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Abstract

Soil-Structure Interaction (SSI) procedures for performance-based seismic design of

building structures have been in existence in design guidelines and provisions for

decades. However, several issues still remain regarding the application of these

procedures to inelastic multi-storey buildings. Three main issues are identified and

investigated in this research.

Firstly, the gap between code-specified design response spectra and base shear de-

mands of inelastic flexible-base multi-storey buildings is bridged by introducing a

strength reduction factor RF and a Multi-Degree-Of-Freedom (MDOF) modifica-

tion factor RM. The strength reduction factor RF, derived based on the combined

(and similar) effects of SSI and structural yielding, allows base shear demands of a

flexible-base yielding Single-Degree-Of-Freedom (SDOF) structure to be calculated

directly from code design response spectra. The MDOF modification factor RM

links base shear demand of a MDOF structure to that of its SDOF counterpart.

Secondly, the effect of frequency content of ground motions on elastic and inelastic

flexible-base buildings located on very soft soil profiles is examined. Results showed

that normalising the equivalent period of a SSI system Tssi by the corresponding

predominant periods resulted in more rational spectra for seismic design purposes. In

the elastic response spectra, Tssi is normalised by the spectrum predominant period

TP corresponding to the peak ordinate of a 5% damped elastic acceleration spectrum,

while for nonlinear structures Tssi should be normalised by the predominant period of

the ground motion, Tg, at which the relative velocity spectrum reaches its maximum

value.

iii



It is shown that an actual SSI system can be replaced by an equivalent fixed-base

SDOF (EFSDOF) oscillator having a natural period of Tssi, a viscous damping ratio

ξssi and a global ductility ratio of µssi. The EFSDOF oscillator performed well for

linear systems while, in general, overestimated ductility reduction factor Rµ of SSI

systems with high initial damping ratio, which consequently led to an underestima-

tion of inelastic displacement ratio Cµ.

The two issues stated above were addressed by results of a large number of response-

history analyses performed using a simplified SSI model where the foundation re-

sponse was assumed to be linearly elastic and frequency-dependent. The soil-

foundation model, developed on the basis of the cone theory, has been verified to be

a reliable tool for simulating dynamic soil-foundation interaction.

Finally, in order to take into account foundation nonlinearity in preliminary seismic

design of building structures, a simplified nonlinear sway-rocking model was devel-

oped. The proposed model is intended to capture the nonlinear load-displacement

response of shallow foundations during strong earthquake events where foundation

bearing capacity is fully mobilised. Emphasis is given to heavily-loaded structures

resting on a saturated clay half-space. The variation of soil stiffness and strength

with depth, referred to as soil non-homogeneity, is considered in the model. Al-

though independent springs are utilised for each of the swaying and rocking mo-

tions, coupling between these motions is taken into account by expressing the load-

displacement relations as functions of the factor of safety against vertical bearing

capacity failure (FSV) and the moment-to-shear ratio (M/H). The simplified model

is calibrated and validated against results from a series of static push-over and dy-

namic analyses performed using a more rigorous finite-difference numerical model.

Despite some limitations of the current implementation, the concept of this model

gives engineers more degrees of freedom in defining their own model components,

providing a good balance between simplicity, flexibility and accuracy.
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Chapter 1

Introduction

1.1 Research motivation

Soil-Structure Interaction (SSI) may have a significant effect on seismic response

of buildings. In recent years, implementation of SSI procedures has found its way

into seismic design provisions on the basis of replacing the whole SSI system with

an equivalent fixed-base Single-Degree-Of-Freedom (EFSDOF) oscillator. However,

current design guidelines are insufficient to capture more realistic SSI phenomena

for the reasons that follow.

Firstly, either a force-based (e.g., ASCE, 2010) or a displacement-based (e.g., ASCE,

2013) procedure is based on a SDOF structure representative of the fundamental

mode of vibration of a Multi-Degree-Of-Freedom (MDOF) building. Current seismic

codes apply modification factors to design procedures for SDOF systems so that they

can be used for MDOF buildings. The effect of SSI on these factors is still an area

of uncertainty.

Secondly, design codes usually adopt an elastic pseudo-acceleration spectrum hav-

ing a constant portion spanning over the low to intermediate period range and a

descending segment in the long period range. This spectral shape is determined

through smoothing the averaged response spectrum derived for a number of earth-
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quake ground motions. It is generally believed that SSI results in a lower frequency

of vibration and a higher damping compared with the case without SSI. The com-

bined period lengthening and added damping effects in most cases lead to a reduced

base shear demand according to the stated spectral shape.

In reality, however, peaks in response spectra occur at various periods of vibration.

This peak response is more prominent for softer soil conditions where greater period

lengthening effects are expected. In this sense, if the natural period of a structure

in its fixed-base state is lower than the site characteristic period (corresponding

to which an acceleration response spectrum attains its maximum ordinate), an in-

creased base shear demand could be induced as a result of an increase in period.

The discrepancy between the code-specified and real response spectra stems from

an unreasonable averaging process. The smoothed elastic design spectral shapes are

usually defined by different soil types which are classified mainly according to the

mean value of shear wave velocity over the top tens of meters (e.g., 30m) of a site. A

range of site characteristic periods in the ratio of 1 to 4 is possible within a single soil

site class (Ziotopoulou and Gazetas, 2010). Averaging response spectra with peaks

at separated periods eliminates the peak response and consequently contributes to

an approximately constant segment in the averaged spectrum. The fact that soft

soil sites amplify the long-period components of an input motion seems to result in

an increased range of the flat portion (i.e., constant acceleration segment) of such

a spectrum for softer soil sites, which however is opposite to the reality where the

response spectra for soft soil profiles have a sharp rather than flat shape.

Thirdly, modern seismic provisions employ an EFSDOF oscillator which approxi-

mates an actual SSI system having a SDOF superstructure. The so-called ‘replace-

ment oscillator approach’ is based on the selection of a natural period and a damp-

ing ratio for the stated oscillator so that its resonant frequency and corresponding

pseudo-acceleration are equal to those of the actual SSI system. This approach has

also been extended to include hysteretic actions in inelastic structures. However, the

effectiveness claimed for the approach has not been convincingly demonstrated (e.g.,

Ghannad and Ahmadnia, 2002b; Avilés and Pérez-Rocha, 2003). In other words,
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the replacement oscillator approach may not necessarily provide a reliable solution

to an SSI problem.

Finally, current code-specified seismic foundation design procedures discourage the

acceptance of a foundation as a source of hysteretic energy dissipation (e.g., CEN,

1998). However, soil yielding is unavoidable during strong shaking and incorporation

of foundation non-linearity into SSI systems remains a task for performance-based

design in earthquake geotechnical engineering. It becomes increasingly important

for both structural and geotechnical engineers to identify not only the individual

but also the combined effect of structural and foundation ‘hinges’ on performance

of seismically-excited structures and foundations.

1.2 Aims and objectives

The aim of this research is to develop practical procedures and simplified models

for performance-based design of soil-structure interaction in earthquake engineering.

The following objectives are laid down for the research study:

• Implement a simplified and reliable soil-structure interaction model for para-

metric study of soil-structure interaction.

• Investigate the effect of SSI on seismic response of elastic and inelastic struc-

tures supported on compliant foundations.

• Improve the current performance-based design procedures for SSI, with em-

phasis on force reduction and MDOF modification factors in the force-based

design framework.

• Evaluate the performance of the equivalent fixed-base SDOF oscillator.

• Explore the effect of frequency content of ground motions on design spectra

and coefficients considering SSI.
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• Develop a simplified SSI model that is able to capture nonlinear foundation

response.

• Calibrate and validate the proposed model against a detailed finite-different

model.

1.3 Structure of the thesis

This thesis consists of eight chapters. Chapter 1 gives the motivation, aims and

objectives of the research as well as the outline of the thesis. Chapter 2 presents the

fundamentals of a dynamic SSI problem. SSI procedures in current seismic design

provisions and guidelines are also reviewed. Chapter 3 provides a comprehensive

review of the commonly used SSI models in engineering practice. Emphasis is given

to geotechnical components. Chapter 4 focuses on implementing a simplified SSI

model in computer code. The equations of motion and solution techniques for lin-

ear and nonlinear problems are described. The concept of an equivalent fixed-base

SDOF oscillator for SSI analysis is also introduced. Chapter 5 proposes a prac-

tical performance-based approach for design of inelastic flexible-base multi-storey

buildings. Chapter 6 highlights the effect of frequency content of ground motions

on seismic design of buildings located on very soft soil deposits. Chapter 7 de-

velops a nonlinear sway-rocking model for seismic assessment of buildings on mat

foundations. Conclusions and suggestions are finally drawn in Chapter 8.
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Chapter 2

Fundamentals of dynamic

soil-structure interaction

2.1 Introduction

Conventional evaluations of seismic response of building structures assume that a

structure is rigidly supported (i.e., a ‘fixed-base’ condition), which is a crude as-

sumption since in many situations, buildings are founded on deformable soils (i.e., a

‘flexible-base’ condition). Introduction of soil flexibility modifies the seismic struc-

tural behaviour in comparison with the fixed-base condition. This chapter reviews

the fundamentals of dynamic soil-structure interaction. First, a comparison of dy-

namic response of fixed-base and flexible-base structures is provided, followed by an

introduction of common approaches to dynamic SSI. A review of SSI procedures in

current seismic design provisions and guidelines is also given.
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2.2 Dynamic response of fixed-base and flexible-

base structures

Wolf (1985) illustrated the salient features of soil-structure interaction in Figure 2.1

by comparing the seismic response of a structure founded on rock with that of the

identical structure with a rigid base (including the base-mat and the side walls)

embedded in soil. The incident seismic waves with horizontal motions (represented

by solid arrows) propagate vertically though the rock towards the structure with

the magnitudes of the motions measured by the lengths of the solid arrows. Point

A at the free surface of the rock is used as a reference point in which the motion is

compared with those in other points.

For the structure built on rock (which can be regarded approximately as a fixed-base

condition), the motions at points A and B are practically identical and equal to the

wave-induced horizontal motion. Therefore, the motion recorded at the reference

point A can be applied directly to the base of the structure. If the lateral structural

stiffness is high, the input motion at the base would lead to horizontal accelerations

that are constant over the height of the structure. Consequently, a transverse shear

force and an overturning moment will develop at the base. Since the rock is very stiff,

the horizontal shear force and rocking moment would hardly cause any additional

deformation in the surrounding ground. As a result, the rigid foundation is ‘bonded’

to the rock and moves in phase with the horizontal motion in the rock.

On the other hand, the structure embedded in the soil exhibits a distinctly different

dynamic response when compared to the structure on rock. This difference is mainly

attributed to the fact that the motion at the base centre (i.e., point O) deviates from

that at the reference point A due to the following three phenomena.

Firstly, the so-called ‘free-field’ motion, which corresponds to the motion of the site

without presence of any structures and excavations, is modified. As depicted in

Figure 2.1(c), the soft soil layer overlying the rock reduces the motion in point C,

denoted as üg, which would be identical to the motion in the reference point A if there

were no soil on top of the rock (see Figure 2.1(b)). The wave propagation through
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the soil layer subjects the soil particles to vibration, resulting in an amplification

or attenuation of the free-field motion. Depending on the frequency content of

excitations, the motion is usually amplified. Consequently, motions in points D

and E denoted by üg,b, which would lie on the soil-structure interface once the

structure is built, differ from that in point C in Figure 2.1(c). The calculations of

free-field motion require a site response analysis. Secondly, constructing the rigid

A

B

Rock Soft soil

O

O

C C

ug,b
..

ug
..

D

E

ug,b
..

ug
..

O

(a)

(b) (c) (d) (e)

Figure 2.1: Seismic response of structures founded on rock and on soil. (a) Sites;

(b) outcropping rock; (c) free field; (d) kinematic interaction; (e) inertial interaction

(after Wolf, 1985).

foundation in the soil modifies the motion at its base, which may experience some

average swaying displacement and an additional rocking motion (Figure 2.1(d)).

The combined swaying and rocking response would lead to a variation of lateral

acceleration with the height of the stiff superstructure. This phenomenon is mainly

a result of the stiffness contrast between the foundation and the surrounding soil

and occurs even when the foundation is mass-less, in which case it is referred to as

‘Kinematic Interaction’ (KI) (see Section 2.2.1).

Thirdly, the transverse shear force and the overturning moment resulting from the
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inertial forces will cause additional deformation in the soil, which in turn modifies

the input motion in point O at the base centre (Figure 2.1(e)). This interaction

phenomenon between the excited structure and its adjacent soil is termed ‘Inertial

Interaction’ (II) (see Section 2.2.2).

2.2.1 Kinematic interaction

The kinematic interaction effect is the direct result from the stiffness contrast be-

tween the soil and the foundation. In the free field where a structure is absent, the

soil particles follow the pattern of motion induced by wave propagation. Suppose

that a foundation, resting on or embedded in the soil, is so stiff that it cannot con-

form to the free-field displacement pattern; a deviation of foundation motion from

the free-field motion will be caused, even if the foundation is mass-less.

Figure 2.2 illustrates cases where the kinematic interaction phenomenon prevails.

Note that in all graphs, foundations are assumed to have no mass and dotted curves

represent the free-field motions. Figure 2.2(a) shows an embedded pile subjected to

shear waves, the amplitude of which increases while propagating vertically upward

through the soil. On the one hand, the flexural stiffness of the pile prevents it from

following the free-field motion, tending to modify the soil displacements (compared

to the free-field displacements) in the vicinity of the pile shaft. On the other hand,

the movement of the soil around the pile generates bending moments, which may

pose a threat to the stability of the pile.

Figures 2.2(b) and (c) compare the effect of frequency components of a motion on

response of a mass-less embedded foundation. When subjected to a high-frequency

motion that varies horizontally (Figure 2.2(b)), the ‘kinematic forces’ exerted on the

foundation cancel out, leaving the foundation ‘unaffected’ by the wave motion. On

the contrary, excited by a lower-frequency motion (Figure 2.2(c)), the foundation

tends to rock and translate, giving rise to a ‘foundation input motion’ which is made

up of a swaying and rocking component, even though the free-field motion is purely

horizontal.
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Kinematic interaction effect for shallow and deep foundations.

Although kinematic interaction is more common with embedded foundations, espe-

cially for deep foundations; there are cases where this effect is also significant for

surface foundations. An example is illustrated in Figure 2.2(d) where the in-plane

stiffness of a surface foundation does not allow it to follow the displacement pattern

in the underlying soil. In addition, Figures 2.2(e) and (f) again demonstrate that

excitation frequency has a significant effect on the foundation response, which is

similar to the explanations given by reference to Figures 2.2(b) and (c).

In general, the way kinematic interaction affects the foundation behaviour depends

on the predominant wavelength relative to the dimensions of the foundation. For

high-frequency motions whose wavelengths are considerably small relative to the

characteristic dimension of the foundation, the contribution to foundation response

from these motions is almost negligible (with reference to Figures 2.2(a), (b) and

(e)). In this sense, the foundation can be visualised as a high-period-pass (i.e.

low-frequency-pass) filter applied to the high-frequency components of the free-field

motions (ATC, 2005). This filtering effect is more pronounced for short-period

structures (which are affected mainly by high-frequency motions), leading to a large

reduction of seismic demands for these structures.

When foundation dimensions are comparable to the wavelength, kinematic inter-

action will tend to alter the modes of vibration of the foundation (with reference

to Figures 2.2(c) and (f)). If, however, the characteristic foundation dimension be-

comes sufficiently small compared to the wavelength, the kinematic interaction effect

can reasonably be ignored.
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The phenomenon displayed in Figure 2.2(d) is referred to as the ‘base-slab averaging

effect’, which is also predominant at low periods. It should be mentioned that

kinematic interaction is not present in all problems. For example, if the surface

foundations shown in Figures 2.2(d), (e) and (f) are subjected to the seismic waves

described in Figures 2.2(a), (b) or (c), kinematic interaction will not occur.

2.2.2 Inertial interaction

In an inertial interaction, the superstructure is ‘activated’ by the foundation in-

put motion and inertial forces are developed within the structure. Two important

features arising from this interaction are discussed below.

Firstly, the inertia-induced transverse shear force and overturning moment developed

at the base of the foundation cause deformation in the soil in addition to that due

to the free-field motion. The deformation magnitude is controlled by the amplitude

of vibration and the compliance of the soil. Introduction of deformable soil beneath

the foundation makes the whole SSI system more flexible, and thus, more prone to

longer-period components of a ground motion.

Secondly, the excited foundation acts as a finite source of vibration that emits waves

propagating though the soil towards infinity. For an embedded shallow foundation,

the swaying response (with swaying displacement denoted by ‘uh’) shown in Figure

2.3(a) generates P-waves (i.e., dilatational waves denoted by ‘P’) and S-waves (i.e.,

shear waves denoted by ‘S’) respectively through compression/extension (at the

vertical interfaces) and friction (at the horizontal interface) between the foundation

and the adjacent soil. In the rocking mode of vibration (with angle of rotation

denoted by ‘θ’ in Figure 2.3(b)), P-waves arise mainly from compressive stresses

transmitted from the foundation base to the underlying soil.

Two main types of wave energy dissipation are involved in inertial interaction. The

first energy dissipation is a result of the geometric attenuation during the wave

propagation where an expansion of the wave front from a point source occurs. This

mechanism is usually called ‘radiation damping’, since foundation vibration radiates
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waves into the soil medium. The other mechanism corresponds to the nonlinear soil

behaviour and is called ‘hysteretic damping’. If foundation uplift is allowed, the

impact of the foundation onto the soil and concomitant vertical oscillatory motion

dissipate part of the kinetic energy imparted on the foundation (Adamidis et al.,

2014).

��

�

��

θ

��

��� ���

Figure 2.3: Foundation vibration of (a) swaying mode and (b) rocking mode in

inertial interaction dissipates wave energy into the surrounding soil domain.

To summarise, two main features of inertial interaction are, respectively, lengthen-

ing of the vibration period and introducing radiation damping and soil hysteretic

damping into the vibrating system.

2.3 Approaches to dynamic SSI

2.3.1 Direct approach

The most ‘rigorous’ way of solving a dynamic SSI problem may be using a ‘direct

approach’, which involves modelling the entire soil-structure system in the time

domain, accounting for spatial variation of soil properties, material and geometric

nonlinearities, wave propagation complexities and careful treatment of interface and

boundary conditions. The direct approaches are usually performed by using the

Finite-Element Method (FEM) where the whole SSI system is modelled and analysed

in a single step. The Equations of Motion (EOM) for an SSI Finite-Element model

can be written as:

[M ]{ü}+ [k]{u} = −[M ]{üg} (2.1)

where [M ] and [k] are respectively mass and stiffness matrices, {u} is a displacement

vector corresponding to the degrees of freedom of the internal nodes within the SSI
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model, and {ug} is the input displacement vector for the nodes which usually lie at

the bottom of the model.

Although the direct approach is able to treat the soil and the structure with equal

rigour, it usually requires a great computational effort and is not easy to put into

practice. In the preliminary design stage, practical engineers are more accustomed

to a ‘substructure’ approach which will be described in the following section.

2.3.2 Substructure approach

The substructure method is also called a ‘multi-step approach’ where an SSI problem

is solved by combining solutions from the previously stated kinematic and inertial

interaction phenomena, as illustrated in Figure 2.4.

�� ��

���� ��� ���

��������	
���

���

Figure 2.4: The analysis of (a) an SSI problem can be broken down into (b) a

kinematic interaction analysis and (c) an inertial interaction analysis.

In the kinematic interaction analysis (Figure 2.4(b)), seismic excitations are applied

to the bottom of the SSI model where the structure and foundation are assumed to

have stiffness but no mass. The EOM for kinematic interaction can be written as:

[Msoil]{üKI}+ [k]{uKI} = −[Msoil]{üg} (2.2)

where [Msoil] is the mass matrix in which the entries corresponding to the structure

and the foundation are zero and the subscript KI denotes kinematic interaction.

Mathematically, the EOM for inertial interaction can be extracted from the total

EOM (Equation (2.1)) by subtracting those for the kinematic interaction (Equation

12
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(2.2)):

[M ]{üII}+ [k]{uII} = −[Mstructure]{üg + üKI} (2.3)

where {uII} = {u}−{uKI} is the inertial interaction component of the displacement

vector {u}, and [Mstructure] = [M ]− [Msoil] is the mass matrix where the ‘soil’ entries

are equal to zero.

Note that for the degrees of freedom corresponding to the structure-foundation

system, {uKI} + {ug} is reduced to the foundation input motion. In particular,

for a surface foundation subjected to coherent vertically propagating shear waves,

{uKI} + {ug} at the foundation level is equal to {ug,b} which is the motion at the

ground surface in the free field.

From a practical structural engineer’s point of view, to simplify an SSI analysis, the

soil medium is usually replaced by the so-called ‘impedance function’ that captures

the stiffness and damping characteristics of the soil-foundation interaction when

subject to vibration at various frequencies. These frequency-dependent impedance

functions are physically represented by springs with a complex-valued stiffness. In

this case, the procedures presented in Figure 2.4 can utilise a even simpler SSI

model, as illustrated in Figure 2.5 which involves three steps (Kramer and Stewart,

2004). (1) Calculate the foundation input motion which depends on the stiffness and

geometry of the foundation and the soil. (2) Evaluate the impedance function which,

for a simple case of a rigid foundation, is a function of elastic soil properties (e.g.,

stiffness and Poisson’s ratio), soil stratigraphy, foundation geometry and vibrating

frequency. (3) Perform dynamic analysis on the flexible-base structure subjected to

the foundation input motion.

It is clear in this section that the solution of kinematic interaction is the effective

foundation input motion. Inertial interaction solves the response of the SSI system

where the structure (including foundation) is excited by the foundation input motion

and interacts with the surrounding soil. The total response of the system is thus

the sum of responses obtained from both interaction analyses.
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ug,b

Soil-structure interaction
Solving kinematic interaction 

problem for foundation input motion

Calculating impedance 
function  

Solving inertial interaction 
problem for structural response

Step 1

Step 2 Step 3

Figure 2.5: Substructure approach to an SSI problem utilising impedance function

(after Kramer and Stewart, 2004).

2.3.3 Time domain analysis

Since the EOM are formulated in the time domain, the most general approach

for solving these equations is a response history analysis. A number of numerical

integration methods are available for obtaining incremental solutions at each time

step. A nonlinear SSI analysis should be performed in the time domain where

iterations may be required to solve the equilibrium equations. This requires a huge

computational effort for a problem having a large number of degrees of freedom.

2.3.4 Frequency domain analysis

Due to the frequency-dependent nature of the impedance function, a frequency

domain analysis is best suited for the substructure approach described in Figure 2.5.

Before an analysis can be performed in the frequency domain, the raw time-varying

data is separated, through a Fourier Transform (FT), into a series of harmonic

components, each with a specific phase angle and amplitude as well as a unique

frequency. The response is then calculated independently at individual frequencies.
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The frequency responses can eventually be translated back into the time domain

by using the Inverse Fourier Transform (IFT). This class of analysis only applies to

linear (including equivalent-linear) systems where true nonlinearity is excluded, and

therefore, the frequency domain analysis is not able to predict residual deformation.

2.4 SSI in seismic design guidelines

Soil-structure interaction was first introduced in the U.S. ATC-3 report (ATC, 1978),

Tentative provisions for the development of the seismic regulations for buildings,

which is the predecessor of the National Earthquake Hazard Reduction Program

(NEHRP) seismic provisions. The simple procedures for SSI in ATC-3 suggest that

a reduced design base shear (compared with the fixed-base value) should be adopted.

This beneficial effect of SSI is part of the reason why SSI provisions serve as optional

design considerations and have never been integrated into building codes. The fact

that code practice is reluctant to accept SSI design procedures is also due to the

uncertainties in the SSI effect, which is still controversial.

2.4.1 Eurocode

Although no specific design methods are proposed, Eurocode 8 (CEN, 2004) gives

qualitative description of SSI effects in its Annex D and recognises the following

situations where SSI effects might be detrimental and should be considered in design:

• structures where P-δ (2nd order) effects play a significant role;

• structures with massive or deep-seated foundations, such as bridge piers, off-

shore caissons, and silos;

• slender tall structures, such as towers and chimneys;

• structures supported on very soft soils, with average shear wave velocity less

than 100 m/s.
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For piled foundations, Annex C provides the pile-head stiffness that can be used for

SSI calculations.

2.4.2 U.S. standards and design guidlines

SSI provisions currently exist in several important U.S. seismic design standards

(e.g., ATC, 2005; BSSC, 2009; ASCE, 2010; ATC, 2012; ASCE, 2013). The following

presents simplified SSI procedures that have been implemented in existing force-

based and displacement-based design for building structures in these standards.

2.4.2.1 Force-based procedures

The NEHRP Recommended Seismic Provisions for New Buildings and Other Struc-

tures (BSSC, 2009) adopts a force-based design methodology which integrates SSI

into the equivalent lateral force procedure and is also provided in Chapter 19 of

ASCE (2010), Minimum design loads for buildings and other structures.

ASCE (2010) neglects the effect of kinematic interaction and deals with the period

lengthening and modified damping resulting from inertial interaction. The inertial

effect on design seismic spectrum is illustrated in Figure 2.6. The reduction of base

shear V is calculated as:

∆V =

[
Cs − Cs,ssi

(
ξs

ξssi

)0.4
]
W ≤ 0.3CsW (2.4)

where Cs is a seismic response coefficient (i.e., the design pseudo-acceleration Sa

normalised by the acceleration of gravity g) of a system having a period of vibration

T and a damping ratio ξ. The subscript ‘ssi’ denotes an SSI system. For fixed-base

systems (denoted by using subscript ‘s’), the damping ratio, defined as a fraction

of critical damping, is usually taken as 5%. W is the effective seismic weight of

the superstructure, usually taken as 70% of the total seismic weight. For structures

supported on mat foundations that are resting on the ground surface or shallowly

embedded in the soil where the effect of contact between the side walls and soil is
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Figure 2.6: Schematic showing effects of period lengthening and foundation damping

on design spectral ordinates for linear SSI systems.

deemed insignificant, the effective period of the flexible-base structure Tssi can be

evaluated from an adapted form of Veletsos and Meek (1974):

Tssi = T

√√√√1 +
25αRhh

V 2
s T

2
s

(
1 +

1.12Rhh
2

αθR3
θ

)
(2.5)

where

α=the relative weight density of the structure and the soil defined by:

α =
W

γAh
(2.6)

Rh and Rθ=characteristic foundation lengths defined by:

Rh =

√
A

π
Rθ =

4

√
4I

π
(2.7)

where

A=the area of the load-carrying foundation.

h=the effective height of the structure, taken as 0.7 times the total height (for

multi-storey structures) except for structures where the gravity load is effectively

concentrated at a single level (e.g., for one-storey structures) in which case h is taken

as the height to that level.

I=the in-plane static moment of inertia of the load-carrying foundation about a

centroidal axis normal to the direction in which the structure is analysed.

αθ=dynamic foundation stiffness modifier for the rocking motion as determined from

Table 2.1.
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Vs=shear wave velocity.

Ts=fundamental period of the structure in its ‘fixed-base’ state.

Table 2.1: Values of αθ (ASCE, 2010)

Rθ/VsTs αθ

<0.05 1.0

0.15 0.85

0.35 0.7

0.5 0.6

The effective damping of the flexible-base structure is calculated as:

ξssi = ξf +
ξs(
Tssi

Ts

)3 (2.8)

where ξf is the foundation damping factor that can be evaluated from Figure 2.7.

BSSC (2009) and ASCE (2010) take into account the strain-dependent foundation

stiffness and damping factor by relating them to the peak spectral ordinate SDS

(shown in Figure 2.6) corresponding to the short-period value on a 5% damped

design acceleration spectrum.

Note that the graphical solutions in Figure 2.7 are derived by using the Veletsos

and Nair (1975) damping expression as a function of the period lengthening ratio

Tssi/Ts, peak spectral acceleration SDS, and structural slenderness ratio h/r. The

equivalent foundation radius r is determined by:

r =


Rh, if

h

L
≤ 0.5.

Rθ, if
h

L
≥ 1.

(2.9)

where L is the overall length of the side of the foundation in the direction being

analysed.

For intermediate values of SDS between 0.1 and 0.2, and values of h/L between 0.5

and 1; the values of ξf and r can be calculated by linear interpolation. ASCE (2010)
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Figure 2.7: Foundation damping factor specified in ASCE (2010).

requires that the effective damping of an SSI system ξssi calculated by Equation (2.8)

should neither exceed 20% nor be less than the fixed-base value 5%. Considering

that the design spectrum has a constant and descending segment over a wide range

of periods, the force-based procedures seem always to reduce base shear.

Implementation of SSI in modal analysis is also allowed, with similar procedures

to the equivalent lateral load analysis but only applied to the fundamental mode

of response. Since higher-mode responses are essentially unaffected by SSI (e.g.,

Bielak, 1976), the contributions of higher modes are calculated based on the fixed-

base assumption.

The stated SSI procedures for determining the design base shear are appropriate for

linear SSI systems where yielding is excluded. Seismic codes encourage nonlinear

hysteretic action to occur in structural members to dissipate earthquake energy

through permanent deformation. In its Chapter 12, ASCE (2010) gives a simple

expression for the seismic response coefficient that takes into account the inelastic

structural behaviour:

Cs =
SDS(
R

I

) (2.10)

where R is a response modification factor that accounts for the ductility of a building

and reduces the base shear accordingly; and I is an important factor, which for
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common buildings usually equals one. As noted by Crouse (2002), existing R factors

may already reflect the beneficial effects of SSI, and modifying the base shear to

account for both SSI and ductility may be unconservative in some cases. This was

confirmed by Ghannad and Jahankhah (2007) who showed that using the R factors

derived based on the fixed-base assumption for SSI systems led to a higher ductility

demand (than the target value).

2.4.2.2 Displacement-based procedures

U.S. seismic provisions for existing buildings are based on nonlinear static (pushover)

procedures. A variety of pushover methods are readily available, such as: Capacity

Spectrum Method (ATC, 1996), Coefficient Method (BSSC, 2000), Improved Coeffi-

cient (Displacement Modification) Method and Linearisation Method (ATC, 2005).

SSI procedures have been implemented in the latter two methods in ATC (2005)

which were then revised into ASCE (2013).

A displacement-based procedure requires two important components: a capacity

curve (or a pushover curve) and a design response spectrum (or a demand spectrum),

both plotted in an Spectral acceleration (Sa) versus Spectral displacement (Sd), or

ADRS format.

The capacity curve can be derived from an incremental pushover analysis where an

MDOF building-foundation-soil system (in its gravitational equilibrium) is subject

to a static lateral load pattern. The whole system is pushed monotonically until a

target displacement (usually evaluated at the roof level) is reached (see Figure 2.8).

The cumulative lateral load H, which is statically equal to the mobilised base shear,

could be plotted against the roof displacement ∆ to reflect the level of inelasticity

in the structure.

The seismic structural performance is assessed by combining the capacity curve

with a seismic demand spectrum in the ADRS form. This requires the MDOF

system to be transformed to an equivalent SDOF structure (the fundamental mode

of vibration of the MDOF system is usually selected for this purpose). In order to
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Sa

Sd

Capacity curve

Free-field motion (FFM) spectrum

FIM spectrum including foundation damping 
and structural ductility

Performance point

Foundation input motion 
(FIM) spectrum

D

H (Sa)

(Sd)

Figure 2.8: Schematic showing SSI effects on displacement-based method for assess-

ing nonlinear structural performance.

account for inelastic structural response, the demand spectrum, without considering

SSI effects, should be reduced from its elastic counterpart. Either an equivalent

elastic spectrum (derived for an equivalent viscous damping ratio that relates to the

expected inelasticity level) or an inelastic spectrum (which explicitly accounts for

structural inelasticity through the response modification factor R) can be used as

the demand spectrum. The effects of SSI on the demand spectrum are quantified by

ASCE (2013) through reductions of demands in kinematic and inertial interaction

phenomena which will be addressed in the following.

Theoretically, the foundation input motion (FIM) can be evaluated in kinematic

interaction by means of a number of transfer functions expressed as frequency-

dependent ratios of the Fourier amplitudes of FIM to those of the free-field mo-

tion (FFM). ASCE (2013) recommends that a reduced response spectrum can be

used to account for kinematic interaction. This is based on the similarity between

the transfer function ordinates (i.e., the amplitude ratios of FIM/FFM) and the

response spectral ratios of FIM/FFM at frequencies lower than 5Hz (Veletsos and

Prasad, 1989). The ratio of response spectra (RRS) is specified for base-slab aver-

aging (RRSbsa) and embedment (RRSe) effects (see Section 2.2.1 for explanations of

both effects) but the total reduction of FFM spectral ordinate is not permmited to

be greater than 50% (i.e., RRS=RRSbsa × RRSe ≥ 0.5).

For vertically propagating waves, the transfer function, and thus RRSbsa is calculated
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by:

RRSbsa = 0.25 + 0.75

{
1

b2
0

[
1− exp(−2b2

0)Bbsa

]}1/2

(2.11)

where

Bbsa =


1 + b2

0 + b4
0 +

b6
0

2
+
b8

0

4
+
b10

0

12
, if b0 ≤ 1.

exp(2b2
0)

[
1√
πb0

(
1− 1

16b2
0

)]
, if b0 > 1.

(2.12)

b0 = 0.0001

(
2πbe

T

)
(2.13)

T=fundamental period of the flexible-base building Tssi which shall not be taken

as less than 0.2sec when used in Equation (2.13). The low-period cutoff 0.2sec is

determined in accordance with the previously stated frequency of 5Hz in order that

RRS correlates well with the transfer function.

be=
√
A ≤ 260ft is the effective foundation size in feet.

The RRS factor for embedment, RRSe is determined by Equation (2.14):

RRSe = 0.25 + 0.75 cos

(
2πe

TVs

)
≥ 0.50 (2.14)

where e is foundation embedment depth in feet.

ASCE (2013) specifies the following situations where reductions due to kinematic

interaction effect is not allowed:

1. Structures having floor and roof diaphragms classified as flexible where reduc-

tions are not permitted for base-slab averaging effect, i.e., RRSbsa = 1;

2. Structures located on firm rock sites (e.g., site classes A and B in Table 4.3)

where reductions are not permitted for embedment effect, i.e., RRSe = 1;

3. Structures located on soft clay sites (e.g., site class E in Table 4.3) where

reductions are not permitted for both effects, i.e., RRS = 1;

4. Structures with foundation components that are not laterally connected where

reductions are not permitted for both effects, i.e., RRS = 1.
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In ATC (2005) and hence ASCE (2013), the reduced seismic demand spectrum

is evaluated for an equivalent viscous damping ratio (Equation (2.15)) due to the

combined effect of SSI and structural yielding in inertial interaction.

ξ0 = ξf +
ξs(

Tssi,eff

Ts,eff

)3 ≤ 20% (2.15)

where ξf is the foundation damping ratio that can be estimated from Figure 2.7,

Tssi,eff/Ts,eff is the effective period lengthening ratio evaluated at maximum post-

yield displacement:

Tssi,eff

Ts,eff

=

1 +
1

µ

[(
Tssi

Ts

)2

− 1

]
0.5

(2.16)

where Tssi/Ts is the period lengthening of linear SSI systems as determined by Equa-

tion (2.5), µ is a ductility factor that measures the degree of nonlinearity due to

yielding in structures.

When reducing an elastic design spectrum from its 5% damped counterpart, a damp-

ing coefficient B, as a function of the effective viscous damping ξ0, is introduced.

The reduced demand spectrum is obtained by dividing the 5% damped spectrum by

B.

2.5 Summary

Structures supported by deformable soil exhibit different dynamic response com-

pared to their fixed-base conditions. This difference arises from kinematic inter-

action and inertial interaction. The former interaction phenomenon results in a

deviation of the foundation input motion from the free-field motion whereas the

latter usually leads to a higher period of vibration and damping for an SSI system.

Although a direct method serves as a rigorous approach to SSI, design standards

usually adopt a substructure approach which combines the solutions derived from

the two interaction analyses.
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Chapter 3

Review of commonly used models

for seismic SSI problems

3.1 Introduction

This chapter elaborates the previously stated direct and substructure approaches

(see Section 2.3) through a review of available models that are commonly used in

seismic analysis of soil-structure interaction problems. Domain-type models are

widely used in research as a direct approach while spring-type models are more

favoured by engineers as a simple tool for assessing seismic performance of buildings

and foundations in inertial interaction. In this chapter, a comprehensive review of

the model components is provided. Emphasis is given to geotechnical components

since existing structural models are well-developed. Strengths and limitations of

these models are also addressed.
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3.2 Domain-type models

Domain-type models are usually used to handle problems where an arbitrary shaped

body with complicated material behaviour is subjected to complex dynamic loading

conditions. The material is often idealised as a continuum having an infinite number

of degrees of freedom. In order to solve such a problem, the whole domain needs

to be discretised into a number of sub-domains with a finite number of degrees

of freedom. The discretisation can be achieved by using either a Finite Element

Method or a Finite Difference Method. Figure 3.1 illustrates a direct SSI analysis

performed using a finite-difference code FLAC3D. More information of modelling

issues on FLAC3D will be provided in Chapter 7.

Figure 3.1: Application of finite-difference technique to direct soil-structure interac-

tion analysis by using the numerical code FLAC3D.

Apart from numerical computational techniques, two main issues should be given

careful consideration. The first issue relates to the description of soil behaviour,

which is usually achieved by means of mathematical constitutive formulations (con-

stitutive models). The second issue concerns a site response analysis which deals

with dynamic loading and boundary conditions, spatial variation of material prop-

erties in a soil deposit and wave propagation through the soil profile. These two

issues are discussed in detail in following subsections.
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3.2.1 Dynamic soil behaviour

In earthquake events, a soil element within a site is subjected to a variation of stress

during passage of seismic waves. Consider upward propagating waves through a

water saturated soil profile. Ishihara (1996) demonstrated that dilatational (com-

pressional) waves induce almost a pure isotropic stress state in saturated soils with

deviator stress components being practically negligible. Since wave-induced com-

pressive stress is transmitted though pore water without changing the effective stress

carried by the soil skeleton, the effect of compressional waves on ground stability is

insignificant. On the other hand, in response to shearing of soil skeleton, pore water

increases in pressure and attempts to flow out to low-pressure zones, which in an

undrained condition leads to build-up of pore water pressure and an accompanying

reduction of effective stress. Therefore, shear stress induced by propagation of shear

waves is the main focus of a geotechnical earthquake engineering problem.

In the laboratory, it is possible to perform an undrained cyclic simple shear test to

reproduce the seismic response of saturated soil subjected to one-dimensional shear

waves, as sketched in Figure 3.2(a). Experimental results are very similar to those

depicted in Figures 3.2(b)-(d) in terms of shear stress (τ) versus shear strain (γ).

The steady-state cyclic soil response is characterised by a hysteresis loop illustrated

in Figure 3.2(b). A secant shear modulus Gsec = Gcyc, defined as the slope of the

line connecting the tips of the hysteresis loop, is usually used to measure the shear

resistance of a soil element in response to a shear deformation γtextupcyc. The area

enclosed by the loop represents the energy dissipated during a cycle, which can be

quantified mathematically by a damping ratio defined as:

ξg =
∆E

4πE
(3.1)

where ∆E is the energy dissipated within a cycle and E is an equivalent maximum

elastic energy stored during the cycle. Experimental results have shown that the

secant shear modulus and damping ratio is mainly a function of cyclic strain am-

plitude. At very small strain level, the secant modulus Gcyc is close to the purely

elastic counterpart Gmax.
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Figure 3.2(c) shows a reduction of the secant shear modulus with increasing the

cyclic shear strain amplitude. This relationship can be described by a ‘backbone

curve’ joining the tips of hysteresis loops achieved under various strain amplitudes.

Even under a constant shear strain amplitude, the hysteresis loop grows flatter with

increasing the number of cycles n, as illustrated in Figure 3.2(d), especially at large

strain levels. For saturated soils, increasing number of cycles is usually accompanied

by a degradation of strength and stiffness, thereby leading to a degraded backbone

curve. The degradation of the shear modulus for sands is also influenced by void

ratio and effective confining stress; for clays, it is affected by plastic index (PI) and

overconsolidation ratio (OCR).
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Figure 3.2: Cyclic response of (a) a soil element at a site subjected to shear waves,

characterised by (b) a hysteresis loop which is affected by (c) cyclic strain amplitude

and (d) number of cycles.

The dependence of shear modulus and damping on cyclic shear amplitude can al-

ternatively be described by a pair of dimensionless curves, sketched in Figure 3.3,
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which was first proposed by Seed and Idriss (1970).
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Figure 3.3: Dimensionless backbone and damping curves with various strain ampli-

tude for saturated soils (after Vucetic, 1994).

Vucetic (1994) showed that these dimensionless curves are widely used in research

and practice because (1) both normalised shear modulus and damping ratio are

not significantly affected by the effective consolidation stress and OCR; and (2)

the strain-dependent secant shear modulus can be readily determined from its very

small-strain values Gmax which is usually calculated from the field-measured shear

wave velocity Vs by:

Gmax = ρVs
2 (3.2)

where ρ is the density of soil mass. A large number of studies have been devoted

to determining Gsec/Gmax and ξg vs. γcyc (e.g., Seed and Idriss, 1970; Hardin and

Drnevich, 1972; Lee and Finn, 1978; Seed et al., 1986; Sun et al., 1988; Ishibashi and

Zhang, 1993; Zhang et al., 2005; Oztoprak and Bolton, 2013). These dimensionless

modulus and damping curves gave rise to an ‘equivalent-linear’ method which has

been widely used in geotechnical earthquake engineering to simulate true nonlin-

ear soil behaviour, especially in ground response analyses. The limitation of the

equivalent-linear method is its inability to capture irrecoverable deformation due to

large strains, in which case a nonlinear model is required. A simple criterion for
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determining whether a linear, an equivalent-linear or a nonlinear model should be

adopted is based on the so-called cyclic threshold shear strains, as marked on the

curves in Figure 3.3. The elastic cyclic threshold shear strain γtl may be considered

as the boundary between the linear and the nonlinear soil behaviour whereas the

volumetric threshold strain γtv is the critical strain for the onset of irrecoverable

deformations. Both threshold strains increase with PI, as presented in Figure 3.4.
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Figure 3.4: Variation of threshold cyclic shear strains γtl and γtv with plasticity

index PI (after Vucetic, 1994).

In the regime of very small strains, a linear model may be adequate to capture the soil

stress-strain relation. If an isotropic material property is assumed, two independent

material parameters are required for such a model. These can be a combination of

any two parameters of shear modulus G, bulk modulus B and Poisson’s ratio ν. In

the small strain range where soils do not exhibit severe degradation, the equivalent

linear model could be adopted. This method is based on a total stress analysis, with

an equivalent shear modulus and viscous damping ratio representing respectively

shear resistance and energy loss. Soil nonlinearity is approximated by using the

shear modulus degradation curve and damping curve as shown in Figure 3.3. Since

both shear modulus and damping ratio are dependent on the calculated strains,

an iterative procedure is required so that these properties are compatible with the

induced strain levels.
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When modelling moderate to large strain behaviour, a nonlinear model is required.

Common nonlinear models in engineering practice range from simple cyclic stress-

strain relations to advanced elasto-plastic models capable of estimating soil responses

under complex three dimensional loading conditions.

Simple nonlinear cyclic stress-strain relations are described by backbone cures, illus-

trated in Figures 3.2 and 3.3, and a set of rules that define the subsequent unloading

and reloading behaviour. Masing and extended Masing rules (Masing, 1926; Pyke,

1979; Vucetic, 1990) are widely adopted to characterise the unloading-reloading soil

response and are described as follows (Figure 3.5):
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Figure 3.5: Masing and extended Masing rules (after Stewart et al., 2008).

1. The shear modulus upon each loading reversal is equal to the initial tangent

modulus of the backbone curve.

2. The unloading or reloading curves have the same shape as that of the initial

loading curve, but scaled by a factor of two.

3. The unloading or reloading curves should follow the backbone curve if the

maximum past strain is exceeded when intersecting the backbone curve.
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4. If an unloading or loading curve intersects the previous unloading or loading

curve, the stress-strain relation follows the previous curve.

Although the use of simple backbone relations with Masing rules provides an appeal-

ing alternative to the equivalent-linear approximation of nonlinear soil behaviour, it

has the following drawbacks (Pyke, 1979; Pyke, 2004). Firstly, by matching the an-

alytical modulus degradation curve to that obtained from experimental cyclic shear

tests, the measured damping ratios (when applying Masing rules) are much higher

than the lab test results at moderate and large strains. Secondly, the experimental

hysteresis loops are not strictly symmetric under constant cyclic shear strains.

Advanced elasto-plastic constitutive models are able to capture complex soil re-

sponse under various loading conditions. Two widely used models in this class are

respectively based on multi-surface plasticity (e.g., Mroz, 1967; Iwan, 1967; Prévost,

1977) and bounding surface plasticity (e.g., Dafalias and Popov, 1975; Krieg, 1975).

These models appear frequently in research-based studies but are scarcely used in

engineering practice, due to the difficulty in measuring model parameters and ex-

pertise required in running nonlinear dynamic analyses (Pecker, 2008).

3.2.2 Site response analysis

When using a domain-type model in earthquake engineering analysis, it is impor-

tant to ensure that the input motions, boundary conditions and wave propagation

characteristics are appropriately captured.

3.2.2.1 Boundary conditions

In dynamic SSI problems where the size of a structure is very small compared to the

underlying soil medium, the fixed/roller boundaries (e.g., used in static problems)

should be placed at a sufficient distance from the structure to exclude the effects

of reflected waves on structural response. However, increasing the size of the soil

domain may cause an increase in the number of elements required for modelling,
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resulting in a higher computational cost.

Alternatively, special artificial boundaries can be used to prevent/reduce the wave

reflection. These boundaries are also called ‘quiet boundaries’ which either ab-

sorb wave energy (e.g., Lysmer and Kuhlemeyer, 1969; Lysmer and Waas, 1972)

or let incident waves ‘transmit’ through them (e.g., Smith, 1974; Lindman, 1975;

Zienkiewicz et al., 1983). Kausel (1988) demonstrated that these boundaries were

mathematically equivalent. Comparative studies on different types of boundaries

used in dynamic analysis showed that the viscous boundary utilising simple phys-

ical dashpots provided a good balance between effectiveness and efficiency (e.g.,

Roesset and Ettouney, 1977; Wolf, 1986).

Lysmer and Kuhlemeyer (1969) proposed that dashpots attached independently to

boundary in the normal and shear directions can be used to absorb incident waves.

These dashpots provide viscous normal and shear forces, denoted respectively by σ

and τ , given by:

σ = −ρVpvn τ = −ρVsvs (3.3)

where Vp and Vs are respectively dilatational and shear wave velocities, vn and vs

are respectively normal and tangential components of the velocity at the boundary.

This method proves almost perfect for cases where the angle of incidence of the body

waves relative to the viscous boundary is greater than thirty degrees while some

reflection occurs at lower angles. Moreover, it is easy to implement in engineering

practice for solving dynamic problems. However, in order to apply these boundaries

to nonlinear soils, the geo-static stress and strain states should be satisfied before a

dynamic analysis is performed.

In seismic analysis with site motions represented by vertically propagating plane

waves, regardless of the presence of a structure, the lateral boundaries at the sides

of the soil model should remain as the free-field condition. The free-field motion can

be enforced on some free-field elements that are connected to the main soil model at

its lateral boundaries by dashpots (which are operated as those of a quiet boundary)

to produce a non-reflecting boundary condition (Cundall et al., 1980).
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Another concern with the boundary condition is the application of seismic input.

For a shallow soil layer resting on a relatively rigid rock mass shown in Figure 2.4,

a time-varying motion recorded on the surface of the rock mass may be applied

to the base of the soil layer. However, for a compliant base simulation, the seismic

input and the corresponding boundary condition should be treated with care. There

are several cases where a compliant base is preferable to be adopted. One example

is a practical SSI problem involving a deep soil profile, which can be truncated

in modelling to reduce computational cost. Another common example may be a

simulation that requires a soil medium to be modelled as a half-space when validating

analytical solutions in an elasto-dynamic problem. In these cases, a truncation of

the soil medium is necessary while the region outside the modelled soil domain can

be replaced by quiet boundaries. When using viscous dashpots to develop a quiet

boundary at the base of the soil model, the seismic input should be applied as a stress

or force history to the surface or node of the elements that are directly connected

to the quiet boundary.

3.2.2.2 Seismic input motion

If an ‘uncorrected’ (raw) acceleration or velocity record is used as a time history for

seismic analysis, several issues could arise. One prominent issue is that integration of

the acceleration/velocity data over the recorded duration of motion may not be zero,

which consequently leads to unrealistic continuing velocity/residual displacement

after shaking. A baseline correction process (see Boore, 2001; Boore and Bommer,

2005) could be performed to correct the acceleration record in order that both final

velocity and displacement reduce to zero.

Sometimes the design earthquake ground motions are recorded at the surface of the

free field whereas the input motion is usually specified at the base of a domain-type

model. A process is required to determine the input motion so that it recovers to the

target ground motion. Such a process by which a base input motion is calculated

from the target ground motion can be performed through a deconvolution analysis.

One dimensional wave propagation problems usually adopt a linear/equivalent-linear
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deconvolution on the basis of the use of transfer functions. These transfer functions

are ratios of the response at certain depths of a soil profile to that at the free surface

and are usually frequency dependent. In order to calculate an input response history,

first the ground motion should be expanded into its Fourier series. Then each term

in the Fourier series is multiplied by the corresponding transfer function to obtain

the Fourier series of the input motion. The input time-varying motion is finally com-

puted through an inverse Fourier transform (Kramer, 1996). An equivalent-linear

approach to deconvolution can be realised using a widely used computer program

for seismic response analysis called SHAKE (Schnabel et al., 1972).

For numerical analysis of wave propagation, the size of an element should satisfy

the following condition so that numerical distortion of transmitting waves is avoided

(Kuhlemeyer and Lysmer, 1973):

∆l ≤ λ

10
∼ λ

8
(3.4)

where ∆l is the spatial element size and λ is the wavelength associated with the high-

est frequency component that contains appreciable energy. It is clear in Equation

(3.4) that frequency content of a ground motion controls the allowable maximum

size of an element of a domain-type model. Acceleration records containing higher

frequency components require a finer spatial mesh and consequently a more expen-

sive computation. Silva (1988) showed that up to 75% of the power (87% of the

amplitude) of a ground motion is due to vertically propagating shear waves at fre-

quencies less than 15 Hz. The rest of the energy is carried by scattered waves and

P-waves. In this sense, a 15Hz low-pass filter can be applied to the ground motion

to remove high frequency components. Alternatively, one may look at the power

spectral density of the motion and determine the frequency (up to which most of

the power is preserved) of the low-pass filter.

3.3 Spring-type models

For practicing engineers, it is desirable to have a model, which is simpler than

the domain-type model, that is still able to capture the most important features

34



Chapter 3 Seismic Soil Structure Interaction In Performance-Based Design

of a vibrating foundation-soil system so as to provide reliable information for de-

sign of the superstructure. Simplifying assumptions are made in order to develop

such models. For example, the foundation is usually assumed to be rigid so that

only the responses at a point representative of the foundation (e.g., the base cen-

tre of a surface foundation) are necessary to be calculated. The soil compliance

can be represented by coupled/uncoupled springs, whose stiffness is either con-

stant, or frequency/deformation-dependent. This section reviews several simplified

foundation-soil interaction models that are popular in engineering practice, with

their strengths and limitations summarised.

3.3.1 Foundation impedance function

A foundation impedance function characterises the dynamic force-displacement re-

lationship of a massless foundation (in a specific mode of vibration) resting on or

embedded in an elastic soil medium. It varies with foundation stiffness, geometry

and soil stratigraphy.

For a structure built on a surface foundation bonded to a homogeneous isotropic

elastic soil half-space illustrated in Figure 3.6(a), when subject to a vertically prop-

agating shear wave, the motions of the (massless) foundation may be determined

by using a simplified model (Figure 3.6(b)) which replaces the soil half-space with

a sway and rocking foundation impedance (coupling between the sway and rocking

motions for a surface foundation is usually negligible) and responds to the free-

field horizontal ground shaking. Mathematically, each of the impedance functions is

complex-valued with its real and imaginary parts modelled respectively by a spring

and a dashpot, arranged in parallel (Figure 3.6(c)):

kj(ω) = kj(ω) + iωcj(ω) (3.5)

where kj(ω) is a complex-valued impedance function that relates the generalised

foundation forces F (e.g., base shear and moment) to the corresponding displace-

ments u (e.g., translation and rotation) and depends on the circular frequency of

vibration ω; j=h, θ denote respectively the sway and rocking modes of vibration;
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kj(ω) is the stiffness of the spring; cj(ω) is the viscous damping coefficient of the

dashpot; and i is the imaginary unity satisfying i2 = −1.
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Figure 3.6: (a) vibration of a laterally excited structure supported by a surface

foundation on an elastic soil half-space; (b) the soil half-space is replaced by a

sway and a rocking impedance function; (c) each of the impedance functions can be

represented physically by a spring and dashpot placed in parallel; (d) the steady-

state response of a foundation impedance exhibits a hysteresis loop.

The steady-state harmonic force-displacement response of the configuration shown

in Figure 3.6(c) is depicted in Figure 3.6(d), which is very similar to the stress-

strain loop illustrated in Figure 3.2(b). The energy dissipated during one force-

displacement cycle ∆E equals the area enclosed by the loop:

∆E = πc(ω)ωu2(ω) (3.6)

where u(ω) is the displacement amplitude associated with the frequency ω. The

maximum elastic energy stored in one cycle E is given by:

E =
1

2
k(ω)u2(ω) (3.7)

The damping ratio ξ is obtained by substituting Equations (3.6) and (3.7) into

Equation (3.1):

ξ =
ωc(ω)

2k(ω)
(3.8)
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This foundation damping ratio, valid when k(ω) > 0, includes contributions from

both wave radiation and soil nonlinearity.

Since a zero-frequency stiffness corresponds to a static foundation stiffness, a fre-

quency dependent term may be extracted from kj(ω) and written explicitly as a

dynamic modifier (stiffness coefficient) αj to the static stiffness Kj:

kj(ω) = αj(ω, ν, ξg)Kj (3.9)

where ν is the Poisson’s ratio of the homogeneous soil medium; ξg is the hysteretic

soil damping ratio given by Equation (3.1); for a circular surface foundation, a

dimensionless frequency ω and the static foundation stiffness Kj are expressed as

(Poulos and Davis, 1974):

ω =
ωr

Vs

(3.10)

Kh =
8Gr

2− ν
(3.11)

Kθ =
8Gr3

3(1− ν)
(3.12)

where r is the radius of the foundation, G is the shear modulus of the homogeneous

soil medium.

Impedance functions for rigid circular foundations resting on a homogeneous and

isotropic elastic half-space were derived by Luco and Westmann (1971) and Veletsos

and Wei (1971). The effects of foundation shape, flexibility, embedment and soil non-

homogeneity with depth have been accounted for through experimental or numerical

techniques (e.g, Kausel et al., 1974; Bielak, 1974; Elsabee and Morray, 1977; Iguchi

and Luco, 1982; Dobry and Gazetas, 1986; Apsel and Luco, 1987; Liou and Huang,

1994).

Figure 3.7 presents the frequency-dependent sway and rocking foundation impedance

functions obtained using the closed form expressions proposed by Veletsos and Verbič

(1973). These expressions were derived based on the assumption that only a por-

tion of the half-space represented by a semi-infinite truncated cone (see details in

Section 3.3.2) is effective in transmitting the energy imparted to the circular surface
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foundation (Meek and Veletsos, 1973). Modifications to the cone expressions were

empirically made to match the rigorous half-space solutions obtained by Veletsos

and Wei (1971) (Verbič and Veletsos, 1972). Graphical solutions of the impedance

functions illustrated in Figure 3.7 show the variation of stiffness and damping of a

disk bonded to an undrained soil half-space (ν=0.5), with and without soil hysteretic

damping (ξg=0, 0.05), with frequency of vibration. It is clear in Figure 3.7 that in-

clusion of soil material damping reduces the stiffness coefficient while increasing the

foundation damping. For the rocking motion, the stiffness coefficient αθ decreases

with increasing frequency of vibration, and αθ may have negative values.
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Figure 3.7: Variation of stiffness coefficient and damping of circular surface founda-

tion with vibration of frequency (results are based on Veletsos and Verbič (1973)).

Although impedance functions are able to characterise the frequency response of

the foundation force-displacement relationships, their application in seismic soil-

structure interaction analyses require the performance of Fourier/Inverse Fourier

transform. Nonlinear behaviour of the structure is not permitted in these analyses.

3.3.2 Discrete-element model based on cone theory

Structural engineers prefer to use simplified lumped-element models assembled by

constant masses, springs and dashpots representing the effects of inertia, stiff-

ness and damping, respectively. A prominent advantage of such a model over the

impedance functions is the frequency-independence of each model element, which
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enables the model to be analysed in the time domain where structural nonlinearity

can be accounted for.

This section presents a simplified lumped-element model based on the cone theory,

which was first introduced by Ehlers (1942) and then extended by Meek and Veletsos

(1973), Meek and Wolf (1992a), Meek and Wolf (1992b), and Meek and Wolf (1994a).

The basic idea of this theory is to replace the soil medium with a truncated cone

for each foundation motion, as depicted in Figure 3.8 where the comma denotes

the ordinary derivative. A ‘plane sections remain plane’ postulation is adopted so

that the complex three-dimensional elasticity is substituted by a simple approximate

one-dimensional description.
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Figure 3.8: Truncated semi-infinite cones and equilibrium of infinitesimal element for

(a) horizontal motion with shear distortion and (b) rocking motion with rotational

axial distortion (after Wolf and Deeks, 2004).
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By equating the static stiffness of the cone to that of the foundation on a half-

space, the aspect ratio z0/r0 can be determined. The dynamic force-displacement

relationships of the foundation are developed by solving the equations of motion

of an infinitesimal element within the cones. The portion of the half-space outside

the cone is disregarded. Mathematical details of the derivations of the dynamic

foundation force-displacement relationships are presented in Wolf (1994).

With reference to the notations in Figure 3.8, cone solutions of the sway and rocking

foundation force-displacement relationships are formulated in the time domain and

are shown respectively by Equations (3.13) and (3.14).

H0(t) = Khu0(t) + Chu̇0(t) (3.13)

M0 = Kθθ0(t) + Cθθ̇0(t) + ∆Mθθ̈0(t)−
t∫

0

h(t− τ)Cθθ̇0(τ)dτ (3.14)

where Kh and Kθ are given by Equations (3.11) and (3.12), Ch and Cθ are viscous

damping coefficients calculated by:

Ch = ρVsA0 Cθ = ρV I0 (3.15)

where ρ is the soil mass density; A0 and I0 are area and centroidal moment of

inertia of the circular foundation; Vs is the shear wave velocity, whereas V equals

the dilatational wave velocity Vp for ν ≤ 1/3, and V0=2Vs for 1/3 < ν ≤ 1/2. In

Equation (3.14),

∆Mθ =


0, if ν ≤ 1/3.

0.3π

(
ν − 1

3

)
ρr5

0, if 1/3 < ν ≤ 1/2.
(3.16)

and the last term with a negative sign is a convolution integral performed with the

rotational velocity θ̇0 where h(t) is a unit-impulse response function defined by:

h(t) =


0, if t < 0.

V

z0

exp(−V0

z0

t), if t ≥ 0.
(3.17)

∆Mθ is associated with trapped soil beneath the foundation, which for nearly incom-

pressible soil (ν →1/2) moves as a rigid body in phase with the foundation (Wolf,
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1994); the convolution integral is used to tune the frequency-dependent response of

the massless foundation-soil system. The low-frequency response is governed by the

static stiffness Kθ whereas the high-frequency response is dominated by the dashpot

coefficient Cθ.

Soil hysteretic damping can be accounted for by applying the correspondence prin-

ciple (Bland, 1960) which requires each of the elastic constants (stiffness modulus)

to be multiplied by a complex factor 1 + 2iξg. Meek and Wolf (1994b) presents a

discrete-element model, sketched in Figure 3.9, which is not only capable of incor-

porating soil material damping but also able to accommodate rigorously the convo-

lution integral embedded in the moment-rotation relationship. The mass moment

of inertia Mϕ added to the degree of freedom ϕ is calculated by:

Mϕ =
9

128
(1− ν)π2ρr5

(
Vp

Vs

)2

(3.18)
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Figure 3.9: Discrete-element sway-rocking model based on the cone theory (after

Wolf, 1994).

Application of the corresponding principle to the mathematical dynamic foundation

force-displacement relationships is physically equivalent to augmenting each of the

original spring and dashpot respectively by an additional spring and mass, connected

in parallel, as shown in Figure 3.9. Utilising a Voigt theory of viscoelasticity, the soil

material damping ratio ξg exhibits its exact value only at the frequency of vibration

ω=ω0. For practical application of the model, it is usually assumed that ω0 equals

the fundamental circular frequency of the vibrating system of interest.

The strength of the presented discrete-element model is its rigorous treatment of
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the cone theory that approximates the foundation vibration analysis for a half-

space problem. The model components with constant coefficients have clear physical

meanings and are best suited for time domain analysis where nonlinear structural be-

haviour is permitted. Although the cone theory is based on a number of simplifying

assumptions, its accuracy has been proved against rigorous half-space solutions to

be sufficient in practical applications (Wolf, 1994). The limitations of the discrete-

element cone model are as follows. Firstly, the model is not able to capture the

plastic (irrecoverable) deformation in the soil medium. As a result, the residual

foundation displacements may not be reflected. Secondly, the assumption that the

foundation is perfectly bonded to the ground surface may not be appropriate for

light slender structures built on sandy soil with large load eccentricity during strong

shaking, in which case temporary separation of the foundation and the soil could

occur.

3.3.3 Beam on Winkler foundation model

Although SSI procedures in most current seismic standards and provisions (see Sec-

tion 2.4) are based on linear (equivalent-linear) soil behaviour while attributing all

nonlinearities to plastic hinging in structural components, these guidelines also take

into account possible nonlinearity arising from foundation-soil interaction in design

considerations for foundations. A Winkler-based model is often used in practice for

seismic design of foundations.

In general, apart from plastic hinges in structural components, two main types

of nonlinearity are common in strong shaking events. As is illustrated in Figure

3.10(a), if no tensile stress is allowed to develop in the soil medium, severe rocking

motion may lead to uplift at one side of the foundation, which in the meantime

increases the bearing pressure beneath the other side of the foundation. The up-

lifting phenomenon, associated with a geometric nonlinearity, reduces the contact

area between the foundation and the underlying soil, resulting in progressive loss of

stiffness of the system. The increase in foundation bearing pressure may give rise

to yielding of soil (material nonlinearity). Another possible nonlinear mechanism is
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the sliding of the foundation over the ground surface caused when frictional capacity

of the foundation-soil interface is exceeded.

In Figure 3.10(b), the whole system is represented by a Winkler model containing

a number of closely placed vertical springs that are used to account for the coupled

vertical and rocking modes of vibration. A horizontal spring is used to model the

swaying response of the foundation. In order to capture the partial separation

between the foundation and soil, each of the spring consists of a gap element as

depicted in Figure 3.10(c). Energy dissipation due to radiation damping and soil

plasticity can be described respectively by a dashpot and an elasto-plastic element.

Soil plasticity

Uplift Sliding

(a) (b) (c)

(d)

n=0.5, G(z)=kz

Gap

kv

z

G(z)=kz

G(z)

q

w

Figure 3.10: (a) Soil-structure interaction system with different types of nonlinear-

ities. (b) Foundation stiffness and strength are characterised by Winkler springs.

(c) Each of the springs consists of a gap element to capture loss of contact between

the foundation and soil. (d) Uniform bearing pressure beneath a vertically loaded

foundation resting on an incompressible soil medium with shear modulus (which

equals zero at the ground surface) increasing linearly with depth.

Calibration of the spring stiffness kV is usually done by matching the global vertical
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foundation stiffness for the actual system to that of the Winkler model. A variety

of foundation pressure distributions can be assumed, and the simplest one is the

uniform distribution, which is valid for a foundation resting on an elastic incom-

pressible half-space with Poisson’s ratio ν = 0.5 and shear modulus that is zero at

ground level and increases linearly with depth at a gradient κ, as illustrated in Fig-

ure 3.10(d) (Gibson, 1967). The vertical spring stiffness kV, also called a ‘coefficient

of subgrade reaction’ is defined as the ratio of the pressure q to the corresponding

settelment w:

kV =
q

w
= 2κ (3.19)

For the case of a homogeneous half-space however, the assumption of a uniform

stress distribution due to a settlement of w does not comply with the elastic solution.

Figure 3.11(a) shows a smooth strip foundation resting on an elastic uniform half-

space. The contact pressure distributions due to a pure vertical load and a rocking

moment are illustrated respectively in Figures 3.11(b) and (c) (Borowicka, 1939;

Muskhelishvili, 1966). The pressure is much higher at both ends of the foundation,

tending to infinity at
∣∣x/b∣∣ = 1. If a constant kV is used to match the global vertical

foundation stiffness KV, the global rocking stiffness Kθ will be underestimated.
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Figure 3.11: (a) Smooth strip foundation resting on an elastic homogeneous half-

space. (b) Contact pressure distribution due to a vertical load V (per unit length).

(c) Contact pressure distribution due to a moment M (per unit length).

In order to tune the Winkler model to approximately match both the global vertical

and rocking stiffnesses from elastic solutions (Gazetas, 1991), ASCE (2013) suggests
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that a footing (length× width=L × B) be divided into two regions with stiffer

vertical springs placed in the end regions (Lend=B/6), as illustrated in Figure 3.12.

The stiffness per unit length in these end zones is based on the vertical stiffness

of a B × B/6 isolated footing. The stiffness per unit length in the middle zone is

equivalent to that of an infinitely long strip footing.

138 STANDARD 41-13

motions, with kinematic effects accounted for, shall be applied 
to the ends of the hysteretic soil springs. Damping elements with 
constant radiation damping coefficients calculated based on 
c k mie= ( )β 2    , where kie is the initial elastic stiffness of the 
foundation spring, may be placed in parallel with the linear 
component of the foundation spring but shall not be in parallel 
with the nonlinear components of the foundation springs. It may 
be permitted to use damping coefficients or Rayleigh damping 
based upon the tangent stiffness in the numerical analysis, but it 
is preferable to explicitly match hysteretic damping through 
hysteresis of the soil springs. 

Where the explicit NDP modeling of the foundation occurs 
and the modeling accurately captures characteristics of settling, 
soil plasticity, and gapping, the acceptability of soil displace-
ments shall be based on the ability of the structure to accom-
modate the displacements calculated by the NDP within the 
acceptance criteria for the selected performance objective. If 
these characteristics are adequately captured by the NDP, the 
acceptability of soil displacements shall be based on the founda-
tion rotation limits in Table 8-4.

C8.4.2.4.4 Modeling Parameters and Acceptance Criteria for 
Nonlinear Dynamic Procedures The nonlinear spring model 
should be checked to ensure that the moment capacity of the 
footing matches Eq. (8-10), that the initial stiffness of the system 
reasonably matches the stiffness expected from Fig. 8-2, and that 
settlements associated with rocking are adequately represented. 

Damping elements placed in parallel with yielding elements 
can unrealistically restrain yielding of the yielding elements and 

should be avoided. Care must be taken not to double count the 
damping caused by radiation damping. Damping issues are dis-
cussed in PEER/ATC 72-1 (2010). 

8.4.2.5 Shallow Foundations Not Rigid Relative to the Soil 
(Method 3) 

8.4.2.5.1 Stiffness For shallow bearing foundations with struc-
tural footings that are flexible relative to the supporting soil, the 
relative stiffness and strength of foundations and supporting soil 
shall be evaluated using theoretical solutions for beams and 
plates on elastic supports, approved by the authority having 
jurisdiction. The foundation stiffness shall be calculated by a 
decoupled Winkler model using a unit subgrade spring coeffi -
cient. For flexible footing conditions, the unit subgrade spring 
coeffi cient, ksv, shall be calculated by Eq. (8-11).

k
G

B
sv

f

=
−( )

1 3

1

.

ν   (8-11)

   where G = shear modulus; 
Bf = width of footing; and 
ν = Poisson ’ s ratio.

8.4.2.5.2 Expected Strength of Soil Bearing and Overturning 
Capacity The vertical expected capacity of shallow bearing 
foundations shall be determined using the procedures of 
Section 8.4.1. 

In the absence of moment loading, the expected vertical 
load capacity, Qc, of a rectangular footing shall be calculated by 
Eq.  (8-12) .

FIG. 8-5. Vertical Stiffness Modeling for Shallow Bearing Footings 
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Figure 3.12: Bed of Winkler-spring model for shallow strip footings in ASCE (2013).

Alternative methods to approximate the analytical global vertical and rocking foun-

dation stiffnesses have been proposed by Harden et al. (2005), Houlsby et al. (2005),

Pender et al. (2006), and Apostolou (2011).

On the other hand, for the same strip foundation, shown in Figure 3.11(a), lying
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on a homogeneous undrained clay half-space, a uniform distribution of the spring

capacity, obtained by matching the global foundation bearing capacity due to a pure

vertical load Vu, is sufficient to capture the foundation failure due to a combined

vertical load and rocking moment. The failure envelope for the coupled vertical-

rocking motions is described by:

Mc

Vub
=
Vc

Vu

−
(
Vc

Vu

)2

(3.20)

where Mc and Vc are respectively moment and vertical load when foundation bearing

capacity is fully mobilised. Equation (3.20) was analytically derived by Meyerhof

(1953), Allotey and El Naggar (2003), and Gajan et al. (2005), and confirmed by

Gourvenec (2007b) and Gazetas et al. (2013) through finite element modelling.

A limitation of the Winkler model shown in Figure 3.10(b) is the lack of coupling

between the horizontal and vertical/rocking motions. For example, the capacity of

the horizontal spring is usually set equal to the shear (frictional) capacity Hu of

the foundation when it is in full contact with the underlying soil. However, the

mobilisable ‘shear strength’ of the foundation due to combined vertical-horizontal-

moment loading is generally lower than Hu. Moreover, the gradual loss of contact

between the foundation and soil due to uplift (geometric nonlinearity) decreases

the shear capacity. To overcome this limitation, Houlsby et al. (2005) employed a

generalised Winkler model where normal and shear components of traction on the

base of the foundation were treated within a plasticity-based framework, as shown

in Figure 3.13.

V

M
H

t t t t

s s s s

s

t

Uplift

Frictional sliding

Yield surface

(a) (b)

Figure 3.13: (a) Generalised Winkler model with pointwise behaviour characterised

by plasticity-based σ-τ interaction diagram. (b) Yield surfaces and flow for each

point at the base of the foundation. (Houlsby et al., 2005).
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Although the Houlsby et al. (2005) model is Winkler-based, strictly speaking, it falls

into the category of a macro-element model rather than a conventional spring-type

model. The following section provides a brief review of the macro-element models.

3.4 Macro-element model

The concept of a macro-element representation of the foundation-soil interaction

arises from the similarity between the macroscopic foundation force-displacement

relationships and the stress-strain relationships of a soil element. Within a frame-

work of plasticity, the yield surface of a soil element is replaced by a failure envelope

in the generalised V -H-M space. An example of such an envelope is shown in Figure

3.14 for a circular foundation lying on sand under combined planar loading (Houlsby

and Cassidy, 2002).
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Figure 3.14: Shape of the failure envelope for a circular foundation of a radius R

resting on sand. (Houlsby and Cassidy, 2002).

In the context of earthquake engineering applications, Paolucci (1997) was the first

to introduce a macro-element model for simulating the seismic behaviour of a strip

foundation on sand, utilising a V -H-M failure envelope proposed by Nova and Mon-

trasio (1991). This model was based on an elastic perfectly plastic foundation force-

displacement relationship where the foundation-soil system behaved quasi-elastically

within the failure envelope, while infinite plastic flow occurred whenever the force

state of the foundation resided on the failure envelope. The plastic foundation dis-

placements are calculated from a non-associated flow rule whereas uplift behaviour
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was disregarded in Paolucci (1997).

Cremer et al. (2001) proposed a macro element for nonlinear dynamic soil struc-

ture interaction analysis of a strip foundation resting on clay. Their model consists

of two sub-models that simulate both soil plasticity and foundation uplift, previ-

ously shown in Figure 3.10(a). These two sub-models were built separately but

coupled. The plasticity model reproduced continuous yielding of the foundation by

defining a loading surface (yield surface) that evolves in the V -H-M towards the

failure envelope under a monotonic loading. Compared with the Paolucci (1997)

model which exhibits a bi-linear hysteretic response under strong cyclic loading, the

Cremer et al. (2001) model is able to capture the gradual variation of foundation

(tangent) stiffness during the loading/unloading cycles, which could arise from ge-

ometrical expansion/contraction of the plastic zone, even if a soil element follows

elastic perfectly plastic behaviour. The Houlsby et al. (2005) model shown in Figure

3.13 is also able to model the gradual change of foundation stiffness due to yielding.

Actually, integration of the pointwise response along the foundation gives rise to a

multiple-surface model in the V -H-M space. Gajan and Kutter (2009) developed a

Contact Interface Model by keeping track of the geometry of the soil surface beneath

the footing as well as the kinematics of the footing-soil system including moving con-

tact areas and gaps. The variation of foundation stiffness was determined based on

the bounding surface plasticity theory. Macro-element models combine the features

of both domain and spring-type models (i.e., coupling and efficiency). However, this

macro element for practical engineers remains a ‘black box’ where the multi-yield

(and sometimes multi-mechanism) complexity makes it difficult to be implemented

into computer codes.

3.5 Summary

Common models for simulating foundation vibration were reviewed in this chapter.

The domain-type models are able to handle complex geometry and loading in two

and three-dimensional engineering problems. A variety of material constitutive re-
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lations are available. The boundary conditions and dynamic input motions should

be treated with care. Spring-type models are efficient practical tools assembled by

independent elements with clear physical meanings. The plasticity-based macro-

element models combine the features of domain-type and spring-type models. Users

can choose the models of interest according to their strengths and limitations.
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Chapter 4

Numerical and analytical

modelling of dynamic SSI

4.1 Introduction

This chapter focuses on obtaining the dynamic response of soil structure interaction

systems. Several methods are presented to solve such a problem for an input seis-

mic motion. Multi-storey buildings are represented by Multi-Degree-Of-Freedom

(MDOF) shear-beam models. Both impedance functions (see Section 3.3.1) and

cone models (see Section 3.3.2) are employed to simulate the dynamic foundation-

soil interaction. Fourier and inverse Fourier transforms are performed when using

the frequency-dependent impedance functions while the equations of motion for cone

models are solved using numerical integration techniques. For the simplest case, the

MDOF shear-beam building reduces to a SDOF oscillator, as commonly adopted to

derive seismic response spectra. In this case, a fixed-base oscillator is introduced

to approximate the response of the flexible-base SDOF structure. The methods

described in this chapter are the basis for analysis in the following two chapters.
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4.2 SSI models and equations of motion

In a preliminary seismic design stage, building structures are often simplified into

equivalent MDOF models. Shear-building models are one such simplified model that

have been widely used to study the seismic response of multi-storey buildings. This

type of model, despite some drawbacks, is adopted herein due to its capability of

capturing both nonlinear behaviour and higher mode effects without compromising

the computational effort (e.g., Diaz et al., 1994; Takewaki, 1998). All parameters

required to define a shear-building model corresponding to a full-frame model can be

determined by performing a single pushover analysis (Hajirasouliha and Doostan,

2010). A typical shear-building model is illustrated in Figure 4.1 where each floor

is idealised as a lumped mass connected by springs that only experience shear de-

formations when subjected to lateral forces.
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Figure 4.1: Typical shear-building model fixed in its base.

In shear-building models, the lateral strength (and stiffness) of each floor is assumed

proportional to the corresponding storey shear force Vi which can be obtained by

enforcing force equilibrium with an applied equivalent lateral force pattern. The

lateral seismic force distributions in most building codes (e.g., IBC, 2012) follow a

pattern which is similar to the first-mode deflected shape of lumped MDOF elastic
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systems. In general, the design lateral force Fi at storey i can be expressed as:

Fi =
wih

k
i

n∑
j=1

wjh
k
j

V (4.1)

where V (= V1 in Figure 4.1) is the total design base shear; wi and hi are the effective

weight and height of the floor at level i from the ground, respectively; n is the number

of storeys; and the exponent k, as a function of the building’s fundamental period

(Ts), is mainly used to take into account higher mode effects (Hajirasouliha and

Pilakoutas, 2012). To compare the effect of lateral force distribution on the seismic

response of MDOF structures, six different patterns are considered in this study, as

depicted in Figure 4.2. Table 4.1 presents the k values in accordance with each force

pattern.
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Figure 4.2: Seismic lateral force and storey shear distributions adopted in this study

(curves plotted for Ts=1.0sec).

According to ASCE (2010), the fundamental period of an MDOF structure in its

fixed-base condition can be approximated by using the following formula:

Ts = Cth
x
tot (4.2)

where htot is the total height of the MDOF structure, while the coefficients Ct and

x are related to the type of the structural system, as presented in Table 4.2.

A complete soil-structure model is illustrated in Figure 4.3(a) where a multi-storey

shear frame is built on a rigid foundation that rests on a soil half-space, subjected to
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the horizontal component of a seismic motion. It is assumed the horizontal motion is

caused by a coherent shear wave that propagates vertically. In this case, kinematic

interaction would not occur and the free-field ground motion, denoted by ug, can di-

rectly be applied to the foundation (see Section 2.2.1). The complete SSI model can

be represented by simplified models through transforming the shear frame into an

equivalent MDOF structure and replacing the soil half-space by either the impedance

functions (Figure 4.3(b)) described in Section 3.3.1 or the discrete-element model

(Figure 4.3(c)) based on the cone theory (see Section 3.3.2). To simplify the analysis,

it is assumed that the building and foundation are axisymmetric. The effective radii

r of each floor and foundation are determined by Equation (2.9) and their moments

of inertia are calculated by:

Ji =
mir

2

4
(4.3)

Table 4.1: Lateral load patterns determined by the exponent k

Lateral load pattern Exponent k

Concentric N/A (A single load applied at roof)

Rectangular 0

Trapezoidal 0.5+0.2Ts

Eurocode 8 1

IBC-2012

1, if Ts <0.5sec

2, if Ts > 2.5sec

1 + 0.5(Ts − 0.5), other Ts

Parabolic 1+0.8Ts

Table 4.2: Values of Ct and x for different structural systems according to ASCE

(2010)

Structural Type Ct x

1 Steel moment-resisting frames 0.0724 0.8

2 Concrete moment-resisting frames 0.0466 0.9

3 Steel braced frames 0.0731 0.75

4 All other structural systems 0.0488 0.75
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The following presents the equations of motion for the soil structure interaction

system shown in Figure 4.3. Notations for the parameters used in the equations

are consistent with those illustrated in Figures 3.9 and 4.3, unless stated otherwise.

The subscripts ‘imp’ and ‘con’ are used to denote quantities associated with the soil

impedance model (Figure 4.3(b)) and the cone model (Figure 4.3(c)) respectively.

The governing equation can be written in the following matrix form:

[M ]{ü}+ [C]{u̇}+ [K]{u} = −[M ]{R}üg (4.4)

mi Ji

Vs, n, r

mn Jn

m2 J2

m1 J1

mf Jf

q

uiqhi

mf, Jf

kh kq

q

mi Ji

ug uh

uiqhi

q

hi

ug ug ug

(a) (b) (c)

Figure 4.3: Soil-structure interaction models: (a) multi-storey shear frame resting

on a soil half-space, (b) equivalent MDOF structure supported by soil impedance

functions, (c) soil half-space replaced by the cone-based discrete-element model.

The mass matrix [M ] in general can be expressed as:

[M ] =

 Ms Msf

MT
sf Mf

 (4.5)

where

[Ms] =


mn

. . .

m2

Sym. m1


(4.6)
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[Msf,con] =

[
Msf,imp 0

]
(4.7)

in which

[Msf,imp] =


mn mnhn
...

...

m2 m2h2

m1 m1h1


(4.8)

[Mf,con] =

 Mf,imp 0

0 0

+


ξgch

ω0

0 0

∆Mθ +
ξgcθ
ω0

−ξgcθ
ω0

Sym. Mϕ +
ξgcθ
ω0

 (4.9)

in which

[Mf,imp] =


mf +

n∑
i=1

mi

n∑
i=1

mihi

Sym. Jf +
n∑
i=1

Ji +
n∑
i=1

mih
2
i

 (4.10)

The stiffness matrix [K] is given by:

[K] =

 Ks 0

0 Kf

 (4.11)

where

[Ks] =


kn −kn

. . . . . .

k2 + k3 −k2

Sym. k1 + k2


(4.12)

[Kf,con] =

 Kf,imp 0

0 0

 (4.13)

in which

[Kf,imp] =

 kh 0

Sym. kθ

 (4.14)

where kh and kθ are frequency-dependent ‘stiffnesses’ given by Equation (3.5) for the

impedance model; while for the cone model, they are equal to the static foundation
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stiffnesses according to Equations (3.11) and (3.12). The damping coefficient matrix

[C] is calculated according to:

[C] =

 Cs 0

0 Cf

 (4.15)

where the natural damping in the building in its fixed-base is specified by using the

Rayleigh damping formulation:

[Cs] = α[Ms] + β[Ks] (4.16)

where the values of α and β are determined in order that a damping ratio of 5% is

assigned to the first mode (of the rigid-base vibrating building) and to the mode at

which the cumulative mass participation exceeds 95%.

[Cf,con] =

 Cf,imp 0

0 0

+


2ξgkh

ω0

0 0

2ξgkθ
ω0

−cθ

Sym. cθ

 (4.17)

in which

[Cf,imp] =

 ch 0

Sym. cθ

 (4.18)

Similar to kh and kθ, ch and cθ are frequency-dependent for the impedance model;

while for the cone model, they are equal to the high-frequency damping coefficients

according to Equation (3.15).

The displacement vectors u and influence coefficient vectors R are defined as:

{ucon} = [un, · · · , u2, u1, uh, θ, ϕ]T {Rcon} = [0, · · · , 0, 0, 0, 1, 0, 0]T (4.19)

{uimp} = [un, · · · , u2, u1, uh, θ]
T {Rimp} = [0, · · · , 0, 0, 0, 1, 0]T (4.20)

where u1 ∼ un are structural distortions (excluding rigid-body movements of the

foundation) of the n-DOF building illustrated in Figure 4.3; uh, θ are foundation

sway and rocking displacements, corresponding to u0, θ0 respectively in Figure 3.9;

ϕ is the DOF of the moment of inertia Mϕ which is also shown in Figure 3.9.
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4.3 Influencing parameters

Past studies showed that a dynamic SSI problem could be defined by using the fol-

lowing dimensionless parameters (e.g., Veletsos and Nair, 1975; Wolf, 1994; Ghannad

and Jahankhah, 2007; Ganjavi and Hao, 2014):

1. Structure-to-soil stiffness ratio a0:

a0 =
ωsH

Vs

(4.21)

where ωs is the lowest Eigenfrequency (corresponding to the fundamental pe-

riod Ts=2π/ωs) of the superstructure in its fixed-base condition and H is the

corresponding height given by:

H =

n∑
i=1

miφi1hi

n∑
i=1

miφi1

(4.22)

in which φi1 is the amplitude at the ith storey in the fundamental mode of

vibration of the superstructure fixed at its base (see Figure 4.1). For practical

purposes, the first-mode amplitude profile for common buildings is usually

assumed to be an inverted triangle, thus H=0.7htot can be adopted.

2. Slenderness ratio of the superstructure s calculated as the ratio of structural

height H to the radius of the foundation r:

s =
H

r
(4.23)

3. Structure-to-soil mass ratio m:

m =

n∑
i=1

mi

ρhtotr2
(4.24)

where ρ is the mass density of the soil.

4. Structure-to-foundation mass ratio mf=mf/
n∑
i=1

mi.

5. Poisson’s ratio of the soil ν.
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6. Damping ratio in the structure without damage ξs, and in the soil ξg.

7. Maximum inter-storey ductility ratio µ defined for any storey i in the Figure

4.3 as:

µi =
∆ui,max

∆ui,y
(4.25)

where ∆ui,max is the maximum inter-storey distortion (i.e., (ui − ui−1)max)

whereas ∆ui,y is the inter-storey distortion at the onset of yielding in the ith

storey.

The practical range of the a0 values can be determined by Equations (4.2) and (4.21)

for various soil sites that are classified into different groups according to the average

shear wave velocity of the top 30 meters of the sites Vs,30 (See Table 4.3).

Table 4.3: Site soil classifications according to IBC (2012)

Site class Soil profile name Vs,30(m/s) ν

A Hard rock >1500 N/A

B Rock 760-1500 N/A

C Very dense soil/soft rock 360-760 0.33

D Stiff soil 180-360 0.40

E Soft soil <180 0.50

Figure 4.4 illustrates the practical range of a0 for various types of multi-storey

buildings located on different site classes according to IBC (2012). To cover a wide

range of SSI conditions, the abscissa in Figure 4.4 starts at 90 m/s representing the

average value of site class E, and ends at 1500 m/s which represents a fixed-base

condition for common buildings located on site class A.

It is seen from Figure 4.4 that, for a given shear wave velocity, a greater a0 value

is always expected for tall buildings. While the maximum value of a0 for frame

structures is about 2, it is shown that a0 can increase to up to 3 for other structural

systems.

ATC (2005) suggests that for conventional building structures, m ranges approxi-
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Steel moment-resisting frames

Concrete moment-resisting frames

Steel buckling-restrained brace / 
eccentrically braced frames

All other structural systems

20 Storey
5 Storey

Site Class E Site Class D Site Class C Site Class B

Vs,30 (m/s)

a
0

Figure 4.4: Practical range of a0 for various types of structures located on different

soil sites according to IBC (2012).

mately from 0.3∼0.6. In this study, representative values of m=0.5 and mf=0.1 are

used. The values of soil Poisson’s ratio according to different soil conditions are also

presented in Table 4.3. The damping ratios for modelling buildings and soil are both

assumed to be 5%. The stated values are consistent with Ghannad and Jahankhah

(2007) and Ganjavi and Hao (2014).

4.4 Frequency response analysis

Soil-structure interaction analysis is performed in the frequency domain in this sec-

tion. For the simplest case, a SDOF structure supported by foundation springs

is first considered, as shown in Figure 4.5(a). It is reasonable to assume that the

harmonic response of the SSI system is qualitatively similar to that of a fixed-

base oscillator. Furthermore, it may be possible to use an Equivalent Fixed-base

SDOF (EFSDOF) oscillator (Figure 4.5(b)) to quantitatively capture the harmonic

response of the SSI system, especially its dominant mode of vibration.

Rather than formulating the equations of motion (EOM) of the SSI system with

respect to the structural distortion, as done in Equations (4.19) and (4.20), it is

more convenient to write the equations with respect to the displacement of the mass

relative to the ground, i.e., ussi shown in Figure 4.5. In this case, there is a one-to-one
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uh usqhug

qh

m, J

mf, Jf

ks

kh kq

ussi

ug

uSDOF

(a) (b)

kSDOF

m

Figure 4.5: (a) SDOF structure supported on a compliant base. (b) Equivalent

Fixed-base SDOF (EFSDOF) oscillator.

correspondence between ussi and uSDOF. The equivalent natural circular frequency

ωssi and effective damping ratio ξssi of the SSI system, which respectively equal to

those (ωSDOF and ξSDOF) of the EFSDOF can be determined through principles of

structural dynamics as follows. The resonant response of the SDOF oscillator shown

in Figure 4.5(b) can be characterised by means of a ‘deformation response factor’

Rd given by (Chopra, 2012):

Rd =
USDOF,r

Ustatic

=
USDOF,r

mÜg

kSDOF

=
ω2

SDOFUSDOF,r

Üg

=
1

2ξSDOF

√
1− ξ2

SDOF

(4.26)

where Ustatic is the maximum static deformation of the oscillator, under a horizontal

force mÜg, with Üg representing the amplitude of the harmonic ground acceleration;

USDOF,r is the deformation amplitude of the oscillator in its steady-state vibration

at resonance. The natural circular frequency ωSDOF of the oscillator is related to the

resonant frequency of vibration ωr by (Chopra, 2012):

ωSDOF =
ωr√

1− 2ξ2
SDOF

(4.27)

ωSDOF and ξSDOF are solved by Equations (4.26) and (4.27). According to the dis-

cussion stated above, the EOM for the impedance model and the cone model are

60



Chapter 4 Seismic Soil Structure Interaction In Performance-Based Design

then respectively given, with respect to ussi, by:
m 0 0

mf 0

Sym. J + Jf



üssi

üh

θ̈

+


cs −cs −csh

ch + cs csh

Sym. csh
2 + cθ



u̇ssi

u̇h

θ̇

+


ks −ks −ksh

kh + ks ksh

Sym. ksh
2 + kθ



ussi

uh

θ

 = −


m

mf

0

 üg

(4.28)

and 

m 0 0 0

mf +
ξgch

ω0

0 0

J + Jf + ∆Mθ +
ξgcθ
ω0

−ξgcθ
ω0

Sym. Mϕ +
ξgcθ
ω0





üssi

üh

θ̈

ϕ̈


+



cs −cs −csh 0

ch + cs +
2ξgkh

ω0

csh 0

csh
2 + cθ +

2ξgkθ
ω0

−cθ

Sym. −cθ cθ





u̇ssi

u̇h

θ̇

ϕ̇


+


ks −ks −ksh 0

kh + ks ksh 0

ksh
2 + kθ 0

Sym. 0





ussi

uh

θ

ϕ


= −



m

mf +
ξgch

ω0

0

0


üg

(4.29)

where cs = 2ξs

√
mks is the damping coefficient of the superstructure with ξs denoting

its corresponding damping ratio. For harmonic excitations, Equations (4.28) and

(4.29) can be generalised as:

(
−ω2[M ] + iω[C] + [K]

)
{U} = −[M ]{R}Üg (4.30)

where ω is the frequency of vibration; i is the imaginary unity; {U} is the displace-

ment amplitude vector; the first two entries of the influence coefficient vector {R}

equal unity while the rest of the entries are all zero. The displacement amplitudes

61



Seismic Soil Structure Interaction In Performance-Based Design Chapter 4

are solved by:

{U} = −
(
−ω2[M ] + iω[C] + [K]

)−1
[M ]{R}Üg (4.31)

The frequency response of a SDOF structure mounted on a saturated soft clay

(ν=0.5) is presented in Figure 4.6 for the ‘radiation damping only’ condition. Results

obtained using both impedance and cone models compare well within the range of

frequency considered. By setting the resonant response of an EFSDOF to that of

the actual SSI system, Equations (4.26) and (4.27) can be written as:

ω2
ssiUssi,r

Üg

=
ω2

sUssi,r

Üg

(
ωssi

ωs

)2

=
1

2ξssi

√
1− ξ2

ssi

(4.32)

ωssi =
ωr√

1− 2ξ2
ssi

(4.33)

With Equations (4.32) and (4.33) as well as the resonant coordinates in Figure 4.6,

the equivalent natural frequency ωssi and damping ratio ξssi are determined.
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wr/wS

..

Figure 4.6: Comparison of the frequency response of a flexible-base SDOF structure.

Alternatively, Maravas et al. (2007; 2008; 2014) developed exact solutions of ωssi

and ξssi based on the following summation rule (with reference to Figure 4.5):

1

kssi

=
1

kh

+
1

kθ

(
h

r

)2

+
1

ks

(4.34)

where the stiffnesses are all assumed to be complex-valued while kssi, kh and kθ

are frequency-dependent. In general, a complex-valued stiffness can be obtained by
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modifying the elastic constants through the correspondence principle (see Section

3.3.2):

kh = (αhKh −mfω
2)(1 + 2iξ) (4.35)

kθ = (αθKθ − Jfω
2)(1 + 2iξ) (4.36)

where i is the imaginary unity, ξ is the damping ratio, α is the dynamic modi-

fier applied to the static stiffness K (Equations (3.11) and (3.12)). Substituting

these complex-valued stiffnesses into Equation (4.34), the following expressions are

obtained:

ωssi =

√
Λ

1 + 4ξ2
ssi

(4.37)

ξssi = Λ

[
ξh

ω2
h(1 + 4ξ2

h)
+

ξθ
ω2
θ(1 + 4ξ2

θ)
+

ξs
ω2

s (1 + 4ξ2
s )

]
(4.38)

where Λ is given by:

Λ =

[
1

ω2
h(1 + 4ξ2

h)
+

1

ω2
θ(1 + 4ξ2

θ)
+

1

ω2
s (1 + 4ξ2

s )

]−1

(4.39)

in which

ωh =

√
αhKh −mfω2

m
ωθ =

√
αθKθ − Jfω2

mh2
ωs =

√
ks

m
(4.40)

Figure 4.7 illustrates the equivalent period Tssi (as a lengthening ratio with respect

to the period of the structure in its fixed-base condition Ts) and damping ratio ξssi

as functions of the structure-to-soil stiffness ratio a0 and the slenderness ratio s for

two values of soil Poisson’s ratio ν=0.33, 0.5. Veletsos and Verbič (1973) impedance

models and cone models (where ω0=ω) are both used with Equations (4.32) and

(4.33) while Veletsos and Verbič (1973) impedance functions are also adopted in

Equations (4.37) and (4.38) derived by Maravas et al. (2014). In the latter case,

due to the frequency dependence of the impedance, data shown in Figure 3 are

obtained iteratively (by increasing the frequency of vibration ω) until ω is equal

to ωssi, within an acceptable tolerance. It should be mentioned that the Maravas

et al. (2014) method inherently assumes that the structural damping is frequency

independent. If viscous damping is used, as is done in this study, the damping ratios

ξs in Equations (4.38) and (4.39) should be multiplied by ωs/ω.
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It is seen from Figure 4.7 that in general, three sets of results (especially the period

lengthening ratio) are very similar. Taking the solutions obtained by Equations

(4.32) and (4.33) with the impedance models as the reference answer, cone models

perform better for a saturated soil condition than for a lower value of soil Poisson’s

ratio, which is consistent with Wolf (1994). It is also clear that flexible-base slender

buildings (e.g., s=4) always have a greater period lengthening and a lower effective

damping when compared with short squatty structures (e.g., s=1). Softer soil con-

ditions (i.e. higher a0 values) also lead to greater period lengthening and higher

effective damping ratios for less slender structures. For SSI systems with slender su-

perstructures, an increase in the structure-to-soil stiffness ratio a0 can significantly

increases the period lengthening, while it has a negligible influence on the effective

damping ratio.
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Figure 4.7: Comparison of equivalent period and damping ratio obtained by various

methods considering ξg=0.05 for (a) ν=0.33, and (b) ν=0.5.

The EFSDOF oscillator will be extended to account for inelastic structural be-

haviours in Chapter 6, with its accuracy in response to seismic excitations assessed

by comparisons with results for the corresponding actual SSI system.
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Figures 4.8 and 4.9 show the response of a 10-storey building resting on a sandy soil

(a0=1, ν=0.33) and a saturated clay (a0=3, ν=0.5) respectively. The superstructure

is designed according to the IBC (2012) lateral load distribution and is based on

the following parameters, s=3, m=0.5, mf=0.1, ξs=ξg=0.05. The total mass of the

structure is evenly distributed along the height and each storey height is assumed to

be three metres. Both impedance and cone models are used and excellent agreement

is observed between the results obtained by using the two models.
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Figure 4.8: Frequency response of a flexible-base 10-storey building considering

ν=0.33 and a0=1.
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Figure 4.9: Frequency response of a flexible-base 10-storey building considering

ν=0.5 and a0=3.
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4.5 Seismic response analysis

The most general approach for seismic response analysis of SSI problems is to solve

Equation (4.4) in the time domain by numerical integration techniques of which

two widely used methods are central difference method and Newmark’s method.

However, the frequency-dependent nature of the impedance functions requires the

analysis to be performed in the frequency domain. In this case, Fourier analysis

can be used to transform a time-varying motion into a series of simple harmonic

motions and vice versa. These are done through Fast Fourier Transform (FFT)

and Inverse Fast Fourier Transform (IFFT) algorithms that are readily available in

many computer codes. In this section, Fourier analysis is performed to evaluate the

seismic response of structures supported by foundation impedance functions while

direct numerical integration techniques are adopted for solving SSI problems where

the soil-foundation system is modelled with cone models.

4.5.1 Fourier analysis of SSI with impedance functions

In earthquake engineering problems, a ground motion is usually recorded at closely

spaced discrete intervals of time, and thus is described by a finite number of data

points. Consider for example a ground acceleration time history üg containing n

time-acceleration pairs sampled at a constant interval ∆t. By expanding the number

of üg to N where N ≥ n is a power of 2 and filling the (n+ 1)th to the N th üg with

zero, each of the ground acceleration points can be expressed through the discrete

inverse Fourier transform by:

üg(tp) =
N−1∑
q=0

Üg(ωq)e
i(2πqp/N) p = 0, 1, 2, · · · , N − 1 (4.41)

where tp = p∆t is the time point, ωq=2πq/(N∆t) is the frequency point, i is the

imaginary unity, and Üg(ωq) is the Fourier coefficient given by the Fourier transform

as:

Üg(ωq) =
1

N

N−1∑
p=0

üg(tp)e
−i(2πqp/N) q = 0, 1, 2, · · · , N − 1 (4.42)

66



Chapter 4 Seismic Soil Structure Interaction In Performance-Based Design

Now the frequency response Equation (4.31) can be written as:

{U} = {H}Üg(ωq) {U̇} = iωq{U} {Ü} = −ω2
q{U} (4.43)

where H is called transfer function (ground acceleration to relative displacement)

expressed as:

{H} = −
(
−ω2

q [M ] + iωq[C] + [K]
)−1

[M ]{R} (4.44)

The process by which a response history is obtained due to a specific ground motion

is broken down into the following steps (with reference to Figure 4.10) :

.

.

.
.
.
.

t t

t

t

t

t

t

t
Frequency-
dependent 

transfer 
functions

(a) (b) (c) (d) (e)

FFT IFFT

Figure 4.10: Fourier analysis used to solve response history of a building subjected

to a ground motion: (a) ground motion time history; (b) time-varying ground mo-

tion split into simple harmonic motions through FFT; (c) evaluation of frequency

response by means of transfer functions; (d) summation of the harmonic responses

through IFFT to obtain the response history; (e) time-varying response of the build-

ing.

• Evaluate the Fourier coefficients of the ground motion (Equation (4.42)) by

means of Fast Fourier Transform (FFT).

• Calculate the Transfer Function (TF) H according to Equation (4.44).

• Determine the harmonic responses (i.e., displacement, velocity and accelera-

tion) of the building according to Equation (4.43).

• Estimate the response history of the building using the Inverse Fast Fourier

Transform (IFFT) according to Equation (4.41).
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4.5.2 Numerical integration of EOM

Although Fourier analysis is able to handle the frequency-dependent characteristics

of the dynamic foundation stiffness, it is based on superposition of simple responses,

which restricts the analysis to linear systems. To tackle a nonlinear problem, time-

stepping methods are preferable, and the equation of motion (Equation (4.4)) is

more convenient to be written as:

[M ]{ü}+ [C]{u̇}+ {Fs} = {P} = −[M ]{R}üg (4.45)

where {Fs} is a resisting force vector given by {Fs}=[K]{u} for linear systems. {P}

is an ‘applied force’ vector which is known when ground acceleration üg is provided.

üg is often given by a discrete values ügi=üg(ti), with the time interval:

∆ti = ti+1 − ti (4.46)

The response is determined at the discrete time instants ti by the following relation:

[M ]{üi}+ [C]{u̇i}+ {Fs(i)} = {Pi} (4.47)

Solving such a relation requires information from the previous time instant (i.e.,

at time ti−1). Given the initial conditions, solutions for the next step can be ob-

tained through numerical integration techniques. Stepping from time i to i + 1 by

using the same integration methods, responses at each time instant are successively

calculated. Two common integration techniques are introduced to relate solutions

between successive steps in what follows.

4.5.2.1 Central difference method

Expanding a displacement u at respectively ti+∆t and ti−∆t (assuming a constant

time step ∆t) using Taylor series, the following relations are obtained:

u(ti + ∆t) = u(ti) +
∆t

1!
u̇(ti) +

(∆t)2

2!
ü(ti) +

(∆t)3

3!

...
u (ti) + · · · (4.48)

u(ti −∆t) = u(ti)−
∆t

1!
u̇(ti) +

(∆t)2

2!
ü(ti)−

(∆t)3

3!

...
u (ti) + · · · (4.49)

68



Chapter 4 Seismic Soil Structure Interaction In Performance-Based Design

Subtracting Equation (4.49) from Equation (4.48) gives:

u̇(ti) =
u(ti + ∆t)− u(ti −∆t)

2∆t
+O((∆t)2) (4.50)

Adding Equation (4.49) to Equation (4.48) yields:

ü(ti) =
u(ti + ∆ti)− 2u(ti) + u(ti −∆t)

(∆t)2
+O((∆t)2) (4.51)

Ignoring the higher order terms in Equations (4.50) and (4.51), the velocity and

acceleration are approximated by:

u̇i '
ui+1 − ui−1

2∆t
üi '

ui+1 − 2ui + ui−1

(∆t)2
(4.52)

Substitute Equation (4.52) into Equation (4.47) and rearrange:(
[M ]

(∆t)2
+

[C]

2∆t

)
{ui+1} = {Pi} − {Fs(i)} −

2[M ]

(∆t)2
{ui} −

(
[M ]

(∆t)2
− [C]

2∆t

)
{ui−1}

(4.53)

Let i=0 denote the initial condition, eliminating ui+1 in Equation (4.52) gives:

u−1 = u0 −∆tu̇0 +
(∆t)2

2
ü0 (4.54)

Response can thus be solved using Equation (4.53) by stepping from i = 0 to n− 1

(considering n steps). An advantage of this method is that the response at the

(i+ 1)th step is explicitly determined from the EOM at the ith step and no iteration

is required. Performing the central difference method requires a sufficiently small

time step to guarantee the stability of analysis and accuracy of results, which is

impractical for systems having a large number of DOFs. For the simplified SSI

models considered in this study, this method can be proved efficient.

4.5.2.2 Newmark’s method

Newmark (1959) developed a family of step-by-step integration methods through

the following approximating expressions:

u(ti + ∆t) ' u(ti) +
∆t

1!
u̇(ti) +

(∆t)2

2!
ü(ti) + β(∆t)3...

u (ti) (4.55)

u̇(ti + ∆t) ' u̇(ti) +
∆t

1!
ü(ti) + γ(∆t)2...

u (ti) (4.56)
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These expressions are derived based on the corresponding Taylor series by replacing

β for 1/3! and γ for 1/2!, respectively, and ignoring the higher order terms. If the

third derivative of displacement with respect to time is linearised by:

...
u (ti) =

ü(ti + ∆t)− ü(ti)

∆t
(4.57)

Substituting Equation (4.57) into Equations (4.55) and (4.56) gives:

ui+1 ' ui + ∆tu̇i + (0.5− β)(∆t)2üi + β(∆t)2üi+1 (4.58)

u̇i+1 ' u̇i + (1− γ)∆tüi + γ∆tüi+1 (4.59)

The parameters γ and β describe the variation of acceleration over a time step and

determine the stability and accuracy of the method. A value of γ=0.5 and a range of

1/6 ≤ β ≤ 1/4 are normally used to ensure the stability of solution (Chopra, 2012).

Specially, β=1/4 and 1/6 are respectively corresponding to an average acceleration

and a linear acceleration that varies over a time step.

From Equation (4.58), üi+1 can be expressed as:

üi+1 =
1

β(∆t)2
(ui+1 − ui)−

1

β∆t
u̇i −

(
1

2β
− 1

)
üi (4.60)

Substituting Equation (4.60) into Equations (4.59) gives:

u̇i+1 =
γ

β∆t
(ui+1 − ui) +

(
1− 1

β

)
u̇i + ∆t

(
1− 1

2β

)
üi (4.61)

Substituting Equations (4.60) and (4.61) into Equation (4.47) for the dynamic equi-

librium at time i+1, {ui+1} can be solved. Noting that apart from {ui+1}, {Fs(i+1)}

needs to be determined as well, equilibrium at time i + 1 may be solved itera-

tively. For linear systems whose {Fs(i+1)}=[K]{ui+1}, {ui+1} can be extracted from

{Fs(i+1)}, leaving the only unknown {ui+1} in the equilibrium that could be solved

without iterations.

However, if the resisting force Fs is an implicit nonlinear function of the imposed

deformation u, iteration is required, and the Newmark’s method becomes implicit.

The following presents a Newton-Raphson iteration scheme through a simple exam-

ple that solves a displacement u of a SDOF system due to a given static force P .
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The equilibrium condition for the problem is simply:

Fs(u) = P (4.62)

Expanding the resisting force F j+1
s at j + 1th iteration by Taylor series with respect

to the associated displacement ui+1 yields:

F j+1
s = F j

s +
∆uj

1!
F j

s,u +
(∆uj)2

2!
F j

s,uu + · · · (4.63)

where F j
s,u and F j

s,uu are respectively first and second derivatives of Fs with respect

to u determined at the end of the jth iteration. If uj is close to the solution, ∆uj

tends to be very small. Ignoring the second and higher order terms in Equation

(4.63) gives:

F j+1
s ' F j

s +Rj = P (4.64)

where the residual force

Rj = ∆ujF j
s,u = kjT∆uj (4.65)

where kjT is the tangent stiffness at uj. A new and improved estimate of the dis-

placement is calculated as:

uj+1 = uj + ∆uj (4.66)

With this new displacement and past response history, the resisting force and tangent

stiffness for the next iteration can be calculated according to the nonlinear force-

displacement relationship. Equations (4.64), (4.65) and (4.66) are then iterated until

a convergence criterion is achieved. To avoid calculation of the tangent stiffness for

each iteration, the initial stiffness at the end of the last converged time step can be

used for all iterations within the current time step. This iteration scheme is called

the modified Newton-Raphson method. Both iteration procedures are illustrated in

Figure 4.11.

It is convenient to apply the Newton-Raphson method explained above for a dynamic

SDOF system. For such a one-dimensional problem, all quantities in Equation (4.47)

for time i+ 1 are scalar:

F̂s(i+1) = Pi+1 (4.67)

where

F̂s(i+1) = müi+1 + cu̇i+1 + Fs(i+1) (4.68)
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Figure 4.11: Iterative scheme within a time step for a nonlinear system: (a) Newton-

Raphson method; (b) Modified Newton-Raphson method (after Chopra, 2012).

Similar to Equations (4.64) and (4.65), the following expression can be obtained:

F̂ j+1
s(i+1) ' F̂ j

s(i+1) + F̂s,ui+1
∆uj = Pi+1 (4.69)

where the equivalent tangent stiffness is given by:

k̂jT (i+1) ≡ F̂s,ui+1
= mü,ui+1

+ cu̇,ui+1
+ Fs,ui+1

(4.70)

where the derivatives on the right-hand side of Equation (4.70) can be derived from

Equations (4.60) and (4.61) as:

ü,ui+1
=

1

β(∆t)2
u̇,ui+1

=
γ

β∆t
(4.71)

Substituting Equation (4.71) into Equation (4.70) gives:

k̂jT (i+1) = m
1

β(∆t)2
+ c

γ

β∆t
+ kjT (i+1) (4.72)

From Equation (4.64), the residual force at the jth iteration within the (i+1)th time

step is calculated by:

R̂j
i+1 = Pi+1 − F̂ j

i+1 (4.73)

Substituting Equations (4.60) and (4.61) into Equation (4.68), F̂ j
i+1 in Equation

(4.73) is expressed as:

F̂ j
i+1 = F j

i+1 +

(
m

1

β(∆t)2
+ c

γ

β∆t

)(
uji+1 − ui

)
−

[
m

1

β∆t
+ c

(
γ

β
− 1

)]
u̇i

−

[
m

(
1

2β
− 1

)
+ c∆t

(
γ

2β
− 1

)]
üi

(4.74)
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The iteration procedures are very similar to those in solving the static problem, with

merely replacing R, Fs and kT by R̂, F̂s and k̂T , respectively. For MDOF systems,

the mass, stiffness, and damping coefficient are written in matrix forms while the

force and displacement appear as vectors.

4.5.3 Seismic response history analysis of SSI systems

The Fourier analysis, central difference method and Newmark’s method described in

the previous subsections were implemented in MATLAB (2011). To compare seis-

mic response of buildings obtained by these methods, the Loma Prieta earthquake

(1989), 0◦ horizontal component of the ground motion recorded by the station Foster

City - APEEL 1 (Vs,30=116.4m/s), was used as shown in Figure 4.12.
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u
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..

Figure 4.12: Ground acceleration time history of the Loma Prieta earthquake (1989),

recorded at the station Foster City - APEEL 1.

The original ground acceleration data was based on a constant time interval ∆t=0.005

seconds. In order to use a smaller time step in the analysis, the data were resampled

over a shorter time interval by means of a linear interpolation.

Eight different SSI systems were adopted in the comparison study, with their proper-

ties listed in Table 4.4. The site soil was assumed to possess a Poisson’s ratio ν=0.5

given such a low shear wave velocity. For each of the soil-SDOF structure systems

(i.e., number of storeys n=1), a corresponding EFSDOF oscillator was introduced.

The linear properties of the EFSDOF oscillators (i.e., Tssi and ξssi) were calculated

73



Seismic Soil Structure Interaction In Performance-Based Design Chapter 4

according to Equations (4.32) and (4.33). For the flexible-base MDOF structures

(M1-M4), the EFSDOF oscillators were not relevant. Yielding was allowed only in

the structural components and perfect plasticity was assumed for each storey when

yielding occurs. In this context, the capacity of the EFSDOF oscillator is equal to

the base shear strength of the corresponding flexible-base SDOF structure. For all

nonlinear systems considered in Table 4.4, it was assumed that for each storey, the

lateral strength fy was 1/2000 of its lateral stiffness k. The height-wise stiffness and

strength distributions were determined according to the IBC (2012) design lateral

load pattern.

Table 4.4: Properties of SSI systems used in the comparison study.

Index n a0 s Ts uyi (m) Tssi/Ts Tssi (sec) ξssi (%)

S1 1 3 4 1.5 ∞ 2.16 3.24 5.25

S2 1 3 4 1.5 0.0005 2.16 3.24 5.25

S3 1 3 1 0.3 ∞ 1.69 0.51 25.64

S4 1 3 1 0.3 0.0005 1.69 0.51 25.64

M1 5 1.5 1.5 0.56 ∞ - - -

M2 5 1.5 1.5 0.56 0.0005 - - -

M3 10 2 2 0.94 ∞ - - -

M4 10 2 2 0.94 0.0005 - - -

For linear systems, results from Fourier analysis (see Section 4.4) utilising Veletsos

and Verbič (1973) impedance functions were taken as the ‘exact’ solutions. The

Fourier and inverse Fourier transforms were performed on the basis of a time in-

terval ∆t=0.005 seconds. When solving the SSI problems in the time domain, the

cone models were used. Both Newmark’s method and central difference method

were adopted for integrating the EOM numerically and operated respectively at a

time step of ∆t=0.005 seconds and ∆t=0.001 seconds. The average acceleration

assumption (i.e., β=0.25, γ=0.5) was employed when using Newmark’s approach.

Since the cone models were analysed in the time domain, the reference frequency ω0

was set to the equivalent natural period of the SSI system.

For all data shown in Figures 4.13 to 4.18, the Newmark’s method and central
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difference method almost lead to the same results. Although the central difference

method used a smaller size of time step which was one fifth of that in the Newmark’s

method, it was much faster, especially in solving nonlinear problems, due to the fact

that it is an explicit method.

Figure 4.13(a) shows the structural distortion (shear deformation of the structure)

time history obtained by using various methods. Generally, the three methods yield

similar results for the linear soil-SDOF structure system S1. Although results ob-

tained from the numerical integration techniques do not completely agree with the

‘exact’ solution produced by the Fourier analysis; the peak values, which are im-

portant in methods based on response spectra, are practically identical. In Figure

4.13(b), the displacements of the structural mass relative to the ground ussi are com-

pared. The EFSDOF oscillator gives an excellent estimation of the results. Noting

that ussi is due to a combined effect of structural distortion, foundation swaying and

rocking, the contribution from structural distortion could be only twenty percent.

For the nonlinear system S2, comparisons in Figure 4.14 confirm that results from

various methods are practically the same. It is interesting to note that ussi of the

yielding system S2, which is almost identical to the structural distortion, can be

smaller than that in the linear system S1.

Figure 4.15 shows good agreement between results from different methods for the

linear system S3. However, for its nonlinear counterpart S4, the EFSDOF oscillator

underestimates ussi, leading to a peak value of ussi which is less than half of that of

the actual SSI system, as illustrated in Figure 4.16(b). The trend that the yielding

system has a smaller ussi compared to the linear system (compare results in Figures

4.13 and 4.14) is reversed for systems S3 and S4.

For the flexible-base MDOF structures, comparisons in Figures 4.17 to 4.18 demon-

strate that the numerical integration methods are capable of solving both linear and

nonlinear SSI problems involving MDOF superstructures.

75



Seismic Soil Structure Interaction In Performance-Based Design Chapter 4

0 20 40 60

-0.1

-0.05

0

0.05

0.1
Cone Newmark’s method 
Cone Central difference method 
Impedance Fourier analysis 

0.15

-0.15
0 20 40 60

-0.5

0

0.5

0.25

-0.25

Time (sec)

u
s (

m
)

u
ss
i (

m
)

Time (sec)

Cone Newmark’s method 
EFSDOF oscillator

(a) (b)

Figure 4.13: Comparison of (a) structural distortion time history and (b) structural

displacement (relative to ground) time history obtained using various methods for

linear system S1.
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Figure 4.14: Comparison of (a) structural distortion time history and (b) structural

displacement (relative to ground) time history obtained using various methods for

nonlinear system S2.
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Figure 4.15: Comparison of (a) structural distortion time history and (b) structural

displacement (relative to ground) time history obtained using various methods for

linear system S3.
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Figure 4.16: Comparison of (a) structural distortion time history and (b) structural

displacement (relative to ground) time history obtained using various methods for

nonlinear system S4.
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Figure 4.17: Comparison of roof displacement (relative to ground) time history

obtained using various methods for (a) linear system M1 and (b) nonlinear system

M2.
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Figure 4.18: Comparison of roof displacement (relative to ground) time history

obtained using various methods for (a) linear system M3 and (b) nonlinear system

M4.
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It should be mentioned that results presented in this subsection only show several

possible situations of an SSI problem. In fact, the performance of an SSI system

not only depends on the dynamic properties of the system, but also relates to the

characteristics of the ground motion. To gain an insight into how SSI alters the

seismic response of a building, a comprehensive parametric study is required. This

will be the focus of the following two chapters where a broader view of the effect of

SSI on structural behaviour is provided.

4.6 Summary

This chapter describes the procedures for solving a dynamic SSI problem through

several methods on two SSI models. In order to simplify the analysis, the super-

structures are represented by shear-building models where each storey is assumed

to have only shear deformation. Under this assumption, a n-storey structure can be

simplified into a n-DOF shear-building. Both impedance models and cone models

introduced in the previous chapter are used to simulate the dynamic soil-foundation

behaviour. The EOM are formulated in both frequency and time domains.

Due to the frequency-dependent nature of the impedance functions, the impedance

models are required to be used in the frequency domain whereas the cone models

enable the analysis to be performed in either frequency or time domain. An Equiv-

alent Fixed-base SDOF (EFSDOF) oscillator is introduced to estimate the dynamic

response of the corresponding actual SSI system. The properties of the EFSDOF are

selected on the basis of setting its resonant response and corresponding frequency

to those of the actual SSI system.

It is demonstrated that an SSI problem can be defined by using a number of dimen-

sionless parameters. The frequency response of single and multi-storey SSI systems

obtained by both impedance and cone models are well compared. In order to solve

the response of an SSI system due to a seismic ground motion, three methods are

introduced and compared. The Fourier analysis, although limited to linear sys-

tems, is able to transform the data between time and frequency domain, making the
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impedance models most suitable for this type of analysis. The Newmark’s method

and central difference method are capable of integrating the EOM numerically. For

the simplified SSI models used in this study, all these three methods yield practically

the same results.
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Chapter 5

Performance-based design of

inelastic multi-storey buildings

considering SSI

5.1 Introduction

This chapter aims to improve the current design procedures for SSI, presented in

Section (2.4), by solving two problems. The first problem concerns the lack of link

between the existing ductility reduction factor Rµ and SSI in the force-based design

while the second problem relates to the gap in design of flexible-base multi-storey

structures from the response spectra for their corresponding SDOF systems. Both

problems are solved by introducing a practical performance-based design approach,

which utilises interaction-dependent force reduction and MDOF modification fac-

tors that could be directly applied to response spectra available in building codes.

These factors are derived from results obtained through a series of comprehensive

parametric studies. Note that soil is treated in this chapter as an equivalent-linear

material of which true nonlinearity and failure are excluded.
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5.2 Modelling and analysis considerations

Nonlinear analyses are required in the following sections, and for this purpose, the

cone models are combined with the shear-building models to simulate the interaction

between soil and overlying structures (Figure 5.1). In cone models, the soil hysteretic

damping ξg should be specified at the reference circular frequency ω0 (see Figure 3.9).

For SDOF structures, ω0 can be calculated by Equation (4.37) while for MDOF

structures, ω0 equals the lowest Eigen-frequency of the SSI system ωssi, which is

solved iteratively by increasing the frequency of vibration ω until both frequencies

are equal within 0.1 percent.
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Figure 5.1: Soil structure interaction models for (a) a SDOF structure and (b) a

multi-storey structure.

Since the aim of this chapter is to develop a practical design method for flexible-

base inelastic MDOF structures on the basis of code-specified response spectra,

three sets of spectrum-compatible synthetic earthquakes were generated using the

SIMQKE program (Gasparini and Vanmarcke, 1976), to represent the IBC-2012

design response spectra corresponding to soil classes C, D and E (see Table 4.3).

Site classes A and B are disregarded because they correspond approximately to

the ‘fixed-base condition’. Each set of the synthetic earthquakes consists of fifteen

seismic excitations with a Peak Ground Acceleration (PGA) of 0.4g. It is shown in

Figure 5.2 that the average acceleration response spectrum of synthetic earthquakes
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in each set compares very well with its corresponding IBC-2012 design spectrum.

The characteristic periods of the design ground motions T0 are also marked in Figure

5.2. These periods represent the transition points from acceleration-controlled to the

velocity-controlled segment of 5% damped design spectra.
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Figure 5.2: Comparison of mean response spectra of 15 synthetic earthquakes for

site classes C, D and E.

In order to control the inelastic level of a building or a structural component, the

ductility ratio µ is used. The concept of ductility is explained in Figure 5.3. For each

storey of a building, the actual response is linear under low force magnitudes and

becomes nonlinear once the first significant yielding occurs (i.e., when mobilised

shear strength equals Fs). With increasing the force level, the storey structural

components successively mobilise their full strengths until the overall strength (Fu)

is fully mobilised, leading to large deformations. Alternatively, the curves in Figure

5.3 can be used to describe the global response of a building, for example, showing

its base shear (V ) versus roof displacement.

For design purposes, the design base shear Vd usually corresponds to the formation of

the first plastic hinge (i.e., Vd=Fs). As shown in Figure 5.3, Vd is reduced firstly from

its linear elastic counterpart Ve due to inelastic action. The amount of reduction is

controlled by a ductility reduction factor Rµ defined as:

Rµ =
Ve

Fu

(5.1)
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Figure 5.3: Elastic and inelastic force-deformation relationship.

Further reduction of Vd is due to the strength reserve at the onset of the first

significant yielding. To describe this reduction, a structural over-strength factor is

defined:

Ω =
Fu

Fs

(5.2)

The total force reduction factor R is therefore expressed as:

R = RµΩ (5.3)

For the SSI models used in this study, the actual structural response in Figure 5.3

can be idealised by a linearly elastic-perfectly plastic curve. With the assumption

of perfect plasticity, the yield force is unique and therefore, Fy(Vy)=Fs=Fu, which

leads to:

R = Rµ =
Ve

Vy

=
∆e

∆y

(5.4)

where ∆e is the design maximum deformation of an elastic structure whereas ∆y is

the yield deformation of a degraded structure.

The ductility factor (or ductility ratio) µ is defined for the degraded structure as

the ratio of the maximum deformation ∆max to that at yielding ∆y:

µ =
∆max

∆y

(5.5)

To relate the global maximum deformation of a yielding structure to that in its

elastic condition, an inelastic displacement ratio is usually adopted:

Cµ =
∆max

∆e

(5.6)
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From Equations (5.4), (5.5) and (5.6), the following relation is obatained:

Cµ =
µ

Rµ

(5.7)

The inelastic displacement ratio Cµ is a key parameter in the displacement Coef-

ficient Method for simplified nonlinear static procedure in BSSC (2000) and ATC

(2005).

For multi-storey structures, Equation (5.5) corresponds essentially to a storey duc-

tility ratio (see Equation (4.25)) that could be a key index for seismic performance

assessment (e.g., Nassar and Krawinkler, 1991; Krawinkler and Nassar, 1992; Gho-

barah et al., 1999; Santa-Ana and Miranda, 2000; Moghaddam and Mohammadi,

2001).

It should be mentioned that the ductility ratio µ depends strongly on the definitions

of ‘deformation’. In fact, deformation in an entire SSI system results from the

flexibility of both structural and geotechnical components. In this chapter, the

ductility ratio is determined on the basis of the inter-storey distortions that are

exclusive of rigid-body foundation movements, and therefore, directly reflect the

damage in structures.

The term ‘ductility demand’, which will be used in the following analyses in this

chapter to control the degrees of structural nonlinearity, refers to the maximum value

of the ductility ratio throughout an earthquake. For multi-storey buildings, ‘ductility

demand’ corresponds to the maximum value of the storey ductility ratio throughout

an earthquake. When ductility demand is less than one, according to Equation

(5.5), the maximum deformation is no greater than the yielding deformation, and

the corresponding system remains elastic.

In order to achieve a target ductility demand µt, iterations are required on the

total strength demand Ftot (defined as the maximum value of the sum of the storey

strengths i.e.,
∑
Vi with reference to Figure 4.1) while maintaining the initial pattern

of the strength distribution. The procedures to calculate the total strength demand

for a prescribed ductility demand are presented in Figure 5.4. It should be noted

84



Chapter 5 Seismic Soil Structure Interaction In Performance-Based Design

that storey ductility does not increase monotonically when reducing the strength,

which means that there could be more than one strength demand satisfying a given

ductility demand. In this case, only the highest strength should be considered.

Create the soil-structure model Iterate  to calculate the strength demand

Distribute mass m and stiffness ki to 
each storey according to prescribed 
lateral load pattern and selected Ts

Create a n-storey  
structure 

Assign 5% linear damping 
to the superstructure

Calculate the mass, stiffness and damping 
coefficients for the components of the cone 
model based on selected model parameters 

Set the target 
ductility mt

Assign a strength Ftot according to 
prescribed lateral load pattern

Dynamic response-history analysis with 
the selected ground motion

Calculate the maximum 
storey ductility m

|m -mt|≤  
Tolerance 

Adjust 
Ftot

Strength 
demand found

Yes

No

Figure 5.4: Procedures for calculation of strength demand for a target ductility

demand.

To investigate the sensitivity of structural strength demand to the influencing param-

eters introduced in Section (4.3), buildings having various fixed-base fundamental

periods Ts, number of storeys n, slenderness ratios s and inelastic levels µ were sub-

jected to the code spectrum-compatible synthetic earthquakes, considering different

structure-to-soil stiffness ratios a0. The values of soil Poisson’s ratio were selected in

accordance with the site class, as presented in Table 4.3. The mean response of the

structures is obtained by averaging the results for each set of synthetic records rep-

resenting a specific site class. The following parameters were kept constant, m=0.5,

mf=0.1, ξs=ξg=0.05.
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5.3 Effect of SSI on seismic response of SDOF

structures

This section shows the effect of SSI on base shear demands of SDOF structures

VSDOF for different structural ductility demands. An example is given in Figure

5.5 for structures located on soil site class E. The abscissas represent the natural

periods of the SDOF structures in their fixed-base state while the ordinates are

corresponding base shear demands normalised by the product of structural mass and

PGA (in ‘g’). Data in Figure 5.5 are averaged results from the fifteen earthquakes

for soil site class E (i.e., very soft soil profile). Again, a0=0 represents exactly the

rigid-base condition while increasing the a0 value leads to softer soil conditions.
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Figure 5.5: Effect of structure-to-soil stiffness ratio a0 on base shear demands of

SDOF structures located on site class E.
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Consider the data for fixed-base systems as the reference for results. It is observed

that the way a0 affects VSDOF is significantly influenced by the structural ductility

demands. For linear and slightly nonlinear systems, in general, considering SSI re-

sults in a reduction of base shear from the fixed-base values. It is observed that

the reduction is up to 65% for linear elastic systems with µ=1, as shown in Figure

5.5(a). The observation implies that considering SSI in the seismic design of build-

ings with low ductility demands can lead to more cost-effective design solutions with

less structural weight. This beneficial effect, however, becomes less prominent for

highly nonlinear structures and the difference between the results of fixed-base and

flexible-base systems becomes less significant when structures undergo large inelas-

tic deformations (i.e. µ=8). Similar results were obtained by Veletsos and Verbič

(1974) and Ghannad and Jahankhah (2007), which can be explained by the fact

that the energy dissipated by the soil medium would be negligible compared to that

caused by plastic deformations of highly nonlinear structures.

It is also observed that increasing the slenderness ratio for flexible-base short-period

structures may result in an increase in their base shear demands. Figure 5.6 provides

a better comparison of data for different values of slenderness ratio.
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Figure 5.6: Effect of structural slenderness s on base shear demands of SDOF struc-

tures located on site class E.
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It is shown that the effect of s on base shear demands is insignificant for long-period

structures. However, a higher base shear demand may be required for a slender

structure than for a squatty structure (both having the same Ts) to achieve an iden-

tical ductility demand, in the short-period range. This phenomenon is more obvious

for lightly nonlinear structures supported on softer soil profiles. It is suggested

that the difference caused by slenderness ratio in the strength demands is mainly

attributed to the effective damping of the SSI system ξssi, which increases as the

slenderness ratio is reduced. As illustrated in Figure 4.7, the variation of damping

due to slenderness ratio is more pronounced in systems with higher structure-to-soil

stiffness ratio a0. The effective damping, however, makes a smaller contribution to

the total energy dissipation when compared with that provided by large inelastic

deformations, as described previously. Results for site classes C and D are presented

in Appendix A.1, and they have similar trends as those depicted in Figures 5.5 and

5.6 because of the similarity of the shapes of the corresponding design spectra.

5.4 Strength reduction factor RF for flexible-base

SDOF structures

According to Equation (5.4), the ductility reduction factor is defined as the ratio of

the base shear required to maintain elasticity to that required to produce a target

ductility demand µt. For a fixed-base SDOF oscillator, Rµ is given by:

Rµ =
V (Ts, µ = 1)

V (Ts, µ = µt)
(5.8)

Equation (5.8) is based on a hysteretic force-displacement relationship (e.g., elastic-

perfectly plastic behaviour) and a constant damping ratio of 5% applied to the

elastic response.

Knowing that the base shear demand is also sensitive to a0 and s (Section 5.3), the

ductility reduction factor Rµ could be expressed as:

Rµ =
V (Ts, a0, s, µ = 1)

V (Ts, a0, s, µ = µt)
(5.9)
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It is clear that a0=0 represents the fixed-base condition where the base shear demand

is only a function of Ts and µ. In this condition, Equation (5.9), which seems to

be a more general expression for the ductility reduction factor, reduces to Equation

(5.8).

Using Equation (5.9), Figure 5.7 compares the ductility reduction factor of SDOF

systems for different site classes considering various combinations of a0, s and µ.

Results are averaged values for the 15 synthetic spectrum-compatible earthquakes

corresponding to each site class.

a0=0 a0=1 a0=2 a0=3

(a)

(b)

Ts (sec) Ts (sec)

(c)

R
m

R
m

R
m

0 1 2 3
1

1.5

2

2.5

0 1 2 3
1

1.5

2

2.5

0 1 2 3
1

1.5
2

2.5

3

3.5
4

4.5

0 1 2 3
1

1.5
2

2.5

3

3.5
4

4.5

0 1 2 3
1

2

3
4

5

6
7

8

0 1 2 3
1

2

3
4

5

6
7

8

Class C   s=1 Class C   s=3

Class D   s=1 Class D   s=3

Class E   s=1 Class E   s=3

m=2 m=2

m=4 m=4

m=8 m=8

Figure 5.7: Effect of SSI on ductility reduction factor Rµ of SDOF structures located

on different site classes.

Generally, an ascending trend is observed for Rµ when increasing the fixed-base

natural period Ts, especially in the low period range. This trend, however, is less

pronounced in the high period region. For the rigid-base systems (i.e., a0=0), the

89



Seismic Soil Structure Interaction In Performance-Based Design Chapter 5

Rµ curves show two distinct segments that are separated by a transition point at a

threshold period. The first segment corresponds to a monotonically increasing Rµ

with Ts, whereas the second segment exhibits an oscillating Rµ around a maximum

value, which is much less affected by Ts. This observation can be well described by

a bi-linear approximation of Rµ versus Ts proposed by Vidic et al. (1994), with the

threshold period almost equal to the characteristic period T0.

For flexible-base systems shown in Figure 5.7, the bi-linear approximation ofRµ spec-

tra seems to provide reasonable results, but the threshold periods are considerably

lower than T0, especially for systems with greater a0 values and higher slenderness

ratios. This could be a result of period lengthening due to SSI, which causes the

transition points to occur earlier in the spectra, as illustrated in Figure 5.5.

It is observed that the ductility reduction factor Rµ decreases by increasing the a0

value, which was also reported by Ghannad and Jahankhah (2007), who concluded

that using a fixed-base reduction factor to design a flexibly-supported structure is

un-conservative.

It should be noted that applying conventional Rµ-Ts relationships for seismic design

of flexible-base structures may not be appropriate, since the slenderness ratio can

lead to inconsistent results in Rµ spectra. For example, a higher slenderness ratio

can either result in a larger (Figure 5.7(c)) or a smaller (Figure 5.7(a, b)) Rµ factor

for SSI systems with a0=2 and 3 in the long period range. This inconsistency can be

addressed by presenting the ductility reduction factor in a ‘Rµ versus Tssi’ format,

as shown in Figure 5.8.

It is clear in Figure 5.8(c) that the threshold periods for the ‘constant’ segments

of Rµ curves are well correlated with the characteristic period T0, at which the

intermediate to long-period transition points on elastic base shear demand spectra

(Figure 5.8(a)) are well preserved. Moreover, increasing the values of slenderness

ratio leads to consistent increase in Rµ values, due to the reduced effective system

damping ξssi. For structures having a slenderness ratio of s=3, regardless of the

a0 value, their base shear demands are practically the same, provided that their

equivalent natural periods are identical. This can be explained by the fact that the
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effective damping ratio of an SSI system is very similar to its superstructure with

s=3, as shown in Figure 4.7.
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Figure 5.8: Base shear demand and ductility reduction factor against equivalent

natural period of SSI systems for site class E.

In this regard, Rµ-Tssi should be a rational basis for developing an SSI-dependent

ductility reduction factor. However, in view of developing a more practical approach,

a new strength reduction factor RF is suggested in this study to use fixed-base SDOF

elastic design spectra (e.g. from seismic design guidelines) for seismic design of non-

linear systems.

RF =
V (Ts, a0 = 0, µ = 1)

V (Ts, a0, s, µ = µt)
(5.10)

Note that if a0=0, RF corresponds to Rµ for fixed-base structures (whose dynamic

responses are not affected by s), which reflects the reduction only attributed to the

nonlinear behaviour of the structures; while µt=1 leads to a Rµ associated with the
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reduction only due to the SSI effects (i.e. inelastic hysteretic behaviour of structure

is excluded). Therefore, RF defined in Equation 5.10 can be interpreted as a strength

reduction factor due to the combination of yielding and SSI effects.

Based on the results of more than 100,000 nonlinear dynamic analyses of 7,200 SDOF

systems, the following equation is proposed to estimate the strength reduction factor

RF:

RF =


R− 1

T0

Ts + 1, for 0 ≤ Ts < T0

R, for Ts ≥ T0

(5.11)

where R is a function of ductility demand µ, structure-to-soil stiffness ratio a0,

and slenderness ratio s, with its values presented in Table 5.1. Again, T0 is the

characteristic period of the design ground motions as shown in Figure 5.2. The

shape of RF spectra described by Equation 5.11 was originally proposed by Vidic

et al. (1994) for design of inelastic fixed-base structures.

Table 5.1: Proposed values for R in Equation (5.10)

R µ=2 µ=3 µ=4 µ=5

s 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Site C

a0=0 2.2 2.2 2.2 2.2 3.9 3.9 3.9 3.9 5.4 5.4 5.4 5.4 6.8 6.8 6.8 6.8

a0=1 2.4 2.2 2.2 2.1 4.1 3.9 3.9 3.9 5.5 5.4 5.3 5.3 6.8 6.7 6.7 6.7

a0=2 3.2 2.6 2.4 2.5 4.8 4.2 3.9 3.9 6.1 5.6 5.4 5.3 7.4 6.8 6.7 6.6

a0=3 4.1 3.2 2.9 3.0 5.6 4.5 4.2 4.1 7.0 5.8 5.3 5.2 8.2 7.1 6.5 6.2

Site D

a0=0 2.1 2.1 2.1 2.1 3.8 3.8 3.8 3.8 5.3 5.3 5.3 5.3 6.6 6.6 6.6 6.6

a0=1 2.3 2.3 2.1 2.1 3.9 3.8 3.7 3.7 5.3 5.2 5.2 5.2 6.6 6.5 6.5 6.5

a0=2 3.0 2.5 2.4 2.4 4.6 4.0 3. 3.7 5.9 5.4 5.2 5.1 7.2 6.7 6.5 6.3

a0=3 3.9 3.1 2.8 2.8 5.5 4.4 4.0 4.0 6.8 5.7 5.2 5.0 8.0 6.9 6.5 6.2

Site E

a0=0 2.2 2.2 2.2 2.2 4.1 4.1 4.1 4.1 5.7 5.7 5.7 5.7 7.1 7.1 7.1 7.1

a0=1 2.4 2.3 2.2 2.2 4.1 4.0 4.0 4.0 5.7 5.6 5.5 5.5 7.1 7.0 7.0 6.9

a0=2 3.1 2.6 2.4 2.4 4.7 4.2 4.0 4.0 6.2 5.7 5.5 5.5 7.5 7.0 6.9 6.8

a0=3 4.0 3.0 2.8 2.8 5.6 4.5 4.2 4.1 7.0 6.0 5.5 5.4 8.2 7.2 6.8 6.5

Average

a0=0 2.2 2.2 2.2 2.2 3.9 3.9 3.9 3.9 5.5 5.5 5.5 5.5 6.8 6.8 6.8 6.8

a0=1 2.4 2.3 2.2 2.1 4.0 3.9 3.9 3.9 5.5 5.4 5.3 5.3 6.8 6.7 6.7 6.7

a0=2 3.1 2.6 2.4 2.4 4.7 4.1 3.9 3.9 6.1 5.6 5.4 5.3 7.4 6.8 6.7 6.6

a0=3 4.0 3.1 2.8 2.9 5.6 4.5 4.1 4.1 6.9 5.8 5.3 5.2 8.1 7.1 6.6 6.3

Figures 5.9 to 5.11 compare the mean values of strength reduction factor RF for
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flexible-base SDOF structures obtained from the 15 synthetic earthquakes of each

of the three site classes with those calculated according to Equation 5.11. It is

shown that the RF versus Ts curves follow reasonably closely a bi-linear relationship

with the intersection of two linear segments approximately corresponding to the

characteristic period of the design spectrum T0 for each site class. This is one of

the benefits of reducing base shear demands directly from the code-based design

spectra. Regression analyses were done to obtain best-fit values for R in Equation

5.11, which minimised the sum of the squared residuals over all period points. The

residual is defined as the difference between the mean value of RF and that calculated

by Equation 5.11 at a period Ts.
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Figure 5.9: Comparison of the mean strength reduction factors RF with those calcu-

lated using Equation 5.11 (bi-linear lines) for soil-SDOF structure systems for site

class C.

Table 5.1 shows that the R values, in general, are not sensitive to the soil site classes,
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especially for lower ductility demands. Therefore, it is suggested that the average R

values presented in Table 5.1, which are site-independent, may be used in Equation

5.11. Multi-linear interpolation can be adopted to estimate intermediate values of R

for a0-s-µ combinations that are not included in Table 5.1. As expected, the results

indicate that the slenderness ratio of the structure, s, has a negligible effect on R

values when the structure-to-soil stiffness ratio a0 is small (i.e. a0 < 1), and hence

the SSI effects are not dominant.
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Figure 5.10: Comparison of the mean strength reduction factors RF with those

calculated using Equation 5.11 (bi-linear lines) for soil-SDOF structure systems for

site class D.

The proposed equation for strength reduction factor RF not only addresses the

issues associated with the Rµ-Ts relationships discussed previously, but also has

two prominent advantages. Firstly, it captures the reduction of strength due to

the combination of SSI and structural yielding, with the SSI effect being negligible
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for structures with high ductility demands. Therefore, the amount of reduction

due to SSI in addition to that of yielding is ‘seen’ by engineers. Secondly, the

inelastic strength demand of a flexible-base structure can be directly estimated from

the elastic response of its corresponding fixed-base structure through the reduction

factor RF. This implies that by using Equation 5.11, the calculation of the base

shear demand of flexible-base structures does not require the knowledge of the elastic

response spectra derived for SSI systems, which is ideal for practical design purposes.
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Figure 5.11: Comparison of the mean strength reduction factors RF with those

calculated using Equation 5.11 (bi-linear lines) for soil-SDOF structure systems for

site class E.
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5.5 Effect of SSI on seismic response of MDOF

structures

In this section, the effects of lateral seismic design load pattern, structure-to-soil

stiffness ratio, structural slenderness and site conditions on the strength-ductility

relationship of multi-storey flexible-base buildings are investigated.

The lateral seismic design load pattern can significantly influence the stiffness and

strength distributions in multi-storey buildings, and hence the displacement and

strength demands under seismic excitations. Figure 5.12 compares the total strength

demand Ftot of fixed-base (a0=0) and flexible-base (a0=3) 10-storey buildings (s=2)

designed with different load patterns that were illustrated in Figure 4.2. Ftot was

calculated by summing the strength demands of all storeys. It is clear from Figure 4.4

that for a typical 10-storey building (a0 values between 5 and 20-storey limits), a0=3

corresponds to a soil condition of site class E. Therefore, the results in Figure 5.12 are

the average values from the fifteen spectrum-compatible earthquakes corresponding

to site Class E. Results for other site classes (see Appendix A.2) showed similar

trends to those presented in Figure 5.12. By an analogy with the normalisation of

the base shear demand of SDOF structures, the total strength demands of MDOF

structures are normalised by the product of the total mass of the structure and

PGA. The shaded areas on the graphs in Figure 5.12 represent the practical range

of the fundamental period of a 10-storey building with different structural systems

calculated using Equation (4.2).

Figure 5.12 shows that the strength demands of the buildings designed according

to the concentric and rectangular load patterns are always higher than those cor-

responding to the other load patterns, especially for lower values of fundamental

period. Within the practical range of the fundamental period of a typical 10-storey

building (i.e. shaded areas), using the concentric and rectangular load distributions

can result in up to 1.68 and 2 times higher strength demands, respectively, com-

pared to code-based load patterns such as IBC-2012 and Eurocode 8. It should be

mentioned that this observation is opposite to conclusions made by Ganjavi and
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Hao (2012), where the concentric pattern was found to yield the lowest strength de-

mand. The reason for this difference is attributed to different definitions of strength

demand used in the two studies. The current study calculated the total strength as

the sum of all storey strengths, whereas Ganjavi and Hao (2012) used the base shear

strength that corresponds only to the strength of the first storey. The total strength

demand that is used in the current study can be considered proportional to the

total structural weight of the shear building and is, therefore, a more appropriate

parameter to compare the seismic performance of buildings designed according to

different lateral load patterns.
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Figure 5.12: Total strength demands of (a) fixed-base and (b) flexible-base 10-storey

buildings designed according to different lateral load patterns, Soil Class E, s=2.

Although strength demands corresponding to parabolic, trapezoidal and code-based

load patterns are not significantly different, especially for the SSI systems, the trape-

zoidal lateral load pattern is in general most suitable for seismic design of nonlin-

ear short period flexible-base structures (i.e., requiring minimum total strength to

satisfy a target ductility demand) and code-specified design patterns are more ap-

propriate for structures with a fundamental period Ts > 0.8sec. This conclusion is

in agreement with the results reported by Moghaddam and Hajirasouliha (2006) for
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fixed-base shear-buildings subjected to a group of natural earthquake excitations.

Based on the concept of uniform damage distribution, it can be assumed that the

uniform distribution of deformation demands is a direct consequence of the optimum

use of material (Hajirasouliha and Pilakoutas, 2012). Therefore, the coefficient

of variation of storey ductility demands (COVµ) can be used as a performance

parameter to evaluate the effectiveness of different lateral load patterns. Figure

5.13 compares the mean COVµ of fixed-base and SSI systems designed according to

different load patterns under fifteen spectrum-compatible earthquakes corresponding

to site class E. As expected, the concentric and rectangular patterns resulted in a

much higher COVµ compared to other load patterns. Within the expected range

of periods for 10-storey frames (i.e. shaded areas), the concentric pattern always

led to the largest ductility dispersion, while the code patterns provided the most

cost-effective design solutions.
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Figure 5.13: Coefficient of variation of storey ductility for (a) fixed-base and (b)

flexible-base 10-storey buildings designed according to different lateral load patterns,

Soil Class E, s=2.

Figure 5.14 compares the total strength demands of 10-storey buildings, designed
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according to the IBC-2012 load pattern, with fundamental periods ranging from 0.1

to 3 sec and target ductility demands µ=2 and 8 for structure-to-soil stiffness ratios

a0=0, 1, 2 and 3. It should be noted that the selected range of the design parameters

are only for comparison purposes; some cases do not represent practical scenarios.

For example, a value of 3 for a0 is not suitable for common buildings located on soil

site class C (see Figure 4.21).
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Figure 5.14: Total strength demands of 10-storey structures (s=1) located on (a)

class C, (b) class D and (c) class E for µ=2 and 8.

Similar to the data for soil-SDOF structure systems, flexible-base MDOF structures,

in general, exhibit reduced total strength demands in comparison with their rigid-

base counterparts. The reduction is more substantial for structures designed with a

lower ductility demand. Results presented in Figure 5.14 are total strength demands

for only squatty 10-storey buildings. However, an increase in structural slenderness

ratio was shown to increase the base shear demands of short-period flexible-base
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SDOF structures. This effect is also expected for MDOF structures. An example

is shown in Figure 5.15 for 10-storey buildings designed according to the IBC-2012

design load pattern.
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Figure 5.15: Effect of slenderness ratio on total strength demands of 10-storey SSI

systems on soil site class E.

Comparing with Figure 5.6, the effect of slenderness ratio on strength demands of

yielding flexible-base MDOF structures seems to be less significant than that of

the SDOF structures. Within the practical range of Ts for a 10-storey building in

its fixed-base state, as shown by the shaded areas, the total strength demand is

insensitive to structura slenderness ratio.
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5.6 MDOF modification factor RM for flexible-

base MDOF structures

In order to use a SDOF design spectrum for MDOF systems, modifications should be

made to take into account the higher mode effects. Considering SDOF and MDOF

structures with similar structural mass and fundamental period Ts, the MDOF mod-

ification factor for a flexible-base structure can be defined as:

RM =
VSDOF(Ts, a0, s, µ = µt)

VMDOF(Ts, a0, s, µ = µt)
(5.12)

where VMDOF(Ts, a0, s, µ = µt) is the base shear strength for an MDOF structure

to avoid the maximum storey ductility exceeding the target value. Note that when

a0=0, Equation 5.12 is an expression for the fixed-base MDOF modification factor,

which was proposed by Nassar and Krawinkler (1991) and has received much atten-

tion in the past two decades (e.g., Santa-Ana and Miranda, 2000; Miranda, 1997;

Moghaddam and Mohammadi, 2001).

The base shear strength demand of an inelastic flexible-base MDOF structure can

be determined from the elastic spectrum for an equivalent fixed-base SDOF system

by using Equations 5.10 and 5.12, as follows:

VMDOF(Ts, a0, s, µ = µt) =
VSDOF(Ts, a0 = 0, µ = 1)

RFRM

(5.13)

It should be mentioned, based on the ductility reduction factor for flexible-base

SDOF structures (i.e., Equation (5.9)) Ganjavi and Hao (2012) proposed a similar

ductility reduction factor for soil-MDOF structure systems:

Rµ,MDOF =
VMDOF(Ts, a0, s, µ = 1)

VMDOF(Ts, a0, s, µ = µt)
(5.14)

Equation (5.14) shows that the base shear demand of a flexible-base nonlinear

MDOF structure can be reduced from that of its elastic counterpart by a factor

of Rµ,MDOF . A simple expression was also provided in Ganjavi and Hao (2014) for

Rµ,MDOF as a function of Ts, a0, s and µ. In order to use this expression, the base

shear demand of the elastic MDOF structure should be estimated. Ganjavi and Hao

(2014) found that considering linear SSI systems, the base shear demands for MDOF
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structures could be significantly different from those for the corresponding SDOF

structures. However, they did not provide any method for estimating VMDOF of

elastic SSI systems. In other words, there is a gap between the design spectrum and

base shear demand of flexible-base elastic MDOF structures. Rµ,MDOF is therefore,

difficult to be implemented in the existing design methodologies.

To develop an expression for RM that can be calculated according to Equation

(5.12), 5, 10, 15 and 20-storey shear buildings are used in the analyses that follow

and the effects of structural type and soil site class are also taken into account.

The buildings are assumed to be symmetric and represent typical 5-bay structures

having a span length of 6 meters. Using a storey height of 3.3 meters, the slenderness

ratios corresponding to 5, 10, 15 and 20-storey buildings would be approximately

0.7, 1.4, 2 and 2.7, respectively. The effective foundation radii for swaying and

rocking modes were calculated based on Equation (2.7). The fundamental period

of the buildings was determined according to Equation (4.2) for the four different

ASCE (2010) structural types listed in Table 4.2.

In order to derive a site dependent RM, an averaged shear wave velocity was used to

represent each site soil condition, i.e., Vs,30=90, 270 and 560m/s for site classes E, D

and C, respectively. Therefore, the corresponding a0 value for an MDOF structure

located on a specific soil deposit could be estimated from Figure 4.4. The range of

expected a0 values for different SSI systems is presented in Figure 5.16, which shows

higher a0 values for taller buildings and softer soil conditions. It is observed that

frame structures (i.e., type 1-3) have a lower a0 value compared with other structural

systems (i.e., type 4), especially for those located on site class E. Therefore, for

better comparison, frame structures are presented as one group in Figure 5.16. It

can be noted that the expected a0 values for typical buildings founded on site class

C (average shear wave velocity of 560m/s) are close to zero. This implies that the

seismic design of typical multi-storey buildings on site classes A, B and even C (see

Table 4.2) could be practically done on the basis of fixed-base structures.

The effect of using different structural types (types 1 to 4 in Table 4.2) on 1/RM

is presented in Figure 5.17. It should be noted that shear buildings, in general,
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Figure 5.16: Variation of a0 with number of storeys for different types of structural

systems on various site classes.

cannot accurately represent all different structural systems and, therefore, the effect

of ‘structural type’ in this context is attributed mostly to the expected fundamental

period of the structures using Equation 4.2. As mentioned previously, according to

ASCE (2010), the expected fundamental period of frame structures (types 1-3) is

much higher than type 4 structures. Therefore, the results in Figure 5.17 illustrate

lower 1/RM values for type 4 structures compared to type 1-3 frame structures.
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Figure 5.17: Effect of structural type on MDOF modification factor for (a) 10-storey

and (b) 15-storey structures located on Site class E.

Results for 1/RM (averaged values for the 15 synthetic earthquakes in each set)

are illustrated in Figures 5.18, considering various structural types, numbers of

storeys, ductility demands and site classes. Since the values of MDOF modification

factor for frame structures are very close to each other (see Figure 5.17), the results

were averaged for structural types 1-3. As discussed previously, the effect of SSI is
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expected to be pronounced for site class E and insignificant for site class C.

5 10 15 20
0

0.5

1

1.5

2

2.5

3
1

/R
M

=V
M
D
O
F/
V
SD

O
F

1
/R

M
=V

M
D
O
F/
V
SD

O
F

1
/R

M
=V

M
D
O
F/
V
SD

O
F

Number of storeys

5 10 15 20
0

0.5

1

1.5

2

2.5

3

5 10 15 20
0

0.5

1

1.5

2

2.5

3

5 10 15 20
0

0.5

1

1.5

2

2.5

3

5 10 15 20
0

0.5

1

1.5

2

2.5

3

 

 

Site Class E Site Class E

Site Class D Site Class D

Number of storeys
5 10 15 20

0

0.5

1

1.5

2

2.5

3

 

 

Site Class C Site Class C

(a) (b)

Moghaddam and Mohammadi 

m=4

m=6

m=8

m=2Type 1-3 Type 4

Type 1-3 Type 4

Type 1-3 Type 4

m=4

m=6

m=8

m=2

Figure 5.18: Site and interaction-dependent MDOF-to-SDOF base shear strength

ratio (1/RM) for (a) frame structures and (b) all other types of structures.

Figure 5.18 shows that, in general, inelastic MDOF structures require a higher base

shear strength compared to their SDOF counterparts for the same target ductil-

ity demand, especially for tall buildings on stiff soil deposits. This observation

is in agreement with findings presented by Santa-Ana and Miranda (2000) for

fixed-base structures. The results in Figure 5.18 show a generally higher 1/RM

(=VMDOF/VSDOF) ratio for frame structures and stiff soil conditions than for other

structural systems and soft soil profiles. 1/RM curves also exhibit a general increas-

ing trend with increasing ductility demand and number of storeys. Exceptions are

observed for site class E where taller structures may have a lower value of 1/RM.

As foundation soil becomes stiffer, the dependence of 1/RM on ductility demand for
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moderately and highly nonlinear structures (µ=4, 6 and 8) is reduced. For example,

the results for site class C (very dense soil) in Figure 5.18 show that the effect of

ductility demand on 1/RM for structures with µ=6 and 8 is practically negligible.

This observation is consistent with the results reported by Moghaddam and Moham-

madi (2001), who investigated RM for 5, 10 and 15-storey fixed-base MDOF shear

buildings. In their study, RM was found insensitive to ductility demand; a simple

expression was suggested for estimating RM as a function of number of storeys, as

illustrated in Figure 5.18 for soil class C (with minimum SSI effects). The fact

that the RM factor proposed by Moghaddam and Mohammadi (2001) was derived

through an averaging process for ductility values µ=2, 4, 6 and 8 is well reflected

in this graph, since the results are generally bounded by the high and low-ductility

limits used in this study.

The results of this study are used to develop a new practical site and interaction-

dependent MDOF modification factor RM for flexible-base structures. Emphasis

is given to common frame buildings (types 1-3) according to ASCE (2010). By

assessing a variety of curves to obtain the best fit to the results presented in Figure

5.18, the following equation is suggested that is a function of number of storeys,

ductility demand and site class:

1

RM

= 1 + (n− 1) ln(cµ(0.05−n/1000)) (5.15)

where n is the number of storeys, and c is a soil dependent parameter that is equal

to 1.040, 1.027 and 0.982 for site classes C, D and E, respectively.

5.7 Performance-based procedures

The proposed site and interaction-dependent equations to estimate RF and RM

modification factors for SSI systems (Equations (5.10) and (5.12) can be obtained

based on standard IBC (2012) design spectra for different soil classes and, therefore,

can be directly used in practical applications. Here, the following design procedure

is suggested for performance-based seismic design of flexible-base structures (with

reference to Figure 5.19):
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Figure 5.19: Procedures for design of a flexible-base MDOF structure.

Step 1 : The MDOF structure is initially designed based on fixed-base behaviour

(i.e. by ignoring the effects of SSI) for gravity and seismic loads according to

IBC (2012).

Step 2 : The properties of the representative SDOF structure of the fixed-base

MDOF system are then calculated, including the fundamental period Ts and

slenderness ratio s by using Equations (4.2) and (4.23), respectively. The

structure-to-soil stiffness ratio a0 and characteristic period T0 are also obtained

from Equation (4.21) and Table 4.3, based on the expected shear wave velocity

Vs,30 of the given site class.

Step 3 : The base shear demand of the fixed-base elastic SDOF structure VSDOF is

calculated from the elastic design spectrum by using the period Ts.

Step 4 : To satisfy the predefined target ductility demand, the design base shear of

the inelastic flexible-base MDOF structure is directly calculated from Equa-

tion (5.13), where RF and RM are obtained from Equations (5.11) and (5.15),

respectively.

Step 5 : The calculated base shear strength is distributed according to the design

lateral load pattern used in Step 1, and the MDOF structure is designed based

on the new seismic design loads. To achieve more reliable design solutions, the

design process can be repeated from Step 2. However, the results of this study
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show that, if the initial structure is designed based on code-specified design

load patterns, one iteration would be sufficient for practical applications.

5.8 Verification of the proposed procedures

The efficiency of the proposed performance-based design procedure is demonstrated

by using several design examples. For this purpose, a number of typical 5, 10,

15 and 20-storey flexible-base buildings with, respectively, fixed-base fundamental

periods of 0.61, 1.07, 1.48 and 1.87sec and slenderness ratios of 1, 1.5, 2 and 3 were

selected. The a0 values were calculated based on the assumed shear wave velocities

of 90, 270 and 560m/s for site classes E, D and C, respectively. Following the

proposed methodology, the buildings were designed for target ductility demands of

2, 4, 6 and 8, and were subsequently subjected to the set of 15 synthetic earthquakes

representing the IBC (2012) design spectrum corresponding to the selected site class

(see Figure 5.2). The actual ductility demands, averaged for the 15 spectrum-

compatible earthquakes in each set, are compared with the target values in Figure

5.20. The comparison shows a very good agreement between the actual and expected

ductility demands, which proves the reliability of the proposed design procedure for

performance-based design of flexible-base multi-storey buildings.
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Figure 5.20: Comparison of the actual ductility demands with target ductility ratios

for (a) Site Class C, (b) Site Class D, (c) Site Class E.

Admittedly, truly nonlinear soil response up to failure was not taken into account in

the proposed design procedures. This chapter is intended to incorporate the effect of

soil compliance into design of building structures. Nevertheless, the suggested design
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methodology is applicable to practically elastic foundations. The simultaneous effect

of soil and structural plasticity will be left for future work.

5.9 Summary

The effects of soil-structure interaction on the strength and ductility demands of

single and multi-storey shear buildings were investigated in this chapter. A large

number of 1, 5, 10, 15 and 20-storey structures with a wide range of fundamen-

tal period, target ductility demand, slenderness ratio and structure-to-soil stiffness

ratio were subjected to three sets of synthetic spectrum-compatible earthquakes cor-

responding to different soil classes. Based on the results, the following conclusions

can be drawn:

• Using concentric, rectangular, trapezoidal, parabolic and code-specified design

load patterns (IBC (2012) and CEN (2004)) to design flexible-base MDOF

structures showed that the code-specified load patterns are, in general, more

suitable for long period structures, whereas the trapezoidal pattern provides

the most cost-effective design solution for short period flexible-base structures.

• For common building structures with low-to-medium ductility demands under

spectrum-compatible earthquakes, increasing structure-to-soil stiffness ratio

a0 can considerably reduce the structural strength demand in comparison to

similar fixed-base structures. This implies that for most typical buildings

considering SSI in the design process can lead to more cost-effective design

solutions with less structural weight.

• To satisfy a target ductility demand for SSI systems with similar fixed-base

fundamental periods and structure-to-soil stiffness ratios, the total structural

strength increases by increasing the slenderness ratio s, especially in the short

period range (i.e., Ts <0.5sec).

• By assessing performance of a large number of SSI systems under spectrum
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compatible earthquakes, simple equations were introduced to calculate the

site and interaction-dependent MDOF modification factor (RM) and strength

reduction factor (RF) for flexible-base structures by taking into account the

effects of both SSI and inelastic hysteretic behaviour of the structure.

• Based on the results, a practical performance-based design procedure was pro-

posed to calculate the strength demand of an MDOF flexible-base structure

to satisfy a predefined target ductility demand. The reliability and efficiency

of the method was demonstrated by using several design examples.
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Chapter 6

A more rational design

methodology for buildings located

on very soft soil profiles

6.1 Introduction

This chapter addresses several issues concerning the seismic design of structures on

soft soil profiles by using spectrum-based methods. The problems of the current

code-specified design spectra for design of buildings on very soft soil deposits are

discussed. One of the main objectives of the chapter is to provide solutions to these

problems. This will be done by introducing bi-normalised design spectra for both

elastic and inelastic building systems. The concept of a bi-normalised spectrum

is based on normalising the natural period of vibration of a system so that the

characteristics of the spectrum is well reflected. The other focus of the chapter is on

application of the design methodology to soil-structure interaction systems. For this

purpose, an efficient approach is proposed, on the basis of extending the equivalent

fixed-base SDOF (EFSODF) oscillator developed in Section 4.4 to yielding systems.

In addition, the ‘errors’ between the EFSODF oscillators and corresponding actual

SSI systems are identified and corrected.
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6.2 Code design spectra for soft soil profiles:

problems and remedies

The preliminary design of typical building structures in current seismic design codes

and provisions is mainly based on elastic spectrum analysis, where the base shear

and displacement demands of yielding systems are estimated by using modification

factors such as ductility reduction factor Rµ and inelastic displacement ratio Cµ, as

explained in Section 5.2. These code-based design spectra and modification factors

are usually derived by averaging the results of response-history analyses performed

on simplified building models using a number of earthquake ground motions. It was

also shown in previous chapters that the smoothed elastic design spectral shapes are

usually defined by different soil types which are classified mainly according to Vs,30

(e.g., Figure 5.2 and Table 4.3). The fact that soft soil sites amplify the long-period

components of an input motion results in an increased range of the flat portion (i.e.,

constant acceleration segment) of an elastic design spectrum for softer soil sites.

However, numerous studies have shown sharp peaks in response spectra for soft

soil profiles rather than a flat shape. This inconsistency between averaged and

individual response spectra is illustrated in Figure 6.1 for three different motions

(used as free-field ground motions) recorded in the 1989 Loma Prieta earthquake.
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Figure 6.1: Averaging response spectra with peaks at separated periods reduces the

peak responses.
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It is shown that the response spectra for the three motions exhibit predominant

peaks at vastly different periods. Averaging these spectra leads to significantly lower

spectral ordinates compared to the individual spectrum. Xu and Xie (2004) and

Ziotopoulou and Gazetas (2010) demonstrated that by using an elastic design spec-

trum in the format of Peak Response Acceleration (PRA) normalised with respect

to the Peak Ground Acceleration (PGA) versus period T normalised with respect

to the predominant period TP corresponding to the maximum spectral acceleration,

the peak of the mean spectrum could be preserved (see Figure 6.2). Moreover, the

so-called bi-normalised Response Spectra (BNRS) exhibit much less dependence on

soil types and epicentre distance when compared with those currently being adopted

in various design codes.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

Sa
/P
G
A

T

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

T/TP

Figure 6.2: Comparison of conventional and bi-normalised response spectra pre-

sented in Ziotopoulou and Gazetas (2010).

Studies on inelastic seismic structural demands have also revealed that the inelastic

response of structures on very soft soil sites can be significantly different to those

corresponding to hard rock or firm sites. The strength and displacement demands of

an inelastic system relative to those of an elastic system were strongly dependent on

the ratio of the elastic structural period to a predominant period Tg (e.g., Miranda,

1993; Ruiz-Garcıa and Miranda, 2006). Tg can either be determined at the maximum

ordinate of an input energy spectrum Se (5% damped) or the maximum value of

the corresponding spectral velocity Sv. Both methods have proved to be valid (see,

e.g., Miranda, 1991), as shown in Figure 6.3(a). ‘Peaks’ and ‘valleys’ were observed,

respectively for the ductility reduction factor and the inelastic displacement ratio

spectra, at a period ratio T/Tg approximately equal to one. Using 20 ground motions
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recorded on very soft soil sites provided in Table 6.1, the averaged ductility reduction

factor Rµ and inelastic displacement ratio Cµ for a 5% damped SDOF oscillator are

well characterised in Figure 6.3(b).
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Figure 6.3: (a) Calculation of the predominant period Tg. (b) Normalising period

against Tg preserves ‘peaks’ and ‘valleys’ of averaged Rµ and Cµ.

6.3 Nonlinear EFSDOF oscillator for estimating

seismic response of soil-SDOF structure sys-

tems

The concept of using an equivalent fixed-base SDOF oscillator (EFSDOF) to capture

the linear response of a soil-SDOF structure system was explained in Section 4.4. In

this section, procedures for implementing the EFSDOF in performance-based design

of flexible-base buildings are introduced. The EFSDOF oscillator is also extended

to account for nonlinear structural response.

Figure 6.4 schematically illustrates how the EFSDOF oscillator approach can be
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used to design flexible-base structures. For elastic systems, an SSI system shown in

Figure 6.4(a) can be replaced by a fixed-base oscillator with Tssi and ξssi (see Figure

4.7) shown in Figures 6.4(b). As a result, the base shear and displacement demands

of the flexible-base system can be obtained from a response spectrum derived for

fixed-base structures with effective damping ratio ξssi and elongated period Tssi (or

reduced initial stiffness kssi).
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Figure 6.4: Relations between actual SSI systems and corresponding EFSDOF os-

cillators.

If the superstructure exhibits nonlinear deformations, the maximum seismic lateral

force imposed on the structural mass of the SSI system will be equal to the base shear

strength Vy of the superstructure. To measure the level of inelastic deformations,

either the structural ductility demand or a global ductility demand can be used.

The structural ductility demand µs=us,m/us,y measures the degree of damage in the

superstructure while the global ductility demand, defined as

µssi =
ussi,m

ussi,y

' ussi,mω
2
ssim

Vy

(6.1)

measures the ‘deformation’ of the SSI system. In Equation (6.1), ussi,m and ussi,y

are respectively the maximum displacement and yield displacement of the structural

mass relative to ground. Based on the assumption that the energy dissipated by

yielding of the SSI system (Figure 6.4(c)) is equal to that of the EFSDOF oscillator
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(Figure 6.4(d)), the following relation between the global and structural ductility,

with reference to Figure 6.4(e), can be obtained (Muller and Keintzel, 1982; Ghan-

nad and Ahmadnia, 2002a; Avilés and Pérez-Rocha, 2003):

µssi =

(
Ts

Tssi

)2

(µs − 1) + 1 (6.2)

There are two ways to interpret Equation (6.2): (1) it provides a relationship be-

tween the ductility demand of the structure itself and the global ductility demand

of the entire SSI system; and (2) it implies that the base shear demand required

for the actual flexible-base structure to achieve a ductility demand of µs is equal

to that of the EFSDOF to achieve a ductility demand of µssi under an equivalent

seismic excitation. The latter interpretation actually signifies that the conventional

spectrum-based design methodology for fixed-base structures holds for SSI system,

simply by replacing Ts, ξs and µs with Tssi, ξssi and µssi, respectively.

Before a EFSDOF oscillator can be implemented in design of an actual SSI system,

two issues should be examined. Firstly, the EFSDOF oscillator serves as an approx-

imation of the actual SSI system, its performance should be assessed under possible

design scenarios. Secondly, the effect of damping on response spectra and modifica-

tion factor should be considered, which is especially important when predominant

periods are introduced.

It is worth mentioning that Ordaz and Pérez-Rocha (1998) investigated simulta-

neously the effects of damping ratio and frequency content of ground motion on

ductility reduction factor of a SDOF oscillator with initial damping ratio ranging

from 2 to 5%. They attributed the dependence of Rµ factor to the corresponding

elastic spectral displacement Sd and the expected ductility demand µ:

Rµ = 1 +

(
D(T, ξ, µ = 1)

PGD

)β
(µ− 1) (6.3)

where D(T, ξ, µ = 1) is the elastic spectral relative displacement, PGD is the peak

ground displacement; and β, regressed against various ductility values ranging from

1.5 to 8 for different ground motion sets representing soft to firm sites, is expressed

as:

β = 0.388(µ− 1)0.173 (6.4)
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Note that the effects of initial damping and frequency content of motion are implic-

itly accounted for by the shape of the elastic displacement spectrum. Equation (6.4)

was claimed to be appropriate for a damping ratio ranging between 2 and 10%. It

can be seen from Equation (6.4) that the shape of Rµ versus T is similar to that of

the elastic relative displacement spectrum. Therefore, the period Tg at which peak

Rµ occurs coincides with that corresponding to the maximum spectral displacement.

Based on the concept of ESDOF, Equation (6.4) can be written for a flexible-base

structure as:

Rµ,ssi = 1 +

(
D(Tssi, ξssi, µssi = 1)

PGD

)β
(µssi − 1), β = 0.388(µssi − 1)0.173 (6.5)

More recently, Jarernprasert et al. (2013) proposed a simple formula for estimat-

ing the ductility reduction factor of flexible-base structures. Their work is based

on a constant base shear demand spectrum corresponding to a mean ductility de-

mand (Jarenprasert et al., 2006). The mean ductility demand µmean was calculated

by averaging values obtained from all ground motions with a prescribed value of

base shear V . By progressively reducing the base shear demand, they found that

log(µmean) varied approximately linearly with log(V ).

The proposed reduction factor Rµs , as a function of the structural ductility de-

mand µs, equivalent natural period Tssi and the period lengthening ratio Tssi/Ts,

was associated with a fictitious spectrum (referred to as the “unreduced spectrum”

in Jarernprasert et al. (2013)) which corresponds to the intersections of the fitted

straight lines (which approximate log(µmean) versus log(V )) and the axis of µmean=1.

The following expression was suggested to relate ductility and its reduction factor:

Rµ,s = (µn(Tssi)
s )(Ts/Tssi) (6.6)

where n(Tssi) is an inelastic modification factor of a fixed-base system, with its

negative values representing the slopes of the fitted straight lines.

It should be mentioned that Equation (6.6) was derived by varying the values of

Tssi/Ts from 1 to 1.5 with a constant slenderness ratio of s ≈ 2.5. Looking back at

Figure 4.7, a combination of Tssi/Ts=1.5 and s=2.5 corresponds approximately to
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an a0 value of 2, which means that the maximum damping ratio of the entire SSI

system ξssi investigated by Jarernprasert et al. (2013) was less than 10%. However,

Tssi/Ts=1.5 could lead to more than 20% of ξssi for structures with a slenderness ratio

of s=1. Even if the standard requirement that the system damping ratio ξssi should

never exceed 20% (see Equation (2.15)) is considered, an initial system damping

ratio greater than 10% may have a significant effect on the ductility reduction factor.

Using Equation (6.6), therefore, should be justified in cases where squatty structures

are located on very soft soil deposits (ξssi > 10%).

6.4 Bi-normalised response spectra for SSI sys-

tems

In this section, the effects of frequency content of ground motion and soil-structure

interaction on elastic response spectra are investigated. A total of 20 ground motions

recorded on very soft soil profiles are used, as presented in Table 6.1. In design of

fixed-base structures, the pseudo-acceleration spectra are often adopted, since they

are practically identical to the corresponding actual-acceleration spectra due to the

fact that the damping force is usually very small compared with the restoring force

for low damping ratios (e.g., 2-5%). However, when using a EFSDOF oscillator,

the actual acceleration should be considered for design of base shear of flexible-base

structures. This can be shown by the dynamic force equilibrium of the structural

mass in the actual SSI system with reference to Figure 4.5:

(üssi + üg) + 2ωsξsu̇s + ω2
sus = 0 (6.7)

where the actual acceleration (üssi + üg) is very similar to the pseudo acceleration

ω2
sus. Formulating the equation of motion for the EFSDOF oscillator in 4.5 and

replacing the subscript ‘SDOF’ with ‘ssi’ gives:

(üssi + üg) + 2ωssiξssiu̇ssi + ω2
ssiussi = 0 (6.8)

In fact, in Equation (6.8), the actual acceleration (üssi + üg) could be significantly

higher than the pseudo acceleration ω2
ssiussi due to high damping (i.e., large values

of ξssi).
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Table 6.1: Ground motions recorded on very soft soil profiles.

Date Event name
Magnitude

Station
Component PGAs

(Ms) (◦) (cm/s
2
)

10/17/89 Loma Prieta 7.1
Foster City (APEEL 1; 0 263

Redwood Shores) 90 278

10/17/89 Loma Prieta 7.1
Larkspur Ferry 270 135

Terminal 360 95

10/17/89 Loma Prieta 7.1
Redwood City (APEEL 43 270

Array Stn. 2) 133 222

10/17/89 Loma Prieta 7.1
Treasure Island (Naval 0 112

Base Fire Station) 90 98

10/17/89 Loma Prieta 7.1
Emeryville, 6363 260 255

Christie Ave. 350 210

10/17/89 Loma Prieta 7.1
San Francisco, 0 232

International Airport 90 323

10/17/89 Loma Prieta 7.1
Oakland, Outer 35 281

Harbor Wharf 305 266

10/17/89 Loma Prieta 7.1
Oakland, Title 180 191

and Trust Bldg. 270 239

10/17/89 Loma Prieta 7.1
El Centro Array 3, 140 261

Pine Union School 230 217

10/15/79 Imperial Valley 6.8
El Centro Array 3, 140 261

Pine Union School 230 217

04/24/84 Morgan Hill 6.1
Foster City (APEEL 1; 40 45

Redwood Shores) 310 67

Figure 6.5 compares spectral accelerations of actual SSI systems and EFSDOF os-

cillators. Two SSI systems are considered, with a0=3, s=4 and a0=2.5, s=1 rep-

resenting respectively initial damping ratios of ξssi=0.05 and 0.21. The spectral

acceleration of the actual SSI systems was obtained by dividing the base shear de-

mand by the mass of the structure (i.e., Vmax/m=ω2
sus,max). As expected, for the

highly damped system, using the pseudo acceleration of the EFSDOF oscillator un-

derestimates the potential base shear demands. It is also observed that the spectral

predominant period TP is almost unaffected by the initial system damping ratio.
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Figure 6.5: Comparison of spectral accelerations of actual SSI systems and EFSDOF

oscillators for the 0◦ component of Loma Prieta earthquake at station Foster City

(APEEL 1; Redwood Shores).

The average acceleration response spectra of the 20 selected ground motions (Table

6.1) is calculated for SSI systems with different damping ratios as shown in Figure

6.6. To avoid disregarding the frequency content of the ground motions, the results

are also presented by using Bi-Normalised Response Spectrum (BNRS) curves. In

Figures 6.6(a) and (b), the solid lines represent the actual SSI systems, whereas the

dashed lines are the results obtained using the EFSDOF oscillators. The spectral

acceleration (Sa) of an SSI system is again defined as ω2
sus,max, while the spectral

(actual) acceleration of the EFSDOF oscillator is obtained based on the response

of a fixed-base SDOF system with equivalent damping ratio ξssi. To calculate the

bi-normalised response spectra, the predominant period TP was measured for each

earthquake record at its maximum spectral ordinate value. Since this period is

almost unaffected by the initial damping level in the range of interest (i.e., ξssi=5-

20%), a value of TP corresponding to 5% damping was used for all systems.

It is evident from Figure 6.6 that the conventional acceleration response spectra ex-

hibit two subsequent peaks, whereas the BNRS curves reach a distinct peak value at

Tssi/TP ≈ 1. As discussed earlier, BNRS can provide more reliable results by taking

into account the frequency content of the ground motions in the averaging process.

The peak spectral ordinates of the BNRS for system damping ratios ξssi=0.05, 0.1,

0.16 and 0.21 are respectively 1.22, 1.17, 1.13 and 1.11 times higher than those of
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the conventional spectra. It should be noted that, by using more ground motion

records, the spectral shape in Figure 6.6(a) would become more similar to those

adopted by seismic codes where a flat segment is expected due to averaging and

smoothing. In that case, the difference of the peak values between the conven-

tional and bi-normalised spectra would be even more significant (Xu and Xie, 2004;

Ziotopoulou and Gazetas, 2010).
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Figure 6.6: Elastic response acceleration spectra of flexible-base structures presented

in (a) a conventional format and (b) a bi-normalised format.

It is also observed in Figure 6.6 that for systems with higher initial damping ratios

(e.g., a0=2 or 2.5 and s=1), the performance of the EFSDOF oscillators is not as

satisfactory as for systems with lower damping ratios (e.g., a0=3 and s=2 or 4),

when Tssi > 0.7sec or Tssi/TP > 1. However, despite a maximum underestimation

of about 10%, the results indicate that the EFSDOF oscillator can be practically

used to predict the acceleration response of an elastic SSI system. As illustrated in

Figure 4.7, for buildings having a slenderness ratio of s ≥ 2 on very soft soil profiles

(i.e., ν ≈ 0.5), the system damping ratio ξssi is always less than about 10%. In other

words, the EFSDOF oscillator can be applied to response spectrum analysis of SSI

problems with practically no ‘errors’ for structural slenderness ratios exceeding 2,

in comparison with the actual SSI system.
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6.5 Ductility reduction factor and inelastic dis-

placement ratio

Ductility reduction factor Rµ and inelastic displacement ratio Cµ, as described in

previous sections, are currently used in many performance-based seismic design

codes and provisions (ASCE, 2013; CEN, 2004) to estimate the seismic response

of fixed-base non-linear structures subjected to earthquake excitations. The effect

of SSI on Rµ, associated with the structural ductility demand, was investigated in

Section 5.4 by using different values of structure-to-soil stiffness ratio a0 and slender-

ness ratio s. Khoshnoudian et al. (2013) proposed a formula for CR (=Cµ), mainly

as a function of Ts (fixed-base structural period), a0, s and R (=Rµ), to estimate the

inelastic distortion of a SDOF structure located on soft soil profiles. In their study,

CR was calculated based on peak displacements excluding the rigid-body swaying

and rocking motions of the foundation.

From Section 5.3, the effects of a0 and s on structural response were shown to be

attributed to the effects of Tssi and ξssi. Therefore, instead of using Ts, a0, s and µs to

characterise the properties of an SSI system, the following analyses will be performed

by using different values of Tssi, ξssi and µssi. By doing so, the performance of the

EFSDOF oscillator can also be assessed. A number of actual SSI models were created

by using various combinations of a0 and s to achieve effective damping ratios ξssi

ranging from 5 to 20%. Correspondingly, the predominant period Tg was measured

when the maximum ordinate of the corresponding relative velocity spectrum (for a

damping ratio of ξssi) occurred (see Figure 6.3).

Figure 6.7 compares the conventional and normalised Rµ and Cµ spectra derived

by using both actual SSI models and EFSDOF oscillators. The a0 and s values of

SSI systems were chosen so that the effective system damping ratio ξssi was approxi-

mately equal to 5%, which was then assigned to the EFSDOF oscillators. The results

in Figure 6.7 are the averaged Rµ and Cµ spectra obtained for all 20 ground motions

and are presented in both conventional and normalised formats. As expected from

previous studies, the peaks and valleys are more noticeable by using the normalised
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format (Figures 6.7(b) and (d)). For instance, normalised response spectrum curves

indicate that, at a period ratio Tssi/Tg ≈ 1, the peak displacement of an inelastic

system is on average smaller than its elastic counterparts (i.e., Cµ < 1) while the

ductility reduction factor Rµ is always maximum. This important behaviour is not

obvious from the conventional response spectra shown in Figures 6.7(a) and (c).
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Figure 6.7: Comparison of ductility reduction factor Rµ and inelastic displacement

ratio Cµ spectra obtained by using the simplified SSI models and the EFSDOF

oscillators having a 5% damping ratio. Spectra are presented in both conventional

(a, c) and normalised (b, d) formats.

It is shown in Figure 6.7 that the EFSDOF oscillator is, in general, able to pro-

vide a reasonable estimate of Rµ and Cµ for SSI systems. However, for slender

structures and very soft soil conditions (e.g., a0=3, s=4) where period lengthening

becomes higher, the EFSDOF oscillator approach slightly underestimates Rµ, which

consequently leads to an overestimation of Cµ, especially at higher global ductility

demands. Since the EFSDOF oscillator works perfectly well in predicting the elastic

response of the SSI system with a0=3 and s=4 (see Figure 6.6(b)), the underesti-

mation of Rµ could be a result of a higher strength predicted by the oscillator than
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that required by the actual SSI system to satisfy a target ductility demand. As

will be discussed in the following sections, due to a large period lengthening effect,

a global ductility ratio µssi=4 for an SSI system with a0=3 and s=4 corresponds

to an unexpectedly high structural ductility ratio µs > 10, which is not used in

common practice. Therefore, the results for higher global ductility demands are not

considered important for practical design purposes.

For a higher effective damping ratio ξssi=10%, shown in Figure 6.8, the performance

of the EFSDOF oscillator is still excellent. However, in general, Rµ calculated by the

EFSDOF oscillator approach is slightly higher than the values for the SSI models.

The data in Figure 6.8 also includes results for an SSI system with a larger soil

material damping ratio of ξg=10%, whose Rµ and Cµ are well predicted by the

EFSDOF oscillator. Therefore, it can be concluded that the EFSDOF oscillator is

a viable substitute for a lightly-to-moderately damped SSI system.
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Figure 6.8: Comparison of ductility reduction factor Rµ and inelastic displacement

ratio Cµ spectra obtained by using the simplified SSI models and the EFSDOF

oscillators having a 10% damping ratio.

123



Seismic Soil Structure Interaction In Performance-Based Design Chapter 6

Figure 6.9 presents the results for a much higher initial damping ratio µssi=20%,

which is the upper limit of the overall damping of an SSI system suggested in seismic

provisions. It is shown that the EFSDOF oscillators, on average, over-predict the

ductility reduction factor Rµ, while they underestimate the inelastic displacement

ratio Cµ of the corresponding SSI systems. For the normalised Rµ spectra shown in

Figure 6.9(b), this over-prediction, which is up to 26%, is more pronounced when

the Tssi/Tg ratio is smaller than 1.5.
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Figure 6.9: Comparison of ductility reduction factor Rµ and inelastic displacement

ratio Cµ spectra obtained by using the simplified SSI models and the EFSDOF

oscillators having a 20% damping ratio.

It is worth mentioning that although the EFSDOF oscillators are able to predict the

peak response at Tssi/Tg ≈ 1 in the Rµ spectra shown in Figure 6.9(b), maximum

Rµ values for the actual SSI models occur at a normalised period Tssi/Tg somewhat

larger than one. This indicates that for highly damped systems, using Tg at which

a SDOF oscillator attains its maximum spectral velocity may not be perfect for

normalising the Tssi for the actual SSI systems. The results for other values of

damping ratio ξ are presented in Appendix B.2.
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It can be concluded from the stated observations that the EFSDOF oscillators, over

a wide normalised period range, over- and under-estimate, respectively, Rµ and Cµ

values for SSI systems with a high initial damping ratio. Therefore, a correction

factor can be introduced to improve the predictions of the EFSDOF oscillators for

highly damped SSI systems. According to Figure 6.9, emphasis should be given

to modifications that improve prediction of Rµ and Cµ by EFSDOF oscillators in

the low-to-intermediate normalised period range while maintaining the use of Tg

obtained using the EFSDOF oscillator. Note again that for common building struc-

tures having a slenderness ratio s greater than 2, the effective system damping ratio

is always lower than 10% regardless of a0 values (see Figure 4.7), which means that

the EFSDOF oscillator approach can directly be applied to these structures without

any modifications.

To improve the efficiency of EFSDOF oscillators to predict the seismic response of

SSI systems, a correction factor αξ is defined in this section as the ratio of Rµ pre-

dicted by an EFSDOF oscillator (Rµ,EO) to that of an actual SSI system (Rµ,ssi) for

a target global ductility demand. According to Equation (5.7), αξ can alternatively

be expressed as the ratio of Cµ of the SSI model (Cµ,ssi) to that of the EFSDOF

oscillator (Cµ,EO):

αξ(T/Tg, ξ, µ) =
Rµ,EO(T/Tg, ξ, µ)

Rµ,ssi(T/Tg, ξ, µ)
=

Cµ,ssi(T/Tg, ξ, µ)

Cµ,EO(T/Tg, ξ, µ)
(6.9)

The ductility reduction factor ratios Rµ,EO/Rµ,ssi were calculated for each of the SSI

systems having ten different initial effective damping ratios varying from 11-20%.

Figure 6.10(a) is an example of the results for SSI systems with a global ductility

ratio µssi=5. As expected, the correction factor increases with initial system damping

level, and the averaged data exhibits, approximately, an ascending, a constant and a

descending trend, respectively, in spectral regions Tssi/Tg < 0.4, 0.4 ≤ Tssi/Tg < 0.9

and Tssi/Tg ≥ 0.9. Mean Rµ,EO/Rµ,ssi ratios for ductility values from 2 to 5 are

compared in Figure 6.10(b), which shows that in general, greater correction factor

values should be applied to more ductile systems. Figure 6.10(b) also illustrates the

mean αξ spectra derived using both ratios of Rµ,EO/Rµ,ssi and Cµ,ssi/Cµ,EO, which are

fairly similar and may be approximated by using the following simplified piecewise
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expression that is also illustrated in Figure 6.10(b):

αξ =



m− 1

0.4

T

Tg

+ 1,
T

Tg

≤ 0.4

m, 0.4 <
T

Tg

≤ 0.9

m− 1

0.6

(
1.5− T

Tg

)
+ 1, 0.9 <

T

Tg

≤ 1.5

1,
T

Tg

≥ 1.5

m = µ(0.12 lnξ +0.3) (6.10)
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Figure 6.10: (a)-(b) Proposed correction factor αξ; and (c)-(f) improved performance

of the EFSDOF oscillator approach for moderately to highly-damped SSI systems.

Figures 6.10 (c)-(f) demonstrate that Rµ and Cµ spectra derived using the correction

factor αξ are in much better agreement with those for the actual SSI systems when

compared to data in Figure 6.9.
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The correction factor αξ proposed in this section provides a link between the Rµ

and Cµ factors of the EFSDOF oscillators and those of the corresponding actual SSI

systems. As mentioned in Section 6.3, Equation (6.5) may be used to calculated Rµ

for the EFSDOF oscillator, and therefore Cµ can then be determined by Equation

(5.7). To check the effectiveness of Equations (5.7) and (6.5), Rµ and Cµ spectra were

derived using these equations for each of the selected 20 ground motions (Table 6.1)

considering four values of ductility demand µ=2, 3, 4, 5 and three values of initial

damping ratio ξ=5%, 10% and 20%. The mean response spectra are compared

in Figure 6.11 with the results obtained by response-history analysis performed on

EFSDOF oscillators, which were shown in Figures 6.7-6.9.

m=5

C
m

(a)

0 1 2 3
0

0 1 2 3
0

2

4

6

8

10

0 1 2 3
0

1

2

3

4

1

2

3

4

0 1 2 3
0

2

4

6

8

0 1 2 3
0

1

2

3

4

0 1 2 3
0

2

4

6

8

m=5

m=4

m=2
m=3

m=2

R
m

R
m

C
m

m=5

m=2

(b)

R
m

C
m

T /Tg

m=5

m=2

(c)

m=3

m=5

m=4

m=2

m=3

m=5

m=4

m=2

x=5%

EFSDOF
Ordaz and Pérez-Rocha

x=10%

x=20%

T/Tg

Figure 6.11: Comparison of normalised Rµ and Cµ spectra obtained using the EFS-

DOF oscillators with those derived by reduction rule proposed by Ordaz and Pérez-

Rocha (1998) for initial damping ratios (a) ξ=5%, (b) ξ=10% and (c) ξ=20%.
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Despite the fact that the peak responses of Rµ are not exactly reproduced (being

underestimated), Equation (6.5) provides an excellent estimation of the variation

of Rµ with the period ratio T/Tg. Although Equation (6.5) was suggested to be

suitable for systems with an initial damping ratio less than 10%, it seems to work

better for higher damping ratios (peaks are reduced) considering the 20 ground

motions. Overall, Equation (6.5) is proved to be a useful reduction rule and can be

applied in force-based design procedures. The under-prediction of the peak values

of Rµ is in fact beneficial and conservative.

It should be mentioned that Ramirez et al. (2002) concluded that the effect of

using different viscous damping ratios in the range of 5-30% on Cµ spectrum was

insignificant. This conclusion seems to apply to the results for Cµ illustrated in

Figure 6.11. However, the deviation of the ‘valleys’ in the Cµ spectra, as a result

of variation of damping ratio, is not as visible as that of the ‘peaks’ in the Rµ

spectra, due to the scale of the ordinate. For example, using 5% damping-based Cµ

to calculate Rµ for a 20% damped system is unconservative (i.e., overestimate Rµ)

for T/Tg close to one.

6.6 Structural and global ductility ratio

Although the global ductility µssi relates the maximum displacement of an elastic

SSI system to that of a yielding system, the structural ductility µs is sometimes

more important since it directly reflects the expected damage in a structure (see

Section 5.2). By using the global ductility µssi, the structural ductility ratio µs can

be calculated according to Equation (6.2). In order to evaluate the effectiveness of

this Equation, the actual structural ductility ratios µs obtained by response-history

analysis using the simplified SSI model (points) are compared with those calculated

using Equation (6.2) (lines). The presented results are the average values for 20

earthquake records considering four global ductility values of µssi=2, 3, 4, and 5.

In general, Figure 6.12 shows a good agreement between Equation (6.2) and the

results of response-history analyses, especially for lightly-damped SSI systems whose
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equivalent natural periods are close to their fixed-base systems (e.g., Figure 6.12(a)).

For highly nonlinear structures, on the other hand, using Equation (6.2) leads to

an overestimation of µs. This is in particular prominent for systems with a higher

period lengthening effect shown in Figures 6.12(b), (c) and (e). However, it may

not be important for common buildings that are usually designed for a structural

ductility ratio less than 8. It should be noted that for a given global ductility value,

the period lengthening effect is greater for structures with higher structural ductility

ratio. Within the shaded areas representing the range of µs in design practice shown

in Figure 6.12, µs correlates very well with µssi by Equation (6.2).
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Figure 6.12: Comparison of structural ductility ratios µs obtained by response-

history analysis using the simplified SSI model (points) with those calculated using

Equation (6.2) (lines). Shaded areas represent the practical range of µs.
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6.7 Summary

Several issues concerning the design of structures located on very soft soil profiles

were investigated in this Chapter. A large number of response-history analyses were

carried out by using a simplified soil structure interaction model to study the elastic

and inelastic response spectra of buildings on soft soil profiles. Based on results for

20 ground motions recorded on very soft soil deposits, it was shown that normalising

the equivalent period of an SSI system Tssi by the corresponding predominant periods

resulted in more rational spectra for seismic design purposes. In the elastic response

spectra, Tssi is normalised by the spectrum predominant period TP corresponding

to the peak ordinate of a 5% damped elastic acceleration spectrum, while for non-

linear structures Tssi should be normalised by the predominant period of the ground

motion, Tg, at which the relative velocity spectrum reaches its maximum value.

It was also shown that an actual SSI system could be replaced by an equivalent fixed-

base SDOF (EFSDOF) oscillator having a natural period of Tssi, a viscous damping

ratio ξssi and a global ductility ratio of µssi. The EFSDOF oscillator provided an ex-

cellent estimate of the elastic and inelastic spectra for lightly-to-moderately damped

SSI systems. When using an EFSDOF oscillator, the actual acceleration should be

considered for the response spectrum of flexible-base structures. It was shown that

the EFSDOF oscillators, in general, overestimate the ductility reduction factor Rµ

of SSI systems with high initial damping ratio (e.g. squatty structures founded on

very soft soil profiles), which consequently leads to an underestimation of inelastic

displacement ratio Cµ. Based on the results, a correction factor was proposed to

improve the efficiency of replacement oscillators to predict the seismic response of

SSI systems with effective damping ratio greater than 10%.

Finally, it was demonstrated that for any ground motion, the structural ductility

demand of a nonlinear flexible-base structure can be calculated, with a desirable

accuracy, from the global ductility demand of the whole SSI system. The EFSDOF

oscillator can thus easily be implemented in the performance-based design of struc-

tures on soft soil with a target ductility ratio which is defined either for an SSI

system or for the structure alone.
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Chapter 7

A nonlinear sway-rocking model

for seismic assessment of buildings

on mat foundations

7.1 Introduction

Studies in Chapters 5 and 6 focused on the design of flexible-base nonlinear struc-

tures on the basis of the assumption that yielding in soil is not allowed to occur.

However, nonlinearities in the soil (corresponding to large strains) and at the soil-

foundation interface are almost unavoidable in strong seismic events. Moreover, a

growing body of research suggests that soil nonlinearities may be beneficial to build-

ings and thus could be considered to be a design aspect (Anastasopoulos et al., 2010;

Gazetas, 2015). It becomes increasingly important to incorporate this new concept

into performance-based design methods. The objective of this chapter is to develop

a nonlinear soil-foundation model that facilitates the analysis of soil-structure inter-

action in preliminary design stage. For this purpose, a simplified spring-type model

is considered and its properties are calibrated against data obtained from a more

comprehensive domain-type model.
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7.2 Background and definition of the Problem

Recent studies on SSI have shown reduced seismic ductility demands of structures

due to nonlinearity that arises mainly from the mobilisation of the ultimate capacity

and the uplifting response of shallow foundations. These studies have mainly focused

on stiff slender structures on small foundations, such as shear walls (e.g., Gajan et

al., 2005), bridge piers (e.g., Ugalde et al., 2007; Anastasopoulos et al., 2013), and

framed structures (e.g., Gelagoti et al., 2012; Chang et al., 2006) supported by

spread footings. It has been found that the uplift of one side of the footing not only

results in geometric nonlinearity at the soil-footing interface, but causes yielding

of soil on the other side, which in turn increases the uplift. Allowing mobilisation

of the foundation bearing capacity through soil yielding and foundation uplifting

limits the maximum loads that can act on the superstructure, and also leads to a

considerable amount of energy dissipation due to the hysteretic damping in the soil

(Anastasopoulos et al., 2010).

On the other hand, structures supported on spread footings may experience un-

expectedly high differential settlements during strong shaking. This phenomenon,

induced by either heavy structural loads that are unevenly distributed across the

footing, poor soil conditions, or the combination of both, can lead to failure of

structural components and hence, non-repairable damage or collapse of structures

(Anastasopoulos and Gazetas, 2007). Mat (or Raft) foundations, in these cases,

are more suitable to spread the loads from the structure to the ground. Unlike the

shear walls or bridge piers, structures supported on mat foundations are usually de-

signed with a medium slenderness ratio. This leads to a strong interaction between

the sway and rocking motions of the foundation when subjected to the horizontal

component of strong ground motion.

It has been shown that nonlinearities in the soil (corresponding to large strains)

and at the soil-foundation interface are almost unavoidable in strong seismic events

(Figini et al., 2012). Performance-based seismic design methodology embraces these

nonlinearities, provided that the responses of both structural and geotechnical com-

ponents satisfy the performance targets. In this context, it is important to develop
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reliable design tools that provide sufficient accuracy to assess the seismic perfor-

mance of SSI while maintaining simplicity so as to be easily understood and accepted

by engineers.

Using spring-type models to simulate the dynamic response of soil-structure systems

is popular in design practice because of their ease of use and clear physical meaning

(see Section 3.3). These models usually assume that the foundation soil is homo-

geneous, whereas in most cases the soil stiffness and strength increase with depth

due to the effects of overburden stress. There is a lack of an effective and efficient

spring-type model which is able to capture both nonlinear sway-rocking response of

shallow foundations and soil non-homogeneity.

In view of developing a spring-type model for seismic design of buildings on soil that

exhibits both nonlinearity and non-homogeneity, the problem should be well defined.

The problem investigated in this chapter (Figure 7.1) is a seismically-excited building

founded on a half-space consisting of saturated soft clay layers, where undrained

shear strength su and stiffness G increase linearly with depth (Poisson’s ratio ν and

density ρ remain constant).

Simplified Nonlinear 
Sway-Rocking ModelDynamic Shaking

heff

Uniform  n   r

r

w

u

M
H

V

q

Linearly increasing G  su

Building structure founded 
on a soft clay half-space

m

(a) (b)

Figure 7.1: Problem illustration: (a) a seismically-excited building supported by a

shallow foundation resting on a soil half-space; and (b) simplified nonlinear sway-

rocking model consisting of an assemblage of springs and dashpots for simulating

the seismic behaviour of the soil-foundation system.
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The foundation is assumed to be rigid, which is appropriate for a mat foundation

that is much stiffer than the soil. Foundation movements are described by the

translations w (vertical) and u (horizontal) as well as rotation angle θ, which are

correlated, respectively, with the forces V , H and moment M with respect to the

base centre. The interface between the foundation and clay is assumed to sustain

tension. This simplifying assumption is crude but uplifting will be left for future

research. The overall SSI system is initially subjected to the self-weight V of the

structure, followed by the radial load paths in the M -H plane representing the

seismically loaded structures with a predominant mode of vibration.

Figure 7.1(b) displays the simplified nonlinear sway-rocking (NSR) model where the

mass of the structure m is lumped at an effective height heff above a circular mat

foundation with an equivalent radius r=
√
A/π, where A is the area of the founda-

tion. In the NSR model, the soil half-space is replaced by an assemblage of springs

and dashpots. The plastic spring (placed closer to the foundation) simulates the

large-displacement behaviour of the soil-foundation system, whereas the spring and

dashpot arranged in parallel are used to model, respectively, the small-displacement

response and the radiation damping.

7.3 Modelling of a circular foundation on satu-

rated clay under combined static loading

This section concentrates on modelling the static response of a circular foundation

resting on an undrained clay deposit under combined loading. For this purpose, a

three-dimensional finite-difference program FLAC3D (2012) is used to simulate soil-

foundation interaction. Data from analyses performed in this section will be used

for developing the simplified NSR model in later sections.
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7.3.1 FLAC3D Model

FLAC3D (2012) is a three-dimensional finite-difference program utilising an explicit

Lagrangian scheme and the mixed-discretisation zoning technique that can be used

to solve geotechnical problems where geo-materials undergo plastic flow.

In FLAC3D, the basic calculation cycle involves iteration between solving the equa-

tions of motion at each grid-point (node) and the stress-strain constitutive equations

for each zone (element). The finite difference method in FLAC3D approximates each

derivative in these equations using a fully explicit algebraic expression relating vari-

ables at specific locations in the coordinate system. At the beginning of each time

step, the nodal velocities are derived based on the unbalanced forces and velocities

calculated in the previous step, which are then used to derive new strain rates and

stresses.

In a static problem, the final solution is obtained through a dynamic relaxation

scheme where damping is introduced to absorb kinetic energy until the maximum

unbalanced nodal force in the system falls below a limiting value, which implies

that the system is in equilibrium or in steady-state flow. In FLAC3D, the ratio of

the maximum unbalanced force to the mean of applied total forces is used as the

convergence criterion that allows users to define the desired tolerance of error.

FLAC3D provides a built-in programming language (FISH) that enables users to

write their own functions for the analysis. A variety of constitutive models are

available in FLAC3D, and in this study the linear-elastic perfectly-plastic model

obeying the Tresca failure criterion (total stress analysis) and an associated flow rule

were used to represent the saturated clay behaviour under undrained conditions.

As shown in Figure 7.2, the FLAC3D model represents a circular foundation of

diameter D resting on the surface of a cylindrical stratum of saturated clay defined

by the undrained shear strength su, the shear modulus G=500su, and Poisson’s ratio

ν=0.49. Taking advantage of symmetry, only half of the model was considered in

the analytical modelling. The undrained shear strength was assumed to increase
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linearly with depth, which results in a profile described by:

su = su0 + κz (7.1)

where su0 is the shear strength at ground level and κ is the strength gradient with

depth z. Note that G also increases at a gradient κ with depth, leading to a gener-

alised ‘Gibson’ type stiffness profile (Gibson, 1967). The degree of non-homogeneity

is measured by a dimensionless number:

λ =
κD

su0

(7.2)

with λ increasing from 0 to 6, indicating a transition from homogeneous to in-

creasingly heterogeneous soil conditions. Three values of λ were considered, with

λ =0, 2 and 6 representing homogeneous, moderately non-homogeneous and highly

non-homogeneous soil conditions, respectively.

40D

1
0

D

z

G, suG0, su0

k

D

Figure 7.2: Finite-difference mesh showing a circular foundation resting on a sat-

urated soil deposit having increasing shear modulus and undrained shear strength

with depth.

The size of the soil grid (radius 20D, depth 10D) was selected in order to simu-

late a half-space condition of unbounded soil. Previous studies have shown that

using dimensions which are just sufficient for predicting the foundation capacity

(say, within 1% accuracy when estimating the vertical bearing capacity) may lead

to 10-20% over-prediction of the initial foundation tangential stiffness (e.g., Bell,

1991; Gazetas et al., 2013). Therefore, the accuracy in prediction of the elastic

foundation stiffness for homogeneous deposits was used as the criterion for selection
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of appropriate grid dimensions. The static foundation stiffness (for uniform soil con-

dition) in pure horizontal translation and rocking motions are respectively shown

in Equations (3.11) and (3.12) while the vertical stiffness is given by (Poulos and

Davis, 1974):

Kv =
2GD

1− ν
(7.3)

Gazetas (1980) showed that soil non-homogeneity tends to reduce the ‘depth of

influence’ in response to static vertical and horizontal forces as well as bending

moment. This indicates that the grid size used for a homogeneous soil medium

should also be valid for non-homogeneous conditions.

Both load-control and displacement-control methods were used to study the be-

haviour of the foundation using FLAC3D. In the load-control analysis, the foun-

dation was modelled with zones (Young’s modulus Ef=104 ×G and Poisson’s ratio

νf=0.2) that were separated from the soil using an interface modelled as a collec-

tion of linear spring-slider systems. To simulate a bonded interface, the tensile and

shear strengths of the interface elements were assigned high values while the normal

and tangential stiffness, kn and kt were calculated using the rule-of-thumb estimate

recommended by Itasca (2012):

kn = kt = 10×
[
B + 4/3G

∆wmin

]
(7.4)

where B and G are the bulk and shear moduli of all zones adjacent to the interface

and ∆wmin is the smallest width of an adjoining zone in the normal direction. In this

way, the relative displacement between the foundation and soil is mainly controlled

by the stiffness and strength of the saturated clay. The load-control technique was

used in the unidirectional loading tests to determine the load-displacement responses

of the foundation under pure vertical or horizontal forces as well as bending moment.

Two sets of displacement-control tests were carried out in this study. In the first

set of tests (referred to as DC-1), the foundation was not physically modelled but

represented by the area of its base on the surface of the soil. Within the area,

controlled displacements were applied to the nodes that were constrained in the

horizontal direction to simulate the rigidity and roughness of the foundation. The
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first set of displacement-control tests were used for identifying the load-displacement

relations of the foundation in response to pure external loads and moments (results

shown in Figure 7.4). The second set of displacement-control tests (referred to as

DC-2) utilised the same foundation models used in the load-control tests (identical

foundation and interface properties). In addition, in each of these tests, a stiff

column was mounted on the foundation to simulate a relatively rigid superstructure,

with a controlled horizontal displacement applied to the column at the effective

height in accordance with a prescribed M/(HD) ratio (Figure 7.3).
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Figure 7.3: (a) Building subjected to horizontal varying ground acceleration; (b)

induced acceleration in the building; (c) shear force and bending moment developed

at base due to the equivalent seismic resultant inertial lateral force; (d) idealised

seismic load paths.

When loaded to failure through a specific load path, the corresponding failure point

of the foundation can be found. The failure envelope, defined as the closed surface

where all possible failure points reside in the V :H:M space, can then derived from

a number of tests conducted with different load paths.

7.3.2 Foundation force-displacement response

The tests to investigate the load-displacement characteristics of the foundation were

first performed in a load-control fashion under a unidirectional loading condition.

The controlled loading was specified by imposing nodal forces to the foundation at

appropriate increments. The global forces V , H and moment M can be calculated
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either by enforcing the equilibrium condition to the foundation or by evaluating the

integral of the stresses over the area of the interface. Both approaches have been

adopted to confirm consistency of results. A maximum allowable unbalanced force

ratio of 1× 10−6 was used as the convergence criterion.

To confirm the results of the load-control tests, an initial set of displacement-control

tests (DC-1) was conducted in FLAC3D by applying controlled uniform velocity (in

order to simulate a rigid foundation) to the ‘foundation nodes’ on the surface of the

soil half-space. The global forces were calculated as the integral of the accumulated

unbalanced nodal forces, whereas the global displacements were evaluated as the

integral of the velocity over the steps. A velocity of 3.3 × 10−8 D/step was used

to obtain the vertical and horizontal response of the foundation while an angular

velocity of 5 × 10−8 rad/step was used for analysing the rocking response. An

advantage of using the displacement-control analysis is that there is no need to

model the stiffness of the foundation or the interface, therefore the effect of these

elements is not included in the DC-1 model results.

A good agreement between results from force- and displacement-control tests was

found, as shown in Figure 7.4 which depicts the dimensionless load-displacement

responses of the foundation on a homogeneous soil (λ = 0) under unidirectional

loading. The dimensionless horizontal and vertical forces and the overturning mo-

ment are defined as H/(Asu0), V /(Asu0) and M/(ADsu0), respectively. Numerical

results shown in Figure 7.4 give a good match to the exact analytical values of 1.0,

6.05 and 0.67 (Gourvenec, 2007a). The dimensionless foundation stiffnesses for hor-

izontal, vertical and rotational responses were calculated, using data from the DC-1

tests, to be: H/(GDu)=2.76, V /(GDw)=4.11 and M/(GD3θ)=0.68, which were

within a 5% error compared with the exact analytical values of 2.65, 3.92 and 0.65

determined by Equations (3.11), (7.3) and (3.12), respectively. It was concluded

that the parameters adopted for the foundation and interface stiffness in the load-

control tests were appropriate given the good agreement obtained with the DC-1

results.

In a second set of displacement-control tests (DC-2), the path-dependent load-
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Figure 7.4: Force-displacement responses of a circular surface foundation on

a homogeneous soil half-space under unidirectional loading in load-control and

displacement-control (DC-1) tests.

displacement response was investigated through a series of push-over analyses. Let-

ting Vu, Hu and Mu denote the ultimate foundation capacities due to the pure forces

and moments in the load-control tests, the factor of safety against vertical bearing

capacity failure FSV is defined as the ratio Vu/V . In these displacement-control

tests, a vertical downward velocity (1.6 × 10−8 D/step) was firstly applied to the

nodes on the surface of the foundation and superstructure until the sum of the mea-

sured accumulated unbalanced nodal forces was, within 0.1% accuracy, equal to the

desired vertical load level V for a given value of FSV. Secondly, these unbalanced

nodal forces were applied to the corresponding foundation nodes, whose degrees of

freedom were then set free to achieve the load and stress state for the given FSV.

This was followed by the application of a horizontal displacement (at 3.3 × 10−9

D/step) to the height of the superstructure prescribed for a given moment-to-shear

ratio M/(HD).

Figures 7.5-7.7 present the push-over test results corresponding to different values of

FSV, moment-to-shear ratios and degrees of soil non-homogeneity. The tested range

of moment-to-shear ratio M/(HD) from 0.5 to 1.25 represents a typical building

structure having a small-to-moderate slenderness ratio. It can be observed that

the initial stiffness of the foundation (after applying the vertical load) reduces with
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decreasing FSV, especially for the rocking response (graphs (a)); whereas it is almost

unaffected by the load ratio (graphs (b)). However, the variation of initial stiffness

with FSV is less significant when increasing the soil heterogeneity (i.e. increasing

the λ value). The reduction of stiffness was the consequence of soil yielding during

the first loading phase, where the penetration of the foundation into the underlying

soil induced plasticity.
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Figure 7.5: Push-over curves for the foundation on a homogeneous soil (λ=0) for

(a) different FSV with M/(HD)=1, and (b) different M/(HD) with FSV=2.
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Figure 7.6: Push-over curves for the foundation on a homogeneous soil (λ=2) for

(a) different FSV with M/(HD)=1, and (b) different M/(HD) with FSV=2.
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Figure 7.7: Push-over curves for the foundation on a homogeneous soil (λ=6) for

(a) different FSV with M/(HD)=1, and (b) different M/(HD) with FSV=2.

7.3.3 V :H:M Failure Envelope

Although the push-over tests enable the path-dependent load-displacement curve

and the corresponding failure point to be obtained simultaneously, it is not a con-

venient way to develop the whole failure envelope representing the ultimate state of

the foundation, simply due to the fact that each test can only determine a single

point on the failure surface. Alternatively, a ‘swipe’ test may be introduced, where

a single displacement-control test can yield a failure curve across the 3D failure sur-

face. The ‘side-swipe’ test was proposed by Tan (1990) and has been adopted by

various researchers to identify the failure envelope (e.g., Gourvenec and Randolph,

2003; Cassidy et al., 2002). This type of test is performed in the displacement space

where the foundation is brought to failure by increasing the displacement in one

direction u1, followed by imposing displacement in the second direction u2 while

maintaining u1 (i.e. ∆u1=0). During the second loading phase, the load in the first

direction decreases with a reduction of the corresponding elastic displacement u1e.

This is accompanied by an increase in the plastic displacement u1p to maintain the

condition that ∆u1=0. As a result, the load path is believed to track close to the

failure locus in the load space.
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In order to evaluate the performance of the FLAC3D model to predict the founda-

tion ultimate capacity under combined loading, validation ‘swipe’ tests were carried

out in the M :H plane. In these tests, the foundation was rotated to failure and

then driven horizontally along the soil surface at a fixed angle of rotation. The

general modelling considerations for the ‘swipe’ tests are similar to those described

for the DC-1 tests. Figure 7.8(a) compares the ‘swipe’ test results with the finite-

element results obtained by Gourvenec (2007a). The failure points obtained from

the push-over analyses are also plotted to compare with the ‘swipe’ test results. The

agreement between the three sets of results is fairly good. Figure 7.8(b) illustrates

a 3D representation of the failure surface for the homogeneous soil condition, along

with two of the preferred seismic load paths, in the normalised load space.
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Figure 7.8: (a) Comparison of test results for the H-M interaction diagram of the

failure envelope for FSV=∞ and (b) 3D failure surface of the foundation (λ=0) and

desirable load paths in the normalised V :H:M space.

Noting that the failure envelope shown in Figure 7.8 is not symmetric, a change

in the sign of the gradients of the envelope in the H+-M+ (or H−-M−) plane oc-

curs at an abscissa that leads to the maximum moment capacity. According to the

normality rule (associated flow rule), this change in the sign of ∂M/∂H at failure

corresponds to a change of direction of the incremental plastic horizontal displace-

ment of the foundation. This phenomenon is explained in Figure 7.9 that illustrates

the foundation response under a constant load path of M/(HD)=1.25. Figure 7.9(a)

shows a reversed (backward) translation at failure of foundations resting on a uni-
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form soil deposit considering two safety factor values of FSV=3 and 6; while for the

non-homogeneous soil conditions, the foundation keeps moving forward at failure.

Figure 7.9(b) depicts the flow directions of the foundation, which are normal to the

failure envelope according to the normality rule. It should be mentioned that the

‘zero gradient’ abscissa is lower as a result of increased soil heterogeneity or reduced

safety factor. In other words, lightly loaded slender structures on a homogeneous

soil deposit are more prone to the reverse of foundation translation at failure. As a

result, data for M/(HD)=1.25 with λ=0 and FSv > 2 have not been considered in

developing the NSR model.
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Figure 7.9: (a) Push-over curves showing the horizontal response of foundations

loaded through a constant path of M/(HD)=1.25 and (b) flow directions of the

foundations at failure.

7.4 Simplified NSR model

As described in Section 7.2, the NSR model consists of spring-dashpot systems ca-

pable of capturing the nonlinear sway and rocking responses of a shallow foundation.

This section presents the mathematical formulations for characterising the behaviour

of each model component as well as the model calibration procedures.

144



Chapter 7 Seismic Soil Structure Interaction In Performance-Based Design

7.4.1 Model description

After reaching static equilibrium under vertical self-weight loading, the behaviour

of the soil-foundation system in response to a small displacement is dictated by the

initial stiffness kin. Figures 7.5-7.7 showed that this stiffness drops as the safety

factor FSV decreases and that there is no significant degradation of the initial stiff-

ness at low displacement levels. It is therefore assumed that the small-displacement

response of the foundation, corresponding to either the sway or rocking degree of

freedom, can be described using a linear relationship given by:

F = kinue (7.5)

where the global force F is calculated as the product of the initial stiffness kin and

the displacement ue. The range of the linear portion of the load-displacement curve

is defined by:

Fin = CrFc (7.6)

where Fin is the global force when first entering the plastic cycle and Cr is the ratio

of Fin to the capacity Fc.

The plastic component of the p-y springs developed by Boulanger et al. (1999)

is adopted here to simulate the large-displacement response. The p-y springs were

initially used in soil-pile interaction analyses to model the response of laterally loaded

piles. In the NSR model, the plastic spring is assumed to be rigid when |F | < Fin in

virgin loading. This rigid range of 2Fin translates with plastic loading during which

the nonlinear monotonic force-displacement curve of the plastic spring follows the

relation:

F = Fc − (Fc − F0)

[
c u50

c u50 +
∣∣up − up0

∣∣
]n

(7.7)

where up is plastic displacement component; F0 and up0 are, respectively, the global

force and plastic displacement at the start of the current plastic loading cycle; u50 is

the total displacement (ue+up) at which 50% of Fc is mobilised in monotonic loading;

and c, n are constants that control the shape of the overall load-displacement curve

of the foundation.

The radiation damping is assumed to be of viscous type and modelled through a
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dashpot placed in parallel with the linear spring, while the hysteretic damping of

the foundation is naturally accounted for by the nonlinearity embedded in the load-

displacement behaviour during the loading-unloading-reloading cycles. Equation

(3.15) may be used to calculate the upper-bound limit of the radiation damping

coefficient. It should be noted that during strong shaking events, the radiation

damping becomes negligibly small compared to hysteretic damping.

The global load-displacement behaviour of the foundation, shown in Figure 7.10,

was implemented in OpenSees (2006) for each of the swaying (F , k replaced by H,

kh, respectively) and rocking (F , u, k replaced by M , θ, kθ, respectively) responses.

Detailed descriptions of the model components are provided by Boulanger et al.

(1999) and Boulanger (2006).
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Figure 7.10: Nonlinear load-displacement response of a foundation modelled by the

equivalent spring-dashpot system.

7.4.2 Model calibration

This section presents a description of the model calibration procedure that was

performed utilising existing analytical and empirical expressions, as well as numerical

results from the static FLAC3D simulations. In practice, it is often required that

a safety factor FSV greater than 2 should be used to avoid excessive settlement;

hence, results with FSV less than 2 were not considered in the calibration.
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7.4.2.1 Initial foundation stiffness

The initial swaying or rocking stiffness of the foundation corresponds to the condition

where the vertical load V is fully developed during the construction and service

period before any shaking takes place. It is convenient to express the initial stiffness

kin as a fraction of its purely elastic counterpart k (kh and kθ correspond to swaying

and rocking degrees of freedom, respectively) as:

kin = α (FSV, λ) k (7.8)

where αk (αk,h and αk,θ correspond to swaying and rocking motions, respectively)

is a stiffness loss factor which is a function of FSV and λ. The variation of αk with

FSV for different soil heterogeneity is depicted in Figure 7.11 for the swaying and

rocking motions. The data shows that the rocking stiffness drops more significantly

than the swaying stiffness when reducing the factor of safety FSV.
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Figure 7.11: Variation of initial foundation stiffness with vertical load safety factor

for (a) swaying and (b) rocking responses.

Considering the fact that the purely elastic foundation stiffness k in Equation (7.8)

should also be a function of soil heterogeneity, k can be written as:

kh = χh (λ)
4G0D

2− ν
kθ = χθ (λ)

G0D
3

3 (1− ν)
(7.9)

where G0 is the small strain shear modulus of the soil at ground level and χ

is a dimensionless influence factor that takes into account the effect of soil non-

homogeneity. Note that for a uniform soil condition (i.e., λ=0), χ equals one and

Equation (7.9) reduces to Equations (3.11) and (3.12). A number of investigations
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have been carried out to study kh and kθ for surface foundations on non-homogeneous

soil deposits (e.g., Gazetas, 1980; Wong and Luco, 1985; Waas et al., 1985; Waas

et al., 1988; Hadjian and Luco, 1977; Booker et al., 1985). Some of these studies

found that the swaying stiffness is more sensitive to the rate of non-homogeneity

λ whereas the rocking stiffness is less affected (Gazetas, 1980; Waas et al., 1988;

Hadjian and Luco, 1977). Based on these studies, Gazetas (1991) proposed the fol-

lowing empirical expressions for estimating χ, where the subscripts h and θ refer to

swaying and rocking, respectively:

χh (λ) ≈ 1 + 0.22λ χθ (λ) ≈ 1 + 0.15λ (7.10)

It should be mentioned that most of the stated studies on which Equation (7.10)

is based assumed a drained soil condition by using a constant Poisson’s ratio of

ν=0.25 or 0.33. Results from this study, however, show that under an undrained

condition (ν →0.5), the rocking stiffness experiences a larger increase than the

swaying stiffness when soil non-homogeneity increases. Figure 7.12 compares the

variation of the influence factor χ predicted in this study with those estimated using

Equation (7.10) for two values of Poisson’s ratio ν=0.25 and 0.49.
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Figure 7.12: Effect of soil non-homogeneity and Poisson’s ratio on elastic swaying

and rocking stiffnesses.

The comparison demonstrates that for a wide range of heterogeneity (1 < λ < 10),

the variation of the swaying stiffness is practically independent of Poisson’s ratio ν,

while the rocking stiffness increases more rapidly in an undrained condition than

in a drained condition. Similarly, Carrier and Christian (1973) observed that for
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a rigid circular surface foundation lying on a generalised ‘Gibson’ soil half-space,

the vertical stiffness increases much faster with heterogeneity for higher values of

Poisson’s ratio. It can be concluded that the variation of foundation stiffness with

soil heterogeneity for the vertical and rocking motions is much more sensitive to

Poisson’s ratio than for the swaying response. Figure 7.12 also illustrates that

Gazetas’s expressions for χ work reasonably well for estimating the swaying stiffness

for λ ≤ 4, while underestimating the undrained rocking stiffness. It should be

noted that in application of the proposed model to dynamic loading, the frequency

dependence of the stiffness and radiation damping was ignored since the emphasis

was given to the post-yield response of the foundation where large displacements

were expected to occur. In the developed NSR model, the initial foundation stiffness

was evaluated by applying the values of αk and χ obtained from the FLAC3D analyses

and illustrated in Figures 7.11 and 7.12, respectively, to Equations (3.11) and (3.12),

that are the analytical solutions of kh and kθ for uniform soil conditions.

7.4.2.2 Coupled bearing capacity

The coupled shear and moment capacities Hc and Mc correspond to the intersection

between the load path and the failure envelope in the load space. Gourvenec (2007a)

proposed that the normalised moment capacity Mc/Mu could be approximated as

cubic or quartic polynomials with respect to 1/FSV:

Mc

Mu

=

p∑
i=1

ci

(
1

FSV

)i−1

(7.11)

where p=4 for McHc > 0 and p=5 for McHc < 0, ci are polynomial coefficients given

in Gourvenec (2007a) for a number of discrete values of normalised moment-to-shear

ratios Mc/(NcMHcD) and non-homogeneity index λ. NcM is the ultimate moment

capacity coefficient defined as the ratio of Mu/(ADsu0). Since the base shear and

moment induced by the horizontal ground accelerations always act in the same

direction (see Figure 7.1 for sign convention), only the cubic polynomial expression

(p=4) in Equation (7.11) is necessary for calculating the moment capacity.
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7.4.2.3 Hard-coded shape parameters

The shape of the nonlinear backbone curve for shallow foundations is mainly con-

trolled by the parameters Cr, c and n, the initial foundation stiffness, ultimate ca-

pacity, and the displacement corresponding to 50% of the capacity (u50). Although

Cr specifies the range of the linear segment of a backbone curve, the push-over curves

in the numerical tests do not possess a strictly linear portion. This scenario is shown

in Figure 7.13, where secant foundation stiffness ksec, normalised by its initial value,

is plotted against the mobilised strength (H and M) normalised by corresponding

ultimate values (Hc and Mc).
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Figure 7.13: Variation of secant foundation stiffness with mobilised foundation load

level for (a) λ=0, (b) λ=2 and (c) λ=6.

As seen in Figure 7.13, the foundation stiffness gradually reduces with increasing

load level. This reduction, however, is not significant when the horizontal load and
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moment are (approximately) lower than 0.125 of their ultimate values. Therefore,

this value was used as the linear range for Cr in the current model. The refer-

ence displacement u50 can be related to a dimensionless parameter c50 defined as

(Raychowdhury, 2008):

c50 =
kinu50

Fc

(7.12)

c50 was calculated for each of the finite-difference push-over analyses (λ=0, 2, 6;

FSV=2, 3, 6; M/(HD)=0.5, 0.75, 1.0, 1.25) according to Equation (7.12) and are

presented in Figure 7.14. It was found in this study that the calculated c50 values

were not significantly affected by FSV, M/(HD) and λ. For example, the mean

and standard deviation (SD) of c50 for the swaying response were 0.562 and 0.027;

for the rocking response they were 0.561 and 0.042. Therefore, the mean values of

c50 were hard coded into the model.
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Figure 7.14: Scattering of c50 for various combinations of λ, FSV and M/(HD).
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By normalising the load and displacement with respect to Fc and u50, respectively,

the data of the backbone curves for various λ, FSV and M/(HD) were narrow

banded, as shown in Figure 7.15. Calibration of c and n were then carried out by

identifying the ‘best fit’ values, which minimised the ‘error’ between the analytical

(Equations (7.5) and (7.7)) and the numerical backbones. For this purpose, the

force residuals were calculated over all displacement points and were squared to

measure the error (Raychowdhury, 2008). It should be mentioned that when fitting

the curves, the normalised displacements u/u50 from the FLAC3D simulations were

imported as the total displacements. If the calculated force F (Equations (7.5) and

(7.6)) was greater than CrFc, F should be solved implicitly using Equation (7.7)

where iterations were required. The ‘best fit’ values of c and n for the swaying re-

sponse were identified to be 0.11 and 0.85, respectively; and for the rocking response,

0.35 and 1.9, respectively
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Figure 7.15: Normalised load-displacement curves for foundation swaying and rock-

ing responses.

7.5 NSR model validation

In this section, results from nonlinear dynamic analyses performed using both rigor-

ous FLAC3D simulations and the simplified NSR model are compared to demonstrate

the effectiveness and efficiency of the simplified model. Note that the FLAC3D model

used in this section differs from the static analysis model described previously.

152



Chapter 7 Seismic Soil Structure Interaction In Performance-Based Design

7.5.1 Soil-structure model in dynamic analysis

The finite-difference grid of the soil-structure system used in the dynamic analysis

is shown in Figure 7.16, where the superstructure is represented by a cylindrical

aluminium column. A fine mesh was used close to the foundation and a coarser mesh

was used near the sides and base of the soil domain. To avoid numerical distortion

of the propagating wave, the maximum allowable mesh size was controlled within

one-tenth to one-eighth of the wavelength associated with the highest frequency

component of the input wave (Equation (3.4)).

In the dynamic analysis, the half-space condition of the unbounded soil was satisfied

by applying appropriate boundary conditions. ‘Free-field’ boundaries were specified

along the vertical sides of the soil grid to reproduce motions at infinity, whereas

‘quiet’ boundaries were imposed in between the ‘free-field’ and soil side boundaries,

as well as at the bottom, to reduce the reflection of outward propagating waves

back into the model. The ‘quiet’ boundaries are modelled using dashpots that are

placed independently in the normal and tangential directions with respect to the soil

boundaries. During the dynamic analysis in FLAC3D, the motion within the model

and the ‘free-field’ motion (in the absence of the structure and foundation) are

calculated simultaneously, and the unbalanced forces at the ‘free-field’ grid-points

are then applied to the soil-structure system through the corresponding grid-points

at the soil boundaries (Itasca, 2012).
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Figure 7.16: (a) Finite-difference grid and, (b) boundary conditions of the soil-

structure model used in the nonlinear dynamic analysis.
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It should be mentioned that the linear-elastic perfectly plastic soil model has a lim-

itation in modelling dynamic soil behaviour, especially at small to medium strain

levels. While the model cannot completely capture the hysteretic behaviour in re-

sponse to the cyclic loading, FLAC3D provides an optional ‘hysteretic damping’

model utilising a variety of stress-strain backbone curves and Masing rules (see Fig-

ure 3.5) to simulate the material damping at small strains. However, the use of

this damping should be treated with care and justified when combined with a yield

model. One issue with the ‘hysteretic damping’ model is that the stiffness degrada-

tion causes large strains, but the ‘hysteretic damping’ is not intended to simulate

yielding at this strain level. Moreover, the reduction of stiffness with increasing

strain may lead to unrealistic response as it modifies the dynamic properties of the

system.

It is suggested by Itasca (2012) that a trial simulation should be run with an as-

sumed linear material model to identify the large strain regions where the ‘hysteretic

damping’ must be excluded. In other words, the use of the ‘hysteretic damping’ is

subject to a case-by-case variability, which is a function of the stiffness, strength of

the material, model geometry and applied load magnitude. Considering the gen-

erality of the proposed model, the ‘hysteretic damping’ model was therefore not

adopted in this study. Instead, five percent Rayleigh damping was applied to the

finite-difference model. As the focus of this study is on the mobilisation of foundation

bearing capacity during strong shaking, the Tresca plasticity model is sufficient to

model the large strain behaviour where a considerable amount of energy dissipation

would occur during plastic flow.

The simplified NSR model, as illustrated in Figure 7.17, was constructed in the

OpenSees (2006) platform. The lateral stiffness of the superstructure was modelled

by an elastic beam-column element connecting the masses of the foundation and

the structure at both ends, whereas the global force-displacement response of the

foundation was simulated by the uniaxial material developed in Section 7.4 for both

swaying and rocking motions. The NSR model requires an input of effective height

for the structure, which was calculated based on a trapezoidal horizontal acceleration

distribution that is made up of a uniform and a triangular pattern (Figure 7.17).
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In order to give equal importance to each of the swaying and rocking responses, the

rectangular and triangular patterns were devised such that each imparted the same

lateral resultant force magnitude to the superstructure. The horizontal acceleration

pattern illustrated in Figure 7.17 results in a value of heff=0.58htot.

Elastic Beam-
Column Element

mcolumn

mfoundation

a

3a

2.7m

3.4m

heff

0.5m

Figure 7.17: Simplified NSR model used in the dynamic analysis.

7.5.2 Methods and results

The analysis in FLAC3D involved the following three steps: (1) the geo-static state

is first achieved by bringing the soil grid to equilibrium under gravity with vertical-

roller side-boundaries; (2) the circular foundation and the cylindrical column are

then constructed on the soil surface and static equilibrium is solved for a given

value of FSV; (3) the roller boundaries are replaced by ‘free-field’ and the ‘quiet’

counterparts followed by dynamic analysis performed by subjecting the grid to the

input ground motions applied at the base of the model. Two baseline-corrected

artificial sinusoidal excitations and a real earthquake acceleration record, shown in

Figure 7.18, were used as the ‘free-field’ horizontal motions recorded at the ground

surface in the absence of the structure.

It should be noted that these ‘design’ acceleration records cannot be used as the

input motions for the FLAC3D model. Firstly, the input motions at the base of the

FLAC3D model should be determined in order that the motions measured at the

ground surface in the ‘free-field’ are recovered as the ‘design’ motions. Secondly, the
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grid-points on the base of the FLAC3D model should be allowed to move according

to the pattern of wave motions so that the ‘quiet’ dashpots can calculate the viscous

forces. The former corresponds to the deconvolution process (see Section 3.2.2.2)

whereas the latter requires the acceleration records to be transformed into stress

records which can then be applied to the ‘quiet boundary’ at the base. It should

also be mentioned that the input motion for a ‘quiet’ boundary refers to the upward

propagating motion rather than the apparent (observed) acceleration within the

base (Mejia and Dawson, 2006).
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Figure 7.18: Artificial and real earthquake ground accelerations utilised as the ‘free-

field’ motions recorded at the ground surface.

In FLAC3D, Rayleigh damping is specified at a centre frequency at which mass

damping and stiffness damping each supplies half of the total damping force. When

subjected to the artificial ground motions, Rayleigh damping of the SSI system

was specified at the frequencies of the excitations while for the real earthquake,

the centre frequency was set equal to the middle frequency (1.8Hz) between the

lowest and highest predominant frequencies, as suggested by Itasca (2012). In this

way, the frequency-independent hysteretic damping could be approximated using

Rayleigh damping.

The OpenSees (2006) analysis using the NSR model was used to study the inertial

soil-structure interaction while effects of kinematic interaction were ignored, which

is reasonable for shallow foundations subjected to coherent vertically propagating
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shear waves. In this case, the ‘design’ motions shown in Figure 7.18 were directly

applied as the ‘free-field’ motions to the model. The program SHAKE91 (Idriss and

Sun, 1992) was used to calculate the base input motion of the FLAC3D model from

the ‘design’ motion (Mejia and Dawson, 2006). An example of the deconvolution

process is illustrated in Figure 7.19 for a heterogeneous soil deposit. Both SHAKE91

and FLAC3D models consisted of identical layers whose shear moduli were calculated

based on λ=6. In addition, the SHAKE91 model had a ‘half-space’ which was

assigned with the same shear modulus as that in the bottom layer whereas this

‘half-space’ condition was captured by the ‘quiet’ boundaries in the FLAC3D model.

The target motion (i.e., the earthquake ground motion shown in Figure 7.18) was

applied at the top of the SHAKE91 model as an ‘outcrop’ motion. The upward

propagating motion, extracted at the top of the half-space as half of the ‘outcrop’

motion , was regarded as the input motion for the FLAC3D model.
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Figure 7.19: Deconvolution analysis using SHAKE91 for obtaining the input motion

for the FLAC3D model.
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In order to apply the input motion at the ‘quiet’ base of the FLAC3D model, the

acceleration time-history was converted to a stress history given by (Itasca, 2012):

τ = 2ρVsvinp (7.13)

where ρ is the soil mass density, Vs is the shear wave velocity calculated according to

Equation (3.2) for the bottom layer, and vinp is the input shear velocity time-history

that can be determined from its acceleration history by the Newmark’s integration

method (see Section 4.5.2). Note that the factor of two in Equation (7.13) accounts

for the fact that the applied stress must be double that which is observed in an

infinite medium, since half the input energy is absorbed by the viscous boundary

(Itasca, 2012). It is shown in Figure 7.19 that the ground motion of the FLAC3D

model computed following the deconvolution procedures compared very well with

the target motion.

Despite the scattering of the data for the normalised foundation force-displacement

backbone curve for various levels of soil heterogeneity, safety factor and moment-

to-shear ratio (shown in Figure 7.15), the fitted curves were adopted for practical

purposes.

Figures 7.20 compares the results predicted by both simplified NSR and more rig-

orous FLAC3D models, in terms of shear-sliding and moment-rotation relations for

the swaying and rocking motions of the foundation, respectively. The analyses were

performed by using various combinations of different design parameters consisting

of soil non-homogeneity index λ=0, 2, 6, safety factor FSV=2, 3, 4, and slenderness

ratio htot/r=2, 2.5, 3, where htot is the total height of the structure. Considering

a typical five-bay building with a bay width of 6 meters and a storey height of 3.3

meters, htot/r=2, 2.5 and 3 approximately correspond to 10, 13 and 15 storeys,

respectively, if the building is assumed to be symmetric.

The comparison shows that, in general, the simplified model is able to reproduce the

foundation load-displacement response predicted using the FLAC3D model. Maxi-

mum and residual foundation displacements, which are important parameters in a

displacement design approach for structures, were also estimated by the simplified

model with good accuracy. A significant advantage of the NSR model is that the
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computational time for a dynamic time-history analysis is reduced from days (for

running a FLAC3D analysis) to seconds (when performing an OpenSees analysis).

Another strength of the NSR model is its ability to approximate foundation force-

displacement response, which is mainly affected by FSV, M/(HD) and λ, by using

a single normalised backbone curve for each of the swaying and rocking degrees of

freedom.
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Figure 7.20: Comparison of the dynamic load-displacement and moment-rotation

foundation responses computed with the FLAC3D model (black lines) with those

predicted by the NSR model (grey lines) for (a) artificial I ground motion with

FSV=2, htot/r=3, λ=0; (b) artificial II ground motion with FSV=3, htot/r=2, λ=2;

and (c) Duzce 1990 earthquake (component 180◦) with FSV=4, htot/r=2.5, λ=6.

For foundations resting on an elastic soil deposit having a generalised ‘Gibson stiff-
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ness profile’ as illustrated in Figure 7.2, it is common in practice to calculate the

foundation stiffness by assuming an equivalent homogeneous soil condition. This is

usually done by selecting a representative soil element at an effective depth of the

non-homogeneous soil profile such that the stiffness of the foundation on the uniform

and non-homogeneous soil deposits is the same (Gazetas, 1980).

In the case of a yielding foundation, however, two issues arise in determining a

uniform soil equivalent for a non-homogeneous soil deposit. Firstly, besides being

a function of λ, the effective depth is also related to FSV. Secondly, the effective

depth is obtained by matching only the foundation stiffness while it is irrelevant to

the post-yield response and bearing capacity of the foundation, both of which are

strongly affected by the moment-to-shear ratio M/(HD). Based on the assumption

of a quasi-linear initial foundation stiffness (described in Section 7.4.2.1), a weak

equivalence exists for the stated first issue and the effective depth can be calculated

using Equations (7.8) and (7.9) with Figures 7.11 and 7.12. However, this equiva-

lence fails to capture the nonlinear inelastic foundation response when moment and

shear capacities are mobilised. On the contrary, in the proposed NSR model, the ef-

fects of soil non-homogeneity are inherently captured within the adopted normalised

backbone curves.

7.6 Limitations of NSR model

The simplified NSR model is best suited for heavily-loaded structures where uplift

is not expected to occur. The model is appropriate for buildings with a small to

medium slenderness ratio (i.e., heff/D ranges from 0.5-1.25, except for the combi-

nation of M/(HD)=1.25 and λ = 0 with FSV > 2) under strong shaking and was

developed for saturated clay conditions. In deriving the global force-displacement

response, the nonlinear soil behaviour at small strains is neglected. As the focus of

this study is seismic design for strong earthquakes where large strains dominate, it

is believed that this feature has negligible impact on the overall behaviour of the

soil-foundation-superstructure system. The model is not capable of predicting the
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settlement of the foundation, however it is capable of capturing the maximum and

residual differential settlements (indicated by the rotation θ), which are important

displacement parameters that influence the design of superstructures.

7.7 Summary

A simplified nonlinear sway-rocking model has been developed in this chapter for

nonlinear dynamic soil-structure interaction analysis. The proposed model is in-

tended to simulate the nonlinear load-displacement response for the coupled sway-

rocking behaviour of shallow mat foundations supporting heavily-loaded buildings

under earthquake ground motions.

To simplify the model, the building is represented as an equivalent SDOF structure,

whereas the soil-foundation system is replaced by an assemblage of springs and

dashpots. While utilising independent springs to simulate each of the sway and

rocking responses of the foundation, the coupling between the two motions is also

accounted for by expressing the spring properties as a function of the load paths

experienced by the foundation in the V :H:M space. Spring properties are controlled

by the factor of safety against vertical bearing capacity failure FSV, the moment-to-

shear ratio M/HD, and the failure envelope defining the bearing capacities of the

foundation in the V :H:M space. The effect of soil non-homogeneity on the stiffness

and capacity of the soil-foundation system is also considered.

In order to identify the load-displacement responses and the coupled bearing ca-

pacities of the foundation, a series of static load-control and displacement-control

finite-difference analyses were carried out by using the FLAC3D program. The sim-

plified model, developed in the OpenSees platform, was then calibrated against

results from the static finite-difference analyses. The effectiveness and efficiency

of the proposed model were validated against results from dynamic analyses per-

formed using a FLAC3D model by utilising two artificial input motions and one

real earthquake acceleration record. The comparison of results predicted by both

models demonstrates that the simplified model is capable of efficiently capturing
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the foundation load-displacement behaviour, including the maximum and residual

displacements, with good accuracy.

Although the proposed simplified model has some limitations, it is able to provide

parameters necessary for preliminary design of buildings on weak soil while achieving

a good balance between simplicity and accuracy. In addition, the concept of the

model allows engineers to select appropriate model properties in accordance with

specific site conditions.
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Chapter 8

Conclusions and recommendations

for future research

The aim of this research was to improve current procedures for soil-structure in-

teraction in performance-based building design in earthquake engineering. Three

main improvements have been made for this purpose. Firstly, the gap between

code-specified design response spectra and base shear demands of inelastic flexible-

base multi-storey buildings was bridged by introducing a strength reduction factor

RF and an MDOF modification factor RM in Chapter 5. Secondly, the need and

the way to consider the frequency content of ground motion in design of building

located on very soft soil profiles were addressed in Chapter 6. Both stated im-

provements were based on results of a large number of analyses performed using a

simplified SSI model where the foundation was assumed to behave linear-elastically.

Finally, in view of taking into account foundation nonlinearity, a simplified nonlinear

sway-rocking model was developed in Chapter 7. This chapter presents the general

conclusions of the research (Section 8.1) and recommendations for future research

(Section 8.2).
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8.1 General conclusions

The discrete-element cone model (Figure 3.9) was proved to be a simple and reliable

tool for simulating foundation vibration. This was verified by comparisons with

exact solutions for displacement of linear systems obtained using Veletsos and Verbič

(1973) impedance functions in both time and frequency domains. The cone model

performed particularly well for higher values of soil Poisson’s ratio (i.e., ν →0.5).

For multi-storey buildings, the total strength demand (defined as the maximum

value of the sum of the storey strengths), rather than the base shear demand (i.e.,

the maximum value of the strength of the first storey), should be used to indi-

cate whether a design is economical. Using concentric, rectangular, trapezoidal,

parabolic and code-specified design load patterns (i.e., CEN, 2004; IBC, 2012) to

design flexible-base MDOF structures showed that the code-specified load patterns

are, in general, more suitable for long period structures, whereas the trapezoidal

pattern provides the best design solution for short period flexible-base structures.

For common building structures with low-to-medium ductility demands under spec-

trum compatible earthquakes, increasing structure-to-soil stiffness ratio a0 could

considerably reduce the structural strength demand in comparison to similar fixed-

base structures. This implies that for most typical buildings considering SSI in the

design process can lead to more cost-effective design solutions with less structural

weight.

To satisfy a target ductility demand for SSI systems with similar fixed-base fun-

damental periods and structure-to-soil stiffness ratios, the total structural strength

increased by increasing the slenderness ratio s, especially in the short period range

(i.e., Ts <0.5sec). This phenomenon was a result of a reduced initial damping ξssi of

the SSI systems due to an increase in structural slenderness s.

Applying conventional Rµ-Ts relationships for seismic design of flexible-base struc-

tures might not be appropriate, since the combined effects of a0 and s could lead to

inconsistent results in Rµ spectra. Replacing Ts with Tssi could effectively solve the
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problem.

SSI usually leads to increased period and damping in vibrating systems, which

are very similar to the effects of yielding. These two scenarios (SSI and yielding)

were considered simultaneously in design for inelastic flexible-base SDOF systems

through a force reduction factor RF that could be directly applied to code-design

response spectra. The RF spectra maintained the shape of the conventional ductility

reduction factor spectra for fixed-base structures.

In general, SSI increased the values of the MDOF modification factor RM which

linked the base shear demand of an MDOF structure to that of its SDOF counter-

part. The dependence of RM on structural ductility demand µ was also manifested

by SSI.

Based on results for 20 ground motions recorded on very soft soil deposits, it was

shown that normalising the equivalent period of an SSI system Tssi by the corre-

sponding predominant periods resulted in more rational spectra for seismic design

purposes. In the elastic response spectra, Tssi is normalised by the spectrum pre-

dominant period TP corresponding to the peak ordinate of a 5% damped elastic

acceleration spectrum, while for nonlinear structures Tssi should be normalised by

the predominant period of the ground motion, Tg, at which the relative velocity

spectrum reaches its maximum value.

An actual SSI system could be replaced by an equivalent fixed-base SDOF (EFS-

DOF) oscillator having a natural period of Tssi, a viscous damping ratio ξssi and a

global ductility ratio of µssi. The EFSDOF oscillator provided an excellent estimate

of the elastic and inelastic spectra for lightly-to-moderately damped SSI systems.

When using an EFSDOF oscillator, the actual acceleration should be considered for

the response spectrum of flexible-base structures.

The EFSDOF oscillators, in general, overestimated the ductility reduction factor

Rµ of SSI systems with high initial damping ratio (e.g. squatty structures founded

on very soft soil profiles), which consequently led to an underestimation of inelastic

displacement ratio Cµ. Based on the results, a correction factor was proposed to
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improve the efficiency of replacement oscillators to predict the seismic response of

SSI systems with effective damping ratio greater than 10%.

It was shown that, for any ground motion, the structural ductility demand of a

nonlinear flexible-base structure could be calculated, with a desirable accuracy, from

the global ductility demand of the whole SSI system. The EFSDOF oscillator can

thus easily be implemented in the performance-based design of structures on soft

soil with a target ductility ratio which is defined either for an SSI system or for the

structure alone.

A simplified nonlinear sway-rocking model was developed to capture the coupled

sway-rocking behaviour of shallow mat foundations supporting heavily-loaded build-

ings under earthquake ground motions. This spring-type model utilised a single

normalised backbone curve for each of the swaying and rocking degrees of free-

dom. The normalised backbone curves were derived based on results of a series of

static displacement-control finite-difference analyses carried out using the FLAC3D

program. The effect of soil non-homogeneity on the stiffness and capacity of the

soil-foundation system was also considered.

The effectiveness and efficiency of the proposed model were validated against results

from dynamic analyses performed using a FLAC3D model by utilising two artificial

input motions and one real earthquake acceleration record. The simplified model

was capable of efficiently capturing the foundation load-displacement behaviour,

including the maximum and residual displacements, with good accuracy.

Although the proposed simplified model has some limitations, it is able to provide

parameters necessary for preliminary design of buildings on weak soil while achieving

a good balance between simplicity and accuracy. In addition, the concept of the

model allows engineers to select appropriate model properties in accordance with

specific site conditions.
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8.2 Recommendations for future research

• Results in Section 6.4 showed that response spectra for very soft soil profiles

exhibited sharp peaks rather than flat shapes. These response spectra for

flexible-base buildings depended on the initial damping level of the SSI sys-

tem. It is desirable to introduce damping-dependent bi-normalised spectra

into current code design procedures. One possible way to achieve this purpose

is to derive equations for 5% damped bi-normalised spectra and apply damp-

ing reduction factors to these spectra. There is a need to investigate the effect

of frequency content of ground motion on this damping reduction factor.

• Although the predominant period Tg for normalising periods in the Rµ and

Cµ spectra (See Section (6.5)) was based on the peak spectral velocity for a

corresponding damping ratio, it might not be a perfect normalising parameter

for highly-damped systems. According to Ordaz and Pérez-Rocha (1998), Tg

coincided well with the period that led to the maximum spectral displacement.

Further study should be conducted concerning the selection of appropriate Tg

for systems with various damping levels.

• Soil ‘failure’ has been recognised as a viable solution to reduction of force

demand of structures. The degree of nonlinearity of the soil-foundation system

is closely related to the intensity of the excitation and the relative ‘strength’

of the superstructure to that of the soil-foundation system. The latter is

mainly affected by the factor of safety against vertical load FSv and structural

slenderness ratio s, as shown in Chapter 7. The combined effect of structural

inelasticity and soil yielding on seismic response of an SSI system should be

further examined.

• While using a simplified SSI model in this research to look at seismic re-

sponse of isolated buildings considering a wide range of soil-structure interac-

tion scenarios in earthquake engineering, further studies can be extended to

(1) more complex structural systems with various foundation types and (2)

structure–soil–structure interaction.
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172



Chapter 8 Seismic Soil Structure Interaction In Performance-Based Design

Gourvenec, S. (2007a), ‘Failure envelopes for offshore shallow foundations under
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Appendix A

Effects of SSI on strength

demands of buildings subjected to

spectrum-compatible earthquakes

A.1 Base shear demands of flexible-base SDOF

structures
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Figure A.1: Effect of structure-to-soil stiffness ratio a0 on base shear demands of

SDOF structures located on site class C.
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Figure A.2: Effect of structure-to-soil stiffness ratio a0 on base shear demands of

SDOF structures located on site class D.
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Figure A.3: Effect of structural slenderness s on base shear demands of SDOF

structures located on site class C.
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Figure A.4: Effect of structural slenderness s on base shear demands of SDOF

structures located on site class D.
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A.2 Base shear demands of flexible-base MDOF

structures
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Figure A.5: Total strength demands of (a) fixed-base and (b) flexible-base 10-storey

buildings designed according to different lateral load patterns, Soil Class C, s=2.
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Figure A.6: Total strength demands of (a) fixed-base and (b) flexible-base 10-storey

buildings designed according to different lateral load patterns, Soil Class D, s=2.
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Figure A.7: Coefficient of variation of storey ductility for (a) fixed-base and (b)

flexible-base 10-storey buildings designed according to different lateral load patterns,

Soil Class C, s=2.
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Figure A.8: Coefficient of variation of storey ductility for (a) fixed-base and (b)

flexible-base 10-storey buildings designed according to different lateral load patterns,

Soil Class D, s=2.
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Appendix B

Constant-ductility spectra with

normalised periods

B.1 Comparison between EFSDOF oscillators and

actual SSI systems
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Figure B.1: Comparison of ductility reduction factor Rµ and inelastic displacement

ratio Cµ spectra obtained by using the simplified SSI models and the EFSDOF

oscillators having a 11% damping ratio.
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Figure B.2: Comparison of Rµ and Cµ spectra obtained by using the simplified SSI

models and the EFSDOF oscillators having a 12% damping ratio.
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Figure B.3: Comparison of Rµ and Cµ spectra obtained by using the simplified SSI

models and the EFSDOF oscillators having a 13% damping ratio.
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Figure B.4: Comparison of Rµ and Cµ spectra obtained by using the simplified SSI

models and the EFSDOF oscillators having a 14% damping ratio.
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Figure B.5: Comparison of Rµ and Cµ spectra obtained by using the simplified SSI

models and the EFSDOF oscillators having a 16% damping ratio.
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Figure B.6: Comparison of Rµ and Cµ spectra obtained by using the simplified SSI

models and the EFSDOF oscillators having a 17% damping ratio.
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Figure B.7: Comparison of Rµ and Cµ spectra obtained by using the simplified SSI

models and the EFSDOF oscillators having a 18% damping ratio.
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Figure B.8: Comparison of Rµ and Cµ spectra obtained by using the simplified SSI

models and the EFSDOF oscillators having a 19% damping ratio.
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Figure B.9: Comparison of ductility reduction factor Rµ and inelastic displacement

ratio Cµ spectra obtained by using the simplified SSI models and the modified

EFSDOF oscillators having a 11% damping ratio.
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Figure B.10: Comparison of Rµ and Cµ spectra obtained by using the simplified SSI

models and the modified EFSDOF oscillators having a 12% damping ratio.
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Figure B.11: Comparison of Rµ and Cµ spectra obtained by using the simplified SSI

models and the modified EFSDOF oscillators having a 13% damping ratio.

m=4

m=2

m=5

m=3

m=5

R
m

C
m

Tssi (sec) Tssi /Tg

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

a0=3   s=1.55  

Modified EFSDOF x=14%
m=2

Figure B.12: Comparison of Rµ and Cµ spectra obtained by using the simplified SSI

models and the modified EFSDOF oscillators having a 14% damping ratio.
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Figure B.13: Comparison of Rµ and Cµ spectra obtained by using the simplified SSI

models and the modified EFSDOF oscillators having a 16% damping ratio.
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Figure B.14: Comparison of Rµ and Cµ spectra obtained by using the simplified SSI

models and the modified EFSDOF oscillators having a 17% damping ratio.

m=5

R
m

C
m

Tssi (sec) Tssi /Tg

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

Modified EFSDOF x=18%

a0=3   s=1.3  m=4

m=2

m=5

m=3

m=2

Figure B.15: Comparison of Rµ and Cµ spectra obtained by using the simplified SSI

models and the modified EFSDOF oscillators having a 18% damping ratio.
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Figure B.16: Comparison of Rµ and Cµ spectra obtained by using the simplified SSI

models and the modified EFSDOF oscillators having a 19% damping ratio.
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