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Abstract

In this thesis, the form of the current-voltage characteristics and the

resulting current oscillations in graphene-hexagonal boron nitride heterostruc-

tures are explored by means of theoretical investigation and are supported

by experimental observations. The conditions for resonant tunnelling and

the effect of device and circuit parameters are examined through simulation

of the charge dynamics using the Bardeen Transfer Hamiltonian method.

Studies of the effect of induced moiré patterns between the crystallographi-

cally aligned graphene and the boron nitride lattices are also undertaken,

with recommendations for future investigation. It is theoretically shown that

samples containing two layers of graphene, separated by hexagonal boron

nitride tunnel barriers, produced higher frequency oscillations when the

graphene lattices are aligned. This was found to be due to the decrease in

wavefunction overlap in the misaligned samples, which is not compensated

by the higher density of states available for tunnelling. Chemical doping

of the graphene layers are also found to increase the frequency, as it allows

the Dirac cones to be brought into alignment for resonant tunnelling with a

higher number of states available. It is known that the mismatch in lattice

constant between the graphene lattice and the hexagonal boron nitride lattice

creates a moiré pattern. This, in turn, induces additional Dirac points in

the band structure and thus leads to new features in the current-voltage

characteristics. The theoretical simulations presented in this thesis are sub-

stantiated by recently-published experimental results, and provide insight

into possible future high-frequency, room-temperature solid state oscillators

and amplifiers. In conclusion, the mechanisms for resonant tunnelling in

multiple graphene heterostructures are identified and demonstrated in this

work, and provide promising evidence for novel high frequency technologies

and further research.
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Chapter 1

Resonant Tunnelling and

Graphene Heterostructures

1.1 Introduction

Resonant tunnelling is a quantum mechanical process that has long at-

tracted both scientific and technological attention owing to its intriguing

and fundamental underlying physics and potential applications for high-

speed electronics. The materials systems exhibiting resonant tunnelling,

however, have been largely limited to conventional semiconductors such as

GaAs, partially due to their excellent crystalline quality [1, 2] and high

mobility. In recent years, there has been an explosion of research using the

novel two-dimensional (2D) material graphene [3], as it potentially has even

higher mobility. The work presented in this thesis explores how graphene’s

excellent electrical properties can be harnessed in novel graphene-based van

der Waals heterostructures that exhibit resonant tunnelling. The resulting

current-voltage characteristics and high-frequency operation in these devices

are explored, leading to a discussion of potential new device designs. This

introductory chapter provides an outline of the previous contributions to

the field of both III-V semiconducting tunnel devices and graphene research,

starting with a general description of quantum mechanical tunnelling and

leading to the introduction of the graphene heterostructure device discussed

in this thesis.
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1.2 Quantum Tunnelling

The graphene-based devices considered in this thesis will harness the effect of

resonant quantum-mechanical tunnelling through a boron nitride potential

barrier. Here, a short outline to quantum tunnelling is given, followed by an

explanation of resonant conditions.

Classically, if a particle, such as an electron, with energy E is incident

on a potential barrier of any thickness with energy E < EB, the electron

cannot pass and is thus reflected. If E > EB, the electron will pass over

the barrier, resulting in current. Both cases are schematically shown in Fig.

1.1(a). Quantum mechanically, the result is practically equivalent to the

classical case for a wide tunnel barrier, as the wavefunction (the probability

distribution function) of the electron will decay before leaving the barrier,

and thus there is a very low probability of tunnelling. However, if the barrier

is thin enough, it is possible that an electron with E < EB can undergo

quantum tunnelling through it, as seen in Fig. 1.1(b). This is a result of

the wave-like nature of the electrons, as the wavefunction and its derivative

must be continuous at the barrier boundary, so there is a finite probability

of finding the electron on either side of the boundary [4]. Such a potential

barrier can be formed by sandwiching an insulator, with large enough band

gap, between two metal regions, as seen in Fig.1.1(c).

1.2.1 Reflection and Transmission Coefficients

The probability of tunnelling can be calculated by considering the simple

example of a plane wave incident on a barrier. Taking the potential barrier

to be of height, V0, as seen in Fig.1.2, where the wavefunction is plotted for

an electron of E > V0, the wavefunction in each region can be written as:

ψA(x) = ARe
ik0x + ALe

−ik0x, (x < 0) (1.1)

ψB(x) = BRe
ik1x +BLe

−ik1x, (0 < x < a) (1.2)

ψC(x) = CRe
ik0x + CLe

−ik0x. (x > a) (1.3)

Here, AR,L, BR,L and CR,L are coefficents of the waves in the correspond-

ing regions, A− C, and R and L represent the direction of travel, right and
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Figure 1.1: (a) Classically, electrons with E > EB can pass over a thick barrier
and any electrons with E < EB will be reflected. (b) Quantum mechanically,
electrons with E > EB can pass over a thin barrier and electrons with E < EB
will be either be reflected or undergo tunnelling through the barrier. (c) Schematic
layer diagram of a metal-insulator-metal tunnel device.
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Figure 1.2: Plane waves on the left and right (L and R, in regions A and C,
respectively) of the barrier, in region B, for E > V0. Note the wavelength is longer
in the barrier region due to the change in potential. For E < V0, the wavefunction
will be evanescent in the barrier.

left, respectively. From the time-independent Schrödinger equation,

Hψ(x) =

[
− ~2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x), (1.4)

the wavenumbers in each region can be calculated to be

k0 =

√
2mE

~2
, (x < 0 or x > a) (1.5)

k1 =

√
2m(E − V0)

~2
. (0 <x < a) (1.6)

The boundary conditions at the barrier edges (x = 0 and x = a) require

the wavefunction and its derivative to be continuous, which gives

AR + AL = BR +BL, (1.7)

ik0(AR − AL) = ik1(BR −BL), (1.8)

BRe
iak1 +BLe

−iak1 = CRe
iak0 + CLe

−iak0 , (1.9)

ik1(BRe
iak1 −BLe

−iak1) = ik0(CRe
iak0 − CLe−iak0). (1.10)

As the plane wave in this example is incident from the left, some coef-
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ficients are known, such as AR = 1 (incoming electron), AL = r (reflected

part), CR = t (transmitted part), CL = 0 (no incoming electron from the

right). It is therefore possible to solve Eq.(1.10) for r and t, which gives:

t =
4k0k1e

−ia(k0−k1)

(k0 + k1)2 − e2iak1(k0 − k1)2
, (1.11)

r =
(k2

0 − k2
1)sin(ak1)

2ik0k1cos(ak1) + (k2
0 + k2

1)sin(ak1)
. (1.12)

The tunnelling probability, T , is simply |t|2. For an electron of E > V0,

the probability of tunnelling is

T =
1

1 +
V 2
0 sin2(k1a)

4E(E−V0)

. (1.13)

This can give a non-unity probability, and as the reflection probability is

R = |r|2 = 1− T, (1.14)

we get an interesting result in that the electron with an energy above that

of the barrier may still be reflected! As E >> V , this result converges to

the classical result of R = 0.

For E < V0, the solution in the barrier (0 < x < a) will be evanescent,

i.e.

ψB(x) = BRe
κx +BLe

−κx. (1.15)

This gives

T =
1

1 +
V 2
0 sinh2(k1a)

4E(V0−E)

, (1.16)

which indicates a non-zero probability, and thus predicts the occurrence of

quantum tunnelling.

1.2.2 Scattering-Assisted Tunnelling

In semiconducting tunnel devices, electrons tunnelling between energetic

states in different layers will conserve energy and momentum in a process

known as direct tunnelling. It is also possible for tunnelling to occur alongside

electron scattering events, leading to scattering-assisted tunnelling. This is a
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very common transport process, as there will always be some imperfections

in semiconductor crystals used in tunnel diodes, such as impurities or

deformations in the lattice structure, which lead to scattering events. There

are two types of scattering process; elastic and inelastic. During elastic

scattering, the energy of the electron is conserved, but the momentum of

the electron is not. For example, when an electron collides with a defect

in a lattice, the translational symmetry in x− y is broken and thus kx/ky

is not conserved. Inelastic scattering does not conserve the energy or the

momentum of the electron. Most inelastic scattering processes arise from

electron-phonon interactions, such as absorption (if the tempertaure is high

enough), or emission of a phonon. We will later observe electron-phonon

interactions are not a main contributor to the tunnelling events in the

devices discussed in this thesis, due to the high energy of the phonons. The

modelling of elastic scattering in graphene resonant tunnelling diodes will

be discussed further in Chapters 2 and 3.

1.3 Tunnelling in Semiconductor Devices

In semiconductor devices, tunnelling has been exploited since the late 1950s

[5]. The discovery of the Esaki semiconducting diode in 1957 [6] focused

attention on the possibility of exploiting the resulting negative differential

conductance (NDC), a phenomenon that leads to a decrease in current as

the voltage is increased, for the generation of high-frequency electromagnetic

waves. An example of the current-voltage (I(V)) characteristics of this

device is shown in Fig. 1.3(a), with the NDC region highlighted (yellow).

Following Esaki’s pioneering work, transferred electron diodes [7–9] based on

n-type GaAs and InP were successfully developed as microwave generators.

Semiconductor superlattices [10, 11] and double-barrier resonant tunnelling

diodes (DBRTDs) [12, 13] also exhibit strong NDC in their device character-

istics and, recently, DBRTDs operating at frequencies of 1.04 THz and with

output powers of up to 10 µW have been reported [14]. Here, we review the

basic principles behind these devices.

1.3.1 Operation of Tunnel Diodes

The simplest tunnel diode is constructed of two oppositely-doped semicon-

ductors to form an Esaki p− n junction. The p-type semiconductor (left)
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Figure 1.3: (a) The general I(V ) characteristics of a tunnel diode, with the NDC
region highlighted yellow. Points A-E mark bias voltages for which the band
structure is plotted in (b-f). (b) The band structure of a tunnel diode, with
positively doped semiconductor on the left, negatively doped semiconductor on
the right. The conduction band energy, EC and valence band, EV are shown, and
filled states are coloured grey. Here, the applied voltage is 0 V, i.e. point A in
(a). Fermi levels, EF , in the p and n regions are aligned and no current flows. (c)
A small forward bias is applied and electrons in the conductance band of the n
region will tunnel to the empty states in the valence band of the p region. This
leads to a small tunnel current (point B). (d) A larger applied voltage leads to a
large number of electrons in the n-region having the same energy as empty states
in the p-region, thus giving a maximum tunnel current of the peak at C. (e) For
Vb > Vpeak, Vb energetically shifts the available tunnelling and empty states such
that the tunnelling decreases and thus the current at point D is lower. (f) As the
forward bias further increases, the tunnel current drops to zero, but electron-hole
injection increases due to the lower potential barrier, point E.
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has so many acceptor impurities that states near the top of the valence band

are emptied of electrons, such that the Fermi level lies in the valence band.

The n-type semiconductor (right), which is doped with donor impurities, has

a Fermi level above the band gap and in the conduction band. There exists

a depletion layer between the two doped semiconductors, which becomes

very thin (∼ 10 nm), when the doping is high (with carrier concentrations of

≈ 1019 cm−3). This reduces the effective barrier width and thus allows tun-

nelling to occur with high probability. In Figs. 1.3(b-f), the band structure

of the diode at various applied bias voltage points A-E (as seen in Fig. 1.3(a))

are shown. When no bias voltage is applied, see Fig. 1.3(b), the Fermi levels

in each layer are aligned, and no current flows through the junction (point

A). When a small forward bias is applied, Fig. 1.3(c), the Fermi levels in

each layer shift with respect to each other and electrons from the conduction

band in the n-type semiconductor tunnel through the junction to the valence

band of the p-type semiconductor, leading the the current seen at point B.

Increasing this bias increases the current to the resonant peak (point C) as

the overlap between the available valence states (between EF and EV in the

p-layer) and the filled conduction states (between EF and EC in the n-layer)

becomes maximal, as seen in Fig. 1.3(d). Here, the largest number of states

are available for tunnelling to a large number of empty states of the same

energy. After some voltage, V = Vpeak, the number of states available for

tunnelling decreases, because the tunnelling process must conserve energy

and the available filled conductance states are mostly no longer energetically

aligned with empty valence states, as in Fig. 1.3(e) which gives the reduced

current at point D. This is the region of negative differential conductance

(NDC), where an increase in applied voltage leads to a decrease in current.

In Fig. 1.3(f), the states are so energetically misaligned that no tunnelling

occurs. However, we see the current at point E has increased, this is due to

the conduction of electrons over the barrier.

1.3.2 Double Barrier Resonant Tunnelling Diodes

Here, we consider the n− i− n DBRTD, a band diagram and cross-section

of which are shown in Fig. 1.4(a) (p− i− p and n− i− p are also possible).

DBRTDs are usually constructed from III-V semiconductor materials, or

similar, and grown via molecular beam epitaxy (MBE) [12, 16, 17]. Two

potential barriers of large band gap semiconductor layers, sandwich a central
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Figure 1.4: (a) Conduction band diagram for a GaAs/AlGaAs n− i− n DBRTD.
A double barrier resonant tunnelling diode, traditionally constructed from III-V
semiconducting materials, as shown in the bottom schematic diagram. Grey
rectangles indicate energy ranges of occupied electron states in the emitter and
collector contacts. (b) Example I(V) characteristics with the maximum magnitude
of the negative differential resistance, RN , calculated from the slope of the NDC
region.

quantum well formed of a lower band gap semiconductor. The mismatch in

the band gaps leads to the production of a quantum well in the potential

energy of the electron. Electrons are quasi-confined to the well and so

their momentum in the direction perpendicular to the plane is quantized,

producing a sequence of quasi-2D subbands. The barriers have a finite

thickness, and thus electrons can tunnel out of the well. This structure

is then sandwiched by lower band gap semiconductor layers, which act as

emitter and collector regions. The emitter region (left of Fig. 1.4(a)) is the

source of electrons for tunnelling, and is usually made of a heavily-doped

n-type semiconductor, as is the collector region, where electrons collect after

tunnelling through the structure.

Like the simple tunnel diode, n− i− n DBRTDs also work through the

alignment of energetic states, but the tunnelling is between conduction band

states only. The I(V ) characteristics, as shown in Fig. 1.4(b), are similar to

the Esaki p−n junction diode. However, at low applied bias voltage, there is a

delay (≈ picoseconds) in the onset of current. This is because electrons must

first tunnel into the states in the central quantum well, before tunnelling out.

The mechanism for tunnelling in the DBRTD is also different, as due to the

quasi-bound states in the well, a phenomenon known as resonant tunnelling
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occurs. This is a tunnelling process that is sharply peaked around certain

energies, determined by the boundary conditions formed by the quantum

well. Electrons with an energy corresponding approximately to the resonant

energy level of the quantum well will have a transmission coefficient close to

unity. That is, an electron with this resonant energy can cross the double

barrier without being reflected. This resonance phenomenon is similar to

that taking place in the optical Fabry-Perot resonator or in a microwave

capacitively-coupled transmission-line resonator.

When a bias voltage, Vb, is applied across the device, the chemical

potential shifts in both semiconducting layers either side of the barrier

layers, and also increases the number of electrons contained in the central

quantum well. The probability of quantum mechanical tunnelling depends

on the available quantized states at both the originating and the receiving

sides of the junction. The quantized resonant states in a quantum well can

give rise to resonant tunnelling behaviour when the energy of the quantum

states with discrete levels align. When aligned, the tunnelling current peaks,

exhibiting a negative differential conductance (NDC) at Vb just beyond

the resonant bias where the current peak occurs. Such an intriguing NDC

behaviour can be exploited in various devices, such as RTDs, to act as an

active component in resonant circuits which leads to self-sustained current

oscillations. More importantly, the resonant tunnelling phenomena offer

unique insight into properties of materials, such as localized defect states

(which can be probed by tunnelling spectroscopy [15]), collective electronic

excitations, and quantum well band structures. In Fig. 1.4(b), the maximum

magnitude of differential resistance, RN , is defined from the slope of the

NDC region. This, combined with the peak-to-valley ratio (PVR) (the peak

current/valley current), provides insight into the frequency range and power

output of devices, as discussed further in Chapter 4.

The most recent addition to the family of devices that exhibit NDC (Gunn

diodes, DBRTDs, superlattices), are graphene-based tunnel transistors with

high on-off current switching ratios [17–19]. The NDC in these RTDs arises

from the constraints imposed by energy and momentum conservation of Dirac

fermions tunnelling through a hexagonal-boron nitride (hBN) barrier when a

bias voltage is applied between the two graphene electrodes. Peak-to-valley

ratios approaching 2:1 have already been achieved at room temperature,

with peak current densities of 26 µAµm−2. The PVR not only gives a

good estimate to the output power, but also indicates the control of growth
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conditions and the quality of the interfaces between the different materials.

When these devices are placed in a resonant LCR circuit, they can generate

current oscillations in the MHz range and above [20].

1.4 Graphene

In 1947, Wallace [21] theoretically predicted the unique electronic band

structure of graphene, a 2D layer of carbon atoms which comprises the

structure of graphite. He noted there would be a linear dispersion relation

at low energies, and later studies by McClure [22] and others [23, 24] looked

at the wave equation for excitations and realised the similarities to the

Dirac equation. It was predicted that graphene would have charge carriers

that were effectively massless, which would lead to exceptional current-

carrying properties. Attempts to isolate and characterize a monolayer

were unsuccessful, and it was presumed to be too unstable due to thermal

and other fluctuations that prevent long-range crystalline order at finite

temperatures. That was until 2004, when Geim and Novoselov, at the

University of Manchester, successfully exfoliated monolayer graphene using

Scotch tape on graphite [25]. They were awarded the Nobel Prize in 2010 for

the “identification and characterization of graphene”, verifying its unique

two-dimensional properties. This inspired the investigation of a whole class

of novel 2D materials, including higher band gap materials such as boron

nitride and molybdenum disulphide [26]. The discovery of graphene has led

to an explosion of interest and research, inspiring a wide range of innovative

technological applications such as graphene single-electron transistors [27],

flexible displays [28, 29], and solar cells [30]. Graphene also has great

physical properties for future electronics and other applications, such as;

being atomically thin, exceptionally strong, transparent and flexible. The

mechanical, magnetic and thermal properties have all led to many areas of

research taking an interest in incorporating graphene into their areas. The

unique electronic band structure and arising electrical transport properties

were also confirmed, which has led to graphene becoming a candidate for

integrated circuit components.
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1.4.1 Basic Properties of Monolayer Graphene

Since the successful isolation of graphene, research into its extraordinary

electronic properties and potential applications has boomed. The unique

linear band structure, remarkable electron mobility and phenomenal strength,

among many other properties, have marked graphene as a wonder material for

the 21st century. Graphene is an ideal candidate for Quantum Hall resistance

standard [31–34], due to it’s true two-dimensionality, room-temperature

operation, and the discrete electronic energy levels that arise in a magnetic

field, called Landau levels. Single-layer sheets were the main initial focus of

research, but in time, bilayer and trilayer graphene have been investigated,

with many exciting results such as the Hofstadter butterfly effect [35, 36]

and the realization of graphene LEDs [37]. This thesis will focus on the

high-frequency application of monolayer graphene heterostructures.

1.4.2 Graphene Hexagonal Lattice

Graphene is a 2D hexagonal lattice of carbon atoms, as seen in Fig. 1.5(a),

with primitive lattice vectors

a1 =

(
a

2
,

√
3a

2

)
, a2 =

(
a

2
,
−
√

3a

2

)
, (1.17)

where a = |a1| = |a2| = 2.46 Å is the lattice constant. The carbon atoms

(circles) exist on two distinct triangular sublattices, A (unfilled) and B (filled),

identified by the shape of the bonds to the surrounding atoms, i.e. for the

A sublattice, the atoms have a “Y”-shaped bond, and for the B sublattice,

the atoms have a “λ”-shaped bond. The lattice vectors are described in

Cartesian coordinates with x and y axes in the plane of the graphene sheet,

and the z axis perpendicular to the graphene sheet. Each carbon atom has

four valence electrons, three of which combine in the graphene plane to form

sp2 orbitals. These form σ bonds with the surrounding carbon atoms, whilst

the 2pz orbital, which is perpendicular to the graphene plane, forms π bonds

with neighbouring atoms.

1.4.3 The Reciprocal Lattice of Graphene

The reciprocal lattice points are plotted with crosses in Fig. 1.5(b-c), with

the reciprocal lattice vectors, b1 and b2. The first Brillouin Zone of graphene
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Figure 1.5: (a) The real space lattice structure of graphene - a honeycomb crystal
structure of alternating carbon atoms (filled and unfilled circles) on A and B sites,
with σ bonds between them (straight lines). The primitive lattice vectors, a1

and a2, are equal to the length of the lattice constant, a. The unit cell (orange
diamond) contains two carbon atoms, one on each site: A and B. (b) Reciprocal
space plot of lattice points of the Bravais lattice (crosses). (c) Reciprocal space
plot of the first Brillouin zone of graphene (pink hexagon), with reciprocal lattice
vectors, b1 and b2.
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is indicated by the pink hexagon. The primitive reciprocal lattice vectors

must satisfy a1b1 = a2b2 = 2π and a1b2 = a2b1 = 0, and are thus given

by

b1 =

(
2π

a
,

2π√
3a

)
, b2 =

(
2π

a
,
−2π√

3a

)
. (1.18)

The unit cell of the lattice (orange rhombus) contains two identical atoms

with non-equivalent Dirac points, K± = (±4π/3a, 0), in the Brillouin zone.

At these points, the conduction and valence bands meet, as discussed in

Section. 1.4.4.

1.4.4 Band Structure of Graphene

The electronic band structure of graphene can be calculated using the tight-

binding model, or LCAO (linear combination of atomic orbitals), which is

outlined below. The model assumes the electrons of each atom to be close, or

tight, to the atom to which it belongs and have limited interaction with states

and potentials on surrounding atoms of the solid. It uses an approximate

set of wave functions based upon the superposition of wave functions of the

isolated atoms located at each lattice site. The model has been shown to

give good qualitative results.

General Tight-Binding Model

Electrons in a periodic lattice, such as graphene, can be described by a Bloch

function,

φj(k, r) =
1√
N

N∑
i=1

eik.Rj,iφj(r−Rj,i). (1.19)

Here, r is the position vector, k is the wavevector, N is the number of unit

cells within the lattice, labelled i = 1...N , and Rj,i is the position of the

jth orbital in the ith unit cell. In the tight-binding approximation, the

wavefunction, ψj(k, r), for a system with n atomic orbitals (j = 1....n) can

be written as a linear combination of orbitals, φl,

ψj(k, r) =
n∑
l=1

cj,l(k)φl(k, r), (1.20)
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E

Figure 1.6: The band structure E(kx, ky), of monolayer graphene around the first
Brillouin Zone. The conduction band and valence band meet at 6 Dirac points
at E = 0, one of which is shown in the close-up. Around the Dirac points, the
dispersion is linear.

where cj,l are coefficients of expansion. The energy of the tight-binding wave-

function can be evaluated by substituting ψj(k, r) into the time-independent

Schrödinger equation,

Ĥψj(k, r) = Ejψj(k, r). (1.21)

The energy of the jth band, Ej(k), can be calculated by multiplying

from the left by the wavefunction and integrating over all space to give:

Ej(k) =
〈ψj|Ĥ|ψj〉
〈ψj|ψj〉

. (1.22)

This can be written in terms of the Bloch states,

Ej(k, r) =

∑n
i,l c
∗
jicjl〈φi|Ĥ|φl〉∑n

i,l c
∗
jicjl〈φi|φl〉

=

∑n
i,l c
∗
jicjlHil∑n

i,l c
∗
jicjlSil

(1.23)

for each energy band. Here, Hil = 〈φi|Ĥ|φl〉 are defined as the transfer

integral matrix elements, and Sil = 〈φi|φl〉 are the overlap integral matrix

elements. Minimising the energy [38] leads to the matrix equation

Hφj = EjSφj, (1.24)
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which allows the energies Ej to be calculated by solving

det(H − EjS) = 0. (1.25)

Tight-Binding Model for Monolayer Graphene

The transfer integral matrix, H, and the overlap integral matrix, S, can

now be calculated for graphene. Each unit cell in graphene contains two

carbon atoms, therefore, we can replace j = 1...n by j = A and j = B. The

diagonal matrix element corresponding to the A sublattice is

HAA =
1

N

N∑
i=1

N∑
j=1

eik·(RA,j−RA,i)〈φA(r−RA,i)|H|φA(r−RA,j)〉

≈ 1

N

N∑
i=1

〈φA(r−RA,i|H|φA(r−RA,i)〉. (1.26)

The approximation is due to the dominant contribution arising from the

same site, i.e. j = i, within every unit cell. Although next-nearest neigh-

bours would contribute to the electronic band structure, the contribution

is negligible [38]. The right-hand side of the sum can then be set to be the

energy of the orbital, εi, which is the same for all orbitals. This gives

HAA ≈
1

N

N∑
i=1

εi = ε. (1.27)

As the B sublattice is identical to the A sublattice, we can also say HBB =

HAA. The diagonal elements of the overlap integral matrix can similarly be

calculated to find SAA = SBB = 1.

The off-diagonal matrix elements can be calculated assuming the contri-

bution arises mostly from hopping between the three nearest neighbours on

sites l = 1, 2, 3:

HAB ≈
1

N

N∑
i=1

3∑
l=1

eik·(RB,l−RA,i)〈φA(r−RA,i)|H|φB(r−RB,j)〉. (1.28)

The matrix element between neighbouring atoms is independent of the

site of the neighbour, thus all 〈φA|H|φB〉 can be set to equal the hopping

parameter, t. This is negative, thus we will use γ0 = −t. The off-diagonal
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Figure 1.7: The nearest-neighbours of an atom on the A sublattice (white) lie on
the B sublattice (blue) and are connected by position vectors δ1, δ2 and δ3.

matrix element now becomes

HAB = − 1

N

N∑
i=1

3∑
l=1

eik·(RB,l−RA,i)γ0,

= −γ0

N

N∑
i=1

3∑
l=1

eik·δl ≡ −γ0f(k). (1.29)

HBA is the complex conjugate of HAB, i.e. HBA ≈ −γ0f
∗(k). Similarly,

the off-diagonal elements of the overlap integral matrix can be calculated to

give:

SAB = s0f(k) = S∗BA, (1.30)

where s0 = 〈φA(r−RA,i)|φB(r−RB,l)〉. The function, f(k), that describes

the nearest-neighbour hopping can be evaluated by considering the position

of the three nearest-neighbours, which are from the opposite sublattice, as

shown in Fig. 1.7. The vectors connecting the considered A atom and the
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neighbouring B atoms are:

δ1 =

(
0,

a√
3

)
,

δ2 =

(
a

2
,− a

2
√

3

)
,

δ3 =

(
−a

2
,− a

2
√

3

)
. (1.31)

Here, |δ1| = |δ2| = |δ3| = a/
√

3 is the carbon-carbon bond length. The

hopping function can then be evaluated:

f(k) =
3∑
l=1

eik·dl

= eikya/
√

3 + 2e−ikya/2
√

3 cos(kxa/2). (1.32)

It now follows that, we can now write the transfer integral matrix and

the overlap integral matrix for monolayer graphene as:

H =

[
ε −γ0f(k)

−γ0f
∗(k) ε

]
(1.33)

Solving for the energies as in Eq.(1.25), it is found:

E± =
ε± γ0|f(k)|
1∓ s0|f(k)|

. (1.34)

Here, E+ gives the energy of the conduction band, and E− gives the energy

of the valence band. In [39], the parameter values are stated; γ0 = 3.033

eV, s0 = 0.129 and ε = 0. The resulting band structure is plotted in Fig.

1.6, where we see the conduction and valence bands cross at six points on

the edge of the Brillouin Zone with zero energy gap. Around these points,

labelled K±, the dispersion is linear, and electrons near these points can be

described by a Dirac-like Hamiltonian. In [38], f(k) is calculated at these

Dirac points and is found to be zero, i.e. there is no coupling between the

A and B sublattices at these points. Approximating near the Dirac points

gives a non-zero coupling:

f(k) ≈
√

3a

2~
(ξpx − ipy), (1.35)
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where ξ = ±1 for K+ and K− valleys respectively, and p = (px, py) =

~k− ~K±. Therefore around the Dirac points, the transfer integral matrix

is:

H = v

[
0 ξpx − ipy

ξpx + ipy 0

]
, (1.36)

where the velocity v =
√

3aγ0/(2~). Within the linear dispersion regime,

the overlap matrix, S, is approximately the unit matrix and thus the energy

eigenvalues and eigenstates for monolayer graphene at low-energy are found

to be:

E± = ±~vFk,

ψ± =
1√
2

([
1

±ξeiξϕ

]
eik·r/~

)
. (1.37)

Here, the ± refer to the conduction and valence bands, respectively, and

ϕ is the angle of the momentum, p, in the graphene plane. The linear

dependence of energy on momentum is unique and leads to a linear density

of states (DoS) relation also.

The band structure is shown in Fig. 1.6, which is found to be rather

different from usual three-dimensional materials. Six double cones meet

at E = 0 V, around which the dispersion relation is linear. These are the

Dirac, or neutrality, points. A striking result of the dispersion around these

points is that the Fermi velocity does not depend on energy or momentum.

The band gap, i.e. the energy range between the valence band and the

conduction band for which no states exist, is zero for graphene. For an

undoped sample of graphene, the Fermi level is situated at this neutrality

point, where the conductance and valence bands meet, i.e. the valence band

is completely filled with electrons and the conductance band is empty. At

this point, the density of states, which is also linear with energy at low E

(see derivation below), is zero and thus the electrical conductivity of intrinsic

graphene is low and of the order of the conductance quantum, σ ∼ e2/h.

The Fermi level can be altered by doping, either chemically or by applying

an electric field, or by adsorbing molecules onto its surface, such as water

or ammonia [40]. For doped graphene, the electrical conductivity can be

very high, potentially higher than that of copper at room temperature (bulk

conductivity for graphene has been measured as 0.96 ×106 Ω−1cm−1 which
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is higher than the conductivity of copper = 0.6 ×106 Ω−1cm−1). The 2D

nature of graphene and extremely high mobility at room temperature allows

electrons to conduct very well.

Derivation of the Density of States

It is possible to derive the density of states in graphene at low E using the

linear dispersion relation, E = ~vFk. Each state in 2D k-space will have an

area, Astate =
(

2π
a

)2
, where a is the distance between k states. If we consider

an arbitrary circle in k-space with radius k, this will encompass an area,

Acircle = πk2. The number of filled states in this circle is then:

Ncircle(k) = gvgs
Acircle
Astate

,

= 2× 2× k2L2

4π2
, (1.38)

as the valley degeneracy, gv = 2, and the spin degeneracy, gs = 2. This can

be written in terms of E:

Ncircle(E) =
EL2

~2vF 2π
. (1.39)

The density of states is the number of states per unit energy per unit volume,

so differentiating with respect to E gives:

DoS(E) =
2E

~2v2
Fπ

, (1.40)

thus, the density of states (DoS) varies linearly with E for all E where

E = ~vFk, which is true for up to E ≈ 1 eV.

1.4.5 Pseudospin and Chirality

In a single Dirac cone, there is a contribution to the energy band from both

the A and B sublattice of graphene, as seen in Fig.1.8 (red and green, respec-

tively). An electron with energy E propagating in the positive x-direction

will originate from the same branch of the electronic spectrum as a hole

with energy −E propagating in the negative direction. Therefore electrons

and holes from the same branch have a pseudospin, σ, pointing in the same

direction, which is parallel to the momentum for electrons and antiparallel for

holes. Pseudospin is analogous to electron spin and, in graphene, is opposite



1.4. GRAPHENE 21

-k k k1

σ σ-σ

k

E

V0

E
le

c
tr

o
n

 e
n

e
rg

y

x

E
le

c
tr

o
n

 e
n

e
rg

y

x

Figure 1.8: Dirac cones around and inside a potential barrier of height V0. The
red and green branches represent the pseudospin that arises from the sublattice
origin of the electron or hole. The momentum, k or k1, is parallel to an electrons
pseudospin and antiparallel to a holes pseudospin, which leads to the definition of
chirality. The schematic below shows an electron of energy E with momentum k
incident on the barrier.
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for the K+ and K− points. Chirality [41] is the projection of pseudospin

onto the direction of motion, and is thus positive for electrons, and negative

for holes. Chirality refers to the inbuilt symmetry felt by electrons and

holes and is most noteable in graphene. Other semiconductors do have

pseudospin effects [42] but due to the non-linear band structure and the lack

of neutrality point, the chirality is mixed in traditional semiconductors.

Graphene offers clear advantages for future electronic technologies due

to its high mobility and conductivity. However, difficulties in controlling

electron transport arise due to Klein tunnelling and the absence of a band

gap, which make it difficult to achieve low power dissipation in an off state.

Traditional semiconductors have a band gap that encompasses a range of

energies for which there are no states available. This exists between the

valence band and conduction band. However, due to the unusual band

structure of graphene, discussed in detail in Section 1.4.4, no such band gap

exists. This leads to sensitivity issues when trying to construct a typical

field-effect transistor (FET) or similar, as usually the OFF-state is within

the band gap, but without one, even a small number of electrons existing in

states around the neutrality point can affect the switching. This motivates

the search for novel 2D materials such as van der Waal heterostructures.

1.4.6 Klein Tunnelling

In 1929, the Klein paradox was inferred [43] from the Dirac equation,

(σxp+ V )ψ = Eψ, (1.41)

where σx is the Pauli spin matrix, applied to the problem of a massless

relativistic particle incident on a potential barrier. This surprising result

showed that the particle would tunnel with T = 1. Even more suprising, if an

electron is incident on a potential of the order of the electron mass, V ∼ mc2,

the barrier is almost transparent, i.e. T ≈ 1. As the potential approaches

infinity, the reflection diminishes and the electron is always transmitted,

i.e. T = 1. If the electron was behaving non-relativistically, exponential

damping in the barrier of the wavefunction would be expected, however, in

the Klein paradox, the electron behaves relativistically. The phenomenon of

the electron passing through the barrier with a unitary probability is known

as Klein tunnelling.
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Figure 1.9: A schematic diagram of graphene (grey) mounted on hBN (green)
and an insulator (purple), with a gate voltage applied across the device.

At low energies, in graphene, the electrons behave as massless Dirac

fermions. When incident on the barrier at normal incidence, the tunnel

barrier can become fully transparent, i.e. the probability of tunnelling is

unity. Under certain conditions, the transparency of the tunnel barrier can

oscillate as a function of energy or angle of incidence [44, 45], a property

that could be useful for controlling electronic devices.

1.4.7 Field Effect in Graphene

The field effect in graphene can be shown by applying a gate voltage, Vg,

across a device consisting of graphene mounted on hBN and an insulator, as

seen in Fig. 1.9. This effect is the foundation for the field effect transistor

and was shown in the primary graphene investigations [25]. On application

of Vg, a field, Fg, is induced across the device. Due to the low density of

states in graphene, this induces a charge on the graphene layer, n, and

the chemical potential, µ, can be significantly changed, depending on the

thickness of the device, D,

eVg = µ(n)− eFgD. (1.42)

This will be further discussed in Section 2.2, along with an introduction to

the resulting quantum capacitance effect.
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1.5 Boron Nitride

1.5.1 General Properties

Hexagonal-boron nitride has a honeycomb structure like graphene, with a

very similar lattice constant, and is thus an ideal candidate to combine with

graphene in van der Waals heterostructures, as described in Section. 1.6. It is

very stable, in particular, being heat- and chemical-resistant. The band gap

of hBN is ∼ 5 eV and is thus favourable for its potential as a tunnel barrier

in graphene heterostructures, as it means electrons will exhibit quantum

tunnelling through the barrier, giving rise to a tunnel current, rather than

conduction over the barrier which may occur with 2D materials with lower

band gaps. Bulk hBN crystals have also been shown to be an exceptional

substrate for graphene, allowing a tenfold increase in its electronic quality

[46].

1.5.2 Barrier Properties

The hBN layers act as an electrostatic potential barrier with a potential

energy determined by the barrier height ∆, which we take to be half of Egap,

as shown in Fig.1.10. The electrostatic potential energy is defined as the

amount of work done by an electric field in carrying a unit positive charge

from infinity to that point.

1.6 Van der Waals Heterostructures

A new class of heterostructure materials have emerged since the realization

of graphene and other two-dimensional (2D) crystals. Such crystals are

freestanding and chemically stable. Multilayer structures, known as van

der Waal heterostructures, can be achieved simply by stacking, or growing,

various 2D atomic crystals on top of each other, as seen in Fig. 1.11.

The electronic properties of such devices can be tuned by design. The

beauty of van der Waals heterostructures is the ease of modification. For

example, changing the orientation of the layers when stacking can lead to

dramatic alterations in the electronic properties. Devices with electronic

properties fundamentally different from those constructed with conventional

semiconductor materials can be achieved by formulating the composition of

such novel heterostructures [35–37]. Another advantage of heterostructures
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Figure 1.10: The band edge structure for a graphene RTD with zero applied
voltage. EC and EV are the conductance and valence band energies in hBN
relative to the Fermi level of graphene at E = 0. The electron affinities, χ = 1.11
eV and χG = 4.25 eV, show the amount of energy required to reach the vacuum
level. For hBN, Egap ≈ 4.7eV - 5.3eV [47–49].

Figure 1.11: A variety of 2D crystals can be stacked like Lego blocks in many
combinations, leading to a huge range of van der Waal heterostructures with a,
potentially, vast array of tailored properties. Figure reproduced from [50].
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is they are ’self-cleansing’ as the van der Waals forces attract adjacent crystal

layers and effectively squeeze out contaminants.

The main focus of this thesis is the graphene resonant tunnelling diode

(GRTD) consisting of two graphene electrodes, exfoliated from highly-ordered

pyrolytic graphite, separated by a thin hexagonal-boron nitride layer, or

other 2D crystalline material, see Fig. 1.12. The combination of hBN and

graphene is particularly attractive due to the small mismatch in their crystal

lattices and the exceptional crystalline quality [20, 51–61]. The hBN acts as

a vertical transport barrier and is of thickness in the range of d = 0.5 to 2

nm [62]. The tunnel barrier is thin enough to allow the quantum mechanical

tunnelling of electrons through the barrier. This is key to the operation of

our device. The bottom and top graphene electrodes overlap to make an

active tunnelling area, A. The remainder of the graphene electrodes act as

leads that carry current away from the active region to Ohmic, gold contacts

between which a bias voltage, Vb, is applied. This heterostructure is mounted

on a thick layer of hBN, which acts as an atomically-flat substrate. This

is then mounted on the oxidised surface of an n-doped silicon substrate, to

which a further contact can be attached to allow a gate voltage to be applied

across the device, see Fig. 1.12. This allows the fine tuning of the position

of the resonant peak and alterations to the lineshape of the current-voltage

characteristics. The gated structure may then act as a field-effect transistor

(FET). In [51], measurements of a vertical graphene heterostructure FET

were first made. Here, the results show no resonant peak, as the graphene

lattices are highly misaligned with respect to each other. In such a misaligned

sample, there will be no momentum conservation, and the majority of current

must arise from elastic scattering events.

These novel van der Waal structures offer an unprecedented degree

of control of the electronic properties through means of barrier material

choice, barrier thickness, chemical doping levels and relative orientation of

the component layers. For example, it has been shown that the relative

rotational alignment of the lattices of 2D van-der-Waals heterostructures can

significantly affect their properties. In our devices, the crystal lattices of the

two graphene layers are intentionally aligned to a high degree of precision,

θ < 2◦ during the fabrication procedure. The graphene layers are assumed

to be flat and with few impurities. In the fabrication of initial devices, the

boron nitride lattice is intentionally misaligned with respect to the lattices

of the graphene electrodes, by an angle φM . This means that moiré pattern
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Figure 1.12: A schematic diagram of the graphene-RTD comprising a bottom
(red) and top (blue) graphene lattices which are misaligned by an angle θ and
separated by a hBN tunnel barrier. The current, I, from the tunnel region flows
along the graphene layers to gold contacts (yellow). The diode is mounted on a
hBN (green) and SiO2.

effects, discussed further in Chapter 5, can be assumed to be negligible. If

aligned to within φM < 5◦, moiré fringe superlattice effects would modify

the graphene band structure. For the initial model however, the barrier

layers will be treated as a dielectric slab. Chapter 3 will explore the Ib(Vb)

characteristics attained through fine-tuning of the device design and circuit

parameters. Further details of the preparation of the device are found in

[51].

When a bias voltage is applied, a tunnel current is generated between the

graphene electrodes. Applying a gate voltage allows us to align the Dirac

points of the two graphene electrodes whilst maintaining control of their

chemical potentials.

1.7 Resonant Circuits

Electrical circuits containing a resistor (R), inductor (L) and capacitor (C),

i.e. an RLC circuit, acts as a simple harmonic oscillator with a natural

resonant frequency and damping factor, both determined by the configuration

of the components. Resonance occurs in the circuit as the system is able to

store and transfer energy between two or more different storage modes. In the

case of the RLC circuit, energy is transferred between the inductor, where it

is stored as a magnetic field in the coil, and the capacitor, where is is stored
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Figure 1.13: Voltage-time oscillations in an undamped circuit (cyan curve) and a
damped circuit (red curve).

temporarily as an electric field. When the damping is small, the resonant

frequency is approximately the natural frequency of the system. When the

resistance is positive, current oscillations will decay in time, as seen in Fig.

1.13 (red curve), whereas the undamped (cyan curve) oscillations maintain

their magnitude in time. If a device that exhibits NDC is introduced to

the circuit, such as the GRTD, the negative resistance can compensate

for the lossy resistances and result in reduced decay or the achievement of

self-sustained current oscillations.

The natural, undamped frequency of a circuit is f0 = 1/2π
√
LC [63]. The

resonant frequency is similar and depends on the circuit configuration and

parameters. If all components are in series, as in Fig.1.14(a), the resonant

frequency is the same as the natural frequency. This can be shown by

considering the step response of a series circuit. From Kirchoff’s Laws, we

know for a resistor, inductor and capacitor, their respective voltages and

currents will be:

V = VR + VL + VC , (1.43)

I = IR = IL = IC , (1.44)

where V and I are the total voltage and current, respectively. For a dc
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Figure 1.14: Circuit configurations with different resonant frequencies (a) R, L
and C all in series, (b) L and C in parallel, with R in series, (c) C and R in
parallel, with L in series.

circuit, dV/dt = 0, thus we can write:

0 = R
dI

dt
+ L

dI2

dt2
+
I

C
. (1.45)

This can be rearrange to give

dI2

dt2
+
R

L

dI

dt
+

I

CL
= 0 (1.46)

dI2

dt2
+ 2α

dI

dt
+ ω2

0I = 0, (1.47)

where α = R/2L is the decay, or neper frequency, and ω2
0 = 1/CL is the

angular resonant frequency.

Similarly, when the resistance is placed in parallel to the capacitor, as in

Fig.1.14(b) the resonant frequency can be calculated to be:

f0 =
1

2π

√
1

LC
− 1

(RC)2
, (1.48)

and for the configuration in Fig.1.14(c), the resonant frequency will be:

f0 =
1

2π

√
1

LC
−
(
R

L

)2

. (1.49)

It is possible to approximate the frequency expected when a GRTD is

placed in a resonant circuit. The device acts as a capacitor and a negative

resistor, and a small signal analysis can be performed, see Chapter 4. A
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quality (Q)-factor can be used to describe how under-damped an oscillator

is and predict whether self-sustained oscillations will be achieved, or if the

decay will be exponential (heavily-damped) or sinusoidal (damped).

1.8 Conclusion

Graphene exhibits many unique electronic properties, which could poten-

tially be harnessed for high-frequency electronics. In order to expand the

incorporation of graphene into modern electronics, for instance, to produce

a full-graphene mobile telephone, the first step is to realise a good quality

graphene oscillator. Resonant tunnelling diodes formed of graphene het-

erostructures are predicted to operate at desirable voltages and temperatures,

with a reasonable current output. They are also predicted to be much faster

than current resonant tunnelling devices due to the lack of central quantum

well and reduced dwell times. The purpose of this investigation is to predict

how factors such as the alignment between graphene lattices, the alignment

between the tunnelling barrier lattice and the graphene lattice, the material

and thickness of the barrier and other parameters affect the frequency of

oscillation. Theoretical investigation of these devices will accelerate the

realization of successful products, as well as highlighting the underlying

physical principles such as quantum capacitance, an effect that is revealed

due to the unique density of states of graphene.

This thesis comprises an additional five chapters that explore graphene

resonant tunnel diodes. Chapter 2 provides an insight into the static I(V )

characteristics of a graphene-hBN-graphene device, obtained via the Bardeen

Transfer Hamiltonian method. Factors affecting the lineshape and magnitude

of the I(V ) characteristics, such as misalignment between graphene lattices

and barrier thickness, are investigated in Chapter 3. The effect of the I(V )

characteristics on the dynamic behaviour of the device are then explored

in Chapter 4. Here, the conditions for highest frequency oscillations and

possible improvement are discussed. Chapter 5 investigates how the moiré

pattern arising from the change in lattice size between the graphene and

boron-nitride lattices affects the tunnelling process and I(V ) characteristics.

The final chapter, Chapter 6, provides an overall conclusion to the work

presented in this thesis, and discusses potential future avenues of research.
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Chapter 2

Modelling

In this chapter, the Bardeen Transfer Hamiltonian method is outlined. This

method allows calculation of the tunnel current through the barrier within

a graphene-resonant tunnel diode, a schematic of which is seen in Fig. 2.1.

This calculation can be performed either by considering a general lateral

confinement, or, equivalently, by taking into account a scattering potential

which allows scattering-assisted transitions as well as direct tunnelling. The

later parts of the chapter introduce and analyze the electrostatics of the

device.

2.1 Bardeen Transfer Hamiltonian Method

2.1.1 Calculating the Current

Derived from Fermi’s golden rule, the Bardeen Transfer Hamiltonian method

[65, 66] gives the current across the barrier, Ib. The method takes into

account the availability of states for tunnelling, the availability of states to

tunnel into, and energy conservation, giving:

Ib = gsgve
∑

kB ,kT

1

τB→T
fB(EB)[1− fT (ET )]− 1

τT→B
fT (ET )[1− fB(EB)].

(2.1)

Here the summation is over all states in the bottom (B) and top (T)

electrodes, with lateral wavevectors kB,T measured relative to the position

of the nearest Dirac point, K±B,T , in the two graphene layers, see Fig. 2.2.

gs = 2 is the spin degeneracy, gv = 2 is the valley degeneracy, and τ−1
B→T
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Insulator hBN GrB hBN GrT

Figure 2.1: A schematic diagram of the layers within the device in the z-plane; the
bottom insulating layer (purple), hBN (green) and graphene (grey). The surface
integral in Eq. (2.2) is calculated for the x− y surface located on the dashed line,
half-way through the hBN tunnel barrier (dark green).

and τ−1
T→B are the tunnelling rates for electrons travelling from the bottom

to top electrodes, and top to bottom electrodes, respectively. The Fermi

function in each electrode is fB(EB,T ) = [1 + e(EB,T−µB,T )β]−1, with the

electron energy EB,T = sB,T~vFkB,T , sB,T = +1 (-1) for electrons in the

conduction (valence) band respectively, µB,T are the chemical potentials in

each electrode, the thermal energy β−1 = κBTK , and TK is the temperature.

The energy shift of the Dirac points with respect to each other due to the

electrostatic field across the tunnel barrier is φ, as discussed in Section. 2.2.

Note that simulations in this thesis are conducted in a low temperature

regime, TK = 10 K, so we can neglect the effect of phonon scattering. More

generally, it has been shown that NDC is present in these devices up to

room temperature [20], and the effect of phonon scattering remains small

even at such temperature, due to the high phonon energy [64].

The tunnelling rates are given by Fermi’s golden rule,

1

τB→T
=

2π

~
|MBT |2δ(EB − ET )

=
1

τT→B
.
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The matrix element for the transition between electrodes is [54]:

MBT =
~2

2m

∫
dS

(
ψ∗B

dψT
dz
− ψT

dψ∗B
dz

)
, (2.2)

where ψB(r, z) and ψT (r, z) are the wavefunctions in the bottom and top

electrodes, respectively, and m is the free electron mass. The integral is

evaluated over a surface located half way between the electrodes, i.e. half

way into the barrier, as seen in Fig. 2.1. Such a restriction can arise from

the lateral extent of CVD graphene grains in electrodes, i.e. a ‘structural

coherence length’, or from a scattering mechanism, which we discuss further

in Section. 2.1.2. The tunnel current is thus:

Ib =
8πe

~
∑

kB ,kT

|MBT |2[fB(EB)− fT (ET )]δ(EB − ET ). (2.3)

The model assumes the wavefunction to be separable, with exponentially

decaying z-components and lateral (x,y) components that have a Bloch form.

For a state with wavevector k, the wavefunction can be written as a linear

superposition of Bloch states Ψj,k, on two identical atoms (j=α, β) per unit

cell [67],

ψk(r, z) = χα(k)Ψα,k(r, z) + χβ(k)Ψβ,k(r, z), (2.4)

where Ψj,k is of the Bloch form:

Ψj,k(r, z) =
1√
A

exp(ik.r)ujk(r)h(z). (2.5)

Here, ujk(r) is the cell-periodic part of the Bloch function in the graphene

layer, and h(z) describes the z−dependence of the electron wavefunction in

the graphene and barrier layers. h(z) = hB(z) ≈ 1√
D
e−κ(z+d) in the bottom

layer and h(z) = hT (z) ≈ 1√
D
eκ(z) in the top layer, where d is the distance

between the electrodes, κ is the decay constant of the wavefunctions in

the barrier (discussed further in Section 2.1.3), and D is a normalization

constant comparable to the inter-planar separation in graphite.

This term will be further discussed in Section 2.1.3. As discussed in

Chapter 1, within the tight-binding approximation, χj in Eq. (2.4) have the
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well-known form:[
χα

χβ

]
=

[
1

±se±iφ

]
, (2.6)

where the upper (lower) sign is used for electrons in the band around

the K+(K−) point of the Brillouin zone, and φ = arctan(ky/kx) specifies

the orientation of the wavevector. When taking the overlap integral, all

combinations of the basis functions, i.e. transitions between all atom sites

and valleys, must be considered. However, for simplicity, in the following

analysis, we only show explicitly the contribution to the matrix element due

to the j = α parts of ψB and ψT . The cross terms are reintroduced later

(Eq. (2.9)) and fully included in our numerical calculations. The matrix

element thus becomes:

Mαα =
~2

2mA

∫
dSei(kB−kT)·r×(
u∗αkB

h∗B(z)uαkT

hT (z)

dz
− uαkT

hT (z)u∗αkB

h∗B(z)

dz

)
(2.7)

The periodic Bloch functions are localized around the basis atoms, and thus

in the plane midway between the electrodes, the functions are spread out.

Therefore, ujk(r, z) vary only weakly in k, and the dependence does not

greatly affect the integral. Assuming the z−dependent terms to be invariable

over the surface, we arrive at the usual tunnelling form 2κe−κd/D. The form

of this tunnelling term is further discussed in Section 2.1.3, where we confirm

that the approximation is valid. We take uαα to have no dependence on kB or

kT, i.e. using an effective-mass approximation where the periodic functions

are evaluated at the band extrema, however, we do find a dependence on

misalignment angle between the two graphene layers, discussed in detail

later in this Section. As the atoms in the unit cell are identical, uββ = uαα.

uαβ = uβα and the ratio uαα/uαβ is of order one. We can approximate the

matrix element as,

Mαα =
~2

2mA

κe−κd

D

∫
dSei(kB−kT)·r (u∗αkB

uαkT
+ uαkT

u∗αkB

)
≈ ~2

2mA

2κe−κd

D
u2
αα

∫
dSei(kB−kT)·r. (2.8)
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Figure 2.2: (a) Graphene lattice schematic in real-space of the bottom (navy) and
top (grey) graphene electrodes. Filled (unfilled) circles represent carbon atoms on
site α (β), a1B,2B and a1T,2T are the primitive lattice vectors in the bottom and
top graphene electrodes respectively, and ω is the misalignment angle between the
layers. (b) k-space schematic of the graphene lattices in the bottom (navy) and
top (grey) electrodes, with the first Brillouin Zone of the bottom layer shaded in
grey. b1B,2B and b1T,2T are the primitive reciprocal lattice vectors in the bottom
and top electrodes,respectively. The inequivalent K+ and K− points are coloured
white and black, respectively.

The crystalline lattices of the bottom and top graphene layers may

be rotationally misaligned by an angle, θ, as seen in Fig. 2.2. Such a

misalignment causes an equivalent rotation of the Brillouin zones in k-space

such that the Dirac points in the two graphene layers no longer overlap.

Even when the angle is very small, θ < 2◦, the misalignment of the cones

is significant. The rotation matrix, R(θ), can be used to find a wavevector

describing the displacement in k−space, ∆K = (R(θ)−1)K+, which satisfies

θ = 2sin−1(3a|∆K|/8π) [68–71]. Therefore, the wavevector of an electron in

the top graphene layer measured relative to the position of the Dirac point

in the bottom layer becomes kT + ∆K and the matrix element is now:

MBT =
~2κ

mAD
e−κdgθ(φB,φT )

∫
dSei∆K·rei(kB−kT)·r, (2.9)

where:

gθ(φB,φT ) = u2
αα

(
1 + sBsT e

−i(φB∓φT )
)
+u2

αβ

(
sBe

±iφB + sT e
±iφT

)
. (2.10)

Here the upper sign is for transitions between like valleys, i.e. K±B to K±T , and
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the lower sign is for transitions between unlike valleys, i.e. K±B to K∓T , and

φ′T = φT + ω. Here, sB,T = ±1 labels electrons in the conduction (valence)

band, respectively, and φB,T specifies the orientation of the wavevector in

each layer. The pseudospin of the electron wavefunctions is included in

the function, gθ(φB,φT ), within the part of the matrix element and in the

overlap of the periodic part of the wavefunctions, and as current from the

K− valley makes an equivalent contribution to the K+ valley. This factor

can be written more simply as:

g(φB,φT ) = 1 + sBsT e
−i(φB−φT ) + sBe

iφB + sT e
−iφT , (2.11)

where gθ(φB,φT ) = γ(θ)g(φB,φT ). The spatial overlap of the normalised

cell-periodic part of the Bloch states, u(r), at the Dirac points in the two

electrodes is γ(θ) and is evaluated over an area, SC , that greatly exceeds

the length scale of the impurity potential, ∼ q−1
c , and can be written as:

γ(θ) =
1

dSC

∫
SC

dSCu
∗(R(θ)r)u(r). (2.12)

2.1.2 Scattering Potential Method

It is also possible to formulate an expression for the tunnel current by

constructing a matrix element that describes a scattering process between

the two electrodes,

MS
BT =

∫
Ω

dΩψ∗B(r, z)VSψT (r, z), (2.13)

where the integral is over all space, Ω, and VS(r, z) is a scattering poten-

tial that can induce transitions between states with mismatched in-plane

wavevectors, as discussed further in Section 3.1.1. Although this form looks

to be quite different from that in Eq. (2.2), it can be demonstrated that the

methods are equivalent. In Ref. [52], Eq. (2.13) is evaluated to give:

MS
BT =

u2
αα

AD
e−κdei(φB−φT+θ)Ξ

∫
dSei∆K·rei(kB−kT)·r. (2.14)

If Ξ = ~2κ/2md, Eq. (2.2) and Eq. (2.14) are identical. The scatter-

ing potential in Ref. [52] is assumed to be separable into components in

the tunnelling direction and the plane parallel to the tunnelling direction,

VS(r, z) = VS(z)V
‖
S (r). The factor VS(z) is assumed to be constant over the
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Figure 2.3: The function |g(φB,φT , θ)| calculated exactly by density functional
theory by M. T. Greenaway (solid curve), and calculated approximately by
evaluating the overlap of Gaussian functions placed on the lattice sites (dashed
curve).

barrier region, and thus Ξ corresponds to VS(z) = ~2κ/2md. Inserting all

matrix elements into the integral form of Eq. (2.3),

Ib =
8πe

~2vF

∫
k

|MBT |2[fB(EB)− fT (ET )]dk, (2.15)

gives the current across the barrier.

This latter method is useful if a secondary source of scattering is involved,

as the scattering potential can be altered accordingly. The distinction

between the two methods is further discussed in [72]. It is concluded in [73]

that the two methods are modelling the same aspect of the tunnelling process,

which is a restriction in the lateral extent over which the wavefunctions

maintain their coherence. We will consider the scattering potential method

approach when discussing changes to the matrix element. Another equivalent

method considers the dwell time of electrons in the graphene electrodes

and in the barrier, and relates this time to an energy broadening for the

tunnelling calculation.
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2.1.3 Discussion of the Tunnelling Probability

Here, we discuss further the term describing the tunnelling across the barrier.

The current will be proportional to a transmission probability T ∝ 1/τB→T . If

the tunnelling conductance per channel is much smaller than the conductivity

quantum e2/h, which is true for this case, T will be exponentially small and

depend strongly on the energy, E, of the tunnelling electrons, i.e.

T (E) = A(E) exp([−W (E)]), (2.16)

where A(E) is a function that depends on the wavefunction matching at

the interface [51]. We assume A(E) is constant here and investigate the

form of W (E). For an isotropic barrier, we can solve the dispersion relation

E = εn(kx, ky, kz), where E is the energy of the electrons tunnelling in the z

direction, and εn is the energy each band (n = 0 for the conduction band,

n = 1 for the valence band). The tunnelling probability depends primarily

on kz, as tunnelling through the barrier is in the z-direction, and as no real

solution can exist within the barrier, must be imaginary, therefore:

W (E) = 2dIm(kz). (2.17)

For the case of parabolic bands within the barrier, the dispersion relation

for the electron is given by:

∆ =
~2k2

2m∗
, (2.18)

where ∆ is the barrier height, i.e. the distance to the valence band in our

case, and m∗ is the effective mass of the electron in the barrier, and thus:

Im(kz) =

√
2m∗∆

~
. (2.19)

For layered crystals, the band structure can be approximated as:

E = τ(kz) + ε1(kx, ky), (2.20)

where τ(kz) = 2t⊥ cos(kzdi), where t⊥ > 0 describes the interlayer coupling,

and di is the interlayer distance (di ≈ 3.4Å for hBN). Inserting this into the
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tunnelling equation gives kz within the gap to be

kz =
i

di
ln

 |E − ε1|
2t⊥

+

√(
E − ε1

2t⊥

)2

− 1

 . (2.21)

At the top of the valence band, Emax = max(ε1(kx, ky)) + 2t⊥, which

gives a wavevector of:

Im(kz) =
1

di
ln
(
| ∆

2t⊥
+ 1|+

√
(

∆

2t⊥ + 1
)2 − 1

)
, (2.22)

where ∆ = E − Emax. If ∆ >> 2t⊥, this can be simplified to Im(kz) =
1
di

ln( ∆
t⊥

), which gives a tunnelling probability T ∝ (t⊥/∆)2NL , where NL =

d/di is the number of atomic layers making up the tunnel barrier. If

∆ << 2t⊥, Im(kz) = 1
di

√
∆
t⊥

=
√

2m∗∆
~ , where m∗ = ~2

2t⊥d
2
i

is the effective

mass in the tunnelling direction. Therefore, as long as the tunnelling occurs

near the band gap edge, the standard isotropic model is applicable.

Further models considering a more complicated dispersion relation, which

allows the inclusion of factors such as the stacking formation, have been

studied [51]. Each of these shows that the parabolic approximation for the

energy bands of hBN works well. This ties in well with the matrix element,

which, when incorporated into the equations for current, gives a factor of

exp(2κd) in the current.

2.2 Electrostatics of a Two-Layer Graphene

Device

Now that the current across the barrier can be calculated, we can explore

the electrostatics of the graphene-hBN-graphene device. Two voltages can

be applied to the device; a gate voltage, Vg, and a bias voltage, Vb, as seen

in Fig. 2.4, with the bottom graphene electrode as the ground. These will

control the induced carrier densities, nB and nT , in the bottom and top

graphene electrodes, respectively. We define nB,T > 0 for holes and nB,T < 0

for electrons, i.e. in the figure, nB < 0 and nT > 0. The electronic charge

is also defined as e > 0. In the absence of applied voltages, nB = nT = 0,

and the chemical potentials in each layer, µB and µT , are at the neutrality
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(Dirac) point.

The gate voltage is applied between the Si substrate and the bottom

graphene layer, and increases the carrier concentration in the bottom elec-

trode, nB. Due to the low density of states close to the Dirac point and the

weak screening in monolayer graphene [67], the bottom graphene electrode

only partially screens the charge, and resulting electric field, Fg, induced

on the Si-gate electrode by Vg. Therefore, the carrier density in the top

electrode, nT , is also influenced by Vg, when the chemical potential is close

to the Dirac point [51]. This behaviour is associated with the so-called

quantum capacitance [74], discussed further in Section 3.7 which is an effect

relatively unnoticed in traditional semiconductors but shows up strongly

in graphene, where a relatively small Vg induces a significant change in the

chemical potential, µB, thus providing additional control of the effective

barrier height and the transmission coefficient.

The bias voltage is applied between the two graphene layers, and gives

rise to the tunnel current through the barrier. The electric field induced

across the barrier, Fb, and the external electric field from the gate voltage,

Fg, can be related to the charge densities via Gauss’s Law. For a field, F

and charge (carrier density), ρ (n), Gauss’s Law is:

O · F =
ρ

ε
=
ne

ε
. (2.23)

For our system, this gives:

ε(Fb − Fg) = (nB − nDB)e, (2.24)

ε(0− Fb) = (nT − nDT )e, (2.25)

where nDB and nDT are the doping levels in each layer, and ε = ε0εr and εr (ε0)

are the relative (absolute) permittivies. For hBN, εr = 3.9. The field across

the barrier, Fb, is defined as negative as it shifts the top Dirac cone down

with respect to the bottom Dirac cone, which has a neutrality point centered

at E = 0, whilst Fg has an opposing effect and is therefore positive. For the

case of chemically undoped graphene layers, i.e. nDB = nDT = 0, which, to a

good approximation, is the case in the currently-fabricated devices, µB and
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Figure 2.4: Electrostatic diagram of the device, showing the bottom graphene
electrode with filled states (red) up to the chemical potential, µB, and the top
graphene electrode with filled states (blue) up to µT . The hBN barrier (central
green layer) separates the two electrodes. Current, Ib, flows from right to left
here. The voltage dropped across the device, eVb, and the voltage shifts due to
the resulting gate field, eFgD, and the field across the barrier, φb, are shown.

µT are related by:

eVb = µB(nB)− µT (nT )− eFbd, (2.26)

where d is the thickness of the barrier. The chemical potentials have the

opposite sign to the carrier densities so that, for the case of Fig. 2.4, µB

is positive and µT is negative. For simplicity, we assume the graphene

electrodes are chemically undoped, unless otherwise stated. For energies

within the linear dispersion curve of graphene, the Fermi level in the two

electrodes is defined as:

µ(n) = −sgn(n)
√
π|n|~2v2

F , (2.27)

where sgn(n) is the sign function, i.e. +1 for n > 0 and -1 for n < 0. From

the coupled Poisson’s equations, we can write nT in terms of nB,

nT = −(nB − nDB)− Fgε

e
+ nDT , (2.28)

which can be inserted into Eq. (2.26) to give an equation in terms of either
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nB or nT . The field, Fg, due to the gate voltage, Vg, is defined by:

eVg = µB(nB) + eFgD, (2.29)

giving

nT = −(nB − nDB)− ε

e2
(
eVg − µB

D
) + nDT . (2.30)

In order to calculate the carrier densities, a shooting method, in which

an initial range of nB is trialed, can then be used to minimise:

0 = eVb − µB(nB) + µT (nT )− e2(nT − nDT )d

ε
, (2.31)

giving nB and, thus, nT . Fig. 2.5(a) shows the calculated charge densities

vs Vb for a device with Vg = 0 (solid lines; red for the bottom layer, blue for

the top layer). We see that as Vb increases, the number of electrons in the

bottom cone, and the number of holes in the top cone, increase parabolically,

and at Vb = 0, nB = nT = 0. For Vg 6= 0 (dashed lines in Fig. 2.5), at Vb = 0,

the charge densities are nonzero due to the charge induced by the gate

voltage. At higher Vb, the charge densities then follow the same parabolic

behaviour, but shifted to have more (fewer) electrons (holes) on the bottom

(top) graphene layer. The chemical potentials are also plotted in Fig. 2.5(b),

where µ′T = µT − eFbd is the chemical potential in the top layer with respect

to the Dirac point of the bottom layer. The effect of applying a gate voltage

can be seen to increase the chemical potential in the bottom electrode and

decrease it in the top layer.

2.3 Comparison with Conventional RTDs

Resonant tunnelling and negative differential resistance have been studied

extensively in double barrier resonant tunnelling diodes (DBRTDs) [75, 76].

As seen in Section 1.3.2, the DBRTD consists of a central well surrounded

by two barriers. Charge build up in the well leads to a delay in current

with respect to voltage changes, which can be represented as an inductance.

This effective inductance, an important feature in the operation of double-

barrier RTD oscillators, is absent in our single barrier device, which means

that graphene-based oscillators are potentially faster. The quantum well
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Figure 2.5: (a) Charge densities, nB (red) and nT (blue), in the bottom and top
electrodes calculated respectively for aligned devices with four hBN layers acting
as the barrier, for Vg = 0 V (solid lines) and Vg = 50 V (dashed lines). When
nB < 0, the conduction band of the Dirac cone is filling with electrons, whilst
nT > 0 represents electrons being lost from the valence band in the top Dirac
cone. (b) Chemical potentials, µB (red) and µT (blue), in the bottom and top
electrodes respectively for aligned devices with four hBN layers acting as the
barrier, for Vg = 0 V (solid lines) and Vg = 50 V (dashed lines). When µB > 0,
the conduction band of the Dirac cone is filling with electrons and thus shifting
the Fermi level up, whilst for µT > 0, electrons are lost from the valence band in
the top cone.

confinement provided by the two barriers creates quasi-two-dimensional

states through which charged carriers can tunnel when their energy is tuned

to resonance by an applied voltage. Such confinement is already built

into a single sheet of graphene, thus the resonant tunnelling diode can be

constructed by sandwiching a single tunnel barrier between two graphene

electrodes. A fundamental intrinsic limitation on the frequency of DBRTDs

is the carrier dwell time within the central quantum well (∼ picoseconds).

In the GRTD, without the quantum well, the limitation is set by the time to

transit the barrier (∼ femtoseconds). This, coupled with the high mobility of

carriers in the graphene electrodes, and the atomically thin barrier, suggests

great potential for future high-speed electronics, potentially operating in the

THz regime. Present day DBRTDs are well optimised, whereas GRTDs are

still in the primary stages of design. One particular benefit highlighted so

far is the room-temperature operation, alongside the motivation to harness

fundamental physical principles arising from graphene’s unique properties.

We investigate and quantify theses benefits in Chapters 3 and 4.
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Chapter 3

DC Characteristics

In this chapter, we describe the general behaviour and physics behind the

Ib(Vb) characteristics of the graphene-hBN-graphene heterostructure and

compare our calculations to experiment. We then investigate the device

parameters that affect the shape of the current-voltage curves to determine

the parameter set which will give rise to an optimum high-frequency response.

The parameters we investigate include the tunnel barrier width, chemical

doping levels of each electrode, and the alignment of the graphene lattices. It

is found that reducing the barrier width to a minimum, i.e. a single atomic

plane of barrier material, selecting a barrier material with an optimum

potential height, applying a high level of chemical doping to an electrode

and aligning the graphene layers leads to the highest-frequency oscillations

and ensures high current output.

3.1 Electron Tunnelling between Aligned

Graphene Electrodes

In Fig. 3.1, we show a typical Ib(Vb) curve calculated for the graphene

resonant tunnelling diode (GRTD) and the band diagrams (insets) for the

bottom (left) and top (right) electrodes for two values of Vb. The curve is

calculated for graphene layers that are undoped. At zero applied bias, and

with zero gate voltage, i.e. Vb = Vg = 0, the Dirac points in the top and

bottom layers are energetically aligned, and the chemical potentials in both

layers, µB and µT , are at the neutrality point, i.e. µB = µT = 0, as in the

lower inset of Fig. 3.1. If a positive bias voltage is applied between the

two layers, Vb > 0, electrons accumulate in the bottom (negatively-biased)



3.1. ELECTRON TUNNELLING BETWEEN ALIGNED
GRAPHENE ELECTRODES 45

layer, and an equal number of holes accumulate in the top (positively-biased)

electrode. This difference in charge on the two electrodes, see Fig. 2.5,

induces an electric field across the barrier, Fb, which leads to an electrostatic

energy difference between the two layers of φ = eFbd, and, consequently,

produces a relative energetic misalignment of the cones in the two layers.

This shift means that most available carriers tunnelling from one electrode

to the other must change their in-plane wavevector k in order to tunnel

with conservation of energy. This type of transition is forbidden unless

the tunnelling event is accompanied by a scattering process in which the

conservation of k is relaxed. This long-range (in real-space) scattering

process can arise from disorder and interaction effects and their effects are

further discussed in Section 3.1.1.

3.1.1 Elastic Scattering

The resonant feature of the Ib(Vb) characteristics has a line width and position

that depends on the disorder potential or the nature of the interaction leading

to elastic scattering processes. A scattering potential,

VS(q) =
V0

(q2
c + q2)

, (3.1)

is used in our model to describe the tunnelling-induced change in in-plane

wavevector, q = kB − kT, between the graphene layers. This scattering

potential is taken to be localized over the region of the tunnel barrier. In

Eq. (3.1), qc
−1 is the lower limit of the modulation length of the scattering

potential in real space, and Vs(q) has a Lorentzian form. This potential

can arise due to disorder in the system and impurities in the layers, and

possibly from the misalignment of the barrier and graphene layers. Random

impurities automatically introduce a correlation length, r0 < ri = 1/(πni)
2,

where ri and ni are the radius and the number density of the impurities

[77]. It follows from Eq. (3.1) that VS(q) is maximal when the Dirac

points and the electronic spectra of the two graphene electrodes are aligned

energetically, i.e. q = 0, thus allowing electrons to tunnel resonantly. The

choice of V0 and qc will be discussed below. If we set VS(r) = 1, i.e.

all transitions are allowed and q−1
c = 0 nm, the tunnel current increases

monotonically with increasing Vb and there is no resonant peak, for the

aligned device, as seen in the green curve of Fig. 3.2. It is found that
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Figure 3.1: A general Ib(Vb) characteristic calculated for the graphene-hBN-
graphene diode. Insets(a-b): Band diagrams (E − k) of Dirac cones (displaced for
clarity) of the bottom (left in (a) and (b)) and top (right in (a) and (b)) layers,
with blue representing the filling of the cones with electrons, separated by a hBN
barrier (green). Initially, at Vb = 0 (a), both cones are filled to the neutrality
point. At Vb > 0, the bottom cone is filled above the neutrality point, whereas
the top cone loses valence electrons. The Dirac cones are shifted in energy with
respect to each other by the electric field induced across the barrier, which causes
the barrier potential to become tilted. This curve is a result of simulations of a
device comprises 4 hBN layers as the tunnel barrier, and with aligned graphene
layers (θ = 0◦).
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Figure 3.2: Ib(Vb) characteristics for q−1
c = 0 nm (green), q−1

c = 5 nm (blue), 10
nm (red), 15 nm (orange), and 20 nm (purple). Increasing qc broadens the Ib(Vb)
characteristics. We find q−1

c = 15 nm best fits the experimental measurements,
and matches the peak and valley magnitude and position. All curves are for a
θ = 0◦ device.

decreasing the length scale of the scattering potential, i.e. q−1
c , broadens the

Ib(Vb) characteristics, as seen in Fig. 3.2, where characteristics for q−1
c =

5 nm (blue) to q−1
c = 20 nm (purple) are shown. The current peak shifts

to higher Vb and higher current magnitudes for increasing qc. The NDC

region approximately corresponds to Vb ∼ ~vF qc/e, where the average in-

plane change in wavevector, q, approaches qc. Experimentally, the Ib(Vb)

characteristics, including the strong resonant peak and NDC region, persist

up to room temperature. Thus, we can conclude that the scattering is

primarily elastic as there is a negligible change in the Ib(Vb) characteristics

when the temperature, TK , is increased up to 300 K, as seen in Fig. 3.3,

indicating a lack of phonon-assisted tunnelling. We note the q−1
c = 0 nm case,

i.e. δ−function scattering, gives a similar result to Ref. [51], where many

different impurities and length scales were involved, thus most transitions

were allowed.
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Figure 3.3: Ib(Vb) characteristics for a device with NL = 4 and θ = 0◦ for TK = 10
K (blue) and TK = 300 K (magenta), q−1

c = 15 nm, neglecting phonon-processes.

3.1.2 General Description of Ib(Vb) Characteristics (θ =

0◦)

Initially, for small Vb, increasing Vb causes the current flowing across the

barrier to also increase (Fig. 3.1), thus the device exhibits typical Ohmic-like

behaviour. This is because φ is initially small and the Dirac cones in the

top and bottom layers are closely aligned in energy. As Vb increases, the

magnitude of the chemical potentials in the two layers increases, increasing

the number of states that are available to tunnel. Although the states in the

bottom and top electrodes are no longer energetically aligned, the change

in k required for the tunnelling process to occur is well within the elastic

scattering regime. At the peak in current, Ipeak, the resonant condition

φ = ~vF |∆K| is met. As this occurs when the chemical potentials are high

up in the linear dispersion curve, this is the Vb value at which the largest

number of electrons can tunnel through the barrier, via elastic scattering.

The band diagrams, with µB and µT (marked by the upper edges of the

blue filled regions) are shown in the upper inset of Fig. 3.1. Note, the two

Dirac cones are displaced horizontally for visual effect only, as for a θ = 0◦

device, the cones would completely overlap in k-space. Once the bias voltage

is increased beyond this point, the energetic misalignment of the Dirac
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Figure 3.4: Band diagrams (E − k) of the bottom (red) and top (blue) Dirac
cones for (a) Vb = 0 and (b-d) increasing Vb > 0, for an aligned device. The Dirac
cones completely overlap each other in the tunnelling direction when Vb = 0, as in
(a). The application of a bias voltage shifts the cones energetically with respect
to each other. The black dashed curve in (b-d) represents the 3D energy slice of
the intersecting cones. It is unique to the θ = 0◦ case to have a circle for each E.

(neutrality) points due to the field across the barrier becomes large, and

most transitions require a large k change in order to tunnel, which cannot

be provided by the scattering potential. Thus, at this point, an increase

in voltage leads to a decrease in current through the barrier, despite an

increase in the number of states available to tunnel. This region, seen in Fig.

3.1 between Vb = 0.25 V and Vb = 0.6 V, is known as a region of negative

differential conductance (NDC). In this range of Vb, the device is unstable if

placed in a resonant circuit, which is known to lead to self-sustained current

oscillations [76]. After Vb = 0.6 V, another Ohmic-like positive differential

conductance (PDC) region occurs, as despite the large energetic displacement

of the Dirac cones, there are many states available to tunnel, and the current

continues to increase with increasing Vb.

Fig. 3.4(a-d) show plots of the dispersion relations in the two electrodes

in k-space. When the lattices of the graphene electrodes are aligned, the

Dirac points of the two layers are at the same point in k-space. Thus, when

Vb = 0 V, we see that the band diagrams overlap completely in the tunnelling

direction, and both the bottom (red) and top (blue) Dirac cones are filled

with electrons to the neutrality point. Fig. 3.4(b-d) show the change in

chemical potentials and overlap with increasing Vb. We see that any electron

tunnelling at a particular energy E between the Dirac points of the two

cones, will be able to tunnel to all available states on that energy contour,

for example, the black ring in (b-d).

Eq. (2.15) from the Bardeen Transfer Hamiltonian method can also be



3.1. ELECTRON TUNNELLING BETWEEN ALIGNED
GRAPHENE ELECTRODES 50

0 0.5 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0 0.5 1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0 0.5 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.5 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

E
 (

eV
)

0 0.5 1
−0.15

−0.1

−0.05

0

0.05

0.1

0 0.5 1
−0.15

−0.1

−0.05

0

0.05

0.1

E
 (

eV
)

E
 (

eV
)

(a) (b)

(c) (d)

(e) (f)

C-C

V-V

V-C

T (arb. units) dIb/dE (arb. units)

Figure 3.5: T (E) (a,c,e) and T (E)DoSB(E)DoST (E) (b,d,f) for three points on
the Ib(Vb) curve in Fig.3.1; (a,b): 0.1 V, i.e. in the first PDC region, (c,d): 0.22 V,
i.e. the current peak, and (e,f): 0.5 V, i.e. the valley. Here, we see the trade-off
between momentum conservation and the linear density of states. The red (blue)
line represents µB(µT ) and the solid black line represents the position of the Dirac
point in the top cone, with respect to the Dirac point of the bottom cone (dashed
black line), which is at E = 0 eV. Three different regimes of tunnelling (labelled
C-C, V-C and V-V) are shown in (b) and explained in the text (θ = 0◦).
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written as

Ib(Vb) ∝
∫
dEDBDTT (E)[f(EB)− f(ET )], (3.2)

where DB,T is the density of states in each layer, T (E) is the tunnelling

coefficient which relates to the probability of an electron with energy E in the

bottom graphene electrode tunnelling to an empty state in the top electrode.

Integrating the density of states (DoS) over energy provides the number of

available states in the bottom electrode available for tunnelling, and the

number of states available to tunnel into in the top electrode. Tunnelling

will only occur when an electron occupying the state at energy E in the

bottom electrode, i.e. f(EB) = 1, can tunnel into an empty state at energy

E in the top electrode, i.e. f(ET ) = 0. Note, it is also possible to have

current in the reverse direction if f(EB) = 0 is combined with f(ET ) = 1,

i.e. an electron in the top electrode tunnelling into an empty state in the

bottom electrode. The tunnelling coefficient multiplied by the DoS in the

bottom and top electrodes provides dIb/dE, i.e. the contribution to the

total current from electrons with energy E.

Fig. 3.5 shows the tunnelling coefficient T (E) and dIb/dE, between the

chemical potentials in the bottom (red line) and top (blue line) graphene

electrodes, for three different points on the Ib(Vb) curve. We see that the

linear DoS has a large influence when the current is low, because here

most of the states are aligned within the elastic scattering regime and

thus the number of states available determines the current. For higher Vb,

the conservation of momentum dominates and we see only a small change

between (e) and (f) around the Dirac points of the bottom (E = 0) and top

(black line) electrodes. In (b), the three regimes of tunnelling are highlighted;

conduction band to conduction band (C-C), valence band to conduction

band (V-C) and valence band to valence band (V-V). Before the current

peak, as in (b), the current is dominated by the C-C and V-V (alike) band

transitions. This is due to the low energy shift between the cones as in Fig.

3.4(b), where most of the Dirac cone overlap is occuring between like bands.

At higher Vb, the cones are shifted further in energy, as in Fig 3.4(c,d), and

thus the transitions between unlike bands dominate. In this case, electrons

tunnel from the valence band of the bottom electrode into the conduction

band of the top electrode.

The effect of chirality, discussed in Section 1.4.4, can be uniquely observed
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within graphene devices. In the Ib(Vb) characteristics in Fig. 3.6, the curves

are calculated with (blue) and without (magenta) the inclusion of chirality.

Due to the unique band structure of graphene, in which the energy falls

linearly to zero at the Dirac point, the effect of chirality can be uniquely

observed. In gapped semiconductors, the chirality in the bands is mixed, and

thus the effect cannot be observed. Transitions for bias voltages preceding

the resonant peak are dominated by transitions between alike bands and

therefore current is enhanced compared to a non-chiral electron case. This

causes the current peak to be larger for the chiral case. However, increasing

the bias voltage beyond the resonant peak induces a change to transitions

between unlike bands, as in Fig. 3.3(c), which suppresses the current, and

thus leads to a lower valley current. Consequently, the effect of chirality

increases the peak-to-valley ratio (PVR), which determines the power output

of the device once it stabilizes, as the output current fluctuates between the

peak and valley currents, and should thus be maximized. We can see from

Fig. 3.6 that the effect of chirality is more prominent in aligned devices, as

shown in (a), as opposed to the θ = 0.9◦ device in (b). This is because, for

aligned devices, γ(θ) and thus g(φB, φT , θ) increase, as seen in Eq. (2.10).

Fig. 3.7 shows the effect of chirality at high Vb for the aligned (a,b) and

misaligned (c,d) device. We see that in both cases, the tunnelling between

like bands is enhanced by the effect of chirality and the tunnelling between

unlike bands is decreased. The enhancing effect is more pronounced in

the aligned sample, whereas the suppressing effect is more pronounced in

the misaligned sample, due to the initial contributions from each type of

tunnelling.

3.2 General Description of Ib(Vb) Character-

istics (θ 6= 0◦)

During preparation of the devices, which are fabricated using the standard

dry-transfer procedure [79], care is taken to align the crystalline lattices of

the graphene layers physically and angles of θ < 2◦ have been achieved. Even

better alignment could be reached by using novel preparation techniques

such as growth by molecular beam epitaxy (MBE). This could potentially

allow devices with θ = 0◦ to be produced consistently. It is clear from the

Transfer Hamiltonian method that aligning the layers will lead to a much
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Figure 3.6: Ib(Vb) characteristic calculated for the graphene-hBN-graphene diode
with the chirality term included (blue) and with the chirality not included, i.e.
g = 4 for the pseudospin and valley degeneracy, (magenta), for (a) a device with
θ= 0◦ and (b) a device with θ= 0.9◦.

higher magnitude of the tunnel current through the increase in the overlap

integral, γ(θ), yet the general dependence on Vb will remain the same.

For non-zero misalignment angles where ∆K 6= 0, it is clear from Eq.

(2.13) that the matrix element is maximal when q−∆K± = 0, which, as the

misalignment angle approaches 1◦, occurs for the highest number of states

when eFbd = ±~vF∆K [20]. Therefore, the position of the current peak

increases in Vb as the misalignment angle increases. We also find that the

peak-to-valley ratio (PVR) of the Ib(Vb) curve increases with increasing θ

converging to a value of 2.4 as θ approaches 2◦. This is because, at higher

θ, the overlap region of the tunnelling states occurs higher (lower) up in

the conduction (valence) band where there is a larger number of states

energetically aligned. However, we also find that the peak current amplitude

decreases as θ increases due to the misorientation of the spatial parts of the

wavefunction. This reduction in overlap can be seen in Fig. 3.8 and Fig. 3.9.

Each intersection point for each energy, as seen in Fig. 3.10, I(x(E), y(E)),

can be determined by combining the energy and momentum conserving

equations:

sB~vF |kB| − φ− sT~vF |kT | = 0 (3.3)

kT = kB −∆K, (3.4)
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Figure 3.7: T (E) (a,c) and ∂Ib/∂E (b,d) for a high Vb point on the Ib(Vb) curve;
(a,b): the aligned device, (c,d): θ = 0.9◦ device. The red (blue) lines represent
µB(µT ) and the solid black lines represent the positions of the Dirac point in the
top cone, with respect to the Dirac point of the bottom cone (dashed black lines),
which is at E = 0 eV. The purple curves show the calculated T (E) and ∂Ib/∂E
variations with chirality included, and the orange curves show the calculations
with no chirality effects included.
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Figure 3.8: Band diagrams (E − k) of the bottom (red) and top (blue) Dirac
cones for (a) Vb = 0 and (b-d) increasing Vb > 0, for a misaligned (θ = 0◦). The
application of a bias voltage shifts the cones energetically with respect to each
other. The misalignment of the graphene layers shifts the cones with respect to
each other in k-space, which can be seen in further detail in Fig. 3.9.

with the geometric intersection coordinates:

x(E) =
(∆K)2 − k2

T + k2
B

2∆K
, (3.5)

y(E) =

√
4(∆K)2k2

B((∆K)2 − k2
T + k2

B)2

4(∆K)2
. (3.6)

The form of these intersection points joined together will then either be

hyperbolic, elliptical or linear depending on sB and sT . For a further detailed

explanation of the form of these curves, see Ref. [20].

We see the effect of misalignment on the position of Dirac cones in k-space

for different Vb in Fig. 3.8. In the aligned case, at Vb = 0, all states are

aligned and able to tunnel, as in Fig. 3.4(a). However, in the corresponding

diagram 3.8(a) for θ = 0.9◦, the cones are no longer completely overlapping

and thus tunnelling between some states is forbidden. This alters the shape

and magnitude of the Ib(Vb) characteristics as seen in Fig. 3.11 (red curve)

compared to the aligned sample (blue dashed curve). We see the current

peak is decreased in magnitude and occurs at a higher Vb when the graphene

layers are misaligned. For very low Vb > 0, no current flows. The affect of

misalignment will be further discussed in detail in Section 3.5.

3.3 Momentum Conservation

Curves of intersection between the Dirac cones of the top and bottom

graphene electrodes, where electrons can tunnel with conservation of mo-
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Figure 3.9: Dirac cones of the bottom (red) and top (blue) graphene layers,
misaligned by a small angle θ. If θ = 0◦, the cones lie directly on top of each
other, i.e. at the same point in the (kx, ky) plane. The yellow curves represent
intersecting states which can tunnel with conservation of energy and momentum.
(a) Vb = 0 V, (b) 0 < Vb < Vpeak, (c) Vb = Vpeak, and (d) Vb > Vpeak, where Vpeak
is the bias voltage at which the resonant peak in the Ib(Vb) characteristics occurs.
The line of intersection changes from a line (a), to a hyperbola (b), to a line (c),
to an ellipse (d) as the bias voltage is increased.
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ΔK

Figure 3.10: Conservation of momentum and energy leads to two intersection
points, I1(x, y) and I2(x, y) at any given energy.
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mentum and energy, are shown (yellow), for four Vb values, in Fig. 3.9 when

θ = 0.9◦. The misalignment of the graphene layers shifts the Dirac cones

with respect to each other in k-space. Fig. 3.9(a) shows the cones at zero

applied bias voltage, and we see the points of conservation of momentum

are represented by a line (yellow). With some applied voltage but before

the current peak, this intersection has the form of a hyperbolic curve that

extends between the Dirac points and the chemical potentials in the two

layers. The length of this curve increases as Vb increases and therefore the

current also increases, as seen in Fig. 3.9(b). At the current peak, the two

Dirac cones just touch and so their intersection is a straight line along the

surface of the cone, as shown in Fig. 3.9(c). In this case, |φ| = ~vF |∆K|
and so electrons can tunnel between many states with conservation of energy

and momentum and a large number of states are occupied in one layer and

empty in the other layer due to the high magnitude chemical potentials,

thus facilitating a large resonant tunnel current. For Vb values beyond the

current peak, the in-plane momentum is only conserved for k−states along

an elliptical locus of intersection between the Dirac cones for the two layers,

as seen in Fig. 3.9(d). The number of available states that can tunnel is

thus diminished and so the current falls. Note that in our model, tunnelling

transitions induced by a Gaussian scattering potential with a characteristic

length scale of 15 nm [52], as described in Section 3.1.1 are included, i.e.

states near the yellow curves of intersection in Fig. 3.9.

3.4 Model Validation

Preliminary devices, a schematic of which is shown in Fig. 3.13, have

been produced and measured by the graphene group at the University of

Manchester [20, 52]. These results can be used to test our model, by using

the parameters of the devices produced; an active tunnel area of A = 120

µm2, graphene lattices misaligned at θ = 0.9◦ and four layers of hBN forming

a barrier of width d = 1.4 nm. In Eq. (3.1), values for the potential length

scale, V0, and for the scattering length scale, qc, must be chosen. Here,

we take parameters consistent with those observed in models of Coulomb

impurity disorder in single layer graphene, V0 = 10 meV and q−1
c of the order

of 10 nm [77, 80]. From Fig. 3.2, it was found that q−1
c = 15 nm gave the

best agreement to experimental results and we will therefore fix q−1
c to this

value for the rest of our investigation.
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Figure 3.11: Ib(Vb) characteristics calculated for a device with NL = 4 and θ = 0◦

(blue dashed curve) and θ = 0.9◦ (red curve).

The colour maps shown in Fig. 3.14 give a deeper insight into the effect

of qc on the Ib(Vb) characteristics when Vg = 0, and help us select the fixed

value for qc. For very low q−1
c , there is no peak in the current, as seen in

Fig. 3.14(a). As q−1
c is increased, a current peak occurs with a decreasing

maximum current. For a small q−1
c , the V0/(q

2
c + q2) scattering term falls off

more slowly with increasing q, and thus transitions with a large q make a

more significant contribution to the current compared to when q−1
c is large.

For very low q−1
c , changes in the density of states dominate rather than

those in the scattering term. This increases Ib and requires a higher Vb to

suppress the current beyond the peak. The conductance, ∂Ib(q
−1
c , Vb)/∂Vb

seen in Fig. 3.14 shows NDC is induced when q−1
c > 3 nm, and its value

increases as q−1
c increases and the width of the scattering term decreases.

The highest magnitude NDC and PVR would thus be achieved with the

largest physically-attainable q−1
c , since that would lead to a well-defined

tunnelling peak when q = 0. There is, however, a limit on the sharpness of

the resonant peak due to size effects of the electrodes at such length scales,

and therefore, the magnitude of the NDC has an upper limit also. In our

investigation, we therefore set qc = 15 nm−1 as the longest q−1
c currently

achievable.

The lineshapes of the Ib(Vb) characteristics were found to agree, and the



3.4. MODEL VALIDATION 59

0 0.5 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 0.5 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 0.5 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.5 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.5 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.5 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.5 1
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.5 1
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

T (arb. units) dIb/dV (arb. units)

E
 (

eV
)

E
 (

eV
)

E
 (

eV
)

E
 (

eV
)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

C-C

V-V

V-C

T (arb. units) dIb/dV (arb. units) 

T (arb. units) dIb/dV (arb. units) T (arb. units) dIb/dV (arb. units) 

Figure 3.12: T (E) (a,c,e,g) and dIb/dVb (b,d,f,h) for three points on the Ib(Vb)
curve; (a,b): Vb= 0.35 V, i.e. in the first PDC region, (c,d): Vb= 0.56 V, i.e.
the peak, (e,f):Vb= 0.66 V, i.e. the NDC region, and (g,h) Vb= 0.91 V, i.e. the
valley. We see again the trade-off between momentum conservation and the linear
density of states. The red (blue) curves represent µB(µT ) and the solid black lines
represent the positions of the Dirac point in the top cone, with respect to the
Dirac point of the bottom cone (dashed black line), which is at E = 0 eV. Three
different regimes of tunnelling are shown in (b), explained in the text, (θ = 0◦).
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Figure 3.13: A schematic diagram of the device in [20] with an exaggerated angle,
θ, between the two graphene layers, separated by a light blue hBN tunnel barrier.
Both graphene layers are independently contacted by Cr/Au metallization (yellow)
some distance away from the tunnel area. This initial design leads to a higher
parasitic capacitance and resistance than the device in the optimized device of
Fig. 1.12.

calculated current magnitudes were found to be within an order of magnitude

of the measured Ib when using the equations:

Ib =
8πe

~
∑

kB ,kT

|M |2[fB(EB)− fT (ET )]δ(EB − ET − φb), (3.7)

M = Ξg(ϕB, ϕT , θ)VS(q−∆K), (3.8)

where Ξ = ξe−κd, ξ is a normalisation constant determined by comparison

with recent measurements. In our analysis, ξ is approximated to be 1/Dg,

where Dg = 0.335 nm is the interlayer separation in graphite. As the trans-

mission has an exponential dependence on κ and d, the current magnitude

is very sensitive to small variations in these values. Although the model

produces results within one order of magnitude of the measured current, the

precise nature of the decay in the barrier is uncertain. Therefore, to fully

match experimental results, an additional scaling parameter is applied to

Eq. (3.7), and the resulting calculated peak-to-valley ratio agrees well with

that of the device.

Fig. 3.15 shows the current and conductance calculated vs the bias

and gate voltages. As expected, I(Vg, Vb)=-I(−Vg,−Vb), and increasing Vg
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Figure 3.14: Colour maps of (a) Ib(q
−1
c , Vb) and (b) ∂Ib(q

−1
c , Vb)/∂Vb, calculated

when Vg = 0 for a device with θ = 0◦. Increasing q−1
c compresses features in the

Ib(Vb) characteristics along the Vb axis and leads to a significant NDC region, as
seen in (b). Below q−1

c <3 nm, there is only weak NDC, as the changes in the
density of states, rather than VS(q), dominate.
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Figure 3.15: Colour maps of (a) Ib(Vg, Vb) and (b) ∂Ib(Vg, Vb)/∂Vb, calculated
when Vg = 0, q−1

c = 15 nm for a device with θ = 0◦. The dashed curves show loci
where µT = EDB = EDT (black dashed curve), µB = EDT (blue dashed curve)
and µB = EDB (solid black curve).
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Figure 3.16: (a) Theoretical and (b) experimental [20] measurements of
∂Ib(Vg, Vb)/∂Vb for a θ = 0.9◦ device. The loci (red and blue) correspond to
the chemical potential in one layer passing through the Dirac point of the other
layer.

increases (decreases) the current peak for positive (negative) Vb. The current

peak also shifts to higher |Vb| for increasing |Vg| as a higher |Vb| is required

for the energetic alignment of the Dirac cones. The results calculated for

a θ = 0.9◦ device in Fig. 3.16(a) agree well with the features seen in the

experimental measurements shown in Fig. 3.16(b). We note that due to

the misalignment, current only switches on once the chemical potential

magnitude exceeds the intersection point, resulting in a large central region

of I = 0 (white).

We can now modify the device parameters to simulate the change in

Ib(Vb) characteristics in future devices, such as alterations to the barrier

and chemically doping the graphene layers. We note that several features of

the measured Ib(Vb) characteristics are not reproduced by the simulations.

For example, at Vb = 0, the measured current is finite for all values of Vg,

rather than the simulated result of zero. This is probably due to the residual

doping of the graphene layers, the existence of electron-hole puddles and

leakage current. This region of the Ib(Vb) curve, however, is unimportant for

the operation of the device, which will be biased around the NDC region. In

the operational Vb range, the effect of electron-hole puddles will be negligible,

due to the increased induced carrier densities.

Another example of deviation between the model and experimental results

is seen when looking at the Ib(Vb) characteristics for negative Vb. Here, the

model predicts symmetric behaviour for the Vg = 0 V curve and asymmetric
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Figure 3.17: Ib(Vb) characteristics calculated for a device with NL = 4 and a
barrier height of ∆ (blue) and a tilted barrier of ∆− φ/2 (green) for (a) θ = 0◦

and (b) θ = 0.9◦.

behaviour for Vg 6= 0 V (curves shown in Fig. 3.24), but the measured

results reveal asymmetry for all Vg 6= −20 V. A lower PVR is measured than

expected from the simulations, this effect may arise due to small leakage

currents between the graphene electrodes, potentially involving inelastic

scattering also, or a more complex VS(q). Microstructural analysis [62, 78]

of the graphene and boron nitride layers indicate that they have a high level

of structural perfection, so grain size effects can be neglected in our devices.

3.4.1 Tilted Tunnel Barrier

It is important to consider the effect of high fields across the tunnel barrier.

For large Vb, the field will be large, leading to a spatial non-uniform modifi-

cation of the electrostatic energy drop of the barrier in z. This effectively

reduces the height of the barrier for the tunnelling electrons.

At higher Vb, the potential barrier due to the tunnelling material will

become more sloped due to the higher carrier densities in each graphene

layer, which induce the distance-dependent term φ = eFbd across the barrier.

Simulations were run for isotropic barriers of fixed height ∆, and with a height

of ∆− φ/2. It is found that an isotropic barrier is a good approximation for

the tunnel barrier as the lineshape and magnitude of the Ib(Vb) characteristics

are similar, see Fig. 3.17, especially at low Vb and within the operational

Vb range of the device [51]. Thus, for simplicity, we will use a fixed barrier

height.
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Figure 3.18: (a) Ib(Vb) characteristics for undoped, NL = 2 devices with mis-
alignment angle θ = 0 − 2◦. (b) Peak current vs θ, and peak-to-valley ratio
(inset).

3.4.2 Active Tunnelling Area

The first GRTD sample devices produced have had a wide span of active

tunnelling areas, from 0.3 µm2 [52] to 120 µm2 [20]. The current per unit

area for devices with θ = 0.9◦ and NL = 4 has been consistently around

0.28 µAµm−2, and thus for simplicity, we will consider devices with a fixed

active area of 1 µm2. Increasing the area would increase the current and

power output, however, it would also increase the geometric capacitance,

Cg = εrε0A/d. This would limit the frequency of operation achievable, as

discussed in Section. 4.3. The dependence of frequency on area will be

non-linear, due to the change in RN , the resistance in the NDC region, along

with the change in C.

3.5 Misalignment of the Graphene Layers

The I(Vb) characteristics show the interplay between the shift to higher

voltages (and thus larger n) of the resonant conditions and the decrease

in overlap of the spatial parts of the wavefunction, firstly, showing an

increase in the peak-to-valley ratio (PVR) and current peak magnitude as

the misalignment is increased, followed by a decrease in current until θ

reaches 1.2◦, when the current begins to increase again despite the steady

PVR. The current peak and NDC region are shifted to higher Vb as the

layers become more misaligned, due to the shift in energetic alignment of
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Figure 3.19: Measured Ib(Vb) characteristics taken from Britnell et. al. [52] for
undoped, NL = 4 devices with a high misalignment angle (θ >> 2◦) and varying
Vg.

tunnelling states, the effects of which will be further discussed in detail.

As misalignment is increased, the peak-to-valley ratio (PVR) generally

increases despite the suppression of the current peak as a result of the lack

of available states for tunnelling. The interplay between the overlap and the

energetic alignment of the tunnelling states leads to a decrease in the valley

current. The NDC region is also shifted to higher Vb for higher θ.

To quantify the possible benefits of lattice alignment, Fig. 3.18 shows

static Ib(Vb) characteristics calculated for several misalignment angles; θ = 0◦

(black), θ = 0.5◦ (blue), θ = 0.9◦ (green) and θ = 2◦ (magenta). We see

that as θ increases, the position of the current peak shifts to higher Vb. The

peak current amplitude, Ipeak, decreases as θ increases due to increasing

misorientation of the spatial parts of the wavefunction, see Fig. 3.18(b),

so that Ipeak could be ∼ 10× larger for an aligned device. However, for

undoped samples, the PVR increases with increasing θ, see inset in Fig.

3.18(b), converging to a value of 3.4 as θ approaches 2◦. At higher θ, more

states are available to tunnel resonantly at the current peak [54]. For the

doped samples (nDB = 1013 cm−2), the valley current is close to 0 for all
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Figure 3.20: Ib(Vb) characteristics calculated without the exp(−2κd) term, to
demonstrate the effect of the decreasing the field, Fb, via decreasing the barrier
width, d. Devices with NL = 4 (blue curve) and NL = 2 (red curve), for (a)
θ = 0◦ and (b) θ = 0.9◦.

θ, thus the PVR is consistently large. Increasing the misalignment angle

further causes the Dirac cones to become so misaligned (θ >> 20) that little

tunnelling occurs.

An interesting point to note can be seen in the results shown by Britnell

et. al. [52], as seen in Fig. 3.19. Here, in the initial GRTD devices, the

alignment of the graphene layers was not considered. Thus the graphene

layers are highly misaligned (θ >> 2◦), yet when a gate voltage, Vg, is

applied, the Ib(Vb) characteristics have features very similar to those of an

aligned device, rather than the slightly misaligned (θ < 2◦). For example, at

low bias voltage, a slightly misaligned sample would have a low conductance,

however, we see here that the device has a high conductance, as if it were

aligned.

3.6 Barrier Thickness

The tunnel barriers in the first devices, studied in [52], were composed of 4

atomic layers of hexagonal boron nitride in order to operate in a comfortable

range of current densities and bias voltages. Here, we consider the effect

of changing the number of layers, NL, which make up the barrier, which

is of thickness d. There are two main effects on the equilibrium Ib(Vb)

characteristics when changing d; the change in the matrix element due to

wavefunction overlap and the shift of the Dirac points relative to each other

by φ = eFbd. The dominant effect comes from the matrix element due to the
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term exp(−2κd). This leads to a ∼ 320-fold increase in the current when

halving the barrier width from NL = 4 to NL = 2, and ∼ 18-fold increase

when changing from 4 layers to 3. The second effect is due to the reduction

of φ, which is demonstrated in Fig. 3.20. Here the Ib(Vb) characteristics are

calculated without the change to the matrix element. We see a change in

the resonant conditions and the number of states available for tunnelling, i.e.

the resonant peak is shifted in the NL = 2 device (red curve) to a higher

bias voltage (0.71 V compared to 0.55 V) than the NL = 4 device (blue

curve). The result is an increase in current as d is decreased; the current at

the peak is also almost twice as high in the NL = 2 device. An interesting

point is that for low Vb, the curves are equivalent whilst the Dirac cones fill

up, thus the total change in Ib(Vb) characteristics, as seen in Fig. 3.21, is

due to the change in the matrix element only, in this region. Decreasing d

also increases the geometric capacitance of the device, an effect which will

be discussed in Section 4.6. The results from the simulations are in good

agreement with experimental results from Britnell et. al. [62]. Although it

is possible to construct a device with only one layer of hBN as the barrier,

the resonant peak would shift to even higher voltages, which when applied

at such a high magnitude, may damage the device. Also, the wavefunctions

of the graphene layers would then overlap in the z direction and affect the

behaviour of the device.

3.7 Chemical Doping of the Graphene

Layers

In order to fully exploit graphene’s potential and tune the current-voltage

curves of the device, the additional gate electrode can be used to change

the carrier density in the electrodes, which allows the manipulation of the

resonant peak and the associated NDC region. Equivalently, the Ib(Vb)

characteristics can also be modified by doping the graphene chemically

[81, 82]. The relation between gate voltage and doping levels can be seen by

combining Eqs. (2.25,2.26,2.29) to give:

eVb = eVg+
e2(nB − nDB)D

ε
+
e2(nT − nDT )D

ε
−µT (nT )+

e2(nB − nDB)d

ε
. (3.9)
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Figure 3.21: Ib(Vb) characteristics calculated for a device with NL = 4 (blue),
NL = 3 (green) and NL = 2 (red) for (a) an aligned device and (b) a misaligned
(θ = 0.9◦) device. (c) Comparison of current peak, Ipeak, for aligned (blue) and
misaligned (black) devices vs NL.
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Figure 3.22: Dirac cones for the bottom (left) and top (right) graphene layers,
shown with a visual displacement in k-space, for (a) zero applied bias and gate
voltages, (b) zero applied bias voltage and nonzero doping or gate voltage, (c)
nonzero applied bias voltage and doping or gate voltage. In (c), we see the filled
cones have been brought back into the alignment shown in (a), but with a large
number of states in the conduction band of the bottom cone available for resonant
tunnelling.
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At Vb = 0, when a gate voltage or nDB is applied, the chemical potential in

the bottom cone increases, as seen in Fig. 3.22(b). The Dirac points of

the cones can then be brought back into alignment by adjusting Vb. But

then there are many filled states in the conduction band of the bottom cone

which can all resonantly tunnel to many empty states in the conduction

band of the top layer. Thus, we expect an increase in current and a change

in the resonant Vb condition. Here, we investigate the effect of doping the

bottom graphene electrode only. Doping is used rather than a gate voltage

in order to avoid the extra capacitance a gate electrode would introduce.

Also, although increasing Vg leads to desired properties such as a higher

peak current and higher PVR, it must be limited to |Vg| < 50 V in order

to not damage the device, for D = 300 nm. Consequently, doping is the

preferred choice of shifting the resonant conditions here.

In Fig. 4.16(a), we show Ib(Vb) curves calculated when NL = 2 for an

undoped (red curve) and an asymmetrically-doped device with nDB = 1013

cm−2, nDT = 0 (green curve). When nDB > 0, nDT = 0, the resonant peak occurs

at higher Vb than when nDB = 0, and the current peak magnitude is higher,

raising the peak-to-valley ratio (PVR) from 1.5 to 3.5. The magnitude of RN

is also increased, which is a good indication for high-frequency performance,

as discussed further in Section. 4.3.

The shoulder of the green curve in Fig. 3.23 (arrowed) when nDB = 1013

cm−2, arises from the low density of states around the Dirac point. At this

Vb, the doping levels are such that the chemical potential in the top graphene

layer aligns with the Dirac point of the bottom layer. When this occurs,

carriers close to the Fermi level in one electrode can only tunnel to a very

low density of states in the other, such that the current is dominated by

the DoS. Therefore, the current becomes insensitive to small changes in

Vb, yielding a differential conductance close to zero. This gives rise to an

additional quantum capacitance [52, 74], CQ. The total capacitance is given

by:

1

C
=

1

CG
+

1

CQ
, (3.10)

where CG = ε0εrA/d is the geometric capacitance.
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Figure 3.23: Ib(Vb) characteristics calculated for NL = 2, θ = 0.9◦ devices with
nDB = 0 cm−2, nDT = 0 (red curve) and nDB = 1013 cm−2, nDT = 0 (green curve). The
shoulder (arrowed) indicates a new feature arising when the chemical potential of
the top graphene layer passes through the Dirac point of the bottom graphene
layer, leading to the quantum capacitance becoming the main contributor to the
capacitance. The band diagrams are inset, with an additional visual displacement
in k.
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Figure 3.24: Ib(Vb) characteristics calculated for an aligned device with NL = 4
and Vg = 0− 50 V (see legend inset). Increasing the gate voltage leads to a higher
current, a shift in the resonant peak to higher bias voltages, and the illustration
of the quantum capacitance effect. These changes can similarly be induced by
chemically doping the graphene layers.

3.8 Barrier Composition

The material selected for the barrier region determines the barrier height,

∆, and, consequently, the barrier decay constant, κ =
√

2m∗∆/~, where

m∗ = 0.5me is effective mass of an electron in hBN, where me is the electronic

mass. Hexagonal boron-nitride was chosen as the tunnel barrier material

for the first devices due to its stability and similiar lattice size to graphene.

We set κ to be a constant in this investigation, dependent on the barrier

height. Although κ will change throughout the barrier, a method with a

z-dependent κ was tested and the results were found to be almost identical,

so, for simplicity, a constant value will be used. For hBN, ∆ = 1.5 eV

[83, 84] and is included in the current calculation via the term exp(−2κd).

The current density can be dramatically increased if a material with a

lower tunnel barrier is selected, for example, WS2, which has a band gap

of 2.1 eV and thus a barrier height of 1.05 eV [55]. As we can see from

Fig. 3.25, this results in an increase over 6× in the current, but does not

affect the Vb value at which the peak occurs. MoS2 is known to have an

even smaller barrier height (0.65 eV), but care must be taken to ensure

that tunnelling over the barrier is high enough for the current to be from
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Figure 3.25: Ib(Vb) characteristics calculated for undoped, NL = 4 devices com-
posed of hBN barrier layers (blue) and WS2 layers (red) for devices with misalign-
ment angles (a) θ = 0◦ and (b) θ = 0.9◦.

tunnelling rather than direct conduction. During simulations, µB < ∆ at all

times for the current to be from tunnelling rather than conduction.

The on-off switching ratio of a transistor can be improved by having a

lower barrier than hBN, so there is over-the-barrier thermal current at room

temperature, but the effective barrier height can be increased by changing

the gate voltage. An over-the-barrier current can be useful for high current,

however, it kills off the NDC. hBN is a good barrier material because the

energy gap is so wide that the over-the-barrier current is always small, even

at room temperature. As the WS2 has a much smaller band gap, it is

possible the over-the-barrier current would destroy the NDC in this device,

particularly at room temperature, in which all practical devices would need

to work. Therefore, we will keep the focus on hBN only during this thesis.



74

Chapter 4

High-Frequency Current

Oscillations

In this chapter, we consider the time-dependent charge dynamics of our

graphene resonant tunnelling device. It is well known that devices exhibiting

NDC can be used as high-frequency oscillators and amplifiers [76]. In

some devices, such as III-V resonant tunnel diodes and semiconductor

superlattices, oscillations can be induced in the device itself as it contains an

in-built inductance. However, due to the lack of central quantum well and

accumulation regions, which normally provide an in-built inductance, our

device cannot be self-excited [85]. Therefore, we incorporate the device into

an external resonant circuit as outlined below. The non-equilibrium charge

dynamics are calculated and validated with experimental measurements [20,

52]. We consider the conditions necessary for oscillation and amplification.

It has been shown in experiment that when the device is biased in the NDC

region, the negative resistance, RN , can effectively cancel out the oscillation

decay associated with resistance and losses in the circuit, and thus support

stable continuous oscillations at the resonant frequency of the LC circuit,

as discussed in Section 1.7. The experiments have so far demonstrated self-

sustained radio frequency oscillations, i.e. ∼ 1−2MHz, for the present device

and circuit parameters [20]. Here, we investigate the effect on frequency and

power output due to changes in the Ib(Vb) characteristics.
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4.1 THz Technologies

Solid-state terahertz (THz) oscillators and amplifiers are essential compo-

nents for high-frequency circuits. Semiconductor-based THz oscillators such

as semiconductor lasers, quantum cascade lasers [86] and RTDs [87] have

been studied extensively. Operation frequencies, output powers and opera-

tion temperature are all improving, with recent examples such as Suzuki et

al. achieving output powers of 10 µW and oscillations at 1.04 THz [18] in

GaInAs/AlAs DBRTDs. RTD-based oscillators offer the best potential for

performance at room temperature [88].

4.2 Resonant Circuit Model

In our model, the device is placed in series with an external inductor, L.

The parallel graphene layers of the device store and release charge, thus

providing an in-built capacitance. Therefore, the device can be modelled by

an effective circuit consisting of a capacitor, C, in parallel with a negative

resistor, RN , representing the resistance arising from the tunnel current.

We also include the dissipative resistance, R, present within the device and

circuit, e.g. arising from the gold contacts, and the leads and graphene

sheets themselves. This forms the resonant RLC circuit shown in Fig. 4.1.

The charge continuity equation results in the following expressions for

the carrier density on the two layers, nB,T :

e
dnB
dt

= −
(
I − Ib
A

)
,

e
dnT
dt

=

(
I − Ib
A

)
,

(4.1)

where I(t) and Ib(t) is the current in the contacts and through the barrier,

respectively. As shown previously in Section 2.2, the electric field within the

barrier (Fb) and due to the gate voltage (Fg), and the carrier densities in

the graphene electrodes are related by Poisson’s equations,

ε(Fb − Fg) = (nB − nDB)e,

ε(0− Fb) = (nT − nDT )e,
(4.2)

where ε = ε0εr and εr = 3.9 for hBN (ε0) are the relative (absolute) permit-
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Figure 4.1: Effective circuit used for a small signal analysis of the behaviour of
the graphene - hBN - graphene diode. The diode itself has an inbuilt capacitance,
C, lossy resistance, R, and negative resistance, RN . This is placed in series with
an inductor, L.

tivies [89]. The time-evolution of the current in the inductor and the voltage

across the capacitor are given by the following circuit equations:

dI(t)

dt
=
VL(t)

L
,

dVC(t)

dt
=
IC(t)

C
,

(4.3)

and the voltage drops in the circuit satisfy:

V = VL + VR + Vb. (4.4)

Initially, Ib(t) was calculated via the Bardeen transfer Hamiltonian

method for each time step, which was rather slow due to the number

of Runge-Kutta steps required. It was found that the values of Ib(t) always

remained within those spanned by the Ib(Vb) curve and could therefore be

looked up for each Vb, allowing a significantly faster calculation time, and

thus allowing smaller time steps to be used. Fig. 4.2 shows the Ib(Vb) points

plotted in time (crosses) on the static Ib(Vb) curve.
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Figure 4.2: Calculated static Ib(Vb) characteristics (blue curve) with I(V ) points
plotted in time (red). The non-equilibrium behaviour matches the static curve,
and thus allows a reduction in computational time.

4.2.1 Time-Development of Charge Densities, Current

and Voltage

Here, we discuss the evolution of charge and current. If we initially begin

with Vb = 0 V, then for an undoped, ungated device, nB = nT = 0, and

Ib = 0 A. When a small Vb > 0 V is applied, the number of electrons in the

bottom graphene layer increases, i.e. the conduction band fills up, whilst

the top electrode loses an equal number of valence electrons. This shifts the

chemical potentials in each layer, µB and µT , and also induces a field across

the barrier as determined by Eq. (4.2). The bias voltage, Vb = µB − µT + φ,

then increases and, as the total voltage dropped around the circuit must

equal V , VR+VL must decrease. If VR decreases, I decreases. If VL decreases,

from Eq. (4.3), we see I decreases also.

As Vb increases, Ib follows the Ib(Vb) characteristics as outlined in Chapter

3. When Ib exceeds I, we see that from Eq. (4.1), the bottom electrode then

loses conduction electrons, whereas the top electrode gains valence electrons.

This, in turn, reduces Fb and brings the Dirac cones closer to alignment, but

away from the resonant conditions, and thus Ib decreases to below I, and

the oscillatory cycle begins again. The charge densities and currents do not

necessarily need to return to 0 within each cycle.

In Fig. 4.3(a-d), we plot the parameters once stable oscillations have
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Figure 4.3: Calculated parameters once stable oscillations have been reached
(a) nB(t) (red curve) and nT (t) (blue curve), (b) µB(t) (red curve), µ′T (t) (blue
curve) and φ(t) (green curve), (c) Vb(t) (green curve), VR(t) (red curve) and VL(t)
(blue curve), (d) Ib(t)× 50 (red curve) and I(t) (blue curve). All parameters are
calculated for a circuit and device with R = 100 Ω, L = 10 µH, and θ = 0.9◦.
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been achieved, i.e. after some time tstable. Later on in this chapter, we will

discuss reaching the stable oscillations and the conditions to do so. The

magnitude of the oscillations is determined by the total voltage, V , and

the Ib(Vb) characteristics. In Fig. 4.3(a), we see the charge densities, nB

(red) and nT (blue) oscillating sinusoidally, and in this particular example,

they do not return to 0, or exchange magnitude, within the oscillation

cycle, thus the bottom electrode has additional conduction electrons, and

is negatively-charged, throughout the complete cycle. The top electrode is

always missing some valence electrons and is thus positively-charged. In Fig.

4.3(b), we show the chemical potentials, µB (red) and µ′T = µT + φ (blue),

and electrostatic potential difference across the barrier, φ (green), evolving

in time. In Fig. 4.3(c), we find that most of the voltage is across the device,

Vb (green), or across the inductor, VL (blue), with very little dropped across

the resistor, VR (red). The peaks in Vb and VL are in anti-phase, showing

that the energy of the circuit is stored alternately between the inductor and

between the device, which acts as a capacitor. In Fig. 4.3(d), we show I

(blue) and Ib (red, scaled by ×50), seeing that Ib is small compared to I

and thus I ≈ IC . In addition, I varies almost sinusoidally whilst Ib traces

the shape of the Ib(Vb) characteristics. The peak in |nB| corresponds to the

peak in µB and thus the peak in I. The peak of VL is shifted from this by a

phase φ < 90◦, as is typical in an inductive circuit [90].

Not all oscillations are sinusoidal in nature, due to the effect of quantum

capacitance, as seen in Fig. 4.4(a). The device is very fast when the bias

takes the chemical potential through the Dirac point in one of the two

electrodes. The Fourier transform of the voltage oscillations reveals the

frequency contributions to the 3.5 GHz oscillations, represented by the main

peak in Fig. 4.4(b), with higher contributions from 7 GHz and 1 THz.

4.3 Small Signal Analysis of Effective Cir-

cuit

It is possible to perform a small signal analysis of the resonant tunnelling

effective circuit, shown in Fig.4.1, to find an approximation for the frequency

of oscillation, and to highlight the conditions required for oscillations to

occur [91]. The capacitance of the device itself, C, and its resistance RN ,

which is negative when biased in the NDC region, are represented here in
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Figure 4.4: (a) Calculated Vb(t) showing non-sinusoidal behaviour due to the quan-
tum capacitance effect. (b) Power spectrum showing the frequency contributions
in the oscillation, with a log-scale version inset.

parallel to each other. We take RN to be the linear approximation of the

resistance in this region, which is given by

RN =

∣∣∣∣Vn − VmIn − Im

∣∣∣∣ , (4.5)

where Vn and In are the operating voltage and current, respectively, and

Vm and Im are the reference voltage and current as shown in Fig. 4.5. In a

region of NDC, RN is defined as positive. Using Kirchoff’s voltage law (Eq.

(4.4)) for the circuit gives:

V = L
dI

dt
+ IR + Vn, (4.6)

and around the circuit loop representing the device,

VC = Vn (4.7)

1

C

∫
Icdt = InRN . (4.8)

Kirchoff’s current law gives:

I = IC + In. (4.9)

Differentiating Eq. (4.6) and Eq. (4.8) with respect to time gives:

0 = L
d2I

dt2
+
dI

dt
R +

dVC
dt

(4.10)
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region are marked by the circle.

and

IC
C

=
dIn
dt
RN . (4.11)

Combining Eqs. (4.5),(4.6),(4.9), and (4.10), we obtain the relation:

−Ld
2I

dt2
−dI
dt

(
L

RNC
+R

)
−I (RN +R)

RNC
=

1

RNC
(−ImRN−Vb−Vm). (4.12)

This is a quadratic equation for I, for which a solution of the form:

I = A1e
α1t + A2e

α2t +D (4.13)

can be assumed and inserted into Eq. (4.12), to give

−Lα2 −
(

L

RNC
+R

)
α− (RN +R)

RNC
α = 0. (4.14)

The solution of this gives:

α = −1

2

(
1

RNC
+
R

L

)
± i

√
1

CL

(
1− R

RN

)
− 1

4

(
1

RNC
+
R

L

)2

. (4.15)
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Therefore oscillations are damped by the decay term:

−1

2

(
1

RNC
+
R

L

)
(4.16)

and have frequency:

fS =
1

2π

√
1

CL

(
1− R

RN

)
− 1

4

(
1

RNC
+
R

L

)2

. (4.17)

This can be written in terms of the natural frequency, f0 = 1/(2π
√
CL),

and a circuit factor, QN = RN

√
C/L (discussed in Section 4.4), to give:

f s = f0

√(
1− R

RN

)
−Q−2

N

(
1− 1

4Q2
N

R

RN

)2

. (4.18)

In the limit that the external resistance R→ 0, this reduces to:

fS =
1

2π

√
1

CL
−
(

1

2RNC

)2

(4.19)

= f0

√
1−Q−2

N . (4.20)

In order for the device to oscillate, the decay term must be less than

zero, i.e.

−1

2

(
1

RNC
+
R

L

)
< 0, (4.21)

which rearranges to give L > RRNC. Therefore, the minimum L for which

oscillations occur is L = RRNC. Inserting this into Eq. (4.20) gives:

fS =
1

2π

√
1

C2RRN

−
(

1

2RNC

)2

, (4.22)

and, as |RN | >> |R|, this reduces to the approximate dependence:

fSmax =
1

2πC
√
RRN

∝ R−0.5. (4.23)

For a more complete investigation into the conditions for oscillation and

the maximum frequency available, a full signal analysis will be simulated.
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This method removes the assumption of a linear RN and allows the frequency

to be calculated when biased on all parts of the Ib(Vb) curve, thus providing a

fuller picture of the behaviour. Later on in this chapter, we will compare the

full-signal analysis results to those expected from the small-signal analysis.

4.4 Stability of Oscillations and the QN Fac-

tor

Following initial transient behavior, I(t) either decays to a constant value or

reaches stable oscillations. Fig. 4.6 shows the different regimes reached vs

the resistance ratio and the QN factor. Three regimes result in a constant

value of current after some time, tstable; the growing exponent (pink), the

decaying exponent (yellow), and the decaying sinusoidal (blue). The region

of interest for the operation for our device lies in the growing sinusoidal

(purple). We see that the circuit is unstable if the ratio of inductance to

capacitance is too large, or if the ratio of R to RN is either too small or too

large.

In Fig. 4.7, the device is biased at three different voltages, points A-C

as seen on the Ib(Vb) curve in (a). At point A in Fig. 4.7(a), the differential

resistance is positive and small, the system is stable but no oscillations occur

as there is no negative resistance, which leads to the exponential decay shown

in the V (t) curve Fig. 4.7(e). At point B in Fig. 4.7(a), RN is negative and

large, thus leading to stable almost-sinusoidal current oscillations, as seen

in Fig. 4.7(b). Finally, at C in Fig. 4.7(a), RN is negative and small, thus

leading to a stable oscillation regime, after an initial growth, as seen in Fig.

4.7(d). If a phase space diagram of the growing or decaying oscillations is

constructed, i.e. plotting the Ib(Vb) points in time, a spiral arises that grows

inwards or outwards respectively if the oscillation is growing or decaying

sinusoidally. It is also expected a region of instability exists between the

growing and decaying sinusoidal regions.

4.4.1 Time-Development of Oscillations

When the device is operating within a regime leading to self-sustained

oscillations, the oscillations can be defined by a frequency, f , and, time-

averaged current, 〈I(t)〉t. This time-averaged current is calculated after some
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time, tstable, at which the magnitude of the oscillations becomes constant. In

Fig. 4.8(a), we show 〈I(t)〉t versus V (green) and Ib(Vb) (blue curve) for an

undoped device, with θ = 0.9◦, placed in a resonant circuit with R = 50 Ω

and L = 140 nH. The plot reveals that when V is tuned in the NDC region

(0.55 V < V < 0.8 V), ∆VL = V max
L − V min

L (red curve) becomes non-zero

indicating that self-sustained oscillations are induced. Here, V
max/min
L is

the maximum/minimum voltage dropped across the inductor during an

oscillation period. Also, the 〈I(t)〉t versus V curve (green) diverges from the

static current, Ib(Vb), (blue) in the NDC region. This is due to asymmetric

rectification of I(t) in the strongly nonlinear NDC region of Ib(Vb) and is

typical of this type of device. When the device is biased in regions of positive

differential conductance, i.e. V < 0.55 V or V > 0.8 V, oscillations are

suppressed and 〈I(t)〉t converges to Ib(Vb).

This behaviour is similar to that recently measured in a GRTD, where

oscillations with f ∼ 2 MHz were reported [20], the results from which

are shown in Fig. 4.8(b). That device had high circuit capacitance due to

large-area contact pads and coupling to the doped Si substrate (gate). This

effect can be modelled by placing a capacitor in parallel with the GRTD.

Including this large capacitance (65 pF) limits the maximum frequency, as

observed [20]. When parasitic circuit capacitances are minimised, using

the four contact geometry exemplified in Fig. 1.12, the only significant

contribution to the total capacitance is from the graphene electrodes, as

described by the charge-continuity equation. This enables us to investigate

the potential of GRTDs optimised for high-frequency applications.

4.4.2 Model Validation

Measurements on the non-equilibrium behaviour of a device made in Manch-

ester have been made [20], and here we validate our model by using the

parameters of the experiment to comparing our simulated current curves

with those measured. The device consisted 4 layers of hBN acting as the

tunnel barrier, with the graphene electrodes misaligned by θ = 0.9◦. In

order to model the parasitic capacitance, a 65 pF capacitor was placed in

series with the GRTD to slow the oscillations down, so the effective circuit

we model is represented in Fig. 4.9. From Kirchoff’s and Ohm’s Laws, we
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Figure 4.9: Circuit diagram of the GRTD in parallel with an external capacitor,
Cext. The GRTD is represented by the effective circuit in the dashed ellipse of
Fig. 4.1, which contains the inherent capacitance from the graphene layer charge
build up.

know:

V = VC + VL (4.24)

= Vb + VL, (4.25)

where Vb (IG) is the voltage (current) across the GRTD, and

I = IC + IGVb = IGR. (4.26)

The time-evolution of the current and voltage:

ICext = Cext
dVCext
dt

, (4.27)

VL = L
dICext
dt

, (4.28)

can be combined with the charge continuity equations (4.1) (with I set to

be Ib) to self-consistently solve for all currents, voltages and charge densities

in time.
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Figure 4.12: Calculated f(L) for fixed values of R for (a) an aligned device, and
(b) a θ = 0.9◦ device. R = 1 Ω (blue), R = 5 Ω (yellow), R = 25 Ω (magenta),
R = 50 Ω (green) and R = 100 Ω (red). Not all L − R combinations lead to
self-sustained oscillations, and these are marked by f = 0 GHz points.

4.5 Oscillations for an NL = 4 Device

Oscillations in the MHz frequency range have been measured [20] in the

current configuration, which includes an additional capacitor. But this

external capacitor, introduced to the experimental set-up to slow the oscilla-

tions down to measurable frequencies, and to also represent the parasitic

capacitance present within the device in the model, can be removed. The

parasitic capacitance arises between the contact pads of the device and

the underlying Si gate. Reducing this capacitance and that of the external

circuit would allow much higher frequencies to be achieved. By constructing

the device in a Maltese cross formation with four contacts, as opposed to

the two initially used in [52], the capacitance can be reduced, such that the

in-built capacitance from the charge densities in the Dirac cones dominates.

The removal of the external capacitor allows GHz oscillations to be achieved,

with the standard experimental device parameters. The highest frequencies

could be achieved by fabricating the device in a slot antenna configuration, in

which the slot acts as a resonator with the geometry of the slot determining

the resonant frequency. Modifying the device further could potentially lead

to THz oscillations, so here we investigate how best to reach this regime.

4.5.1 Circuit Parameter Investigation

Fig. 4.12 shows f(L) curves calculated for θ = (a) 0◦, (b) 0.9◦, taking five

fixed values of the dissipative resistance R. We see that the results agree well
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with the expected f ∝ L−1/2 relation, and that also decreasing R unlocks

the higher frequency oscillations. If the value of R is too high, the decay

constant will become positive and thus the oscillations will decay; these

regions are marked by the portions of the curves in Fig. 4.12 where f = 0

GHz. The aligned device leads to slightly higher f for the same R and L

values (Fig. 4.12(a)), compared to the θ = 0.9◦ device (Fig. 4.12(b)), due to

the change in RN . The effects of R and L on f can be seen clearly in Figs.

4.13(a,b). Here, we see the aligned sample (a) can achieve self-sustained

oscillations for a much higher range of R, and also at a slightly higher f

for the same R − L combination than when θ = 0.9◦ (b). The maximum

frequency, fmax(R) is obtained by calculating f for the smallest L for each

R value that will lead to non-decaying oscillations.

Although preliminary devices are estimated to have R ≈ 100 Ω, the

quality of the graphene electrodes can be improved and modifications to the

device design will enable even lower R to be achieved. Values of ≈ 50 Ω

have recently been reported for graphene encapsulated by boron nitride [92],

and also very high mobilities have been obtained in suspended graphene [93].

Therefore, the curves in Fig. 4.14 are plotted in solid for currently attainable

values of R (R >50 Ω), and plotted in dashed for potentially achievable R.

We note that modifications to the device which we will employ later, such

as reducing the barrier width, lead to lower R [62] and thus allow the higher

frequencies to be reached more readily.

From the small signal analysis, we see that fmax ≈ R−0.5. This is in close

agreement with the full-signal analysis results shown in Figs. 4.13-4.14. Due

to the non-linear Ib(Vb) characteristics and the portion of oscillation period

spent outside the central NDR region, full-signal analysis does however lead

to a more reliable and accurate prediction of the frequency and current

output. We therefore continue the full-signal analysis and consider the

device modifications investigated in Chapter 3, to note how changes in the

Ib(Vb) characteristics, and thus RN , affect the frequency output of future

devices.

4.6 Barrier Thickness

In Section. 3.3, the effect of reducing the number of layers in the barrier on the

static Ib(Vb) characteristics was shown. It was found that the tunnel current

significantly increases (∼ 20×) for each atomic layer of boron nitride removed
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Figure 4.13: Calculated f(L,R) colour maps for (a) an aligned device, and (b) a
θ = 0.9◦ device. Black regions indicate L−R combinations which do not lead to
self-sustained current oscillations.

and the gradient of the Ib(Vb) characteristics increased, thus decreasing

the magnitude of RN . From Eq. (4.23), we know that as RN decreases,

fSmax increases. Another effect of decreasing d is the increase in geometric

capacitance, Cg = εrε0A/d. From the small signal analysis, we would

therefore expect a decrease in frequency, as fmax ∝ 1/C. Therefore, we have

two opposing effects from the change in d. To quantify this, we can consider

a change from NL = 4 to NL = 2. As the resonant peak occurs at almost

the same voltage for both NL values, RN will change primarily due to the

change in current peak, which, for such a barrier reduction, would be an

increase of a factor of ∼ 20× 20 = 400 times. Thus RN would decrease by

a factor of 400, and as fmax ∝ 1/
√
RN , fmax will be expected to increase

by a factor of 20 due to the increase in current. The barrier width change

will lead to a doubling of C ∝ 1/d, which gives ∼ 2× fmax as fmax ∝ 1/C.

Therefore, overall, we expect a ∼ 10× increase in fmax, with the change in

current dominating over the change in capacitance.

To demonstrate the exact effect on the frequency, we calculate fmax(R)

for three barrier widths, NL = 2, 3, 4, as shown in Fig. 4.15. Reducing d

produces a large gain in fmax for all R. For example, fmax for a device with

NL = 2 is at least an order of magnitude higher than when NL = 4, as

expected, (e.g. for R = 50 Ω, fmax= 26 GHz when NL = 2, compared to

fmax = 1.8 GHz when NL = 4).

In principle, any barrier width is attainable, but for NL = 1, the wave-

functions overlap too much, such that the tunnelling effect is not the main
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Figure 4.14: Calculated fmax(R) curves for an aligned device (blue curve) and a
θ = 0.9◦ device (blue curve), for currently-achievable (solid curve) and potentially-
achievable (dashed curve) values of R.

contributing factor to the value of the current and thus the resonant tun-

nelling effect is lost. NL > 4 can also be easily achieved, but the tunnelling

current would be reduced again by a factor of 400 for each layer added,

and would thus be too small for the desired operation and the resulting

oscillation frequencies would be very low. As the 2-layer device offers the

highest frequency and current output, we will continue to investigate the

effect of other parameters on the NL = 2 device only.

4.7 Chemical Doping of the Graphene Lay-

ers

In Section 3.7, we saw that doping the bottom graphene layer lead to an

increase in current and a shift of the resonant peak to higher voltages, due

to the shift in resonant conditions. Here, we investigate the effect of these

changes on the frequency response of the device. As the magnitude of RN

decreases with increasing nDB , we expect from the small signal analysis that

the frequency of oscillation will increase, as fmax ∝ 1/
√
RN .

The doping also affects the overall capacitance of the device, as seen by

the introduction of the quantum capacitance term in Section 2.2. When

µB,T passes through the Dirac point, CQ → 0 and, hence, C → 0, suggesting
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Figure 4.15: (a) fmax(R) curves calculated for an undoped device with NL = 4.
The solid line represents the range of R obtainable in the current device design and
the dashed line corresponds to R values which could be achieved by new device
designs. Inset: log(fmax) vs log(R) reveals a linear relationship. (b) Calculated
fmax(R) for an undoped device with number of barriers, NL = 2 (red curve),
3 (green curve) and 4 (blue curve). Inset: fmax(NL) at 50 Ω for the undoped
samples. All devices have θ = 0.9◦.

that the RC time constant of the device could be reduced. In practice, CQ

is small for only a small fraction of the oscillation period and so its effect on

the fundamental frequency of I(t) is negligible.

Fig. 4.16(a) shows the Ib(Vb) curve calculated for undoped (red curve)

and doped (green curve) devices and (b) shows the fmax(R) curves, which

reveal that the doped device is faster for all R. Fig. 4.16(b) inset shows that

fmax increases monotonically with ρBD/e when R = 50 Ω; fmax increases

by a factor of 1.3 when ρBD/e is increased to 1013 cm−2 (and f = 32 GHz)

from ρBD/e = 0 (f = 26 GHz).

4.8 Misalignment of the Graphene Layers

In Section. 3.5, the effect of misalignment on the Ib(Vb) characteristics was

shown, and it was found that an increasing misalignment angle between the

graphene layers leads to a decrease in current, and a shift of the resonant

conditions to higher Vb. In Fig. 4.17(a), we show the Ib(Vb) characteristics

for a doped (ρBD/e = 1013 cm−2) device when θ = 0◦. For such doping

levels, the valley current is close to 0 for all θ, thus the PVR is consistently

large. Consequently, the increase in current magnitude, which results from
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Figure 4.16: (a) Calculated Ib(Vb) characteristics and (b) fmax(R) curves for a
doped device (green curve, ρBD/e = 1013 cm−2) and an undoped (red curve)
device, with NL = 2. The arrow in (a) shows the shoulder that arises due to
the quantum capacitance effect. In (b), the solid part of the curves represents
currently achievable resistances and thus frequencies, whereas the dashed part
of the curve represents the fmax that could be achieved if the resistance can be
reduced to that value. Inset in (b): fmax(ρBD/e) calculated when R = 50Ω.

alignment, leads to higher frequencies without the reduction of power that

is associated with undoped samples. The θ = 0.9◦ device has a much lower

current, leading to the RN(θ) relations shown in Fig. 4.17(b). Here, we

see the undoped device (cyan curve) has a much higher negative resistance

for all misalignment angles than the doped device (magenta curve). From

the small signal analysis in Eq. (4.23), we see that fmax ∝ R
−1/2
N , and thus

we can expect the doped devices to give higher frequency oscillations, and

similarly for the aligned samples, as RN is minimal at θ = 0◦. The full

signal analysis results, shown in Fig. 4.17(c-d), agree with these predictions,

showing that perfect alignment could increase fmax by a factor of ∼ 2, i.e.

for R = 50 Ω, fmax = 65 GHz when θ = 0◦ compared to 32 GHz when

θ = 0.9◦. The numerical results diverge from the small signal analysis power

law of fmax ∝ R−0.5, as seen in Fig. 4.17(d) (black curve). As RN becomes

small, as it becomes necessary to vary V to induce oscillations.

4.9 Barrier Composition

As seen in Section 3.8, reducing the barrier height, ∆, via a change in the

barrier material, can lead to an increase in Ib. This reduces RN and thus leads

to higher frequencies. For the doped, misaligned 2-layer device, frequencies
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Figure 4.17: (a) Ib(Vb) curve calculated for a device with θ = 0◦, NL = 2 and
ρBD/e = 0 cm−2. (b) Calculated RN (θ) curve for the device in (a) (magenta curve)
and for the matching undoped device (cyan curve). (c-d) Calculated fmax(R) and
log(fmax(R)) for the doped (black curve) and undoped device (green curve) over
ranges of R values corresponding to existing samples (solid parts of the curves) or
attainable in future experiments (dashed curves).

are found to be over noticeably higher when the barrier is composed of WS2

rather than hBN, as seen in Fig. 4.18. Changing the barrier material also

changes C via the relative permitivity of the barrier layer, εr. However,

this change will be small in comparison to the change in the current. The

relative permitivity of WS2 is 6.1 [94], as opposed to 3.9 for hBN. This is

not implemented into the model below as there are no devices in which to

compare the current with, and thus the scaling may no longer be correct.

Due to the lower barrier height in WS2, care must be taken to avoid

entering the conduction regime, i.e. electrons passing over the barrier rather

than tunnelling. If this happens, the effect of resonant tunnelling and thus

NDC is lost. With a lower barrier height, the effect of tilting due the field
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Figure 4.18: Calculated fmax(R) curve for a NL = 2, ρBD/e = 0 cm−2, θ = 0.9◦

device with a barrier composed of hBN (green) and WS2 (blue) layers.

will affect the Ib(Vb) characteristics more also. We will therefore continue to

consider hBN rather than WS2 to ensure the current across the barrier is

arising due to tunnelling.

4.10 Conclusion

We find the highest frequencies occur when the current across the barrier

is increased, thus reducing RN . This is achieved by minimizing the barrier

width, i.e. to NL = 2, and by aligning the graphene layers. The use of

chemical doping to shift the resonant conditions to allow more electrons

to tunnel resonantly also maximizes the frequency. THz oscillations are

achievable with an optimized device design to reduce lossy resistance and

external capacitance, for example, by having four contacts in a Maltese cross

arrangement rather than two overlapping contacts with long leads. The use

of doped, high-quality graphene in combination with careful alignment of

the graphene lattices, will lead to the highest frequency output with a good

output current magnitude. The device area could also be reduced to further

increase the frequency, as fmax ≈ 1/C and reducing the area would reduce

C = ε0εrA/d. However, this also leads to a loss in current. This compromise

could be overcome by having an array of GRTDs in series to increase the

output power.



98

Chapter 5

Moiré Patterns from Graphene

on Hexagonal-Boron Nitride

Due to the lattice constant mismatch between the crystalline lattice of

graphene and that of hexagonal boron nitride, an angle-dependent moiré

pattern can arise when a layer of graphene is placed on top of a layer of hBN

[95]. In this chapter, the effect of this additional moiré potential electron

tunnelling is investigated. It is found that secondary Dirac points emerge in

the band structure, and their effect on the Ib(Vb) characteristics is analysed.

5.1 Moiré Patterns

During fabrication of early GRTDs, the hBN layers making up the barrier

and the substrate of the device, and the graphene layers were intentionally

misaligned, such that the graphene and hBN layers are effectively decoupled

and moiré pattern effects are negligible. However, care can be taken to bring

the layers into alignment [35, 36, 96]. Here, we consider a bottom graphene

layer that is misaligned by an angle φM < 5◦ relative to the base hBN

layer, and the effect of the moiré potential this will induce. For these small

φM values, we enter into a regime where the electrons will be significantly

affected by the arising moiré potential, and by small changes in φM , as seen

in Fig. 5.1. In Fig. 5.1(a), the lattices are aligned and we see a clear moiré

potential arising. Rotating the layers with respect to each other by φM = 3◦

causes a complete rotation of the moiré plaquette, see Fig. 5.1(b), which

marks out the repeatable component of the potential. Further rotation to 6◦

causes a smaller change in the potential, Fig. 5.1(c), and when the lattices



5.1. MOIRÉ PATTERNS 99

(a) (b)

(c) (d)

Figure 5.1: Moiré pattern from hexagonal-boron nitride (red) on graphene (blue),
with an exaggerated lattice constant difference (10%) for (a) φM = 0◦, (b) φM = 3◦,
(c) φM = 6◦, and (d) φM = 30◦. The black hexagons mark the Moiré plaquette.

are highly misaligned (30◦, Fig. 5.1d), the potential is negligible. Recent

experiments have demonstrated well-defined moiré patterns in graphene on

crystalline lattices [68, 96, 97].

It is known from the Schrödinger equation that when nearly free electrons

propagate through a weak periodic potential, a bandgap opens near the

reciprocal lattice points, i.e. the edge of the Brillouin Zone [98]. However,

due to the chirality of the massless Dirac fermions in graphene, the opening

of the bandgap is prevented, and instead a new Dirac point appears in the

band structure [99–102], at an energy determined by the moiré wavelength

[96]. These additional points are known as superlattice Dirac points.
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5.1.1 Moiré Wavelength and Angle

The lattice constant of hBN is 1.8% larger than that of graphene and thus,

for certain angles, a noticeable moiré pattern will emerge [96]. Here, we

construct an expression for the moiré pattern wavelength, λ, in terms of the

relative rotation between the hBN and graphene layers, φM . If we take the

reciprocal lattice vector of graphene along the x-axis to be:

g =
2π

a
(1, 0), (5.1)

where a is the lattice constant of graphene, then the corresponding reciprocal

lattice vector for hBN is:

b =
2π

(1 + δ)a
(cosφM , sinφM), (5.2)

where δ = 0.018 is the lattice mismatch. A vector, m, connecting the hBN

reciprocal lattice vector to the graphene reciprocal lattice vector can be

constructed as:

m = g − b (5.3)

=
2π

a

(
1− cosφM

1 + δ
,
−sinφM

1 + δ

)
.

Therefore, the wavelength of the moiré pattern, λ = 2π
|k| , can be calculated

as:

|k| = 2π

a

√(
1− 1− cosφM

1 + δ

)2

+

(
sinφM
1 + δ

)2

(5.4)

to give:

λ =
(1 + δ)a√

2(1 + δ)(1− cosφM) + δ2
. (5.5)

From Eq. (5.3), we can see that the relative rotation angle, θM , of the moiré

pattern with respect to the graphene lattice is given by:

tan θM = −my

mx

=
sinφM
1+δ

1− cosφM
1+δ

, (5.6)
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Figure 5.2: Wavelength, λ, of the moiré pattern (blue curve, left axis) and relative
rotation angle, θM , (green curve, right axis) as functions of the angle between the
graphene and the hBN.

which can be simplified to:

tan θM =
sinφM

(1 + δ)− cosφM
. (5.7)

5.1.2 Moiré Pattern Properties

The moiré pattern depends on the rotational angle between the boron nitride

and the graphene layers, φM . In Fig. 5.2, we see the effect of φM on the

moiré wavelength, λ, and the relative rotation angle, θM . The maximum

value of θM = 80◦ occurs when φM = 11◦, and the maximum possible moiré

wavelength is ∼ 14 nm, which occurs when φM = 0◦. The moiré pattern

depends on the substrate material used, as the lattice constant will affect λ.

Here, all calculations are performed for hBN.

5.2 Construction of the Brillouin Zones

of Graphene

In order to calculate the Ib(Vb) characteristics for a device with a moiré

pattern, we must calculate the perturbed density of states and the band
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Figure 5.3: The construction of the first three Brillouin Zones in reciprocal space.
(a) A Bragg vector is drawn between two sites, which are shown as dots. (b) The
first Brillouin Zone (red) lies between the first six Bragg vectors. (c) The second
Brillouin Zone (blue). (d) The third Brillouin Zone (green).

structure. To do this, the Brillouin zones must be defined, which can be

done geometrically as described below.

Firstly, the reciprocal lattice must be constructed from the reciprocal

lattice vectors, found from the real space vectors. Choosing a reciprocal

lattice point (all are equivalent), we construct the first Brillouin Zone by

drawing arrows from this point to all its nearest neighbours (which is the

reciprocal lattice vector itself), then drawing lines to bisect these arrows.

This perpendicular bisector is the Bragg Plane, Fig. 5.3(a). The first

Brillouin Zone, shaded in red in Fig. 5.3(b), is the space enclosed by the

first six Bragg planes. The second Brillouin Zone (blue, Fig. 5.3(c)) is the

remaining area encompassed by the first set of Bragg planes. The third

Brillouin Zone (green, Fig. 5.3(d)) is then constructed by drawing the Bragg

planes corresponding to the next-nearest neighbours and so on.

The construction of the first six Brillouin Zones is plotted in Fig. 5.4(a-
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Figure 5.4: The next Brillouin Zones are constructed by drawing more perpen-
dicular bisector lines to construct the next set of Bragg planes. (b) The fourth
Brillouin Zone (yellow). (c) The fifth Brillouin Zone (orange). (d) The sixth
Brillouin Zone (purple).
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d). In order to calculate further Brillouin zones, and thus higher energies

in the band structure, the next-nearest neighbours and beyond can be

considered. However, the geometrical approach to constructing the Brillouin

zones becomes time-consuming and difficult to perform computationally. It

is found that the central equation, discussed further in the next section,

offers a much easier alternative.

An interesting point to note is that, as the reciprocal lattice is periodic,

there exists for any point outside of the first Brillouin Zone, an equivalent

point within the first Brillouin Zone, with the two being related by a unique

translational reciprocal lattice vector. Each zone contains every single

physically distinguishable point that is contained in the first zone, and each

zone has the same total area. Therefore, each zone can thus be translated

(folded) back into the first Brillouin Zone, as demonstrated in Fig. 5.5(a-d).

5.3 The Central Equation

As in Chapter 1, the electrons in the device can be described by the

Schrödinger equation,

Hψn(r,k) =

[
− ~2

2m
O2 + U(r)

]
ψ(r,k) = Enψn(r,k), (5.8)

for a given wavevector, k, and band index, n. Here, U(r) = U(r + T) is

a periodic moiré potential, with T being the lattice vector over which the

potential repeats. This can be written as a Fourier transform,

U(r) =
∑
Gα

UGαe
iGα·r, (5.9)

in terms of reciprocal lattice vectors, Gα.

The effective Hamiltonian at low energies is:

H0(k) = ~vF (kxσx + kyσy) , (5.10)

where σx,y are Pauli matrices. This gives the unperturbed eigenstates and



5.3. THE CENTRAL EQUATION 105

2.1

2.2

2.32.4

2.5

2.6

2.1

2.2

2.3 2.4

2.5

2.6

(a) (b)

(c) (d)

Figure 5.5: (a) The first six Brillouin Zones (BZ) of graphene. (b) Folding the
2nd BZ (blue) into the 1st BZ (red) requires each segment to be transposed by its
corresponding reciprocal lattice vector, G. In this case, we see a segment (labeled
2.1) from the 2nd BZ which is related to a point in the 1st BZ by G1, which when
transposed by this lattice vector, sits inside the 1st BZ. (c) The segments can be
folded to their corresponding area within the 1st BZ. (d) Once folded, the 2nd
BZ fits exactly into the 1st BZ.
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eigenvalues,

ψ0(k, s) =
1√
2Ω

eik·r

[
1

seiθk

]
, (5.11)

E0(k, s) = s~vFk, (5.12)

where s = ±1 denotes the conduction and valence band, respectively, and Ω

is the cell area.

The first six Gα vectors describe the potential in Eq. (5.8), so, the

perturbed Hamiltonian can be approximated as:

H(k) = ~vF (kxσx + kyσy) +
6∑

α=1

UGαe
iGα·rI, (5.13)

where I is the identity matrix. The amplitude of the periodic potential,

UGα , can be obtained using second-order perturbation theory. Using the

unperturbed eigenstates, we find:

〈ψ0(k, s)|U(r)|ψ0(k′, s)〉 =
6∑

α=1

1

2
UGαe

iGα·r
(
1 + ei(θk′−θk)δk,k′+G

)
. (5.14)

As the wavefunction can be written as an expansion of plane waves,

ψ(r,k) =
∑

k

Cke
ik·r, (5.15)

with coefficients Ck, we can arrive at the central equation:

(E0
k−G − Ek)Ck(G) +

∑
G

UG′−GCk(G′) = 0. (5.16)

For the six reciprocal lattice vectors and the central point, we must

therefore solve:
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ε0k − εk U1 U2 U3 U4 U5 U6

U−1 ε0k−G1
− εk U1 U2 U3 U4 U5

U−2 U−1 ε0k−G2
− εk U1 U2 U3 U4

U−3 U−2 U−1 ε0k−G3
− εk U1 U2 U3

U−4 U−3 U−2 U−1 ε0k−G4
− εk U1 U2

U−5 U−4 U−3 U−2 U−1 ε0k−G5
− εk U1

U−6 U−5 U−4 U−3 U−2 U−1 ε0k−G6
− εk



×



Ck(0)

Ck(G1)

Ck(G2)

Ck(G3)

Ck(G4)

Ck(G5)

Ck(G6)


= 0. (5.17)

Here, UGα = U
2
(1 + ei(θk−Gα−θk)), for all Gα, which becomes UGα = U

if a simple, non-chiral case is considered. This can be solved to give the

eigenvectors, Ck, and eigenenergies, εk. The eigenvectors, when calculated for

U = 0, reveal the bandnumber for each point in k-space. This is a far more

efficient way to determine where the Brillouin zones are than geometrically

constructing them, particularly when including next-nearest neighbours and

beyond. This bandnumber is then used to construct the band structure of

both the U = 0 and the U 6= 0 cases. The bandnumber indicates which

eigenenergy to select for each point in k-space and thus reveals the overall,

perturbed band structure. The potential strength, U = 0.06 eV, is estimated

from numerical second-order perturbation theory [96]. When U = 0 eV, Eq.

(5.17) becomes a simple diagonal matrix and the result reduces to the linear

band structure.

5.4 Band Structure of Graphene on hBN

In Fig. 5.6(a), we plot a point in k-space with the surrounding six nearest-

neighbours (marked by the hexagon), and also the 44 neighbours that we

will use in a later calculation. The eigenvectors, Ck, in Eq. (5.17) with

U = 0 eV, reveal the band index and location of the bands as seen in Fig.
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Figure 5.6: (a) A point in k-space surrounded by the six nearest neighbours (joined
by the red hexagon) and other neighbours. (b) The first eight Brillouin Zones
calculated via the eigenvalues of the central equation. (c) Calculated E(kx, ky) in
the first seven BZs for U = 0 eV and φ = 0◦. (d) Calculated E(kx, ky) in the first
seven BZs for U = 0.06 eV and φ = 0◦.
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Figure 5.7: Energy, E, at which the secondary Dirac point occurs, relative to the
Dirac point of ordinary graphene, calculated as a function of wavelength, λ, of
the moiré pattern. The smaller φM , and thus larger λM lead to the superlattice
Dirac point occurring at lower energies.

5.6(b). The eigenvalues for these bands are given by the corresponding

eigenenergies, as shown in Fig. 5.6(c), which reveals that the band structure

is linear in E. In comparison, when a moiré potential of U = 0.06 eV is

applied, via Eq. (5.17), the E(kx, ky) plot (Fig. 5.6(d)) is no longer linear.

Discontinuities in E arise at the reciprocal lattice vector points, where the

bandnumber changes. This is a fascinating feature due to the potential felt

by the electrons in the hBN-graphene superlattice. An even larger surface of

E(kx, ky) can be calculated by expanding the matrix in Eq. (5.17) to include

many more neighbours. Fig. 5.9(a) shows the bandnumbers calculated for a

larger region of k-space.

A corresponding plot of E(kx, ky), Fig. 5.9(b), reveals the effect of the

moiré potential on the band structure over this larger k-space region. Here,

θ = 0◦, φM = 0◦, and chirality effects are turned off for simplicity, i.e.

U = UG = 0.06 eV and g = 1. We note that, at low E, the band structure

remains linear. As E approaches E = ~vFG/2, the E(kx, ky) looses linearity

and the electron and hole bands come together again to form a supplementary

Dirac point. In Fig. 5.9(c), we see six additional Dirac points arising at

an energy of −~vF |G|/2, and would also get six more at E = +~vF |G|/2.

These points occur at the edge of the first Brillouin Zone, and are where the

electron and hole bands meet. We note that, at even higher magnitudes of
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Figure 5.8: The density of states, DoS, calculated for three different rotation
angles between the hBN and the graphene; φM = 0◦ (blue curve), φM = 1◦ (red
curve), and φM = 2◦ (green curve). The curves are vertically offset for clarity
and go up to energies just after the second superlattice Dirac points. The dashed
lines mark the energies at which the first and second superlattice Dirac points
occur in the conduction band when φM = 2◦. For this case, these energies are at
E = ~vF |G|/2 = 0.35 eV and E = ~vF |G| = 0.7 eV

energy, the phenomenon reoccurs, and we see additional superlattice Dirac

points.

The density of states (DoS) can be calculated by taking energy contours

of the dispersion relation, which reveals the number of states at that energy.

Fig. 5.8 shows the decrease in density of states as the electron and hole

bands cross over each other, resulting in the additional Dirac point, where

the DoS decreases.

The position of the secondary Dirac point depends on the rotation angle

between the hBN and the graphene layers, φM , which, in turn, affects

the “superlattice” wavelength, λ. In Fig. 5.7, we see that increasing the

superlattice wavelength, i.e. aligning the hBN and graphene lattices, causes

the secondary Dirac point to occur at lower energies. Experimental results

[96] have confirmed this relationship between the energy and the reciprocal

lattice vector, i.e. for the first superlattice Dirac point:

E =
~vF |G|

2
=

2π~vF
3λ

. (5.18)

In Fig. 5.8, DoS(E) is plotted for φM = 0◦, 1◦ and 2◦, up to energies just
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past the second superlattice Dirac point in each case. We note the dip in

the DoS is greater for higher φM values and would thus have a larger effect

on the tunnelling. However, the increase in φM also increases the energy at

which the superlattice Dirac points occur. This is expected, as |G| ≈ 2π/g

will increase with φM , and thus the number of energetic states in the first

Brillouin zone will also increase. By increasing φM from 0◦ to 2◦, the energy

at which the first superlattice Dirac point occurs more than doubles, i.e. the

green curve in Fig. 5.8 has more than twice the energy span as the blue.

As we want to avoid entering the over-the-barrier conduction regime, which

arises at E approaches the energy of the barrier, we will investigate lower φM

values. In [95, 96], it is noted that the dip in the density of states is much

more pronounced in the valence band, compared to the conduction band,

due to the electron-hole symmetry breaking produced by the superlattice

perturbation. However, as we also want to investigate chirality, which is

expected to lead to further asymmetry, we keep the DoS symmetric about

zero. Fig. 5.9(a) shows the additional Brillouin zone locations calculated

from Eq. (5.17), which allows the dispersion relation for the energies in Fig.

5.9(b) to be calculated. Here, we see six additional Dirac points appearing

in the valence band due to the moiré potential.

5.5 Modelling Electrostatics with Moiré Ef-

fects

The electrostatics for a GRTD on a hBN substrate brought into relative

alignment with the lattice of the bottom graphene electrode can now be

considered. The perturbed DoS and band structure now replace the linear

alternatives, for the bottom graphene electrode only, in the calculation

of Ib. The hBN barrier is assumed to be misaligned such that no moiré

pattern effects occur due to the barrier layers, and the top graphene layer is

assumed to maintain the linear dispersion, as it is much further away from

the substrate.

The chirality term for the system is calculated from the wavefunction

overlap between the perturbed wavefunction from the bottom layer, and the
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unperturbed wavefunction in the top layer:∫
dxdy〈ψB|ψT 〉 =

1

2Ω

∫
dxdy〈eikT ·r(1+sT e

−iθkT )|
∑
k

c(k)e−ikB ·r(1+seiθk)〉,

(5.19)

which gives:

g = c(k)δ(kT , kB)[1 + sBe
iθkB + sT e

iθkT + sBsT e
i(θkB−θkT ]

+
∑
G

c(k −Gα)δ(kT , kB −Gα)[1 + sBe
iθkB−Gα + sT e

iθkT + sBsT e
i(θkB−Gα−θkT )],

(5.20)

when integrated over all space. Many neighbours can be included in this

model by expanding Eq. (5.17), which allows higher eigenenergies to be

calculated. In our simulation, we take 44 of the neighbours to a central

point, which covers all the energies reached in the dispersion relation for the

tunnelling events that actually contribute to the current.

5.6 Analysis of Moiré Effects

To understand the effect of a moiré potential, and the resulting change

in the DoS, on the tunnelling, the conductance, dIb(µB, µT )/dVb, can be

calculated. Here, dIb/dVb = (I(1 meV)−I(-1 meV))/2 meV is the difference

in conductance when a small bias-voltage is applied in the forward and

reverse directions. By scanning through all combinations of µB and µT , the

tunnelling for a range of different Dirac cone alignments and fillings can be

probed. The currents I(µB, µT ) at ± 1 meV are not individually symmetric

over (µB, µT ), but, when averaged, become symmetric for the non-chiral

case. We will later consider the inclusion of chirality, but for simplicity, we

first understand the system without it.

We begin the investigation with the aligned device, i.e. θ = 0◦ and

φM = 0◦. In Fig. 5.10(a), with U = 0 eV, we see that dIb/dVb is high when

|µB| ≈ |µT |. The magnitude of dIb/dVb increases with increasing |µB,T |.
When |µB| and |µT | are not alike, the tunnel current, and thus dIb/dVb, goes

to 0. The same occurs in Fig. 5.10(b) when the moiré potential is turned

on, U = 0.06 eV, however, lines of low current occur. To understand these

results, it is useful to plot DoS(E) in the two cones along with the relative
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alignment and Fermi levels, for a small bias voltage, Vb = 1 meV. It is also

enlightening to plot the E(kx, ky) contours in both cones at E = µB. For

the U = 0 eV case, these are shown in Figs. 5.11(a-h). In Fig. 5.11(a,b),

µB = µT = 0 eV. If we return to the equation for the voltage dropped across

the device,

eVb = µB − µT − eFbd, (5.21)

we can see that, for the undoped case, the voltage drop across the barrier

eFbd = −1 meV. The neutrality point and Fermi level of the bottom electrode

will be at E = 0 eV, whilst the Fermi level in the top electrode, relative to

the Dirac point of the bottom electrode, will be µ′T = µT + eFbd = −1 meV.

Since this is a very small drop compared to energies reached with non-zero

levels of doping, in Fig. 5.11(a), the Dirac cones appear aligned and filled

up to the neutrality points only. The kB,T (kx, ky) plotted for this doping

reveals kB = 0 nm−1 and kT is very small compared to the doped cases in

Fig. 5.11(d,f,h). As no states are available to tunnel from the bottom cone,

and there are very few empty states available to tunnel into in the top cone,

the current here is 0. This is the central point in Fig. 5.10(a).

We can also analyse the peak in current in Fig. 5.10(a), for example,

looking at the top right corner where µB = µT = 0.35 eV. The alignment of

the Dirac cones in this case is shown in Fig. 5.11(c), where we see both cones

are filled with conduction electrons up to their respective Fermi levels. As

the Fermi levels are high, the DoS is high at this point, thus, many electron

states are available for tunnelling to a large number of empty electron states

in the top electrode, due to the small Vb which energetically shifts the cones

by -1 meV. Fig. 5.11(d) shows the k states and we note the change in

momentum required for tunnelling is low. Consequently, we expect a high

current, and, thus, conductance.

Away from the symmetric values of µB and µT , in Fig. 5.10(a), we note

the current is low. For example, at µB = 0.35 eV and µT = 0 eV, we plot

the alignment in Fig. 5.11(e). Here, the Fermi level in the bottom electrode

is high, and thus shows a large number of states in Fig. 5.11(f). However,

the energetic states in the top electrode are far from energetic alignment,

and no empty states are available to accept tunnelling electrons.

It is also interesting to observe a point just off-centre from the diagonal

current peak in Fig. 5.10(a), such as µB = 0.25 eV and µT = 0.32 eV, the
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Figure 5.11: Electronic states in the graphene electrodes calculated for U = 0
eV, θ = 0◦ and φM = 0◦. Panels (a,c,e,g) show DoS(E) in the bottom (left) and
top (right) graphene electrodes for four sets of doping, explained in the text, with
Vb = 1 meV. The energy states are filled up (coloured grey) to the Fermi level in
each electrode, and the neutrality points in the bottom and top electrodes are
plotted by the dashed blue and green lines, respectively. Panels (b,d,f,h) show
energy contours in k-space at E = µB in the bottom electrode (blue) and top
electrode (red).
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results of which are seen in Fig. 5.11(g-h). Here, we see that although both

electrodes are positively-doped like in Fig. 5.11(c-d), the Dirac cones are

more energetically misaligned, and thus the current is lower than on the

diagonals of Fig. 5.10(a), as a larger change in momentum is required for

tunnelling transitions.

Now that the results of Fig. 5.10(a) are fully understood, we can analyse

the system with the moiré potential on, with U = 0.06 eV. In Fig. 5.10(b),

regions of low dIb/dVb appear at certain energetic alignments. The DoS(E)

and kB,T (kx, ky) contours in Fig. 5.12(a-b) reveal where, in the U = 0 eV

case, we would expect the current to be high, e.g. when µB = µT = 0.22 eV.

In the U = 0.06 eV case, the DoS is lower at this point. This is because the

energetic alignment has reached the first superlattice Dirac point, as seen

by the Fermi level in Fig. 5.12(a). Consequently, although there is the same

number of states available to tunnel into in the top graphene electrode, there

is a reduced number available to tunnel from the bottom graphene electrode,

compared to in the linear dispersion, and so the current is reduced. Fig.

5.12(b) shows the location of states in k-space in each electrode at E = µB.

At higher doping levels (µB = µT = 0.28 eV), a maximum in current is

achieved, which corresponds to the alignments and energy contours plotted

in Fig. 5.12(c). Here, the tunnel current benefits from an increase in the

number of states available for tunnelling, as seen in Fig. 5.12(d), just before

the second supplementary Dirac point is reached. Increasing the doping

further (µB = µT = 0.30 eV) brings the chemical potentials into alignment

with this superlattice Dirac point, and thus reduces the current.

Note, the lines of low differential conductance in Fig. 5.10(b) occur only

horizontally. This is due to the fact that only the bottom electrode has a

perturbed band structure in the arrangement considered here.

The conductivity, dIb(µB, µT )/dVb can also be plotted versus µB and µT

for the θ = 0.9◦ case, with φM = 0◦, as shown in Fig. 5.13(a) for U = 0

and in (b) for U = 0.06 eV. We note that compared to the θ = 0◦, the

overall conductance is lower, and there is a larger region of zero conductance

around µB = µT = 0. This is due to the decrease in overlap of states in

k-space, as seen in Figs. 5.14(b,d,f). As a result, thus the Fermi levels

need to reach a higher magnitude before a significant tunnel current arises.

In the regions where |µB| 6= |µT |, the device with θ = 0◦ still has higher

conductance, but the difference from the |µB| = |µT | case is greater, thus

the scale of the colour maps gives the appearance that the conductance flows
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# 10 36

-4 0 4 8 12

-0.4

-0.2

0

0.2

0.4

# 10 8

-3 -1.5 0 1.5 3

# 10 8

-3

-1.5

0

1.5

3

-0.15 0 0.15 0.3-0.3

-0.15

0

0.15

0.3

-0.3

k
y
 (

nm
-1

)

0 1 0 1

-0.4

-0.2

0

0.2

0.4

E
 (

eV
)

-4 0 4 8 12

-0.4

-0.2

0

0.2

0.4

-5 -2.5 0 2.5 5

# 10 8

-5

-2.5

0

2.5

5

-0.25 0 0.25

k
y
 (

nm
-1

)

-0.5 0.5

-0.25

0

0.25

-0.5

0.5

-0.4

-0.2

0

0.2

0.4

E
 (

eV
)

0 1 0 1

(a) (b)

DoS (arb. units) kx (nm-1)

# 10 8

-5 -2.5 0 2.5 5

# 10 8

-5

-2.5

0

2.5

5

# 10 36

-4 0 4 8 12

-0.4

-0.2

0

0.2

0.4

E
 (

eV
)

-0.25 0 0.25

k
y
 (

nm
-1

)

-0.5 0.5

-0.25

0

0.25

-0.5

0.5

0 1 0 1

-0.4

-0.2

0

0.2

0.4

# 10 36 # 10 8

(c) (d)

(e) (f)

Figure 5.12: Electronic states in the graphene electrodes calculated for U = 0.06
eV, θ = 0◦ and φM = 0◦. Panels (a,c,e) show DoS(E) in the bottom (left) and
top (right) graphene electrodes for three sets of doping, explained in the text,
with Vb = 1 meV. The energy states are filled up (coloured grey) to the Fermi
level in each electrode, and the neutrality points in the bottom and top electrodes
are plotted by the dashed blue and green lines, respectively. Panels (b,d,f) show
energy contours in k-space at E = µB in the bottom electrode (blue) and top
electrode (red).
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for a larger range of µB, µT , when θ = 0.9◦, which is actually not true. The

moiré potential again leads to lines of low conductance corresponding to the

Fermi levels approaching the superlattice Dirac points.

In Figs. 5.14(a-f), U = 0.06 eV, θ = 0.9◦ and φM = 2◦. Here, we can see

all of the effects considered above. The moiré potential gives the non-linear

dispersion relation in the bottom cone, φM shifts the superlattice Dirac

points in energy, and θ shifts the energy states in k-space. Figs. 5.14(a-b)

are plotted for µB = 0.35 eV and µT = 0.22 eV, Figs. 5.14(c-d) are plotted

for µB = µT = 0.29 eV, and Figs. 5.14(c-d) are plotted for µB = 0.32 eV

and µT = 0.26 eV. The corresponding conductance colour maps are shown

in Fig. 5.15(b), with the θ = 0◦ case in Fig. 5.15(a).

5.7 Chirality Effects

The two-component form of the electron wavefunction in graphene is expected

to affect the tunnelling current [103, 104]. The chirality leads to two terms in

the form of the tunnel current. Firstly, the overlap of the basis wavefunctions

in the graphene electrodes gives rise, as shown in Eq. (5.20) to the factor

g. This describes the interference of the A and B sublattices. Secondly, in

Eq. (5.17), the term of UG = U
2
(1 + ei(θk−G−θk)) lead to an asymmetry in

the perturbed E(kx, ky) surface [95]. For simplicity, we first investigate the

effect of including the g term, and quantify its influence on the conductance.

Fig. 5.16 shows dIb/dVb(µB, µT ) surfaces calculated for U = 0 eV with

φM = 0◦ and (a) θ = 0◦ and (b)θ = 0.9◦. We see regions of high current in

the sgn(µB) = sgn(µT ) regions (lower left and upper right quadrants, Fig.

5.16), where tunnelling is between like bands, i.e. valence band to valence

band, and conduction band to conduction band. Here, the tunnelling is

enhanced as the electron conserves chirality by tunnelling to an equivalent

pseudospin branch. By contrast, when sgn(µB) = −sgn(µT ), the current

is suppressed, due to the change in chirality. In comparison, without g

included, we return to the results of 5.10(a) and 5.12(a), respectively, where

all four quadrants have equivalent tunnelling.

Similarly, when U = 0.06 eV, as in Fig. 5.17 for (a) θ = 0◦ and (b)

θ = 0.9◦, the tunnelling between like bands is enhanced, whilst the tunnelling

between unlike bands is suppressed. The lines of low conductance due to

the perturbed DoS in the bottom graphene electrode remain the same as in

the respective U = UG cases in Fig. 5.10(b) and Fig. 5.13(b).
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Figure 5.14: Electronic states in the graphene electrodes calculated for U = 0.06
eV, θ = 0.9◦ and φM = 2◦. Panels (a,c,e) show DoS(E) in the bottom (left) and
top (right) graphene electrodes for three sets of doping, explained in the text,
with Vb = 1 meV. The energy states are filled up (coloured grey) to the Fermi
level in each electrode, and the neutrality points in the bottom and top electrodes
are plotted by the dashed blue and green lines, respectively. Panels (b,d,f) show
energy contours in k-space at E = µB in the bottom electrode (blue) and top
electrode (red). The energy states are shifted in k due to the the misalignment, θ.



5.7. CHIRALITY EFFECTS 122

μ
B
 (

eV
)

μT (eV) 
0.8

0

-0.4-0.8

0.8

0

0.4

-0.4

-0.8
0.4

d
I
b /d

V
b  (arb. units)

μ
B
 (

eV
)

μT (eV) 

d
I
b /d

V
b  (arb. units)

(a)

(b)

0

1

2

0

0.4

0.2

0.8

0

-0.4-0.8

0.8

0

0.4

-0.4

-0.8
0.4

Figure 5.15: Colour maps of dIb(µB, µT )/dVb (scale, right) calculated versus µB
and µT for (a) θ = 0◦ and (b) θ = 0.9◦, where U = 0.06 eV and φM = 2◦. We
note, with φM = 2◦, the features exist at higher energies, and thus the µB,T axes
are larger than those for φM = 0◦ colour maps.



5.7. CHIRALITY EFFECTS 123

μ
B
 (

eV
)

μT (eV) 
0.3

0

-0.15-0.3

0.3

0

0.15

-0.15

-0.3

0.15

0.8

0

d
I
b /d

V
b  (arb. units)

μ
B
 (

eV
)

μT (eV) 
0.3

0

-0.15-0.3

0.3

0

0.15

-0.15

-0.3

0.15

8

0

d
I
b /d

V
b  (arb. units)

4

(a)

(b)

Figure 5.16: Colour maps of dIb(µB, µT )/dVb (scale, right) versus µB and µT
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calculated for (a) θ = 0◦ and (b) θ = 0.9◦, where U = 0.06 eV and φM = 0◦ and
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Including the two-component form of the electron wavefunction in the Eq.

(5.17) leads to asymmetric E(kx, ky) surfaces, as seen in Fig. 5.18. Here, the

asymmetry becomes more pronounced when the strength of the potential,

UG, is increased, as seen by comparing Fig. 5.18(a), where U = 0.06 eV,

and Fig. 5.18(b), where U = 0.12 eV. The asymmetry can be understood by

considering the moiré plaquette, as seen in Fig. 5.18(c). Even when φM = 0◦,

due to the lattice mismatch between the hBN and graphene layers, the

majority of lattice unit cells will experience an asymmetric potential, as the

distance to their nearest neighbour varies in all six directions of the lattice

vectors. This behaviour will vary locally, and with the overall strength of

the potential, as well as with φM . The analysis is therefore complicated to

perform, and made even more complex by the large parameter space from

the device. Here, we take a brief look at the effect of including chirality

into U , for UG = 0.06 eV, φM = 0◦ and θ = 0◦ and θ = 0.9◦, with the

wavefunction overlap chirality, g, included.

The conductance colour maps shown in Fig. 5.19, now also exhibit

asymmetric behaviour in the valence-valence band quadrant (bottom left),

and the conduction-conduction band quadrant (top right). In this specific

simulation, we see that the conduction band to conduction band current is

enhanced, whilst the valence band to valence band current is suppressed. This

is in addition to the chirality effect from g which would enhance both of these

regions. The regions that are affected and the magnitude of the effect may

completely change and be very sensitive to location or misalignment angles.

Further work could help quantify the effects arising from this additional

chirality term by analysing how they influence the E(kx, ky) surfaces, by

analysing specific points to look at the alignments, and by looking at the

evolution of features as U , θ and φM are applied.

5.8 Ib(Vb) Characteristics with Moiré Effects

The modified Ib(Vb) characteristics can now be explored to understand the

effects of the moiré patterns on the shapes of the curves, the position of

the current peak, and the magnitude of the current. These, in turn, may

affect the power and frequency output. Initial simulations calculated Ib(Vb)

for θ = 0◦ and θ = 0.9◦ for an undoped device without consideration of

chirality, and with φM = 0◦. For these cases, the effect on the Ib(Vb) curves

was negligible. This is because although there is a measurable effect in



5.8. IB(VB) CHARACTERISTICS WITH MOIRÉ EFFECTS 127
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Figure 5.19: Calculated dIb(µB, µT )/dVb for (a) θ = 0◦ and (b) θ = 0.9◦, where
UG = 0.06 eV and φM = 0◦ and the g term in Eq. (5.20) is turned on.
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dIb(µB, µT )/dVb as investigated in Section. 5.6, when integrating over a

range of energies, as in Eq. (2.2), the tunnelling will be dominated by

transport between states not at the superlattice Dirac points. It would be

possible, in future work, to dope the electrodes to control the energetic

region of tunnelling, and thus enhance the contribution of tunnelling events

at the superlattice Dirac points.

In future work, it would be interesting to include novel Ib(Vb) charac-

teristics into the dynamic model to analyse the effect of any additional

features, which may result in new frequency components in the current-time

oscillations. It would also be interesting to analyse tunnelling between two

perturbed Dirac cones, which are either perturbed in the same way, or by a

different potential, determined by the alignments of the hBN barrier layers

and the hBN substrate, and to also include the effects of chirality.
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Chapter 6

Conclusion

Graphene offers novel properties for high-frequency electronics, which, com-

bined with the ability to stack layers of 2D materials makes vertical van

der Waals heterostructures very attractive from this perspective. The per-

formance of GRTDs as the active element in RLC oscillators has been

investigated, and it was shown that high GHz (∼100 GHz) and, possibly,

THz oscillations seem achievable in appropriately-designed devices. Control

of the misalignment angle, electrostatic environment and barrier thick-

ness/composition, which have a dramatic effect on the ac collective electron

dynamics, can be used to fine-tune the device characteristics. Advances in

production techniques, such as molecular beam expitaxy, will allow more

control over the multi-layer van der Waals heterostructures than the existing

layer-by-layer stacking methods. Aligning the lattice layers, controlling the

barrier thickness and designing the dimensions of the graphene electrodes

are all becoming more achievable. We have demonstrated that all of these

will allow higher operating frequencies to be reached. An additional gate

electrode can be added to make a field-effect transistor in which tunnelling

can be controlled via the gate voltage.

Within this thesis, the effect of changing parameters on the current-

voltage and current-time tunnelling characteristics of GRTDs has been

quantified. For example, reducing the barrier width (a modest change to

the structure of existing devices) increases the tunnel current, and thus

raises the oscillation frequency by an order of magnitude. Adjusting the

doping of the electrodes can enhance the frequency, and can be achieved by

adsorbing molecules onto the surface of graphene. The effect of misalignment

of the graphene electrodes was also considered and showed that, in devices
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with aligned lattices, frequencies approaching 1 THz may be attainable.

GaAsInAs/AlAs RTDs [18] with two layer-thick barriers have similar peak

currents and voltages to the GRTD reported here. We therefore expect

that the GRTD will produce similar EM emission power (∼10 µW). Our

results illustrate the potential of graphene tunnel structures in HF graphene

electronics, and we predict that in future devices, higher frequencies can

be obtained by altering the design of the device in order to minimise the

parasitic reactance. We note the current work of [105] where 55 µW 1

THz was achieved in an InP-based RTD array [105] integrated with patch

antennas, and the recent work of [106] in which 2 THz was reached.

By mounting the graphene/barrier/graphene layers on hBN, moiré pat-

terns can be induced at small misalignment angles. This leads to supplemen-

tary Dirac points forming in the band structure. The energy at which these

occur depends on the misalignment angle, which therefore offers control of

not only the position of the non-linear region, but also the intensity of the

dip in the density of states. Consequently, experiments to probe the band

structure via tunnelling measurements could be performed. The effect of the

moiré potential on the Ib(Vb) characteristics of the GRTD was investigated,

although for the parameters investigated the overall effect was negligible,

some interesting features in small voltage probing were found. The inclusion

of doping may allow more features from the chemical potential aligning with

the density of states to become more prominent in the overall current.

Further work could include investigating different barrier, substrate and

contact materials. Crystals with a slightly different lattice constant would

lead to different superlattice wavelengths. In addition, the hBN barrier layers

could be brought into alignment with the top or bottom graphene electrode

to further investigate novel tunnelling between non-linear band structures.

The scattering potential, VS, can be modified by etching potentials on to the

surface of the device, which would change the Ib(Vb) characteristics. Devices

consisting of bi- and tri-layer graphene could also be investigated, or novel

arrangements of graphene and other crystals to form large superlattices.
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