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Abstrat

Handling large displaement optial �ow is a remarkably arduous task. For

instane, standard oarse-to-�ne tehniques often struggle to adequately

deal with moving objets whose motion exeeds their size. Here we pro-

pose a learning approah to the estimation of large displaement between

two non-onseutive images in a sequene on the basis of a learning set

of optial �ows estimated a priori between di�erent onseutive images

in the same sequene. Our method re�nes an initial estimate of the �ow

�eld by replaing eah displaement vetor by a linear ombination of

displaement vetors at the enter of similar pathes taken from a ode-

book built from the learning set. The key idea is to use the aurate �ows

estimated a priori between onseutive images to help improve the poten-

tially less aurate �ows estimated online between images further apart.

Experimental results suggest the ability of a purely data-driven learning

approah to handle �ne sale strutures with large displaements.
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Chapter 1

Introdution

1.1 Motivation

Image registration is the proess of establishing orrespondenes between two or more

images (Crum et al., 2014). It is motivated by the hope that better or more informa-

tion an be extrated from an adequate merging of the images than from analyzing

them independently. It onsists in transforming the input images until the relevant

image strutures or features are orretly aligned. Based on the geometri �exibility

of the transformation, the image registration proess an be divided into two at-

egories, linear and non-linear. An image registration is linear when only rotation,

saling, translation and shearing are allowed. Linear image registration an be ap-

plied, for instane, to register images of the same patient taken at di�erent points in

time for tumor monitoring or funtional imaging. This kind of registration is global

in nature and annot model loal geometri di�erenes between images. On the other

hand, nonlinear image registration an loally transform the soure image to align it

more aurately with the target image. For an example, it an be used to register the

Magneti Resonane Image (MRI) of a patient's san to an anatomial atlas. In Fig-

ure 1.1, both linear and non-linear image registrations are performed using FMRIB's

FLIRT and FNIRT respetively to transform a partiipant's brain (the soure image)

to a T1-weighted average strutural template image (the target image). The linear

transformation manages to orretly orient the soure image but is not very aurate

overall and espeially around the ventriles and at the sulus level. The non-linear

model does a muh better job at aligning the images.
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(a) (b) () (d)

Figure 1.1: Image transformations; (a) a soure image; (b) the template image; ()

linearly transformed soure image; (d) non-linearly transformed soure image.

Multiple images of subjets an be obtained at multiple times from multiple imag-

ing devies. These imaging modalities an be divided into two global ategories:

anatomial and funtional (Maintz and Viergever, 1998). Anatomial modalities

mainly show morphologial information. Examples of this ategory inlude X-ray, CT

(Computed Tomography), MRI (Magneti Resonane Imaging) , Ultrasound, CTA

(Computed Tomography Angiography) et. Funtional modalities show prinipally

the information of metabolism. SPECT (Single Photon Emission Computed tomog-

raphy), PET (Positron Emission Tomography), fMRI (funtional MRI) are some of

the examples of this modality. It may be bene�ial to aurately ombine images of

these two ategories to get more potential information. For instane, the registration

of a pre-operative CT image to an intra-operative X-ray image an be very helpful to

guide treatment.

Medial image registration tehnique is used to aurately align, and thus to

ombine, multiple images. One of the earliest attempts to deal with non-rigid image

registration was made by Horn and Shunk (1980). Their method uses optial �ow

to estimate the motion of intensity values aross two images aquired with the same

modality. Optial �ow is the spatial distribution of apparent veloities of movement

of brightness patterns in an image (Beauhemin and Barron, 1995). It assumes that

when a pixel �ows from one image to another, its intensity (or olor) does not hange.

The optial �ow method alulates the motion between two image frames whih are

taken at times t and t+ δt at every voxel position. If a voxel at loation (x, y, t) with

intensity I (x, y, t) moves after time δt from one image to other image by δx and δy

then the image onstraint equation an be written as:

I (x, y, t) = I (x+ δx, y + δy, t+ δt) (1.1)
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If the displaement is very small, we an apply Taylor series to expand this equa-

tion and get:

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt+O2

(1.2)

where O2
is the seond or higher order terms. From these equations, it follows

that:

∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt = 0 (1.3)

or

∂I

∂x

δx

δt
+

∂I

∂y

δy

δt
+

∂I

∂t

δt

δt
= 0 (1.4)

i.e.,

∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t
= 0 (1.5)

where Vx, Vy are the x and y omponents of the optial �ow of I(x, y, t) and

∂I
∂x
,

∂I
∂y

and

∂I
∂t

are the derivatives of images (or image gradients) at (x, y, t) in the

orresponding diretions. if Ix, Iy and It are the �rst order partial derivatives of

I (x, y, t), the optial �ow equation beomes:

IxVx + IyVy + It = 0 (1.6)

or ,

IxVx + IyVy = −It (1.7)

where Ix, Iy and It are the image gradient with respet to positions x, y and time

t (for detail see Fleet and Weiss (2006)). This is one equation with two unknowns,

whih annot be solved as suh.

Equation 1.7 has two unknowns whih annot be solved without another equation

or onstraint. This is known as the aperture problem of the optial �ow algorithms

(Movshon et al., 1985).
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(a) (b) ()

Figure 1.2: Aperture problem; three gratings (a), (b) and () are moving in three

diretions (i.e. true motion). When viewed through a small irular aperture, all

three gratings appear to move in the same diretion (i.e. pereived motion) whih is

perpendiular to the orientation of the lines in the gratings.

Figure 1.2 illustrates the aperture problem. Three gratings (Figure 1.2a, b and

) have same pattern of parallel lines. These gratings are moving in three di�erent

diretions. If we see through a small aperture, all three gratings appear to have a

motion in the same diretion, whih is perpendiular to the orientation of the lines

in the gratings (Barron et al., 1994). Given the onstrain in equation 1.7, where we

have two unknowns, we an only determine the �ow perpendiular to the orientation

of the lines in the gratings, but we annot determine the motion on other diretions.

This failure to aurately detet the true diretion of motion is alled the aperture

problem.

To �nd the optial �ow from Equation 1.7 another set of equations is needed,

given by some additional onstraint. Most optial �ow methods introdue additional

onditions for estimating the atual �ow. For instane, Horn and Shunk introdued

a global onstraint of smoothness to solve this equation (for detail see 2.1.2). It

assumes smoothness in the optial �ow over the whole image. It tries to minimize

distortions in �ow and prefers solutions whih show more smoothness.

Most of the attention devoted to optial �ow has been dediated to addressing

the shortomings of the initial HS formulation suh as outliers (Blak and Anandan,

1996; Brox et al., 2004; Lempitsky et al., 2008; Wedel et al., 2009a); lighting hanges

(Brox et al., 2004; Lempitsky et al., 2008; Zimmer et al., 2009; Wedel et al., 2008);

over-smoothing (Xiao et al., 2006; Blak and Jepson, 1996; Zitnik et al., 2005; Xu

et al., 2008) and non-onvex energy minimization (Blak and Anandan, 1996; Boykov

et al., 2001; Trobin et al., 2008)). Despite the variety of methods, there are many

oasions where most of these tehniques may not estimate an aurate dense orre-
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spondene �eld between images. Examples of suh ases are motions of untextured

areas, aliasing, olusions et. (see Butler et al. (2012)) or, ruially, �ows with large

displaements, whih is the fous of this thesis.

1.1.1 Handling large displaements

The original Horn and Shunk (HS) framework an only handle small motions as

the linearization of the data term only holds for small magnitude veloities. In the

presene of large displaements, this method may not estimate motion orretly as

image gradient is not smooth enough. For large displaements, mathing pixels fur-

ther apart rapidly beomes a omputationally intensive problem as the number of

potential mathes grows quadratially with the magnitude of the largest reoverable

displaement. Figure 1.3 illustrates how HS method struggles with large displae-

ments. In this example we use a pair of images from the Temple3 sequene in the

MPI-Sintel dataset (rendered senes from the Durian Open Soure Movie Projet;

for detail see setion 2.3.3) where the wings of a dragon undergo large displaements

(see Figure 1.3a and b). The basi HS method annot estimate a orret �ow as

mathing pixels are too far apart (see Figure 1.3d). Figure 1.3g shows the olor ode

map where the olor represents the orientation of the vetor and brightness stands

for its magnitude.

A popular way to address this intrinsi limitation is to adopt a oarse-to-�ne (or

pyramidal) strategy (Anandan, 1989; Enkelmann, 1988; Fleet and Weiss, 2006). Un-

der suh sheme, the �ow an be estimated at the oarsest sale of a Gaussian pyramid

�rst. As the images are downsampled, the veloity dereases. Thus, derivatives an

be used to estimate the residual veloity progressively at the �ner sales. The �ow is

iteratively re�ned on the downsampled images with the underlying assumption that

the residual motion �eld at eah sale satis�es the linearization onstraint sine the

motion �eld between the images is saled together with the images.

A syntheti example is given in Figure 1.4, whih illustrates the oarse-to-�ne

approah for large displaement. The images onsist of a gray moving dis. As

the images are downsampled (eah time image size is redued by half), the distane

between the diss dereases, whih eventually makes it possible to estimate a �ow (at

the oarsest sale). Figure 1.3e shows that ompared to the original HS method, HS

with oarse-to-�ne approah estimates a more aurate �ow.
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(a) (d)

(b) (e)

() (f)

(g)

Figure 1.3: An example from the Temple3 sequene in the MPI-Sintel dataset where

standard optial �ow methods struggle to aurately estimate large displaements

of small strutures: (a) soure frame; (b) target frame; () soure (in green) super-

imposed on target image (in red); (d) �ow estimated with basi Horn-Shunk method

without oarse-to-�ne approah; (e) Horn-Shunk method with oarse-to-�ne ap-

proah; (f) ground truth �ow; (g) �ow �eld olor oding: the olor represents the

orientation of the vetor and brightness stands for its magnitude.
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Coarsest sale

Finest sale

Figure 1.4: A syntheti example demonstrates the oarse-to-�ne (or pyramidal) ap-

proah to large displaement. Two images of a gray moving dis are super-imposed.

Images are progressively downsampled. Eah time image size is redued by half.

Coarser images are shown in the higher level of the pyramid. Displaement between

soure and target (indiated by the arrow) beomes smaller in the downsampled im-

ages.

However, sine �ne sale image strutures may beome invisible at oarser sales,

oarse-to-�ne approahes annot reliably estimate the �ow of strutures whose motion

is larger than their size (Wul� et al., 2012). That is the ase with the red retangle

in Figure 1.4, whih rapidly disappear from the progressively downsampled images.

This realisation led to the development of new methods apable of handling large

displaements of �ne strutures. For instane, Alvarez et al. (2000) used a linear sale-

spae fousing strategy to inrease the robustness to loal minima. Steinbruker et al.

(2009) avoided oarse-to-�ne warping and linearization altogether by deoupling the

data and regularisation terms and alternatively optimising them. Brox and Malik

(2011) omplemented the standard ontinuation method with rih loal desriptors

(suh as SIFT or HOG). Along similar lines, Xu et al. (2012) also used SIFT to gen-

erate andidate �ows whih were then fused together and integrated to the ordinary

optial �ow.

But desriptor based approahes have limitations too. Regions with weak tex-

ture often do not produe reliable keypoints. Also highly repetitive strutures an

reate ambiguity for the desriptor mathing. The syntheti example in Figure 1.5

illustrates a situation where a desriptor mathing based method annot deide by
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(a) (b) (e) (d) (e) (f)

Figure 1.5: An ambiguous registration situation; (a) soure image; (b) target image;

(), (d), (e) and (f) four possible registered soure images. Whih one is orret?

(a) (b) ()

Figure 1.6: Dynami MRI sans: (a) soure frame; (b) target frame; () target frame

(in red) on top of soure frame transformed using LDOF �ow (in green).

itself what the orret transformation is. Figure 1.6 displays an example with a 2-D

dynami Magneti Resonane Imaging (dMRI) san of a healthy volunteer breathing

normally in a Siemens 1.5T sanner. To estimate the transformation, we used the

Large Displaement Optial Flow (LDOF) method (Brox and Malik, 2011) whih

mathes loal desriptors. Figure 1.6 displays the target frame (in red) on top of

soure frame transformed using LDOF �ow (in green). LDOF managed to reover

most of the motion between frames (both vertial breathing motion and the heart on-

tration), but it produed poorly regularized �ow due to ambiguity of loal desriptor

(see the region highlighted with a white retangle in Figure 1.6).

1.1.2 Learning Optial Flow

Whilst onsiderable e�orts have been expanded to improve �ow estimation using

tehniques like oarse-to-�ne approahes and feature desriptors, learning approahes

have only attrated limited attention to date. Simonelli et al. (1991) �rst introdued

a probabilisti framework to estimate the deviation of the estimated �ow from the
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true �ow. Blak et al. (1997) extrated orthogonal basis �ow �elds using prinipal

omponent analysis to learn parameterized models of image motion. Xue et al. (2006)

oupled PCA with wavelet-based deomposition to learn dense deformation �elds

when a limited number of training images are available. Freeman et al. (2000) learned

the parameters of a Markov network from a training set and used a Bayesian belief

propagation approah to estimate the �ow of amorphous blobs. Roth and Blak's

(Roth and Blak, 2007a) Field of Experts also relied on Markov random �elds to

model the spatial statistis of optial �ow �elds. Sun et al. (2008) modelled both

spatial and brightness statistis using a steerable random �eld. Li and Huttenloher

(2008a,b) developed a proposed Markov Random Field model of optial �ow and

proposed a tehnique that learns parameters of the model. Their method minimizes

training loss that ours due to unseen or unmathed data, for instane data that

appears due to olusion. To overome similar problem with olusion, Ma Aodha

et al. (2013) introdued a supervised learning approah that learns on�dene measure

for optial �ow.

To the best of our knowledge, none of these methods were designed to handle

large displaements. Here we propose a data-driven, learning approah to motion

estimation apable of dealing with those. We fous on the omputation of the optial

�ow between two non-onseutive images in a sequene on the basis of a learning set

of optial �ows arefully estimated a priori between di�erent onseutive images in

the same sequene. Rather than learning a statistial model of the �ow, we propose

to re�ne an initial estimate of the �ow �eld by replaing eah displaement vetor by

a linear ombination of displaement vetors at the entre of similar pathes taken

from an a priori ode-book. The key idea is to use the aurate �ows estimated a

priori between onseutive images to help improve the potentially less aurate �ows

estimated online between images further apart. In ommon with reent developments,

our approah does not require a oarse-to-�ne or warping strategy, whih makes it

possible to handle �ne sale strutures with large displaements.

The ontributions of this thesis are (1) to analyze urrent �ow models and methods

to understand how they deal with large displaements; (2) to formulate an algorithm

that estimates transformations using a learning set of optial �ows taken from are-

fully estimated a priori between di�erent onseutive images; (3) to ompare the

performanes of the proposed algorithm against those of state-of-the-art methods.

There were not online odes available for LK 3-D and HS 3-D methods. The

odes developed for the experiments in thesis are available at Matlabentral (math-

works.o.uk/ matlabentral/ �leexhange/ authors/ 257136). There are four set of
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odes; they are:

1. Horn-Shunk optial �ow method for 3-D images

2. Luas-Kanade optial �ow method for 3-D images

3. Luas-Kanade optial �ow method with pyramidal approah for 3-D images

4. Luas-Kanade optial �ow method with weighted window approah for 3-D

images

1.2 Thesis Overview

In hapter 2, we present a general overview of image registration tehniques. We

implemented Horn-Shunk and Luas-Kanade and experimented with several estab-

lished registration tehniques (Median Filtering, LDOF, DeepFlow) as a means to

familiarize ourselves with their advantages and drawbaks. In partiular, we explore

the pratial issues related to optial �ows for large displaement. Then we introdue

the datasets that we used in our experiments. At the end of this hapter, we disuss

the experimental setup and how to estimate registration auray.

In hapter 3, we present our learning approah to optial �ow estimation. We

detail its various omponents and explore their ontributions and drawbaks. In

partiular, we introdue and ompare di�erent path similarity measures, explore the

issue of oversmoothing and propose vetor omposition of pairwise deformation �eld

as a means to overome it.

In hapter 4, we assess the performane of the odebook of pathes. We also

disuss various features related to odebook of pathes, and in partiular the perfor-

manes of several manifold learning tehniques and di�erent lustering algorithms.

In hapter 5, we disuss about path similarity measures of spatial distane and

intensity and assess their performane.

Finally, in hapter 6, we disuss the overall strengths and limitations of our ap-

proah. We onlude by srutinizing what questions have been answered and what

questions are still open. In doing so, we point to a number of future diretions for

our work.
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Chapter 2

Bakground

In this hapter, we present a general overview of optial �ow methods and explore the

pratial issues related to large displaement. We review previous learning approahes

to optial �ow estimations. We also desribe the datasets that we are going to use

in our experiments. Finally, we disuss how to ompare the performanes of �ow

estimation methods.

2.1 Estimating Optial Flow

We �rst disuss two fundamental optial �ow tehniques, Horn-Shunk and Luas-

Kanade, and analyze the way they deal with large displaements. We then review

more modern approahes suh as Median Filtering method, LDOF and DeepFlow,

whih form the urrent state-of-the-art.

2.1.1 Luas-Kanade (LK) Optial Flow

The Luas-Kanade method (Luas and Kanade, 1981) assumes that the �ow is essen-

tially onstant in a loal neighbourhood of the pixel under onsideration. It uses a

least squares riterion to solve the basi optial �ow equations for all the pixels in that

neighborhood. Therefore, the loal optial �ow vetor (Vx, Vy) in that neighborhood

must satisfy:

Ix (p1) Vx + Iy (p1)Vy = −It (p1)

Ix (p2) Vx + Iy (p2)Vy = −It (p2)
.

.

.

Ix (pn) Vx + Iy (pn)Vy = −It (pn)

(2.1)
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where p1, p2, ..., pn are the pixels inside the blok, and Ix (pi) , Iy (pi) , It (pi) are the

image gradient of the image I with respet to position x, y and time t evaluated at

the point pi and at the urrent time. Here, we have more equations than unknowns

and thus the system is over-determined, whih typially reates an aperture prob-

lem (Beauhemin and Barron, 1995) (for detail see appendix A). To overome this

problem, Luas and Kanade estimate an approximate solution using a least squares

approah:

[

Vx

Vy

]

=

[

∑

i Ix (pi)
2 ∑

i Ix (pi) Iy (pi)
∑

i Ix (pi) Iy (pi)
∑

i Iy (pi)
2

]−1 [

−
∑

i Ix (pi) It (pi)

−
∑

i Iy (pi) It (pi)

]

(2.2)

where i = 1 to n.

Note that LK annot provide the information of optial �ow inside bloks.

Figure 2.1 shows an example where LK is used to estimate motion between two

frames from the Temple3 sequene in the MPI-Sintel dataset. Figure 2.1a shows the

soure image (in green) super-imposed on target image (in red). The ground truth

motion is given in Figure 2.1b. Figure 2.1 shows the registered soure image (in

green) super-imposed on the target image (in red) and Figure 2.1d shows the olor

oded LK �ow �eld. That �eld is not very aurate as image �ow vetors (Vx, Vy) of

motions of the wings of the dragon between the two frames are larger than the loal

neighborhood window and thus violate the assumption that the �ow is onstant in a

loal neighborhood (see setion 2.1.3 for detail).

2.1.2 Horn-Shunk (HS) Optial Flow Method

The Horn-Shunk framework solves the aperture problem by introduing a global

onstraint of smoothness (Horn and Shunk, 1980). This approah tries to minimize

the irregularities in the optial �ow by favouring solutions that maximize smoothness.

The optial �ow is formulated as a global energy funtional, whih is minimized. For

a pair of two-dimensional images, this funtion is given as:

E (Vx, Vy) =

∫ ∫

[

(IxVx + IyVy + It)
2 + α2

(

‖∇Vx‖2 + ‖∇Vy‖2
)]

dxdy (2.3)
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(a) (b)

() (d)

(e) (f)

(g)

Figure 2.1: MPI-Sintel Temple3: (a) soure image (in green) super-imposed on target

image (in red); (b) ground truth motion; () soure image registered using basi

LK (in green) super-imposed on target image (in red); (d) �ow estimated by basi

LK method without oarse-to-�ne approah; in eah level of pyramid image sizes are

redued by half; (e) soure image registered using LK with oarse-to-�ne approah (in

green) super-imposed target image (in red); in eah level of pyramid image sizes are

redued by half; (f) �ow estimated by the LK method with oarse-to-�ne approah;

(g) �ow �eld olor oding: the olor represents the orientation of the vetor and

brightness stands for its magnitude.
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where Ix and Iy are the derivatives of the image intensity values along the x and y

oordinates respetively. It is the derivative along time dimensions,

−→
V = [Vx, Vy]

T
is

the optial �ow vetor, and α is the regularization onstant. Larger values of α yield

smoother �ows.

If the �ow information is missing in inner parts of homogeneous objets, HS an

�ll in that part from the �ow at the boundaries as it is a global optial �ow method.

However, it is more suseptible to sudden hange of motion diretion than loal optial

�ow methods beause the smoothness term does not allow for sharp disontinuities in

the motion �eld (Bruhn et al., 2005). In Figure 2.2, HS is used to estimate the motion

between the same two frames of the previous example from the Temple3 sequene.

Figure 2.2b shows the olor oded ground truth motion. The estimated �ow is shown

in Figure 2.2d. The registered soure image (in green) is super-imposed on the target

image (see and Figure 2.2). Unlike LK (Figure 2.1), the HS �ow �eld is smoother

and it �lls in the inner parts of homogeneous objets suh as the body of Sintel, the

female protagonist in Figure 2.2. Even then, HS is not very aurate as motions of

the wings of the dragon are still very large for the optial �ow assumption to hold.

2.1.3 The Large Displaement Challenge

Reall that the �ow equation is:

IxVx + IyVy = −It (2.4)

where Vx, Vy are the x and y omponents of the optial �ow of I(x, y, t), and Ix,

Iy and It are image gradient with respet to positions x, y and time t, i.e. diretional

hanges in the intensity (or olour). Image gradients an be omputed using many

di�erent operators suh as Sobel, Prewitt, Central Di�erene gradient, Intermediate

Di�erene gradient or Roberts gradient amongst others. Most of these operators use

intensity values in a small neighborhood around eah pixel. For instane, the Sobel

and Prewitt operators use intensity values in a 3Ö3 region around eah image point to

approximate the orresponding image gradient. The �ow equation an handle motions

as long as the linearization of the data term holds, i.e. for small magnitude veloities.

Indeed, when the displaements beome larger, the gradients are not smooth any

longer and an aurate estimate of the motion may not be found. Figure 2.3b shows
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(a) (b)

() (d)

(e) (f)

(g)

Figure 2.2: The HS approah: (a) soure image (in green) super-imposed on target

image (in red); (b) ground truth motion; () soure image registered using HS (in

green) super-imposed on target image (in red); (d) �ow estimated with basi HS

method without oarse-to-�ne approah; in eah level of pyramid image sizes are

redued by half; (e) soure image registered using HS with oarse-to-�ne approah

(in green) super-imposed target image (in red); in eah level of pyramid image sizes

are redued by half; (f) �ow estimated the HS method with oarse-to-�ne approah;

(g) �ow �eld olor oding: the olor represents the orientation of the vetor and

brightness stands for its magnitude.
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(a) (b)

Figure 2.3: Image gradients: (a) soure image (in green) super-imposed on the target

frame (in red); (b) magnitudes of the image gradients of soure and target frames

estimated using the Intermediate Di�erene method.

the image gradients of frames #7 and #8 from the Temple3 sequene of MPI-Sintel

dataset. We ompute the image gradients using the Intermediate Di�erene operator

and super-impose them on eah other. Clearly, the wings of the �ying dragon have

relatively large motion (at least 6 pixels between two frames), whih is not small

enough for the optial �ow assumption to hold.

One standard approah to solve this problem is to apply a oarse-to-�ne (or pyra-

midal) strategy where images are downsampled iteratively so that the large displae-

ments beome smaller with respet to the displaements in the original image before

downsampling, and to apply the �ow equation on the downsampled images (for detail

see setion 1.1.1). Estimated transformations are upsaled and re�ned aordingly.

In Figure 2.4 the pair of frames (#7 and #8) from Temple3 are downsampled twie.

Eah time image sizes are redued by half. Consequently, the displaements beome

smaller with respet to the displaements in the image before downsampling. The

magni�ed images show that after downsampling twie, the distane between the body

of the �ying dragon in the two onseutive frames has redued enough for the �ow

equation to be used to adequately estimate the motion. By further downsampling the

frames we an to deal with even larger displaements. Figure 2.1d and 2.2d show the

results of using a multilevel oarse-to-�ne approah with LK and HS, whih produe

better estimations ompared to the results without oarse-to-�ne approah.

2.1.4 Sun's Median Filtering Method (SMF)

Sun's Median Filtering Method (SMF) is a good illustration of a modern optial �ow

tehnique. After an extensive review of the reent developments of optial �ow meth-
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(a)

(b)

()

Figure 2.4: Coarse to �ne approah: (a) super-imposed image gradients of frame #7

and #8 with magni�ed view of the dragon on the right; (b) downsampled by half; ()

further downsampled by half.
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ods, Sun et al. (2013) proposed to extend the original work of Horn and Shunk

(1980) with an asymmetri pyramidal approah where images are downsampled hor-

izontally and vertially in di�erent proportions.

Reall that, with optial �ow, we make the assumption that every objet has the

same brightness or intensity before and after the displaement when omputing the

apparent veloities of movement. Unfortunately, the brightness of a same objet an

be di�erent in di�erent images. For instane, Figure 2.5 shows frame #5 and #10 from

the Market2 sequene in MPI-Sintel dataset. The red retangles show pathes where

the brightness of a walking man hanges due to shading. In the shade, the intensity

of the walking man beame similar like other objets around it. Therefore, in those

pathes, the image gradient �nds no di�erene of intensity. In other words, the use

of image gradients is therefore not helping here (see Figure 2.5d). Consequently, the

HS �ow �eld, with a oarse-to-�ne approah (in eah level of pyramid image sizes are

redued by half), is not very aurate (see Figure 2.5f).

To deal with this issue, the SMF tehniques �rst pre-proesses the input images

following the method proposed by Wedel et al. (2009b). They use an image deom-

position method, whih linearly ombines the texture (i.e. �ne sale-details) and

struture omponents (i.e. the main large objets in the image). This aptures the

intensity value artifats generated by shading re�etions and shadows. Figure 2.6

illustrates suh a struture-texture deomposition. The expetation is that shadows

show up only in the strutural part, i.e. the main large objets. The hope is then that

the omputation of optial �ow using the textural part of the image is not perturbed

by shadow and shading re�etion artifats.

In terms of the regularization parameter, SMF uses a Lorentzian penalty funtion

ρ(x) = log
(

1 + x2

2σ2

)

, whih was originally proposed by Blak and Anandan (1996).

Consequently the objetive funtion of equation 2.3, in its disrete form, beomes:

E(u, v) =
∑

i,j{ρD (I1 (i, j)− I2 (i+ ui,j, j + vi,j))

+λ [ρS (ui,j − ui+1,j) + ρS (ui,j − ui,j+1) + ρS (vi,j − vi+1,j) + ρS (vi,j − vi,j+1)]
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(a) (b)

() (d)

(e) (f)

(g)

Figure 2.5: Large displaement and HS: (a) frame #5 from sequene Market_2 from

MPI-Sintel; (b) image gradient of frame #5; () frame #10; (d) image gradient

of frame #10; (e) frame #5 (in green) super-imposed on frame #10 (in red); (f)

estimated motion using HS with oarse-to-�ne approah; in eah level of pyramid

image sizes are redued by half. Red retangles shows the pathes where the brightness

of a man hanged due to shading, onsequently image gradient an not di�erentiate

the man and HS �ow �eld is not very aurate; (g) �ow �eld olor oding: the olor

represents the orientation of the vetor and brightness stands for its magnitude.
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(a) Original image (b) Struture part () Texture part

Figure 2.6: The Mequon sequene from Middlebury dataset; the original image is

deomposed into a strutural part and a textural part.

+λN

∑

i,j

∑

(i′,j′)ǫℵi,j

(| ui,j − ui′,j′ | + | vi,j − vi′,j′ |)} (2.5)

where u and v are the horizontal and vertial omponents of the optial �ow

�eld to be estimated from the soure and target images I1 and I2; i, j indexes a

partiular image pixel loation, ui,j and vi,j are elements of u and v respetively, λ is

a regularization parameter, and ρD and ρS are the data and spatial penalty funtions,

ℵi,j is the set of neighbors of pixel (i, j) in a possibly large area and λN is a salar

weight.

This method applies a median �lter to intermediate �ow values during inremental

estimation and warping, whih, aording to Wedel et al. (2009b), suessfully disard

the outliers from the intermediate �ow values. The method also adds a non-loal term

to ompensate for the inrease of energy in the objetive funtion due to median

�ltering.

However, the SMF oarse-to-�ne framework has limitations. As mentioned above,

small strutures may disappear at the oarser level. Therefore it may not estimate

aurately their displaements. Moreover, sine SMF uses median �lter entred on

a thin struture, the �ow �eld gets dominated by the surrounding intensity values

and su�ers from over-smoothing. Figure 2.7 shows that small strutures, suh as

the di�erent parts of the �ying dragon, disappear in the downsampled images, whih

yield a not very aurate estimated �ow (see Figure 2.7d).

2.1.5 Brox andMalik's Large Displaement Optial Flow (LDOF)

Method

To deal with the large �ows, Brox and Malik (2011) proposed to inorporate infor-

mation from image desriptors about shapes, olors or texture into a oarse-to-�ne
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optial �ow framework. Their method, Large Displaement Optial Flow (LDOF),

uses Sale-Invariant Feature Transformation (SIFT) (Lowe, 2004), whih detets lo-

al features in images and Histogram Oriented Gradients (HOG) (Dalal and Triggs,

2005), whih also desribes loal image features like SIFT, but omputed on a dense

grid of uniformly spaed ells and uses overlapping loal ontrast normalization for

improved auray. After adding information derived from image desriptors to the

oarse-to-�ne approah of Horn and Shunk (1980), the objetive funtion (see equa-

tion 2.3) beomes:

E (w(x)) =
∫

Ψ (|I2(x+ w(x))− I1 (x) |2) dx

+γ
∫

Ψ (|∇I2 (x+ w (x))−∇I1 (x) |2) dx

+β
5

∑
∫

ρj (x) Ψ
(

(u (x)− uj (x))
2 + (v(x)− vj (x))

2) dx
j=1

+α

∫

Ψ
(

|∇u (x) |2 + |∇v (x) |2 + g (x)2
)

dx (2.6)

where w(x) = (u, v) is the displaement �eld between the soure, I1, and target

image, I2, x = (x, y) denotes a point in the image. (ui, vj) (x)is one of the motion

vetors derived at position x by region mathing (j mathing nearest 5 nearest neigh-

bors). α = 100, β = 25 and γ = 5 are tuning parameters (as suggested by Brox

and Malik (2011)), they steer the importane of smoothness, region orrespondenes,

and gradient onstany, respetively. If there is no orrespondene at this position,

ρj (x) = 0. Otherwise, ρj (x) = cj where,

cj (i) :=







d̄2(i)−d2(i,j)
d2(i,j)

d̄2 (i) > 0

0 else
(2.7)

Here, d2 (i, j) is the Eulidean distane between the two pathes after deformation

orretion and d̄2 (i)is the average Eulidean distane among the 10 nearest neighbors.

Ψ (s2) =
√
s2 + 10−6

in order to deal with outliers in the data as well as in the

smoothness assumption as suggested by (Brox et al., 2004) and g (x) is boundary

map as reommended by (Arbelaez et al., 2009).

Figure 2.8d shows the estimated motion between frame #7 and #8 from the

Temple3 sequene using LDOF. For the motion between this pair of images, LDOF

shows better estimation than SMF. However, it does not adequately estimate the

motions of small strutures like �ngers and hair due to ambiguous and false mathing
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(a) (b)

() (d)

(e)

Figure 2.7: The SMF approah: (a) super-imposed image gradients of frame #7

and #8; (b) ground truth �ow; () frames are downsampled to

1
16

of their sizes and

zoomed; (d) �ow estimated using SMF; (e) �ow �eld olor oding: the olor represents

the orientation of the vetor and brightness stands for its magnitude.

(see Figure 2.7d). Further analysis of the performane of LDOF is disussed in setion

5.5

2.1.6 DeepFlow

Weinzaepfel et al. (2013) proposed to improve LDOF by using a deep mathing al-

gorithm based on a multistage arhiteture, uses inter-leaving onvolutions and max-

pooling. Unlike LDOF, DeepFlow does not use HOG whih a rigid desriptor. Rather,

it normalizes the data term to downweight the impat of loations with high spatial

image derivatives. In the oarse-to-�ne approah, it uses di�erent weights at eah

level to downweight at �ner sales based on feature mathes as proposed by Stoll

et al. (2013). This method onsiders the mathing energy of the baseline method

that allows to reliably identify loations where feature mathes an be partiularly

useful and thus enables to sort out unreliable mathes before the integration. Figure
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(a) (b)

() (d)

(e)

Figure 2.8: The LDOF approah: (a) frame #7 (in green) super-imposed on frame

#8 (in red); (b) ground truth �ow; () registered image using LDOF (in green) super-

imposed on target image (in red); (d) estimated �ow; (e) �ow �eld olor oding: the

olor represents the orientation of the vetor and brightness stands for its magnitude.

2.9d shows the estimated motion between frame #7 and #8 using DeepFlow. Unlike

LDOF, DeepFlow an identify image features of the �ngers and estimates motion of

the �ngers better than LDOF.

Desriptor mathing algorithms often su�er from ambiguity. In partiular, images

with highly repetitive strutures may reate several mathes in a loal neighborhood

and the algorithm may not be able deide the orret transformations. Also, regions

with weak texture often do not yield reliable image features and so their orrespon-

dene is ambiguous. Figure 2.9d illustrates suh a ase where repetitive small stru-

tures like the hair of Sintel, the female protagonist, reate ambiguity for DeepFlow.

Consequently, it annot estimate a very aurate motion.
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(a) (b)

() (d)

(e)

Figure 2.9: The DeepFlow approah: (a) frame #7 (in green) super-imposed on frame

#8 (in red); (b) estimated motion using DF; () registered image using DF (in green)

super-imposed on target image (in red); (d) ground truth motion; (e) �ow �eld olor

oding: the olor represents the orientation of the vetor and brightness stands for

its magnitude.
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(a) (b) ()

Figure 2.10: The optial �ow assumption: (a) frame #10; (b) frame #11; () ground

truth deformation �eld. Note how the intensity of small strutures stays onstant

aross the two onseutive frames and how regular the vetors in a small neighborhood

are in the ground truth deformation �eld.

2.2 Learning The Optial Flow

To improve optial �ow estimation, most urrent methods use mainly two onstraints

on image motion: data onservation and spatial oherene. The data onservation

onstraint is based on the idea that the surfaes of objets generally persist in time

and the intensity struture of a small region in one image remains onstant over

time, although its position may hange (Blak and Anandan, 1996). The spatial

oherene onstraint is derived from the observation that surfaes have spatial extent

and neighboring pixels in an image are likely to belong to the same surfae. Sine the

motion of a neighborhood on a smooth surfae transforms gradually in most of the

ases, smoothness an be enfored on the motion of neighboring points in the image

plane (Horn and Shunk, 1980). Figure 2.10 shows the ground truth deformation

�eld of two onseutive frames (#10 and #11) from Grove2 sequene of Middlebury

dataset. Small intensity strutures in the frames remain almost onstant over time

and vetors in small neighborhoods are very regular.

A great deal of work in the �eld of optial �ow has been devoted to improving

both the data onservation and spatial oherene. However, learning approahes have

only attrated limited attention to date. Simonelli et al. (1991) �rst introdued a

probabilisti framework to ompute image gradients. Their model produes �ow ve-

tor on�dene information and uses it to address the problem of inherent unertainty

of optial �ow. It uses a Gaussian noise model to ompute the maximum likelihood

of the estimated motion.

To address the problem of motion disontinuity, Blak et al. (1997) proposed a

framework for learning parameterized models of image motion. This method uses
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Prinipal Components Analysis (PCA) to ompute a low-dimensional model for spa-

tial struture of the �ow �elds. Motion disontinuity is reovered with a linear om-

bination of a small number of the basis motions taken from a training set.

Xue et al. (2006) proposed a statistial model of deformation (SMD) that uses

an a priori statistis of high-dimensional displaement �elds to improve auray

of image registration. It utilizes wavelet-based deompositions oupled with PCA

in eah wavelet band to ompute probability density funtion of high dimensional

deformation �elds. This method an improve auray of image registration even

with a relatively small number of training samples.

Freeman et al. (2000) introdued a learning-based method for estimating motion

of low-level vision. This method models relationships between neighboring image

pathes using a Markov network by assigning eah path as a node onneted by

lines. It solves the Markov network with a learning phase where the parameters of

the network onnetions are learned from training data. These learned parameters

are used in a Bayesian belief propagation approah that estimates the �ow.

Roth and Blak (2007a) also proposed to use Markov random �elds (MRF) to

model the spatial statistis of optial �ow �elds. Their method inorporates the

Field of Experts (FoE) of �ow priors into standard optial �ow algorithm and obtains

statistially signi�ant auray improvements (FoE is a model of prior probability

of images and optial �ow �elds (Roth and Blak, 2005)). In ontrast to other MRF

models, it uses larger liques of pixels (a subset of verties of an undireted graph

where every two verties in the subset are onneted by an edge). This method learns

the appropriate lique potentials from training data. The learned liques are used as

a spatial regularizer for �nal �ow estimation.

Sun et al. (2008) introdued a method that models both spatial and brightness

statistis using a Steerable Random Field (SRF) (Roth and Blak, 2007b). By using

naturalisti training sequenes with ground truth �ow it develops a learning frame-

work of optial �ow that aptures the spatial statistis of the �ow �eld, the statistis

of brightness inonstany and the relation of �ow boundaries to the image intensity

struture. Image intensity boundaries are used to improve the auray of optial

�ow near motion boundaries and SRF are utilized to model the onditional statistial

relationship between the �ow and the image sequene. It also inorporates a statis-

tial model of the data term by extending the Field-of-Experts formulation (Roth

and Blak, 2005) to the spatio-temporal domain to model temporal hanges in image

features.
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Li and Huttenloher (2008a,b) presented a ontinuous-state MRF model of optial

�ow (proposed by Szeliski (1990)) by minimizing the training loss for a set of ground-

truth images using Simultaneous Perturbation Stohasti Approximation (SPSA)

(Spall, 1992). It uses SPSA to minimizes the training loss that ours due to unseen or

unmathed data, for instane data that appears due to olusion. This method does

not require approximations to address the intratable nature of maximum-likelihood

estimation.

To overome the same problem of unmathed data with olusion, Ma Aodha

et al. (2013) introdued a supervised learning approah that learns on�dene mea-

sures for optial �ow. Their method estimates a per-pixel on�dene for optial �ow

vetors that are omprised of multiple di�erent measures, inorporating a broad range

of motion and appearane ues and the photoonstany residual.

To the best of our knowledge, none of these methods used learning approah to

handle large displaements. In this thesis, we introdue a novel learning approah

to optial �ow apable of dealing with large displaements. We propose to re�ne an

initial estimate of the �ow �eld by replaing eah displaement vetor by a linear

ombination of displaement vetors at the entre of similar pathes taken from an a

priori ode-book. This approah does not require a oarse-to-�ne or warping strategy,

whih makes it possible to handle �ne sale strutures with large displaements.

2.3 Datasets Used in Our Experiments

As our plan is to learn motions from a learning set of a priori registered images, we

hose datasets onsisting of image streams with motion; for instane, frames from a

video sequene with moving objets or thorai images with periodi ardia motion.

We used two datasets exhibiting thorai and ardia motions: a 2-D dynami MRI

san and a 3-D gated CT san. Unfortunately, these datasets do not o�er ground

truths of pair-wise motions. Sine ground truth motion is invaluable in quantifying

the auray of the estimated transformations (see setion 2.4 for detail), we also used

the syntheti MPI-Sintel dataset (http://sintel.is.tue.mpg.de/) with publily available

ground truths.

2.3.1 2-D Dynami Magneti Resonane Imaging Dataset

The 2-D dMRI onsists of a series of 300 sequential MR images of the thorax of a

volunteer breathing normally in a Siemens 1.5T sanner. These images exhibit both
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respiratory and ardia motions. All images are 64×64 pixels in size. This anonymised

dataset has been provided by Mirada Medial (www.mirada-medial.om). Mirada

Medial is one of the ollaborators of this PhD.

Learning set

We prepared 30 trials from this dataset (see Table 2.1). Column 1 shows the trial

index, learning sets are given in olumn 2, olumn 3 and 4 mention the nature of

respiratory and ardia motions ourred in the learning set respetively. Unless oth-

erwise stated, we used our own implementation of the original Luas-Kanade optial

�ow method with oarse-to-�ne approah (in eah level of pyramid image sizes are re-

dued by half) to register the onseutive images and generate pair-wise deformation

�elds for the learning set. We spei�ally seleted frames in those periodi sequenes

whih exhibit the largest displaements, taking into aount the period indeed, to

make sure we did not test images whih were similar even though they were far apart

in the sequene.

Test Cases

Column 4 shows the test ases whih are disjoint set from the learning set. In the test

ases, we hose soure and target images that had large displaements in the dynami

MR sans.

Table 2.1: List of trials

Trials learning set Respiration Cardia motion Test ase

1 Images

41 to 46

Inhalation 41 to 46 Systole phases 41, 43, 45; Diastole

phases 42, 44, 46

Soure: 82

Target: 83

2 Same as

above

Same as above Same as above Soure: 83

Target: 84

3 Images

46 to 51

Exhalation 46 to 51 Systole phase 47, 49, 51; Diastole

phase 46, 48, 50

Soure: 72

Target: 73

4 Images

51 to 56

Exhalation 51 to 53;

Inhalation 54 to 56

Systole phases 51, 53, 55; Diastole

phases: 52, 54, 56

Soure: 92

Target: 93

5 Same as

above

Same as above Same as above Soure: 161

Target: 162

6 Images

60 to 65

Exhalation 60 to 65 Systole phases 61, 63, 65; Diastole

phases: 60, 62, 64

Soure: 53

Target: 54

7 Same as

above

Same as above Same as above Soure: 78

Target: 79

8 Same as

above

Same as above Same as above Soure: 79

Target: 80

9 Same as

above

Same as above Same as above Soure: 100

Target: 101
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10 Same as

above

Same as above Same as above Soure: 102

Target: 103

11 Images

77 to 82

Exhalation 77 to 80

Inhalation 80 to 82

Systole phase 77, 79, 81; Diastole

phase 78, 80, 82

Soure: 108

Target: 109

12 Images

90 to 95

Exhalation 90 to 93

Inhalation 94 to 95

Systole phase 91, 93, 95; Diastole

phase 90, 92, 94

Soure: 76

Target: 77

13 Same as

above

Same as above Same as above Soure: 106

Target: 107

14 Same as

above

Same as above Same as above Soure: 235

Target: 236

15 Images 90 to

96

Exhalation 90 to 93

Inhalation 94 to 965

Systole phase 91, 93, 95; Diastole

phase 90, 92, 94, 96

Soure: 248

Target: 249

16 Images 151

to 156

Inhalation 151 to 156 Systole phase 151, 153, 155; Diastole

phase 152, 154, 156

Soure: 285

Target: 286

17 Images 211

to 216

Inhalation 211 to 213

Exhalation 213 to 216

Systole phase 212, 214, 216; Diastole

phase 211, 213, 215

Soure: 114

Target: 115

18 Images 231

to 236

Exhalation 231 to 236 Systole phase 232, 234, 236; Diastole

phase 231, 233, 235

Soure: 274

Target: 275

19 Images 231

to 238

Exhalation 231 to 236

Inhalation 237 to 238

Systole phase 232, 234, 236, 238;

Diastole phase 231, 233, 235, 237

Soure: 276

Target: 277

20 Images 231

to 239

Exhalation 231 to 236

Inhalation 237 to 239

Systole phase 232, 234, 236, 238 ;

Diastole phase 231, 233, 235, 237, 239

Soure: 277

Target: 278

21 Images 246

to 251

Exhalation 246 to 249

Inhalation 250 to 251

Systole phase 246, 248, 250; Diastole

phase 247, 249, 251

Soure: 277

Target: 278

22 Images 246

to 253

Exhalation 246 to 249

Inhalation 250 to 253

Systole phase 246, 248, 250, 252;

Diastole phase 247, 249, 251, 253

Soure: 278

Target: 279

23 Images 251

to 256

Inhalation 251 to 256 Systole phase 252, 254, 256; Diastole

phase 251, 253, 255

Soure: 96

Target: 97

24 Images 258

to 263

Exhalation 258 to 263 Systole phase 258, 260, 262; Diastole

phase 259, 261, 263

Soure: 232

Target: 233

25 Same as

above

Same as above Same as above Soure: 277

Target: 278

26 Same as

above

Same as above Same as above Soure: 278

Target: 279

27 Images 270

to 275

Inhalation 270 to 275 Systole phase 270, 272, 274; Diastole

phase 271, 273, 275

Soure: 57

Target: 58

28 Images 273

to 278

Inhalation 273 to 276

Exhalation 277 to 278

Systole phase 274, 276, 278; Diastole

phase 273, 275, 277

Soure: 231

Target: 232

29 Images 273

to 279

Inhalation 273 to 276

Exhalation 277 to 279

Systole phase 274, 276, 278; Diastole

phase 273, 275, 277, 279

Soure: 233

Target: 234

30 Images 274

to 279

Inhalation 274 to 276

Exhalation 277 to 279

Systole phase 274, 276, 278; Diastole

phase 275, 277, 279

Soure: 235

Target: 236

As an illustration, Figure 2.11 shows the MR images used in trial #4. Figure

2.11a and 2.11b shows the learning set and test ase respetively.
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(a) Learning set

Exhalation

Systole Diastole Systole

Frame #51 Frame #52 Frame #53

Inhalation

Diastole Systole Diastole

Frame #54 Frame #55 Frame #56

(b) Test ase

Exhalation

Diastole Systole

Frame #92 Frame #93

Figure 2.11: Trial #4 from 2D MRI dataset; (a) learning set; (b) test ase.
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2.3.2 3-D Gated CT Dataset

This dataset onsists of nine sequential gated-CT 3-D images of the thorax of a

volunteer. It is also provided by Mirada Medial (www.mirada-medial.om). All

images were 512 × 512 × 100 pixels in size. There were many omplex motions in

these images, inluding respiratory and ardia motions. The inhalation proess starts

at the �rst image and ends in the �fth image. The exhalation proess starts and ends

in the ninth image. Images 1, 3, 5, 7 and 9 orrespond to the systoli phase and

images 2, 4, 6 and 8 to the diastoli phase.

Learning Set

Unless otherwise stated, we also used LK to perform pairwise registrations between

the 3rd image and the 7th image. As a result, we have 4 pairwise deformation �elds

of size 512× 512× 100 in our learning set.

Test Cases

For the test ases, we arbitrarily seleted 400 sub-images (eah of size 21 × 21 × 21

pixels) from the 2nd image and registered them to orresponding sub-images in the

5th image.

2.3.3 MPI-Sintel Dataset

Butler et al. (2012) used data from the Durian Open Soure Movie Projet (Roosendaal,

2010) to render senes under onditions of varying omplexity. It is publily available

to download in http:// sintel.is.tue.mpg.de. The MPI-Sintel dataset onsists of muh

longer image sequenes, ground truth �ow is available for all frames, it exhibits large

non-rigid motions and muh more omplexity (blur, atmosphere, speular surfaes,

et.). 35 lips were seleted from the full movie by the authors. Apart from six shorter

ation sequenes, eah sequene is 50 frames long, giving 49 pair-wise �ow �elds per

lip. Ground truth �ows were estimated using Classi Non Loal Fast method (Wang

et al., 2006; Sun et al., 2010). At the time of reating the MPI Sintel dataset, Classi

Non Loal Fast performed the best on estimating small motions. This is why Butler

et al. (2012) hose Classi Non Loal Fast method to ompute ground truth �ows.

For two images that are further apart in a sequene, the ground truth motion an be

omputed by performing vetor omposition of the pair wise ground truth �ows in

between those two images. We seleted 93 trials from 8 sequenes (Alley1, Ambush7,
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Ambush2 sequene

Frame #7 Frame #8 Ground truth motion

Bamboo2 sequene

Frame #41 Frame #42 Ground truth motion

Flow �eld olor oding

Figure 2.12: Senes from the Ambush2 and Bamboo2 sequenes in the MPI-Sintel

dataset; the olors in the �ow �eld olor oding represents the orientation of the

vetor and brightness stands for its magnitude.

Bamboo1, Bamboo2, Market2, Market6, Shaman2 and Shaman3) based on their ex-

hibiting large motions of small strutures, sine it is the fous of this thesis. Figure

2.12 shows two pairs of senes and their orresponding ground truth motion.

2.3.4 Rationale Behind Prefering Medial Images in the De-

velopment of the Proposed Method

MPI-Sintel dataset is a syntheti dataset that represents naturalisti senes. Unlike

medial images, MPI Sintel dataset have some natural sene issues like olusion,

appearane of new strutures and shadows. Estimated motions of MPI-Sintel dataset

are highly e�eted by these issues (Butler et al., 2012). On the other hand, the

medial image datasets that we used in our experiment do not have suh issues.

Thus, in eah step of the development of the proposed method, we use medial image

datasets to hek its performane in estimating large displaements (whih is our

main fous) where the results are not e�eted by aforementioned ritial issues of the

naturalisti images. However, one the whole method is developed, we also use the

MPI-Sintel dataset to evaluate the performane of the proposed method with other

state-of-the-art methods (for detail, see setion 5.5).
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2D Dynami MRI

(a) (b) ()

Figure 2.13: 2D MRI dataset; (a) frame #82; (b) frame #85; () Motion is estimated

using DeepFlow method and then transformed image (in green) super-imposed on

target image (in red).

2.4 Estimating the Auray of the Flow

In this setion, we disuss the methods that we will be using in our experiments to

evaluate both qualitatively and quantitatively the auray of the produed optial

�ows

2.4.1 Qualitative Performane: Super-Imposition of Registered

Image

After estimating the motion between two images, we an transform the soure image

and super-impose the transformed image on top of the target image. We an use

two di�erent olors for the target and transformed image. Figure 2.13 shows an

example where the motion between frame #82 (soure) and #85 (target) from the 2-

D dynami MRI dataset is estimated using the DeepFlow method. The soure image

is transformed using the estimated motion and super-imposed in green on top of the

target frame in red. We an see inaurate alignments either in red or in green while

the aurate transformations an be seen in yellow.

However, it is less onvenient to ompare performanes of di�erent algorithms

using this method sine it does not generate quantitative values of auray of the

estimated motion.
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2.4.2 Quantitative Performane:

2.4.2.1 Mean Squared Error (MSE) Based on Intensity

We an ompute the Squared Di�erenes (SD) of intensity values at eah pixel between

target and transformed images and alulate a Mean Squared Error (MSE). This

method generates quantitative values of auray of estimated transformation without

ground truth motion. However, MSEs an be highly biased by extreme values and

hanges in lighting onditions.

2.4.2.2 Average Angular Error (AAE)

In ases where ground truth motions are available, the most ommonly used measure

of performane for optial �ow is the angular error (AE) whih was proposed by

Barron et al. (1994). The AE between a �ow vetor (u, v) and the ground-truth �ow

(uGT , vGT ) is the angle in 3D spae between (u, v, 1.0) and (uGT , vGT , 1.0). The AE

an be omputed by taking the dot produt of the vetors, dividing by the produt

of their lengths, and then taking the inverse osine:

AE = cos−1

(

1.0 + u× uGT + v × vGT√
1.0 + u2 + v2

√

1.0 + u2
GT + v2GT

)

(2.8)

The goal of the AE is to provide a relative measure of performane that avoids

the divide by zero problem for zero �ows.

2.4.2.3 Average Endpoint Error (AEPE) of Deformation Field

With the AAE approah, errors in regions of zero motion are penalized more than

errors in a region of smooth non-zero motion. The AAE also ontains an arbitrary

saling onstant (1.0) to onvert the units from pixels to degrees. Therefore, Otte

and Nagel (1994) proposed the error in �ow endpoint (EPE) whih is, aording to

Baker et al. (2011), more aurate than AE. Endpoint Error is de�ned by

EE =

√

(u− uGT )
2 + (v − vGT )

2
(2.9)

MPI-Sintel datasets use both AAE and AEPE as auray measures.
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2.4.3 Statistial Analysis

We use repeated measures ANOVA (analysis of variane) to determine whether there

are any signi�ant di�erenes aross registration methods in terms of MSE, AAE or

AEPE. This hoie was motivated by the fat that the distribution of those measures

was generally normal, with relatively little skew and kurtosis. For instane, the skews

and kurtoses of the MSEs for the �rst experiment (see Table B.1) are (0.85, 1.66) for

LK, (0.78, 1.06) for degraded LK, (0.36, 0.06) for the learning approah with vetor

di�erene, (0.24, 0.44) for for learning approah with angular di�erene and (0.73,

0.87) for the learning approah with magnitude di�erene.
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Chapter 3

A Learning Approah to Optial Flow

3.1 Introdution

The previous hapter disussed the problems posed by large motions when estimating

optial �ows with a fous on the estimation of the motion of small strutures with

large displaements. This hapter introdues a novel learning approah to optial �ow

apable of dealing with large displaements. The learning algorithm estimates the

�ow between two non-onseutive images in a sequene on the basis of a learning set of

�ows estimated a priori between di�erent onseutive images in the same sequene.

The key idea is to use the aurate �ows estimated a priori between onseutive

images to help improve the potentially less aurate �ows estimated online between

images further apart. Our approah is inspired by non-loal means �ltering.

3.2 Non-Loal Means Filtering

Buades et al. (Buades et al., 2005) introdued the non loal means �lter as an image

denoising method. This algorithm takes advantage of the high degree of redundany

of images. Given a path in an image, the non loal means (NLM) algorithm replaes

it with a weighted average of neighborhood pathes that are similar to it. In other

words, this �ltering algorithm takes a mean of all pixels in the neighbourhood of a

pixel, weighted by how similar these pixels are to the target pixel.

Suppose we are onsidering pixel i for denoising. Now if we �nd another pixel j

in the same image that has a neighborhood around it similar to the neighborhood

around i then we an use the value of j for prediting the value of i. Let i (x, y) be a

pixel in a noisy image f on a bounded domain RǫR2
:
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(a) Noisy image (b) Filtered image

Figure 3.1: An example of image denoising using non-loal means �lter.

NLM (f) (i) =
1

C (i)

∫

R

exp−

∫

R2
Ga(t)|f(i+t)−f(j+t)|2dt

h2 f (j) dj (3.1)

where Ga is a Gaussian kernel with standard deviation a, h is a �ltering parameter

and C (x) =
∫

R
exp−

∫

R2
Ga(t)|f(i+t)−f(z+t)|2dt

h2 dz is a normalization fator.

An example of non-loal means �lter is given in Figure 3.1. We used 5× 5 pixels

for the size of the similarity window, 11× 11 pixels for the size of the neighborhood

and 0.05 for the standard deviation a, the �ltering parameter h = 0.1. Notie how

the white noises in Figure 3.1a are �lled up by NLM, whih took advantage of the

regularity of the grid and then inorporated that information into the �ltered image.

Figure 3.2 shows another example where NLM is used to denoise a natural image

(Lena). Here, the size of the image is 500× 500 pixels. We used 5 × 5 pixels for the

size of the similarity window, 15×15 pixels for the size of the neighborhood and 0.01

for the standard deviation a and the �ltering parameter h = 0.1. The NLM �ltered

the white noises in the Figure 3.2. The NLM �ltering method has redued the MSE

of intensity from 971.81 (between Figure 3.2a and Figure 3.2b) to 782.49 (between

Figure 3.2a and Figure 3.2).

3.3 A Learning Approah to Optial Flow

Motivated by non loal means, we propose a learning algorithm that learns from

redundant patterns of vetors in a learning set of deformation �elds. The datasets that
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(a) (b) ()

Figure 3.2: Denoising Lena with NLM : (a) original image, (b) with added white

noise, () �ltered with NLM..

we are using in our experiments have sequential images with regular motions suh as

ardia and respiratory motions in medial images, or the �apping wings of dragon in

MPI-Sintel dataset et (for detail see setion 2.3). Given two non-onseutive images

in the sequene, we aim to re�ne the �ow (u0,v0) omputed between them using a

given optial �ow algorithm (e.g. the LK). At every pixel (m,n) , we onsider the

path {(m,n),qm,n} around it, with qm,n the matrix of displaement vetors around

(m,n), and look in a learning set for similar pathes. Here, we take advantage of the

high degree of redundany of vetor pathes aross the images from the sequene to

�lter the initial �ow by replaing the displaement vetor (um,n, vm,n) at pixel (m,n)

by a Gaussian weighted average of the displaement vetors at the enter of the most

similar pathes, with the aim to make (u0,v0)more similar to the �ows in the learning

set.

In a similar fashion to the non-loal means approah (Buades et al., 2005), the

�ltering phase replaes the displaement vetor (um,n, vm,n) at pixel (m,n) by:

(um,n, vm,n) =
1

Z

∑

i∈ℵ

e−
wvector

h2 (ui, vi) (3.2)

where (ui, vi) is the displaement vetor at the enter of qi; wvector is the weight

that depend on the similarity between the path at (m,n) and the seleted ones from

the learning set; h ontrols the deay of the weights, ℵ is the size of the neighborhood

and Z is an overall normalization fator. The pseudo-ode of the implementation of

equation 3.2 is given in Algorithm 3.1.
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(a)

(b)

Figure 3.3: Blok diagram illustrating the e�et of similarity measure used between

the initial �ow and the learning set. (a) Path 1 is more similar to Path 2 ompared

to Path 3. Thus, larger weight is given with the value at the entre of Path 1. (b)

Pathes with stronger similarity ontributes more in the equation 3.2.
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Algorithm 3.1 Pseudo Code of Learning Algorithm

funtion [ learned_�ow_�eld ℄ = learningAlgorithm( initial_�ow, learning_set,

threshold)

% initial_�ow : the initially estimated �ow �eld omputed ...

% using an standard opti �ow algorithm suh as HS

% learning_set : the set of all deformation �elds in a priori

% the similarity measure similarity_vetor

loop_1 : for eah index (i,j) in the initial_�ow

{

% initialization of the weight of similarity measures for eah path

sum_of_weight=0;

loop_2 : for eah path in the neighbourhood

{

ompute the similarity_vetor for (i,j) using the equation 3.2

sum_of_weight=sum_of_weight + similarity_vetor

weighted_vetor=weighted_vetor + ...

similarity_vetor × vetor_at_the_enter_of_the_path

}

end_of_loop_2

% normalization

learned_�ow_�eld(i,j)=weighted_vetor / sum_of_weight ;

}

end_of_loop_1

regularize the learned_�ow_�eld using Gaussian �lter
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3.4 Seleting a Path Similarity Measures

Given a path in the initial �ow(u0,v0), we look for similar pathes in the learning

set. Figure 3.3 illustrates how pathes with stronger similarity ontribute more in

equation 3.2.

With the polar representation of vetors in mind (magnitude and angle), we on-

sider three similarity measures:

1. Weighing sum based on vetor di�erene (di�erene of both magnitude and

angle): wvector =
∑

‖
−−−→
v(qi) −

−−−−→
v(qm,n) ‖2σ is the Gaussian weighted sum of

squared di�erenes of vetors of pathes with standard deviation σ.

2. Weighing sum based on magnitude di�erene: wvector =
∑

‖ |v(qi)| −
|v(qm,n)| ‖2σ is the Gaussain weighted sum of squared di�erenes of magni-

tudes of vetor pathes and with standard deviation σ.

3. Weighing sum based on angular di�erene: wvector (qi,qm,n) =
∑ ‖ θ(qi) −

θ(qm,n) ‖2σ is the Gaussian weighted sum of squared di�erenes of polar angles

of vetors in vetor pathes with standard deviation σ.

Here,

−−−→
v(qi) is the path in the initial �ow and

−−−−→
v(qm,n) is a path in the learning set.

All of the weighing sums are normalized using their standard deviation σ.

We an ompute an angle between two vetors using either of the three equations

3.3, 3.4 or 3.5.

θ = cos−1

( −−−→
v(qi) ·

−−−−→
v(qm,n)

‖−−−→v(qi)‖‖
−−−−→
v(qm,n)‖

)

(3.3)

θ = sin−1

(

‖
−−−→
v(qi)×

−−−−→
v(qm,n)‖

‖
−−−→
v(qi)‖‖

−−−−→
v(qm,n)‖

)

(3.4)

θ = tan−1

(

‖−−−→v(qi)×
−−−−→
v(qm,n)‖

−−−→
v(qi) ·

−−−−→
v(qm,n)

)

(3.5)

For orthogonal vetors (angle = 90 or 270 degrees) osine gives poor auray as

cos (90) = cos (270) = 0. Similarly, for parallel vetors (angle = 0 or 180 degrees) sine

gives poor auray as sin (0) = sin (180) = 0. Both equation 3.3 and 3.4 an su�er

from divide by zero error. Whereas equation 3.5 gives aurate results for angles 0,

90, 180 and 270. Moreover, it an takle divide by zeros error as tanh (inf) = 90o.

Therefore, we selet equation 3.5 to ompute an angle between two vetors.
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(a) (b)

Figure 3.4: Finding angle between (a) two 2D vetors; (b) two 3D vetors.

3.4.1 An example of �nding angle between two 2D vetors

Suppose we have two 2D vetors (3, 7) and (−1, 4) (see �gure 3.4a). So the angle

between these vetors is,

θ = tan−1
(

‖
−−→
(3,7)×

−−−−→
(−1,4)‖

−−→
(3,7)·

−−−−→
(−1,4)

)

Now, ‖
−−−→
(3, 7)×

−−−−→
(−1, 4)‖ = (3× 4)− ((−1)× 7) = 19

So, θ = tan−1
(

19
(3×(−1))+(4×7)

)

= tan−1
(

19
−3+28)

)

= tan−1
(

19
25

)

= 0.6499radian or 37.2348degree

3.4.2 An example of �nding angle between two 3D vetors

Suppose we have two 3D vetors (4, 0, 7) and (−2, 1, 3) (see �gure 3.4b). The angle

between these vetor is,

θ = tan−1
(

‖
−−−−→
(4,0,7)×

−−−−−→
(−2,1,3)‖

−−−−→
(4,0,7)·

−−−−−→
(−2,1,3)

)
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= tan−1
(

‖
−−−−→
(4,0,7)×

−−−−−→
(−2,1,3)‖

−−−−→
(4,0,7)·

−−−−−→
(−2,1,3)

)

Now, ‖−−−−→(4, 0, 7)×−−−−−−→
(−2, 1, 3)‖ =

∥

∥

∥

∥

∥

∥

∥

x̂ ŷ ẑ

4 0 7

−2 1 3

∥

∥

∥

∥

∥

∥

∥

= 27.2213

So, θ = tan−1
(

27.2213
4×(−2)+0×1+7×3

)

= tan−1
(

27.2213
−8+0+21

)

= tan−1
(

27.2213
13

)

= 1.1253radian or, 64.4724degree

3.4.3 Determining the �ltering parameter h deay of weight

in Gaussian kernel

The Filtering Parameter σ in equation 5.3 de�nes the deay of weights in the Gaussian

Kernel. It is dependent of the size of the path. The two objetives of using Gaussian

weighted kernel are:

1. put more weights at the enter of eah path

2. inorporate the information around the boundary.

The deay of weights should be distributed in a way so that it ful�lls both of the

objetives. We typially pik

patch radius+1
3

for h. Figure 3.5 illustrates the reason

behind that hoie. Here, the path size is equal to ( (2× patch radius) + 1 )2. If the

h has a large value ompared to the path radius, then the weights in the Gaussian

kernel tend be equally distributed (see Figure 3.5a). This goes against the objetive

of using a Gaussian kernel in the �rst plae sine we want to put more weights at the

entre of the kernel. On the other hand, if h has a small value, weights at the edges

beome almost zero. Thus the information at the edges of the path will remain

unused (see Figure 3.5). By hoosing h = patch radius+1
3

, we generate a Gaussian

kernel that ful�lls both objetives of (a) putting higher weights at the entre and (b)

onsidering all the information available in the path (see Figure 3.5b).
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(a) (b) ()

Figure 3.5: Relationship between standard deviation and path radius;

patch radius = 10; olor bars on the right size show the orrespondene of olor

with values in the kernel; (a) h = patch radius + 1 ; (b) h = patch radius+1

3
; ()

h = patch radius+1
5

.

Figure 3.6: MSEs of images registered with LK, degraded LK and learning algorithm

using di�erent similarity measures (experiment desribed in setion 3.4.4).
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Table 3.1: Desriptive Statistis (experiment desribed in setion 3.4.4)

Method Dependent Variable Mean Std. Deviation N

1 LK 113.47 33.10 30

2 Degraded LK 161.80 49.92 30

3 Vetor Di�erene 216.34 59.36 30

4 Angular di�erene 152.43 45.42 30

5 Magnitude di�erene 222.38 57.45 30

3.4.4 Results with the 2-D Dynami MRI Dataset

We �rst ompared the performanes of these three similarity measures using our 2-D

dMRI dataset. The soure images are registered to orresponding target images with

both the LK optial �ow algorithm and a degraded version of LK. LK is degraded by

restriting the maximum downsampling fator, i.e. the number of pyramidal levels,

to 2, suh that it an handle smaller displaements but struggles with large displae-

ments. This is to simulate a hallenging large-displaement senarios. Our objetive

is to improve the estimated motion using the proposed learning algorithm.

Table B.1 shows the results. Column 1 shows the trial numbers (detail of trials

an be found in Table 2.1 and Figure 3.6 shows MSEs of images registered with LK,

degraded LK and learning algorithm using di�erent similarity measures). The MSEs

of LK and degraded LK are given in olumn 2 and 3 respetively; they are omputed

on the basis of the squared di�erenes of intensities between target and registered

images. The MSEs of our learning approah with eah of the three similarity measures

are given in olumns 4, 5 and 6. We used the following parameters:

� path radius: r = 5,

� parameter for deay of weight: h = 2 (as desribed in setion 3.4.3, h = (r +

1)/3), and

� size of the neighborhood, ℵ is the whole image.

Desriptive statistis of this experiment is given in Table 3.1. Figure 3.7 shows

the Box and Whisker plot of MSEs of LK, degraded LK and di�erent similarity

measures. We performed a repeated measures ANOVA to ompare the performanes
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Figure 3.7: The Box and Whisker plot of MSEs of LK, degraded LK and di�erent

similarity measures (experiment desribed in setion 3.4.4).

Table 3.2: Mauhly's Test of Spheriity (experiment desribed in setion 3.4.4)

Measure:MSE

Within

Subjets

E�et

Mauhly's

W

Approx.

Chi-

Square

df Sig. Epsilon

Greenhouse-

Geisser

Huynh-

Feldt

Lower-

bound

Method
.45 21.93 9 9.21× 10

−3
** .78 .89 .25

Sig. (* for <.05 and ** for <.01)

of the di�erent approahes (rationale for using repeated measures ANOVA is disussed

in setion 2.4.3):

� Method 1: LK

� Method 2: Degraded LK

� Method 3: Vetor Di�erene

� Method 4: Angular di�erene

� Method 5: Magnitude di�erene

Mauhly's test (see Table 3.2) indiates that the assumption of spheriity has been

violated (χ2 (9) = 21.93, p < 0.05) therefore Greenhouse-Geisser orreted tests are

reported (ε = .78). The results show that the MSEs are signi�antly a�eted by the

hoie of method (V = 0.93, F (4, 26) = 90.78, p < 0.05, see Table 3.3).
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Table 3.3: Multivariate Tests (experiment desribed in setion 3.4.4)

E�et Value F Hypothesis

df

Error

df

Sig.

Method Pillai's Trae .93 90.78 4 26 6.95× 10
−15

**

Wilks' Lambda .07 90.78 4 26 6.95× 10
−15

**

Hotelling's Trae 13.97 90.78 4 26 6.95× 10
−15

**

Roy's Largest Root 13.97 90.78 4 26 6.95× 10
−15

**

Sig. (* for <.05 and ** for <.01)

Table 3.4: Tests of Within-Subjets E�ets (experiment desribed in setion 3.4.4)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean

Square

F Sig.

Method Spheriity Assumed 252258.74 4 63064.69 133.51 1.88× 10
−42

**

Greenhouse-Geisser 252258.74 3.12 80834.06 133.51 1.17× 10
−33

**

Huynh-Feldt 252258.74 3.54 71253.12 133.51 7.41× 10
−38

**

Lower-bound 252258.74 1.00 252258.74 133.51 2.26× 10
−12

**

Error

(Method)

Spheriity Assumed 54792.32 116 472.35

Greenhouse-Geisser 54792.32 90.50 605.44

Huynh-Feldt 54792.32 102.67 533.68

Lower-bound 54792.32 29.00 1889.39

Sig. (* for <.05 and ** for <.01)
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Table 3.5: Pairwise Comparisons (experiment desribed in setion 3.4.4)

Method 1 2 3 4 5

1 5.13× 10
−15

** 7.83× 10
−16

** 1.01× 10
−9
** 5.81× 10

−17
**

2 5.13× 10
−15

** 7.02× 10
−11

** 4.40× 10
−2
* 4.93× 10

−12
**

3 7.83× 10
−16

** 7.02× 10
−11

** 9.15× 10
−11

** .381

4 1.01× 10
−9
** 4.40× 10

−2
* 9.15× 10

−11
** 2.25× 10

−12
**

5 5.81× 10
−17

** 4.93× 10
−12

** .381 2.25× 10
−12

**

Sig. (* for <.05 and ** for <.01)

Table 3.6: Desriptive Statistis (experiment desribed in setion 3.4.5)

Method Dependent Variable Mean Std. Deviation N

1 LK 198.34 689.61 400

2 Degraded LK 303.54 1054.97 400

3 Vetor di�erene 167.66 561.86 400

4 Angular di�erene 152.58 475.21 400

5 Magnitude di�erene 165.41 533.62 400

From the post ho test we an onlude that (see Table 3.4 and Table 3.5):

� The learning Algorithm using angular di�erene as a similarity measure gener-

ates signi�antly lower MSEs than both LK (p < .05) and degraded LK (p < .05).

� The use of angular di�erene as a similarity measure generates signi�antly

lower MSEs than that of vetor di�erene or magnitude di�erene (p < .05).

3.4.5 Results with the 3-D Gated CT Dataset

We repeated the experiment with the 3-D Gated dataset.

As above, we registered the soure images to the orresponding target images with

both LK, degraded LK and our learning approah, with the same parameters. Results

are reported in the table in Appendix C.1. Column 1 shows the trial numbers; detail
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Figure 3.8: The Box and Whisker plot of MSEs of LK, degraded LK and di�erent

similarity measures (experiment desribed in setion 3.4.5).

of trials an be found in the table in Appendix A.1. The MSEs of LK and degraded

LK are given in olumn 2 and 3 respetively. The MSEs of our learning approah

with eah of the three similarity measures are given in olumns 4, 5 and 6. We used

the following parameters:

Desriptive statistis of this experiment is given in Table 3.6. Figure 3.8 shows the

Box and Whisker plot of MSEs of LK, degraded LK and di�erent similarity measures.

Here as well, Mauhly's test indiates that the assumption of spheriity has been

violated (χ2 (9) = 3930.823, p < 0.01) therefore Greenhouse-Geisser orreted tests

are reported (ε = .282). The results show that MSEs are signi�antly a�eted by the

hoie of method (V = 0.06, F (4, 396) = 6.734, p < 0.01.

From the post ho test we an onlude that (see Table 3.7 and Table 3.8):

� The learning Algorithm using angular di�erene as a similarity measure gener-

ates signi�antly lower MSEs than both LK (p < .01) and degraded LK (p < .01).

� The use of angular di�erene as a similarity measure generates signi�antly

lower MSEs than that of vetor di�erene or magnitude di�erene (p < .01).

3.4.6 Disussion

These results suggest that the angular di�erene is the best performing measure. This

is not surprising given that a substantial number of vetors in the training pathes

have larger magnitudes than those in the test pathes sine the former are from de-
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Table 3.7: Tests of Within-Subjets E�ets (experiment desribed in setion 3.4.5)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean

Square

F Sig.

Method Spheriity Assumed 1.88E+06 1 1.88E+06 16.32 6.43E-05**

Greenhouse-Geisser 1.17E+05 1 1.17E+05 10.54 1.27E-03**

Huynh-Feldt 2.89E+06 1 2.89E+06 19.99 1.01E-05**

Lower-bound 1.18E+06 1 1.18E+06 15.38 1.03E-04**

Error

(Method)

Spheriity Assumed 4.60E+07 399 1.15E+05

Greenhouse-Geisser 4.42E+06 399 1.11E+04

Huynh-Feldt 5.78E+07 399 1.45E+05

Lower-bound 3.07E+07 399 7.68E+04

Sig. (* for <.05 and ** for <.01)

formation �elds estimated between onseutive images whereas the latter are from

deformation �elds estimated between images further apart (sine we are spei�ally

dealing with large displaement senarios). When we use vetor di�erene or mag-

nitude di�erene as similarity measures, those vetors with larger magnitudes yield

lower similarity with the test path and ontribute less to the weighted sum in equa-

tion 3.2. When we use angular di�erene however, the learning algorithm puts larger

weight to a training path where vetors have similar diretions to the test vetors, ir-

respetive of whether or not the training vetors may have larger (or indeed di�erent)

magnitudes.

Figure 3.8 may appear to demonstrate that the three similarity measures perform

similarly. But, the desriptive statistis (Table 3.6) and the pairwise omparisons

(Table 3.8) show that even though the three approahes yield similar results, they

are indeed statistially signi�antly di�erent.

Figure 3.9 shows a syntheti example that illustrates why angular di�erene yields

better performane. We have two training pathes of vetors (a and b) and a path

of vetors as a test ase (). The test path has one vetor at its entre whih is

di�erent from the others (i.e. probably inorret):

� Training path 1 (Figure 3.9a) onsists of vetors with larger magnitudes and

similar angular values ompared to those of the test path. The vetor at its

entre is (0.5, 0.5).
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Table 3.8: Pairwise Comparisons (experiment desribed in setion 3.4.5)

Measure: MSE

1 2 3 4 5

1 3.00E-05** 2.24E-03** 8.50E-04** 2.72E-03**

2 3.00E-05** 2.99E-05** 1.43E-05** 2.76E-05**

3 2.24E-03** 2.99E-05** 5.95E-03** 2.99E-01

4 8.50E-04** 1.43E-05** 5.95E-03** 4.32E-04**

5 2.72E-03** 2.76E-05** 2.99E-01 4.32E-04**

Sig. (* for <.05 and ** for <.01)

� Training path 2 (Figure 3.9b) has vetors that have di�erent angular values

from those in the test ase. The vetor at its entre is (−0.5, 0.5).

We applied our learning algorithm to the vetor at the entre of the test path

using the three di�erent similarity measures. Results are given in Figure 3.9 d, e, and

f:

� The learned vetor using vetor di�erene (Figure 3.9d) is (0.0935, 0.5) and

the learned vetor using magnitude di�erene (Figure 3.9e) is (0, 0.5). Both

similarity measures failed to produe a su�iently large displaement vetor.

� The learned vetor using algorithm with angular di�erene (Figure 3.9f) is

(0.5, 0.5) i.e. the orret magnitude and a similar diretion to the vetors in

neighbourhood in the test path.

3.5 Vetor Composition of Pairwise Deformation Fields

We saw in setion 2.1.3 that standard methods may not be able to aurately estimate

large displaements. However, in the ontext where a series of onseutive images is

available, we may aurately estimate the larger displaements whih exist between

images that are further apart in the series by performing vetor omposition of the

smaller pairwise displaements. Figure 3.10 illustrates this approah. In the �rst row

of Figure 3.10, we see a large motion split in four smaller motions. The atual motion

an be onstruted by omputing the vetor omposition of these disrete vetors.
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Learning set Test path

(a) (b) ()

Results

(d) (e) (f)

Figure 3.9: A syntheti example showasing the use of angular di�erene as a simi-

larity measure; (a) training path 1; (b) training path 2; () test path; (d) result

with vetor di�erene; (e) result with angular di�erene; (f) result with magnitude

di�erene

(a) (b) () (d) (e)

Figure 3.10: An example of a large vetor split in elements in a learning set : (a),

(b), () and (d) are four parts of the large vetor; (e) the atual displaement.
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Figure 3.11: MSEs of images registered using LK, degraded LK, learning algorithm

with and without vetor omposition.

In a similar fashion, we an add to the learning set the omposed deformation �elds

obtained by omposing onseutive deformation �elds, so as to better model large

displaements. We use a multi-threaded funtion for this omposition task. In eah

thread, we apply a bottom-up memoization tehnique. Memoization (Mihie, 1968)

is an optimization tehnique used primarily to speed up programs by having funtion

alls that avoid repeating the alulation of results for previously proessed inputs.

A memoized funtion remembers results of some inputs and returns the remembered

result rather than realulating it. If we have n sequential displaement �elds in

our learning set, then we an divide our problem into n independent sub-problems

where eah element from the learning set performs vetor omposition disjointly.

Consequently, multiple threads that ompose vetors an be run independently in

parallel starting sequentially from eah element in the learning set ending at the last

element.

In the end, we get

n×(n+1)
2

displaement �elds onsisting all possible vetor om-

positions.
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Table 3.9: Desriptive Statistis

Method Dependent Variable Mean Std. Deviation N

1 LK 113.47 33.10 30

2 Degraded LK 161.80 49.92 30

3 Without vetor omposition 152.43 45.42 30

4 With vetor omposition 147.89 44.57 30

3.5.1 Results with the 2-D Dynami MRI Dataset

We ompared the proposed method using learning sets with and without omposed

displaement �elds. As before, we registered the soures image to the orresponding

target images with LK, degraded LK and our learning approah, using the same

parameters. The results are in Table D.1. Column 1 shows the trial numbers; detail

of trials an be found in Table 2.1. The MSEs of LK and degraded LK are given

in olumn 2 and 3 respetively, and the MSEs of the learning approah without

and with vetor omposition in olumns 5 and 6. The Figure 3.11 shows the MSEs

of images registered using LK, degraded LK, learning algorithm with and without

vetor omposition. We used the following parameters:

� path radius: r = 5,

� parameter for deay of weight: h = 2 (as desribed in setion 3.4.3, h = (r +

1)/3),

� size of the neighborhood, ℵ is the whole image, and

� the angular di�erene is used as a similarity measure

We performed a repeated measures ANOVA to ompare the performanes of the

various approahes (rationale for using repeated measures ANOVA is disussed in

setion 2.4.3):

� Method 1: LK

� Method 2: Degraded LK

� Method 3: learning approah without vetor omposition

� Method 4: learning approah with vetor omposition
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Figure 3.12: The Box and Whisker plot of MSEs of LK, degraded LK, learning

algorithms with and without vetor omposition (experiment desribed in setion

3.5.1).

`

Desriptive statistis of this experiment is given in Table 3.9. Figure 3.12 shows

the Box and Whisker plot of MSEs of LK, degraded LK, learning algorithms with

and without vetor omposition. Mauhly's test indiates that the assumption of

spheriity has been violated (χ2 (5) = 89.13, p < 0.05) therefore Greenhouse-Geisser

orreted tests are reported (ε = .543). The results show that MSEs are signi�antly

a�eted by the hoie of method (V = 0.894, F (3, 27) = 75.91, p < 0.05.

From the post ho test we an onlude that (see Table 3.10 and Table 3.11):

� The learning algorithm with vetor omposition generates signi�antly lower

MSEs than both LK (p < .05) and degraded LK (p < .05).

� The learning algorithm with vetor omposition generates signi�antly lower

MSEs than the learning algorithm without vetor omposition (p < .05).

3.5.2 Results with the 3-D Gated CT Dataset

We repeated the experiment with the 3-D Gated dataset.

The table in Appendix E.1 shows the results of the same experiment with the

3D gated CT dataset. Column 1 shows the trial numbers (detail of trials an be
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Table 3.10: Tests of Within-Subjets E�ets (experiment desribed in setion 3.5.1)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean

Square

F Sig. (* for <.05

and ** for

<.01)

Method Spheriity Assumed 40059.14 3 13353.05 62.03 1.53× 10
−21

**

Greenhouse-Geisser 40059.14 1.63 24589.01 62.03 9.51× 10
−13

**

Huynh-Feldt 40059.14 1.71 23391.27 62.03 2.76× 10
−13

**

Lower-bound 40059.14 1.00 40059.14 62.03 1.10× 10
−8
**

Error

(Method)

Spheriity Assumed 18728.88 87 215.27

Greenhouse-Geisser 18728.88 47.25 396.42

Huynh-Feldt 18728.88 49.66 377.11

Lower-bound 18728.88 29.00 645.82

Sig. (* for <.05 and ** for <.01)

Table 3.11: Pairwise Comparisons (experiment desribed in setion 3.5.1)

Method 1 2 3 4

1 5.13× 10
−15

** 1.01× 10
−09

** 4.11× 10
−9
**

2 5.13× 10
−15

** 4.40× 10
−2
* 2.95× 10

−3
**

3 1.01× 10
−09

** 4.40× 10
−2
* 7.82× 10

−08
**

4 4.11× 10
−9
** 2.95× 10

−3
** 7.82× 10

−08
**

Sig. (* for <.05 and ** for <.01)
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Table 3.12: Desriptive Statistis (experiment desribed in setion 3.5.2)

Method Dependent Variable Mean Std. Deviation N

1 LK 198.34 689.61 400

2 Degraded LK 303.54 1054.97 400

3 Without vetor omposition 152.58 475.21 400

4 With vetor omposition 150.47 475.07 400

Figure 3.13: The Box and Whisker plot of MSEs of LK, degraded LK, learning

algorithms with and without vetor omposition (experiment desribed in setion

3.5.2).

found in the table in Appendix A.1). The MSEs of LK and degraded LK are given

in olumn 2 and 3 respetively. We ompare learning algorithm without and with

vetor omposition in the learning set; their MSEs are given in olumns 5 and 6.

Desriptive statistis of this experiment is given in Table 3.12. Figure 3.13 shows

the Box and Whisker plot of MSEs of LK, degraded LK, learning algorithms with and

without vetor omposition. Here also, Mauhly's test indiates that the assumption

of spheriity has been violated (χ2 (5) = 5062.204, p < 0.01) therefore Greenhouse-

Geisser orreted tests are reported (ε = .376). The results show that MSEs are

signi�antly a�eted by the hoie of method (V = 0.78, F (3, 397) = 456.09, p < 0.01.
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Table 3.13: Tests of Within-Subjets E�ets (experiment desribed in setion 3.5.2)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean

Square

F Sig.

Method Spheriity Assumed 6.17E+06 3 2.06E+06 18.39 1.14E-11**

Greenhouse-Geisser 6.17E+06 1.13 5.47E+06 18.39 8.83E-06**

Huynh-Feldt 6.17E+06 1.13 5.46E+06 18.39 8.76E-06**

Lower-bound 6.17E+06 1.00 6.17E+06 18.39 2.26E-05**

Error

(Method)

Spheriity Assumed 1.34E+08 1197 1.12E+05

Greenhouse-Geisser 1.34E+08 450.21 2.97E+05

Huynh-Feldt 1.34E+08 450.61 2.97E+05

Lower-bound 1.34E+08 399.00 3.35E+05

Sig. (* for <.05 and ** for <.01)

Table 3.14: Pairwise Comparisons (experiment desribed in setion 3.5.2)

Measure: MSE

1 2 3 4

1 3.00E-05** 8.50E-04** 4.90E-04**

2 3.00E-05** 1.43E-05** 1.10E-05**

3 8.50E-04** 1.43E-05** 1.29E-130**

4 4.90E-04** 1.10E-05** 1.29E-130**

Sig. (* for <.05 and ** for <.01)

From post ho tests we an onlude that (see Table 3.13 and Table 3.14):

� The learning algorithm with vetor omposition generates signi�antly lower

MSEs than both LK (p < .01) and degraded LK (p < .01).

� The learning algorithm with vetor omposition generates signi�antly lower

MSEs than without omposition (p < .01).

3.5.3 Disussion

These results suggest that the learning algorithm with vetor omposition shows bet-

ter performane than without vetor omposition. Figure 3.14 illustrates the reason

why inluding vetor omposition improves the performane to the learning algorithm.

Here, we have two vetor pathes in the learning set (Figure 3.14a and Figure 3.14b).
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Learning set Test path

(a) (b) () (d)

Results

(e) (f)

Figure 3.14: A syntheti example explaining the role of vetor omposition in learning

set; (a) training path 1; (b) training path 2; () vetor omposition in the training

pathes; (d) vetor path as a test ase; (e) learned vetor without vetor omposition;

(f) learned vetor with vetor omposition.

The omposed vetor �eld between these two pathes is given in Figure 3.14. The

test path is shown in Figure 3.14d. The learned vetor without vetor omposition is

(0.8, 0.9) (see Figure 3.14e) and the learned vetor with vetor omposition is (1.4, 1.7)

(see Figure 3.14f). The learned vetor with vetor omposition (Figure 3.14f) is larger

than the learned vetor without vetor omposition (Figure 3.14e). Therefore, if we

inlude the vetor omposition of larger motion from pair-wise deformation �elds the

learning set, we will be better able to learn from larger motions.

3.6 Conlusion

In this hapter, we introdued our learning approah to the estimation of optial �ow.

We apply the learning algorithm on MPI-Sintel dataset and ompared its performane

quantitatively with HS, SMF, LDOF and DeepFlow. The learning algorithm shows

better performane than both the HS and the SMF. Results suggest that our learning

approah applied to the straight-forward HS shows similar performanes than both
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of the very sophistiated tehniques, LDOF and DeepFlow. Results suggest that

angular di�erene is the preferred hoie of path similarity measure. From the seond

experiment we onlude that the addition of omposed displaement �elds improves

the performane of the algorithm. However, adding more �elds to the learning set

substantially inreases its size, whih is not without issue, as we will explore in the

next hapter.
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Chapter 4

Building a Codebook of Pathes

4.1 Introdution

In the previous hapter, we disussed how adding omposed deformation �elds to

the learning set an improve performanes. However, this substantially inreases the

size of the learning set. Looking for similarities in a larger set of pathes during

the �ltering phase is not only omputationally more expensive but may also result

in an over-smoothed �ltered �ow as the J in the equation 3.2 beomes larger with

larger learning set and thus omputes Gaussian weighted average of a larger number

of pathes. Therefore the �ltered �ow beomes over-smoothed. Figure 4.1 illustrates

this issue. Image 221 from the 2-D dMRI dataset was registered to image 222 using

our learning algorithm without using a odebook of pathes approah. In this exam-

ple, the learning set ontains the pairwise deformation �elds between image 263 and

268 and their vetor ompositions, i.e. 15 �elds (5 pairwise �elds and 10 omposed

�elds). Due to the large learning set, over-smoothing ourred in the �ltered �ow,

onsequently the registration was not aurate (see red retangles in Figure 4.1).

4.2 Clustering the Pathes

To alleviate the issue of over-smoothing, we struture the learning set, C, into lusters
of similar pathes. The lustering approah is a way to redue the number of pathes

in a dynami, image-spei� fashion: rather than arbitrarily dereasing the overall

number of pathes a priori, we use lustering and representative pathes to selet the
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Figure 4.1: Over-smoothing as a result of too large a learning set. The edges of the

target image are super-imposed on the registered image; the red retangles highlight

inorret registration.

most appropriate ones given the images to be registered so that is more powerful. We

onsidered two lustering approahes: K-means and hierarhial lustering.

4.2.1 K-means Clustering

K-means lustering splits observations into k lusters in whih eah observation be-

longs to the luster with the nearest mean, whih serves as a prototype (MaQueen,

1967). It therefore requires a distane metri to be spei�ed. K-means also requires

that the number of lusters, k, be spei�ed a priori. Deiding upon an optimal k is

not trivial, and a number of approahes have been suggested, e.g. the F-test (Fisher,

1922) and the elbow method (Thorndike, 1953). In F-test, the test statistis has an

F-distribution under the null hypothesis. It is sensitive to non-normality (Box, 1953;

Markowski and Markowski, 1990) . The elbow method omputes the perentage of

variane for k number of lusters and gradually inreases the number of lusters. Ini-

tially, the perentage of variane will derease as k inreases. For some value of k, the

marginal gain will drop, whih should orrespond to an �optimal� number of lusters.

However, this optimal number of lusters annot always be unambiguously identi�ed.

4.2.2 Hierarhial Clustering

Hierarhial lustering builds a sequene of partitions in whih eah partition is nested

into the next partition in the sequene (Ward, 1963). Like K-means, it requires the

spei�ation of a distane metri for the pathes. Additionally, a linkage riterion

must also be seleted. At the beginning of this proess, eah element is in a luster

of its own. The lusters are then sequentially ombined into larger lusters until all

elements end up being in the same luster. At eah step, the two lusters separated
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by the shortest distane are ombined.

In omplete-linkage lustering, the link between two lusters ontains all element

pairs, and the distane between lusters equals the distane between those two el-

ements (one in eah luster) that are farthest away from eah other. Whereas, in

single-linkage lustering, the link between two lusters is made by a single element

pair, namely those two elements (one in eah luster) that are losest to eah other.

The shortest of these links that remains at any step auses the fusion of the two

lusters whose elements are involved.

We evaluated a number of strategies and found that agglomerative lustering, a

bottom up approah, with single linkage lustering performed best. This approah

�rst assign eah data point to its own singleton group. Then, pairs of lusters are

merged as one and move up the hierarhy until all the data are merged into a single

luster. We found that inonsisteny oe�ient threshold of 1.15 as the value of the

uto� argument perform best for our datasets.

Hierarhial lustering is generally onsidered to be a better approah, though it is

more omputationally expensive than K-means (Steinbah et al., 2000). Preliminary

experiments on�rmed these onsiderations and we seleted it in our experiments.

4.2.3 Manifold Embedding

The hoie of distane metri will greatly in�uene the shape of the lusters, and,

in turn, the overall performane of our approah. The metri should be linked to

the harateristis of the pathes. Consequently, we �rst extrat feature vetors from

eah path. We foused on orientation-spei� and distribution-spei� desriptors

sine these are the strongest features of the vetor �elds we are using. We seleted the

following 7 features for 2D motion: variane and Gaussian weighted average of the

x and of the y omponents of the displaement vetors, variane of the vetor polar

angles, angular veloity perpendiular to the �ow and divergene (volume density of

the outward �ux). Compared to 2D motion, 3D motion has one more dimension.

Therefore, the higher manifold for 3D motion has 9 features: variane and Gaussian

weighted average of the x, y and z omponents of the displaement vetors, variane

of the vetor polar angles, angular veloity perpendiular to the �ow and divergene

(volume density of the outward �ux).

Clustering pathes in a non-linear, high dimensional spae is a non trivial task,

whose omplexity an be greatly alleviated by reduing the dimensionality of the

problem using manifold embedding. Many approahes have been proposed in the
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literature (Pearson, 1901; Tenenbaum et al., 2000; Roweis and Saul, 2000; Belkin

and Niyogi, 2003; Zhang and Zha, 2004). However, the non-inhomogeneity and non-

onvexity introdued by the addition of the omposed displaement vetors would

all for a robust non-linear approah apable of preserving the loal properties of the

manifold. For instane, ISOMAP (Tenenbaum et al., 2000) de�nes the onnetivity

of eah data point in the neighbourhood graph as its nearest k Eulidean neighbours

in the high-dimensional spae. This step is vulnerable to short-iruit errors if k is

too large with respet to the manifold struture. Indeed, even a single short-iruit

error an alter many entries in the geodesi distane matrix, whih in turn an lead to

a drastially di�erent (and inorret) low-dimensional embedding (Balasubramanian

and Shwartz, 2002).

We seleted four dimensionality redution/embedding tehniques based on (a)

their appropriateness in light of the nature of our dataset and (b) their omputational

omplexity as the number of pathes in our learning set is very large. They are:

1. Prinipal Component Analysis (PCA) (Pearson, 1901) : It is a dimensionality

redution method in whih a ovariane analysis between fators takes plae.

The original data is remapped into a new oordinate system based on the vari-

ane within the data. PCA applies a mathematial proedure for transforming

a number of orrelated variables into a smaller number of unorrelated prin-

ipal omponents. The �rst prinipal omponent aounts for as muh of the

variability in the data as possible, and eah sueeding omponent aounts for

as muh of the remaining variability as possible.

2. Loally Linear Embedding (LLE) (Roweis and Saul, 2000) : It begins by �nding

a set of the nearest neighbors of eah point. It then omputes a set of weights for

eah point that best desribe the point as a linear ombination of its neighbors.

Finally, it uses an eigenvetor-based optimization tehnique to �nd the low-

dimensional embedding of points, suh that eah point is still desribed with

the same linear ombination of its neighbors.

3. Laplaian Eigenmaps (Belkin and Niyogi, 2003) : It builds a graph from neigh-

borhood information of the data set. Eah data point serves as a node on the

graph and onnetivity between nodes is governed by the proximity of neighbor-

ing points. The graph thus generated an be onsidered as a disrete approx-
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Figure 4.2: From 2D dMRI dataset; 3 �ows between frame #41 to #44 are in the

learning set. A odebook with path size 11 × 11 is reated using the learning algo-

rithm. This �gure shows 30 representative pathes representing 30 lusters of pathes.

Representative pathes are sorted in asending order of the sums of magnitudes of

the vetors in the pathes.
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(a)

(b)

Figure 4.3: (a) Blok diagram of odebook of pathes; (b) �ow �eld olor oding of

deformation �elds, the olor represents the orientation of the vetor and brightness

stands for its magnitude.

imation of the low-dimensional manifold in the high-dimensional spae. Mini-

mization of a ost funtion based on the graph ensures that points lose to eah

other on the manifold are mapped lose to eah other in the low-dimensional

spae, preserving loal distanes.

4. Loal Tangent Spae Alignment (LTSA) (Zhang and Zha, 2004) : it is based

on the intuition that when a manifold is orretly unfolded, all of the tangent

hyperplanes to the manifold will beome aligned. It begins by omputing the

k-nearest neighbors of every point. It omputes the tangent spae at every point

by omputing the d-�rst prinipal omponents in eah loal neighborhood. It

then optimizes to �nd an embedding that aligns the tangent spaes.

Exept for PCA, all other methods are nonlinear.

One embedded in a two dimensional manifold, the feature vetors are lustered

using hierarhial lustering, with the optimal number of lusters determined using

66



the single linkage lustering method. Finally, we ompute representative pathes for

eah luster by averaging all the pathes in that luster.

Figure 4.2 displays the 30 11×11 representative pathes omputed from 3 pairwise

�ows estimated using HS around the heart region in 4 onseutive frames (#41 to

#44) from the dMRI sans of a healthy volunteer breathing normally in a Siemens

1.5T sanner. Representative pathes are sorted in asending order of the sums of

magnitudes of the vetors in the pathes. All leaves at or below a node with height less

than  are grouped into a luster. The pathes suessfully apture both the regular

vertial translations due to respiration and the ontration and dilation movements

of the heart.

4.3 Learning with a ode-book of pathes

Reall that our approah onsists of a training phase where we build a learning set

of intensity and displaement vetor pathes, L = {Il}ba from onseutive images in

a sequene. For eah pair of onseutive images (Il, Il+1)l∈[a,b] in the learning set L,
we �rst estimate the optial �ow (ul,vl) between them with a standard optial �ow

method. We used HS in our experiments. We then ompose the �ows using biubi

interpolation (for 2D images) or tri-ubi interpolation (for 3D images) to estimates

the �ows aross all pairs of images (Il, Im,m>l), onseutive or not. For eah pixel in

eah image Il, we get a set of pathes, whih apture the orrespondenes between

the area of Il around that pixel and the orresponding areas in all subsequent images

Im,m>l.

Given a path in the initial �ow we then restrit ourselves to the pathes in those

lusters whose representative pathes best math the one under onsideration, rather

than onsidering all the pathes in the learning set. This math is estimated using as

a similarity measure the same Gaussian weighted sum of squared di�erenes between

the vetor polar angles in qi and in the representative pathes qm,n with standard

deviation σ that we use for the �ltering: wvector (qi,qm,n) =‖ θ(qi) − θ(qm,n) ‖22,σ.
We then disard those lusters for whih the similarity falls below a hand tuned,

experiment-dependent threshold (see Figure 4.3 for an overview).
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Figure 4.4: MSEs of images registered with LK, degraded LK, learning algorithm

with di�erent data embedding methods.

Table 4.1: Desriptive Statistis (experiment desribed in setion 4.3.1)

Method Dependent Variable Mean Std. Deviation N

1 LK 113.47 33.10 30

2 Degraded LK 161.80 49.92 30

3 PCA 183.17 95.48 30

4 LLE 278.21 85.92 30

5 Laplaian Eigenmaps 144.59 33.74 30

6 LTSA 184.01 101.42 30
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Figure 4.5: The Box and Whisker plot of MSEs of LK, degraded LK, learning al-

gorithms with di�erent data embedding methods (experiment desribed in setion

4.3.1).

4.3.1 Results with the 2-D dMRI Dataset

We applied the learning algorithm with hierarhial lustering and a variety of em-

bedding methods on the 2-D dMRI dataset. The parameters were as follows:

� path radius: r = 5,

� parameter for deay of weight: h = 2 (as desribed in setion 3.4.3, h = (r +

1)/3),

� the angular di�erene is used as a similarity measure

� all the omposed �elds were inluded in learning set,

� inonsisteny oe�ient threshold of 1.15 as the value of the uto� argument in

hierarhial lustering,

� threshold for the seletion of representative pathes: maximum 5 degree of

angular di�erene for eah vetor in a path.

Results are shown in Table F.1. Column 1 shows the trial numbers; detail of trials

an be found in Table 2.1. The MSEs of LK and degraded LK optial �ow algorithms

are given in olumn 2 and 3 respetively. The MSEs for di�erent data embeddings

are given in olumns 4 to 8. The Figure 4.4 shows the MSEs of images registered

with LK, degraded LK, learning algorithm with di�erent data embedding methods.
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Table 4.2: Tests of Within-Subjets E�ets (experiment desribed in setion 4.3.1)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean

Square

F Sig.

Method Spheriity Assumed 469384.89 5 93876.98 35.08 2.13E-23**

Greenhouse-Geisser 469384.89 1.64 285963.51 35.08 3.49E-09**

Huynh-Feldt 469384.89 1.73 271825.52 35.08 1.51E-09**

Lower-bound 469384.89 1.00 469384.89 35.08 1.97E-06**

Error

(Method)

Spheriity Assumed 387996.37 145 2675.84

Greenhouse-Geisser 387996.37 47.60 8151.01

Huynh-Feldt 387996.37 50.08 7748.02

Lower-bound 387996.37 29.00 13379.19

Sig. (* for <.05 and ** for <.01)

We performed a repeated measures ANOVA to ompare the following methods

(rationale for using repeated measures ANOVA is disussed in setion 2.4.3):

� Method 1: LK

� Method 2: Degraded LK

� Method 3: learning approah with PCA as embedding

� Method 4: learning approah with LLE as embedding

� Method 5: learning approah with Laplaian Eigenmaps as embedding

� Method 6: learning approah with LTSA as embedding

Desriptive statistis of this experiment is given in Table 4.1. Figure 4.5 shows the

Box and Whisker plot of MSEs of LK, degraded LK, learning algorithms with di�erent

data embedding methods. Mauhly's test indiates that the assumption of spheriity

has been violated (χ2 (14) = 197.11, p < 0.05) therefore Greenhouse-Geisser orreted

tests are reported (ε = .33). The results show that MSEs are signi�antly a�eted

by the hoie of method (V = 0.95, F (5, 25) = 99.48, p < 0.05.

From the post ho test we an onlude that (see Table 4.2 and Table 4.3):

� The learning algorithm with Laplaian Eigenmaps embedding generates signif-

iantly lower MSEs than both LK (p < .05) and degraded LK (p < .05).
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Table 4.3: Pairwise Comparisons (experiment desribed in setion 4.3.1)

Measure:MSE

1 2 3 4 5 6

1 5.13E-15** 1.60E-04** 3.58E-15** 1.76E-11** 3.19E-04**

2 5.13E-15** 1.96E-01 7.56E-14** 2.02E-03** 2.08E-01*

3 1.60E-04** 1.96E-01 2.88E-06** 2.69E-02* 8.81E-01

4 3.58E-15** 7.56E-14** 2.88E-06** 1.13E-11** 3.72E-06**

5 1.76E-11** 2.02E-03** 2.69E-02* 1.13E-11** 3.48E-02*

6 3.19E-04** 2.08E-01* 8.81E-01 3.72E-06** 3.48E-02*

Sig. (* for <.05 and ** for <.01)

Table 4.4: Desriptive Statistis (experiment desribed in setion 4.3.2)

Method Dependent Variable Mean Std. Deviation N

1 LK 198.34 689.61 400

2 Degraded LK 303.54 1054.97 400

3 PCA 150.50 490.17 400

4 LLE 223.08 739.39 400

5 Laplaian Eigenmaps 147.37 475.26 400

6 LTSA 171.93 566.39 400

� The learning algorithm with Laplaian Eigenmaps generates signi�antly lower

MSEs than the learning algorithm with either PCA (p < .05), LLE (p < .05) or

LTSA (p < .05).

4.3.2 Results with the 3-D Gated Dataset

We repeated the experiment with the 3-D Gated dataset.

Desriptive statistis of this experiment is given in Table 4.1. Figure 4.6 shows

the Box and Whisker plot of MSEs of LK, degraded LK, learning algorithms with

di�erent data embedding methods. Mauhly's test indiates that the assumption of

spheriity has been violated (χ2 (14) = 5960.31, p < 0.01) therefore Greenhouse-

Geisser orreted tests are reported (ε = .260). The results show that MSEs are

signi�antly a�eted by the hoie of methods, V = 0.09, F (5, 395) = 7.71, p < 0.01.

From the post ho test we an onlude that (see Table 4.5 and Table 4.6):
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Figure 4.6: The Box and Whisker plot of MSEs of LK, degraded LK, learning al-

gorithms with di�erent data embedding methods (experiment desribed in setion

4.3.2).

Table 4.5: Tests of Within-Subjets E�ets (experiment desribed in setion 4.3.2)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean

Square

F Sig.

Method Spheriity Assumed 6.90E+06 5 1.38E+06 17.785 2.78E-17**

Greenhouse-Geisser 6.90E+06 1.30 5.30E+06 17.785 3.67E-06**

Huynh-Feldt 6.90E+06 1.30 5.29E+06 17.785 3.60E-06**

Lower-bound 6.90E+06 1.00 6.90E+06 17.785 3.06E-05**

Error

(Method)

Spheriity Assumed 1.55E+08 1995 7.76E+04

Greenhouse-Geisser 1.55E+08 519.35 2.98E+05

Huynh-Feldt 1.55E+08 520.35 2.98E+05

Lower-bound 1.55E+08 399.00 3.88E+05

Sig. (* for <.05 and ** for <.01)

� The learning algorithm with Laplaian Eigenmaps embedding generates signif-

iantly lower MSEs than both LK (p < .01) and degraded LK (p < .01).

� The learning algorithm with Laplaian Eigenmaps generates signi�antly lower

MSEs than the learning algorithm with PCA (p < .05), LLE (p < .01) and

LTSA (p < .01).
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Table 4.6: Pairwise Comparisons (experiment desribed in setion 4.3.2)

Measure: MSE

1 2 3 4 5 6

1 3.00E-05** 2.48E-04** 1.97E-02* 2.05E-04** 1.59E-02*

2 3.00E-05** 8.86E-06** 4.90E-03** 7.30E-06** 4.81E-05**

3 2.48E-04** 8.86E-06** 1.26E-08** 1.09E-02* 6.23E-08**

4 1.97E-02* 4.90E-03** 1.26E-08** 2.54E-08** 7.41E-09**

5 2.05E-04** 7.30E-06** 1.09E-02* 2.54E-08** 6.27E-07**

6 1.59E-02* 4.81E-05** 6.23E-08** 7.41E-09** 6.27E-07**

Sig. (* for <.05 and ** for <.01)

Figure 4.7: MSEs of images registered with learning algorithm with LK, degraded

LK, and learning set of representative pathes only (experiment desribed in setion

4.3.3.1).

4.3.3 Learning Set of Representative Pathes Only

Representative pathes are generated by omputing the averages of all pathes in eah

luster. Therefore, using a learning set with representative pathes only rather than

all the pathes in the learning set would make for a muh faster approah.

Table 4.7: Desriptive Statistis (experiment desribed in setion 4.3.3.1)

Method Dependent Variable Mean Std. Deviation N

1 LK 113.47 33.10 30

2 Degraded LK 161.80 49.92 30

3 With only RP 263.78 164.65 30
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Figure 4.8: The Box and Whisker plot of MSEs of LK, degraded LK and the learning

algorithms with a learning set of representative pathes only ; rather than improv-

ing performane, the inauray inreased highly (experiment desribed in setion

4.3.3.1).

4.3.3.1 Results with the 2-D dMRI Dataset

Table H.1 shows the results. Column 1 shows the trial numbers; detail of trials an

be found in Table 2.1. The MSEs of LK and degraded LK optial �ow algorithms are

given in olumn 2 and 3 respetively. MSEs of learning algorithm with learning set

of representative pathes only are given in olumn 4. We used the learning algorithm

with ode-book approah. The Figure 4.7 shows the MSEs of images registered with

LK, degraded LK and learning algorithm with a learning set of representative pathes

only. We used the following parameters:

� path radius: r = 5,

� parameter for deay of weight: h = 2 (as desribed in setion 3.4.3, h = (r +

1)/3),

� the angular di�erene is used as a similarity measure

� all the omposed �elds were inluded in learning set,

� ode-book of pathes: 2-D Laplaian eigenmaps with a neighborhood of size 6

for the embedding of the feature vetor and hierarhial lustering
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� inonsisteny oe�ient threshold of 1.15 as the value of the uto� argument in

hierarhial lustering,

� threshold for the seletion of representative pathes: maximum 5 degree of

angular di�erene for eah vetor in a path.

We performed a repeated measures ANOVA to ompare the di�erent methods (ratio-

nale for using repeated measures ANOVA is disussed in setion 2.4.3):

� Method 1: LK

� Method 2: Degraded LK

� Method 3: With only RP

Desriptive statistis of this experiment is given in Table 4.7. Figure 4.8 shows the

Box and Whisker plot of MSEs of LK, degraded LK and the learning algorithms

with a learning set of representative pathes only . Mauhly's test indiates that

the assumption of spheriity has been violated (χ2 (2) = 99.39, p < 0.05) therefore

Greenhouse-Geisser orreted tests are reported (ε = .51). The results show that

MSEs are signi�antly a�eted by learning set with representative pathes, V = 0.91,

F (2, 28) = 147.55, p < 0.05.

From the post ho test (see Table 4.8 and Table 4.9) we an onlude that the

learning algorithm with learning set of representative pathes only generates signi�-

antly higher MSEs than both LK (p < .05) and degraded LK (p < .05). In fat, the

results are so bad that we did not ompare it with the learning algorithm.

4.3.3.2 Results with 3-D Gated CT Dataset

We repeated the experiment with the 3-D gated CT dataset. Results are in the table

in Appendix I.1 shows the results.
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Table 4.8: Tests of Within-Subjets E�ets (experiment desribed in setion 4.3.3.1)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean

Square

F Sig.

Method Spheriity Assumed

3.53E+05

2

1.77E+05

17.81 9.34E-07**

Greenhouse-Geisser

3.53E+05

1.01

3.48E+05

17.81 2.03E-04**

Huynh-Feldt

3.53E+05

1.02

3.48E+05

17.81 2.01E-04**

Lower-bound

3.53E+05

1.00

3.53E+05

17.81 2.19E-04**

Error

(Method)

Spheriity Assumed

5.75E+05

58

9.92E+03

Greenhouse-Geisser

5.75E+05

29.42

1.96E+04

Huynh-Feldt

5.75E+05

29.47

1.95E+04

Lower-bound

5.75E+05

29.00

1.98E+04

Sig. (* for <.05 and ** for <.01)

Table 4.9: Pairwise Comparisons (experiment desribed in setion 4.3.3.1)

Measure:MSE

1 2 3

1 5.13E-15** 3.65E-05**

2 5.13E-15** 3.38E-03**

3 3.65E-05** 3.38E-03**

Sig. (* for <.05 and ** for <.01)

Table 4.10: Desriptive Statistis (experiment desribed in setion 4.3.3.2)

Method Dependent Variable Mean Std. Deviation N

1 LK 198.34 689.61 400

2 Degraded LK 303.54 1054.97 400

3 With only RP 357.29 1008.51 400
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Figure 4.9: The Box and Whisker plot of MSEs of LK, degraded LK and the learning

algorithms with a learning set of representative pathes only (experiment desribed

in setion 4.3.3.2).

Desriptive statistis of this experiment is given in Table 4.10. The Figure 4.9

shows the Box and Whisker plot of MSEs of LK, degraded LK and the learning algo-

rithms with a learning set of representative pathes only . Mauhly's test indiates

that the assumption of spheriity has been violated (χ2 (2) = 42.36, p < 0.01) there-

fore Greenhouse-Geisser orreted tests are reported (ε = .90). The results show that

MSEs are signi�antly a�eted by learning set with representative pathes, V = 0.14,

F (2, 398) = 32.46, p < 0.01.

From the post ho test we an onlude that (see Table 4.11 and Table 4.12):

� The learning algorithmwith learning set of representative pathes only generates

signi�antly higher MSEs than LK (p < .01).

� The learning algorithmwith learning set of representative pathes only generates

higher MSEs ompared to degraded LK, but not signi�antly so (p < .05).

4.3.4 Disussion

The learning set of displaement �elds generates a highly non-onvex high-dimensional

feature spae. From a theoretial standpoint, linear embedding methods suh as PCA,
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Table 4.11: Tests of Within-Subjets E�ets (experiment desribed in setion 4.3.3.2)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean

Square

F Sig.

Method Spheriity Assumed 5.23E+06 2 2.61E+06 22.20 4.13E-10**

Greenhouse-Geisser 5.23E+06 1.82 2.88E+06 22.20 2.14E-09**

Huynh-Feldt 5.23E+06 1.82 2.87E+06 22.20 2.00E-09**

Lower-bound 5.23E+06 1.00 5.23E+06 22.20 3.39E-06**

Error

(Method)

Spheriity Assumed 9.40E+07 798 1.18E+05

Greenhouse-Geisser 9.40E+07 724.82 1.30E+05

Huynh-Feldt 9.40E+07 727.95 1.29E+05

Lower-bound 9.40E+07 399.00 2.36E+05

Sig. (* for <.05 and ** for <.01)

do not preserve the loal properties of the high-dimensional manifold. Unsurprisingly,

the learning algorithm with PCA as an embedding tehnique did not then deliver

better performane than that of degraded LK.

By inluding all possible vetor ompositions in our learning set, we greatly in-

rease the number of vetor �elds in the higher dimensional manifold (7 dimensions

for 2D motion and 9 dimensions for 3D motion). Consequently, in some trials, LLE

ould not suessfully onstrut an e�ient lower dimensional manifold. LLE was

then assoiated with the highest MSEs among the embedding methods.

Like LLE, LTSA also performs ine�iently against the learning set with omposed

vetor �elds. Moreover, in our learning set, we have di�erent patterns of motions (like

ardia motion, respiratory motion et.). So, high dimensional manifolds may onsist

of several disjoint omponents where several of the smallest eigenvalues are about the

same magnitude. Therefore, low dimensional manifolds onstruted by LTSA may

not be aurate.

Laplaian Eigenmaps shows the best result. We know that Laplaian Eigenmaps

embedding is non-linear and preserves loal properties of the manifold. It an also

handle non-onvex features, urvatures and orners of a manifold. In that sense, it is

more robust than the other three embedding methods.

In all ases, learning algorithm with only representative pathes in the learning set

annot improve auray of registration. This is beause the representative pathes

are atually the average of all pathes in a luster. Many �ne patterns of motion are

missing in these representative pathes.
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Table 4.12: Pairwise Comparisons (experiment desribed in setion 4.3.3.2)

Measure MSE

1 2 3

1 3.00E-05** 4.77E-14**

2 3.00E-05** 4.77E-02*

3 4.77E-14** 4.77E-02*

Sig. (* for <.05 and ** for <.01)

4.4 Conlusion

This hapter desribed the onept of ode-book of pathes, and the methods we

seleted for its generation. In partiular, we disussed and ompared the performanes

of a variety of manifold embedding approahes. The following hapter will disuss a

number of re�nements.
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Chapter 5

Improving the Flow

5.1 Introdution

Reall that in the fashion of the non loal means, our objetive is to take advantage of

the high degree of redundany of motion aross images in a sequene. To improve an

initial �ow, we replae the displaement vetors at the enter of pathes by a Gaussian

weighted average of the displaement vetors at the enter of similar pathes in a

learning set.

Given a path in the initial �ow at position (m,n), rather than onsider the set of

all pathes in the learning set, C =
{

{(xi, yi),qi}
}

i∈I
, we restrit ourselves to pathes

in those lusters whose representative pathes best math the one under onsideration.

Let J ⊂ I be the indies of the seleted pathes.

So far, we have used as a similarity measure the Gaussian weighted sum of squared

di�erenes between the vetor polar angles in qi and in qm,n with standard deviation

σ: wvector (qi,qm,n) =‖ θ(qi)− θ(qm,n) ‖2σ.
In this hapter we disuss the e�ets of two similarity distanes in the learning

algorithm, based on the spatial distane between pathes (setion 5.2) and on intensity

di�erenes (5.3). We also explore the e�et of iteratively applying the algorithm. In

the previous hapters, we performed the experiments on 2D and 3D medial images,

for whih we did not have ground truth �ows. Here, we use the MPI-Sintel dataset, for

whih ground truth �ows are available, and ompare the performane of our approah,

both qualitatively and quantitatively, against those of state-of-the-art optial �ow

methods.
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5.2 Spatial Distane as an Additional Similarity Mea-

sure

We note that pathes in the viinity of eah other are more likely to belong to the

same moving objet and, onsequently, to exhibit the same motion, than pathes

further apart. For instane, pathes in the neighbourhood of the heart exhibit a

repetitive motion in syn with ardia motion, one very di�erent, in terms of phase,

frequeny and diretion, from those pathes in the neighbourhood of the diaphragm.

This motivated us to introdue spatial distane as an additional similarity measure

between pathes in equation 3.2:

(um,n, vm,n) =
1

Z

∑

i∈J

e−
(wvector

σvector )
γvector

×(wdistance
σdistance

)
γdistance

h2 (ui, vi) (5.1)

Where wvector (qi,qm,n) =‖ θ(qi)−θ(qm,n) ‖22,σ is the similarity measure the same

Gaussian weighted sum of squared di�erenes between the vetor polar angles in qi and

in the representative pathes qm,n with standard deviation σ. wdistance

(

(xi, yi), (m,n)
)

is the Eulidean distane between the enters of both pathes. γvectorandγdistance on-

trol the relative ontributions of the weights.

We evaluate below the performane of the learning algorithm without and with

spatial distane as a similarity measure.

5.2.1 Results with the 2-D dMRI Dataset

We �rst evaluated the in�uene of spatial distane on our 2-D MRI dataset. For our

learning approah, we used the following parameters:

� path radius: r = 5,

� parameter for deay of weight: h = 2 (as desribed in setion 3.4.3, h = (r +

1)/3), γvector = 1 and γdistance = 1 ,

� the angular di�erene is used as a similarity measure

� all the omposed �elds were inluded in learning set,
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Figure 5.1: MSEs of images registered using LK, degraded LK and learning algorithm

with and without heuristi weight of spatial distane (experiment desribed in setion

5.2.1).

Table 5.1: Desriptive Statistis (experiment desribed in setion 5.2.1)

Method Dependent Variable Mean Std. Deviation N

1 LK 113.47 33.10 30

2 Degraded LK 161.80 49.92 30

3 Without weight of spatial distane 144.59 33.74 30

4 With weight of spatial distane 123.41 36.82 30

� ode-book of pathes: 2-D Laplaian eigenmaps with a neighborhood of size 6

for the embedding of the feature vetor and hierarhial lustering

� inonsisteny oe�ient threshold of 1.15 as the value of the uto� argument in

hierarhial lustering,

� threshold for the seletion of representative pathes: maximum 5 degree of

angular di�erene for eah vetor in a path.

Results are shown in Table J.1. As per the previous hapters, olumn 1 shows

the trial numbers with detail of trials in Table 2.1. Figure 5.1 shows the MSEs of
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Figure 5.2: The Box and Whisker plot of MSEs of LK, degraded LK and learning al-

gorithms with and without heuristi weight of spatial distane (experiment desribed

in setion 5.2.1).

images registered using LK, degraded LK and learning algorithm with and without

heuristi weight of spatial distane. The MSEs are omputed based on the sum of

squared di�erenes between the intensities of the target and registered images. The

MSEs of LK and degraded LK optial �ow algorithms are given in olumn 2 and 3

respetively. The MSEs of the learning algorithm without and with spatial distane

are given in olumns 4 and 5 respetively.

We performed a repeated measures ANOVA to ompare the performanes of the

di�erent approahes (rationale for using repeated measures ANOVA is disussed in

setion 2.4.3):

� Method 1: LK

� Method 2: Degraded LK

� Method 3: Learning algorithm without weight of spatial distane

� Method 4: Learning algorithm without weight of spatial distane

Desriptive statistis of this experiment is given in Table 5.1. Figure 5.2 shows the

Box and Whisker plot of MSEs of LK, degraded LK and learning algorithms with

and without heuristi weight of spatial distane. Mauhly's test indiates that the

assumption of spheriity has been violated (χ2 (5) = 49.69, p < 0.05) therefore we

report Greenhouse-Geisser orreted tests (ε = .50). The results show that the MSEs

are signi�antly a�eted by the hoie of method (V = 0.96, F (3, 27) = 243.63,

p < 0.05.
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Table 5.2: Tests of Within-Subjets E�ets (experiment desribed in setion 5.2.1)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean Square F Sig.

Method Spheriity Assumed 4.22E+04 3 1.41E+04 65.95 2.46E-22**

Greenhouse-Geisser 4.22E+04 1.51 2.80E+04 65.95 2.25E-12**

Huynh-Feldt 4.22E+04 1.57 2.68E+04 65.95 8.27E-13**

Lower-bound 4.22E+04 1.00 4.22E+04 65.95 5.90E-09**

Error

(Method)

Spheriity Assumed 1.85E+04 87 213.10

Greenhouse-Geisser 1.85E+04 43.74 423.82

Huynh-Feldt 1.85E+04 45.63 406.34

Lower-bound 1.85E+04 29.00 639.29

Sig. (* for <.05 and ** for <.01)

Table 5.3: Pairwise Comparisons (experiment desribed in setion 5.2.1)

Measure: MSE

1 2 3 4

1 5.13E-15** 1.76E-11** 6.35E-03**

2 5.13E-15** 2.02E-03** 2.31E-08**

3 1.76E-11** 2.02E-03** 8.71E-13**

4 6.35E-03** 2.31E-08** 8.71E-13**

Sig. (* for <.05 and ** for <.01)

From the post ho test we onlude that (see Table 5.2 and Table 5.3):

� The learning algorithm with spatial distane as an additional similarity mea-

sure generated signi�antly lower MSEs than LK (p < .05) and degraded LK

(p < .05).

� The use of spatial distane signi�antly improved the performane of the learn-

ing algorithm in terms of MSEs (p < .05).

5.2.2 Results with the 3-D Gated CT Dataset

We also evaluated the in�uene of spatial distane on our 3-D gated CT dataset, with

the same parameters as above. The table in Appendix K.1 shows the results.
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Table 5.4: Desriptive Statistis (experiment desribed in setion 5.2.2)

Method Dependent Variable Mean Std. Deviation N

1 LK 198.34 689.61 400

2 Degraded LK 303.54 1054.97 400

3 Without weight of spatial distane 147.37 475.26 400

4 With weight of spatial distane 145.33 475.28 400

Figure 5.3: The Box and Whisker plot of MSEs of LK, degraded LK and learning al-

gorithms with and without heuristi weight of spatial distane (experiment desribed

in setion 5.2.2).
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Table 5.5: Tests of Within-Subjets E�ets (experiment desribed in setion 5.2.2)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean Square F Sig.

Method Spheriity Assumed 6.59E+06 3 2.20E+06 19.66 1.92E-12**

Greenhouse-Geisser 6.59E+06 1.13 5.84E+06 19.66 4.35E-06**

Huynh-Feldt 6.59E+06 1.13 5.84E+06 19.66 4.32E-06**

Lower-bound 6.59E+06 1.00 6.59E+06 19.66 1.20E-05**

Error

(Method)

Spheriity Assumed 1.34E+08 1197 1.12E+05

Greenhouse-Geisser 1.34E+08 450.09 2.97E+05

Huynh-Feldt 1.34E+08 450.49 2.97E+05

Lower-bound 1.34E+08 399.00 3.35E+05

Sig. (* for <.05 and ** for <.01)

We performed a repeated measures ANOVA to ompare the performanes of the

same approahes as those desribed in the previous setion (rationale for using re-

peated measures ANOVA is disussed in setion 2.4.3).

Desriptive statistis of this experiment is given in Table 5.4. Figure 5.3 shows

the Box and Whisker plot of MSEs of LK, degraded LK and learning algorithms with

and without heuristi weight of spatial distane. Mauhly's test indiates that the

assumption of spheriity has been violated (χ2 (5) = 5078.87, p < 0.01) therefore

Greenhouse-Geisser orreted tests are reported (ε = 2.85E − 06). The results show

that MSEs are signi�antly a�eted by the hoie of method (V = 0.78, F (3, 397) =

459.29, p < 0.01.

From the post ho test we onlude that (see Table 5.5 and Table 5.6):

� The learning algorithm with spatial distane as an additional similarity mea-

sure generated signi�antly lower MSEs than LK (p < .01) and degraded LK

(p < .01).

� The use of spatial distane signi�antly improved the performane of the learn-

ing algorithm in terms of MSEs (p < .01).
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Table 5.6: Pairwise Comparisons (experiment desribed in setion 5.2.2)

Measure: MSE

1 2 3 4

1 3.00E-05** 2.05E-04** 1.14E-04**

2 3.00E-05** 7.30E-06** 5.56E-06**

3 2.05E-04** 7.30E-06** 9.91E-129**

4 1.14E-04** 5.56E-06** 9.91E-129**

Sig. (* for <.05 and ** for <.01)

Figure 5.4: Similar motion in di�erent spatial parts of a deformation �eld.

5.2.3 Disussion

These results suggest that the addition of spatial distane improves performanes.

Indeed, similar motions tend to our in the same spatial area. For instane, in

our 2-D dMRI dataset, respiratory motion around the diaphragm produes pathes

with very similar vetors in the lower part of eah deformation �eld whereas ardia

motion produes similar pathes around the middle part of those same �elds (see

regions highlighted in red on Figure 5.4). Obviously, we do not want to onsider

similar pathes indisriminately. For an example, we may not want to ombine similar

pathes of vetors for motion of diaphragm with ardia motion. When we use spatial

distane, we atually prioritize vetors that are in a loser neighborhood.
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5.3 Intensity Di�erene as an Additional Similarity

Measure

We further note that pathes with similar intensity patterns are more likely to or-

respond to the same moving objets than pathes with di�erent intensity patterns,

and that a moving objet in a sequene is likely to exhibit similar motion aross on-

seutive images. This motivated us to introdue intensity di�erene as an additional

similarity measure between pathes in equation 5.1:

(um,n, vm,n) =
1

Z

∑

i∈J

e−
(wvector

σvector )
γvector

×(wdistance
σdistance )

γdistance
×

(

wintensity
σintensity

)γintensity

h2 (ui, vi) (5.2)

Where wvector (qi,qm,n) =‖ θ(qi)−θ(qm,n) ‖22,σ is the similarity measure the same

Gaussian weighted sum of squared di�erenes between the vetor polar angles in

qi and in the representative pathes qm,n with standard deviation σ . We use for

wintensity (pi,pm,n) the Gaussian weighted sum of squared di�erenes between both

matries of intensities. wdistance

(

(xi, yi), (m,n)
)

is the Eulidean distane between

the enters of both pathes. γvector, γdistance and γintensity ontrol the relative on-

tributions of the weights.

We evaluate below the performane of the learning algorithm without and with

intensity distane as an similarity measure.

5.3.1 Results with the 2-D dMRI Dataset

We evaluated the in�uene of intensity di�erene on our 2-D dMRI dataset and the

same parameters as in Setion 5.2 above. Results are shown in Table L.1. Column

1 shows the trial numbers; detail of trials an be found in Table 2.1. Figure 5.5

shows the MSEs of images registered using LK, degraded LK and learning algorithm

with and without heuristi weight of intensity. The MSEs of LK and degraded LK

optial �ow algorithms are given in olumn 2 and 3 respetively. The MSEs of the

learning algorithm without and with intensity di�erene are given in olumns 4 and

5 respetively. For our learning approah, we used the following parameters:

� path radius: r = 5,
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Figure 5.5: MSEs of images registered using LK, degraded LK and learning algorithm

with and without heuristi weight of intensity (experiment desribed in setion 5.3).

� parameter for deay of weight: h = 2 (as desribed in setion 3.4.3, h = (r +

1)/3), γvector = 1, γdistance = 1 and γintensity = 1

� the angular di�erene and heuristi weight of spatial distane are used as a

similarity measure

� all the omposed �elds were inluded in learning set,

� ode-book of pathes: 2-D Laplaian eigenmaps with a neighborhood of size 6

for the embedding of the feature vetor and hierarhial lustering

� inonsisteny oe�ient threshold of 1.15 as the value of the uto� argument in

hierarhial lustering,

� threshold for the seletion of representative pathes: maximum 5 degree of

angular di�erene for eah vetor in a path.
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Table 5.7: Desriptive Statistis (experiment desribed in setion 5.3)

Method Dependent Variable Mean Std. Deviation N

1 LK 113.47 33.10 30

2 Degraded LK 161.80 49.92 30

3 Without weight of intensity 111.32 34.59 30

4 With weight of intensity 123.41 36.82 30

Figure 5.6: The Box and Whisker plot of MSEs of LK, degraded LK and learning

algorithms with and without heuristi weight of intensity (experiment desribed in

setion 5.3).
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We performed a repeated measures ANOVA to ompare the performanes of the

di�erent approahes (rationale for using repeated measures ANOVA is disussed in

setion 2.4.3):

� Method 1: LK

� Method 2: Degraded LK

� Method 3: Learning algorithm without intensity di�erene as an similarity mea-

sure

� Method 4: Learning algorithm with intensity di�erene as an additional simi-

larity measure

Desriptive statistis of this experiment is given in Table 5.7. Figure 5.6 shows the

Box and Whisker plot of MSEs of LK, degraded LK and learning algorithms with and

without heuristi weight of intensity. Mauhly's test indiates that the assumption

of spheriity has been violated (χ2 (5) = 66.88, p < 0.05) therefore Greenhouse-

Geisser orreted tests are reported (ε = .55). The results show that the MSEs are

signi�antly a�eted by the hoie of method (V = 0.92, F (3, 27) = 97.53, p < 0.05.

From the post ho test we onlude that (see Table 5.8 and Table 5.9):

� The learning algorithm with intensity di�erene as an additional similarity mea-

sure generated signi�antly lower MSEs than LK (p < .05) and degraded LK

(p < .05).

� The use of intensity di�erene signi�antly improved the performane of the

learning algorithm in terms of MSEs (p < .05).

5.3.2 Disussion

These results suggest that the learning algorithm with heuristi weight of intensity

shows better performane than learning algorithm without heuristi weight of inten-

sity. In partiular, it improves the �ow estimation of motion around the boundary

of strutures in the images. A moving objet may have di�erent intensity ompared

to the environment around it. But, the estimated �ow around the boundary of that
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Table 5.8: Tests of Within-Subjets E�ets (experiment desribed in setion 5.3)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean Square F Sig.

Method Spheriity Assumed 4.96E+04 3 1.65E+04 95.23 2.16E-27**

Greenhouse-Geisser 4.96E+04 1.65 3.00E+04 95.23 3.81E-16**

Huynh-Feldt 4.96E+04 1.74 2.85E+04 95.23 7.11E-17**

Lower-bound 4.96E+04 1.00 4.96E+04 95.23 1.15E-10**

Error

(Method)

Spheriity Assumed 1.51E+04 87 173.48

Greenhouse-Geisser 1.51E+04 47.93 314.88

Huynh-Feldt 1.51E+04 50.46 299.10

Lower-bound 1.51E+04 29.00 520.43

Sig. (* for <.05 and ** for <.01)

Table 5.9: Pairwise Comparisons (experiment desribed in setion 5.3)

Measure: MSE

1 2 3 4

1 5.13E-15** 1.35E-02* 6.35E-03**

2 5.13E-15** 7.14E-16** 2.31E-08**

3 1.35E-02* 7.14E-16** 9.93E-04**

4 6.35E-03** 2.31E-08** 9.93E-04**

Sig. (* for <.05 and ** for <.01)
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Figure 5.7: MSEs of images registered using LK, degraded LK and learning algorithm

with one iteration and two iterations (experiment desribed in setion 5.4.1).

moving objet may beome less aurate due to the regularization of �ow. With this

heuristi weight, the learning algorithm dereases weight of the �ltered �ow when

it �nds higher intensity di�erene at the boundary. Consequently, the �ltered �ow

beomes more aurate.

5.4 Iterating the Learning Algorithm

We observe that many registration approahes are iterative in nature, with the esti-

mated �ow being improved at eah step. Consequently, we wanted to hek whether

suessively applying the learning algorithm would also improve the overall perfor-

mane. The idea is to use the learned �ow �eld (the one estimated by the learning

algorithm) from the �rst iteration as an input for the seond iteration.
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Table 5.10: Desriptive Statistis (experiment desribed in setion 5.4.1)

Method Dependent Variable Mean Std. Deviation N

1 LK 113.47 33.10 30

2 Degraded LK 161.80 49.92 30

3 With one iteration 111.32 34.59 30

4 With two iterations 111.65 34.95 30

Figure 5.8: The Box and Whisker plot of MSEs of LK, degraded LK and learning

algorithms with and without iteration (experiment desribed in setion 5.4.1).
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5.4.1 Results with the 2-D dMRI Dataset

For the learning algorithm, we used all three path similarity measures: vetor angular

di�erene, spatial distane and intensity di�erene, with the same parameters as in

the previous experiments.

Table M.1 shows the results. Column 1 shows the trial numbers; detail of trials

an be found in Table 2.1. Figure 5.7 MSEs of images registered using LK, degraded

LK and learning algorithm with one iteration and two iterations. The MSEs of LK

and degraded LK optial �ow algorithms are given in olumn 2 and 3 respetively.

MSEs of learning algorithm with one and two iterations are given in olumns 4 and

5 respetively. For our learning approah, we used the following parameters:

� path radius: r = 5,

� parameter for deay of weight: h = 2 (as desribed in setion 3.4.3, h = (r +

1)/3), γvector = 1, γdistance = 1 and γintensity = 1

� the angular di�erene, heuristi weight of spatial distane and heuristi weight

of intensity re used as a similarity measure

� all the omposed �elds were inluded in learning set,

� ode-book of pathes: 2-D Laplaian eigenmaps with a neighborhood of size 6

for the embedding of the feature vetor and hierarhial lustering

� inonsisteny oe�ient threshold of 1.15 as the value of the uto� argument in

hierarhial lustering,

� threshold for the seletion of representative pathes: maximum 5 degree of

angular di�erene for eah vetor in a path.

We performed a repeated measures ANOVA to ompare the performanes of the

di�erent approahes (rationale for using repeated measures ANOVA is disussed in

setion 2.4.3):

� Method 1: LK

� Method 2: Degraded LK

� Method 3: Learning algorithm with one iteration

� Method 4: Learning algorithm with two iterations
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Table 5.11: Tests of Within-Subjets E�ets (experiment desribed in setion 5.4.1)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean

Square

F Sig.

Method Spheriity Assumed 5.56E+04 3 1.85E+04 224.43 7.88E-41**

Greenhouse-Geisser 5.56E+04 1.20 4.64E+04 224.43 9.69E-18**

Huynh-Feldt 5.56E+04 1.22 4.55E+04 224.43 4.93E-18**

Lower-bound 5.56E+04 1.00 5.56E+04 224.43 3.47E-15**

Error

(Method)

Spheriity Assumed 7.18E+03 87 82.52

Greenhouse-Geisser 7.18E+03 34.75 206.56

Huynh-Feldt 7.18E+03 35.42 202.70

Lower-bound 7.18E+03 29.00 247.55

Sig. (* for <.05 and ** for <.01)

Table 5.12: Pairwise Comparisons (experiment desribed in setion 5.4.1)

Measure: MSE

1 2 3 4

1 5.13E-15** 1.35E-02* 9.38E-02

2 5.13E-15** 7.14E-16** 7.87E-16**

3 1.35E-02* 7.14E-16** 6.33E-01

4 9.38E-02 7.87E-16** 6.33E-01

Sig. (* for <.05 and ** for <.01)

Desriptive statistis of this experiment is given in Table 5.10. Figure 5.8 shows the

Box and Whisker plot of MSEs of LK, degraded LK and learning algorithms with

and without iteration. Mauhly's test indiates that the assumption of spheriity has

been violated (χ2 (5) = 91.65, p < 0.05) therefore Greenhouse-Geisser orreted tests

are reported (ε = .4). The results show that MSEs are signi�antly a�eted by the

hoie of method ( V = 0.90, F (3, 27) = 81.59, p < 0.05.

From the post ho test we onlude that (see Table 5.11 and Table 5.12):

� The learning algorithm with heuristi weight of intensity generates signi�antly

lower MSEs than both LK (p < .05) and degraded LK (p < .05).

� The learning algorithmwith two iterations generates more MSEs than the learn-

ing algorithm with one iteration, but statistially it is not signi�ant (p > .05).

96



Table 5.13: Desriptive Statistis (experiment desribed in setion 5.4.2)

Method Dependent Variable Mean Std. Deviation N

1 LK 198.34 689.61 400

2 Degraded LK 303.54 1054.97 400

3 Learning algorithm with one iteration 143.88 475.23 400

4 Learning algorithm with two iterations 143.75 474.67 400

Figure 5.9: The Box and Whisker plot of MSEs of LK, degraded LK and learning

algorithms with and without iteration (experiment desribed in setion 5.4.2).

5.4.2 Results with the 3-D Gated CT Dataset

We also evaluated the in�uene of iterating the learning algorithm on our 3-D gated

CT dataset, with the same parameters as above. The table in Appendix N.1 shows

the results. Column 1 shows the trial numbers; detail of trials an be found in the

table in Appendix A.1.

We performed a repeated measures ANOVA to ompare the same methods (ra-

tionale for using repeated measures ANOVA is disussed in setion 2.4.3).

Desriptive statistis of this experiment is given in Table 5.15. Figure 5.9 shows

the Box and Whisker plot of MSEs of LK, degraded LK and learning algorithms with

and without iteration. Mauhly's test indiates that the assumption of spheriity has
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Table 5.14: Tests of Within-Subjets E�ets (experiment desribed in setion 5.4.2)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean

Square

F Sig.

Method Spheriity Assumed 6.8E6 3 2267870 20.248 <.001**

Greenhouse-Geisser 6.8E6 1.129 6025002 20.248 <.001**

Huynh-Feldt 6.8E6 1.130 6019584 20.248 <.001**

Lower-bound 6.8E6 1.000 6803609 20.248 <.001**

Error

(Method)

Spheriity Assumed 1.34E8 1197 112003

Greenhouse-Geisser 1.34E8 450.56 297555

Huynh-Feldt 1.34E8 450.97 297288

Lower-bound 1.34E8 399.00 336008

Sig. (* for <.05 and ** for <.01)

Table 5.15: Pairwise Comparisons (experiment desribed in setion 5.4.2)

Measure MSE

1 2 3 4

1 <.001** <.001** <.001**

2 <.001** <.001** <.001**

3 <.001** <.001** .695

4 <.001** <.001** .695

Sig. (* for <.05 and ** for <.01)

been violated (χ2 (5) = 3697, p < 0.01) therefore Greenhouse-Geisser orreted tests

are reported (ε = .376). The results show that the MSEs are signi�antly a�eted by

the hoie of method (V = 0.053, F (3, 397) = 7.379, p < 0.01.

From the post ho test we onlude that (see Table 5.14 and Table 5.15):

� The learning algorithm with iteration generates signi�antly lower MSEs than

both LK (p < .01) and degraded LK (p < .01).

� The learning algorithm with two iterations has lower MSEs than the learning

algorithm with one iteration approah, but statistially it is not signi�ant

(p > .05).
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(a) (b)

Figure 5.10: Over-regularization of �ow �eld due to iteration; (a) initial learned �ow

�eld before iteration; (b) over-smoothed �ow after iteration.

5.4.3 Disussion

These results suggest that iterating the learning algorithm does not signi�antly im-

prove performanes. This might be beause we apply the learning algorithm on the

same learning set in the seond iteration whih results in an over-regularization of

the �ow �elds. Figure 5.10 (a) shows a path around the heart of the initial learned

�ow �eld between frame #105 and #106. Figure 5.10 (b) show the same path after

seond iteration. Clear we an observe over-smoothing ompared to the initial learned

�ow �eld.

5.5 The Full Monty

Informed by the results from the previous experiments, we formulated the best learn-

ing approah, whih ombines all previously introdued similarity measures, the use

of a ode-book/representative pathes system and only one iteration. Equation 3.2

beomes:

(um,n, vm,n) =
1

Z

∑

i∈J

e−
(wvector

σvector )
γvector

×(wdistance
σdistance

)
γdistance

×

(

wintensity
σintensity

)γintensity

h2 (ui, vi) (5.3)

Where wvector (qi,qm,n) =‖ θ(qi)−θ(qm,n) ‖22,σ is the similarity measure the same

Gaussian weighted sum of squared di�erenes between the vetor polar angles in qi and

in the representative pathes qm,n with standard deviation σ . wdistance

(

(xi, yi), (m,n)
)

is the Eulidean distane between the enters of both pathes. We use for wintensity (pi,pm,n)
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the Gaussian weighted sum of squared di�erenes between both matries of intensities.

γvector,γdistance and γintensity ontrol the relative ontributions of the weights.

The pseudo-ode of the implementation of equation 5.3 is given in Algorithm 5.1.

We evaluated performanes on sequenes from the MPI-Sintel dataset (see setion

2.3.3 for details). This dataset exhibits both larger motions and inreased omplexity

(suh as motion and defous blur, atmospheri e�ets or speular surfaes), whih

makes it a lot more hallenging. We ompared the proposed approah against the

lassi, oarse-to-�ne Horn and Shunk tehnique (HS) and three reent, state-of-the-

art approahes: Sun et al.'s median �ltering algorithm (SMF) (for detail see setion

2.1.4), Large Displaement Optial Flow (LDOF) (for detail see setion 2.1.5) and

DeepFlow (for detail see setion 2.1.6). We used publily available implementations

for all of them, with default settings.

We seleted 93 trials from 8 sequenes (Alley1, Ambush7, Bamboo1, Bamboo2,

Market2, Market6, Shaman2 and Shaman3) based on their exhibiting large motions

of small strutures, sine it is the fous of this thesis. In order to ensure large dis-

plaements, we piked non-onseutive frames for the test ases with the immediately

preeding three frames in the learning set, i.e. two proeeding pairwise �ow �elds and

their vetor omposition. The omplete trial table is given in setion O.1.

Sine ground truth �ows are available for MPI-Sintel, we used AAE and AEPE

to measure performanes (see setion 2.4 for details). We omputed the vetor om-

position of the ground truth �ows sine we are using non-onseutive frames in our

test ases. Interestingly we ould not have used MSEs here. This is for essentially

two reasons:

1. The MPI-Sintel dataset onsists of omplex, dynami sequenes where new ob-

jets may suddenly appear, suh as large building strutures, new haraters

et. Consequently, the target image in a trial may be substantially di�erent

from the soure image. Therefore, omputing the MSEs of intensity di�erenes

between the registered soure image and the target image may yield arti�ially

high values, whih would not be so indiative of the quality of the estimated

�ow.

2. The intensity of objets may be altered by shading, whih would, again, indue

arti�ially high MSE values.
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Algorithm 5.1 Pseudo Code of Learning Algorithm with Improved Flow

funtion [ learned_�ow_�eld ℄ = learningAlgorithm( initial_�ow, learning_set,

threshold)

% initial_�ow : the initially estimated �ow �eld omputed ...

% using an standard opti �ow algorithm suh as HS

% learning_set : the set of all deformation �elds in a priori

% threshold : used for seleting the representative pathes

% there are three similarity measures used in this algorithm; they are ...

% similarity_vetor, similarity_spatial_distane and similarity_intensity

% use Hierarhial lustering algorithm; output idx is the set of indies of the lusters

idx=luser(learning_set);

ompute representativePathes by omputing the average path of eah luster

loop_1 : for eah index (i,j) in the initial_�ow

{

% initialization of the weight of similarity measures for eah path

sum_of_weight=0;

ompute the similarity_vetor for (i,j)

loop_2 : for eah path in eah luster in idx ...

that satisfy the threshold on similarity_measure_vetor

{

ompute the similarity_spatial_distane

ompute the similarity_intensity

ompute the overall_weight_of_similarity_of_this_path ...

using the equation 5.3

sum_of_weight=sum_of_weight + ...

overall_weight_of_similarity_of_this_path

weighted_vetor=weighted_vetor + ...

overall_weight_of_similarity_of_this_path × ...

vetor_at_the_enter_of_the_path

}

end_of_loop_2

% normalization

learned_�ow_�eld(i,j)=weighted_vetor / sum_of_weight ;

}

end_of_loop_1

regularize the learned_�ow_�eld using Gaussian �lter
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Table 5.16: Desriptive Statistis (experiment desribed in setion 5.5.1)

Method Dependent Variable Mean Std. Deviation N

1 HS 11.744 7.515 93

2 SMF 6.574 3.516 93

3 LDOF 7.460 7.864 93

4 DeepFlow 5.644 2.803 93

5 Learning Algorithm 5.799 2.593 93

Figure 5.11: The Box and Whisker plot of AAEs of di�erent registration methods

(experiment desribed in setion 5.5.1).
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Pairwise optial �ows between onseutive frames in the learning set were esti-

mated using HS rather LK sine HS yields a higher density of �ow vetors. We used

the same parameters as before.

For our learning approah, we used the following parameters:

� ode-book of pathes: 2-D Laplaian eigenmaps with a neighborhood of size 6

for the embedding of the feature vetor and hierarhial lustering

� path radius: r = 5, sigma σ = 2, �ltering: h = 0.5, γdistance = 1, γintensity = 1

and γvector = 1,

� inonsisteny oe�ient threshold of 1.15 as the value of the uto� argument in

hierarhial lustering,

� all the omposed �elds were inluded in learning set,

� threshold for the seletion of representative pathes: maximum 5 degree of

angular di�erene for eah vetor in a path..

5.5.1 Average Angular Error (AAE)

We performed a repeated measures ANOVA to ompare the performanes of the

di�erent approahes (rationale for using repeated measures ANOVA is disussed in

setion 2.4.3):

� Method 1: HS

� Method 2: SMF

� Method 3: LDOF

� Method 4: DeepFlow

� Method 5: Learning Algorithm

Desriptive statistis of this experiment is given in Table 5.16. Figure 5.11 shows

the Box and Whisker plot of AAEs of di�erent registration methods. Mauhly's

test indiates that the assumption of spheriity has been violated (χ2 (9) = 331.783,

p < 0.01) therefore Greenhouse-Geisser orreted tests are reported (ε = .442). The

results show that AAEs are signi�antly a�eted by the hoie of method (V = 0.637,

F (4, 89) = 39.112, p < 0.01.
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Table 5.17: Tests of Within-Subjets E�ets (experiment desribed in setion 5.5.1)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean

Square

F Sig.

Method Spheriity Assumed 2342.846 4 585.712 50.704 5.53E-34**

Greenhouse-Geisser 2342.846 1.767 1325.516 50.704 1.97E-16**

Huynh-Feldt 2342.846 1.800 1301.912 50.704 1.10E-16**

Lower-bound 2342.846 1.000 2342.846 50.704 2.32E-10**

Error

(Method)

Spheriity Assumed 4251.011 368 11.552

Greenhouse-Geisser 4251.011 162.610 26.142

Huynh-Feldt 4251.011 165.558 25.677

Lower-bound 4251.011 92.000 46.207

Sig. (* for <.05 and ** for <.01)

Table 5.18: Pairwise Comparisons (experiment desribed in setion 5.5.1)

Measure MSE

1 2 3 4 5

1 2.09E-16** 2.52E-13** 3.59E-17** 2.98E-18**

2 2.09E-16** 1.41E-01 1.80E-06** 4.82E-05**

3 2.52E-13** 1.41E-01 9.88E-03** 1.04E-01

4 3.59E-17** 1.80E-06** 9.88E-03** 3.17E-01

5 2.98E-18** 4.82E-05** 1.04E-01 3.17E-01

Sig. (* for <.05 and ** for <.01)

From the post ho test we onlude that (see Table 5.17 and Table 5.18):

� The learning algorithm generated signi�antly lower AAEs than both HS (p < .05)

and SMF (p < .05).

� The AAEs of the learning algorithm is not signi�antly di�erene from those of

LDOF (p <> .05) and DeepFlow (p > .05).

5.5.2 Average Endpoint Error (AEPE)

Desriptive statistis of this experiment is given in Table 5.19. We performed a re-

peated measures ANOVA to ompare the same methods (rationale for using repeated

measures ANOVA is disussed in setion 2.4.3).
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Table 5.19: Desriptive Statistis (experiment desribed in setion 5.5.2)

Method Dependent Variable Mean Std. Deviation N

1 HS 3.3877 6.22225 93

2 SMF 2.3245 4.80320 93

3 LDOF 2.3619 4.80422 93

4 DeepFlow 2.1576 4.77292 93

5 Learning Algorithm 1.8390 3.92781 93

Figure 5.12: The Box and Whisker plot of AEPEs of di�erent registration methods

(experiment desribed in setion 5.5.2).

Figure 5.12 shows the Box and Whisker plot of AEPEs of di�erent registration

methods. Mauhly's test indiates that the assumption of spheriity has been vio-

lated (χ2 (9) = 165.477, p < 0.001) therefore Greenhouse-Geisser orreted tests are

reported (ε = .501). The results show that AEPEs are signi�antly a�eted by the

hoie of method (V = 0.296, F (4, 89) = 9.351, p < 0.001.

From the post ho test we onlude that (see Table 5.20 and Table 5.21):

� The learning algorithm generates signi�antly lower AEPEs than HS (p < .05)

, SMF (p < .05) and LDOF (p < .05).

� The AEPEs of the learning algorithm are not signi�antly di�erent from those

of DeepFlow (p > .05).
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Table 5.20: Tests of Within-Subjets E�ets (experiment desribed in setion 5.5.2)

Measure:MSE

Soure Type III

Sum of

Squares

df Mean

Square

F Sig.

Method Spheriity Assumed 126.029 4 31.507 23.006 5.52E-17**

Greenhouse-Geisser 126.029 2.003 62.912 23.006 1.18E-09**

Huynh-Feldt 126.029 2.048 61.541 23.006 8.05E-10**

Lower-bound 126.029 1.000 126.029 23.006 6.20E-06**

Error

(Method)

Spheriity Assumed 503.991 368 1.370

Greenhouse-Geisser 503.991 184.301 2.735

Huynh-Feldt 503.991 188.407 2.675

Lower-bound 503.991 92.000 5.478

Sig. (* for <.05 and ** for <.01)

Table 5.21: Pairwise Comparisons (experiment desribed in setion 5.5.2)

Measure MSE

1 2 3 4 5

1 5.70E-07** 1.48E-05** 9.74E-08** 9.53E-08**

2 5.70E-07** 7.53E-01 1.11E-01 4.47E-04**

3 1.48E-05** 7.53E-01 3.22E-02* 7.66E-04**

4 9.74E-08** 1.11E-01 3.22E-02* 9.86E-02

5 9.53E-08** 4.47E-04** 7.66E-04** 9.86E-02

Sig. (* for <.05 and ** for <.01)

5.5.3 Disussion

These results suggest that not only does our learning approah perform better than HS

and SMF, it also delivers performanes in line with two very sophistiated tehniques,

LDOF and DeepFlow, on the basis of initial and learning �ows estimated from the

humble HS.

Figure 5.13.d and 5.14.d illustrate that the HS has no partiular di�ulty regis-

tering the bamboo stems, the pillars or the barrels sine these strutures are large

enough with respet to the magnitude of their movement for a oarse-to-�ne approah

to deal with them adequately. However it is not able to orretly register the muh

smaller bamboo leaves and fast moving hiken. We use as a learning set of onse-

utive frames di�erent from the test frames (frames #12, #13 and #14 in Market6,

frames #1, #2 and #3 in Bamboo2). The aurate �ows whih HS ould ompute
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between the onseutive frames in the learning set made it possible for the learning

algorithm to estimate more aurate �ows between non-onseutive frames in the test

set. Interestingly, it spei�ally improves the auray of the �ow in the regions of

interest without degrading the auray elsewhere (see Figure 5.13.l and 5.14.l).

Figure 5.13.e-f and 5.14.e-f show the registration results for SMF, Figure 5.13.g-h

and 5.14.g-h show the registration results for LDOF, Figure 5.13.i-j and 5.14.i-j show

the registration results for DeepFlow applied diretly to the test frames. Judged from

the super-imposed registered soure and target images, the performane of these very

sophistiated tehniques is atually in line with that of our learning approah applied

to the straight-forward HS. As a matter of fat, neither of SMF, LDOF and DeepFlow

ould adequately handle the running hiken (see Figure 5.14.h,j). Their estimated

�ows are inevitably more regular though not neessarily better everywhere.

5.6 Conlusion

In this hapter, we introdued two additional similarity measures in the learning

algorithm based on spatial distane and intensity. Both of these improved the perfor-

mane. The use of a seond iteration did result in over-regularization of the learned

�ow �eld and thus did not improve the performane. We apply the learning algo-

rithm on MPI-Sintel dataset and ompared its performane quantitatively with HS,

SMF, LDOF and DeepFlow. The learning algorithm shows better performane than

both the HS and the SMF. Results suggest that our learning approah applied to the

straight-forward HS shows similar performanes than both of the very sophistiated

tehniques, LDOF and DeepFlow.
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Figure 5.13: MPI-Sintel's Market6 sequene: (a) soure frame #14; (b) target frame

#16 (in red) super-imposed on top of soure frame (in green); () �ow estimated with

HS; (d) target frame (in red) on top of soure frame transformed using HS �ow (in

green); (e-f) idem for learning SMF; (g-h) idem for LDOF; (i-j) idem for DeepFlow;

(k-l) idem for learning algorithm; (m) �ow �eld olor oding: the olor represents the

orientation of the vetor and brightness stands for its magnitude.
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Figure 5.14: MPI-Sintel's Bamboo2 sequene: (a) soure frame #3; (b) target frame

#5 (in red) super-imposed on top of soure frame (in green); () �ow estimated with

HS; (d) target frame (in red) on top of soure frame transformed using HS �ow (in

green); (e-f) idem for the SMF; (g-h) idem for the LDOF; (i-j) idem for the DeepFlow;

(k-l) idem for the learning algorithm; (m) �ow �eld olor oding: the olor represents

the orientation of the vetor and brightness stands for its magnitude.
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Chapter 6

Conlusion

6.1 Summary

Aurately estimating the optial �ow of small strutures animated with large motion

remains a ore hallenge in omputer vision. Most state-of-the-art approahes rely

on the additional information provided by image desriptors to improve the �ow (e.g.

LDOF, DeepFlow). In this thesis, we proposed a di�erent, data-driven, learning

approah to motion estimation. We foused on the omputation of the optial �ow

between two non-onseutive images in a sequene on the basis of a learning set of

optial �ows arefully estimated a priori between di�erent onseutive images in the

same sequene. Rather than learning a statistial model of the �ow, our approah

re�nes an initial estimate of the �ow �eld by replaing eah displaement vetor by

a linear ombination of displaement vetors at the entre of similar pathes taken

from an a priori, strutured ode-book.

We evaluated the use of a variety of similarity measures, of a number of embedding

tehniques to help with the struturing (lustering) of the ode-book, and of numerous

re�nements (suh as vetor omposition of deformation �elds and iterative appliation

of the learning algorithm). Experimental results suggest that with areful seletion

of the learning set, the proposed approah shows better performane than many

advaned method suh as SMF, LDOF or DeepFlow.

We also had the opportunity to ontribute software to the researh ommunity

when the need arose for a Matlab implementation of the lassi Horn-Shunk and

Luas-Kanade optial �ow algorithms for 3D images. Our odes are available at Mat-

labentral (mathworks.o.uk/ matlabentral/ �leexhange/ authors/ 257136) where

it attrated maximum rating and is regularly downloaded (116 times in the past 30

days).
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6.2 Future Diretions

Here is a seletion of potential researh diretions, aimed at improving upon the

proposed learning framework.

6.2.1 Piee-wise learning set

One of the limitations of our approah is that its performane is highly dependent

on the seletion of an appropriate learning set. If the learning set does not ontain

motions similar enough to those in the test ase, the proposed algorithm will over-

smooth the estimated �ow �elds. Therefore, it might be preferable to onsider a

omposite, or piee-wise, learning set. For instane, in 2D and 3D images of thorax,

if we exlusively inlude motions around heart and diaphragm in the learning set, the

proposed approah may perform better.

We onduted a preliminary experiment, whih is illustrated on Figure 6.1. Here,

HS is used to estimate the initial �ow between two non-onseutive frames, #82 and

#85 in the 2D MRI dataset. The learning onsists of the �ows from from a region

around the heart between frames #41 and #44 (see Figure 6.1.a). Whilst HS manages

to reover most of the motion between the test frames (both the vertial breathing

motion and the heart ontrations), it produes a poorly regularized �ow (Figure

6.1.). In ontrast, the learning algorithm mathes the heart aross both frames in

a very satisfatory fashion, without introduing errors elsewhere in the frame. The

learning algorithm also performs better transformation than both SMF (Figure 6.1.h)

and LDOF (Figure 6.1.j).

6.2.2 Similarity measures

We onsidered a number of similarity measures over the ourse of the thesis and re-

tained three: angular di�erene, distane between pathes and intensity di�erene.

Many other statistial similarity measures ould be onsidered, suh as intensity or-

relation, mutual information or Earth Mover's distane amongst many others. It

would be interesting to ondut a systemati and broad study of their respetive

merit and how they ould be ombined. Our preliminary experiment suggests that

the SSD of intensity used in the learning algorithm outperforms intensity orrelation

as a similarity measure.
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HS

Learning

algorithm

SMF

LDOF

(k)

Figure 6.1: Dynami MRI san: (a) soure frame #82; (b) target frame #85 (in

red) superimposed on top of soure frame (in green); () �ow estimated with HS; (d)

target frame (in red) on top of soure frame transformed using HS �ow (in green);

(e-f) idem for learning algorithm; (g-h) idem for SMF; (i-j) idem for LDOF; (k) �ow

�eld olor oding: the olor represents the orientation of the vetor and brightness

stands for its magnitude.
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6.2.3 Cross-patient optial �ow estimation

Whilst we foused on improving the �ow within a sequene of images on the basis

of a learning set onsisting of images form the same sequene, it would of ourse be

extremely interesting to learn from one sequene and estimate �ows from another, in

partiular when dealing with several patients. The motions of several internal organs

suh as heart, lungs et. are fundamentally very similar even in di�erent patients. It

is very likely that patterns of motion of di�erent organs of one patient may help to

improve estimation of those motions of another patient.
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Appendix A

Test Cases of 3D Gated CT Dataset

A.1 Test Cases

Table A.1 shows the list of 400 trials; olumn 1 shows the number of trials, olumn

2, 3 and 4 show starting point (oordinates X, Y and Z respetively) of test ptahes

from 3D gated CT images eah of size 512× 512× 100 pixels.

List of trials

Trial no. X Y Z Trial no. X Y Z Trial no. X Y Z Trial no. X Y Z

1 1 190 22 101 106 463 22 201 232 400 22 301 358 358 43

2 1 190 43 102 106 463 64 202 232 400 43 302 358 358 64

3 1 190 64 103 127 316 22 203 232 400 64 303 358 379 22

4 1 211 22 104 127 316 43 204 232 421 22 304 358 379 43

5 1 211 43 105 127 316 64 205 232 421 43 305 358 379 64

6 1 211 64 106 127 337 22 206 232 421 64 306 358 400 22

7 1 232 1 107 127 337 43 207 232 442 22 307 358 400 43

8 1 232 22 108 127 337 64 208 232 442 43 308 358 400 64

9 1 232 43 109 127 358 64 209 232 442 64 309 358 421 22

10 1 232 64 110 127 379 22 210 232 463 22 310 358 421 43

11 1 253 1 111 127 379 43 211 232 463 43 311 358 421 64

12 1 253 22 112 127 379 64 212 232 463 64 312 358 442 22

13 1 253 43 113 127 400 22 213 232 484 22 313 358 442 43

14 1 253 64 114 127 400 43 214 232 484 43 314 358 442 64

15 1 274 1 115 127 400 64 215 232 484 64 315 358 463 22

16 1 274 22 116 127 421 22 216 253 379 43 316 358 463 43

17 1 274 43 117 127 421 43 217 253 400 22 317 358 463 64

18 1 274 64 118 127 421 64 218 253 400 43 318 358 484 64

19 1 295 1 119 127 442 22 219 253 400 64 319 379 316 43

20 1 295 22 120 127 442 43 220 253 421 22 320 379 316 64

21 1 295 43 121 127 442 64 221 253 421 43 321 379 337 22

22 1 295 64 122 127 463 22 222 253 421 64 322 379 337 64

23 1 316 43 123 127 463 43 223 253 442 22 323 379 358 22

24 1 316 64 124 127 463 64 224 253 442 43 324 379 358 43

25 22 316 22 125 148 316 64 225 253 442 64 325 379 358 64

26 22 316 43 126 148 337 43 226 253 463 22 326 379 379 22

27 22 316 64 127 148 337 64 227 253 463 43 327 379 379 64

28 22 337 22 128 148 358 22 228 253 463 64 328 379 400 43

29 22 337 43 129 148 358 43 229 253 484 22 329 379 400 64

30 22 337 64 130 148 358 64 230 253 484 43 330 379 421 22

31 22 358 22 131 148 379 43 231 253 484 64 331 379 421 43

32 22 358 43 132 148 379 64 232 274 358 22 332 379 421 64

33 22 358 64 133 148 400 43 233 274 400 22 333 379 442 22

34 22 379 22 134 148 400 64 234 274 400 43 334 379 442 43

35 43 316 22 135 148 421 43 235 274 400 64 335 379 442 64
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36 43 316 43 136 148 421 64 236 274 421 22 336 379 463 22

37 43 316 64 137 148 442 22 237 274 421 64 337 379 463 43

38 43 337 22 138 148 442 43 238 274 442 22 338 379 463 64

39 43 337 43 139 148 442 64 239 274 442 43 339 400 316 43

40 43 337 64 140 148 463 22 240 274 442 64 340 400 337 43

41 43 358 22 141 148 463 43 241 274 463 22 341 400 337 64

42 43 358 43 142 148 463 64 242 274 463 43 342 400 358 22

43 43 358 64 143 148 484 22 243 274 463 64 343 400 358 43

44 43 379 22 144 148 484 43 244 274 484 22 344 400 358 64

45 43 379 43 145 148 484 64 245 274 484 43 345 400 379 22

46 43 379 64 146 169 358 64 246 274 484 64 346 400 379 43

47 43 400 22 147 169 379 43 247 295 358 64 347 400 379 64

48 43 400 43 148 169 379 64 248 295 379 64 348 400 400 22

49 43 400 64 149 169 400 22 249 295 400 22 349 400 400 43

50 64 316 22 150 169 400 43 250 295 400 43 350 400 400 64

51 64 316 64 151 169 400 64 251 295 400 64 351 400 421 22

52 64 337 22 152 169 421 22 252 295 421 22 352 400 421 43

53 64 337 43 153 169 421 43 253 295 421 43 353 400 421 64

54 64 337 64 154 169 421 64 254 295 421 64 354 400 442 22

55 64 358 43 155 169 442 22 255 295 442 22 355 400 442 43

56 64 358 64 156 169 442 43 256 295 442 43 356 400 442 64

57 64 379 22 157 169 442 64 257 295 442 64 357 421 316 43

58 64 379 43 158 169 463 22 258 295 463 22 358 421 316 64

59 64 379 64 159 169 463 43 259 295 463 43 359 421 337 64

60 64 400 22 160 169 463 64 260 295 463 64 360 421 358 43

61 64 400 43 161 169 484 22 261 295 484 22 361 421 358 64

62 64 400 64 162 169 484 43 262 295 484 43 362 421 379 22

63 64 421 22 163 169 484 64 263 295 484 64 363 421 379 43

64 64 421 43 164 190 358 64 264 316 358 64 364 421 379 64

65 64 421 64 165 190 379 43 265 316 379 64 365 421 400 22

66 85 316 22 166 190 400 22 266 316 400 43 366 421 400 43

67 85 316 43 167 190 400 43 267 316 421 22 367 421 400 64

68 85 316 64 168 190 400 64 268 316 421 43 368 421 421 22

69 85 337 64 169 190 421 22 269 316 421 64 369 421 421 43

70 85 358 43 170 190 421 43 270 316 442 22 370 421 421 64

71 85 358 64 171 190 421 64 271 316 442 43 371 442 316 22

72 85 379 43 172 190 442 22 272 316 442 64 372 442 316 43

73 85 379 64 173 190 442 43 273 316 463 22 373 442 316 64

74 85 400 22 174 190 442 64 274 316 463 43 374 442 337 43

75 85 400 43 175 190 463 22 275 316 463 64 375 442 337 64

76 85 400 64 176 190 463 43 276 316 484 22 376 442 358 22

77 85 421 22 177 190 463 64 277 316 484 43 377 442 358 43

78 85 421 43 178 190 484 22 278 316 484 64 378 442 358 64

79 85 421 64 179 190 484 43 279 337 337 64 379 442 379 22

80 85 442 22 180 190 484 64 280 337 358 64 380 442 379 43

81 85 442 43 181 211 316 64 281 337 379 22 381 442 379 64

82 85 442 64 182 211 358 64 282 337 379 64 382 442 400 22

83 106 316 22 183 211 379 22 283 337 400 22 383 442 400 43

84 106 316 43 184 211 379 43 284 337 400 43 384 442 400 64

85 106 316 64 185 211 400 43 285 337 400 64 385 463 316 43

86 106 337 43 186 211 400 64 286 337 421 22 386 463 316 64

87 106 337 64 187 211 421 22 287 337 421 43 387 463 337 43

88 106 358 43 188 211 421 43 288 337 421 64 388 463 337 64

89 106 358 64 189 211 421 64 289 337 442 22 389 463 358 22

90 106 379 22 190 211 442 22 290 337 442 43 390 463 358 43

91 106 379 43 191 211 442 43 291 337 442 64 391 463 358 64

92 106 379 64 192 211 442 64 292 337 463 22 392 463 379 22

93 106 400 22 193 211 463 22 293 337 463 43 393 463 379 43

94 106 400 43 194 211 463 43 294 337 463 64 394 463 379 64

95 106 400 64 195 211 463 64 295 337 484 22 395 484 316 22

96 106 421 22 196 211 484 22 296 337 484 43 396 484 316 43

97 106 421 43 197 211 484 43 297 337 484 64 397 484 316 64

98 106 421 64 198 211 484 64 298 358 316 64 398 484 337 22

99 106 442 43 199 232 379 22 299 358 337 64 399 484 337 64

100 106 442 64 200 232 379 64 300 358 358 22 400 484 358 22
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Appendix B

Trials of Di�erent Similarity

Measures for 2D MRI Dataset

B.1 Di�erent Similarity Measures

MSEs of Images Registered with Learning Algorithm Using Di�erent Similarity

Measures (experiment desribed in setion 3.4.4)

Trial no.

LK Degraded

LK

Learning

approah

with vetor

di�erene

Learning

approah

with angular

di�erene

Learning

approah

with

magnitude

di�erene

1

93.55 145.52 195.46 159.54 199.01

2

206.17 289.01 337.81 252.30 383.09

3

136.65 193.89 216.85 174.74 277.18

4

100.84 143.45 189.09 158.42 226.18

5

90.89 133.58 192.87 138.53 215.53

6

153.87 223.29 273.68 210.43 256.45

7

96.30 139.58 177.59 159.24 224.91

8

151.23 221.61 260.17 220.94 252.07

9

146.99 209.90 300.74 193.23 215.68

10

106.67 144.48 189.75 118.77 201.43

11

100.85 128.76 212.43 116.23 188.15

12

115.93 166.25 251.87 190.78 250.80

13

107.85 141.88 216.58 115.91 222.81

14

90.83 128.97 141.50 135.58 142.03

15

109.11 158.78 189.56 110.13 222.45

16

39.66 53.29 96.91 73.69 129.52

17

120.54 153.63 219.51 172.10 222.49

18

154.17 233.98 248.37 192.52 312.80

19

128.31 193.54 259.91 163.06 259.48

20

82.14 113.10 126.61 83.18 148.26

21

82.14 113.10 174.42 138.68 162.57

22

101.25 147.03 193.29 104.62 156.26
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23

101.60 134.88 204.37 105.82 226.53

24

184.06 273.92 340.15 233.10 312.72

25

82.14 113.10 204.00 82.54 148.16

26

101.25 147.03 229.51 162.44 189.13

27

112.29 171.59 318.38 182.26 307.17

28

112.78 165.85 231.41 163.42 212.68

29

101.75 145.75 163.20 110.92 182.09

30

92.25 125.34 134.12 149.90 223.84
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Appendix C

Trials of Di�erent Similarity

Measures for 3D Gated CT Dataset

C.1 Di�erent Similarity Measures

MSEs of Registered Images Using Learning Algorithm with Di�erent Similarity

Measures

Trial

no.

LK Degraded

LK

Vetor

Di�er-

ene

Angular

Di�er-

ene

Magnitude

Di�er-

ene

Trial

no.

LK Degraded

LK

Vetor

Di�er-

ene

Angular

Di�er-

ene

Magnitude

Di�er-

ene

1 51.78 51.87 68.09 61.69 66.49 201 401.28 636.92 330.06 326.82 339.22

2 32.89 33.06 51.3 35.36 47.55 202 79.63 78.25 83.86 96.26 100.13

3 42.79 42.23 61.18 43.34 51.85 203 42.35 42.15 58.27 52.27 54.17

4 88.98 89.91 115.47 104.17 104.07 204 127.95 127.24 146.75 137.01 141.5

5 40.68 41.00 47.45 46.04 51.64 205 67.51 67.47 74.6 75.84 80.41

6 55.56 54.10 71.39 62.59 59.23 206 42.67 42.14 58.72 50.1 57

7 85.23 82.26 94.91 94.96 106.7 207 87.59 87.07 104.2 106.89 102.41

8 82.61 80.91 90.89 90.35 91.11 208 53.63 53.49 71.45 71.35 57.12

9 42.32 41.81 49.48 51.73 63.66 209 32.87 32.45 45.51 42.95 48.68

10 60.79 61.13 66.94 73.72 77.89 210 73.90 73.61 96.67 94.55 90.08

11 75.71 74.70 88.35 80.6 96.23 211 54.00 53.95 66.02 64.72 65.57

12 89.72 87.70 102.38 107.19 109.28 212 35.12 33.79 44.55 43.88 39.22

13 39.08 39.44 58 48.92 47.56 213 56.94 56.87 70.09 63.04 68.32

14 51.79 51.87 70.47 63.35 62.89 214 41.91 42.68 50.88 47.82 50.68

15 93.04 93.63 121.92 102.94 118.98 215 24.88 24.86 43.29 39.45 30.29

16 102.30 100.55 121.66 112.5 132.41 216 513.30 886.18 173.51 173.13 180.52

17 41.53 41.88 58.85 55.2 53.52 217 857.31 1238.20 309.55 309.22 317.36

18 59.79 58.93 80.89 66.73 78.51 218 86.59 87.01 95.15 97.97 89.61

19 72.64 72.92 94.01 90.52 86.22 219 48.98 48.64 70.33 63.64 64.43

20 88.52 86.83 103.46 110.05 108.38 220 111.92 112.94 126.39 124.1 134.14

21 43.21 43.22 63.08 55.99 53.6 221 54.80 54.64 60.18 59.16 60.91

22 65.41 64.22 72.26 80.11 84.98 222 45.18 44.66 64.53 57.1 65.64

23 30.69 30.61 40.74 48.56 42.09 223 92.46 91.41 114.89 103.62 110.79

24 33.60 34.01 52.78 46.81 37.1 224 50.17 49.57 59.59 51.56 60.08

25 97.50 95.54 109.29 111.9 111.5 225 35.09 35.63 42.71 48.95 42.75

26 60.11 59.22 68.54 77.4 76.1 226 82.42 81.16 95.99 98.96 106.45

27 65.92 64.44 73.48 68.98 73.67 227 38.40 37.71 50.42 43 42.72

28 93.74 89.67 123.13 106.72 114.37 228 36.34 36.23 45.89 44.12 56.05

29 66.03 65.10 76.19 87.97 84.35 229 66.54 65.57 86.65 83.79 76.35

30 59.38 57.41 70.36 75.99 80.48 230 41.27 41.36 46.1 52.41 50.27

31 110.41 108.75 133.82 119.73 123.49 231 28.99 29.27 46.02 31.61 43.16

32 57.57 57.21 72.04 72.05 70.78 232 4144.00 5467.10 1983.2 1778.28 2053.82

33 44.97 44.58 60.54 54.92 65.49 233 316.89 336.40 305.2 293.19 311.26

34 13.77 14.00 25.16 20.43 27.27 234 102.93 113.99 101.54 90.88 100.86

35 129.92 129.40 155.24 141.28 148.78 235 58.42 58.45 66.37 68.31 79.72

36 70.24 70.78 81.29 83.97 94.35 236 94.17 92.20 117.36 104.23 119.93
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37 76.86 74.40 93.24 81.92 89.55 237 45.11 44.81 58.43 57.75 62.11

38 140.83 134.86 157.67 160.61 163.58 238 87.76 85.79 93.56 88.08 98.7

39 74.72 73.99 98.45 86.01 83.2 239 43.15 43.31 44.25 44.99 48.55

40 56.16 56.12 67.05 74.79 67.19 240 52.81 52.59 71.29 71.31 67.3

41 126.67 124.03 158.6 145.34 153.31 241 63.57 64.05 79.03 80.76 69.94

42 79.04 77.25 88.57 95.22 89.25 242 41.19 40.72 51.14 43.36 59.18

43 66.17 63.65 90.5 83.98 86.41 243 32.92 32.39 38.77 44.67 50.02

44 108.06 103.11 131.82 119.79 119.8 244 58.51 57.62 74.77 76.14 78.32

45 43.95 43.83 46.95 58.49 63.68 245 34.00 33.93 39.09 38.73 50.48

46 43.70 42.35 48.99 63.01 64.24 246 29.63 29.51 46.28 45.74 41.74

47 63.86 63.57 71.42 76.69 78.15 247 1587.80 3113.90 547.9 536.91 551.03

48 30.73 30.64 45.56 47.39 42.24 248 187.29 893.97 144.84 145.75 153.28

49 23.70 23.34 36.41 37.06 35.86 249 454.13 848.79 469.15 429.99 473.57

50 133.19 129.16 147.09 149.26 155.73 250 94.12 122.74 91.29 83.3 94.86

51 72.59 67.25 94.21 93.28 84.8 251 70.13 69.64 90.91 87.18 89.64

52 149.82 144.35 170.47 169.34 180.37 252 109.62 108.05 119.24 124.48 132.55

53 81.31 81.26 89.34 101.41 92 253 77.57 77.41 84.65 85.17 93.61

54 59.82 60.17 65.72 73.68 80.97 254 48.77 48.01 66.6 61.91 66.97

55 72.94 71.87 81.93 83.29 80.42 255 86.82 85.46 108.8 95.71 105.79

56 71.75 68.10 100.64 90.71 92.31 256 50.30 50.03 68.4 61.97 70.14

57 128.65 126.12 132.05 151.86 143.74 257 36.55 36.09 47.33 53.61 39.47

58 44.72 44.69 52.39 48.16 61.08 258 52.61 51.80 63.98 69.27 74.51

59 54.80 54.68 65.35 61.04 63.87 259 37.32 37.17 51.77 44.48 42.76

60 134.30 130.77 150.95 153.66 166.16 260 30.51 30.05 48.53 43.34 43.07

61 46.57 46.90 66.37 58.54 61.25 261 48.03 47.07 63.88 55.78 59.34

62 39.71 39.96 55.48 42.38 48.01 262 29.85 29.75 41.16 47.9 34.25

63 70.62 69.01 95.04 86.15 94.99 263 36.17 35.28 45.56 40.06 53.38

64 37.64 38.21 52.73 53.49 58.77 264 765.44 2593.70 218.7 202.01 217.7

65 32.27 32.25 43.28 34.47 50.29 265 242.50 1016.10 138.12 139.64 146.11

66 172.73 170.31 244.86 187.44 265.19 266 89.38 97.77 88.01 77.07 90.11

67 90.56 90.63 106.85 106.93 115.57 267 113.47 111.80 139.11 129.3 138.53

68 74.34 76.14 84.67 95.53 89.05 268 70.16 70.28 89.15 86.18 86.14

69 74.26 72.24 82.57 87.48 82.17 269 40.34 39.25 61.27 56.03 62.62

70 86.29 86.46 98.1 98.41 112.22 270 95.43 95.04 118.76 100.11 117.67

71 78.25 76.02 105.51 86.68 90.19 271 58.69 58.75 77.99 67.94 72.45

72 68.89 69.01 98.08 88.31 88.1 272 35.79 35.61 38.79 43.32 52.91

73 66.79 67.44 75.66 85.92 82.35 273 65.89 65.27 71.46 76.42 80.52

74 86.83 88.03 98.41 106.42 108.99 274 43.12 42.57 47.55 54.83 61.38

75 50.81 51.41 67.67 68.71 57.92 275 31.97 31.69 39.26 35.9 40.3

76 40.09 39.66 49.24 46.35 59.51 276 51.49 50.85 55.29 68.22 72.62

77 96.43 94.17 118.66 111.8 110.08 277 34.80 34.47 44.5 47.01 42.82

78 43.70 43.18 55.51 59.16 50.67 278 24.65 24.58 32.01 27.83 27.54

79 35.59 35.01 46.58 39.29 48.18 279 540.89 428.74 619.76 556.36 583.03

80 62.27 62.50 72.22 78.68 82.42 280 436.53 1206.80 178.03 170.9 177.4

81 26.95 26.71 42.37 42.95 32.42 281 472.66 1530.60 361.89 356.85 375.81

82 18.31 18.38 35.57 22.33 23.4 282 131.94 251.03 122.52 123.15 122.66

83 231.27 279.15 234.1 211.87 238.91 283 156.59 156.46 180.35 166.61 180.69

84 324.01 407.17 212.12 203.59 216.02 284 88.45 86.36 106.01 100.47 110.08

85 271.61 318.32 99.66 94.45 89.56 285 62.71 62.11 70.74 74.94 76.79

86 152.17 162.12 150.52 147.49 164.12 286 118.12 117.71 135.49 125.4 141.7

87 84.00 85.21 98.18 92.53 105.8 287 69.26 70.17 89.42 76.32 91.57

88 112.62 113.49 151.71 124.34 143.86 288 36.28 36.61 47.72 55.1 42.16

89 73.38 72.51 83.26 78.05 79.2 289 81.86 81.29 98.73 99.24 100.68

90 139.06 136.15 154.81 148.57 166.36 290 55.70 55.44 68.25 70.08 62.83

91 72.56 72.83 94.71 90.92 94.18 291 33.33 34.02 43.65 50.4 43

92 54.58 54.22 60.43 69.3 62.61 292 69.54 67.28 86.7 78.05 83.97

93 118.80 119.92 136.54 134.74 133.99 293 42.57 42.30 61.08 51.39 59.78

94 63.37 64.49 77.57 80.35 80.39 294 23.07 23.20 26.39 34.44 43.22

95 49.32 49.12 60 55 67.77 295 35.99 35.36 47.91 56.3 55.49

96 105.68 104.35 131.41 124.94 132.86 296 18.72 18.80 27.69 30.14 32.35

97 41.80 42.09 58.92 55.49 45.68 297 15.99 16.17 27.96 23.13 34.89

98 36.52 35.98 50.03 45.02 53.51 298 178.87 178.73 204.25 192.53 200.77

99 41.18 40.37 55.65 50.33 62.19 299 175.88 178.61 197.7 194.65 199.35

100 31.33 31.73 47.74 41.09 49.29 300 210.43 210.09 234.21 226.65 233.6

101 27.54 27.38 33.17 42.91 31.12 301 376.91 410.02 319.41 293.25 317.83

102 7.77 7.88 19.11 21.42 14.66 302 373.82 1336.30 125.67 127.64 123.89

103 267.45 267.65 292.39 278.91 298.2 303 853.49 1778.80 272.5 246.89 264.84

104 115.52 114.68 130.58 120.26 131.39 304 6978.70 12552.00 6501.92 6194.36 6501.94

105 840.16 1450.60 715.83 642.48 675.28 305 115.10 115.47 135.2 123.55 135.9

106 778.31 1518.40 429.87 450.8 448.88 306 116.17 115.85 131.95 125.1 134.65

107 547.22 735.77 279.81 266.33 285.25 307 102.02 100.11 117.06 122.08 129.92

108 631.96 1570.30 104.03 98.43 113.39 308 60.70 59.25 69.02 69.16 71.5

109 71.90 76.03 93.99 89.45 96.84 309 91.67 90.59 103.99 115.3 109.1

110 153.31 148.83 178.39 167.85 172.02 310 66.04 64.84 86.37 80.19 81.42

111 80.27 78.04 93.6 96.86 86.24 311 39.96 39.55 47.58 48.89 52.18

112 53.21 54.22 76.9 72.78 72.31 312 95.79 94.32 121.3 106.53 111.26

113 150.50 150.41 155.34 164.8 174.18 313 60.66 60.89 77.98 66.68 76.07

114 60.23 60.64 65.6 73.52 67.91 314 31.67 31.59 48.46 45.04 48.68

115 37.33 36.89 47 52.2 43.95 315 69.98 69.01 96.65 77.92 81.98

116 112.28 111.70 122.54 133.13 134.92 316 47.42 47.67 53.07 60.25 58.35

117 47.52 47.42 57.26 50.27 60.08 317 21.65 21.30 30.78 33.17 25.17

118 35.27 35.02 44.63 43.42 54.48 318 1.51 1.69 19.44 14.4 11.93

119 102.65 102.59 125.6 108.68 128.53 319 118.41 119.74 136.88 137.75 135.88
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120 49.88 49.70 55.91 66.83 57.97 320 258.16 221.37 252.71 232.35 252.17

121 31.79 32.03 40.6 40.93 37.89 321 317.89 350.14 320.95 302.68 315.62

122 62.29 61.95 70.92 71.87 68.24 322 550.76 2080.50 102.3 112.22 112.91

123 41.93 41.78 51.76 48.98 57.31 323 1078.90 2094.20 393.29 379.38 392.22

124 25.12 25.06 30.2 36.37 42.19 324 4707.40 5967.20 3262.63 1968.44 2851.97

125 185.20 186.99 209.86 195.7 209.24 325 100.01 118.53 96.86 85.8 100.1

126 373.72 300.85 253.88 239.79 251.66 326 123.56 122.08 143.38 135.38 136.55

127 136.21 170.00 141.99 134.92 157.36 327 82.89 83.67 101.13 91.11 97.23

128 401.80 812.35 355.36 338.99 370.27 328 95.77 95.63 115.8 109.23 110.17

129 196.91 236.89 173.73 175.22 178.31 329 69.64 68.79 82.43 76.72 92.32

130 473.21 1453.00 198.28 183.11 192.29 330 98.20 96.68 114.85 110.37 115.24

131 251.65 600.16 239.88 225.91 239.71 331 75.79 76.20 91.81 92.85 87.59

132 66.67 65.54 72.68 84.63 82.97 332 37.60 37.92 40.55 48.05 47.43

133 69.49 69.53 89.17 76.08 86.81 333 63.36 63.71 82.25 83.21 86.56

134 40.28 40.22 45.7 44.37 47.22 334 47.18 48.44 69.06 52.91 64.78

135 50.30 51.02 69.15 62.34 61.47 335 30.88 30.80 34.93 43.94 46.12

136 33.94 33.86 50.01 48.85 38.24 336 51.15 51.37 62.54 56.58 63.25

137 90.97 90.22 110.65 96.63 111.6 337 31.75 32.12 50.16 46.38 40.85

138 47.21 47.07 53.1 49.45 56.86 338 22.36 22.40 28.41 34.24 40.84

139 32.82 32.42 43.46 35.68 39.74 339 368.95 547.41 273.31 275.76 278.56

140 79.24 80.44 93.32 86.1 87.39 340 137.26 174.75 149.87 130.78 145.75

141 40.86 40.57 47.82 55.33 59.25 341 106.52 105.64 115.55 125.8 120.35

142 26.88 26.84 38.29 35.25 38.21 342 149.55 148.16 177.36 163.91 164.1

143 22.48 22.28 35.07 34.36 33.9 343 247.12 1275.30 142.92 147.47 152.17

144 15.51 15.61 20.44 27.65 32.5 344 106.36 104.82 121.03 115.8 130.6

145 13.13 13.01 23.23 22.92 26.87 345 118.19 114.65 140.2 126.46 148.83

146 247.94 364.91 152.34 138.83 146.58 346 102.67 116.92 124.32 122.83 129.31

147 1082.00 4112.70 586.3 524.31 538.21 347 73.20 71.55 95.36 83.23 86.86

148 53.95 54.62 71.45 69.3 70.21 348 89.71 89.47 116.82 108.26 113.63

149 146.65 147.38 165.3 167.15 176.33 349 100.31 98.91 117.7 116.33 115.2

150 88.71 88.37 94.12 98.05 104.33 350 52.82 53.51 60.94 72.9 64.87

151 40.48 40.81 48.11 44 57.62 351 99.15 97.46 123.55 116.17 128.83

152 111.03 112.96 134.09 116 140.37 352 59.99 60.22 69.19 80.21 76.13

153 70.75 71.73 83.72 86.88 94.65 353 36.05 35.61 49.67 40.91 51.97

154 36.23 35.77 41.74 43.97 44.52 354 76.15 76.78 101.79 90.65 101.83

155 94.70 92.97 116.05 113.82 108.13 355 46.63 46.05 49.76 58.8 52.7

156 50.17 48.97 60.97 63.48 63.33 356 31.77 31.64 51.03 33.56 50.11

157 35.97 35.62 52.45 46.67 39.47 357 68.08 67.93 71.92 80.98 73.32

158 78.07 77.83 97.99 97.2 97.1 358 96.80 95.31 116.63 104.67 115.43

159 44.82 44.85 61.68 54.42 64.45 359 86.84 86.98 108.68 104.16 107.75

160 29.83 29.61 46.29 39.36 35.98 360 71.38 71.44 77.94 80.09 90

161 55.77 56.06 60.41 66.18 64.83 361 66.34 66.56 80.06 73.07 74.05

162 36.90 36.63 41.52 53.84 47.21 362 98.63 97.19 121.79 119.68 114.28

163 24.07 24.22 40.8 31.39 40.98 363 71.35 73.45 82.95 87.07 87.84

164 861.97 2765.10 181.78 164.88 223.83 364 75.64 74.81 99.58 89.11 95.16

165 1264.50 5293.10 726.74 703.42 740.3 365 76.09 76.13 90.49 80.79 97.9

166 155.47 158.75 181.25 171.73 173.84 366 85.74 83.88 111.42 105.28 110.15

167 145.27 141.29 173.56 171.6 180.86 367 52.71 52.93 74 69.27 74.59

168 44.40 44.60 59.17 63.6 62.67 368 66.44 65.55 72.8 70.3 81.34

169 100.61 100.28 119.37 110.99 123.03 369 65.74 65.13 78.32 72.64 91.46

170 94.60 97.14 119.55 113.99 123.1 370 43.13 43.03 56.47 60.26 47.11

171 38.48 39.24 57.82 50.72 51.51 371 222.86 221.87 250.54 240.43 252.13

172 92.99 90.42 111.42 110.26 121.62 372 56.79 56.52 78.96 59.59 66.62

173 66.36 66.22 83.57 87.27 90.76 373 63.22 62.76 82.08 68.41 78.03

174 36.06 35.94 52.16 46.06 54.67 374 55.14 55.60 71.05 60.58 73.54

175 75.59 74.22 87.09 89.38 88.61 375 56.66 56.45 68.39 75.71 67.23

176 57.81 55.21 86.03 80.65 84.56 376 99.11 104.78 117.38 118.78 126.49

177 31.27 31.05 40.23 37.6 51.3 377 52.11 52.17 71.49 63.83 62.08

178 63.52 63.51 84.87 69.05 80.23 378 63.84 62.58 78.04 76.78 87.08

179 45.40 44.78 56.75 65.13 61.47 379 100.83 100.94 123.43 105.68 111.56

180 27.29 27.21 31.48 34.42 32.89 380 59.02 57.92 64.77 75.49 65.18

181 6684.00 8097.40 5992.02 4705.08 5637.18 381 69.90 69.20 90.58 77.08 93.08

182 1771.50 5466.70 160.86 164.17 193.04 382 83.84 82.03 91.7 94.81 94.27

183 4186.00 3743.10 3508.97 3189.26 3460.83 383 58.44 58.10 78.73 71.32 65.52

184 720.51 3116.10 315.86 312.34 318.56 384 57.98 57.71 82.55 73.37 70.84

185 102.88 101.09 120.72 123.89 120.98 385 36.15 35.81 48.8 44.13 40.91

186 44.20 44.10 53.33 62.11 61.44 386 73.60 70.94 84.52 89.92 91.13

187 104.59 104.82 128.6 122.5 121.72 387 52.67 52.83 60.25 71.34 69.65

188 67.71 66.84 82.56 73.36 85.27 388 62.91 63.29 77.84 76.2 81.5

189 39.77 39.96 49.94 49.38 56.05 389 90.59 89.39 115.31 102.67 115.48

190 93.80 92.42 105.61 115.99 105.36 390 57.30 57.75 64.14 64.32 76.64

191 63.04 62.31 71.21 72.45 77.6 391 51.87 52.42 70.26 62.97 65.71

192 31.77 31.63 40.05 47.56 40.64 392 69.92 69.97 93.69 74.11 90.13

193 73.53 73.82 97.25 79.43 87.04 393 38.77 38.61 47.8 54.16 60.25

194 50.05 49.01 59.48 69.83 66.09 394 55.82 54.60 71.79 67.55 69.51

195 29.23 29.17 36.66 45.71 46.83 395 108.04 105.70 124.83 119.85 122.65

196 69.54 70.17 81.09 80.99 78.11 396 37.42 37.72 45.08 48.09 55.5

197 38.88 38.60 54.14 47.69 54.27 397 62.71 62.91 82.6 66.99 72.67

198 31.46 31.51 35.78 37.64 49.84 398 75.36 72.66 91.54 90.75 84

199 5899.20 5570.60 4975.04 3872.25 4329.69 399 34.17 34.21 41.44 42.23 44.95

200 63.97 70.77 66.18 62.11 70.61 400 7.03 6.61 18.27 16.74 18.94

127



Appendix D

Trials for Learning Algorithm With

and Without Vetor Composition for

2D MRI Dataset

D.1 Learning Algorithm With and Without Vetor

Composition

MSEs of Images Registered Using Learning Algorithm With and Without Vetor

Composition (experiment desribed in setion 3.5.1)

Trial no.

LK Degraded

LK

Without

Vetor

Composition

With Vetor

Composition

1

93.55 145.52 159.54 150.34

2

206.17 289.01 252.3 251.77

3

136.65 193.89 174.74 167.36

4

100.84 143.45 158.42 155.73

5

90.89 133.58 138.53 134.3

6

153.87 223.29 210.43 204.95

7

96.30 139.58 159.24 149.81

8

151.23 221.61 220.94 216.76

9

146.99 209.90 193.23 183.4

10

106.67 144.48 118.77 115.76

11

100.85 128.76 116.23 109.22

12

115.93 166.25 190.78 184.12

13

107.85 141.88 115.91 110.52

14

90.83 128.97 135.58 128.6

15

109.11 158.78 110.13 109.46

16

39.66 53.29 73.69 71.91

17

120.54 153.63 172.1 170.82

18

154.17 233.98 192.52 182.53

19

128.31 193.54 163.06 161.35

128



20

82.14 113.10 83.18 82.85

21

82.14 113.10 138.68 133.07

22

101.25 147.03 104.62 103.89

23

101.60 134.88 105.82 103.13

24

184.06 273.92 233.1 231.2

25

82.14 113.10 82.54 85.85

26

101.25 147.03 162.44 157.83

27

112.29 171.59 182.26 172.44

28

112.78 165.85 163.42 161.86

29

101.75 145.75 110.92 102.36

30

92.25 125.34 149.9 143.45
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Appendix E

Learning Algorithm with Vetor

Composition with 3D Gated CT

Dataset

E.1 Using Learning Algorithm with Vetor Compo-

sition

MSEs of Registered Images Using Learning Algorithm without Vetor Composition

and with Vetor Composition

Trial

no.

LK Degraded

LK

Wtihout

Vetor

ompo-

sition

Wtih

Vetor

ompo-

sition

Trial

no.

LK Degraded

LK

Wtihout

Vetor

ompo-

sition

Wtih

Vetor

ompo-

sition

1 51.778 51.87 61.69 58.78 201 401.28 636.92 326.82 325.21

2 32.894 33.055 35.36 33.94 202 79.626 78.25 96.26 92.81

3 42.785 42.226 43.34 40.22 203 42.35 42.151 52.27 49.81

4 88.983 89.909 104.17 102.42 204 127.95 127.24 137.01 133.05

5 40.676 40.997 46.04 44.29 205 67.506 67.466 75.84 75.03

6 55.56 54.098 62.59 62.39 206 42.666 42.137 50.1 46.79

7 85.23 82.255 94.96 94.76 207 87.59 87.066 106.89 104.19

8 82.606 80.914 90.35 89.99 208 53.625 53.492 71.35 70.35

9 42.315 41.814 51.73 49.35 209 32.867 32.446 42.95 41.05

10 60.793 61.131 73.72 72.76 210 73.902 73.608 94.55 92.95

11 75.714 74.699 80.6 77.23 211 53.998 53.951 64.72 62.32

12 89.72 87.704 107.19 103.76 212 35.115 33.792 43.88 40.68

13 39.078 39.437 48.92 45.07 213 56.942 56.87 63.04 62.62

14 51.789 51.867 63.35 61.39 214 41.907 42.677 47.82 44.53

15 93.042 93.628 102.94 102.06 215 24.88 24.863 39.45 36.09

16 102.3 100.55 112.5 111.6 216 513.3 886.18 173.13 171.71

17 41.534 41.884 55.2 53.05 217 857.31 1238.2 309.22 307.5

18 59.787 58.925 66.73 63.68 218 86.586 87.005 97.97 95.68

19 72.637 72.918 90.52 89.13 219 48.975 48.637 63.64 60.84
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20 88.52 86.825 110.05 108.21 220 111.92 112.94 124.1 121.13

21 43.214 43.223 55.99 53.43 221 54.803 54.638 59.16 56.13

22 65.407 64.216 80.11 76.44 222 45.177 44.656 57.1 55.54

23 30.689 30.611 48.56 47.91 223 92.457 91.414 103.62 101.9

24 33.598 34.01 46.81 43.95 224 50.168 49.567 51.56 47.73

25 97.503 95.536 111.9 109.59 225 35.089 35.631 48.95 46.66

26 60.106 59.218 77.4 75.67 226 82.421 81.16 98.96 95.56

27 65.916 64.436 68.98 65.44 227 38.401 37.712 43 41.89

28 93.74 89.671 106.72 105.15 228 36.336 36.233 44.12 41.63

29 66.026 65.098 87.97 87.25 229 66.537 65.567 83.79 81.44

30 59.38 57.409 75.99 73.46 230 41.274 41.356 52.41 48.56

31 110.41 108.75 119.73 117.23 231 28.986 29.269 31.61 31.27

32 57.572 57.206 72.05 70.74 232 4144 5467.1 1778.28 1776.28

33 44.969 44.576 54.92 51.71 233 316.89 336.4 293.19 291.1

34 13.769 13.999 20.43 16.43 234 102.93 113.99 90.88 90.52

35 129.92 129.4 141.28 137.36 235 58.416 58.452 68.31 64.69

36 70.236 70.781 83.97 83.46 236 94.168 92.204 104.23 100.69

37 76.858 74.395 81.92 80.99 237 45.113 44.811 57.75 55.99

38 140.83 134.86 160.61 160.52 238 87.759 85.788 88.08 84.95

39 74.72 73.988 86.01 83.58 239 43.145 43.307 44.99 44.4

40 56.159 56.121 74.79 74.35 240 52.81 52.586 71.31 68.83

41 126.67 124.03 145.34 143.71 241 63.57 64.053 80.76 79.72

42 79.035 77.249 95.22 91.68 242 41.186 40.724 43.36 41.58

43 66.167 63.646 83.98 81.79 243 32.92 32.385 44.67 41.29

44 108.06 103.11 119.79 118.31 244 58.508 57.617 76.14 75.36

45 43.948 43.834 58.49 57.66 245 34.004 33.926 38.73 37.51

46 43.699 42.354 63.01 61.25 246 29.628 29.513 45.74 43.81

47 63.858 63.574 76.69 72.87 247 1587.8 3113.9 536.91 535.56

48 30.728 30.643 47.39 46.89 248 187.29 893.97 145.75 142.56

49 23.701 23.341 37.06 35.18 249 454.13 848.79 429.99 426.04

50 133.19 129.16 149.26 145.83 250 94.115 122.74 83.3 82.66

51 72.593 67.252 93.28 93.11 251 70.128 69.641 87.18 86.23

52 149.82 144.35 169.34 166.57 252 109.62 108.05 124.48 121.67

53 81.312 81.256 101.41 97.49 253 77.568 77.41 85.17 83.67

54 59.822 60.174 73.68 72.55 254 48.767 48.009 61.91 58.02

55 72.942 71.873 83.29 82.75 255 86.819 85.458 95.71 91.82

56 71.748 68.099 90.71 87.97 256 50.297 50.034 61.97 59.4

57 128.65 126.12 151.86 148.22 257 36.546 36.09 53.61 50.17

58 44.719 44.693 48.16 45.72 258 52.606 51.802 69.27 67.66

59 54.799 54.679 61.04 57.44 259 37.319 37.166 44.48 41.95

60 134.3 130.77 153.66 152.89 260 30.505 30.052 43.34 39.4

61 46.571 46.901 58.54 55.52 261 48.028 47.069 55.78 53.54

62 39.707 39.956 42.38 40.99 262 29.85 29.746 47.9 44.17

63 70.622 69.01 86.15 84.48 263 36.166 35.275 40.06 37.18

64 37.642 38.209 53.49 52.87 264 765.44 2593.7 202.01 200.07

65 32.269 32.253 34.47 31.19 265 242.5 1016.1 139.64 137.08

66 172.73 170.31 187.44 184.94 266 89.381 97.771 77.07 73.52

67 90.56 90.627 106.93 103.98 267 113.47 111.8 129.3 128.51

68 74.335 76.137 95.53 92.31 268 70.159 70.28 86.18 84.6

69 74.258 72.237 87.48 87.21 269 40.335 39.249 56.03 52.06

70 86.289 86.464 98.41 94.61 270 95.427 95.035 100.11 98.5

71 78.252 76.021 86.68 84.69 271 58.694 58.749 67.94 65.3

72 68.885 69.012 88.31 85.29 272 35.789 35.614 43.32 39.71

73 66.792 67.442 85.92 82.95 273 65.888 65.269 76.42 72.44

74 86.829 88.025 106.42 103.1 274 43.119 42.574 54.83 52.22

75 50.806 51.41 68.71 68.08 275 31.965 31.685 35.9 35.47

76 40.086 39.657 46.35 44.52 276 51.494 50.85 68.22 68.08

77 96.432 94.166 111.8 109.33 277 34.802 34.469 47.01 44.54

78 43.701 43.177 59.16 55.43 278 24.646 24.583 27.83 25.56

79 35.59 35.014 39.29 35.95 279 540.89 428.74 556.36 552.51

80 62.271 62.499 78.68 75.1 280 436.53 1206.8 170.9 167.92

81 26.945 26.708 42.95 40.62 281 472.66 1530.6 356.85 354.2

82 18.308 18.379 22.33 20 282 131.94 251.03 123.15 121.06

83 231.27 279.15 211.87 208.45 283 156.59 156.46 166.61 165.57

84 324.01 407.17 203.59 203.45 284 88.446 86.362 100.47 96.62

85 271.61 318.32 94.45 90.91 285 62.711 62.113 74.94 72.78

86 152.17 162.13 147.49 145.86 286 118.12 117.71 125.4 125.28
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87 83.999 85.209 92.53 92.38 287 69.258 70.173 76.32 73.53

88 112.62 113.49 124.34 121.36 288 36.277 36.605 55.1 53.02

89 73.381 72.51 78.05 77.43 289 81.855 81.288 99.24 99

90 139.06 136.15 148.57 147.99 290 55.696 55.443 70.08 66.52

91 72.555 72.83 90.92 88.5 291 33.334 34.016 50.4 49.08

92 54.58 54.216 69.3 68.28 292 69.541 67.283 78.05 77.13

93 118.8 119.92 134.74 133.44 293 42.574 42.303 51.39 50.93

94 63.37 64.494 80.35 78.74 294 23.073 23.201 34.44 33.2

95 49.323 49.124 55 53.37 295 35.99 35.358 56.3 55.39

96 105.68 104.35 124.94 123.4 296 18.718 18.799 30.14 27.53

97 41.799 42.092 55.49 53.05 297 15.99 16.169 23.13 22.87

98 36.517 35.98 45.02 44.35 298 178.87 178.73 192.53 191.43

99 41.183 40.373 50.33 49.58 299 175.88 178.61 194.65 193.52

100 31.331 31.726 41.09 40.71 300 210.43 210.09 226.65 223.13

101 27.543 27.38 42.91 41.62 301 376.91 410.02 293.25 291.47

102 7.7697 7.8756 21.42 18.34 302 373.82 1336.3 127.64 124.62

103 267.45 267.65 278.91 277.97 303 853.49 1778.8 246.89 244.48

104 115.52 114.68 120.26 117.3 304 6978.7 12552 6194.36 6191.23

105 840.16 1450.6 642.48 639.71 305 115.1 115.47 123.55 123.09

106 778.31 1518.4 450.8 447.5 306 116.17 115.85 125.1 121.19

107 547.22 735.77 266.33 263.02 307 102.02 100.11 122.08 118.69

108 631.96 1570.3 98.43 97.26 308 60.696 59.251 69.16 68.96

109 71.9 76.031 89.45 88.21 309 91.67 90.591 115.3 113.44

110 153.31 148.83 167.85 165.76 310 66.039 64.844 80.19 78.89

111 80.265 78.035 96.86 95.56 311 39.961 39.553 48.89 46.37

112 53.209 54.216 72.78 69.45 312 95.788 94.322 106.53 105.61

113 150.5 150.41 164.8 161.56 313 60.657 60.892 66.68 64.36

114 60.227 60.638 73.52 71.29 314 31.674 31.59 45.04 42.63

115 37.332 36.893 52.2 51.15 315 69.983 69.013 77.92 75.52

116 112.28 111.7 133.13 130.41 316 47.417 47.673 60.25 58.46

117 47.519 47.42 50.27 49.34 317 21.646 21.304 33.17 33.03

118 35.273 35.024 43.42 41.59 318 1.5052 1.6892 14.4 12.34

119 102.65 102.59 108.68 107.14 319 118.41 119.74 137.75 136.12

120 49.88 49.701 66.83 64.68 320 258.16 221.37 232.35 231.92

121 31.794 32.025 40.93 36.96 321 317.89 350.14 302.68 300.84

122 62.285 61.95 71.87 68.85 322 550.76 2080.5 112.22 110.42

123 41.928 41.776 48.98 45.06 323 1078.9 2094.2 379.38 377.18

124 25.117 25.062 36.37 35.43 324 4707.4 5967.2 1968.44 1965.22

125 185.2 186.99 195.7 193.59 325 100.01 118.53 85.8 83

126 373.72 300.85 239.79 239.58 326 123.56 122.08 135.38 131.89

127 136.21 170 134.92 131.89 327 82.887 83.666 91.11 90.9

128 401.8 812.35 338.99 336.58 328 95.767 95.633 109.23 108.35

129 196.91 236.89 175.22 171.79 329 69.635 68.79 76.72 74.88

130 473.21 1453 183.11 179.16 330 98.198 96.683 110.37 106.54

131 251.65 600.16 225.91 222.19 331 75.786 76.198 92.85 89.69

132 66.674 65.541 84.63 82.99 332 37.596 37.92 48.05 46.24

133 69.493 69.532 76.08 76.08 333 63.359 63.708 83.21 81.88

134 40.284 40.224 44.37 42.21 334 47.177 48.436 52.91 52.67

135 50.302 51.023 62.34 61.51 335 30.88 30.8 43.94 40.98

136 33.938 33.864 48.85 47.97 336 51.149 51.369 56.58 54.55

137 90.971 90.216 96.63 95.33 337 31.752 32.117 46.38 45.58

138 47.205 47.065 49.45 49.07 338 22.356 22.396 34.24 32.53

139 32.822 32.42 35.68 32.69 339 368.95 547.41 275.76 275.09

140 79.242 80.443 86.1 83.11 340 137.26 174.75 130.78 127.77

141 40.862 40.566 55.33 53.16 341 106.52 105.64 125.8 124.33

142 26.879 26.836 35.25 33.9 342 149.55 148.16 163.91 160.14

143 22.476 22.278 34.36 31.03 343 247.12 1275.3 147.47 147.4

144 15.505 15.607 27.65 25.44 344 106.36 104.82 115.8 112.48

145 13.13 13.009 22.92 19.09 345 118.19 114.65 126.46 123.95

146 247.94 364.91 138.83 135.26 346 102.67 116.92 122.83 120.68

147 1082 4112.7 524.31 522.88 347 73.201 71.552 83.23 80.63

148 53.95 54.624 69.3 67.11 348 89.705 89.469 108.26 105.35

149 146.65 147.38 167.15 165.76 349 100.31 98.914 116.33 115.95

150 88.707 88.374 98.05 95.56 350 52.815 53.506 72.9 69.39

151 40.48 40.809 44 40.81 351 99.145 97.459 116.17 116.11

152 111.03 112.96 116 113.02 352 59.987 60.224 80.21 79.03

153 70.748 71.729 86.88 86.38 353 36.045 35.614 40.91 40.19
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154 36.229 35.773 43.97 40.68 354 76.149 76.784 90.65 86.94

155 94.701 92.974 113.82 113.72 355 46.631 46.051 58.8 58.53

156 50.168 48.967 63.48 61.82 356 31.772 31.636 33.56 31.24

157 35.974 35.617 46.67 43.74 357 68.078 67.932 80.98 78.43

158 78.067 77.834 97.2 94.07 358 96.801 95.306 104.67 102.06

159 44.822 44.851 54.42 52.95 359 86.839 86.978 104.16 100.7

160 29.833 29.609 39.36 36.38 360 71.382 71.439 80.09 79.87

161 55.772 56.056 66.18 62.61 361 66.34 66.557 73.07 69.8

162 36.899 36.633 53.84 52.87 362 98.628 97.186 119.68 117.56

163 24.07 24.22 31.39 30.87 363 71.346 73.449 87.07 84.29

164 861.97 2765.1 164.88 163.98 364 75.637 74.806 89.11 88.26

165 1264.5 5293.1 703.42 702.02 365 76.089 76.127 80.79 78.62

166 155.47 158.75 171.73 170.58 366 85.739 83.883 105.28 102.47

167 145.27 141.29 171.6 167.89 367 52.708 52.926 69.27 65.44

168 44.396 44.604 63.6 63.39 368 66.438 65.549 70.3 68.52

169 100.61 100.28 110.99 108.62 369 65.741 65.134 72.64 72.3

170 94.604 97.139 113.99 113.34 370 43.127 43.03 60.26 60.03

171 38.479 39.235 50.72 47.37 371 222.86 221.87 240.43 237.91

172 92.985 90.422 110.26 109.59 372 56.79 56.517 59.59 56.41

173 66.358 66.216 87.27 85.26 373 63.215 62.756 68.41 65.65

174 36.061 35.943 46.06 42.06 374 55.138 55.599 60.58 59.2

175 75.589 74.223 89.38 87.96 375 56.664 56.454 75.71 71.92

176 57.812 55.205 80.65 80.46 376 99.107 104.78 118.78 116.7

177 31.274 31.053 37.6 36.75 377 52.106 52.166 63.83 60.01

178 63.516 63.512 69.05 67.46 378 63.838 62.579 76.78 76.49

179 45.402 44.779 65.13 63.8 379 100.83 100.94 105.68 104.85

180 27.294 27.208 34.42 33.5 380 59.018 57.924 75.49 72.39

181 6684 8097.4 4705.08 4701.34 381 69.895 69.203 77.08 73.42

182 1771.5 5466.7 164.17 161.44 382 83.843 82.03 94.81 91.68

183 4186 3743.1 3189.26 3185.41 383 58.438 58.1 71.32 70.14

184 720.51 3116.1 312.34 310.59 384 57.98 57.713 73.37 72.76

185 102.88 101.09 123.89 120.13 385 36.147 35.806 44.13 40.74

186 44.197 44.099 62.11 62.09 386 73.603 70.936 89.92 86.78

187 104.59 104.82 122.5 120.06 387 52.672 52.833 71.34 70.26

188 67.709 66.839 73.36 70.16 388 62.906 63.291 76.2 75.29

189 39.774 39.957 49.38 48.45 389 90.588 89.391 102.67 101.39

190 93.8 92.422 115.99 112.26 390 57.303 57.746 64.32 61

191 63.035 62.31 72.45 69.4 391 51.87 52.418 62.97 59.68

192 31.77 31.627 47.56 44.25 392 69.922 69.97 74.11 71.83

193 73.527 73.815 79.43 77.14 393 38.767 38.608 54.16 51.87

194 50.052 49.013 69.83 66.66 394 55.824 54.598 67.55 66.41

195 29.233 29.168 45.71 44.39 395 108.04 105.7 119.85 117.05

196 69.537 70.167 80.99 80.1 396 37.423 37.72 48.09 44.9

197 38.88 38.597 47.69 46.44 397 62.714 62.907 66.99 65.22

198 31.46 31.514 37.64 35.3 398 75.359 72.657 90.75 88.97

199 5899.2 5570.6 3872.25 3868.93 399 34.171 34.21 42.23 40.37

200 63.967 70.766 62.11 60.95 400 7.0318 6.6065 16.74 15.62
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Appendix F

Trials of Di�erent Data Embedding

Methods for 2D MRI Dataset

F.1 Di�erent Data Embedding Methods for 2D MRI

Dataset

MSEs of Images Registered with Learning Algorithm with Di�erent Data

Embedding Methods(experiment desribed in setion 4.3.1)

Trial

no.

LK Degraded

LK

PCA LLE Laplaian

Eigenmaps

LTSA

1

93.55 145.52 135.92 233.06 120.00 152.16

2

206.17 289.01 266.20 441.06 250.77 253.56

3

136.65 193.89 170.00 313.32 176.19 158.13

4

100.84 143.45 148.63 239.50 128.04 117.93

5

90.89 133.58 120.46 249.05 87.90 121.03

6

153.87 223.29 352.36 454.85 177.78 348.31

7

96.3 139.58 150.16 269.81 121.62 155.12

8

151.23 221.61 546.81 404.32 168.67 592.35

9

146.99 209.9 187.07 288.82 156.03 166.26

10

106.67 144.48 142.61 292.85 152.55 141.87

11

100.85 128.76 132.04 192.43 121.63 96.00

12

115.93 166.25 181.41 274.42 168.71 124.71

13

107.85 141.88 115.61 240.05 122.94 108.11

14

90.83 128.97 119.02 245.95 140.08 141.86

15

109.11 158.78 188.44 262.68 119.67 219.48

16

39.66 53.29 227.45 104.99 88.55 175.46

17

120.54 153.63 165.44 260.72 166.82 151.00

18

154.17 233.98 185.02 394.44 172.60 162.02

19

128.31 193.54 168.74 316.20 135.98 126.93

20

82.14 113.1 112.43 188.51 125.51 136.76

21

82.14 113.1 126.53 171.70 137.65 118.77

22

101.25 147.03 139.36 253.99 120.69 166.86

23

101.6 134.88 143.81 207.09 140.01 142.28

24

184.06 273.92 224.18 405.75 215.10 230.98
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25

82.14 113.1 374.79 218.70 124.36 361.32

26

101.25 147.03 105.75 234.36 139.04 152.68

27

112.29 171.59 223.54 446.97 122.79 286.87

28

112.78 165.85 109.20 270.82 153.73 106.41

29

101.75 145.75 103.46 233.07 157.59 158.74

30

92.25 125.34 128.63 236.77 124.67 146.19
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Appendix G

Trials of Data Embedding Methods

for 3D Gated CT Dataset

G.1 Di�erent Data Embedding Methods

MSEs of Registered Images with Learning Algorithm Using Di�erent Data

Embedding Methods

Trial

no.

LK Degraded

LK

PCA LLE Laplaian

Eigen-

maps

LTSA Trial

no.

LK Degraded

LK

PCA LLE Laplaian

Eigen-

maps

LTSA

1 51.78 51.87 58.71 86.55 57.94 65.86 201 401.28 636.92 324.15 473.56 321.01 360.25

2 32.89 33.06 34.98 51.97 37.04 45.37 202 79.63 78.25 81.57 121.94 87.10 98.03

3 42.79 42.23 44.02 65.53 43.85 49.83 203 42.35 42.15 49.85 69.68 47.20 54.43

4 88.98 89.91 100.27 147.12 102.02 116.30 204 127.95 127.24 130.27 197.47 131.59 149.43

5 40.68 41.00 46.82 66.72 46.03 51.33 205 67.51 67.47 69.85 102.68 72.05 85.11

6 55.56 54.10 59.86 86.65 62.66 68.21 206 42.67 42.14 51.89 70.16 50.40 52.32

7 85.23 82.26 96.78 136.67 94.68 104.59 207 87.59 87.07 95.63 141.31 93.06 106.08

8 82.61 80.91 95.73 136.56 94.33 101.83 208 53.63 53.49 58.06 83.26 59.51 66.13

9 42.32 41.81 48.16 71.02 51.80 54.56 209 32.87 32.45 38.29 56.30 35.65 40.89

10 60.79 61.13 63.38 99.22 63.61 75.11 210 73.90 73.61 83.70 121.20 84.39 90.81

11 75.71 74.70 82.22 116.52 81.51 91.70 211 54.00 53.95 57.99 89.47 61.95 70.68

12 89.72 87.70 101.03 145.30 100.96 115.53 212 35.12 33.79 42.24 58.51 37.81 43.36

13 39.08 39.44 44.08 66.04 44.88 53.77 213 56.94 56.87 65.15 93.68 62.52 72.55

14 51.79 51.87 60.14 88.06 61.93 69.49 214 41.91 42.68 48.13 69.92 48.96 53.60

15 93.04 93.63 102.11 155.68 101.30 117.36 215 24.88 24.86 29.29 37.66 31.80 31.94

16 102.30 100.55 117.31 165.16 110.09 129.60 216 513.30 886.18 162.24 237.85 164.49 188.20

17 41.53 41.88 48.13 69.12 44.74 55.62 217 857.31 1238.20 304.41 454.25 304.60 346.75

18 59.79 58.93 66.43 93.22 63.23 72.56 218 86.59 87.01 87.64 130.72 88.65 96.20

19 72.64 72.92 83.16 128.18 84.75 96.48 219 48.98 48.64 61.66 88.66 61.40 69.33

20 88.52 86.83 94.72 143.28 97.56 108.44 220 111.92 112.94 117.16 176.43 115.79 135.22

21 43.21 43.22 44.85 71.09 46.54 54.61 221 54.80 54.64 58.86 84.21 58.37 67.53

22 65.41 64.22 75.05 103.90 70.73 85.45 222 45.18 44.66 49.65 75.35 49.30 57.61

23 30.69 30.61 37.49 49.99 32.27 39.18 223 92.46 91.41 102.78 154.75 106.05 115.61

24 33.60 34.01 36.47 52.78 39.34 39.88 224 50.17 49.57 55.07 79.63 56.90 66.43

25 97.50 95.54 108.73 155.79 106.04 122.74 225 35.09 35.63 43.40 58.63 40.76 45.35

26 60.11 59.22 67.07 97.91 64.42 77.18 226 82.42 81.16 96.23 136.60 94.25 105.45

27 65.92 64.44 73.53 107.12 69.68 80.41 227 38.40 37.71 44.41 63.00 41.56 47.41

28 93.74 89.67 109.03 157.01 107.77 119.94 228 36.34 36.23 40.20 62.36 41.06 42.74

136



29 66.03 65.10 71.63 111.31 76.97 87.01 229 66.54 65.57 75.20 110.47 75.80 87.77

30 59.38 57.41 66.66 99.93 68.83 76.12 230 41.27 41.36 48.15 69.93 49.25 52.47

31 110.41 108.75 118.71 176.14 114.92 134.47 231 28.99 29.27 35.50 47.51 34.17 35.52

32 57.57 57.21 64.92 95.05 67.26 74.33 232 4144.00 5467.10 1728.82 2571.84 1781.20 1930.25

33 44.97 44.58 48.57 72.57 53.72 55.14 233 316.89 336.40 296.67 440.47 293.94 342.35

34 13.77 14.00 18.73 24.96 14.52 22.17 234 102.93 113.99 87.46 127.23 85.72 95.18

35 129.92 129.40 137.77 206.67 139.31 163.72 235 58.42 58.45 61.05 90.58 65.38 71.62

36 70.24 70.78 82.30 121.45 83.18 89.97 236 94.17 92.20 103.47 156.28 103.02 121.64

37 76.86 74.40 86.98 122.28 84.26 99.12 237 45.11 44.81 52.46 74.71 46.65 59.79

38 140.83 134.86 157.54 230.69 155.84 181.81 238 87.76 85.79 89.52 132.99 90.84 104.77

39 74.72 73.99 85.36 125.05 87.00 92.00 239 43.15 43.31 43.45 65.56 49.52 54.77

40 56.16 56.12 60.40 90.50 64.96 70.61 240 52.81 52.59 59.18 84.97 56.95 68.27

41 126.67 124.03 141.06 208.95 141.26 160.54 241 63.57 64.05 66.43 98.10 68.16 77.34

42 79.04 77.25 84.04 124.53 84.85 96.09 242 41.19 40.72 45.88 69.13 45.35 54.11

43 66.17 63.65 78.94 118.07 83.45 93.16 243 32.92 32.39 42.17 57.87 36.46 48.30

44 108.06 103.11 116.56 172.64 115.41 133.88 244 58.51 57.62 68.12 94.68 64.97 74.41

45 43.95 43.83 46.73 67.90 45.60 54.79 245 34.00 33.93 39.36 57.39 40.39 42.52

46 43.70 42.35 47.48 73.13 48.44 56.59 246 29.63 29.51 34.86 54.07 33.37 40.79

47 63.86 63.57 72.31 105.36 69.86 79.67 247 1587.80 3113.90 604.21 837.74 523.40 686.08

48 30.73 30.64 35.52 49.04 35.57 42.22 248 187.29 893.97 136.52 201.40 136.79 155.04

49 23.70 23.34 32.27 44.86 24.97 36.13 249 454.13 848.79 438.41 648.96 434.58 497.44

50 133.19 129.16 143.05 212.02 140.09 164.90 250 94.12 122.74 82.02 118.29 79.15 92.61

51 72.59 67.25 83.65 116.27 77.98 93.97 251 70.13 69.64 76.37 114.57 76.43 85.37

52 149.82 144.35 162.94 235.03 161.95 180.52 252 109.62 108.05 115.12 169.55 113.00 131.42

53 81.31 81.26 87.78 133.61 90.78 99.51 253 77.57 77.41 82.07 122.66 83.76 96.15

54 59.82 60.17 67.09 93.40 67.66 75.76 254 48.77 48.01 53.00 79.62 53.91 62.63

55 72.94 71.87 82.27 122.94 83.63 91.74 255 86.82 85.46 97.97 137.41 91.80 108.23

56 71.75 68.10 90.46 124.57 89.60 95.63 256 50.30 50.03 56.23 83.63 55.10 60.44

57 128.65 126.12 141.98 212.21 143.27 160.37 257 36.55 36.09 39.55 55.35 41.93 43.97

58 44.72 44.69 51.14 73.97 48.96 55.53 258 52.61 51.80 60.79 84.11 61.28 65.95

59 54.80 54.68 59.81 91.59 65.09 70.47 259 37.32 37.17 41.31 59.78 46.55 49.92

60 134.30 130.77 151.62 223.66 149.35 167.36 260 30.51 30.05 37.57 53.99 38.62 41.49

61 46.57 46.90 50.46 81.09 49.83 62.88 261 48.03 47.07 55.75 80.10 55.96 64.19

62 39.71 39.96 42.76 63.33 43.55 50.92 262 29.85 29.75 37.28 47.11 37.18 42.12

63 70.62 69.01 75.33 115.87 81.23 91.17 263 36.17 35.28 41.55 60.90 44.24 45.02

64 37.64 38.21 44.73 64.16 44.21 47.14 264 765.44 2593.70 201.75 296.46 201.63 233.57

65 32.27 32.25 36.80 55.63 32.63 43.38 265 242.50 1016.10 132.41 190.12 128.78 148.44

66 172.73 170.31 185.69 265.86 184.48 204.81 266 89.38 97.77 78.79 119.69 76.52 92.85

67 90.56 90.63 97.72 136.96 107.79 110.58 267 113.47 111.80 126.25 182.81 124.85 141.88

68 74.34 76.14 83.58 123.94 80.50 97.37 268 70.16 70.28 77.87 114.27 78.62 84.85

69 74.26 72.24 77.81 116.53 77.58 91.69 269 40.34 39.25 50.63 67.64 45.39 50.54

70 86.29 86.46 100.67 141.87 95.94 112.88 270 95.43 95.04 102.59 147.78 103.58 114.44

71 78.25 76.02 89.25 129.81 85.15 100.13 271 58.69 58.75 65.00 95.09 61.00 74.44

72 68.89 69.01 83.03 124.51 82.43 97.08 272 35.79 35.61 41.73 62.84 40.01 43.48

73 66.79 67.44 74.03 114.72 74.78 83.34 273 65.89 65.27 74.93 105.97 70.17 80.34

74 86.83 88.03 94.24 137.41 94.86 105.97 274 43.12 42.57 51.24 67.66 45.91 52.31

75 50.81 51.41 58.26 85.70 60.75 69.13 275 31.97 31.69 34.54 52.19 37.84 39.31

76 40.09 39.66 44.88 69.86 45.83 50.88 276 51.49 50.85 54.42 79.97 55.04 60.65

77 96.43 94.17 103.47 159.99 104.53 118.55 277 34.80 34.47 38.21 55.74 42.84 46.38

78 43.70 43.18 45.61 71.66 44.63 55.34 278 24.65 24.58 30.68 38.08 28.55 29.22

79 35.59 35.01 39.62 62.59 38.76 45.16 279 540.89 428.74 552.52 824.70 551.91 631.22

80 62.27 62.50 67.62 104.59 65.79 81.57 280 436.53 1206.80 163.28 238.16 155.15 179.22

81 26.95 26.71 32.14 42.27 27.85 37.90 281 472.66 1530.60 351.94 517.98 347.78 399.78

82 18.31 18.38 24.78 33.70 23.55 29.84 282 131.94 251.03 112.87 170.96 115.53 130.73

83 231.27 279.15 214.96 312.01 210.61 241.09 283 156.59 156.46 164.37 241.83 164.33 182.60

84 324.01 407.17 202.89 298.37 199.81 229.78 284 88.45 86.36 103.62 148.25 100.62 116.15

85 271.61 318.32 88.62 131.35 83.11 96.67 285 62.71 62.11 71.91 100.06 71.41 79.75

86 152.17 162.12 148.15 212.03 141.25 165.62 286 118.12 117.71 125.87 184.25 127.49 146.39

87 84.00 85.21 91.58 132.18 90.07 102.68 287 69.26 70.17 75.23 106.81 71.96 80.23

88 112.62 113.49 120.57 180.88 118.03 136.08 288 36.28 36.61 40.58 62.07 40.97 49.70

89 73.38 72.51 84.02 116.25 76.65 90.61 289 81.86 81.29 88.37 130.95 89.73 97.58

90 139.06 136.15 148.45 217.93 150.07 171.48 290 55.70 55.44 59.91 87.15 56.99 64.58

91 72.56 72.83 81.98 121.37 77.27 88.99 291 33.33 34.02 36.22 56.90 37.39 40.63

92 54.58 54.22 61.07 93.73 65.23 69.16 292 69.54 67.28 79.71 115.77 77.11 88.91

93 118.80 119.92 132.81 199.67 134.90 155.14 293 42.57 42.30 46.89 69.78 47.73 50.78

94 63.37 64.49 68.42 103.27 71.58 78.84 294 23.07 23.20 25.38 35.65 24.51 29.69

95 49.32 49.12 56.26 87.91 59.35 63.21 295 35.99 35.36 45.50 68.67 46.33 49.24
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96 105.68 104.35 122.46 177.40 122.81 137.56 296 18.72 18.80 19.18 31.97 24.33 24.37

97 41.80 42.09 49.78 66.70 47.64 53.64 297 15.99 16.17 18.78 25.88 20.24 21.78

98 36.52 35.98 42.42 63.39 44.23 49.09 298 178.87 178.73 184.85 272.71 181.72 211.16

99 41.18 40.37 47.64 70.26 48.33 51.95 299 175.88 178.61 184.93 271.43 181.25 212.52

100 31.33 31.73 36.15 53.56 34.38 40.71 300 210.43 210.09 222.26 328.39 220.82 248.59

101 27.54 27.38 33.08 43.92 31.43 36.95 301 376.91 410.02 297.04 445.49 291.98 342.43

102 7.77 7.88 10.77 12.63 14.30 11.03 302 373.82 1336.30 113.81 171.01 112.39 133.64

103 267.45 267.65 288.15 417.77 278.11 323.46 303 853.49 1778.80 254.65 372.01 246.89 288.54

104 115.52 114.68 123.08 175.89 119.02 135.24 304 6978.70 12552.00 6253.75 9282.74 6188.55 7115.64

105 840.16 1450.60 647.43 958.95 639.06 737.10 305 115.10 115.47 126.61 182.90 126.24 139.86

106 778.31 1518.40 404.88 601.58 442.43 462.59 306 116.17 115.85 124.71 183.23 124.63 140.58

107 547.22 735.77 267.36 394.46 263.60 304.44 307 102.02 100.11 114.44 168.83 111.75 129.65

108 631.96 1570.30 95.98 145.79 101.23 110.20 308 60.70 59.25 71.62 98.98 65.35 75.50

109 71.90 76.03 84.45 122.13 83.39 96.81 309 91.67 90.59 102.95 150.22 102.46 115.54

110 153.31 148.83 165.01 243.49 165.58 188.77 310 66.04 64.84 69.65 104.82 72.57 82.01

111 80.27 78.04 87.41 129.41 84.86 98.82 311 39.96 39.55 45.45 69.73 47.96 54.78

112 53.21 54.22 59.87 89.01 60.71 66.14 312 95.79 94.32 108.93 159.84 104.32 123.75

113 150.50 150.41 156.93 232.42 152.15 178.40 313 60.66 60.89 64.42 98.56 65.87 72.59

114 60.23 60.64 68.78 93.26 65.91 71.91 314 31.67 31.59 34.57 54.81 37.73 41.91

115 37.33 36.89 39.23 64.06 46.31 51.69 315 69.98 69.01 84.77 122.28 81.24 94.67

116 112.28 111.70 119.60 183.98 121.57 141.83 316 47.42 47.67 54.85 73.45 52.35 59.16

117 47.52 47.42 54.88 79.14 52.52 60.40 317 21.65 21.30 24.48 38.39 24.95 27.06

118 35.27 35.02 41.07 58.48 43.27 48.07 318 1.51 1.69 8.72 5.93 4.59 3.65

119 102.65 102.59 111.82 161.96 109.26 130.03 319 118.41 119.74 122.45 181.40 126.70 144.81

120 49.88 49.70 59.14 81.41 58.92 61.21 320 258.16 221.37 230.28 344.04 228.22 259.25

121 31.79 32.03 37.36 50.38 32.33 42.02 321 317.89 350.14 302.97 450.24 301.50 345.35

122 62.29 61.95 71.44 99.06 69.23 79.85 322 550.76 2080.50 101.08 151.42 99.87 116.03

123 41.93 41.78 46.81 73.75 49.88 56.90 323 1078.90 2094.20 387.18 574.28 370.44 446.64

124 25.12 25.06 28.22 45.13 31.24 32.75 324 4707.40 5967.20 2252.14 3341.29 1964.57 2600.58

125 185.20 186.99 195.61 293.13 194.13 222.49 325 100.01 118.53 89.64 131.29 88.81 97.92

126 373.72 300.85 245.49 360.31 240.87 275.64 326 123.56 122.08 133.16 189.43 129.23 148.09

127 136.21 170.00 137.11 200.50 137.69 153.61 327 82.89 83.67 90.34 135.77 90.71 101.10

128 401.80 812.35 348.39 513.30 344.22 385.85 328 95.77 95.63 104.14 153.29 103.53 122.90

129 196.91 236.89 173.95 258.73 173.03 196.49 329 69.64 68.79 73.32 112.07 71.15 82.63

130 473.21 1453.00 183.99 276.91 187.64 209.84 330 98.20 96.68 108.43 163.56 107.90 125.78

131 251.65 600.16 227.59 327.15 219.07 256.60 331 75.79 76.20 81.87 122.83 87.28 98.22

132 66.67 65.54 71.64 103.83 72.93 82.26 332 37.60 37.92 39.80 62.00 44.75 51.05

133 69.49 69.53 74.12 108.41 70.84 82.93 333 63.36 63.71 73.15 106.90 74.87 83.15

134 40.28 40.22 49.47 67.77 46.15 54.69 334 47.18 48.44 51.54 80.38 54.79 61.93

135 50.30 51.02 57.58 79.12 57.49 67.06 335 30.88 30.80 38.77 51.87 37.71 43.69

136 33.94 33.86 36.36 54.85 35.00 42.75 336 51.15 51.37 62.39 92.14 61.59 73.28

137 90.97 90.22 94.27 140.22 96.14 110.48 337 31.75 32.12 40.78 53.85 38.15 40.70

138 47.21 47.07 49.59 73.89 51.53 57.13 338 22.36 22.40 30.64 41.55 29.55 30.40

139 32.82 32.42 39.71 50.84 39.55 43.67 339 368.95 547.41 266.22 390.90 260.46 304.08

140 79.24 80.44 87.04 133.15 86.95 98.68 340 137.26 174.75 130.53 199.43 131.99 149.60

141 40.86 40.57 44.76 64.29 43.17 50.41 341 106.52 105.64 116.55 163.91 113.80 131.01

142 26.88 26.84 34.57 47.11 29.03 37.82 342 149.55 148.16 160.75 234.73 157.05 181.88

143 22.48 22.28 26.45 40.95 23.58 28.89 343 247.12 1275.30 144.55 210.50 137.28 161.41

144 15.51 15.61 18.16 24.14 22.41 19.55 344 106.36 104.82 114.36 167.99 117.25 128.25

145 13.13 13.01 13.94 22.46 13.32 15.20 345 118.19 114.65 130.89 192.24 130.22 145.42

146 247.94 364.91 149.47 193.47 128.94 154.10 346 102.67 116.92 110.12 165.65 109.41 126.61

147 1082.00 4112.70 516.08 768.72 509.48 591.09 347 73.20 71.55 87.96 120.71 81.81 99.16

148 53.95 54.62 58.73 86.24 59.55 72.92 348 89.71 89.47 107.36 157.19 106.89 121.34

149 146.65 147.38 157.92 228.27 152.35 181.09 349 100.31 98.91 106.96 160.51 108.42 122.00

150 88.71 88.37 91.75 139.39 94.60 106.90 350 52.82 53.51 61.34 88.27 56.47 69.51

151 40.48 40.81 44.36 69.03 45.22 54.13 351 99.15 97.46 110.64 162.18 110.26 128.49

152 111.03 112.96 118.64 173.91 116.56 133.69 352 59.99 60.22 64.45 98.95 64.37 73.14

153 70.75 71.73 81.29 116.29 76.10 91.93 353 36.05 35.61 38.50 60.23 42.65 48.95

154 36.23 35.77 41.40 58.35 39.37 50.74 354 76.15 76.78 85.81 130.73 90.39 101.47

155 94.70 92.97 109.59 153.92 104.99 120.07 355 46.63 46.05 48.88 70.95 46.99 56.35

156 50.17 48.97 59.26 78.52 52.44 60.11 356 31.77 31.64 37.53 49.34 37.01 41.76

157 35.97 35.62 39.58 60.17 41.86 48.61 357 68.08 67.93 74.12 106.72 73.02 80.32

158 78.07 77.83 89.99 128.41 88.39 97.68 358 96.80 95.31 101.82 150.52 99.30 118.33

159 44.82 44.85 50.46 75.34 48.00 57.45 359 86.84 86.98 94.74 142.48 96.27 105.93

160 29.83 29.61 37.32 48.55 36.27 38.67 360 71.38 71.44 78.18 110.42 75.70 84.99

161 55.77 56.06 62.26 92.77 63.60 71.18 361 66.34 66.56 74.78 104.06 67.84 83.05

162 36.90 36.63 43.16 61.91 39.77 45.10 362 98.63 97.19 108.01 159.22 103.57 121.38
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163 24.07 24.22 30.29 41.51 28.37 32.33 363 71.35 73.45 78.90 114.25 80.45 90.70

164 861.97 2765.10 167.28 247.77 166.02 191.83 364 75.64 74.81 89.46 128.99 87.07 100.60

165 1264.50 5293.10 702.68 1046.69 701.72 805.45 365 76.09 76.13 82.60 120.00 84.59 91.94

166 155.47 158.75 161.08 238.33 165.96 187.55 366 85.74 83.88 96.05 140.47 97.16 105.89

167 145.27 141.29 162.03 241.93 164.21 187.01 367 52.71 52.93 65.11 91.77 64.22 71.90

168 44.40 44.60 52.23 77.38 51.50 55.23 368 66.44 65.55 73.04 104.68 69.29 82.34

169 100.61 100.28 112.45 162.21 108.60 128.29 369 65.74 65.13 75.66 111.75 73.43 85.32

170 94.60 97.14 105.43 157.17 101.92 120.78 370 43.13 43.03 48.63 70.36 45.32 50.71

171 38.48 39.24 42.98 66.65 44.85 49.06 371 222.86 221.87 238.84 350.64 235.35 267.11

172 92.99 90.42 105.97 160.64 105.71 125.73 372 56.79 56.52 61.17 88.67 65.38 69.32

173 66.36 66.22 83.63 118.87 80.48 95.12 373 63.22 62.76 68.18 101.84 69.45 83.26

174 36.06 35.94 43.87 62.36 41.48 44.36 374 55.14 55.60 60.66 89.64 62.38 68.86

175 75.59 74.22 85.92 121.99 79.57 94.99 375 56.66 56.45 67.20 96.89 60.70 72.29

176 57.81 55.21 70.07 102.19 72.76 84.24 376 99.11 104.78 116.29 171.12 111.95 132.12

177 31.27 31.05 35.68 50.59 32.86 41.20 377 52.11 52.17 58.05 83.48 60.14 68.38

178 63.52 63.51 73.65 106.36 67.77 82.56 378 63.84 62.58 71.68 103.94 69.73 83.56

179 45.40 44.78 53.27 82.12 53.10 64.55 379 100.83 100.94 109.85 158.29 110.34 121.31

180 27.29 27.21 34.79 42.24 28.34 37.88 380 59.02 57.92 65.11 96.88 62.60 70.49

181 6684.00 8097.40 4768.60 7172.54 4698.20 5445.02 381 69.90 69.20 76.93 114.79 76.87 87.40

182 1771.50 5466.70 163.82 242.40 167.05 186.46 382 83.84 82.03 91.95 138.44 90.61 103.95

183 4186.00 3743.10 3529.57 5640.01 3190.17 4358.78 383 58.44 58.10 64.41 96.38 66.36 72.73

184 720.51 3116.10 302.09 450.11 298.13 343.41 384 57.98 57.71 69.33 102.85 68.78 79.55

185 102.88 101.09 113.64 168.99 112.00 125.13 385 36.15 35.81 40.68 56.56 44.47 47.46

186 44.20 44.10 47.27 69.18 48.02 55.87 386 73.60 70.94 83.08 122.20 80.80 92.91

187 104.59 104.82 109.67 168.29 112.91 128.54 387 52.67 52.83 58.63 83.52 58.03 70.40

188 67.71 66.84 74.39 109.26 75.58 90.13 388 62.91 63.29 72.86 103.71 66.45 77.53

189 39.77 39.96 43.32 66.12 46.78 51.38 389 90.59 89.39 99.37 149.89 104.61 115.92

190 93.80 92.42 105.64 148.12 105.41 116.16 390 57.30 57.75 66.58 91.20 63.86 70.94

191 63.04 62.31 71.24 100.31 70.42 76.68 391 51.87 52.42 59.07 83.61 56.09 67.09

192 31.77 31.63 34.26 52.76 35.13 39.17 392 69.92 69.97 79.81 117.55 78.67 90.60

193 73.53 73.82 83.92 119.69 80.27 94.05 393 38.77 38.61 48.87 66.57 42.81 50.47

194 50.05 49.01 59.24 81.02 59.25 61.75 394 55.82 54.60 62.64 88.67 59.48 66.60

195 29.23 29.17 33.40 50.45 31.49 39.68 395 108.04 105.70 123.83 176.75 121.66 137.15

196 69.54 70.17 72.83 107.12 72.32 87.63 396 37.42 37.72 41.18 60.08 45.10 47.31

197 38.88 38.60 45.85 63.37 44.00 51.47 397 62.71 62.91 72.68 100.08 67.85 76.93

198 31.46 31.51 35.57 48.14 38.24 38.88 398 75.36 72.66 84.80 127.74 79.83 98.29

199 5899.20 5570.60 4008.69 6067.61 3862.82 4655.96 399 34.17 34.21 41.06 57.98 37.75 46.68

200 63.97 70.77 68.79 96.13 63.39 74.33 400 7.03 6.61 7.65 16.62 8.52 9.81
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Appendix H

Trials of Learning set of

Representative Pathes Only for 2D

MRI Dataset

H.1 A Learning set of Representative Pathes Only

for 2D MRI Dataset

MSEs of Images Registered with Learning Algorithm With A Learning set of

Representative Pathes Only (experiment desribed in setion 4.3.3.1)

Trial no.

LK Degraded

LK

With

representative

pathes only

1

93.55 145.52 352.16

2

206.17 289.01 289.38

3

136.65 193.89 200.15

4

100.84 143.45 306.99

5

90.89 133.58 136.03

6

153.87 223.29 292.45

7

96.30 139.58 269.19

8

151.23 221.61 298.98

9

146.99 209.90 264.06

10

106.67 144.48 333.94

11

100.85 128.76 812.42

12

115.93 166.25 127.93

13

107.85 141.88 259.62

14

90.83 128.97 282.36

15

109.11 158.78 156.17

16

39.66 53.29 162.12

17

120.54 153.63 120.9

18

154.17 233.98 168.94

19

128.31 193.54 243.95
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20

82.14 113.10 205.03

21

82.14 113.10 144.26

22

101.25 147.03 211.02

23

101.60 134.88 147.32

24

184.06 273.92 150.33

25

82.14 113.10 287.79

26

101.25 147.03 140.6

27

112.29 171.59 148.32

28

112.78 165.85 430.25

29

101.75 145.75 781.12

30

92.25 125.34 189.68
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Appendix I

Learning Algorithm with

Representative Pathes Only for 3D

Gated CT Dataset

I.1 Comparison of Learning Algorithm with Learn-

ing Set of Represenative Pathes (RP) Only

MSEs of Registered Images with Learning Algorithm Using Learning Set of

Representative Pathes Only

Trial

#

LK Degraded

LK

RP Trial

#

LK Degraded

LK

RP Trial

#

LK Degraded

LK

RP Trial

#

LK Degraded

LK

RP

1 51.78 51.87 134.99 101 27.54 27.38 144.59 201 401.28 636.92 751.88 300 210.43 210.09 680.32

2 32.89 33.06 112.08 102 7.77 7.88 56.29 202 79.63 78.25 212.09 301 376.91 410.02 273.53

3 42.79 42.23 151.03 103 267.45 267.65 618.60 203 42.35 42.15 142.35 302 373.82 1336.3 622.09

4 88.98 89.91 253.27 104 115.52 114.68 263.32 204 127.95 127.24 330.17 303 853.49 1778.8 13275.08

5 40.68 41 131.34 105 840.16 1450.6 1441.62 205 67.51 67.47 208.19 304 6978.7 12552 338.69

6 55.56 54.1 162.59 106 778.31 1518.4 829.64 206 42.67 42.14 184.25 305 115.1 115.47 281.22

7 85.23 82.26 278.89 107 547.22 735.77 599.63 207 87.59 87.07 196.95 306 116.17 115.85 306.04

8 82.61 80.91 253.29 108 631.96 1570.3 263.29 208 53.63 53.49 122.43 307 102.02 100.11 209.14

9 42.32 41.81 105.71 109 71.9 76.03 201.64 209 32.87 32.45 113.78 308 60.7 59.25 252.95

10 60.79 61.13 179.03 110 153.31 148.83 429.33 210 73.9 73.61 191.54 309 91.67 90.59 206.01

11 75.71 74.7 183.16 111 80.27 78.04 270.60 211 54 53.95 178.17 310 66.04 64.84 158.22

12 89.72 87.7 208.45 112 53.21 54.22 157.30 212 35.12 33.79 152.00 311 39.96 39.55 251.24

13 39.08 39.44 101.07 113 150.5 150.41 386.81 213 56.94 56.87 194.37 312 95.79 94.32 151.28

14 51.79 51.87 174.64 114 60.23 60.64 166.78 214 41.91 42.68 122.33 313 60.66 60.89 141.78

15 93.04 93.63 305.13 115 37.33 36.89 141.83 215 24.88 24.86 74.36 314 31.67 31.59 241.40

16 102.3 100.55 299.81 116 112.28 111.7 311.42 216 513.3 886.18 408.63 315 69.98 69.01 161.67

17 41.53 41.88 106.69 117 47.52 47.42 142.98 217 857.31 1238.2 698.80 316 47.42 47.67 77.05

18 59.79 58.93 136.93 118 35.27 35.02 109.71 218 86.59 87.01 261.51 317 21.65 21.3 27.07

19 72.64 72.92 272.62 119 102.65 102.59 262.82 219 48.98 48.64 132.94 318 1.51 1.69 261.47

20 88.52 86.83 225.00 120 49.88 49.7 127.44 220 111.92 112.94 320.03 319 118.41 119.74 569.89

21 43.21 43.22 152.33 121 31.79 32.03 117.96 221 54.8 54.64 156.72 320 258.16 221.37 736.88

22 65.41 64.22 230.29 122 62.29 61.95 153.96 222 45.18 44.66 104.34 321 317.89 350.14 247.73

23 30.69 30.61 124.59 123 41.93 41.78 172.37 223 92.46 91.41 258.31 322 550.76 2080.5 837.17

24 33.6 34.01 169.73 124 25.12 25.06 83.83 224 50.17 49.57 137.25 323 1078.9 2094.2 4043.14

25 97.5 95.54 261.03 125 185.2 186.99 459.02 225 35.09 35.63 152.58 324 4707.4 5967.2 276.79

26 60.11 59.22 178.04 126 373.72 300.85 559.67 226 82.42 81.16 247.76 325 100.01 118.53 277.14

27 65.92 64.44 200.45 127 136.21 170 368.81 227 38.4 37.71 94.32 326 123.56 122.08 277.54

28 93.74 89.67 235.68 128 401.8 812.35 798.87 228 36.34 36.23 83.99 327 82.89 83.67 226.58

29 66.03 65.1 209.96 129 196.91 236.89 371.31 229 66.54 65.57 174.63 328 95.77 95.63 180.85
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30 59.38 57.41 166.91 130 473.21 1453 466.85 230 41.27 41.36 131.92 329 69.64 68.79 237.03

31 110.41 108.75 315.77 131 251.65 600.16 520.59 231 28.99 29.27 83.84 330 98.2 96.68 192.49

32 57.57 57.21 176.82 132 66.67 65.54 163.96 232 4144 5467.1 3710.83 331 75.79 76.2 90.03

33 44.97 44.58 139.14 133 69.49 69.53 241.96 233 316.89 336.4 717.75 332 37.6 37.92 245.42

34 13.77 14 91.12 134 40.28 40.22 133.09 234 102.93 113.99 223.71 333 63.36 63.71 167.39

35 129.92 129.4 350.68 135 50.3 51.02 147.72 235 58.42 58.45 144.77 334 47.18 48.44 103.33

36 70.24 70.78 244.25 136 33.94 33.86 127.42 236 94.17 92.2 314.87 335 30.88 30.8 202.68

37 76.86 74.4 245.64 137 90.97 90.22 290.11 237 45.11 44.81 121.96 336 51.15 51.37 150.17

38 140.83 134.86 416.39 138 47.21 47.07 173.26 238 87.76 85.79 263.82 337 31.75 32.12 84.74

39 74.72 73.99 240.40 139 32.82 32.42 136.91 239 43.15 43.31 194.13 338 22.36 22.4 615.54

40 56.16 56.12 217.68 140 79.24 80.44 269.42 240 52.81 52.59 122.91 339 368.95 547.41 305.03

41 126.67 124.03 364.48 141 40.86 40.57 150.89 241 63.57 64.05 216.19 340 137.26 174.75 266.74

42 79.04 77.25 202.69 142 26.88 26.84 143.63 242 41.19 40.72 128.50 341 106.52 105.64 345.22

43 66.17 63.65 177.30 143 22.48 22.28 131.97 243 32.92 32.39 107.19 342 149.55 148.16 355.35

44 108.06 103.11 250.67 144 15.51 15.61 39.72 244 58.51 57.62 135.90 343 247.12 1275.3 252.93

45 43.95 43.83 174.50 145 13.13 13.01 57.26 245 34 33.93 138.12 344 106.36 104.82 272.83

46 43.7 42.35 161.20 146 247.94 364.91 353.52 246 29.63 29.51 119.88 345 118.19 114.65 322.29

47 63.86 63.57 148.74 147 1082 4112.7 1155.68 247 1587.8 3113.9 1163.76 346 102.67 116.92 232.20

48 30.73 30.64 165.56 148 53.95 54.62 170.85 248 187.29 893.97 330.19 347 73.2 71.55 300.99

49 23.7 23.34 58.13 149 146.65 147.38 421.46 249 454.13 848.79 958.49 348 89.71 89.47 265.83

50 133.19 129.16 324.91 150 88.71 88.37 218.54 250 94.12 122.74 184.54 349 100.31 98.91 143.69

51 72.59 67.25 228.83 151 40.48 40.81 91.24 251 70.13 69.64 198.54 350 52.82 53.51 287.79

52 149.82 144.35 421.50 152 111.03 112.96 247.25 252 109.62 108.05 329.76 351 99.15 97.46 166.49

53 81.31 81.26 278.46 153 70.75 71.73 238.76 253 77.57 77.41 259.55 352 59.99 60.22 146.15

54 59.82 60.17 148.54 154 36.23 35.77 90.92 254 48.77 48.01 142.65 353 36.05 35.61 258.26

55 72.94 71.87 183.95 155 94.7 92.97 232.25 255 86.82 85.46 220.91 354 76.15 76.78 144.31

56 71.75 68.1 264.18 156 50.17 48.97 178.32 256 50.3 50.03 158.40 355 46.63 46.05 80.72

57 128.65 126.12 379.65 157 35.97 35.62 168.95 257 36.55 36.09 145.01 356 31.77 31.64 159.65

58 44.72 44.69 122.97 158 78.07 77.83 215.84 258 52.61 51.8 147.66 357 68.08 67.93 218.35

59 54.8 54.68 198.62 159 44.82 44.85 169.09 259 37.32 37.17 148.73 358 96.8 95.31 289.23

60 134.3 130.77 393.44 160 29.83 29.61 107.18 260 30.51 30.05 142.39 359 86.84 86.98 176.70

61 46.57 46.9 189.05 161 55.77 56.06 183.76 261 48.03 47.07 184.87 360 71.38 71.44 204.99

62 39.71 39.96 179.11 162 36.9 36.63 181.07 262 29.85 29.75 110.75 361 66.34 66.56 306.70

63 70.62 69.01 160.47 163 24.07 24.22 119.54 263 36.17 35.28 172.88 362 98.63 97.19 231.18

64 37.64 38.21 163.22 164 861.97 2765.1 391.74 264 765.44 2593.7 440.65 363 71.35 73.45 258.78

65 32.27 32.25 88.46 165 1264.5 5293.1 1551.05 265 242.5 1016.1 358.15 364 75.64 74.81 222.20

66 172.73 170.31 480.86 166 155.47 158.75 390.29 266 89.38 97.77 249.48 365 76.09 76.13 211.19

67 90.56 90.63 254.83 167 145.27 141.29 350.50 267 113.47 111.8 274.27 366 85.74 83.88 210.29

68 74.34 76.14 180.14 168 44.4 44.6 131.96 268 70.16 70.28 246.74 367 52.71 52.93 175.18

69 74.26 72.24 202.98 169 100.61 100.28 263.24 269 40.34 39.25 149.37 368 66.44 65.55 232.78

70 86.29 86.46 299.51 170 94.6 97.14 219.87 270 95.43 95.04 215.65 369 65.74 65.13 169.03

71 78.25 76.02 191.50 171 38.48 39.24 144.88 271 58.69 58.75 207.20 370 43.13 43.03 580.54

72 68.89 69.01 221.25 172 92.99 90.42 230.84 272 35.79 35.61 117.01 371 222.86 221.87 206.41

73 66.79 67.44 181.00 173 66.36 66.22 215.71 273 65.89 65.27 227.78 372 56.79 56.52 180.53

74 86.83 88.03 236.59 174 36.06 35.94 143.94 274 43.12 42.57 133.03 373 63.22 62.76 223.49

75 50.81 51.41 146.49 175 75.59 74.22 178.49 275 31.97 31.69 136.98 374 55.14 55.6 147.00

76 40.09 39.66 156.97 176 57.81 55.21 199.81 276 51.49 50.85 120.82 375 56.66 56.45 315.58

77 96.43 94.17 229.26 177 31.27 31.05 166.45 277 34.8 34.47 153.98 376 99.11 104.78 176.53

78 43.7 43.18 143.56 178 63.52 63.51 203.09 278 24.65 24.58 68.30 377 52.11 52.17 187.80

79 35.59 35.01 129.68 179 45.4 44.78 182.68 279 540.89 428.74 1241.63 378 63.84 62.58 302.06

80 62.27 62.5 238.50 180 27.29 27.21 116.57 280 436.53 1206.8 422.18 379 100.83 100.94 174.60

81 26.95 26.71 117.19 181 6684 8097.4 10035.42 281 472.66 1530.6 818.92 380 59.02 57.92 217.54

82 18.31 18.38 42.13 182 1771.5 5466.7 387.18 282 131.94 251.03 313.42 381 69.9 69.2 269.81

83 231.27 279.15 540.89 183 4186 3743.1 6684.11 283 156.59 156.46 410.62 382 83.84 82.03 211.88

84 324.01 407.17 507.74 184 720.51 3116.1 679.29 284 88.45 86.36 211.71 383 58.44 58.1 184.24

85 271.61 318.32 209.03 185 102.88 101.09 299.94 285 62.71 62.11 171.43 384 57.98 57.71 126.90

86 152.17 162.12 372.21 186 44.2 44.1 168.09 286 118.12 117.71 328.10 385 36.15 35.81 224.40

87 84 85.21 202.96 187 104.59 104.82 275.68 287 69.26 70.17 158.42 386 73.6 70.94 170.99

88 112.62 113.49 269.57 188 67.71 66.84 195.42 288 36.28 36.61 94.04 387 52.67 52.83 168.63

89 73.38 72.51 185.55 189 39.77 39.96 138.43 289 81.86 81.29 247.96 388 62.91 63.29 246.92

90 139.06 136.15 411.88 190 93.8 92.42 265.98 290 55.7 55.44 218.88 389 90.59 89.39 224.34

91 72.56 72.83 207.27 191 63.04 62.31 214.93 291 33.33 34.02 138.35 390 57.3 57.75 170.49

92 54.58 54.22 133.22 192 31.77 31.63 130.05 292 69.54 67.28 244.26 391 51.87 52.42 232.99

93 118.8 119.92 291.02 193 73.53 73.82 237.24 293 42.57 42.3 138.37 392 69.92 69.97 101.57

94 63.37 64.49 175.63 194 50.05 49.01 119.50 294 23.07 23.2 116.40 393 38.77 38.61 202.23

95 49.32 49.12 212.88 195 29.23 29.17 84.10 295 35.99 35.36 142.29 394 55.82 54.6 316.52

96 105.68 104.35 332.07 196 69.54 70.17 186.98 296 18.72 18.8 43.80 395 108.04 105.7 159.87

97 41.8 42.09 134.53 197 38.88 38.6 143.06 297 15.99 16.17 63.85 396 37.42 37.72 236.33

98 36.52 35.98 136.50 198 31.46 31.51 107.06 298 178.87 178.73 438.79 397 62.71 62.91 247.50

99 41.18 40.37 160.33 199 5899.2 5570.6 8240.99 299 175.88 178.61 449.68 398 75.36 72.66 85.57

100 31.33 31.73 171.40 200 63.97 70.77 208.01 300 210.43 210.09 528.98 399 34.17 34.21 94.64
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Appendix J

Trials of Learning Algorithm With

and Without Heuristi Weight of

Spatial Distane for 2D dMRI

Dataset

J.1 Learning Algorithm With and Without Heuris-

ti Weight of Spatial Distane for 2D dMRI Dataset

MSEs of Images Registered using Learning Algorithm With and Without Heuristi

Weight of Spatial Distane (experiment desribed in setion 5.2.1)

Trial no.

LK Degraded

LK

Without

heuristi

weight of

spatial

distane

With

heuristi

weight of

spatial

distane

1

93.55 145.52 120 90.41

2

206.17 289.01 250.77 229.66

3

136.65 193.89 176.19 157.01

4

100.84 143.45 128.04 95.99

5

90.89 133.58 87.9 78.79

6

153.87 223.29 177.78 157.86

7

96.30 139.58 121.62 85.59

8

151.23 221.61 168.67 145.68

9

146.99 209.90 156.03 140.21

10

106.67 144.48 152.55 123.00

11

100.85 128.76 121.63 98.19

12

115.93 166.25 168.71 158.84
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13

107.85 141.88 122.94 96.28

14

90.83 128.97 140.08 136.74

15

109.11 158.78 119.67 104.63

16

39.66 53.29 88.55 62.11

17

120.54 153.63 166.82 137.63

18

154.17 233.98 172.6 146.97

19

128.31 193.54 135.98 123.69

20

82.14 113.10 125.51 94.75

21

82.14 113.10 137.65 114.39

22

101.25 147.03 120.69 93.56

23

101.60 134.88 140.01 116.81

24

184.06 273.92 215.1 214.42

25

82.14 113.10 124.36 119.53

26

101.25 147.03 139.04 104.53

27

112.29 171.59 122.79 103.42

28

112.78 165.85 153.73 119.94

29

101.75 145.75 157.59 149.21

30

92.25 125.34 124.67 102.58
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Appendix K

Trials of Learning Algorithm With

Heuristi Weight of Spatial Distane

for 3D Gated CT Dataset

K.1 Comparison of Learning Algorithm with and with-

out Heuristi Weight

MSEs of Registered Images Using Learning Algorithm With and Without Heuristi

Weight of Spatial Distane

Trial

no.

LK Degraded

LK

Without

heuris-

ti

weight

(spa-

tial)

With

heuris-

ti

weight

(spa-

tial)

Trial

no.

LK Degraded

LK

Without

heuris-

ti

weight

(spatial)

With

heuris-

ti

weight

(spa-

tial)

1 51.78 51.87 57.94 57.53 201 401.28 636.92 321.01 318.14

2 32.89 33.06 37.04 36.24 202 79.63 78.25 87.1 84.87

3 42.79 42.23 43.85 43.31 203 42.35 42.15 47.2 45.07

4 88.98 89.91 102.02 100.73 204 127.95 127.24 131.59 128.09

5 40.68 41.00 46.03 42.23 205 67.51 67.47 72.05 70.48

6 55.56 54.10 62.66 60.53 206 42.67 42.14 50.4 48.56

7 85.23 82.26 94.68 93.68 207 87.59 87.07 93.06 92.23

8 82.61 80.91 94.33 92.58 208 53.63 53.49 59.51 56.48

9 42.32 41.81 51.8 49.12 209 32.87 32.45 35.65 33.46

10 60.79 61.13 63.61 61.42 210 73.90 73.61 84.39 82.96

11 75.71 74.70 81.51 79.08 211 54.00 53.95 61.95 59.15

12 89.72 87.70 100.96 97.51 212 35.12 33.79 37.81 37.37

13 39.08 39.44 44.88 43.35 213 56.94 56.87 62.52 62.49

14 51.79 51.87 61.93 58.93 214 41.91 42.68 48.96 46.57

15 93.04 93.63 101.3 100.67 215 24.88 24.86 31.8 29.16

16 102.30 100.55 110.09 109.86 216 513.30 886.18 164.49 162.17
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17 41.53 41.88 44.74 43.38 217 857.31 1238.20 304.6 300.96

18 59.79 58.93 63.23 59.96 218 86.59 87.01 88.65 86.1

19 72.64 72.92 84.75 83.24 219 48.98 48.64 61.4 59.3

20 88.52 86.83 97.56 93.67 220 111.92 112.94 115.79 114.75

21 43.21 43.22 46.54 44.12 221 54.80 54.64 58.37 58.17

22 65.41 64.22 70.73 69.38 222 45.18 44.66 49.3 46.37

23 30.69 30.61 32.27 28.56 223 92.46 91.41 106.05 105.39

24 33.60 34.01 39.34 35.74 224 50.17 49.57 56.9 55.78

25 97.50 95.54 106.04 102.64 225 35.09 35.63 40.76 39.73

26 60.11 59.22 64.42 63.39 226 82.42 81.16 94.25 92.06

27 65.92 64.44 69.68 68.54 227 38.40 37.71 41.56 39.39

28 93.74 89.67 107.77 104.65 228 36.34 36.23 41.06 37.91

29 66.03 65.10 76.97 74.16 229 66.54 65.57 75.8 72.32

30 59.38 57.41 68.83 66.86 230 41.27 41.36 49.25 46.1

31 110.41 108.75 114.92 111.05 231 28.99 29.27 34.17 30.3

32 57.57 57.21 67.26 65.36 232 4144.00 5467.10 1781.2 1780.48

33 44.97 44.58 53.72 49.74 233 316.89 336.40 293.94 290.22

34 13.77 14.00 14.52 12.56 234 102.93 113.99 85.72 85.54

35 129.92 129.40 139.31 137.3 235 58.42 58.45 65.38 64.42

36 70.24 70.78 83.18 80.11 236 94.17 92.20 103.02 102.99

37 76.86 74.40 84.26 82.71 237 45.11 44.81 46.65 43.96

38 140.83 134.86 155.84 154.03 238 87.76 85.79 90.84 87.22

39 74.72 73.99 87 86.47 239 43.15 43.31 49.52 47.23

40 56.16 56.12 64.96 61.92 240 52.81 52.59 56.95 56.33

41 126.67 124.03 141.26 139 241 63.57 64.05 68.16 66.15

42 79.04 77.25 84.85 82.26 242 41.19 40.72 45.35 43.08

43 66.17 63.65 83.45 80.26 243 32.92 32.39 36.46 35.7

44 108.06 103.11 115.41 114.53 244 58.51 57.62 64.97 63.68

45 43.95 43.83 45.6 42.17 245 34.00 33.93 40.39 37.52

46 43.70 42.35 48.44 44.82 246 29.63 29.51 33.37 31.16

47 63.86 63.57 69.86 68.69 247 1587.80 3113.90 523.4 522.83

48 30.73 30.64 35.57 32.66 248 187.29 893.97 136.79 135.26

49 23.70 23.34 24.97 23.61 249 454.13 848.79 434.58 432.99

50 133.19 129.16 140.09 139 250 94.12 122.74 79.15 76.84

51 72.59 67.25 77.98 77.3 251 70.13 69.64 76.43 76.35

52 149.82 144.35 161.95 159.3 252 109.62 108.05 113 110.69

53 81.31 81.26 90.78 88.63 253 77.57 77.41 83.76 80.03

54 59.82 60.17 67.66 64.35 254 48.77 48.01 53.91 53.48

55 72.94 71.87 83.63 82.56 255 86.82 85.46 91.8 88.88

56 71.75 68.10 89.6 88.89 256 50.30 50.03 55.1 51.22

57 128.65 126.12 143.27 141.55 257 36.55 36.09 41.93 39.5

58 44.72 44.69 48.96 47.06 258 52.61 51.80 61.28 58.4

59 54.80 54.68 65.09 61.95 259 37.32 37.17 46.55 45.34

60 134.30 130.77 149.35 148.83 260 30.51 30.05 38.62 36.79

61 46.57 46.90 49.83 49.62 261 48.03 47.07 55.96 55.77

62 39.71 39.96 43.55 41.04 262 29.85 29.75 37.18 35.64

63 70.62 69.01 81.23 81.11 263 36.17 35.28 44.24 42.79

64 37.64 38.21 44.21 43.67 264 765.44 2593.70 201.63 200.48

65 32.27 32.25 32.63 29.85 265 242.50 1016.10 128.78 125.52

66 172.73 170.31 184.48 182.42 266 89.38 97.77 76.52 74.72

67 90.56 90.63 107.79 105.62 267 113.47 111.80 124.85 121.63

68 74.34 76.14 80.5 77.26 268 70.16 70.28 78.62 75.46

69 74.26 72.24 77.58 74.4 269 40.34 39.25 45.39 44.26

70 86.29 86.46 95.94 93.93 270 95.43 95.04 103.58 103.31

71 78.25 76.02 85.15 84.04 271 58.69 58.75 61 60.78

72 68.89 69.01 82.43 81.95 272 35.79 35.61 40.01 37.46

73 66.79 67.44 74.78 71.24 273 65.89 65.27 70.17 68.47

74 86.83 88.03 94.86 90.98 274 43.12 42.57 45.91 42.29

75 50.81 51.41 60.75 56.98 275 31.97 31.69 37.84 36.17

76 40.09 39.66 45.83 43.28 276 51.49 50.85 55.04 54.43

77 96.43 94.17 104.53 104.16 277 34.80 34.47 42.84 40.68

78 43.70 43.18 44.63 44.33 278 24.65 24.58 28.55 24.8

79 35.59 35.01 38.76 38.03 279 540.89 428.74 551.91 549.27

80 62.27 62.50 65.79 65.67 280 436.53 1206.80 155.15 153.57

81 26.95 26.71 27.85 24.96 281 472.66 1530.60 347.78 346.74

82 18.31 18.38 23.55 22.97 282 131.94 251.03 115.53 112.13

83 231.27 279.15 210.61 208.07 283 156.59 156.46 164.33 160.55
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84 324.01 407.17 199.81 196.65 284 88.45 86.36 100.62 99.12

85 271.61 318.32 83.11 80.84 285 62.71 62.11 71.41 71.14

86 152.17 162.12 141.25 139.74 286 118.12 117.71 127.49 126.76

87 84.00 85.21 90.07 86.78 287 69.26 70.17 71.96 69.65

88 112.62 113.49 118.03 116.81 288 36.28 36.61 40.97 40.22

89 73.38 72.51 76.65 75.37 289 81.86 81.29 89.73 88.56

90 139.06 136.15 150.07 146.93 290 55.70 55.44 56.99 55.15

91 72.56 72.83 77.27 75.26 291 33.33 34.02 37.39 36

92 54.58 54.22 65.23 64.19 292 69.54 67.28 77.11 75.84

93 118.80 119.92 134.9 131.97 293 42.57 42.30 47.73 45.89

94 63.37 64.49 71.58 70.93 294 23.07 23.20 24.51 23.57

95 49.32 49.12 59.35 55.66 295 35.99 35.36 46.33 46.22

96 105.68 104.35 122.81 121.92 296 18.72 18.80 24.33 21.7

97 41.80 42.09 47.64 47.31 297 15.99 16.17 20.24 19.6

98 36.52 35.98 44.23 43.94 298 178.87 178.73 181.72 178.51

99 41.18 40.37 48.33 45.25 299 175.88 178.61 181.25 179.61

100 31.33 31.73 34.38 31.11 300 210.43 210.09 220.82 219.51

101 27.54 27.38 31.43 28.47 301 376.91 410.02 291.98 289

102 7.77 7.88 14.3 11.27 302 373.82 1336.30 112.39 109.41

103 267.45 267.65 278.11 274.27 303 853.49 1778.80 246.89 246.19

104 115.52 114.68 119.02 117.16 304 6978.70 12552.00 6188.55 6188.08

105 840.16 1450.60 639.06 635.91 305 115.10 115.47 126.24 125.54

106 778.31 1518.40 442.43 440.74 306 116.17 115.85 124.63 122.12

107 547.22 735.77 263.6 259.83 307 102.02 100.11 111.75 108.38

108 631.96 1570.30 101.23 101.23 308 60.70 59.25 65.35 63.31

109 71.90 76.03 83.39 79.46 309 91.67 90.59 102.46 101.79

110 153.31 148.83 165.58 163.3 310 66.04 64.84 72.57 69.71

111 80.27 78.04 84.86 83.48 311 39.96 39.55 47.96 44.34

112 53.21 54.22 60.71 58.48 312 95.79 94.32 104.32 103.45

113 150.50 150.41 152.15 150.95 313 60.66 60.89 65.87 62.38

114 60.23 60.64 65.91 65.27 314 31.67 31.59 37.73 36.88

115 37.33 36.89 46.31 43.65 315 69.98 69.01 81.24 77.89

116 112.28 111.70 121.57 118.83 316 47.42 47.67 52.35 48.92

117 47.52 47.42 52.52 49.35 317 21.65 21.30 24.95 22.85

118 35.27 35.02 43.27 41.87 318 1.51 1.69 4.59 2.68

119 102.65 102.59 109.26 108.26 319 118.41 119.74 126.7 123.14

120 49.88 49.70 58.92 57.54 320 258.16 221.37 228.22 227.96

121 31.79 32.03 32.33 31.01 321 317.89 350.14 301.5 299.46

122 62.29 61.95 69.23 65.52 322 550.76 2080.50 99.87 97.39

123 41.93 41.78 49.88 46.85 323 1078.90 2094.20 370.44 367.5

124 25.12 25.06 31.24 30.09 324 4707.40 5967.20 1964.57 1963.65

125 185.20 186.99 194.13 191.7 325 100.01 118.53 88.81 88.72

126 373.72 300.85 240.87 237.81 326 123.56 122.08 129.23 128.67

127 136.21 170.00 137.69 134.31 327 82.89 83.67 90.71 87.63

128 401.80 812.35 344.22 340.61 328 95.77 95.63 103.53 99.65

129 196.91 236.89 173.03 170.64 329 69.64 68.79 71.15 69.6

130 473.21 1453.00 187.64 187.36 330 98.20 96.68 107.9 103.92

131 251.65 600.16 219.07 218.2 331 75.79 76.20 87.28 85.98

132 66.67 65.54 72.93 69.45 332 37.60 37.92 44.75 44.2

133 69.49 69.53 70.84 69.18 333 63.36 63.71 74.87 73.33

134 40.28 40.22 46.15 43.5 334 47.18 48.44 54.79 52.54

135 50.30 51.02 57.49 54.36 335 30.88 30.80 37.71 35.17

136 33.94 33.86 35 34.01 336 51.15 51.37 61.59 59.43

137 90.97 90.22 96.14 93.93 337 31.75 32.12 38.15 36.89

138 47.21 47.07 51.53 50.62 338 22.36 22.40 29.55 28.91

139 32.82 32.42 39.55 39.52 339 368.95 547.41 260.46 259.85

140 79.24 80.44 86.95 83.88 340 137.26 174.75 131.99 131.44

141 40.86 40.57 43.17 43.08 341 106.52 105.64 113.8 110.97

142 26.88 26.84 29.03 27.45 342 149.55 148.16 157.05 155.19

143 22.48 22.28 23.58 22.57 343 247.12 1275.30 137.28 136.83

144 15.51 15.61 22.41 21.6 344 106.36 104.82 117.25 114.45

145 13.13 13.01 13.32 10.68 345 118.19 114.65 130.22 129.51

146 247.94 364.91 128.94 125.28 346 102.67 116.92 109.41 106.19

147 1082.00 4112.70 509.48 509.45 347 73.20 71.55 81.81 79.75

148 53.95 54.62 59.55 56.57 348 89.71 89.47 106.89 104.7

149 146.65 147.38 152.35 149.15 349 100.31 98.91 108.42 107.59

150 88.71 88.37 94.6 90.97 350 52.82 53.51 56.47 53.34
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151 40.48 40.81 45.22 41.32 351 99.15 97.46 110.26 108.15

152 111.03 112.96 116.56 116.08 352 59.99 60.22 64.37 62.09

153 70.75 71.73 76.1 74.02 353 36.05 35.61 42.65 40.96

154 36.23 35.77 39.37 36.08 354 76.15 76.78 90.39 87.51

155 94.70 92.97 104.99 102.44 355 46.63 46.05 46.99 46.7

156 50.17 48.97 52.44 48.63 356 31.77 31.64 37.01 34.63

157 35.97 35.62 41.86 38.07 357 68.08 67.93 73.02 69.57

158 78.07 77.83 88.39 84.53 358 96.80 95.31 99.3 97.5

159 44.82 44.85 48 47.73 359 86.84 86.98 96.27 93.66

160 29.83 29.61 36.27 34.52 360 71.38 71.44 75.7 74.48

161 55.77 56.06 63.6 62.31 361 66.34 66.56 67.84 65.41

162 36.90 36.63 39.77 39.23 362 98.63 97.19 103.57 102.46

163 24.07 24.22 28.37 27.83 363 71.35 73.45 80.45 77.25

164 861.97 2765.10 166.02 162.79 364 75.64 74.81 87.07 83.89

165 1264.50 5293.10 701.72 699.62 365 76.09 76.13 84.59 80.78

166 155.47 158.75 165.96 162.19 366 85.74 83.88 97.16 95.38

167 145.27 141.29 164.21 160.25 367 52.71 52.93 64.22 62.39

168 44.40 44.60 51.5 49.86 368 66.44 65.55 69.29 66.89

169 100.61 100.28 108.6 107.11 369 65.74 65.13 73.43 70.06

170 94.60 97.14 101.92 101.01 370 43.13 43.03 45.32 45.19

171 38.48 39.24 44.85 43.07 371 222.86 221.87 235.35 234.6

172 92.99 90.42 105.71 104.64 372 56.79 56.52 65.38 61.6

173 66.36 66.22 80.48 78.64 373 63.22 62.76 69.45 65.66

174 36.06 35.94 41.48 39.75 374 55.14 55.60 62.38 60.57

175 75.59 74.22 79.57 78.54 375 56.66 56.45 60.7 57.46

176 57.81 55.21 72.76 72.22 376 99.11 104.78 111.95 108.23

177 31.27 31.05 32.86 31.18 377 52.11 52.17 60.14 57.45

178 63.52 63.51 67.77 65.74 378 63.84 62.58 69.73 68.24

179 45.40 44.78 53.1 51.8 379 100.83 100.94 110.34 108.72

180 27.29 27.21 28.34 25.6 380 59.02 57.92 62.6 60.84

181 6684.00 8097.40 4698.2 4696.43 381 69.90 69.20 76.87 74.15

182 1771.50 5466.70 167.05 165.3 382 83.84 82.03 90.61 88.75

183 4186.00 3743.10 3190.17 3187 383 58.44 58.10 66.36 62.55

184 720.51 3116.10 298.13 294.87 384 57.98 57.71 68.78 67.36

185 102.88 101.09 112 108.99 385 36.15 35.81 44.47 43.12

186 44.20 44.10 48.02 44.87 386 73.60 70.94 80.8 77.21

187 104.59 104.82 112.91 110.91 387 52.67 52.83 58.03 55.84

188 67.71 66.84 75.58 73.35 388 62.91 63.29 66.45 63.45

189 39.77 39.96 46.78 44.26 389 90.59 89.39 104.61 104.11

190 93.80 92.42 105.41 105.02 390 57.30 57.75 63.86 62.04

191 63.04 62.31 70.42 69.44 391 51.87 52.42 56.09 55.79

192 31.77 31.63 35.13 32.67 392 69.92 69.97 78.67 76.01

193 73.53 73.82 80.27 79.05 393 38.77 38.61 42.81 39.99

194 50.05 49.01 59.25 56.18 394 55.82 54.60 59.48 55.8

195 29.23 29.17 31.49 30.42 395 108.04 105.70 121.66 119.02

196 69.54 70.17 72.32 72.16 396 37.42 37.72 45.1 42.34

197 38.88 38.60 44 42.82 397 62.71 62.91 67.85 64.43

198 31.46 31.51 38.24 36.01 398 75.36 72.66 79.83 77.96

199 5899.20 5570.60 3862.82 3858.94 399 34.17 34.21 37.75 35.91

200 63.97 70.77 63.39 60.63 400 7.03 6.61 8.52 5.3
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Appendix L

Trials of Learning Algorithm With

and Without Heuristi Weight of

Intensity for 2D dMRI dataset

L.1 Learning Algorithm With and Without Heuris-

ti Weight of Intensity for 2D dMRI dataset

MSEs of Images Registered using Learning Algorithm With and Without Heuristi

Weight of Intensity (experiment desribed in setion 5.3)

Trial no.

LK Degraded

LK

Without

heuristi

weight of

intensity

With

heuristi

weight of

intensity

1

93.55 145.52 90.41 96.30

2

206.17 289.01 229.66 209.79

3

136.65 193.89 157.01 133.95

4

100.84 143.45 95.99 101.52

5

90.89 133.58 78.79 86.70

6

153.87 223.29 157.86 157.92

7

96.30 139.58 85.59 96.18

8

151.23 221.61 145.68 152.47

9

146.99 209.90 140.21 144.21

10

106.67 144.48 123.00 103.23

11

100.85 128.76 98.19 95.83

12

115.93 166.25 158.84 115.43

13

107.85 141.88 96.28 99.48

14

90.83 128.97 136.74 93.94

15

109.11 158.78 104.63 95.85

16

39.66 53.29 62.11 40.01

17

120.54 153.63 137.63 121.52
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18

154.17 233.98 146.97 149.98

19

128.31 193.54 123.69 123.02

20

82.14 113.10 94.75 78.11

21

82.14 113.10 114.39 80.71

22

101.25 147.03 93.56 101.01

23

101.60 134.88 116.81 99.75

24

184.06 273.92 214.42 188.76

25

82.14 113.10 119.53 74.32

26

101.25 147.03 104.53 92.90

27

112.29 171.59 103.42 112.77

28

112.78 165.85 119.94 102.01

29

101.75 145.75 149.21 98.19

30

92.25 125.34 102.58 93.83
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Appendix M

Trials of Learning Algorithm with

One Iteration and Two Iterations for

2D dMRI dataset

M.1 Learning Algorithm with One Iteration and Two

Iterations for 2D dMRI dataset

MSEs of Images Registered Using Learning Algorithm with One Iteration and Two

Iterations (experiment desribed in setion 5.4.1)

Trial no.

LK Degraded

LK

With one

iteration

With two

iterations

1

93.55 145.52 96.30 90.017

2

206.17 289.01 209.79 212.05

3

136.65 193.89 133.95 145.2

4

100.84 143.45 101.52 100.62

5

90.89 133.58 86.70 91.87

6

153.87 223.29 157.92 158.22

7

96.30 139.58 96.18 96.39

8

151.23 221.61 152.47 151.65

9

146.99 209.90 144.21 144.68

10

106.67 144.48 103.23 103.67

11

100.85 128.76 95.83 90.54

12

115.93 166.25 115.43 117.14

13

107.85 141.88 99.48 98.42

14

90.83 128.97 93.94 93.59

15

109.11 158.78 95.85 95.91

16

39.66 53.29 40.01 42.86

17

120.54 153.63 121.52 115.84

18

154.17 233.98 149.98 150.13

19

128.31 193.54 123.02 124.23

20

82.14 113.10 78.11 76.835

21

82.14 113.10 80.71 81.412
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22

101.25 147.03 101.01 101.39

23

101.60 134.88 99.75 92.77

24

184.06 273.92 188.76 188.47

25

82.14 113.10 74.32 76.26

26

101.25 147.03 92.90 91.34

27

112.29 171.59 112.77 113.23

28

112.78 165.85 102.01 103.30

29

101.75 145.75 98.19 99.19

30

92.25 125.34 93.83 102.32
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Appendix N

Trials of Learning Algorithm with

Iteration for 3D Gated CT Dataset

N.1 Comparison of Learning Algorithm With and

Without Iteration

MSEs of Registered Images Using Learning Algorithm With and Without Iteration

Trial

no.

LK Degraded

LK

Without

itera-

tion

With

itera-

tion

Trial

no.

LK Degraded

LK

Without

itera-

tion

With

itera-

tion

1 51.778 51.87 54.526 53.317 201 401.28 636.92 320.46 318.71

2 32.894 33.055 33.792 33.808 202 79.626 78.25 80.57 80.497

3 42.785 42.226 42.933 43.072 203 42.35 42.151 42.983 42.983

4 88.983 89.909 95.819 96.8 204 127.95 127.24 128.95 128.97

5 40.676 40.997 41.312 41.283 205 67.506 67.466 67.399 68.024

6 55.56 54.098 56.808 56.736 206 42.666 42.137 44.845 44.845

7 85.23 82.255 90.076 89.854 207 87.59 87.066 90.728 90.728

8 82.606 80.914 87.436 85.503 208 53.625 53.492 54.657 54.87

9 42.315 41.814 44.939 44.948 209 32.867 32.446 34.22 34.22

10 60.793 61.131 61.859 61.859 210 73.902 73.608 77.683 77.683

11 75.714 74.699 77.144 77.668 211 53.998 53.951 56.974 57.028

12 89.72 87.704 95.863 95.68 212 35.115 33.792 36.644 36.644

13 39.078 39.437 41.385 41.385 213 56.942 56.87 59.418 59.418

14 51.789 51.867 55.98 56.07 214 41.907 42.677 44.533 44.528

15 93.042 93.628 99.962 100.06 215 24.88 24.863 25.287 25.287

16 102.3 100.55 109.22 109.37 216 513.3 886.18 160.78 160.71

17 41.534 41.884 44.716 44.728 217 857.31 1238.2 300.21 300.21

18 59.787 58.925 62.159 62.299 218 86.586 87.005 83.879 83.879

19 72.637 72.918 81.005 81.024 219 48.975 48.637 54.937 54.937

20 88.52 86.825 93.986 93.61 220 111.92 112.94 114.72 114.72

21 43.214 43.223 43.844 43.934 221 54.803 54.638 55.529 55.529

22 65.407 64.216 68.56 68.685 222 45.177 44.656 47.107 47.091

23 30.689 30.611 32.254 31.679 223 92.457 91.414 101.19 101.19

24 33.598 34.01 33.628 34.819 224 50.168 49.567 50.671 51.556

25 97.503 95.536 101.57 101.63 225 35.089 35.631 37.332 37.332

26 60.106 59.218 61.279 61.5 226 82.421 81.16 88.609 88.609

27 65.916 64.436 67.97 67.97 227 38.401 37.712 39.274 39.121
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28 93.74 89.671 102.15 101.92 228 36.336 36.233 37.205 37.146

29 66.026 65.098 71.196 70.907 229 66.537 65.567 73.083 73.409

30 59.38 57.409 62.861 63.318 230 41.274 41.356 42.965 42.965

31 110.41 108.75 111.65 113.38 231 28.986 29.269 29.439 29.439

32 57.572 57.206 60.47 60.47 232 4144 5467.1 1775.4 1710

33 44.969 44.576 47.829 47.803 233 316.89 336.4 293.17 293.17

34 13.769 13.999 13.966 13.966 234 102.93 113.99 83.773 83.664

35 129.92 129.4 137.65 136.06 235 58.416 58.452 60.006 60.263

36 70.236 70.781 77.462 77.446 236 94.168 92.204 101.51 101.51

37 76.858 74.395 81.42 80.888 237 45.113 44.811 46.411 46.411

38 140.83 134.86 152.58 153.87 238 87.759 85.788 87.779 87.779

39 74.72 73.988 80.343 80.313 239 43.145 43.307 42.957 42.978

40 56.159 56.121 58.201 58.352 240 52.81 52.586 55.115 55.115

41 126.67 124.03 135.9 136.37 241 63.57 64.053 64.174 64.066

42 79.035 77.249 80.825 80.825 242 41.186 40.724 42.825 42.825

43 66.167 63.646 77.04 77.569 243 32.92 32.385 36.27 36.27

44 108.06 103.11 111.94 112.9 244 58.508 57.617 61.468 61.468

45 43.948 43.834 44.438 44.372 245 34.004 33.926 34.599 34.528

46 43.699 42.354 46.161 45.749 246 29.628 29.513 31.561 31.561

47 63.858 63.574 67.78 67.881 247 1587.8 3113.9 523.08 596.01

48 30.728 30.643 31.659 31.774 248 187.29 893.97 135.06 139.01

49 23.701 23.341 24.495 24.488 249 454.13 848.79 429.95 429.95

50 133.19 129.16 139.61 140.79 250 94.115 122.74 76.836 76.836

51 72.593 67.252 76.813 76.813 251 70.128 69.641 71.807 71.995

52 149.82 144.35 155.32 155.72 252 109.62 108.05 112.91 112.91

53 81.312 81.256 85.1 85.119 253 77.568 77.41 78.727 78.727

54 59.822 60.174 62.688 62.688 254 48.767 48.009 51.17 51.17

55 72.942 71.873 76.838 77.234 255 86.819 85.458 91.567 91.567

56 71.748 68.099 82.613 82.561 256 50.297 50.034 52.255 52.318

57 128.65 126.12 136.36 136.37 257 36.546 36.09 36.922 36.892

58 44.719 44.693 47.914 47.918 258 52.606 51.802 54.832 54.963

59 54.799 54.679 58.381 58.498 259 37.319 37.166 39.659 39.659

60 134.3 130.77 145.64 145.45 260 30.505 30.052 31.736 31.736

61 46.571 46.901 49.312 49.312 261 48.028 47.069 49.694 49.617

62 39.707 39.956 41.374 41.374 262 29.85 29.746 31.117 31.117

63 70.622 69.01 74.957 72.712 263 36.166 35.275 38.628 38.628

64 37.642 38.209 38.372 38.366 264 765.44 2593.7 197.75 196.66

65 32.269 32.253 32.609 32.6 265 242.5 1016.1 125.85 125.82

66 172.73 170.31 180 177.23 266 89.381 97.771 75.626 75.626

67 90.56 90.627 102.17 90.393 267 113.47 111.8 120.27 120.27

68 74.335 76.137 78.777 79.256 268 70.159 70.28 72.569 72.569

69 74.258 72.237 77.134 77.134 269 40.335 39.249 43.468 43.468

70 86.289 86.464 94.101 94.101 270 95.427 95.035 97.704 97.704

71 78.252 76.021 84.425 84.402 271 58.694 58.749 60.503 60.468

72 68.885 69.012 79.037 79.037 272 35.789 35.614 37.356 37.356

73 66.792 67.442 71.853 71.716 273 65.888 65.269 68.285 68.285

74 86.829 88.025 92.193 91.856 274 43.119 42.574 44.843 44.762

75 50.806 51.41 54.539 54.649 275 31.965 31.685 33.422 33.422

76 40.086 39.657 42.891 42.891 276 51.494 50.85 52.83 52.374

77 96.432 94.166 102.54 102.66 277 34.802 34.469 36.132 36.128

78 43.701 43.177 44.287 44.287 278 24.646 24.583 25.059 25.059

79 35.59 35.014 37.231 37.348 279 540.89 428.74 546.74 543.7

80 62.271 62.499 64.12 63.885 280 436.53 1206.8 155.06 155.06

81 26.945 26.708 27.652 27.597 281 472.66 1530.6 343.54 343.44

82 18.308 18.379 18.629 18.564 282 131.94 251.03 111.49 111.17

83 231.27 279.15 210.56 208.25 283 156.59 156.46 158.68 158.68

84 324.01 407.17 195.53 195.21 284 88.446 86.362 96.044 96.044

85 271.61 318.32 80.249 80.298 285 62.711 62.113 65.259 65.259

86 152.17 162.12 139.51 140.76 286 118.12 117.71 121.17 121.17

87 83.999 85.209 85.499 85.587 287 69.258 70.173 70.891 70.891

88 112.62 113.49 115.79 115.79 288 36.277 36.605 39.615 39.708

89 73.381 72.51 75.922 76.066 289 81.855 81.288 84.193 84.282

90 139.06 136.15 146.32 146.32 290 55.696 55.443 56.569 56.569

91 72.555 72.83 76.116 76.116 291 33.334 34.016 34.655 34.705

92 54.58 54.216 59.046 58.826 292 69.541 67.283 75.007 75.007

93 118.8 119.92 130.23 130.2 293 42.574 42.303 42.593 42.764

94 63.37 64.494 65.652 65.147 294 23.073 23.201 23.775 23.761

155



95 49.323 49.124 54.01 54.01 295 35.99 35.358 40.784 40.791

96 105.68 104.35 117.16 117.76 296 18.718 18.799 18.848 18.834

97 41.799 42.092 43.214 43.214 297 15.99 16.169 16.513 16.464

98 36.517 35.98 39.262 39.262 298 178.87 178.73 179.95 180.06

99 41.183 40.373 43.506 43.506 299 175.88 178.61 180.75 180.71

100 31.331 31.726 32.126 32.117 300 210.43 210.09 216.44 215.92

101 27.543 27.38 27.709 28.001 301 376.91 410.02 291.81 291.85

102 7.7697 7.8756 8.1933 7.8808 302 373.82 1336.3 111.96 111.75

103 267.45 267.65 277.73 277.73 303 853.49 1778.8 245.98 245.98

104 115.52 114.68 115.52 115.49 304 6978.7 12552 6185.4 6185.1

105 840.16 1450.6 636.03 636.91 305 115.1 115.47 121.53 121.52

106 778.31 1518.4 436.1 399.8 306 116.17 115.85 118.64 118.64

107 547.22 735.77 259.19 259.19 307 102.02 100.11 108.26 108.33

108 631.96 1570.3 94.351 94.036 308 60.696 59.251 65.012 65.012

109 71.9 76.031 79.286 82.302 309 91.67 90.591 100.26 99.781

110 153.31 148.83 159.7 160.05 310 66.039 64.844 68.076 68.076

111 80.265 78.035 81.58 81.58 311 39.961 39.553 42.462 42.462

112 53.209 54.216 56.89 56.897 312 95.788 94.322 102.3 102.29

113 150.5 150.41 150.9 150.67 313 60.657 60.892 62.378 62.58

114 60.227 60.638 61.468 61.452 314 31.674 31.59 32.001 32.001

115 37.332 36.893 39.572 39.572 315 69.983 69.013 77.071 77.071

116 112.28 111.7 117.83 117.87 316 47.417 47.673 48.597 48.716

117 47.519 47.42 49.161 48.39 317 21.646 21.304 22.633 22.633

118 35.273 35.024 37.71 37.71 318 1.5052 1.6892 1.7054 1.7054

119 102.65 102.59 108.61 108.31 319 118.41 119.74 121.14 120.94

120 49.88 49.701 52.749 52.749 320 258.16 221.37 225.82 225.39

121 31.794 32.025 32.3 32.285 321 317.89 350.14 298.26 298.56

122 62.285 61.95 65.653 65.442 322 550.76 2080.5 97.297 97.404

123 41.928 41.776 45.127 45.152 323 1078.9 2094.2 365.68 382.57

124 25.117 25.062 27.277 27.277 324 4707.4 5967.2 1960.6 1885.4

125 185.2 186.99 190.78 191 325 100.01 118.53 84.251 84.42

126 373.72 300.85 238.63 238.67 326 123.56 122.08 125.79 125.79

127 136.21 170 133.48 132.7 327 82.887 83.666 87.918 87.918

128 401.8 812.35 337.83 337.55 328 95.767 95.633 100.19 100.3

129 196.91 236.89 168.25 168.25 329 69.635 68.79 70.68 70.999

130 473.21 1453 181.01 180.43 330 98.198 96.683 105.02 106.21

131 251.65 600.16 218.38 218.38 331 75.786 76.198 80.501 80.501

132 66.674 65.541 69.347 69.347 332 37.596 37.92 39.277 39.277

133 69.493 69.532 70.07 70.065 333 63.359 63.708 69.768 70.086

134 40.284 40.224 42.334 42.298 334 47.177 48.436 49.429 49.429

135 50.302 51.023 52.674 52.683 335 30.88 30.8 32.411 32.411

136 33.938 33.864 33.969 33.969 336 51.149 51.369 55.69 56.44

137 90.971 90.216 90.697 90.697 337 31.752 32.117 32.762 32.829

138 47.205 47.065 48.741 48.598 338 22.356 22.396 22.696 22.723

139 32.822 32.42 33.259 33.212 339 368.95 547.41 259.68 259.48

140 79.242 80.443 84.804 84.804 340 137.26 174.75 129.22 128.42

141 40.862 40.566 42.736 42.736 341 106.52 105.64 110.36 109.79

142 26.879 26.836 27.491 27.499 342 149.55 148.16 155.24 155.24

143 22.476 22.278 22.996 22.996 343 247.12 1275.3 137.02 137.02

144 15.505 15.607 15.763 16.014 344 106.36 104.82 110.43 110.43

145 13.13 13.009 13.205 13.189 345 118.19 114.65 125.14 126.22

146 247.94 364.91 128.14 127.31 346 102.67 116.92 108.37 108.37

147 1082 4112.7 509.39 509.91 347 73.201 71.552 80.77 80.766

148 53.95 54.624 58.039 58.144 348 89.705 89.469 101.96 102.06

149 146.65 147.38 152.27 152.4 349 100.31 98.914 105.75 105.75

150 88.707 88.374 90.095 90.095 350 52.815 53.506 55.942 55.942

151 40.48 40.809 41.598 41.598 351 99.145 97.459 107.38 107.38

152 111.03 112.96 114.84 114.84 352 59.987 60.224 63.367 63.377

153 70.748 71.729 74.741 74.741 353 36.045 35.614 37.057 37.057

154 36.229 35.773 38.731 38.764 354 76.149 76.784 83.879 83.922

155 94.701 92.974 102.41 102.36 355 46.631 46.051 46.955 46.955

156 50.168 48.967 52.385 52.257 356 31.772 31.636 32.458 32.458

157 35.974 35.617 37.642 37.575 357 68.078 67.932 68.274 68.253

158 78.067 77.834 85.044 85.044 358 96.801 95.306 97.524 97.141

159 44.822 44.851 45.841 45.841 359 86.839 86.978 90.372 90.372

160 29.833 29.609 31.057 31.057 360 71.382 71.439 73.635 73.606

161 55.772 56.056 57.715 57.856 361 66.34 66.557 67.652 67.652
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162 36.899 36.633 37.925 37.948 362 98.628 97.186 102.92 102.77

163 24.07 24.22 24.773 24.785 363 71.346 73.449 74.856 74.856

164 861.97 2765.1 162.89 162.89 364 75.637 74.806 82.085 82.085

165 1264.5 5293.1 699.33 699.37 365 76.089 76.127 79.105 78.918

166 155.47 158.75 160.09 160.09 366 85.739 83.883 92.789 92.789

167 145.27 141.29 157.33 157.26 367 52.708 52.926 58.437 58.437

168 44.396 44.604 47.107 47.107 368 66.438 65.549 69.043 69.043

169 100.61 100.28 107.33 107.33 369 65.741 65.134 70.593 70.573

170 94.604 97.139 101.06 101.06 370 43.127 43.03 43.565 43.565

171 38.479 39.235 40.793 40.793 371 222.86 221.87 231.98 231.98

172 92.985 90.422 103.41 103.41 372 56.79 56.517 59.207 59.024

173 66.358 66.216 78.6 78.814 373 63.215 62.756 67.486 67.039

174 36.061 35.943 37.626 37.682 374 55.138 55.599 58.188 58.179

175 75.589 74.223 78.311 78.375 375 56.664 56.454 60.523 60.523

176 57.812 55.205 68.013 68.021 376 99.107 104.78 110.86 110.85

177 31.274 31.053 32.471 32.471 377 52.106 52.166 54.302 54.455

178 63.516 63.512 67.527 67.465 378 63.838 62.579 68.373 68.083

179 45.402 44.779 51.092 51.092 379 100.83 100.94 104.53 104.39

180 27.294 27.208 27.804 27.804 380 59.018 57.924 60.23 60.23

181 6684 8097.4 4691.9 4691.9 381 69.895 69.203 72.167 72.042

182 1771.5 5466.7 161.12 161.03 382 83.843 82.03 90.243 90.243

183 4186 3743.1 3187.4 3225.1 383 58.438 58.1 61.217 61.217

184 720.51 3116.1 296.95 297.25 384 57.98 57.713 65.283 65.283

185 102.88 101.09 108.99 109.01 385 36.147 35.806 37.873 37.873

186 44.197 44.099 45.106 44.967 386 73.603 70.936 78.77 78.858

187 104.59 104.82 107.81 108.11 387 52.672 52.833 55.387 55.387

188 67.709 66.839 72.729 72.658 388 62.906 63.291 65.65 66.699

189 39.774 39.957 40.117 40.117 389 90.588 89.391 97.861 97.861

190 93.8 92.422 99.032 99.315 390 57.303 57.746 60.831 60.828

191 63.035 62.31 63.76 63.753 391 51.87 52.418 55.501 55.769

192 31.77 31.627 32.714 32.714 392 69.922 69.97 73.645 73.588

193 73.527 73.815 78.236 78.236 393 38.767 38.608 39.255 43.153

194 50.052 49.013 53.044 53.044 394 55.824 54.598 57.183 57.443

195 29.233 29.168 30.02 30.02 395 108.04 105.7 116.39 115.8

196 69.537 70.167 71.399 71.399 396 37.423 37.72 39.251 39.263

197 38.88 38.597 40.361 40.407 397 62.714 62.907 66.066 65.987

198 31.46 31.514 31.898 31.924 398 75.359 72.657 76.09 80.256

199 5899.2 5570.6 3860 3859.1 399 34.171 34.21 34.696 36.083

200 63.967 70.766 61.875 61.852 400 7.0318 6.6065 7.4213 7.4213
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Appendix O

Learning Algorithm With MPI-Sintel

Dataset

O.1 Comparing Learning Algorithm with Di�erent

Optial Flow Methods

Average Angular Errors and Average Endpoint Erros of Learning Algorithm and

Other Optial Methods with MPI-Sintel Dataset; the learning set for eah pair was

onsisted of immediately preeeding three frames of the soure frame.

Trial#

Sequene

Soure Target

Average Angular Error (AAE) Average Endpoint Error (AEPE)

HS BA LDOF DF LA HS BA LDOF DF LA

1

alley_1

28 30 2.6752 2.6752 2.2580 1.9797 2.1551 0.3138 0.3138 0.2829 0.2403 0.2420

2 29 31 2.6967 2.6967 2.1157 1.9553 2.1157 0.2522 0.2522 0.2180 0.1926 0.1968

3 30 32 3.0423 3.0423 2.4501 2.3313 2.5545 0.2229 0.2229 0.1870 0.1710 0.1817

4 31 33 3.2033 3.2033 3.0219 2.8566 2.9540 0.1860 0.1860 0.1674 0.1495 0.1604

5 32 34 2.9226 2.9226 2.2239 1.9637 2.3967 0.1595 0.1595 0.1312 0.1123 0.1316

6 33 35 2.3563 2.3563 1.6822 1.4903 1.9035 0.1525 0.1525 0.1230 0.1067 0.1251

7 34 36 1.5247 1.5247 1.0191 0.8864 1.1295 0.1288 0.1288 0.1035 0.0903 0.1026

8 35 37 1.3135 1.3135 0.8622 0.7489 0.9945 0.1196 0.1196 0.0980 0.0850 0.1008

9 36 38 1.2493 1.2493 0.8515 0.7104 0.9264 0.1212 0.1212 0.1019 0.0869 0.0992

10

ambush_7

15 17 17.8010 8.1898 13.1910 6.3565 8.8675 1.0952 0.4340 0.4606 0.4137 0.4058

11 16 18 15.8500 7.8548 6.6756 4.8916 7.2717 1.0262 0.3187 0.2477 0.3215 0.2950

12 17 19 16.5070 8.2334 7.0972 5.3116 7.5000 1.0526 0.3307 0.2509 0.3426 0.3215

13 18 20 16.4460 8.2076 7.5605 5.3001 7.6188 1.0233 0.3128 0.2551 0.2745 0.3302

14 19 21 17.2860 7.0973 6.7353 3.9372 6.4951 1.0034 0.2687 0.2302 0.2187 0.2862

15 20 22 18.3830 6.6956 6.4405 4.3420 5.6891 0.9998 0.2538 0.2389 0.1840 0.2358

16 21 23 17.6850 7.0990 7.6519 4.9099 6.0014 0.8784 0.3033 0.2597 0.2421 0.2284

17 22 24 16.1080 7.3990 6.3084 4.5098 6.8539 0.7893 0.3152 0.2868 0.2696 0.3470

18 23 25 18.4790 7.9696 10.2990 5.2364 7.5990 0.6331 0.2502 0.3038 0.1856 0.2651

19 26 28 29.1760 10.1800 14.9190 8.6563 11.0080 1.6739 0.5239 0.6286 0.4181 0.4771

20 27 29 29.3060 9.6347 20.3780 9.3846 10.8110 1.6797 0.4938 0.7798 0.4182 0.4397

21 28 30 31.8950 10.8500 30.1010 9.7019 12.5500 2.1071 0.6151 1.4242 0.5223 0.5921

22 34 36 31.2580 11.9040 43.0980 9.3270 11.3320 2.3457 1.0699 5.3070 0.5661 0.5368

23 35 37 29.6470 11.0740 43.2010 8.5383 9.7787 2.0817 0.9781 5.2006 0.5293 0.4832
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24 36 38 37.4730 27.5020 46.9570 13.3570 14.8270 4.8441 5.4609 7.3664 1.5868 1.2334

25

bamboo_1

28 30 7.8433 4.1872 4.1808 4.2473 4.2195 1.6543 0.8295 0.8668 0.8478 0.8848

26 29 31 6.2366 4.2737 3.5729 4.1994 4.0295 1.7181 0.8393 0.8141 0.8401 0.8268

27 30 32 6.3258 3.9054 3.2694 3.8130 3.6109 1.1716 0.7949 0.7282 0.7778 0.7805

28 31 33 7.3774 4.8140 3.5273 4.2727 4.5941 1.3841 0.9902 0.8386 0.9307 0.9731

29 32 34 7.0744 5.3139 4.2774 4.5239 4.6683 1.4102 1.0087 0.9057 0.9218 0.9564

30 33 35 7.2357 5.0702 3.8350 4.5168 4.7110 1.4709 0.9442 0.8253 0.8986 0.9250

31 34 36 7.9318 4.8660 4.4591 4.7085 4.9161 1.3899 0.8671 0.8363 0.8648 0.8848

32 35 37 7.2389 4.4036 3.9589 4.2420 4.2096 1.3782 0.7934 0.7426 0.7923 0.8030

33 36 38 7.0075 4.3896 3.6807 4.1169 4.1713 1.3959 0.7940 0.7337 0.7681 0.7588

34 37 39 7.9344 5.1683 3.9999 4.4287 4.7247 1.6771 0.9125 0.8621 0.8370 0.8932

35

bamboo_2

3 5 10.8430 6.5172 6.2946 7.3416 5.8664 1.2506 0.7819 0.8008 0.8760 0.7629

36 4 6 9.5300 7.1071 6.6859 6.9904 6.7264 0.9579 0.7162 0.6734 0.7356 0.7085

37 5 7 8.3547 5.2857 4.9035 4.9991 4.7846 0.5171 0.2939 0.2795 0.2799 0.2801

38 6 8 8.7102 5.0999 4.5279 4.8583 4.5194 0.5488 0.2860 0.2559 0.2653 0.2737

39

market_2

28 30 14.2190 9.3888 8.2933 7.9794 7.5666 1.8444 1.6468 1.5630 1.5206 1.1659

40 29 31 11.9100 7.7938 7.0036 6.6312 6.9180 1.3002 0.9500 0.9902 0.7728 0.8306

41 30 32 11.5030 7.2886 6.5801 6.1274 6.7413 1.1134 0.8757 0.8363 0.7245 0.7567

42 36 38 9.8715 6.1863 5.2970 5.5750 5.6363 0.6697 0.6017 0.5881 0.6024 0.5066

43 37 39 8.5430 5.4319 4.6965 4.7717 5.1845 0.3275 0.2096 0.1841 0.1852 0.1985

44 38 40 8.0559 5.2292 4.3968 4.4877 4.6894 0.2889 0.1891 0.1633 0.1683 0.1737

45 39 41 8.0153 5.0060 4.3103 4.3715 4.5289 0.2924 0.1872 0.1635 0.1678 0.1736

46 40 42 8.3753 5.1725 4.3928 4.2750 4.5511 0.3228 0.1971 0.1677 0.1658 0.1750

47 41 43 8.3358 5.2234 4.3082 4.3701 4.7134 0.3409 0.2109 0.1795 0.1830 0.1926

48 42 44 8.3632 5.6311 4.6347 4.6604 5.0775 0.3944 0.2479 0.2222 0.2133 0.2216

49 43 45 8.8124 5.5541 4.6574 4.7823 5.0473 0.4454 0.2570 0.2290 0.2295 0.2311

50 44 46 9.0352 5.7680 4.7425 4.8479 5.1216 0.4882 0.2887 0.2400 0.2418 0.2470

51 45 47 8.7450 5.6535 4.6116 4.6810 5.0043 0.4230 0.2600 0.2124 0.2168 0.2301

52 46 48 9.4195 5.7510 4.9463 5.0537 5.3232 0.4756 0.2515 0.2326 0.2284 0.2369

53 47 49 9.5033 6.0625 5.4353 5.5531 5.7413 0.4781 0.2727 0.2530 0.2582 0.2673

54

market_6

10 12 23.8820 16.5870 8.6951 17.6920 9.3539 29.1520 26.4410 20.9150 20.9150 17.8530

55 11 13 24.7320 10.7990 10.1160 13.4720 11.2890 27.9890 21.0980 22.2990 22.2990 21.2110

56 12 14 27.3700 11.2150 13.4240 9.1220 12.5390 30.4530 20.2730 23.0670 23.0670 20.3490

57 13 15 16.3550 12.7760 14.1710 9.4032 8.1656 19.6990 17.8500 20.3880 20.3880 12.4460

58 14 16 11.6270 11.0610 10.8530 11.1990 7.0946 14.0640 14.0680 15.6610 15.6610 10.3560

59 15 17 17.5760 9.3579 7.6542 8.0173 7.0487 15.1570 9.0872 9.5359 9.5359 7.2250

60 16 18 15.7920 6.6652 6.1895 5.3838 4.8939 12.0320 7.1127 7.2171 7.2171 5.0453

61 17 19 16.9510 6.0423 6.7421 4.9935 4.8455 13.4620 6.3187 7.3686 7.3686 4.4070

62 18 20 17.8960 6.1430 5.9627 8.3143 4.7285 14.2680 6.3002 6.2863 6.2863 4.5158

63 19 21 10.8170 6.3045 5.0586 4.4805 4.4007 9.1580 5.6627 4.8660 4.8660 4.2750

64 20 22 14.4310 5.9356 4.7298 4.9381 4.3999 10.1660 5.2550 4.2027 4.2027 4.1513

65 21 23 7.8090 6.5890 4.8954 4.8082 4.3362 6.2336 5.2899 3.6274 3.6274 3.2796

66 22 24 8.0475 6.6058 4.8571 4.7549 4.1452 5.5721 4.7069 3.3537 3.3537 3.0976

67 23 25 11.9130 8.1465 5.9118 6.8977 5.2055 6.7209 5.5283 4.0074 4.0074 3.5354

68 24 26 10.5120 9.4274 6.1424 6.2904 6.6398 6.3551 5.5391 3.3698 3.3698 3.5581

69 25 27 22.6660 14.9790 8.4009 14.2370 11.2570 15.4320 10.4520 6.4898 6.4898 7.9621

70

shaman_2

3 5 3.7132 2.5297 2.3782 2.4205 2.3663 0.3029 0.2367 0.2260 0.2261 0.2135

71 4 6 3.7371 2.4645 2.4500 2.4156 2.3867 0.2489 0.1853 0.1967 0.1887 0.1806

72 5 7 3.6413 2.5798 2.4513 2.4835 2.4657 0.2202 0.1716 0.1673 0.1621 0.1607

73 6 8 4.0927 3.1359 2.8979 2.8751 2.9860 0.2613 0.2137 0.2029 0.1883 0.1944

74 7 9 4.9502 4.0923 3.9288 3.8127 4.1502 0.3826 0.3400 0.3281 0.3108 0.3253

75 38 40 8.3602 5.4474 5.9433 6.7021 6.0057 0.4544 0.3249 0.3246 0.3294 0.3198

76 39 41 8.7507 5.6011 5.9636 6.6802 6.1899 0.4555 0.3102 0.3053 0.3244 0.3181

77 40 42 9.6258 5.9717 6.3237 7.1598 6.8400 0.4429 0.2946 0.2870 0.3038 0.3078

78 43 45 9.1029 6.5714 6.1061 6.0824 6.1948 0.3019 0.2249 0.1967 0.1972 0.2021

79 44 46 8.1659 5.9874 5.4676 5.4519 5.7113 0.2470 0.1882 0.1629 0.1629 0.1700

80 45 47 8.0631 5.9388 5.3977 5.3783 5.7516 0.2486 0.1853 0.1681 0.1650 0.1721

81 46 48 7.5197 5.4968 5.5251 5.0491 5.3649 0.2942 0.2314 0.2233 0.2079 0.2128

82 47 49 7.7900 5.3964 5.8603 5.5146 5.5205 0.4046 0.3173 0.3129 0.3018 0.2898

83

shaman_3

37 39 10.0170 6.1719 9.0703 5.2795 5.4207 1.9320 0.9698 1.3507 0.8574 0.8427
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84 38 40 12.2230 5.8646 7.6231 5.4704 5.4806 2.8896 0.9953 1.2626 0.9416 0.9415

85 39 41 17.3800 6.6017 7.5747 6.0066 5.8246 3.5967 1.0920 1.2998 1.0811 0.9946

86 40 42 19.0790 6.8284 6.9759 6.0970 6.6365 3.5102 1.0921 1.3009 1.2150 1.0611

87 41 43 15.4420 6.4149 7.1215 5.9063 6.9024 2.6228 1.0189 1.3154 1.1499 1.1484

88 42 44 10.6250 6.2158 7.2978 5.7222 6.6844 1.7789 0.9550 1.1717 1.0144 1.0690

89 43 45 8.9583 5.9630 7.3726 5.9386 6.4491 1.3891 0.8960 1.0876 0.8890 0.9298

90 44 46 8.6681 5.8491 7.5398 5.6422 6.0870 1.2426 0.8694 1.0473 0.8100 0.8514

91 45 47 8.9358 6.2083 7.1821 6.1171 6.0959 1.2184 0.8980 0.9973 0.8544 0.8431

92 46 48 8.8933 6.3397 7.3568 5.8972 5.9121 1.2434 0.9808 0.9989 0.8751 0.8775

93 47 49 9.4228 6.6954 7.6191 6.6318 6.6131 1.4312 1.1240 1.0243 1.0000 0.9967
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