is a crucial step prior to electrophoresis. Protein 

extraction from the plant samples are challenging mainly due to low cellular 

protein content and presence of high level of contaminant like proteases and 

interfering component such as phenolics, pigments, lipids, nucleic acid, and other 

secondary metabolites (Darmeval et al., 1988; Shaw and Riederer, 2003; Gorg et 

al., 2004). Oil palm leaf are rich in polysaccharides and secondary metabolites. 

The presence of secondary metabolites highly affects the performance of protein 

extraction as well as separation in 2-DE gels. According to Vâlcu and Schlink 

(2006), phenolics are likely to form irreversible complexes with proteins and 

oxidation of phenolics contributes to streaking and artefactual spots in protein 

gels. This study is focused on the optimisation of extraction methods for oil palm 

leaf in order to produce good quality proteins. Two-dimensional gel 

electrophoresis (2-DE) was employed to separate proteins present in total cell 

extracts. Several modifications, such as nuclease treatment has been assessed 

for oil palm leaf sample in order to get high quality 2-DE gel profiles. 
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3.2 Materials and methods 

 

3.2.1 Plant Materials 

 

Young (cabbage) and old leaf of oil palm (Elaeis guinensis Jacq.) were collected 

from Advanced Agriecological Research Sdn Bhd (AAR) and Malaysian Palm Oil 

Board (MPOB), Malaysia. Young cabbage leaf sample was collected from the 

unopened leaf of the palm. While, the old leaf samples with the frond number 17 

in the oil palm tree were used. All plant samples were stored at –80°C until use. 

Cabbage stage unopened leaf was defined as young leaf used in this study while 

the old leaf were referred to Frond number 17 (F17). Both old and young leaf 

samples were provided with high and low proliferation rate group (Table 3.1). 

Total proteins were extracted from the samples using the four methods as 

described in the next section.  Leaf were transferred to a pre-chilled mortar, and 

ground into a 0.2 g/ml fine powder using liquid nitrogen. This was used as the 

first step for all the protein extraction methods.  

 

 

Table 3.1: Old leaf and cabbage samples with high and low proliferation rate 

categories were collected from the AAR and MPOB. 

 

*High proliferation = more than 30 embryogenic lines 

 Low proliferation = less than 10 embryogenic lines 

 

AAR samples  

(Old and cabbage samples) 

MPOB samples 

 ( Old and cabbage samples) 

High proliferation Low proliferation High proliferation Low proliferation 

AN 25 AN 27 226 73 

AN 28 AN 29 290 285 

  294 295 
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3.2.2 Optimisation of the protein extraction methods  

 

Total proteins were extracted using four extraction methods, namely 

TCA/acetone precipitation method, phenol extraction method, lysis buffer and 

combination of both TCA/acetone and phenol method. All the collected samples 

were transferred to a pre-chilled mortar, frozen in liquid nitrogen and ground into 

a fine powder. This finely ground powder were used for all protein extraction 

methods. 

 

3.2.2.1 TCA/acetone precipitation method  

 

Proteins were extracted according to a protocol modified from Gómez-Vidal et al. 

(2008). Five volumes of ice-cold 10% v/v trichloroacetic acid (TCA) in acetone 

containing 20 mM dithiothreitol (DTT) were added to 0.2 g/ml finely powdered 

leaf tissues. Proteins were precipitated for two hours at –20ºC and centrifuged at 

13,000 x g for 15 minutes at 4ºC. The pellets were washed with acetone 

containing 20 mM DTT and incubated overnight. Samples were centrifuged at 

13,000 x g for 15 minutes at 4°C. The supernatants were discarded and the 

pellets were washed twice with ice-cold acetone containing 20 mM DTT with 

each incubation time of 30 minutes. The pellets were air dried and dissolved in 2-

DE rehydration solution (8 M urea, 4% 3-[3-Cholamidopropyl) 

dimenthylammonio]-1-propanesulfonate (CHAPS), 0.2% carrier ampholytes, and 

18 mM DTT). Subsequently, sonication with 230V/50Hz (Fisherbrand Ultrasonic 

bath) for 15 minutes was performed to enhance the solubility of the proteins in 

the rehydration buffer. After sonication, the samples were rocked at room 

temperature for 30 minutes and centrifuged at 20,000 x g for 30 minutes at 18ºC. 

The supernatants were collected and treated with nuclease mix (GE healthcare 

life sciences, USA) for 30 minutes on ice before storing at -80ºC.  
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3.2.2.2 Lysis buffer extraction method 

 

A total of 0.2g powdered tissue were mixed with 1 ml of lysis buffer (7 M urea, 2 

M thiourea, 4% CHAPS, 100 mM DTT, 40 mM Tris, protease inhibitor cocktail 

(Sigma Aldrich, USA) and Nuclease Mix (GE healthcare life sciences, USA). The 

mixtures were incubated on ice for 15 minutes. The sample was centrifuged at 

20,000 x g at 15°C for 20 minutes. The supernatant of the samples were 

collected and kept at -80°C until further use.  

 

3.2.2.3 Phenol method  

 

A phenol extraction procedure was carried out according to Wang et al. (2003). 

Powdered tissues were suspended in 1ml of cold acetone twice and centrifuged 

at 12,000 x g for 10 minutes. Pellets were resuspended in 1 ml of 1:1 phenol: 

Tris-SDS buffer (sucrose, 2% SDS, 0.1 M Tris-HCl, pH 8.0, 5% 2-

mercaptoethanol) for extraction. After thorough mixing by vortexing, and phase 

separation, the upper phenolic phase was collected. The procedure of extraction 

with an equal volume of 1:1 phenol/dense SDS buffer was repeated twice. 

Eventually, only half of the original volume remained. The samples were 

precipitated with 0.1 M ammonium acetate in cold methanol, incubated at -20°C 

for 30 minutes and centrifuged at 20,000 x g for 10 min. It was then followed by 

pellet washing with cold 0.1 M ammonium acetate in methanol and 80% acetone 

twice. The final pellet was dissolved in 2-D Electrophoresis rehydration buffer 

solution as described in section 3.2.2.1. 
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3.2.2.4 Combination of TCA/acetone and phenol method (TCA/Ph) 

 

Proteins were extracted according to the protocol of Wang et al. (2006). The 

plant tissue powder was washed with 10% TCA/acetone, followed by washing in 

0.1 M ammonium acetate in 80% methanol, and a further wash with 80% acetone. 

After washing, the powder was air dried at room temperature. Phenol/SDS 

solution (30% sucrose, 2% SDS, 0.1 M Tris-HCl, pH 8.0, 5% 2-mercaptoethanol) 

in a ratio of 1:1 was added to the mixture and incubated for 5 minutes. After 

centrifugation at 20,000 x g for 10 minutes at 4°C, the upper phenol phase (0.2-

0.4 ml) was collected and transferred into a fresh tube. Methanol containing 0.1 

M ammonium acetate was added and the samples were incubated overnight at -

20°C. After centrifugation at 12,000 x g for 10 minutes at 4°C, the pellets were 

washed with 100% methanol, following by 80% acetone wash. The pellet was 

dissolved in 2-D Electrophoresis rehydration buffer solution as described in 

Method (A). 

 

 

3.2.3 Quantification of protein content 

 

Protein concentrations were measured using Bradford Protein method (Bradford, 

1974). In this method, a stock solution of 1 mg/ml of Bovine Serum Albumin (BSA) 

was prepared and make into a serial of dilution to create a protein standard curve. 

Ten µl of the sample solution was added to 250 µl of Bradford reagent and the 

mixtures were vortexes and incubated at room temperature for 10 minutes. The 

blank standard was prepared whereby 10 µl of the buffer was used instead of the 

sample solution. The protein absorbance was measured at absorbance 595 nm 

using spectrophotometer. The protein concentration was determined by 

reference to a standard curve. 
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3.2.4 One Dimensional gel electrophoresis – Sodium Dodecyl Sulphate- 

Polyacrylamide Gel Electrophoresis (SDS-PAGE)  

 

One dimensional SDS-PAGE analysis was performed as described by Laemmli 

et al. (1970). Approximately 20 mg solubilized protein was loaded in the wells of 

1.0 mm thick SDS-PAGE gel. The 7% stacking and 12% resolving 

polyacrylamide home-cast gels (Figure 3.1) was used to perform the 

electrophoresis for one dimensional gel electrophoresis (1-DE) with the duration 

of 1 hour 10 minutes with 120 V running voltage in a 7cm Mini-Protean 3 cell 

(BioRad) in order to confirm there are presence of proteins from different protein 

extraction protocol prior to 2-DE.    

 

 

3.2.4.1 Preparation of Sodium Dodecyl Sulphate (SDS) - Polyacrylamide Gel 

 

The SDS-polyacrylamide gel needed for one dimensional SDS-PAGE and two 

dimensional SDS-PAGES are slightly difference. One dimensional SDS-PAGE 

gel consists of two layers where stacking gel is the upper part and lower part will 

be the separating gel. For the two dimensional SDS-polyacrylamide gel, only 

separating gel was used. The SDS-polyacrylamide gel was prepared one day 

before the running time to make sure the gel polymerize completely. During 

preparation, the monomer solution (distilled water, 2 M Tris-HCL, pH 8.8, 30% 

Acrylamide, SDS) was degassed for 20 minutes using sonicator instrument with 

the purpose of prevent the formation of air bubbles during polymerization. The 

fresh prepared 10% Ammonium persulfate (APS) and TEMED as the source of 

free radicals and a stabilizer was added last to initiate polymerization.  
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Figure 3.1: The schematic SDS-PAGE gel which consists of 7% stacking gel and 

12% separating gel. 

 

 

3.2.5 Two-Dimensional Gel Electrophoresis  

 

3.2.5.1 First Dimensional Gel Electrophoresis 

 

The protein concentration of all samples was measured using the Bradford 

method (Bradford, 1976). For 2-DE, the Isoelectric focusing (IEF) stage was 

conducted on 7 cm Immobilised pH gradient (IPG) strips (GE healthcare, USA) 

with a linear pH gradient of 3-10 on the PROTEAN®IEF System (BioRad). The 

IPG strips were rehydrated at a constant 50 µA per strip at 20°C for 16 hours. 

The focusing program used a linear increase from 0 to 250 Volt (V) over 20 

minutes, 250 to 4000 V for 2 hours and then a rapid gradient to 4000 V until 

10000 Volt hours (Vh) had accumulated. 
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3.2.5.2 Second Dimensional Gel Electrophoresis 

 

After IEF, the IPG strips were incubated in an equilibration buffer (50 mM Tris-

HCl, pH 8.8, 6 M Urea, 30% w/v glycerol, 2% w/v SDS) containing 2% w/v DTT 

for 15 min, followed by incubation for 15 min in the same buffer containing 135 

mM iodoacetamide instead of DTT. The strips were transferred to 12% SDS-

PAGE gels for the second dimension separation using SDS electrophoresis 

buffer (250 mM Tris, pH 8.3, 1.92 M Glycine, 1% SDS) with 150 V applied for 

approximately 1 hour 5 minutes. The experimental molecular mass (Mr) values 

were calculated by compared the mobility with protein standard markers (SDS-

PAGE Standards Broad Range, BioRad), while the isoelectric focusing point (pI) 

were determined using 3-10 and 4-7 linear scales over the total dimension of the 

IPG strip (Figure 3.2).  

 

 

Figure 3.2: Diagram showing two dimensional gel electrophoresis workflow. 
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3.2.5.3 Gel Staining Protocols 

Coomassie staining 

 

After electrophoresis, the 2D gels were removed gently from the glass plate with 

distilled water. The gels were placed on a clean container and washed with 200 

mL of ultrapure distilled water, 18 Mega ohm (Ω) grade water and rocked gently 

for 5 minutes using the orbital shaker. The washing step was repeated for three 

times with ultrapure distilled water. After 15 minutes washing step, the gels were 

stained with 100 mL of the Coomassie stain solution (BioRad, USA) at room 

temperature for at least 1 hour or overnight. The staining solution were then 

removed and replaced with the ultrapure distilled water. The gels were 

subsequently rinsed with ultrapure distilled water for several times until clear 

spots appeared with transparent background. 

 

 

Silver staining 

 

The silver staining procedures were performed with some modifications 

according to the protocol published by Yan et al. (2000). This silver staining 

protocol is compatible with the subsequent matrix-assisted laser 

desorption/ionization (MALDI) and electrospray ionization-mass spectrometry 

(ESI-MS). All the solution used in the silver staining protocol has to be prepared 

fresh and all the chemicals must be fully dissolved. Purity of the water would 

affect the staining results, thus, ultrapure water 18 Mega ohm (Ω) grade water 

was used for the whole staining process. After gently removing the 2D gels from 

the glass plate, gels were rinsed with ultrapure water for 5 minutes. The washing 

step was repeated for three times, a total of 15 minutes washing step. It is then 

followed by fixing the gels with fixative solution for 30 minutes and gently shaked 

on an orbital shaker.  
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After fixation, decant fixative solution was replaced with sensitizer solution for the 

subsequent 30 minutes. Next, the gels were washed with ultrapure water for 5 

minutes and repeat for three times. After that, the gels were incubated with silver 

solution for 20 minutes. After silver impregnate, the gels were washed with 

ultrapure water for twice. The chilled developing solution was added to the silver-

stained gels for 1-3 minutes. In order to stop the reaction, developing solution will 

be decanted and rinsed with the stop solution for 10 minutes. The gels were then 

kept in ultrapure distilled water. 

 

3.2.5.4 Imaging and data analysis 

 

The silver stained proteins were visualized as digital images captured on a GS-

800TM calibrated densitometer (Figure 3.3) (BioRad, USA). All the imaging 

process analysis was carried out according to the PDQuest analysis Quick Guide. 

The protein spots on the 2-DE gels were automatically matched and edited 

accordingly. Analysis set manager such as Student’s t-test was then used to 

analyse the protein spots with the help of PDQuest version 8.0.1 Analysis 

Software (Figure 3.4) (BioRad, USA). The comparison analysis was carried out 

for the two different categories (high and low proliferation rate group) in term of 

protein relative density. The molecular weight (Mr) and pH (pI) of each protein 

was determined by referencing to protein marker appeared on separate gel. 

There are two biological replicates for high proliferation and low proliferation rate 

samples. And, all the 2-DE gels were run in three technical replicates. 
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3.2.6 Optimisation on Two-dimensional Gel electrophoresis  

 

3.2.6.1 Four different protein extraction protocols 

 

The protein samples extracted using the four protocols from the young and old oil 

palm leaf were separated in 2D gels. From the 2D gels, further comparisons can 

be made in term of number of protein spots present in these four extraction 

methods together with the patterns obtained in the 2D gels profiles.  

 

3.2.6.2 The optimal range for the IPG strips 

 

There are many different pH ranges for the Immobilized pH Gradient (IPG) strips 

available in the commercial market. In this experiment, only two different pH 

ranges of the IPG strips were selected for the 2D gels, namely pH 3-10 and pH 4-

7.  

 

 

 

 

 

Figure 3.3 An image of 

Densitometer GS800 

Figure 3.4 A snap photo of on going 

analysis using PDQuest software 



44 
 

3.2.6.3 Clean-up treatment with the ReadyPrep 2D clean-up kit 

 

The clean-up for the samples were performed using ReadyPrep 2D clean-up kit. 

One hundred microgram of the protein was transferred to the 1.5ml centrifuge 

tube and clean-up was done according to the manufacturer instructions. The 

cleaned proteins were then subjected to isoelectric focusing (IEF) and two-

dimensional gel electrophoresis.  

 

3.2.6.4 Focusing time of the IPG strips 

 

During the IEF run, four different focusing times were performed for the oil palm 

leaf samples which were 8,000 Vh, 10,000 Vh, 12,000 Vh, and 14,000 Vh. 

 

3.2.6.5 Horizontal streaking treatment for the acidic regions  

 

In order to reduce the horizontal streaking at the acidic end of the 2D gels, the 

extracted proteins were treated with nuclease mix after final extraction step and 

incubate for 45 minutes on ice. A few optimised conditions for the nuclease mix 

were done such as the additional acetone precipitation. After treatment, the 2D 

gels were performed to see the results. 
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3.3 Results 

 

3.3.1 Protein Yield obtained with Different Protein Extraction Protocols 

To the best of our knowledge, limited reports on protein extraction of oil palm for 

2-DE studies are currently available. Therefore were applied several procedures 

to extract and solubilise the proteins present in oil palm leaf. There were 

TCA/Acetone precipitation method, Phenol extraction method, Lysis buffer 

extraction method and combination of both TCA/Phenol extraction methods. 

Each extraction protocol was repeated for six replicates for young leaf (Cabbage) 

and old leaf as well. The four protein extraction methods in this study produced 

samples that varied in their protein contents. These are presented in Table 3.2. 

Both young and old leaf samples exhibit the same pattern among these four 

protein extraction methods.  

 

Table 3.2: Protein yield from four different protein extraction methods  

Method 
Protein yield (mg/g) 

Young Leaf Old Leaf 

TCA/Acetone 18.15a ± 3.02  31.01a ± 2.47  

Phenol 5.18b ± 1.24  6.87b ± 1.35  

Lysis Buffer 14.28a ± 1.88  29.00a ± 5.19  

TCA/Phenol 8.32c ± 1.37  11.76c ± 3.64  

 

 

The results in Table 3.2 show that TCA/acetone extraction method produced a 

significantly higher protein yield (18.15 mg/g fresh weight) as compared to the 

other methods. The second highest yield was from the Lysis buffer extraction 

method (14.28 mg/g fresh weight), followed by the combination of TCA/Phenol 

extraction method and lastly is the Phenol extraction method.  
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3.3.2 One Dimensional Gel Electrophoresis – SDS-PAGE 

 

All the proteins obtained from the four different extraction protocols were used for 

the one dimensional gel electrophoresis. Generally, one dimensional gel 

electrophoresis was performed prior to the two dimensional gel electrophoresis 

for the following reason. Firstly, SDS-PAGE gel were run to make sure there are 

proteins present in the samples before proceeding to 2-DE. It is an efficient 

method in term of time and energy to confirm the present of proteins in samples. 

Secondly, the pattern of the protein profiles can be estimated where all the 

proteins are separated by their own molecular weight as shown in the Figure 3.5.  

 

 

 

 

Figure 3.5: One Dimensional gel electrophoresis, SDS-PAGE for the four 

different extraction methods namely TCA/acetone, Phenol, TCA/Phenol and 

Lysis Buffer. 
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3.3.3 Optimised for the Two Dimensional Gel Electrophoresis (2-DE) 

 

To date, only a few studies have described oil palm protein extraction for 2-DE 

analysis. Therefore, several procedures were used to extract and solubilize the 

proteins present in oil palm for both young and old leaf samples in an attempt to 

optimise the best extraction protocol. Four protein extraction methods were used 

and the proteins obtained were run on 2-DE analysis. The gel images obtained 

are shown in Figure 3.6a and the gels were subjected to PDQuest analysis to 

identify the number of protein spots present in each of the methods.  

 

In previous work, Tan et al. (2011) reported that TCA/acetone extraction method 

produced the highest protein yields compared to the other three protein 

extraction methods assessed in oil palm. But, there are no assessment was 

made of the 2-DE gels profiles for four extraction methods tested in previous 

study. In this study, 2-DE gels analyses were carried out and the number of 

protein spots focused on 2-DE for each of the protein extraction methods were 

compared. After 2-DE separation, the 2D gels were analysed using PDQuest 

software version 8.0.1 (BioRad, USA). 

 

The data in Table 3.3, shows that for samples extracted from the old leaf the 

highest number of protein spots resolved on 2-DE was obtained using the 

TCA/acetone precipitation method, followed by the lysis buffer method, phenol 

extraction method and lastly is a combination of TCA/phenol extraction methods 

which exhibited the lowest numbers of protein spots. There was no significant 

difference for the number of protein spots produced from the TCA/acetone 

methods compared to the other methods in old leaf. On the other hand, young 

leaf samples have significant difference with their highest number of protein spots 

presence as compared to the other three methods. Even though TCA/acetone 

method has no significant difference in the statistics for the old leaf, but those 

gels exhibited the highest level of reproducibility with the amounts of protein 

spots present in a 2D gels and the pattern for the 2D gels were close to each 
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other with the smallest standard error for the number of protein spots shown in 

each gel. 

 

Table 3.3: Spot number in 2-DE protein gel for four different protein extraction 

methods 

Spot numbers TCA/acetone Lysis buffer Phenol TCA/Ph 

Old leaf 514.0 ± 15.3a 269.0 ± 140.9a 255.0 ± 62.5a 237.0 ± 119.8a 

Young leaf 269.0 ± 14.0a 144.0 ± 29.0b 162.0 ± 1.0b 24.0 ± 7.5c 

 

Different results were observed for samples from young leaf. The highest number 

of protein spots was obtained through the TCA/acetone precipitation method, 

followed by the phenol extraction and the lysis buffer extraction method, and the 

lowest number of protein spots was shown in the TCA/Ph methods in young leaf 

samples.  

 

Despite this observation, the greatest protein concentration of samples did not 

contribute to the highest resolution profile on 2-DE gels. This was especially 

notable in the lysis buffer extraction (Figure 3.6) gel. This method produced 

samples with the second highest protein content, nevertheless the 2-DE 

resolution profiles was less clear than that produced by the phenol extraction 

method which had lower protein yields. In this study, the TCA/acetone 

precipitation method has been shown to be a highly effective protein extraction 

protocol for oil palm leaf samples, showing the highest protein yield and greatest 

number of protein spots on 2-DE gels.  



49 
 

 

 

Figure 3.6: 2-DE protein profiles for oil palm leaf (old and young) for four different protein extraction methods using  

 linear immobilized pH gradient strips of 3-10 

(The enlargement image of the red dot boxes were shown in Figure 3.7) 
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Figure 3.7: Close up 2-DE protein gels image for different extraction methods for old 

and young leaf samples. 

 

 

Figure 3.8: Analysis of the number of 2-DE protein spots detected in different 

molecular weight ranges with samples obtained from TCA/acetone, lysis buffer, 

phenol and TCA/Ph extraction methods 

 

The ideal protein extraction protocol for any type of plant tissue will provide the 

highest amount of protein concentration and number of individually separable protein 

spots in a 2-DE gel. For all the protein extraction procedures assessed, the majority 

of proteins focused in the molecular weight range from 10 to 80 kDa (Figure 3.8). 
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Surprisingly, the highest number of protein spots exhibit the molecular weight from 

41 to 80 kDa, followed by the smallest molecular weight 0 to 40 kDa. The proteins 

with molecular weight higher than 81 and above are very low in quantity.  

 

 

Figure 3.9: Analysis of protein spots in different pH range with samples obtained 

from TCA/acetone, lysis buffer, phenol and TCA/Ph extraction method. 

 

The distribution of protein spots according to their pH are shown in Figure 3.9. 

Majority of the proteins are located between pH 5.0 to 8.9. However, the highest 

number of protein spots present in the pH ranges from 5.0 to 6.9, secondly is the 

more basic region, i.e. pH 7.0 to 8.9, followed by pH 3.0 to 4.9. These results were 

observed in all the protein extraction methods. The most acidic and the most basic 

regions have the limited number of protein presence.  
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3.3.3.2 Two dimensional gel clean up procedure for old and young leaf 

 

In using plant tissues, clean up for the samples is often necessary in order to get a 

well resolved two-dimensional gel. Hence, in this project, clean up had performed 

using 2D clean up kit (BioRad, USA) for both the young and old plant materials with 

the aim to improve the gel resolution. 

 

Figure 3.10: 2-DE protein profiles of young leaf samples (a) before clean up (b) after 

clean up 

 

Figure 3.11: 2-DE protein profiles of old leaf samples (a) before clean up (b) after 

clean up 

 

As shown in the Figure 3.10, there was more low abundance proteins appear in the 

young leaf samples (cabbage) after 2D clean up. However, the horizontal streaking 

problem remained and the background of the gels remained noisy. While the old leaf 
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samples (Figure 3.11), there was not much improvement shown after clean up. The 

condition of the overall vertical streaking problem remained in the gel.  

 

3.3.3.3 Different range of the pH strips 

 

Although the protein profiles were somewhat resolved the quality of the overall 

separation was unsatisfactory. The protein spots are clumped together (Figure 3.10) 

and this causes difficulties when further work such as comparing, quantifing or 

identify the protein spots need to be done. Therefore, a further modification of the 2-

DE gels using IPG strips of a different pH range i.e.pH 4-7 was carried out. The 

outcome of the results (Figure 3.12) had given a better resolution of the protein spots 

resolved in 2D gels. 

 

 

 

Figure 3.12: 2-DE protein profiles for old leaf sample on pH 4-7 IPG strip 
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3.3.3.4 Different focusing time 

 

In addition to the extra clean-up step performed, different focusing times had been 

involved to further optimise the protocol in the hope of reduce the horizontal 

streaking on the 2D gels. There were a total of four different focusing times used to 

run the 2D gels, which are 8 kVh, 10 kVh, 14 kVh and 16 kVh. The results were 

shown in Figure 3.13. 

 

 

Figure 3.13: 2-DE protein profiles of oil palm leaf samples (cabbage) with different 

focusing times  

(a) 8000 Vh (b) 10 000 Vh (c) 14 000 Vh (d) 16 000 Vh 

 

Optimisation of focusing time gave a good resolution and focusing protein spots at 

10 000 Vhr (refer to Figure 3.13 (b)). The 8000 Vhr gave second preferable focusing 

results and clear resolution as well, but there a slightly unfocused part at the positive 

end (Figure 3.13 (a)). As shown in the Figure 3.13 (c) and (d), the proteins in the 

gels start to be over-focusing with horizontal streaking as excess focusing time was 

applied.  
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3.3.3.5 Nucleic acid Elimination 

 

Even though the optimal focusing time were applied, there was still a presence of 

horizontal streaking on the positive end (acidic) especially in the young leaf samples 

(cabbage). According to Görg et al. (2007), this might be due to the presence of 

impurities such as nucleic acid. In order to eliminate the nucleic acid from the 

samples, the effect of adding a mixture of nuclease was tested. 

 

Figure 3.14: 2-DE protein profiles for samples (a) Untreated (b) nuclease treated (c) 

nuclease treated and acetone precipitated (d) acetone precipitation only 

 

The positive end streaking problem was improved after nuclease treatment. Figure 

3.14(c) shows that the addition of an acetone precipitation step after nuclease 

treatment did improve the horizontal streaking on the positive site but protein loss 

occurred as compared with nuclease treatment only (Figure 3.14(b)). The acetone 

precipitation alone did not improve the streaking problem at the positive end as 

shown in Figure 3.14(d).  
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3.4 Discussion 

 

3.4.1 Improvement on protein yield obtained from different protein extraction 

protocols 

 

The TCA/acetone extraction method produced a significantly higher protein yield. 

The same result is obtained from the date palm, Phoenix dactylifera L. leaf, a 

recalcitrant material which also found that TCA/Acetone precipitation method 

provides more efficient resolubilisation of date palm leaf proteins (Gómez-Vidal et al., 

2008). The second most efficient yield was from the Lysis buffer extraction method 

which has a shorter extraction period as compared to the TCA/acetone extraction 

method. This shorter extraction period may cause the incomplete extraction of full 

proteins from the samples, at the same time the elimination of impurities is not 

effective enough. The combination of the TCA/acetone and phenol method and 

phenol extraction method alone produced lower protein yields, this might be due to 

the time consuming procedures and longer steps involved. There are plenty washing 

step in the protocol, which are indirectly contributed to the loss of proteins prior to 

washing. The combination of both TCA/acetone and phenol methods has 

successfully extracted great amount of proteins in most of the plant species (Wang 

et al., 2006). However, in this project, for the oil palm leaf, TCA/acetone precipitation 

methods show greater protein yield which are more than two fold increase in amount 

of protein extracted as compare to the other two methods. Several findings are in 

contrasting results, which suggested that the phenol extraction method is the 

technique of choice for recalcitrant plant tissues (Wang et al., 2003; Saravanan and 

Rose, 2004; Carpentier et al., 2005, Jellouli et al., 2010). Other studies in agreement 

with our current findings show that the optimised TCA/acetone precipitation gave a 

relatively high protein yield, clear and high resolution profiles and highest number of 

protein spots (Xiang et al., 2010; Wu et al., 2011). TCA/acetone precipitation has 

been reported to be useful for minimising protein degradation and removing 

interfering compound (Gómez-Vidal et al., 2008). 
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3.4.2 One Dimensional Gel Electrophoresis – SDS PAGE 

 

From the SDS-PAGE gels, there are difference band patterns shown for the four 

extraction methods. Different protein extraction protocol will contribute to the 

dissimilarity of the total proteins extracted. Each extraction method will have their 

favour criteria that tend to extract difference ranges of the proteins which vary in their 

solubility and acidity in nature.  

 

There are a range of extremely high metabolites present in the oil palm. Thus, it is 

not practical to cut the protein bands directly from the gels and send for identification 

using mass spectrometry. This might contribute to complexity in protein identification 

when multiple bands exist at the same position with identical molecular weight. 

Hence, two-dimensional gel electrophoresis need to perform in order to separate the 

proteins further in two dimensions so that a single protein spots with their particular 

pH and molecular weight can be observed. 

 

 

3.4.3 Optimisations for the Two-Dimensional Gel Electrophoresis (2-DE) 

 

A total of four protein extraction protocols were performed for the two dimensional 

gel electrophoresis were performed for the four protein extraction protocols. From 

the 2-DE gels, TCA/acetone shows the greatest number of protein spots on the 2-DE 

gels as compared to the other three methods, which is lysis buffer, phenol extraction 

method and a combination of the TCA/Phenol method. It seems logical where 

TCA/acetone should exhibit highest number of protein spots as it has the highest 

protein yield. However, even though a combination of TCA/Phenol has the higher 

protein yield than Phenol method. Phenol method has higher number of protein 

spots than combination TCA/Phenol method. These results show that the quantity of 

proteins is not correlate with the number of protein spots.  
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In addition to this, even TCA/acetone and Lysis extraction method presented a good 

protein yield, the quality of the 2-DE profiles were different. Two-dimensional gels 

from the TCA/acetone method show less horizontal streaking as well as the vertical 

streaking compared to the Lysis extraction method. Horizontal streaking mainly 

cause by the first dimension electrophoresis, i.e. the isoelectric focusing (IEF). This 

means that protein extracted using TCA/acetone methods performed well during the 

IEF compare to the Lysis extraction method. This results from the few replicates 

show that 2D gels from the TCA/acetone method was more consistent compared to 

the Lysis buffer extraction method. Hence, TCA/acetone was chosen as the most 

suitable protein extraction method in the study. This extraction method was 

subsequently standardised for both young and old leaf in further studies. In 

conclusion, the optimal protein extraction protocol for a good 2-DE gel should not be 

only based on the protein yield, it needs to be further confirmed by 2-DE gels before 

making a final decision.  

 

 

Purity of the sample is very important during the 2D gel electrophoresis. There are 

several factors that might interfere with the 2D gels. One of the main factors is the 

presence of high impurities such as salt, phenolic compound; nucleic acid in the 

sample that may cause a serious streaking on the 2D gel. High impurities in the 

sample cause poor first dimensional separation through isoelectric focusing (IEF). 

The samples are unable to reach their optimum voltage and current during the IEF 

run with the high salt content. These causes the protein samples were unable to 

focus well at their own pI position. Even though there is a pre-focusing step during 

the IEF run, this steps would not be sufficient to eliminate all the impurities exist in a 

highly contaminant sample.  Thus, the dirty samples can go through an extra clean 

up step. In order to clean up the impurities such as salt, further 2D clean up 

procedure is performed to eliminate any impure substances that might interrupt the 

isoelectric focusing run by using the 2D cleanup kit (Bio-Rad).  
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As shown in Figure 3.10, there is more low abundance proteins appear in the young 

leaf samples (cabbage) after 2D clean-up. This is one of the benefit of 2D clean up 

as it will help to remove the non-protein contaminant and increase the percentage of 

low abundance proteins present in a sample. This indicates that some of the 

samples required further clean up to have a better solubility and resolution of the 

proteins especially for the young leaf samples. However, the horizontal streaking 

problem remained and the background of the gels remains noisy. The horizontal 

streaking can cause by the incomplete focusing during first dimensional separation, 

IEF. However, for the old leaf sample, there is not much improvement shown after 

clean up (Figure 3.9b). The condition of the overall vertical streaking problem 

remained in the gel. This could indicate that the 2D clean-up kit might not work 

effectively for old leaf samples. Moreover, after 2D clean up procedure, it increases 

the chance of protein loss due to the excessive clean up steps involved.  

 

 

3.4.3.3 Different range of pH strips 

 

 

All the 2-DE gels in this study focused proteins across the pH ranges from 3 to 10. 

Further examination shows that protein spots were concentrated in the middle region 

of these 2-DE gels. This can cause difficulties and confusion when doing 2-DE gels 

comparison. Therefore, the narrower range of pH 4 to 7 was used instead of the 

normal range pH 3 to 10. The gel in Figure 3.8 shows that the pH ranges 4-7 

provided improved separation for the protein spots. All the protein spots are 

presented as a single spots which can be clearly identified during spots picking. The 

improvement in the resolution of the 2-DE gel profiles make it possible to make any 

comparison between treatment species. A further advantage is that on narrow pH 

range gels, greater separation can be obtained between adjacent spots, which 

facilitate the excision of individually resolved separate proteins. It can be concluded 

that the IPG strips with pH 4-7 can provide good separation where by the entire gel 

can give a full image of the protein spots population in a 2D gel.  
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3.4.3.4 Different focusing time 

 

In order to solve the horizontal streaking on the 2D gels, further optimisation on the 

focusing time is required for the leaf samples. Proteins exhibited an amphoteric 

characteristic with either positive, negative, or zero net charge. The isoelectric point 

(pI) is the pH where protein has a zero net charge at that pH. A protein with positive 

net charge will migrate toward cathode and slight change to less positively charged 

as it move through the pH gradient and reach their own pI. Similarly for the 

negatively net charge proteins migrate to the opposite direction toward the anode 

site.  

 

The proteins in the IPG strips will be well focused and locate themselves at their own 

pI value with a particular focusing time. However, the proteins might lose their 

stability in position and results in electroendosmotic water and protein movement 

with extensive period of focusing, also known as over-focusing. This might cause a 

vertical streaking at the left end of the protein spots. 

 

It is necessary to study suitable focusing time for a particular protein sample in order 

to avoid over-focusing or under-focusing condition for the protein species. A solid 

and distinct protein spots can be captured from the 2D gels with the optimum 

focusing time. With the well-focused protein, it will make the PDQuest software 

analysis more accurate and reliable when the spots differences were identified.  
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3.4.3.5 Nucleic acid Elimination 

 

For the young leaf samples (cabbage), there are horizontal streaking present on the 

positive end (acidic) (Figure 3.10a). This may be due to nucleic acid contamination 

(Görg et al., 2007). In the presence of nucleic acid, protein might bind together with 

the nucleic acid and formed a protein-nucleic acid mixture which can interrupt the 

IEF run. Figure 3.10 show that addition of the nuclease mix treatment effectively 

removes quite a large number of horizontal streaking. Hence, nuclease mix 

treatment will be used to treat the protein samples with streaking on the 2-DE gel in 

order to reduce the nucleic acid contaminants. 

 

 

 

 

3.5 Conclusion 

 

The TCA/acetone extraction procedure provided the most efficient and reliable 

method for preparing samples for 2-DE protein separation for both young and old oil 

palm leaf. The highest protein content and superior protein profile on the 2-DE gels 

were obtained where nuclease treatment was used. Our results also demonstrated 

that nucleic acid removal is effective in reducing horizontal streaking in the acidic 

region. This method that involved precipitation using TCA/acetone allowed instant 

elimination of proteolytic enzyme. An optimal isoelectric focusing time of 10,000 Vhr 

for pH 4-7 IPG strips, 7 cm in length was determined that provided good focusing 

profiles for protein samples extracted from the F17, old oil palm leaf samples. The 

2D clean-up procedure shows a little improvement in the cabbage samples but not 

for the old leaf samples. In this chapter, the most efficient protein extraction for the 

old and young leaf samples were identified coupling with the optimal parameters for 

the two-dimensional gel electrophoresis. This optimising stage is very important to 

make sure all the samples produce high quality 2-DE protein prior to the downstream 

proteomics analysis. 
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CHAPTER 4 

COMPARISON OF PROTEIN PROFILES BETWEEN OIL PALM LEAF 

SAMPLES WITH HIGH AND LOW PROLIFERATION RATES  

 

4.1 Introduction 

Oil palm (Elaeis guineensis Jacq.) is an important commercial crop in Malaysia. It 

is a diploid monocotyledon with single vegetative apex (Low et al., 2008). Due to 

its high commercial value and high demand for high yielding planting material, 

somatic embryogenesis has become one of the alternatives in clonal propagation 

of oil palm to supply the elite oil palm plantlets (Thuzar et al., 2011). Generally, 

young leaves of oil palm are chosen as a starting material for tissue culture to 

induce callus due to their efficiency. However, the callus could develop into soft, 

granular and translucent tissues which do not have embryogenic potential and 

incapable of regeneration into a new plantlet. Thus, the callus formation and 

development of somatic embryos become one of the major bottlenecks in oil 

palm tissue culture as well as the clonal abnormality problem. A very low rate 

approximately 19% of callogenesis of oil palm has been reported by Corley and 

Tinker (2003) and an average rate of embryogenesis in leaf derived callus is only 

6% (Wooi, 1995). To date, there are limited information available about the 

molecular changes associated with callogenesis and embryogenesis in oil palm. 

Malaysia Palm Oil Board (MPOB) has been actively working on the gene 

expression studies in both embryogenesis and clonal abnormality and some 

potential gene markers have been identified but functionality of these proteins 

associated with embryogenesis is still unknown (Sambanthamurthi et al., 2009). 

There is still too early for researchers to solve the obstacles in somatic 

embryogenesis due to limited scientific finding regarding the somatic 

embryogenesis. Thus, the aim of this experiment is to employ a proteomic 

approach to determine the protein expression profiles of the low and high 

proliferation rates in embryogenesis lines of oil palm tissue culture in order to 
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understand more on the biological processes occur through the protein 

expression study. 

 

4.2 Materials and methods 

 

4.2.1 Plant Materials 

The plant materials used in these experiments were collected from Advanced 

Agriecological Research Sdn Bhd (AAR) and United Plantation (UP), Malaysia. In 

this experiment, two types of samples collected which were young and old oil 

palm leaves. Two categories of the oil palm old leaf samples have been 

classified as high and low proliferation rates based on previously recorded tissue 

culture performances. Oil palm samples producing proliferation embryogenic line 

of more than 30 were categorised as high proliferation rate samples while low 

proliferation rate samples were shown with proliferation embryogenic line of less 

than 10. Samples AN 25 and AN 28 were categorized as high proliferation rate, 

while AN 27 and AN 29 were grouped as low proliferation rate in old leaf samples. 

In young leaves samples, there were three biological replications. The high 

proliferation rate samples (933, 948, and 944), and low proliferation rate samples 

(194, 1086 and 352) were compared and for each of the samples. All the 

samples were extracted using the optimised protocol, TCA/acetone method as 

described in Chapter 3.  

 

4.2.2 Two-dimensional gel electrophoresis 

 

The extracted proteins were rehydrated overnight using 7 cm IPG strips for the 

old leaf samples and 17 cm IPG strips for young leaf samples. The IEF was then 

carried out on the next day for 6 hours and subjected to second dimension 
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separation using SDS-PAGE. All the optimal running parameters were used as 

described in the Chapter 3 (Section 3.3.5.2). For the large 2-DE 17 cm gel, the 

IEF running was 60,000 Vhr which was about 9 hours running time. There was 

standard electrophoresis condition for 17 cm (16 mA running per gel for a 30 

minutes, followed by 24 mA per gel for 5 hours). It was then stained with 

Coomassie Blue G-250 or silver stain. The images of the 2-DE gels were 

digitalised using the densitometer (Bio-rad). The digital images were subjected to 

the PDQuest analysis version 8.0.1 and Progenesis SameSpot software for spot 

analysis. The differential protein expression profiles for particular spots between 

the high and low proliferation rate samples were selected followed by protein 

identification using mass spectrometry (Figure 4.1). 

 

Figure 4.1 Proteomic workflow showing from the two-dimensional gel 

electrophoresis to mass spectrometry (Susanne et al., 2008) 
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4.2.3 Excision of protein spots from the polyacrylamide gels 

Differences in protein spot expression between high and low proliferation rates in 

oil palm samples were analysed through the PDQuest software 8.0.1. The 

protein spots that exhibited significant difference were excised using 

ProteomeWorks spot cutter (BioRad) and placed in a clean microcentrifuge tube 

before trypsin digestion (Soskie et al, 1992). The protein spots were then pooled 

together as 4 spots to 8 spots prior to the mass spectrometry analysis. This is to 

confirm the protein spots can reach the concentration threshold in MALDI 

TOF/TOF instrument. The individual protein spots were performed in-gel 

digestion using trypsin enzyme. The peptides were then extracted and spotted on 

the MALDI plate and send to mass spectrometry to identify the mass spectrums 

of the peptide. The mass spectra from the peptides were used to blast through 

the MASCOT search engine with accessible protein database such as Swissprot 

and NCBInr (Figure 4.2).  

 

4.2.4 In situ digestion of proteins 

4.2.4.1Destain of gel pieces 

a) Coomassie stain gels 

Prior to peptide digestion, the stained gel plugs were went through destaining 

procedures. For the coomassie staining approach, gel plugs were destained with 

200 mM ammonium bicarbonate. Two hundred microliter of the ammonium 

bicarbonate (NH4CO3) was added to each tube and incubated at 37 °C for 30 

minutes. The solution was then discarded and repeated the steps until the gel 

plugs were cleared from blue coomassie stain. 

 

 



66 

 

 

b) Silver stained gels  

The destaining procedure of silver stained protein in gel pieces were performed 

as described (Farzin et al., 1999). The gel plugs were destained with chemical 

reducers to remove the silver ion. Potassium ferricyanide and sodium thiosulfate 

were used as reactive substances of the chemical reducers. The solution of the 

chemical reducers which made up of 30 mM potassium ferricyanide and 100 mM 

sodium thiosulfate were prepared freshly. For each tube, 100 µL destain solution 

was added and incubated at room temperature under dark until clean gel plugs 

obtained. The destaining solution was then discarded and gels were washed with 

150 µL of 200 mM NH4CO3 for 20 minutes. 

 

4.2.4.2 Reduction and alkylation 

Reduction of the protein were carried out using 100 µl 10 mM DTT/ 50 mM 

NH4CO3, followed by vortexing and brief centrifugation. It was then incubated at 

56 °C for 45 minutes to reduce the protein. The supernatant was discarded and 

the gels were washed with 100 mM NH4CO3 with vortexing and brief 

centrifugation. In-spot reduction was recommended even the proteins were 

reduced prior to an electrophoresis run. It was then alkylated by vortexing with 

100 µL of 55 mM iodoacetamide in 50 mM NH4CO3 for 30 minutes at room 

temperature under dark condition. The solution was discarded and the gel pieces 

were washed with 50 mM NH4CO3 in 50% acetonitrile (ACN). Additional washing 

might be required if the residual staining was observed. 

 

 

 

 



67 

 

 

4.2.4.3 In-gel digestion with trypsin 

The reduced and alkylated gel plugs were then added with 150 µL ACN and 

incubated for 10 minutes. After incubation, discarded solution and allowed to dry 

under vacuum in Speed Vac (Eppendorf, German) for 5 minutes. The gel plugs 

were rehydrated with 80 µL digestion buffer (10% ACN in 50 mM NH4CO3) 

consisted of 12.5 ng/µL trypsin which was sufficient to cover gel plug. It was then 

vortexed gently for 5 minutes. Lastly, all the tubes were incubated overnight for 

16 to 18 hours at 37 °C. 

 

4.2.4.4 Peptides Extraction 

Peptide extractions were carried out on the second day after overnight incubation. 

The gel slurry was centrifuged briefly and supernatant was transfered to a clean 

1.5 mL Eppendorf tubes. Secondly, 100 µL of freshly made 10% ACN in 50 mM 

NH4CO3 were added to the gel plug and vortexed for 10 minutes before 

centrifuged it down to collect the supernatant. The supernatant that collected 

from the first round centrifugation was pooled together with the second extracted 

supernatant. It was continued with the third extraction with 50 µL 0.5% 

trifluoroacetic acid (TFA). Lastly, the gel plugs were further extracted with 80% 

ACN and vortexed vigorously for 2 minutes before centrifugation. All the collected 

supernatant was pooled together and dried completely under vacuum.  
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4.2.4.5 Identification of proteins by Mass Spectrometry  

The digested peptide samples were re-constituted with 0.1% TFA before 

subjected to the MALDI TOF/TOF instrument (Bruker, Germany). Matrix 

preparation was performed as introduced by (Hillenkamp and Karas, 1988) with 

little modifications. The saturated matrix was prepared freshly and diluted before 

use. Prior to the acquicisition of spectra, 1 µL of each peptide mixture was mixed 

with 1 µL of matrix solution and a droplet of the resulting mixture (1 µL) was 

placed on MALDI target plate. The mixture was then allowed to dry at room 

temperature.  

 

 

The MALDI plate was loaded into the mass spectrometry instrument for protein 

identification. The instrument was equipped with a smart beam laser and 

acquisition laser power was optimized using the peptide mass calibration mixture 

before collection of sample data. Mass spectra were acquired in positive ion 

reflection mode in mass range 480 – 5500 Da with a suppression mass gate set 

to 450 Da to prevent detector saturation from matrix cluster peaks. Default 

operating conditions were as follow: ion source 1, 25.0 kV; ion source 2, 21.80 

kV; lens voltages, 9.5 kV; reflector voltage, 26.3 kV and reflector 2 voltage, 13.7 

kV. 
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Figure 4.2: Proteomic workflow from spot excision to protein identification and database search. 
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All acquisitions were generated automatically in the instrument software and 

based on 800 shots. Data were calibrated externally with the peptide mass 

calibration mixtures. All spectra were processed and analsysed using Flex 

Analysis and Biotool softwares. The masses of the peptides come from the 

trypsinzed protein spots were subjected to MASCOT search engine against in-

house (MPOB Transcript), Swiss-Prot (Figure 4.3) and NCBInr databases.  

 

 

 

Figure 4.3: UniProtkb, Swissprot database 
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4.3 Results 

4.3.1 Global profiling of the old leaf sample in oil palm 

The protein extracted from oil palm samples were subjected to the optimised IEF 

and SDS-PAGE separation as described in Chapter 3. The proteome profiles 

obtained are shown in Figure 4.4. There was limited number of protein spots 

present in the 2-DE gels which only enabled a certain degree of proteins to be 

accessed at a particular time. Approximately, a total of 100 to 150 individual 

protein spots were detected in the samples. The protein profiling through 2-DE 

gels provides general information for the protein populations present in an old 

leaf sample especially oil palm.  

 

Figure 4.4: Two-dimensional protein gel for the oil palm old leaves sample 
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The identification rate for protein interests was 50%. The identities of each 

protein spot are shown in Table 4.1. The results provide pI and molecular weight 

(MW) for each of the identified proteins. In addition, the biological and molecular 

functions of the proteins as well as their cellular location have been given. This 

information provides further understanding on the protein populations that were 

expressed in the old leaf samples of the oil palm species. All of the identified 

proteins occurred abundantly in the oil palm leaf samples.  

 

Figure 4.5: Functional classification of total protein expressed in oil palm leaf 

samples. 

 

The 27 identified protein spots were classified into five groups namely transport, 

stress response, metabolism, cellular biogenesis, and photosynthesis based on 

their functions in the plant species (Figure 4.5). Most of the identified proteins 

were involved in metabolism and photosynthesis (30%), followed by cellular 

biogenesis (19%), stress response (14%) and lastly transportation (7%). Similar 

results from Shim et al. (2010) who reported high detection of enzymes involved 

in photosystem reactions in chloroplast for the protein profiling of Piper 

sarmentosum plant.   
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Table 4.1: Protein profiling from the oil palm leaf samples with 27 spots identified. 

Spot No Protein name Biological process Molecular function Cellular location Reference organism Accession No MW pI MOWSE 

1.SSP 2107 
 
 
 
 

RuBisCo large subunit-binding 
protein subunit alpha 
 
 
 

Stress response 
 
 
 
 

Binds RuBisCo small and 
large subunits and 
implicated in the assembly 
of the enzyme oligomer 
 

Plastid, Chloroplast 
 
 
 
 

Chlamydomonas 
reinhardtii 
 
 

Q42694 
 
 
 
 

61999 
 
 
 
 

5.57 
 
 
 
 

65 
 
 
 
 

2. SSP 2202 
 
 

2-Cys peroxiredoxin BAS1-like 
 
 

 
Defence response to 
bacterium and cold 
 

Antioxidant 
Peroxidase activity 
Oxidoreductase 

Apoplast,  
Chloroplast stroma, 
stromule 

Arabidopsis thalinana 
 
 

Q9C5R8 
 
 

29932 
 

 

5.4 
 
 

104 
 

 

3. SSP 2305 
 
 
 

Chlorophyll a-b binding protein 
of LHCII type III 
 
 

 
Photosynthesis 
 
 
 

 
Light receptor, captures 
and delivers excitation 
energy to photosystem 
 

Plastid, Chloroplast 
membrane, 
Thylakoid 
 

Hordeumvulgare 
 
 
 

P27523 
 
 
 

28798 
 

 
 

4.99 
 

 
 

51 
 

 
 

4. SSP 3305 
 
 
 
 
 

Triosephosphate 
isomerase 
 
 
 
 

Glycolysis 
 
 
 
 
 

 
Catalyzesinterconversion of 
dihydroxyacetone 
phosphate and D-
glyceraldehyde-3-
phosphate. Isomerase 
 

Cytoplasm 
 
 
 
 
 

Gossypium hirsutum 
 
 
 
 
 

D6N3G7_GOSHI 
 
 
 

 
 

51648 
 
 
 

 
 

8.46 
 
 
 

 
 

105 
 
 
 

 
 

5. SSP 3306 
 
 
 
 

Oxygen-evolving enhancer 
protein 1 
 
 
 

 
Photosynthesis 
Photosystem II stabilization 
 
 
 

Calcium ion binding 
 
 
 
 

Chloroplast 
thylakoid 
membrane, Oxygen 
evolving complex 
 

Fritillaria agrestis 
 
 
 
 

 
O49079 

 
 
 
 

35076 
 
 
 
 

6.3 
 
 
 
 

84 
 
 
 
 

 
 

6. SSP 3401 
And 

7. SSP 3402 
 
 
 
 
 
 
 

Sedoheptulose-1,7-
bisphosphatase 
 
 
 
 
 
 

Carbohydrate metabolism; 
Calvin cycle 
 
 
 
 
 
 
 
 

 
Light activation through pH 
changes, Mg2+ levels and 
light-modulated reduction 
of essential disulphide 
groups via ferredoxin-
thioredoxin f system. 
 
 
 
 

Plastid, Chloroplast 
 
 
 
 
 
 
 
 
 

Triticum aestivum 
 
 
 
 
 
 
 
 
 

P46285 
 
 
 

 
 
 
 
 

 

42547 
 
 
 
 

 
 
 
 

 

6.0 
 
 
 
 
 
 
 

 
 

 49 
And  
188 
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8. SSP 4405 

 
 
 
 

 
Sedohepulose-1,7-
bisphophatase 
 
 
 

 
Calvin cycle, carbohydrate 
metabolism, Reductive 
pentose-phosphate cycle 
 
 

 
 
Hydrolase, metal ion 
binding 
 
 
 

 
 
 
Plastid, Chloroplast 
 
 
 
 

 
 
 
Spinacia oleracea 
 
 
 
 

 
 
 

O20252 
 

 
 
 

 
 

 
42568 

 
 
 
 

 
 
 

5.87 
 

 
 
 

 
 
 

106 
 

 
 
 

          

9. SSP 4202 
 
 
 
 
 

Oxygen=evolving enhancer 
protein 2 
 
 
 
 

 
Photosynthesis 
 
 
 
 
 

Regulation of Photosystem 
II 
 
 
 
 

 
Plastid, Chloroplast 
thylakoid 
membrane 
 
 
 

Solanum tuberosum 
 
 
 
 
 

P93566 
 
 
 
 
 

28158 
 
 
 
 
 

8.27 
 
 
 
 
 

76 
 
 
 
 
 

 
10. SSP 4505 

And 
11. SSP 5401 

 
 
 

 
Ribulosebisphosphate 
carboxylase/ 
oxygenaseactivase B 
 
 
 

 
Leaf senescence, 
Response to jasmonic acid 
stimulus, light stimulus 
 
 
 

 
ADP and ATP binding, 
Ribulose-1,5-bisphosphate 
carboxylase/oxygenase 
activator activit 
 
 

 
Cell wall,  
chloroplast 
envelope, nucleus, 
plastoglobule, 
stromule 
 

 
Arabidopsis thaliana 
 
 
 
 
 

 
At2g39730 

 
 
 
 
 

 
47426 

 
 
 
 
 

 
8.6 

 
 

 
 
 

 
97  

      And  
      153 
 
 
 

 
12. SSP 5403 

 
 
 
 
 
 

Photosystem II 
stability/assembly factor 
HCF136 
 
 
 
 

Photosynthesis 
 
 
 
 
 
 

 
Essential for photosystem II 
(PS II) biogenesis, required 
assembly of an early 
intermediate in PSII 
assembly and Chlorophyll a 
binding. 
 

Chloroplast 
membrane, Plastid, 
Thylakoid 
 
 
 
 

Arabidopsis thaliana 
 
 
 
 
 
 

O82660 
 
 
 
 

 
 

44133 
 
 
 
 

 
 

6.79 
 
 
 
 

 
 

42 
 
 
 
 
 

 

13. SSP 5404 
 
 
 
 

Phosphoribulokinase 
 
 
 
 

 
Reductive pentose-
phosphate cycle 
Defence response to 
bacterium/cold 
 

ATP binding, 
Phosphoribulokinase 
activity 
 
 

Apoplast, 
chloroplast 
envelope, stroma, 
thylakoid, stromule 
 

Chlamydomonas 
reinhard 
 

P19824 
 

 
 

 

42151 
 

 
 

 

9.0 
 

 
 

 

103 
 
 

 
 

 
14. SSP 6201 

 
 
 
 

 
Cytochrome B6-F complex iron 
sulphur subunit 2 
 
 
 

 
Electron transport 
 
 
 
 

Iron sulphur protein, Rieske 
domain involved in 
electron transfer, metal ion 
binding, ubiquinol-
cytochrome-c reductase 
activity. 

 
Integral to 
membrane, 
thylakoid 
membrane 
 

 
Sonneratia ovate 
 
 
 
 

 
122816 

 
 
 
 

 
60147 

 
 
 
 

 
8.60 

 
 
 
 

 
135 
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15. SSP 6202 
 
 
 
 
 

Oxygen-evolving enhancer 
protein 2 
 
 
 
 

Photosynthesis 
 
 
 
 
 

Regulation of Photosystem 
II 
 
 
 

Plastid, thylakoid, 
chloroplast 
membrane 
 
 
 

Fritillaria agrestis 
 
 
 
 
 

O49080 
 
 
 
 
 

28265 
 
 
 
 
 

8.31 
 
 
 
 
 

75 
 
 
 
 
 

 
16. SSP 6304 

And 
17. SSP 7304 

 
 
 
 

L-ascorbate peroxidase 2 
 
 
 
 
 
 

Embryo development 
ending, 
Hydrogen peroxidase 
catabolic process, 
Response to cadmium ion, 
heat and salt stress 
 

L-ascorbate peroxidase 
activity, 
Heme binding, metal ion 
binding 
 
 
 

Cell wall, 
chloroplast stroma, 
plasma membrane 
 
 
 
 

Oryza sativa japonica 
 
 
 
 
 
 

Q9FE01 
 
 
 

 
 
 

27215 
 
 

 
 
 
 

5.1 
 
 
 

 
 
 

 
130  
And  
149 

 
 

 
 

18. SSP 6501 
 
 
 
 
 

Elongation factor TuB 
 
 
 
 
 

GTP catabolic process 
 
 
 
 
 

 
 
GTP binding, 
GTPase activity, 
Translation elongation 
factor activity 
 
 
 

Chloroplast 
 
 
 
 
 

Nicotiana sylvestris 
 
 
 
 
 

Q43364 
 
 
 
 
 

53076 
 
 
 
 
 

6.3 
 
 
 
 
 

95 
 
 
 
 
 

19. SSP 7307 
 
 
 

 Ribulosebisphosphate 
carboxylase large chain 
 
 

Photorespiration 
Reductive pentose-
phosphate cycle 
 

 
Magnesium ion binding, 
Monooxygenase activity, 
Ribulose-bisphosphate 
carboxylase activity 

Chloroplast 
 
 
 

Spinach Oleracea 
 
 
 

P00875 
 

 
 

49258 
 
 
 

6.6 
 
 
 

58 
 
 
 

 
20. SSP 7402 

 
 

 
 
 
Malate dehydrogenase, 
Mitochondria 
 

 
 
Glyoxylate cycle, 
Malate metabolic process, 
Tricarboxylic acid cycle 

 
L-malate dehydrogenase 
activity, nucleotide binding 
 

 
 
 
Glyoxysome 
 
 

 
Citrullus lanatus 
 
 

 
 
 

P19446 
 
 

 
 
 

36406 
 
 

 
 
 

9.6 
 
 

 
 
 

148 
 
 

21. SSP 7403 
 

 
 
 
Glutamine synthetase root 
isozyme 4 

Glutamine biosynthetic 
process 

ATP binding, Glutamate-
ammonia ligase activity 

Cytoplasm 
 

Zea mays 
 

P38561 
 

39241 
 

5.1 
 

218 
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22. SSP 7406 
 

Glutamine synthetase N-1 Glutamine biosynthetic 
process, nitrogen fixation 

ATP binding, glutamate-
ammonia ligase activity 

Cytoplasm 
 

Phaseolus vulgaris 
 

P00965 
 

39488 
 

6.1 
 

124 
 

23. SSP 7504 
 
 

 
 
Phosphoglycerate kinase, 
chloroplastic 
 

Glycolysis, reductive 
pentose-phosphate cycle 
 

ATP-binding, 
phosphoglycerate kinase 
activity 

Chloroplast 
 
 

Spinach oleracea 
 
 

P29409 
 
 

45658 
 
 

5.8 
 
 

97 
 
 

 
24. SSP 7702 

 
 
 
 
 
 

ATP synthetase subunit alpha, 
chloroplastic 
 
 
 
 
 

 
ATP hydrolysis coupled 
protein transport, 
Plasma membrane ATP 
synthesis coupled 
 
 
 

 
ATP binding, proton-
tranporting ATP synthase 
activity, proton-
transporting ATPase 
activity, rotational 
mechanism 
 

Chloroplast 
thylakoid 
membrane, proton-
transporting ATP 
synthase complex, 
catalytic core 
 

Acorus americanus 
 
 
 
 
 
 

A9LYH0 
 
 
 
 
 
 

55376 
 
 
 
 
 
 

5.1 
 
 
 
 
 
 

 
215 

 
 
 
 
 
 

25. SSP 7606 
And 

26. SSP 8605 
 
 
 

 Ribulosebisphosphate 
carboxylase large chain 
 
 
 
 

Carbon dioxide fixation, 
photorespiration, 
photosynthesis, Calvin cycle 
 
 
 

Primary event in carbon 
dioxide fixation, oxidative 
fragmentation in 
photorespiration 
 
 

Plastid, Chloroplast 
 
 
 
 
 

Acacia farnesiana 
 
 
 
 
 

P93998 
 
 
 
 
 

 
 

50860 
 
 
 
 

 

6.22 
 
 
 
 
 

220 
 
 
 
 
 

 
27. SSP 8405 

 
 
 

Fructose- biphosphate 
aldolase 1 
 
 

Glycolysis 
 
 
 

Fructose-
bisphosphatealdolase 
activity 
 

 
Thylakoid lumen, 
apoplast, 
chloroplast 
envelope 
 

Arabidopsis thaliana 
 
 
 

Q9SJU4 
 
 
 

43075 
 
 
 

6.18 
 
 
 

45 
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4.3.2 Comparison of protein profiles between high and low proliferation 

rate samples 

The proteins of these two categories of samples were extracted and run in two-

dimensional gel electrophoresis to get a proteome profile and compare their 

differential protein expression. Comparison of the protein profiles of high and low 

proliferation rates of the oil palm samples were conducted using leaves. Different 

octets and genotypes of oil palm were reported to have different embryogenic 

potency rate. Recent publication by Jayanthi et al., (2015) reported that the 

embryogenesis percentage obtained from tenera palms (6.8 - 9.35%) were 

higher than dura palms (0.33 – 4.98%) under the same media treatment.  

 

 

4.3.2.1 Old leaf samples 

 

Proteins were extracted from the high and low proliferation rate group samples 

and separated using 2-DE gels. Images of the 2-DE gel protein profiles were 

digitised using densitometer prior to the analysis using 2-DE analysis software. 

Figure 4.6 shows the 2-DE gel images for the two sample categories, high 

proliferation rate (Figures 4.6a and 4.6b) and low proliferation rate (Figures 4.6c 

and 4.6d) samples. Each sample was run in triplicate. The protein profiles 

obtained from the old leaf samples are highly reproducible across the technical 

replicates. 
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Figure 4.6: 2-DE gel images for AN 25 (a), AN 28 (b) which were high 

proliferation rate samples, AN 27 (c) and AN 29 (d) which were low proliferation 

rate samples 

 

The distributions of the protein spots across the four biological samples were 

quite similar but the differential expressions between protein spots were not 

detected through naked eyes. All the gel images were subjected to PDQuest 

software analysis (Figure 4.7) for automated spot detection, matching, 

normalization and quantification. After matching all the protein spots, the gels 

were analyzed for statistically significant in fold change differences between 

samples together with the student t-test analysis. 

 

 

 

High proliferation 

Low proliferation 
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PDQuest software provided the relative density of individual protein spots across 

all the protein gels in each category. There are a total of 16 protein spots 

expressed significantly with 10-fold change difference and pass the student t-test 

analysis at 95% confidence level. Thirteen protein spots were found to be highly 

expressed in high proliferation rate samples. Two proteins were detected only 

present in the high proliferation rate samples and there was one protein spot 

(SSP 3402) having low expression in high proliferation rate samples (Table 4.2). 

All the proteins were sent for MALDI TOF/TOF analysis and there were 13 

protein spots identified out of 16 protein spots. The identification rate was roughly 

81% for the old leaf samples (Table 4.4). 

 

 

Figure 4.7: Protein spots that exhibit significant differences between high and low 
proliferation rate categories are shown. 
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Table 4.2 Number of protein spots that exhibit differential expression in the high 

and low proliferation rate samples. 

 

 

4.3.2.2 Young leaf samples 

 

The extracted proteins from three biological samples in young leaf samples were 

run on 17cm long 2-DE gel respectively. Young leaf samples was found to be 

higher challenges as compared to the old leaves due to its low protein 

concentration during initial protein extraction stage. All the protein gels in young 

leaves were stained using conventional silver stained method (Section 4.2.4.1b). 

All the samples were run in triplicate. Figure 4.8 shows the young leaf protein 

profiles for three biological replicates for high and low proliferation rate group 

samples. 

Based on the young leaf 2-DE profiles, there were always presence of four low 

molecular weight subunits across the biological replicate gels. The protein 

extraction and 2-D gel running were quite consistent.  

 

 

Protein expression Total protein spots Protein number 

High expression in High 

Proliferation rate samples 

13 2107, 2305, 3305,4202, 

5203, 6201, 6202, 5403, 

7304, 7402, 7202, 8405, 

8605 

Low expression in High 

Proliferation  rate 

samples 

1 3402 

Present only in High 2 7101, 7307 

Total 16  
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Figure 4.8: Protein gels for two categories of samples. a) Low proliferate samples (194, 1086 and 352) b) high proliferate 
samples (984, 944 and 933)
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Figure 4.9: Protein spots that exhibit significant differences between high and low 
proliferation rate categories in young leaves are shown. 

 
 

All the 2-DE gels from young leaf samples were analysed using the Progenesis 

Samespot software. Both Progenesis software and PDQuest software were 

powerful software in 2-DE gels analysis. They are very sensitive to the parameter 

with respect to the tendency of finding false positive spots through their spot 

detection, gel matching and spot quantification (Rosengren et al., 2003). For the 

young leaf samples, Progenesis software were used due to their high number of 

protein spots in the 2-DE gels. Progenesis software worked well by its highly 

advance and automated image alignment for all the 2-DE gels. It also provided 

automatic analysed and ranked a list of significant spots based on ANOVA p-

value.   
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Table 4.3: Protein spots that exhibit significant difference between high and low 

proliferation rates in young leaf samples. 
 

 
 
Table 4.3 provided a list of protein spots that exhibit significant difference 

between high and low proliferation rate samples in young leaves. A total of 32 

protein spots were found to be expressed significantly between high and low 

proliferation rate group at p-value less than 0.01. Out of the 32 protein spots, 

there are larger amount of the protein spots were highly abundant in low 

proliferation rate group (56%) as compared to the 14 protein spots which highly 

abundant in high proliferation rate samples. All the protein spots were subjected 

to MALDI TOF/TOF instrument for further protein identification and the protein 

identified were shown in Table 4.4. The protein identification rate for the young 

leaf samples as 25% which means 8 proteins were successfully identified (Table 

4.5). The spot diagrams for each of the identified spots were given in the Table 

4.5. 

 

 

Protein expression Total spots Protein number 

High expression in 

High Proliferation 

rate samples 

14 688, 1187, 1219, 1260, 

1355, 1356, 1514, 1634, 

1733, 1900, 1902, 1967, 1970, 2415 

High expression in 

Low proliferation 

rate samples 

18 513, 520, 766, 1031, 1159, 1254, 1264, 

1340, 1469, 1546, 1667, 1686, 1726, 

1950, 2027, 2036, 2037, 2046 

Total 32  
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Table 4.4: Sixteen protein spots that exhibit significant differences in the high and low proliferation rate old leaf samples. 

 

Spot 
No 

 
 
 
 

EST accession Protein Identities 
(Biological function) 

 
 
 
 

Homologous 
Protein 

SwissProt 
Accession 
(Sequence 
identiy %) 

Score MW 
(Exp/theo

ry) 

pI 
(Exp/theory)

P 

Covered 
sequence
 % (No of 
peptide) 

Relative Protein 
abundance (PDQuest 

software) 
8-fold changes with 

P<0.01 
(red: high; green: low) 

 

High expression in high proliferic group 

2107 EoV2B_isot21105 RuBisCo large subunit-
binding protein subunit 
alpha 
(Stress responses) 

Q42694 65 15.3/61.9 4.55/5.57 15 

 

PMF 

2305 DuV2A_isot17667 Chlorophyll a-b binding 

protein of LHCII type III 

(photosynthesis) 

P27489 (86) 51 27.6/28.7 4.7/4.99 2 

 

PMF 

3305 TCV2G_isot18884 Triosephosphate 
isomerase 
(metabolism) 

P46225(77) 105 29.3/51.6 5.13/8.46 30 

 

MSMS 
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4202 PiV2x_isot32349 oxygen evolving 
enhancer protein 2 
(photosynthesis) 

P29795(80) 112 25.9/51.2 5.2/9.39 35 

 

MSMS 

4405 TeV2D_isot11522 Sedoheptulose-1, 7-
bisphosphatase 
(metabolism) 

P46285(61 105 46.6/49.5 5.2/8.31 36(15) 

 

PMF 

5203 DuV2A_isot06934 20 kDa chaperonin, 
chloroplastic 
(Stress responses) 

O65282(73) 108 27.0/39.4 5.7/8.54 30(8) 

 

MSMS 

5403 PiV2x_isot29459 Photosystem II 
stability/assembly factor 
HCF136 
(photosynthesis) 

O82660(62) 94 45.2/49.2 5.4/8.95 28(11) 

 

MSMS 

6201 PiV2x_isot52480 Oxygen-evolving 
enhancer  
protein 2 
(photosynthesis 

O49080(81) 135 18.3/60.1 5.85/8.6 3(1) 

 

MSMS 
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6202 DuV2A_isot14951 Oxygen-evolving 
enhancer  
protein 2 
(photosynthesis) 

O49080(81) 87 26.6/37.8 6.2/8.03 34(9) 

 

PMF 

7202 EoV2B_isot08961 Pentatricopeptide 
repeat-containing 
At2g03880, 
mitochondrial Flags: 
Precursor 
(Others) 
 

Q9SI53(82) 79 26.7/26.3 6.2/6.5 24(6) 

 

PMF 

7304 DuV2A_isot13776 L-ascorbate peroxidase, 
cytosolic 
(Stress responses) 

P48534(72) 187 29.7/43.8 6.13/7.28 8(2) 

 

MSMS 

7402 No hit         

8405 DuV2A_isot12680 Fructose-bisphosphate 
aldolase, chloroplastic 
(metabolism) 

Q40677(77) 80 45.6/52.1 6.8/8.86 27(12) 

 

PMF 
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8605 PiV2x_isot39316 Perakine reductase 
(metabolism) 

Q3L181(62) 78 /45.4 /8.03 34(11) 

 

PMF 

High expression in low proliferic group 

3402 PiV2x_isot29025 Sedoheptulose-1, 
7-bisphosphatase 
(metabolism) 

P46285(61) 106 /50.7 /8.49 34(15) 

 

PMF 

4404 No hit         
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Table 4.5: Eight protein spots that expressed significantly difference in high and 

low proliferation rate groups of young leaves.  

 

 

Expression Pattern Protein spots Protein name Spot diagram 

High expression in low 

proliferate samples 

1.  Spot 1031 Predicted: Uncharacterized 

protein LOC105053449 

 

2. Spot 1159 Predicted: Uncharacterized 

protein LOC105053449 

 

3. Spot 1469 Probable receptor-like protein 

kinase at3g55450 

 

High expression in high 

proliferate samples 

4. Spot 1356 Elongation factor 1-beta-like 

 

5. Spot 1967 TCV2G_iost35105 

 

6. Spot 2415 Ketol-acid chloroplastic-like  

 

7. Spot 520 Fibrous Sheath cabry-binding 

 

8. Spot 513 Fibrous Sheath cabry-binding 
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4.4 Discussion 

 

4.4.1 Global proteome profiling of the old leaf sample in oil palm 

A total of 55 differentially expressed proteins were submitted to MALDI TOF/TOF 

analysis for protein identification, 27 proteins were successfully identified by 

MSMS via MASCOT database searching. The database applied was SwissProt, 

one of the most prominent databases in proteomics. In addition to this, there is 

an in-house database (MPOB transcript database) used to search for these 

proteins. The MPOB transcripts database consists of ESTs and transcripts that 

successfully sequenced from the oil palm tissues during the past research 

studies on oil palm genome and has recently been published by Rajinder et al. 

(2013). It has helped to enhance protein identification in this study. When the 

mass spectra of digested peptides hit the sequences in the MPOB transcript 

database, it will directly link to the details of the gene sequences for that 

particular protein. Through the gene sequences, second round searches into the 

Swissprot and NCBI database aided in protein annotation. If there is no hit to any 

proteins in both available databases, it was categorised as unknown protein that 

needs to be subjected for further characterization. In the leaf samples, most of 

the identified proteins were metabolism and photosynthetic related, followed by 

stress response proteins and transportation proteins. It is well understood that 

leaf part is the main place for photosynthesis to be taken place in order to 

produce energy for plant to carry any metabolism process in cellular level of 

plants. 
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4.4.2 General functions of the protein population that has been expressed 

in oil palm leaf samples 

 

Until now, limited study was done on the protein expression profiles of the oil 

palm leaves. A proteomics study was carried out on the high level of oxidative 

phosphorylation activity in storage oil production in oil palm samples (Loei et al., 

2013). A group of researchers studied the comparative proteomics on oil palm 

leaves that are infected by Ganoderma diseases. Comparative 2-DE from the 

Ganoderma disease enable 51 protein spots identified and majority were 

involved in photosynthesis, carbohydrate metabolism, followed by the immunity 

and defense system (Leona et al., 2015). Recently, a thesis study on the 

proteomics profiling of chloroplast in oil palm fruit samples has enabled a better 

understanding on regulation of oil palm fatty acid biosysthesis. There are 162 

proteins were identified from the chromoplast and only 10% of them were related 

to the fatty acid synthesis (Benjamin et al., 2015). Here, in this study, the oil palm 

leaf samples were profiled to provide a better overview of the protein population 

distribution in oil palm leaf samples. Using the two-dimensional gel 

electrophoresis approaches run on the total protein extraction of oil palm leaf 

samples, protein spots that appeared in the 2-DE gel are those that highly 

abundant in the leaf samples. This is because using the 2-DE approaches, the 

abundance proteins tend to compete with the low abundance protein to be 

separated and finally stained out by the Coomassie staining. All the expressed 

proteins were sorted into few categories based on their major biological functions. 

Those proteins were involved in metabolism, photosynthesis, cellular biogenesis, 

stress response and finally transportation. 

 

 

 

 

 



91 

 

 

Metabolism  

The results in this study show that most of the identified proteins in oil palm 

leaves were involved in carbohydrate metabolism. Photosynthetic carbon 

metabolism plays an important role in plant development and yield production. 

The carbon fixations mainly take part in the Calvin cycle (Miyagawa et al., 2001). 

Several identified proteins identified to be involved in carbon metabolism were 

sedoheptulose-1,7-bisphosphate, phosphoribulokinase, ribulosebisphosphate 

carboxylate large chain, malate dehydrogenase and glutamine synthetase. For 

these metabolism group of proteins, phosphoribulokinase functions as a catalyst 

for the conversion of ˠ-phosphoryl group of ATP to the C-1 hydroxyl group of 

ribulose 5-phosphate, ribulose 1,5-bisphosphate (Hirasawa et al., 1998). The 

enzyme also involves in the defence response against bacterium and cold 

condition. In plants, nitrogen is an essential building block of nucleic acids and 

proteins, which is necessary for reproduction and plant growth. Nitrogen stored 

within enzymes involved in carbon fixation. One of such enzymes is glutamine 

synthetase, which is a key enzyme for nitrogen metabolism. Glutamine 

synthetase involves in synthesizing of glutamine from ammonium (Zhang et al., 

2009). Besides, sedoheptulose-1,7-bisphosphatase that found in the leaf 

samples, is an enzyme that catalyses the removal of phosphate group to produce 

an intermediate in pentose phosphate pathway, i.e. sedoheptulose 7- phosphate 

to generate pentoses. On the other hand, ribulose bisphosphate carboxylate 

large chain is found to be mainly assisted in the photorespiration, magnesium ion 

binding and ribulose-bisphosphate carboxylate activities. Another metabolism 

protein namely malate dehydrogenase (MDH) is an enzyme involving in the 

oxidation of malate by reduce NAD+ to NADH molecules.  
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Protein involved in the Photosynthesis 

Photosynthesis is a crucial process for plants because it harnesses solar and 

convert it into chemical energy which is stored in the form of glucose. Through a 

series of cellular respiration the energy is converted to form as ATP, which can 

power biological processes such as active transport, cell division and carbon 

metabolism (McGinley et al., 2010). The light-harvesting complex associated with 

photosystem II (LHCII) is the most abundant pigment-protein complex in 

chlorophyll plant. Its function is light capture and transfers the efficient energy to 

the reaction centers (Paulsen et al., 1990). There are five proteins in this study 

that take part in the photosynthesis pathway. First, is the chlorophyll a-b binding 

proteins, which are involved in the light receptor that capture and deliver 

excitation energy to photosystems. Oxygen evolving enhancer proteins (OEEs) 

consist of three subunits, Oxygen evolving enhancer protein 1 (33 kDa), Oxygen 

evolving enhancer 2 (OEE 2) (23 kDa) and Oxygen evolving enhancer 3 (OEE 3) 

(23 kDa). Current study has found that there are two subunits i.e. oxygen 

evolving enhancer protein 1 and 2 in oil palm leaves.  In general, the expression 

of oxygen evolving enhancer protein 1 is necessary for oxygen evolving activity 

and vital to maintain the stability of photosystem II (Mizobuchi and Yamamoto, 

1989). The oxygen evolving protein 2 have been reported to play a role in salt 

adaptation process (Murota et al., 1994). Another protein is photosystem II 

stability/assembly factor HCF 136, which is essential for photosystem II 

biogenesis and aid in the chlorophyll a binding.  
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Cellular biogenesis 

Biogenesis is a process to synthesis new living organelles in cells. Cellular 

biogenesis refers to the biosynthesis of constituent macromolecules at cellular 

level. This includes macromolecular modifications and assembly of 

macromolecules for cellular component. Based on functional characterization of 

identified protein from this study, there were few proteins that involved in cellular 

biogenesis progression such as glycolysis, GTP catabolic process and hydrogen 

peroxidase catabolic process.  The identified proteins were triosephosphate 

isomerase, L-ascorbate peroxidase 2, elongation factor TuB, phosphoglycerate 

kinase, and fructose-bisphosphate aldolase 1.  Triosephosphate isomerase 

catalysed the interconversion of dihydroxyacetone phosphate and D-

glyceraldehyde-3-phosphate during glycolytic pathway. It can also kinetically 

enzyme in isomerisation to facilitate the rate of reaction (Berg, 2007). L-

ascorbate peroxidase 2 assists in the metal ion binding and smoothes the 

responses from heat and salt stress.  

 

Stress response and transportation 

RuBisCo large subunit-binding protein subunit alpha is classified as stress 

response protein in biological function. The protein facilitates the binding 

between small and large RuBisCo subunits. The protein has also been implicated 

in the assembly of the enzyme oligomer. When subjected to stress from the 

bacterium and cold condition, 2-Cys peroxiredoxin BAS1-like will be responsible 

to overcome the stress environment. At the same time, it has the antioxidant 

properties for the plant (Chow et al., 2016). On the other hand, Ribulose 

bisphosphate carboxylase/oxygenase activase B is responsible to the light and 

jasmonic acid stimulus, as well as the leaf senescense (Shan et al., 2011). In 

term of transportation, cytochrome B6-F complex iron sulphur subunit 2 was 



94 

 

found to be involved in electron transport in ubiquinol cytochrome-c reductase 

activity (Kuras and Wollman, 1994). Another is ATP synthetase subunit alpha, 

which is a factor in plasma membrane acts as proton-transporting ATP synthase 

complex (Jonckheere et al., 2012).  

 

4.4.3 Proteins expressed differentially in high and low proliferation rate 

samples 

 

 

Old leaf samples were used in this study because it is considered as an ideal 

sample to use as early indicator for tissue culturist to identify high proliferation 

rate samples in particular palm. A total of 27 spots exhibited a statistically 

significant difference (p< 0.01) with at least a 10-fold change between the high 

and low proliferation rate samples. Each of the selected spots was checked 

manually on every single gel to avoid mismatch. Apart from that, a total of 13 

proteins were found to be high in abundance, 1 protein was low in abundance in 

high proliferation rate and 2 protein spots are present only in the high 

proliferation rate samples (Table 4.2, Figure 4.7). All the protein spots of interest 

were excised and subjected for the mass spectrometry.  The protein spots were 

undergone a series of destain, trypsin digestion, peptide extraction processes 

and lastly spotted on the MALDI plate for mass spectrometry analysis.  

 

 

A total of 13 out of 16 protein spots were identified using MALDI TOF/TOF 

analysis. Most of the identified proteins in oil palm leaf proteome were located at 

chloroplast (84%), while only 8% in cytoplasm and 8% at other locations. There 

are more than two isoforms highly expressed in the high proliferation rate 

samples which are oxygen-evolving enhancer proteins (Heide et al., 2004) and 

sedoheptulose-1,7- bisphosphate. Both of the proteins were located in the 
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chloroplast and essential for photosynthesis and Calvin cycle (Lefebvre et al., 

2005).  

 

Young leaf samples (cabbage) were selected in this study because it is the 

nearest stage prior to the somatic embryogenesis to be occurred in the explants 

during tissue culture process. In the young leaf samples, a total of 32 spots 

exhibited a statistically significant difference (p< 0.01) between the high and low 

proliferation rate samples. Each of the selected spots was checked manually on 

every single gel to avoid mismatch.  

 

 

Apart from that, there were 14 proteins of interest were found to be high in 

abundance, 18 protein was low in abundance in high proliferation rate samples 

(Table 4.3, Figure 4.9). The successfully rate of protein identification for the 

young leaf protein spot was 25% using MALDI-TOF/TOF instrument. It was far 

lower compared to the old leaf samples. There are a total of 8 out of 32 protein 

spots were identified using MALDI TOF/TOF analysis. It is known that silver 

staining method able to stain out 100 X more sensitive than Coomassie blue 

staining method. Yet, even more proteins spots have been selected at this young 

leaf samples but the identity of the proteins were unlikely. The main reason that 

caused the low identification rate was because the individual protein spots in the 

young leaf protein gels were low in concentrations and thus the 2-DE gels were 

stained using silver staining. 

 

 

A total 11 individual proteins that were highly expressed in the high proliferation 

rate group compared to the low proliferation rate samples have been identified in 

this study. The identified proteins were chlorophyll a-b binding, trisephosphate 

isomerise, oxygen evolving enhancer protein 1 and 2, photosystem II 

stability/assembly factor HCF136, cytochrome B6-F complex iron sulphur subunit 
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2, L-ascorbate peroxidise, malate dehydrogenase, fructose-bisphosphate 

aldolase, and lastly ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo). 

 

 

RuBisCo exhibited the highest abundance in the high proliferation rate samples. 

It is a major enzyme which plays important roles to incorporate carbons from the 

carbon dioxide into organic compound during carbon fixation process. In plant, 

energy is needed for all the cellular functions. Tricarboxylic acid cycle (TCA) 

which also known as Kreb’s cycle is crucial for the macronutrient metabolism and 

energy conversion for carbohydrates, protein, and fats. In high proliferation rate 

leaf samples, malate dehydrogenase that catalyzes the conversion of 

oxaloacetate and malate by utilising NAD/NADH coenzyme system in 

tricarboxylic acid cycle (TCA) was found to be higher in expression. The results 

suggest that high proliferation rate leaf samples have higher energy metabolism 

occurred as compared to low proliferation rate leaves.  

 

 

In this study, sedoheptulose-1,7-bisphosphatase (SBPase) was expressed in the 

leaf samples. A study showed that increase in sedoheptulose-1,7-

bisphosphatase activities can regulate photosynthesis and biomass growth for up 

to 30% in plant development. Mature plants with increased SBPase activity were 

found to be able to fix 6-12% the carbon sources for the plant. Therefore, the 

presence of more SBPase activities will enhance the photosynthesis within the 

plant and aid in optimal plant growth (Stephane et al., 2005). 

 

 

Other than those above proteins, a few other proteins that directly link to the 

efficiency of photosynthesis were found to be expressed significantly high in the 

high proliferation rate category samples. For example, the photosystem II (PSII) 

stability with assembly factor HCF 136, it is a genetic mosaic consists of nuclear 

encoded subunit protein complex. PSII is normally found in thylakoid membrane 
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of chloroplasts and plays a role in water oxidation during oxygenic 

photosynthesis (Komenda et al., 2008). Follow by another protein, cytochrome 

B6-F complex iron sulphur subunit 2 that functions as electron transport for 

photosystem. This protein is also expressed abundantly in high proliferation rate 

group. Both proteins are related to each other as the cytochrome Bf complex that 

converts the redox potential energy of plastoquinol into a transmembrane 

electrochemical charge gradient of protons for ATP synthesis (Kallas, 1994). 

 

 

Chlorophyll a-b binding protein, which is one of the main components in light 

harvesting complex (LHC) that aids in delivering excitation energy to 

photosystem I or II for further reaction to take place. There are a total of three 

types of oxygen evolving enhancer proteins (OEEs) subunits. Two subunits 

(oxygen-evolving enhancer protein 1 and 2) out of three were detected in this 

study which expressed abundantly in high proliferation rate samples. Both 

Oxygen-evolving enhancer protein 1 (OEE1) and oxygen-evolving enhancer 

protein 2 (OEE2) are enormously needed for high level of photosynthetic oxygen 

evolution. Absence of OEE2 can pay compensation by photosystem II core and 

peripheral proteins, while the absence of OEE1 will cause cells unable to grow 

photosynthetically. Thus, OEE1 strongly affects the stoichiometry of PSII core 

proteins (Mayfield, 1991). 

 

 

Two proteins that involved in glycolysis were shown high expression in high 

proliferation rate group. There were triosephosphate isomerase and fructose-

bisphosphate aldolase (FBA). FBA is a key enzyme for glycolysis and 

gluconeogenesis and the pentose phosphate cycle in cytoplasm as well as play a 

role in calvin cycle in the plastid (Lu et al., 2012). FBA catalyzed an aldol 

cleavage of fructose-1,6-bisphosphate to dihydroxyacetone-phosphate and 

glyceraldehydes 3-phosphate. Activities of FBA have marked consequences for 

photosynthesis, carbon positioning and growth (Konishi et al., 2004). 
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Lastly, the identified protein which involved in plant metabolism is L-ascorbate 

peroxidase 2. This protein plays an important role in the metabolism of hydrogen 

peroxidase (H2O2) in higher plant. It acts as a scavenging defense system in 

plant toward all the excess active oxygen species that might cause harm in plant 

itself. It is an isoenzyme which distributed at four distinct cellular compartments 

like stromal APX, thylakoid membrane-bound APX, cytosolic APX and microbody 

membrane-bound APX (Shigeoka et al., 2002). This protein expressed 

abundantly in high proliferation rate samples and suggests that the presence of 

ascorbate peroxidase is important as one of the scavenging defense system for 

plant to have a favorable condition to grow with an optimal proliferative property.  

 

 

For the young leaves, there is less finding in this project due to the low 

identification rate for the protein identity attributed by the low concentration of 

protein spots. Few spots were found to be highly expressed in the high 

proliferation rate samples which were elongation factor 1-beta like, ketol-acid 

chloroplastic-like, and fibrous sheath protein. Probable receptor-like protein 

kinase, and uncharacterized proteins were found to be at low abundance in high 

proliferation rate samples.  

 

 

Elongation factor 1-beta like protein is highly conserved and multifunctional. It 

involves in the protein biosynthesis transportation, chaperone activities in 

protecting proteins from aggregation due to stress environment and aid in 

renaturation of proteins during normal conditions. Elongation factor 1-beta gene 

is up regulated by abiotic stresses in plants and it responses well toward the 

stress condition. One of the papers shown that elongation factor plays an 

important role in improving the heat tolerance of plant (Fu et al., 2012). Hence, it 

was speculated that high proliferation rate samples would have higher tolerance 
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level towards any abiotic stresses as the presence of high abundance of 

elongation factor 1-beta like proteins.  

 

 

Another protein ketol-acid chloroplastic-like was found abundantly in high 

proliferation rate samples. This protein is mainly involved in the valine and 

isoleucine biosynthesis. Fibrous sheath protein was also found expressed 

abundantly in high proliferation rate samples. It mainly found in the cell wall of the 

plant. On the other hand, the protein that found to be expressed low in high 

proliferation rate samples was receptor-like kinases (RLPs) protein which is a 

signaling protein; it receives external signal and transduces them into the plant 

cell. It is very essential in the regulation of development, recognition event and 

response toward pathogen attack (Morillo et al., 2006). This is very important 

protein toward the plant development.  

 

 

The analysis results were fascinating as the proteins that expressed abundantly 

in old leaf samples and young leaf samples were difference among each other. In 

old leaf samples, most of the proteins that exhibited differential expression were 

involved in photosynthesis while in the young leaf samples, the proteins that 

revealed highly abundance were involved in plant defenses system. This results 

might due to the old leaf samples having the high photosynthetic properties. The 

2-DE gel approach was able to detect the highly abundance proteins that 

expressed in the old leaf samples, namely the photosynthetic proteins. For the 

young leaf samples, also known as “cabbage” which is plant tissue that 

embedded in the core of the palm and they are not exposed to sunlight directly. 

This type of plant tissue is classified as not fully mature, the youngest part of the 

palm and it is a commonly used as starting plant material in tissue culture. The 

proteins that showed differential expression were mostly involved in plant 

defenses proteins which protect toward pathogen and abiotic stress in high 

proliferation rate samples.  
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4.5 CONCLUSIONS 

 

 

The global proteome profiling of mature oil palm leaf samples was done. A total 

of 27 protein spots were identified out of the 50 spots of interest. The identified 

proteins mostly involve in photosynthesis and metabolism, and followed by the 

cellular biogenesis, stress response and lastly are the transportation function. 

Further leaf proteome comparison was carried out between high and low 

proliferation rate samples. A total of 16 protein spots were found to be statistically 

different between the two categories. Those identified proteins were involved in 

the photosynthesis mechanism too (45%), and 27% was taken by the 

metabolism function and followed by the stress response and lastly involved in 

transportation for the electrons. In old leaf samples, most of the photosynthetic 

proteins were found to be highly expressed in high proliferation rate samples, this 

suggests that the photosynthesis rate for the high proliferation palm is definitely 

higher than the low proliferation palm. Apart from the photosynthesis proteins, 

young leaf samples were found to be expressed more in stress responsive 

proteins especially the high proliferation rate samples. These indicate that the 

young leaves with high proliferative ability tend to response towards pathogen 

attack and abiotic stress. As preliminary assumptions, high proliferation rate 

samples have higher ability toward the defenses system during young stage and 

tend to have higher expression in photosynthetic proteins at mature stage.  With 

the 2-DE gel approaches, the proteins that are able to be detected were mostly 

abundantly present in the leaf samples. To further understand on the biological 

function of the plant in high proliferation rate samples, it is interesting to 

investigate the relationship between protein and (messenger RNA) mRNA 

expression for the differential proteins that were identified in old and young leaf 

samples. Several protein candidates with higher differences in protein 

abundance were selected to the mRNA expression studies.  
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CHAPTER 5 

ENRICHMENT OF THE LOW ABUNDANCE PROTEINS USING 

POLYETHYLENE GLYCOL (PEG) BASED FRACTIONATION METHOD 

 

 

5.1 Introduction 

 

 

Gene or protein identification in response to any experimental condition such as 

cold stress is the starting point to investigate the molecular changes that undergo 

in the plant. Proteomics is the systematic analysis of proteins expressed by a 

genome. Two-dimensional gel electrophoresis analysis is not only powerful tool 

to show a complete proteome picture of the tissue specific organelles, it also 

contributes to study the results of different physiological environment for a 

particular plant species (Lee et al., 2007). In plants, distribution of high 

abundance proteins such as Ribulose-1,5-bisphosphate carboxylase/oxygenase 

(RuBisCo) interfere and prevent in-depth proteomic study in leaf samples. 

RuBisCo occupies roughly 60% of the total protein content in green leaf tissue 

and it is a major protein in the plant.  

 

 

The presence of the highly abundance of RuBisCo brings huge challenges to 

proteomics analysis, especially in 2-DE gel electrophoresis. This is because high 

abundance protein interfere the detection of low abundance proteins. Hence, this 

phenomenon is also one of the issues hampering the study of oil palm leaves 

proteome. In previous studies, proteins have been a focus as potential 

biomarkers for diseases and these are usually present in a minimum 

concentration at ng/mL to pg/mL levels. Such low concentration causes 

challenges in detecting these amongst abundant proteins, which also exceed the 
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dynamic range of most analytical techniques. Researchers ordinarily will employ 

tools or reagents that can specifically remove the high abundance proteins and 

allow higher sensitivity to discover the low abundance proteins and in that way to 

“dig deeper into the proteome” (Huang et al., 2005). 

 

 

A comparison of leaf samples between high and low proliferation rate using 2-DE 

gel electrophoresis was reported in Chapter 4. There are 16 individual proteins 

that showed differential expression between those two categories. However, the 

proteins identified were all present abundantly in the leaf samples. The aim of the 

work in this chapter is to understand more on the proteins that would play a role 

in somatic embryogenesis, further fractionation steps to isolate the low 

abundance proteins are required as most of the functional proteins always exist 

in low concentration. Enhancement of the low abundance proteins is highly 

contributed to the discovery the potential group of proteins that are involved in 

somatic embryogenesis pathway. Since the high abundance proteins rarely 

participate in gene regulatory activities, they become interfering compounds in 2-

DE analysis. Many low abundance proteins are regulatory factors and receptor 

molecules are present in only 100 molecules per cell and thus not detectable 

(Tirumalai et al., 2003). 

 

 

In this century, various pre-fractionations of the high abundance proteins have 

been practiced in early research, such as SDS-PAGE based size fractionation 

(Sun et al., 2003), complementary multidimensional technologies (Issaq et al., 

2002), three-phase partitioning (TPP) and subcellular fractionation. Some 

researchers employed immunoaffinity-based protein subtraction chromatography 

or physiochemical approaches such as affinity chromatography based on the 

molecular weight or isoelectric point (pI). Affinity chromatography is recently the 

most common pre-fractionation method of choice in proteomics. It can be 
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classified into two types which are biological (antibodies, protein, peptide, lectin 

and nucleotide) and non-biological (synthetic dyes, immobilised metal ion 

complex) (Huang et al., 2005). Furthermore, Solassol et al. (2005) has facilitated 

the identification of low abundance proteins using pre-fractionation of serum 

proteins by using strong anion exchange chromatography which can enrich the 

low abundance protein and increase their detection in combination with using 

high advance mass spectrometry known as Surface-enhanced laser 

desorption/ionization (SELDI) mass spectrometry. 

 

 

In the current study, an alternative approach has been used to eliminate the high 

abundance protein molecules in plant samples. The method used was 

polyethylene glycol fractionation (PEG) during protein extraction. This approach 

is one of the most cost effective methods to remove many of the high abundance 

proteins, especially RuBisCo. This PEG fractionation method has been reported 

previously in Arabidopsis thaliana Columbia (Xi et al., 2006), Oryza sativa (Kim et 

al., 2001) and Cynara cardunculus (Acquadro et al., 2009).  

 

Plant proteomics has huge challenges due to the presence of large abundance 

protein, RuBisCo protein which occupied roughly 60% of the total protein content 

in green leaf tissue (Huang et al., 2005). Gel-based proteomics is still remaining 

as one of the favourite approaches to detect the differential protein even it has 

the limitation to shown the low abundance protein species in samples. This is 

one of the main reasons to employ extra fractionation method, F3 in this 

proteomics comparative study. These studies found that PEG fractionation 

enables detection of a large number of low-abundance proteins, and allows the 

“hidden proteome” to be investigated. 
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5.2 Materials and methods 

 

 

5.2.1 Plant Materials 

 

Old leaves of oil palm (Elaeis guinensis Jacq.) were collected from Advanced 

Agriecological Research Sdn Bhd (AAR) and Malaysian Palm Oil Board (MPOB), 

Malaysia. The leaf samples were collected at frond no. 17 (F17) which is the 

outer frond of the palm. The leaf samples were kept at -80°C until further use. 

 

5.2.2 Protein Extraction Protocols 

 

Prior to the protein extraction, the leaf samples were ground to a fine powder in 

liquid nitrogen using a mortar and pestle. The Mg/NP-40 based protein extraction 

method was used as described by Acquadro et al. (2009) with slight 

modifications. One gram of the powder was homogenised in 10 mL of cold 

Mg/NP-40 buffer (2% v/v NP-40, 20 mM MgCl2, 0.5 M Tris-HCl, pH 8.3, 2% v/v β-

mercaptoethanol, 1% PVP, 1% v/v protease inhibitor cocktail (Sigma-Aldrich, 

Saint Louis). The mixture was vortexed and mixed well before incubation on ice 

for 5 minutes. It was then centrifuged at 12,000 x g for 15 minutes at 4°C. The 

supernatant was then subjected to TCA/acetone extraction protocol as described 

in the previous section 3.2.2.1. The protein extract was re-dissolved in IPG buffer 

(7 M urea, 2 M thiourea, 4% CHAPS) and sonicated for 15 minutes. Further 

centrifugation was carried out at 12,000 x g to remove all the cell debris. The 

protein concentration was then measured using the Bradford method.  
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5.2.3 PEG fractionation 

 

PEG fractionation was performed as reported in Kim et al. (2001). A schematic 

illustration of the work flow for the PEG fractionation of Elaeis guineensis leaves 

is depicted in Figure 5.1. The initial protein extraction was based on the Mg/NP-

40 method. The slurry was then centrifuged at 12,000 x g for 15 minutes at 4°C. 

The supernatant was then treated with 50% (w/v) PEG-4000 stock solution to 

give a final concentration of 10% PEG.  The PEG suspended solution was then 

placed on ice for 30 minutes to ensure protein precipitation. After incubation, the 

10% PEG mixture was centrifuged at 1,500 x g for 10 minutes at 4°C. The 

resultant pellet was taken as fraction 1 (F1). The supernatant from the previous 

step was made up to 20% PEG 4000 and incubated for another 30 minutes. The 

centrifugation of the 20% PEG suspended solution was carried out at 12,000 x g 

for 15 minutes at 4°C. The supernatant and pellet from the 20% PEG suspended 

solution were collected as fraction 2 (F2) and fraction 3 (F3), respectively. All the 

fractions (Total, F1, F2 and F3) were precipitated using the TCA/acetone method 

and dissolved in IPG buffer for 2-DE analysis. For all the PEG fractionation 

experiments, three replicates were performed.  
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Figure 5.1: The schematic work-flow for the differential PEG fractionation (*10% 

and 20% PEG is the final concentration) 
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5.2.4 Two-dimensional gel electrophoresis, image and data analysis 

 

Fifty micrograms of the fractionated protein samples was used for 2-DE analysis. 

The samples were rehydrated overnight on pH 3-10 and pH 4-7 Immobilised pH 

gradient (IPG) strips.  Strips were then run for the first dimensional separation 

using Isoelectric focusing (IEF) instrument and reaching the 10,000Vhr focusing 

point. After separation according to the pI, the strips were transferred to SDS-

PAGE for the second dimensional separation. The running condition for the SDS-

PAGE was 120 V for one hour and five minutes. The gels were then stained 

using silver staining due to its high sensitivity. The 2-DE gel images were 

captured using a GS-800 densitometer (Biorad, USA) and PDQuest software 

(Biorad, USA) was used to analyse the gel images. All the biological replicates 

were carried out twice in this experiment.  

 

 

5.2.5 Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) 

 

After the PDQuest software analysis, the silver stained spots that exhibited 

differential expression were selected for tandem mass spectrometry analysis to 

identify the proteins. The LC-MS/MS mass spectrometry was used in for the 

proteins identification. Before protein identification, in-gel digestion was 

conducted according to the method described in Chapter 4 (Section 4.2.4.3). 

Digested peptides were subjected to liquid chromatography coupling with 

Orbitrap mass spectrometry (University of Florida, USA). 
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5.3 Results 

 

5.3.1 Protein concentration for the PEG fractionation 

 

PEG fractionation method produced four main fractions which were labelled as 

Total protein, Fraction 1, Fraction 2 and Fraction 3 (Total, F1, F2 and F3). For 

each sample, all four fractions were isolated and the protein content was 

measured as summarised in Table 5.1. 

 

Table 5.1: Protein yield upon PEG fractionation 

 

Data represented as the mean values ± standard deviation (SD) of three 

independent experiments. Samples F1 – F3 indicate the fractions produced from 

PEG fractionation; Total is the protein samples without going through 

fractionation. 

 

As shown in the Table 5.1, the sum of the protein yield for all the samples after 

fractionation was increased as compared to the total protein extract without 

fractionation. Surprisingly, the F2 has the higher protein yield compared to F1 for 

all the samples extraction. In F2 fraction, higher percentage of PEG was used 

which is 20% as compared to F1 fraction (10% PEG). The F3 proteins, the low 

abundance protein always exhibited the lowest protein yields.  

 

 

 Sample 
  

Protein Yields (µg/µl)       

 F1 F2 F3 Sum Total 

High AN25 1.130b ± 0.13 1.944a ± 0.50 0.602b ± 0.14 3.675 ± 0.77 2.810 ± 0.48 
AN28 1.656b ± 0.14 2.653a ± 0.17 0.663b ± 0.19 4.972 ± 0.27 3.832 ± 0.10 

Low AN27 1.139a ± 0.07 1.981b ± 0.21 0.727c ± 0.23 3.847 ± 0.41 3.615 ± 0.01 
AN29 0.971b ± 0.08 1.639a ± 0.21 0.503b ± 0.06 3.111 ± 0.11 3.109 ± 0.33 
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These results indicated that the fractionation procedure could improve the protein 

yield for leaf samples. The standard deviations for all the fractionation samples 

and non-fractionation samples were low except for one sample AN 25 which had 

more than 0.5.  

 

 

5.3.2 Two-dimensional gel for different fractions 

 

All the protein samples from the Total, Fraction 1 to 3 were collected and run on 

2-DE analysis to observe the protein distribution in protein spot profiles. Non-

fractionated protein (Total) shows a 2-DE protein profile with all the abundant 

proteins present. For fractions F1 and F2, the high abundance protein at 50 kDa, 

which is the RuBisCo large subunit (red dot arrow in Figure 5.2), remained 

present. The small subunit RuBisCo (indicated by blue arrow in Figure 5.2) not 

fully eliminate and it is still visible in the fraction 3 samples. Remarkably, the 

large RuBisCo protein was successfully eliminated from F3. In addition, many 

low abundance proteins were present in F3 that were unable to be visualised in 

2-DE gel of total extracts, as shown in Figure 5.2. 
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Figure 5.2: 2-DE protein profiles of the Total protein, F1, F2 and F3 proteins (Red 

dot line arrow indicates the large subunit RuBisCo, Blue arrow: small subunit 

RuBisCo). 

 

 

 

5.3.3 F3 comparison for high and low proliferation rate samples 

 

The purpose of PEG fractionation is to eliminate the high abundance proteins 

and increase the detection for the low abundance proteins in the samples. 

Hence, 2-DE gels loaded with the F3 proteins became the main focus in this 

study. Figure 5.3 showed the 2-DE gels for F3 proteins extracted from the high 

and low proliferation rate groups. 
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Figure 5.3: The 2-DE protein profiles of the F3 proteins from high proliferation 

rate samples (a) AN25 (b) AN28, and low proliferation rate samples (c) AN27 (d) 

AN29 

 

 

 

After the 2-DE gel separation, the gels were stained using the silver staining 

method and digitalized on the densitometer. The gel images captured were then 

subjected to PDQuest software analysis for comparison of the different protein 

expression levels between the high and low proliferation rate category samples. 

All the protein spots were matched across the eight gels. Any smearing protein 

spots were excluded to ensure a more reliable comparison using the PDQuest 

Software. 
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Table 5.2: The 24 protein spots that have significant difference in expression 

from the F3 were classified into four categories.   

 

Categories Number of protein spots 

More abundant in high proliferation rate sample gel 5 spots 

More abundant in low proliferation rate sample gel 6 spots 

Present only in high proliferation rate sample gel 10 spots 

Present only in low proliferation rate sample gel 3 spots 

Total 24 spots 

 

 

A total of 24 protein spots showed significant difference in the high and low 

proliferation rate gels for F3 samples. The 24 protein spots were determined 

using the t-student test with a 95% confidence level and showed a more than 

two-fold change in level. 
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5.3.4 Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) identification 

 

Only 13 protein spots out of the 24 proteins of interest were successfully identified by LC-MS/MS. All spectra were 

summarised using the Scaffold Viewer software (Figure 5.4). All the results from the mass spectrometry were 

clearly stated the protein identification probability, percentage of protein coverage, and total unique peptide count.  

 

 

Figure 5.4: Screen capture of the examples of the LC-MS/MS analysis for the selected protein spots in Scaffold 

Viewer software. 



114 

 

Table 5.3 Proteins that exhibit significant difference in level between the high and 

low proliferation rate group samples. 

 

 

 

 

 

 

 

 

 

Categories  Spot No Protein Identities 

Abundance in High 2008 EoV2B_isot01039 

proliferation rate gel 6003 EoV2B_isot01039 

  3406 No Hit 

  8102 PiV2x_isot00792 

  5310 Putative dehydrolipoamide dehydrogenase 

Abundance in Low 4409 Alcohol dehydrogenase 

proliferation rate gel 4512 Phosphoribulose kinase 

  5009 TeV2D_isot25659 

  7610 Enolase 

  8013 Copper/Zn Superoxide dismutase 

  7502 Phosphoglycerate kinase 

Present in High 3703 No Hit 

proliferation rate gel 
only 1304 EoV2B_isot01043 

 
1307 Chaperonin alpha subunit 

  1309 Chaperonin alpha subunit 

  4005 EoV2B_isot010139 

  6109 PiV2x_00805 

  4103 No hit 

  5101 Phosphoglycerate kinase 

  5104 Phosphoglycerate kinase 

  5205 No Hit 

Present in Low 3408 Sedoheptulose-1,7-bisphosphate 

proliferation rate gel 7007 Superoxide dismutase 

only 2311 a-a binding protein 
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For these F3 samples, all the protein spots that sent for LC-MSMS analysis were 

gone through Swiss-Prot database for protein identification. As referred to the 

Table 5.3, there was a total of 5 proteins that showed high expression levels in 

the high proliferation rate samples, 6 proteins had high expression in the low 

proliferation rate samples, 10 proteins were present only in high proliferation rate 

samples and only 3 protein spots were present in the low proliferation rate 

samples that showed significant difference between the high and low proliferation 

rate samples. The identification rate for the proteins was around 54% for the 

proteins in F3 through Swiss-Prot database. This relatively low percentage of 

successful identification was mainly due to the low amount of proteins detected 

from 2-DE gels, resulting in a low peak list quality produced in the mass 

spectrometry. This was happening especially for the proteins present in F3 which 

were those proteins that were expressed in low abundance. Limited availability of 

potentially matching sequences in the protein database was another factor that 

contributed to the low identification of proteins. In order to increase the proteins 

identification, the mascot generic files (.mgf) results for each protein spots were 

searched against the in-house MPOB database. MPOB database is an in-house 

database which comprises of the entire transcripts that successfully sequenced 

in the oil palm tissues. Ninety two percents of the protein spots were found to 

match with the MPOB transcript database. With these transcripts, the nucleic 

acid sequence for the proteins can be found but some of the protein identities 

remained unknown due to the uncharacterised proteins where the function of the 

coding sequence has not been established. 
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5.4 Discussion 

 

 

5.4.1 Protein concentration for the PEG fractionation 

 

The protein yield from the four fractions have been compared and listed in the 

Table 5.1. The results show that the fractions, F1 to F3 after fractionation had 

higher protein yield as compared to that of the total protein samples (without 

fractionation). The same trend of results was obtained in a previous study by Xi 

et al. (2006). This result was satisfactory as the additional fractionation step 

definitely enhanced the solubility of the sample proteins by reducing the possible 

abundance protein competitors for allowing the low abundance protein population 

to be appeared.  

 

By minimising the space used up by large and highly abundant proteins, it 

increased the solubility of low abundance proteins in the protein extract. The 

second phenomenon examined was the protein concentration of the F2, it was 

higher in quantity compared to F1. This might be due to the higher percentage of 

PEG 20% was used in F2, while the F1 only contained half of the concentration 

of PEG (10%) in the supernatant that can help to precipitate large abundance 

proteins.  

 

The percentage of PEG added to the samples strongly affected the solubility of 

the proteins as well. Higher concentrations of PEG will enhance the protein 

precipitation for the samples. On the other hand, F3 is the remaining protein 

pellet after removal of the high abundance proteins. In this fraction most of the 

low abundance proteins were present at a minimal quantity. The low 

concentration of the F3 (< 1 µg/µl) was a challenge for the 2-DE gel analysis.
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5.4.2 Two-dimensional gel electrophoresis for PEG fractionation 

 

In Fraction 1 (F1) (10% PEG 4000), some of the large abundance proteins were 

precipitated out from the supernatant. Eventhough the F1 had a relatively high 

protein yield, the number of protein spots appeared in the 2-DE gels were much 

less as compared to the F2. This leads to an assumption that during the first 

precipitation step using PEG, the high molecular weight proteins were effectively 

eliminated and thus in the 2-DE gel profiles of F1, only the large subunit of the 

RuBisCo is observable and other low quantity proteins were masked by the 

RuBisCo molecules. Therefore, the amount of the highly abundant proteins was 

reduced greatly after F1.  

 

During the precipitation of supernatant in F2 (20% PEG 4000), with reduction of the 

large subunit RuBisCo in F1, other relatively high abundance proteins were able to 

precipitate out in a greater quantity (Figure 5.2) and indirectly increase the number 

of protein spots appear on the 2-DE protein profiles for F2. The protein spots 

distribution for the F2 exhibit highly similar as compared 2-DE gels from the total 

protein extract. Some of the abundant proteins spots were still visible but the 

intensity was greatly diminished after the 10% PEG fractionation. Moreover, the 

horizontal streaking caused by the highly abundant proteins was significantly 

reduced in the F2.  

 

Unexpectedly, the F3 shows a different protein distribution compared with the 

previous fraction F1 and F2 on the 2-DE gels. From the visualisation of 2-DE gels, 

PEG fractionation effectively removed the highly abundant proteins and enables 

those undetectable low abundance proteins to be precipitated out in F3. In 

addition, the protein spots observed in the F3 were mostly the “hidden” spots and 

these spots contributed to the total detectable protein spot number for the 2-DE 

analysis.  
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5.4.3 F3 comparison for high and low proliferation rate samples 

 

In this study, only F3 was selected to further investigate for the downstream 

proteomic analysis. Due to the low amount of the individual protein in the F3, silver 

staining was selected as the staining method. This is because the coomassie stain 

gel was not sensitive enough to detect the presence of low abundance proteins. As 

shown in figure 5.3, many low abundance proteins were sensitively detected by the 

silver stain and resulting the number of protein spots in the F3 ranged from 335 to 

455 spots.  

 

According to the PDQuest software analysis, the match rate between the high 

proliferation rate sample gel members were as high as 98% while the low 

proliferation rate gel members has 93% match rate. This indicates the 2-DE gels 

used in this experiment were highly repeatable. In addition, the match rate between 

the high and low proliferation rate group samples was 72% only. This means that 

there is a difference detectable in the F3 between the high and low proliferation 

rate groups.  

 

In further matching between the high and low proliferation rate group samples, 24 

protein spots showed significant differences with a fold change more than 2.0. The 

numbers of significant protein spots in F3 were higher as compared to the previous 

results without fractionation using TCA/acetone extraction methods (Chapter 3, 

section 3.2.2.1). Hence, PEG fractionation enabled the low abundance proteins to 

be detectable on the 2-DE gels and the differential expression level of these 

previously hidden low abundance proteins was able to be examined. 
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5.4.4 LC-MS/MS analysis 

 

For the F3, the LC-MS/MS instrumentation were selected for the method to identify 

the low abundance proteins as MALDI TOF/TOF instruments might not be 

sensitive enough to detect the protein fragment and provide a lower rate of 

successful protein identifications. LC-MS/MS is combination of the physical 

separation of peptides using liquid chromatography followed by mass analysis of 

those peptides by mass spectrometry. It has a very high sensitivity and selectivity. 

Nevertheless, even the large numbers of mass spectra generated from the LC-

MS/MS encountered challenges in providing protein identifications from the 

existing public databases. This was because of the huge quantities of peptides 

generated could match more than one protein in the database and hence gave the 

false positive result. Thus, further selection was needed before the protein 

identities could be confirmed. In general, for each sample, the highest probability of 

percentage up to 90% was taken into consideration as well as the protein 

coverage.  

 

Out of the 24 proteins, only 13 protein spots were successfully identified. Five 

protein spots were highly abundant in high proliferation rate sample gels (SSP 

2008, SSP 6003, SSP 3402, SSP 8102 and SSP 5310), one of the highly 

abundance proteins in high proliferation rate samples was annotated as putative 

dehydrolipoamide dehydrogenase. Meanwhile, 6 protein spots were found to be 

present in low abundance in high proliferation rate samples. Among them, some 

were identified as alcohol dehydrogenase, phosphoribulose kinase, enolase, 

phosphoglycerate kinase, and Copper/Zn superoxide dismutase. This result was 

unexpectedly different from the results obtained from total protein samples which 

were described in Chapter 4. From the F3, 62% of the proteins identified were 



120 

 

involved in metabolism, followed by 31% stress response proteins and lastly 7% of 

others. The main difference among the total protein profiles and the F3 profiles was 

that no photosynthetic proteins were found in the F3 fractionation. This 

phenomenon indicated that most of the photosynthetic proteins were present at 

high abundance and that these were excluded from the F3 fraction. 

 

 

Alcohol dehydrogenase (ADH) genes are expressed with different abundance in 

various organs and this pattern is not consistent from one plant to another. 

Generally, the main function of ADH is involved in the NADH metabolism by reduce 

the acetaldehyde to ethanol under anaerobic condition in plants.  The expression 

of ADH is known to be induced by environment stresses such as wound and cold 

conditions. In the model plant Arabidopsis thaliana the over-expression of ADH 

gene was studied and the results showed that higher levels of ADH improved the 

tolerance level of roots toward the low oxygen level (Shiao et al., 2002). Since the 

ADH was found in lower abundance in the leaves of high proliferation rate oil palm, 

it could be speculated that high proliferation rate has fewer stresses compared to 

the low proliferation rate samples, thus the expression of ADH was significant 

lower in the high proliferate group.  

 

Phosphoribulose kinase (PRK) was found to be expressed high in low proliferation 

rate samples. In low proliferation rate samples, more PKR was detected. This 

might due to unfavourable conditions of the low proliferation palm that makes the 

palm unable to perform optimally and thus more PKR is needed to produce energy 

for survival. Three main stages of photosynthesis take place, the first is capturing 

energy from sunlight and this is followed by production of ATP and NADPH. The 

third stage is the use of Adenosine Tri-Phosphate (ATP) and Nicotinamide adenine 

dinucleotide phosphate-oxidase (NADPH) compounds to synthesise organic 

molecules from carbon dioxide in the absence of light. The first two main stages 

are defined as the light reaction while thethird stage is designated as the Calvin 
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cycle. PKR is one of the essential enzymes other than RuBisCo that plays a very 

important role in the Calvin cycle of CO2 assimilation. PKR catalyzes an irreversible 

reaction which is the regeneration of Ribulose-biphosphate (RuBP) from ribulose 5-

phosphate and serves a role in regulation of the flow of sugar through the carbon 

dioxide fixation cycle (Hariharan et al., 1998). 

 

 

Another protein that was expressed abundantly in low proliferation rate samples 

was enolase. Generally, enolase is known to play a crucial role as an enzyme in 

the glycolytic pathway (Wang et al., 2015). In addition, it is reported that enolase is 

up-regulated in the endothelial cell during hypoxia and functions as a cell 

associated stress protein that protects the plant (Aaronson et al., 1995). Recently, 

it has been reported that enolase protein level in algae decreases by up to 50% 

due to its activities in balancing the hyperosmotic salt stress and it is also involved 

in thermal tolerance (Ruan et al., 2009). Dennis et al. (1987) investigated the 

exposure of plants to anaerobic stress which can cause a shift from oxidative to 

fermentative mode of carbohydrate metabolism in plant tissues and thus increased 

the expression of this glycolytic cycle enzymes. The presence of enolase protein at 

relatively low abundance in the high proliferation rate samples suggests that more 

glycolytic process is conducted in the high proliferation rate samples to produce 

energy for metabolism.  

 

 

In addition, two other proteins were found to be present only in the high 

proliferation rate samples, chaperonin alpha subunit and phosphoglycerate kinase. 

Two spots, SSP 1307 and SSP 1309, were identified as chaperonin. It is important 

to protect the plant especially under abiotic stresses that can cause proteins to 

function improperly. Chaperonins, also known as heat-shock proteins can assist in 

protein assembly, degradation and protein refolding under stress conditions to 

maintain the proteins in their functional conformations (Wang et al., 2004). In vivo, 
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newly synthesized protein chains are unlikely to fold spontaneously in cells, this is 

where chaperonin takes places to facilitate correct protein folding by encapsulating 

substrate proteins into native states (Kmiecik and Kolinski, 2011). Hence, the 

presence of chaperonin is to protect the plant against stress for better survival. In 

this study, more chaperonins were present in the high proliferation rate samples, 

this suggests that the protection given against the stress in high proliferation tissue 

was higher compared to low proliferation tissue, and thus indirectly affect their 

excellent proliferate performances.  

 

 

Interestingly, phophoglycerate kinase and superoxide dismutase were each 

identified in more than one protein spot. Phosphoglycerate kinase proteins (PGK) 

were found to be identified as same identity for SSP 7502, SSP 5101, and SSP 

5104. For the SSP 7502, it showed that PGK was expressed abundantly in low 

proliferation rate samples but conversely the SSP 5101 and SSP 5104 spots were 

shown to be present only for the high proliferation rate samples. Overall, the PGK 

shows higher abundance in high proliferation rate samples with greater protein 

spots. PGK is one of the major enzymes involved in glycolysis to generate ATP 

energy and 3-phosphoglycerate from the transfer phosphate group from 1,3- 

bisphosphateglycerate to adenosine diphosphate (ADP). The presence of PGK 

proteins was to increase energy production in high proliferation rate samples.  

 

Lastly, sedoheptulose-1,7-bisphosphate (SBPase), amino acid binding protein and 

superoxide dismutase were found to be present only in low proliferation rate 

samples.  There is an overexpression study on the SBPase which was carried out 

in tobacco plants and positive results proved that the carbon fixation and electron 

transport rate were enhanced by increasing the content and activity of the SBPase 

enzyme (Rosenthal et al., 2011). In this study, the expression of SBPase protein 

was found presence in higher abundance in the low proliferation rate samples, and 

this indicated that the low proliferation rate samples had the higher carbon 
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assimilation as compared to the high proliferation rate samples as described by 

Rosenthal group (2011).  

 

Two protein spots were identified as superoxide dismutase (SOD) but with different 

expression pattern in low proliferation rate samples. One of the spots (SPP 7007) 

was present only in the low proliferation rate samples, while the other spot (SPP 

8013) was abundantly expressed. In plant systems, there are natural defence 

systems against reactive O2 species (ROS) that produced in both unstressed and 

stressed cells. The formation and depletion of ROS are balanced during 

unstressed conditions. Under oxidative stress conditions, SOD acts as the first line 

of defence against ROS (Alscher et al., 2002). The high expression of SOD in low 

proliferation rate leaves indicates there might be high stress conditions in the low 

proliferation rate samples that required more SODs to overcome and balance up 

the stress conditions in plants. 
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5.5 Conclusion 

 

 

PEG fractionation is a time and cost-effective method to eliminate the high 

abundance proteins. After PEG fractionation, many previously hidden low 

abundance proteins were detectable on 2-DE gels. A total of 24 protein spots were 

differentially expressed between high and low proliferation rate samples and were 

subjected to identification using the LC-MS/MS instrument. Out of the 24 protein 

proteins spots, only 13 proteins spots were successfully identified. The results 

were arranged and summarised using the Scaffold viewer software. The functions 

of the identified proteins were investigated to understand the biological 

mechanisms that might have occurred between the two different proliferation rate 

group samples. The results showed that most of the differentially expressed 

proteins were involved in metabolism (62%), followed by stress response protein 

(31%), and others (7%). F3 provided an in depth degree of protein profiles than 

usually could not be observed using general total protein extraction methods. 

Different groups of proteins were found differentially expressed in the F3 and total 

protein extracts but both extracts have show the highest percentage of proteins 

identified were in metabolism categories. There are no photosynthetic proteins 

were found in the F3 fractionation. This phenomenon indicated that most of the 

photosynthetic proteins were present at high abundance and that these were 

excluded from the F3 fraction after PEG treatment. In conclusion, F3 provides 

complementary results to the total protein extraction results with respects to the 

proteins that have significant expression level differences between the high and 

low proliferation rate samples.  
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CHAPTER 6 

QUANTITATIVE EXPRESSION STUDY USING REAL TIME REVERSE 

TRANSCRIPTION POLYMERASE CHAIN REACTION (RT-qPCR)  

 

 

6.1 Introduction 

 

 

 

In 1993, Kary Mullis, a Nobel Prize winner was the first person to introduce the 

technology of polymerase chain reaction (PCR). Polymerase chain reaction allows 

the nucleic acid material, DNA to be amplified to thousands of copies under a 

series of reaction temperatures with the presence of the enzyme, polymerase and 

short specific nucleotides called primers. While, quantitative real time PCR (qPCR) 

is an extended modification to the PCR that allows quantification of amplified gene 

copies in real time by detection of the fluorescent signal during amplification 

process (Fraga et al., 2014). In theory, reverse transcription (RT)-PCR differs from 

PCR only by the additional step of initial conversion of RNA into DNA template by 

reverse transcriptase. High throughput RT-qPCR has become the benchmark for 

detection and quantification of RNA targets which is frequently use in novel clinical 

diagnostic assay (Bustin and Mueller, 2005). . 

 

 

It is important to study the patterns of expressed genes in order to obtain 

information on gene regulatory network, which could lead to the identification of 

novel genes in new biological processes (Vandesompele et al., 2002). Apart from 

RT-qPCR, there are a few common methods that can be used for quantification of 

gene transcription, namely northern blotting, in situ hybridization, RNAse protection 

assays, conventional RT-qPCR and microarray. In situ hybridization can provide 
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information on the localization of transcripts in a specific cell and tissues, while the 

RNAase protection assay is a sensitive method for transcription start-site 

localization (Carey et al., 2013). On the other hand, northern analysis can provide 

information on mRNA size, potential alternative splicing and RNA integrity.  

 

The advantages of real time RT-PCR are that they are highly sensitive, specific, 

and can have broad quantification range in particular for low abundant transcripts 

in tissues with low RNA concentrations (Mukesh et al., 2006). Microarray allows 

parallel analysis of thousands of genes at particular time and samples, but it 

incurred high cost. Real time RT-qPCR analysis has been chosen for this study 

because it is easy to use, fast, and highly reproductive, with minimal amount of 

RNA needed and radioactive free (Radonić et al., 2004). 

 

The analysis of gene expression pattern could unravel the functional aspect of 

gene that is involved in the regulation of biological processes within an organism 

(Nagavara et al., 2013).There are some criteria that must be gone through prior to 

the real time RT-qPCR such as the integrity of RNA samples, primer design, 

housekeeping genes and PCR reaction conditions. Even though real time RT-

qPCR is powerful, it has certain pitfalls. The concerns are mostly related to the 

normalisation of the quantitative RT-qPCR results, which is very essential in order 

to quantify variations occur in specific gene expression across different samples. 

Real time RT-qPCR approach is only reliable after the results are normalized. 

Result normalisation aids in correcting the errors that could be contributed by 

variations in RNA extraction yield, reverse transcription yield, and efficiency of 

amplification. The use of reference genes as internal control is the most 

appropriate strategic for normalising the cellular mRNA data and the gene 

expression pattern can be experimentally validated for a particular tissueusing a 

specific experimental design (Bustin et al., 2009). 
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6.2 Materials and methods 

 

 

6.2.1 Plant materials 

 

The plant samples used in these experiments were collected from Advanced 

Agriecological Research Sdn Bhd (AAR) and United Plantation (UP), Malaysia 

which were the same samples for proteomics analysis as described in Chapter 4 

(Section 4.2.1). There were a total of three biological replicates for each high 

proliferation and low proliferation rate categories. All the samples were ground into 

powder and kept in -80°C for further used.  

 

6.2.2 DNA extraction  

 

This method was developed by Doyle & Doyle (1990) with some modifications. 

Approximately 1g of leaf powder was transferred to a 50ml centrifuge tube filled 

with 5ml of modified CTAB buffer (2% w/v CTAB, 20mM EDTA pH 8, 1.4M NaCl, 

100mM Tris-Cl pH8). A few components were added freshly before used, namely 

2% w/v polyvinylpyrrolidone-40, 5mM ascorbic acid, 4mM DIECA, 60l of -

mercaptoethanol and 70g of RNase A. The mixture was allowed to mixed and 

incubated at 60C for 30 minutes. After incubation, the solution was mixed 

thoroughly with an equal volume of 24:1 chloroform:isoamyl alcohol solution, 

followed by centrifuging at 13,000 xg for 15 minutes. After centrifugation, three 

phases appeared in the centrifuge tubes. The upper aqueous phase is the DNA 

content. Next, the upper aqueous phase containing DNA was transferred to a new 

tube, and 0.6 volume of cold isopropanol was added for DNA precipitation at -20C 

for 1 hour. There was no vortex allowed to avoid breaking the DNA strand as DNA 

started to precipitate at this stage. The precipitate was collected by centrifuging at 

13,000 xg at 4C for 15 minutes. Subsequently the pellet was washed with a 
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solution containing 76% v/v ethanol/10mM ammonium acetate before the pellet 

was suspended in 4ml of T10E1 buffer (10mM Tris-Cl pH8, 1mM EDTA pH8). It was 

then followed by 0.5 volume of 7.5M ammonium acetate, and then placed on ice 

for 20 minutes, before the tube was centrifuged at 14,000xg and 4C for 15minutes. 

After centrifugation, the solution was transferred to a new tube and 2.5 volume of 

ethanol was added. The precipitation reaction was incubated for 1 hour at -20C. A 

final round of centrifugation resulted in the collection of the DNA pellet at the side 

of the tube, which was then washed with 5ml of 70% ethanol before being 

dissolved in 1.5ml of T10E1buffer (10mM Tris-Cl pH 8, 1mM EDTA pH 8). The 

quality and quantity of extracted DNA were assessed using Nanodrop (Biorad, 

USA).  

 

 

6.2.3 RNA extraction 

 

Two different RNA extraction methods were used in this experiment. For the old 

leaf samples, RNA was extracted using modified CTAB method (Section 6.2.3.1). 

While, the young leaf samples which is less recalcitrant compared to old leaves 

was used a simple RNAprep Pure Plant extraction kit to extract RNA (Section 

6.2.3.2). 

 

 

6.2.3.1 RNA extraction using modified CTAB method 

 

This RNA extraction method was carried out with some modifications (Gambino et 

al., 2008). Approximately 1g of leaf powder was transferred into a 50ml centrifuge 

tube filled with 10ml of the preheated (65°C) modified CTAB reactants (3% w/v 

CTAB, 3% PVP (W/V), 20mM EDTA pH 8, 2M NaCl, 100mMTris-Cl pH8, 0.5g/L 

spermidine, 0.1% DEPC pH8).Freshly prepared 4% β-mercaptoethanol was then 

added. The mixture was incubated at 65C for 10 minutes with occasional shaking 



129 

 

to mix the content. After that, the solution was mixed thoroughly with an equal 

volume of 24:1 chloroform: isoamylalcohol solution and gently mixed for 10 

minutes. It was then followed by centrifuging at 12,000 x g at 10°C for 10 minutes. 

The supernatant was transferred to a new tube and extracted again with 10 ml of 

the chloroform and isoamyl alcohol (24:1) for 10 minutes. After mixed, it was then 

centrifuged at 12,000 x g at 10°C for 10 minutes. The supernatant was transferred 

to a new tube containing ¼ volumes of 10M Lithium chloride.  

 

The solution was mixed thoroughly and stored at 4°C for overnight precipitation. 

After precipitation, it was then centrifuged down at 12,000 x g at 4°C for 30 minutes. 

The RNA pellet was dissolved very gently with 250 µl 0.5% Sodium Dodecyl 

Sulphate (SDS), and extracted with chloroform and isoamyl alcohol (24:1). After 

extraction, it was then centrifuged at 12,000 x g at 4°C for 10 minutes. The 

supernatant was then transferred to new tube and washed with 2 volumes of 

ethanol and mix thoroughly for precipitating total RNA at -20°C for at least 2 hours.  

It was then followed by centrifugation for 30 minutes after the incubation. The 

supernatant was removed and the pellet was washed twice using 75% ethanol. 

Lastly, the pellet was dried and re-dissolved in 100 µl RNase-free water.   

 

6.2.3.2 RNAprep Pure Plant kit  

 

This RNA extraction kit was used for the young leaf samples for this experiment. 

All the extraction procedure was referred to the handbook of the TIANGEN 

RNAprep Pure Plant kit. The main advantage of using RNAprep Pure Plant kit is 

due to its minimal amount of samples needed during the RNA extraction. The 1.5 

ml Eppendorf tube was loaded with 0.1g leaf samples. The sample was incubated 

in 500 µl of buffer SL (ensure that β-ME is added to buffer SL before use), and 

vortexed vigorously.  It was then centrifuged for 2 minutes at 13,400 x g. The lysate 

was then transferred to RNase-Free Filter Column CS which was placed in 2 ml 



130 

 

collection tubes and centrifuged again for 2 minutes at 13,400 x g.  The 

supernatant was carefully transferred to a new microcentrifuge tube without 

disturbing the cell-debris pellet in the collection tubes.  

 

 

The cleared lysate was added with 0.4 volume of ethanol and the sample was 

transferred to RNase-Free Spin Column CR3 placed in a 2ml collection tube and 

centrifuged for 15 seconds at 13,400 x g. The flow-through was discarded and 

350µl Buffer RW1 was added to the spin column CR3.  The centrifugation was 

repeated at 13,400 x g for another 15 seconds. DNase I working solution (10 µl 

DNase I stock to 70 µl Buffer RDD) was added directly to the centre of spin column 

CR3 and placed on the bench top (20-30°C) for 15 minutes. It was then washed 

with 350 µl Buffer RW1 and centrifuged down at 13,400 x g for 15 seconds, 

followed by washing with 500 µl Buffer RW twice.  The flow-through was discarded. 

Lastly, the spin column allowed centrifugation for 2 minutes at 13,400 x g to dry the 

spin column membrane. The spin column was then transferred to a new 1.5ml 

collection tube. RNase –free water (30 – 50 µl) was added directly to the middle of 

spin column and placed in room temperature for 2 minutes before centrifugation at 

13,400 x g for 1 minute in order to get the final RNA. The quantity of RNA was 

measured using nanodrop ND-1000 (Thermo Scientific, USA).  

 

 

6.2.4 Nuclear acid Quantification 

 

All the DNA and RNA yield from the samples were read using the Nanodrop ND-

1000 (Thermo Scientific Company, USA). The DNA and RNA were also run in 2% 

agarose gel in order to confirm the presence of DNA and RNA bands. The RNA 

samples were then quantified using the 2100 Bioanalyzer instruments (Agilent 

Technologies, USA). 
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6.2.5 Oligonucleotide design 

 

Following the results from the proteomics in Chapter 4 and Chapter 5, there were a 

total of 12 candidate genes were selected to be investigated in the current gene 

expression study. Primers were designed using the Primer 3 software. Prior to 

oligonucleotide design, the full sequence for each of the candidate genes was 

searched from the MPOB database (Figure 6.1). In order to make sure all the 

designed primers were specific to the gene of interest. The un-conserved region of 

the gene of interest has been selected as priority for primer designed. Primers 

were designed to have a size of 18-30 base pair (bp), GC content of 40-60% and 

Tm of 55-65°C.  The degree of primer self-annealing had also been taken into 

consideration. All the oligonucleotides were synthesized by Integrated DNA 

Technology (IDT) Company. The predicted fragment sizes were ranged from 150 

bp to 300 bp. 

 

 

Figure 6.1: Sequences for the selected number of genes for oligonucleotide design 
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6.2.6 PCR products extraction protocol 

 

The designed primers were used in the PCR reaction with DNA templates 

extracted from leaf samples. The purpose was to make sure that the designed 

primers were worked well on the samples prior to do the RT-qPCR analysis. A few 

primers had been randomly selected for these verification procedures, namely, 

Primer 3305, 4202, 5403, 7403 and 8605. These primers were used to amplify the 

gene of interest using conventional PCR method. The PCR products were then 

fractionated on 1% agarose gel to check the specificity of the primers. If single 

band was obtained, the PCR products in solution were purified and extracted using 

MEGAquick-spin™ (Intron, European Biotech Network). The PCR products were 

added with 5 volumes of BNL buffer and mixed well by vortexing. BNL buffer (100 

µL) were added to the 20 µL of PCR products and centrifuged at room temperature 

to ensure all the content sank to the bottom of the tubes. For sequence less than 

200 base pairs, 1.5 volume of isopropanol was added to the samples in order to 

increase the product yield. The purification was carried using MEGAquick-spin™ 

column.  The PCR products were allowed to bindto the column after centrifugation 

at 14,500 xg for 1 minute. Next, the column was washed with 700 µl washing buffer 

followed by centrifugation at 14,500 xg for 1 minute. The centrifugation process 

was repeated until the membrane was spun dry. The flow-through was discarded 

and the MEGAquick-spin™ was placed to a new 1.5 ml microcentrifuge tube. It is 

then followed by the 30- 100 µl of elution buffer directly to the centre of column and 

incubated at room temperature for 1 minute before centrifugation. Then, the 1.5 ml 

microcentrifuge tube containing purified PCR products were sent for sequencing 

(First BASE laboratory Sdn Bhd).  
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6.2.7 Real time Reverse Transcription Quantitative Polymerase Chain 

Reaction (RT-qPCR) 

 

6.2.7.1 cDNA synthesis  

 

The conversion of RNA to cDNA was conducted using the QuantiTech Reverse 

Transcription kit. The cDNA conversion mainly involved 2 main steps which 

wereelimination of genomic DNA and reverse transcription. Firstly, the purified 

RNA samples were thawed and incubated with the gDNA Wipeout Buffer reaction 

(Table 6.1) at 42°C for 2 minutes to remove genomic DNA contaminants. After 

genomic DNA elimination step, the RNA samples were prepared for reverse 

transcription step. The master mix prepared from Quantiscript Reverse 

Transcriptase (1 µl), Quantiscript RT Buffer, 5x (4 µl), and RT Primer Mix (1µl) was 

added to the RNA template. Quantiscript Reverse Transcriptase enables cDNA 

synthesis from the range of 10 pg to 1 µg of RNA with high affinity to RNA 

properties. It was then incubated at 42°C for 30 minutes for the cDNA conversion 

to carryout followed by the inactivation step at 95°C for 3 minutes. After the 

conversion, final volume of 20 µl cDNA products was obtained. The cDNA was 

diluted, to 50 times with RNase-free water. The cDNAwas then ready for the qPCR 

analysis. All the cDNA products were then kept in -20°C for further use.  

 

Table 6.1 Genomic DNA elimination reaction components 

 

Component Volume/reaction Final concentration 

gDNA Wipeout Buffer,7x 2 µl 1x 

Template RNA         Variable (up to 1 µg*) - 

RNase- free water  Variable - 

Total volumes  14 µL  

* This amount corresponds to the entire amount of RNA present, including any rRNA, mRNA, viral 

RNA, and carrier RNA present. 
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6.2.7.2 Real time PCR  

 

Prior to the qPCR reaction, all the cDNA was added with primers, distilled water 

and master mix solution from KAPA SYBR FAST qPCR kit. KAPA SYBR FAST 

qPCR master mix (2x) was used in this experiment consisting of KAPA SYBR 

FAST DNA polymerase, reaction buffer, dNTPs, SYBR Green 1 dye, and 2.5mM 

MgCl2. KAPA SYBR FAST qPCR kit helps to improve accuracy and reproducibility. 

It also enables consistent detection of low copy or difficult target. Each of the 

individual dilutions per primer was carried out in triplicates. There were a total of 17 

primers of interest and 3 housekeeping genes carried out for constructing the PCR 

efficiency curves. A complete real time PCR reaction cycles required 45 to 60 

minutes. A three-step experiment run protocol was used: (i) hot-start 95°C for 10 

minutes (ii) 40 cycles of (denaturation at 94°C 15 seconds, annealing 56°C 30 

seconds, elongation 72°C 30 seconds) (iii) final elongation 72°C 5 minutes.  

 

 

6.2.7.3 Construction of the PCR efficiency curve for primers 

 

A serial dilution of cDNA was done in order to construct the PCR efficiency curve 

for each of the primers. The cDNA with (x50) dilution were used as the initial 

concentration for the PCR efficiency curve. There were a total of 5 series of 

dilutions carried out for this efficiency curve (Figure 6.2). All the diluted cDNA was 

aliquot into PCR tubes and ready for the real time PCR analysis using Real time 

PCR system Mastercycler Ep Realplex (Eppendorf, Germany).  
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Figure 6.2: Schematic diagram showing a total of 5 serial dilutions (x5) were made 

from the cDNA products 

 

The negative control (ntc) and non-reverse transcription control (non-rt) were 

included for each of the qPCR analysis. Both were run in triplicates. The negative 

control consisting of all the amplification reagents except cDNA template was 

replaced with distilled water. While non-rt control was the indicator to make sure 

the primers amplified only the cDNA template in a samples rather than the 

contaminating genomic DNA that was present in the samples.  All samples were 

run on 96 well plates.  

 

6.2.8 Statistical analysis 

 

All the real time PCR reading was obtained in Ct values which were then 

normalised with the housekeeping genes. The mRNA expression between samples 

for different primers was calculated using the formula and the significance level for 

mRNA expression was determined using the Minitab Statistical Software. One way 

ANOVA was used in this statistical analysis. The p-value less than 0.1 were used 

as the significance level for this study. Normality test for each of the data was 

carried out to ensure the results normally had been distributed.  
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6.3 Results 

 

 

6.3.1 RNA extraction  

 

The old leaf samples were extracted using the CTAB modified method (described 

in section 6.2.3.1), while the young leaf samples were extracted using the 

RNAprep Pure Plant kit (Section 6.2.3.2). After extraction, the RNA extract were 

quantified using the Agilent 2100 Bioanalyzer instrument system (Biorad, USA) 

(Table 6.2).  

 

Table 6.2: RNA concentration for old and young leaf samples 

Leaf Samples Categories Samples RNA Yield 
(ng/µl) 

Ratio 
28S:18S 

RIN* 
Value 

Low  
Proliferation 

Old Leaves 1081 212 2.3 7.5 

 2004 771 1.7 7.1 

 2091 271 1.6 7.1 

Young  194 108 1.6 8.1 

Leaves 352 184 1.4 7.0 

 1086 186 1.8 8.6 

High  
Proliferation 

Old Leaves 933 413 1.8 7.2 

 944 676 1.6 7.1 

 984 450 1.6 7.4 

Young  933 418 1.8 8.1 

Leaves 944 349 1.6 8.8 

 984 944 1.3 7.0 

*RIN= RNA integrity number 

 

Table 6.2 shows the RNA yields from oil palm leaf samples.All the RNA yields 

obtained have a good 28S:18S rRNA ratio of more than 1.3. All the samples 

reached an acceptance level for downstream analysis with the 28S:18S rRNA 

ration of more than1.0. Secondly, the RNA integrity number (RIN) value is one of 

the important information for RNA integrity, it ranged from 1-10. All of the samples 
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in this studyhad good RIN values above7.1 for old leaf samples while young leaf 

had the RIN values ranged at 7.0-8.8.   

 

 

After quantification, the RNA samples were fractionated on 2% agarose gel as 

shown in Figure 6.3 (a). There were two visible bands shown in the RNA gels i.e. 

28S and 18S bands. Visualisation of 28S:18S rRNA ratio on conventional agarose 

gel is subjective due to the condition of running electrophoresis gel and the amount 

of RNA loading. The 2100 Agilent Bioanalyzer method was an improved analytical 

tool for an accurate digital data with the electropherogram showing the ratio of 28S 

and 18S, concentration of RNA and RIN values. The 2100 Agilent Bioanalyzer had 

combined the technologies of microfluids, capillary electrophoresis, and 

fluorescence to calculate the RNA amount and integrity. 

 

 

Figure 6.3 RNA fractionation based on (a) Conventional 2% agarose gel method 

and (b) 2100 Agilent Bioanalyzer method. 
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6.3.2 Design and validation of primers 

 

Based on the results from Chapter 4 and 5, there were a group of protein 

candidates that appeared to be significantly different in protein abundance between 

the high and low proliferation rate groups in both young and old leaf samples. 

Among these, only the few highest differential abundance values of the proteins 

were selected for further mRNA analysis using real time RT-PCR. Yet, there were 

a total of 13 genes selected for the old leaf samples based on the total protein and 

the PEG fractionated protein. While there were five genes were selected for the 

young leaf samples.  

 

All the primers were designed using the free access online Primer3 software 

(online access from: http://simgene.com/Primer3). During primer design, a few 

considerations were taken in order to increase the specificity of the primers. From 

the protein candidates, each of their gene sequence was obtained through the 

MPOB database. After that, the gene sequences of the particular protein were 

compared with the National Centre for Biotechnology Information (NCBI) database 

to identify the unconserved regions. The primers were designed based on the 

unconserved regions within the gene sequences to increase the specificity of the 

genes amplified. All the design primers were synthesised using services from First 

Base Laboratories Sdn Bhd (shown as Table 6.3).Using the primers, the extracted 

DNA was amplified through the Polymerase Chain reaction (PCR) approach and 

the PCR products were run on the 2% agarose gel to observe the amplification 

band. All the primers were amplified in single band only (Figure 6.4). There were a 

few PCR products that have been selected for further sequencing to ensure the 

perfect match of the amplified sequences with the gene sequences used for primer 

designation. Prior to the gene sequencing, PCR products were purified and 

extracted using MEGAquick-spin™ kit. Interestingly, the sequencing results 

showed that all the primers tested have match the gene sequence ranged from 

91% to 99% indicating that the primers were working very well. The high match 

http://simgene.com/Primer3


139 

 

rate of the sequencing results showed that the designed primers amplified very 

well on specific DNA sequences in the samples (Figure 6.5).  

 

Figure 6.4: (a) Agarose gel with specific DNA band amplified by primers (b) 

Gradient analysis in temperature during PCR reaction for each of the primers used 

(c) RNA band amplification by PCR using specific primers. 

 

 

Figure 6.5: Sequencing results from the PCR products for SSP4202. 
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Table 6.3: Sequences of the primers used to amplify transcripts by real time RT-

qPCR 
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6.3.3 Housekeeping gene analysis 

 

In this experiment, there were a total of 7 housekeeping genestested across the 

samples and the optimal two housekeeping genes were used for the subsequent 

qPCR analysis. Here, the 7 housekeeping genes used, namely Actin (ACT), 

glyceraldehydes-3-phosphate dehyrdrogenase (GADPH), predicted 40S ribosomal 

protein S27-2 (PD380), manganese superoxide dismutase (PD569), predicted 

protein IFH-1 like (EA1332), NADH dehydrogenase subunit 5-like gene (NAD), and 

polyubiquitin (UBQ) were tested across the samples in order to identify the most 

suitable reference gene for this experiment. The Ct values for each housekeeping 

genes were compared and analysed using RefFinder software (shown in Figure 

6.6). RefFinder software helps to evaluate reference gene expression by 

integrating the main four computational programs (GeNorm, Normfinder, 

BestKeeper, and the comparative Delta CT method). The results were compared in 

a rank order between four statistical algorithms methods.  

 

 

Figure 6.6: RefFinder software analysis for housekeeping genes. 
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Ranking order from the best to average of housekeeping genes and genes 

geomean of ranking values for all 7 housekeeping genes were shown in Figure 6.7. 

Through the RefFinder analysis, the comprehensive ranking order from the four 

statistical algorithms showed that the best housekeeping genes were PD380 (1.57), 

followed by NAD and PD 569 (2.21) and thenEA1332 (3.16). It was then followed 

by the GAPDH (4.16), UBQ (6.00) and lastly ACT (7.00).  

 

GeNorm and Normfinder both were written as a Visual Basic Application (VBA) for 

Microsoft excel. GeNorm calculates M value for gene expression stability, the most 

stable gene has lower M value as compared to the less stable genes. The lowest 

M value belonged to PD380 and NAD in GeNorm analysis. On the other hand, 

Normfinder used mathematical model-based approaches to estimate the 

expression variation across samples. It had taken the intra- and intergroup 

variation to calculate for the expression stability. The results suggested that the 

most stable genes which represent the lower expression variability which in 

sequence of EA 1332, followed by PD569 and PD380. While the BestKeeper 

analysis uses the average Ct values to calculate the coefficient of variance and 

standard deviation. Gene with lower variation such as PD380 was classified as the 

most stable one. 

 

 

Figure 6.7: Result rank orders from the four statistical algorithms methods. 
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6.3.4 PCR efficiency Curve 

 

Real time RT-qPCR is currently the most accurate method to measure the mRNA 

expression but this method has generated a series of raw numerical data and the 

mis-processing of this data may lead to imprecise final results. The PCR standard 

curve design remains as a reliable method to determine the PCR efficiency in both 

relative and absolute qPCR (Larionov et al., 2005). All the 17 proteins that selected 

for the downstream analysis were gone through the RT-qPCR reaction using 5x 

series dilution of the cDNA to calculate the PCR efficiency for each of the primers. 

The Ct values obtained from the qPCR reaction were plotted on a graph to get the 

coefficient value in linear regression (r2) with a preference of more than 0.98. The 

real time PCR efficiencies were calculated from the slope using the established 

equation E= 10[-1/slope] (Bustin et al., 2000). The efficiency of the PCR ranged 

between 90-100% (-3.6 ≤ slope ≤ -3.3). Figure 6.8 shows the PCR efficiency for 

primer 3305 which had the slope of -3.567 and R2 value of 0.996. This primer has 

good efficiency to proceed for the qPCR analysis.  

 

 

Figure 6.8: PCR amplification efficiency curve for Primer 3305. 
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6.3.5 Real time PCR analysis 

 

6.3.5.1 Melting curve analysis 

Through the RT-qPCR analysis, all the primers were used to amplify the cDNA of 

samples across the high and low proliferation rate samples. The specificity of the 

primers across the samples could be identified using the melting curve analysis. 

After completion of the RT-qPCR reaction, a melting curve was generated by 

increasing temperature in the reaction which can be monitored from the fluorescent 

signal at each step. Single peak of the curveindicates the primers were amplifying 

a single gene at specific degree of temperature. If more than a peak observed in 

the melting curve, it represents the nonspecific products. All the melting curves for 

each set of primers were plotted. The results showed that all primers worked very 

specifically to the samples. Figure 6.9 shows the melting curves of a series of 

primers set (4202, 5403, 7403, and 8605). All primers showeda single peak at a 

specific temperature meaning the specificity of the primers set was ensured.  

 

Figure 6.9: Melting curve for examples primers set of (a) 4202 (b) 5403 (c) 7403 (d) 

8605. 
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6.3.5.2 mRNA expression level for high proliferation rate group versus low 

proliferation rate group 

Cycle
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Figure 6.10 Real time RT-qPCR amplification graph versus cycle.  

 

After the primers and RNA integrity had been checked for all samples, the RT-

qPCR analysis was carried out accordingly to the experimental design. There were 

12 primers tested across the old leaf samples and 7 primers ran on the young leaf 

samples. Five technical replicates were conducted for each sample to make sure 

the variations among the replicates measuring less than 0.33. One or two Ct 

values that contribute variation more than 0.33 were excluded. A minimal of three 

Ct values encountered for each sample. Each primer was run across a series of 

high and low proliferation rate samples in the same 96 wells plate to minimize 

technical errors. After RT-qPCR analysis, all the fluorescent that released during 

gene amplification per cycle were captured at particular time as shown in Figure 

6.10. All mean Ct data and standard deviation among samples were recorded and 

go for downstream expression calculation using GeNorm analysis. GeNorm 

analysis is a popular algorithm to calculate the gene expression for each sample 

based on the geometric mean of reference genes. 
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6.3.5.3 Concordance of the mRNA expression level with respective protein 

abundance  

 

Real time RT-qPCR approach enables the relative quantification of mRNA 

expression in a gene. There were a total 12 genes from old leaves and 7 genes 

from young leaves in the gene expression studies. The Ct values that obtained 

from the experiments were calculated using the GeNorm analysis. The expression 

value were normalised with the housekeeping genes to correct sample to sample 

variation. For the old leaf samples as shown in Table 6.4, four out of twelve 

transcripts were shown to be expressed in concordant with their protein abundance 

but there are only three transcripts (25%) were shown to be statistically significant. 

On the other hand, the young leaf samples (Table 6.5) has two out of seven 

transcripts (28%) were shown to be significant and concordant with their protein 

abundance. In conclusion, there were a total of six transcriptsthat were concordant 

in relation with their protein abundance but only four were found to be significant 

difference using Minitab statistics at p-value < 0.05. Protein candidates that have 

linear concordance with significant different in statistics with p-value <0.05 were 

triosephosphate isomerase, L-ascorbate peroxidase, and superoxide dismutase. 
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Table 6.4: Concordance of the mRNA expression level and protein expression 

pattern in the high and low proliferation rate group in old leaf samples 

Primers Protein 

abundance 

mRNA expression Relationship 

3305 

Triosephosp

hate 

isomerase 

High 

abundance in 

high 

proliferation 

rate samples 

 

Concordant 

(statistically 

significant in 

mRNA) 

4202 

Oxygen-

evolving 

enhancer 

protein 2 

High 

abundance in 

high 

proliferation  

rate samples 

 

Concordant 

5403 

Photosystem 

II stability 

High 

abundance in 

high 

proliferation  

rate samples 

 

Concordant 
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7304 

L-ascorbate 

peroxidase 2 

High 

abundance in 

high 

proliferation  

rate samples 

 

Concordant 

(statistically 

significant in 

mRNA) 

1304 

EoV2B_isot0

1043 

Present in high 

proliferation  

rate gel 

samples 

 

Non-

concordant 

 

1309 

RuBisCo 

large subunit 

binding 

protein 

subunit alpha 

Present in high 

proliferation  

rate gel 

samples 

 

Non-

concordant 

 

2311 

ACT domain 

containing 

protein 

ACR11 

Present in low 

proliferation  

rate gel 

samples 

 

Non-

concordant 
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3703 

Unidentified 

Present in high 

proliferation  

rate gel 

samples 

 

Concordant 

4005 

EoV2B_isot0

10139 

Present in high 

proliferation  

rate gel 

samples 

 

Non-

concordant 

 

4103 

Unidentified 

Present in high 

proliferation  

rate gel 

samples 

 

Concordant 

6019 

PiV2x_00805 

Present in high 

proliferation  

rate gel 

samples 

 

Non-

concordant 
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Table 6.5: Correlation of the mRNA expression level and protein expression 

pattern in the high and low proliferation rate group in young leaf samples 

 

Primers Protein 

expression 

mRNA expression Relationship 

1469 

Probable 

receptor-like 

protein kinase 

High abundance 

in low 

proliferation rate 

samples 

 

Non-

concordant 

1031/1159 

Uncharacterised 

protein 

High abundance 

in low 

proliferation rate 

samples 

 

Concordant* 

7007 

Superoxide 

dismutase 

Present in low 

proliferation  

rate gel 

samples 

 

Non-

concordant 

(statistically 

significant in 

mRNA) 
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513/520 

Fibrous sheath 

cabyr-binding 

High abundance 

in high 

proliferation rate 

samples 

 

Non-

concordant 

2415 

Ketol-acid 

Chloroplastic-like 

High abundance 

in high 

proliferation rate 

samples 

 

Non-

concordant 

1441 

Stress responsive 

protein 

High abundance 

in low 

proliferation rate 

 

Non-

concordant 

1729 

Ferritin 

chloroplastic-like  

High abundance 

in low 

proliferation rate 

 

Concordant* 

1977 

Germin-like 

protein 

High abundance 

in low 

proliferation rate 

 

Non-

concordant 
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6.4 Discussion 

 

 

6.4.1 RNA extraction 

 

The RNA of the old leaf samples were extracted using CTAB method, while the 

young leaf samples were extracted using the TIANGEN RNAprep Pure Plant kit. 

The extraction protocol for young leaf samples was easier as compared to the old 

leaf samples because young leaves which were less recalcitrant and contained 

less polysaccharides and contaminants as compared to the old leaf samples. All 

extracted RNA samples were quantified using the Agilent 2100 Bioanalyzer which 

provided a clear estimate to the major components that make up total RNA. This is 

because mRNA constitutes only 1-3% of total RNA samples and it is hardly 

detectable in experiment. Conventional RNA gel electrophoresis detection method 

is commonly used for mRNA. This method depends on the assumption of rRNA 

quality and quantity to reflect the presence of mRNA population (Figure 6.3). There 

are more than 80% of the total RNA samples are ribosomal RNA with the presence 

of 28S (5kb) and 18S (2kb) rRNA species, and a ratio of 2:1 for 28S and 18S 

showing good standard for intact RNA. Total RNA with 28S:18S rRNA ratio of more 

than 1.0 is well accepted for downstream analysis. Besides the 28S:18S rRNA 

rations, to test for the integrity of RNA, RNA integrity number (RIN) value are 

important. The RIN value ranged from 1-10 for the assessment of RNA integrity. 

The higher the RIN value is the greater of RNA integrity for a sample. RIN values 

greater than five consider as good total RNA quality and there will be perfect if the 

RIN value exceeds eight for a downstream application (Simon and Michael, 2006). 

The quality of the RNA samples is one of the key factors to ensure the reliability of 

the downstream real time RT-qPCR analysis. All extracted RNA of young and old 

samples that had good RIN values which are 7 and above that enable to proceed 

to RT-qPCR analysis.  
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6.4.2 Housekeeping gene analysis 

 

Ideally, the housekeeping gene should not be affected by the experimental method. 

But, due to the high dynamic range and sensitivity in real time RT-PCR, many of 

the well-known housekeeping genes such as GAPDH and β-actin were shown to 

be influenced by different treatments, different tissue or cell and also biological 

processes. Hence, it is absolutely important to validate the stability of 

housekeeping genes with own samples rather than rely on other previous 

publication (Wong and Medrano, 2005). Normalisation against a single reference 

gene is not acceptable as stated in the MIQE guidelines for PCR (Bustin et al., 

2009). A true housekeeping gene is very important to allow normalisation of 

differences in (i) amount of cDNA (ii) RNA qualities (iii) enzymatic efficiencies and 

(iv) variation during RNA and cDNA preparation (Radonić et al., 2004). In this 

experiment, a total of 7 housekeeping genes were tested across the old and young 

leaf samples to identify the most stable and reliable control genes for normalisation. 

After comparing the 7 housekeeping genes, the best three housekeeping genes 

were PD380, PD569 and EA1332 based on the RefFinder analysis which consists 

of the comprehensive ranking from the four statistical algorithms. These three 

housekeeping genes were used for both old and young leaf samples. The similar 

results were obtained by other group researchers who work on oil palm elite 

planting materials propagated in tissue culture. From the evaluation of reference 

genes experiment in oil palm tissue culture by Chan et al.,(2014), PD380 and 

PD569 were selected for accurate and reliable normalization of gene expression 

data in real time PCR. 
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6.4.3 Concordance of the mRNA expression level with individual protein 

abundance 

 

The correlation of mRNA and protein levels was found to be far from perfect in 

most of the available literatures. There are several main reasons that cause poor 

correlation between mRNA and protein levels such as post-translational 

mechanism, post-transcriptional parameters and possibly by noise and 

experimental error. It is because the mechanism on how genes are transcribed, 

mRNA processed and translated into functional protein are far from a linear and 

simple relationship (Maier et al., 2009). Hence, the percentage of correlation 

between mRNA and protein levels were differ from an organism to another.  

 

A research study on the mRNA-protein expression correlation in yeast and human 

tissues found that half of the samples showed significant positive correlation for 71 

genes (Guo et al., 2008). The correlation for the old leaf samples and young leaf 

samples in this study has found to be corresponding to 25% and 28%, respectively. 

This result was similar tothe previous studies that the cellular concentrations of 

proteins which have roughly 40% correlate with their corresponding mRNA 

abundance (Vogel and Marcotte, 2012). 

 

For old leaf samples, the mRNAs of three proteins was found to be expressed in 

linear correlation with their corresponding protein at significant level p-value < 0.05. 

These were triosephosphate isomerases, L-ascorbate peroxidase, and superoxide 

dismutase. In this study, triosephoshate isomerase which is an enzyme was 

abundantly presence in high embryogenic proliferic samples and it is suggested 

that energy is very important to support proliferation. The same enzyme were 

reported specifically induced in somatic embryo of Cyclamen persicum Mill 

together with other three glycolytic enzymes (UDP-glucose pyrophosphorylase, 

fructose bisphosphate aldolase and glyceraldehydes-3-phosphate dehydrogenase 

GAPDH) (Winkelmann et al., 2006). L-ascorbate peroxidise play a role in defense 
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against oxidative stress and photooxidative stress (Vale et al., 2014). High 

proliferic samples showed higher abundant of ascorbate peroxidise and it is 

believed that it has better cellular adaptation compare to the low prolific samples. 

While, Superoxide dismutase (SOD) is an antioxidant and act as first line defense 

against reactive oxygen species (Alscher et al., 2002). Surprisingly, the study 

showed that low abundant of SOD were found in high prolific samples. This result 

supported by Dhir et al., (2014) who found that SOD decreased with the presence 

of ascorbate peroxidise which act as similar role to protect plant from oxidative 

stress. Meanwhile, young leaf samples contained ferritin chloroplast-like protein 

and unidentified protein. Two novel proteins that were unidentified had significant 

difference in mRNA expression and protein abundance.These proteins could be 

used as potential candidate markers in both protein and mRNA level for screening 

proliferic oil palm tissue cultures materials.  

 

 

Figure 6.11: Summary diagram on a group of proteins that exhibit significant in 

both mRNA expression and protein abundance level in high and low proliferation 

rate samples (*Upward arrow (↑) indicate high abundance and up regulated; 

downward arrow(↓) indicated low abundance and down regulated.  
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6.5 Conclusion 

 

 

There were a total of 19 protein candidates that showed significant difference in 

high and low proliferation rate samples that were undergone RT-qPCR analysis to 

study their corresponding mRNA expression level. These results were good as 

there were a total of 5 out of the 17 proteins candidates showed positives 

concordance between their mRNA expression and protein abundance. These 

proteins were triosephosphate isomerases, L-ascorbate peroxidase, and 

superoxide dismutase from old leaf samples. As for young leaf samples, the 

protein  that exhibited concordant correlation between mRNA expression and 

protein abundance pattern was ferritin chloroplast-like protein. For mRNA 

expression study, these proteins were significantly difference in expression level 

between high and low proliferation rate group (p-value < 0.05). These few proteins 

could be potential candidates as biomarkers to differentiate high and low proliferic 

starting material for oil palm tissue culture process. 
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CHAPTER 7 

GENERAL DISCUSSION AND CONCLUSIONS 

 

The aim of this study was to use the proteomic approaches to identify a group of 

proteins that exhibit significantly altered expression in the high and low proliferation 

rate groups of oil palm samples. This can aid more understanding on the biological 

processes that occurred in between the two different phenotypic characteristics of 

the palm. The phenotypic differences observed in these samples were their 

differences in proliferation performance during somatic embryogenesis in tissue 

culture process. Prior to applying proteomic approaches, the protein extraction 

protocols were optimised for the oil palm samples. The TCA/acetone extraction 

procedure provided the most efficient and reliable method for preparing samples 

for 2-DE protein separation for both young and old oil palm leaves. All the protein 

extracts were treated with nuclease mix (DNase and RNase) to remove nucleic 

acid contaminants. An optimal isoelectric focusing of 10,000 Vhr for pH 4-7 IPG 

strips that provided good focusing profiles for protein samples extracted from both 

young and old leaves. The 2D cleanup procedure showed a little improvement in 

the cabbage samples but not for the old leaf samples. 

 

Through the global profiling for the old leaf samples, 50 spots were assessed for 

potential alteration in expression level, out of these a total 27 proteins were 

identified. Most of the identified proteins were involved in photosynthesis and 

metabolism, followed by proteins involved in cellular biogenesis, stress response 

and lastly transportation function. Of proteins that have significantly altered 

expression between the high and low proliferations categories in the old leaves, 

there were a total of 16 protein spots found to be statistically different. In old leaf 

samples, mostly photosynthetic proteins were found to be highly expressed in high 

proliferation rate samples; this suggests that the photosynthesis rate for the high 
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proliferation palm is higher than the low proliferation palm. Apart from the 

photosynthesis proteins, in the young leaf samples, more stress responsive 

proteins were found to be expressed abundantly in high proliferation rate samples. 

Those proteins responding to pathogen attack and abiotic stress were highly 

expressed. It indicates that the high proliferation rate samples have higher 

expression in photosynthetic proteins and a higher ability toward the defense 

system in plant.  From these results, the assumption was made that the high 

proliferation rate samples have the ability to combat high stress environment with 

the ability to produce more stress responsive proteins. On the other hand, the high 

proliferation rate samples appeared to be able to make more food to improve the 

proliferation rate through their high photosynthetic capabilities.  

 

With the 2-DE gel approaches, most of the identified proteins are present 

abundantly in the leaf samples. In order to further analyse the low abundance 

proteins, PEG fractionation is a time and cost-effective method to eliminate the 

large abundance proteins. With the PEG fractionation, the hidden low abundance 

proteins were rendered visible on the 2-DE gels. From the PEG fractionation, there 

was an extra 24 protein spots found to be significantly abundance and 13 of these 

were successfully identified. This group of low abundance proteins were quite 

different as compared to the previous proteins that present in old and young leaf 

samples. Most of the F3 fractionated identified proteins were involved in enzymatic 

reactions of metabolic processes and some were stress response proteins. Thus, 

F3 proteins from the PEG fractionation provided another in depth degree of protein 

profiles which usually could not be observed using general total protein extraction 

methods. Indeed, analysis of the F3 proteome provided complementary results to 

the total protein extraction results on the proteins that have significant expression 

level differences between the high and low proliferation rate samples. Most of the 

previous studies focused only on the total protein extraction in particular species, 

different extraction methods will provide a more comprehensive overview of the 

proteins that are expressed differently in particular categories. From this 
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experiment, it is suggested that further extraction methods need to be used to 

study the biological function of a specimen at more in depth level. This will improve 

the findings and explore more deeply into a dynamic range of the protein 

population that has been expressed. 

 

With the aim to further understand on the biological function of the plant in high 

proliferation rate samples, it is interesting to investigate on the relationship 

between protein and mRNA expression for the differential proteins that were 

identified in old and young leaf samples. There were 17 protein candidates with 

significant differences in high and low proliferation rate samples that were chosen 

to undergo RT-qPCR analysis to study their corresponding mRNA expression level. 

These results showed that there were 6 out of the 17 protein candidates (35%) 

showed a positive correlation between their mRNA and protein levels. Hence, in 

this preliminary finding, the proteins, namely the triosephosphate isomerases, L-

ascorbate peroxidase as well as superoxide dismutase from old leaf samples, and 

from young leaf samples, a ferritin chloroplast-like protein that exhibited a linear 

correlation in their protein and mRNA expression patterns. These proteins have 

high potential to further investigate for large population screening and future 

validation as biomarkers in the high and low proliferation rate group samples.  

 

This preliminary study has found a group of proteins which exhibited 

significant differences at the proteome level between the high and low proliferation 

rate samples that were used as explants for tissue culture. In the oil palm 

industries, there are many individual private sectors with their own practise in the 

tissue culture laboratory. In this study, the oil palm samples within the high and low 

proliferation rate groups were obtained from two main companies which are UP 

and AAR. Prior to concluding the degree of potential utility of the potential 

biomarkers identified in this work, larger sample populations need to be collected 

and tested across a group of potential biomarkers in order to stand as an universal 

biomarker that can be applied in the commercial fields.  
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APPENDICES 

 

APPENDIX 1: Preparation for the reagents for silver staining 

 

Staining stage Final Concentration 

Fixative solution Acetic acid 10% 

  Methanol 40% 

  Top up with distilled water  

Sensitizer solution Sodium thiosulphate (STS)  0.2% 

  Sodium acetate 68 g/L 

Silver solution Silver nitrate 2.5 g/L 

Developing solution Sodium carbonate 25 g/L 

 (4°C) Formaldehyde 0.4% 

  Sodium thiosulphate (STS)  0.27% 

Stop solution Ethylenediamine- 

  tetraacetic acid (EDTA) 14.6g/L 
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APPENDIX 2(a): Bioanalyzer results for old leaves 

Sample 324 

 

Sample 1528 
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APPENDIX 2(b): Bioanalyzer results for young leaves 

 

Sample 194      Sample 352 

 

Sample 1086     Sample 984 
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APPENDIX 3(a): Statistical test for the RT-qPCR in Old leaves 

 

 
General Linear Model: 3305, 4202, ... versus Proliferation  
 
Factor         Type   Levels  Values 

Proliferation  fixed       2  H, L 

 

3305 
 

Analysis of Variance for 3305, using Adjusted SS for Tests 

 

Source         DF   Seq SS   Adj SS   Adj MS      F      P 

Proliferation   1  0.75527  0.75527  0.75527  44.01  0.001 

Error           5  0.08581  0.08581  0.01716 

Total           6  0.84107 

 

 

S = 0.131001   R-Sq = 89.80%   R-Sq(adj) = 87.76% 

 

Grouping Information Using Tukey Method and 95.0% Confidence for 3305 

 

Proliferation  N    Mean  Grouping 

H              3   0.370  A 

L              4  -0.294    B 

 

Means that do not share a letter are significantly different. 
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7304 
 

Analysis of Variance for 7304, using Adjusted SS for Tests 

 

Source         DF   Seq SS   Adj SS   Adj MS      F      P 

Proliferation   1  0.31804  0.31804  0.31804  37.67  0.002 

Error           5  0.04222  0.04222  0.00844 

Total           6  0.36026 

 

 
 

S = 0.0918860   R-Sq = 88.28%   R-Sq(adj) = 85.94% 

 

Grouping Information Using Tukey Method and 95.0% Confidence for 7304 

 

Proliferation  N    Mean  Grouping 

H              3   0.364  A 

L              4  -0.066    B 

 

Means that do not share a letter are significantly different. 
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7007 
 
Analysis of Variance for 7007, using Adjusted SS for Tests 

 

Source         DF   Seq SS   Adj SS   Adj MS      F      P 

Proliferation   1  0.50698  0.50698  0.50698  12.28  0.017 

Error           5  0.20646  0.20646  0.04129 

Total           6  0.71344 

 

 

S = 0.203204   R-Sq = 71.06%   R-Sq(adj) = 65.27% 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence for 7007 

 

Proliferation  N    Mean  Grouping 

H              3   0.376  A 

L              4  -0.168    B 

 

Means that do not share a letter are significantly different. 
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APPENDIX 3(b): Statistical test for the RT-qPCR in Young leaves 

 

 

One-way ANOVA: 12198  
 
Source  DF     SS     MS      F      P 

C1       1  4.876  4.876  19.39  0.012 

Error    4  1.006  0.252 

Total    5  5.882 

 

S = 0.5015   R-Sq = 82.90%   R-Sq(adj) = 78.62% 

 

 

Grouping Information Using Tukey Method 

 

C1  N    Mean  Grouping 

L   3  2.5995  A 

H   3  0.7965    B 

 

Means that do not share a letter are significantly different. 
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One-way ANOVA: 51068  
 
Source  DF     SS     MS      F      P 

C1       1  4.252  4.252  28.23  0.006 

Error    4  0.603  0.151 

Total    5  4.855 

 

S = 0.3881   R-Sq = 87.59%   R-Sq(adj) = 84.49% 

 

Grouping Information Using Tukey Method 

 

C1  N    Mean  Grouping 

L   3  1.8993  A 

H   3  0.2155    B 

 

Means that do not share a letter are significantly different. 
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