A Data-driven Learning Approach to

Image Registration

Mohammad Abdur R. Mustafa

Thesis submitted to the University of Nottingham for the degree of
Doctor of Philosophy

February 2016



Abstract

Handling large displacement optical flow is a remarkably arduous task. For
instance, standard coarse-to-fine techniques often struggle to adequately
deal with moving objects whose motion exceeds their size. Here we pro-
pose a learning approach to the estimation of large displacement between
two non-consecutive images in a sequence on the basis of a learning set
of optical flows estimated a priori between different consecutive images
in the same sequence. Our method refines an initial estimate of the flow
field by replacing each displacement vector by a linear combination of
displacement vectors at the center of similar patches taken from a code-
book built from the learning set. The key idea is to use the accurate flows
estimated a priori between consecutive images to help improve the poten-
tially less accurate flows estimated online between images further apart.
Experimental results suggest the ability of a purely data-driven learning

approach to handle fine scale structures with large displacements.
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Chapter 1

Introduction

1.1 Motivation

Image registration is the process of establishing correspondences between two or more
images (Crum et al., 2014). It is motivated by the hope that better or more informa-
tion can be extracted from an adequate merging of the images than from analyzing
them independently. It consists in transforming the input images until the relevant
image structures or features are correctly aligned. Based on the geometric flexibility
of the transformation, the image registration process can be divided into two cat-
egories, linear and non-linear. An image registration is linear when only rotation,
scaling, translation and shearing are allowed. Linear image registration can be ap-
plied, for instance, to register images of the same patient taken at different points in
time for tumor monitoring or functional imaging. This kind of registration is global
in nature and cannot model local geometric differences between images. On the other
hand, nonlinear image registration can locally transform the source image to align it
more accurately with the target image. For an example, it can be used to register the
Magnetic Resonance Image (MRI) of a patient’s scan to an anatomical atlas. In Fig-
ure 1.1, both linear and non-linear image registrations are performed using FMRIB’s
FLIRT and FNIRT respectively to transform a participant’s brain (the source image)
to a T1l-weighted average structural template image (the target image). The linear
transformation manages to correctly orient the source image but is not very accurate
overall and especially around the ventricles and at the sulcus level. The non-linear

model does a much better job at aligning the images.



Figure 1.1: Image transformations; (a) a source image; (b) the template image; (c)
linearly transformed source image; (d) non-linearly transformed source image.

Multiple images of subjects can be obtained at multiple times from multiple imag-
ing devices. These imaging modalities can be divided into two global categories:
anatomical and functional (Maintz and Viergever, 1998). Anatomical modalities
mainly show morphological information. Examples of this category include X-ray, CT
(Computed Tomography), MRI (Magnetic Resonance Imaging) , Ultrasound, CTA
(Computed Tomography Angiography) etc. Functional modalities show principally
the information of metabolism. SPECT (Single Photon Emission Computed tomog-
raphy), PET (Positron Emission Tomography), fMRI (functional MRI) are some of
the examples of this modality. It may be beneficial to accurately combine images of
these two categories to get more potential information. For instance, the registration
of a pre-operative CT image to an intra-operative X-ray image can be very helpful to
guide treatment.

Medical image registration technique is used to accurately align, and thus to
combine, multiple images. One of the earliest attempts to deal with non-rigid image
registration was made by Horn and Schunck (1980). Their method uses optical flow
to estimate the motion of intensity values across two images acquired with the same
modality. Optical flow is the spatial distribution of apparent velocities of movement
of brightness patterns in an image (Beauchemin and Barron, 1995). It assumes that
when a pixel flows from one image to another, its intensity (or color) does not change.
The optical low method calculates the motion between two image frames which are
taken at times ¢ and ¢ 4 dt at every voxel position. If a voxel at location (x,y,t) with
intensity I (x,y,t) moves after time §¢ from one image to other image by dz and dy

then the image constraint equation can be written as:

I(x,y,t) =1 (z+ dx,y+ 0y,t + dt) (1.1)



If the displacement is very small, we can apply Taylor series to expand this equa-

tion and get:
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where O? is the second or higher order terms. From these equations, it follows
that:

e+ S+ St =0 (13)
or
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where V,,, V, are the x and y components of the optical flow of I(x,y,t) and
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corresponding directions. if I,, I, and I; are the first order partial derivatives of

are the derivatives of images (or image gradients) at (z,y,t) in the

I (z,y,t), the optical flow equation becomes:

LV, +1V,+1,=0 (1.6)

or ,
LV, + 1LV, =—1I, (1.7)

where I, I,, and I; are the image gradient with respect to positions x, y and time
t (for detail see Fleet and Weiss (2006)). This is one equation with two unknowns,
which cannot be solved as such.

Equation 1.7 has two unknowns which cannot be solved without another equation
or constraint. This is known as the aperture problem of the optical flow algorithms
(Movshon et al., 1985).



True motion
—

True motion

Figure 1.2: Aperture problem; three gratings (a), (b) and (c¢) are moving in three
directions (i.e. true motion). When viewed through a small circular aperture, all
three gratings appear to move in the same direction (i.e. perceived motion) which is
perpendicular to the orientation of the lines in the gratings.

Figure 1.2 illustrates the aperture problem. Three gratings (Figure 1.2a, b and
¢) have same pattern of parallel lines. These gratings are moving in three different
directions. If we see through a small aperture, all three gratings appear to have a
motion in the same direction, which is perpendicular to the orientation of the lines
in the gratings (Barron et al., 1994). Given the constrain in equation 1.7, where we
have two unknowns, we can only determine the flow perpendicular to the orientation
of the lines in the gratings, but we cannot determine the motion on other directions.
This failure to accurately detect the true direction of motion is called the aperture
problem.

To find the optical flow from Equation 1.7 another set of equations is needed,
given by some additional constraint. Most optical flow methods introduce additional
conditions for estimating the actual flow. For instance, Horn and Schunck introduced
a global constraint of smoothness to solve this equation (for detail see 2.1.2). It
assumes smoothness in the optical flow over the whole image. It tries to minimize
distortions in flow and prefers solutions which show more smoothness.

Most of the attention devoted to optical flow has been dedicated to addressing
the shortcomings of the initial HS formulation such as outliers (Black and Anandan,
1996; Brox et al., 2004; Lempitsky et al., 2008; Wedel et al., 2009a); lighting changes
(Brox et al., 2004; Lempitsky et al., 2008; Zimmer et al., 2009; Wedel et al., 2008);
over-smoothing (Xiao et al., 2006; Black and Jepson, 1996; Zitnick et al., 2005; Xu
et al., 2008) and non-convex energy minimization (Black and Anandan, 1996; Boykov
et al., 2001; Trobin et al., 2008)). Despite the variety of methods, there are many

occasions where most of these techniques may not estimate an accurate dense corre-



spondence field between images. Examples of such cases are motions of untextured
areas, aliasing, occlusions etc. (see Butler et al. (2012)) or, crucially, flows with large

displacements, which is the focus of this thesis.

1.1.1 Handling large displacements

The original Horn and Schunck (HS) framework can only handle small motions as
the linearization of the data term only holds for small magnitude velocities. In the
presence of large displacements, this method may not estimate motion correctly as
image gradient is not smooth enough. For large displacements, matching pixels fur-
ther apart rapidly becomes a computationally intensive problem as the number of
potential matches grows quadratically with the magnitude of the largest recoverable
displacement. Figure 1.3 illustrates how HS method struggles with large displace-
ments. In this example we use a pair of images from the Temple3 sequence in the
MPI-Sintel dataset (rendered scenes from the Durian Open Source Movie Project;
for detail see section 2.3.3) where the wings of a dragon undergo large displacements
(see Figure 1.3a and b). The basic HS method cannot estimate a correct flow as
matching pixels are too far apart (see Figure 1.3d). Figure 1.3g shows the color code
map where the color represents the orientation of the vector and brightness stands

for its magnitude.

A popular way to address this intrinsic limitation is to adopt a coarse-to-fine (or
pyramidal) strategy (Anandan, 1989; Enkelmann, 1988; Fleet and Weiss, 2006). Un-
der such scheme, the flow can be estimated at the coarsest scale of a Gaussian pyramid
first. As the images are downsampled, the velocity decreases. Thus, derivatives can
be used to estimate the residual velocity progressively at the finer scales. The flow is
iteratively refined on the downsampled images with the underlying assumption that
the residual motion field at each scale satisfies the linearization constraint since the
motion field between the images is scaled together with the images.

A synthetic example is given in Figure 1.4, which illustrates the coarse-to-fine
approach for large displacement. The images consist of a gray moving disc. As
the images are downsampled (each time image size is reduced by half), the distance
between the discs decreases, which eventually makes it possible to estimate a flow (at
the coarsest scale). Figure 1.3e shows that compared to the original HS method, HS

with coarse-to-fine approach estimates a more accurate flow.



(g)

Figure 1.3: An example from the Temple3 sequence in the MPI-Sintel dataset where
standard optical flow methods struggle to accurately estimate large displacements
of small structures: (a) source frame; (b) target frame; (c) source (in green) super-
imposed on target image (in red); (d) flow estimated with basic Horn-Schunck method
without coarse-to-fine approach; (e) Horn-Schunck method with coarse-to-fine ap-
proach; (f) ground truth flow; (g) flow field color coding: the color represents the
orientation of the vector and brightness stands for its magnitude.
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Image size is reduced by h

Image size is reduced by bAlf
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Figure 1.4: A synthetic example demonstrates the coarse-to-fine (or pyramidal) ap-
proach to large displacement. Two images of a gray moving disc are super-imposed.
Images are progressively downsampled. Each time image size is reduced by half.
Coarser images are shown in the higher level of the pyramid. Displacement between
source and target (indicated by the arrow) becomes smaller in the downsampled im-
ages.

However, since fine scale image structures may become invisible at coarser scales,
coarse-to-fine approaches cannot reliably estimate the flow of structures whose motion
is larger than their size (Wulff et al., 2012). That is the case with the red rectangle

in Figure 1.4, which rapidly disappear from the progressively downsampled images.

This realisation led to the development of new methods capable of handling large
displacements of fine structures. For instance, Alvarez et al. (2000) used a linear scale-
space focusing strategy to increase the robustness to local minima. Steinbrucker et al.
(2009) avoided coarse-to-fine warping and linearization altogether by decoupling the
data and regularisation terms and alternatively optimising them. Brox and Malik
(2011) complemented the standard continuation method with rich local descriptors
(such as SIFT or HOG). Along similar lines, Xu et al. (2012) also used SIFT to gen-
erate candidate flows which were then fused together and integrated to the ordinary
optical flow.

But descriptor based approaches have limitations too. Regions with weak tex-
ture often do not produce reliable keypoints. Also highly repetitive structures can
create ambiguity for the descriptor matching. The synthetic example in Figure 1.5

illustrates a situation where a descriptor matching based method cannot decide by
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Which one is correct?
( \
(a) (b) (e) (d) (e) (f)

Figure 1.5: An ambiguous registration situation; (a) source image; (b) target image;
(c), (d), (e) and (f) four possible registered source images. Which one is correct?

(b) (c)

Figure 1.6: Dynamic MRI scans: (a) source frame; (b) target frame; (c) target frame
(in red) on top of source frame transformed using LDOF flow (in green).

itself what the correct transformation is. Figure 1.6 displays an example with a 2-D
dynamic Magnetic Resonance Imaging (AMRI) scan of a healthy volunteer breathing
normally in a Siemens 1.5T scanner. To estimate the transformation, we used the
Large Displacement Optical Flow (LDOF) method (Brox and Malik, 2011) which
matches local descriptors. Figure 1.6¢ displays the target frame (in red) on top of
source frame transformed using LDOF flow (in green). LDOF managed to recover
most of the motion between frames (both vertical breathing motion and the heart con-
traction), but it produced poorly regularized flow due to ambiguity of local descriptor

(see the region highlighted with a white rectangle in Figure 1.6¢).

1.1.2 Learning Optical Flow

Whilst considerable efforts have been expanded to improve flow estimation using
techniques like coarse-to-fine approaches and feature descriptors, learning approaches
have only attracted limited attention to date. Simoncelli et al. (1991) first introduced

a probabilistic framework to estimate the deviation of the estimated flow from the
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true flow. Black et al. (1997) extracted orthogonal basis flow fields using principal
component analysis to learn parameterized models of image motion. Xue et al. (2006)
coupled PCA with wavelet-based decomposition to learn dense deformation fields
when a limited number of training images are available. Freeman et al. (2000) learned
the parameters of a Markov network from a training set and used a Bayesian belief
propagation approach to estimate the flow of amorphous blobs. Roth and Black’s
(Roth and Black, 2007a) Field of Experts also relied on Markov random fields to
model the spatial statistics of optical flow fields. Sun et al. (2008) modelled both
spatial and brightness statistics using a steerable random field. Li and Huttenlocher
(2008a,b) developed a proposed Markov Random Field model of optical flow and
proposed a technique that learns parameters of the model. Their method minimizes
training loss that occurs due to unseen or unmatched data, for instance data that
appears due to occlusion. To overcome similar problem with occlusion, Mac Aodha
et al. (2013) introduced a supervised learning approach that learns confidence measure
for optical flow.

To the best of our knowledge, none of these methods were designed to handle
large displacements. Here we propose a data-driven, learning approach to motion
estimation capable of dealing with those. We focus on the computation of the optical
flow between two non-consecutive images in a sequence on the basis of a learning set
of optical flows carefully estimated a priori between different consecutive images in
the same sequence. Rather than learning a statistical model of the flow, we propose
to refine an initial estimate of the flow field by replacing each displacement vector by
a linear combination of displacement vectors at the centre of similar patches taken
from an a priori code-book. The key idea is to use the accurate flows estimated «
priori between consecutive images to help improve the potentially less accurate flows
estimated online between images further apart. In common with recent developments,
our approach does not require a coarse-to-fine or warping strategy, which makes it
possible to handle fine scale structures with large displacements.

The contributions of this thesis are (1) to analyze current flow models and methods
to understand how they deal with large displacements; (2) to formulate an algorithm
that estimates transformations using a learning set of optical flows taken from care-
fully estimated a priori between different consecutive images; (3) to compare the
performances of the proposed algorithm against those of state-of-the-art methods.

There were not online codes available for LK 3-D and HS 3-D methods. The
codes developed for the experiments in thesis are available at Matlabcentral (math-
works.co.uk/ matlabcentral/ fileexchange/ authors/ 257136). There are four set of



codes; they are:
1. Horn-Schunck optical flow method for 3-D images
2. Lucas-Kanade optical flow method for 3-D images
3. Lucas-Kanade optical flow method with pyramidal approach for 3-D images

4. Lucas-Kanade optical flow method with weighted window approach for 3-D

images

1.2 Thesis Overview

In chapter 2, we present a general overview of image registration techniques. We
implemented Horn-Schunck and Lucas-Kanade and experimented with several estab-
lished registration techniques (Median Filtering, LDOF, DeepFlow) as a means to
familiarize ourselves with their advantages and drawbacks. In particular, we explore
the practical issues related to optical flows for large displacement. Then we introduce
the datasets that we used in our experiments. At the end of this chapter, we discuss
the experimental setup and how to estimate registration accuracy.

In chapter 3, we present our learning approach to optical flow estimation. We
detail its various components and explore their contributions and drawbacks. In
particular, we introduce and compare different patch similarity measures, explore the
issue of oversmoothing and propose vector composition of pairwise deformation field
as a means to overcome it.

In chapter 4, we assess the performance of the codebook of patches. We also
discuss various features related to codebook of patches, and in particular the perfor-
mances of several manifold learning techniques and different clustering algorithms.

In chapter 5, we discuss about patch similarity measures of spatial distance and
intensity and assess their performance.

Finally, in chapter 6, we discuss the overall strengths and limitations of our ap-
proach. We conclude by scrutinizing what questions have been answered and what
questions are still open. In doing so, we point to a number of future directions for

our work.
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Chapter 2
Background

In this chapter, we present a general overview of optical flow methods and explore the
practical issues related to large displacement. We review previous learning approaches
to optical flow estimations. We also describe the datasets that we are going to use
in our experiments. Finally, we discuss how to compare the performances of flow

estimation methods.

2.1 Estimating Optical Flow

We first discuss two fundamental optical flow techniques, Horn-Schunck and Lucas-
Kanade, and analyze the way they deal with large displacements. We then review
more modern approaches such as Median Filtering method, LDOF and DeepFlow,

which form the current state-of-the-art.

2.1.1 Lucas-Kanade (LK) Optical Flow

The Lucas-Kanade method (Lucas and Kanade, 1981) assumes that the flow is essen-
tially constant in a local neighbourhood of the pixel under consideration. It uses a
least squares criterion to solve the basic optical flow equations for all the pixels in that
neighborhood. Therefore, the local optical flow vector (V;, V) in that neighborhood

must satisfy:

(2.1)



where p1, po, ..., p, are the pixels inside the block, and 1, (p;) , I, (pi) , 11 (p;) are the
image gradient of the image [ with respect to position x,y and time ¢t evaluated at
the point p; and at the current time. Here, we have more equations than unknowns
and thus the system is over-determined, which typically creates an aperture prob-
lem (Beauchemin and Barron, 1995) (for detail see appendix A). To overcome this

problem, Lucas and Kanade estimate an approximate solution using a least squares

approach:
Vy Zz Iy (pz) I, (Pz) Zz I, (Pi)2 - Z, I, (Pi t \Pi

where 7 =1 to n.

Note that LK cannot provide the information of optical flow inside blocks.

Figure 2.1 shows an example where LK is used to estimate motion between two
frames from the Temple3 sequence in the MPI-Sintel dataset. Figure 2.1a shows the
source image (in green) super-imposed on target image (in red). The ground truth
motion is given in Figure 2.1b. Figure 2.1c shows the registered source image (in
green) super-imposed on the target image (in red) and Figure 2.1d shows the color
coded LK flow field. That field is not very accurate as image flow vectors (V,,V},) of
motions of the wings of the dragon between the two frames are larger than the local
neighborhood window and thus violate the assumption that the flow is constant in a

local neighborhood (see section 2.1.3 for detail).

2.1.2 Horn-Schunck (HS) Optical Flow Method

The Horn-Schunck framework solves the aperture problem by introducing a global
constraint of smoothness (Horn and Schunck, 1980). This approach tries to minimize
the irregularities in the optical flow by favouring solutions that maximize smoothness.
The optical flow is formulated as a global energy functional, which is minimized. For

a pair of two-dimensional images, this function is given as:

E(Vx,Vy)://[(IxV$+IyVy+It)2+oz2 (IVV I + IVV,IP)] dady  (2.3)
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Figure 2.1: MPI-Sintel Temple3: (a) source image (in green) super-imposed on target
image (in red); (b) ground truth motion; (c) source image registered using basic
LK (in green) super-imposed on target image (in red); (d) flow estimated by basic
LK method without coarse-to-fine approach; in each level of pyramid image sizes are
reduced by half; (e) source image registered using LK with coarse-to-fine approach (in
green) super-imposed target image (in red); in each level of pyramid image sizes are
reduced by half; (f) flow estimated by the LK method with coarse-to-fine approach;
(g) flow field color coding: the color represents the orientation of the vector and
brightness stands for its magnitude.
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where I, and I, are the derivatives of the image intensity values along the x and y
coordinates respectively. I; is the derivative along time dimensions, 7 = Vs, Vy]T is
the optical flow vector, and « is the regularization constant. Larger values of « yield
smoother flows.

If the flow information is missing in inner parts of homogeneous objects, HS can
fill in that part from the flow at the boundaries as it is a global optical flow method.
However, it is more susceptible to sudden change of motion direction than local optical
flow methods because the smoothness term does not allow for sharp discontinuities in
the motion field (Bruhn et al., 2005). In Figure 2.2, HS is used to estimate the motion
between the same two frames of the previous example from the Temple3 sequence.
Figure 2.2b shows the color coded ground truth motion. The estimated flow is shown
in Figure 2.2d. The registered source image (in green) is super-imposed on the target
image (see and Figure 2.2¢). Unlike LK (Figure 2.1c), the HS flow field is smoother
and it fills in the inner parts of homogeneous objects such as the body of Sintel, the
female protagonist in Figure 2.2c. Even then, HS is not very accurate as motions of

the wings of the dragon are still very large for the optical flow assumption to hold.

2.1.3 The Large Displacement Challenge

Recall that the flow equation is:

LV, +1,V, = —1I, (2.4)

where V,, V, are the z and y components of the optical flow of I(x,y,t), and I,
I, and I, are image gradient with respect to positions x, y and time ¢, i.e. directional
changes in the intensity (or colour). Image gradients can be computed using many
different operators such as Sobel, Prewitt, Central Difference gradient, Intermediate
Difference gradient or Roberts gradient amongst others. Most of these operators use
intensity values in a small neighborhood around each pixel. For instance, the Sobel
and Prewitt operators use intensity values in a 3x3 region around each image point to
approximate the corresponding image gradient. The flow equation can handle motions
as long as the linearization of the data term holds, i.e. for small magnitude velocities.
Indeed, when the displacements become larger, the gradients are not smooth any

longer and an accurate estimate of the motion may not be found. Figure 2.3b shows
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Figure 2.2: The HS approach: (a) source image (in green) super-imposed on target
image (in red); (b) ground truth motion; (c¢) source image registered using HS (in
green) super-imposed on target image (in red); (d) flow estimated with basic HS
method without coarse-to-fine approach; in each level of pyramid image sizes are
reduced by half; (e) source image registered using HS with coarse-to-fine approach
(in green) super-imposed target image (in red); in each level of pyramid image sizes
are reduced by half; (f) flow estimated the HS method with coarse-to-fine approach;
(g) flow field color coding: the color represents the orientation of the vector and
brightness stands for its magnitude.
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Figure 2.3: Image gradients: (a) source image (in green) super-imposed on the target
frame (in red); (b) magnitudes of the image gradients of source and target frames
estimated using the Intermediate Difference method.

the image gradients of frames #7 and #8 from the Temple3 sequence of MPI-Sintel
dataset. We compute the image gradients using the Intermediate Difference operator
and super-impose them on each other. Clearly, the wings of the flying dragon have
relatively large motion (at least 6 pixels between two frames), which is not small

enough for the optical low assumption to hold.

One standard approach to solve this problem is to apply a coarse-to-fine (or pyra-
midal) strategy where images are downsampled iteratively so that the large displace-
ments become smaller with respect to the displacements in the original image before
downsampling, and to apply the flow equation on the downsampled images (for detail
see section 1.1.1). Estimated transformations are upscaled and refined accordingly.
In Figure 2.4 the pair of frames (#7 and #8) from Temple3 are downsampled twice.
Each time image sizes are reduced by half. Consequently, the displacements become
smaller with respect to the displacements in the image before downsampling. The
magnified images show that after downsampling twice, the distance between the body
of the flying dragon in the two consecutive frames has reduced enough for the flow
equation to be used to adequately estimate the motion. By further downsampling the
frames we can to deal with even larger displacements. Figure 2.1d and 2.2d show the
results of using a multilevel coarse-to-fine approach with LK and HS, which produce

better estimations compared to the results without coarse-to-fine approach.

2.1.4 Sun’s Median Filtering Method (SMF)

Sun’s Median Filtering Method (SMF) is a good illustration of a modern optical flow

technique. After an extensive review of the recent developments of optical flow meth-
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Figure 2.4: Coarse to fine approach: (a) super-imposed image gradients of frame #7
and #8 with magnified view of the dragon on the right; (b) downsampled by half; (c)
further downsampled by half.
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ods, Sun et al. (2013) proposed to extend the original work of Horn and Schunck
(1980) with an asymmetric pyramidal approach where images are downsampled hor-
izontally and vertically in different proportions.

Recall that, with optical flow, we make the assumption that every object has the
same brightness or intensity before and after the displacement when computing the
apparent velocities of movement. Unfortunately, the brightness of a same object can
be different in different images. For instance, Figure 2.5 shows frame #5 and #10 from
the Market2 sequence in MPI-Sintel dataset. The red rectangles show patches where
the brightness of a walking man changes due to shading. In the shade, the intensity
of the walking man became similar like other objects around it. Therefore, in those
patches, the image gradient finds no difference of intensity. In other words, the use
of image gradients is therefore not helping here (see Figure 2.5d). Consequently, the
HS flow field, with a coarse-to-fine approach (in each level of pyramid image sizes are

reduced by half), is not very accurate (see Figure 2.5f).

To deal with this issue, the SMF techniques first pre-processes the input images
following the method proposed by Wedel et al. (2009b). They use an image decom-
position method, which linearly combines the texture (i.e. fine scale-details) and
structure components (i.e. the main large objects in the image). This captures the
intensity value artifacts generated by shading reflections and shadows. Figure 2.6
illustrates such a structure-texture decomposition. The expectation is that shadows
show up only in the structural part, i.e. the main large objects. The hope is then that
the computation of optical flow using the textural part of the image is not perturbed

by shadow and shading reflection artifacts.

In terms of the regularization parameter, SMF uses a Lorentzian penalty function
p(x) = log <1 + %), which was originally proposed by Black and Anandan (1996).

Consequently the objective function of equation 2.3, in its discrete form, becomes:

E(u,v) =32 {pp (I (4,5) — L2 (i + wi g, j + vij))

A [ps (Wi — tigrj) + ps (Wij — Ui 1) + ps (Vij — Vigrj) + ps (Vij — Vijy1)]
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Figure 2.5: Large displacement and HS: (a) frame #5 from sequence Market 2 from
MPI-Sintel; (b) image gradient of frame #b5; (c) frame #10; (d) image gradient
of frame #10; (e) frame #5 (in green) super-imposed on frame #10 (in red); (f)
estimated motion using HS with coarse-to-fine approach; in each level of pyramid
image sizes are reduced by half. Red rectangles shows the patches where the brightness
of a man changed due to shading, consequently image gradient can not differentiate
the man and HS flow field is not very accurate; (g) flow field color coding: the color
represents the orientation of the vector and brightness stands for its magnitude.
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(a) Original image (b) Structure part (c) Texture part

Figure 2.6: The Mequon sequence from Middlebury dataset; the original image is
decomposed into a structural part and a textural part.

AN D Y (g — g |+ [ v —va g )} (2.5)
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where v and v are the horizontal and vertical components of the optical flow
field to be estimated from the source and target images I; and Io; i, j indexes a
particular image pixel location, u; ; and v; ; are elements of u and v respectively, A is
a regularization parameter, and pp and pg are the data and spatial penalty functions,
N, ; is the set of neighbors of pixel (i,7) in a possibly large area and Ay is a scalar
weight.

This method applies a median filter to intermediate flow values during incremental
estimation and warping, which, according to Wedel et al. (2009b), successfully discard
the outliers from the intermediate flow values. The method also adds a non-local term
to compensate for the increase of energy in the objective function due to median
filtering.

However, the SMF coarse-to-fine framework has limitations. As mentioned above,
small structures may disappear at the coarser level. Therefore it may not estimate
accurately their displacements. Moreover, since SMF uses median filter centred on
a thin structure, the flow field gets dominated by the surrounding intensity values
and suffers from over-smoothing. Figure 2.7c shows that small structures, such as
the different parts of the flying dragon, disappear in the downsampled images, which

yield a not very accurate estimated flow (see Figure 2.7d).

2.1.5 Brox and Malik’s Large Displacement Optical Flow (LDOF)
Method

To deal with the large flows, Brox and Malik (2011) proposed to incorporate infor-

mation from image descriptors about shapes, colors or texture into a coarse-to-fine
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optical flow framework. Their method, Large Displacement Optical Flow (LDOF),
uses Scale-Invariant Feature Transformation (SIFT) (Lowe, 2004), which detects lo-
cal features in images and Histogram Oriented Gradients (HOG) (Dalal and Triggs,
2005), which also describes local image features like SIFT, but computed on a dense
grid of uniformly spaced cells and uses overlapping local contrast normalization for
improved accuracy. After adding information derived from image descriptors to the
coarse-to-fine approach of Horn and Schunck (1980), the objective function (see equa-

tion 2.3) becomes:
E(w(z) = [V ([l2(x +w(r) — L (2) *) do

+v [ O (VL (2 +w(x)) — VI (z)]?) dx

+6 32 [ 0y (2) W ((u(2) = u; (2))° + (v(2) = v; (x))°) da

+a/\l’ (IVu (@) 2+ [Vo @) 2 + g (2)?) de (2.6)

where w(x) = (u,v) is the displacement field between the source, I;, and target
image, I, * = (z,y) denotes a point in the image. (u;,v;) (z)is one of the motion
vectors derived at position z by region matching (j matching nearest 5 nearest neigh-
bors). a = 100, f = 25 and v = 5 are tuning parameters (as suggested by Brox
and Malik (2011)), they steer the importance of smoothness, region correspondences,
and gradient constancy, respectively. If there is no correspondence at this position,

pj (x) = 0. Otherwise, p; (z) = ¢; where,

12(i)—d2(i,j 7/
¢; (i) = i ) >0 27)

0 else
Here, d? (i, j) is the Euclidean distance between the two patches after deformation
correction and d? (i)is the average Euclidean distance among the 10 nearest neighbors.
W (s?) = v/s2+10-C in order to deal with outliers in the data as well as in the
smoothness assumption as suggested by (Brox et al., 2004) and g (z) is boundary

map as recommended by (Arbelaez et al., 2009).

Figure 2.8d shows the estimated motion between frame #7 and #8 from the
Temple3 sequence using LDOF. For the motion between this pair of images, LDOF
shows better estimation than SMF. However, it does not adequately estimate the

motions of small structures like fingers and hair due to ambiguous and false matching

21



(e)

Figure 2.7: The SMF approach: (a) super-imposed image gradients of frame #7

and #8; (b) ground truth flow; (c) frames are downsampled to %6 of their sizes and

zoomed; (d) flow estimated using SMF; (e) flow field color coding: the color represents
the orientation of the vector and brightness stands for its magnitude.

(see Figure 2.7d). Further analysis of the performance of LDOF is discussed in section

2.1.6 DeepFlow

Weinzaepfel et al. (2013) proposed to improve LDOF by using a deep matching al-
gorithm based on a multistage architecture, uses inter-leaving convolutions and max-
pooling. Unlike LDOF, DeepFlow does not use HOG which a rigid descriptor. Rather,
it normalizes the data term to downweight the impact of locations with high spatial
image derivatives. In the coarse-to-fine approach, it uses different weights at each
level to downweight at finer scales based on feature matches as proposed by Stoll
et al. (2013). This method considers the matching energy of the baseline method
that allows to reliably identify locations where feature matches can be particularly

useful and thus enables to sort out unreliable matches before the integration. Figure
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Figure 2.8: The LDOF approach: (a) frame #7 (in green) super-imposed on frame
#8 (inred); (b) ground truth flow; (c) registered image using LDOF (in green) super-
imposed on target image (in red); (d) estimated flow; (e) flow field color coding: the
color represents the orientation of the vector and brightness stands for its magnitude.

2.9d shows the estimated motion between frame #7 and #8 using DeepFlow. Unlike
LDOF, DeepFlow can identify image features of the fingers and estimates motion of
the fingers better than LDOF.

Descriptor matching algorithms often suffer from ambiguity. In particular, images
with highly repetitive structures may create several matches in a local neighborhood
and the algorithm may not be able decide the correct transformations. Also, regions
with weak texture often do not yield reliable image features and so their correspon-
dence is ambiguous. Figure 2.9d illustrates such a case where repetitive small struc-
tures like the hair of Sintel, the female protagonist, create ambiguity for DeepFlow.

Consequently, it cannot estimate a very accurate motion.
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(e)

Figure 2.9: The DeepFlow approach: (a) frame #7 (in green) super-imposed on frame
#8 (in red); (b) estimated motion using DF; (c) registered image using DF (in green)
super-imposed on target image (in red); (d) ground truth motion; (e) flow field color
coding: the color represents the orientation of the vector and brightness stands for
its magnitude.

24



(b) (c)

Figure 2.10: The optical flow assumption: (a) frame #10; (b) frame #11; (c¢) ground
truth deformation field. Note how the intensity of small structures stays constant
across the two consecutive frames and how regular the vectors in a small neighborhood
are in the ground truth deformation field.

2.2 Learning The Optical Flow

To improve optical flow estimation, most current methods use mainly two constraints
on image motion: data conservation and spatial coherence. The data conservation
constraint is based on the idea that the surfaces of objects generally persist in time
and the intensity structure of a small region in one image remains constant over
time, although its position may change (Black and Anandan, 1996). The spatial
coherence constraint is derived from the observation that surfaces have spatial extent
and neighboring pixels in an image are likely to belong to the same surface. Since the
motion of a neighborhood on a smooth surface transforms gradually in most of the
cases, smoothness can be enforced on the motion of neighboring points in the image
plane (Horn and Schunck, 1980). Figure 2.10 shows the ground truth deformation
field of two consecutive frames (#10 and #11) from Grove2 sequence of Middlebury
dataset. Small intensity structures in the frames remain almost constant over time

and vectors in small neighborhoods are very regular.

A great deal of work in the field of optical flow has been devoted to improving
both the data conservation and spatial coherence. However, learning approaches have
only attracted limited attention to date. Simoncelli et al. (1991) first introduced a
probabilistic framework to compute image gradients. Their model produces flow vec-
tor confidence information and uses it to address the problem of inherent uncertainty
of optical flow. It uses a Gaussian noise model to compute the maximum likelihood
of the estimated motion.

To address the problem of motion discontinuity, Black et al. (1997) proposed a

framework for learning parameterized models of image motion. This method uses
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Principal Components Analysis (PCA) to compute a low-dimensional model for spa-
tial structure of the flow fields. Motion discontinuity is recovered with a linear com-
bination of a small number of the basis motions taken from a training set.

Xue et al. (2006) proposed a statistical model of deformation (SMD) that uses
an a priori statistics of high-dimensional displacement fields to improve accuracy
of image registration. It utilizes wavelet-based decompositions coupled with PCA
in each wavelet band to compute probability density function of high dimensional
deformation fields. This method can improve accuracy of image registration even
with a relatively small number of training samples.

Freeman et al. (2000) introduced a learning-based method for estimating motion
of low-level vision. This method models relationships between neighboring image
patches using a Markov network by assigning each patch as a node connected by
lines. It solves the Markov network with a learning phase where the parameters of
the network connections are learned from training data. These learned parameters
are used in a Bayesian belief propagation approach that estimates the flow.

Roth and Black (2007a) also proposed to use Markov random fields (MRF) to
model the spatial statistics of optical flow fields. Their method incorporates the
Field of Experts (FoE) of flow priors into standard optical flow algorithm and obtains
statistically significant accuracy improvements (FoE is a model of prior probability
of images and optical flow fields (Roth and Black, 2005)). In contrast to other MRF
models, it uses larger cliques of pixels (a subset of vertices of an undirected graph
where every two vertices in the subset are connected by an edge). This method learns
the appropriate clique potentials from training data. The learned cliques are used as
a spatial regularizer for final flow estimation.

Sun et al. (2008) introduced a method that models both spatial and brightness
statistics using a Steerable Random Field (SRF) (Roth and Black, 2007b). By using
naturalistic training sequences with ground truth flow it develops a learning frame-
work of optical flow that captures the spatial statistics of the flow field, the statistics
of brightness inconstancy and the relation of flow boundaries to the image intensity
structure. Image intensity boundaries are used to improve the accuracy of optical
flow near motion boundaries and SRF' are utilized to model the conditional statistical
relationship between the flow and the image sequence. It also incorporates a statis-
tical model of the data term by extending the Field-of-Experts formulation (Roth
and Black, 2005) to the spatio-temporal domain to model temporal changes in image

features.
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Li and Huttenlocher (2008a,b) presented a continuous-state MRF model of optical
flow (proposed by Szeliski (1990)) by minimizing the training loss for a set of ground-
truth images using Simultaneous Perturbation Stochastic Approximation (SPSA)
(Spall, 1992). It uses SPSA to minimizes the training loss that occurs due to unseen or
unmatched data, for instance data that appears due to occlusion. This method does
not require approximations to address the intractable nature of maximum-likelihood
estimation.

To overcome the same problem of unmatched data with occlusion, Mac Aodha
et al. (2013) introduced a supervised learning approach that learns confidence mea-
sures for optical flow. Their method estimates a per-pixel confidence for optical flow
vectors that are comprised of multiple different measures, incorporating a broad range
of motion and appearance cues and the photoconstancy residual.

To the best of our knowledge, none of these methods used learning approach to
handle large displacements. In this thesis, we introduce a novel learning approach
to optical flow capable of dealing with large displacements. We propose to refine an
initial estimate of the flow field by replacing each displacement vector by a linear
combination of displacement vectors at the centre of similar patches taken from an a
priori code-book. This approach does not require a coarse-to-fine or warping strategy,

which makes it possible to handle fine scale structures with large displacements.

2.3 Datasets Used in Our Experiments

As our plan is to learn motions from a learning set of a priori registered images, we
chose datasets consisting of image streams with motion; for instance, frames from a
video sequence with moving objects or thoracic images with periodic cardiac motion.
We used two datasets exhibiting thoracic and cardiac motions: a 2-D dynamic MRI
scan and a 3-D gated CT scan. Unfortunately, these datasets do not offer ground
truths of pair-wise motions. Since ground truth motion is invaluable in quantifying
the accuracy of the estimated transformations (see section 2.4 for detail), we also used
the synthetic MPI-Sintel dataset (http://sintel.is.tue.mpg.de/) with publicly available
ground truths.

2.3.1 2-D Dynamic Magnetic Resonance Imaging Dataset

The 2-D dMRI consists of a series of 300 sequential MR images of the thorax of a

volunteer breathing normally in a Siemens 1.5T scanner. These images exhibit both
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respiratory and cardiac motions. All images are 64 x64 pixels in size. This anonymised
dataset has been provided by Mirada Medical (www.mirada-medical.com). Mirada
Medical is one of the collaborators of this PhD.

Learning set

We prepared 30 trials from this dataset (see Table 2.1). Column 1 shows the trial
index, learning sets are given in column 2, column 3 and 4 mention the nature of
respiratory and cardiac motions occurred in the learning set respectively. Unless oth-
erwise stated, we used our own implementation of the original Lucas-Kanade optical
flow method with coarse-to-fine approach (in each level of pyramid image sizes are re-
duced by half) to register the consecutive images and generate pair-wise deformation
fields for the learning set. We specifically selected frames in those periodic sequences
which exhibit the largest displacements, taking into account the period indeed, to
make sure we did not test images which were similar even though they were far apart

in the sequence.

Test Cases

Column 4 shows the test cases which are disjoint set from the learning set. In the test
cases, we chose source and target images that had large displacements in the dynamic
MR scans.

Table 2.1: List of trials

Trials learning set Respiration Cardiac motion Test case
1 Images Inhalation 41 to 46 Systole phases 41, 43, 45; Diastole Source: 82
41 to 46 phases 42, 44, 46 Target: 83
2 Same as Same as above Same as above Source: 83
above Target: 84
3 Images Exhalation 46 to 51 Systole phase 47, 49, 51; Diastole Source: 72
46 to 51 phase 46, 48, 50 Target: 73
4 Images Exhalation 51 to 53; Systole phases 51, 53, 55; Diastole Source: 92
51 to 56 Inhalation 54 to 56 phases: 52, 54, 56 Target: 93
5 Same as Same as above Same as above Source: 161
above Target: 162
6 Images Exhalation 60 to 65 Systole phases 61, 63, 65; Diastole Source: 53
60 to 65 phases: 60, 62, 64 Target: 54
7 Same as Same as above Same as above Source: 78
above Target: 79
8 Same as Same as above Same as above Source: 79
above Target: 80
9 Same as Same as above Same as above Source: 100
above Target: 101
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10 Same as Same as above Same as above Source: 102
above Target: 103
11 Images Exhalation 77 to 80 Systole phase 77, 79, 81; Diastole Source: 108
77 to 82 Inhalation 80 to 82 phase 78, 80, 82 Target: 109
12 Images Exhalation 90 to 93 Systole phase 91, 93, 95; Diastole Source: 76
90 to 95 Inhalation 94 to 95 phase 90, 92, 94 Target: 77
13 Same as Same as above Same as above Source: 106
above Target: 107
14 Same as Same as above Same as above Source: 235
above Target: 236
15 Images 90 to Exhalation 90 to 93 Systole phase 91, 93, 95; Diastole Source: 248
96 Inhalation 94 to 965 phase 90, 92, 94, 96 Target: 249
16 Images 151 Inhalation 151 to 156 Systole phase 151, 153, 155; Diastole Source: 285
to 156 phase 152, 154, 156 Target: 286
17 Images 211 Inhalation 211 to 213 Systole phase 212, 214, 216; Diastole Source: 114
to 216 Exhalation 213 to 216 phase 211, 213, 215 Target: 115
18 Images 231 Exhalation 231 to 236 Systole phase 232, 234, 236; Diastole Source: 274
to 236 phase 231, 233, 235 Target: 275
19 Images 231 Exhalation 231 to 236 Systole phase 232, 234, 236, 238; Source: 276
to 238 Inhalation 237 to 238 Diastole phase 231, 233, 235, 237 Target: 277
20 Images 231 Exhalation 231 to 236 Systole phase 232, 234, 236, 238 ; Source: 277
to 239 Inhalation 237 to 239 Diastole phase 231, 233, 235, 237, 239 | Target: 278
21 Images 246 Exhalation 246 to 249 Systole phase 246, 248, 250; Diastole Source: 277
to 251 Inhalation 250 to 251 phase 247, 249, 251 Target: 278
22 Images 246 Exhalation 246 to 249 Systole phase 246, 248, 250, 252; Source: 278
to 253 Inhalation 250 to 253 Diastole phase 247, 249, 251, 253 Target: 279
23 Images 251 Inhalation 251 to 256 Systole phase 252, 254, 256; Diastole Source: 96
to 256 phase 251, 253, 255 Target: 97
24 Images 258 Exhalation 258 to 263 Systole phase 258, 260, 262; Diastole Source: 232
to 263 phase 259, 261, 263 Target: 233
25 Same as Same as above Same as above Source: 277
above Target: 278
26 Same as Same as above Same as above Source: 278
above Target: 279
27 Images 270 Inhalation 270 to 275 Systole phase 270, 272, 274; Diastole Source: 57
to 275 phase 271, 273, 275 Target: 58
28 Images 273 Inhalation 273 to 276 Systole phase 274, 276, 278; Diastole Source: 231
to 278 Exhalation 277 to 278 phase 273, 275, 277 Target: 232
29 Images 273 Inhalation 273 to 276 Systole phase 274, 276, 278; Diastole Source: 233
to 279 Exhalation 277 to 279 phase 273, 275, 277, 279 Target: 234
30 Images 274 Inhalation 274 to 276 Systole phase 274, 276, 278; Diastole Source: 235
to 279 Exhalation 277 to 279 phase 275, 277, 279 Target: 236
As an illustration, Figure 2.11 shows the MR images used in trial #4. Figure

2.11a and 2.11b shows the learning set and test case respectively.
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(a) Learning set
Exhalation
Systole Diastole Systole

Frame #51 Frame #52 Frame #53
Inhalation
Diastole Systole Diastole

Frame #54 Frame #55 Frame #56

(b) Test case
Exhalation
Diastole Systole

Frame #92 Frame #93

Figure 2.11: Trial #4 from 2D MRI dataset; (a) learning set; (b) test case.
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2.3.2 3-D Gated CT Dataset

This dataset consists of nine sequential gated-CT 3-D images of the thorax of a
volunteer. It is also provided by Mirada Medical (www.mirada-medical.com). All
images were 512 x 512 x 100 pixels in size. There were many complex motions in
these images, including respiratory and cardiac motions. The inhalation process starts
at the first image and ends in the fifth image. The exhalation process starts and ends
in the ninth image. Images 1, 3, 5, 7 and 9 correspond to the systolic phase and

images 2, 4, 6 and 8 to the diastolic phase.

Learning Set

Unless otherwise stated, we also used LK to perform pairwise registrations between
the 3rd image and the 7th image. As a result, we have 4 pairwise deformation fields

of size 512 x 512 x 100 in our learning set.

Test Cases

For the test cases, we arbitrarily selected 400 sub-images (each of size 21 x 21 x 21
pixels) from the 2nd image and registered them to corresponding sub-images in the

5th image.

2.3.3 MPI-Sintel Dataset

Butler et al. (2012) used data from the Durian Open Source Movie Project (Roosendaal,
2010) to render scenes under conditions of varying complexity. It is publicly available
to download in http:// sintel.is.tue.mpg.de. The MPI-Sintel dataset consists of much
longer image sequences, ground truth flow is available for all frames, it exhibits large
non-rigid motions and much more complexity (blur, atmosphere, specular surfaces,
etc.). 35 clips were selected from the full movie by the authors. Apart from six shorter
action sequences, each sequence is 50 frames long, giving 49 pair-wise flow fields per
clip. Ground truth flows were estimated using Classic Non Local Fast method (Wang
et al., 2006; Sun et al., 2010). At the time of creating the MPI Sintel dataset, Classic
Non Local Fast performed the best on estimating small motions. This is why Butler
et al. (2012) chose Classic Non Local Fast method to compute ground truth flows.
For two images that are further apart in a sequence, the ground truth motion can be
computed by performing vector composition of the pair wise ground truth flows in

between those two images. We selected 93 trials from 8 sequences (Alleyl, Ambush?,
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Ambush2 sequence
Frame #7 Frame #8 Ground truth motion

w

Bamboo2 sequence
Frame #42

n

Ground truth motion

Flow field color coding

Figure 2.12: Scenes from the Ambush2 and Bamboo2 sequences in the MPI-Sintel
dataset; the colors in the flow field color coding represents the orientation of the
vector and brightness stands for its magnitude.

Bambool, Bamboo2, Market2, Market6, Shaman2 and Shaman3) based on their ex-
hibiting large motions of small structures, since it is the focus of this thesis. Figure

2.12 shows two pairs of scenes and their corresponding ground truth motion.

2.3.4 Rationale Behind Prefering Medical Images in the De-
velopment of the Proposed Method

MPI-Sintel dataset is a synthetic dataset that represents naturalistic scenes. Unlike
medical images, MPI Sintel dataset have some natural scene issues like occlusion,
appearance of new structures and shadows. Estimated motions of MPI-Sintel dataset
are highly effected by these issues (Butler et al., 2012). On the other hand, the
medical image datasets that we used in our experiment do not have such issues.
Thus, in each step of the development of the proposed method, we use medical image
datasets to check its performance in estimating large displacements (which is our
main focus) where the results are not effected by aforementioned critical issues of the
naturalistic images. However, once the whole method is developed, we also use the
MPI-Sintel dataset to evaluate the performance of the proposed method with other

state-of-the-art methods (for detail, see section 5.5).
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2D Dynamic MRI

jry \
- |
(c)

(b)

Figure 2.13: 2D MRI dataset; (a) frame #82; (b) frame #85; (c) Motion is estimated
using DeepFlow method and then transformed image (in green) super-imposed on
target image (in red).

2.4 Estimating the Accuracy of the Flow

In this section, we discuss the methods that we will be using in our experiments to
evaluate both qualitatively and quantitatively the accuracy of the produced optical

flows

2.4.1 Qualitative Performance: Super-Imposition of Registered

Image

After estimating the motion between two images, we can transform the source image
and super-impose the transformed image on top of the target image. We can use
two different colors for the target and transformed image. Figure 2.13 shows an
example where the motion between frame #82 (source) and #85 (target) from the 2-
D dynamic MRI dataset is estimated using the DeepFlow method. The source image
is transformed using the estimated motion and super-imposed in green on top of the
target frame in red. We can see inaccurate alignments either in red or in green while

the accurate transformations can be seen in yellow.

However, it is less convenient to compare performances of different algorithms
using this method since it does not generate quantitative values of accuracy of the

estimated motion.
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2.4.2 Quantitative Performance:
2.4.2.1 Mean Squared Error (MSE) Based on Intensity

We can compute the Squared Differences (SD) of intensity values at each pixel between
target and transformed images and calculate a Mean Squared Error (MSE). This
method generates quantitative values of accuracy of estimated transformation without
ground truth motion. However, MSEs can be highly biased by extreme values and

changes in lighting conditions.

2.4.2.2 Average Angular Error (AAE)

In cases where ground truth motions are available, the most commonly used measure
of performance for optical flow is the angular error (AE) which was proposed by
Barron et al. (1994). The AE between a flow vector (u,v) and the ground-truth flow
(ugr,vgr) is the angle in 3D space between (u,v,1.0) and (ugr,ver, 1.0). The AE
can be computed by taking the dot product of the vectors, dividing by the product

of their lengths, and then taking the inverse cosine:

AE — cos—! 1.0+ u X ugr +v X var (2.8)
V1.0 +u2 +02/1.0 + up + v2; '

The goal of the AFE is to provide a relative measure of performance that avoids

the divide by zero problem for zero flows.

2.4.2.3 Average Endpoint Error (AEPE) of Deformation Field

With the AAE approach, errors in regions of zero motion are penalized more than
errors in a region of smooth non-zero motion. The AAE also contains an arbitrary
scaling constant (1.0) to convert the units from pixels to degrees. Therefore, Otte
and Nagel (1994) proposed the error in flow endpoint (EPFE) which is, according to
Baker et al. (2011), more accurate than AE. Endpoint Error is defined by

FE = \/(u — UGT)2 + (U — UGT)z (29)

MPI-Sintel datasets use both AAE and AEPFE as accuracy measures.
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2.4.3 Statistical Analysis

We use repeated measures ANOVA (analysis of variance) to determine whether there
are any significant differences across registration methods in terms of MSE, AAE or
AEPE. This choice was motivated by the fact that the distribution of those measures
was generally normal, with relatively little skew and kurtosis. For instance, the skews
and kurtoses of the MSEs for the first experiment (see Table B.1) are (0.85, 1.66) for
LK, (0.78, 1.06) for degraded LK, (0.36, 0.06) for the learning approach with vector
difference, (0.24, 0.44) for for learning approach with angular difference and (0.73,
0.87) for the learning approach with magnitude difference.
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Chapter 3

A Learning Approach to Optical Flow

3.1 Introduction

The previous chapter discussed the problems posed by large motions when estimating
optical flows with a focus on the estimation of the motion of small structures with
large displacements. This chapter introduces a novel learning approach to optical flow
capable of dealing with large displacements. The learning algorithm estimates the
flow between two non-consecutive images in a sequence on the basis of a learning set of
flows estimated a priori between different consecutive images in the same sequence.
The key idea is to use the accurate flows estimated a priori between consecutive
images to help improve the potentially less accurate flows estimated online between

images further apart. Our approach is inspired by non-local means filtering.

3.2 Non-Local Means Filtering

Buades et al. (Buades et al., 2005) introduced the non local means filter as an image
denoising method. This algorithm takes advantage of the high degree of redundancy
of images. Given a patch in an image, the non local means (NLM) algorithm replaces
it with a weighted average of neighborhood patches that are similar to it. In other
words, this filtering algorithm takes a mean of all pixels in the neighbourhood of a
pixel, weighted by how similar these pixels are to the target pixel.

Suppose we are considering pixel ¢ for denoising. Now if we find another pixel j
in the same image that has a neighborhood around it similar to the neighborhood
around 7 then we can use the value of j for predicting the value of i. Let i (z,y) be a

pixel in a noisy image f on a bounded domain ReR?:
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(a) Noisy image (b) Filtered image

Figure 3.1: An example of image denoising using non-local means filter.

) 1  Jg2 Ga®If (i+)—FG+0) % dt o
NLM{(f) (@) = C—(i)/RCXP @ fG)d (3.1)

where GG, is a Gaussian kernel with standard deviation a, h is a filtering parameter
_Jg2 GaWIf G4 —f(4D)Pde o
and C (z) = [, exp n2 dz is a normalization factor.

An example of non-local means filter is given in Figure 3.1. We used 5 x 5 pixels
for the size of the similarity window, 11 x 11 pixels for the size of the neighborhood
and 0.05 for the standard deviation a, the filtering parameter h = 0.1. Notice how
the white noises in Figure 3.1a are filled up by NLM, which took advantage of the

regularity of the grid and then incorporated that information into the filtered image.

Figure 3.2 shows another example where NLM is used to denoise a natural image
(Lena). Here, the size of the image is 500 x 500 pixels. We used 5 x 5 pixels for the
size of the similarity window, 15 x 15 pixels for the size of the neighborhood and 0.01
for the standard deviation a and the filtering parameter h = 0.1. The NLM filtered
the white noises in the Figure 3.2c. The NLM filtering method has reduced the MSE
of intensity from 971.81 (between Figure 3.2a and Figure 3.2b) to 782.49 (between
Figure 3.2a and Figure 3.2¢).

3.3 A Learning Approach to Optical Flow

Motivated by non local means, we propose a learning algorithm that learns from

redundant patterns of vectors in a learning set of deformation fields. The datasets that
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Figure 3.2: Denoising Lena with NLM : (a) original image, (b) with added white
noise, (c) filtered with NLM..

we are using in our experiments have sequential images with regular motions such as
cardiac and respiratory motions in medical images, or the flapping wings of dragon in
MPI-Sintel dataset etc (for detail see section 2.3). Given two non-consecutive images
in the sequence, we aim to refine the flow (u° v") computed between them using a
given optical flow algorithm (e.g. the LK). At every pixel (m,n) , we consider the
patch {(m,n),qmn} around it, with q,,, the matrix of displacement vectors around
(m,n), and look in a learning set for similar patches. Here, we take advantage of the
high degree of redundancy of vector patches across the images from the sequence to
filter the initial flow by replacing the displacement vector (w, ,, Vm.n) at pixel (m,n)
by a Gaussian weighted average of the displacement vectors at the center of the most
similar patches, with the aim to make (u°, v%) more similar to the flows in the learning
set.

In a similar fashion to the non-local means approach (Buades et al., 2005), the

filtering phase replaces the displacement vector (tm, », Um.) at pixel (m,n) by:

]_ Wyector
(um,n; Um,n) = E Ze_ h? (ui, Ui) (32)

IS

where (u;, v;) is the displacement vector at the center of q;; Wyector 1S the weight
that depend on the similarity between the patch at (m,n) and the selected ones from
the learning set; h controls the decay of the weights, N is the size of the neighborhood
and Z is an overall normalization factor. The pseudo-code of the implementation of

equation 3.2 is given in Algorithm 3.1.
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Figure 3.3: Block diagram illustrating the effect of similarity measure used between
the initial flow and the learning set. (a) Patch 1 is more similar to Patch 2 compared
to Patch 3. Thus, larger weight is given with the value at the centre of Patch 1. (b)
Patches with stronger similarity contributes more in the equation 3.2.
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Algorithm 3.1 Pseudo Code of Learning Algorithm

function | learned flow field | = learningAlgorithm( initial_flow, learning set,
threshold)

% initial_flow : the initially estimated flow field computed ...

% using an standard optic flow algorithm such as HS

% learning_set : the set of all deformation fields in a priori

% the similarity measure similarity _vector

loop 1 : for each index (7,j) in the initial flow

{

% initialization of the weight of similarity measures for each patch
sum_ of weight=0;
loop 2 : for each patch in the neighbourhood

{

compute the similarity vector for (i,j) using the equation 3.2
sum_ of weight=sum_ of weight + similarity wvector

weighted_vector=weighted_ vector + ...
similarity _vector X vector at_the center of the_patch

}

end_of loop 2

% normalization
learned _flow field(i,j)=weighted_wvector | sum_of weight;

}

end_of loop 1

regularize the learned flow field using Gaussian filter
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3.4 Selecting a Patch Similarity Measures

Given a patch in the initial flow(u® v%), we look for similar patches in the learning

set. Figure 3.3 illustrates how patches with stronger similarity contribute more in
equation 3.2.
With the polar representation of vectors in mind (magnitude and angle), we con-

sider three similarity measures:

1. Weighing sum based on vector difference (difference of both magnitude and

\

angle): Wyecror = 3. || v(q;) — v(qm,nj |2 is the Gaussian weighted sum of

squared differences of vectors of patches with standard deviation o.

2. Weighing sum based on magnitude difference: wyector = >, || |v(qi)] —
lo(amn)| ||? is the Gaussain weighted sum of squared differences of magni-

tudes of vector patches and with standard deviation o.

3. Weighing sum based on angular difference: wyector (Qis Qmn) = > || 0(d;) —
0(qm.n) ||? is the Gaussian weighted sum of squared differences of polar angles

of vectors in vector patches with standard deviation o.

Here, m is the patch in the initial flow and v(qm,ni is a patch in the learning set.
All of the weighing sums are normalized using their standard deviation o.

We can compute an angle between two vectors using either of the three equations
3.3, 3.4 or 3.5.

0 = cos™! < V(%) - (G ||> (3.3)

b it (Hv(qi X V(i H) 5.4)

1 (Mlo(as) v(qmvn5||>
0 = tan (3.5)
< U(QiS : U(Qm,nj

For orthogonal vectors (angle = 90 or 270 degrees) cosine gives poor accuracy as

cos (90) = cos (270) = 0. Similarly, for parallel vectors (angle — 0 or 180 degrees) sine
gives poor accuracy as sin (0) = sin (180) = 0. Both equation 3.3 and 3.4 can suffer
from divide by zero error. Whereas equation 3.5 gives accurate results for angles 0,
90, 180 and 270. Moreover, it can tackle divide by zeros error as tanh (inf) = 90°.

Therefore, we select equation 3.5 to compute an angle between two vectors.
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(-1,4) (3,7)

(a)

Figure 3.4: Finding angle between (a) two 2D vectors; (b) two 3D vectors.

3.4.1 An example of finding angle between two 2D vectors

Suppose we have two 2D vectors (3,7) and (—1,4) (see figure 3.4a). So the angle

between these vectors is,

0 — tap-! <||<375xT,45|>

(3,7)-(~1,4

\ \

Now, [|(3,7) x (=1,4)|| = (3 x 4) — ((=1) x 7) = 19

So, 6 = tan™! <¢>

(Bx(=1))+(4xT7)

o1 19
= tan (—3+28))

= tan (1)

= 0.6499radian or 37.2348degree

3.4.2 An example of finding angle between two 3D vectors

Suppose we have two 3D vectors (4,0,7) and (—2,1,3) (see figure 3.4b). The angle
between these vector is,

0 — tan~! <||(4,0,73x(—2,1,3§|>

(4,0,79-(=2,1,3
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— tan-! <||(4,0,7§x(—2,1,3§||>

(4,0,7 '(—2,1,3
Now, [[(4,0,7) x (=2,1,3)| = || 4 0 7| =27.2213
_9 1 3

So. O — tan-! < 27.2213 )

4% (—2)+0x14+7x3

-t ()

o=l (27.2213
= tan~" (¥:22)
= 1.1253radian or, 64.4724degree

3.4.3 Determining the filtering parameter h decay of weight

in Gaussian kernel

The Filtering Parameter o in equation 5.3 defines the decay of weights in the Gaussian
Kernel. It is dependent of the size of the patch. The two objectives of using Gaussian

weighted kernel are:

1. put more weights at the center of each patch

2. incorporate the information around the boundary.

The decay of weights should be distributed in a way so that it fulfills both of the
objectives. We typically pick %adiusﬂ
behind that choice. Here, the patch size is equal to ( (2 x patch radius) +1)?. If the

h has a large value compared to the patch radius, then the weights in the Gaussian

for h. Figure 3.5 illustrates the reason

kernel tend be equally distributed (see Figure 3.5a). This goes against the objective
of using a Gaussian kernel in the first place since we want to put more weights at the
centre of the kernel. On the other hand, if h has a small value, weights at the edges

become almost zero. Thus the information at the edges of the patch will remain

patch radius+1
3

kernel that fulfills both objectives of (a) putting higher weights at the centre and (b)

considering all the information available in the patch (see Figure 3.5b).

unused (see Figure 3.5¢). By choosing h = , we generate a Gaussian
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Figure 3.5: Relationship between standard deviation and patch radius;
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Figure 3.6: MSEs of images registered with LK, degraded LK and learning algorithm
using different similarity measures (experiment described in section 3.4.4).
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Table 3.1: Descriptive Statistics (experiment described in section 3.4.4)

Method | Dependent Variable Mean | Std. Deviation | N
1 LK 113.47 | 33.10 30
2 Degraded LK 161.80 | 49.92 30
3 Vector Difference 216.34 | 59.36 30
4 Angular difference 152.43 | 45.42 30
5 Magnitude difference | 222.38 | 57.45 30

3.4.4 Results with the 2-D Dynamic MRI Dataset

We first compared the performances of these three similarity measures using our 2-D
dMRI dataset. The source images are registered to corresponding target images with
both the LK optical flow algorithm and a degraded version of LK. LK is degraded by
restricting the maximum downsampling factor, i.e. the number of pyramidal levels,
to 2, such that it can handle smaller displacements but struggles with large displace-
ments. This is to simulate a challenging large-displacement scenarios. Our objective
is to improve the estimated motion using the proposed learning algorithm.

Table B.1 shows the results. Column 1 shows the trial numbers (detail of trials
can be found in Table 2.1 and Figure 3.6 shows MSEs of images registered with LK,
degraded LK and learning algorithm using different similarity measures). The MSEs
of LK and degraded LK are given in column 2 and 3 respectively; they are computed
on the basis of the squared differences of intensities between target and registered
images. The MSEs of our learning approach with each of the three similarity measures

are given in columns 4, 5 and 6. We used the following parameters:
e patch radius: r =5,

e parameter for decay of weight: h = 2 (as described in section 3.4.3, h = (r +
1)/3), and

e size of the neighborhood, N is the whole image.

Descriptive statistics of this experiment is given in Table 3.1. Figure 3.7 shows
the Box and Whisker plot of MSEs of LK, degraded LK and different similarity

measures. We performed a repeated measures ANOVA to compare the performances
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Figure 3.7: The Box and Whisker plot of MSEs of LK, degraded LK and different
similarity measures (experiment described in section 3.4.4).

Table 3.2: Mauchly’s Test of Sphericity (experiment described in section 3.4.4)

Measure:MSE

Within Mauchly’s | Approx. df | Sig. Epsilon

Subjects W Chi- Greenhouse- | Huynh- | Lower-
Effect Square Geisser Feldt bound
Method 45 21.93 9 | 9.21 x 1073** 78 89 25

Sig. (* for <.05 and ** for <.01)

of the different approaches (rationale for using repeated measures ANOVA is discussed

in section 2.4.3):

e Method 1: LK

Method 2: Degraded LK
Method 3: Vector Difference
Method 4: Angular difference

Method 5: Magnitude difference

Mauchly’s test (see Table 3.2) indicates that the assumption of sphericity has been
violated (x?(9) = 21.93, p < 0.05) therefore Greenhouse-Geisser corrected tests are
reported (¢ = .78). The results show that the MSEs are significantly affected by the
choice of method (V' = 0.93, F'(4,26) = 90.78, p < 0.05, see Table 3.3).
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Table 3.3: Multivariate Tests (experiment described in section 3.4.4)

Effect Value | F Hypothesis | Error | Sig.
df df
Method Pillai’s Trace .93 90.78 | 4 26 6.95 x 107 15%*
Wilks’ Lambda .07 90.78 | 4 26 6.95 x 10~ 15%*
Hotelling’s Trace 13.97 | 90.78 | 4 26 6.95 x 107 15%*
Roy’s Largest Root | 13.97 | 90.78 | 4 26 6.95 x 107 15%*

Sig.

* for <.05 and ** for <.01)

Table 3.4: Tests of Within-Subjects Effects (experiment described in section 3.4.4)

Measure:MSE
Source Type III df Mean F Sig.
Sum of Square
Squares
Method  Sphericity Assumed | 252258.74 | 4 63064.69 133.51 | 1.88 x 10~ 42%*
Greenhouse-Geisser | 252258.74 3.12 80834.06 133.51 | 1.17 x 10733%*
Huynh-Feldt 252258.74 3.54 71253.12 133.51 | 7.41 x 10738%*
Lower-bound 252258.74 1.00 252258.74 133.51 | 2.26 x 10~ 12**
Sphericity Assumed | 54792.32 116 472.35
Error Greenhouse-Geisser | 54792.32 90.50 605.44
(Method)  Huynh-Feldt 54792.32 102.67 | 533.68
Lower-bound 54792.32 29.00 1889.39

Sig
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Table 3.5: Pairwise Comparisons (experiment described in section 3.4.4)

| Method | 1 | 2 | 3 | 4 | 5 |
1 5.13 x 10~ 15%% | 7.83 x 10~ 16%x | 1.01 x 10-9%* | 5.81 x 10~ 17**
2 5.13 x 10~ 15%* 7.02 x 1071085 | 440 x 1072% | 4.93 x 10~ 12%*
3 7.83 x 10~ 16%% | 7,02 x 10~ 11** 9.15 x 10~ 11*x 381
4 101 x 1079%% | 4.40 x 10~2% | 9.15 x 10~ 11** 2.25 x 10~ 12%*
5 5.81 x 10-17%% | 4,93 x 10~ 12%* 381 2.25 x 10~ 12%*

Sig. (* for <.05 and ** for <.01)

Table 3.6: Descriptive Statistics (experiment described in section 3.4.5)

Method | Dependent Variable Mean | Std. Deviation | N

1 LK 198.34 | 689.61 400
2 Degraded LK 303.54 | 1054.97 400
3 Vector difference 167.66 | 561.86 400
4 Angular difference 152.58 | 475.21 400
5 Magnitude difference | 165.41 | 533.62 400

From the post hoc test we can conclude that (see Table 3.4 and Table 3.5):

e The learning Algorithm using angular difference as a similarity measure gener-
ates significantly lower MSEs than both LK (p < .05) and degraded LK (p < .05).

e The use of angular difference as a similarity measure generates significantly

lower MSEs than that of vector difference or magnitude difference (p < .05).

3.4.5 Results with the 3-D Gated CT Dataset

We repeated the experiment with the 3-D Gated dataset.

As above, we registered the source images to the corresponding target images with

both LK, degraded LK and our learning approach, with the same parameters. Results

are reported in the table in Appendix C.1. Column 1 shows the trial numbers; detail
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Figure 3.8: The Box and Whisker plot of MSEs of LK, degraded LK and different
similarity measures (experiment described in section 3.4.5).

of trials can be found in the table in Appendix A.1. The MSEs of LK and degraded
LK are given in column 2 and 3 respectively. The MSEs of our learning approach
with each of the three similarity measures are given in columns 4, 5 and 6. We used
the following parameters:

Descriptive statistics of this experiment is given in Table 3.6. Figure 3.8 shows the
Box and Whisker plot of MSEs of LK, degraded LK and different similarity measures.
Here as well, Mauchly’s test indicates that the assumption of sphericity has been
violated (x*(9) = 3930.823, p < 0.01) therefore Greenhouse-Geisser corrected tests
are reported (¢ = .282). The results show that MSEs are significantly affected by the
choice of method (V' = 0.06, F' (4,396) = 6.734, p < 0.01.

From the post hoc test we can conclude that (see Table 3.7 and Table 3.8):

e The learning Algorithm using angular difference as a similarity measure gener-
ates significantly lower MSEs than both LK (p < .01) and degraded LK (p < .01).

e The use of angular difference as a similarity measure generates significantly

lower MSEs than that of vector difference or magnitude difference (p < .01).

3.4.6 Discussion

These results suggest that the angular difference is the best performing measure. This
is not surprising given that a substantial number of vectors in the training patches

have larger magnitudes than those in the test patches since the former are from de-
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Table 3.7: Tests of Within-Subjects Effects (experiment described in section 3.4.5)
Measure:MSE

Source Type 111 df | Mean F Sig.
Sum of Square
Squares

Method Sphericity Assumed | 1.88E+06 1 1.88E+06 16.32 | 6.43E-05**
Greenhouse-Geisser | 1.17E+05 1 1.17E+05 10.54 | 1.27E-03**

1

1

Huynh-Feldt 2.89E+-06 2.89E+-06 19.99 | 1.01E-05**
Lower-bound 1.18E+06 1.18E+06 15.38 | 1.03E-04**
Sphericity Assumed | 4.60E+07 399 | 1.15E+05

Error Greenhouse-Geisser | 4.42E+06 399 | 1.11E+04

(Method) Huynh-Feldt 5.78E+07 399 | 1.45E+405
Lower-bound 3.07E+07 399 | 7.68E-+04

Sig. (* for <.05 and ** for <.01)

formation fields estimated between consecutive images whereas the latter are from
deformation fields estimated between images further apart (since we are specifically
dealing with large displacement scenarios). When we use vector difference or mag-
nitude difference as similarity measures, those vectors with larger magnitudes yield
lower similarity with the test patch and contribute less to the weighted sum in equa-
tion 3.2. When we use angular difference however, the learning algorithm puts larger
weight to a training patch where vectors have similar directions to the test vectors, ir-
respective of whether or not the training vectors may have larger (or indeed different)
magnitudes.

Figure 3.8 may appear to demonstrate that the three similarity measures perform
similarly. But, the descriptive statistics (Table 3.6) and the pairwise comparisons
(Table 3.8) show that even though the three approaches yield similar results, they

are indeed statistically significantly different.

Figure 3.9 shows a synthetic example that illustrates why angular difference yields
better performance. We have two training patches of vectors (a and b) and a patch
of vectors as a test case (c). The test patch has one vector at its centre which is

different from the others (i.e. probably incorrect):

e Training patch 1 (Figure 3.9a) consists of vectors with larger magnitudes and
similar angular values compared to those of the test patch. The vector at its
centre is (0.5,0.5).
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Table 3.8: Pairwise Comparisons (experiment described in section 3.4.5)

Measure: MSE
1 2 3 4 5
1 3.00E-05*%* | 2.24E-03** | 8.50E-04** | 2.72E-03**
2 3.00E-05** 2.99E-05** | 1.43E-05** | 2.76E-05**
3 2.24E-03%* | 2.99E-05%* 5.95E-03%* 2.99E-01
4 8.50E-04** | 1.43E-05** | 5.95E-03** 4.32E-04**
5 2.72E-03** | 2.76E-05** | 2.99E-01 4.32E-04**

Sig. (* for <.05 and ** for <.01)

e Training patch 2 (Figure 3.9b) has vectors that have different angular values

from those in the test case. The vector at its centre is (—0.5,0.5).

We applied our learning algorithm to the vector at the centre of the test patch
using the three different similarity measures. Results are given in Figure 3.9 d, e, and
f:

e The learned vector using vector difference (Figure 3.9d) is (0.0935,0.5) and
the learned vector using magnitude difference (Figure 3.9¢) is (0,0.5). Both

similarity measures failed to produce a sufficiently large displacement vector.

e The learned vector using algorithm with angular difference (Figure 3.9f) is
(0.5,0.5) i.e. the correct magnitude and a similar direction to the vectors in

neighbourhood in the test patch.

3.5 Vector Composition of Pairwise Deformation Fields

We saw in section 2.1.3 that standard methods may not be able to accurately estimate
large displacements. However, in the context where a series of consecutive images is
available, we may accurately estimate the larger displacements which exist between
images that are further apart in the series by performing vector composition of the
smaller pairwise displacements. Figure 3.10 illustrates this approach. In the first row
of Figure 3.10, we see a large motion split in four smaller motions. The actual motion

can be constructed by computing the vector composition of these discrete vectors.
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Figure 3.9: A synthetic example showcasing the use of angular difference as a simi-
larity measure; (a) training patch 1; (b) training patch 2; (c¢) test patch; (d) result
with vector difference; (e) result with angular difference; (f) result with magnitude
difference

Image #i -> #(i+1) Image #(i+1)->#(i+2) Image #(i+2)->#(i+3) Image #(i+3)->#(i+4) Image #1->#(1+4)

— £
'

(a) (b) (c) () (e)

Figure 3.10: An example of a large vector split in elements in a learning set : (a),
(b), (c) and (d) are four parts of the large vector; (e) the actual displacement.
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Figure 3.11: MSEs of images registered using LK, degraded LK, learning algorithm
with and without vector composition.

In a similar fashion, we can add to the learning set the composed deformation fields
obtained by composing consecutive deformation fields, so as to better model large
displacements. We use a multi-threaded function for this composition task. In each
thread, we apply a bottom-up memoization technique. Memoization (Michie, 1968)
is an optimization technique used primarily to speed up programs by having function
calls that avoid repeating the calculation of results for previously processed inputs.
A memoized function remembers results of some inputs and returns the remembered
result rather than recalculating it. If we have n sequential displacement fields in
our learning set, then we can divide our problem into n independent sub-problems
where each element from the learning set performs vector composition disjointly.
Consequently, multiple threads that compose vectors can be run independently in
parallel starting sequentially from each element in the learning set ending at the last
element.

nx(n+1
2

In the end, we get ) displacement fields consisting all possible vector com-

positions.
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Table 3.9: Descriptive Statistics

Method | Dependent Variable Mean | Std. Deviation | N
1 LK 113.47 | 33.10 30
2 Degraded LK 161.80 | 49.92 30
3 Without vector composition | 152.43 | 45.42 30
4 With vector composition 147.89 | 44.57 30

3.5.1 Results with the 2-D Dynamic MRI Dataset

We compared the proposed method using learning sets with and without composed
displacement fields. As before, we registered the sources image to the corresponding
target images with LK, degraded LK and our learning approach, using the same
parameters. The results are in Table D.1. Column 1 shows the trial numbers; detail
of trials can be found in Table 2.1. The MSEs of LK and degraded LK are given
in column 2 and 3 respectively, and the MSEs of the learning approach without
and with vector composition in columns 5 and 6. The Figure 3.11 shows the MSEs
of images registered using LK, degraded LK, learning algorithm with and without

vector composition. We used the following parameters:
e patch radius: r =5,

e parameter for decay of weight: h = 2 (as described in section 3.4.3, h = (r +

1)/3),
e size of the neighborhood, N is the whole image, and

e the angular difference is used as a similarity measure

We performed a repeated measures ANOVA to compare the performances of the
various approaches (rationale for using repeated measures ANOVA is discussed in
section 2.4.3):

e Method 1: LK
e Method 2: Degraded LK
e Method 3: learning approach without vector composition

e Method 4: learning approach with vector composition
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Figure 3.12: The Box and Whisker plot of MSEs of LK, degraded LK, learning
algorithms with and without vector composition (experiment described in section
3.5.1).

Descriptive statistics of this experiment is given in Table 3.9. Figure 3.12 shows
the Box and Whisker plot of MSEs of LK, degraded LK, learning algorithms with
and without vector composition. Mauchly’s test indicates that the assumption of
sphericity has been violated (x* (5) = 89.13, p < 0.05) therefore Greenhouse-Geisser
corrected tests are reported (¢ = .543). The results show that MSEs are significantly
affected by the choice of method (V' = 0.894, F'(3,27) = 75.91, p < 0.05.

From the post hoc test we can conclude that (see Table 3.10 and Table 3.11):

e The learning algorithm with vector composition generates significantly lower
MSEs than both LK (p < .05) and degraded LK (p < .05).

e The learning algorithm with vector composition generates significantly lower

MSEs than the learning algorithm without vector composition (p < .05).

3.5.2 Results with the 3-D Gated CT Dataset

We repeated the experiment with the 3-D Gated dataset.
The table in Appendix E.1 shows the results of the same experiment with the
3D gated CT dataset. Column 1 shows the trial numbers (detail of trials can be
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Table 3.10: Tests of Within-Subjects Effects (experiment described in section 3.5.1)
Measure:MSE

Source Type III df Mean F Sig. (* for <.05
Sum of Square and ** for
Squares <.01)

Method  Sphericity Assumed | 40059.14 3 13353.05 62.03 | 1.53 x 107 21%*
Greenhouse-Geisser | 40059.14 1.63 | 24589.01 62.03 | 9.51 x 10~ 13*x*
Huynh-Feldt 40059.14 1.71 | 23391.27 62.03 | 2.76 x 10 13**
Lower-bound 40059.14 1.00 40059.14 62.03 | 1.10 x 10~ 8*x*
Sphericity Assumed | 18728.88 87 215.27

Error Greenhouse-Geisser | 18728.88 47.25 | 396.42

(Method)  Huynh-Feldt 18728.88 49.66 | 377.11
Lower-bound 18728.88 29.00 | 645.82

Sig. (* for <.05 and ** for <.01)

Table 3.11: Pairwise Comparisons (experiment described in section 3.5.1)

‘ Method ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘
1 5.13 x 10715%% | 1.01 x 10799%* | 4.11 x 1079%*
2 5.13 x 10 15%* 4.40 x 1072% | 2.95 x 107 3%*
3 1.01 x 10799%x | 440 x 1072* 7.82 x 107 08%%
4 4.11 x 1079%% | 2,95 x 1073%* | 7.82 x 107 08%*

Sig. (* for <.05 and ** for <.01)

26



Table 3.12: Descriptive Statistics (experiment described in section 3.5.2)

Method | Dependent Variable Mean | Std. Deviation | N
1 LK 198.34 | 689.61 400
2 Degraded LK 303.54 | 1054.97 400
3 Without vector composition | 152.58 | 475.21 400
4 With vector composition 150.47 | 475.07 400
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Figure 3.13: The Box and Whisker plot of MSEs of LK, degraded LK, learning
algorithms with and without vector composition (experiment described in section
3.5.2).

found in the table in Appendix A.1). The MSEs of LK and degraded LK are given
in column 2 and 3 respectively. We compare learning algorithm without and with

vector composition in the learning set; their MSEs are given in columns 5 and 6.

Descriptive statistics of this experiment is given in Table 3.12. Figure 3.13 shows
the Box and Whisker plot of MSEs of LK, degraded LK, learning algorithms with and
without vector composition. Here also, Mauchly’s test indicates that the assumption
of sphericity has been violated (x? (5) = 5062.204, p < 0.01) therefore Greenhouse-
Geisser corrected tests are reported (¢ = .376). The results show that MSEs are
significantly affected by the choice of method (V' = 0.78, F' (3,397) = 456.09, p < 0.01.
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Measure:MSE

Table 3.13: Tests of Within-Subjects Effects (experiment described in section 3.5.2)

Source Type 111 df Mean F Sig.
Sum of Square
Squares
Method Sphericity Assumed | 6.17E+06 3 2.06E+-06 18.39 | 1.14E-11%*
Greenhouse-Geisser | 6.17E+06 1.13 5.47E+06 18.39 | 8.83E-06**
Huynh-Feldt 6.17E+4-06 1.13 5.46E+06 18.39 | 8.76E-06**
Lower-bound 6.17E+06 1.00 6.17E+06 18.39 | 2.26E-05**
Sphericity Assumed | 1.34E+08 1197 1.12E+05
Error Greenhouse-Geisser | 1.34E+08 450.21 | 2.97E+05
(Method) Huynh-Feldt 1.34E+08 450.61 | 2.97E+05
Lower-bound 1.34E+08 399.00 | 3.35E-+05

Sig. (* for <.05 and ** for <.01)

Table 3.14: Pairwise Comparisons (experiment described in section 3.5.2)

Measure: MSE
1 2 3 4
1 3.00E-05** | 8.50E-04** | 4.90E-04**
2 3.00E-05** 1.43E-05** 1.10E-05**
3 8.50E-04** | 1.43E-05** 1.29E-130**
4 4.90E-04** | 1.10E-05** | 1.29E-130**

Sig. (* for <.05 and ** for <.01)

From post hoc tests we can conclude that (see Table 3.13 and Table 3.14):

e The learning algorithm with vector composition generates significantly lower
MSEs than both LK (p < .01) and degraded LK (p < .01).

e The learning algorithm with vector composition generates significantly lower
MSEs than without composition (p < .01).

3.5.3 Discussion

These results suggest that the learning algorithm with vector composition shows bet-
ter performance than without vector composition. Figure 3.14 illustrates the reason
why including vector composition improves the performance to the learning algorithm.

Here, we have two vector patches in the learning set (Figure 3.14a and Figure 3.14b).
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Figure 3.14: A synthetic example explaining the role of vector composition in learning
set; (a) training patch 1; (b) training patch 2; (c¢) vector composition in the training
patches; (d) vector patch as a test case; (e) learned vector without vector composition;
(f) learned vector with vector composition.

The composed vector field between these two patches is given in Figure 3.14c. The
test patch is shown in Figure 3.14d. The learned vector without vector composition is
(0.8,0.9) (see Figure 3.14e) and the learned vector with vector composition is (1.4, 1.7)
(see Figure 3.14f). The learned vector with vector composition (Figure 3.14f) is larger
than the learned vector without vector composition (Figure 3.14e). Therefore, if we
include the vector composition of larger motion from pair-wise deformation fields the

learning set, we will be better able to learn from larger motions.

3.6 Conclusion

In this chapter, we introduced our learning approach to the estimation of optical flow.
We apply the learning algorithm on MPI-Sintel dataset and compared its performance
quantitatively with HS, SMF, LDOF and DeepFlow. The learning algorithm shows
better performance than both the HS and the SMF. Results suggest that our learning

approach applied to the straight-forward HS shows similar performances than both
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of the very sophisticated techniques, LDOF and DeepFlow. Results suggest that
angular difference is the preferred choice of patch similarity measure. From the second
experiment we conclude that the addition of composed displacement fields improves
the performance of the algorithm. However, adding more fields to the learning set
substantially increases its size, which is not without issue, as we will explore in the

next chapter.
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Chapter 4

Building a Codebook of Patches

4.1 Introduction

In the previous chapter, we discussed how adding composed deformation fields to
the learning set can improve performances. However, this substantially increases the
size of the learning set. Looking for similarities in a larger set of patches during
the filtering phase is not only computationally more expensive but may also result
in an over-smoothed filtered flow as the J in the equation 3.2 becomes larger with
larger learning set and thus computes Gaussian weighted average of a larger number
of patches. Therefore the filtered flow becomes over-smoothed. Figure 4.1 illustrates
this issue. Image 221 from the 2-D dMRI dataset was registered to image 222 using
our learning algorithm without using a codebook of patches approach. In this exam-
ple, the learning set contains the pairwise deformation fields between image 263 and
268 and their vector compositions, i.e. 15 fields (5 pairwise fields and 10 composed
fields). Due to the large learning set, over-smoothing occurred in the filtered flow,

consequently the registration was not accurate (see red rectangles in Figure 4.1).

4.2 Clustering the Patches

To alleviate the issue of over-smoothing, we structure the learning set, C, into clusters
of similar patches. The clustering approach is a way to reduce the number of patches
in a dynamic, image-specific fashion: rather than arbitrarily decreasing the overall

number of patches a priori, we use clustering and representative patches to select the
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Figure 4.1: Over-smoothing as a result of too large a learning set. The edges of the
target image are super-imposed on the registered image; the red rectangles highlight
incorrect registration.

most appropriate ones given the images to be registered so that is more powerful. We

considered two clustering approaches: K-means and hierarchical clustering.

4.2.1 K-means Clustering

K-means clustering splits observations into k clusters in which each observation be-
longs to the cluster with the nearest mean, which serves as a prototype (MacQueen,
1967). It therefore requires a distance metric to be specified. K-means also requires
that the number of clusters, k, be specified a priori. Deciding upon an optimal k is
not trivial, and a number of approaches have been suggested, e.g. the F-test (Fisher,
1922) and the elbow method (Thorndike, 1953). In F-test, the test statistics has an
F-distribution under the null hypothesis. It is sensitive to non-normality (Box, 1953;
Markowski and Markowski, 1990) . The elbow method computes the percentage of
variance for k number of clusters and gradually increases the number of clusters. Ini-
tially, the percentage of variance will decrease as k increases. For some value of k, the
marginal gain will drop, which should correspond to an “optimal” number of clusters.

However, this optimal number of clusters cannot always be unambiguously identified.

4.2.2 Hierarchical Clustering

Hierarchical clustering builds a sequence of partitions in which each partition is nested
into the next partition in the sequence (Ward, 1963). Like K-means, it requires the
specification of a distance metric for the patches. Additionally, a linkage criterion
must also be selected. At the beginning of this process, each element is in a cluster
of its own. The clusters are then sequentially combined into larger clusters until all

elements end up being in the same cluster. At each step, the two clusters separated
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by the shortest distance are combined.

In complete-linkage clustering, the link between two clusters contains all element
pairs, and the distance between clusters equals the distance between those two el-
ements (one in each cluster) that are farthest away from each other. Whereas, in
single-linkage clustering, the link between two clusters is made by a single element
pair, namely those two elements (one in each cluster) that are closest to each other.
The shortest of these links that remains at any step causes the fusion of the two
clusters whose elements are involved.

We evaluated a number of strategies and found that agglomerative clustering, a
bottom up approach, with single linkage clustering performed best. This approach
first assign each data point to its own singleton group. Then, pairs of clusters are
merged as one and move up the hierarchy until all the data are merged into a single
cluster. We found that inconsistency coefficient threshold of 1.15 as the value of the
cutoff argument perform best for our datasets.

Hierarchical clustering is generally considered to be a better approach, though it is
more computationally expensive than K-means (Steinbach et al., 2000). Preliminary

experiments confirmed these considerations and we selected it in our experiments.

4.2.3 Manifold Embedding

The choice of distance metric will greatly influence the shape of the clusters, and,
in turn, the overall performance of our approach. The metric should be linked to
the characteristics of the patches. Consequently, we first extract feature vectors from
each patch. We focused on orientation-specific and distribution-specific descriptors
since these are the strongest features of the vector fields we are using. We selected the
following 7 features for 2D motion: variance and Gaussian weighted average of the
x and of the y components of the displacement vectors, variance of the vector polar
angles, angular velocity perpendicular to the flow and divergence (volume density of
the outward flux). Compared to 2D motion, 3D motion has one more dimension.
Therefore, the higher manifold for 3D motion has 9 features: variance and Gaussian
weighted average of the x, y and z components of the displacement vectors, variance
of the vector polar angles, angular velocity perpendicular to the flow and divergence
(volume density of the outward flux).

Clustering patches in a non-linear, high dimensional space is a non trivial task,
whose complexity can be greatly alleviated by reducing the dimensionality of the

problem using manifold embedding. Many approaches have been proposed in the
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literature (Pearson, 1901; Tenenbaum et al., 2000; Roweis and Saul, 2000; Belkin
and Niyogi, 2003; Zhang and Zha, 2004). However, the non-inhomogeneity and non-
convexity introduced by the addition of the composed displacement vectors would
call for a robust non-linear approach capable of preserving the local properties of the
manifold. For instance, ISOMAP (Tenenbaum et al., 2000) defines the connectivity
of each data point in the neighbourhood graph as its nearest k Euclidean neighbours
in the high-dimensional space. This step is vulnerable to short-circuit errors if k is
too large with respect to the manifold structure. Indeed, even a single short-circuit
error can alter many entries in the geodesic distance matrix, which in turn can lead to
a drastically different (and incorrect) low-dimensional embedding (Balasubramanian
and Schwartz, 2002).

We selected four dimensionality reduction/embedding techniques based on (a)
their appropriateness in light of the nature of our dataset and (b) their computational

complexity as the number of patches in our learning set is very large. They are:

1. Principal Component Analysis (PCA) (Pearson, 1901) : It is a dimensionality
reduction method in which a covariance analysis between factors takes place.
The original data is remapped into a new coordinate system based on the vari-
ance within the data. PCA applies a mathematical procedure for transforming
a number of correlated variables into a smaller number of uncorrelated prin-
cipal components. The first principal component accounts for as much of the
variability in the data as possible, and each succeeding component accounts for

as much of the remaining variability as possible.

2. Locally Linear Embedding (LLE) (Roweis and Saul, 2000) : It begins by finding
a set of the nearest neighbors of each point. It then computes a set of weights for
each point that best describe the point as a linear combination of its neighbors.
Finally, it uses an eigenvector-based optimization technique to find the low-
dimensional embedding of points, such that each point is still described with

the same linear combination of its neighbors.

3. Laplacian Eigenmaps (Belkin and Niyogi, 2003) : It builds a graph from neigh-
borhood information of the data set. Each data point serves as a node on the
graph and connectivity between nodes is governed by the proximity of neighbor-

ing points. The graph thus generated can be considered as a discrete approx-
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Figure 4.2: From 2D dMRI dataset; 3 flows between frame #41 to #44 are in the

learning set. A codebook with patch size 11 x 11 is created using the learning algo-

rithm. This figure shows 30 representative patches representing 30 clusters of patches.
Representative patches are sorted in ascending order of the sums of magnitudes of

the vectors in the patches.
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Figure 4.3: (a) Block diagram of codebook of patches; (b) flow field color coding of
deformation fields, the color represents the orientation of the vector and brightness
stands for its magnitude.

imation of the low-dimensional manifold in the high-dimensional space. Mini-
mization of a cost function based on the graph ensures that points close to each
other on the manifold are mapped close to each other in the low-dimensional

space, preserving local distances.

. Local Tangent Space Alignment (LTSA) (Zhang and Zha, 2004) : it is based
on the intuition that when a manifold is correctly unfolded, all of the tangent
hyperplanes to the manifold will become aligned. It begins by computing the
k-nearest neighbors of every point. It computes the tangent space at every point
by computing the d-first principal components in each local neighborhood. It

then optimizes to find an embedding that aligns the tangent spaces.

Except for PCA, all other methods are nonlinear.

Once embedded in a two dimensional manifold, the feature vectors are clustered

using hierarchical clustering, with the optimal number of clusters determined using
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the single linkage clustering method. Finally, we compute representative patches for
each cluster by averaging all the patches in that cluster.

Figure 4.2 displays the 30 11 x 11 representative patches computed from 3 pairwise
flows estimated using HS around the heart region in 4 consecutive frames (#41 to
#44) from the dMRI scans of a healthy volunteer breathing normally in a Siemens
1.5T scanner. Representative patches are sorted in ascending order of the sums of
magnitudes of the vectors in the patches. All leaves at or below a node with height less
than c are grouped into a cluster. The patches successfully capture both the regular
vertical translations due to respiration and the contraction and dilation movements
of the heart.

4.3 Learning with a code-book of patches

Recall that our approach consists of a training phase where we build a learning set
of intensity and displacement vector patches, £ = {Iz}z from consecutive images in
a sequence. For each pair of consecutive images (I, Il+1)l€[a7b] in the learning set L,
we first estimate the optical flow (u;, v;) between them with a standard optical flow
method. We used HS in our experiments. We then compose the flows using bicubic
interpolation (for 2D images) or tri-cubic interpolation (for 3D images) to estimates
the flows across all pairs of images (I;, I, ), consecutive or not. For each pixel in
each image I;, we get a set of patches, which capture the correspondences between
the area of I; around that pixel and the corresponding areas in all subsequent images
L msi-

Given a patch in the initial low we then restrict ourselves to the patches in those
clusters whose representative patches best match the one under consideration, rather
than considering all the patches in the learning set. This match is estimated using as
a similarity measure the same Gaussian weighted sum of squared differences between
the vector polar angles in ¢; and in the representative patches q,,, with standard
deviation ¢ that we use for the filtering: wvector (Ui> Amm) =l 0(di) — O(Amm) [I3.5-
We then discard those clusters for which the similarity falls below a hand tuned,

experiment-dependent threshold (see Figure 4.3 for an overview).
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Figure 4.4: MSEs of images registered with LK, degraded LK, learning algorithm
with different data embedding methods.

Table 4.1: Descriptive Statistics (experiment described in section 4.3.1)

Method | Dependent Variable Mean | Std. Deviation | N
1 LK 113.47 | 33.10 30
2 Degraded LK 161.80 | 49.92 30
3 PCA 183.17 | 95.48 30
4 LLE 278.21 | 85.92 30
5 Laplacian Eigenmaps | 144.59 | 33.74 30
6 LTSA 184.01 | 101.42 30
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Figure 4.5: The Box and Whisker plot of MSEs of LK, degraded LK, learning al-
gorithms with different data embedding methods (experiment described in section
4.3.1).

4.3.1 Results with the 2-D dMRI Dataset

We applied the learning algorithm with hierarchical clustering and a variety of em-

bedding methods on the 2-D dMRI dataset. The parameters were as follows:
e patch radius: r =5,

e parameter for decay of weight: h = 2 (as described in section 3.4.3, h = (r +

1)/3),
e the angular difference is used as a similarity measure

e all the composed fields were included in learning set,

e inconsistency coefficient threshold of 1.15 as the value of the cutoff argument in

hierarchical clustering,

e threshold for the selection of representative patches: maximum 5 degree of

angular difference for each vector in a patch.

Results are shown in Table F.1. Column 1 shows the trial numbers; detail of trials
can be found in Table 2.1. The MSEs of LK and degraded LK optical flow algorithms
are given in column 2 and 3 respectively. The MSEs for different data embeddings
are given in columns 4 to 8. The Figure 4.4 shows the MSEs of images registered
with LK, degraded LK, learning algorithm with different data embedding methods.
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Table 4.2: Tests of Within-Subjects Effects (experiment described in section 4.3.1)
Measure:MSE

Source Type 111 df Mean F Sig.
Sum of Square
Squares
Method Sphericity Assumed | 469384.89 5 93876.98 35.08 | 2.13E-23**
Greenhouse-Geisser | 469384.89 1.64 | 285963.51 | 35.08 | 3.49E-09**
Huynh-Feldt 469384.89 1.73 | 271825.52 | 35.08 | 1.51E-09**
Lower-bound 469384.89 1.00 469384.89 35.08 | 1.97E-06**
Sphericity Assumed | 387996.37 145 2675.84
Error Greenhouse-Geisser | 387996.37 47.60 | 8151.01
(Method) Huynh-Feldt 387996.37 50.08 | 7748.02
Lower-bound 387996.37 29.00 | 13379.19

Sig. (* for <.05 and ** for <.01)

We performed a repeated measures ANOVA to compare the following methods

(rationale for using repeated measures ANOVA is discussed in section 2.4.3):

e Method 1: LK

Method 2: Degraded LK

Method 3: learning approach with PCA as embedding

Method 4: learning approach with LLE as embedding

Method 5: learning approach with Laplacian Eigenmaps as embedding

Method 6: learning approach with LTSA as embedding

Descriptive statistics of this experiment is given in Table 4.1. Figure 4.5 shows the
Box and Whisker plot of MSEs of LK, degraded LK, learning algorithms with different
data embedding methods. Mauchly’s test indicates that the assumption of sphericity
has been violated (x? (14) = 197.11, p < 0.05) therefore Greenhouse-Geisser corrected
tests are reported (¢ = .33). The results show that MSEs are significantly affected
by the choice of method (V = 0.95, F'(5,25) = 99.48, p < 0.05.

From the post hoc test we can conclude that (see Table 4.2 and Table 4.3):

e The learning algorithm with Laplacian Eigenmaps embedding generates signif-
icantly lower MSEs than both LK (p < .05) and degraded LK (p < .05).
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Table 4.3: Pairwise Comparisons (experiment described in section 4.3.1)

Measure:MSE

1 2 3 4 ) 6
1 5.13E-15%* | 1.60E-04** | 3.58E-15%* | 1.76E-11** | 3.19E-04**
2 5.13E-15%* 1.96E-01 7.506E-14%% | 2.02E-03** | 2.08E-01*
3 1.60E-04** 1.96E-01 2.88E-06** | 2.69E-02* 8.81E-01
4 3.58E-15%* | 7.56E-14** | 2.88E-06** 1.13E-11*%*% | 3.72E-06**
) 1.76E-11%*% | 2.02E-03** | 2.69E-02* | 1.13E-11** 3.48E-02*
6 3.19E-04** | 2.08E-01* 8.81E-01 | 3.72E-06** | 3.48E-02*

Sig. (* for <.05 and ** for <.01)

Table 4.4: Descriptive Statistics (experiment described in section 4.3.2)

Method | Dependent Variable Mean | Std. Deviation | N

1 LK 198.34 | 689.61 400
2 Degraded LK 303.54 | 1054.97 400
3 PCA 150.50 | 490.17 400
4 LLE 223.08 | 739.39 400
5 Laplacian Eigenmaps | 147.37 | 475.26 400
6 LTSA 171.93 | 566.39 400

e The learning algorithm with Laplacian Eigenmaps generates significantly lower
MSEs than the learning algorithm with either PCA (p < .05), LLE (p < .05) or
LTSA (p < .05).

4.3.2 Results with the 3-D Gated Dataset

We repeated the experiment with the 3-D Gated dataset.

Descriptive statistics of this experiment is given in Table 4.1. Figure 4.6 shows
the Box and Whisker plot of MSEs of LK, degraded LK, learning algorithms with
different data embedding methods. Mauchly’s test indicates that the assumption of
sphericity has been violated (y?(14) = 5960.31, p < 0.01) therefore Greenhouse-
Geisser corrected tests are reported (¢ = .260). The results show that MSEs are
significantly affected by the choice of methods, V' = 0.09, F' (5,395) = 7.71, p < 0.01.

From the post hoc test we can conclude that (see Table 4.5 and Table 4.6):
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Figure 4.6: The Box and Whisker plot of MSEs of LK, degraded LK, learning al-
gorithms with different data embedding methods (experiment described in section
4.3.2).

Table 4.5: Tests of Within-Subjects Effects (experiment described in section 4.3.2)
Measure:MSE

Source Type III df Mean F Sig.
Sum of Square
Squares
Method Sphericity Assumed | 6.90E-+06 5 1.38E+06 17.785 | 2.78E-17**
Greenhouse-Geisser | 6.90E+06 1.30 5.30E+06 17.785 | 3.67TE-06**
Huynh-Feldt 6.90E+06 1.30 5.29E+-06 17.785 | 3.60E-06**
Lower-bound 6.90E+06 1.00 6.90E+06 17.785 | 3.06E-05**
Sphericity Assumed | 1.55E+08 1995 7.76E+04
Error Greenhouse-Geisser | 1.55E+08 519.35 | 2.98E+05
(Method)  Huynh-Feldt 1.55E+08 520.35 | 2.98E-+05
Lower-bound 1.55E+08 399.00 | 3.88E+05

Sig. (* for <.05 and ** for <.01)

e The learning algorithm with Laplacian Eigenmaps embedding generates signif-
icantly lower MSEs than both LK (p < .01) and degraded LK (p < .01).

e The learning algorithm with Laplacian Eigenmaps generates significantly lower
MSEs than the learning algorithm with PCA (p < .05), LLE (p < .01) and
LTSA (p < .01).
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Table 4.6: Pairwise Comparisons (experiment described in section 4.3.2)

Measure: MSE
1 2 3 4 ) 6
1 3.00E-05** | 2.48E-04** | 1.97E-02* | 2.05E-04** | 1.59E-02*
2 3.00E-05** 8.86E-06** | 4.90E-03** | 7.30E-06** | 4.81E-05**
3 2.48E-04** | 8.86E-06** 1.26E-08*%* | 1.09E-02* | 6.23E-08**
4 1.97E-02* | 4.90E-03** | 1.26E-08** 2.54E-08** | 7.41E-09**
) 2.05E-04** | 7.30E-06** | 1.09E-02* | 2.54E-08** 6.27E-Q7**
6 1.59E-02*% | 4.81E-05** | 6.23E-08** | 7.41E-09** | 6.27TE-07**
Sig. (* for <.05 and ** for <.01)
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Figure 4.7: MSEs of images registered with learning algorithm with LK, degraded
LK, and learning set of representative patches only (experiment described in section
4.3.3.1).

4.3.3 Learning Set of Representative Patches Only

Representative patches are generated by computing the averages of all patches in each
cluster. Therefore, using a learning set with representative patches only rather than

all the patches in the learning set would make for a much faster approach.

Table 4.7: Descriptive Statistics (experiment described in section 4.3.3.1)

Method | Dependent Variable | Mean | Std. Deviation | N
1 LK 113.47 | 33.10 30
2 Degraded LK 161.80 | 49.92 30
3 With only RP 263.78 | 164.65 30
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Figure 4.8: The Box and Whisker plot of MSEs of LK, degraded LK and the learning
algorithms with a learning set of representative patches only ; rather than improv-
ing performance, the inaccuracy increased highly (experiment described in section
4.3.3.1).

4.3.3.1 Results with the 2-D dMRI Dataset

Table H.1 shows the results. Column 1 shows the trial numbers; detail of trials can
be found in Table 2.1. The MSEs of LK and degraded LK optical flow algorithms are
given in column 2 and 3 respectively. MSEs of learning algorithm with learning set
of representative patches only are given in column 4. We used the learning algorithm
with code-book approach. The Figure 4.7 shows the MSEs of images registered with
LK, degraded LK and learning algorithm with a learning set of representative patches

only. We used the following parameters:
e patch radius: r =5,
e parameter for decay of weight: h = 2 (as described in section 3.4.3, h = (r +
1)/3),
e the angular difference is used as a similarity measure

e all the composed fields were included in learning set,

e code-book of patches: 2-D Laplacian eigenmaps with a neighborhood of size 6

for the embedding of the feature vector and hierarchical clustering
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e inconsistency coefficient threshold of 1.15 as the value of the cutoff argument in

hierarchical clustering,

e threshold for the selection of representative patches: maximum 5 degree of

angular difference for each vector in a patch.

We performed a repeated measures ANOVA to compare the different methods (ratio-

nale for using repeated measures ANOVA is discussed in section 2.4.3):
e Method 1: LK
e Method 2: Degraded LK
e Method 3: With only RP

Descriptive statistics of this experiment is given in Table 4.7. Figure 4.8 shows the
Box and Whisker plot of MSEs of LK, degraded LK and the learning algorithms
with a learning set of representative patches only . Mauchly’s test indicates that
the assumption of sphericity has been violated (x? (2) = 99.39, p < 0.05) therefore
Greenhouse-Geisser corrected tests are reported (¢ = .51). The results show that
MSEs are significantly affected by learning set with representative patches, V = 0.91,
F(2,28) = 147.55, p < 0.05.

From the post hoc test (see Table 4.8 and Table 4.9) we can conclude that the
learning algorithm with learning set of representative patches only generates signifi-
cantly higher MSEs than both LK (p < .05) and degraded LK (p < .05). In fact, the

results are so bad that we did not compare it with the learning algorithm.

4.3.3.2 Results with 3-D Gated CT Dataset

We repeated the experiment with the 3-D gated CT dataset. Results are in the table
in Appendix 1.1 shows the results.
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Table 4.8: Tests of Within-Subjects Effects (experiment described in section 4.3.3.1)

Measure:MSE
Source Type 111 df Mean F Sig.
Sum of Square
Squares
- _()7Ex
Method Sphericity Assumed 3 536405 2 LTTE05 17.81 | 9.34E-07
h -Gel 1.01 17.81 | 2.03E-04**
Greenhouse-Geisser 3 536405 0 3485405 7.8 03E-0
H h-Feldt 1.02 17.81 | 2.01E-04**
HYHEEe 3536+05 | “0% | 348805 781 | 2.01E-0
L -b d 1. 17.81 | 2.19E-04**
owerbotl 3536+05 | 700 | 353805 8 OE-0
Sphericity A d 58
PREHICILY ASSUIEE | 5 75B105 9.92E 103
Error
(Method) .
G h -G 29.42
FECHROUSCTACISSEL | 5 5B 105 1.96E+ 04
H h-Feldt 29.47
YRR 5.75E+05 1.95E+ 04
L -b d 29.00
ower-bout 5.75E+05 1.98E+ 04

Sig.

(* for <.05 and ** for <.01)

Table 4.9: Pairwise Comparisons (experiment described in section 4.3.3.1)

Measure:MSE

1

2

3

5.13E-15%*

3.65E-05%**

5.13E-15%*

3.38E-03**

3.65E-05%*

3.38E-03**

Sig. (* for <.05 and ** for <.01)

Table 4.10: Descriptive Statistics (experiment described in section 4.3.3.2)

Method | Dependent Variable | Mean | Std. Deviation | N

1 LK 198.34 | 689.61 400
2 Degraded LK 303.54 | 1054.97 400
3 With only RP 357.29 | 1008.51 400
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Figure 4.9: The Box and Whisker plot of MSEs of LK, degraded LK and the learning
algorithms with a learning set of representative patches only (experiment described

in section 4.3.3.2).

Descriptive statistics of this experiment is given in Table 4.10. The Figure 4.9
shows the Box and Whisker plot of MSEs of LK, degraded LK and the learning algo-
rithms with a learning set of representative patches only . Mauchly’s test indicates
that the assumption of sphericity has been violated (x? (2) = 42.36, p < 0.01) there-

fore Greenhouse-Geisser corrected tests are reported (¢ = .90). The results show that

MSEs are significantly affected by learning set with representative patches, V = 0.14,

F(2,398) = 32.46, p < 0.01.

From the post hoc test we can conclude that (see Table 4.11 and Table 4.12):

e The learning algorithm with learning set of representative patches only generates
significantly higher MSEs than LK (p < .01).

e The learning algorithm with learning set of representative patches only generates
higher MSEs compared to degraded LK, but not significantly so (p < .05).

4.3.4 Discussion

The learning set of displacement fields generates a highly non-convex high-dimensional

feature space. From a theoretical standpoint, linear embedding methods such as PCA,
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Table 4.11: Tests of Within-Subjects Effects (experiment described in section 4.3.3.2)
Measure:MSE

Source Type 111 df Mean F Sig.
Sum of Square
Squares
Method Sphericity Assumed | 5.23E406 | 2 2.61E+4-06 22.20 | 4.13E-10**
Greenhouse-Geisser | 5.23E+06 | 1.82 2.88E+-06 22.20 | 2.14E-09**
Huynh-Feldt 5.23E+06 | 1.82 2.87E+06 22.20 | 2.00E-09**
Lower-bound 5.23E+06 | 1.00 5.23E4-06 22.20 | 3.39E-06**
Sphericity Assumed | 9.40E+407 | 798 1.18E+05
Error Greenhouse-Geisser | 9.40E+407 | 724.82 | 1.30E+05
(Method)  Huynh-Feldt 9.40E+07 | 727.95 | 1.20E+05
Lower-bound 9.40E+407 | 399.00 | 2.36E+05

Sig. (* for <.05 and ** for <.01)

do not preserve the local properties of the high-dimensional manifold. Unsurprisingly,
the learning algorithm with PCA as an embedding technique did not then deliver
better performance than that of degraded LK.

By including all possible vector compositions in our learning set, we greatly in-
crease the number of vector fields in the higher dimensional manifold (7 dimensions
for 2D motion and 9 dimensions for 3D motion). Consequently, in some trials, LLE
could not successfully construct an efficient lower dimensional manifold. LLE was
then associated with the highest MSEs among the embedding methods.

Like LLE, LTSA also performs inefficiently against the learning set with composed
vector fields. Moreover, in our learning set, we have different patterns of motions (like
cardiac motion, respiratory motion etc.). So, high dimensional manifolds may consist
of several disjoint components where several of the smallest eigenvalues are about the
same magnitude. Therefore, low dimensional manifolds constructed by LTSA may
not be accurate.

Laplacian Eigenmaps shows the best result. We know that Laplacian Eigenmaps
embedding is non-linear and preserves local properties of the manifold. It can also
handle non-convex features, curvatures and corners of a manifold. In that sense, it is
more robust than the other three embedding methods.

In all cases, learning algorithm with only representative patches in the learning set
cannot improve accuracy of registration. This is because the representative patches
are actually the average of all patches in a cluster. Many fine patterns of motion are

missing in these representative patches.
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Table 4.12: Pairwise Comparisons (experiment described in section 4.3.3.2)
Measure MSE

1 2 3
3.00E-05%* | 4.77E-14**
3.00E-05%** 4.77E-02*
4.77E-14%* | 4.77E-02*

Sig. (* for <.05 and ** for <.01)

4.4 Conclusion

This chapter described the concept of code-book of patches, and the methods we
selected for its generation. In particular, we discussed and compared the performances
of a variety of manifold embedding approaches. The following chapter will discuss a

number of refinements.
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Chapter 5

Improving the Flow

5.1 Introduction

Recall that in the fashion of the non local means, our objective is to take advantage of
the high degree of redundancy of motion across images in a sequence. To improve an
initial flow, we replace the displacement vectors at the center of patches by a Gaussian
weighted average of the displacement vectors at the center of similar patches in a
learning set.

Given a patch in the initial flow at position (m,n), rather than consider the set of

all patches in the learning set, C = { {(zs,9:), q:} } we restrict ourselves to patches

in those clusters whose representative patches best erlzatch the one under consideration.
Let J C Z be the indices of the selected patches.

So far, we have used as a similarity measure the Gaussian weighted sum of squared
differences between the vector polar angles in ¢; and in q,,,, with standard deviation
01 Wyector (is Am,n) = 0(az) — O(cm,n) [15-

In this chapter we discuss the effects of two similarity distances in the learning
algorithm, based on the spatial distance between patches (section 5.2) and on intensity
differences (5.3). We also explore the effect of iteratively applying the algorithm. In
the previous chapters, we performed the experiments on 2D and 3D medical images,
for which we did not have ground truth flows. Here, we use the MPI-Sintel dataset, for
which ground truth flows are available, and compare the performance of our approach,
both qualitatively and quantitatively, against those of state-of-the-art optical flow
methods.
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5.2 Spatial Distance as an Additional Similarity Mea-

sure

We note that patches in the vicinity of each other are more likely to belong to the
same moving object and, consequently, to exhibit the same motion, than patches
further apart. For instance, patches in the neighbourhood of the heart exhibit a
repetitive motion in sync with cardiac motion, one very different, in terms of phase,
frequency and direction, from those patches in the neighbourhood of the diaphragm.
This motivated us to introduce spatial distance as an additional similarity measure

between patches in equation 3.2:

1 - (% )'Yvector « (% )'Ydistance
(Um,na Umm) = E Z e h2 : (Ui, 'Ui) (51)
eJ
Where wyector (i Am.n) = 0(di) — 0(dm.n) ||§J is the similarity measure the same

Gaussian weighted sum of squared differences between the vector polar angles in ¢; and
in the representative patches q,, , with standard deviation 0. wgistance ( (i, y3), (m, n))
is the Euclidean distance between the centers of both patches. Yyectorandygistance CON-
trol the relative contributions of the weights.

We evaluate below the performance of the learning algorithm without and with

spatial distance as a similarity measure.

5.2.1 Results with the 2-D dMRI Dataset

We first evaluated the influence of spatial distance on our 2-D MRI dataset. For our

learning approach, we used the following parameters:
e patch radius: r =5,

e parameter for decay of weight: h = 2 (as described in section 3.4.3, h = (r +
1)/3)7 vector = 1 and “distance = 1 )

e the angular difference is used as a similarity measure

e all the composed fields were included in learning set,
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Figure 5.1: MSEs of images registered using LK, degraded LK and learning algorithm
with and without heuristic weight of spatial distance (experiment described in section
5.2.1).

Table 5.1: Descriptive Statistics (experiment described in section 5.2.1)

Method | Dependent Variable Mean | Std. Deviation | N
1 LK 113.47 | 33.10 30
2 Degraded LK 161.80 | 49.92 30
3 Without weight of spatial distance | 144.59 | 33.74 30
4 With weight of spatial distance 123.41 | 36.82 30

e code-book of patches: 2-D Laplacian eigenmaps with a neighborhood of size 6

for the embedding of the feature vector and hierarchical clustering

e inconsistency coefficient threshold of 1.15 as the value of the cutoff argument in

hierarchical clustering,

e threshold for the selection of representative patches: maximum 5 degree of

angular difference for each vector in a patch.

Results are shown in Table J.1. As per the previous chapters, column 1 shows
the trial numbers with detail of trials in Table 2.1. Figure 5.1 shows the MSEs of
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Figure 5.2: The Box and Whisker plot of MSEs of LK, degraded LK and learning al-
gorithms with and without heuristic weight of spatial distance (experiment described
in section 5.2.1).

images registered using LK, degraded LK and learning algorithm with and without
heuristic weight of spatial distance. The MSEs are computed based on the sum of
squared differences between the intensities of the target and registered images. The
MSEs of LK and degraded LK optical flow algorithms are given in column 2 and 3
respectively. The MSEs of the learning algorithm without and with spatial distance
are given in columns 4 and 5 respectively.

We performed a repeated measures ANOVA to compare the performances of the
different approaches (rationale for using repeated measures ANOVA is discussed in
section 2.4.3):

e Method 1: LK
e Method 2: Degraded LK
e Method 3: Learning algorithm without weight of spatial distance

e Method 4: Learning algorithm without weight of spatial distance

Descriptive statistics of this experiment is given in Table 5.1. Figure 5.2 shows the
Box and Whisker plot of MSEs of LK, degraded LK and learning algorithms with
and without heuristic weight of spatial distance. Mauchly’s test indicates that the
assumption of sphericity has been violated (x?(5) = 49.69, p < 0.05) therefore we
report Greenhouse-Geisser corrected tests (¢ = .50). The results show that the MSEs
are significantly affected by the choice of method (V' = 0.96, F (3,27) = 243.63,
p < 0.05.
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Table 5.2: Tests of Within-Subjects Effects (experiment described in section 5.2.1)
Measure:MSE

Source Type III df Mean Square | F Sig.
Sum of
Squares
Method Sphericity Assumed | 4.22E-+04 3 1.41E+04 65.95 | 2.46E-22**
Greenhouse-Geisser | 4.22E-+04 1.51 2.80E+-04 65.95 | 2.25E-12%*
Huynh-Feldt 4.22E+04 1.57 2.68E+04 65.95 | 8.27E-13**
Lower-bound 4.22E+04 1.00 4.22E+04 65.95 | 5.90E-09**
Sphericity Assumed | 1.85E-+04 87 213.10
Error Greenhouse-Geisser | 1.85E+04 43.74 423.82
(Method)  Huynh-Feldt 1.85E+04 | 45.63 406.34
Lower-bound 1.85E+04 29.00 639.29

Sig. (* for <.05 and ** for <.01)

Table 5.3: Pairwise Comparisons (experiment described in section 5.2.1)
Measure: MSE

1 2 3 4

5.13E-15%* | 1.76E-11** | 6.35E-03**
5.13E-15%* 2.02E-03** | 2.31E-08**
1.76E-11*%* | 2.02E-03** 8.71E-13**

6.35E-03** | 2.31E-08** | 8.71E-13**
Sig. (* for <.05 and ** for <.01)

=W | N =

From the post hoc test we conclude that (see Table 5.2 and Table 5.3):

e The learning algorithm with spatial distance as an additional similarity mea-
sure generated significantly lower MSEs than LK (p < .05) and degraded LK
(p < .05).

e The use of spatial distance significantly improved the performance of the learn-
ing algorithm in terms of MSEs (p < .05).

5.2.2 Results with the 3-D Gated CT Dataset

We also evaluated the influence of spatial distance on our 3-D gated CT dataset, with

the same parameters as above. The table in Appendix K.1 shows the results.
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Table 5.4: Descriptive Statistics (experiment described in section 5.2.2)

Method | Dependent Variable Mean | Std. Deviation | N
1 LK 198.34 | 689.61 400
2 Degraded LK 303.54 | 1054.97 400
3 Without weight of spatial distance | 147.37 | 475.26 400
4 With weight of spatial distance 145.33 | 475.28 400
120
100
80
4 60
=
40
20
0 T T T 1
LK Degraded LK Without heuristic  With heuristic
weight of spatial weight of spatial
distance distance

Figure 5.3: The Box and Whisker plot of MSEs of LK, degraded LK and learning al-
gorithms with and without heuristic weight of spatial distance (experiment described
in section 5.2.2).
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Table 5.5: Tests of Within-Subjects Effects (experiment described in section 5.2.2)
Measure:MSE

Source Type III df Mean Square | F Sig.
Sum of
Squares
Method Sphericity Assumed | 6.59E+06 3 2.20E+4-06 19.66 | 1.92E-12%*
Greenhouse-Geisser | 6.59E+06 1.13 5.84E+06 19.66 | 4.35E-06**
Huynh-Feldt 6.59E+06 1.13 5.84E4-06 19.66 | 4.32E-06**
Lower-bound 6.59E+06 1.00 6.59E+06 19.66 | 1.20E-05**
Sphericity Assumed | 1.34E-+08 1197 1.12E+05
Error Greenhouse-Geisser | 1.34E+08 450.09 2.97E+05
(Method)  Huynh-Feldt 1.34E+08 | 450.49 2.97E+05
Lower-bound 1.34E+08 399.00 3.35E+05

Sig. (* for <.05 and ** for <.01)

We performed a repeated measures ANOVA to compare the performances of the

same approaches as those described in the previous section (rationale for using re-

peated measures ANOVA is discussed in section 2.4.3).

Descriptive statistics of this experiment is given in Table 5.4. Figure 5.3 shows
the Box and Whisker plot of MSEs of LK, degraded LK and learning algorithms with
and without heuristic weight of spatial distance. Mauchly’s test indicates that the
assumption of sphericity has been violated (x*(5) = 5078.87, p < 0.01) therefore

Greenhouse-Geisser corrected tests are reported (¢ = 2.85E — 06). The results show
that MSEs are significantly affected by the choice of method (V' = 0.78, F'(3,397) =
459.29, p < 0.01.

From the post hoc test we conclude that (see Table 5.5 and Table 5.6):

e The learning algorithm with spatial distance as an additional similarity mea-
sure generated significantly lower MSEs than LK (p < .01) and degraded LK
(p < .01).

e The use of spatial distance significantly improved the performance of the learn-

ing algorithm in terms of MSEs (p < .01).




Table 5.6: Pairwise Comparisons (experiment described in section 5.2.2)

Measure: MSE
1 2 3 4
1 3.00E-05*%* | 2.05E-04** 1.14E-04**
2 3.00E-05** 7.30E-06** | 5.56E-06**
3 2.05E-04*%* | 7.30E-06** 9.91E-129**
4 1.14E-04** | 5.56E-06** | 9.91E-129**

Sig. (* for <.05 and ** for <.01)

Figure 5.4: Similar motion in different spatial parts of a deformation field.

5.2.3 Discussion

These results suggest that the addition of spatial distance improves performances.
Indeed, similar motions tend to occur in the same spatial area. For instance, in
our 2-D dMRI dataset, respiratory motion around the diaphragm produces patches
with very similar vectors in the lower part of each deformation field whereas cardiac
motion produces similar patches around the middle part of those same fields (see
regions highlighted in red on Figure 5.4). Obviously, we do not want to consider
similar patches indiscriminately. For an example, we may not want to combine similar
patches of vectors for motion of diaphragm with cardiac motion. When we use spatial

distance, we actually prioritize vectors that are in a closer neighborhood.
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5.3 Intensity Difference as an Additional Similarity

Measure

We further note that patches with similar intensity patterns are more likely to cor-
respond to the same moving objects than patches with different intensity patterns,
and that a moving object in a sequence is likely to exhibit similar motion across con-
secutive images. This motivated us to introduce intensity difference as an additional

similarity measure between patches in equation 5.1:

( Wyector. )"/vector ( Wgistance )"/distance (wintensity )Wintensity

]_ __ \ Pvector Pdistance “intensity

(s V) = — D e W (ug,v;)  (5.2)
(IS

Where Wyector (G Am,n) = 0(d:) —0(Am,n) [|3 5 is the similarity measure the same

Gaussian weighted sum of squared differences between the vector polar angles in
¢; and in the representative patches q,,, with standard deviation o . We use for
Wintensity (Pi; Pm,n) the Gaussian weighted sum of squared differences between both
matrices of intensities. wdistance((xi,yi), (m, n)) is the Euclidean distance between
the centers of both patches. “yector; Vaistance @0 Vintensity control the relative con-
tributions of the weights.

We evaluate below the performance of the learning algorithm without and with

intensity distance as an similarity measure.

5.3.1 Results with the 2-D dMRI Dataset

We evaluated the influence of intensity difference on our 2-D dMRI dataset and the
same parameters as in Section 5.2 above. Results are shown in Table L.1. Column
1 shows the trial numbers; detail of trials can be found in Table 2.1. Figure 5.5
shows the MSEs of images registered using LK, degraded LK and learning algorithm
with and without heuristic weight of intensity. The MSEs of LK and degraded LK
optical flow algorithms are given in column 2 and 3 respectively. The MSEs of the
learning algorithm without and with intensity difference are given in columns 4 and

5 respectively. For our learning approach, we used the following parameters:

e patch radius: r =5,
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Figure 5.5: MSEs of images registered using LK, degraded LK and learning algorithm
with and without heuristic weight of intensity (experiment described in section 5.3).

e parameter for decay of weight: h = 2 (as described in section 3.4.3, h = (r +
1)/3)7 Vvector = ]-7 “distance = 1 and “Vintensity — 1

e the angular difference and heuristic weight of spatial distance are used as a

similarity measure
e all the composed fields were included in learning set,

e code-book of patches: 2-D Laplacian eigenmaps with a neighborhood of size 6

for the embedding of the feature vector and hierarchical clustering

e inconsistency coefficient threshold of 1.15 as the value of the cutoff argument in

hierarchical clustering,

e threshold for the selection of representative patches: maximum 5 degree of

angular difference for each vector in a patch.
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Table 5.7: Descriptive Statistics (experiment described in section 5.3)

Method | Dependent Variable Mean | Std. Deviation | N
1 LK 113.47 | 33.10 30
2 Degraded LK 161.80 | 49.92 30
3 Without weight of intensity | 111.32 | 34.59 30
4 With weight of intensity 123.41 | 36.82 30
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Figure 5.6: The Box and Whisker plot of MSEs of LK, degraded LK and learning
algorithms with and without heuristic weight of intensity (experiment described in
section 5.3).
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We performed a repeated measures ANOVA to compare the performances of the
different approaches (rationale for using repeated measures ANOVA is discussed in
section 2.4.3):

e Method 1: LK
e Method 2: Degraded LK

e Method 3: Learning algorithm without intensity difference as an similarity mea-

sure

e Method 4: Learning algorithm with intensity difference as an additional simi-

larity measure

Descriptive statistics of this experiment is given in Table 5.7. Figure 5.6 shows the

Box and Whisker plot of MSEs of LK, degraded LK and learning algorithms with and

without heuristic weight of intensity. Mauchly’s test indicates that the assumption

of sphericity has been violated (x*(5) = 66.88, p < 0.05) therefore Greenhouse-

Geisser corrected tests are reported (¢ = .55). The results show that the MSEs are

significantly affected by the choice of method (V' = 0.92, F'(3,27) = 97.53, p < 0.05.
From the post hoc test we conclude that (see Table 5.8 and Table 5.9):

e The learning algorithm with intensity difference as an additional similarity mea-
sure generated significantly lower MSEs than LK (p < .05) and degraded LK
(p < .05).

e The use of intensity difference significantly improved the performance of the

learning algorithm in terms of MSEs (p < .05).

5.3.2 Discussion

These results suggest that the learning algorithm with heuristic weight of intensity
shows better performance than learning algorithm without heuristic weight of inten-
sity. In particular, it improves the flow estimation of motion around the boundary
of structures in the images. A moving object may have different intensity compared

to the environment around it. But, the estimated flow around the boundary of that
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Table 5.8: Tests of Within-Subjects Effects (experiment described in section 5.3)

Measure:MSE

Source Type III df Mean Square | F Sig.
Sum of
Squares
Method Sphericity Assumed | 4.96E-+04 3 1.65E+04 95.23 | 2.16E-27**
Greenhouse-Geisser | 4.96E-+04 1.65 3.00E+-04 95.23 | 3.81E-16**
Huynh-Feldt 4.96E+04 1.74 2.85E+04 95.23 | T.11E-17**
Lower-bound 4.96E+04 1.00 4.96E+04 95.23 | 1.15E-10**
Sphericity Assumed | 1.51E+04 87 173.48
Error Greenhouse-Geisser | 1.51E-+04 47.93 314.88
(Method)  Huynh-Feldt 1.51E+04 | 50.46 299.10
Lower-bound 1.51E+04 29.00 520.43

Sig. (* for <.05 and ** for <.01)

Table 5.9: Pairwise Comparisons (experiment described in section 5.3)

Measure: MSE
1 2 3 4
1 5.13E-15%* | 1.35E-02* | 6.35E-03**
2 5.13E-15%* 7.14E-16** | 2.31E-08**
3 1.35E-02* | 7.14E-16** 9.93E-04**
4 6.35E-03** | 2.31E-08*%* | 9.93E-04**

Sig. (* for <.05 and ** for <.01)

92




350

300
n
m
250
]
X oLl
200 -
- - u ™ * LK
2 -.

150 u [ M Degraded LK
% ﬁ u m .. L [ | m A With one iteration
+ * u > With two iterations
100
I ¢
|
A

50

] 10 20 30 A

Trials

Figure 5.7: MSEs of images registered using LK, degraded LK and learning algorithm
with one iteration and two iterations (experiment described in section 5.4.1).

moving object may become less accurate due to the regularization of low. With this
heuristic weight, the learning algorithm decreases weight of the filtered flow when
it finds higher intensity difference at the boundary. Consequently, the filtered flow

becomes more accurate.

5.4 Iterating the Learning Algorithm

We observe that many registration approaches are iterative in nature, with the esti-
mated flow being improved at each step. Consequently, we wanted to check whether
successively applying the learning algorithm would also improve the overall perfor-
mance. The idea is to use the learned flow field (the one estimated by the learning

algorithm) from the first iteration as an input for the second iteration.
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Table 5.10: Descriptive Statistics (experiment described in section 5.4.1)

Method | Dependent Variable | Mean | Std. Deviation | N
1 LK 113.47 | 33.10 30
2 Degraded LK 161.80 | 49.92 30
3 With one iteration 111.32 | 34.59 30
4 With two iterations | 111.65 | 34.95 30
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Figure 5.8: The Box and Whisker plot of MSEs of LK, degraded LK and learning
algorithms with and without iteration (experiment described in section 5.4.1).
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5.4.1 Results with the 2-D dMRI Dataset

For the learning algorithm, we used all three patch similarity measures: vector angular
difference, spatial distance and intensity difference, with the same parameters as in
the previous experiments.

Table M.1 shows the results. Column 1 shows the trial numbers; detail of trials
can be found in Table 2.1. Figure 5.7 MSEs of images registered using LK, degraded
LK and learning algorithm with one iteration and two iterations. The MSEs of LK
and degraded LK optical flow algorithms are given in column 2 and 3 respectively.
MSEs of learning algorithm with one and two iterations are given in columns 4 and

5 respectively. For our learning approach, we used the following parameters:
e patch radius: r =5,

e parameter for decay of weight: h = 2 (as described in section 3.4.3, h = (r +
1)/3)7 vector = ]-7 “Vdistance = 1 and “Vintensity — 1

e the angular difference, heuristic weight of spatial distance and heuristic weight

of intensity re used as a similarity measure
e all the composed fields were included in learning set,

e code-book of patches: 2-D Laplacian eigenmaps with a neighborhood of size 6

for the embedding of the feature vector and hierarchical clustering

e inconsistency coefficient threshold of 1.15 as the value of the cutoff argument in

hierarchical clustering,

e threshold for the selection of representative patches: maximum 5 degree of

angular difference for each vector in a patch.

We performed a repeated measures ANOVA to compare the performances of the
different approaches (rationale for using repeated measures ANOVA is discussed in
section 2.4.3):

e Method 1: LK
e Method 2: Degraded LK
e Method 3: Learning algorithm with one iteration

e Method 4: Learning algorithm with two iterations
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Table 5.11: Tests of Within-Subjects Effects (experiment described in section 5.4.1)
Measure:MSE

Source Type 111 df Mean F Sig.
Sum of Square
Squares
Method Sphericity Assumed | 5.56E+04 3 1.85E+04 | 224.43 | 7.88E-41**
Greenhouse-Geisser | 5.56E-+04 1.20 | 4.64E+04 | 224.43 | 9.69E-18**
Huynh-Feldt 5.56E+-04 1.22 | 4.55E+04 | 224.43 | 4.93E-18**
Lower-bound 5.56E+04 1.00 5.56E+04 224.43 | 3.47E-15**
Error Sphericity Assumed | 7.18E+03 87 82.52
(Method)
Greenhouse-Geisser | 7.18E+03 34.75 | 206.56
Huynh-Feldt 7.18E+03 | 35.42 | 202.70
Lower-bound 7.18E+403 | 29.00 | 247.55

Sig. (* for <.05 and ** for <.01)

Table 5.12: Pairwise Comparisons (experiment described in section 5.4.1)

Measure: MSE
1 2 3 4
1 5.13E-15%* | 1.35E-02* 9.38E-02
2 5.13E-15%* 7.14E-16** | 7.87E-16**
3 1.35E-02* | 7.14E-16** 6.33E-01
4 9.38E-02 | 7.87E-16** | 6.33E-01

Sig. (* for <.05 and ** for <.01)

Descriptive statistics of this experiment is given in Table 5.10. Figure 5.8 shows the
Box and Whisker plot of MSEs of LK, degraded LK and learning algorithms with
and without iteration. Mauchly’s test indicates that the assumption of sphericity has
been violated (x? (5) = 91.65, p < 0.05) therefore Greenhouse-Geisser corrected tests
are reported (¢ = .4). The results show that MSEs are significantly affected by the
choice of method ( V' =0.90, F (3,27) = 81.59, p < 0.05.

From the post hoc test we conclude that (see Table 5.11 and Table 5.12):

e The learning algorithm with heuristic weight of intensity generates significantly
lower MSEs than both LK (p < .05) and degraded LK (p < .05).

e The learning algorithm with two iterations generates more MSEs than the learn-

ing algorithm with one iteration, but statistically it is not significant (p > .05).

96



Table 5.13: Descriptive Statistics (experiment described in section 5.4.2)

Method | Dependent Variable Mean | Std. Deviation | N
1 LK 198.34 | 689.61 400
2 Degraded LK 303.54 | 1054.97 400
3 Learning algorithm with one iteration | 143.88 | 475.23 400
4 Learning algorithm with two iterations | 143.75 | 474.67 400
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Figure 5.9: The Box and Whisker plot of MSEs of LK, degraded LK and learning
algorithms with and without iteration (experiment described in section 5.4.2).

5.4.2 Results with the 3-D Gated CT Dataset

We also evaluated the influence of iterating the learning algorithm on our 3-D gated
CT dataset, with the same parameters as above. The table in Appendix N.1 shows
the results. Column 1 shows the trial numbers; detail of trials can be found in the
table in Appendix A.1.

We performed a repeated measures ANOVA to compare the same methods (ra-
tionale for using repeated measures ANOVA is discussed in section 2.4.3).

Descriptive statistics of this experiment is given in Table 5.15. Figure 5.9 shows
the Box and Whisker plot of MSEs of LK, degraded LK and learning algorithms with

and without iteration. Mauchly’s test indicates that the assumption of sphericity has
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Table 5.14: Tests of Within-Subjects Effects (experiment described in section 5.4.2)

Measure:MSE

Source Type 111 df Mean F Sig.
Sum of Square
Squares
Method Sphericity Assumed | 6.8E6 3 2267870 20.248 | <.001**
Greenhouse-Geisser | 6.8E6 1.129 | 6025002 20.248 | <.001**
Huynh-Feldt 6.8E6 1.130 | 6019584 20.248 | <.001**
Lower-bound 6.8E6 1.000 6803609 20.248 | <.001**
Error Sphericity Assumed | 1.34E8 1197 112003
(Method)
Greenhouse-Geisser | 1.34E8 450.56 | 297555
Huynh-Feldt 1.34E8 450.97 | 297288
Lower-bound 1.34E8 399.00 | 336008

Sig. (* for <.05 and ** for <.01)

Table 5.15: Pairwise Comparisons (experiment described in section 5.4.2)

Measure MSE
1 2 3 4
1 <.001%% | <.001%* | <.001**
2 <.001%* <.001%* | <.001%*
3 <.001%F | <.001%* .695
4 <.001%F | <.001%* .695

Sig. (* for <.05 and ** for <.01)

been violated (x*(5) = 3697, p < 0.01) therefore Greenhouse-Geisser corrected tests
are reported (¢ = .376). The results show that the MSEs are significantly affected by
the choice of method (V' = 0.053, F'(3,397) = 7.379, p < 0.01.

From the post hoc test we conclude that (see Table 5.14 and Table 5.15):

e The learning algorithm with iteration generates significantly lower MSEs than
both LK (p < .01) and degraded LK (p < .01).

e The learning algorithm with two iterations has lower MSEs than the learning
algorithm with one iteration approach, but statistically it is not significant
(p > .05).
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Figure 5.10: Over-regularization of flow field due to iteration; (a) initial learned flow
field before iteration; (b) over-smoothed flow after iteration.

5.4.3 Discussion

These results suggest that iterating the learning algorithm does not significantly im-
prove performances. This might be because we apply the learning algorithm on the
same learning set in the second iteration which results in an over-regularization of
the flow fields. Figure 5.10 (a) shows a patch around the heart of the initial learned
flow field between frame #105 and #106. Figure 5.10 (b) show the same patch after
second iteration. Clear we can observe over-smoothing compared to the initial learned
flow field.

5.5 The Full Monty

Informed by the results from the previous experiments, we formulated the best learn-
ing approach, which combines all previously introduced similarity measures, the use

of a code-book/representative patches system and only one iteration. Equation 3.2

becomes:
( Wyector )'Yvector « ( Wdistance )'Ydista.nce (wintensity )'Yintensity
o Tdi co e Tr———
(u v ) _ l Z e_ vector distance h2 intensity (u U) (5 3)
m,ny Ym,n 7 iy Ui .
eJ
Where wyector (i Am.n) = 0(di) —0(dim.n) ||§J is the similarity measure the same

Gaussian weighted sum of squared differences between the vector polar angles in ¢; and
in the representative patches q,, , with standard deviation o . waistance ( (i, 95), (m, n))

is the Euclidean distance between the centers of both patches. We use for wintensity (Pis Pmn)
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the Gaussian weighted sum of squared differences between both matrices of intensities.
YvectorsVdistance ald Vintensity control the relative contributions of the weights.

The pseudo-code of the implementation of equation 5.3 is given in Algorithm 5.1.

We evaluated performances on sequences from the MPI-Sintel dataset (see section
2.3.3 for details). This dataset exhibits both larger motions and increased complexity
(such as motion and defocus blur, atmospheric effects or specular surfaces), which
makes it a lot more challenging. We compared the proposed approach against the
classic, coarse-to-fine Horn and Schunck technique (HS) and three recent, state-of-the-
art approaches: Sun et al.’s median filtering algorithm (SMF) (for detail see section
2.1.4), Large Displacement Optical Flow (LDOF) (for detail see section 2.1.5) and
DeepFlow (for detail see section 2.1.6). We used publicly available implementations
for all of them, with default settings.

We selected 93 trials from 8 sequences (Alleyl, Ambush7, Bambool, Bamboo2,
Market2, Market6, Shaman2 and Shaman3) based on their exhibiting large motions
of small structures, since it is the focus of this thesis. In order to ensure large dis-
placements, we picked non-consecutive frames for the test cases with the immediately
preceding three frames in the learning set, i.e. two proceeding pairwise flow fields and
their vector composition. The complete trial table is given in section O.1.

Since ground truth flows are available for MPI-Sintel, we used AAE and AEPE
to measure performances (see section 2.4 for details). We computed the vector com-
position of the ground truth flows since we are using non-consecutive frames in our
test cases. Interestingly we could not have used MSEs here. This is for essentially

two reasons:

1. The MPI-Sintel dataset consists of complex, dynamic sequences where new ob-
jects may suddenly appear, such as large building structures, new characters
etc. Consequently, the target image in a trial may be substantially different
from the source image. Therefore, computing the MSEs of intensity differences
between the registered source image and the target image may yield artificially
high values, which would not be so indicative of the quality of the estimated

flow.

2. The intensity of objects may be altered by shading, which would, again, induce
artificially high MSE values.
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Algorithm 5.1 Pseudo Code of Learning Algorithm with Improved Flow

function | learned flow field | = learningAlgorithm( initial_flow, learning set,
threshold)

% initial_flow : the initially estimated flow field computed ...

% using an standard optic flow algorithm such as HS

% learning _set : the set of all deformation fields in a priori

% threshold : used for selecting the representative patches

% there are three similarity measures used in this algorithm; they are ...

% similarity vector, similarity spatial  distance and similarity intensity

% use Hierarchical clustering algorithm; output idz is the set of indices of the clusters
idz=cluser(learning set);

compute representativePatches by computing the average patch of each cluster

loop 1 : for each index (7,j) in the initial flow
{
% initialization of the weight of similarity measures for each patch
sum__ of weight=0;
compute the similarity vector for (i,j)
loop 2 : for each patch in each cluster in idz ...
that satisty the threshold on similarity measure wvector
{
compute the similarity spatial_ distance
compute the similarity intensity
compute the overall _weight of similarity of this_ patch ...
using the equation 5.3

sum_ of weight=sum_ of weight + ...
overall _weight _of similarity _of this_patch
weighted_vector=weighted_ vector + ...

overall _weight _of similarity _of this_patch x ...
vector _at_the center of the_ patch
}

end_of loop 2

% normalization
learned _flow field(i,j)=weighted_vector /| sum_of weight;

}

end_of loop 1

regularize the learned flow field using Gaussian filter
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Table 5.16: Descriptive Statistics (experiment described in section 5.5.1)

Method | Dependent Variable | Mean | Std. Deviation | N
1 HS 11.744 | 7.515 93
2 SMF 6.574 | 3.516 93
3 LDOF 7.460 | 7.864 93
4 DeepFlow 5.644 2.803 93
5 Learning Algorithm | 5.799 | 2.593 93
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Figure 5.11: The Box and Whisker plot of AAEs of different registration methods
(experiment described in section 5.5.1).
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Pairwise optical flows between consecutive frames in the learning set were esti-
mated using HS rather LK since HS yields a higher density of flow vectors. We used
the same parameters as before.

For our learning approach, we used the following parameters:

e code-book of patches: 2-D Laplacian eigenmaps with a neighborhood of size 6

for the embedding of the feature vector and hierarchical clustering

e patch radius: r = 5, sigma o = 2, filtering: 1 = 0.5, Vaistance = 1, Vintensity = 1

and Yvector — 17

e inconsistency coefficient threshold of 1.15 as the value of the cutoff argument in

hierarchical clustering,
e all the composed fields were included in learning set,

e threshold for the selection of representative patches: maximum 5 degree of

angular difference for each vector in a patch..

5.5.1 Average Angular Error (AAE)

We performed a repeated measures ANOVA to compare the performances of the
different approaches (rationale for using repeated measures ANOVA is discussed in
section 2.4.3):

e Method 1: HS

e Method 2: SMF

e Method 3: LDOF

e Method 4: DeepFlow

e Method 5: Learning Algorithm

Descriptive statistics of this experiment is given in Table 5.16. Figure 5.11 shows
the Box and Whisker plot of AAEs of different registration methods. Mauchly’s
test indicates that the assumption of sphericity has been violated (y? (9) = 331.783,
p < 0.01) therefore Greenhouse-Geisser corrected tests are reported (¢ = .442). The
results show that AAEs are significantly affected by the choice of method (V' = 0.637,
F(4,89) =39.112, p < 0.01.
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Table 5.17: Tests of Within-Subjects Effects (experiment described in section 5.5.1)
Measure:MSE

Source Type 111 df Mean F Sig.
Sum of Square
Squares
Method Sphericity Assumed | 2342.846 4 585.712 50.704 | 5.53E-34**
Greenhouse-Geisser | 2342.846 1.767 1325.516 50.704 | 1.97E-16**
Huynh-Feldt 2342.846 1.800 1301.912 50.704 | 1.10E-16**
Lower-bound 2342.846 1.000 2342.846 50.704 | 2.32E-10**
Error Sphericity Assumed | 4251.011 368 11.552
(Method)
Greenhouse-Geisser | 4251.011 162.610 | 26.142
Huynh-Feldt 4251.011 165.558 | 25.677
Lower-bound 4251.011 92.000 46.207

Sig. (* for <.05 and ** for <.01)

Table 5.18: Pairwise Comparisons (experiment described in section 5.5.1)

Measure MSE
1 2 3 4 5
1 2.09E-16** | 2.52E-13** | 3.59E-17** | 2.98E-18**
2 2.09E-16** 1.41E-01 1.80E-06** | 4.82E-05**
3 2.52E-13** 1.41E-01 9.88E-03** 1.04E-01
4 3.59E-17%* | 1.80E-06** | 9.88E-03** 3.17E-01
5 2.98E-18%* | 4.82E-05%* 1.04E-01 3.17E-01

Sig. (* for <.05 and ** for <.01)

From the post hoc test we conclude that (see Table 5.17 and Table 5.18):

e The learning algorithm generated significantly lower AAEs than both HS (p < .05)
and SMF (p < .05).

e The AAEs of the learning algorithm is not significantly difference from those of
LDOF (p <> .05) and DeepFlow (p > .05).

5.5.2 Average Endpoint Error (AEPE)

Descriptive statistics of this experiment is given in Table 5.19. We performed a re-
peated measures ANOVA to compare the same methods (rationale for using repeated
measures ANOVA is discussed in section 2.4.3).
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Table 5.19: Descriptive Statistics (experiment described in section 5.5.2)

Method | Dependent Variable | Mean | Std. Deviation | N
1 HS 3.3877 | 6.22225 93
2 SMF 2.3245 | 4.80320 93
3 LDOF 2.3619 | 4.80422 93
4 DeepFlow 2.1576 | 4.77292 93
5 Learning Algorithm | 1.8390 | 3.92781 93
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Figure 5.12: The Box and Whisker plot of AEPEs of different registration methods
(experiment described in section 5.5.2).

Figure 5.12 shows the Box and Whisker plot of AEPEs of different registration
methods. Mauchly’s test indicates that the assumption of sphericity has been vio-
lated (x?(9) = 165.477, p < 0.001) therefore Greenhouse-Geisser corrected tests are
reported (¢ = .501). The results show that AEPEs are significantly affected by the
choice of method (V' = 0.296, F' (4,89) = 9.351, p < 0.001.

From the post hoc test we conclude that (see Table 5.20 and Table 5.21):

e The learning algorithm generates significantly lower AEPEs than HS (p < .05)
, SMF (p < .05) and LDOF (p < .05).

e The AEPEs of the learning algorithm are not significantly different from those
of DeepFlow (p > .05).
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Table 5.20: Tests of Within-Subjects Effects (experiment described in section 5.5.2)
Measure:MSE

Source Type 111 df Mean F Sig.
Sum of Square
Squares
Method Sphericity Assumed | 126.029 4 31.507 23.006 | 5.52E-17**
Greenhouse-Geisser | 126.029 2.003 62.912 23.006 | 1.18E-09**
Huynh-Feldt 126.029 2.048 61.541 23.006 | 8.05E-10**
Lower-bound 126.029 1.000 126.029 23.006 | 6.20E-06**
Error Sphericity Assumed | 503.991 368 1.370
(Method)
Greenhouse-Geisser | 503.991 184.301 | 2.735
Huynh-Feldt 503.991 188.407 | 2.675
Lower-bound 503.991 92.000 5.478

Sig. (* for <.05 and ** for <.01)

Table 5.21: Pairwise Comparisons (experiment described in section 5.5.2)

Measure MSE
1 2 3 4 5
1 5.70E-07** | 1.48E-05** | 9.74E-08** | 9.53E-08**
2 5.70E-07** 7.53E-01 1.11E-01 | 4.47E-04**
3 1.48E-05*%* | 7.53E-01 3.22E-02*% | 7.66E-04**
4 9.74E-08** | 1.11E-01 3.22E-02%* 9.86E-02
5 9.53E-08** | 4.47E-04** | 7.66E-04** | 9.86E-02

Sig. (* for <.05 and ** for <.01)

5.5.3 Discussion

These results suggest that not only does our learning approach perform better than HS
and SMF, it also delivers performances in line with two very sophisticated techniques,
LDOF and DeepFlow, on the basis of initial and learning flows estimated from the
humble HS.

Figure 5.13.d and 5.14.d illustrate that the HS has no particular difficulty regis-
tering the bamboo stems, the pillars or the barrels since these structures are large
enough with respect to the magnitude of their movement for a coarse-to-fine approach
to deal with them adequately. However it is not able to correctly register the much
smaller bamboo leaves and fast moving chicken. We use as a learning set of consec-
utive frames different from the test frames (frames #12, #13 and #14 in Market6,
frames #1, #2 and #3 in Bamboo2). The accurate flows which HS could compute

106



between the consecutive frames in the learning set made it possible for the learning
algorithm to estimate more accurate flows between non-consecutive frames in the test
set. Interestingly, it specifically improves the accuracy of the flow in the regions of
interest without degrading the accuracy elsewhere (see Figure 5.13.1 and 5.14.1).
Figure 5.13.e-f and 5.14.e-f show the registration results for SMF, Figure 5.13.g-h
and 5.14.g-h show the registration results for LDOF, Figure 5.13.i-j and 5.14.i-j show
the registration results for DeepFlow applied directly to the test frames. Judged from
the super-imposed registered source and target images, the performance of these very
sophisticated techniques is actually in line with that of our learning approach applied
to the straight-forward HS. As a matter of fact, neither of SMF, LDOF and DeepFlow
could adequately handle the running chicken (see Figure 5.14.h,j). Their estimated

flows are inevitably more regular though not necessarily better everywhere.

5.6 Conclusion

In this chapter, we introduced two additional similarity measures in the learning
algorithm based on spatial distance and intensity. Both of these improved the perfor-
mance. The use of a second iteration did result in over-regularization of the learned
flow field and thus did not improve the performance. We apply the learning algo-
rithm on MPI-Sintel dataset and compared its performance quantitatively with HS,
SMF, LDOF and DeepFlow. The learning algorithm shows better performance than
both the HS and the SMF. Results suggest that our learning approach applied to the
straight-forward HS shows similar performances than both of the very sophisticated
techniques, LDOF and DeepFlow.
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Figure 5.13: MPI-Sintel’s Market6 sequence: (a) source frame #14; (b) target frame
#16 (in red) super-imposed on top of source frame (in green); (c¢) flow estimated with
HS; (d) target frame (in red) on top of source frame transformed using HS flow (in
green); (e-f) idem for learning SMF; (g-h) idem for LDOF; (i-j) idem for DeepFlow;
(k-1) idem for learning algorithm; (m) flow field color coding: the color represents the
orientation of the vector and brightness stands for its magnitude.
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Figure 5.14: MPI-Sintel’s Bamboo2 sequence: (a) source frame #3; (b) target frame
#5 (in red) super-imposed on top of source frame (in green); (c) flow estimated with
HS; (d) target frame (in red) on top of source frame transformed using HS flow (in
green); (e-f) idem for the SMF; (g-h) idem for the LDOF; (i-j) idem for the DeepFlow;
(k-1) idem for the learning algorithm; (m) flow field color coding: the color represents
the orientation of the vector and brightness stands for its magnitude.
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Chapter 6

Conclusion

6.1 Summary

Accurately estimating the optical flow of small structures animated with large motion
remains a core challenge in computer vision. Most state-of-the-art approaches rely
on the additional information provided by image descriptors to improve the flow (e.g.
LDOF, DeepFlow). In this thesis, we proposed a different, data-driven, learning
approach to motion estimation. We focused on the computation of the optical flow
between two non-consecutive images in a sequence on the basis of a learning set of
optical flows carefully estimated a priori between different consecutive images in the
same sequence. Rather than learning a statistical model of the flow, our approach
refines an initial estimate of the flow field by replacing each displacement vector by
a linear combination of displacement vectors at the centre of similar patches taken
from an a priori, structured code-book.

We evaluated the use of a variety of similarity measures, of a number of embedding
techniques to help with the structuring (clustering) of the code-book, and of numerous
refinements (such as vector composition of deformation fields and iterative application
of the learning algorithm). Experimental results suggest that with careful selection
of the learning set, the proposed approach shows better performance than many
advanced method such as SMF, LDOF or DeepFlow.

We also had the opportunity to contribute software to the research community
when the need arose for a Matlab implementation of the classic Horn-Schunck and
Lucas-Kanade optical flow algorithms for 3D images. Our codes are available at Mat-
labcentral (mathworks.co.uk/ matlabcentral/ fileexchange/ authors/ 257136) where
it attracted maximum rating and is regularly downloaded (116 times in the past 30

days).
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6.2 Future Directions

Here is a selection of potential research directions, aimed at improving upon the

proposed learning framework.

6.2.1 Piece-wise learning set

One of the limitations of our approach is that its performance is highly dependent
on the selection of an appropriate learning set. If the learning set does not contain
motions similar enough to those in the test case, the proposed algorithm will over-
smooth the estimated flow fields. Therefore, it might be preferable to consider a
composite, or piece-wise, learning set. For instance, in 2D and 3D images of thorax,
if we exclusively include motions around heart and diaphragm in the learning set, the
proposed approach may perform better.

We conducted a preliminary experiment, which is illustrated on Figure 6.1. Here,
HS is used to estimate the initial low between two non-consecutive frames, #82 and
#85 in the 2D MRI dataset. The learning consists of the flows from from a region
around the heart between frames #41 and #44 (see Figure 6.1.a). Whilst HS manages
to recover most of the motion between the test frames (both the vertical breathing
motion and the heart contractions), it produces a poorly regularized flow (Figure
6.1.c). In contrast, the learning algorithm matches the heart across both frames in
a very satisfactory fashion, without introducing errors elsewhere in the frame. The
learning algorithm also performs better transformation than both SMF (Figure 6.1.h)
and LDOF (Figure 6.1.j).

6.2.2 Similarity measures

We considered a number of similarity measures over the course of the thesis and re-
tained three: angular difference, distance between patches and intensity difference.
Many other statistical similarity measures could be considered, such as intensity cor-
relation, mutual information or Earth Mover’s distance amongst many others. It
would be interesting to conduct a systematic and broad study of their respective
merit and how they could be combined. Our preliminary experiment suggests that
the SSD of intensity used in the learning algorithm outperforms intensity correlation

as a similarity measure.
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Figure 6.1: Dynamic MRI scan: (a) source frame #82; (b) target frame #85 (in
red) superimposed on top of source frame (in green); (¢) flow estimated with HS; (d)
target frame (in red) on top of source frame transformed using HS flow (in green);
(e-f) idem for learning algorithm; (g-h) idem for SMF; (i-j) idem for LDOF; (k) flow
field color coding: the color represents the orientation of the vector and brightness
stands for its magnitude.
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6.2.3 Cross-patient optical flow estimation

Whilst we focused on improving the flow within a sequence of images on the basis
of a learning set consisting of images form the same sequence, it would of course be
extremely interesting to learn from one sequence and estimate flows from another, in
particular when dealing with several patients. The motions of several internal organs
such as heart, lungs etc. are fundamentally very similar even in different patients. It
is very likely that patterns of motion of different organs of one patient may help to

improve estimation of those motions of another patient.
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Appendix A

Test Cases of 3D Gated CT Dataset

A.1 Test Cases

Table A.1 shows the list of 400 trials; column 1 shows the number of trials, column

2, 3 and 4 show starting point (coordinates X, Y and Z respectively) of test ptaches
from 3D gated CT images each of size 512 x 512 x 100 pixels.

List of trials

Trialno. | X [ Y [ z [ [ Trialno. [ X [ Y 7 [ Trialmo. | X [ Y [ z [ [ Trialnmo. | X Y Z |
1 1 190 | 22 101 106 | 463 | 22 201 232 | 400 | 22 301 358 | 358 | 43
2 1 190 | 43 102 106 | 463 | 64 202 232 | 400 | 43 302 358 | 358 | 64
3 1 190 | 64 103 127 | 316 | 22 203 232 | 400 | 64 303 358 | 379 | 22
4 1 211 | 22 104 127 | 316 | 43 204 232 | 421 | 22 304 358 | 379 | 43
5 1 211 | 43 105 127 | 316 | 64 205 232 | 421 | 43 305 358 | 379 | 64
6 1 211 | 64 106 127 | 337 | 22 206 232 | 421 | 64 306 358 | 400 | 22
7 1 232 1 107 127 | 337 | 43 207 232 | 442 | 22 307 358 | 400 | 43
8 1 232 | 22 108 127 | 337 | 64 208 232 | 442 | 43 308 358 | 400 | 64
9 1 232 | 43 109 127 | 358 | 64 209 232 | 442 | 64 309 358 | 421 | 22
10 1 232 64 110 127 379 22 210 232 463 22 310 358 421 43
11 1 253 1 111 127 | 379 | 43 211 232 | 463 | 43 311 358 | 421 | 64
12 1 253 | 22 112 127 | 379 | 64 212 232 | 463 | 64 312 358 | 442 | 22
13 1 253 43 113 127 400 22 213 232 484 22 313 358 442 43
14 1 253 | 64 114 127 | 400 | 43 214 232 | 484 | 43 314 358 | 442 | 64
15 1 274 1 115 127 | 400 | 64 215 232 | 484 | 64 315 358 | 463 | 22
16 1 274 | 22 116 127 | 421 | 22 216 253 | 379 | 43 316 358 | 463 | 43
17 1 274 | 43 117 127 | 421 | 43 217 253 | 400 | 22 317 358 | 463 | 64
18 1 274 | 64 118 127 | 421 | 64 218 253 | 400 | 43 318 358 | 484 | 64
19 1 295 1 119 127 | 442 | 22 219 253 | 400 | 64 319 379 | 316 | 43
20 1 295 22 120 127 442 43 220 253 421 22 320 379 316 64
21 1 295 43 121 127 442 64 221 253 421 43 321 379 337 22
22 1 205 | 64 122 127 | 463 | 22 222 253 | 421 | 64 322 379 | 337 | 64
23 1 316 | 43 123 127 | 463 | 43 223 253 | 442 | 22 323 379 | 358 | 22
24 1 316 64 124 127 463 64 224 253 442 43 324 379 358 43
25 22 316 | 22 125 148 | 316 | 64 225 253 | 442 | 64 325 379 | 358 | 64
26 22 316 | 43 126 148 | 337 | 43 226 253 | 463 | 22 326 379 | 379 | 22
27 22 316 | 64 127 148 | 337 | 64 227 253 | 463 | 43 327 379 | 379 | 64
28 22 337 | 22 128 148 | 358 | 22 228 253 | 463 | 64 328 379 | 400 | 43
29 22 337 | 43 129 148 | 358 | 43 229 253 | 484 | 22 329 379 | 400 | 64
30 22 337 | 64 130 148 | 358 | 64 230 253 | 484 | 43 330 379 | 421 | 22
31 22 358 | 22 131 148 | 379 | 43 231 253 | 484 | 64 331 379 | 421 | 43
32 22 358 | 43 132 148 | 379 | 64 232 274 | 358 | 22 332 379 | 421 | 64
33 22 358 | 64 133 148 | 400 | 43 233 274 | 400 | 22 333 379 | 442 | 22
34 22 379 22 134 148 400 64 234 274 400 43 334 379 442 43
35 43 316 | 22 135 148 | 421 | 43 235 274 | 400 | 64 335 379 | 442 | 64
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36 43 316 43 136 148 421 64 236 274 421 22 336 379 463 22
37 43 316 64 137 148 442 22 237 274 421 64 337 379 463 43
38 43 337 22 138 148 442 43 238 274 442 22 338 379 463 64
39 43 337 43 139 148 442 64 239 274 442 43 339 400 316 43
40 43 337 64 140 148 463 22 240 274 442 64 340 400 337 43
41 43 358 22 141 148 463 43 241 274 463 22 341 400 337 64
42 43 358 43 142 148 463 64 242 274 463 43 342 400 358 22
43 43 358 64 143 148 484 22 243 274 463 64 343 400 358 43
44 43 379 22 144 148 484 43 244 274 484 22 344 400 358 64
45 43 379 43 145 148 484 64 245 274 484 43 345 400 379 22
46 43 379 64 146 169 358 64 246 274 484 64 346 400 379 43
47 43 400 22 147 169 379 43 247 295 358 64 347 400 379 64
48 43 400 43 148 169 379 64 248 295 379 64 348 400 400 22
49 43 400 64 149 169 400 22 249 295 400 22 349 400 400 43
50 64 316 22 150 169 400 43 250 295 400 43 350 400 400 64
51 64 316 64 151 169 400 64 251 295 400 64 351 400 421 22
52 64 337 22 152 169 421 22 252 295 421 22 352 400 421 43
53 64 337 43 153 169 421 43 253 295 421 43 353 400 421 64
54 64 337 64 154 169 421 64 254 295 421 64 354 400 442 22
55 64 358 43 155 169 442 22 255 295 442 22 355 400 442 43
56 64 358 64 156 169 442 43 256 295 442 43 356 400 442 64
57 64 379 22 157 169 442 64 257 295 442 64 357 421 316 43
58 64 379 43 158 169 463 22 258 295 463 22 358 421 316 64
59 64 379 64 159 169 463 43 259 295 463 43 359 421 337 64
60 64 400 22 160 169 463 64 260 295 463 64 360 421 358 43
61 64 400 43 161 169 484 22 261 295 484 22 361 421 358 64
62 64 400 64 162 169 484 43 262 295 484 43 362 421 379 22
63 64 421 22 163 169 484 64 263 295 484 64 363 421 379 43
64 64 421 43 164 190 358 64 264 316 358 64 364 421 379 64
65 64 421 64 165 190 379 43 265 316 379 64 365 421 400 22
66 85 316 22 166 190 400 22 266 316 400 43 366 421 400 43
67 85 316 43 167 190 400 43 267 316 421 22 367 421 400 64
68 85 316 64 168 190 400 64 268 316 421 43 368 421 421 22
69 85 337 64 169 190 421 22 269 316 421 64 369 421 421 43
70 85 358 43 170 190 421 43 270 316 442 22 370 421 421 64
71 85 358 64 171 190 421 64 271 316 442 43 371 442 316 22
72 85 379 43 172 190 442 22 272 316 442 64 372 442 316 43
73 85 379 64 173 190 442 43 273 316 463 22 373 442 316 64
74 85 400 22 174 190 442 64 274 316 463 43 374 442 337 43
75 85 400 43 175 190 463 22 275 316 463 64 375 442 337 64
76 85 400 64 176 190 463 43 276 316 484 22 376 442 358 22
7 85 421 22 177 190 463 64 277 316 484 43 377 442 358 43
78 85 421 43 178 190 484 22 278 316 484 64 378 442 358 64
79 85 421 64 179 190 484 43 279 337 337 64 379 442 379 22
80 85 442 22 180 190 484 64 280 337 358 64 380 442 379 43
81 85 442 43 181 211 316 64 281 337 379 22 381 442 379 64
82 85 442 64 182 211 358 64 282 337 379 64 382 442 400 22
83 106 316 22 183 211 379 22 283 337 400 22 383 442 400 43
84 106 316 43 184 211 379 43 284 337 400 43 384 442 400 64
85 106 316 64 185 211 400 43 285 337 400 64 385 463 316 43
86 106 337 43 186 211 400 64 286 337 421 22 386 463 316 64
87 106 337 64 187 211 421 22 287 337 421 43 387 463 337 43
88 106 358 43 188 211 421 43 288 337 421 64 388 463 337 64
89 106 358 64 189 211 421 64 289 337 442 22 389 463 358 22
90 106 379 22 190 211 442 22 290 337 442 43 390 463 358 43
91 106 379 43 191 211 442 43 291 337 442 64 391 463 358 64
92 106 379 64 192 211 442 64 292 337 463 22 392 463 379 22
93 106 400 22 193 211 463 22 293 337 463 43 393 463 379 43
94 106 400 43 194 211 463 43 294 337 463 64 394 463 379 64
95 106 400 64 195 211 463 64 295 337 484 22 395 484 316 22
96 106 421 22 196 211 484 22 296 337 484 43 396 484 316 43
97 106 421 43 197 211 484 43 297 337 484 64 397 484 316 64
98 106 421 64 198 211 484 64 298 358 316 64 398 484 337 22
99 106 442 43 199 232 379 22 299 358 337 64 399 484 337 64
100 106 442 64 200 232 379 64 300 358 358 22 400 484 358 22
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Appendix B

Trials of Different Similarity
Measures for 2D MRI Dataset

B.1 Different Similarity Measures

MSEs of Images Registered with Learning Algorithm Using Different Similarity

Measures (experiment described in section 3.4.4)

Trial no. LK Degraded Learning Learning Learning

LK approach approach approach
with vector | with angular with

difference difference magnitude

difference
1 93.55 145.52 195.46 159.54 199.01
2 206.17 289.01 337.81 252.30 383.09
3 136.65 193.89 216.85 174.74 277.18
4 100.84 143.45 189.09 158.42 226.18
] 90.89 133.58 192.87 138.53 215.53
6 153.87 223.29 273.68 210.43 256.45
7 96.30 139.58 177.59 159.24 22491
8 151.23 221.61 260.17 220.94 252.07
9 146.99 209.90 300.74 193.23 215.68
10 106.67 144.48 189.75 118.77 201.43
11 100.85 128.76 212.43 116.23 188.15
12 115.93 166.25 251.87 190.78 250.80
13 107.85 141.88 216.58 115.91 222.81
14 90.83 128.97 141.50 135.58 142.03
15 109.11 158.78 189.56 110.13 222.45
16 39.66 53.29 96.91 73.69 129.52
17 120.54 153.63 219.51 172.10 222.49
18 154.17 233.98 248.37 192.52 312.80
19 128.31 193.54 259.91 163.06 259.48
20 82.14 113.10 126.61 83.18 148.26
21 82.14 113.10 174.42 138.68 162.57
22 101.25 147.03 193.29 104.62 156.26
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23 101.60 134.88 204.37 105.82 226.53
24 184.06 273.92 340.15 233.10 312.72
25 82.14 113.10 204.00 82.54 148.16
26 101.25 147.03 229.51 162.44 189.13
27 112.29 171.59 318.38 182.26 307.17
28 112.78 165.85 231.41 163.42 212.68
29 101.75 145.75 163.20 110.92 182.09
30 92.25 125.34 134.12 149.90 223.84
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Appendix C

Trials of Different Similarity
Measures for 3D Gated CT Dataset

C.1 Different Similarity Measures

MSEs of Registered Images Using Learning Algorithm with Different Similarity

Measures
Trial LK Degraded| Vector Angular Magnitudg Trial LK Degraded| Vector Angular Magnitudg
no. LK Differ- Differ- Differ- no. LK Differ- Differ- Differ-
ence ence ence ence ence ence
1 51.78 51.87 68.09 61.69 66.49 201 401.28 636.92 330.06 326.82 339.22
2 32.89 33.06 51.3 35.36 47.55 202 79.63 78.25 83.86 96.26 100.13
3 42.79 42.23 61.18 43.34 51.85 203 42.35 42.15 58.27 52.27 54.17
4 88.98 89.91 115.47 104.17 104.07 204 127.95 127.24 146.75 137.01 141.5
5 40.68 41.00 47.45 46.04 51.64 205 67.51 67.47 74.6 75.84 80.41
6 55.56 54.10 71.39 62.59 59.23 206 42.67 42.14 58.72 50.1 57
7 85.23 82.26 94.91 94.96 106.7 207 87.59 87.07 104.2 106.89 102.41
8 82.61 80.91 90.89 90.35 91.11 208 53.63 53.49 71.45 71.35 57.12
9 42.32 41.81 49.48 51.73 63.66 209 32.87 32.45 45.51 42.95 48.68
10 60.79 61.13 66.94 73.72 77.89 210 73.90 73.61 96.67 94.55 90.08
11 75.71 74.70 88.35 80.6 96.23 211 54.00 53.95 66.02 64.72 65.57
12 89.72 87.70 102.38 107.19 109.28 212 35.12 33.79 44.55 43.88 39.22
13 39.08 39.44 58 48.92 47.56 213 56.94 56.87 70.09 63.04 68.32
14 51.79 51.87 70.47 63.35 62.89 214 41.91 42.68 50.88 47.82 50.68
15 93.04 93.63 121.92 102.94 118.98 215 24.88 24.86 43.29 39.45 30.29
16 102.30 100.55 121.66 112.5 132.41 216 513.30 886.18 173.51 173.13 180.52
17 41.53 41.88 58.85 55.2 53.52 217 857.31 1238.20 309.55 309.22 317.36
18 59.79 58.93 80.89 66.73 78.51 218 86.59 87.01 95.15 97.97 89.61
19 72.64 72.92 94.01 90.52 86.22 219 48.98 48.64 70.33 63.64 64.43
20 88.52 86.83 103.46 110.05 108.38 220 111.92 112.94 126.39 124.1 134.14
21 43.21 43.22 63.08 55.99 53.6 221 54.80 54.64 60.18 59.16 60.91
22 65.41 64.22 72.26 80.11 84.98 222 45.18 44.66 64.53 57.1 65.64
23 30.69 30.61 40.74 48.56 42.09 223 92.46 91.41 114.89 103.62 110.79
24 33.60 34.01 52.78 46.81 37.1 224 50.17 49.57 59.59 51.56 60.08
25 97.50 95.54 109.29 111.9 111.5 225 35.09 35.63 42.71 48.95 42.75
26 60.11 59.22 68.54 77.4 76.1 226 82.42 81.16 95.99 98.96 106.45
27 65.92 64.44 73.48 68.98 73.67 227 38.40 37.71 50.42 43 42.72
28 93.74 89.67 123.13 106.72 114.37 228 36.34 36.23 45.89 44.12 56.05
29 66.03 65.10 76.19 87.97 84.35 229 66.54 65.57 86.65 83.79 76.35
30 59.38 57.41 70.36 75.99 80.48 230 41.27 41.36 46.1 52.41 50.27
31 110.41 108.75 133.82 119.73 123.49 231 28.99 29.27 46.02 31.61 43.16
32 57.57 57.21 72.04 72.05 70.78 232 4144.00 5467.10 1983.2 1778.28 2053.82
33 44.97 44.58 60.54 54.92 65.49 233 316.89 336.40 305.2 293.19 311.26
34 13.77 14.00 25.16 20.43 27.27 234 102.93 113.99 101.54 90.88 100.86
35 129.92 129.40 155.24 141.28 148.78 235 58.42 58.45 66.37 68.31 79.72
36 70.24 70.78 81.29 83.97 94.35 236 94.17 92.20 117.36 104.23 119.93
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37 76.86 74.40 93.24 81.92 89.55 237 45.11 44.81 58.43 57.75 62.11
38 140.83 134.86 157.67 160.61 163.58 238 87.76 85.79 93.56 88.08 98.7
39 74.72 73.99 98.45 86.01 83.2 239 43.15 43.31 44.25 44.99 48.55
40 56.16 56.12 67.05 74.79 67.19 240 52.81 52.59 71.29 71.31 67.3
41 126.67 124.03 158.6 145.34 153.31 241 63.57 64.05 79.03 80.76 69.94
42 79.04 77.25 88.57 95.22 89.25 242 41.19 40.72 51.14 43.36 59.18
43 66.17 63.65 90.5 83.98 86.41 243 32.92 32.39 38.77 44.67 50.02
44 108.06 103.11 131.82 119.79 119.8 244 58.51 57.62 74.77 76.14 78.32
45 43.95 43.83 46.95 58.49 63.68 245 34.00 33.93 39.09 38.73 50.48
46 43.70 42.35 48.99 63.01 64.24 246 29.63 29.51 46.28 45.74 41.74
47 63.86 63.57 71.42 76.69 78.15 247 1587.8¢0 3113.90 547.9 536.91 551.03
48 30.73 30.64 45.56 47.39 42.24 248 187.29 893.97 144.84 145.75 153.28
49 23.70 23.34 36.41 37.06 35.86 249 454.13 848.79 469.15 429.99 473.57
50 133.19 129.16 147.09 149.26 155.73 250 94.12 122.74 91.29 83.3 94.86
51 72.59 67.25 94.21 93.28 84.8 251 70.13 69.64 90.91 87.18 89.64
52 149.82 144.35 170.47 169.34 180.37 252 109.62 108.05 119.24 124.48 132.55
53 81.31 81.26 89.34 101.41 92 253 77.57 77.41 84.65 85.17 93.61
54 59.82 60.17 65.72 73.68 80.97 254 48.77 48.01 66.6 61.91 66.97
55 72.94 71.87 81.93 83.29 80.42 255 86.82 85.46 108.8 95.71 105.79
56 71.75 68.10 100.64 90.71 92.31 256 50.30 50.03 68.4 61.97 70.14
57 128.65 126.12 132.05 151.86 143.74 257 36.55 36.09 47.33 53.61 39.47
58 44.72 44.69 52.39 48.16 61.08 258 52.61 51.80 63.98 69.27 74.51
59 54.80 54.68 65.35 61.04 63.87 259 37.32 37.17 51.77 44.48 42.76
60 134.30 130.77 150.95 153.66 166.16 260 30.51 30.05 48.53 43.34 43.07
61 46.57 46.90 66.37 58.54 61.25 261 48.03 47.07 63.88 55.78 59.34
62 39.71 39.96 55.48 42.38 48.01 262 29.85 29.75 41.16 47.9 34.25
63 70.62 69.01 95.04 86.15 94.99 263 36.17 35.28 45.56 40.06 53.38
64 37.64 38.21 52.73 53.49 58.77 264 765.44 | 2593.70 218.7 202.01 217.7
65 32.27 32.25 43.28 34.47 50.29 265 242.50 | 1016.10 138.12 139.64 146.11
66 172.73 170.31 244.86 187.44 265.19 266 89.38 97.77 88.01 77.07 90.11
67 90.56 90.63 106.85 106.93 115.57 267 113.47 111.80 139.11 129.3 138.53
68 74.34 76.14 84.67 95.53 89.05 268 70.16 70.28 89.15 86.18 86.14
69 74.26 72.24 82.57 87.48 82.17 269 40.34 39.25 61.27 56.03 62.62
70 86.29 86.46 98.1 98.41 112.22 270 95.43 95.04 118.76 100.11 117.67
71 78.25 76.02 105.51 86.68 90.19 271 58.69 58.75 77.99 67.94 72.45
72 68.89 69.01 98.08 88.31 88.1 272 35.79 35.61 38.79 43.32 52.91
73 66.79 67.44 75.66 85.92 82.35 273 65.89 65.27 71.46 76.42 80.52
74 86.83 88.03 98.41 106.42 108.99 274 43.12 42.57 47.55 54.83 61.38
75 50.81 51.41 67.67 68.71 57.92 275 31.97 31.69 39.26 35.9 40.3
76 40.09 39.66 49.24 46.35 59.51 276 51.49 50.85 55.29 68.22 72.62
77 96.43 94.17 118.66 111.8 110.08 277 34.80 34.47 44.5 47.01 42.82
78 43.70 43.18 55.51 59.16 50.67 278 24.65 24.58 32.01 27.83 27.54
79 35.59 35.01 46.58 39.29 48.18 279 540.89 428.74 619.76 556.36 583.03
80 62.27 62.50 72.22 78.68 82.42 280 436.53 | 1206.80 178.03 170.9 177.4
81 26.95 26.71 42.37 42.95 32.42 281 472.66 | 1530.60 361.89 356.85 375.81
82 18.31 18.38 35.57 22.33 23.4 282 131.94 251.03 122.52 123.15 122.66
83 231.27 279.15 234.1 211.87 238.91 283 156.59 156.46 180.35 166.61 180.69
84 324.01 407.17 212.12 203.59 216.02 284 88.45 86.36 106.01 100.47 110.08
85 271.61 318.32 99.66 94.45 89.56 285 62.71 62.11 70.74 74.94 76.79
86 152.17 162.12 150.52 147.49 164.12 286 118.12 117.71 135.49 125.4 141.7
87 84.00 85.21 98.18 92.53 105.8 287 69.26 70.17 89.42 76.32 91.57
88 112.62 113.49 151.71 124.34 143.86 288 36.28 36.61 47.72 55.1 42.16
89 73.38 72.51 83.26 78.05 79.2 289 81.86 81.29 98.73 99.24 100.68
90 139.06 136.15 154.81 148.57 166.36 290 55.70 55.44 68.25 70.08 62.83
91 72.56 72.83 94.71 90.92 94.18 291 33.33 34.02 43.65 50.4 43
92 54.58 54.22 60.43 69.3 62.61 292 69.54 67.28 86.7 78.05 83.97
93 118.80 119.92 136.54 134.74 133.99 293 42.57 42.30 61.08 51.39 59.78
94 63.37 64.49 77.57 80.35 80.39 294 23.07 23.20 26.39 34.44 43.22
95 49.32 49.12 60 55 67.77 295 35.99 35.36 47.91 56.3 55.49
96 105.68 104.35 131.41 124.94 132.86 296 18.72 18.80 27.69 30.14 32.35
97 41.80 42.09 58.92 55.49 45.68 297 15.99 16.17 27.96 23.13 34.89
98 36.52 35.98 50.03 45.02 53.51 298 178.87 178.73 204.25 192.53 200.77
99 41.18 40.37 55.65 50.33 62.19 299 175.88 178.61 197.7 194.65 199.35
100 31.33 31.73 47.74 41.09 49.29 300 210.43 210.09 234.21 226.65 233.6
101 27.54 27.38 33.17 42.91 31.12 301 376.91 410.02 319.41 293.25 317.83
102 7.77 7.88 19.11 21.42 14.66 302 373.82 1336.30 125.67 127.64 123.89
103 267.45 267.65 292.39 278.91 298.2 303 853.49 | 1778.80 272.5 246.89 264.84
104 115.52 114.68 130.58 120.26 131.39 304 6978.7Q 12552.00 6501.92 6194.36 6501.94
105 840.16 | 1450.60 715.83 642.48 675.28 305 115.10 115.47 135.2 123.55 135.9
106 778.31 1518.40 429.87 450.8 448.88 306 116.17 115.85 131.95 125.1 134.65
107 547.22 735.77 279.81 266.33 285.25 307 102.02 100.11 117.06 122.08 129.92
108 631.96 | 1570.30 104.03 98.43 113.39 308 60.70 59.25 69.02 69.16 71.5
109 71.90 76.03 93.99 89.45 96.84 309 91.67 90.59 103.99 115.3 109.1
110 153.31 148.83 178.39 167.85 172.02 310 66.04 64.84 86.37 80.19 81.42
111 80.27 78.04 93.6 96.86 86.24 311 39.96 39.55 47.58 48.89 52.18
112 53.21 54.22 76.9 72.78 72.31 312 95.79 94.32 121.3 106.53 111.26
113 150.50 150.41 155.34 164.8 174.18 313 60.66 60.89 77.98 66.68 76.07
114 60.23 60.64 65.6 73.52 67.91 314 31.67 31.59 48.46 45.04 48.68
115 37.33 36.89 47 52.2 43.95 315 69.98 69.01 96.65 77.92 81.98
116 112.28 111.70 122.54 133.13 134.92 316 47.42 47.67 53.07 60.25 58.35
117 47.52 47.42 57.26 50.27 60.08 317 21.65 21.30 30.78 33.17 25.17
118 35.27 35.02 44.63 43.42 54.48 318 1.51 1.69 19.44 14.4 11.93
119 102.65 102.59 125.6 108.68 128.53 319 118.41 119.74 136.88 137.75 135.88
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120 49.88 49.70 55.91 66.83 57.97 320 258.16 221.37 252.71 232.35 252.17
121 31.79 32.03 40.6 40.93 37.89 321 317.89 350.14 320.95 302.68 315.62
122 62.29 61.95 70.92 71.87 68.24 322 550.76 | 2080.50 102.3 112.22 112.91
123 41.93 41.78 51.76 48.98 57.31 323 1078.90 2094.20 393.29 379.38 392.22
124 25.12 25.06 30.2 36.37 42.19 324 4707.4Q 5967.20 3262.63 1968.44 2851.97
125 185.20 186.99 209.86 195.7 209.24 325 100.01 118.53 96.86 85.8 100.1
126 373.72 300.85 253.88 239.79 251.66 326 123.56 122.08 143.38 135.38 136.55
127 136.21 170.00 141.99 134.92 157.36 327 82.89 83.67 101.13 91.11 97.23
128 401.80 812.35 355.36 338.99 370.27 328 95.77 95.63 115.8 109.23 110.17
129 196.91 236.89 173.73 175.22 178.31 329 69.64 68.79 82.43 76.72 92.32
130 473.21 1453.00 198.28 183.11 192.29 330 98.20 96.68 114.85 110.37 115.24
131 251.65 600.16 239.88 225.91 239.71 331 75.79 76.20 91.81 92.85 87.59
132 66.67 65.54 72.68 84.63 82.97 332 37.60 37.92 40.55 48.05 47.43
133 69.49 69.53 89.17 76.08 86.81 333 63.36 63.71 82.25 83.21 86.56
134 40.28 40.22 45.7 44.37 47.22 334 47.18 48.44 69.06 52.91 64.78
135 50.30 51.02 69.15 62.34 61.47 335 30.88 30.80 34.93 43.94 46.12
136 33.94 33.86 50.01 48.85 38.24 336 51.15 51.37 62.54 56.58 63.25
137 90.97 90.22 110.65 96.63 111.6 337 31.75 32.12 50.16 46.38 40.85
138 47.21 47.07 53.1 49.45 56.86 338 22.36 22.40 28.41 34.24 40.84
139 32.82 32.42 43.46 35.68 39.74 339 368.95 547.41 273.31 275.76 278.56
140 79.24 80.44 93.32 86.1 87.39 340 137.26 174.75 149.87 130.78 145.75
141 40.86 40.57 47.82 55.33 59.25 341 106.52 105.64 115.55 125.8 120.35
142 26.88 26.84 38.29 35.25 38.21 342 149.55 148.16 177.36 163.91 164.1
143 22.48 22.28 35.07 34.36 33.9 343 247.12 1275.30 142.92 147.47 152.17
144 15.51 15.61 20.44 27.65 32.5 344 106.36 104.82 121.03 115.8 130.6
145 13.13 13.01 23.23 22.92 26.87 345 118.19 114.65 140.2 126.46 148.83
146 247.94 364.91 152.34 138.83 146.58 346 102.67 116.92 124.32 122.83 129.31
147 1082.0¢ 4112.70 586.3 524.31 538.21 347 73.20 71.55 95.36 83.23 86.86
148 53.95 54.62 71.45 69.3 70.21 348 89.71 89.47 116.82 108.26 113.63
149 146.65 147.38 165.3 167.15 176.33 349 100.31 98.91 117.7 116.33 115.2
150 88.71 88.37 94.12 98.05 104.33 350 52.82 53.51 60.94 72.9 64.87
151 40.48 40.81 48.11 44 57.62 351 99.15 97.46 123.55 116.17 128.83
152 111.03 112.96 134.09 116 140.37 352 59.99 60.22 69.19 80.21 76.13
153 70.75 71.73 83.72 86.88 94.65 353 36.05 35.61 49.67 40.91 51.97
154 36.23 35.77 41.74 43.97 44.52 354 76.15 76.78 101.79 90.65 101.83
155 94.70 92.97 116.05 113.82 108.13 355 46.63 46.05 49.76 58.8 52.7
156 50.17 48.97 60.97 63.48 63.33 356 31.77 31.64 51.03 33.56 50.11
157 35.97 35.62 52.45 46.67 39.47 357 68.08 67.93 71.92 80.98 73.32
158 78.07 77.83 97.99 97.2 97.1 358 96.80 95.31 116.63 104.67 115.43
159 44.82 44.85 61.68 54.42 64.45 359 86.84 86.98 108.68 104.16 107.75
160 29.83 29.61 46.29 39.36 35.98 360 71.38 71.44 77.94 80.09 90
161 55.77 56.06 60.41 66.18 64.83 361 66.34 66.56 80.06 73.07 74.05
162 36.90 36.63 41.52 53.84 47.21 362 98.63 97.19 121.79 119.68 114.28
163 24.07 24.22 40.8 31.39 40.98 363 71.35 73.45 82.95 87.07 87.84
164 861.97 | 2765.10 181.78 164.88 223.83 364 75.64 74.81 99.58 89.11 95.16
165 1264.50 5293.10 726.74 703.42 740.3 365 76.09 76.13 90.49 80.79 97.9
166 155.47 158.75 181.25 171.73 173.84 366 85.74 83.88 111.42 105.28 110.15
167 145.27 141.29 173.56 171.6 180.86 367 52.71 52.93 74 69.27 74.59
168 44.40 44.60 59.17 63.6 62.67 368 66.44 65.55 72.8 70.3 81.34
169 100.61 100.28 119.37 110.99 123.03 369 65.74 65.13 78.32 72.64 91.46
170 94.60 97.14 119.55 113.99 123.1 370 43.13 43.03 56.47 60.26 47.11
171 38.48 39.24 57.82 50.72 51.51 371 222.86 221.87 250.54 240.43 252.13
172 92.99 90.42 111.42 110.26 121.62 372 56.79 56.52 78.96 59.59 66.62
173 66.36 66.22 83.57 87.27 90.76 373 63.22 62.76 82.08 68.41 78.03
174 36.06 35.94 52.16 46.06 54.67 374 55.14 55.60 71.05 60.58 73.54
175 75.59 74.22 87.09 89.38 88.61 375 56.66 56.45 68.39 75.71 67.23
176 57.81 55.21 86.03 80.65 84.56 376 99.11 104.78 117.38 118.78 126.49
177 31.27 31.05 40.23 37.6 51.3 377 52.11 52.17 71.49 63.83 62.08
178 63.52 63.51 84.87 69.05 80.23 378 63.84 62.58 78.04 76.78 87.08
179 45.40 44.78 56.75 65.13 61.47 379 100.83 100.94 123.43 105.68 111.56
180 27.29 27.21 31.48 34.42 32.89 380 59.02 57.92 64.77 75.49 65.18
181 6684.00 8097.40 5992.02 4705.08 5637.18 381 69.90 69.20 90.58 77.08 93.08
182 1771.5Q0 5466.70 160.86 164.17 193.04 382 83.84 82.03 91.7 94.81 94.27
183 4186.0Q 3743.10 3508.97 3189.26 3460.83 383 58.44 58.10 78.73 71.32 65.52
184 720.51 | 3116.10 315.86 312.34 318.56 384 57.98 57.71 82.55 73.37 70.84
185 102.88 101.09 120.72 123.89 120.98 385 36.15 35.81 48.8 44.13 40.91
186 44.20 44.10 53.33 62.11 61.44 386 73.60 70.94 84.52 89.92 91.13
187 104.59 104.82 128.6 122.5 121.72 387 52.67 52.83 60.25 71.34 69.65
188 67.71 66.84 82.56 73.36 85.27 388 62.91 63.29 77.84 76.2 81.5
189 39.77 39.96 49.94 49.38 56.05 389 90.59 89.39 115.31 102.67 115.48
190 93.80 92.42 105.61 115.99 105.36 390 57.30 57.75 64.14 64.32 76.64
191 63.04 62.31 71.21 72.45 77.6 391 51.87 52.42 70.26 62.97 65.71
192 31.77 31.63 40.05 47.56 40.64 392 69.92 69.97 93.69 74.11 90.13
193 73.53 73.82 97.25 79.43 87.04 393 38.77 38.61 47.8 54.16 60.25
194 50.05 49.01 59.48 69.83 66.09 394 55.82 54.60 71.79 67.55 69.51
195 29.23 29.17 36.66 45.71 46.83 395 108.04 105.70 124.83 119.85 122.65
196 69.54 70.17 81.09 80.99 78.11 396 37.42 37.72 45.08 48.09 55.5
197 38.88 38.60 54.14 47.69 54.27 397 62.71 62.91 82.6 66.99 72.67
198 31.46 31.51 35.78 37.64 49.84 398 75.36 72.66 91.54 90.75 84
199 5899.2(0 5570.60 4975.04 3872.25 4329.69 399 34.17 34.21 41.44 42.23 44.95
200 63.97 70.77 66.18 62.11 70.61 400 7.03 6.61 18.27 16.74 18.94
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Appendix D

Trials for Learning Algorithm With
and Without Vector Composition for
2D MRI Dataset

D.1 Learning Algorithm With and Without Vector
Composition

MSEs of Images Registered Using Learning Algorithm With and Without Vector

Composition (experiment described in section 3.5.1)

Tri LK Degraded Without With Vector
rial no.
LK Vector Composition
Composition

1 93.55 145.52 159.54 150.34
2 206.17 289.01 252.3 251.77
3 136.65 193.89 174.74 167.36
4 100.84 143.45 158.42 155.73
) 90.89 133.58 138.53 134.3
6 153.87 223.29 210.43 204.95
7 96.30 139.58 159.24 149.81
8 151.23 221.61 220.94 216.76
9 146.99 209.90 193.23 183.4
10 106.67 144.48 118.77 115.76
11 100.85 128.76 116.23 109.22
12 115.93 166.25 190.78 184.12
13 107.85 141.88 115.91 110.52
14 90.83 128.97 135.58 128.6
15 109.11 158.78 110.13 109.46
16 39.66 53.29 73.69 71.91
17 120.54 153.63 172.1 170.82
I8 154.17 233.98 192.52 182.53
19 128.31 193.54 163.06 161.35
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20 82.14 113.10 83.18 82.85
21 82.14 113.10 138.68 133.07
22 101.25 147.03 104.62 103.89
23 101.60 134.88 105.82 103.13
24 184.06 273.92 233.1 231.2
25 82.14 113.10 82.54 85.85
26 101.25 147.03 162.44 157.83
27 112.29 171.59 182.26 172.44
28 112.78 165.85 163.42 161.86
29 101.75 145.75 110.92 102.36
30 92.25 125.34 149.9 143.45
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Appendix E

Learning Algorithm with Vector
Composition with 3D Gated CT
Dataset

E.1 Using Learning Algorithm with Vector Compo-
sition

MSEs of Registered Images Using Learning Algorithm without Vector Composition

and with Vector Composition

Trial LK Degraded| Wtihout Witih Trial LK Degraded| Wtihout Wtih
no. LK Vector Vector no. LK Vector Vector
compo- compo- compo- compo-
sition sition sition sition
1 51.778 51.87 61.69 58.78 201 401.28 636.92 326.82 325.21
2 32.894 33.055 35.36 33.94 202 79.626 78.25 96.26 92.81
3 42.785 42.226 43.34 40.22 203 42.35 42.151 52.27 49.81
4 88.983 89.909 104.17 102.42 204 127.95 127.24 137.01 133.05
5 40.676 40.997 46.04 44.29 205 67.506 67.466 75.84 75.03
6 55.56 54.098 62.59 62.39 206 42.666 42.137 50.1 46.79
7 85.23 82.255 94.96 94.76 207 87.59 87.066 106.89 104.19
8 82.606 80.914 90.35 89.99 208 53.625 53.492 71.35 70.35
9 42.315 41.814 51.73 49.35 209 32.867 32.446 42.95 41.05
10 60.793 61.131 73.72 72.76 210 73.902 73.608 94.55 92.95
11 75.714 74.699 80.6 77.23 211 53.998 53.951 64.72 62.32
12 89.72 87.704 107.19 103.76 212 35.115 33.792 43.88 40.68
13 39.078 39.437 48.92 45.07 213 56.942 56.87 63.04 62.62
14 51.789 51.867 63.35 61.39 214 41.907 42.677 47.82 44.53
15 93.042 93.628 102.94 102.06 215 24.88 24.863 39.45 36.09
16 102.3 100.55 112.5 111.6 216 513.3 886.18 173.13 171.71
17 41.534 41.884 55.2 53.05 217 857.31 1238.2 309.22 307.5
18 59.787 58.925 66.73 63.68 218 86.586 87.005 97.97 95.68
19 72.637 72.918 90.52 89.13 219 48.975 48.637 63.64 60.84
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20 88.52 86.825 110.05 108.21 220 111.92 112.94 124.1 121.13
21 43.214 43.223 55.99 53.43 221 54.803 54.638 59.16 56.13
22 65.407 64.216 80.11 76.44 222 45.177 44.656 57.1 55.54
23 30.689 30.611 48.56 47.91 223 92.457 91.414 103.62 101.9
24 33.598 34.01 46.81 43.95 224 50.168 49.567 51.56 47.73
25 97.503 95.536 111.9 109.59 225 35.089 35.631 48.95 46.66
26 60.106 59.218 77.4 75.67 226 82.421 81.16 98.96 95.56
27 65.916 64.436 68.98 65.44 227 38.401 37.712 43 41.89
28 93.74 89.671 106.72 105.15 228 36.336 36.233 44.12 41.63
29 66.026 65.098 87.97 87.25 229 66.537 65.567 83.79 81.44
30 59.38 57.409 75.99 73.46 230 41.274 41.356 52.41 48.56
31 110.41 108.75 119.73 117.23 231 28.986 29.269 31.61 31.27
32 57.572 57.206 72.05 70.74 232 4144 5467.1 1778.28 1776.28
33 44.969 44.576 54.92 51.71 233 316.89 336.4 293.19 291.1
34 13.769 13.999 20.43 16.43 234 102.93 113.99 90.88 90.52
35 129.92 129.4 141.28 137.36 235 58.416 58.452 68.31 64.69
36 70.236 70.781 83.97 83.46 236 94.168 92.204 104.23 100.69
37 76.858 74.395 81.92 80.99 237 45.113 44.811 57.75 55.99
38 140.83 134.86 160.61 160.52 238 87.759 85.788 88.08 84.95
39 74.72 73.988 86.01 83.58 239 43.145 43.307 44.99 44.4
40 56.159 56.121 74.79 74.35 240 52.81 52.586 71.31 68.83
41 126.67 124.03 145.34 143.71 241 63.57 64.053 80.76 79.72
42 79.035 77.249 95.22 91.68 242 41.186 40.724 43.36 41.58
43 66.167 63.646 83.98 81.79 243 32.92 32.385 44.67 41.29
44 108.06 103.11 119.79 118.31 244 58.508 57.617 76.14 75.36
45 43.948 43.834 58.49 57.66 245 34.004 33.926 38.73 37.51
46 43.699 42.354 63.01 61.25 246 29.628 29.513 45.74 43.81
47 63.858 63.574 76.69 72.87 247 1587.8 3113.9 536.91 535.56
48 30.728 30.643 47.39 46.89 248 187.29 893.97 145.75 142.56
49 23.701 23.341 37.06 35.18 249 454.13 848.79 429.99 426.04
50 133.19 129.16 149.26 145.83 250 94.115 122.74 83.3 82.66
51 72.593 67.252 93.28 93.11 251 70.128 69.641 87.18 86.23
52 149.82 144.35 169.34 166.57 252 109.62 108.05 124.48 121.67
53 81.312 81.256 101.41 97.49 253 77.568 77.41 85.17 83.67
54 59.822 60.174 73.68 72.55 254 48.767 48.009 61.91 58.02
55 72.942 71.873 83.29 82.75 255 86.819 85.458 95.71 91.82
56 71.748 68.099 90.71 87.97 256 50.297 50.034 61.97 59.4
57 128.65 126.12 151.86 148.22 257 36.546 36.09 53.61 50.17
58 44.719 44.693 48.16 45.72 258 52.606 51.802 69.27 67.66
59 54.799 54.679 61.04 57.44 259 37.319 37.166 44.48 41.95
60 134.3 130.77 153.66 152.89 260 30.505 30.052 43.34 39.4
61 46.571 46.901 58.54 55.52 261 48.028 47.069 55.78 53.54
62 39.707 39.956 42.38 40.99 262 29.85 29.746 47.9 44.17
63 70.622 69.01 86.15 84.48 263 36.166 35.275 40.06 37.18
64 37.642 38.209 53.49 52.87 264 765.44 2593.7 202.01 200.07
65 32.269 32.253 34.47 31.19 265 242.5 1016.1 139.64 137.08
66 172.73 170.31 187.44 184.94 266 89.381 97.771 77.07 73.52
67 90.56 90.627 106.93 103.98 267 113.47 111.8 129.3 128.51
68 74.335 76.137 95.53 92.31 268 70.159 70.28 86.18 84.6
69 74.258 72.237 87.48 87.21 269 40.335 39.249 56.03 52.06
70 86.289 86.464 98.41 94.61 270 95.427 95.035 100.11 98.5
71 78.252 76.021 86.68 84.69 271 58.694 58.749 67.94 65.3
72 68.885 69.012 88.31 85.29 272 35.789 35.614 43.32 39.71
73 66.792 67.442 85.92 82.95 273 65.888 65.269 76.42 72.44
74 86.829 88.025 106.42 103.1 274 43.119 42.574 54.83 52.22
75 50.806 51.41 68.71 68.08 275 31.965 31.685 35.9 35.47
76 40.086 39.657 46.35 44.52 276 51.494 50.85 68.22 68.08
T 96.432 94.166 111.8 109.33 277 34.802 34.469 47.01 44.54
78 43.701 43.177 59.16 55.43 278 24.646 24.583 27.83 25.56
79 35.59 35.014 39.29 35.95 279 540.89 428.74 556.36 552.51
80 62.271 62.499 78.68 75.1 280 436.53 1206.8 170.9 167.92
81 26.945 26.708 42.95 40.62 281 472.66 1530.6 356.85 354.2
82 18.308 18.379 22.33 20 282 131.94 251.03 123.15 121.06
83 231.27 279.15 211.87 208.45 283 156.59 156.46 166.61 165.57
84 324.01 407.17 203.59 203.45 284 88.446 86.362 100.47 96.62
85 271.61 318.32 94.45 90.91 285 62.711 62.113 74.94 72.78
86 152.17 162.13 147.49 145.86 286 118.12 117.71 125.4 125.28
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87 83.999 85.209 92.53 92.38 287 69.258 70.173 76.32 73.53
88 112.62 113.49 124.34 121.36 288 36.277 36.605 55.1 53.02
89 73.381 72.51 78.05 77.43 289 81.855 81.288 99.24 99
90 139.06 136.15 148.57 147.99 290 55.696 55.443 70.08 66.52
91 72.555 72.83 90.92 88.5 291 33.334 34.016 50.4 49.08
92 54.58 54.216 69.3 68.28 292 69.541 67.283 78.05 77.13
93 118.8 119.92 134.74 133.44 293 42.574 42.303 51.39 50.93
94 63.37 64.494 80.35 78.74 294 23.073 23.201 34.44 33.2
95 49.323 49.124 55 53.37 295 35.99 35.358 56.3 55.39
96 105.68 104.35 124.94 123.4 296 18.718 18.799 30.14 27.53
97 41.799 42.092 55.49 53.05 297 15.99 16.169 23.13 22.87
98 36.517 35.98 45.02 44.35 298 178.87 178.73 192.53 191.43
99 41.183 40.373 50.33 49.58 299 175.88 178.61 194.65 193.52
100 31.331 31.726 41.09 40.71 300 210.43 210.09 226.65 223.13
101 27.543 27.38 42.91 41.62 301 376.91 410.02 293.25 291.47
102 7.7697 7.8756 21.42 18.34 302 373.82 1336.3 127.64 124.62
103 267.45 267.65 278.91 277.97 303 853.49 1778.8 246.89 244.48
104 115.52 114.68 120.26 117.3 304 6978.7 12552 6194.36 6191.23
105 840.16 1450.6 642.48 639.71 305 115.1 115.47 123.55 123.09
106 778.31 1518.4 450.8 447.5 306 116.17 115.85 125.1 121.19
107 547.22 735.77 266.33 263.02 307 102.02 100.11 122.08 118.69
108 631.96 1570.3 98.43 97.26 308 60.696 59.251 69.16 68.96
109 71.9 76.031 89.45 88.21 309 91.67 90.591 115.3 113.44
110 153.31 148.83 167.85 165.76 310 66.039 64.844 80.19 78.89
111 80.265 78.035 96.86 95.56 311 39.961 39.553 48.89 46.37
112 53.209 54.216 72.78 69.45 312 95.788 94.322 106.53 105.61
113 150.5 150.41 164.8 161.56 313 60.657 60.892 66.68 64.36
114 60.227 60.638 73.52 71.29 314 31.674 31.59 45.04 42.63
115 37.332 36.893 52.2 51.15 315 69.983 69.013 77.92 75.52
116 112.28 111.7 133.13 130.41 316 47.417 47.673 60.25 58.46
117 47.519 47.42 50.27 49.34 317 21.646 21.304 33.17 33.03
118 35.273 35.024 43.42 41.59 318 1.5052 1.6892 14.4 12.34
119 102.65 102.59 108.68 107.14 319 118.41 119.74 137.75 136.12
120 49.88 49.701 66.83 64.68 320 258.16 221.37 232.35 231.92
121 31.794 32.025 40.93 36.96 321 317.89 350.14 302.68 300.84
122 62.285 61.95 71.87 68.85 322 550.76 2080.5 112.22 110.42
123 41.928 41.776 48.98 45.06 323 1078.9 2094.2 379.38 377.18
124 25.117 25.062 36.37 35.43 324 4707.4 5967.2 1968.44 1965.22
125 185.2 186.99 195.7 193.59 325 100.01 118.53 85.8 83
126 373.72 300.85 239.79 239.58 326 123.56 122.08 135.38 131.89
127 136.21 170 134.92 131.89 327 82.887 83.666 91.11 90.9
128 401.8 812.35 338.99 336.58 328 95.767 95.633 109.23 108.35
129 196.91 236.89 175.22 171.79 329 69.635 68.79 76.72 74.88
130 473.21 1453 183.11 179.16 330 98.198 96.683 110.37 106.54
131 251.65 600.16 225.91 222.19 331 75.786 76.198 92.85 89.69
132 66.674 65.541 84.63 82.99 332 37.596 37.92 48.05 46.24
133 69.493 69.532 76.08 76.08 333 63.359 63.708 83.21 81.88
134 40.284 40.224 44.37 42.21 334 47.177 48.436 52.91 52.67
135 50.302 51.023 62.34 61.51 335 30.88 30.8 43.94 40.98
136 33.938 33.864 48.85 47.97 336 51.149 51.369 56.58 54.55
137 90.971 90.216 96.63 95.33 337 31.752 32.117 46.38 45.58
138 47.205 47.065 49.45 49.07 338 22.356 22.396 34.24 32.53
139 32.822 32.42 35.68 32.69 339 368.95 547.41 275.76 275.09
140 79.242 80.443 86.1 83.11 340 137.26 174.75 130.78 127.77
141 40.862 40.566 55.33 53.16 341 106.52 105.64 125.8 124.33
142 26.879 26.836 35.25 33.9 342 149.55 148.16 163.91 160.14
143 22.476 22.278 34.36 31.03 343 247.12 1275.3 147.47 147.4
144 15.505 15.607 27.65 25.44 344 106.36 104.82 115.8 112.48
145 13.13 13.009 22.92 19.09 345 118.19 114.65 126.46 123.95
146 247.94 364.91 138.83 135.26 346 102.67 116.92 122.83 120.68
147 1082 4112.7 524.31 522.88 347 73.201 71.552 83.23 80.63
148 53.95 54.624 69.3 67.11 348 89.705 89.469 108.26 105.35
149 146.65 147.38 167.15 165.76 349 100.31 98.914 116.33 115.95
150 88.707 88.374 98.05 95.56 350 52.815 53.506 72.9 69.39
151 40.48 40.809 44 40.81 351 99.145 97.459 116.17 116.11
152 111.03 112.96 116 113.02 352 59.987 60.224 80.21 79.03
153 70.748 71.729 86.88 86.38 353 36.045 35.614 40.91 40.19
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154 36.229 35.773 43.97 40.68 354 76.149 76.784 90.65 86.94
155 94.701 92.974 113.82 113.72 355 46.631 46.051 58.8 58.53
156 50.168 48.967 63.48 61.82 356 31.772 31.636 33.56 31.24
157 35.974 35.617 46.67 43.74 357 68.078 67.932 80.98 78.43
158 78.067 77.834 97.2 94.07 358 96.801 95.306 104.67 102.06
159 44.822 44.851 54.42 52.95 359 86.839 86.978 104.16 100.7
160 29.833 29.609 39.36 36.38 360 71.382 71.439 80.09 79.87
161 55.772 56.056 66.18 62.61 361 66.34 66.557 73.07 69.8
162 36.899 36.633 53.84 52.87 362 98.628 97.186 119.68 117.56
163 24.07 24.22 31.39 30.87 363 71.346 73.449 87.07 84.29
164 861.97 2765.1 164.88 163.98 364 75.637 74.806 89.11 88.26
165 1264.5 5293.1 703.42 702.02 365 76.089 76.127 80.79 78.62
166 155.47 158.75 171.73 170.58 366 85.739 83.883 105.28 102.47
167 145.27 141.29 171.6 167.89 367 52.708 52.926 69.27 65.44
168 44.396 44.604 63.6 63.39 368 66.438 65.549 70.3 68.52
169 100.61 100.28 110.99 108.62 369 65.741 65.134 72.64 72.3
170 94.604 97.139 113.99 113.34 370 43.127 43.03 60.26 60.03
171 38.479 39.235 50.72 47.37 371 222.86 221.87 240.43 237.91
172 92.985 90.422 110.26 109.59 372 56.79 56.517 59.59 56.41
173 66.358 66.216 87.27 85.26 373 63.215 62.756 68.41 65.65
174 36.061 35.943 46.06 42.06 374 55.138 55.599 60.58 59.2
175 75.589 74.223 89.38 87.96 375 56.664 56.454 75.71 71.92
176 57.812 55.205 80.65 80.46 376 99.107 104.78 118.78 116.7
177 31.274 31.053 37.6 36.75 377 52.106 52.166 63.83 60.01
178 63.516 63.512 69.05 67.46 378 63.838 62.579 76.78 76.49
179 45.402 44.779 65.13 63.8 379 100.83 100.94 105.68 104.85
180 27.294 27.208 34.42 33.5 380 59.018 57.924 75.49 72.39
181 6684 8097.4 4705.08 4701.34 381 69.895 69.203 77.08 73.42
182 1771.5 5466.7 164.17 161.44 382 83.843 82.03 94.81 91.68
183 4186 3743.1 3189.26 3185.41 383 58.438 58.1 71.32 70.14
184 720.51 3116.1 312.34 310.59 384 57.98 57.713 73.37 72.76
185 102.88 101.09 123.89 120.13 385 36.147 35.806 44.13 40.74
186 44.197 44.099 62.11 62.09 386 73.603 70.936 89.92 86.78
187 104.59 104.82 122.5 120.06 387 52.672 52.833 71.34 70.26
188 67.709 66.839 73.36 70.16 388 62.906 63.291 76.2 75.29
189 39.774 39.957 49.38 48.45 389 90.588 89.391 102.67 101.39
190 93.8 92.422 115.99 112.26 390 57.303 57.746 64.32 61
191 63.035 62.31 72.45 69.4 391 51.87 52.418 62.97 59.68
192 31.77 31.627 47.56 44.25 392 69.922 69.97 74.11 71.83
193 73.527 73.815 79.43 77.14 393 38.767 38.608 54.16 51.87
194 50.052 49.013 69.83 66.66 394 55.824 54.598 67.55 66.41
195 29.233 29.168 45.71 44.39 395 108.04 105.7 119.85 117.05
196 69.537 70.167 80.99 80.1 396 37.423 37.72 48.09 44.9
197 38.88 38.597 47.69 46.44 397 62.714 62.907 66.99 65.22
198 31.46 31.514 37.64 35.3 398 75.359 72.657 90.75 88.97
199 5899.2 5570.6 3872.25 3868.93 399 34.171 34.21 42.23 40.37
200 63.967 70.766 62.11 60.95 400 7.0318 6.6065 16.74 15.62
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Appendix F

Trials of Different Data Embedding
Methods for 2D MRI Dataset

F.1 Different Data Embedding Methods for 2D MRI
Dataset

MSEs of Images Registered with Learning Algorithm with Different Data
Embedding Methods(experiment described in section 4.3.1)

LK Degraded PCA LLE Laplacian LTSA

Trial

o LK Eigenmaps

i 93.55 145.52 135.92 233.06 120.00 152.16
2 206.17 289.01 266.20 441.06 250.77 253.56
3 136.65 193.89 170.00 313.32 176.19 158.13
4 100.84 143.45 148.63 239.50 128.04 117.93
0 90.89 133.58 120.46 249.05 87.90 121.03
6 153.87 223.29 352.36 454.85 177.78 348.31
7 96.3 139.58 150.16 269.81 121.62 155.12
8 151.23 221.61 546.81 404.32 168.67 592.35
9 146.99 209.9 187.07 288.82 156.03 166.26
10 106.67 144.48 142.61 292.85 152.55 141.87
11 100.85 128.76 132.04 192.43 121.63 96.00
12 115.93 166.25 181.41 274.42 168.71 124.71
13 107.85 141.88 115.61 240.05 122.94 108.11
14 90.83 128.97 119.02 245.95 140.08 141.86
15 109.11 158.78 188.44 262.68 119.67 219.48
16 39.66 53.29 227.45 104.99 88.55 175.46
17 120.54 153.63 165.44 260.72 166.82 151.00
18 154.17 233.98 185.02 394.44 172.60 162.02
19 128.31 193.54 168.74 316.20 135.98 126.93
20 82.14 113.1 112.43 188.51 125.51 136.76
21 82.14 113.1 126.53 171.70 137.65 118.77
22 101.25 147.03 139.36 253.99 120.69 166.86
23 101.6 134.88 143.81 207.09 140.01 142.28
24 184.06 273.92 224.18 405.75 215.10 230.98
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25 82.14 113.1 374.79 218.70 124.36 361.32
26 101.25 147.03 105.75 234.36 139.04 152.68
27 112.29 171.59 223.54 446.97 122.79 286.87
28 112.78 165.85 109.20 270.82 153.73 106.41
29 101.75 145.75 103.46 233.07 157.59 158.74
30 92.25 125.34 128.63 236.77 124.67 146.19
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Appendix G

Trials of Data Embedding Methods
for 3D Gated CT Dataset

G.1 Different Data Embedding Methods

MSEs of Registered Images with Learning Algorithm Using Different Data
Embedding Methods

Trial LK Degraded| PCA LLE Laplacign LTSA Trial LK Degraded| PCA LLE Laplacign LTSA
no. LK Bigen- no. LK Bigen-
maps maps
1 51.78 51.87 58.71 86.55 57.94 65.86 201 401.28 636.92 324.15 473.56 321.01 360.25
2 32.89 33.06 34.98 51.97 37.04 45.37 202 79.63 78.25 81.57 121.94 87.10 98.03
3 42.79 42.23 44.02 65.53 43.85 49.83 203 42.35 42.15 49.85 69.68 47.20 54.43
4 88.98 89.91 100.27 147.12 102.02 116.30 204 127.95 127.24 130.27 197.47 131.59 149.43
5 40.68 41.00 46.82 66.72 46.03 51.33 205 67.51 67.47 69.85 102.68 72.05 85.11
6 55.56 54.10 59.86 86.65 62.66 68.21 206 42.67 42.14 51.89 70.16 50.40 52.32
7 85.23 82.26 96.78 136.67 94.68 104.59 207 87.59 87.07 95.63 141.31 93.06 106.08
8 82.61 80.91 95.73 136.56 94.33 101.83 208 53.63 53.49 58.06 83.26 59.51 66.13
9 42.32 41.81 48.16 71.02 51.80 54.56 209 32.87 32.45 38.29 56.30 35.65 40.89
10 60.79 61.13 63.38 99.22 63.61 75.11 210 73.90 73.61 83.70 121.20 84.39 90.81
11 75.71 74.70 82.22 116.52 81.51 91.70 211 54.00 53.95 57.99 89.47 61.95 70.68
12 89.72 87.70 101.03 145.30 100.96 115.53 212 35.12 33.79 42.24 58.51 37.81 43.36
13 39.08 39.44 44.08 66.04 44.88 53.77 213 56.94 56.87 65.15 93.68 62.52 72.55
14 51.79 51.87 60.14 88.06 61.93 69.49 214 41.91 42.68 48.13 69.92 48.96 53.60
15 93.04 93.63 102.11 155.68 101.30 117.36 215 24.88 24.86 29.29 37.66 31.80 31.94
16 102.30 100.55 117.31 165.16 110.09 129.60 216 513.30 886.18 162.24 237.85 164.49 188.20
17 41.53 41.88 48.13 69.12 44.74 55.62 217 857.31 1238.20 304.41 454.25 304.60 346.75
18 59.79 58.93 66.43 93.22 63.23 72.56 218 86.59 87.01 87.64 130.72 88.65 96.20
19 72.64 72.92 83.16 128.18 84.75 96.48 219 48.98 48.64 61.66 88.66 61.40 69.33
20 88.52 86.83 94.72 143.28 97.56 108.44 220 111.92 112.94 117.16 176.43 115.79 135.22
21 43.21 43.22 44.85 71.09 46.54 54.61 221 54.80 54.64 58.86 84.21 58.37 67.53
22 65.41 64.22 75.05 103.90 70.73 85.45 222 45.18 44.66 49.65 75.35 49.30 57.61
23 30.69 30.61 37.49 49.99 32.27 39.18 223 92.46 91.41 102.78 154.75 106.05 115.61
24 33.60 34.01 36.47 52.78 39.34 39.88 224 50.17 49.57 55.07 79.63 56.90 66.43
25 97.50 95.54 108.73 155.79 106.04 122.74 225 35.09 35.63 43.40 58.63 40.76 45.35
26 60.11 59.22 67.07 97.91 64.42 77.18 226 82.42 81.16 96.23 136.60 94.25 105.45
27 65.92 64.44 73.53 107.12 69.68 80.41 227 38.40 37.71 44.41 63.00 41.56 47.41
28 93.74 89.67 109.03 157.01 107.77 119.94 228 36.34 36.23 40.20 62.36 41.06 42.74
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29 66.03 65.10 71.63 111.31 76.97 87.01 229 66.54 65.57 75.20 110.47 75.80 87.77
30 59.38 57.41 66.66 99.93 68.83 76.12 230 41.27 41.36 48.15 69.93 49.25 52.47
31 110.41f 108.75 118.71 176.14 114.92 134.47 231 28.99 29.27 35.50 47.51 34.17 35.52
32 57.57 57.21 64.92 95.05 67.26 74.33 232 4144.00 5467.10 1728.82| 2571.84| 1781.20| 1930.25
33 44.97 44.58 48.57 72.57 53.72 55.14 233 316.89 336.40 296.67 440.47 293.94 342.35
34 13.77 14.00 18.73 24.96 14.52 22.17 234 102.93 113.99 87.46 127.23 85.72 95.18
35 129.92| 129.40 137.77 206.67 139.31 163.72 235 58.42 58.45 61.05 90.58 65.38 71.62
36 70.24 70.78 82.30 121.45 83.18 89.97 236 94.17 92.20 103.47 156.28 103.02 121.64
37 76.86 74.40 86.98 122.28 84.26 99.12 237 45.11 44.81 52.46 74.71 46.65 59.79
38 140.83 134.86 157.54 230.69 155.84 181.81 238 87.76 85.79 89.52 132.99 90.84 104.77
39 74.72 73.99 85.36 125.05 87.00 92.00 239 43.15 43.31 43.45 65.56 49.52 54.77
40 56.16 56.12 60.40 90.50 64.96 70.61 240 52.81 52.59 59.18 84.97 56.95 68.27
41 126.67| 124.03 141.06 208.95 141.26 160.54 241 63.57 64.05 66.43 98.10 68.16 77.34
42 79.04 77.25 84.04 124.53 84.85 96.09 242 41.19 40.72 45.88 69.13 45.35 54.11
43 66.17 63.65 78.94 118.07 83.45 93.16 243 32.92 32.39 42.17 57.87 36.46 48.30
44 108.06( 103.11 116.56 172.64 115.41 133.88 244 58.51 57.62 68.12 94.68 64.97 74.41
45 43.95 43.83 46.73 67.90 45.60 54.79 245 34.00 33.93 39.36 57.39 40.39 42.52
46 43.70 42.35 47.48 73.13 48.44 56.59 246 29.63 29.51 34.86 54.07 33.37 40.79
47 63.86 63.57 72.31 105.36 69.86 79.67 247 1587.80 3113.90 604.21 837.74 523.40 686.08
48 30.73 30.64 35.52 49.04 35.57 42.22 248 187.29 893.97 136.52 201.40 136.79 155.04
49 23.70 23.34 32.27 44.86 24.97 36.13 249 454.13 848.79 438.41 648.96 434.58 497.44
50 133.19 129.16 143.05 212.02 140.09 164.90 250 94.12 122.74 82.02 118.29 79.15 92.61
51 72.59 67.25 83.65 116.27 77.98 93.97 251 70.13 69.64 76.37 114.57 76.43 85.37
52 149.82 144.35 162.94 235.03 161.95 180.52 252 109.62 108.05 115.12 169.55 113.00 131.42
53 81.31 81.26 87.78 133.61 90.78 99.51 253 77.57 77.41 82.07 122.66 83.76 96.15
54 59.82 60.17 67.09 93.40 67.66 75.76 254 48.77 48.01 53.00 79.62 53.91 62.63
55 72.94 71.87 82.27 122.94 83.63 91.74 255 86.82 85.46 97.97 137.41 91.80 108.23
56 71.75 68.10 90.46 124.57 89.60 95.63 256 50.30 50.03 56.23 83.63 55.10 60.44
57 128.65 126.12 141.98 212.21 143.27 160.37 257 36.55 36.09 39.55 55.35 41.93 43.97
58 44.72 44.69 51.14 73.97 48.96 55.53 258 52.61 51.80 60.79 84.11 61.28 65.95
59 54.80 54.68 59.81 91.59 65.09 70.47 259 37.32 37.17 41.31 59.78 46.55 49.92
60 134.30 130.77 151.62 223.66 149.35 167.36 260 30.51 30.05 37.57 53.99 38.62 41.49
61 46.57 46.90 50.46 81.09 49.83 62.88 261 48.03 47.07 55.75 80.10 55.96 64.19
62 39.71 39.96 42.76 63.33 43.55 50.92 262 29.85 29.75 37.28 47.11 37.18 42.12
63 70.62 69.01 75.33 115.87 81.23 91.17 263 36.17 35.28 41.55 60.90 44.24 45.02
64 37.64 38.21 44.73 64.16 44.21 47.14 264 765.44 | 2593.70 201.75 296.46 201.63 233.57
65 32.27 32.25 36.80 55.63 32.63 43.38 265 242.50 | 1016.10 132.41 190.12 128.78 148.44
66 172.73 170.31 185.69 265.86 184.48 204.81 266 89.38 97.77 78.79 119.69 76.52 92.85
67 90.56 90.63 97.72 136.96 107.79 110.58 267 113.47 111.80 126.25 182.81 124.85 141.88
68 74.34 76.14 83.58 123.94 80.50 97.37 268 70.16 70.28 T7.87 114.27 78.62 84.85
69 74.26 72.24 77.81 116.53 77.58 91.69 269 40.34 39.25 50.63 67.64 45.39 50.54
70 86.29 86.46 100.67 141.87 95.94 112.88 270 95.43 95.04 102.59 147.78 103.58 114.44
71 78.25 76.02 89.25 129.81 85.15 100.13 271 58.69 58.75 65.00 95.09 61.00 74.44
72 68.89 69.01 83.03 124.51 82.43 97.08 272 35.79 35.61 41.73 62.84 40.01 43.48
73 66.79 67.44 74.03 114.72 74.78 83.34 273 65.89 65.27 74.93 105.97 70.17 80.34
74 86.83 88.03 94.24 137.41 94.86 105.97 274 43.12 42.57 51.24 67.66 45.91 52.31
75 50.81 51.41 58.26 85.70 60.75 69.13 275 31.97 31.69 34.54 52.19 37.84 39.31
76 40.09 39.66 44.88 69.86 45.83 50.88 276 51.49 50.85 54.42 79.97 55.04 60.65
T 96.43 94.17 103.47 159.99 104.53 118.55 277 34.80 34.47 38.21 55.74 42.84 46.38
78 43.70 43.18 45.61 71.66 44.63 55.34 278 24.65 24.58 30.68 38.08 28.55 29.22
79 35.59 35.01 39.62 62.59 38.76 45.16 279 540.89 428.74 552.52 824.70 551.91 631.22
80 62.27 62.50 67.62 104.59 65.79 81.57 280 436.53 | 1206.80 163.28 238.16 155.15 179.22
81 26.95 26.71 32.14 42.27 27.85 37.90 281 472.66 | 1530.60 351.94 517.98 347.78 399.78
82 18.31 18.38 24.78 33.70 23.55 29.84 282 131.94 251.03 112.87 170.96 115.53 130.73
83 231.27] 279.15 214.96 312.01 210.61 241.09 283 156.59 156.46 164.37 241.83 164.33 182.60
84 324.01| 407.17 202.89 298.37 199.81 229.78 284 88.45 86.36 103.62 148.25 100.62 116.15
85 271.61] 318.32 88.62 131.35 83.11 96.67 285 62.71 62.11 71.91 100.06 71.41 79.75
86 152.17 162.12 148.15 212.03 141.25 165.62 286 118.12 117.71 125.87 184.25 127.49 146.39
87 84.00 85.21 91.58 132.18 90.07 102.68 287 69.26 70.17 75.23 106.81 71.96 80.23
88 112.62 113.49 120.57 180.88 118.03 136.08 288 36.28 36.61 40.58 62.07 40.97 49.70
89 73.38 72.51 84.02 116.25 76.65 90.61 289 81.86 81.29 88.37 130.95 89.73 97.58
90 139.06( 136.15 148.45 217.93 150.07 171.48 290 55.70 55.44 59.91 87.15 56.99 64.58
91 72.56 72.83 81.98 121.37 77.27 88.99 291 33.33 34.02 36.22 56.90 37.39 40.63
92 54.58 54.22 61.07 93.73 65.23 69.16 292 69.54 67.28 79.71 115.77 77.11 88.91
93 118.80 119.92 132.81 199.67 134.90 155.14 293 42.57 42.30 46.89 69.78 47.73 50.78
94 63.37 64.49 68.42 103.27 71.58 78.84 294 23.07 23.20 25.38 35.65 24.51 29.69
95 49.32 49.12 56.26 87.91 59.35 63.21 295 35.99 35.36 45.50 68.67 46.33 49.24
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96 105.68 104.35 122.46 177.40 122.81 137.56 296 18.72 18.80 19.18 31.97 24.33 24.37
97 41.80 42.09 49.78 66.70 47.64 53.64 297 15.99 16.17 18.78 25.88 20.24 21.78
98 36.52 35.98 42.42 63.39 44.23 49.09 298 178.87 178.73 184.85 272.71 181.72 211.16
99 41.18 40.37 47.64 70.26 48.33 51.95 299 175.88 178.61 184.93 271.43 181.25 212.52
100 31.33 31.73 36.15 53.56 34.38 40.71 300 210.43 210.09 222.26 328.39 220.82 248.59
101 27.54 27.38 33.08 43.92 31.43 36.95 301 376.91 410.02 297.04 445.49 291.98 342.43
102 7.7 7.88 10.77 12.63 14.30 11.03 302 373.82 1336.30 113.81 171.01 112.39 133.64
103 267.45] 267.65 288.15 417.77 278.11 323.46 303 853.49 | 1778.80 254.65 372.01 246.89 288.54
104 115.52| 114.68 123.08 175.89 119.02 135.24 304 6978.70 12552.00 6253.75| 9282.74| 6188.55| 7115.64
105 840.16/ 1450.60 647.43 958.95 639.06 737.10 305 115.10 115.47 126.61 182.90 126.24 139.86
106 778.31] 1518.40 404.88 601.58 442.43 462.59 306 116.17 115.85 124.71 183.23 124.63 140.58
107 547.22| 735.77 267.36 394.46 263.60 304.44 307 102.02 100.11 114.44 168.83 111.75 129.65
108 631.96/ 1570.30 95.98 145.79 101.23 110.20 308 60.70 59.25 71.62 98.98 65.35 75.50
109 71.90 76.03 84.45 122.13 83.39 96.81 309 91.67 90.59 102.95 150.22 102.46 115.54
110 153.31| 148.83 165.01 243.49 165.58 188.77 310 66.04 64.84 69.65 104.82 72.57 82.01
111 80.27 78.04 87.41 129.41 84.86 98.82 311 39.96 39.55 45.45 69.73 47.96 54.78
112 53.21 54.22 59.87 89.01 60.71 66.14 312 95.79 94.32 108.93 159.84 104.32 123.75
113 150.50 150.41 156.93 232.42 152.15 178.40 313 60.66 60.89 64.42 98.56 65.87 72.59
114 60.23 60.64 68.78 93.26 65.91 71.91 314 31.67 31.59 34.57 54.81 37.73 41.91
115 37.33 36.89 39.23 64.06 46.31 51.69 315 69.98 69.01 84.77 122.28 81.24 94.67
116 112.28 111.70 119.60 183.98 121.57 141.83 316 47.42 47.67 54.85 73.45 52.35 59.16
117 47.52 47.42 54.88 79.14 52.52 60.40 317 21.65 21.30 24.48 38.39 24.95 27.06
118 35.27 35.02 41.07 58.48 43.27 48.07 318 1.51 1.69 8.72 5.93 4.59 3.65
119 102.65 102.59 111.82 161.96 109.26 130.03 319 118.41 119.74 122.45 181.40 126.70 144.81
120 49.88 49.70 59.14 81.41 58.92 61.21 320 258.16 221.37 230.28 344.04 228.22 259.25
121 31.79 32.03 37.36 50.38 32.33 42.02 321 317.89 350.14 302.97 450.24 301.50 345.35
122 62.29 61.95 71.44 99.06 69.23 79.85 322 550.76 | 2080.50 101.08 151.42 99.87 116.03
123 41.93 41.78 46.81 73.75 49.88 56.90 323 1078.99 2094.20 387.18 574.28 370.44 446.64
124 25.12 25.06 28.22 45.13 31.24 32.75 324 4707.4Q 5967.20 2252.14 | 3341.29| 1964.57| 2600.58
125 185.20[ 186.99 195.61 293.13 194.13 222.49 325 100.01 118.53 89.64 131.29 88.81 97.92
126 373.72 300.85 245.49 360.31 240.87 275.64 326 123.56 122.08 133.16 189.43 129.23 148.09
127 136.21f 170.00 137.11 200.50 137.69 153.61 327 82.89 83.67 90.34 135.77 90.71 101.10
128 401.80] 812.35 348.39 513.30 344.22 385.85 328 95.77 95.63 104.14 153.29 103.53 122.90
129 196.91f  236.89 173.95 258.73 173.03 196.49 329 69.64 68.79 73.32 112.07 71.15 82.63
130 473.21| 1453.00 183.99 276.91 187.64 209.84 330 98.20 96.68 108.43 163.56 107.90 125.78
131 251.65 600.16 227.59 327.15 219.07 256.60 331 75.79 76.20 81.87 122.83 87.28 98.22
132 66.67 65.54 71.64 103.83 72.93 82.26 332 37.60 37.92 39.80 62.00 44.75 51.05
133 69.49 69.53 74.12 108.41 70.84 82.93 333 63.36 63.71 73.15 106.90 74.87 83.15
134 40.28 40.22 49.47 67.77 46.15 54.69 334 47.18 48.44 51.54 80.38 54.79 61.93
135 50.30 51.02 57.58 79.12 57.49 67.06 335 30.88 30.80 38.77 51.87 37.71 43.69
136 33.94 33.86 36.36 54.85 35.00 42.75 336 51.15 51.37 62.39 92.14 61.59 73.28
137 90.97 90.22 94.27 140.22 96.14 110.48 337 31.75 32.12 40.78 53.85 38.15 40.70
138 47.21 47.07 49.59 73.89 51.53 57.13 338 22.36 22.40 30.64 41.55 29.55 30.40
139 32.82 32.42 39.71 50.84 39.55 43.67 339 368.95 547.41 266.22 390.90 260.46 304.08
140 79.24 80.44 87.04 133.15 86.95 98.68 340 137.26 174.75 130.53 199.43 131.99 149.60
141 40.86 40.57 44.76 64.29 43.17 50.41 341 106.52 105.64 116.55 163.91 113.80 131.01
142 26.88 26.84 34.57 47.11 29.03 37.82 342 149.55 148.16 160.75 234.73 157.05 181.88
143 22.48 22.28 26.45 40.95 23.58 28.89 343 247.12 1275.30 144.55 210.50 137.28 161.41
144 15.51 15.61 18.16 24.14 22.41 19.55 344 106.36 104.82 114.36 167.99 117.25 128.25
145 13.13 13.01 13.94 22.46 13.32 15.20 345 118.19 114.65 130.89 192.24 130.22 145.42
146 247.94 364.91 149.47 193.47 128.94 154.10 346 102.67 116.92 110.12 165.65 109.41 126.61
147 1082.00 4112.70 516.08 768.72 509.48 591.09 347 73.20 71.55 87.96 120.71 81.81 99.16
148 53.95 54.62 58.73 86.24 59.55 72.92 348 89.71 89.47 107.36 157.19 106.89 121.34
149 146.65 147.38 157.92 228.27 152.35 181.09 349 100.31 98.91 106.96 160.51 108.42 122.00
150 88.71 88.37 91.75 139.39 94.60 106.90 350 52.82 53.51 61.34 88.27 56.47 69.51
151 40.48 40.81 44.36 69.03 45.22 54.13 351 99.15 97.46 110.64 162.18 110.26 128.49
152 111.03f 112.96 118.64 173.91 116.56 133.69 352 59.99 60.22 64.45 98.95 64.37 73.14
153 70.75 71.73 81.29 116.29 76.10 91.93 353 36.05 35.61 38.50 60.23 42.65 48.95
154 36.23 35.77 41.40 58.35 39.37 50.74 354 76.15 76.78 85.81 130.73 90.39 101.47
155 94.70 92.97 109.59 153.92 104.99 120.07 355 46.63 46.05 48.88 70.95 46.99 56.35
156 50.17 48.97 59.26 78.52 52.44 60.11 356 31.77 31.64 37.53 49.34 37.01 41.76
157 35.97 35.62 39.58 60.17 41.86 48.61 357 68.08 67.93 74.12 106.72 73.02 80.32
158 78.07 77.83 89.99 128.41 88.39 97.68 358 96.80 95.31 101.82 150.52 99.30 118.33
159 44.82 44.85 50.46 75.34 48.00 57.45 359 86.84 86.98 94.74 142.48 96.27 105.93
160 29.83 29.61 37.32 48.55 36.27 38.67 360 71.38 71.44 78.18 110.42 75.70 84.99
161 55.77 56.06 62.26 92.77 63.60 71.18 361 66.34 66.56 74.78 104.06 67.84 83.05
162 36.90 36.63 43.16 61.91 39.77 45.10 362 98.63 97.19 108.01 159.22 103.57 121.38
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163 24.07 24.22 30.29 41.51 28.37 32.33 363 71.35 73.45 78.90 114.25 80.45 90.70
164 861.97| 2765.10 167.28 247.77 166.02 191.83 364 75.64 74.81 89.46 128.99 87.07 100.60
165 1264.50 5293.10 702.68 1046.69 | 701.72 805.45 365 76.09 76.13 82.60 120.00 84.59 91.94
166 155.47 158.75 161.08 238.33 165.96 187.55 366 85.74 83.88 96.05 140.47 97.16 105.89
167 145.27  141.29 162.03 241.93 164.21 187.01 367 52.71 52.93 65.11 91.77 64.22 71.90
168 44.40 44.60 52.23 77.38 51.50 55.23 368 66.44 65.55 73.04 104.68 69.29 82.34
169 100.61f 100.28 112.45 162.21 108.60 128.29 369 65.74 65.13 75.66 111.75 73.43 85.32
170 94.60 97.14 105.43 157.17 101.92 120.78 370 43.13 43.03 48.63 70.36 45.32 50.71
171 38.48 39.24 42.98 66.65 44.85 49.06 371 222.86 221.87 238.84 350.64 235.35 267.11
172 92.99 90.42 105.97 160.64 105.71 125.73 372 56.79 56.52 61.17 88.67 65.38 69.32
173 66.36 66.22 83.63 118.87 80.48 95.12 373 63.22 62.76 68.18 101.84 69.45 83.26
174 36.06 35.94 43.87 62.36 41.48 44.36 374 55.14 55.60 60.66 89.64 62.38 68.86
175 75.59 74.22 85.92 121.99 79.57 94.99 375 56.66 56.45 67.20 96.89 60.70 72.29
176 57.81 55.21 70.07 102.19 72.76 84.24 376 99.11 104.78 116.29 171.12 111.95 132.12
177 31.27 31.05 35.68 50.59 32.86 41.20 377 52.11 52.17 58.05 83.48 60.14 68.38
178 63.52 63.51 73.65 106.36 67.77 82.56 378 63.84 62.58 71.68 103.94 69.73 83.56
179 45.40 44.78 53.27 82.12 53.10 64.55 379 100.83 100.94 109.85 158.29 110.34 121.31
180 27.29 27.21 34.79 42.24 28.34 37.88 380 59.02 57.92 65.11 96.88 62.60 70.49
181 6684.00 8097.40 4768.60| T7172.54| 4698.20| 5445.02 381 69.90 69.20 76.93 114.79 76.87 87.40
182 1771.50 5466.70 163.82 242.40 167.05 186.46 382 83.84 82.03 91.95 138.44 90.61 103.95
183 4186.00 3743.10 3529.57| 5640.01| 3190.17| 4358.78 383 58.44 58.10 64.41 96.38 66.36 72.73
184 720.51] 3116.10 302.09 450.11 298.13 343.41 384 57.98 57.71 69.33 102.85 68.78 79.55
185 102.88 101.09 113.64 168.99 112.00 125.13 385 36.15 35.81 40.68 56.56 44.47 47.46
186 44.20 44.10 47.27 69.18 48.02 55.87 386 73.60 70.94 83.08 122.20 80.80 92.91
187 104.59| 104.82 109.67 168.29 112.91 128.54 387 52.67 52.83 58.63 83.52 58.03 70.40
188 67.71 66.84 74.39 109.26 75.58 90.13 388 62.91 63.29 72.86 103.71 66.45 77.53
189 39.77 39.96 43.32 66.12 46.78 51.38 389 90.59 89.39 99.37 149.89 104.61 115.92
190 93.80 92.42 105.64 148.12 105.41 116.16 390 57.30 57.75 66.58 91.20 63.86 70.94
191 63.04 62.31 71.24 100.31 70.42 76.68 391 51.87 52.42 59.07 83.61 56.09 67.09
192 31.77 31.63 34.26 52.76 35.13 39.17 392 69.92 69.97 79.81 117.55 78.67 90.60
193 73.53 73.82 83.92 119.69 80.27 94.05 393 38.77 38.61 48.87 66.57 42.81 50.47
194 50.05 49.01 59.24 81.02 59.25 61.75 394 55.82 54.60 62.64 88.67 59.48 66.60
195 29.23 29.17 33.40 50.45 31.49 39.68 395 108.04 105.70 123.83 176.75 121.66 137.15
196 69.54 70.17 72.83 107.12 72.32 87.63 396 37.42 37.72 41.18 60.08 45.10 47.31
197 38.88 38.60 45.85 63.37 44.00 51.47 397 62.71 62.91 72.68 100.08 67.85 76.93
198 31.46 31.51 35.57 48.14 38.24 38.88 398 75.36 72.66 84.80 127.74 79.83 98.29
199 5899.20 5570.60 4008.69 | 6067.61| 3862.82| 4655.96 399 34.17 34.21 41.06 57.98 37.75 46.68
200 63.97 70.77 68.79 96.13 63.39 74.33 400 7.03 6.61 7.65 16.62 8.52 9.81
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Appendix H

Trials of Learning set of

Representative Patches Only for 2D
MRI Dataset

H.1 A Learning set of Representative Patches Only
for 2D MRI Dataset

MSEs of Images Registered with Learning Algorithm With A Learning set of

Representative Patches Only (experiment described in section 4.3.3.1)

Trial no. LK Degraded With
LK representative
patches only
1 93.55 145.52 352.16
2 206.17 289.01 289.38
3 136.65 193.89 200.15
1 100.84 143.45 306.99
] 90.89 133.58 136.03
6 153.87 223.29 292.45
7 96.30 139.58 269.19
8 151.23 221.61 298.98
9 146.99 209.90 264.06
10 106.67 144.48 333.94
11 100.85 128.76 812.42
12 115.93 166.25 127.93
13 107.85 141.88 259.62
14 90.83 128.97 282.36
15 109.11 158.78 156.17
16 39.66 53.29 162.12
17 120.54 153.63 120.9
I8 154.17 233.98 168.94
19 128.31 193.54 243.95
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20 82.14 113.10 205.03
21 82.14 113.10 144.26
22 101.25 147.03 211.02
23 101.60 134.88 147.32
24 184.06 273.92 150.33
25 82.14 113.10 287.79
26 101.25 147.03 140.6
27 112.29 171.59 148.32
28 112.78 165.85 430.25
29 101.75 145.75 781.12
30 92.25 125.34 189.68
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Appendix I

Learning Algorithm with

Representative Patches Only for 3D
Gated CT Dataset

[.1 Comparison of Learning Algorithm with Learn-

ing Set of Represenative Patches (RP) Only

MSEs of Registered Images with Learning Algorithm Using Learning Set of

Representative Patches Only

Tria] LK Degraded RP Trial| LK Degraded RP Tria] LK Degraded RP Tria] LK Degraded RP
# LK # LK # LK # LK

1 51.78 51.87 134.99 101 27.54 27.38 144.59 201 401.28 636.92 751.88 300 210.43| 210.09 680.32
2 32.89 | 33.06 112.08 102 7.77 7.88 56.29 202 79.63 | 78.25 212.09 301 376.91] 410.02 273.53
3 42.79 | 42.23 151.03 103 267.45 267.65 618.60 203 | 42.35 42.15 142.35 302 | 373.82 1336.3 622.09
4 88.98 | 89.91 253.27 104 115.52| 114.68 263.32 204 127.95| 127.24 330.17 303 | 853.49| 1778.8 | 13275.08
5 40.68 41 131.34 105 840.16| 1450.6 | 1441.62 205 67.51 67.47 208.19 304 | 6978.7 12552 338.69
6 55.56 54.1 162.59 106 778.31] 1518.4 829.64 206 | 42.67 | 42.14 184.25 305 115.1 115.47 281.22
7 85.23 | 82.26 278.89 107 547.22| 735.77 599.63 207 | 87.59 | 87.07 196.95 306 116.17 115.85 306.04
8 82.61 80.91 253.29 108 631.96 1570.3 263.29 208 | 53.63 | 53.49 122.43 307 102.02] 100.11 209.14
9 42.32 | 41.81 105.71 109 71.9 76.03 201.64 209 | 32.87 | 32.45 113.78 308 60.7 59.25 252.95
10 60.79 | 61.13 179.03 110 153.31| 148.83 429.33 210 73.9 73.61 191.54 309 | 91.67 | 90.59 206.01
11 75.71 74.7 183.16 111 80.27 78.04 270.60 211 54 53.95 178.17 310 66.04 64.84 158.22
12 89.72 87.7 208.45 112 53.21 54.22 157.30 212 35.12 33.79 152.00 311 39.96 | 39.55 251.24
13 39.08 | 39.44 101.07 113 150.5 150.41 386.81 213 | 56.94 | 56.87 194.37 312 | 95.79 | 94.32 151.28
14 51.79 51.87 174.64 114 60.23 60.64 166.78 214 41.91 42.68 122.33 313 60.66 60.89 141.78
15 93.04 | 93.63 305.13 115 37.33 | 36.89 141.83 215 24.88 | 24.86 74.36 314 | 31.67 | 31.59 241.40
16 102.3 100.55 299.81 116 112.28 111.7 311.42 216 513.3 886.18 408.63 315 69.98 69.01 161.67
17 41.53 | 41.88 106.69 117 47.52 47.42 142.98 217 | 857.31| 1238.2 698.80 316 | 47.42 | 47.67 77.05
18 59.79 58.93 136.93 118 35.27 | 35.02 109.71 218 | 86.59 | 87.01 261.51 317 | 21.65 21.3 27.07
19 72.64 72.92 272.62 119 102.65| 102.59 262.82 219 | 48.98 | 48.64 132.94 318 1.51 1.69 261.47
20 88.52 86.83 225.00 120 49.88 49.7 127.44 220 111.92| 112.94 320.03 319 118.41 119.74 569.89
21 43.21 43.22 152.33 121 31.79 | 32.03 117.96 221 54.8 54.64 156.72 320 258.16| 221.37 736.88
22 65.41 64.22 230.29 122 62.29 61.95 153.96 222 45.18 44.66 104.34 321 317.89 350.14 247.73
23 30.69 | 30.61 124.59 123 41.93 | 41.78 172.37 223 | 92.46 | 91.41 258.31 322 550.76| 2080.5 837.17
24 33.6 34.01 169.73 124 25.12 25.06 83.83 224 50.17 49.57 137.25 323 1078.9] 2094.2 | 4043.14
25 97.5 95.54 261.03 125 185.2 186.99 459.02 225 35.09 | 35.63 152.58 324 | 4707.4f 5967.2 276.79
26 60.11 59.22 178.04 126 373.72| 300.85 559.67 226 | 82.42 81.16 247.76 325 100.01] 118.53 277.14
27 65.92 64.44 200.45 127 136.21 170 368.81 227 38.4 37.71 94.32 326 123.56] 122.08 277.54
28 93.74 | 89.67 235.68 128 401.8 | 812.35 798.87 228 | 36.34 | 36.23 83.99 327 | 82.89 | 83.67 226.58
29 66.03 65.1 209.96 129 196.91| 236.89 371.31 229 | 66.54 | 65.57 174.63 328 | 95.77 | 95.63 180.85

142




30 59.38 | 57.41 166.91 130 473.21] 1453 466.85 230 | 41.27 | 41.36 131.92 329 | 69.64 | 68.79 237.03
31 110.41] 108.75 315.77 131 251.65 600.16 520.59 231 28.99 | 29.27 83.84 330 98.2 96.68 192.49
32 57.57 | 57.21 176.82 132 66.67 | 65.54 163.96 232 | 4144 5467.1 | 3710.83 331 75.79 76.2 90.03
33 44.97 | 44.58 139.14 133 69.49 | 69.53 241.96 233 | 316.89 336.4 717.75 332 37.6 37.92 245.42
34 13.77 14 91.12 134 40.28 | 40.22 133.09 234 | 102.93 113.99 223.71 333 | 63.36 | 63.71 167.39
35 129.92] 129.4 350.68 135 50.3 51.02 147.72 235 | 58.42 | 58.45 144.77 334 | 47.18 | 48.44 103.33
36 70.24 | 70.78 244.25 136 33.94 | 33.86 127.42 236 | 94.17 92.2 314.87 335 | 30.88 30.8 202.68
37 76.86 74.4 245.64 137 90.97 | 90.22 290.11 237 | 45.11 44.81 121.96 336 | 51.15 | 51.37 150.17
38 140.83] 134.86 | 416.39 138 47.21 47.07 173.26 238 | 87.76 | 85.79 263.82 337 | 31L.75 | 32.12 84.74
39 74.72 | 73.99 240.40 139 32.82 | 32.42 136.91 239 | 43.15 | 43.31 194.13 338 | 22.36 22.4 615.54
40 56.16 | 56.12 217.68 140 79.24 | 80.44 269.42 240 | 52.81 52.59 122.91 339 | 368.95 547.41 305.03
41 126.67] 124.03 | 364.48 141 40.86 | 40.57 150.89 241 63.57 | 64.05 216.19 340 137.26] 174.75 266.74
42 79.04 | 77.25 202.69 142 26.88 | 26.84 143.63 242 | 41.19 | 40.72 128.50 341 106.52] 105.64 | 345.22
43 66.17 | 63.65 177.30 143 22.48 | 22.28 131.97 243 | 32.92 | 32.39 107.19 342 149.55 148.16 | 355.35
44 108.06] 103.11 250.67 144 15.51 15.61 39.72 244 | 58.51 57.62 135.90 343 | 247.12) 1275.3 252.93
45 43.95 | 43.83 174.50 145 13.13 13.01 57.26 245 34 33.93 138.12 344 106.36] 104.82 272.83
46 43.7 42.35 161.20 146 247.94| 364.91 353.52 246 | 29.63 | 29.51 119.88 345 118.19] 114.65 322.29
47 63.86 | 63.57 148.74 147 1082 4112.7 | 1155.68 247 | 1587.8 3113.9| 1163.76 346 102.67] 116.92 232.20
48 30.73 | 30.64 165.56 148 53.95 54.62 170.85 248 | 187.29| 893.97| 330.19 347 73.2 71.55 300.99
49 23.7 23.34 58.13 149 146.65| 147.38 421.46 249 | 454.13| 848.79 | 958.49 348 | 89.71 | 89.47 265.83
50 133.19] 129.16 | 324.91 150 88.71 88.37 218.54 250 | 94.12 122.74 184.54 349 100.31] 98.91 143.69
51 72.59 | 67.25 228.83 151 40.48 | 40.81 91.24 251 70.13 | 69.64 198.54 350 | 52.82 | 53.51 287.79
52 149.82] 144.35 421.50 152 111.03] 112.96 247.25 252 109.62| 108.05| 329.76 351 | 99.15 | 97.46 166.49
53 81.31 | 81.26 278.46 153 70.75 71.73 238.76 253 | 77.57 | 77.41 259.55 352 | 59.99 | 60.22 146.15
54 59.82 | 60.17 148.54 154 36.23 | 35.77 90.92 254 | 48.77 | 48.01 142.65 353 | 36.05 | 35.61 258.26
55 72.94 | T1.87 183.95 155 94.7 92.97 232.25 255 | 86.82 | 85.46 220.91 354 | 76.15 | 76.78 144.31
56 71.75 68.1 264.18 156 50.17 | 48.97 178.32 256 50.3 50.03 158.40 355 | 46.63 | 46.05 80.72
57 128.65 126.12 379.65 157 35.97 | 35.62 168.95 257 | 36.55 | 36.09 145.01 356 | 31.77 | 31.64 159.65
58 44.72 | 44.69 122.97 158 78.07 | 77.83 215.84 258 | 52.61 51.8 147.66 357 | 68.08 | 67.93 218.35
59 54.8 54.68 198.62 159 44.82 | 44.85 169.09 259 | 37.32 | 37.17 148.73 358 96.8 95.31 289.23
60 134.3 | 130.77 | 393.44 160 29.83 | 29.61 107.18 260 [ 30.51 30.05 142.39 359 | 86.84 | 86.98 176.70
61 46.57 46.9 189.05 161 55.77 | 56.06 183.76 261 48.03 | 47.07 184.87 360 | 71.38 | 71.44 204.99
62 39.71 | 39.96 179.11 162 36.9 36.63 181.07 262 | 29.85 | 29.75 110.75 361 | 66.34 | 66.56 306.70
63 70.62 | 69.01 160.47 163 24.07 | 24.22 119.54 263 | 36.17 | 35.28 172.88 362 | 98.63 | 97.19 231.18
64 37.64 | 38.21 163.22 164 861.97| 2765.1 391.74 264 | 765.44f 2593.7 | 440.65 363 | 71.35 | 73.45 258.78
65 32.27 | 32.25 88.46 165 1264.5 5293.1| 1551.05 265 | 242.5 1016.1 358.15 364 | 75.64 | 74.81 222.20
66 172.73] 170.31 480.86 166 155.47| 158.75 390.29 266 | 89.38 | 97.77 249.48 365 | 76.09 | 76.13 211.19
67 90.56 | 90.63 254.83 167 145.27| 141.29 350.50 267 | 113.47 111.8 274.27 366 | 85.74 | 83.88 210.29
68 74.34 | 76.14 180.14 168 44.4 44.6 131.96 268 | 70.16 | 70.28 246.74 367 | 52.71 52.93 175.18
69 74.26 | 72.24 202.98 169 100.61| 100.28 263.24 269 | 40.34 [ 39.25 149.37 368 | 66.44 | 65.55 232.78
70 86.29 | 86.46 299.51 170 94.6 97.14 219.87 270 | 95.43 | 95.04 215.65 369 | 65.74 | 65.13 169.03
71 78.25 | 76.02 191.50 171 38.48 | 39.24 144.88 271 58.69 | 58.75 207.20 370 | 43.13 | 43.03 580.54
72 68.89 | 69.01 221.25 172 92.99 | 90.42 230.84 272 | 35.79 | 35.61 117.01 371 222.86| 221.87 206.41
73 66.79 | 67.44 181.00 173 66.36 | 66.22 215.71 273 | 65.89 | 65.27 227.78 372 | 56.79 | 56.52 180.53
74 86.83 | 88.03 236.59 174 36.06 | 35.94 143.94 274 | 43.12 | 42.57 133.03 373 | 63.22 | 62.76 223.49
75 50.81 51.41 146.49 175 75.59 | 74.22 178.49 275 | 31.97 | 31.69 136.98 374 | 55.14 55.6 147.00
76 40.09 | 39.66 156.97 176 57.81 55.21 199.81 276 | 51.49 | 50.85 120.82 375 | 56.66 | 56.45 315.58
77 96.43 | 94.17 229.26 177 31.27 | 31.05 166.45 277 34.8 34.47 153.98 376 | 99.11 104.78 176.53
78 43.7 43.18 143.56 178 63.52 | 63.51 203.09 278 | 24.65 | 24.58 68.30 377 | 52.11 52.17 187.80
79 35.59 | 35.01 129.68 179 45.4 44.78 182.68 279 | 540.89| 428.74 | 1241.63 378 | 63.84 | 62.58 302.06
80 62.27 62.5 238.50 180 27.29 | 27.21 116.57 280 | 436.53| 1206.8 | 422.18 379 100.83] 100.94 174.60
81 26.95 | 26.71 117.19 181 6684 8097.4 | 10035.42| 281 472.66/ 1530.6 | 818.92 380 | 59.02 | 57.92 217.54
82 18.31 18.38 42.13 182 1771.5| 5466.7 | 387.18 282 131.94/ 251.03 | 313.42 381 69.9 69.2 269.81
83 231.27 279.15 540.89 183 4186 3743.1| 6684.11 283 | 156.59| 156.46 | 410.62 382 | 83.84 | 82.03 211.88
84 324.01] 407.17 | 507.74 184 720.51] 3116.1 679.29 284 | 88.45 | 86.36 211.71 383 | 58.44 58.1 184.24
85 271.61 318.32 209.03 185 102.88 101.09 299.94 285 | 62.71 62.11 171.43 384 | 57.98 | 57.71 126.90
86 152.17 162.12 372.21 186 44.2 44.1 168.09 286 | 118.12f 117.71 328.10 385 | 36.15 | 35.81 224.40
87 84 85.21 202.96 187 104.59| 104.82 275.68 287 | 69.26 | 70.17 158.42 386 73.6 70.94 170.99
88 112.62] 113.49 | 269.57 188 67.71 66.84 195.42 288 | 36.28 | 36.61 94.04 387 | 52.67 | 52.83 168.63
89 73.38 | 72.51 185.55 189 39.77 | 39.96 138.43 289 | 81.86 | 81.29 247.96 388 | 62.91 | 63.29 246.92
90 139.06] 136.15 411.88 190 93.8 92.42 265.98 290 55.7 55.44 218.88 389 | 90.59 | 89.39 224.34
91 72.56 | 72.83 207.27 191 63.04 | 62.31 214.93 291 33.33 | 34.02 138.35 390 57.3 57.75 170.49
92 54.58 | 54.22 133.22 192 31.77 | 31.63 130.05 292 | 69.54 | 67.28 244.26 391 51.87 | 52.42 232.99
93 118.8 | 119.92 291.02 193 73.53 | 73.82 237.24 293 | 42.57 42.3 138.37 392 | 69.92 | 69.97 101.57
94 63.37 | 64.49 175.63 194 50.05 | 49.01 119.50 294 | 23.07 23.2 116.40 393 | 38.77 | 38.61 202.23
95 49.32 | 49.12 212.88 195 29.23 | 29.17 84.10 295 | 35.99 | 35.36 142.29 394 | 55.82 54.6 316.52
96 105.68 104.35 332.07 196 69.54 | 70.17 186.98 296 | 18.72 18.8 43.80 395 108.04] 105.7 159.87
97 41.8 42.09 134.53 197 38.88 38.6 143.06 297 | 15.99 | 16.17 63.85 396 | 37.42 | 37.72 236.33
98 36.52 | 35.98 136.50 198 31.46 | 31.51 107.06 208 | 178.87| 178.73| 438.79 397 | 62.71 | 62.91 247.50
99 41.18 | 40.37 160.33 199 5899.2| 5570.6 | 8240.99 299 | 175.88 178.61 449.68 398 | 75.36 | 72.66 85.57
100 | 31.33 | 31.73 171.40 200 63.97 | 70.77 208.01 300 | 210.43| 210.09 528.98 399 | 34.17 | 34.21 94.64
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Appendix J

Trials of Learning Algorithm With
and Without Heuristic Weight of
Spatial Distance for 2D dMRI
Dataset

J.1 Learning Algorithm With and Without Heuris-
tic Weight of Spatial Distance for 2D dMRI Dataset

MSEs of Images Registered using Learning Algorithm With and Without Heuristic
Weight of Spatial Distance (experiment described in section 5.2.1)

Tri LK Degraded Without With
rial no.

LK heuristic heuristic

weight of weight of
spatial spatial

distance distance
1 93.55 145.52 120 90.41
2 206.17 289.01 250.77 229.66
3 136.65 193.89 176.19 157.01
4 100.84 143.45 128.04 95.99
5 90.89 133.58 87.9 78.79
6 153.87 223.29 177.78 157.86
7 96.30 139.58 121.62 85.59
8 151.23 221.61 168.67 145.68
9 146.99 209.90 156.03 140.21
10 106.67 144.48 152.55 123.00
11 100.85 128.76 121.63 98.19
12 115.93 166.25 168.71 158.84

144




13 107.85 141.88 122.94 96.28
14 90.83 128.97 140.08 136.74
15 109.11 158.78 119.67 104.63
16 39.66 53.29 88.55 62.11
17 120.54 153.63 166.82 137.63
18 154.17 233.98 172.6 146.97
19 128.31 193.54 135.98 123.69
20 82.14 113.10 125.51 94.75
21 82.14 113.10 137.65 114.39
22 101.25 147.03 120.69 93.56
23 101.60 134.88 140.01 116.81
24 184.06 273.92 215.1 214.42
25 82.14 113.10 124.36 119.53
26 101.25 147.03 139.04 104.53
27 112.29 171.59 122.79 103.42
28 112.78 165.85 153.73 119.94
29 101.75 145.75 157.59 149.21
30 92.25 125.34 124.67 102.58
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Appendix K

Trials of Learning Algorithm With

Heuristic Weight of Spatial Distance
for 3D Gated CT Dataset

K.1 Comparison of Learning Algorithm with and with-
out Heuristic Weight

MSEs of Registered Images Using Learning Algorithm With and Without Heuristic
Weight of Spatial Distance

Trial LK Degraded| Without With Trial LK Degraded| Without With
heuris-
no. LK heuris- heuris- no. LK tic heuris-
weight
tic tic tic
(spatial)
weight weight weight
(spa- (spa- (spa-
tial) tial) tial)
1 51.78 51.87 57.94 57.53 201 401.28 636.92 321.01 318.14
2 32.89 33.06 37.04 36.24 202 79.63 78.25 87.1 84.87
3 42.79 42.23 43.85 43.31 203 42.35 42.15 47.2 45.07
4 88.98 89.91 102.02 100.73 204 127.95 127.24 131.59 128.09
5 40.68 41.00 46.03 42.23 205 67.51 67.47 72.05 70.48
6 55.56 54.10 62.66 60.53 206 42.67 42.14 50.4 48.56
7 85.23 82.26 94.68 93.68 207 87.59 87.07 93.06 92.23
8 82.61 80.91 94.33 92.58 208 53.63 53.49 59.51 56.48
9 42.32 41.81 51.8 49.12 209 32.87 32.45 35.65 33.46
10 60.79 61.13 63.61 61.42 210 73.90 73.61 84.39 82.96
11 75.71 74.70 81.51 79.08 211 54.00 53.95 61.95 59.15
12 89.72 87.70 100.96 97.51 212 35.12 33.79 37.81 37.37
13 39.08 39.44 44.88 43.35 213 56.94 56.87 62.52 62.49
14 51.79 51.87 61.93 58.93 214 41.91 42.68 48.96 46.57
15 93.04 93.63 101.3 100.67 215 24.88 24.86 31.8 29.16
16 102.30 100.55 110.09 109.86 216 513.30 886.18 164.49 162.17
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17 41.53 41.88 44.74 43.38 217 857.31 1238.20 304.6 300.96
18 59.79 58.93 63.23 59.96 218 86.59 87.01 88.65 86.1
19 72.64 72.92 84.75 83.24 219 48.98 48.64 61.4 59.3
20 88.52 86.83 97.56 93.67 220 111.92 112.94 115.79 114.75
21 43.21 43.22 46.54 44.12 221 54.80 54.64 58.37 58.17
22 65.41 64.22 70.73 69.38 222 45.18 44.66 49.3 46.37
23 30.69 30.61 32.27 28.56 223 92.46 91.41 106.05 105.39
24 33.60 34.01 39.34 35.74 224 50.17 49.57 56.9 55.78
25 97.50 95.54 106.04 102.64 225 35.09 35.63 40.76 39.73
26 60.11 59.22 64.42 63.39 226 82.42 81.16 94.25 92.06
27 65.92 64.44 69.68 68.54 227 38.40 37.71 41.56 39.39
28 93.74 89.67 107.77 104.65 228 36.34 36.23 41.06 37.91
29 66.03 65.10 76.97 74.16 229 66.54 65.57 75.8 72.32
30 59.38 57.41 68.83 66.86 230 41.27 41.36 49.25 46.1
31 110.41 108.75 114.92 111.05 231 28.99 29.27 34.17 30.3
32 57.57 57.21 67.26 65.36 232 4144.0q 5467.10 1781.2 1780.48
33 44.97 44.58 53.72 49.74 233 316.89 336.40 293.94 290.22
34 13.77 14.00 14.52 12.56 234 102.93 113.99 85.72 85.54
35 129.92 129.40 139.31 137.3 235 58.42 58.45 65.38 64.42
36 70.24 70.78 83.18 80.11 236 94.17 92.20 103.02 102.99
37 76.86 74.40 84.26 82.71 237 45.11 44.81 46.65 43.96
38 140.83 134.86 155.84 154.03 238 87.76 85.79 90.84 87.22
39 74.72 73.99 87 86.47 239 43.15 43.31 49.52 47.23
40 56.16 56.12 64.96 61.92 240 52.81 52.59 56.95 56.33
41 126.67 124.03 141.26 139 241 63.57 64.05 68.16 66.15
42 79.04 77.25 84.85 82.26 242 41.19 40.72 45.35 43.08
43 66.17 63.65 83.45 80.26 243 32.92 32.39 36.46 35.7
44 108.06 103.11 115.41 114.53 244 58.51 57.62 64.97 63.68
45 43.95 43.83 45.6 42.17 245 34.00 33.93 40.39 37.52
46 43.70 42.35 48.44 44.82 246 29.63 29.51 33.37 31.16
47 63.86 63.57 69.86 68.69 247 1587.8¢ 3113.90 523.4 522.83
48 30.73 30.64 35.57 32.66 248 187.29 893.97 136.79 135.26
49 23.70 23.34 24.97 23.61 249 454.13 848.79 434.58 432.99
50 133.19 129.16 140.09 139 250 94.12 122.74 79.15 76.84
51 72.59 67.25 77.98 77.3 251 70.13 69.64 76.43 76.35
52 149.82 144.35 161.95 159.3 252 109.62 108.05 113 110.69
53 81.31 81.26 90.78 88.63 253 77.57 77.41 83.76 80.03
54 59.82 60.17 67.66 64.35 254 48.77 48.01 53.91 53.48
55 72.94 71.87 83.63 82.56 255 86.82 85.46 91.8 88.88
56 71.75 68.10 89.6 88.89 256 50.30 50.03 55.1 51.22
57 128.65 126.12 143.27 141.55 257 36.55 36.09 41.93 39.5
58 44.72 44.69 48.96 47.06 258 52.61 51.80 61.28 58.4
59 54.80 54.68 65.09 61.95 259 37.32 37.17 46.55 45.34
60 134.30 130.77 149.35 148.83 260 30.51 30.05 38.62 36.79
61 46.57 46.90 49.83 49.62 261 48.03 47.07 55.96 55.77
62 39.71 39.96 43.55 41.04 262 29.85 29.75 37.18 35.64
63 70.62 69.01 81.23 81.11 263 36.17 35.28 44.24 42.79
64 37.64 38.21 44.21 43.67 264 765.44 | 2593.70 201.63 200.48
65 32.27 32.25 32.63 29.85 265 242.50 | 1016.10 128.78 125.52
66 172.73 170.31 184.48 182.42 266 89.38 97.77 76.52 74.72
67 90.56 90.63 107.79 105.62 267 113.47 111.80 124.85 121.63
68 74.34 76.14 80.5 77.26 268 70.16 70.28 78.62 75.46
69 74.26 72.24 77.58 74.4 269 40.34 39.25 45.39 44.26
70 86.29 86.46 95.94 93.93 270 95.43 95.04 103.58 103.31
71 78.25 76.02 85.15 84.04 271 58.69 58.75 61 60.78
72 68.89 69.01 82.43 81.95 272 35.79 35.61 40.01 37.46
73 66.79 67.44 74.78 71.24 273 65.89 65.27 70.17 68.47
74 86.83 88.03 94.86 90.98 274 43.12 42.57 45.91 42.29
75 50.81 51.41 60.75 56.98 275 31.97 31.69 37.84 36.17
76 40.09 39.66 45.83 43.28 276 51.49 50.85 55.04 54.43
T 96.43 94.17 104.53 104.16 277 34.80 34.47 42.84 40.68
78 43.70 43.18 44.63 44.33 278 24.65 24.58 28.55 24.8
79 35.59 35.01 38.76 38.03 279 540.89 428.74 551.91 549.27
80 62.27 62.50 65.79 65.67 280 436.53 | 1206.80 155.15 153.57
81 26.95 26.71 27.85 24.96 281 472.66 | 1530.60 347.78 346.74
82 18.31 18.38 23.55 22.97 282 131.94 251.03 115.53 112.13
83 231.27 279.15 210.61 208.07 283 156.59 156.46 164.33 160.55
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84 324.01 407.17 199.81 196.65 284 88.45 86.36 100.62 99.12
85 271.61 318.32 83.11 80.84 285 62.71 62.11 71.41 71.14
86 152.17 162.12 141.25 139.74 286 118.12 117.71 127.49 126.76
87 84.00 85.21 90.07 86.78 287 69.26 70.17 71.96 69.65
88 112.62 113.49 118.03 116.81 288 36.28 36.61 40.97 40.22
89 73.38 72.51 76.65 75.37 289 81.86 81.29 89.73 88.56
90 139.06 136.15 150.07 146.93 290 55.70 55.44 56.99 55.15
91 72.56 72.83 77.27 75.26 291 33.33 34.02 37.39 36
92 54.58 54.22 65.23 64.19 292 69.54 67.28 77.11 75.84
93 118.80 119.92 134.9 131.97 293 42.57 42.30 47.73 45.89
94 63.37 64.49 71.58 70.93 294 23.07 23.20 24.51 23.57
95 49.32 49.12 59.35 55.66 295 35.99 35.36 46.33 46.22
96 105.68 104.35 122.81 121.92 296 18.72 18.80 24.33 21.7
97 41.80 42.09 47.64 47.31 297 15.99 16.17 20.24 19.6
98 36.52 35.98 44.23 43.94 298 178.87 178.73 181.72 178.51
99 41.18 40.37 48.33 45.25 299 175.88 178.61 181.25 179.61
100 31.33 31.73 34.38 31.11 300 210.43 210.09 220.82 219.51
101 27.54 27.38 31.43 28.47 301 376.91 410.02 291.98 289
102 7.77 7.88 14.3 11.27 302 373.82 | 1336.30 112.39 109.41
103 267.45 267.65 278.11 274.27 303 853.49 | 1778.80 246.89 246.19
104 115.52 114.68 119.02 117.16 304 6978.70 12552.00 6188.55 6188.08
105 840.16 | 1450.60 639.06 635.91 305 115.10 115.47 126.24 125.54
106 778.31 1518.40 442.43 440.74 306 116.17 115.85 124.63 122.12
107 547.22 735.77 263.6 259.83 307 102.02 100.11 111.75 108.38
108 631.96 | 1570.30 101.23 101.23 308 60.70 59.25 65.35 63.31
109 71.90 76.03 83.39 79.46 309 91.67 90.59 102.46 101.79
110 153.31 148.83 165.58 163.3 310 66.04 64.84 72.57 69.71
111 80.27 78.04 84.86 83.48 311 39.96 39.55 47.96 44.34
112 53.21 54.22 60.71 58.48 312 95.79 94.32 104.32 103.45
113 150.50 150.41 152.15 150.95 313 60.66 60.89 65.87 62.38
114 60.23 60.64 65.91 65.27 314 31.67 31.59 37.73 36.88
115 37.33 36.89 46.31 43.65 315 69.98 69.01 81.24 77.89
116 112.28 111.70 121.57 118.83 316 47.42 47.67 52.35 48.92
117 47.52 47.42 52.52 49.35 317 21.65 21.30 24.95 22.85
118 35.27 35.02 43.27 41.87 318 1.51 1.69 4.59 2.68
119 102.65 102.59 109.26 108.26 319 118.41 119.74 126.7 123.14
120 49.88 49.70 58.92 57.54 320 258.16 221.37 228.22 227.96
121 31.79 32.03 32.33 31.01 321 317.89 350.14 301.5 299.46
122 62.29 61.95 69.23 65.52 322 550.76 | 2080.50 99.87 97.39
123 41.93 41.78 49.88 46.85 323 1078.9¢ 2094.20 370.44 367.5
124 25.12 25.06 31.24 30.09 324 4707.4Q 5967.20 1964.57 1963.65
125 185.20 186.99 194.13 191.7 325 100.01 118.53 88.81 88.72
126 373.72 300.85 240.87 237.81 326 123.56 122.08 129.23 128.67
127 136.21 170.00 137.69 134.31 327 82.89 83.67 90.71 87.63
128 401.80 812.35 344.22 340.61 328 95.77 95.63 103.53 99.65
129 196.91 236.89 173.03 170.64 329 69.64 68.79 71.15 69.6
130 473.21 1453.00 187.64 187.36 330 98.20 96.68 107.9 103.92
131 251.65 600.16 219.07 218.2 331 75.79 76.20 87.28 85.98
132 66.67 65.54 72.93 69.45 332 37.60 37.92 44.75 44.2
133 69.49 69.53 70.84 69.18 333 63.36 63.71 74.87 73.33
134 40.28 40.22 46.15 43.5 334 47.18 48.44 54.79 52.54
135 50.30 51.02 57.49 54.36 335 30.88 30.80 37.71 35.17
136 33.94 33.86 35 34.01 336 51.15 51.37 61.59 59.43
137 90.97 90.22 96.14 93.93 337 31.75 32.12 38.15 36.89
138 47.21 47.07 51.53 50.62 338 22.36 22.40 29.55 28.91
139 32.82 32.42 39.55 39.52 339 368.95 547.41 260.46 259.85
140 79.24 80.44 86.95 83.88 340 137.26 174.75 131.99 131.44
141 40.86 40.57 43.17 43.08 341 106.52 105.64 113.8 110.97
142 26.88 26.84 29.03 27.45 342 149.55 148.16 157.05 155.19
143 22.48 22.28 23.58 22.57 343 247.12 | 1275.30 137.28 136.83
144 15.51 15.61 22.41 21.6 344 106.36 104.82 117.25 114.45
145 13.13 13.01 13.32 10.68 345 118.19 114.65 130.22 129.51
146 247.94 364.91 128.94 125.28 346 102.67 116.92 109.41 106.19
147 1082.0¢ 4112.70 509.48 509.45 347 73.20 71.55 81.81 79.75
148 53.95 54.62 59.55 56.57 348 89.71 89.47 106.89 104.7
149 146.65 147.38 152.35 149.15 349 100.31 98.91 108.42 107.59
150 88.71 88.37 94.6 90.97 350 52.82 53.51 56.47 53.34
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151 40.48 40.81 45.22 41.32 351 99.15 97.46 110.26 108.15
152 111.03 112.96 116.56 116.08 352 59.99 60.22 64.37 62.09
153 70.75 71.73 76.1 74.02 353 36.05 35.61 42.65 40.96
154 36.23 35.77 39.37 36.08 354 76.15 76.78 90.39 87.51
155 94.70 92.97 104.99 102.44 355 46.63 46.05 46.99 46.7

156 50.17 48.97 52.44 48.63 356 31.77 31.64 37.01 34.63
157 35.97 35.62 41.86 38.07 357 68.08 67.93 73.02 69.57
158 78.07 77.83 88.39 84.53 358 96.80 95.31 99.3 97.5

159 44.82 44.85 48 47.73 359 86.84 86.98 96.27 93.66
160 29.83 29.61 36.27 34.52 360 71.38 71.44 75.7 74.48
161 55.77 56.06 63.6 62.31 361 66.34 66.56 67.84 65.41
162 36.90 36.63 39.77 39.23 362 98.63 97.19 103.57 102.46
163 24.07 24.22 28.37 27.83 363 71.35 73.45 80.45 77.25
164 861.97 | 2765.10 166.02 162.79 364 75.64 74.81 87.07 83.89
165 1264.50 5293.10 701.72 699.62 365 76.09 76.13 84.59 80.78
166 155.47 158.75 165.96 162.19 366 85.74 83.88 97.16 95.38
167 145.27 141.29 164.21 160.25 367 52.71 52.93 64.22 62.39
168 44.40 44.60 51.5 49.86 368 66.44 65.55 69.29 66.89
169 100.61 100.28 108.6 107.11 369 65.74 65.13 73.43 70.06
170 94.60 97.14 101.92 101.01 370 43.13 43.03 45.32 45.19
171 38.48 39.24 44.85 43.07 371 222.86 221.87 235.35 234.6
172 92.99 90.42 105.71 104.64 372 56.79 56.52 65.38 61.6

173 66.36 66.22 80.48 78.64 373 63.22 62.76 69.45 65.66
174 36.06 35.94 41.48 39.75 374 55.14 55.60 62.38 60.57
175 75.59 74.22 79.57 78.54 375 56.66 56.45 60.7 57.46
176 57.81 55.21 72.76 72.22 376 99.11 104.78 111.95 108.23
177 31.27 31.05 32.86 31.18 377 52.11 52.17 60.14 57.45
178 63.52 63.51 67.77 65.74 378 63.84 62.58 69.73 68.24
179 45.40 44.78 53.1 51.8 379 100.83 100.94 110.34 108.72
180 27.29 27.21 28.34 25.6 380 59.02 57.92 62.6 60.84
181 6684.00 8097.40 4698.2 4696.43 381 69.90 69.20 76.87 74.15
182 1771.5¢ 5466.70 167.05 165.3 382 83.84 82.03 90.61 88.75
183 4186.00 3743.10 3190.17 3187 383 58.44 58.10 66.36 62.55
184 720.51 | 3116.10 298.13 294.87 384 57.98 57.71 68.78 67.36
185 102.88 101.09 112 108.99 385 36.15 35.81 44.47 43.12
186 44.20 44.10 48.02 44.87 386 73.60 70.94 80.8 77.21
187 104.59 104.82 112.91 110.91 387 52.67 52.83 58.03 55.84
188 67.71 66.84 75.58 73.35 388 62.91 63.29 66.45 63.45
189 39.77 39.96 46.78 44.26 389 90.59 89.39 104.61 104.11
190 93.80 92.42 105.41 105.02 390 57.30 57.75 63.86 62.04
191 63.04 62.31 70.42 69.44 391 51.87 52.42 56.09 55.79
192 31.77 31.63 35.13 32.67 392 69.92 69.97 78.67 76.01
193 73.53 73.82 80.27 79.05 393 38.77 38.61 42.81 39.99
194 50.05 49.01 59.25 56.18 394 55.82 54.60 59.48 55.8

195 29.23 29.17 31.49 30.42 395 108.04 105.70 121.66 119.02
196 69.54 70.17 72.32 72.16 396 37.42 37.72 45.1 42.34
197 38.88 38.60 44 42.82 397 62.71 62.91 67.85 64.43
198 31.46 31.51 38.24 36.01 398 75.36 72.66 79.83 77.96
199 5899.20 5570.60 3862.82 3858.94 399 34.17 34.21 37.75 35.91
200 63.97 70.77 63.39 60.63 400 7.03 6.61 8.52 5.3
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Appendix L

Trials of Learning Algorithm With

and Without Heuristic Weight of
Intensity for 2D dMRI dataset

L.1 Learning Algorithm With and Without Heuris-
tic Weight of Intensity for 2D dMRI dataset

MSEs of Images Registered using Learning Algorithm With and Without Heuristic

Weight of Intensity (experiment described in section 5.3)

Tri LK Degraded Without With
rial no.

LK heuristic heuristic
weight of weight of
intensity intensity

I 93.55 145.52 90.41 96.30
2 206.17 289.01 229.66 209.79
3 136.65 193.89 157.01 133.95
4 100.84 143.45 95.99 101.52
) 90.89 133.58 78.79 86.70
6 153.87 223.29 157.86 157.92
7 96.30 139.58 85.59 96.18
8 151.23 221.61 145.68 152.47
9 146.99 209.90 140.21 144.21
10 106.67 144.48 123.00 103.23
11 100.85 128.76 98.19 95.83
12 115.93 166.25 158.84 115.43
13 107.85 141.88 96.28 99.48
14 90.83 128.97 136.74 93.94
15 109.11 158.78 104.63 95.85
16 39.66 53.29 62.11 40.01
17 120.54 153.63 137.63 121.52

150




18 154.17 233.98 146.97 149.98
19 128.31 193.54 123.69 123.02
20 82.14 113.10 94.75 78.11
21 82.14 113.10 114.39 80.71
22 101.25 147.03 93.56 101.01
23 101.60 134.88 116.81 99.75
24 184.06 273.92 214.42 188.76
25 82.14 113.10 119.53 74.32
26 101.25 147.03 104.53 92.90
27 112.29 171.59 103.42 112.77
28 112.78 165.85 119.94 102.01
29 101.75 145.75 149.21 98.19
30 92.25 125.34 102.58 93.83
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Appendix M

Trials of Learning Algorithm with

One Iteration and Two Iterations for

2D dMRI dataset

M.1 Learning Algorithm with One Iteration and Two
Iterations for 2D dMRI dataset

MSEs of Images Registered Using Learning Algorithm with One Iteration and Two

Iterations (experiment described in section 5.4.1)

Tri LK Degraded With one With two
rial no.
LK iteration iterations

1 93.55 145.52 96.30 90.017
2 206.17 289.01 209.79 212.05
3 136.65 193.89 133.95 145.2
4 100.84 143.45 101.52 100.62
) 90.89 133.58 86.70 91.87
6 153.87 223.29 157.92 158.22
7 96.30 139.58 96.18 96.39
8 151.23 221.61 152.47 151.65
9 146.99 209.90 144.21 144.68
10 106.67 144.48 103.23 103.67
11 100.85 128.76 95.83 90.54
12 115.93 166.25 115.43 117.14
13 107.85 141.88 99.48 98.42
14 90.83 128.97 93.94 93.59
15 109.11 158.78 95.85 95.91
16 39.66 53.29 40.01 42.86
17 120.54 153.63 121.52 115.84
18 154.17 233.98 149.98 150.13
19 128.31 193.54 123.02 124.23
20 82.14 113.10 78.11 76.835
21 82.14 113.10 80.71 81.412
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22 101.25 147.03 101.01 101.39
23 101.60 134.88 99.75 92.77
24 184.06 273.92 188.76 188.47
25 82.14 113.10 74.32 76.26
26 101.25 147.03 92.90 91.34
27 112.29 171.59 112.77 113.23
28 112.78 165.85 102.01 103.30
29 101.75 145.75 98.19 99.19
30 92.25 125.34 93.83 102.32
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Appendix N

Trials of Learning Algorithm with
Iteration for 3D Gated CT Dataset

N.1 Comparison of Learning Algorithm With and
Without Iteration

MSEs of Registered Images Using Learning Algorithm With and Without Iteration

Trial LK Degraded| Without With Trial LK Degraded| Without With
no. LK itera- itera- no. LK itera- itera-
tion tion tion tion

1 51.778 51.87 54.526 53.317 201 401.28 636.92 320.46 318.71
2 32.894 33.055 33.792 33.808 202 79.626 78.25 80.57 80.497
3 42.785 42.226 42.933 43.072 203 42.35 42.151 42.983 42.983
4 88.983 89.909 95.819 96.8 204 127.95 127.24 128.95 128.97
5 40.676 40.997 41.312 41.283 205 67.506 67.466 67.399 68.024
6 55.56 54.098 56.808 56.736 206 42.666 42.137 44.845 44.845
7 85.23 82.255 90.076 89.854 207 87.59 87.066 90.728 90.728
8 82.606 80.914 87.436 85.503 208 53.625 53.492 54.657 54.87
9 42.315 41.814 44.939 44.948 209 32.867 32.446 34.22 34.22
10 60.793 61.131 61.859 61.859 210 73.902 73.608 77.683 77.683
11 75.714 74.699 77.144 77.668 211 53.998 53.951 56.974 57.028
12 89.72 87.704 95.863 95.68 212 35.115 33.792 36.644 36.644
13 39.078 39.437 41.385 41.385 213 56.942 56.87 59.418 59.418
14 51.789 51.867 55.98 56.07 214 41.907 42.677 44.533 44.528
15 93.042 93.628 99.962 100.06 215 24.88 24.863 25.287 25.287
16 102.3 100.55 109.22 109.37 216 513.3 886.18 160.78 160.71
17 41.534 41.884 44.716 44.728 217 857.31 1238.2 300.21 300.21
18 59.787 58.925 62.159 62.299 218 86.586 87.005 83.879 83.879
19 72.637 72.918 81.005 81.024 219 48.975 48.637 54.937 54.937
20 88.52 86.825 93.986 93.61 220 111.92 112.94 114.72 114.72
21 43.214 43.223 43.844 43.934 221 54.803 54.638 55.529 55.529
22 65.407 64.216 68.56 68.685 222 45.177 44.656 47.107 47.091
23 30.689 30.611 32.254 31.679 223 92.457 91.414 101.19 101.19
24 33.598 34.01 33.628 34.819 224 50.168 49.567 50.671 51.556
25 97.503 95.536 101.57 101.63 225 35.089 35.631 37.332 37.332
26 60.106 59.218 61.279 61.5 226 82.421 81.16 88.609 88.609
27 65.916 64.436 67.97 67.97 227 38.401 37.712 39.274 39.121
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28 93.74 89.671 102.15 101.92 228 36.336 36.233 37.205 37.146
29 66.026 65.098 71.196 70.907 229 66.537 65.567 73.083 73.409
30 59.38 57.409 62.861 63.318 230 41.274 41.356 42.965 42.965
31 110.41 108.75 111.65 113.38 231 28.986 29.269 29.439 29.439
32 57.572 57.206 60.47 60.47 232 4144 5467.1 1775.4 1710

33 44.969 44.576 47.829 47.803 233 316.89 336.4 293.17 293.17
34 13.769 13.999 13.966 13.966 234 102.93 113.99 83.773 83.664
35 129.92 129.4 137.65 136.06 235 58.416 58.452 60.006 60.263
36 70.236 70.781 77.462 77.446 236 94.168 92.204 101.51 101.51
37 76.858 74.395 81.42 80.888 237 45.113 44.811 46.411 46.411
38 140.83 134.86 152.58 153.87 238 87.759 85.788 87.779 87.779
39 74.72 73.988 80.343 80.313 239 43.145 43.307 42.957 42.978
40 56.159 56.121 58.201 58.352 240 52.81 52.586 55.115 55.115
41 126.67 124.03 135.9 136.37 241 63.57 64.053 64.174 64.066
42 79.035 77.249 80.825 80.825 242 41.186 40.724 42.825 42.825
43 66.167 63.646 77.04 77.569 243 32.92 32.385 36.27 36.27
44 108.06 103.11 111.94 112.9 244 58.508 57.617 61.468 61.468
45 43.948 43.834 44.438 44.372 245 34.004 33.926 34.599 34.528
46 43.699 42.354 46.161 45.749 246 29.628 29.513 31.561 31.561
47 63.858 63.574 67.78 67.881 247 1587.8 3113.9 523.08 596.01
48 30.728 30.643 31.659 31.774 248 187.29 893.97 135.06 139.01
49 23.701 23.341 24.495 24.488 249 454.13 848.79 429.95 429.95
50 133.19 129.16 139.61 140.79 250 94.115 122.74 76.836 76.836
51 72.593 67.252 76.813 76.813 251 70.128 69.641 71.807 71.995
52 149.82 144.35 155.32 155.72 252 109.62 108.05 112.91 112.91
53 81.312 81.256 85.1 85.119 253 77.568 77.41 78.727 78.727
54 59.822 60.174 62.688 62.688 254 48.767 48.009 51.17 51.17
55 72.942 71.873 76.838 77.234 255 86.819 85.458 91.567 91.567
56 71.748 68.099 82.613 82.561 256 50.297 50.034 52.255 52.318
57 128.65 126.12 136.36 136.37 257 36.546 36.09 36.922 36.892
58 44.719 44.693 47.914 47.918 258 52.606 51.802 54.832 54.963
59 54.799 54.679 58.381 58.498 259 37.319 37.166 39.659 39.659
60 134.3 130.77 145.64 145.45 260 30.505 30.052 31.736 31.736
61 46.571 46.901 49.312 49.312 261 48.028 47.069 49.694 49.617
62 39.707 39.956 41.374 41.374 262 29.85 29.746 31.117 31.117
63 70.622 69.01 74.957 72.712 263 36.166 35.275 38.628 38.628
64 37.642 38.209 38.372 38.366 264 765.44 2593.7 197.75 196.66
65 32.269 32.253 32.609 32.6 265 242.5 1016.1 125.85 125.82
66 172.73 170.31 180 177.23 266 89.381 97.771 75.626 75.626
67 90.56 90.627 102.17 90.393 267 113.47 111.8 120.27 120.27
68 74.335 76.137 78.777 79.256 268 70.159 70.28 72.569 72.569
69 74.258 72.237 77.134 77.134 269 40.335 39.249 43.468 43.468
70 86.289 86.464 94.101 94.101 270 95.427 95.035 97.704 97.704
71 78.252 76.021 84.425 84.402 271 58.694 58.749 60.503 60.468
72 68.885 69.012 79.037 79.037 272 35.789 35.614 37.356 37.356
73 66.792 67.442 71.853 71.716 273 65.888 65.269 68.285 68.285
74 86.829 88.025 92.193 91.856 274 43.119 42.574 44.843 44.762
75 50.806 51.41 54.539 54.649 275 31.965 31.685 33.422 33.422
76 40.086 39.657 42.891 42.891 276 51.494 50.85 52.83 52.374
T 96.432 94.166 102.54 102.66 277 34.802 34.469 36.132 36.128
78 43.701 43.177 44.287 44.287 278 24.646 24.583 25.059 25.059
79 35.59 35.014 37.231 37.348 279 540.89 428.74 546.74 543.7
80 62.271 62.499 64.12 63.885 280 436.53 1206.8 155.06 155.06
81 26.945 26.708 27.652 27.597 281 472.66 1530.6 343.54 343.44
82 18.308 18.379 18.629 18.564 282 131.94 251.03 111.49 111.17
83 231.27 279.15 210.56 208.25 283 156.59 156.46 158.68 158.68
84 324.01 407.17 195.53 195.21 284 88.446 86.362 96.044 96.044
85 271.61 318.32 80.249 80.298 285 62.711 62.113 65.259 65.259
86 152.17 162.12 139.51 140.76 286 118.12 117.71 121.17 121.17
87 83.999 85.209 85.499 85.587 287 69.258 70.173 70.891 70.891
88 112.62 113.49 115.79 115.79 288 36.277 36.605 39.615 39.708
89 73.381 72.51 75.922 76.066 289 81.855 81.288 84.193 84.282
90 139.06 136.15 146.32 146.32 290 55.696 55.443 56.569 56.569
91 72.555 72.83 76.116 76.116 291 33.334 34.016 34.655 34.705
92 54.58 54.216 59.046 58.826 292 69.541 67.283 75.007 75.007
93 118.8 119.92 130.23 130.2 293 42.574 42.303 42.593 42.764
94 63.37 64.494 65.652 65.147 294 23.073 23.201 23.775 23.761
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95 49.323 49.124 54.01 54.01 295 35.99 35.358 40.784 40.791
96 105.68 104.35 117.16 117.76 296 18.718 18.799 18.848 18.834
97 41.799 42.092 43.214 43.214 297 15.99 16.169 16.513 16.464
98 36.517 35.98 39.262 39.262 298 178.87 178.73 179.95 180.06
99 41.183 40.373 43.506 43.506 299 175.88 178.61 180.75 180.71
100 31.331 31.726 32.126 32.117 300 210.43 210.09 216.44 215.92
101 27.543 27.38 27.709 28.001 301 376.91 410.02 291.81 291.85
102 7.7697 7.8756 8.1933 7.8808 302 373.82 1336.3 111.96 111.75
103 267.45 267.65 277.73 277.73 303 853.49 1778.8 245.98 245.98
104 115.52 114.68 115.52 115.49 304 6978.7 12552 6185.4 6185.1
105 840.16 1450.6 636.03 636.91 305 115.1 115.47 121.53 121.52
106 778.31 1518.4 436.1 399.8 306 116.17 115.85 118.64 118.64
107 547.22 735.77 259.19 259.19 307 102.02 100.11 108.26 108.33
108 631.96 1570.3 94.351 94.036 308 60.696 59.251 65.012 65.012
109 71.9 76.031 79.286 82.302 309 91.67 90.591 100.26 99.781
110 153.31 148.83 159.7 160.05 310 66.039 64.844 68.076 68.076
111 80.265 78.035 81.58 81.58 311 39.961 39.553 42.462 42.462
112 53.209 54.216 56.89 56.897 312 95.788 94.322 102.3 102.29
113 150.5 150.41 150.9 150.67 313 60.657 60.892 62.378 62.58
114 60.227 60.638 61.468 61.452 314 31.674 31.59 32.001 32.001
115 37.332 36.893 39.572 39.572 315 69.983 69.013 77.071 77.071
116 112.28 111.7 117.83 117.87 316 47.417 47.673 48.597 48.716
117 47.519 47.42 49.161 48.39 317 21.646 21.304 22.633 22.633
118 35.273 35.024 37.71 37.71 318 1.5052 1.6892 1.7054 1.7054
119 102.65 102.59 108.61 108.31 319 118.41 119.74 121.14 120.94
120 49.88 49.701 52.749 52.749 320 258.16 221.37 225.82 225.39
121 31.794 32.025 32.3 32.285 321 317.89 350.14 298.26 298.56
122 62.285 61.95 65.653 65.442 322 550.76 2080.5 97.297 97.404
123 41.928 41.776 45.127 45.152 323 1078.9 2094.2 365.68 382.57
124 25.117 25.062 27.277 27.277 324 4707.4 5967.2 1960.6 1885.4
125 185.2 186.99 190.78 191 325 100.01 118.53 84.251 84.42
126 373.72 300.85 238.63 238.67 326 123.56 122.08 125.79 125.79
127 136.21 170 133.48 132.7 327 82.887 83.666 87.918 87.918
128 401.8 812.35 337.83 337.55 328 95.767 95.633 100.19 100.3
129 196.91 236.89 168.25 168.25 329 69.635 68.79 70.68 70.999
130 473.21 1453 181.01 180.43 330 98.198 96.683 105.02 106.21
131 251.65 600.16 218.38 218.38 331 75.786 76.198 80.501 80.501
132 66.674 65.541 69.347 69.347 332 37.596 37.92 39.277 39.277
133 69.493 69.532 70.07 70.065 333 63.359 63.708 69.768 70.086
134 40.284 40.224 42.334 42.298 334 47.177 48.436 49.429 49.429
135 50.302 51.023 52.674 52.683 335 30.88 30.8 32.411 32.411
136 33.938 33.864 33.969 33.969 336 51.149 51.369 55.69 56.44
137 90.971 90.216 90.697 90.697 337 31.752 32.117 32.762 32.829
138 47.205 47.065 48.741 48.598 338 22.356 22.396 22.696 22.723
139 32.822 32.42 33.259 33.212 339 368.95 547.41 259.68 259.48
140 79.242 80.443 84.804 84.804 340 137.26 174.75 129.22 128.42
141 40.862 40.566 42.736 42.736 341 106.52 105.64 110.36 109.79
142 26.879 26.836 27.491 27.499 342 149.55 148.16 155.24 155.24
143 22.476 22.278 22.996 22.996 343 247.12 1275.3 137.02 137.02
144 15.505 15.607 15.763 16.014 344 106.36 104.82 110.43 110.43
145 13.13 13.009 13.205 13.189 345 118.19 114.65 125.14 126.22
146 247.94 364.91 128.14 127.31 346 102.67 116.92 108.37 108.37
147 1082 4112.7 509.39 509.91 347 73.201 71.552 80.77 80.766
148 53.95 54.624 58.039 58.144 348 89.705 89.469 101.96 102.06
149 146.65 147.38 152.27 152.4 349 100.31 98.914 105.75 105.75
150 88.707 88.374 90.095 90.095 350 52.815 53.506 55.942 55.942
151 40.48 40.809 41.598 41.598 351 99.145 97.459 107.38 107.38
152 111.03 112.96 114.84 114.84 352 59.987 60.224 63.367 63.377
153 70.748 71.729 74.741 74.741 353 36.045 35.614 37.057 37.057
154 36.229 35.773 38.731 38.764 354 76.149 76.784 83.879 83.922
155 94.701 92.974 102.41 102.36 355 46.631 46.051 46.955 46.955
156 50.168 48.967 52.385 52.257 356 31.772 31.636 32.458 32.458
157 35.974 35.617 37.642 37.575 357 68.078 67.932 68.274 68.253
158 78.067 77.834 85.044 85.044 358 96.801 95.306 97.524 97.141
159 44.822 44.851 45.841 45.841 359 86.839 86.978 90.372 90.372
160 29.833 29.609 31.057 31.057 360 71.382 71.439 73.635 73.606
161 55.772 56.056 57.715 57.856 361 66.34 66.557 67.652 67.652
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162 36.899 36.633 37.925 37.948 362 98.628 97.186 102.92 102.77
163 24.07 24.22 24.773 24.785 363 71.346 73.449 74.856 74.856
164 861.97 2765.1 162.89 162.89 364 75.637 74.806 82.085 82.085
165 1264.5 5293.1 699.33 699.37 365 76.089 76.127 79.105 78.918
166 155.47 158.75 160.09 160.09 366 85.739 83.883 92.789 92.789
167 145.27 141.29 157.33 157.26 367 52.708 52.926 58.437 58.437
168 44.396 44.604 47.107 47.107 368 66.438 65.549 69.043 69.043
169 100.61 100.28 107.33 107.33 369 65.741 65.134 70.593 70.573
170 94.604 97.139 101.06 101.06 370 43.127 43.03 43.565 43.565
171 38.479 39.235 40.793 40.793 371 222.86 221.87 231.98 231.98
172 92.985 90.422 103.41 103.41 372 56.79 56.517 59.207 59.024
173 66.358 66.216 78.6 78.814 373 63.215 62.756 67.486 67.039
174 36.061 35.943 37.626 37.682 374 55.138 55.599 58.188 58.179
175 75.589 74.223 78.311 78.375 375 56.664 56.454 60.523 60.523
176 57.812 55.205 68.013 68.021 376 99.107 104.78 110.86 110.85
177 31.274 31.053 32.471 32.471 377 52.106 52.166 54.302 54.455
178 63.516 63.512 67.527 67.465 378 63.838 62.579 68.373 68.083
179 45.402 44.779 51.092 51.092 379 100.83 100.94 104.53 104.39
180 27.294 27.208 27.804 27.804 380 59.018 57.924 60.23 60.23
181 6684 8097.4 4691.9 4691.9 381 69.895 69.203 72.167 72.042
182 1771.5 5466.7 161.12 161.03 382 83.843 82.03 90.243 90.243
183 4186 3743.1 3187.4 3225.1 383 58.438 58.1 61.217 61.217
184 720.51 3116.1 296.95 297.25 384 57.98 57.713 65.283 65.283
185 102.88 101.09 108.99 109.01 385 36.147 35.806 37.873 37.873
186 44.197 44.099 45.106 44.967 386 73.603 70.936 78.77 78.858
187 104.59 104.82 107.81 108.11 387 52.672 52.833 55.387 55.387
188 67.709 66.839 72.729 72.658 388 62.906 63.291 65.65 66.699
189 39.774 39.957 40.117 40.117 389 90.588 89.391 97.861 97.861
190 93.8 92.422 99.032 99.315 390 57.303 57.746 60.831 60.828
191 63.035 62.31 63.76 63.753 391 51.87 52.418 55.501 55.769
192 31.77 31.627 32.714 32.714 392 69.922 69.97 73.645 73.588
193 73.527 73.815 78.236 78.236 393 38.767 38.608 39.255 43.153
194 50.052 49.013 53.044 53.044 394 55.824 54.598 57.183 57.443
195 29.233 29.168 30.02 30.02 395 108.04 105.7 116.39 115.8
196 69.537 70.167 71.399 71.399 396 37.423 37.72 39.251 39.263
197 38.88 38.597 40.361 40.407 397 62.714 62.907 66.066 65.987
198 31.46 31.514 31.898 31.924 398 75.359 72.657 76.09 80.256
199 5899.2 5570.6 3860 3859.1 399 34.171 34.21 34.696 36.083
200 63.967 70.766 61.875 61.852 400 7.0318 6.6065 7.4213 7.4213
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Appendix O

Learning Algorithm With MPI-Sintel
Dataset

0.1

Comparing Learning Algorithm with Different
Optical Flow Methods

Average Angular Errors and Average Endpoint Erros of Learning Algorithm and
Other Optical Methods with MPI-Sintel Dataset; the learning set for each pair was

consisted of immediately preceeding three frames of the source frame.

Average Angular Error (AAE)

Average Endpoint Error (AEPE)

Trial#| Sequencd Sourcq Targef™ o BA LDOF DF LA HS BA LDOF DF LA

1 alley_1 | 28 30 2.6752 | 2.6752 | 2.2580 | 1.9797 | 2.1551 | 0.3138 | 0.3138 | 0.2829 | 0.2403 | 0.2420
2 29 31 2.6967 | 2.6967 | 2.1157 | 1.9553 | 2.1157 | 0.2522 | 0.2522 | 0.2180 | 0.1926 | 0.1968
3 30 32 3.0423 | 3.0423 | 2.4501 | 2.3313 | 2.5545 | 0.2229 | 0.2229 | 0.1870 | 0.1710 | 0.1817
4 31 33 3.2033 | 3.2033 | 3.0219 | 2.8566 | 2.9540 | 0.1860 | 0.1860 | 0.1674 | 0.1495 | 0.1604
5 32 34 2.9226 | 2.9226 | 2.2239 | 1.9637 | 2.3967 | 0.1595 | 0.1595 | 0.1312 | 0.1123 | 0.1316
6 33 35 2.3563 | 2.3563 | 1.6822 | 1.4903 | 1.9035 | 0.1525 | 0.1525 | 0.1230 | 0.1067 | 0.1251
7 34 36 1.5247 | 1.5247 | 1.0191 | 0.8864 | 1.1205 | 0.1288 | 0.1288 | 0.1035 | 0.0903 | 0.1026
8 35 37 1.3135 | 1.3135 | 0.8622 | 0.7480 | 0.9945 | 0.1196 | 0.1196 | 0.0980 | 0.0850 | 0.1008
9 36 38 1.2493 | 1.2493 | 0.8515 | 0.7104 | 0.9264 | 0.1212 | 0.1212 | 0.1019 | 0.0869 | 0.0992
10 ambush |7 15 17 17.8010| 8.1898 | 13.1910| 6.3565 | 8.8675 | 1.0952 | 0.4340 | 0.4606 | 0.4137 | 0.4058
11 16 18 15.8500| 7.8548 | 6.6756 | 4.8916 | 7.2717 | 1.0262 | 0.3187 | 0.2477 | 0.3215 | 0.2950
12 17 19 16.5070| 8.2334 | 7.0972 | 5.3116 | 7.5000 | 1.0526 | 0.3307 | 0.2509 | 0.3426 | 0.3215
13 18 20 16.4460| 8.2076 | 7.5605 | 5.3001 | 7.6188 | 1.0233 | 0.3128 | 0.2551 | 0.2745 | 0.3302
14 19 21 17.2860| 7.0973 | 6.7353 | 3.9372 | 6.4951 | 1.0034 | 0.2687 | 0.2302 | 0.2187 | 0.2862
15 20 22 18.3830| 6.6956 | 6.4405 | 4.3420 | 5.6891 | 0.9998 | 0.2538 | 0.2389 | 0.1840 | 0.2358
16 21 23 17.6850| 7.0990 | 7.6519 | 4.9099 | 6.0014 | 0.8784 | 0.3033 | 0.2597 | 0.2421 | 0.2284
17 22 24 16.1080| 7.3990 | 6.3084 | 4.5098 | 6.8539 | 0.7893 | 0.3152 | 0.2868 | 0.2696 | 0.3470
18 23 25 18.4790| 7.9696 | 10.2990| 5.2364 | 7.5990 | 0.6331 | 0.2502 | 0.3038 | 0.1856 | 0.2651
19 26 28 29.1760| 10.1800| 14.9190| 8.6563 | 11.0080| 1.6739 | 0.5239 | 0.6286 | 0.4181 | 0.4771
20 27 29 29.3060| 9.6347 | 20.3780| 9.3846 | 10.8110| 1.6797 | 0.4938 | 0.7798 | 0.4182 | 0.4397
21 28 30 31.8950| 10.8500| 30.1010| 9.7019 | 12.5500| 2.1071 | 0.6151 | 1.4242 | 0.5223 | 0.5921
22 34 36 31.2580| 11.9040| 43.0980| 9.3270 | 11.3320| 2.3457 | 1.0699 | 5.3070 | 0.5661 | 0.5368
23 35 37 | 29.6470| 11.0740| 43.2010| 8.5383 | 9.7787 | 2.0817 | 0.9781 | 5.2006 | 0.5293 | 0.4832
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24 36 38 37.4730( 27.5020( 46.9570| 13.3570| 14.8270| 4.8441 5.4609 7.3664 1.5868 1.2334
25 bamboo |1 28 30 7.8433 4.1872 4.1808 4.2473 4.2195 1.6543 0.8295 0.8668 0.8478 0.8848
26 29 31 6.2366 4.2737 3.5729 4.1994 4.0295 1.7181 0.8393 0.8141 0.8401 0.8268
27 30 32 6.3258 3.9054 3.2694 3.8130 3.6109 1.1716 0.7949 0.7282 0.7778 0.7805
28 31 33 7.3774 4.8140 3.5273 4.2727 4.5941 1.3841 0.9902 0.8386 0.9307 0.9731
29 32 34 7.0744 5.3139 4.2774 4.5239 4.6683 1.4102 1.0087 0.9057 0.9218 0.9564
30 33 35 7.2357 5.0702 3.8350 4.5168 4.7110 1.4709 0.9442 0.8253 0.8986 0.9250
31 34 36 7.9318 4.8660 4.4591 4.7085 4.9161 1.3899 0.8671 0.8363 0.8648 0.8848
32 35 37 7.2389 4.4036 3.9589 4.2420 4.2096 1.3782 0.7934 0.7426 0.7923 0.8030
33 36 38 7.0075 4.3896 3.6807 4.1169 4.1713 1.3959 0.7940 0.7337 0.7681 0.7588
34 37 39 7.9344 5.1683 3.9999 4.4287 4.7247 1.6771 0.9125 0.8621 0.8370 0.8932
35 bamboo |2 3 5 10.8430| 6.5172 6.2946 7.3416 5.8664 1.2506 0.7819 0.8008 0.8760 0.7629
36 4 6 9.5300 7.1071 6.6859 6.9904 6.7264 0.9579 0.7162 0.6734 0.7356 0.7085
37 5 7 8.3547 5.2857 4.9035 4.9991 4.7846 0.5171 0.2939 0.2795 0.2799 0.2801
38 6 8 8.7102 5.0999 4.5279 4.8583 4.5194 0.5488 0.2860 0.2559 0.2653 0.2737
39 market _P 28 30 14.2190| 9.3888 8.2933 7.9794 7.5666 1.8444 1.6468 1.5630 1.5206 1.1659
40 29 31 11.9100| 7.7938 7.0036 6.6312 6.9180 1.3002 0.9500 0.9902 0.7728 0.8306
41 30 32 11.5030| 7.2886 6.5801 6.1274 6.7413 1.1134 0.8757 0.8363 0.7245 0.7567
42 36 38 9.8715 6.1863 5.2970 5.5750 5.6363 0.6697 0.6017 0.5881 0.6024 0.5066
43 37 39 8.5430 5.4319 4.6965 4.7717 5.1845 0.3275 0.2096 0.1841 0.1852 0.1985
44 38 40 8.0559 5.2292 4.3968 4.4877 4.6894 0.2889 0.1891 0.1633 0.1683 0.1737
45 39 41 8.0153 5.0060 4.3103 4.3715 4.5289 0.2924 0.1872 0.1635 0.1678 0.1736
46 40 42 8.3753 5.1725 4.3928 4.2750 4.5511 0.3228 0.1971 0.1677 0.1658 0.1750
47 41 43 8.3358 5.2234 4.3082 4.3701 4.7134 0.3409 0.2109 0.1795 0.1830 0.1926
48 42 44 8.3632 5.6311 4.6347 4.6604 5.0775 0.3944 0.2479 0.2222 0.2133 0.2216
49 43 45 8.8124 5.5541 4.6574 4.7823 5.0473 0.4454 0.2570 0.2290 0.2295 0.2311
50 44 46 9.0352 5.7680 4.7425 4.8479 5.1216 0.4882 0.2887 0.2400 0.2418 0.2470
51 45 47 8.7450 5.6535 4.6116 4.6810 5.0043 0.4230 0.2600 0.2124 0.2168 0.2301
52 46 48 9.4195 5.7510 4.9463 5.0537 5.3232 0.4756 0.2515 0.2326 0.2284 0.2369
53 47 49 9.5033 6.0625 5.4353 5.5531 5.7413 0.4781 0.2727 0.2530 0.2582 0.2673
54 market _ 10 12 23.8820( 16.5870| 8.6951 17.6920| 9.3539 29.1520( 26.4410( 20.9150| 20.9150| 17.8530
55 11 13 24.7320( 10.7990( 10.1160| 13.4720( 11.2890| 27.9890| 21.0980| 22.2990| 22.2990| 21.2110
56 12 14 27.3700( 11.2150( 13.4240| 9.1220 12.5390| 30.4530| 20.2730| 23.0670| 23.0670| 20.3490
57 13 15 16.3550| 12.7760| 14.1710| 9.4032 8.1656 19.6990| 17.8500| 20.3880| 20.3880| 12.4460
58 14 16 11.6270| 11.0610| 10.8530| 11.1990| 7.0946 14.0640| 14.0680| 15.6610| 15.6610| 10.3560
59 15 17 17.5760| 9.3579 7.6542 8.0173 7.0487 15.1570 | 9.0872 9.5359 9.5359 7.2250
60 16 18 15.7920| 6.6652 6.1895 5.3838 4.8939 12.0320 | 7.1127 7.2171 7.2171 5.0453
61 17 19 16.9510| 6.0423 6.7421 4.9935 4.8455 13.4620 | 6.3187 7.3686 7.3686 4.4070
62 18 20 17.8960| 6.1430 5.9627 8.3143 4.7285 14.2680| 6.3002 6.2863 6.2863 4.5158
63 19 21 10.8170| 6.3045 5.0586 4.4805 4.4007 9.1580 5.6627 4.8660 4.8660 4.2750
64 20 22 14.4310| 5.9356 4.7298 4.9381 4.3999 10.1660| 5.2550 4.2027 4.2027 4.1513
65 21 23 7.8090 6.5890 4.8954 4.8082 4.3362 6.2336 5.2899 3.6274 3.6274 3.2796
66 22 24 8.0475 6.6058 4.8571 4.7549 4.1452 5.5721 4.7069 3.3537 3.3537 3.0976
67 23 25 11.9130| 8.1465 5.9118 6.8977 5.2055 6.7209 5.5283 4.0074 4.0074 3.5354
68 24 26 10.5120| 9.4274 6.1424 6.2904 6.6398 6.3551 5.5391 3.3698 3.3698 3.5581
69 25 27 22.6660| 14.9790| 8.4009 14.2370| 11.2570| 15.4320| 10.4520| 6.4898 6.4898 7.9621
70 shaman_|2 3 5 3.7132 2.5297 2.3782 2.4205 2.3663 0.3029 0.2367 0.2260 0.2261 0.2135
71 4 6 3.7371 2.4645 2.4500 2.4156 2.3867 0.2489 0.1853 0.1967 0.1887 0.1806
72 5 7 3.6413 2.5798 2.4513 2.4835 2.4657 0.2202 0.1716 0.1673 0.1621 0.1607
73 6 8 4.0927 3.1359 2.8979 2.8751 2.9860 0.2613 0.2137 0.2029 0.1883 0.1944
74 7 9 4.9502 4.0923 3.9288 3.8127 4.1502 0.3826 0.3400 0.3281 0.3108 0.3253
75 38 40 8.3602 5.4474 5.9433 6.7021 6.0057 0.4544 0.3249 0.3246 0.3294 0.3198
76 39 41 8.7507 5.6011 5.9636 6.6802 6.1899 0.4555 0.3102 0.3053 0.3244 0.3181
T 40 42 9.6258 5.9717 6.3237 7.1598 6.8400 0.4429 0.2946 0.2870 0.3038 0.3078
78 43 45 9.1029 6.5714 6.1061 6.0824 6.1948 0.3019 0.2249 0.1967 0.1972 0.2021
79 44 46 8.1659 5.9874 5.4676 5.4519 5.7113 0.2470 0.1882 0.1629 0.1629 0.1700
80 45 47 8.0631 5.9388 5.3977 5.3783 5.7516 0.2486 0.1853 0.1681 0.1650 0.1721
81 46 48 7.5197 5.4968 5.5251 5.0491 5.3649 0.2942 0.2314 0.2233 0.2079 0.2128
82 47 49 7.7900 5.3964 5.8603 5.5146 5.5205 0.4046 0.3173 0.3129 0.3018 0.2898
83 shaman |3 37 39 10.0170| 6.1719 9.0703 5.2795 5.4207 1.9320 0.9698 1.3507 0.8574 0.8427

159




84 38 40 12.2230| 5.8646 7.6231 5.4704 5.4806 2.8896 0.9953 1.2626 0.9416 0.9415
85 39 41 17.3800| 6.6017 7.5747 6.0066 5.8246 3.5967 1.0920 1.2998 1.0811 0.9946
86 40 42 19.0790| 6.8284 6.9759 6.0970 6.6365 3.5102 1.0921 1.3009 1.2150 1.0611
87 41 43 15.4420| 6.4149 7.1215 5.9063 6.9024 2.6228 1.0189 1.3154 1.1499 1.1484
88 42 44 10.6250| 6.2158 7.2978 5.7222 6.6844 1.7789 0.9550 1.1717 1.0144 1.0690
89 43 45 8.9583 5.9630 7.3726 5.9386 6.4491 1.3891 0.8960 1.0876 0.8890 0.9298
90 44 46 8.6681 5.8491 7.5398 5.6422 6.0870 1.2426 0.8694 1.0473 0.8100 0.8514
91 45 47 8.9358 6.2083 7.1821 6.1171 6.0959 1.2184 0.8980 0.9973 0.8544 0.8431
92 46 48 8.8933 6.3397 7.3568 5.8972 5.9121 1.2434 0.9808 0.9989 0.8751 0.8775
93 47 49 9.4228 6.6954 7.6191 6.6318 6.6131 1.4312 1.1240 1.0243 1.0000 0.9967
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