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Abstract 

The field of image processing has been extensively investigated, and many 

algorithms have been developed for it. With the rapid development of 

digital-image processing, image-processing techniques have been successfully 

applied to different areas including the monitoring system, production-line 

control and artificial intelligence.  

The analysis of time-lapse microscope images is a recent popular research 

topic. Processing techniques have been employed in such studies to extract 

important information about cells—e.g., cell number or alterations of cellular 

features—for various tasks. However, few studies provide acceptable results in 

practical applications because they cannot simultaneously solve the core 

challenges that are shared by most cell datasets: the image contrast is 

extremely low; the distribution of grey scale is non-uniform; images are noisy; 

the number of cells is large; and cell behaviours include moving, splitting, 

merging, appearing and disappearing. These factors also make manual 

processing an extremely laborious task.  

The motivation behind this thesis is to establish a framework that can improve 

the efficiency of related biological analyses and disease diagnoses. The aim is 

to develop sophisticated techniques that can automatically process time-lapse 

microscope images and thereby meet specific demands for different tasks 

rapidly and accurately.  

This thesis establishes a framework in these directions: a new segmentation 

method for cell images is designed as the foundation of an automatic approach 

for the measurement of cellular features. The newly proposed segmentation 

method achieves substantial improvements in the detection of detailed 

information about, for example, cell filopodia. In addition, an automatic 

measuring mechanism for cell features is established in the designed 

framework. The measuring component enables the system to provide 
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quantitative information about various cell features that are useful in 

biological research, including length and width of cells, cell size, cell volume 

and cell shape. Using the extracted measures of cell features, a novel 

cell-tracking framework is constructed to monitor the alterations of cells. The 

tracking framework associates cells in adjacent frames based on a newly 

defined scoring scheme with an accuracy of cell tracking above 90%. 

Processing speed is another bottleneck in automatic analyses of medical 

images. Few of the existing algorithms can be employed in real-time 

applications because most of them are used for complicated structures or 

require prior-knowledge to achieve excellent performance and therefore 

involve expensive computations. In addition, due to the development of 

high-resolution microscopes, there is an obvious rise in the size of captured 

cell images that increase the challenge faced by existing algorithms. 

To address the issue of processing speed, two fast-processing techniques have 

been developed to complete edge detection and visual tracking. For edge 

detection, the new detector is a hybrid approach that is based on the Canny 

operator and fuzzy entropy theory. The method calculates the fuzzy entropy of 

gradients from an image to decide the threshold for the Canny operator. For 

visual tracking, a newly defined parameter is employed in the fast-tracking 

mechanism to recognize different cell events, such as mitosis, merging and 

entering. Both of the methods have been evaluated with real cell datasets. The 

results demonstrate their excellent performance in terms of tracking accuracy: 

i.e., 97.66%, and processing speed, i.e., 0.578s/frame. 
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  Introduction Chapter 1

 

 

1.1 Background 

Image-processing techniques have been developed over thirty decades. Since 

the successes of image digitization in the beginning of twentieth century [1], 

the field of image processing has gained growing interest from institutional 

researchers. A number of processing techniques have been developed for tasks 

that vary from image-quality enhancement to aided-analysis tool in 

applications such as surveillance systems. Through these endeavours, 

digital-image-processing techniques have been applied successfully in a broad 

area that includes the development of geometry information systems, analysis 

of biological images and artificial intelligence. 

Analysis of time-lapse microscope images is a popular topic in the field of 

image processing. Due to the development of high-resolution microscopes, 

many cell behaviours can be directly observed from captured images. 

However, manual processing is an extremely laborious task, as there are often 

more than hundreds of cells in a series of frames. Thus, analyses of time-lapse 

experiments increasingly rely on automatic image-processing techniques. The 
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primary aspects of experimental monitoring are the extraction of cell features 

and the detection of cell behaviours. The common features used in most 

biological studies are shape measures of cells, such as the length, width and 

thickness. These features are important because cells alter their shapes when 

they encounter changes in external conditions. Biologists can try to understand 

the mechanisms of cells dealing with different environments through 

measuring the cell features. Cell behaviours are another important measure in 

the monitoring of the life cycle of cells. Cells perform distinct behaviours, 

such as mitosis and merging, in each stage of their growing process. The 

measure of these activities is extremely important for pathology studies or 

research on drug testing [2]. Therefore, these factors result in a growing need 

for high-accuracy automatic-processing techniques for time-lapse microscope 

images in biological research. 

This research aims to develop sophisticated techniques that automatically 

process time-lapse microscope images that fulfil specific demands in different 

biological analyses. The focus of this study is on developing automatic 

frameworks that improve performance in practical applications such as 

monitoring cell features and tracking cell trajectories. The motivation of this 

endeavour is to help establish a better understanding of the mechanisms of cell 

mobility and the effects of varying external environments in the life cycle of 

cells. The research focuses on developing superb automatic processing 

techniques exclusively for microscope images. The newly developed 

techniques will be compared with existing methods to evaluate their 

performance and to evaluate their potential for real-world applications. 

1.2 Motivations 

Microscope images are used in numerous biological analyses. Thus, which 

approach should be used to accurately process and extract important 

information from the sample images is a typical issue in the research area. 

Several challenges are shared by the practical applications of microscope 

images: the image contrast is extremely low; the distribution of grey scale is 

non-uniform; the images are noisy; the volume of cells contained in the dataset 
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is huge; and events such as mitosis must be accurately detected. These factors 

make it hard for the automatic framework to produce accurate measures. 

Furthermore, since few previous studies have investigated these challenges as 

an independent topic, automatic processing techniques can gain limited 

improvements. Tasks such as cell tracking are therefore often manually 

completed. However, due to the huge volume of cells contained in a series of 

frames, manual processing can be extremely laborious and time-consuming. 

Errors made by human eyes are inevitable, because cells are blurred in 

microscope images. The situation implies an urgent demand for 

high-performance automatic-processing techniques that are specially designed 

for microscope images. 

In the biomedical area, image-processing techniques have been applied to 

facilitate analyses of microscope images. For example, the automatic counting 

system for the white blood cells suggested in [3] shortens the period of disease 

diagnoses. Microscope images provide plenty of information about the length, 

size, and shape of cells. Compared to cell counting, the extraction and 

measurement of these features are more sophisticated processes that require 

professional automatic processing techniques. To provide better aids in 

biological studies, this study aims to establish the frameworks that are needed 

to meet the following qualities. 

A. Quantitative 

Microscope images have been used in biology for decades; however, due to 

the lack of efficient aid tools, researchers are accustomed to analysing their 

images qualitatively rather than quantitatively. The shapes of cells vary as 

conditions change in their surrounding environments. Measurements of cell 

features, such as cell size and cell length can provide much useful information 

in cell monitoring. Automatic processing techniques offer a solution to the 

problem of quantitative analysis. The designed framework is supposed to 

measure various required features of each cell contained in a series of 

time-lapse frames that assist related studies and extend the research area. 

 



Page | 4 
 

B. Accurate 

Manual manipulation is high influenced by subjective factors. Human eyes are 

the primary source of errors in processing. Although computer analysis is 

objective, the rate of accurate measurement that can be obtained with 

computers cannot meet the requirements of practical applications because few 

existing methods can solve the challenges associated with microscope images. 

Thus, the accuracy of the framework is particularly important for automating 

the analysis procedure. The primary analysis provided by existing commercial 

systems is to track the alterations of cells during their life cycles. Accurate 

rates of cell tracking by traditional approaches—about 70% [4]—are 

unacceptable for practical analyses. To solve this problem, this study aims to 

increase the rate to above 90%. 

C. Extendable 

The features of different types of cells are discriminated. Therefore, biological 

applications may have special requirements for processing different 

microscope images. The expansibility of a framework describes how hard it is 

for that system to process different datasets. Existing approaches are usually 

difficult to expand, as most of them are designed to solve special problems in 

particular type of cells or require strict conditions to ensure good performance. 

We aim to establish a general framework that can be separated to processing 

modules. Modules work on respective tasks. The whole system can complete 

different special missions by combinations of modules that can be applied to 

diverse cell datasets in various medical imaging applications.  

D. Efficient 

Automatic image-processing techniques can obviously reduce the workload 

for researchers and shorten the time consumed in manipulations. For example, 

it takes about 1 minute to manually count about 100 cells in a microscope 

images that can be shortened by the software to a few seconds. In the actual 

analyses, there are often thousands of cells in each frame of the video. The 

operations are more complicated than counting cell numbers. Thus, automatic 

processing techniques offer outstanding advantages for dealing with huge 
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datasets. Although existing methods can provide efficient performance, their 

processing speeds are too slow for real-time applications due to their complex 

structures. Therefore, another focus of this study is to develop fast processing 

techniques that can be easily utilized in real-time analyses. 

1.3 Contributions 

The major contributions made by this study to the field of medical image 

processing are summarized in the following entries. 

1. A novel segmentation technique for detailed detection in cell images 

Since image segmentation is an essential prerequisite to analyses [5] such as 

feature measurement and tracking, the performance of the method used for 

image segmentation is of particular importance. Thousands of studies have 

been made in this field in previous research; however, few can detect the cell 

filopodia. The neural cells use their antennas to transfer information. The 

alterations of those antennas often have significant meanings in biological 

analyses. To solve this problem, a novel segmentation method that uses both 

local and global thresholding techniques is proposed. This hybrid method 

accurately detects cells to achieve, for example, a 49.66% segmentation 

accuracy for the rat mesenchymal stem-cell dataset. 

2. A framework with excellent performance in cell tracking 

The mechanisms of cell motility and their regulation can provide a great deal 

of information about various biological processes such as embryonic 

development [6]. Automatic cell tracking is an efficient tool for the 

quantitative analysis of those processes. However, because the quality of cell 

images is often low, and because various cell behaviours including mitosis, 

fusion, and rapid movement must be recognized, most of the existing tracking 

approaches have been developed for complex structures or work only under 

strict conditions. A general tracking framework that can be extensively used to 

track different types of cells is presented. A two-step iterative thresholding 

approach is developed to remove segmentation errors, and a scoring scheme 

that uses multiple cell features is proposed for association. For performance 
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evaluation, this system is applied to four different cell datasets. The results 

demonstrate that the proposed framework outperforms the winner of ISBI 

2013: i.e., it achieved a 92.93% tracking accuracy. 

3. Fast-processing techniques for time-lapse cell images 

Due to the development of high-resolution microscopes, the size of captured 

cell images can be extremely large: i.e., often above 900×900. Although 

existing image-processing techniques can provide highly accurate 

performance with these large-size images, few of them can be utilized in 

real-time applications. Two of the fast-processing techniques are developed 

exclusively for time-lapse cell images.  

3.1 A hybrid edge-detection method 

Edge detection is widely used to analyse cell images by cell biologists. Thus, 

the accuracy of the technique is pivotal to their work. Due to the often low 

quality of cell images, existing edge detectors fail to routinely produce highly 

accurate results. To solve this problem, a novel hybrid method is proposed that 

is based on the Canny operator and fuzzy entropy theory. This method 

calculates the fuzzy entropy of gradients from an image to decide the threshold 

for the Canny operator. Its great potential for practical applications is indicated 

by the processing speed of the proposed detector, which is less than 0.5 

sec/frame. 

3.2 A fast tracking technique 

Automatic tracking can provide efficient statistical measures that are hard to 

obtain from manual analysis. Existing tracking frameworks can provide 

accurate results; however, most of them are designed in complex structures or 

require prior-knowledge that results in low processing speeds. Growing 

numbers of biological applications require accurate and fast tracking 

techniques. Hence, a fast tracking framework is proposed. A new cell 

similarity is defined so that the tracking component can detect most cell 

behaviours, including mitosis, merging and entering. The framework has been 

implemented for real-cell datasets and evaluated with respect to the results of 
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participants in the challenge section of ISBI 2013, which demonstrate the 

excellent performance of our proposed framework in both tracking accuracy 

(above 97%) and processing speed (0.578 second/frame). 

1.4 Thesis Outline 

This thesis consists of six chapters. The project is introduced in Chapter 1. 

Chapter 2 reviews current technical developments, including segmentation and 

tracking techniques previously proposed for biological analyses. These 

techniques form the foundation and provide a multitude of important ideas for 

the optimization of this work. 

In Chapter 3, the novel segmentation method for the detection of cell antennas 

is introduced (section 3.2). This segmentation method has been compared with 

several methods that are widely used in recent studies (section 3.2.4). Based 

on segmentation results, various features of cells that are useful in biological 

analyses can be measured (section 3.3). The proposed segmentation method 

and its variants have been applied to the cell dataset captured by University of 

Nottingham, UK (UNUK), as a case study (section 3.4). 

Chapter 4 introduces the proposed framework for cell images. The framework 

has been applied to three datasets of different types of cells that have been 

collected by world-wide famous institutions such as the Academy of Sciences 

of the Czech Republic. The principle under the designed tracking system 

(section 4.2) is introduced first. Then performances are analysed using 

different cell features (section 4.4.3.1). Three widely used methods are taken 

as benchmarks for the performance evaluation of the proposed tracking 

framework (section 4.4.3.2). 

Chapter 5 focuses on fast-processing techniques. The hybrid edge-detection 

method is introduced first (section 5.2). Then the fast tracking technique is 

demonstrated (section 5.3). These two techniques have been applied to real 

cell datasets; their performances have been evaluated via benchmark methods 

for accuracy and process speed (section 5.3.2 and section 5.5.2.2). 
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In Chapter 6, contributions made by this study are discussed, suggestions for 

future work are presented, and a general conclusion is summarized. 
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  Literature Review Chapter 2

 

 

With the development of imaging techniques, the quality of medical images 

gains an obvious enhancement that reduces the difficulties for 

image-processing techniques to provide reliable results, thus a growing 

number of image-processing techniques are implemented in medical 

applications. The automatic techniques improve the efficiency of many tasks. 

For examples, the task of tracking cells manually costs huge volume of labour 

since the number of cells in a time-lapse video can be extremely large. 

Substantial studies on these essential techniques, such as image segmentation, 

have been made in previous research. The advantages and drawbacks of 

existing approaches have been comprehensively analysed and improvements 

for the methods have been developed to provide better performance. 

This chapter provides a review of developments of the core techniques 

involved in this research area, including image segmentation and visual 

tracking. The theories and properties of the widely used segmentation 

techniques are provided in the first section. In the second section, the 

relationship between tracking and the processes of segmentation is presented 



Page | 10 
 

within an introduction to the development of tracking techniques. Since this 

research involves a study of measuring cells from a 3D view, a general review 

of existing 3D-reconstruction techniques is included in the third section. 

2.1 Techniques for cell segmentation 

The area of image segmentation has been studied extensively since the early 

20
th

 century. As image-processing techniques have been implemented in 

various practical applications, image-segmentation—the essential step for 

most processing operations—is a subject of increasing attention. Thousands of 

approaches have been developed from various theories. A brief review of cell 

segmentation approaches can be found in [7]. Some of these approaches are 

highly accepted by researchers and widely implemented in biological 

applications. Therefore, an introduction to the theories and properties of these 

existing segmentation methods is presented in the rest of this section. 

2.1.1 Thresholding 

Thresholding is a traditional method for image segmentation. Due to its 

simplistic structure, the technique can be easily implemented and requires low 

calculation capacity to produce stable performance. Therefore, thresholding 

techniques have been widely used to process biological images, such as the 

images of blood cells in [8]. This technique separates the pixels in the target 

image into separate classes by using different threshold values [9]. Assume the 

original image is f(x,y). Then the thresholding result, g(x,y), can be presented 

as follows: 

 

𝑔(𝑥, 𝑦) =

{
 
 

 
 𝐶𝑁          𝑖𝑓 𝑓(𝑥, 𝑦) ≥ 𝑇𝑁
𝐶𝑁−1 𝑖𝑓 𝑇𝑁−1 ≤ 𝑓(𝑥, 𝑦) < 𝑇𝑁…
𝐶1      𝑖𝑓 𝑇1 ≤ 𝑓(𝑥, 𝑦) < 𝑇2
𝐶0           𝑖𝑓 𝑓(𝑥, 𝑦) < 𝑇1

 (2.1) 

where (T1 … TN) represents the set of threshold values and (C0 … CN) are the 

corresponding classes. 
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In most applications, the technique is used to differentiate only two classes: 

object and background. The success of this method is based on the assumption 

that the neighbouring pixels in the same class have close grey values. Using a 

histogram view, the object area and background are related to different 

distribution in the figure. Hence, the valley point (T) between the two peaks is 

chosen as a threshold to separate the two parts. 

 
Figure 2-1 Histogram of an Image 

Therefore, the core of the thresholding techniques is its way of seeking 

suitable threshold values. Otsu proposed the value maximized the inter-class 

variance as the threshold [10]. Kaptur used entropy theory to decide the 

threshold [11]. Doyle chose the threshold through the P-tile algorithm [12]. 

Among these traditional approaches, the method proposed by Otsu is highly 

accepted in later research. Many variants of this typical method have been 

developed [13]. 

However, traditional Otsu thresholding has poor performance with most cell 

images, because the datasets share the following three core challenges: the 

contrast is extremely low, distribution of grayscale is non-uniform, and the 

images are noisy. Low-contrast images often lead to no distinct valley in their 

histograms. It is hard for the Otsu thresholding method to accurately process 

such images. D. Ye developed a pre-processing technique that uses 

morphological operators to enhance the quality of MR images [14]. The 

results demonstrate the excellent performance of the method, which has been 
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extended to use with microscope images. The traditional Otsu method 

determines the threshold only by using the image histogram, which results in 

its sensitivity to noise and in inhomogeneous distributions of grayscales. To 

address these problems, B. Ma separates the whole image into several 

sub-images and processes each sub-image using the Otsu thresholding. The 

method produces the final results by assembling the binary sub-images and 

removes noises using the morphological operator [15]. Helon V. H. Ayala 

published a recent paper that introduces the application of novel beta 

differential evolution (BDE) according to Otsu’s criterion to perform image 

segmentation [16]. In evaluated case studies, the proposed BDE approach 

performs better in terms of the quality of the final solutions. 

2-D Otsu thresholding is another direction for algorithm improvements. The 

method uses the average values of the pixel values and the surrounding pixels 

to form a 2-D histogram. Using the generated 2-D histogram, the method 

chooses the threshold through the Otsu algorithm. The spatial information of 

the image makes an effective aid in the 2-D Otsu thresholding method. Thus, 

the robustness of the method to noises has been improved. 2-D Otsu has been 

broadly investigated and substantial improvements for the method have been 

proposed [17]. It has been used to process medical images in recent research. 

S. Kumar suggested using the 2-D Otsu algorithm to perform the segmentation 

of CT lung images. The proposed method is optimized by a differential 

evolution algorithm to reduce the computation complexity of 2D Otsu [18]. 

2.1.2 Edge operators 

Based on the assumption that the image gradient changes sharply near cells 

borders, edge detection has been widely employed for image segmentation. A 

survey of various edge detectors can be found in [19]. Most techniques (e.g., 

Sobel, Roberts, and Prewitt) use a differentiation filter to approximate the 

first-order image gradient. If f(x,y) is a raw image, the first-order gradient is 

defined as follows: 
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Following the generation of a gradient map, potential edges are extracted by 

thresholding the gradient. Based upon this approach, modified methods such 

as the Laplacian of Gaussian operator (LoG) have been established that use the 

second-order image derivative, also called the Laplacian magnitude, to extract 

edges. The Laplacian magnitude is defined by the following: 
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In 1986, Canny proposed a method that has achieved widespread use. It first 

applies Gaussian derivatives to the image before isolating candidate edges by 

non-maximum suppression and extracting them via hysteresis thresholding 

[20]. The process can be expressed as follows: 
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where Ga(x,y) represents the Gaussian operator. The boundary points are those 

that maximize Ma in the direction of Aa. 

Approaches that improve the performance of the Canny operator have been 

developed. Elder and Zucker [21] introduced a method to determine edges at a 

multitude of scales. An adaptive smoothing method has also been proposed 

[22]. In more recent work, a method to extract edges missed by the Canny 

detector was suggested by Ding [23]. R. Medina-Carnicer has proposed a 

novel way to determine hysteresis thresholds in an unsupervised way [24]. 

Typical edge detectors share the same problem: sensitivity to noise. There are 

three main kinds of noise that may be contained in the images: Gaussian noise, 

Salt and Pepper noise and Poisson noise. Operators perform differently with 

respect to noise. Table 2-1 evaluates the performance of typical edge detectors 
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under different conditions. 

Table 2-1 Comparison of different edge detection operators 

Operator 
Gaussian 

noise 

Salt and 

Pepper 

noise 

Poisson 

noise 

Detail 

edges 
Speed 

Sobel Good Good Good Rough Fast 

Laplace Poor Poor Poor Accurate Fast 

Roberts Good Good Good Rough Fast 

Prewitt Good Good Good Rough Fast 

LoG Poor Very Poor Very Poor Accurate Slow 

Canny Good Good Good Accurate Slow 

The table reflects the fact that the Canny operator is more robust with respect 

to noise. Thus, the Canny operator is used in an increasing number of studies, 

including the analysis of medical images. N. S. Aruna tested several typical 

edge operators such as Canny and Sobel, to detect the edges of sickle cells in 

red blood cells. The study analysed the performance of the operators and 

concluded that the Canny edge-detection method is preferable for the 

diagnosis [25]. X. Zhang suggested a hybrid method that uses the Canny 

algorithm and mathematical morphology to extract cell edges [26]. The edges 

of cells are first estimated by the Canny operator; then the facture of the edges 

is filled in by the morphological operation of dilation. The results demonstrate 

that the combined method has the advantages of high accuracy and good 

quality of detected edges. 

2.1.3 Mathematical Morphology 

In recent years, mathematical morphology, which was first applied in image 

processing by J. Serra [27], has been attracting growing attention from 

researchers. The technique has been implemented for pre- or pro-processing of 

images in different systems. The crucial principle of this technique is to 

achieve the aim of image analysis by using the structural unit to measure and 

recognize the corresponding shape in the images. The essential operations in 

mathematical morphology are dilation, erosion and open and close. 

Sophisticated operators can be derived by combinations of these basic 

operations [28]. 
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The morphological approach has a simplistic algorithm structure that makes it 

easier to implement. Furthermore, since spatial information is exploited in the 

typical morphological method, the technique has better robustness than the 

thresholding technique. Those factors result in the advantages of employing 

this approach in practical applications. T. U. Nipon used mathematical 

morphology to separate the nucleus and cytoplasm of white blood cells [29]. 

Although the designed edge detector is easy to implement, as it is sensitive to 

noise, it provides good performance only with high-quality images. 

Sensitivity to noise is a traditional problem with the morphological method. 

Many solutions have been proposed in previous research. The watershed 

algorithm suggested by L. Vincent [30] is a representative solution for 

performance improvement. Generally speaking, the algorithm treats a 

grey-level image as a topographic relief in which the grayscales of pixels 

interpret their altitude, and it simulates a process of water dropping or flooding 

to the image to recognize the waterline between adjacent catchment basins. 

The waterlines represent the local maximums in the image; thus, the gradient 

map of the image is often used as input for the watershed method. If the image 

is represented by f(x,y), the gradient map g(x,y) can be presented as follows: 

 𝑔(𝑥, 𝑦) = 𝑔𝑟𝑎𝑑(𝑓(𝑥, 𝑦))

= √(𝑓(𝑥, 𝑦) − 𝑓(𝑥 − 1, 𝑦))2 + (𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦 − 1))2 
(2.6) 

 

Figure 2-2 uses a graphic view to show the example of gradient map and the 

positions of the waterline and catchment basins. 
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(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

Figure 2-2 Example of gradient map. (a) Gradient image; (b) Relief of the gradient image; (c) 

Watershed of the gradient; (d) Relief of the waterlines. 

The typical watershed algorithm can be organized as follows: 

Step 1 – Generation of distance map: The pixels in the gradient-magnitude 

map are marked in an ascending order according to their pixel values. 

Step 2 – Simulation of flooding: A flood is simulated within the marked 

gradient map such that the points with lower pixel values are submerged 

earlier. These inundated pixels are the local minimums in the images. Thus, 

the algorithm detects and marks these points with a FIFO scheme. 

Step 3 – Recognition of waterlines: The gradient map is transformed to the 

image that contains the information of catchment basins after the process of 
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flooding. Based on this generated map, the algorithm marks the edge points 

between adjacent basins as waterlines and produces the final result. 

The watershed algorithm performance very well in the detection of detailed 

edges; however, slight alterations of grey levels on the cell surfaces or 

unexpected noise can result in over-segmentation in the final results. The 

marker-based watershed labels the gradient map with foreground and 

background markers such that regional minimums can be only chosen from 

the marked points. This method removes the fake regional minimums 

influenced by noise and provides more accurate results. In [31], the revised 

marker-based watershed algorithm has been used to segment overlapping cells 

in microscope images. 

The mathematical-morphology algorithm is often combined with other 

methods to reduce the influence of noise. For examples, D. Anoraganingrum 

proposed a method for segmenting tumour cells based on a median filter and 

morphological operation [32]. The image is smoothed by a median filter 

before segmentation by the morphological operator. This approach has been 

successfully applied to medical images; however, the drawback of the method 

is that it requires prior-knowledge and interaction from users for accurate 

segmentation. B. Chanda developed a hybrid method based on watershed and 

multi-dimensional morphological operators [33]. The method has been 

evaluated under noisy conditions, and results show that the approach is more 

robust than other morphological edge detectors. C. Jung recently developed a 

novel watershed-based method for the segmentation of cervical and breast cell 

images [34]. The approach has been tested on a variety of real microscope cell 

images, and results show that it yields more accurate segmentation results than 

the other watershed-based algorithms. The segmentation of red blood cells has 

also been achieved with the masking and watershed algorithm, which is 

introduced in [35]. 
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2.1.4 Deformable model 

The deformable model comprehensively utilizes information about regions 

and boundaries to recognize target edges. This method has been successfully 

applied for various purposes in image analysis, including segmentation, 

tracking, and pattern recognition. Thus, a growing number of studies focused 

on the deformable model have been presented in recent years [36]. The 

primary advantages of the deformable model are that it can produce integrated 

edge curves or surfaces and is robust with respect to noise and fake edges. The 

deformable model includes the deformable contour—also known as snakes or 

active contour—and the deformable surface that is an extension of the 

deformable contour for 3-D spaces. 

The snakes model, which builds on the theory of energy minimization, was 

first proposed by M. Kass in 1987 [37]. It is basically a controlled continuity 

spline under the influence of image forces and external constraints. The snake 

is pushed by the image forces toward the images features, such as edges and 

object contours, and the responsibility of the external constraints put the snake 

near the local minimums. If point set V(s)=(x(s),y(s)) parametrically 

represents the position of a snake, its energy function can be written as 

follows: 

 
𝐸𝑠𝑛𝑎𝑘𝑒 = ∫ 𝐸𝑖𝑛𝑡(𝑣(𝑠)) + 𝐸𝑖𝑚𝑎𝑔𝑒(𝑣(𝑠)) + 𝐸𝑐𝑜𝑛(𝑣(𝑠))𝑑𝑠

1

0

 (2.7) 

where 𝐸𝑖𝑛𝑡 is the internal energy of the spline produced by bending, 𝐸𝑖𝑚𝑎𝑔𝑒 

generates the image forces and 𝐸𝑐𝑜𝑛 generates the external constraint forces. 

Let 𝐸𝑒𝑥𝑡 = 𝐸𝑖𝑚𝑎𝑔𝑒 + 𝐸𝑐𝑜𝑛, then the external forces (𝐹𝑒𝑥𝑡) are formed by the 

image forces and the external constraint forces. The internal energy (𝐸𝑖𝑛𝑡) 

produces the internal forces (𝐹𝑖𝑛𝑡) that resist deformation. Therefore, the 

model is supposed to finally be in a balanced state: 

 𝐹𝑖𝑛𝑡 + 𝐹𝑒𝑥𝑡 = 0 (2.8) 
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Because the original snakes model has various limitations and performs 

convergence poorly in some corner cases, variants of snakes have been 

developed. A brief introduction of the popular variants is provided in what 

follows. 

A. GVF snakes model 

C. XU proposed the idea of gradient vector flow (GVF) and suggested that 

GVF replace the traditional external force field in 1998 [38]. This variant 

model addresses the issue of poor convergence performance with snakes in 

two cases: 1) initialization of the snake is far from minimum and 2) the target 

has concave boundaries. The study defines edge map f(x,y) derived from the 

image I(x,y) as 

 𝑓(𝑥, 𝑦) = −𝐸𝑒𝑥𝑡
𝑖 (𝑥, 𝑦) (2.9) 

where i = 1, 2, 3, or 4.  

If we define the gradient vector flow (GFV) field as the vector field 

𝑽(𝑥, 𝑦) = (𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)), the energy functional of GVF can be written as 

follows: 

 
𝐸𝐺𝑉𝐹 =∬𝜇(𝑢𝑥

2 + 𝑢𝑦
2 + 𝑣𝑥

2 + 𝑣𝑦
2) + |∇𝑓|2|𝑽 − ∇𝑓|2𝑑𝑥𝑑𝑦 (2.10) 

where µ is a controllable smoothing term. 

𝐸𝐺𝑉𝐹 gives rise to the GVF forces (𝐹𝐺𝑉𝐹) that are used to replace the default 

external force in this revised model. Although the GVF snakes model solves 

the problem of poor convergence, it has a primary drawback of its own: it 

smooths the edges of the contour with the smoothing term, µ. It is a trade-off 

issue. Although the rounding can be reduced by setting lower µ, the effect of 

smoothing is also weakened in this situation. A. Rajendran proposed a hybrid 

approach to segmenting brain tumours with the GVF snake model and fuzzy 

clustering [39]. F. Zhang developed an improved GVF snake model to perform 

contour extraction [40]. 
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B. The balloon model 

The balloon model was introduced by L. D. Cohen in [41]. The model was 

primarily designed to address the issue of shrinking in the default method. The 

typical snake shrinks inwards without substantial image forces and without 

mismatching its size with the minima contour. The image force is an important 

term in the default method that pushes the curve to the lines that correspond to 

the desired features. Assume the mapping of a snake for a contour s as 

𝑠 ↔ 𝑣(𝑠) = (𝑥(𝑠), 𝑦(𝑠)). The potential term of the image force is, 

 𝑃(𝑣) = −|∇𝐼(𝑣)|2 (2.11) 

where I is the image. 

The curve is attracted by the local minima of the potential, and the image force 

can be represented in terms of the potential as follows: 

 𝐹𝑖𝑚𝑎𝑔𝑒 = −∇𝑃 (2.12) 
 

Hence, the normalized term of the image force is, 𝐹 = −𝑘
∇𝑃

||∇𝑃||
, where k is the 

normalization factor. The study provides an analysis of the image forces and 

suggests that a new force—inflation—should be added to act on the snake and 

thereby provide a more dynamic behaviour for the contour. Combining the 

inflation term with the image force, the resultant can be expressed as follows: 

 𝐹𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑘1�⃗� (𝑠) (2.13) 
 

 
𝐹 = 𝑘1�⃗� (𝑠) −  𝑘

∇𝑃

||∇𝑃||
 (2.14) 

where 𝑘1 is the magnitude of the force and �⃗�  is the unit normal vector of the 

curve at 𝑣(𝑠). 

The magnitude of k1 should be the same as the image normalization factor k, 

and k should be slightly larger than k1 to allow forces to stop the inflation at 

image edges. Therefore, the variant model can stop the shrinking of the default 

curve and guide the curve to the desirable attributes. In recent research, the 
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balloon snake model has been combined with fuzzy classification to achieve 

automatic segmentation of brain MR images [42]. 

C. Geometric active contours 

The geometric snakes, geodesic snakes [43] and conformal active contours [44] 

are based on ideas from Euclidean curve-shortening evolution. The division 

and fusion of contours depend on the detection of objects in the image. “Level 

set” is a popular way to implement these revised models. In level-set based 

methods, the contour is seen as a point set in the zero level of a high 

dimensional surface. The model operates the surface to drive the curve 

towards the desirable edges. The process is depicted below. 

 

Figure 2-3 Process of curve alterations 

 

If curve C moves along the normal direction at speed v, then the level set 

function 𝜑 satisfies the level set equation: 

 𝜕𝜑

𝜕𝑡
= 𝑣(𝑘, 𝐼)�⃗� |∇𝜑| (2.15) 

where I is the image, k is the curvature of the contour 𝑣(𝑘, 𝐼) is the speed 

function. �⃗�  is the unitary normal vector of the contour. ∇ is the gradient 

operator. 
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Level-set deformable models provide excellent flexibility of topological 

alterations for the generated contours; thus, they have been extensively 

employed in biological applications. J. P. Bergeest proposed a segmentation 

approach for cell nuclei in 3D fluorescence microscopy images based on 

level-set deformable models and convex minimization [45]. An advanced 

version of level-set segmentation has been developed by O. Dzyubachyk. The 

approach is able to complete the task of accurate multi-cell segmentation that 

is difficult for default models. Seven modifications are implemented in the 

revised version to considerably improve its performance [46]. K. Zhang 

proposed a novel region-based active-contour model (ACM) and tested it with 

microscopic images in [47]. Although the level-set deformable model is 

acceptable for most applications, the expensive computation of the model is a 

barrier to better performance. Approaches to reduce the volume of 

computations have been suggested in recent studies [48]. 

2.1.5 Others 

The field of image segmentation has been extensively studied and hundreds of 

approaches have been developed. Various new ideas or theories—such as 

genetic algorithm—have been successfully introduced in this filed to solve the 

segmentation issue. A brief introduction to other popular segmentation 

methods is presented in this section. 

2.1.5.1 Region growing 

Region growing is a method that has been broadly employed in the area of 

computer vision. A point set is initialized by the method as seeds. The seeds 

then grow by merging the neighbour pixels according to a pre-defined 

membership function. The region-growing approach has the advantage of a 

simple algorithm structure that makes for easily implemented and cheap 

computations. However, the default region-growing approach requires the 

manual setting of seed points and is sensitive to noises that influence its 

performance in practical applications. To address the drawbacks, S. Y. Wan 

suggested a symmetrical region-growing algorithm to provide a better 

robustness to noises [49]. L. Zheng created an automatic scheme for the 
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region-growing approach [50]. 

Region-growing segmentation has been successfully used to process 

microscope images. An automatic segmentation method for nuclei in 3D 

microscopy images of C. elegans was introduced by F. Long in [51]. The 

approach combines the region-growing technique with the watershed 

algorithm to perform automatic segmentation. Its performance demonstrates 

its robustness of intensity fluctuation with nuclei. 

2.1.5.2 Neural network 

W. E. Blanz and S. L. Gish first suggested using artificial neural network 

(ANN) to perform segmentation [52]. A forward three layers ANN is 

employed to segment the images. The attributes of the pixels are placed as the 

input nodes, and the output layer is the labels for each object in the image. The 

ANN model solves the problem of image segmentation from the view of pixel 

clustering in a manner that provides robust performance under noisy 

conditions. However, a large number of samples is required to pre-train the 

ANN models so they can provide accurate segmentation. Because it is difficult 

to collect substantial samples in some practical applications, this factor 

severely restricts the development of ANN models. 

The neural network model is highly acceptable in medical applications. P. 

Phukpattaranont employed the neural network model and mathematical 

morphology to establish a segmentation of cancer cells in a microscopic tissue 

image of breast cancer [53]. The approach defines two classes for pixels in the 

areas of cells: P and N. The input layer of the neural network is the 

red-green-blue (RGB) component of the pixels; the output layer is the 

corresponding class for the pixels, background, P and N. The P and N pixels 

are translated to binary maps using the mathematical morphology to remove 

noise and fill holes. The approach combines two result binary maps and 

produces the final segmented image after post-processing. This method 

performs very well under both low and high histological noise conditions. 

Deep learning is a novel technique that uses the very deep neural network to 

address tasks such as face-recognition image processing. Recent studies have 
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used this technique to segment MR images [54]. 

2.1.5.3 Genetic algorithm 

Genetic algorithm (GA) became popular particularly through J. Holland’s 

1970 book, Adaptation in Natural and Artificial Systems. The essential idea of 

the algorithm is to solve problems through a simulated evolutionary process of 

genes. The default genetic algorithm typically has four steps, 

Step 1 – Initialization: The GA proceeds to initialize a population of possible 

solutions. The size of the population depends on the nature of the problem. 

The initial population is randomly produced to cover the entire range of the 

search space. 

Step 2 – Selection: A proportion of the existing potential solutions are selected 

to breed a new generation during each successive generation. The solutions are 

selected through a fitness-based process according to which more fit solutions 

(as measured by a defined fitness function) are more likely to be selected. 

Step 3 – Genetic operators: The model generates a second-generation 

population of solutions from the selected potential solutions by using a 

combination of two genetic operators: crossover and mutation. Although these 

two operators are known as the typical genetic operators, other 

operators—such as colonization-extinction or regrouping—might also be 

employed. 

Step 4 – Termination: The generational process is repeated until it reaches a 

termination condition. Following provides examples of common terminating 

conditions: 1. The solution satisfying the minimum criteria is found. 2. The 

number of generations reaches the fixed limit. 3. Manually inspect. 

The genetic algorithm is routinely utilized to generate solutions for 

optimization and to search for problems in various medical applications. B. 

Sahiner used GA to search suspicious areas in the X-ray image of a breast [55]. 

D.-H. Chen employed GA to segment ultrasound images of a heart [56]. A 

multilevel thresholding approach that uses the real coded genetic algorithm 
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was developed by S. Manikandan to segment medical brain images [57] . In 

recent research, the genetic algorithm has been applied to the problem of 

object registration (i.e., object detection, localization and recognition) in a set 

of medical images that contain different types of blood cells [58]. 

2.2 Techniques for cell tracking 

Existing tracking algorithms in the field of computer vision can generally be 

classified as tracking by model evolution and tracking by detection. The 

principle of the former type is to find cells in the first frame and then update 

their position and shape through the entire sequence, frame-by-frame. Each 

tracking cell is processed by a model that evolves to fit the particular cell in 

subsequent frames. Contour evolution is the typical approach in this group. 

For the latter type, the key idea is to detect all cells in the entire time-lapse 

video and then to associate corresponding cells between adjacent frames. 

Examples for this group are typical segmentation and association and most 

stochastic filtering methods. The probabilistic objective function that 

associates cells is the core for this type of method. A brief review of existing 

cell-tracking methods can be found in [59]. 

Table 2-2 Comparison of three default models 

 
Contour 

evolution 

Stochastic 

filtering 

Segment and 

associate 

Mitosis and 

merging 
+ - - 

Appearing and 

disappearing 
- - - 

Low temporal 

resolution 
- + + 

Fast motion - + + 
Accurate 

segmentation 
+ - + 

Several core challenges that occur during cell tracking are summarized: 1) 

accurate detection of mitosis and merging, 2) accurate detection of appearing 

and disappearing, 3) low temporal resolution of cell frames, 4) the tracking of 

cells with fast motions, and 5) accurate segmentation of cells. Studies have 

been made that compare the performances of the three typical tracking models 
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with respect to these challenges. Results are listed in the table below. The ‘+’ 

indicates that the default method effectively handles the corresponding 

challenge, and the ‘-’ indicates that the method has difficulties with the 

particular task. 

The table clearly indicates that none of the three default models can 

simultaneously address all of the core challenges in cell tracking. Therefore, 

various improvements for the default models have been dramatically 

suggested in previous research. A brief review of the widely acceptable 

achievements is presented in the following. 

2.2.1 Contour evolution 

Contour evolution uses the deformable model to simultaneously perform 

segmentation and tracking tasks. In the tracking algorithm, the deformable 

model alters its shape to dynamically trace cells between adjacent frames. 

Many developments have been made in this field. For example, N. Ray 

introduces his work of applying the active contours with a modified energy 

functional to track leukocytes in [60]. C. Zimmer designed a tracking tool for 

cell-based drug testing by using parametric active contours [2]. 

In recent studies, most of the proposed methods are based on the theory of 

‘level set’. The advantage of this method is that it is easy to change the 

topology of contours; however, it requires large computations. D. P. 

Mukherjee and his colleagues proposed a framework of cell detection and 

tracking that uses image-level sets computed via threshold decomposition [61]. 

The level-set analysis makes it possible for this approach to automatically 

recognize and track multiple cells without the manual initialization step that is 

required in the methods based on default active contours. The energy 

functional that complements shape-based segmentation with a 

spatial-consistency tracking technique is integrated in the approach. It is with 

success of tracking rolling leukocytes from sampled time-lapse sequences. M. 

Maska presented a level-set-like and graph-cut framework in [62] to robustly 

track the evolving shape of whole fluorescent cells in a time-lapse series. The 
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framework has been simulated on 2-D and 3-D time-lapse series of rat 

adipose-derived mesenchymal stem cells and human lung squamous-cell 

carcinoma cells, respectively. 

Although algorithms based on contour evolution have been developed in the 

past few decades, it is difficult to utilize the algorithm to track rapidly moving 

cell because the contour-evolution method needs overlapping areas of the 

same cell in neighbouring frames to perform recognition. 

2.2.2 Stochastic filters 

If the motion of the target object can be modelled, stochastic filters have 

extremely powerful performance. Mean-shift and Kalman filters can all be 

classified in this category. 

2.2.2.1 Mean-shift 

Mean-shift [63] is an analysis technique that is used to seek the maxima of a 

density function. It is an iterative method. Assume x as the initial estimate. The 

kernel function, 𝐾(𝑥𝑖 − 𝑥), is given. The weighted mean of the density in the 

window determined by K can be represented as follows: 

 
𝑚(𝑥) =

∑ 𝐾(𝑥𝑖 − 𝑥)𝑥𝑖𝑥𝑖∈𝑁(𝑥)

∑ 𝐾(𝑥𝑖 − 𝑥)𝑥𝑖∈𝑁(𝑥)
 (2.16) 

where 𝑁(𝑥) is the neighborhood of 𝑥𝑖, a set of points for which 𝐾(𝑥) ≠ 0. 

The mean-shift algorithm sets 𝑚(𝑥) → 𝑥 and repeats the estimation until 

𝑚(𝑥) converges. There are several frequently used choices for the kernel 

function, such as the Gaussian kernel: 

 𝐾(𝑥) = 𝑐𝑘,𝑑𝑘(||𝑥||
2
) (2.17) 

where 𝑐𝑘,𝑑 is the normalization constant that makes 𝐾(𝑥) integrate to one, 

and 𝑘(𝑥) is called the profile of the kernel, which is 𝑒−
||𝑥||2

2  in the Gaussian 

kernel. 
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The mean-shift algorithm is an application-independent tool that makes it very 

well suited for the analysis of real data. This technique has been widely 

employed for various tasks in image processing, including pixel clustering and 

visual tracking. The algorithm tracks objects based on recursive estimations of 

the density function of the posterior probability and has been successfully used 

to process microscopic images. In [64], O. Debeir tracks the centroids of cells 

by updating centroid locations with the mean-shift algorithm. The accuracy of 

the centroid localization is of high importance in this algorithm. 

2.2.2.2 Kalman filter 

The Kalman filter [65] is based primarily on Bayesian theory. It offers a 

recursive solution for estimating the state of a process by minimizing the mean 

squared error. The filter is often conceptualized as two distinct steps: predict 

and update. The predict phase produces an estimate of the current state 

according to the state estimate from the previous time step. Since no 

observation information from the current time step is involved in this 

prediction of current state, this state estimate is therefore known as a priori 

state estimate. The following update phase then refines the state estimate by 

combining this a priori estimate with the results of current observations to 

produce the improved prediction: an a posteriori state estimate. 

Phase 1 – Predict 

The predicted (a prior) state estimate is represented as follows: 

 𝑥𝑘|𝑘−1 = 𝐹𝑘�̂�𝑘−1|𝑘−1 + 𝐵𝑘𝑢𝑘. (2.18) 

 

The predicted (a prior) estimate error covariance is represented as follows: 

 𝑃𝑘|𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘 (2.19) 

 

where 𝐹𝑘 is the state transition model applied to the previous state 𝑥𝑘−1. 𝐵𝑘 

is the control-input model applied to the control vector 𝑢𝑘. �̂�𝑛|𝑚 represents 

the estimate of 𝑥 at time n given observation up to and including 𝑚 ≤ 𝑛. 
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Phase 2 – Update 

The updated (a posteriori) state estimate is represented as follows: 

 𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 +𝐾𝑘�̃�𝑘. (2.20) 

 

The updated (a posteriori) estimate error covariance is represented as follows: 

 𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1 (2.21) 

 

where 𝐾𝑘  is the optimal Kalman gain. 𝐻𝑘  is the observation model that 

maps the true state space to the observed space. �̃�𝑘  is the measurement 

residual. 

The Kalman filter has been applied in various fields, and has been largely 

developed to address particular issues in recent research. Consider, for 

example, the Extended Kalman filter (EKF) and Unscented Kalman filter 

(UKF). These variants can process the non-linear Gaussian model, which is 

difficult for typical Kalman filters. Improved algorithms have been proposed 

in various studies. W. J. Godinez developed a probabilistic-tracking approach 

that combined the Kalman filter with the principles of the particle filter [66]. 

The approach yields a more accurate performance than previous probabilistic 

approaches at very competitive computation times.  

2.2.3 Segmentation and association 

A segmentation-and-association algorithm first segments the objects in each 

frame across the sequence and then associates the same cells in different 

frames with the specific criteria. Therefore, this type of method can be 

routinely separated into two phases: segmentation and association. The quality 

of segmentation results is pivotal. Most of the algorithms mentioned 

previously have been tested with real datasets. X. Chen employed a revised 

hybrid approach that is based on the thresholding-and-watershed algorithm to 

segment cancer cell nuclei in time-lapse microscopy [67]. In the proposed 

framework, the Otsu thresholding technique is employed to produce binary 
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maps of the images. However, the thresholding technique fails to address the 

ambiguity caused by the overlapping nucleus. The improved watershed 

algorithm introduced in [68] is therefore applied to solve the issue. 

Experimental results from the hybrid method do an excellent job of 

segmenting cell nuclei, especially overlapping nuclei. 

Object association is another core of segmentation-and-association tracking 

approaches. Various methods have been suggested. For example, in [69], C. D. 

Hauwer associated cells in adjacent frames by using the Euclidean distance. 

The robustness of this method is poor, because it detects tracks that rely 

heavily on information about the positions of the objects. In more recent 

researches, D. Padfield defined a tracking method for high-throughput cell 

images by using the coupled minimum-cost flow network [70]. R. Bise 

proposed a cell-association component by using global data association, which 

considers hypotheses of initialization, termination, translation, division and 

false positives in an integrated formulation [71]. F. Amat presented an 

open-source computational framework for the segmentation and tracking of 

cell nuclei in [72]. Klas E. G. Magnusson employed the Viterbi algorithm for 

cell association [73]. These algorithms perform well at specific tasks, but most 

of them are in complicated structures that require an enormous number of 

computations. A method must be developed that yields very accurate tracking 

with relatively little calculation. 

2.3 Techniques for 3D reconstruction 

Cell volume is a common measure that is employed in most biological studies. 

Since measurement of cell volume requires information about cell thickness, 

this method relies on techniques that can accurately reconstruct a 3-D view of 

cells. Phase unwrapping is widely used to establish this 3-D view. It constructs 

the 3-D model by the phase map that is rebuilt from a wrapped phase signal. 

Phase unwrapping can be separated to two catalogues: temporal-phase 

unwrapping [74, 75] and spatial-phase unwrapping. The difference between 

them is the rule to generate the phase map. 
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The temporal-phase unwrapping method captures several pieces of wrapped 

phase data in different time steps. It then produces the phase map by 

comparing the captured samples. Spatial-phase unwrapping, on the other hand, 

needs only one piece of wrapped phase. It unwraps the phase by comparing 

the values of different points in the captured map. Due to the mobility of cells, 

it is difficult to ensure that the images captured in different time steps have the 

same image topology. This limitation makes it hard for temporal-phase 

unwrapping to complete the reconstruction of a time-lapse microscopic video. 

The spatial-phase unwrapping method will be presented in details in 

followings. 

In general, there are two primary types of spatial-phase unwrapping: 

path-dependent and path-independent. Figure 2-4 shows the general process of 

reconstructing a wrapped signal. 

 

(a) 

 

(b) 

Figure 2-4 Unwrapping: (a) the original wrapped signal; (b) the result unwrapped signal. 

2.3.1 Path-Dependent Phase Unwrapping 

Path-dependent phase unwrapping was first proposed by Macy in 1983. The 

formula for it is written below: 

 
∅(𝑥, 𝑦) = ∫ {∅(𝑥, 𝑦 − 1) + 2𝜋𝑅𝑜𝑢𝑛𝑑 [

∅(𝑥, 𝑦) − ∅(𝑥, 𝑦 − 1)

2𝜋
]} 𝑑𝑟

𝐶

 (2.22) 

 

The principle of this method is to measure the phases in two neighbouring 

points in a pre-set path C. If the difference between them is larger than π, a 

period phase 2𝜋 is added to or subtracted from the phase of the processing 
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point. The process is shown in the following. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2-5 Phase unwrapping process: (a) wrapped phase, (b) unwrapping process from left to 

right, (c) unwrapping process from up to down, (d) unwrapped phase. 

The simple structure of this method leads to its short processing time. 

However, performs poorly when dealing with the discontinuous points that are 

often produced by noises in the phase map. Points that have differences from 

adjacent points larger than 2𝜋 are referred to as discontinuities.  

 
(a) 

 
(b) 

Figure 2-6 Process of reconstructing the signal with discontinuities: (a) signal with discontinuities; 

(b) result of unwrapped phase. 
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The path-dependent method is supposed to produce the error phase due to the 

discontinuities. Furthermore, the generated error phase is transmitted through 

all of the following points in the path, as shown in Figure 2-6. 

Researchers have proposed methods to address the problem, including the 

minimum-spanning-tree method [76], the minimum-discontinuity method [77] 

and the priority-queue approach [78]. Most of these methods focus on how to 

determine a better pre-set path that can reduce the influence of discontinuities. 

For example, J. Feng introduced them to address the problem of height 

discontinuities in a recent publication [79]. Two robust filters (designated 

filters A and B) were proposed in their paper. Filter A comprises a 

noise-and-phase-jump detection scheme and an adaptive median filter; filter B 

replaces the detected noise with the median phase value of an N×N mask that 

is centred on the noisy pixel. With the proposed robust filters, three 

reconstruction paths are also proposed to provide a robust and accurate 

reconstruction performance. 

2.3.2 Path-Independent Phase Unwrapping 

The area of path-independent phase unwrapping has been studied extensively 

and various methods have been developed. Among the existing approaches, 

the cellular-automata phase unwrapping method (CA PhU) suggested by D.C 

Ghiglia in 1987 has been widely accepted by later researchers. This method is 

seen as typical of path-independent phase-unwrapping methods and it gains 

growing interest from researchers. 

The steps of the mentioned approach can be concluded as follows: 

Step 1 – Measuring phases with neighbours: The method processes each 

point in the phase map as base point P0 in Figure 2-7 by measuring the 

differences between P0 and the four neighbouring points. 
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Figure 2-7 Comparisons with neighbour points 

Step 2 – Calculation of the assigned weights: The original weights of the 

four neighbouring points are 0. The weight ‘+1’ is assigned to the neighbour if 

the difference is larger than π, and the weight ‘-1’ is assigned if the difference 

is smaller than - π. Assume that 𝑝(𝑥, 𝑦) represents the phase value of point 

(𝑥, 𝑦). Then the sum of assigned weights can be written as follows: 

 𝑠𝑢𝑚

=∑𝑖𝑛𝑡 [
|𝑝(𝑥 − 𝑖, 𝑦 − 𝑗) − 𝑝(𝑥, 𝑦)|

𝜋
] [
|𝑝(𝑥 − 𝑖, 𝑦 − 𝑗) − 𝑝(𝑥, 𝑦)|

𝑝(𝑥 − 𝑖, 𝑦 − 𝑗) − 𝑝(𝑖, 𝑗)
]

𝑖𝑗

 

{
𝑖 = 0, 𝑓𝑜𝑟 𝑗 = 1,−1
𝑗 = 0, 𝑓𝑜𝑟 𝑖 = 1,−1

 

(2.23) 

 

Step 3 – Alteration of the phase of the base point: There are four cases for 

phase alterations according to the value of ‘sum’. First, the typical CA PhU 

adds 2𝜋 to the phase of the base point with a positive ‘sum’. On the other 

hand, second, if the ‘sum’ is negative, then the default method removes 2𝜋 

from the phase. Third, No alteration is made to the phase if all the weights are 

of the original values, which should be 0. 4. If additional weights ‘+1’ or ‘-1’ 

are assigned, although the sum of those weights is 0, the default CA PhU adds 

2𝜋 to the phase of the base point. 

Step 4 – Iterations: The completion of processing the whole phase map using 

the method introduced in Step 1—Step 3—is called a local iteration. The 

completed ‘local iteration’ generates a newly revised phase map that is used as 

input to begin a new local iteration. The unwrapping framework repeats this 

process until it reaches a steady state in which two phase maps are periodic 

successively produced by the local iterations. 
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Step 5 – Decision of termination: The framework averages the two 

periodically occurring phase maps and then measures the differences of phase 

between adjacent points on the averaged map. This process is called a global 

iteration. The unwrapping process is completed if there is no phase difference 

larger than π or smaller than –π; otherwise, the framework enters the local 

iterations again with the averaged phase map. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2-8 Process of CA PhU. (a) Wrapped Phase; (b) Result of 20 local iterations; (c) Result of 60 

local iterations; (d) Unwrapped Phase 

Default CA PhU is a parallel calculating method. This means that its 

performance is independent of the choice of paths. This factor enhances the 

robustness of its discontinuities in phase map. However, the large number of 

iterations results in a huge volume of computations that delays the response 

time of the framework and increases the requirements of the hardware 

employed for implementation. M.J. Huang proposes an improved parallel 2𝜋 

phase-unwrapping method to overcome these drawbacks [80]. The method 

defines only one direction for the alteration of phase. Consider the low-to-high 

model, for example. The model defines only the addition operation that is 
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increasing 2𝜋 to the phase of the base point on condition that there is a 

difference of larger than π with the neighbours. In other words, the restriction 

of the direction for altering phase in this method dramatically reduces the 

number of potential calculations. New ideas have been introduced in more 

recent studies of path-independent phase unwrapping. For example, Y. Huang 

employed phase-derivative and total-variation (TV) to the path-independent 

phase-unwrapping approach to de-noise the wrapped-phase map obtained from 

a shearography experiment [81].  

2.4 Conclusion 

This chapter constitutes a study of several automated image-processing 

techniques: segmentation, visual tracking and 3-D phase reconstruction. The 

histories of development of these techniques and the relationships between 

them were presented. Typical models in each of the fields were introduced in 

detail, including thresholding, mathematic morphology (for the field of 

segmentation), the contour-evolution model (for the field of tracking 

techniques) and variant approaches for the field of phase reconstruction. 

To establish a robust and powerful automated cell-monitoring system, the 

performances of these techniques are of pivotal importance. Therefore, this 

study analyses the advantages and drawbacks of existing approaches that 

provides directions of further improvements and also forms the foundation of 

the research presented in this thesis. The following chapter, Chapter 3, 

introduces a novel segmentation method designed exclusively for cell images 

and presents a case study of feature measurements by using the real cell 

datasets captured by the University of Nottingham, United Kingdom. 
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  Cell Features Measurement Chapter 3

 

 

3.1 Introduction 

The primary morphological features of cells include length and width, size, 

volume and adhesion area. Analysis of these features of cells in different 

environments is essential to the study of various biological processes. Y. R. 

Chang proved that it is important to observe morphological changes of blood 

cells in clinical diagnoses [82]. X. M. Cheng analysed samples of marrow 

cells and suggested that observation of their shapes can provide pivotal help in 

the treatment of certain diseases [83]. Some monitoring frameworks of cell 

features have already been established. For example, Nano Analytics invented 

a cell-monitoring system called cellZscope that makes it possible to observe 

cells living in up to 24 different cultures [84]. In recent studies, T. A. Zangle 

suggested a quantification process of biomass and cell motion in human 

pluripotent stem-cell (PSC) colonies [85]. Zangle’s study investigates the 

working mechanism of proliferation and biomass control with early events in 

the differentiation of PSCs—another great application of quantification 

monitoring in biology [85]. However, core problems are shared by the 
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applications: i.e., the accuracy of feature measurement in the frameworks is 

often low, and few of the systems are entirely automated. Therefore, 

cell-feature measurements and the revision of the generated results require 

enormous manual labour. Faults caused by human eyes are inevitable in this 

manual approach due to the high density of cells and the low quality of cell 

images. These factors form the driving force behind the development of an 

automated method that can provide accurate measurements of cell features.  

Cells have 1-D features, such as length and width, 2-D features, such as size 

and adhesion area, and 3-D features, such as cell volume. Different approaches 

are used to measure the features in each dimension. 1-D and 2-D features are 

measured from the binary maps of cell images that are generated by the 

segmentation method, and the 3-D features can be measured from the 3-D 

model of cells established by 3-D reconstruction. Hence, segmentation and 

3-D reconstruction are core components in the process of cell feature 

measurement. 

This chapter introduces a newly designed segmentation method that can 

accurately segment cell images and accurately detect cell antennae. This 

method and its variants are used to segment real cell datasets captured by the 

University of Nottingham, United Kingdom (UNUK). An evaluation of the 

performance of the proposed method and of existing widely-used approaches 

is then presented. Features of the cells contained in the datasets are measured 

using the defined methods, and the generated measurements are analysed. 

3.2 The framework of cell segmentation 

Image segmentation techniques aim to disjoin target objects from their 

background areas. Image segmentation is an essential step in many 

computer-aided processes, such as pattern recognition; thus, many studies 

have focused on improving the accuracy of segmentation. Image segmentation 

techniques such as thresholding and watershed are widely used in biological 

applications. The driving force behind the design of a new segmentation 

approach is the need for detections of cell filopodia. Cell filopodia can provide 
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useful information in many biological analyses [86]; however, most existing 

segmentation techniques have a hard time detecting them accurately. Hence, a 

novel segmentation approach that is based on local and global thresholding 

techniques is designed to address the problem. 

3.2.1 Overview of framework 

The principle of the thresholding technique is to classify the pixels into 

separate groups that depend on their threshold value. According to the 

means-to-decide threshold, thresholding techniques can be separated to two 

categories: local thresholding and global thresholding. Assume that f(x,y) 

represents the grey values of the whole image, and that p(x,y) represents the 

grey values of the points that surround (x,y). The ways of deciding the value of 

threshold can be expressed as follows [15]: 

 𝑇 = 𝑇[𝑥, 𝑦, 𝑓(𝑥, 𝑦), 𝑝(𝑥, 𝑦)] (3.1) 

 

The technique is called global thresholding for the situation in which T is 

decided only by f(x,y). The structure of this approach is simple; thus, it has an 

excellent processing speed. However, because little spatial information is 

taken into account in the global-thresholding approach, the technique is 

extremely sensitive to noise and provides acceptable performance only for 

images with little content and uniform distribution of grey scales. The local 

thresholding technique determines the threshold value T relative to p(x,y) only. 

In other words, the values of threshold vary for different positions in the image, 

which reduces the influence of the non-uniform distribution of grey scales. 

Although the local-thresholding approach addresses the drawback of global 

thresholding, it results in another issue: due to the lack of a comprehensive 

view of the topology of the image, the technique may fragmentarily detect its 

targets. Therefore, these two techniques—local and global thresholding—are 

combined in the framework of a new segmentation approach to yield better 

performances. The structure of the framework is organized as follows: 
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Figure 3-1 Framework of the designed approach 

The raw image is first processed by local and global thresholding techniques. 

The two generated binary maps then go through the logical ‘OR’ operator to 

produce the final segmentation result. Details of the two core techniques, local 

and global thresholding, are presented in what follows. 

3.2.2 Local-thresholding technique 

The local-thresholding technique is primarily employed to recognize detailed 

information—such as information about cell filopodia. Therefore, the newly 

designed segmentation approach outperforms existing methods. The process 

of implementing the local-thresholding technique is presented as follows: 

Step 1 – Generation of sub-images: The local thresholding method separates 

an image into several sub-images. The number of sub-images depends on the 

size of original image. For example, if the sample image is 2048×2048, it can 

be divided into 16 512×512 sub-images that exhibit uniform greyscale 

distribution and contain less content. 

Step 2 – Generation of threshold matrix: The Otsu thresholding method [10] 

is used to generate thresholds for each of the separated sub-images. The matrix 

of thresholds is formed by placing the generated thresholds in positions that 

correspond to the sub-images, as shown in Figure 3-2. 
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T11 T12 T13 T14 

T21 T22 T23 T24 

T31 T32 T33 T34 

T41 T42 T43 T44 

Figure 3-2 Threshold matrix 

Next, the threshold matrix is linearly interpolated to the size of original cell 

image. 

Step 3 – Thresholding: The threshold matrix is scaled to the size of the 

original image via interpolation. The local-thresholding approach then 

compares the original image with the generated threshold matrix image on a 

pixel-by-pixel basis. Points larger than the corresponding threshold are 

labelled as one group and the other points are classified to another group. A 

binary map of the original image is then produced. 

Although the detailed information of cells, such as the filopodia, can be 

efficiently extracted using the local-thresholding technique, the main bodies of 

objects are usually detected in fragmentation. Thus, the global thresholding 

technique is introduced in the framework to address this fragment issue caused 

by the local-thresholding approach. 

3.2.3 Global thresholding technique 

Global thresholding is one widely used segmentation approach. Due to its 

simple algorithm structure, global thresholding is very easy to implement. 

However, since it uses the same threshold to segment the whole image, a 

non-uniform distribution of greyscales of cell images may cause errors: e.g., 

cells of low contrast may be missed. Thus, the method described in [87] is 

used to enhance the quality of cell images. It uses morphological transforms, 

top hat and bottom hat, to extract the bright field and dark field in the image. If 

f is a grayscale image and b(x) is a grayscale structuring element (e.g., a 5x5 

square matrix), then top-hat and bottom-hat transforms are represented as 

follows: 
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 bffT hattop   
(3.2) 

where   denotes an opening operation. This opening operation can be 

defined as A ∘ B =∪𝐵𝑥⊆𝐴 𝐵𝑥 , which means that it is the locus of the 

translations of the structuring element B inside the image A: 

 fbfT hatbottom   
(3.3) 

where   is the closing operation that can be obtained by A ∙ B = (𝐴𝑐 ∘ 𝐵𝑠)𝑐, 

𝑋𝑐 denotes the complement of X relative to E (that is, X𝑐 = {𝑥 ∈ 𝐸|𝑥 ∉ 𝑋}) 

and 𝐵𝑠denotes the symmetric of B, that is, 𝐵𝑠 = {𝑥 ∈ 𝐸| − 𝑥 ∈ 𝐵}. Here, E 

is a Euclidean space. 

The above means that the closing is the complement of the locus of 

translations of the symmetric of the structuring element outside the image A. 

To increase contrast, the approach processes these two fields back to the 

original image, as shown in (3.4). 

 

22

hatbottomhattop

enhanced

TT
ff 

  (3.4) 

The threshold for the enhanced cell image is decided by the Otsu method, 

which is established from the idea of measuring the between-class variance. 

Differentiated from the local-based approach, the value of threshold is unified 

for the entire image in the global-thresholding technique. 

3.2.4 Performance evaluation 

3.2.4.1 Experimental results 

The microscopic images of progenitor neural cells captured by the iBIOS team 

from the University of Nottingham, United Kingdom (UNUK) are used as 

sample images to demonstrate the proposed segmentation approach. One 

example experimental result from each phase of the proposed method is 

presented in Figure 3-3. Figure 3-3 (c) shows the segmentation results 

generated by the local-thresholding technique. Figure 3-3 (d) shows the result 
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of global thresholding. The shortcomings of these two components can be 

observed from the results: fragmentation occurred in the local technique, and 

detail detection is poor in the global approach. Compared to the results 

produced by each individual technique, the final segmentation result (Figure 

3-3 (e)) reflects an improvement provided by the hybrid method. Figure 3-3 (f) 

shows the original cell image (Figure 3-3 (a)) marked with the detected cell 

profiles, which are in black. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 

(f) 

Figure 3-3 Example experimental results: (a) the original cell image, (b) the enhanced cell image, 

(c) result of local thresholding, (d) result of global thresholding, (e) final result, (f) cell image with 

cell profiles. 



Page | 45 
 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-4 Segmentation outcomes: (a) original image; (b) result from watershed. The red circle 

indicates the segmentation error. (c) Result from level set; (d) result from the proposed 

segmentation method. 

To further demonstrate the improvement of segmentation accuracy from the 

proposed approach, it is compared with typical segmentation methods, 

including watershed, 2-D thresholding and level-set methods. The outcomes 

are presented in Figure 3-4. Due to the non-uniform distribution of grayscales, 

errors occurred in the results of the watershed (Figure 3-4 (b)) and 2-D 

thresholding (Figure 3-4 (c)), which have been marked with red circles. The 

level-set approach requires a large workload of computations; therefore, the 

sample has been reduced to a narrow view. However, because of the low 

image contrast, the level-set based segmentation also fails to perform an 

accurate segmentation. Large cell areas are missed in its segmentation result 
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(Figure 3-4 (d)). 

Furthermore, the results provide no detection of detailed information, such as 

information about the cell filopodia (Figure 3-4 (b-d)). This reflects the fact 

that the popular algorithms are unable to detect details. Figure 3-4 e) shows 

the result of the proposed segmentation framework that is based on hybrid 

thresholding techniques. The proposed approach performs well in the 

recognition of cells and cell filopodia and refines the faults labelled in the 

other results. The performance of the newly proposed framework can be 

expected from these preliminary comparison studies. 

However, since the ground truths of segmentation of this dataset are not 

generated by the iBIOS team, it is difficult to quantitatively evaluate the 

segmentation performance of the proposed approach with this dataset. Hence, 

a published time-lapse microscopic dataset is employed to provide the 

quantitative evaluation. 

3.2.4.2 Segmentation accuracy 

A. Introduction of dataset 

The dataset records the moves of rat mesenchymal stem cells (MSC) on a flat 

polyacrylamide substrate. It was captured by Dr. F. Prosper of the cell-therapy 

laboratory at the Center for Applied Medical Research (CIMA) in Pamplona, 

Spain. Detailed information is listed below. 

Table 3-1 Detailed information of MSC dataset 

 Sequence 

No. 
Image Size 

No. of 

Frames 

Total No. of 

Cells 

Rat 

mesenchymal 

stem cells (MSC) 

1 992×832 48 15 

2 1200×782 48 10 

Because the shapes of the MSC cells are close to those of the progenitor neural 

cells, most of which are long and slim, this published dataset is used to 

evaluate the segmentation accuracy of the proposed approach. Images from 

the dataset are shown as examples in Figure 3-5. 
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(a) 

 

(b) 

Figure 3-5 Images from Spain MSC dataset: (a) sample image from sequence#1, (b) sample image 

from sequence#2. 

The segmented ground truths of the dataset are provided by the experts. The 

accuracy of the segmentation approach can therefore be measured based on 

the Jaccard similarity index (J) of the sets of pixels of matching objects: 

J(S, R) =
|𝑅∩𝑆|

|𝑅∪𝑆|
, 

where R denotes the set of pixels that belong to a reference object and S 

denotes the set of pixels that belong to its matching segmented object. A 

ground truth object, R, and a segmented object, S, are considered to match if 

and only if the following condition holds: 

|R ∩ S| > 0.5|R| 

The J index is calculated for each reference object in a video. It varies between 

[0 1], where 1 represents perfect match and 0 represents no match. 

The segmentation measure (SEG) is computed by the mean of J indices of all 

reference objects in a particular video. 

B. Evaluation with benchmark algorithms 

Typical segmentation approaches—including watershed, global Otsu, local 

Otsu, global Fuzzy-entropy thresholding and local Fuzzy-entropy 

thresholding—are tested by using the MSC datasets as benchmark methods. A 

segmentation method based on level set is also implemented. It was found not 

to work with the datasets. The segmentation accuracies (SEG) of the proposed 
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approach and the benchmark algorithms are listed in Table 3-2. 

Table 3-2 Comparison of SEG (%) 

 
MSC 

Sequence No. 1 2 Average 

Watershed 27.98 19.66 23.82 

Global Otsu 32.67 47.94 40.31 

Local Otsu 31.12 44.65 37.89 

Global Fuzzy-entropy 36.47 49.75 43.11 

Local Fuzzy-entropy 40.52 39.85 40.19 

Proposed Method 43.03 56.29 49.66 

From the table, the typical watershed approach yields the lowest SEG, i.e., 

23.82%, among the presented approaches. The global and local-thresholding 

techniques using Otsu and fuzzy entropy produce close segmentation 

accuracies: i.e., 40.31% and 43.11% for the global Otsu and fuzzy entropy, 

and 37.89% and 40.19% for local thresholding using Otsu and fuzzy entropy. 

Overall, the frameworks that use fuzzy-entropy provide more accurate 

segmentation results than the ones using Otsu. Our proposed segmentation 

approach achieves a SEG of 49.66%, which is better than that of the typical 

segmentation algorithms presented. 

3.3 Specification of cells’ features 

Features of cells, such as size and shape, often provide important information in 

biological applications. Because of a lack of proper processing techniques, it 

can be a laborious task to measure these features. As a consequence of the 

development of image-segmentation techniques, measurement is becoming 

automated in recent researches. Cell size and cell shape are the primary cell 

features for extensive analyses. Each is briefly introduced, and the 

measurement methods are presented in this section. 

3.3.1 Introduction of different cell images 

The images used in the experiment were captured by the biology science team 

from the University of Nottingham, United Kingdom. There are 33 sets of 

images of neural progenitor cells in the database that record the results of 
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turning off CO2 supply. The time interval for sampling is 11 days, and 3 sets of 

samples are captured each day. Each set contains two kinds of images that are 

captured by the total-internal-reflection microscope (TIRM) and 

phase-contrast microscope. An advanced microscope has been built by the 

team that can simultaneously produce these two kinds of images. 

 

Figure 3-6 Image of an home-built advanced microscope in the University of Nottingham UK 

Samples of these two kinds of images are shown in Figure 3-7. The difference 

between them is the direction of observation. The TIRM observes the cells 

from the bottom of the object slide; hence, the cell areas in the TIRM image 

are also called cell-adhesion areas. The phase-contrast microscope observes 

the cells in the opposite direction, i.e., from up to down, thus the areas of cells 

in the phase contrast images are the real sizes of cells. 

 

(a) 

 

(b) 

Figure 3-7 sample images from iBIOS team. (a) TIRM image; (b) Phase image (with𝟑𝝅/𝟐). 
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The detailed information of the dataset is listed below. 

Table 3-3 Detailed information of the dataset 

Image Types Number of Samples Frame size 

TIRM 

image 

Narrow field 

33 

1392×1040 

Wide field 1600×1200 

Phase 

image 

Narrow field 

Phase of 0 

1392×1040 
Phase of π/2 

Phase of π 

Phase of 3π/2 

Wide field 

Phase of 0 

1600×1200 
Phase of π/2 

Phase of π 

Phase of 3π/2 

 

3.3.2 Methodology for feature measures 

Using the captured cell images, various features of cells—such as cell area, 

cell volume and cell shape—can be measured quantitatively with defined 

approaches. 

3.3.2.1 Cell Area 

In 2D space, the primary measurement of cell size is the cell area detected in 

the input images. To measure cell area, the original cell images are first 

transformed into a binary map using segmentation techniques. Then the area is 

calculated by accumulating the markers the represent the same cell. 

Consequently, the performance of image segmentation is of pivotal importance 

for the calculation of cell areas. The newly designed segmentation method and 

several famous segmentation approaches—such as watershed and 

level-set—are tested with the experimental datasets. An evaluation of their 

performances is provided to determine their ability to deal with real cell 

datasets. 
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3.3.2.2 Cell Volume 

In 3D space, cell volume is the main measure of cell size. Two parameters are 

often used to calculate cell volume: cell area and cell thickness. Cell area is 

measured with the segmentation technique; thus, the aim of the task is to 

accurately measure the thickness of cells by reconstructing the 3-D model of 

cells. Therefore, 3-D reconstruction is the core technique for the calculation of 

cell volume.  

Using the phase images captured by phase-contrast microscopy, a 

wrapped-phase map can be generated. Phase-contrast microscopy is an optical 

microscopy technique that converts phase shifts in light that passes through a 

transparent specimen into brightness changes in the image. Phase shifts are 

invisible; but they become visible when shown as brightness variations. The 

structure of the microscope is shown in Figure 3-8. The phase ring in the 

microscope is used to change the phase. 

 

Figure 3-8 Phase Contrast Microscopy 
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Four images in phases of 0 (Figure 3-9 (a)), π/2 (Figure 3-9 (b)), π (Figure 

3-9 (c)), and 3π/2 (Figure 3-9 (d)) are needed to produce the phase map. The 

sample of each phase is shown below. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-9 Samples of phase images: (a) image of 0 phase, (b) image of 𝛑/𝟐 phase, (c) image of 

𝛑 phase, and (d) image in 𝟑𝛑/𝟐 phase. 

With the four phase images, the phase map can be produced by the following 

formula: 

 
Phase =

I3π/2 − Iπ/2

Iπ − I0
 (3.5) 

 

The preliminary phase map from the formula is wrapped. A path-dependent 

phase-unwrapping technique is employed to resolve the wrapped-phase map. 

A 3-D view of cells can be established with the unwrapped-phase map. 
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3.3.2.3 Cell Shape 

Cell shapes can vary widely; for example, rat mesenchymal stem cells are long 

and slim while mouse stem cells are circular. As a result, the appropriate 

characteristic for shape measuring varies with the shape of the targets. The 

designed system uses three general parameters to represent the morphology of 

a cell: length, width and roundness. The input for this process is also the 

binary map. The system applies the minimum convex polygon that contains 

the cell to determine the length and width; the roundness is computed by a 

pre-built function in the software. 

 

(a) 

 

(b)  

Figure 3-10 Morphology measurements: (a) the image with the target cell, (b) the binary map of 

the circled cell. In (b), the green outline is the minimum convex polygon, the blue line is the length, 

and the red lines are the width. 

The first step to calculate the two features is to draw the minimum convex 

polygon encircling the cell, as in the green convex marked in Figure 3-10 (b). 

Then, the distance between each pair of edge points is measured and the 

longest one is recorded as the length of the cell, like the blue line shown. With 

the blue line, the cell is separated into two parts. For each side, the longest 

distance from the edge point to the blue line is calculated, and the width is the 

sum of the two longest lines in different sides (the red lines). 

3.4 Experimental results and analysis 

The automatic cell-monitoring framework is applied to a real cell dataset 

captured by University of Nottingham, United Kingdom as a case study. This 

is done to demonstrate the excellent cell-feature measurement provided by the 
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designed framework. The system can automatically and very accurately 

extract features such as cell size and cell shape. Furthermore, the system 

measures the cell from both 2-D and 3-D views to produce a comprehensive 

view for the observation of alterations in cell features. In this section, 

experimental results are presented followed by an analysis of the performances 

of the employed methods. 

3.4.1 Cell Area 

Neural progenitor cells are taken as specimens in experiments that investigate 

the mechanism of the neural progenitor cells in an environment without CO2 

supply. Researchers from the iBIOS team predicted the variations of cell areas 

in two kinds of cell images, as shown in Figure 3-11. The blue line describes 

the variations of cell area observed from the phase microscope; the green and 

red lines represent variations of cell areas in the TIR microscope. Theoretically, 

living neural progenitor cells adhere to the bottom of the slice that can be 

observed from the TIRM image. The specimen cells gradually die as the 

volume of CO2 reduces in their environment. They stop attaching to the 

bottom and go up to the surface of the slice after they die, as can be observed 

from the phase images. Therefore, the population of dead cells can be 

monitored by comparing the cell areas in these two images. A prediction was 

made by the Bio-Science team from University of Nottingham. 

 

Figure 3-11 Prediction of changes in cell areas 



Page | 55 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 3-12 Outcomes in the experiment: (a) TIRM image (frame #30), (b) generated phase map 

(frame #30), (c) segmentation result of TIRM, (d) segmentation result of phase map, (e) changes of 

the two areas through 33 frames 

To analyse the captured real-cell datasets, our proposed segmentation 

algorithm is employed to segment the cell images. With the segmentation 

result, the cells are marked with different labels and their areas can be 

measured. In the experiment, two parameters—adhesion area in the TIRM 

image and cell size in the phase map from Eq. (3.5)—are calculated and 
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compared to see if the reality is consistent with the prediction. The narrow 

field images are tested and shown in Figure 3-12 (a-d) for easy observation. 

Figure 3-12 (e) shows an abnormal climb up in both adhesion area and cell 

size from frame #1 to frame #14. This occurred because of some unstable 

variations in the cell environment. Therefore, the observation point was 

switched to a new area. The data from frame #15 to frame #33 is thus valid for 

analysis. The differences between these two measures increased after CO2 

supply was stopped, which means that cells leave the bottom and rise to the 

surface. In other words, cells gradually die if there is no CO2 in their living 

space. This finding is consistent with the prediction made before experiments 

(Figure 3-11). 

3.4.2 Cell Volume 

Since volume is a 3-D parameter, the 3-D view of cells should first be built to 

calculate it. Using the phase images, a wrapped phase map can be produced. 

Information about cell thickness is encoded in the phase map. A 

path-dependent unwrapping approach is employed to resolve the phases. The 

reconstructed 3-D view of cells that uses the phases resolved by the 

path-dependent approach is presented below. 

Figure 3-13 (c) shows an example of a 3-D reconstruction of the phase map 

shown in Figure 3-13 (b). The colour bar in Figure 3-13 (c) is used to measure 

the thickness of cells. Different colours in the 3-D reconstruction can be 

transformed to their corresponding heights. By comparing figures Figure 3-13 

(a) and (b), unexpected noisy phases are found to be generated around the cell 

areas in Figure 3-13 (b). These noisy phases are also reconstructed in the 3-D 

model of Figure 3-13 (c). 
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(a) 

 

(b) 

 

(c) 

Figure 3-13 3-D Reconstruction using the unwrapping method: (a) the dark field image (phase of 

𝟑𝛑/𝟐) (b) generated phase map, and (c) 3D reconstruction. 

Therefore, to suppress the influence of noise, the image in the phase of 2/3 , 

also called dark-field image Figure 3-13 (a), is used to distinguish the areas of 

cells in the 3-D reconstruction. The framework first extracts the cell areas by 

segmenting the dark field-cell image. It then revises the unwrapped phase 

image by assigning small weights to the areas around cells to suppress the 

noise in the background. The revised result is compared with the original 

phase map in Figure 3-14. Most of the noisy phases in the original 

reconstruction (Figure 3-14 (a)) have been removed from the revised 

reconstruction (Figure 3-14 (b)).  
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(a) 

 

(b) 

Figure 3-14 Comparison between unwrapping methods: (a) original phase map, (b) phase map 

with noise suppressions. 

The phase-unwrapping technique is rarely applied to microscopic images. In 

recent research, G. Popescu proposed a method called PSI that rebuilds the 

3-D view of cell images exclusively [88]. The phase distribution associated 

with the microscope image is retrieved by the following: 

 
∅(𝑥, 𝑦) = tan−1{

𝛽(𝑥, 𝑦)sin [∆∅(𝑥, 𝑦)]

1 + 𝛽(𝑥, 𝑦)cos [∆∅(𝑥, 𝑦)]
} (3.6) 

with 

 
tan(∆∅) =

I3π/2 − Iπ/2

Iπ − I0
 (3.7) 

and 

 
𝛽(𝑥, 𝑦) = 𝛾

[I0 − Iπ + I3π
2
− Iπ

2
]

sin[∆∅(𝑥, 𝑦)] + 𝑐𝑜𝑠[∆∅(𝑥, 𝑦)]
 (3.8) 

where 𝛾 =
|𝐸0|

2

4
 and 𝐸0 is the uniform field in the image plane. 

The result of the PSI provides more information about the details of phases 

than the general path-dependent unwrapping method, as can be observed from 

the below figures. 
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(a) 

 

(b) 

Figure 3-15 Results comparison: (a) result from general unwrapping method, (b) result from PSI. 

Compared to the general path-dependent method (Figure 3-15 (a)), the 

thickness of cells reconstructed by PSI (Figure 3-15 (b)) varies in a wider 

range. This wide variance can be observed by comparing the variations of 

colours of the two 3-D reconstructions. In other words, loss of detailed 

information is found in the result generated by the general path-dependent 

unwrapping approach. This situation is produced as a result of the relationship 

between the wavelength of light and the size of the target used for 

reconstruction. The general path-dependent method is used to build a 3-D 

view of macroscopic objects that are larger than the wavelength of light. The 

situation shifts with respect to microscopic objects such as cells. The diameter 

of thrombocyte cells is 200 nm, which is lower than the wavelength of visual 

light (i.e., 400-700 nm). 

A pyramid-shaped model is used as an example to explain the phenomenon. 

The maximum height of the pyramid model is set to 15. To simulate the 

reconstruction of a microscopic object, the wavelength of light is set to 150 in 

the simulation: i.e., to ten times to the height of the pyramid. The two 

approaches are used to reconstruct the 3-D view of the microscopic pyramid 

with the four artificially generated phase images. 
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(a) 

 

(b) 

 

(c) 

Figure 3-16 Reconstruction results from different methods: (a) original pyramid (wavelength of 

light=150), (b) result from the general path-dependent approach, (c) result from PSI. 

The path-dependent approach has a hard time accurately rebuilding the 3-D 

model of the microscopic pyramid. There is an obvious distortion in its 

generated result. The result from PSI indicates that the PSI performs better 

when dealing with objects that are much smaller than the wavelength of light.  

However, this recently developed method has excellent performance only with 

microscopic targets. It fails to reconstruct macroscopic objects. In the second 

simulation, no alteration is made to the pyramid, but the wavelength of light is 

switched to 1.5. Thus, the size of pyramid model is larger than the wavelength 

of light. The results of the two approaches are presented. 
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(a) 

 

(b) 

 

(c) 

Figure 3-17 Results with lower wavelength: (a) original pyramid (wavelength of light=1.5), (b) 

result from the general path-dependent approach, (c) result from PSI. 

The results suggest that the PSI stops performing a 3-D reconstruction of the 

macroscopic target. On the other hand, the path-dependent approach 

successfully reconstructs the 3-D model. Hence, in summary, both of these 

two 3-D reconstruction methods can produce a 3-D model of cells. However, 

since the path-dependent approach is primarily designed for macroscopic 

objects, distortions often occur while reconstructing microscopic targets (such 

as cells) by the method. Compared to the path-dependent approach, the PSI 

method better fulfils the requirements for the calculation of cell volume that 

has been employed in the monitoring system proposed in this study.  
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3.4.3 Cell Shape 

Using the two techniques—segmentation and phase reconstruction—the 

shapes of cells can be measured quantitatively. Four basic features of most 

biological analyses—length, width, thickness, and roundness—are calculated 

as examples. Two views of the observation area are captured in the dataset: 

narrow field and wide field. 

 

(a) 

 

(b) 

Figure 3-18 Comparison of two types of images: (a) narrow-field TIR image (frame #21), (b) 

wide-field TIR image (frame #21). 

The narrow field zooms in on the centre area of the wide-field image; hence, it 

can provide more specific observations of details and consequently contains 

fewer cells than wide-field images. Since the wide-field image can provide a 

high-quality view to monitor the alterations of shapes for more cells, it is 

preferable for the experimental simulations. 

The cell areas in the TIRM image are referred to the cell adhesion areas that 

cannot represent the real sizes of cells; thus, the phase map produced by the 

four phase-contrast images is employed to quantitatively measure the shapes 

of cells.  
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(a) 

 

(b) 

 

(c) 

Figure 3-19 Morphology Measurements. (a) Phase map (frame #21); (b) Final outcome; (c) 

Changes in averages.  

Figure 3-19 b) demonstrates the success achieved by the proposed monitoring 

framework in quantitatively measuring the required cell features. Figure 3-19 

c) records across 33 frames the trend of changes in the averages of the four 

features: cell length, cell width, cell roundness and cell thickness. By 

analysing these retrieved figures, alterations of the features are found to be 

consistent with the experimental process. Since most of the cells adhere to the 

bottom of the slice at the beginning of the experiment, the average thickness is 

small at the beginning. After the supply of CO2 is turned off, the cells die and 

drift to the surface; thus, the cell thickness gradually climbs up in this process 

and finally reaches a relatively large value. On the other hand, the roundness 

average falls from a large initial value through this process, which means that 

the cells alter their shapes from spheres to irregular polygons. The vibrating 
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averages of lengths and widths reflect the fact that the living environment is 

not stable for cells such that the cells must continuously alter their shapes. 

3.5 Conclusion 

This chapter introduced the novel segmentation approach that was exclusively 

designed to address the problems encountered in most cell images. The newly 

designed segmentation method combines local- and global-thresholding 

techniques. This hybrid method is employed to extract cell features from a 

real-cell image dataset captured by University of Nottingham, United 

Kingdom. The approach was applied to real-cell datasets and achieved the 

average segmentation accuracy—i.e., 49.66%. It thereby outperforms typical 

thresholding approaches. The work of measuring the cell features—e.g. cell 

volume and cell shape—was also presented. The monitoring results were 

shown to be consistent with the theoretical prediction. 
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  Cell Tracking Chapter 4

 

 

4.1 Introduction 

It is important to understand the mechanisms of cell alterations as cells move 

during biological processes like the immune response. Because important 

information about the ability of cells to exert forces on their environment can 

be extracted from the moving trajectories, a need for the quantitative analysis 

does exist. The number of images acquired in living-cell studies is large. For 

example, a live-cell dataset commonly contains more than hundreds of images, 

each of which contains hundreds of cells. To perform a quantitative analysis, 

both movements and morphological changes of cells must be accurately 

tracked—an extremely laborious task for manual tracking. It is therefore 

worthwhile to develop an automatic tracking system that offers high accuracy. 

Similar challenges occur when tracking in various biology experiments. Large 

numbers of cells must be tracked in each dataset though their similar 

appearances make it hard to distinguish them. Events such as mitosis and rapid 

movement are hard to accurately recognize. Since the light conditions are not 
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stable when images are captured from a microscope, the image quality is 

typically low, which creates a barrier for cell detection. Also, the sampling 

frequency varies from less than 10 seconds to 3 images per day, depending on 

the specific requirements of the applications. Therefore, there may be no 

obviously spatial overlapped areas of the same cells in adjacent frames. Any of 

these factors can directly result in the failure of trajectory tracking. 

The goal of the work described in this chapter is to develop a reasonable 

tracking system that addresses these problems. Although the problem of 

tracking has been comprehensively studied and numerous methods have been 

proposed, most perform within prior knowledge or specific parameters. These 

approaches generally recognize cells via spatial overlaps. Consequently, cells 

with large displacements in neighbouring frames fail to be tracked. Hybrid 

methods are often built upon combinations of existing methods, leading to a 

huge volume of computations and a complex framework. All of these 

shortcomings in existing methods indicate that a general and robust tracking 

method is badly needed.  

In this chapter, a novel framework for cell tracking is introduced. It can 

accurately detect not only the movements of cells, but also events such as 

merging, mitosis, entering and leaving. Few parameters are required in the 

novel approach, and it can be easily adjusted to datasets of different types of 

cells. To assist the tracking process, multiple features of cells—such as shape, 

size, and grey scales—have been quantitatively analysed to determine the 

most discrepant features among cells. Because more features are applied to 

decide cell associations, the robustness of the method is increased to make it 

possible to accurately track cells moving at speed. In the system, apart from 

the main development in the section of tracking, obvious improvements in the 

segmentation and detection of mitosis and merging have also been developed. 

All of these improved algorithms together produce a very robust automated 

cell-tracking system. 
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4.2 Tracking algorithm with scoring scheme 

In this section, the new system is introduced in detail. The new system 

improves over existing systems in its segmentation algorithm, in its detection 

algorithm for merging and splitting and in its tracking algorithm. The 

outcomes of each part have been tested with benchmarks that show a promised 

enhancement; thus more accurate trajectory-tracking results can be produced 

with the revised framework. 

4.2.1 System outlines 

The proposed tracking framework is established on the foundation of a typical 

segmentation-and-association approach. It first segments the cells in each 

frame by using the image-segmentation technique; it then associates the same 

cells according to a specific criterion. While typical approaches rely heavily 

on cell positions to associate cells, they fail to track cells moving at high speed. 

To improve the tracking performance of the typical system, cell features such 

as size and shape are used to assist cell association. A scoring scheme is 

developed to detect different cell behaviours, e.g. cell splitting and merging. A 

flowchart of the proposed framework that shows the relationship between 

different components is presented in Figure 4-1. 
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The features appropriate to assist tracking may be different for specific 

datasets; thus, the cell features employed for the scoring scheme are 

substitutable. The system associates cells based on a similarity function that 

consists of overlapping cell areas, cell positions and cell features—the core of 

the tracking algorithm. 

In what follows, the new system is introduced in detail. Compared to 

state-of-the-art systems, the new system improves the performance of cell 

segmentation, cell merging and splitting detection and cell tracking. The 

results of each part were assessed with benchmark algorithms. The assessment 

results show that the proposed framework produces accurate tracking 

performance.  

4.2.2 Segmentation 

Since the framework is based on the structure of segmentation-and-association, 

segmentation is an initial step in the process; thus, the performance of the 

method used for cell segmentation is of particular importance. Due to unstable 

lighting conditions, the grayscale distribution of captured cell images is 

usually inhomogeneous. To reduce the error caused by non-uniform grayscale 

distribution, a two-step, iterative, local thresholding algorithm is proposed. 

Compared to traditional thresholding methods that use the same threshold to 

process the whole image, the local-thresholding technique allows different 

thresholds to process different areas of the image, thus solving the 

inhomogeneity problem in cell images. 

The proposed approach first divides the image into 8x8 sub-images; it then 

processes each of them in a different way. The final result is produced by 

assembling the segmentation results of the sub-images. The proposed two-step 

thresholding first determines whether the sub-image contains cells or parts of 

cells by comparing the standard deviation of the sub-image with that of the 

whole image via Eq. (4.1): 

{
𝑖𝑓 𝜎𝑠𝑢𝑏 < 𝑎 ∙ 𝜎𝑤ℎ𝑜𝑙𝑒, 𝑛𝑜 𝑡𝑎𝑟𝑔𝑒𝑡𝑠

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑐𝑒𝑙𝑙𝑠 𝑜𝑟 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑
 (4.1) 

where   is a percentage factor that is set to 0.65 in the experiments. 
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The first threshold, which is calculated using the Otsu approach [10], is 

applied to the sub-images containing the cells. Due to the non-uniform 

distribution of greyscales, the extracted cells may be fragmented. To address 

this issue, a second threshold, also calculated with the Otsu approach, is 

applied to the minimum square area that contains the cell in the enhanced cell 

image if the circularity of the cell is lower than a pre-set value (i.e., 0.6, in the 

paper). The results of the two-step thresholding are assembled to produce the 

final segmentation result. 

The circularity of the extracted cell region is defined in Eq. (4.2): 

Circularity =
4 ∗ pi ∗ Area

Perimeter2
 (4.2) 

where the perimeter of the object is obtained by the derivative of the object 

boundary. The value of circularity varies in [0 1], and the circularity of a circle 

is 1. 

4.2.3 Tracking using multiple cell features 

In traditional tracking algorithms that use segmentation-and-association 

techniques, cells are tracked only according to their positions. The approach 

therefore fails to recognize cells that move at high speed. To address this 

problem, additional features are measured and used to aid tracking in the 

approach. This section presents a quantitative analysis of multiple features 

such as cell size, cell shape, grey scales and the Fourier coefficients in the 

frequency domain. 

4.2.3.1 Feature acquisition 

The methods used to quantitatively measure the primary features—such as cell 

size and cell shape—were presented in section 3.3.2. Those features mainly 

provide morphological information about cells. Colour is another common 

clue that is used for visual recognition. Hence, additional features are taken 

into account from the view of image grey scales. The histogram of an image is 

extensively used to analyse the distribution of greyscales. Diverse structures of 

cells result in different greyscales of cell surfaces observed from microscopes. 
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Hence, the weighted average of the histogram (G), as defined in Eq. (3), may 

be used to represent cells for pixel values in cell area: 

G =
1

N
∑i

𝑛

𝑖=1

∙ h(i) (4.3) 

where N is the number of pixels in the cell area, i represents the value of 

grayscale, n is the maximum grayscale in the histogram, and h(i) represents 

the entry of the histogram for the corresponding grayscale. 

The weighted area is calculated by accumulating the weighted histogram of 

grayscales. It can be summarized as follows: 

W =∑i ∙ h(i)

n

i=1

 (4.4) 

where i represents the value of grayscale, n is the maximum grayscale in the 

histogram, and h(i) represents the entry of the histogram for the corresponding 

grayscale. 

4.2.3.2 Cell matching score function 

The cell-matching score is a function that is defined to match cells in the 

neighbour frames. All the assignments of the cell statues are made according to 

the score. Hence, to introduce the scoring scheme, the similarity function is first 

defined. 

A. Similarity function 

The input of the similarity function is the cell features extracted from a given 

cell and the cells in adjacent frames. The traditional tracking method mainly 

associates cells in adjacent frames based on the overlapping areas. Cells are 

often linked to those nearest in the neighbour frame. Errors occur when a cell 

rapidly moves. To resolve the problem, a score that describes the similarity 

between different cells is defined in the proposed framework. The similarity 

score is constructed by combining two components—overlapping factor and 

distance factor—which can be written as follows: 
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𝐒𝐢𝐦𝐢𝐥𝐚𝐫𝐢𝐭𝐲 𝐬𝐜𝐨𝐫𝐞 (𝐒) = 𝐨𝐯𝐞𝐫𝐥𝐚𝐩𝐩𝐢𝐧𝐠 𝐟𝐚𝐜𝐭𝐨𝐫 (𝐎) + 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞 𝐟𝐚𝐜𝐭𝐨𝐫 (𝐋) (4.5) 

The overlapping factor is used to track cells with slight movements; the distance 

factor is defined to track quickly moving cells that have no large overlapping 

areas between adjacent frames. 

Given the cells Ci in frame t and Cj in frame t+1, the overlap factor defined in Eq. 

(4.5) reflects the degree of overlapping between them: 

𝐎𝐢,𝐣 =
𝐂𝐢 ∩ 𝐂𝐣

𝐦𝐢𝐧(𝐂𝐢, 𝐂𝐣)
 (4.6) 

where Ci∩Cj represents the size of the overlapping area between the two cells 

and min(Ci, Cj) is the minimum size of the two cells. The value varies between 

[0, 1], where 1 means total overlapping and 0 means no overlap. 

For the distance factor, Euclidean distances (D) between the processing cell 

and the cells in neighbour frames are calculated to measure differences in cell 

positions. If (x,y) represents the position of the central point of cell, the 

distance can be defined as follows: 

𝐃𝐢,𝐣 = √(𝐱𝐢 − 𝐱𝐣)𝟐 + (𝐲𝐢 − 𝐲𝐣)𝟐 (4.7) 

where i represents the i
th

 cell in current frame and j represents the j
th

 cell in the 

adjacent frame. 

Differences between cell features are used as weights to compute weighted 

distances. If F represents the specific features of the cell, then the distance 

factor between the i
th

 cell and j
th

 cell, Lij, can be defined as follows: 

𝐋𝐢,𝐣 = 𝐍𝐨𝐫𝐦(|(𝐅𝐢 − 𝐅𝐣)|) × 𝐃𝐢,𝐣 (4.8) 

where Norm(.) is the normalization function that transforms the values to the 

range [0,1]. 

Since the lower value of distance represents a greater similarity between cells, 

we inverse the distance by, 

𝐋𝐢,𝐣
𝐓 = 𝟏 − 𝐍𝐨𝐫𝐦(𝐋𝐢,𝐣) (4.9) 
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4.2.3.3 Cell Association 

Cells can be associated with the highest similarity score in the adjacent frame. 

However, the mechanism causes errors in the event of cell disappearance. For 

example, if a cell disappears in frame t+1, the corresponding cell in frame t is 

linked to the wrong cell with the highest score in t+1. To prevent this error, the 

framework links cells backwards: i.e., connections are made from frame t+1 to 

frame t. Nevertheless, the new appearances of cells result in another problem. 

Assuming that Cj is a newly appearing cell in frame t+1, the solid lines in Figure 

4-2 represent the correct association and the dotted lines represent the potential 

links for cell Cj. Due to the lack of a detection scheme for newly appearing cells, 

cell Cj is mistakenly connected to the cell with the highest similarity score. 

 

Figure 4-2 Linking problem of the new cell. The newly appeared cell in frame t+1 is incorrectly 

connected to the cell with highest score in frame t without status verification. 

New cells can be classified in two ways: as cells that have entered the region of 

interest, and as products of cell activities such as splitting and merging. Statuses 

of newly entering, splitting and merging are assigned to the cells from 

corresponding events, according to the scores calculated by the detection 

method. The status of disappearance is assigned to the cells in frame t that 

disappeared in frame t+1. 

A. Cell merging and splitting 

Detection of merging and splitting is performed manually in traditional tracking 

algorithms. An automatic detection method that uses overlapping cell areas is 

developed for the proposed tracking framework. 
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For convenience, the cells in frame t+1 that are generated from cell splitting or 

cell merging are called son cells, and the corresponding cells in frame t are 

called parent cells. Assume that there are N cells in frame t and M cells in frame 

t+1. Let Bi,j denote the overlapping area between cell i in image t (Ci,t) and cell j 

in image t+1 (Cj,t+1). A look-up table of the overlapping areas can then be 

formed as follows: 

 C1,t+1 C2,t+1 … Cj,t+1 … CM-1,t+1 CM,t+1 

C1,t B1,1 B1,2 … B1,j … B1,M-1 B1,M 

C2,t B2,1 B2,2 … B2,j … B2,M-1 B2,M 

… … … … … … … … 

Ci,t Bi,1 Bi,2  Bi,j … Bi,M-1 Bi,M 

… … … … … … … … 

CN-1,t BN-1,1 BN-1,2 … BN-1,j … BN-1,M-1 BN-1,M 

CN,t BN,1 BN,2 … BN,j … BN,M-1 BN,M 

Figure 4-3 Look-up table of overlapping areas 

Since only cells in nearby regions have overlapping areas, most of the Bi,j in 

the look-up table are zeros. Hence, the ancestral relationship between cells can 

be determined by checking the entries of the look-up table. The algorithm for 

split/merge detection can be summarized as follows: 

 

Input: look-up table (ToB) of overlapping weighted areas (Bi,j) between cells 

in adjacent frames, and the association map (AM). 

Output: association map with labels of splitting and merging. 

1. Check the ToB column-by-column and pick up the cells j with more than 

one non-zero Bk,j, 1 ≤ k ≤ N. 

2. Compare the non-zero overlapping areas (Bi,j) with the cell area of the 

parent (Ci,t). The event of cell merging is detected if more than one parent 

cell satisfies the following condition: 𝐵𝑖,𝑗 > 𝛼𝐴𝑖 ,  where α  is a 

percentage factor (i.e., 0.7 in the experiments). 

3. Add the label for cell merging to the corresponding cells in the association 

map. 

4. Check the ToB row-by-row and pick up the cells i with more than one 

non-zero Bi,l, 1 ≤ l ≤ M. 

5. Compare the non-zero Bi,j with the cell areas of the sons (Cj,t+1). If more 

than one son cell satisfies the condition, 𝐵𝑖,𝑗 > 𝛽𝐴𝑗 , where β  is a 

constant (i.e., 0.5), then cell splitting is detected between the parent cell i 

and the son cells j. 

6. Add the labels for cell splitting to the corresponding cells in the 

association map. 
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The score scheme with additional statuses, splitting (S) and merging (M), is 

represented in Figure 4-4. The solid lines represent the correct association. 

The dotted lines represent potential links, and the dotted lines in red and green 

represent potential ancestral relationships between son and parent cells. 

 

Figure 4-4 Association component with statuses of splitting and merging 

J. A. Withers and K. A. Robbins proposed an automatic method for cell event 

detection. It efficiently computes the overlapping area of the bounding boxes 

of cells in adjacent frames and their central distances—called the 

overlap-distance ratio—to detect the event of split/merge.  

 

(a) 

 

(b) 

Figure 4-5 Problem of bounding box in MSC dataset. (a) and (b) are two adjacent frames in a 

sequence in MSC. The cell in yellow box ran into the blue box of another cell, which may be 

wrongly recognized as a fusion in the typical detection method. 

However, a false merging event may be detected by the approach in the case 

of the fast-moving cell: e.g., the cell bounded with yellow box in Figure 4-5 
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that is entering the blank area of the bounding box for other cell (i.e., the cell 

bounded with blue box). Compared to the typical approach [89], our detection 

method replaces the bounding box with cell area, thus preventing errors 

caused by fast-moving cells. 

B. Cell entering and disappearing 

Cells that enter the region of interest (ROI) also produce new appearances of 

cells. The newly entering cells have no potential parents in the previous frame; 

thus, their matching scores with the cells in previous frame are low. A pre-set 

score ( SA )—i.e., 0.8—is employed to accurately detect cell entering. 

Assuming that cell j is in frame t+1, cell j is detected as newly entering if the 

following condition is satisfied: 

𝑵𝒆𝒘𝒍𝒚 𝑬𝒏𝒕𝒆𝒓𝒊𝒏𝒈 𝑪𝒆𝒍𝒍, 𝒊𝒇 𝐦𝐚𝐱
𝟏≤𝒌≤𝒎

(𝑺𝒌,𝒋) < 𝑺𝑨  (4.10) 

where m is the number of cells in frame t. 

A new label is assigned to the newly entering cell. 

 

Figure 4-6 Association component with statuses 

With the additional scores of newly entering, splitting and merging, all of the 

cells in the current frame t+1 can be associated with cells in previous frame or 
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marked with different statuses. The cells with no connections in the previous 

frame t are marked as disappearing. Cell splitting is labelled as S, cell merging 

as M, newly entering cells as A and disappearing cells as D. The relationships 

between statuses are diagrammatically shown in Figure 4-6. 

In the proposed framework, a cell j in frame t+1—except for common 

associations based on similarity scores, which are the black, dotted lines in 

Figure 4-6—has three additional links to the potential statuses: splitting, 

merging and new entering. These links are the coloured, dotted lines in red, 

green and blue. For the cells in frame t, an additional status, 

disappearing—which is represented by the dotted purple line—is also 

employed to trace cell disappearances. The uses of statuses enable the 

framework to record and trace the parent cells in the previous frame and the 

cell events including splitting, merging, newly entering and disappearing. 

Hence, the system can finally produce a spanning tree of the tracking cells 

across all the frames. 

4.3 Experimental results 

In this section, the results of segmentation and tracking are presented. The 

results have been evaluated with the ground truths offered by the dataset 

provider.  

4.3.1 Introduction of datasets 

Three datasets of different cells, MSC, GOWT1 and SIM, introduced in ISBI 

2013 challenge and one dataset, SIM+, from ISBI 2014 challenge [4, 90] are 

used for performance evaluation. Detailed information about the datasets is 

listed in Table 4-1. Further information can be found in the Appendix. Each 

dataset contains multiple sequences, and each sequence contains more than 40 

frames at high resolution (up to 1024×1024). This results in an extremely large 

volume of data for the system to process. 
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Table 4-1 Detailed information about the datasets 

 Rat 

mesenchymal 

stem cells 

(MSC) 

Mouse stem 

cells 

(GOWT1) 

Simulated nuclei moving (SIM) 

Simulated 

nuclei of HL60 

cells (SIM+) 

Sequence 

No. 
1 2 1 2 1 2 3 4 5 6 1 2 

Image Size 992×832 1024×1024 APPR 600×600 APPR. 650×700 

No. of 

Frames 
48 48 92 92 56 100 100 56 76 76 65 150 

Total No. 

of Cells 
15 10 27 50 48 59 72 97 62 112 97 145 

Cells in different datasets have different characteristics. For example, rat 

mesenchymal stem cells (Figure 4-7 (a)) are often long and slim while mouse 

stem cells (Figure 4-7 (b)) are nearly circular. Figure 4-7 (c) and (d) are 

created by software that simulates the moving nuclei. The system is required 

to have excellent flexibility among different datasets. Few of the existing 

methods can perform well throughout these four datasets. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-7 Sample image from each dataset: (a) image from MSC, (b) image from GOWT1, (c) 

image from SIM, (d) image from SIM+. 

The dataset providers also provide the manually annotated ground truth, which 

contains the information of cell moving trajectories and shape variations. 

Segmentation and tracking accuracies can be assessed using the annotated 

ground truth. 

The proposed framework is compared with four participators of ISBI 2013: 

COM-US, LEID-NL, PRAG-CZ and KTH-SE. COM-US is a tracking 

framework that employs the multiple-hypothesis tracking paradigm designed 

by Compunetix Inc, USA. LEID-NL is a model-evolution based approach in 

which segmentation and tracking tasks are performed simultaneously. It is an 

extended framework of their earlier work [91]. In the experiments, LEID-NL 

failed to work on several sequences of the datasets, which are marked as NA 

(not available) in the following tables. PRAG-CZ is an improved version of 

the segmentation-and-association framework proposed by Charles University 
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in Prague, Czech Republic. The segmentation component for this framework 

is a local thresholding method that uses k-means for threshold selection. 

KTH-SE is also a segmentation-and-association framework that segments cell 

images by thresholding after band-pass filtering. It employs a greedy 

algorithm in its track linking component to improve tracking performance. 

4.3.2 Evaluation criterion 

Segmentation accuracy is measured using the Jaccard similarity index (J) 

introduced in 3.4.2. For tracking accuracy, if we assume that node Mi
t is cell i 

in frame t in a sequence, a graph with links can be used to represent the cells 

tracked by different systems. See Figure 4-8 for an example of such a graph. 

Different colours visualize different cells, and dotted lines represent parent 

links. The links between nodes—i.e., the dotted and solid lines that link the 

nodes in Figure 4-8—are labelled as edges, E. To compare the graph generated 

by the proposed framework with the manually generated ground-truth map, 

the evaluation system measures the number of cells not detected (false 

negatives, FN), the number of cells incorrectly detected (false positives, FP), 

the number of cells correctly detected (true positives, TP), the split operations 

that must be corrected in the results (NS), the edges that must be removed 

(ED), the missing edges (EA) and the edges that mismatch the track link and 

parent link (EC). The weighted sum of the number of necessary operations 

required to transform the results to the ground truths can be defined as 

follows: 

TRAP = ωNSNS +ωFNFN + ωFPFP + ωEDED +ωEAEA + ωECEC 

where the weights (𝜔) are defined manually according to the difficulties of 

making corresponding operations. 

The weights were set according to the manual effort required to revise faults in 

the generated tracking results. The weights have been listed in Table 4-2. The 

larger weights indicate problems that are harder to correct. 
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Table 4-2 Values of the weights 

𝜔𝑁𝑆 𝜔𝐹𝑁 𝜔𝐹𝑃 𝜔𝐸𝐷 𝜔𝐸𝐴 𝜔𝐸𝐶 

5 10 1 1 1.5 1 

The TRAP measure is normalized to the [0, 1] interval. It is equal to zero when 

the results are identical to the ground truths. The accuracy of tracking can then 

be measured by, 

TRA = 1 −
min (TRAP, TRAE)

TRAE
 

where 𝑇𝑅𝐴𝐸 = 𝜔𝐹𝑁|𝑀| + 𝜔𝐸𝐴|𝐸| is the cost of creating the ground truth 

graph. 

 
Figure 4-8 An example of ground truth tracks 

4.3.3 Segmentation results 

4.3.3.1 Results of proposed two-step segmentation method for GOWT1 

Since the proposed two-step thresholding technique uses the circularity of 

cells to refine the segmentation result, it is more efficient to process cells with 

circular shapes, such as mouse stem cells. An example is shown in Figure 4-9. 

The segmentation results illustrate that the proposed approach addresses the 

problem of fragmentation well: i.e., the cells marked with a red circle in the 

first step (Figure 4-9 (c)) are fully recovered in Figure 4-9 (d). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-9 Comparison with benchmark algorithm: (a) the original image, (b) result from Otsu 

thresholding, (c) the result of the first segmentation (the red circle indicates segmentation error), 

(d) result from proposed two-step thresholding. 

To further demonstrate the improved segmentation performance, the result of 

the widely used approach--global Otsu thresholding [10]—is shown in Figure 

4-9 (b) for comparison. Otsu determines the threshold according to the 

between-class variance of the image. It can be observed from Figure 4-9 (b) 

that a large amount of cell information is lost. Compared to the result of global 

Otsu, the proposed approach extracts the outlines of cells very well. 

4.3.3.2 Evaluation of segmentation accuracy 

The segmentation approaches employed in the proposed framework are 

evaluated with the Jaccard similarity index (J) introduced in 3.4.2. The 

proposed two-step, iterative, thresholding-segmentation method is applied 

only to the GOWT1 dataset to address the fragmentation problem. The MSC is 

segmented by the local and global thresholding approach introduced in section 

3.2. The segmentation approach proposed by KTH-SE is used to process the 

datasets of SIM and SIM+. Apart from the segmentation methods proposed by 
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the ISBI 2013 participators, two of the typical thresholding 

approaches—global Otsu and, which provide the best segmentation accuracies 

for MSC—are also taken as benchmark algorithms. Table 4-3 shows the 

segmentation accuracies (SEG) of different approaches for each dataset. 

Table 4-3 Segmentation accuracy (%) 

 MSC GOWT1 SIM SIM+ 

Seq. No 1 2 1 2 1 2 3 4 5 6 1 2 

Global Otsu 32.67 47.97 61.99 83.06 69.85 52.06 64.90 65.59 65.35 52.85 79.21 13.82 

Global 
Fuzzy-entropy 

36.47 49.75 59.87 73.71 69.73 54.79 78.81 38.66 77.05 28.12 78.21 25.54 

COM-US 32.11 23.73 44.83 53.35 62.63 68.46 68.33 65.36 61.24 66.19 19.42 1.83 

LEID-NL NA NA NA NA NA 68.96 58.77 73.45 NA 41.03 69.80 NA 

PRAG-CZ 41.00 54.93 81.13 91.90 90.96 73.76 76.23 75.91 70.97 71.38 69.03 32.14 

KTH-SE 46.23 57.95 58.33 89.42 92.70 89.88 86.85 87.85 81.77 84.18 83.77 34.26 

Proposed 
Method 

43.03 56.29 85.56 85.18 92.70 89.88 86.85 87.85 81.77 84.18 83.77 34.26 

From Table 4-3, it can be observed that KTH-SE achieves the best 

segmentation accuracies for MSC, SIM and SIM+ among the benchmark 

algorithms. Our proposed approach provides the best segmentation accuracy 

for the GOWT1 datasets: i.e., 85.56%, for sequence #1. It also provides the 

best reasonable accuracy: i.e., 85.18%, for sequence #2, which is 6.72% lower 

than the winner, PRAG-CZ (i.e., 91.90%). 

4.3.4 Tracking results 

4.3.4.1 Evaluation of the frameworks with different features 

Each of the presented cell features is tested with the proposed tracking 

framework. The tracking accuracies (TRA) that use different features are 

listed in Table 4-4. 

Frameworks that employ different cell features for cell association are 

evaluated with respect to the same segmentation results. The entry labelled 

‘position only’ provides the tracking accuracies for the framework using only 

distance for feature representation. The entries below are for the frameworks 

that combine distance and different cell features. Table 4-4 shows that tracking 

accuracy is improved by adding features to the distance. The average increases 

for each type of cells are 1.04% for MSC, 1.18% for GOWT1, 0.43% for SIM 
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and 0.05% for SIM+. Although tracking accuracy is increased by adding 

features for most cell datasets, degradations are found for some sequences: e.g., 

sequence #1 of MSC and SIM+. Unreliable segmentation results caused the 

degradations of sequence #1 of MSC and sequence #2 of SIM+. Their 

accuracies are lower than 50%. The cell features extracted from poorly 

segmented images may be inaccurate, which can lead to errors in the process 

of cell association. The dataset of sequence #1 of SIM+ has contains a large 

volume of cells that move slightly between frames. Furthermore, cells in the 

two datasets are small and similar in appearance—two characteristics that can 

result in small differences of cell features between cells. For these reasons, the 

distance designed to detect fast-moving cells fails. 

In general, the results demonstrate that, compared to the tracking framework 

that uses only cell positions, a framework that adds cell features generates 

tracking accuracy. One of the main sources of improvement is the correct 

detection of cells with sharp movements. 
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To show the advantages of the proposed approach, frames #38 to #41 from 

sequence 2 of ‘MSC’ dataset were overlapped to create the image shown in 

Figure 4-10 (a). It is confirmed by observation that no splitting and merging 

occurred in the frames, thus the area for each cell in Figure 4-10 (a) can be 

treated as the ground truth that represents their moving trajectories. The cell in 

the red circle exhibits a sharp movement between adjacent frames: i.e., 74 

pixels. Figure 4-10 (b) and (c) show tracking results from the framework that 

uses only cell position and from the framework that combines histogram of 

grayscales. The two tracking results are produced with the same set of 

segmented frames. The colour lines from the centres of cells in the results 

represent the detected moving trajectories of cells across the frames. The 

fast-moving cell is labelled with marker ‘91’ in (b), and it is marked with ‘88’ 

in (c). While the two frameworks generate similar moving trajectories for 

other cells, the trace line for the fast-moving cell is missing in (b). 

 

(a) 

 

(b) 

 

(c) 

Figure 4-10 Comparison of the performances with cells moving in high speed: (a) the image 

overlapping the whole testing frames, (b) the traditional algorithm, (c) the proposed algorithm. 
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(a) 

 
(b) 

Figure 4-11 Spanning trees of the tracking results: (a) using cell position only, (b) combining 

position and the feature of weighted area. 

The spanning trees of the two tracking frameworks for videos from frame #38 

to #41 are generated and shown in Figure 4-11. The circles with numbers 

represent the cells in each frame. The lifetime of each cell can be clearly 

monitored from the spanning tree. Figure 4-11 illustrates that the framework 

with HOG accurately tracks the trajectory for the fast-moving cell marked 

with the red circle in Figure 4-10 (a), whose movement was not detected by 

the framework that uses cell position only. 

4.3.4.2 Comparison with state of the art methods 

In addition to the participators for ISBI 2013, tracking frameworks that 

employ the global Otsu and global fuzzy entropy for segmentation and the 

overlapping factor defined in Eq. (4.6) for association—which are named as 

OA-Otsu and OA-FE—are included for tracking performance evaluation. The 

tracking accuracies for the proposed framework and benchmark algorithms on 

different datasets are listed in Table 4-5. 
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Table 4-5 reveals that the OA-Otsu and OA-FE fails to track the cells in 

sequence #2 of MSC. This is because the cells in sequence #2 of MSC move 

rapidly, resulting in few overlapping cell areas between adjacent frames. The 

OA-Otsu and OA-FE use only the overlapping factor for cell association; thus, 

they fail to track rapidly moving cells. The failures of OA-Otsu and OA-FE 

demonstrate the need to develop a distance factor for detecting cells with sharp 

movements. 

The PRAG-CZ, KTH-SE and our framework are based on the same 

framework structure—segmentation and association—which relies on good 

segmentation for accurate tracking. As shown in Table 4-5, PRAG-CZ 

achieves the best tracking accuracy for benchmarking algorithms: i.e., 97.93% 

for the GOWT1 dataset. KTH-SE yields the best accuracies for MSC, SIM and 

SIM+: 83.16%, 98.73% and 72.69%, respectively. The average accuracies for 

the proposed framework on MSC, GOWT1, SIM and SIM+ are 86.05%, 

98.20%, 98.84%, and 74.54%, respectively. It thus outperforms all benchmark 

frameworks. As the SEG of our proposed framework is lower than KTH-SE 

and PRAG-CZ for MSC and GOWT1, the better TRA accuracy demonstrates 

the excellent capacity of our cell association relative to the proposed scoring 

scheme. The overall average tracking accuracy of the proposed framework is 

92.93%, which is 1.41% higher than that of KTH-SE (i.e., 91.52%). 

In summary, adding additional cell features to cell association produces an 

improvement in tracking accuracy for the system. The proposed framework 

tracks cell movements and detects cell events—such as cell merging, splitting, 

appearance and disappearance—with outstanding accuracy: i.e., 92.93%, on 

average. Trajectories of the cell movements are recorded for further analysis 

by the framework, as shown in Figure 4-12. The cells are marked with 

separated identifiers. The different coloured lines represent the trajectories of 

different cells across the sequences. 
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(a) 

 

(b) 

Figure 4-12 Trace lines for cells across the video. (a) The output of sequence #1 from SIM. (b) The 

output of sequence #1 from SIM+. Lines in different colours represent the moving trajectories for 

different cells. 

4.4 Conclusion 

This chapter introduces a tracking framework designed for time-lapse cell 

images. The framework is a revised version of the typical 

segmentation-and-association approach. It uses multiple extracted cell features 

to perform accurate tracking. It achieves excellent tracking accuracy—the 

average is 92.93% for four different practical datasets—and it addresses the 

problem of tracking cells with sharp movements, which is difficult for most 

existing tracking approaches. 
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  Fast-processing techniques Chapter 5

 

 

5.1 Introduction 

Image processing is an extensively studied area. The techniques have been 

successfully implemented in various applications for different purposes. Edge 

detection and visual tracking are two problems that are commonly encountered 

during image processing. Substantial efforts have been made to improve the 

accuracy of the approaches that address these two tasks, such as the revised 

methods developed in [92, 93]. As a result of these efforts, the accuracies that 

can be achieved for these two tasks increase and gradually become acceptable 

for some practical applications. 

Microscope images create challenges that are unlike those associated with 

general images. For edge detection, the relatively poor quality of captured 

images often results from the fact that the conditions for capturing cell images 

vary widely. For tracking, the huge volume of cells and various cell 

behaviours present the primary difficulties. Analyses of these challenges have 

been made and methods have been proposed in previous papers [70, 94]. 
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Although most of these studies have tried to improve the accuracies of their 

performances, few provide the improvements of processing speed. The 

requirements of current biological applications are notably growing. Therefore 

frameworks are needed that can perform edge detection and visual tracking in 

real-time. 

This chapter first introduces a novel hybrid edge-detection method that is 

based on the fuzzy entropy and Canny operator. Then it presents a 

fast-tracking framework designed for microscope images. The performances 

of these two approaches have been evaluated with benchmark methods; the 

results demonstrate that they have high potentials to be implemented in 

real-time applications. 

5.2 Edge-detection technique 

To assist cell biologists in their research, numerous image-processing 

techniques have been applied to images of cells. Among them, the method 

employed for cell segmentation is of pivotal importance, as it is the essential 

step for many further analyses. However, the conditions for capturing cell 

images vary widely, which often means that the contrast is extremely low, the 

distribution of grey scale is non-uniform, and the images are noisy (e.g., with 

salt-and-pepper noise). These factors increase the difficulty of performing 

accurate detection. Although there are a great many existing segmentation 

methods [95, 96], few can simultaneously solve these three problems. 

Among the existing methods, the Canny operator is one of the most powerful 

edge detectors. It has proven success when applied to various tasks. However, 

due to the low quality often exhibited by cell images, the performance of the 

Canny operator is lower than would be expected. In this section, a novel 

method is proposed to improve the performance of the Canny edge detector. 

The thresholding method based on fuzzy entropy theory is used with the 

Canny operator to select the threshold gradient. This approach takes more 

information into consideration when performing the thresholding, which 

results in greater robustness with respect to noise. 
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5.2.1 Algorithm 

This section presents various ways to address the problems outlined in the 

Introduction. 

A. Low Contrast 

The quality of cell images generated by biological microscopes is often less 

than ideal in terms of contrast and sharpness (i.e., the cells are blurred). This 

leads to a loss of detail and to the detection of false edges. The existing 

method [14] of using morphological transforms to enhance image quality is 

employed in this edge-detection operator. Although this method enhances 

image contrast, it introduces the problem that the noise in the image is 

increased as image quality is enhanced. 

B. Non-uniform Grey-Scale Distribution 

The traditional Canny edge detector is a global operator that uses parameters 

such as the threshold applied to gradients to process entire images. This leads 

to problems when the image has a non-uniform distribution of grey scales. In 

such images, the appropriate threshold varies across the image and should be 

adjusted from a global value to local values to accommodate fluctuations of 

grey levels. 

To introduce local thresholding, the image is split into sub-images. Each 

sub-image is then processed with a revised Canny operator. The final output 

image is produced by assembling results from these sub-images. By allowing 

different parameters to be applied to different areas of the image, the 

inhomogeneity problem is solved.  

C. Noise 

A typical Canny operator uses the following steps to extract edges: 

1. Remove white Gaussian noise by smoothing the image with a Gaussian 

filter. 
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2. Calculate the magnitude and direction of the gradient at each pixel. 

3. If the gradient’s magnitude at the processing point is larger than the 

gradients of the two neighbours when laid in the gradient direction, the 

processing pixel is marked as the edge. Otherwise, it is marked as the 

background.  

4. Use hysteresis thresholding to remove weak edges. 

Applying this approach to real data suggests that inaccuracies in segmentation 

result primarily from Step 3 since it is a process that is very sensitive to noise. 

This is the reason why an alternative method is proposed that is based on 

Fuzzy Entropy, whose basic theory is now introduced. 

D. Fuzzy Entropy 

Fuzzy entropy is the entropy of a fuzzy set, which loosely represents the 

information of uncertainty [97, 98]. It is usually used to quantify the value of 

information included in a message. Defining X as a set of discrete random 

variable with values {x1, ..., xn} and P(X) as the probability mass function, the 

corresponding entropy H is defined as follows: 

  
i i

ibiii xPxPxIxPXH )(log)()()()(  
(5.1) 

where I is the information content of x, and b is the base of the logarithm. 

The thresholding method based on fuzzy entropy theory calculates the entropy 

of a fuzzy set and then normalizes it as the threshold, which maximizes the 

entropy. Fuzzy sets were first defined by Zadeh in 1965 [99]. They are sets 

whose elements have degrees of membership. The pixels in an image 

exemplify fuzzy sets. In an image, there are usually two classes: objects and 

background. If a membership function is defined, the degrees of pixels that 

belong to the different sets can be calculated. Based on the obtained 

memberships, pixels can be separated into correct groups; this the basic idea 

behind pixel clustering. 

In the proposed method, fuzzy entropy theory is used to distinguish gradients 

for edges from gradients produced by noise. The gradients of the image 
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generated by the Canny operator is a set of values that can be classified into 

two groups: edges and noise. Here the membership functions, μ, are defined 

by the following: 
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The relationship between membership functions is shown diagrammatically in 

Figure 5-1. 

 

Figure 5-1 Diagram of membership function 

The parameters, a and b, are unknown. This means that the entropies of these 

two groups change in response to alterations in a and b. Theoretically, a larger 

entropy means that the test objects contain more information. Therefore, the 

gradient maximizing the joint entropy of this fuzzy set is set as the threshold. 

The concept of joint entropy was introduced in [100]. Let the entropy be H, so 

that the entropy for A can be represented as, 

 



Page | 95 
 

 





L

j

jAjA

AP

hj

AP

hj
AH

1 )(

)(
lg

)(

)(
)(


 (5.4) 

where 
total

j

N

N
jh )( ; Nj is the number of points whose gradients are equal to j; 

and Ntotal denotes the number of total points. 

Hence, the joint entropy is, 
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 (5.5) 

 

They become equivalent if and only if these two sets of data are independent. 

From (10), it is obvious that the task of thresholding is converted to that of 

finding the maximum of the total entropy of gradients. 

5.3 Performance Evaluation for edge detection 

The proposed edge detector is implemented with the samples captured by the 

University of Nottingham, United Kingdom (UNUK). The experimental 

results are presented in this section. An analysis of performances by the 

proposed approaches and the popular edge detectors is also presented, 

followed by an introduction to the implementation of the hybrid method in the 

real-time application. 

5.3.1 Experimental Results 

Images were processed to compare the results from the revised Canny operator 

with those produced using typical edge detectors. As introduced in the 

previous section, the edges in cell images are usually blurred, so details are 

often lost during the segmentation process. An example is shown in Figure 

5-2.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-2 (a) Original image; (b) Result from Sobel; (c) Result from Prewitt; (d) Result from 

typical Canny 

Since the typical Canny approach is sensitive to low image contrast, it loses 

more edges compared to the other methods. Hence, the cell image is first 

enhanced to make the edges sharp and clear before further 

processing—although this is at the cost of quality improvement, with the noise 

increased. 

As shown in Figure 5-3, this process not only produces more details but also 

more noise. The problem changes from one of low contrast to that of increased 

noise; so a noise-insensitive edge-detection method is required. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-3 (a) Enhanced image; (b) Result from Sobel; (c) Result from Prewitt; (d) Result from 

typical Canny 

The revised Canny method divides the image into sub-images that are 

individually processed to reduce the impact of the inhomogeneous distribution 

of grey scales. After image separation is achieved, the method calculates the 

histogram of gradient (HoG) of the processing sub-image. This is shown in 

Figure 5-4, where the x-axis represents the values of gradients and the y-axis 

is the number of points with each value of gradient. 

 

Figure 5-4 Histogram of gradients 
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The edges, which have high gradients, occupy only a small proportion of 

points in the image. Conversely, the points in the objects and background, 

along with those generated by noise, usually have a lower gradient. The 

problem is to find a value that ideally partitions the points in the HoG into 

correct classes, which is achieved using the theory of fuzzy entropy. 

5.3.2 Comparison with benchmark algorithms 

The proposed edge detector was applied to the cell images and its outcomes 

were compared to those produced by benchmarking algorithms, which are 

shown in Figure 5-5. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-5 (a) Original image; (b) Result from Prewitt; (c) Result from typical Canny; (d) Result 

from the revised Canny 

Due to the low quality of the cell images, there are unexpected problems in the 

results of the benchmarking methods. In the results produced using the typical 

Canny (Figure 5-5 (c)), many detailed edges are missed. Though the Prewitt 

operator (Figure 5-5 (b)) is better, many false edge points occur around the 
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edge lines and most of the main boundaries are not detected. These problems 

will definitely lead to difficulties in performing subsequent image analyses. 

The proposed method (Figure 5-5 (d)) successfully deals with these problems. 

Even though the signal-to-noise ratio in the image is high—a problem that is 

increased even further after image enhancement—the revised Canny edge 

detector still exhibits an excellent segmentation performance, thus retaining 

much of the detailed information. It overcomes the three issues of low contrast, 

non-uniform grey scale distribution, and noise. 

Furthermore, the proposed method has been implemented in a real-time 

system to process video data captured from a camera. The real-time system is 

established with a common personal laptop with the following hardware: CUP: 

Intel® Core™ i5-4200U @ 1.60GHz 2.30 GHz, RAM: 4 GB. The sampling 

rate of the system is set to 0.5 second/frame; thus, to successfully run the 

software, the processing speed of the hybrid edge detector is faster than the 

sampling rate, thus meeting the general requirement for real-time applications. 

5.4 Fast tracking technique 

The alterations of cells—their changing shapes and positions under different 

treatment conditions—can provide important information about biological 

mechanisms. Since manual analyses of these large datasets is extremely 

time-consuming, a large number of automatic tracking methods have been 

proposed in recent decades. These frameworks have been tested with images 

of various types of cells. For example, N. Ray uses the revised active contours 

method to track leukocytes [60]. X. Chen proposed an automatic tracking 

system exclusively for cancer cell nuclei in [67]. However, most of these 

existing frameworks exhibit outstanding performances only with specific 

databases, and the conditions required to produce excellent results are often 

strict. Complex parameter settings or sufficient prior knowledge may be 

required. The structures of the existing methods are mostly complex, which 

means that they may require a very large number of computations. Hence, few 

of these existing frameworks are applied in real-time applications. 
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Cell images differ from other types of images. Most datasets for biological 

applications exhibit the following core challenges. The contrast of the images 

is often low and the distribution of grayscales is often non-uniform. These low 

image conditions increase the difficulty of accurately separating target cells 

from the background. Cells in the same dataset have similar appearances and 

cells events such as rapid movement, mitosis and cell fusion must be 

accurately tracked. These factors increase the requirements on the tracking 

algorithm.  

In this section, a fast tracking method for cells is presented that addresses all 

of these issues. It is a general framework for various types of cells. It can 

recognize cell behaviours across a time-lapse video, such as splitting, merging 

and entering. The performance of the system has been evaluated, and the result 

indicates that it is a good candidate for use in real-time applications. 

5.4.1 Overview of tracking framework 

To process a time-lapse series of frames, the proposed framework segments 

each image in the frame stack, then associates the same cells in the neighbour 

frames across the video. Hence, there are two core components of the tracking 

system: segmentation and tracking. Since prior research suggests that specific 

wavelet transform is robust to process biomedical data [101] the segmentation 

method used in this system is based mainly on the wavelet frames obtained by 

the transform. The tracking component achieves the cell association by using a 

newly defined parameter. The cell is classified to corresponding states 

according to the values of this parameter. The flowchart of the tracking system 

processing a single frame is presented below.
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The new parameter used for the cell state classification is defined in the 

component of likelihood measurement. Since the system only uses one 

parameter to associate cells and recognize different cell behaviours including 

entering, splitting, and merging, compared to the existing ones, the structure of 

the tracking component has been obviously simplified. This flexible structure 

highly improves the processing speed of the system making it possible to be 

used in more practical applications. 

5.4.2 Segmentation 

The quality of the segmentation result is crucial to the following steps. 

However, the cell images are often in relatively high-resolution which will be 

extremely time-consuming for the traditional methods to process. To balance 

the problem between accuracy and processing speed, the framework first uses 

the wavelet transform to decompose the cell image and then uses the Otsu 

method to segment the generated wavelet frame. 

5.4.2.1 Wavelet transform 

Wavelet transform is a widely used technique in various fields of image 

processing, such as image compression and pattern recognition [102]. The 2-D 

discrete wavelet transform (2D DWT) is applied to produce the wavelet 

frames of the cell image before segmentation. A brief introduction of the 

transform is given in this section.  

Assume an image as I(x,y). To calculate the DWT of this 2-D signal, the image 

must be passed through a series of low-pass (g) and high-pass (h) filters. 

Because half of the frequencies in the signal are filtered, half of the signal can 

be removed, according to Nyquist’s rule. Hence, the outputs from the filters 

are down-sampled by 2. The process can be represented as follows: 
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Figure 5-7 Process of the DWT 

The outputs of the DWT provide both approximation coefficients and detail 

coefficients. The approximation coefficients are in the I1,L(x,y), and the other 3 

sub-images mainly contain the detail coefficients according to different 

directions. Take a sample from the dataset as an example. The 4 filtered 

images are displayed below. 

 

(a) 

 

(b) 

Figure 5-8 a) The original cell image. b) The 4 decomposed images. The two images in the first line 

are I1,L and I1,H1, and the I1,H2 and I1,H3 are in the second line. 

Due to subsampling, the cell image in high resolution is decomposed to 4 

half-size sub-images. Since the approximation coefficients are mainly 

contained in the image from low-pass filters, the wavelet frame I1,L is used as 

an approximation of the original cell image in the segmentation step to reduce 

the workload of computations. 
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5.4.2.2 Segmentation using approximation sub-band 

The segmentation method used in this proposed framework is based on the 

wavelet frame that contains the approximation coefficients. Due to the 

decreased image size of the wavelet frame, the system uses it as input instead 

of the original image to reduce the volume of computations. To reduce the 

influence of the non-uniform distribution of grayscales and low contrast, the 

method enhances the quality of the input wavelet frame by using top-hat and 

bottom-hat operations [14]. 

With these transforms, the bright and dark fields in the wavelet frame can be 

extracted and the overall contrast can be enhanced. The framework then 

implements the Otsu segmentation method [10] to disjoin the target cells from 

the background and produce the final segmentation results. Because the 

wavelet transform decomposed the original cell image, and because of the 

easily implemented design of the segmentation method, the time required for 

frame segmentation can be greatly reduced. 

5.4.3 Tracking 

After cell segmentation, the framework associates the same cell in adjacent 

frames by using a defined similarity function. The similarity function 

calculates the probabilities of correct associations, and all decisions about the 

status of cells—such as division and merging—are made based on the results 

of the function. Since only one parameter must be measured in the tracking 

process for each cell, the structure of the framework is simplified. 

5.4.3.1 Similarity function 

In the tracking step, the similarity between cells in neighbouring frames 

represents the probability of correct associations. Higher similarity means 

greater similarity. In the designed framework, two factors are taken to 

construct the similarity function: overlap factor and distance factor: 
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𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚(𝑺) = 𝒐𝒗𝒆𝒓𝒍𝒂𝒑 𝒇𝒂𝒄𝒕𝒐𝒓(𝑶) − 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒇𝒂𝒄𝒕𝒐𝒓(𝑫) + 𝒐𝒇𝒇𝒔𝒆𝒕 (5.6) 

where the offset is a pre-set positive number that is used to prevent the 

similarity from generating negative results. 

Assume the two processing cells as Ci,t in frame t and Cj,t+1 in frame t+1. The 

overlap factor reflects the degree of overlap between them. This factor varies 

between [0, 1] where 1 means totally overlapping and 0 means no overlap: 

𝑶𝒊,𝒋 =
𝑪𝒊,𝒕 ∩ 𝑪𝒋,𝒕+𝟏

𝒎𝒊𝒏(𝑪𝒊,𝒕, 𝑪𝒋,𝒕+𝟏)
 (5.7) 

where Ci,t∩Cj,t+1 represents the size of the overlapping area between the two 

cells and min(Ci,t, Cj,t+1) is the minimum size of the two cells. 

The overlap factor works for cells with slight displacements between frames. 

However, due to factors such as large cell volume or varying light conditions, 

the sampling rate of cell images in experiments may be lower than ideal that 

usually generates irregularly movements of cells in practical observation. It is 

therefore difficult for the framework to recognize using only an overlap factor. 

Hence, the distance factor is used to revise similarity results for cells with 

obvious movements: 

𝑫𝒊,𝒋 =
𝑫(𝑪𝒊,𝒕, 𝑪𝒋,𝒕+𝟏)

𝒎𝒂𝒙(𝑪𝒊,𝒕, 𝑪𝒋,𝒕+𝟏)
 (5.8) 

where D(Ci,t, Cj,t+1) is the Euclidean distance from the centre of gravity of cell 

Ci,t to the centre of cell Cj,t+1, and max(Ci,t, Cj,t+1) is the maximum size of the 

two cells. 

The similarity function is processed with each pair of cells in adjacent frames. 

Different decisions for the cell status can be made based on the similarity 

results. 

 

 



Page | 106 
 

5.4.3.2 Cell association 

The main events for cell observation are cell movement, cell splitting and 

merging, cell entering and leaving. In the framework, the status of a cell can 

be recognized based on the results of the similarity function. Due to its 

simplified structure, the response time of the whole system is further 

improved. 

The detail steps for the process of cell association can be concluded as 

follows: 

1. Generates the look-up map of similarity. 

2. Detects cell merging with the threshold (Th1). 

3. Filters new entering cells with the threshold (Th2). 

4. Uses the look-up map to link cells. 

5. Detects cell splitting based on the results of cell-linking. 

6. Marks the cells that have disappeared. 

A. Look-up map of similarity 

The framework generates a look-up map to represent the similarity between 

cells in adjacent frames. Assume that frame t contains N cells and that frame 

t+1 contains M cells. Si,j represents the similarity of cells Ci,t and Cj,t+1. The 

similarity look-up map can be written as follows: 

 C1,t+1 C2,t+1 … CM-1,t+1 CM,t+1 

C1,t S1,1 S1,2 … S1,M-1 S1,M 

C2,t S2,1 S2,2 … S2,M-1 S2,M 

… … … … … … 

CN-1,t SN-1,1 SN-1,2 … SN-1,M-1 SN-1,M 

CN,t SN,1 SN,2 … SN,M-1 SN,M 

Figure 5-9 Look-up map of similarity 
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B. Cell merging 

With the generated map, the framework associates the cells in the current 

frame with those that have the highest similarity in the previous frame. 

Therefore, each cell in frame t+1 can be related only to one cell in the previous 

frame, which makes it difficult to identify cell mergers. To solve this problem, 

a detection method that employs cell similarities is proposed. The process of 

cell merging is shown in Figure 5-10. 

 

(a) 

 

(b) 

 

(c) 

Figure 5-10 a) The cell in frame t. b) The cells after fusion in frame t+1. c) The boundaries of the 

cells by overlapping two frames. 

The two cells—called Cx,t and Cy,t, in Figure 5-10 (a)—merge into one cell, 

called Cz,t+1, in Figure 5-10 (b). By overlapping the boundaries of these three 

cells in Figure 5-10 (c), a large overlapping area is found between the parent 

cells and the generated cell that is due to the short time interval between 

adjacent frames. According to Eq. (5.6-5.8), the similarities, Sx,z and Sy,z, are 

high in the look-up map for cell Cz,t+1. Therefore, assuming that N cells are 

contained in frame t, the event of a cell merging with cell Cz,t+1 in frame t+1 

will be detected if its entry in the look-up map contains two or more 
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similarities and satisfies the following condition: 

 

𝐶𝑒𝑙𝑙 𝑚𝑒𝑟𝑔𝑖𝑛𝑔 ℎ𝑎𝑝𝑝𝑒𝑛𝑠, 𝑖𝑓 𝑆𝑥,𝑧 > 𝑇ℎ1 𝑎𝑛𝑑 𝑆𝑦,𝑧 > 𝑇ℎ1 (5.9) 

where 1 ≤ x ≤ N, and 1 ≤ y ≤ N. Th1 is a pre-set threshold: i.e., 0.8. 

C. Cell entering and cell movements 

The new entering cells are filtered by a pre-set threshold (Th2) (i.e., 0.65) after 

cell merger is detected. The cell j in frame t+1 is detected as newly entering if 

the following condition is satisfied:  

𝑁𝑒𝑤𝑙𝑦 𝐸𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝐶𝑒𝑙𝑙, 𝑖𝑓 max
1≤𝑘≤𝑁

(𝑆𝑘,𝑗) < 𝑇ℎ2 (5.10) 

where N represents the number of cells contained in frame t. 

Merging and newly entering cells are assigned to corresponding statuses and 

removed from the look-up map of similarity. The proposed framework then 

associates the cells in the current frame, t+1, with the cells with the highest 

similarities in frame t and generates an association map (AM) to record the 

association relationships.  

D. Cell splitting and cell disappearing 

Like the event of cell merging, there is a large overlapping area between the 

parent cell, called Ci,t, and the generated cells, called Cc,t+1 and Ch,t+1, in the 

event of cell splitting. Consequently, the similarities, Si,c and Si,h, are relatively 

high, which links the generated cells (Cc,t+1 and Ch,t+1) to the same parent cell 

(Ci,t) in the association map (AM). Therefore, the event of cell splitting can be 

detected by checking the AM to see whether there are two or more cells in 

frame t+1 associated with the same cell in frame t.  

With the detection of cell merging, cell entering, cell movements and cell 

splitting, all of the cells in the current frame, t+1, can be associated with cells 

in previous frame t. The framework then labels the cells with no links in 

previous frame as ‘disappearance’. 
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5.5 Performance Evaluation for fast tracking 

This section briefly introduces the dataset used in the experiments and the 

outcomes from the segmentation and tracking. These results show a high 

accuracy of both segmentation and tracking. 

5.5.1 Introduction of the dataset 

The experimental dataset was collected by the Centre for Biomedical Image 

Analysis (CBIA), Masaryk University of Brno, Czech Republic. The dataset 

contains 6 stacks of time-lapse microscope images and the trajectories of each 

cell in the database have been manually traced. The detail information of the 

dataset is listed in Table 5-1. 

Table 5-1 Detail information of the dataset 

 
Sequence No. Image Size 

No. of 

Frames 
Total No. of 

Cells 

Simulated 

nuclei 

moving 

(SIM) 

1 495×534 56 48 
2 569×593 100 59 
3 606×605 100 72 
4 673×743 56 97 
5 597×525 76 62 
6 655×735 76 112 

The dataset is generated by simulations of moving cell nuclei. Each sequence 

contains more than 50 frames, and the average size of a frame is larger than 

500×500. It is a huge volume of data for traditional tracking methods to 

process. Few of the existing methods perform very well either in terms of 

tracking accuracy or processing speed. To solve the problems, the proposed 

framework is evaluated with the dataset and an obvious improvement is 

achieved. 

The accuracy of tracking of the framework is evaluated with the provided 

ground truth. If node Mi
t is the cell i in frame t in the sequence of ground 

truth, and if the links between nodes are labelled as edges E, then the 

evaluation system measures the number of cells not detected (false negatives, 

FN), the cells incorrectly detected (false positives, FP), the cells correctly 
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detected (true positives, TP), the split operations needed to correct the results 

(NS), the edges that must be removed (ED), the missing edges (EA) and the 

edges mismatching the track link and parent link (EC). The weighted sum of 

the number of operations required to transform the results to the ground truths 

can be defined as follows: 

TRAP = ωNSNS + ωFNFN + ωFPFP + ωEDED + ωEAEA + ωECEC 

where the weights (𝜔) are defined manually according to the difficulties of 

making corresponding operations. 

The TRAP measure is normalized to the [0, 1] interval and is equal to zero 

when the results are identical to the ground truths. Then the accuracy of 

tracking can be measured by, 

TRA = 1 −
min (TRAP, TRAE)

TRAE
 

where 𝑇𝑅𝐴𝐸 = 𝜔𝐹𝑁|𝑀| + 𝜔𝐸𝐴|𝐸| is the cost of creating the ground truth 

graph. 

5.5.2 Tracking result 

The proposed tracking framework is based on the structure of segmentation 

and association. The system segments each frame in the sequence via the 

proposed segmentation method; it then associates the same cells in the 

adjacent frames and detects specific cell activities by measuring a newly 

defined parameter. An example of the tracking result is shown in Figure 5-11. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-11 Example of the tracking result: a) the original cell image, b) the segmentation result, c) 

the tracking result by the proposed framework (the different colours represent the labels for the 

cells), and d) the trajectories of cells across the video.  

Figure 5-11 (b) presents the segmentation results for the original cell image 

shown in Figure 5-11 (a). The framework uses the segmentation results to 

generate the look-up map of similarity between adjacent frames. Figure 5-11 

(c) shows a result from the tracking component. The cells are tracked and 

labelled with markers of different colours. A final outcome from the tracking 

system is presented in Figure 5-11 (d). The trace lines in different colours 

represent the trajectories of different cells across the frame sequence. 

The proposed framework processes the cell image at a high speed that is, at 

average, below one second per frame. 
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5.5.2.1 Evaluation of DWT with different decomposition levels 

In the experiments, processing speed is found to have strong relationship with 

frame size and the total number of cells. If the time consumption of the 

proposed framework used to process each frame in the target sequence is 

TIMper frame, the processing speed (VP) (i.e., the number of frames processed 

by the framework in one second) can be presented as follows: 

𝑉𝑃 =
1

𝑇𝐼𝑀𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒
 

Table 5-2 lists the information of each dataset and the corresponding 

processing speed. The results are generated from the framework with the 

one-level wavelet transform. 

Table 5-2 Comparison of the processing speed 

SequenceNo

. 
1 2 3 4 5 6 

Frame size 
495×53

4 

569×59

3 

606×60

5 

673×74

3 

597×52

5 

655×73

5 

No. of Cells 48 59 72 97 62 112 

Vp 2.43 2.63 2.22 0.7 2.81 1.38 

 

The relationship between frame size and processing speed (VP) is shown in 

Figure 5-12 (a). The red line represents the variation of VP with frame size, 

which is represented with a blue line. Figure 5-12 (b) shows the variation of 

VP (red line) according to different cell volumes (green line). From the 

presented relationships, both frame size and number of cells have a negative 

influence on processing speed. A larger frame or volume of cells leads to a 

greater workload for the system, which slows down the processing speed, as in 

sequence #4. Moreover, the quality of cell images contained in each of the 

sequence is also important for the processing speed, because the low image 

quality requires more operations in the pre-processing step, which increases 

the time consumption. Thus, the processing speed of this sequence is faster 

even though sequence #5 has a larger frame and contains more cells than #1 

and #2. 
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(a) 

 
(b) 

Figure 5-12 a) Variation of VP with different fame size b) variation of VP with number of cells. 
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(a) 

 
(b) 

Figure 5-13 Wavelet transform in second layer: a) the original image, and b) the second layer 

wavelet decompositions. 

We also applied a two-level wavelet transform for testing, which transfers the 

original cell image to a further small size. Due to the loss of more detailed 

information in the second-level wavelet sub-band, parts of the cells or small 

cells may be filtered out by the wavelet operation. Segmentation results of 

these wavelet sub-bands are likely, leading to errors in the tracking step.  

The processing speed and tracking accuracy are compared for the frameworks 

that use different wavelet sub-bands and the framework that lacks wavelet 

transform in Table 5-3 and Table 5-4. The average processing speed is 

calculated by 
Total No.of frames

Total TIM
. 

 
Table 5-3 Comparison of the accuracy (%) 

SequenceNo. 1 2 3 4 5 6 Average 

Without WT 99.89 99.28 96.85 97.33 95.30 97.63 97.71 

 (1
st
 Level) 99.18 98.37 97.10 97.53 95.68 98.11 97.66 

 (2
nd

 Level) 91.28 96.49 96.15 97.32 94.61 97.58 95.57 

 
Table 5-4 Comparison of the processing speed 

SequenceNo. 1 2 3 4 5 6 Average 

Without WT 0.53 0.34 0.52 0.18 0.72 0.27 0.36 

 (1
st
 Level) 2.43 2.63 2.22 0.7 2.81 1.38 1.73 

 (2
nd

 Level) 2.8 2.7 3.03 1.6 4 2.05 2.56 
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(a) 

 
(b) 

Figure 5-14 Bar charts for the tracking accuracy and processing speed 

Figure 5-14 shows the accuracies and speeds of the frameworks for different 

microscopic sequences. For convenience of illustration, the framework 

without wavelets is denoted FWO. The framework with first-layer wavelets is 

denoted FW1, and the framework with the second-layer wavelets is denoted 

FW2. The FWO achieves the highest accuracies for sequences #1 and #2: i.e., 

99.89% and 99.28%, respectively. FW1 provides the best performance for the 

rest sequences: i.e., 97.10%, 97.53%, 95.68%, 98.11% for sequences #3 

through #6, respectively. Theoretically, detailed information and noise are 

contained in the high frequency sub-bands of the wavelet transform. Therefore, 
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though to abandon these sub-bands is to lose information, the noises are 

nevertheless simultaneously removed. Due to this trade-off issue, the 

differences in accuracy between FWO and FW1 are relatively small. However, 

FW1 outperforms FWO in terms of processing speed. As shown in Table 5-4, 

the average processing speed of FW1 (1.73) is about five times that of FWO 

(0.36). 

FW2 improves the processing speed overall, but it causes a drop in tracking 

accuracy. The improvement in processing speed is more obvious with 

sequences that contain a large size frame and a large volume of cells. The ratio 

of improvement in sequence #4, for example, is 129% of FW1. The tracking 

accuracy of sequences with a small frame size and low volume of cells suffers 

from a loss of information caused by the wavelet transforms: e.g., a 

degradation of 8.61% for sequence #1 compared to FWO. Hence, processing 

speed and tracking accuracy are in a trade-off relationship. The use of the 

higher level wavelet should be according to the conditions of the processing 

sequence. High-throughput cell flow tracking provides a more efficient 

approach relative to high-resolution sequences. 

5.5.2.2 Performance evaluation with benchmark methods 

The methods stated in [4] from ISBI 2013 were tested as benchmarks for the 

proposed system. All of the methods are evaluated for tracking accuracy and 

processing speed. The results of tracking accuracy are presented in Table 5-5. 

Table 5-5 tracking accuracy of different algorithms 

Seq. No. 1 2 3 4 5 6 Average 

COM-US 79.07 84.33 89.60 85.45 79.55 83.23 83.54 

PRAG-CZ 90.96 87.69 90.06 92.03 73.93 84.63 86.55 

KTH-SE 99.67 98.97 98.43 98.72 97.78 98.80 98.73 

Proposed Method  
(one level wavelet) 99.18 98.37 97.10 97.53 95.68 98.11 97.66 

Proposed Method  
(two level wavelet) 91.28 96.49 96.15 97.32 94.61 97.58 95.57 

COM-US is a tracking framework designed by Compunetix Inc, USA, which 

employs the multiple-hypothesis tracking paradigm. PRAG-CZ is a 
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segmentation-and-association based tracking framework proposed by Charles 

University in Prague, Czech Republic. KTH-SE is also based on the 

segmentation-and-association scheme, which employs a greedy algorithm in 

its track-linking component to improve tracking performance. The average 

accuracy of the KTH-SE with SIM datasets is 98.73%, which is the best 

among four algorithms. The proposed tracking system with the one-level 

wavelet transform achieves the second position of average tracking accuracy: 

i.e., 97.66%, which is 1.07% lower than the KTH-SE.  

The processing time (TIM) of these methods per frame for each of the 

experimental sequences was evaluated with a common desktop computer 

(Intel Core i5-4200U 2.3GHz, 4GB RAM). The results are presented in Table 

5-6. The TIM is measured by the second. 

Table 5-6 TIM of different algorithms 

Seq. No 1 2 3 4 5 6 Average 

COM-US 0.107 0.1 0.13 0.232 0.105 0.145 0.132 

PRAG-CZ 0.768 0.92 1.01 1.464 0.895 1.290 1.043 

KTH-SE 1.071 0.86 0.83 1.589 0.868 1.092 1.007 

Proposed Method 
(one level wavelet) 

0.411 0.38 0.45 1.429 0.355 0.724 0.578 

Proposed Method 
(two level wavelet) 

0.357 0.37 0.33 0.625 0.25 0.488 0.391 

The average TIM is calculated by 
Total TIM

Total No.of frames
. Due to its simple structure, 

the proposed framework with the one-level wavelet transform provides a 

processing speed of 0.578 sec/frame, which is 0.429 sec less than the 

KTH-SE. 

5.6 Conclusion 

This chapter introduced two automatic techniques to fast-process cell images. 

The hybrid edge detector based on fuzzy entropy and the Canny operator was 

presented first. The performance of the approach is assessed with other 

benchmark methods. The hybrid edge detector has been implemented for 
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visual data captured by a common camera. It will be employed to monitor 

cells in real-time in further research.  

The fast tracking framework designed for time-lapse cell videos was 

introduced next. This framework is based on segmentation and association. 

Wavelet transform was implemented to choose a suitable balance between 

tracking accuracy and processing speed, and a novel cell similarity function 

was defined for cell association. An evaluation of its performance was also 

presented which shows that the proposed tracking framework excellently 

balances the trade-off relationship between tracking accuracy (i.e., 97.66%) 

and processing speed (i.e., 0.578 sec/frame). 
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  Concluding Remarks Chapter 6

 

 

This chapter provides a summary of the previously presented research, the 

issues encountered and the achievements of this thesis. It concludes with a 

proposal for further studies. 

6.1 Contributions 

This thesis began with a review of literature on image-processing techniques, 

including segmentation, tracking and 3-D reconstruction. Improved 

frameworks were established using these automatic processing techniques. Five 

primary techniques were presented in the thesis. 

1. The hybrid segmentation method using both global and 

local-thresholding techniques 

Microscope images of cell filopodia contain a lot of useful information for 

biological studies. However, few of existing segmentation approaches can 

accurately extract this information due to the typically low quality of cell 

images. A hybrid segmentation method has been proposed that is based on both 
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global and local-thresholding techniques that are designed especially to detect 

detailed information. This approach overcomes the core challenges shared by 

most cell images and exhibits excellent performance in the extraction of cell 

filopodia. 

The novel segmentation method uses both global and local-thresholding 

techniques to segment cell images. The two techniques are combined because 

problems occur when the techniques are used individually. Local thresholding 

leads to fragmentation of generated results, and global thresholding fails to 

recognize cell filopodia. Together, however, the two techniques solve each 

other’s problems; hence, their combination can produce more accurate results. 

The performances of the proposed method and some popular segmentation 

approaches were tested with real cell dataset. The results demonstrate that the 

proposed method exhibits excellent performance in segmentation (i.e., 

49.66%). It outperforms the other benchmarking approaches. 

2. The framework for quantitative measures of cell features 

Cell monitoring is a typical challenge for biological studies. Since the acquired 

databases are usually large, manual monitoring becomes extremely laborious. 

To improve efficiency, a powerful and non-destructive cell-monitoring system 

is proposed to measure the alterations of important cell features: e.g., cell size 

and cell shape. 

Unlike some traditional methods that use fluorescent markers, the input for the 

proposed system is a set of cell images in grey scales. This ensures that no 

additional factor is introduced to the research and that cells are not harmed. 

Three features are quantitatively measured in the proposed system: cell area, 

cell volume and cell shape. Various image-processing techniques are 

employed in the framework to perform different tasks. An image-segmentation 

algorithm is used to calculate cell adhesion area and cell size, and a phase 

reconstruction technique is used to calculate cell volume. Based on these two 

outcomes, measurements of cell shape can be performed. 
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The proposed cell feature measuring framework has been applied to the real 

cell dataset captured by the University of Nottingham, United Kingdom. The 

experimental result is verified by the prediction made by biologists. 

3. The tracking framework using multiple extracted cell features 

Automatic analyses of cell image sequences can offer efficient statistical 

measures that are difficult for manual analysis. A generalized framework for 

automatic cell tracking with various datasets is presented in this thesis. 

Although many approaches have been proposed for the tracking task, most are 

in complicated structures and require many parameters or prior-knowledge. The 

designed framework is general and is easily extended to databases under 

different image conditions. This general approach is not restricted to tracking 

particular types of cells. Indeed, it can be applied extensively in various medical 

imaging applications. 

Since the proposed tracking framework is based on an advanced version of the 

traditional segmentation-and-association algorithm, an analysis of the features 

of cells is made before establishing the framework. The analysis aims to 

evaluate the features that can best assist the cell-association process. The 

tracking approach uses these features to calculate the similarity between cells in 

adjacent frames. A scoring scheme is proposed for the system to make cell 

associations. A revised approach to detecting splitting, merging and appearing 

is presented. The method perfectly solves the errors in the typical method that 

are caused by rapid cell movements. A 2-step thresholding algorithm is also 

included in the proposed framework. The method can accurately segment the 

cell images. It achieves a segmentation accuracy of 85.18% for mouse stem 

cells. 

The developed framework has been applied to four datasets that contain 

different type of cells. These databases were provided by different institutions at 

a world-wide scale. The accuracy of the tracking system is demonstrated to be 

92.93% using manually track-grounded truths. Furthermore, the proposed 

system successfully tracks cells with sharp movements that are difficult for 

older methods. The experimental results demonstrate the effectiveness of the 
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designed framework and its potential to assist in relevant medical studies. 

4. The hybrid edge detector based on fuzzy entropy and the Canny 

operator 

An edge detector has been introduced that is suitable for cell images based on 

the Canny operator and the fuzzy entropy theory. Due to the routine problem 

of low contrast in cell images, the method first enhances image quality by 

morphological operations. However this process introduces noise into the 

image and so requires the use of a robust edge detector. Widely used existing 

edge-detection methods were tested, and shortcomings of benchmarking 

methods were found. For example, most of them are sensitive to noise and are 

unable to deal with the problem created by inhomogeneous grey scale 

distribution.  

Among the existing detectors, the Canny operator was selected as a method 

with high potential. Therefore, it was revised to use fuzzy entropy theory to 

improve its performance in the presence of noise. Entropy is a measure of the 

volume of information that is contained in a message. The larger the entropy is, 

the more detailed information retained. So gradient maximizing is achieved by 

using fuzzy entropy to provide the threshold for the Canny operator. 

Through comparisons between the proposed method and others such as 

Prewitt and typical Canny operator, it was observed that the revised Canny 

edge detector is more robust with respect to noise and achieves better detail 

recognition. The proposed approach is a better for edge detection in cell 

images and has potential for related cell researches. 

5. The fast tracking framework for time-lapse cell images 

Automatic cell tracking reduces the workload and increases the accuracy of 

tracking over the manual approach. However, it is hard to apply most existing 

tracking frameworks in real-time applications due to their complicated 

structure. A fast and powerful tracking framework for cell datasets is 

introduced to address this issue.  
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The primary principal of the proposed framework is also the segmentation and 

association; however, each component of the framework is designed with a 

different approach than the previously introduced tracking system. Wavelet 

transform is used in segmentation components to decompose original cell 

images. The filtered wavelet frame is set at a lower resolution that is easier for 

the system to process. A novel cell similarity framework is defined for the 

tracking process. Events such as cell division, cell fusion, cell entering and 

cell disappearing can be detected based on the values of the similarity. The 

design of the proposed approach is general, which means that it can be 

extended to track various types of cells in different medical applications. 

This approach has been applied to the real cell database. The generated results 

were evaluated with manually tracked ground truths. The tracking accuracy of 

the framework is 97.66%, and the average time for processing one frame is 

0.578 sec. All of the simulations were completed on a common desktop (Intel 

Core i3-2100 3.1GHz, 4GB RAM), which verifies the effective performances 

of the proposed framework in fast cell tracking and indicates its great potential 

in real-time biological analyses. 

6.2 Future Direction 

The research presented in this thesis can serve as a starting point for further 

computational investigations. First, the extracted features can be extended to 

assist with more specific analyses that monitor the life cycles of cells. Second, 

the proposed segmentation approach must still address the problem created by 

the segmentation of overlapping cells. This issue is worth further investigation. 

Third, the proposed algorithms—both of segmentation and visual 

tracking—can be employed as a starting point for new research directions: for 

example, for the visual tracking of cars for traffic-monitoring systems. 

In this thesis, an automatic monitoring framework for cells is proposed. The 

framework is able to perform cell feature extraction, cell edge detection and 

cell tracking. To further develop the system, more complex mechanisms can 

be included. The possible extensions are identified in what follows. 
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1. Pattern Recognition 

Different cells often have distinct features, and the features of cells alter with 

respect to different states in their life cycles. Therefore, pattern recognition can 

recognize the kind or the state of cells by using extracted cell features. In 

future work, this extension can be employed to detect cells with pathological 

changes and thereby aid disease diagnosis. 

2. Fast tracking for high-throughput cell flows 

The tracking of high-throughput cell flows is a major issue in biological 

studies. There are often hundreds of cells in high-throughput datasets. 

Although approaches have been proposed to accurately track cells in 

high-throughput flows, few take processing speed into account. Thus, the 

implementation of fast tracking for high-throughput cell flows can further 

improve the efficiency of the system. 

3. Real-time monitoring system 

This research primarily contributes high-performance algorithms that are 

supposed to be implemented in the microscopic system in future work. A 

real-time monitoring system that can fast-extract cell features, track cells, and 

recognize cell states and cell behaviours is extremely useful for most 

biological analyses.  

6.3 Conclusion 

Because a growing number of biological analyses rely on automatic 

mechanisms, the performances of the techniques employed have gained the 

increasing attention of developers; however, most existing approaches perform 

lower than expected. Several automatic techniques that have been developed 

to process time-lapse microscope images are proposed in this thesis. In 

Chapter 3, a novel segmentation method and a framework for feature 

extractions are described. Analysis of their performances is presented with the 

cell dataset from the University of Nottingham, United Kingdom as a case 
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study. The work about the newly designed tracking framework using the 

extracted features to perform accurately tracking of cells is presented in 

Chapter 4. Our success at tracking cells with rapid movements demonstrates 

the outstanding performance of the proposed framework. Chapter 5 

investigates fast-processing techniques for time-lapse microscope images. Two 

fast-processing techniques for different tasks—edge detection and 

tracking—were introduced and evaluated with respect to existing popular 

approaches. The fast-and-accurate performances of the two proposed 

approaches show their great potential for implementation in real-time 

applications. 

In conclusion, a monitoring framework has been successfully established 

based on the aims and objectives stated in Section 1.2. This system can 

quantitatively measure features of cells and accurately track cells with an 

accuracy of over 90%. The tracking frameworks designed in this research are 

all established upon the structure of segmentation and association. The 

advantage of this structure is its excellent extendibility that makes the 

frameworks can be divided to separated components and adapted to different 

datasets. Finally, the presented evaluation results demonstrate that the system 

is an efficient tool for the analysis of cells that can provide aids for many 

relevant biological studies. 
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Appendix 

The prototype of the designed tracking system has been evaluated in the 

Challenge section of 2014 IEEE International Symposium on Biomedical 

Imaging. The result of performance evaluation can be found at, 

http://www.codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challeng

e/Results_Second_CTC.html. 

Some of the datasets provided by the organizers of the Challenge program are 

used in this research. Detailed information about them is presented in the 

following. 

 

1. Rat mesenchymal stem cells on a flat polyacrylamide substrate (2D) 

 

Provider: Dr. F. Prósper.  

Cell Therapy laboratory, Centre for Applied Medical Research (CIMA) 

Pamplona. Spain 

 

Microscope: PerkinElmer UltraVIEW ERS 

Objective lens: Plan-Neofluar 10x/0.3 (Plan-Apo 20x/0.75) 

Pixel size (microns): 0.3 x 0.3 (0.3977 x 0.3977) 

Time step (min): 20 (30) 

 

 

http://www.codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challenge/Results_Second_CTC.html
http://www.codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challenge/Results_Second_CTC.html
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2. GFP-GOWT1 mouse stem cells (2D) 

 

Provider: Dr. E. Bártová. 

Institute of Biophysics, Academy of Sciences of the Czech Republic. Brno. 

Czech Republic 

 

Microscope: Leica TCS SP5 

Objective lens: Plan-Apochromat 63x/1.4 Oil 

Pixel size (microns): 0.240 x 0.240 

Time step (min): 5 

 

3. Simulated nuclei moving on a flat surface (2D) 

 

Provider: Dr. V.Ulman and Dr. D. Svoboda.  

Centre for Biomedical Image Analysis (CBIA), Masaryk University. Brno. 

Czech Republic 

(Created using Cytopacq) 

 

Pixel size (microns): 0.125 x 0.125 
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4. Chinese Hamster Ovarian (CHO) nuclei overexpressing GFP-PCNA 

(3D) 

 

Provider: Dr. J. Essers. 

Dept. of Cell Biology, Erasmus Medical Centre. Rotterdam. The Netherlands 

 

Microscope: Zeiss LSM 510 

Objective lens: Plan-Apochromat 63x/1.4 Oil 

Voxel size (microns): 0.202 x 0.202 x 1 

Time step (min): 9.5 

 

5. HeLa cells stably expressing H2b-GFP (2D) 

 

Provider: Mitocheck Consortium 

 

Microscope: Olympus IX81 

Objective lens: Plan 10x/0.4 

Pixel size (microns): 0.645 x 0.645 

Time step (min): 30 
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6. Simulated nuclei of HL60 cells stained with Hoescht (2D and 3D) 

 

Provider: Dr. V.Ulman and Dr. D. Svoboda. 

Centre for Biomedical Image Analysis (CBIA), Masaryk University. Brno. 

Czech Republic 

(Created using Cytopacq) 

 

Microscope: Zeiss Axiovert 100S with a Micromax 1300-YHS camera 

Objective lens: Plan-Apochromat 40X/1.3 (oil) 

Pixel size (microns): 0.125 x 0.125 (x 0.200) 

Time step (min): 29 
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